
Graph Editing to a Given
Neighbourhood Degree List is
Fixed-Parameter Tractable

by

Vijay Subramanya

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2016

c© Vijay Subramanya 2016

I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Graph editing problems have a long history and have been widely studied [35, 53] ,
with applications in biochemistry [23] and complex network analysis [5]. They generally
ask whether an input graph can be modified by inserting and deleting vertices and edges
to a graph with the desired property [5, 22]. We consider the problem Graph-Edit-
to-NDL (GEN) where the goal is to modify to a graph with a given neighbourhood
degree list (NDL). The NDL lists the degrees of the neighbours of vertices in a graph,
and is a stronger invariant than the degree sequence, which lists the degrees of vertices.

We show Graph-Edit-to-NDL is NP-complete and study its parameterized com-
plexity. In parameterized complexity, a problem is said to be fixed-parameter tractable
with respect to a parameter if it has a solution whose running time is a function that
is polynomial in the input size but possibly superpolynomial in the parameter.

Golovach and Mertzios [22] studied editing to a graph with a given degree sequence
and showed the problem is fixed-parameter tractable when parameterized by ∆ + `,
where ∆ is the maximum degree of the input graph and ` is the number of edits.
We prove Graph-Edit-to-NDL is fixed-parameter tractable when parameterized by
∆ + `.

Furthermore, we consider a harder problem Constrained-Graph-Edit-to-NDL
(CGEN) that imposes constraints on the NDLs of intermediate graphs produced in
the sequence. We adapt our FPT algorithm for Graph-Edit-to-NDL to solve
Constrained-Graph-Edit-to-NDL, which proves Constrained-Graph-Edit-
to-NDL is also fixed-parameter tractable when parameterized by ∆ + `.

Our results imply that, for graph properties that can be expressed as properties
of NDLs, editing to a graph with such a property is fixed-parameter tractable when
parameterized by ∆ + `. We show that this family of graph properties includes some
well-known graph measures used in complex network analysis.

iii

Acknowledgements

I am grateful to my supervisor, Professor Naomi Nishimura, for her constant sup-
port, guidance, and, above all, her patience. This work would not have been possible
without her excellent feedback and suggestions.

I thank Professor Therese Biedl and Professor Anna Lubiw for agreeing to read the
thesis and providing valuable comments.

I also thank my family for their love and my friends, both in Waterloo and back
home in India, with whom I have had great fun over the years.

Finally, I’m grateful for cricket and the unparalleled joy it has given me.

iv

Table of Contents

Abstract iii

Acknowledgements iv

1 Introduction 2
1.1 Parameterized complexity . 3
1.2 Our contributions . 3
1.3 Our method . 4
1.4 Organization . 4

2 Literature Survey 6
2.1 Graph editing . 6
2.2 Degree-based graph invariants . 7
2.3 Editing to a graph specified by a degree-based graph invariant 8
2.4 Reconfiguration problems . 9

3 Basic Definitions 11
3.1 Graph definitions . 11
3.2 List definitions . 12
3.3 Data structure . 12
3.4 Neighbourhood Degree List . 12

3.4.1 Graph properties expressed as Young properties of NDLs 13
3.5 Graph edit . 14
3.6 NDL graph edit . 16

3.6.1 List-attributed edit pair . 17
3.6.2 NDL graph edit . 18
3.6.3 Complete LA edit pairs . 25

3.7 Time complexity of checking list-isomorphism and degree conditions . . 28
3.8 Sequences of edit pairs and LA edit pairs 30

v

3.9 Problem statement . 31

4 Complexity Results 32

5 Preliminary Results 36
5.1 Restatement of GEN and CGEN in terms of NDL graph edit 36
5.2 NDL of (G, E)-produced graphs . 39

6 Provisional Completeness of an LA Edit Pair Sequence 42
6.1 Check-Provisional-Completeness procedure 42

7 Determining the completeness of an LA edit pair sequence in a graph 48
7.1 Merging LA graphs . 49
7.2 Antecedent of a merge graph . 52
7.3 Origin graph . 58

7.3.1 Antecedent and merge sequences 59
7.3.2 Origin graph . 62

8 FPT Algorithms for GEN and CGEN 71
8.1 FPT algorithm for GEN . 71

8.1.1 Bounding the search space . 71
8.1.2 Solve-GEN procedure . 72

8.2 FPT algorithm for CGEN . 73
8.3 Implications . 74

9 Conclusion 76

Notation 78

References 82

vi

Chapter 1

Introduction

Graph editing problems ask whether an input graph can be modified to a graph with
a given property using graph edit operations [35, 53, 40]. The permitted edit operations
are usually chosen from among vertex and edge insertions and deletions [5, 22, 39], but
more complex operations such as edge contraction (removal of an edge and identifying
the vertices it connected) [3] and edge flipping (deletion of an edge and insertion of
a different edge in a graph such that the resulting graph is in the same graph class)
[7] have been considered. Graph editing problems have numerous applications, which
are mainly determined by the graph property: editing to an interval graph is used to
correct errors in DNA sequence fragmentation [21], editing to a planar graph has found
application in graph drawing [51], and editing to satisfy anonymity constraints is useful
in complex network analysis [9].

In this thesis, we consider insertions and deletions of vertices and edges as the per-
mitted graph edit operations and a graph property that is defined on the degrees of
vertices. More specifically, our graph property is a graph invariant called the neighbour-
hood degree list (NDL) [4], which is a list that contains lists of degrees of neighbours
of the vertices of a graph. Our problem, Graph-Edit-to-NDL, asks whether an in-
put graph can be modified to a graph with a given NDL by applying at most ` graph
edits. Furthermore, we consider a harder problem Constrained-Graph-Edit-to-
NDL that imposes constraints on the NDLs of intermediate graphs produced in the
sequence.

Of degree-based graph invariants, the degree sequence, which lists the degrees of the
vertices of a graph, is one of the simplest and is well-studied [15]. The NDL, on the other
hand, was introduced recently [4] and is a stronger invariant than the degree sequence
because the degree sequence of a graph is implicitly given by its NDL. However, the
NDL is a weaker invariant than the deck of a graph [26], which is the set of all induced

1

subgraphs obtained by deleting exactly one vertex from the graph. Barrus and Donovan
[4] gave a counting argument to show that the NDL of a graph is determined by its
deck. Therefore, the Graph Reconstruction Conjecture due to Kelly [33] and Ulam [52],
which claims that every graph is uniquely determined, up to isomorphism, by its deck,
is true for the class of graphs that are uniquely determined, up to isomorphism, by their
NDLs.

To the best of our knowledge, the problem of editing to a graph with a given deck
has not been considered. However, recently, Golovach and Mertzios [22] studied editing
to a graph with a given degree sequence and showed that it is NP-complete. They
further analyzed the problem through the lens of parameterized complexity, and gave
an FPT solution for the combined parameter maximum degree and the number of edits.

1.1 Parameterized complexity
Although no strictly polynomial-time solutions exist for NP-hard problems (unless

P=NP), restricting the super-polynomial complexity to parameters that are small com-
pared to the input size is of practical concern. Parameterized complexity [13] analyzes
a problem in two dimensions: the size of the instance |I| and a fixed parameter k. A
problem is fixed-parameter tractable if it is solvable in f(k) · |I|p time, where f is a com-
putable function that depends only on k and p is a constant. The class FPT contains
fixed-parameter tractable problems.

Kernelization is a preprocessing technique that reduces an instance I with parameter
k to an instance I ′ with parameter k′ such that |I ′|+ k′ is bounded by a function φ of
k. The pair (I ′, k′) is called a kernel of (I, k), and is a polynomial kernel if the function
φ is polynomial.

Just as NP-hardness characterizes the intractability of a problem in the classical
setting, W -hardness characterizes its fixed-parameter intractability with respect to a
given parameter. There exists a hierarchy of classes called the W -hierarchy given by
FPT ⊆ W [1] ⊆ W [2] ⊆ . . .XP, where XP contains the problems solvable in O(nf(k))
time for a function f of k. It is believed that FPT 6= W [1].

1.2 Our contributions
We give an algorithm to show Graph-Edit-to-NDL is fixed-parameter tractable

with respect to the parameter ∆+`, where ∆ is the maximum degree of the input graph
and ` is the maximum number of graph edits. It follows from our algorithm that the
harder problem Constrained-Graph-Edit-to-NDL, which constrains the NDLs

2

of the intermediate graphs obtained by applying the graph edit sequence to satisfy a
certain property π, is in FPT for the parameter ∆ + `. Moreover, we show that both
the problems are NP-complete.

Since the NDL is a stronger invariant than the degree sequence, there exist graph
properties which can be expressed as properties of NDLs, but not as properties of degree
sequences. Our solution to Graph-Edit-to-NDL can be adapted to solve editing to
graphs with such properties. We mention three such graph properties in the domain of
complex networks: neighbourhood degree anonymity, assortativity, and average nearest
neighbour degree (see Examples 5, 6, and 7, respectively, in Chapter 3).

1.3 Our method
Our strategy is similar to the FPT solution for editing to a k-degree anonymous

graph by Bazgan and Nichterlein [5], where a graph is said to be k-degree anonymous
[37] if, for each vertex of the graph, there are at least k − 1 other vertices with the
same degree. Their algorithm constructs all possibilities of a “solution structure”, each
of which is checked to determine whether it leads to a k-degree-anonymous graph. The
algorithm returns yes if and only if there exists such a solution structure which is also
an induced subgraph of the input graph.

We view a graph edit as “replacing” a subgraph of a graph with a different graph.
We extend this notion to NDL graph edits, which specify not only the modifications
to a graph but also the changes to its NDL. In our FPT algorithm, we consider all
possible sequences of NDL graph edits of length at most ` which lead to a graph with
the desired NDL. For each such sequence, we check whether the modifications it specifies
can be performed in the input graph by tracing back each modification to the input
graph. This reduces the task to determining whether a certain graph is isomorphic to
a subgraph of the input graph such that certain degree constraints are satisfied. We
output yes if and only if there exists such a sequence of NDL graph edits.

Our algorithm also determines the NDLs of the intermediate graphs obtained by
performing each sequence of NDL graph edits in the search space. This allows us to
check whether the NDLs of intermediate graphs have a given property π and hence
solve Constrained-Graph-Edit-to-NDL.

1.4 Organization
The rest of the thesis is organized as follows.

3

In Chapter 2, we provide background on our results. We briefly discuss the previous
work in graph editing and the various graph invariants defined on the degrees of vertices.
Then, we look at the graph editing problems where the desired graph property is defined
using such a degree-based graph invariant, and how our problem differs from them.

In Chapter 3, we characterize a graph edit using pairs of graphs, which specify the
“replaced” and the “replacing” subgraphs of a graph. Then, we specify an NDL graph
edit by a pair of graphs with lists attributed to vertices to describe the changes to the
NDL of the graph. We call such a pair of graphs a list-attributed edit pair (LA edit
pair), and a sequence of LA edit pairs an LA edit pair sequence. We end the chapter
with the problem statements of Graph-Edit-to-NDL and Constrained-Graph-
Edit-to-NDL.

In Chapter 4, we prove the NP-completeness of Graph-Edit-to-NDL and
Constrained-Graph-Edit-to-NDL by showing a reduction from Vertex-Cover.

In Chapter 5, we restate Graph-Edit-to-NDL in terms of NDL graph edits, and
give a procedure to determine the NDL of the graph produced by a sequence of NDL
graph edits using only the LA edit pair sequence.

In Chapter 6, we give a procedure to determine whether a given LA edit pair se-
quence accurately specifies the changes to the NDL of the input graph. Furthermore,
we prove this is a feature of the LA edit pair sequence and is independent of the input
graph.

In Chapter 7, we show that checking whether the sequence of NDL graph edits
specified by an LA edit pair sequence of length at most ` can be performed in a given
input graph is in FPT when parameterized by ∆ + `, where ∆ is the maximum degree
of the input graph. We reduce checking whether an NDL graph edit can be performed
in an intermediate graph in the sequence to a condition on the input graph. Then, we
prove the time taken for this reduction and checking the condition on the input graph
is bounded by a function of ∆ + `.

In Chapter 8, we put it all together in our FPT algorithm, which checks the above
conditions for each candidate LA edit pair sequence. We show that the search space of
such sequences is bound by a function of ∆ + `, and so the algorithm runs in FPT time
for the parameter ∆ + `.

Finally, we conclude in Chapter 9 by noting ways to strengthen our results, which
include proving W -hardness of Graph-Edit-to-NDL when parameterized by ∆ or
` individually, and exploring graph properties which can be expressed as properties of
NDLs.

4

Chapter 2

Literature Survey

Our work broadly relates to two areas of research: (a) graph editing, and (b) degree-
based graph invariants and their graph realizations. We begin the chapter with back-
ground on graph editing problems in Section 2.1. In Section 2.2, we discuss the various
degree-based graph invariants that have been studied, which include degree sequences,
integer-pair sequences, and neighbourhood degree lists. Later, in Section 2.3, we look
at previous work in the intersection of these two areas: in short, we describe the graph
editing problems stated using degree-based invariants. Finally, in Section 2.4, we discuss
reconfiguration problems, which are similar in nature to graph editing problems.

2.1 Graph editing
The earliest studied graph editing problems were vertex deletion problems, which

ask whether a subset of vertices can be deleted from a graph to obtain a graph with a
desired property. Note that this family of problems contains well-known NP-complete
problems − Vertex-Cover, for instance, asks whether a bounded number of vertices
can be deleted to obtain a graph with no edges [32]. Lewis and Yannakakis [35] gen-
eralized this observation and proved that a vertex deletion problem is NP-complete if
the desired graph property is nontrivial and hereditary on induced subgraphs. More
recently, Hüffner et al. [30] showed that vertex deletion to a cluster graph is in FPT
when parameterized by the number of vertices deleted.

Another class of graph editing problems is edge modification problems, which have
received more attention than vertex deletion problems. The standard edge modifica-
tion operations are edge insertion and edge deletion, although edge contraction, which
identifies the end-vertices of an edge, is also considered. Watanabe et al. [53] showed
that the edge deletion and edge contraction problems are NP-hard for any nontrivial

5

graph property characterized by a forbidden set consisting of 3-connected graphs. In
fact, edge deletion problems in general tend to be NP-complete. For example, edge
deletion to a cluster graph [42], bipartite graph [19], threshold graph [38], and interval
graph [21] are all NP-complete. A well-studied edge insertion problem is the sandwich
problem, which has applications in DNA mapping and parallel processing [23]. The
sandwich problem asks whether inserting a bounded number of “admissible” edges in
the input graph produces a graph with a given property. Golumbic et al. [23] showed
that the sandwich problem is polynomial-time solvable for split graphs, cographs, and
threshold graphs, but is NP-complete for Eulerian graphs and permutation graphs. Re-
cently, Heggernes et al. [28] proved the problem for chordal graphs is in FPT when
parameterized by the size of minimum vertex cover of the input graph.

The edit operations we allow are insertions and deletions of both vertices and edges.
Furthermore, we allow an inserted vertex or edge to be deleted at a later time.

2.2 Degree-based graph invariants
A graph property that is invariant under isomorphism is called a graph invariant. A

graph invariant defined on the degrees of vertices of a graph, such as the maximum (or
minimum) degree, is a degree-based graph invariant. A value of a degree-based graph
invariant is realizable if there exists a graph that satisfies the graph invariant, in which
case we call the graph a realization.

A well-studied degree-based graph invariant is the degree sequence, which lists the
vertex-degrees of the graph (see Definition 1 in Chapter 3). Much of the research
on degree sequences has focused on their realizability. While both the Havel-Hakimi
algorithm [27, 24] and the Erdős–Gallai theorem [8] determine the realizability of a
degree sequence, there exist harder questions about the number of realizations and
their properties. These problems have found applications in areas such as structural
organic chemistry, where the structural isomers of a compound are given by the different
realizations of a degree sequence [49], and so have attracted much attention. One
such problem is to determine whether a degree sequence has a unique realization up
to isomorphism, and if so, to find the realization. In early work, Li [36] gave a few
characterizations of degree sequences that have unique realizations and, later, Hammer
et al. [25] proved that the degree sequences of threshold graphs have unique realizations.

Patrinos and Hakimi [46] introduced the integer-pair sequence of a graph, where
each pair of an integer-pair sequence corresponds to an edge of the graph and contains
the degrees of its end-vertices. They also gave necessary and sufficient conditions for
the realizability of an integer-pair sequence. Later, Das [11] characterized integer-pair
sequences that have unique realizations and Achuthan [1] characterized those that have

6

connected realizations.
Barrus and Donovan [4] recently introduced the neighbourhood degree list (NDL) (see

Definition 3 in Chapter 3), which provides more information about a graph than either
its degree sequence or its integer-pair sequence. They gave necessary and sufficient
conditions for the realizability of an NDL using a criterion given by Gale [18] and
Ryser [48] for a degree sequence to have a bipartite graph as a realization. They also
characterized non-isomorphic realizations of an NDL by defining an operation which on
repeated application transforms one realization to another.

In addition to graph invariants, various graph measures that are relevant to par-
ticular domains are defined in terms of degrees of vertices. An example of such a
graph measure is degree anonymity [37], which is useful in complex network analysis.
In fact, k-degree-anonymity is one of many k-anonymity criteria for privacy preserva-
tion in social networks − others include k-neighbourhood-isomorphism [56], where the
neighbourhood of any vertex is “similar” to the neighbourhoods of at least k − 1 other
vertices, and k-symmetry [54], where each vertex can be mapped to at least k−1 other
vertices by automorphism.

While the degree anonymity of a graph is determined by its degree sequence, there
exist other graph measures that can be determined by the NDL but not the degree
sequence. Assortativity [43], which indicates the tendency of the vertices of a graph
to be adjacent to vertices of similar degree, and average nearest neighbours degree [45],
which gives the average of the mean degree of neighbours of vertices, are two examples.

2.3 Editing to a graph specified by a degree-based
graph invariant

Editing problems where the desired property of the graph is specified using the
degrees of its vertices have attracted attention. These problems are descended from
the problem of finding an r-regular subgraph in a given graph [50, 47, 6]. Moser and
Thilikos [40] were the first to formulate it as a graph editing problem, which meant
they could use the number of graph edits, `, as a parameter and show that the problem
is in FPT when parameterized by `+ r.

Froese et al. [17] considered the harder problem of editing to a graph whose degree
sequence satisfies a desired property. When only edge insertions are allowed, they
showed the problem is in FPT when parameterized by ∆ + `, where ∆ is the maximum
degree of the input graph. More recently, Golovach and Mertzios [22] studied the
even harder problem of editing to a graph with a given degree sequence. When vertex
deletion, edge insertion, and edge deletion are allowed, they proved that this problem

7

is in FPT when parameterized by ∆ + `. They also gave a polynomial kernel for the
parameter ∆ + `, but if only edge insertions are allowed.

To the best of our knowledge, editing to a graph with a given integer-pair list has
not been studied and we are the first to study editing to a graph with a given NDL.

Prior to Froese et al. [17], Mathieson and Szeider [39] had studied the more general
problem of editing to a graph where the degree of each vertex is constrained to lie in
a “degree set” of numbers that is assigned to the vertex by an input function. They
called it Degree-Constraint-Editing and showed that if only vertex and edge
deletions and edge insertions are permitted, the problem is in FPT for the parameter
s + `, where s is the maximum number in the degree set of any vertex. Dabrowski et
al. [10] considered a variant of Degree-Constraint-Editing which asks whether a
planar, vertex- and edge-weighted input graph can be modified into a connected graph
using only vertex and edge deletions, subject to additional constraints on the weights
of vertices and edges deleted as well as on the total cost of the deletions. They gave
a polynomial kernel for the problem when parameterized by the sum of the bounds on
weights of deleted vertices and edges.

Although Graph-Edit-to-NDL looks similar to Degree-Constraint-
Editing, they differ in the following way: Degree-Constraint-Editing specifies
“local” constraints on the vertex-degrees by specifying a “degree set” for each vertex.
On the other hand, Graph-Edit-to-NDL specifies a “global” constraint on the neigh-
bourhoods of vertices. In other words, the vertex-degrees are constrained only by the
requirement that the graph obtained has the given NDL.

In complex network analysis, editing to a k-degree-anonymous graph is well-studied
on various combinations of edit operations [9]. Bazgan and Nichterlein [5] proved this
problem is in FPT for the parameter ∆+` when vertex and edge insertions and deletions
are allowed. Zhou and Pei [56] showed that editing to a k-neighbourhood-isomorphic
graph using only edge insertions is NP-complete and gave a method for solving the
problem, which they showed by empirical evaluation runs in time that depends only on
∆ and `.

Our results imply, for any graph measure determined by the NDL alone, editing
to a graph with a given value of the graph measure is in FPT when parameterized by
∆ + `.

2.4 Reconfiguration problems
Reconfiguration problems are defined on the solution spaces of combinatorial prob-

lems. A modification operation is defined, which transforms one solution to another
and defines an adjacency relation between the solutions. Now, the questions asked

8

include “can one solution be modified to another via a sequence of solutions?”, “can
any two solutions be transformed into each other?”, and “what is the smallest number
of modifications needed to transform one solution to another?” (see the survey by van
den Heuvel [29]). The allowed modification operations in a reconfiguration problem
generally depend on the nature of the combinatorial problem. For example, Vertex-
Cover-Reconfiguration [41] allows only insertion and deletion of vertices, and
Matching-Reconfiguration [31], which asks whether a matching of a graph can
be transformed into a different matching, allows only insertion and deletion of edges.
But there also exist problems where different modification operations lead to multiple
reconfiguration problems. For example, three models of reconfiguration of independent
sets have been studied − token jumping, token sliding, and token addition and removal
−, which differ in the allowed modification operations [34].

The similarity between reconfiguration and graph editing is noticed if we view a
graph editing problem as transforming a graph in one graph class to a graph in another.
Graph-Edit-to-NDL, then, asks whether a given realization of one NDL can be
transformed into a realization of a different NDL.

9

Chapter 3

Basic Definitions

3.1 Graph definitions
We refer to the text by Diestel [12] for basic graph definitions that we do not give

in this section.
We consider simple, undirected, and unweighted graphs. The vertex set and the edge

set of a graph G are denoted V (G) and E(G), respectively. Two vertices u, v ∈ V (G)
are neighbours in G if and only if (u, v) ∈ E(G).

Two graphs G1 and G2 are isomorphic if and only if |V (G1)| = |V (G2)| and
there exists a bijection f : V (G1) → V (G2) such that (u, v) ∈ E(G1) if and only if
(f(u), f(v)) ∈ E(G2) for any u, v ∈ V (G1).

A path of length t between vertices u, v ∈ V (G) is a sequence of vertices
u,w1, . . . , wt−1, v, where wi ∈ V (G) for 1 ≤ i ≤ t − 1, (u,w1), (wt−1, v) ∈ E(G),
and (wj, wj+1) ∈ E(G) for 1 ≤ j ≤ t−2. For any two vertices u, v ∈ V (G), the distance
between u and v, denoted dist(u, v), is the length of the shortest path, if a path exists,
between u and v, and is infinity otherwise.

The neighbourhood of a vertex v ∈ V (G) is defined as NG(v) = {u ∈ V (G) | (u, v) ∈
E(G)}. The k-neighbourhood of v is the set of all vertices in G that lie at a distance k
from v, i.e., Nk

G(v) = {u ∈ V (G) | dist(u, v) = k}.
The degree of a vertex v ∈ V (G), denoted dG(v), is the size of its open neighbourhood

in G, |NG(v)|. Given a graph G, by degi(G), we refer to the number of vertices of degree
i in G. The maximum integer i for which degi(G) > 0 is the maximum degree, denoted
∆(G). Where G is obvious, we refer to its maximum degree as ∆.

A graphH is a subgraph of a graphG if and only if V (H) ⊆ V (G) and E(H) ⊆ E(G).
Furthermore, a graph H is an induced subgraph of G if and only if H is a subgraph of G
and for every pair of vertices u, v ∈ V (H), (u, v) ∈ E(H) if and only if (u, v) ∈ E(G).

10

Given a graph G, the subgraph induced by a subset of vertices W ⊆ V (G) is defined as
the induced subgraph H of G with V (H) = W , which we denote as G[W].

3.2 List definitions
We define a nonincreasing list L as a sequence of integers in nonincreasing order

and its size, |L|, as the length of the sequence. The ith element of L is denoted L[i] for
1 ≤ i ≤ |L|.

The only operations that modify a nonincreasing list L are: (i) list extension, de-
noted L ⊕ a, which we use to add an element a to L such that the resulting list is a
nonincreasing list, and (ii) list contraction, denoted L 	 a, which we use to remove an
element a from L.

A Young tableau [55] is a list of nonincreasing lists in a nonincreasing order of their
sizes. Suppose two distinct nonincreasing lists L1 and L2 in a Young tableau T have
the same size and i is the smallest index for which L1[i] 6= L2[i]. Then L1 precedes L2
in T if L1[i] > L2[i]; otherwise, L2 precedes L1 in T .

The size of a Young tableau T , denoted |T |, is the number of nonincreasing lists
in T . We denote the ith nonincreasing list of T by T [i] for 1 ≤ i ≤ |T |. Two Young
tableaux T1 and T2 are equal if and only if |T1| = |T2| and T1[i] = T2[i] for each
1 ≤ i ≤ |T1|.

We define a Young property as a property defined on Young tableaux. A Young
property π is verifiable in polynomial time if determining whether a Young tableau T
satisfies π is verifiable in time polynomial in |T |.

3.3 Data structure
The computational model used in this work is the RAM model [2]. We store non-

increasing lists as dynamic arrays and Young tableaux as dynamic arrays of dynamic
arrays. This implies that the list extension and list contraction operations take time
linear in the size of the list. Furthermore, adding and removing a list from a Young
tableau take time linear in the size of the Young tableau.

3.4 Neighbourhood Degree List
Two measures of a vertex defined using its neighbourhood are its degree and the

list of the degrees of its neighbours, which we call the neighbourhood degree sequence

11

(Definition 2). Analogously, two invariants defined using the neighbourhoods of the
vertices of a graph are (i) a list of the degrees of its vertices, which is called the degree
sequence (Definition 1), and (ii) a list of the neighbourhood degree sequences of its
vertices, which is called the neighbourhood degree list (Definition 3).

Definition 1 ([12]). The degree sequence of a graph G on n vertices, (d1, d2, . . . , dn),
is the nonincreasing list of the degrees of vertices of G.

Definition 2. The neighbourhood degree sequence (NDS) of a vertex v ∈ V (G) of
degree p, NDS(G, v) = (d1, d2, . . . , dp), is a sequence of the degrees of vertices in NG(v)
in nonincreasing order.

Definition 3 ([4]). The neighbourhood degree list (NDL) of a graph G is a Young
tableau given by

NDL(G) = (NDS(G, v1),NDS(G, v2), . . . ,NDS(G, vn))

where V (G) = {v1, v2, . . . , vn} and dG(v1) ≥ dG(v2) ≥ · · · ≥ dG(vn).

Observe that the degree sequence of a graph is given implicitly by its NDL, since
the degree of a vertex is the size of its corresponding NDS in the NDL.

3.4.1 Graph properties expressed as Young properties of
NDLs

A Young property π defines a class of graphs whose NDLs satisfy π. In other words,
certain graph properties can be expressed as Young properties of the NDLs of graphs.
Here, we give a few examples of graph measures that define such graph properties.
Observe that while degree anonymity is determined by the degree sequence, the other
three are defined using the degrees of neighbours of the vertices in a graph, and so are
not determined by the degree sequence.

Example 4 ([37]). A graph is k-degree anonymous if, for each v ∈ V (G), there are
k − 1 other vertices of G whose degrees are dG(v).

Observe that the degree anonymity of a graph is determined by its degree sequence.
Degree anonymity is a privacy measure in social networks, and a high degree anonymity
protects against re-identification of vertices of a social network using their degrees [37].

Example 5. Neighbourhood Degree Anonymity. We introduce neighbourhood degree
anonymity as an extension of degree anonymity. A graph G is k-neighbourhood degree

12

anonymous if, for each v ∈ V (G), there are at least k − 1 other vertices of G whose
NDSs equal NDS(G, v).

Observe that whether a graph G is k-neighbourhood degree anonymous can be de-
termined by checking whether for each NDS(G, v) in NDL(G), there are at least k − 1
other NDSs in NDL(G) that are identical to NDS(G, v). We note that the neighbour-
hood degree anonymity is a stronger privacy measure than k-degree anonymity.

Example 6. Assortativity [43]. Assortativity is a measure of the tendency of vertices
in a graph to be adjacent to vertices of similar degree. The assortativity of a graph G
is given by

A(G) =
∑
v∈V (G)

(
(dG(v)− d̄) ·∑u∈NG(v)(dG(u)− d̄)

)
∑
v∈V (G)

(
dG(v) · (dG(v)− d̄)2

)
where d̄ is the average degree of the vertices of G. Given NDL(G), we are given
the average degree d̄ and also the degree of each neighbour u of v, and so we can
determine A(G). Taking assortativity into account substantially increases the accuracy
of social network models since many real-world networks show preference of vertices to
be attached to vertices of similar degree [43]. For example, the assortativity of a social
network helps predict the spread of a disease in the community [43].

Example 7. Average nearest neighbours degree [45]. The average nearest neighbours
degree of a graph is the average of the average degrees of neighbours across all vertices.

¯knn(G) = 1
|V (G)| ·

∑
v∈V (G)

∑
u∈NG(v) dG(u)
dG(v)

Since dG(u) is given by NDL(G) for each neighbour u of v, we can determine ¯knn(G)
from NDL(G). The average nearest neighbours degree has been used to describe the
topological and dynamical properties of the Internet [45].

3.5 Graph edit
We consider four edit operations: vertex insertion (of degree zero), vertex deletion,

edge insertion, and edge deletion.
Intuitively, a graph edit in a graphG can be viewed as “replacing” a (possibly empty)

induced subgraph of G with a different graph. A graph edit, then, is characterized by
a pair of graphs − the “replaced” induced subgraph X and the “replacing” graph Y −
which specify the modifications to G.

13

Note that a vertex deletion also deletes the edges incident with the deleted vertex.
Hence, these deleted edges must be present in X and absent from Y . This implies that
the neighbours of the deleted vertex, whose degrees are modified by the vertex deletion,
are in both X and Y .

Definition 8. An edit pair is an ordered pair of graphs (X, Y) such that one of the
following is true:

1. Vertex insertion: V (X) = ∅ and V (Y) = {y};

2. Vertex deletion: V (X) = {z} ∪ V (Y) such that

(a) NX(z) = V (Y) and
(b) E(Y) = E(X) \ {(z, p) | p ∈ V (Y)};

3. Edge insertion: V (X) = V (Y) = {u, v}, E(X) = ∅, and E(Y) = {(u, v)}; and

4. Edge deletion: V (X) = V (Y) = {u, v}, E(X) = {(u, v)}, and E(Y) = ∅.

Since we view a graph edit as “replacing” an induced subgraph of the given graph,
we require that X be an induced subgraph of G. This also prevents inserting an
edge already present in G. Although this requirement forces the edges between the
neighbours of a deleted vertex to be included in X, these edges are retained in the
resulting graph because we delete only the edges incident with the deleted vertex.

Next, to avoid duplicate vertex-labels, the vertex inserted in G must not already be
present in G.

Finally, for an edit pair (X, Y) to fully specify the modifications in G, X must
include all vertices of G whose degrees, and hence neighbourhoods, are modified. In
the case of vertex deletion, this means all neighbours of the deleted vertex in G must
be its neighbours in X.

Definition 9. We define graph edit by an operation gedit. Given a graph G and an edit
pair (X, Y), we say gedit(G, (X, Y)) = G′ if and only if (X, Y) satisfies the following
preconditions with respect to G:

1. X is an induced subgraph of G,

2. (V (Y) \ V (X)) ∩ V (G) = ∅, and

3. dX(z) = dG(z) for z ∈ V (X) \ V (Y), if any,

14

and the graph G′ is given by

V (G′) = (V (G) \ V (X)) ∪ V (Y)
E(G′) = (E(G) \ E(X)) ∪ E(Y)

We say (X, Y) fits G if and only if (X, Y) satisfies the preconditions for the gedit
operation with respect to G.

Note that the operation gedit is well-defined.

Fact 10. If gedit(G, (X, Y)) = G′ for a graph G and an edit pair (X, Y), then Y is an
induced subgraph of G′.

Proof. Suppose gedit(G, (X, Y)) = G′. By Definition 9, V (Y) ⊆ V (G′) and E(Y) ⊆
E(G′), and so Y is a subgraph of G′. We claim Y is also an induced subgraph of G′.

If (X, Y) is a vertex insertion, then, by Definition 8, V (X) = E(X) = E(Y) = ∅
and V (Y) = {y}. Now, y ∈ V (G′) by Definition 9, which means the only vertex of Y
is also in G′ and so Y is an induced subgraph of G′.

For other graph edit operations, we claim (y, z) ∈ E(Y) if and only if (y, z) ∈ E(G′)
for any pair of vertices y, z ∈ V (Y). If (y, z) ∈ E(Y), then we know (y, z) ∈ E(G′)
because Y is a subgraph of G′. To prove the other direction, we show if (y, z) /∈ E(Y),
then (y, z) /∈ E(G′).

Suppose (y, z) /∈ E(Y). Now, if (X, Y) is not a vertex insertion, then by Definition
8, V (Y) ⊆ V (X). Therefore, it holds that y, z ∈ V (X), and so we have two cases:
either (y, z) ∈ E(X) or (y, z) /∈ E(X). We show (y, z) /∈ E(G′) in both the cases.

If (y, z) ∈ E(X), then, (y, z) /∈ E(G)\E(X), and hence, (y, z) /∈ E(G′) by Definition
9. On the other hand, suppose (y, z) /∈ E(X). Since (X, Y) fits G, we know X is an
induced subgraph of G by Definition 9, and so (y, z) /∈ E(G). Therefore, (y, z) /∈ E(G′)
by Definition 9.

Hence, for every y, z ∈ V (Y), (y, z) ∈ E(Y) if and only if (y, z) ∈ E(G′), which
means Y is an induced subgraph of G′.

3.6 NDL graph edit
We extend the notion of graph edit to specify the changes to the NDSs of the vertices,

and hence the changes to the NDL. These changes are given by the nonincreasing lists
we assign to vertices, which state their NDSs before and after the edit.

15

3.6.1 List-attributed edit pair
Definition 11. A list attribution Λ of a graph G is an assignment of a nonincreasing
list Λ(v) to each vertex v ∈ V (G). A list-attributed graph (LA graph) (G; Λ) is a graph
G with a list attribution Λ.

We call a pair of LA graphs which specifies the modifications to a graph and to its
NDL an LA edit pair (formally defined in Definition 12).

Given an LA edit pair E = ((X; ΛX), (Y ; ΛY)), we call a vertex or edge retained if
it is in both X and Y . We denote the sets of retained vertices and edges in E as VR(E)
and ER(E), respectively.

Note that if the degree of a vertex in a graph changes, then the NDSs of its neigh-
bours change too. Hence, an LA edit pair E = ((X; ΛX), (Y ; ΛY)) contains degree-
modified vertices, whose degrees in X and Y differ, as well as the retained neighbours
of such vertices, called list-modified vertices, whose nonincreasing lists in (X; ΛX) and
(Y ; ΛY) alone may differ. We denote the sets of degree-modified and list-modified ver-
tices of E as Mdeg(E) and Mlist(E), respectively.

In Definition 12, when E is an edge insertion/deletion, the only degree-modified
vertices are the end-vertices of the edge inserted/deleted, and they are explicitly stated.

Note that neither the degree nor the NDS of any vertex is changed by a vertex
insertion in a graph.

Definition 12. A list-attributed edit pair (LA edit pair) E = ((X; ΛX), (Y ; ΛY)) is an
ordered pair of LA graphs (X; ΛX) and (Y ; ΛY) such that one of the following is true:

1. Vertex insertion: V (X) = ∅ and V (Y) = {y};

2. Vertex deletion: V (X) = {z}∪Mdeg(E)∪Mlist(E) for some mutually disjoint vertex
sets {z}, Mdeg(E), and Mlist(E), where Mdeg(E) = NX(z), Mlist(E) = N2

X(z), and
Y is given by

V (Y) = V (X) \ {z}
E(Y) = E(X) \ {(z, p) | p ∈Mdeg(E)}

3. Edge insertion: V (X) = V (Y) = {u, v} ∪Mlist(E) for some disjoint vertex sets
{u, v} and Mlist(E), where

(a) (u, v) /∈ E(X),
(b) Mlist(E) = (NX(u) ∪NX(v)) \ {u, v}, and
(c) E(Y) = E(X) ∪ {(u, v)}; and

16

4. Edge deletion: V (X) = V (Y) = {u, v} ∪Mlist(E) for some disjoint vertex sets
{u, v} and Mlist(E), where

(a) (u, v) ∈ E(X),
(b) Mlist(E) = (NX(u) ∪NX(v))\{u, v}, and
(c) E(Y) = E(X) \ {(u, v)}.

Fact 13 follows from Definition 12.

Fact 13. VR(E) = Mdeg(E)∪Mlist(E), or, every retained vertex is either degree-modified
or list-modified.

Definition 14. Given an LA edit pair E = ((X; ΛX), (Y ; ΛY)), we define the following
sets:

1. V+(E) = V (Y) \ V (X) contains the inserted vertex, if any,

2. V−(E) = V (X) \ V (Y) contains the deleted vertex, if any,

3. E+(E) = E(Y) \ E(X) contains the inserted edge, if any, and

4. E−(E) = E(X) \ E(Y) contains the deleted edges, if any.

The fact that an LA edit pair inserts at most one edge at a time places a bound on the
maximum degree of Y .

3.6.2 NDL graph edit
While an edit pair that fits a graph specifies the exact modifications to the graph,

an LA edit pair that fits a graph gives only the “form” of the modifications. More
precisely, unlike an edit pair, an LA edit pair E = ((X; ΛX), (Y ; ΛY)) specifies not a
definite induced subgraph to be “replaced” in a graph G, but rather a family of induced
subgraphs, each of which is “replaceable”. These induced subgraphs are isomorphic
to X, and hence are pairwise-isomorphic. The NDL graph edit operation implements
the modifications to a graph specified by an LA edit pair with respect to a specific
“replaceable” induced subgraph.

Since the gedit operation is well-defined, the graph obtained by a graph edit is
determined by the edit pair. An LA edit pair, on the other hand, determines a family
of graphs obtained by applying it to a given graph G, since G contains a family of
“replaceable” induced subgraphs. However, as we shall prove in Lemma 57, each such

17

graph obtained G′ has the same NDL, which means the LA edit pair determines the
NDL of G′.

Also, we use the list-attributions of X and Y to specify the changes to the NDL of
G, i.e., the changes to the NDSs of the vertices of a “replaceable” induced subgraph
H. Therefore, X must be isomorphic to H such that the nonincreasing lists of (X; ΛX)
match the NDSs of the corresponding vertices of H, or, (X; ΛX) must be list-isomorphic
to H. Then, the nonincreasing lists of (Y ; ΛY) may be used to give the modified NDSs
of the vertices of H.
Definition 15. Given a graph G, an LA graph (A; Λ) is list-isomorphic to a subgraph
H of G, which we denote by (A; Λ) ' H, if and only if A is isomorphic to H with
respect to a bijection f : V (A) → V (H) such that Λ(a) = NDS(G, f(a)) for each
vertex a ∈ V (A).

For any vertex deleted from a graph, the degrees of its neighbours are changed.
Therefore, to fully specify the modifications to G, a deleted vertex of X must have the
same number of degree-modified neighbours as the deleted vertex of G. Similarly, to
fully specify the changes to the NDL of G, the number of list-modified neighbours of a
degree-modified vertex in X must equal the number of neighbours of its corresponding
vertex in G.

We say E fits G if and only if E satisfies these conditions in addition to (X; ΛX)
being list-isomorphic to an induced subgraph of G.
Definition 16. An LA edit pair E = ((X; ΛX), (Y ; ΛY)) fits a graph G if and only
if (X; ΛX) ' H for some induced subgraph H of G with respect to a bijection f :
V (X) → V (H) such that dX(x) = dG(f(x)) for each vertex x ∈ V−(E) ∪Mdeg(E). We
call (G, E , H, f) an NDL-tuple.

Given an NDL-tuple (G, E , H, f), the modifications to G are completely specified,
or, in other words, the sets of vertices and edges that are inserted in and deleted from G
are determined. We define these sets in Definition 17 in a way that “mirrors” in G the
modifications specified by E . The bijection f defines a mapping between the deleted
vertices of X and G as well as between the edges inserted in or deleted from X and G.

If E is a vertex insertion, since G may contain a vertex with the same label as
y ∈ V+(E), we insert a vertex s /∈ V (G).
Definition 17. Let Φ = (G, E , H, f) be an NDL-tuple. We define the following sets
with respect to Φ:

1. V+(Φ) =

{s} for some s /∈ V (G) if V+(E) 6= ∅
∅ otherwise

contains the inserted vertex, if

any,

18

2. V−(Φ) = {f(z) | z ∈ V−(E)} contains the deleted vertex, if any,

3. E+(Φ) = {(f(u), f(v)) | (u, v) ∈ E+(E)} contains the inserted edge, if any, and

4. E−(Φ) = {(f(w), f(z)) | (w, z) ∈ E−(E)} contains the deleted edges, if any.

Note that the above sets are well-defined. We use these sets to define NDL graph
edit as an operation ndledit, which applies an LA edit pair to a given graph with respect
to an induced subgraph and a bijection.

Definition 18. We define NDL graph edit as an operation ndledit. Given an NDL-tuple
Φ = (G, E , H, f), we say ndledit(Φ) = G′ if and only if the graph G′ is given by

V (G′) = (V (G) \ V−(Φ)) ∪ V+(Φ) (3.6.1)
E(G′) = (E(G) \ E−(Φ)) ∪ E+(Φ) (3.6.2)

Note that the ndledit operation is well-defined.

Fact 19. Suppose an LA edit pair E = ((X; ΛX), (Y ; ΛY)) fits a graph G. Then,
|V (X)| ≤ ∆(G)2 + 1 and |V (Y)| ≤ ∆(G)2 + 1.

Proof. Since E fitsG, (X; ΛX) is list-isomorphic to an induced subgraph ofG (Definition
16), and so X is isomorphic to a subgraph of G. Hence, ∆(X) ≤ ∆(G).

By Definition 12, the following hold:

1. |V (X)| = 0 and |V (Y)| = 1 when E is a vertex insertion,

2. |V (X)| ≤ 1 + ∆(X) + ∆(X)(∆(X)− 1) ≤ ∆(G)2 + 1 and |V (Y)| ≤ ∆(G)2 when
E is a vertex deletion,

3. |V (X)| = |V (Y)| ≤ 2∆(X) + 2 when E is an edge insertion because u and v can
each have ∆(G) neighbours, and

4. |V (X)| = |V (Y)| ≤ 2∆(X) when E is an edge deletion because (u, v) is an edge,
which means u and v can each have at most ∆(G)− 1 neighbours not in {u, v}.

Therefore, |V (X)| ≤ ∆(G)2 + 1 and |V (Y)| ≤ ∆(G)2 + 1.

We now show that the induced subgraph H contains the vertices and edges deleted
in G, and so the vertices and edges of G not in H are “untouched”.

Fact 20. Let Φ = (G, E , H, f) be an NDL-tuple. Then, V−(Φ) ⊆ V (H) and E−(Φ) ⊆
E(H).

19

Proof. First, we claim that the vertex deleted from G, if any, is a vertex of H. Since
f : V (X)→ V (H) is a bijection and V−(E) ⊆ V (X) by Definition 14, V−(Φ) ⊆ V (H).

Next, we claim that the edge deleted from G, if any, is an edge of H. We know
that, for each pair of vertices w, z ∈ V (X), the vertices f(w), f(z) ∈ V (H) because
f : V (X) → V (H) is a bijection. Since (X; ΛX) ' H with respect to f , it follows
from Definition 15 that X is isomorphic to H with respect to f . Therefore, (w, z) ∈
E(X) if and only if (f(w), f(z)) ∈ E(H). Now, for each edge (f(w), f(z)) ∈ E−(Φ),
(w, z) ∈ E−(E) by Definition 17. We know that E−(E) ⊆ E(X) by Definition 14, and
so (w, z) ∈ E(X), which implies (f(w), f(z)) ∈ E(H). Hence, E−(Φ) ⊆ E(H).

A graph G and an LA edit pair E define a set of NDL graph edits, and a family of
graphs obtained by performing these NDL graph edits, which we call (G, E)-produced
graphs. In Fact 22, we bound the maximum degree of a (G, E)-produced graph in terms
of the maximum degree of G.

Definition 21. Given a graph G and an NDL graph edit E = ((X; ΛX), (Y ; ΛY)),
a graph G′ is (G, E)-produced if and only if there exists an induced subgraph H of
G and a bijection f : V (X) → V (H) such that (G, E , H, f) is an NDL-tuple and
ndledit((G, E , H, f)) = G′.

Fact 22. If G′ is a (G, E)-produced graph, then ∆(G′) ≤ ∆(G) + 1.

Proof. Suppose G′ = ndledit((G, E , H, f)) for some H and f . Clearly, ∆(G′) > ∆(G)
only if E is an edge insertion. We claim ∆(G′) ≤ ∆(G) + 1.

Inserting an edge (u, v) in G raises the degrees of its end-vertices by one each and
so ∆(G′) ≤ ∆(G) + 1 with equality holding if dG(u) = ∆(G) or dG(v) = ∆(G).

The vertices of G′ can be divided into three kinds: the inserted vertex, “untouched”
vertices, and those whose corresponding vertices in E are retained vertices.

Lemma 23. Suppose G′ = ndledit((G, E , H, f)). Then, for each vertex v ∈ V (G′),
exactly one of the following holds:

1. v ∈ V (G′) \ V (G),

2. v ∈ V (G) \ V (H), or

3. there exists a retained vertex w ∈ VR(E) such that v = f(w).

Proof. We show that V (G′) is a union of three sets − V (G′) \V (G), V (G) \V (H), and
{f(w) | w ∈ VR(E)} − and that these sets are mutually disjoint.

20

Because V (G) can also be written as (V (G) \ V (H)) ∪ V (H), we have

V (G) \ V−(Φ) =
(
(V (G) \ V (H)) ∪ V (H)

)
\ V−(Φ)

Now, V−(Φ) ⊆ V (H) by Fact 20, and so

V (G) \ V−(Φ) =
(
V (G) \ V (H)

)
∪
(
V (H) \ V−(Φ)

)
Since E fits G, we know X is isomorphic to H with respect to f (Definition 16),

which means V (H) = {f(x) | x ∈ V (X)}. Furthermore, V−(Φ) = {f(z) | z ∈ V−(E)} =
{f(z) | z ∈ V (X) \ V (Y)} by Definitions 14 and 17. Therefore,

V (H) \ V−(Φ) = {f(w) | w ∈ V (X) ∩ V (Y)}
= {f(w) | w ∈ VR(E)}

We also know by Definition 18 that V (G′) = (V (G)\V−(Φ))∪V+(Φ), where V+(Φ) =
V (G′) \ V (G). Hence, it follows from the above equations that

V (G′) = (V (G) \ V−(Φ)) ∪ V+(Φ)
=

(
V (G) \ V (H)

)
∪ {f(w) | w ∈ VR(E)} ∪

(
V (G′) \ V (G)

)
(3.6.3)

We show that these subsets of V (G′) are mutually disjoint. Clearly, V (G) \ V (H)
and V (G′)\V (G) are disjoint. Since V (H) = {f(x) | x ∈ V (X)} and VR(E) ⊆ V (X), it
follows that {f(w) | w ∈ VR(E)} ⊆ V (H). Hence, {f(w) | w ∈ VR(E)} has no vertices
in common with either V (G)\V (H) or V (G′)\V (G) because H is a subgraph of G.

Since an NDL graph edit “replaces” an induced subgraph isomorphic to X in G, we
might expect that Y is isomorphic to an induced subgraph of G′.

Lemma 24. If G′ = ndledit(Φ), where Φ = (G, E , H, f) and E = ((X; ΛX), (Y ; ΛY)),
then Y is isomorphic to an induced subgraph of G′ with respect to a bijection f ′ given
by

f ′(y) =

f(y) if y ∈ VR(E)
s ∈ V (G′) \ V (G) if y ∈ V+(E)

Proof. Suppose ndledit(Φ) = G′, where Φ = (G, E , H, f) and E = ((X; ΛX), (Y ; ΛY)).
By Definition 16, (X,ΛX) ' H with respect to f and hence X is isomorphic to H with
respect to f . We will construct H ′ by modifying H as specified by E and the bijection

21

f . We will then show that H ′ is an induced subgraph of G′ and that Y is isomorphic
to H ′.

Let H ′ be given by

V (H ′) = (V (H) \ V−(Φ)) ∪ (V (G′) \ V (G)) (3.6.4)

E(H ′) = (E(H) \ E−(Φ)) ∪ E+(Φ) (3.6.5)
Note that the graph H ′ is legally defined since, by Fact 20, V−(Φ) ⊆ V (H) and

E−(Φ) ⊆ E(H).
Observe that Equations 3.6.4 and 3.6.5 are quite similar to Equations 3.6.1 and 3.6.2

in Definition 18, respectively. The only difference is that, if E is a vertex insertion, then
H ′ contains the actual vertex inserted in G rather than the arbitrary vertex in V+(Φ)
to ensure the vertex-labels of the inserted vertices in H ′ and G′ match.

First, we show H ′ is an induced subgraph of G′. We know H is an induced subgraph
of G by Definition 16. Comparing Equations 3.6.4 and 3.6.5 with Equations 3.6.1 and
3.6.2, respectively, we observe that a vertex v is inserted in (deleted from) H if and only
if v is inserted in (respectively, deleted from) G. Similarly, an edge (u, v) is inserted
in (deleted from) H if and only if (u, v) is inserted in (respectively, deleted from) G.
Hence, every vertex of H ′ is also in G′, and for each pair of vertices u, v ∈ V (H ′),
(u, v) ∈ E(H ′) if and only if (u, v) ∈ E(G′), which implies H ′ is an induced subgraph
of G′.

Next, we claim |V (H ′)| = |V (Y)|. We know |V (H)| = |V (X)| because H and X
are isomorphic. Now, by Definition 17, for z ∈ V−(E), if any, there exists a vertex
f(z) ∈ V−(Φ) = V (H) \ V (H ′). Furthermore, by Definition 17 and Equation 3.6.1, for
y ∈ V+(E), if any, there exists a vertex s ∈ V (G′) \ V (G) = V (H ′) \ V (H). Therefore,
|V (H ′)| = |V (Y)|.

Further, we claim that f ′ is well-defined, i.e., f ′(y) ∈ V (H ′) for each y ∈ V (Y).
If y ∈ VR(E), then y is neither in V−(Φ) nor in V (G′) \ V (G) by Definition 17 and
Equation 3.6.1. Hence, by Equation 3.6.4, f ′(y) = f(y) ∈ V (H)∩V (H ′). On the other
hand, if y ∈ V+(E), then V (H ′) \ V (H) = V (G′) \ V (G) = {s} for some s as given by
Definitions 17 and 18, and so f ′(y) = s ∈ V (H ′).

Now, we show that Y is isomorphic to H ′ with respect to f ′, or, (f ′(u), f ′(v)) ∈
E(H ′) if and only if (u, v) ∈ E(Y) for each pair of vertices u, v ∈ V (Y). The following
cases cover all pairs of vertices of Y .

Case 1. (u, v) is a retained edge in E .
Then, the vertices u, v ∈ VR(E), and so f ′(u) = f(u) and f ′(v) = f(v). Since
X is isomorphic to H with respect to f , (u, v) ∈ E(X) implies (f(u), f(v)) ∈

22

E(H). Now, since (u, v) ∈ ER(E), it follows that ((f(u), f(v)) /∈ E−(Φ) by
Definition 17, or, (f(u), f(v)) is present in G′. Hence, by Equation 3.6.5,
(f(u), f(v)) is also present in H ′, and so (f ′(u), f ′(v)) = (f(u), f(v)) ∈
E(H ′).

Case 2. (u, v) is the inserted edge in E .
Then, the end-vertices u, v ∈ VR(E), and so f ′(u) = f(u) and f ′(v) =
f(v). Furthermore, by Definition 17, (f(u), f(v)) ∈ E+(Φ), i.e., the edge
(f(u), f(v)) is inserted in G. Therefore, by Equation 3.6.5, (f(u), f(v)) is
also inserted in H and so (f ′(u), f ′(v)) = (f(u), f(v)) ∈ E(H ′).

Case 3. (u, v) is a deleted edge in E .
Then, the end-vertices u, v ∈ VR(E), and so f ′(u) = f(u) and f ′(v) = f(v).
Moreover, by Definition 17, (f(u), f(v)) ∈ E−(Φ), i.e., the edge (f(u), f(v))
is deleted from G. Hence, by Equation 3.6.5, (f(u), f(v)) is also deleted from
H, which implies (f ′(u), f ′(v)) = (f(u), f(v)) /∈ E(H ′).

Case 4. (u, v) is not an edge in E , i.e., (u, v) /∈ E(X) ∪ E(Y).

Case i. u, v ∈ V (X).
Since we assume u, v ∈ V (Y), it follows that u, v ∈ VR(E), and
so f ′(u) = f(u) and f ′(v) = f(v). Also, (f(u), f(v)) /∈ E(H)
because X is isomorphic to H with respect to f . Moreover, by
Definition 17, (f(u), f(v)) /∈ E+(Φ), i.e., (f(u), f(v)) is absent
from G′. Therefore, by Equation 3.6.5, (f(u), f(v)) is also absent
from H ′, which implies (f ′(u), f ′(v)) = (f(u), f(v)) /∈ E(H ′).

Case ii. u /∈ V (X).
Then, E is a vertex insertion and so f ′(u) = s ∈ V (G′)\V (G) and
f ′(v) = f(v). By Definition 17, then, (f ′(u), f ′(v)) /∈ E+(Φ), i.e.,
(f ′(u), f ′(v)) is absent from G′. Therefore, (f ′(u), f ′(v)) is absent
from H ′, and so (f ′(u), f ′(v)) /∈ E(H ′) by Equation 3.6.5.

Case iii. v /∈ V (X).
The argument proceeds similar to that in Case (ii), with u replac-
ing v and vice-versa.

Thus, Y is isomorphic to H with respect to the bijection f ′.

The LA edit pair E specifies the degree in G′ of each vertex whose degrees in G and
G′ differ.

23

Fact 25. Suppose ndledit(Φ) = G′, where Φ = (G, E , H, f) and E = ((X; ΛX), (Y ; ΛY)).
Then, dY (p) = dG′(f(p)) for each p ∈Mdeg(E).

Proof. For each degree-modified vertex p ∈ Mdeg(E), it holds that dX(p) = dG(p) by
Definition 16. We show that, for each edge incident with p that is inserted in (deleted
from) X, a corresponding edge incident with f(p) is inserted in (respectively, deleted
from) G, and so the degrees of p in Y and f(p) in G′ are equal.

Suppose an edge (p, q) is inserted in X. Then, dY (p) = dX(p) + 1 (Definition 12).
Since (p, q) ∈ E+(E), by Definition 17, (f(p), f(q)) ∈ E+(Φ), i.e., the edge (f(p), f(q)) is
inserted inG. Hence, by Equation 3.6.2, (f(p), f(q)) ∈ E(G′)\E(G), and so dG′(f(p)) =
dG(f(p)) + 1.

Suppose an edge (p, r) is deleted from X either by an edge deletion or a ver-
tex deletion. Then, dY (p) = dX(p) − 1. Since (p, r) ∈ E−(E), by Definition 17,
(f(p), f(r)) ∈ E−(Φ), i.e., the edge (f(p), f(r)) is deleted in G. Hence, by Equation
3.6.2, (f(p), f(r)) ∈ E(G) \ E(G′), and so dG′(f(p)) = dG(f(p))− 1.

Thus, dY (p) = dG′(f(p)).

3.6.3 Complete LA edit pairs
We introduce the notion of completeness of E in G to specify that the NDSs of

the “NDS-modified” vertices in G′ are given by ΛY , where E = ((X; ΛX), (Y ; ΛY)) and
G′ is a (G, E)-produced graph. This suggests (Y ; ΛY) is list-isomorphic to an induced
subgraph of G′ (as we will prove in Fact 29). It also implies the list-modified vertices in
E correspond to the “NDS-modified” vertices of G (as we will prove in Fact 27). Since
X is isomorphic to a subgraph H of G (Definition 16), the NDSs of the “untouched”
vertices of G, i.e. the vertices not in H, are unchanged (as we will prove in Fact 28).

Note that the NDS of an inserted vertex is an empty list since we insert only isolated
vertices.

Definition 26. An LA edit pair E = ((X; ΛX), (Y ; ΛY)) that fits a graph G is complete
in G if and only if, for any graph G′ = ndledit((G, E , H, f)), the following hold:

1. ΛY (y) is an empty list for y ∈ V+(E) and

2. NDS(G′, f(w)) = ΛY (w) for each w ∈ VR(E).

Fact 27. Suppose ndledit((G, E , H, f)) = G′ and E is complete in G. Then, for any
vertex p ∈ VR(E), p ∈Mdeg(E) if and only if dG(f(p)) 6= dG′(f(p)). Also, for any vertex
q ∈ VR(E), q ∈Mlist(E) if and only if NDS(G, f(q)) 6= NDS(G′, f(q)).

24

Proof. Suppose ndledit(Φ) = G′, where Φ = (G, E , H, f) and E = ((X; ΛX), (Y ; ΛY)) is
complete in G. First, we show that p ∈Mdeg(E) if and only if dG(f(p)) 6= dG′(f(p)) for
any p ∈ VR(E).

Consider a vertex p ∈ Mdeg(E), which means dX(p) 6= dY (p). Since E fits G, we
know that dX(p) = dG(f(p)) by Definition 16. We also know that dY (p) = dG′(f(p))
by Fact 25. Hence, dG(f(p)) 6= dG′(f(p)).

Suppose p /∈Mdeg(E), which means dX(p) = dY (p). In other words, no edge incident
with p is either inserted in or deleted from X, i.e., neither E+(E) nor E−(E) contains
an edge incident with p. Therefore, neither E+(Φ) nor E−(Φ) contains an edge incident
with f(p) by Definition 17. Hence, no edge incident with f(p) is either inserted in or
deleted from G, and so dG(f(p)) = dG′(f(p)).

Next, we show that q ∈ Mlist(E) if and only if NDS(G, f(q)) 6= NDS(G′, f(q)) for
any q ∈ VR(E).

Suppose q ∈ Mlist(E), which means ΛX(q) 6= ΛY (q). Since E fits G, (X; ΛX) ' H
with respect to f by Definition 16, and since q ∈ V (X), ΛX(q) = NDS(G, f(q)). Now,
E is also complete in G, and since q ∈ VR(E), ΛY (q) = NDS(G′, f(q)) by Definition 26.
Therefore, NDS(G, f(q)) 6= NDS(G′, f(q)).

Suppose q /∈ Mlist(E), which means ΛX(q) = ΛY (q). Arguing similarly as in the
case q ∈Mlist(E), we obtain ΛX(q) = NDS(G, f(q)) and ΛY (q) = NDS(G′, f(q)), which
implies NDS(G, f(q)) = NDS(G′, f(q)).

Fact 28. Suppose ndledit(Φ) = G′, where Φ = (G, E , H, f). Then NDS(G′, u) =
NDS(G, u) for each u ∈ V (G) \ V (H).

Proof. We show that, for each vertex u ∈ V (G)\V (H), neither the degree nor the NDS
of u is changed by the NDL graph edit.

We know (X; ΛX) ' H with respect to f by Definition 16, which implies X is
isomorphic to H with respect to f .

First, we claim that H contains every vertex of G whose degree is changed. Suppose
for contradiction that dG(u) 6= dG′(u) for some u ∈ V (G) \ V (H). Then, either an edge
(u, v) is inserted/deleted by the NDL graph edit or a neighbour w of u is deleted. In
the former case, (u, v) ∈ E+(Φ) or (u, v) ∈ E−(Φ), which means there exists a vertex
x ∈ V (X) such that f(x) = u by Definition 17. This implies u ∈ V (H), which is a
contradiction. On the other hand, if a neighbour w of u is deleted, then w ∈ V−(Φ),
and so there exists a vertex z ∈ V−(E) such that f(z) = w. Now, since E fits G,
dX(z) = dG(w) by Definition 16, and so there exists a vertex x ∈ NX(z) such that
f(x) = u because X is isomorphic to H with respect to f . This implies u ∈ V (H),
which is again a contradiction.

25

Next, we claim that H contains every vertex of G whose NDS alone is modified.
Suppose for contradiction that dG(u) = dG′(u) but NDS(G, u) 6= NDS(G′, u) for some
u ∈ V (G)\V (H). Then, the degree of a neighbour v of u is changed by the NDL graph
edit. It follows from our previous claim that H contains v, which implies there exists
a vertex p ∈ V (X) such that f(p) = v. Moreover, by Fact 27, p ∈ Mdeg(E) because
dG(v) 6= dG′(v). Now, since E fits G, dX(p) = dG(v) by Definition 16, and so there exists
a vertex q ∈ NX(p) such that f(q) = u because X is isomorphic to H with respect to
f . This implies u ∈ V (H), which is a contradiction.

Thus, for each vertex u ∈ V (G) \ V (H), neither its degree nor its NDS is changed
by the NDL graph edit, and so NDS(G′, u) = NDS(G, u).

Fact 29. Suppose ndledit(Φ) = G′, where Φ = (G, E , H, f) and E = ((X; ΛX), (Y ; ΛY))
such that E is complete in G. Then, (Y ; ΛY) is list-isomorphic to an induced subgraph
of G′ with respect to a bijection f ′ given by

f ′(y) =

f(y) if y ∈ VR(E)
s ∈ V (G′) \ V (G) if y ∈ V+(E)

Proof. Suppose ndledit(Φ) = G′. We know that Y is isomorphic to an induced sub-
graph H ′ of G′ with respect to f ′ by Fact 24. We claim that (Y ; ΛY) ' H ′, i.e.,
NDS(G′, f ′(y)) = ΛY (y) for each vertex y ∈ V (Y).

Observe that each vertex of Y is either a retained vertex or an inserted vertex, i.e.,
V (Y) = VR(E) ∪ V+(E).

By Definition 26, NDS(G′, f(w)) = ΛY (w) for each w ∈ VR(E). If there exists a
vertex r ∈ V+(E), then ΛY (r) is an empty list by Definition 26, and so is NDS(G′, f ′(r))
because f ′(r) is an isolated vertex of G′.

Therefore, NDS(G′, f ′(y)) = ΛY (y) for each vertex y ∈ V (Y), which implies
(Y ; ΛY) ' H ′ with respect to f ′.

We introduce the notion of provisional completeness, which, unlike completeness, is
a property of the LA edit pair alone.

Definition 30. An LA edit pair E is provisionally complete if, for any graph G, E fits
G implies E is complete in G.

Later, we shall prove in Chapter 6 that E is complete in a graph G only if E is
provisionally complete (Lemma 64). In other words, if E is complete in G, then E is
also complete in every graph it fits.

26

3.7 Time complexity of checking list-isomorphism
and degree conditions

Here, we show we can check whether an LA graph (A; Λ) is list-isomorphic to an
induced subgraph of a fixed graph G such that a degree condition holds on a subset of
vertices of H in FPT time when parameterized by ∆(G) and |V (A)|. By Definition 16,
this would imply we can check whether an LA edit pair E = ((X; ΛX), (Y ; ΛY)) fits G
in FPT time when parameterized by ∆(G) and |V (X)|. We use a result by Frick and
Grohe [16], which states model checking with a formula of first-order logic on graphs
with bounded local treewidth is in FPT.

A tree decomposition [12] of a graph G is a tree T which has “bags” associated with
its nodes such that (i) for each edge (u, v) ∈ E(G), at least one bag of T contains u
and v, and (ii) for each v ∈ V (G), the nodes of T that contain v form a non-empty
subtree in T . The size of a tree decomposition is one less than the maximum number
of vertices in a bag. The treewidth of G is the minimum size of a tree decomposition of
G.

A class of graphs has bounded local treewidth [14] if and only if there exists a function
ρ : N→ N such that, for each graph in the class, the treewidth of the subgraph induced
by the r-neighbourhood of any vertex is bounded by ρ(r) for each 1 ≤ r < n.

Frick and Grohe [16, Theorem 1.1.] showed that a property defined by a formula ϕ
of first-order logic can be checked in a graph G with bounded local treewidth in time
O(g(|ϕ|) · |V (G)|), where |ϕ| is the size of the formula, for some function g. They also
showed that graphs with bounded degree have bounded local treewidth [16, Example
5.3.]. Therefore, for an arbitrary G, there exists a function h such that ϕ can be checked
in G in time O(h(|ϕ|+ ∆(G)) · |V (G)|), which implies Fact 31.

Fact 31. Given a graph G and a property specified by a formula ϕ of first-order logic,
checking whether G satisfies the property is in FPT when parameterized by |ϕ|+ ∆(G).

Now, we define a first-order formula ϕL to determine whether (A; Λ) is list-
isomorphic to an induced subgraph H of a fixed G with respect to a bijection
f : V (A) → V (H) such that for a given D ⊆ V (A), dA(z) = dG(f(z)) for each
z ∈ D.

Definition 32. Given a graph G, an LA graph (A; Λ) where V (A) = {u1, u2, . . . , ua},
and a subset D ⊆ V (A), we define ϕL = ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4, where

1. ϕ1 : ∃v1, v2, . . . , va ∈ V (G) :
∧

1≤i,j≤a
(vi 6= vj), or, there exist a distinct vertices of

G,

27

2. ϕ2 :
∧

1≤i,j≤a

(
(ui, uj) ∈ E(A)⇔ (vi, vj) ∈ E(G)

)
, or, an edge exists between a pair

of vertices in A if and only if an edge exists between their corresponding vertices
in G,

3. ϕ3 :
∧

1≤i≤a

(
Λ(ui) = NDS(G, vi)

)
, or, the list attribution Λ gives the NDSs of the

vertices of H in G, and

4. ϕ4:
∧

1≤i≤a

(
(ui ∈ D)⇒ (dA(ui) = dG(vi))

)
, or, for each vertex in D, its degree in A

matches the degree of its corresponding vertex in G.

If we do not require that H be induced in G, we replace the biconditional in ϕ2 with
a conditional so that E(A) ⊆ E(H).

Definition 33. We define ϕ′L = ϕ1 ∧ ϕ′2 ∧ ϕ3 ∧ ϕ4, where ϕ′2 : ∧1≤i,j≤a

(
(ui, uj) ∈

E(A)⇒ (vi, vj) ∈ E(G)
)
and ϕ1, ϕ3, and ϕ4 are as stated in Definition 32.

Fact 34. Given a graph G and and LA graph (A; Λ), |ϕL| and |ϕ′L| are polynomial in
|V (A)|+ ∆(G).

Proof. We show that the sizes of ϕ1, ϕ2, ϕ3, and ϕ4 are each polynomial in |V (A)| +
∆(G). First, we bound the size of Λ(u) for each u ∈ V (A). Note that |NDS(G, v)| ≤
∆(G) for each v ∈ V (G) because v has at most ∆(G) neighbours. Therefore, if Λ(u) ≥
∆(G) for some u ∈ V (A), then we know Λ(u) 6= NDS(G, v) for any v ∈ V (G), which
means (A; Λ) is not list-isomorphic to any induced subgraph of G. Hence, we assume
Λ(u) ≤ ∆(G) for each u ∈ V (A).

ϕ1 contains an inequality condition for each pair of vertices of A, and there are
|V (A)|2 such pairs. Hence, |ϕ1| is in O(|V (A)|2).

ϕ2 contains a biconditional for each pair of vertices of A, which means |ϕ2| is in
O(|V (A)|2).

ϕ3 contains the equality condition for each vertex of A, so there are |V (A)| equality
conditions. For a given ith condition, Λ(ui) and NDS(G, vi) each has a size of at most
∆(G). Therefore, |ϕ3| is in O(|V (A)| ·∆(G)).

ϕ4 contains a conditional for each vertex in D ⊆ V (A). Hence, there are at most
|V (A)| conditionals, which means |ϕ4| is in O(|V (A)|).

Thus, |ϕL| is in O((|V (A)| + ∆(G))2). Since ϕ′L is obtained from ϕL by replacing
the biconditional symbol by a conditional symbol in ϕ2, |ϕ′L| is also in O((|V (A)| +
∆(G))2).

Lemma 35 follows from Facts 31 and 34.

28

Lemma 35. Given a graph G, an LA graph (A; Λ), and a set of vertices D ⊆ V (A),
determining whether (A; Λ) is list-isomorphic to an (induced) subgraph H of G with
respect to a bijection f : V (A) → V (H) such that dA(z) = dG(f(z)) for each z ∈ D is
in FPT when parameterized by ∆(G) + |V (A)|.

3.8 Sequences of edit pairs and LA edit pairs
Definition 36. Let X = 〈X [i]〉t0 and Y = 〈Y [i]〉t0 be sequences of graphs for some t ≥ 0
such that (X [i],Y [i]) is an edit pair for each 0 ≤ i ≤ t. Then, we say 〈(X [i],Y [i])〉t0 is
an edit pair sequence.
Definition 37. Let X = 〈X [i]〉t0 and Y = 〈Y [i]〉t0 be sequences of graphs for some
t ≥ 0. Moreover, let ΛX [i] and ΛY[i] be list-attributions of X [i] and Y [i], respectively,
such that Ei = ((X [i]; ΛX [i]), (Y [i]; ΛY[i])) is an LA edit pair for each 0 ≤ i ≤ t. Then,
we say 〈Ei〉t0 is an LA edit pair sequence.
Definition 38. A sequence of edit pairs 〈(X [i],Y [i])〉t0 fits a graph G0 if and
only if there exists a sequence of graphs 〈Gj〉t+1

0 such that (X [i],Y [i]) fits Gi and
gedit(Gi, (X [i],Y [i])) = Gi+1 for 0 ≤ i ≤ t. We say geditt(G0, 〈(X [i],Y [i])〉t0) = Gt+1.
Definition 39. A sequence of LA edit pairs 〈Ei〉t0 fits a graph G0 if and only if there
exists a sequence of graphs 〈Gj〉t+1

0 such that (i) Ei fits Gi for 0 ≤ i ≤ t, and (ii) Gi+1
is a (Gi, Ei)-produced graph for 0 ≤ i ≤ t. We say Gt+1 is a (G0, 〈Ei〉t0)-produced graph.
Definition 40. An LA edit pair sequence 〈Ei〉t0 is complete in G0 if and only if 〈Ei〉t0 fits
G0 with respect to a sequence of graphs 〈Gj〉t+1

0 and Ei is complete in Gi for 0 ≤ i ≤ t.
Definition 41. An LA edit pair sequence is provisionally complete if it is a sequence
of provisionally complete LA edit pairs.
Fact 42. Suppose a sequence of LA edit pairs 〈Ei〉t0 fits a graph G0 with respect to a
sequence of graphs 〈Gj〉t+1

0 . Then, ∆(Gj) ≤ ∆(G0) + t+ 1 for each 0 ≤ j ≤ t+ 1.
Proof. Since 〈Ei〉t0 fitsG0, Gi+1 is a (Gi, Ei)-produced graph for 0 ≤ i ≤ t (Definition 39).
Hence, ∆(Gi+1) ≤ ∆(Gi) + 1 for each i (Fact 22), which implies ∆(Gj) ≤ ∆(G0) + j ≤
∆(G0) + t+ 1 for each 0 ≤ j ≤ t+ 1.
Fact 43. Suppose a sequence of LA edit pairs 〈Ei〉t0 fits a graph G0, where Ei =
((X [i]; ΛX [i]), (Y [i]; ΛY[i])). Then, |V (X [i])| and |V (Y [i])| are at most (∆(G0)+t+1)2+1
for each 0 ≤ i ≤ t.
Proof. Since 〈Ei〉t0 fits G0, we know Ei fits Gi for each 0 ≤ i ≤ t. By Fact 19, therefore,
|V (X [i])| and |V (Y [i])| are at most ∆(Gi)2 + 1. But ∆(Gi) ≤ ∆(G0) + t + 1 by Fact
42. Hence, |V (X [i])| and |V (Y [i])| are at most (∆(G0) + t+ 1)2 + 1.

29

3.9 Problem statement
We now state our problems.

Graph-Edit-to-NDL (GEN)

Instance: A triple (G0, T , `), where G0 is a graph, T is a Young tableau, and ` is an
integer.

Question: Is there an edit pair sequence 〈(X [i],Y [i])〉t0, where t ≤ `, such that the
graph Gt+1 = geditt(G0, 〈(X [i],Y [i])〉t0), has NDL T ?

Constrained-Graph-Edit-to-NDL (CGEN)

Instance: A quadruple (G0, π, T , `), where G0 is a graph, π is a Young property veri-
fiable in polynomial time, T is a Young tableau that satisfies π, and ` is an
integer.

Question: Is there an edit pair sequence 〈(X [i],Y [i])〉t0, where t ≤ `, such that the
graph Gt+1 = geditt(G0, 〈(X [i],Y [i])〉t0), has NDL T and the NDL of each
intermediate graph Gi satisfies π for 0 ≤ i ≤ t ?

30

Chapter 4

Complexity Results

In this chapter, we show that GEN and CGEN are NP-complete, which justifies our
attempt to find FPT solutions for these problems. First, we show that these problems
are verifiable in polynomial time (Theorems 46 and 47). Then, we show GEN is NP-
complete by showing a reduction from Vertex-Cover in Theorem 48. Finally, we
reduce GEN to CGEN in Theorem 49, which proves CGEN is also NP-complete.

A vertex cover VC of a graph G is a subset of V (G) such that every edge in E(G)
has at least one end-vertex in VC . Given an input graph G and an integer k, Vertex-
Cover asks whether G has a vertex cover of size at most k. A Vertex-Cover
instance is denoted (G, k).

Lemmas 44 and 45 are used to show GEN is verifiable in polynomial time.

Lemma 44. We can check whether an edit pair (X, Y) fits a graph G in time polynomial
in |V (G)|.

Proof. To check whether an edit pair (X, Y) fits a graph G, we need to determine
whether the conditions in Definition 9 hold.

First, we can check whether X is an induced subgraph of G in time polynomial in
|V (X)|, and so polynomial in |V (G)|.

Second, checking whether the inserted vertex y ∈ V (Y)\V (X), if any, is not already
a vertex of G can be done in constant time.

Finally, checking whether dX(z) = dG(z) for the deleted vertex z ∈ V (X) \ V (Y), if
any, takes at most |V (G)| steps.

Hence, we can check whether (X, Y) is applicable in G in time polynomial in |V (G)|.

Lemma 45. Given an edit pair (X, Y) that fits a graph G, the operation
gedit(G, (X, Y)) can be performed in time polynomial in |V (G)|.

31

Proof. By Definition 9, the gedit operation computes the sets (V (G) \ V (X)) ∪ V (Y)
and (E(G) \ E(X)) ∪ E(Y), which can be done in time polynomial in |V (G)|.

Theorem 46. Graph-Edit-to-NDL is in NP.

Proof. Let (G0, T , `) be an instance of GEN and an edit pair sequence 〈(X [i],Y [i])〉t0
for t < ` be a certificate. To verify that the graph edit sequence (X [i],Y [i]) is a
solution, the certifier must verify that 〈(X [i],Y [i])〉t0 fits G0 and NDL(Gt+1) = T , where
Gt+1 = geditt(G0, 〈(X [i],Y [i])〉t0). We show that both the tasks can be performed in
time polynomial in the size of the instance.

Given a graph Gi for 0 ≤ i ≤ t, we can check whether (X [i],Y [i]) fits Gi in time
polynomial in |V (Gi)| by Lemma 44. Furthermore, by Lemma 45, if (X [i],Y [i]) fits
Gi, then the operation gedit(Gi, (X [i],Y [i])) can be performed in time polynomial in
|V (Gi)| to obtain Gi+1.

Since |V (Gi+1)| > |V (Gi)| only if a vertex is inserted inGi, in which case |V (Gi+1)| =
|V (Gi)|+ 1, it follows that |V (Gi)| ≤ |V (G0)|+ t < |V (G0)|+ ` for 0 ≤ i ≤ t.

Therefore, we can check whether (X [i],Y [i]) fits Gi for each 0 ≤ i ≤ t and, if
so, determine the graph sequence 〈Gi+1〉t0 in time polynomial in (|V (G0)| + `) · t <
(|V (G0)|+ `) · `, which is polynomial in |V (G0)|+ `.

Now it remains to check whether NDL(Gt+1) = T , which can be done in time
polynomial in |V (Gt+1)| ≤ |V (G0)|+ `.

Thus, we can check whether the certificate 〈(X [i],Y [i])〉t0 is a solution to (G0, T , `)
in time polynomial in |V (G0)|+ `.

Now, the length of the certificate sequence t is bounded by O(|V (G0)|2) because,
otherwise, for at least one vertex or edge, there would be a pair of insertion and deletion
of that vertex/edge in the sequence. We could then remove the pair of graph edits to
form a shorter sequence that produces the same graph.

Hence, we can check whether the certificate 〈(X [i],Y [i])〉t0 is a solution to (G0, T , `)
in time polynomial in |V (G0)|, which implies GEN is in NP.

Theorem 47. Constrained-Graph-Edit-to-NDL is in NP.

Proof. Let (G0, π, T , `) be an instance of CGEN and a graph edit sequence
〈(X [i],Y [i])〉t0 for t < ` be a certificate. By Theorem 46, we can verify whether
〈(X [i],Y [i])〉t0 fits G0 and produces a sequence of graphs 〈Gi〉t+1

0 such that NDL(Gt+1) =
T in time polynomial in |V (G0)|+ `. Moreover, the sequence of graphs 〈Gi〉t+1

0 is also
determined.

Since π is verifiable in polynomial time, checking whether NDL(Gi) satisfies π takes
time polynomial in |NDL(Gi)| for 0 ≤ i ≤ t+ 1. This in turn is polynomial in |V (Gi)|,
and therefore, polynomial in |V (G0)|+ `. Therefore, checking whether the NDL of each

32

graph in 〈Gi〉t+1
0 satisfies π takes time polynomial in (|V (G0)|+ `) · t < (|V (G0)|+ `) · `,

which is polynomial in |V (G0)|+ `.
Hence, checking whether 〈(X [i],Y [i])〉t0 is a solution to (G0, π, T , `) takes time poly-

nomial in |V (G0)|+ `.
Now, the length of the certificate sequence t is bounded by O(|V (G0)|2) because,

otherwise, for at least one vertex or edge, there would be a pair of insertion and deletion
of that vertex/edge in the sequence. We could then remove the pair of graph edits to
form a shorter sequence that produces the same graph.

Hence, we can check whether the certificate 〈(X [i],Y [i])〉t0 is a solution to
(G0, π, T , `) in time polynomial in |V (G0)|, which implies CGEN is in NP.

Theorem 48. Graph-Edit-to-NDL is NP-complete.

Proof. First, to show that GEN is NP-hard, we reduce Vertex-Cover, which is known
to be NP-hard [19], to GEN. Let (G, k) be an instance of Vertex-Cover. We claim
that (G, k) is a yes-instance if and only if (G, TE, k) is a yes-instance of GEN, where
TE is the empty Young tableau.

Suppose (G, k) is a yes-instance. Then there exists a vertex cover VC of G of size at
most k. Since each edge of G has at least one end-vertex in VC , deleting the vertices of
VC in G yields a graph G′ with an empty edge set and, hence, an empty NDL. Moreover,
|VC | ≤ k and so we need to perform at most k vertex deletions to obtain G′ from G.
Therefore, (G, TE, k) is a yes-instance.

Now, suppose (G, TE, k) is a yes-instance. There exists an edit pair sequence S of
length at most k which produces a graph G′ with an empty NDL or, in other words,
with no edges. We construct a vertex cover VC of G as follows. The set VC is initially
set to empty and first we add the vertices deleted in S to VC . Then, for each edge (u, v)
deleted by an edit pair in S, if u, v ∈ V (G) and u, v /∈ VC , we arbitrarily choose one of
u and v and add it to VC .

We claim that every edge of G has at least one end-vertex in C. Consider an edge
e ∈ E(G). Because E(G′) is empty, e is deleted by an edit pair in S. If e is deleted by
the deletion of one of its end-vertices, then, by our construction, the deleted end-vertex
is in VC . If, on the other hand, e is deleted by an edge deletion, then again, by our
construction, one of its end-vertices is in VC . Note that e cannot be deleted by either
edge insertion or vertex insertion. Therefore, VC is a vertex cover of G. Furthermore,
since S contains at most k edit pairs and we add at most one vertex per edit pair in
our construction of VC , |VC | ≤ k. Hence, (G, k) is a yes-instance.

Since GEN is in NP by Theorem 46, GEN is NP-complete.

Theorem 49. Constrained-Graph-Edit-to-NDL is NP-complete.

33

Proof. Suppose (G, T , `) is an instance of GEN. Consider the CGEN instance
(G, T , `, π0), where the property π0 imposes no constraints on the NDLs of graphs
obtained in the sequence. It is obvious that (G, T , `) is a yes-instance if and only
if (G, T , `, π0) is a yes-instance. Therefore, since GEN is NP-hard by Theorem 48,
CGEN is NP-hard. Furthermore, since CGEN is in NP by Theorem 47, CGEN is
NP-complete.

34

Chapter 5

Preliminary Results

We have stated GEN in terms of graph edit − the solution is an edit pair sequence
that produces a graph with the desired NDL. In Section 5.1, we restate the problem
in terms of NDL graph edit. In other words, we show that GEN is equivalent to
determining whether there exists an LA edit pair sequence that is complete in the
input graph and produces a graph with the desired NDL (Theorem 54). This is the
first step toward designing an FPT solution for GEN as we will show in Chapter 7
that the search space of candidate LA edit pair sequences is bounded by a function of
∆(G0) + `.

In Section 5.2, we give a procedure − Compute-NDL − to compute the NDL
of a (G, E)-produced graph using only NDL(G) and E when E is complete in G, and
show that every (G, E)-produced graph has the same NDL (Corollary 58). This implies
every (G0, 〈Ei〉t0)-produced graph has the same NDL, and this NDL is determined by
NDL(G0) and 〈Ei〉t0 (Corollaries 59 and 60).

5.1 Restatement of GEN and CGEN in terms of
NDL graph edit

Lemma 50. If G′ is a (G, E)-produced graph for an LA edit pair E and a graph G,
then there exists an edit pair (A,B) such that G′ = gedit(G, (A,B)).

Proof. Suppose G′ = ndledit(Φ), where Φ = (G, E , H, f) and E = ((X; ΛX), (Y ; ΛY)) is
complete in G. We know that (X; ΛX) ' H with respect to f (Definition 16), and so
X is isomorphic to H with respect to f .

Note that the NDL-tuple Φ fully specifies the modifications to G and to NDL(G),
which means H contains vertices of G whose NDSs, but not degrees, are modified. We

35

exclude such vertices in our construction of an edit pair (A,B), which specifies only the
modifications to G. Then we show that G′ = gedit(G, (A,B)).

Let VD contain the vertices of G whose degrees in G and G′ differ, or, VD = {f(r) |
r ∈Mdeg(E)} (Fact 27).

Let A be the subgraph induced in G by V (A) = V−(Φ) ∪ VD and let B be the
subgraph induced in G′ by V (B) = V+(Φ)∪VD. We show (A,B) is an edit pair. If E is
a vertex deletion where z ∈ V−(E), then since X is isomorphic to an induced subgraph
of G and NX(z) = Mdeg(E) by Definition 12, NG(f(z)) = VD. Also, f(z) /∈ V (B), and
hence (A,B) is an edit pair by Definition 8. For other edit operations, we may verify
from Definition 8 that (A,B) is an edit pair.

First, we show that (A,B) fits G by proving (A,B) satisfies the three conditions in
Definition 9.

1. Clearly, A is an induced subgraph of G.

2. We know V (B) \ V (A) = V+(Φ) = V (G′) \ V (G), which means (V (B) \ V (A)) ∩
V (G) = ∅.

3. Observe that V (A) \ V (B) = V−(E). For z ∈ V−(E), if any, we know NX(z) =
Mdeg(E) by Definition 12 and we have shown NG(f(z)) = VD. Since we have
defined VD = {f(r) | r ∈ Mdeg(E)}, it follows that |NX(z)| = |NG(f(z))|, i.e.,
dX(z) = dG(f(z)).

Now, to prove that gedit(G, (A,B)) = G′, we first note that V+(Φ) = V (B) \ V (A)
and V−(Φ) = V (A) \ V (B), which implies V (G′) = (V (G) \ V (A)) ∪ V (B) (Definition
18).

To complete the proof, we show E+(Φ) = E(B) \E(A) and E−(Φ) = E(A) \E(B),
which would imply E(G′) = (E(G) \ E(A)) ∪ E(B) as needed.

First, to show E+(Φ) = E(B) \E(A), we consider the subgraph C of B induced by
VD. Note that the inserted vertex in V+(Φ) = V (B)\V (A), if any, is isolated. Therefore,
E(C) = E(B) and V (C) ⊆ V (A). Since C is also an induced subgraph of G′, for the
inserted edge e, if any, e ∈ E(C) \ E(A) if and only if e ∈ E(G′) \ E(G) = E+(Φ),
which implies E(B) \ E(A) = E+(Φ).

Next, to show E−(Φ) = E(A)\E(B), we note that V (A)\V (B) = V−(Φ). Also, for
z ∈ V−(Φ), if any, we delete along with z all edges incident with z from G. Therefore
E(A) \ E(B) = E(G) \ E(G′) = E−(Φ).

Lemma 50 can be extended to apply to LA edit pair sequences.

36

Corollary 51. Suppose an LA edit pair sequence 〈Ei〉t0 is complete in a graph G0 and
Gt+1 is a (G0, 〈Ei〉t0)-produced graph for some t ≥ 0. Then there exists an edit pair
sequence 〈(X [i],Y [i])〉t0 such that geditt(G0, 〈(X [i],Y [i])〉t0) = Gt+1.

Proof. Since 〈Ei〉t0 is complete in G0, by Definition 40, there exists a sequence of graphs
〈Gi〉t+1

0 such that Ei is complete in Gi and Gi+1 is a (Gi, Ei)-produced graph for each
0 ≤ i ≤ t. We know by Lemma 50 that there exists an edit pair (X [i],Y [i]) such that
gedit(Gi, (X [i],Y [i])) = Gi+1 for each 0 ≤ i ≤ t. Therefore, geditt(G0, 〈(X [i],Y [i])〉t0) =
Gt+1.

The converse of Lemma 50 holds as well.

Lemma 52. Suppose gedit(G, (A,B)) = G′ for a graph G and an edit pair (A,B). Then
there exists an LA edit pair E that is complete in G such that G′ is a (G, E)-produced
graph.

Proof. Suppose gedit(G, (A,B)) = G′. Then A is an induced subgraph of G by Defini-
tion 9 and B is an induced subgraph of G′ by Fact 10. We will construct an LA edit pair
E = ((X; ΛX), (Y ; ΛY)) by “expanding” A and B to include vertices of G whose NDSs
alone are changed. We then prove that E is complete in G and G′ is a (G, E)-produced
graph.

Let D contain the “degree-modified” vertices of G, i.e., D = {w ∈ V (A) ∩ V (B) |
dA(w) 6= dB(w)}. Let L contain the “NDS-modified” neighbours of the vertices in D.
More precisely, L =

(⋃
w∈DNG(w)

)
\
(
V (A) ∪ V (B)

)
. Now, let X be the subgraph

induced by V (A) ∪ L in G and Y be the subgraph induced by V (B) ∪ L in G′. Fur-
thermore, let ΛX and ΛY be list-attributions given by ΛX(x) = NDS(G, x) for each
x ∈ V (X) and ΛY (y) = NDS(G′, y) for each y ∈ V (Y), respectively.

First, we claim that E fits G. By our definition of ΛX , (X; ΛX) ' X with respect
to the identity function fid. For the deleted vertex a ∈ V−(E) = V (A) \ V (B), if any,
it holds that dA(a) = dG(a) because (A,B) fits G (Definition 9). From our definition
of X, then, it follows that dX(a) = dA(a) = dG(a). Finally, note that Mdeg(E) = D
because L is disjoint from V (A) ∪ V (B), and so the degrees of the vertices in L are
unaffected by the graph edit. Now, for each w ∈ D, NX(w) = NG(w) by our definitions
of L and X, and so dX(w) = dG(w). Hence, E fits G by Definition 16.

Next, it follows from our definition of ΛY and Definition 26 that E is also complete
in G.

Finally, observe that E preserves the modifications specified by (A,B). This is
because

1. V+(E) = V (Y) \ V (X) = V (B) \ V (A),

37

2. V−(E) = V (X) \ V (Y) = V (A) \ V (B), and

3. E+(E) = E(B) \ E(A) and E−(E) = E(A) \ E(B) because A and B are induced
subgraphs of X and Y , respectively, by our definitions of X and Y .

Thus, ndledit(Φ) = G′, where Φ = (G, E , X, fid).

Corollary 53. Suppose geditt(G0, 〈(X [i],Y [i])〉t0) = Gt+1, for some graph G0 and edit
pair sequence 〈(X [i],Y [i])〉t0. Then, there exists an LA edit pair sequence 〈Ei〉t0 that is
complete in G0 such that Gt+1 is a (G0, 〈Ei〉t0)-produced graph.

Proof. Since (X [i],Y [i])〉t0 fits G0, there exists a sequence of graphs 〈Gi〉t+1
0 such that

Gi+1 = gedit(Gi, (X [i],Y [i])) for each 0 ≤ i ≤ t (Definition 38). We know by Lemma
52 that there exists an LA edit pair Ei that is complete in Gi such that Gi+1 is a
(Gi, Ei)-produced graph for each 0 ≤ i ≤ t. Therefore, the LA edit pair sequence 〈Ei〉t0
is complete in G0 (Definitions 39 and 40) and Gt+1 is a (G0, 〈Ei〉t0)-produced graph.

Theorem 54 follows from Corollaries 51 and 53.

Theorem 54. A GEN instance (G0, T , `) is a yes-instance if and only if there exists
an LA edit pair sequence 〈Ei〉t0, where t < `, such that 〈Ei〉t0 is complete in G0 and there
exists a (G0, 〈Ei〉t0)-produced graph whose NDL is T .

5.2 NDL of (G, E)-produced graphs
We give a procedure−Compute-NDL− to compute the NDL of a (G, E)-produced

graph, where E is complete in G, and prove its correctness in Lemma 55. Furthermore,
we show in Corollary 58 that every (G, E)-produced graph has the same NDL.

Suppose ndledit(Φ) = G′, where Φ = (G, E , H, f). Since E is complete in G, we
know that ΛX gives the NDSs of the vertices of the “replaced” subgraph H (Definitions
16 and 18) and ΛY gives the NDSs of the vertices of the “replacing” subgraph of G′
(Definition 26 and Fact 29). Moreover, the NDSs of the “untouched” vertices of G,
i.e., the vertices in V (G) \ V (H) remain unchanged in G′ (Fact 28). In the procedure
Compute-NDL, we remove the NDSs of the vertices of H from NDL(G) before adding
the nonincreasing lists of ΛY to obtain NDL(G′).

Lemma 55. The procedure Compute-NDL correctly determines the NDL of a (G, E)-
produced graph, where E is complete in G.

38

Algorithm 1 Compute the NDL of a (G, E)-produced graph
1: procedure Compute-NDL(NDL(G),E)
2: Input: The NDL of a graph G and an LA edit pair E = ((X; ΛX), (Y ; ΛY)).
3: Output: NDL(G′), where G′ is a (G, E)-produced graph.
4: SetM = NDL(G)
5: for each vertex x ∈ V (X) do
6: Remove a nonincreasing list equal to ΛX(x) fromM
7: SetM to the resulting Young tableau
8: for each vertex y ∈ V (Y) do
9: Add the nonincreasing list ΛY (y) toM

10: SetM to the resulting Young tableau
11: returnM

Proof. Suppose E = ((X; ΛX), (Y ; ΛY)) is complete in a graph G, and G′ = ndledit(Φ),
where Φ = (G, E , H, f). Suppose too that the Young tableau M is the output of
Compute-NDL(G, E). We first claim that, for each vertex v ∈ V (G′), NDS(G′, v)
is present in M. Then, we claim that each nonincreasing list of M corresponds to
the NDS of a vertex of G′. Together, the claims imply each nonincreasing list of M
corresponds to a unique vertex of G′ and vice versa, and soM = NDL(G′).

We divide the vertices of G′ into three kinds as in Lemma 23 and prove our first
claim for each kind. Let v ∈ V (G′).

Case 1. v ∈ V (G′)\V (G). Then, v is the inserted vertex and NDS(G′, v) is an empty
list, and so there is nothing to prove.

Case 2. v ∈ V (G) \ V (H). Then, we know NDS(G, v) = NDS(G′, v) by Fact 28.
Since v /∈ V (H), we do not remove NDS(G, v) in the procedure, and so
NDS(G, v) is present inM.

Case 3. v = f(w) for some retained vertex w ∈ VR(E). Then ΛY (w) =
NDS(G′, f(w)) because E is complete in G (Definition 26), and ΛY (w) is
present inM (Line 9).

Now, we show that each nonincreasing list L of M corresponds to the NDS of a
vertex of G′. Observe that either L = ΛY (y) for some y ∈ V (Y) (Line 9) or L =
NDS(G, u) for some u ∈ V (G) because we initially setM = NDL(G) (Line 4).

If L = ΛY (y) for some y ∈ V (Y), then y ∈ V (X) because, otherwise, ΛY (y)
would be empty (Definition 26). Hence, y ∈ V (X) ∩ V (Y) = VR(E), which implies
L = NDS(G′, f(y)) (Definition 26).

39

On the other hand, if L = NDS(G, u) for some u ∈ V (G), then obviously there exists
no vertex x ∈ V (X) such that u = f(x) because, otherwise, we would have removed
ΛX(x) = NDS(G, u) (Line 6). Therefore, u /∈ V (H), and so u is an “untouched”
vertex, or, u ∈ V (G) \ V (H). Hence, NDS(G, u) = NDS(G′, u) by Fact 28, which
implies L = NDS(G′, u).

Lemma 56. The running time of Compute-NDL is polynomial in |V (G)|, where G
is the input graph.

Proof. Since a vertex can have at most ∆(G) neighbours in G, its NDS has size at most
∆(G). Hence, each nonincreasing list ofM = NDL(G) has size at most ∆(G). Since E
fits G, |V (X)| and |V (Y)| are at most ∆(G)2 + 1 (Fact 19). Therefore, we remove at
most ∆(G)2 + 1 nonincreasing lists fromM (Line 5) before adding at most ∆(G)2 + 1
nonincreasing lists to M (Line 8). This takes at most 2(∆(G)2 + 1) addition and
removal operations in total and each operation takes time linear in |NDL(G)| = |V (G)|
(see Section 3.3), and so the running time is bounded by O(∆(G)2 · |V (G)|), which is
polynomial in |V (G)| since ∆(G) ≤ |V (G)|.

Corollaries 57 and 58 follow from the fact that Compute-NDL is well-defined and
takes only NDL(G) and E as inputs.

Corollary 57. If G′ is a (G, E)-produced graph, where E is complete in G, then
NDL(G′) is determined by NDL(G) and E.

Corollary 58. If an LA edit pair E is complete in a graph G, then every (G, E)-produced
graph has the same NDL.

We extend the above corollaries to sequences of LA edit pairs.

Corollary 59. If Gt+1 is a (G0, 〈Ei〉t0)-produced graph, where 〈Ei〉t0 is complete in G0,
then NDL(Gt+1) is determined by NDL(G0) and 〈Ei〉t0.

Proof. Since 〈Ei〉t0 is complete in G0, there exists a sequence of graphs 〈Gj〉t+1
0 such that

Ei is complete in Gi and Gi+1 is a (Gi, Ei)-produced graph for each 0 ≤ i ≤ t (Definition
40). We know by Corollary 57 that NDL(Gi+1) is determined by NDL(Gi) and Ei for
each 0 ≤ i ≤ t, which completes the proof.

Corollary 60 follows from Corollary 58.

Corollary 60. If an LA edit pair sequence 〈Ei〉t0 is complete in a graph G0, then every
(G0, 〈Ei〉t0)-produced graph has the same NDL.

40

Chapter 6

Provisional Completeness of an LA
Edit Pair Sequence

To determine the completeness of an LA edit pair E in a graph G using Definition
26, we need to check whether the conditions in the definition hold for each (G, E)-
produced graph. Thus we need to first compute all (G, E)-produced graphs. In this
chapter, we give a procedure − Check-Provisional-Completeness − to determine
the provisional completeness of E (Definition 30). Then, we prove that, if E fitsG, check-
ing whether E is complete in G is equivalent to checking its provisional completeness
(Lemma 64). Finally, we show that the relation between provisional completeness and
completeness in a graph can be extended to LA edit pair sequences (Lemma 65).

6.1 Check-Provisional-Completeness procedure
The procedure Check-Provisional-Completeness checks the conditions under

which an LA edit pair E that fits a graphG is complete inG. By Definition 30, therefore,
the procedure checks the provisional completeness of E . If E = ((X; ΛX), (Y ; ΛY)) is
complete in G and G′ is a (G, E)-produced graph, then Y is list-isomorphic to an
induced subgraph H ′ of G′ (Fact 24), which means ΛY correctly specifies the NDSs of
the vertices of H ′. We specify how the list-attributions ΛY and ΛX must be related for
this condition to hold.

We use the fact that the vertices of Y can be divided into the inserted vertex, if
any, and the retained vertices (Definition 14). In turn, the retained vertices are divided
into degree-modified vertices and the list-modified vertices (Fact 13). We check three
sets of conditions pertaining to these types of vertices.

41

1. y ∈ V (Y) is the inserted vertex. Then, we check whether ΛY (y) is empty.

2. p ∈ V (Y) is a degree-modified vertex. Then, its NDS is changed in three cases.
We perform the changes specified in the cases and check whether the nonincreasing
list obtained equals ΛY (p).

(a) The deleted vertex is a neighbour of p. Then, we remove the degree of the
deleted vertex from ΛX(p).

(b) An edge incident with p is inserted or deleted. Then, we add the degree of the
other end-vertex of the edge to ΛX(p) or remove it from ΛX(p), respectively.

(c) A neighbour of p is degree-modified. Then, we update the degree of the
degree-modified neighbour in ΛX(p).

3. q ∈ V (Y) is a list-modified vertex. Then, we update the degrees of its degree-
modified neighbours in ΛX(q) and check whether the nonincreasing list thus ob-
tained equals ΛY (q).

In Check-Provisional-Completeness, we define the variables ins, degmod, and
listmod to correspond, respectively, to the three conditions above. Their boolean values
indicate whether the corresponding condition holds. We output yes if and only if all
three conditions hold.

To check Conditions (2) and (3), we assign Lp and Lq to ΛX(p) and ΛX(q), respec-
tively. We then modify them and check whether they are equal to ΛY (p) and ΛX(q),
respectively.

Lemma 61. Given an LA edit pair E that fits a graph G, the procedure Check-
Provisional-Completeness correctly determines whether E is complete in G.

Proof. Let E = ((X; ΛX), (Y ; ΛY)) be an LA edit pair that fits a graph G. We show
that the conditions for the completeness of E in G (Definition 26) are satisfied if and
only if the conditions checked by Check-Provisional-Completeness are satisfied.

We know V (Y) = VR(E) ∪ V+(E) (Definition 14). Therefore, V (Y) = Mdeg(E) ∪
Mlist(E) ∪ V+(E) because VR(E) = Mdeg(E) ∪Mlist(E) (Fact 13).

Suppose E fits G and G′ = ndledit(Φ), where Φ = (G, E , H, f). We know (X; ΛX) '
H with respect to f (Definition 16), and so ΛX(x) = NDS(G, f(x)) for each x ∈ V (X).
To check whether E is complete in G, by Definition 26, we need to check whether ΛY (y)
is an empty list for y ∈ V+(E) and whether ΛY (r) = NDS(G′, f(r)) for each r ∈ VR(E).
Since VR(E) = Mdeg(E) ∪Mlist(E), these can be split into three conditions.

1. ΛY (y) is an empty list for y ∈ V+(E),

42

Algorithm 2 Check provisional completeness of an LA edit pair
1: procedure Check-Provisional-Completeness(E)
2: Input: An LA edit pair E = ((X; ΛX), (Y ; ΛY)).
3: Output: Yes if E is provisionally complete; no otherwise.
4: Set ins = degmod = listmod = false
5: . Initialize boolean variables
6: if V+(E) is empty or ΛY (y) is empty for y ∈ V+(E) then
7: . Condition (1)
8: Set ins = true
9: for each degree-modified vertex p ∈Mdeg(E) do

10: Set Lp = ΛX(p)
11: for the deleted neighbour z ∈ V−(E) ∩NX(p), if any, do
12: Lp = Lp 	 ΛX(z)
13: for each degree-modified neighbour r ∈Mdeg(E) ∩NX(p) do
14: if (p, r) ∈ E+(E) then
15: Lp = Lp ⊕ ΛY (r)
16: else if (p, r) ∈ E−(E) then
17: Lp = Lp 	 ΛY (r)
18: else
19: Lp = (Lp 	 dX(r))⊕ dY (r)
20: if Mdeg(E) = ∅ or ΛY (p) = Lp for each p ∈Mdeg(E) then
21: . Condition (2)
22: Set degmod = true
23: for each list-modified vertex q ∈Mlist(E) do
24: Set Lq = ΛX(q)
25: for each degree-modified neighbour r ∈Mdeg(E) ∩NX(q) do
26: Lq = (Lq 	 dX(r))⊕ dY (r)
27: if Mlist(E) = ∅ or ΛY (q) = Lq for each q ∈Mlist(E) then
28: . Condition (3)
29: Set listmod = true
30: if ins = true and degmod = true and listmod = true then
31: return yes
32: else
33: return no

43

2. ΛY (p) = NDS(G′, f(p)) for each p ∈Mdeg(E), and

3. ΛY (q) = NDS(G′, f(q)) for each q ∈Mlist(E).

We show that Check-Provisional-Completeness checks these conditions.
We check Condition (1) on Line 6.
To check Condition (2), we initialize Lp = ΛX(p) for each degree-modified vertex p.

We note that the NDS of f(p) is modified in one of the three edit operations:

Case 1. Vertex deletion: a neighbour z ∈ NX(p) is deleted.
Now, the following hold:

1. The element dG(f(z)) of NDS(G, f(p)) is absent from NDS(G′, f(p)).
Now, we know that dX(z) = dG(f(z)) because E fits G and z ∈ V−(E)
(Definition 16). We ensure on Line 12 that dX(z) is absent from ΛY (p)
too.

2. Each r ∈ NX(z) ∩ NX(p) is degree-modified, i.e., r ∈ Mdeg(E). There-
fore, the element dG(f(r)) in NDS(G, f(p)) is updated to dG′(f(r)) in
NDS(G′, f(p)). We know that dX(r) = dG(f(r)) since E fits G (Defini-
tion 16), and also that dY (r) = dG′(f(r)) (Fact 25). Hence, we replace
dX(r) in Lp with dY (r) on Line 19.

Case 2. Edge insertion: the edge (p, r) is inserted for some r ∈ V (X).
Obviously, r is degree-modified, or, r ∈ Mdeg(E), which implies dX(r) =
dG(f(r)) and dY (r) = dG′(f(r)) (Definition 16 and Fact 25, respectively).
Now, dG(f(r)) is absent from NDS(G, f(p)) but dG′(f(r)) is present in
NDS(G′, f(p)). Therefore, we add dY (r) to Lp on Line 15.

Case 3. Edge deletion: the edge (p, r) is deleted for some r ∈ NX(p).
We argue similarly to Case 2, except now dG(f(r)) is present in NDS(G, f(p))
but dG′(f(r)) is absent from NDS(G′, f(p)). Therefore, we check on Line 17
whether ΛY (p) is obtained from ΛX(p) by removing dX(r).

To check Condition (3), we initialize Lq = ΛX(q) for each list-modified vertex q in E .
For each degree-modified neighbour r ∈Mdeg(E), the element dG(f(r)) in NDS(G, f(q))
is updated to dG′(f(r)) in NDS(G′, f(q)). Since we know that dX(r) = dG(f(r)) and
dY (r) = dG′(f(r)) (Definition 16 and Fact 25, respectively), we update dX(r) in Lq to
dY (r) on Line 26.

Finally, we output yes on Line 31 if and only if conditions (1), (2), and (3) are
satisfied, i.e., E is complete in G.

44

Corollary 62. Check-Provisional-Completeness correctly determines the provi-
sional completeness of an LA edit pair.

Proof. Observe that Check-Provisional-Completeness takes only an LA edit pair
E as input. By Lemma 61, this means Check-Provisional-Completeness outputs
yes for an input E if and only if E is complete in every graph G it fits, or in other
words, E is provisionally complete.

Lemma 63. Given an input E = ((X; ΛX), (Y ; ΛY)), the procedure Check-
Provisional-Completeness runs in time O(|V (X)|3).

Proof. Observe in Check-Provisional-Completeness that, for each x ∈ V (X), an
element of ΛX(x) is modified only if it corresponds to the degree of a neighbour of x in
X. Since x can have at most |V (X)| neighbours in X, |ΛX | ≤ |V (X)| and we perform
at most 2|V (X)|2 operations on the nonincreasing lists in ΛX , considering an update
of an element as a removal followed by an addition. Now, each operation takes time
linear in the size of the list (see Section 3.3), i.e., linear in |V (X)|, which means the
total time for performing all operations is in O(|V (X)|3). Additionally, if a vertex y is
inserted, then it takes O(1) time to check whether ΛY (y) is empty. Therefore, the total
time taken is in O(|V (X)|3).

Lemma 64. An LA edit pair E is complete in a graph G if and only if E is provisionally
complete and E fits G.

Proof. If E fits G and E is provisionally complete, then E is complete in G (Definition
30).

On the other hand, if E is complete in G, then E must fit G (Definition 26). Since
E fits G and is complete in G, we know by Lemma 61 that Check-Provisional-
Completeness outputs yes, and so by Corollary 62, E is provisionally complete.

Lemma 65. An LA edit pair sequence is complete in a graph G0 if and only if it is
provisionally complete and fits G0.

Proof. Suppose an LA edit pair sequence 〈Ei〉t0 is complete in a graph G0. Then, 〈Ei〉t0
fits G0 and there exists a sequence of graphs 〈Gi〉t+1

0 such that Ei is complete in Gi

for each 0 ≤ i ≤ t (Definition 40). It follows from Lemma 64 that Ei is provisionally
complete for each 0 ≤ i ≤ t, and so 〈Ei〉t0 is provisionally complete (Definition 41).

On the other hand, suppose 〈Ei〉t0 is provisionally complete and fits G0. Then, there
exists a sequence of graphs 〈Gj〉t+1

0 such that Ei fits Gi for 0 ≤ i ≤ t (Definition 39).
Now, since Ei is provisionally complete, Ei is complete in Gi for 0 ≤ i ≤ t (Definition
41). Therefore, 〈Ei〉t0 is complete in G0 (Definition 40).

45

Theorem 66 follows from Theorem 54 and Lemma 65.

Theorem 66. A GEN instance (G0, T , `) is a yes-instance if and only if there exists
a provisionally complete LA edit pair sequence 〈Ei〉t0 which fits G0 such that there exists
a (G0, 〈Ei〉t0)-produced graph with NDL T .

46

Chapter 7

Determining the completeness of an
LA edit pair sequence in a graph

We have reduced GEN to determining the existence of a provisionally complete LA
edit pair sequence that fits the input graph and produces a graph with the desired
NDL (Theorem 66). Given an input graph G0 and an LA edit pair sequence 〈Ei〉t0 for
t ≥ 0, Compute-NDL computes the NDL of the (G0, 〈Ei〉t0)-produced graphs, if any,
and Check-Provisional-Completeness checks whether 〈Ei〉t0 is provisionally com-
plete. In this chapter, we describe our method for determining whether a provisionally
complete LA edit pair fits a graph, i.e., whether it is complete in the graph.

Now, 〈Ei〉t0 fits G0 only if there exists a sequence of graphs 〈Gj〉t+1
0 such that Ei fits

Gi for each 0 ≤ i ≤ t (Definition 39). However, the only graph we know in 〈Gj〉t+1
0 is G0.

This is because, for any 0 ≤ i ≤ t, Gi+1 = ndledit(Φi), where Φi = (Gi, Ei, Hi, fi), and
Hi and fi are not fixed. Nevertheless, if Ei = ((X [i]; ΛX [i]), (Y [i]; ΛY[i])) is provisionally
complete and fits Gi, then Ei is complete in Gi, and so we know that (Y [i]; ΛY[i]) is
list-isomorphic to an induced subgraph of Gi+1 (Fact 29).

Given that 〈Ej〉i0 fits G0, we reduce determining whether Ei+1 fits Gi+1 to a condition
on G0. To check whether Ei+1 fits Gi+1, we need to determine whether (X [i+1]; ΛX [i+1])
is list-isomorphic to an induced subgraph of Gi+1 (Definition 16). If the latter is true,
then we know that X [i + 1] and Y [i] are isomorphic to induced subgraphs of Gi+1,
and these subgraphs may share vertices and edges. Hence, we introduce the concept
of merging two LA graphs by identifying subsets of their vertex-sets and edge-sets
such that the nonincreasing lists of the identified vertices match. This allows us to
construct a merge graph from (X [i+ 1]; ΛX [i+1]) and (Y [i]; ΛY[i]) that is list-isomorphic
to a subgraph of Gi+1.

Next, we “undo” the NDL graph edit specified by Ei in the merge graph to obtain

47

its antecedent. Lemma 79, which we prove later, implies (X [i + 1]; ΛX [i+1]) is list-
isomorphic to a subgraph of Gi+1 if and only if the antecedent is list-isomorphic to a
subgraph of Gi. Hence, we have reduced checking list-isomorphism with a subgraph of
Gi+1 to a list-isomorphism condition on Gi. Continuing this process of “undoing” NDL
graph edits, we obtain an antecedent sequence and a list-isomorphism condition on G0.

The antecedent sequence can be used to trace the history of a vertex and “undo”
the changes to its degree. Since a graph edit is seen as “replacement” of a subgraph
with another graph, a vertex may have been replaced multiple times. We call the vertex
replaced a proxy of the vertex that replaces it.

This chain of proxies extends as far back as either the earliest antecedent or a
vertex insertion, and we call the earliest proxy of a vertex its origin. The set of origins
of the vertices of X [i + 1] in the earliest antecedent induce what we call an origin
graph. We show in Theorem 96 that the list-isomorphism and degree conditions on
(X [i + 1]; ΛX [i+1]) and Gi+1 can be reduced to list-isomorphism and degree conditions
on the origin graph and G0.

7.1 Merging LA graphs
Given two LA graphs (A; ΛA) and (B; ΛB), merging can be visualized as “laying”

A over B such that the overlapping subgraphs of A and B are isomorphic and the
corresponding nonincreasing lists match. We denote the vertex sets of these subgraphs
as SA and SB, respectively, and the bijection from SA to SB as µ.

We obtain the merge graph (M ; ΛM) by retaining the subgraph of A and remov-
ing the subgraph of B. But this also removes the edges of B that have exactly one
end-vertex in SB. To fix this, for each a ∈ SA, we introduce edges between a and
the neighbours of µ(a) in V (B) \ SB. In Definition 67, EAB contains the edges thus
introduced.

Since SA, SB, and µ are not fixed, a family of merge graphs is obtained by merging
(A; ΛA) and (B; ΛB), which we denote as (A; ΛA)↔ (B; ΛB).

Definition 67. Let (A; ΛA) and (B; ΛB) be LA graphs. Let SA ⊆ V (A) and SB ⊆ V (B)
such that |SA| = |SB| and µ : SA → SB be a bijection such that

1. A[SA] and B[SB] are isomorphic with respect to µ, and

2. ΛA(v) = ΛB(µ(v)) for each v ∈ SA.

Merging (A; ΛA) and (B; ΛB) with respect to SA, SB, and µ produces an LA graph
(M ; ΛM) given by

48

V (M) = V (A) ∪ (V (B) \ SB)
E(M) = E(A) ∪ E(B[V (B) \ SB]) ∪ EAB

ΛM(m) =

ΛA(m) if m ∈ V (M) ∩ V (A)
ΛB(m) if m ∈ V (M) ∩ V (B)

where EAB = {(a, b̂) | a ∈ SA ∧ b̂ ∈ V (B) \SB ∧ (µ(a), b̂) ∈ E(B)}. We also refer to the
merge graph (M ; ΛM) by ((A; ΛA)↔ (B; ΛB), SA, SB, µ).

Notice that the vertices in SB do not appear in the merge graph. Instead, the
vertices in SA “substitute” for them in the merge graph. Let µ(a) = b for a ∈ SA,
b ∈ SB, and a bijection µ. By Definition 67, for each neighbour v of a in M , either v
or µ(v) is a neighbour of b in B. Hence, in a sense, a “substitutes” for b in M .

Definition 68. Let (A; ΛA) and (B; ΛB) be LA graphs and (M ; ΛM) = ((A; ΛA) ↔
(B; ΛB), SA, SB, µ). The substitution function for (M ; ΛM) is a bijection sM : V (B)→
(V (B) \ SB) ∪ SA defined as

sM(b) =

a such that µ(a) = b if b ∈ SB
b if b ∈ V (B) \ SB

The vertex sM(b) is called the substitute of b in (M ; ΛM). The substitute set of a
subset C ⊆ V (B), denoted σM(C), is the set of substitutes of the vertices in C.

Fact 69. Given LA graphs (A; ΛA) and (B; ΛB), the sets SA and SB, and µ, the merge
graph ((A; ΛA)↔ (B; ΛB), SA, SB, µ) can be computed in time O(|V (A)|2 + |V (B)|2).

Proof. We refer to Definition 67 for the definition of (M ; ΛM) = ((A; ΛA) ↔
(B; ΛB), SA, SB, µ).

V (M) can be computed in time O(|V (A)|+ |V (B)|). Each edge in EAB corresponds
to an edge of B, so E(M) can be computed in time O(|E(A)|∪|E(B)|), or, O(|V (A)|2 +
|V (B)|2). Finally, ΛM can be computed in time O(|V (A)|+ |V (B)|), which completes
the proof.

Lemma 70. The size of the family (A; ΛA) ↔ (B; ΛB) is bounded by a function of
|V (A)|+ |V (B)|.

49

Proof. We note that, for a given pair of subsets SA ⊆ V (A) and SB ⊆ V (B) such that
|SA| = |SB|, there are |SA|! bijections possible. Also, for a given size of the subsets
i = |SA| = |SB|, where 0 ≤ i ≤ min{|V (A)|, |V (B)|}, there are

(
|V (A)|
i

)
and

(
|V (B)|
i

)
choices for the subsets SA and SB, respectively. Therefore, the number of merge graphs
with i as the size of the subsets is i! ·

(
|V (A)|
i

)
·
(
|V (B)|
i

)
. Summing over all values of i, the

total number of LA graphs obtained by merging is ∑min{|V (A)|,|V (B)|}
i=0 i! ·

(
|V (A)|
i

)
·
(
|V (B)|
i

)
,

which is bounded by ∑min{|V (A)|,|V (B)|}
i=0 (|V (A)|! · |V (B)|!), which in turn is bounded by

O(n·(n!)2), where n = max{|V (A)|, |V (B)|}. Now, n! ≤ nn for all n > 0, and so the size
of (A; ΛA)↔ (B; ΛB) is bounded, less tightly, by O(n2n+1). Since n ≤ |V (A)|+ |V (B)|,
the size of (A; ΛA)↔ (B; ΛB) is bounded by a function of |V (A)|+ |V (B)|.

Lemma 71. For LA graphs (A; ΛA) and (B; ΛB), if (M ; ΛM) ∈ (A; ΛA) ↔ (B; ΛB),
then A is an induced subgraph of M and B is isomorphic to M [σM(V (B))] with respect
to the substitution function sM .

Proof. Let (M ; ΛM) = ((A; ΛA) ↔ (B; ΛB), SA, SB, µ). We refer to Definition 67
throughout the proof.

We know V (A) ⊆ V (M) and E(A) ⊆ E(M), and so A is a subgraph ofM . We claim
A is also an induced subgraph ofM . Note that E(M)\E(A) = E(B[V (B)\SB])∪EAB.
Obviously, E(B[V (B)\SB]) contains edges both of whose end-vertices are in V (B) and,
by our definition of EAB, edges in EAB have exactly one end-vertex in V (B). Therefore,
there exists no edge (a, a′) ∈ E(M) \ E(A) such that a, a′ ∈ V (A), which implies A is
also an induced subgraph of M .

To prove B is isomorphic toM [σM(V (B))] with respect to sM , we consider the three
types of vertex-pairs b, b̂ ∈ V (B) and show that (sM(b), sM(b′)) ∈ E(M) if and only if
(b, b̂) ∈ E(B).

Case 1. b, b̂ ∈ V (B) \ SB.
Then, (sM(b), sM(b′)) = (b, b′) and we know (sM(b), sM(b′)) = (b, b′) ∈ E(M)
if and only if (b, b′) ∈ E(B[V (B) \ SB]) ⊆ E(B).

Case 2. b ∈ SB and b̂ ∈ V (B) \ SB.
Then, (sM(b), sM(b′)) = (a, b′), where µ(a) = b. Now, (a, b′) ∈ EAB if and
only if (b, b′) ∈ E(B), and we know (a, b′) ∈ E(M) if and only if (a, b′) ∈
EAB ⊆ E(B).

Case 3. b ∈ V (B) \ SB and b̂ ∈ SB.
The argument is similar to that in Case (2) with b and b̂ interchanged.

50

Case 4. b, b̂ ∈ SB.
Then, (sM(b), sM(b′)) = (a, a′), where µ(a) = b and µ(a′) = b′. Since A[SA]
and B[SB] are isomorphic with respect to µ, (a, a′) ∈ E(A) if and only if
(b, b′) ∈ E(B), and we know (a, a′) ∈ E(M) if and only if (a, a′) ∈ E(A).

Given two LA graphs that are list-isomorphic to subgraphs of a graph G, not every
merge graph is list-isomorphic to a subgraph of G, but we will show that there exists
at least one that is list-isomorphic to a subgraph of G (Lemma 73).

Definition 72. Let (A; ΛA) and (B; ΛB) be LA graphs, each of which is list-isomorphic
to a subgraph of G. We call (M ; ΛM) ∈ (A; ΛA)↔ (B; ΛB) that is list-isomorphic to a
subgraph of G a G-realized merge graph.

Lemma 73. Given a graph G and LA graphs (A; ΛA) and (B; ΛB), each of which is
list-isomorphic to a subgraph of G, (A; ΛA) ↔ (B; ΛB) contains a G-realized merge
graph.

Proof. Suppose there exist subgraphs P and Q of G such that (A; ΛA) ' P with
respect to a bijection π : V (A) → V (P) and (B; ΛB) ' Q with respect to a bijection
χ : V (B)→ V (Q). Let D be the graph defined by V (D) = V (P) ∪ V (Q) and E(D) =
E(P) ∪ E(Q). Obviously, D is a subgraph of G. We will construct a merge graph
(M ; ΛM) and show that it is list-isomorphic to D.

Let (M ; ΛM) = ((A; ΛA) ↔ (B; ΛB), SA, SB, µ), where SA = {a ∈ V (A) | π(a) ∈
V (P) ∩ V (Q)}, SB = {b ∈ V (B) | χ(b) ∈ V (P) ∩ V (Q)}, and µ : SA → SB is a
bijection such that π(a) = χ(µ(a)) for each a ∈ SA. Observe that the sets SA and SB
are mapped to the same set V (P)∩V (Q). Furthermore, since A and B are isomorphic
to P and Q respectively, (a, b) ∈ EAB if and only if (π(a), χ(b)) ∈ E(Q) for any a ∈ SA
and b ∈ V (B) \ SB (Definition 67). Hence, it follows that M is isomorphic to D.

Furthermore, ΛM(m) equals NDS(G, π(m)) if m ∈ V (A) and NDS(G,χ(m)) if
m ∈ V (B) by Definition 67 and the fact that (A; ΛA) and (B; ΛB) are list-isomorphic
to subgraphs of G. Since V (D) = V (P) ∪ V (Q) = {π(m) | m ∈ V (A)} ∪ {χ(m) | m ∈
V (B)}, it is true that (M ; ΛM) ' D.

7.2 Antecedent of a merge graph
Given an LA edit pair E = ((X; ΛX), (Y ; ΛY)) and a merge graph (M ; ΛM) obtained

by merging (Y ; ΛY) with an LA graph, the antecedent of (M ; ΛM) is obtained by

51

performing the “reverse” NDL graph edit in (M ; ΛM), i.e., by deleting (inserting) the
vertices and edges that are inserted (respectively, deleted) in E . However, we require
that the inserted vertex, if any, is identified only with an isolated vertex when merging
because, otherwise, performing the “reverse” NDL graph edit would delete this vertex
but keep the edges incident with it in the merge graph intact, resulting in “hanging
edges”.

We will show in Lemma 79 that checking whether (M ; ΛM) is list-isomorphic to a
subgraph of a (G, E)-produced graph is equivalent to checking whether its antecedent
is list-isomorphic to a subgraph of G.

Definition 74. Let E = ((X; ΛX), (Y ; ΛY)) be an LA edit pair and (A; ΛA) be an LA
graph. Let (M ; ΛM) = ((Y ; ΛY)↔ (A; ΛA), SY , SA, µ) be such that for y ∈ V+(E)∩SY ,
if any, µ(y) is an isolated vertex. The antecedent of (M ; ΛM), denoted (α(M); Λα(M)),
is the LA graph given by

V (α(M)) =
(
V (M) \ V+(E)

)
∪ V−(E)

E(α(M)) =
(
E(M) \ E+(E)

)
∪ E−(E)

Λα(M)(v) =

ΛX(v) if v ∈ V (α(M)) ∩ V (X)
ΛM(v) otherwise

We use the fact that V+(E), V−(E), and E+(E) have at most one element each
and E−(E) has at most ∆(X) ≤ |V (X)| edges (Definition 14) to bound the time for
computing the antecedent.

Fact 75. Given an LA edit pair E = ((X; ΛX), (Y ; ΛY)) and a merge graph (M ; ΛM) ∈
(Y ; ΛY)↔ (A; ΛA), (α(M); Λα(M)) can be computed in time O(|V (X)|).

Fact 76. Let E = ((X; ΛX), (Y ; ΛY)) be an LA edit pair and (A; ΛA) be an LA graph.
For a merge graph (M ; ΛM) ∈ (Y ; ΛY)↔ (A; ΛA), |V (α(M)| ≤ |V (M)|+ 1.

Proof. By Definition 74, V (α(M)) \ V (M) = V−(E). We know |V−(E)| = |V (X) \
V (Y)| ≤ 1 since at most one vertex is deleted (Definitions 12 and 14), which proves
our claim.

Fact 77. Let E = ((X; ΛX), (Y ; ΛY)) be an LA edit pair, G′ = ndledit(Φ), where
Φ = (G, E , H, f), and (A; ΛA) be an LA graph. For any (M ; ΛM) ∈ (Y ; ΛY)↔ (A; ΛA),
the following hold:

1. a vertex v ∈ V (α(M)) \ V (M) if and only if f(v) ∈ V (G) \ V (G′),

52

2. there exists a bijection from V (M) \ V (α(M)) to V (G′) \ V (G),

3. an edge (u, v) ∈ E(α(M)) \E(M) if and only if (f(u), f(v)) ∈ E(G) \E(G′), and

4. an edge (u, v) ∈ E(M) \ E(α(M)) if and only if (f(u), f(v)) ∈ E(G′) \ E(G).

Proof. Suppose G′ = ndledit(Φ), where Φ = (G, E , H, f).

1. Note that V (α(M)) \ V (M) = V−(E) (Definition 74). Now, we know f gives a
bijection from V−(E) to V−(Φ) (Definition 17), and since V (G) \ V (G′) = V−(Φ)
(Definition 18), f gives a bijection from V (α(M)) \ V (M) to V (G) \ V (G′).

2. Note that V (M) \ V (α(M)) = V+(E) and E(M) \E(α(M)) = E+(E) (Definition
74). By Definition 17, there exists a bijection from V+(E) to V+(Φ), and so from
V (M) \ V (α(M)) to V (G′) \ V (G).

3. Note that E(α(M)) \ E(M) = E−(E) (Definition 74) and (u, v) ∈ E−(E) if and
only if (f(u), f(v)) ∈ E−(Φ) (Definition 17). Now, since E(G) \ E(G′) = E−(Φ)
(Definition 18), our claim holds.

4. Note that E(M) \ E(α(M)) = E+(E) (Definition 74) and (u, v) ∈ E+(E) if and
only if (f(u), f(v)) ∈ E+(Φ) (Definition 17). Since E+(Φ) = E(G′) \E(G) (Defi-
nition 18), our claim holds.

Lemma 78. Let E = ((X; ΛX), (Y ; ΛY)) be an LA edit pair and (A; ΛA) an LA graph.
For any (M ; ΛM) ∈ (Y ; ΛY)↔ (A; ΛA), X is an induced subgraph of α(M).

Proof. We know by Lemma 71 that Y is an induced subgraph of M , which means
V (Y) ⊆ V (M) and E(Y) ⊆ E(M). Therefore, from Definitions 14 and 74, it follows
that V (X) ⊆ V (α(M)) and E(X) ⊆ E(α(M)), and hence X is a subgraph of α(M).

We show X is also an induced subgraph of α(M) by referring to Definition 74 in
the rest of the proof. Given a pair of vertices u, v ∈ V (X), there are two cases:

Case 1. (u, v) ∈ E(X).

Case i. (u, v) ∈ E(Y).
Then, (u, v) ∈ E(X) ∩ E(Y), and so (u, v) /∈ E+(E) (Definition
14). Now, (u, v) ∈ E(M) because E(Y) ⊆ E(M). Hence, (u, v) ∈
E(α(M)).

53

Case ii. (u, v) /∈ E(Y).
In this case, (u, v) ∈ E(X) \ E(Y) = E−(E), and so (u, v) ∈
E(α(M)).

Case 2. (u, v) /∈ E(X).

Case i. (u, v) ∈ E(Y).
Then, (u, v) ∈ E(Y) \ E(X) = E+(E), and so (u, v) /∈ E(α(M)).

Case ii. (u, v) /∈ E(Y).
Since Y is an induced subgraph ofM (Lemma 71), (u, v) /∈ E(M).
Moreover, (u, v) /∈ E(X) ∪ E(Y) implies (u, v) /∈ E−(E) (Defini-
tion 14). Hence, (u, v) /∈ E(α(M)).

Lemma 79. Suppose G′ is a (G, E)-produced graph, where E = ((X; ΛX), (Y ; ΛY)) is
complete in G. Then, an LA graph (A; ΛA) is list-isomorphic to a subgraph of G′ if and
only if, for any G′-realized merge graph (M ; ΛM) ∈ (Y ; ΛY)↔ (A; ΛA), (α(M); Λα(M))
is list-isomorphic to a subgraph of G.

Proof. Let G′ = ndledit(Φ), where Φ = (G, E , H, f). Since E fits G, we know (X; ΛX) '
H with respect to f (Definition 16), and since E is complete in G, we know (Y ; ΛY) is
list-isomorphic to an induced subgraph of G′ (Fact 29).

Suppose (A; ΛA) is list-isomorphic to a subgraph of G′ and (M ; ΛM) ∈ (Y ; ΛY) ↔
(A; ΛA) is a G′-realized merge graph. We know by Lemma 78 that X is an induced
subgraph of α(M).

First, we show α(M) is isomorphic to a subgraph of G. We know that there exist
bijections from V (α(M))\V (M) to V (G)\V (G′) and from E(α(M))\E(M) to E(G)\
E(G′) (Fact 77). By Fact 77 again, there exist bijections from V (M) \ V (α(M)) to
V (G′) \ V (G) and from E(M) \ E(α(M)) to E(G′) \ E(G). Therefore, since M is
isomorphic to a subgraph of G′, each vertex (edge) of α(M) corresponds to a vertex
(respectively, edge) of G, which implies α(M) is isomorphic to a subgraph of G.

Moreover, we know NDS(G, u) = NDS(G′, u) for each u ∈ V (G) \ V (H) (Fact 28).
Now, since (M ; ΛM) is list-isomorphic to a subgraph of G′, ΛM(m) equals the NDS of
the vertex corresponding to m in G′ for each m ∈ V (M). This implies Λα(M)(v) gives
the NDS of the vertex corresponding to v in G for each v ∈ V (α(M)) \ V (X) because
(X; ΛX) ' H. Furthermore, for each x ∈ V (X), we know ΛX(x) = NDS(G, f(x))
because (X; ΛX) ' H with respect to f . Hence, (α(M),Λα(M)) is also list-isomorphic
to a subgraph of G.

54

To prove the other direction, consider a G′-realized merge graph (M ; ΛM) ∈
(Y ; ΛY)↔ (A; ΛA) such that (α(M); Λα(M)) is list-isomorphic to a subgraph of G. Since
there exist bijections from V (M) \ V (α(M)) to V (G′) \ V (G), from E(M) \ E(α(M))
to E(G′) \E(G), from V (α(M)) \ V (M) to V (G) \ V (G′), and from E(α(M)) \E(M)
to E(G) \ E(G′), each vertex (edge) of M corresponds to a vertex (respectively, edge)
of G′. Hence, M is isomorphic to a subgraph of G′.

We show that (M ; ΛM) is also list-isomorphic to a subgraph of G′. For each v ∈
V (M) \ V (Y), v /∈ V (X) because otherwise v ∈ V−(E) (Definition 14), which would
imply v /∈ V (M) (Definition 74). By Fact 28, NDS(G, u) = NDS(G′, u) for each
u ∈ V (G) \ V (H) and we know (X; ΛX) ' H. Therefore, ΛM(v) gives the NDS of the
vertex corresponding to v in G′ for each v ∈ V (M) \ V (Y). Furthermore, since E is
complete in G, ΛY (y) gives the NDS of the vertex corresponding to y in G′ for each
y ∈ V+(E) ∪ VR(E). By Definition 14, V (Y) = V+(E) ∪ VR(E), which implies ΛM(v)
gives the NDS of the vertex corresponding to v for each v ∈ V (M), which proves our
claim.

We wish to reduce determining whether (X [i]; ΛX [i]) is list-isomorphic to an induced
subgraph of Gi to determining whether a certain LA graph is list-isomorphic to an in-
duced subgraph of Gi−1. For this, we use Lemma 80, which states that, given a (G, E)-
produced graph G′ and a subgraph (Z; ΛZ) of a G′-realized merge graph (M ; ΛM),
checking whether (Z; ΛZ) is list-isomorphic to an induced subgraph of G′ can be re-
duced to checking whether the subgraph induced by the substitute set of V (Z) in
(α(M); Λα(M)) is list-isomorphic to an induced subgraph of G.

Lemma 80. Suppose the following:

1. a (G, E)-produced graph G′, where E = ((X; ΛX), (Y ; ΛY)),

2. an LA graph (A; ΛA) that is list-isomorphic to a subgraph of G′,

3. a G′-realized merge graph (M ; ΛM) ∈ (Y ; ΛY)↔ (A; ΛA), and

4. an LA graph (Z; ΛZ) such that Z is an induced subgraph of A and ΛZ(z) = ΛA(z)
for each z ∈ V (Z).

Then, (Z; ΛZ) is list-isomorphic to an induced subgraph of G′ if and only if (R; ΛR) is
list-isomorphic to an induced subgraph of G, where R is the subgraph induced by the
substitute set of V (Z) in α(M), or, R = α(M)[σM(V (Z)) ∩ V (α(M))], and ΛR(r) =
Λα(M)(r) for each r ∈ V (R).

55

Proof. Suppose (Z; ΛZ) is list-isomorphic to an induced subgraph of G′. Since (A; ΛA)
is list-isomorphic to a subgraph of G′, we know that (α(M); Λα(M)) is list-isomorphic to
a subgraph of G (Lemma 79). Furthermore, because R = α(M)[σM(V (Z))∩V (α(M))]
is an induced subgraph of α(M) and ΛR retains the nonincreasing lists given by Λα(M),
(R; ΛR) is list-isomorphic to a subgraph of G with respect to a bijection, say, g.

We show this subgraph ofG is induced. Suppose (u, v) /∈ E(R) for some u, v ∈ V (R),
which means (u, v) /∈ E(α(M)) and so (u, v) /∈ E−(E). By Definition 74, then, there
are two cases:

Case 1. (u, v) ∈ E(M).
This implies (u, v) ∈ E+(E). Then, (g(u), g(v)) ∈ E+(Φ) and so
(g(u), g(v)) /∈ E(G) (Definitions 17 and 18).

Case 2. (u, v) /∈ E(M).
We first note that, since u, v ∈ σM(V (Z)), there exist w, z ∈ V (Z) such
that u = sM(w) and v = sM(z) (Definition 68). Since Z is isomorphic to an
induced subgraph of G′, (g(u), g(v)) /∈ E(G′). Now, because (u, v) /∈ E−(E),
(g(u), g(v)) /∈ E−(Φ) and hence (g(u), g(v)) /∈ E(G) (Definitions 17 and 18).

Therefore, (R; ΛR) is list-isomorphic to an induced subgraph of G.
To prove the other direction, suppose (R; ΛR) is list-isomorphic to an induced sub-

graph of G. Let (M ; ΛM) be list-isomorphic to a subgraph of G′ with respect to a
bijection, say, h. Therefore, (M̂ ; Λ

M̂
) is list-isomorphic to a subgraph of G′, where

M̂ = M [σM(V (Z))] and Λ
M̂

(m) = ΛM(m) for each m ∈ V (M̂).
We show this subgraph of G′ is induced. Suppose (u, v) /∈ E(M̂) for some u, v ∈

V (M̂), which means (u, v) /∈ E(M). We claim (h(u), h(v)) /∈ E(G′).
Since Y is an induced subgraph of M by Lemma 71, if u, v ∈ V (Y), then (u, v) /∈

E(Y), which implies (u, v) /∈ E+(E) (Definition 14). By Definition 74, then, there are
two cases:

Case 1. (u, v) ∈ E(α(M)).
Since (u, v) /∈ E(M), this implies (u, v) ∈ E−(E) (Definition 74). Then,
(h(u), h(v)) ∈ E−(Φ) and so (h(u), h(v)) /∈ E(G′) (Definitions 17 and 18).

Case 2. (u, v) /∈ E(α(M)).
This implies (u, v) /∈ E(P). Since P is isomorphic to an induced subgraph of
G, (h(u), h(v)) /∈ E(G). Now, since (u, v) /∈ E+(E), it follows from Definition
17 that (h(u), h(v)) /∈ E+(Φ), and so (h(u), h(v)) /∈ E(G′) (Definition 18).

56

Hence, (M̂ ; Λ
M̂

) is list-isomorphic to an induced subgraph of G′. Notice that Z
is isomorphic to M̂ by Lemma 71 and ΛZ(z) = ΛA(z) for each z ∈ V (Z) by our
definition of Z. By Definition 67, ΛA(a) = ΛM(sM(a)) for each a ∈ V (A). Therefore,
ΛZ(z) = ΛM(sM(z)) for each z ∈ V (Z), and so (Z; ΛZ) is list-isomorphic to an induced
subgraph of G′.

Given a (G, E)-produced graph G′, we reduce a condition on the degree of a vertex
in G′ to a condition on the degree of a vertex in G in Lemma 81.

Lemma 81. Let G′ = ndledit(G, E , H, f), where E = ((X; ΛX), (Y ; ΛY)), and (A; ΛA)
be an LA graph. Also, let (M ; ΛM) ∈ (Y ; ΛY) ↔ (A; ΛA) be list-isomorphic to a
subgraph of G′ with respect to a bijection g. Then, dM(v) = dG′(g(v)) if and only if
dα(M)(v) = dG(g(v)) for each v ∈ V (M) ∩ V (α(M)).

Proof. Consider a vertex v ∈ V (M)∩V (α(M)). We know that (Y ; ΛY) is list-isomorphic
to an induced subgraph of G′ such that each y ∈ VR(E) is mapped to f(y) in G′ (Fact
29). Hence, if v ∈ V (Y) ∩ V (X) = VR(E), then we know g(v) = f(v).

We consider two cases for v. If v ∈ VR(E), then we show the inserted and deleted
edges incident with g(v) correspond to the edges incident with v in E(M) \ E(α(M))
and E(α(M)) \ E(M), respectively. If v /∈ VR(E), then we show the degrees of v in M
and α(M) are equal, and so are the degrees of g(v) in G′ and G.

Suppose v ∈ VR(E), which means g(v) = f(v). Now, by Fact 77, there exists
u ∈ V (M) such that (v, u) ∈ E(M) \ E(α(M)) if and only if (f(v), f(u)) ∈ E(G′) \
E(G). Furthermore, there exists w ∈ V (M) such that (v, w) ∈ E(α(M)) \ E(M) if
and only if (f(v), f(w)) ∈ E(G) \ E(G′). Hence, dM(v) = dG′(f(v)) if and only if
dα(M)(v) = dG(f(v)). Since g(v) = f(v), we obtain dM(v) = dG′(g(v)) if and only if
dα(M)(v) = dG(g(v)).

Suppose v /∈ VR(E). We know v /∈ V−(E) and v /∈ V+(E) because v ∈ V (M) ∩
V (α(M)) (Definition 74). Therefore, v /∈ V (X) ∪ V (Y) by Definition 14. This implies
the neighbourhoods of v in M and α(M) are equal. Therefore, dM(v) = dα(M)(v)
and dG′(g(v)) = dG(g(v)), which means dM(v) = dG′(g(v)) if and only if dα(M)(v) =
dG(g(v)).

7.3 Origin graph
The origin graph is a graph on the “origins” of the vertices in an LA edit pair

sequence. Given an LA edit pair sequence 〈Ei〉t0, where Ei = ((X [i]; ΛX [i]), (Y [i]; ΛY[i])),
the “replacements” of subgraphs as specified by the LA edit pair sequence are “undone”

57

to trace the orgins of the vertices of X [i] for i > 0. This sequence of “undo” procedures
is formalized by the antecedent and merge sequences.

7.3.1 Antecedent and merge sequences
The ith merge graph is obtained by merging the ith antecedent with (Y [i]; ΛY[i]),

and the (i− 1)th antecedent is the antecedent of the ith merge graph.

Definition 82. Let 〈Ei〉t0 be an LA edit pair sequence, where Ei =
((X [i]; ΛX [i]), (Y [i]; ΛY[i])) for 0 ≤ i ≤ t. For 1 ≤ i ≤ t, Ai = 〈(A[j]; ΛA[j])〉i0 is an
antecedent sequence andMi = 〈(M [j]; ΛM [j])〉i1 is a merge sequence if and only if

1. (A[i]; ΛA[i]) = (X [i]; ΛX [i]), and

2. (M [j]; ΛM [j]) ∈ (Y [j−1]; ΛY[j−1])↔ (A[j]; ΛA[j]) and (A[j−1]; ΛA[j−1]) = α(M [j])
for each 1 ≤ j ≤ i.

Definition 83. Let 〈Ei〉t0 be an LA edit pair sequence, where Ei =
((X [i]; ΛX [i]), (Y [i]; ΛY[i])) for 0 ≤ i ≤ t. For 1 ≤ i ≤ t, we say an antecedent se-
quence Ai = 〈(A[j]; ΛA[j])〉i0 and a merge sequenceMi = 〈(M [j]; ΛM [j])〉i1 are good with
respect to a graph sequence 〈Gk〉n0 if and only if

1. (A[j]; ΛA[j]) and (M [j]; ΛM [j]) are list-isomorphic to subgraphs of Gj for each
1 ≤ j ≤ i, and

2. (A[0]; ΛA[0]) is list-isomorphic to a subgraph of G0.

We bound the sizes of the graphs in the antecedent and merge sequences in Fact 84
using the bound on the size of the antecedent (Fact 76). Next, we bound the number
of choices for Ai andMi in Fact 85 using the bound on the size of the family of merge
graphs (Lemma 70).

Fact 84. Let 〈Ei〉t0 be an LA edit pair sequence, where Ei = ((X [i]; ΛX [i]), (Y [i]; ΛY[i])) for
0 ≤ i ≤ t. For some 1 ≤ i ≤ t, let Ai = 〈(A[j]; ΛA[j])〉i0 be an antecedent sequence and
Mi = 〈(M [j]; ΛM [j])〉i1 be a merge sequence. Then, for each 1 ≤ j ≤ i, |V (M [j])| ≤ kji
and |V (A[j − 1])| ≤ kji + 1, where kji = |V (X [i])|+∑i−1

p=j−1 |V (Y [p])|+ i− j.

Proof. Consider an arbitrary 1 ≤ i ≤ t. For each 1 ≤ j ≤ i, we show that |V (M [j])| ≤
kji and |V (A[j − 1])| ≤ kji + 1 by induction on j.

By Definition 67, |V (M [i])| ≤ |V (X [i])|+|V (Y [i−1])| = kii and by Fact 76, |V (A[i−
1])| ≤ |V (X [i])|+ |V (Y [i− 1])|+ 1 = kii + 1, and so the claim holds for i.

58

Suppose the claim holds for some 1 < j < i, i.e., |V (M [j])| ≤ kji and |V (A[j−1])| ≤
kji + 1 . Then, by Definitions 67 and 82, we know

|V (M [j − 1])| ≤ |V (A[j − 1])|+ |V (Y [j − 2])|
≤ kji + 1 + |V (Y [j − 2])|
= kj−1

i

By Fact 76, |V (A[j − 2])| ≤ kj−1
i + 1. So the claim holds for j − 1.

(Disclaimer: Fact 85 through Theorem 97 have not been verified for correctness by
the supervisor.)

Fact 85. Let 〈Ei〉t0 be an LA edit pair sequence, where Ei = ((X [i]; ΛX [i]), (Y [i]; ΛY[i]))
for 0 ≤ i ≤ t. For 1 ≤ i ≤ t, the number of choices for Ai and Mi is bounded by a
function of i+ k1

i , where k1
i = |V (X [i])|+∑i−1

p=0 |V (Y [p])|+ i− 1.

Proof. Consider an arbitrary 1 ≤ i ≤ t. Let kji = |V (X [i])| + ∑i−1
p=j−1 |V (Y [p])| + i − j

for each 1 ≤ j ≤ i as stated in Fact 84. We show that the number of choices for

(M [j]; ΛM [j]) is bounded by a function of
i∏

p=j
kpi for each 1 ≤ j ≤ i by induction on j.

Since we computeMi “backwards”, or, compute (M [j]; ΛM [j]) from (M [j+1]; ΛM [j+1]),
the number of choices for (M [1]; ΛM [1]) also gives the number of choices for Mi. On
the other hand, by Definition 82, (A[j − 1]; ΛA[j−1]) is determined by (M [j]; ΛM [j]) for
each 1 ≤ j ≤ i, and so the number of choices for Ai equals that forMi.

By Lemma 70, the number of choices for (M [i]; ΛM [i]) is bounded by a function of
|V (X [i])|+ |V (Y [i− 1])| = kii < k1

i , and so our claim holds for i.
Suppose the claim holds for some 1 < j < i. By Definition 82 and Lemma 70,

for a fixed (A[j − 1]; ΛA[j−1]), the number of choices for (M [j − 1]; ΛM [j−1]) is bounded
by a function of |V (A[j − 1])| + |V (Y [j − 2])|, i.e., by Fact 84, a function of kji + 1 +
|V (Y [j−2])| = kj−1

i . Now, since the number of choices for (A[j−1]; ΛA[j−1]) is bounded

by a function of
i∏

p=j
kpi , the number of choices for (M [j − 1]; ΛM [j−1]) is bounded by a

function of
(i∏
p=j

kpi
)
·kj−1
i =

i∏
p=j−1

kpi . Therefore, the number of choices for (M [1]; ΛM [1]),

and hence for Ai and Mi, is bounded by a function of
i∏

p=1
kpi . Since kpi ≤ k1

i for each

1 ≤ p ≤ i,
i∏

p=1
kpi ≤ (k1

i)i, which is a function of i+ k1
i .

59

Thus, the number of choices for Ai andMi is bounded by a function of i+ k1
i .

Fact 86. Let 〈Ei〉t0 be an LA edit pair sequence, where Ei = ((X [i]; ΛX [i]), (Y [i]; ΛY[i]))
for 0 ≤ i ≤ t, which is complete in a graph G0. For 1 ≤ i ≤ t, k1

i = |V (X [i])| +∑i−1
p=0 |V (Y [p])|+ i− 1 is bounded by a function of ∆(G0) + t.

Proof. We recall that 〈Ei〉t0 is complete in G0 only if 〈Ei〉t0 fits G0 (Definition 40), which
in turn holds only if |V (X [i])| and |V (Y [i])| are at most (∆(G0) + t + 1)2 + 1 for
each 0 ≤ i ≤ t (Fact 43). Hence, we assume |V (X [i])| and |V (Y [i])| are bounded by
(∆(G0)+ t+1)2 +1, which is in O((∆(G0)+ t)2). Therefore, k1

i is in O(i · (∆(G0)+ t)2),
or, O(t · (∆(G0) + t)2), since i ≤ t. In other words, k1

i is bounded by a function of
∆(G0) + t.

Fact 87. Let 〈Ei〉t0 be an LA edit pair sequence, where Ei = ((X [i]; ΛX [i]), (Y [i]; ΛY[i]))
for 0 ≤ i ≤ t. For some 1 ≤ i ≤ t, if Ai = 〈(A[j]; ΛA[j])〉i0 is an antecedent sequence,
then, X [j] is an induced subgraph of A[j] for each 0 ≤ j ≤ i.

Proof. Let Ai = 〈(A[j]; ΛA[j])〉i0 be an antecedent sequence. By Definition 82,
(A[i]; ΛA[i]) = (X [i]; ΛX [i]), and so X [i] = K[i].

For each 0 ≤ j < i, it follows from the fact that (A[j]; ΛA[j]) = α(M [j + 1]) and
(Y [j]; ΛY[j]) is an induced subgraph of (M [j + 1]; ΛM [j+1]) (Definition 82) that X [j] is
an induced subgraph of A[j] (Lemma 78).

We now reduce the condition for goodness of a pair of antecedent and merge se-
quences with respect to a graph sequence to a list-isomorphism condition on G0, the
first graph in the sequence.

Fact 88. Let G0 be a graph and 〈Ei〉t0 be an LA edit pair sequence. For some 1 ≤ i ≤ t,
suppose 〈Gj〉i0 is a sequence of graphs such that 〈Ej〉i−1

0 is complete in G0 with respect to
〈Gj〉i0. Then, for any Ai = 〈(A[j]; ΛA[j])〉i0 and Mi = 〈(M [j]; ΛM [j])〉i1, Ai and Mi are
good with respect to 〈Gj〉i0 if and only if (A[0]; ΛA[0]) is list-isomorphic to a subgraph of
G0.

Proof. Let Ei = ((X [i]; ΛX [i]), (Y [i]; ΛY[i])) for 0 ≤ i ≤ t. For an arbitrary 1 ≤ i ≤ t,
suppose 〈Ej〉i−1

0 is complete in G0. Then, we know Ej−1 is complete in Gj−1 for each
1 ≤ j ≤ i (Definition 40), Gj is a (Gj−1, Ej−1)-produced graph (Definition 39), and
(Y [j − 1]; ΛY[j−1]) is list-isomorphic to an induced subgraph of Gj (Fact 29). We show
that (A[j]; ΛA[j]) and (M [j]; ΛM [j]) are list-isomorphic to subgraphs of Gj if and only
if (A[j − 1]; ΛA[j−1]) is list-isomorphic to a subgraph of Gj−1 for each 1 ≤ j ≤ i. This
implies the fact that (A[j]; ΛA[j]) and (M [j]; ΛM [j]) are list-isomorphic to subgraphs of

60

Gj for each 1 ≤ j ≤ i if and only if (A[0]; ΛA[0]) is list-isomorphic to a subgraph of G0.
Our result, then, follows from Definition 83.

Suppose (A[j]; ΛA[j]) and (M [j]; ΛM [j]) are list-isomorphic to subgraphs of Gj. By
Lemma 79, then, α(M [j]) = (A[j − 1]; ΛA[j−1]) is list-isomorphic to a subgraph of Gj−1
since Gj is a (Gj−1, Ej−1)-produced graph.

On the other hand, suppose (A[j − 1]; ΛA[j−1]) is list-isomorphic to a subgraph of
Gj−1. We know (A[j − 1]; ΛA[j−1]) = α(M [j]) by Definition 82. Comparing Definitions
18 and 74, we obtain the fact that (M [j]; ΛM [j]) is list-isomorphic to a subgraph of Gj

because the modifications to Gj−1 that produce Gj are “undone” in M [j] to obtain
α(M [j]). Furthermore, since Ej−1 is complete in Gj−1, (A[j]; ΛA[j]) is list-isomorphic to
a subgraph of Gj (Lemma 79).

7.3.2 Origin graph
Given an LA edit pair sequence 〈Ei〉t0, where Ei = ((X [i]; ΛX [i]), (Y [i]; ΛY[i])), let

(M [i − 1]; ΛM [i−1]) belong to a merge sequenceMi for some 1 ≤ i ≤ t. By Definition
68, we know σM [i](V (X [i])) contains the substitutes of the vertices of X [i] in M [i], and
the substitutes that are also present in the antecedent of (M [i]; ΛM [i]) “substitute” for
the vertices of X [i] in the antecedent. Now, we know this antecedent is A[i−1], and we
call such a vertex that “substitutes” for a vertex of X [i] its proxy in A[i−1]. Continuing
similarly, we obtain the proxies of the vertices of X [i] in A[0], the set of which we call
the primary proxy set of X [i].

The origin of a vertex of X [i] is its “earliest” proxy. The origin graph is the subgraph
of A[0] induced by the origins present in A[0].

Definition 89. Let 〈Ei〉t0 be an LA edit pair sequence, where Ei =
((X [i]; ΛX [i]), (Y [i]; ΛY[i])) for 0 ≤ i ≤ t. For a given 1 ≤ i ≤ t, let Ai = 〈(A[j]; ΛA[j])〉i0
be an antecedent sequence andMi = 〈(M [j]; ΛM [j])〉i1 be a merge sequence. We define
a sequence of vertex-sets Pi as follows:

1. Pi[i] = V (X [i]) and

2. Pi[j] = σM [j+1](Pi[j + 1]) ∩ V (A[j]) for each 0 ≤ j < i.

The origin of a vertex xi ∈ X [i] is its proxy in Pi[j], where Pi[j] is the first set in
the sequence to contain a proxy of xi.

Definition 90. Let 〈Ei〉t0 be an LA edit pair sequence, where Ei =
((X [i]; ΛX [i]), (Y [i]; ΛY[i])) for 0 ≤ i ≤ t. For a given 1 ≤ i ≤ t, let Ai = 〈(A[j]; ΛA[j])〉i0
be an antecedent sequence andMi = 〈(M [j]; ΛM [j])〉i1 be a merge sequence. The proxy

61

of a vertex xi ∈ V (X [i]) in Pi[j] for some j ≤ i, denoted p(xi, j), is a vertex xj such
that there exists a sequence of vertices xj, xj+1, . . . , xi, where

1. xk ∈ Pi[k] for each j ≤ k ≤ i, and

2. xk−1 = sM [k](xk) for each j ≤ k ≤ i.

The origin of xi, denoted ω(xi), is the vertex p(xi, j) such that either sM [j](xj) /∈ Pi[j−1]
or j = 0.

Fact 91, which states that Pi[0] contains the origins of the vertices of X [i] that belong
to A[0], follows from Definitions 89 and 90. This is because the set Pi[j] contains the
proxies of the vertices of X [i] that are present in A[j], and the proxies present in A[0]
are origins by Definition 90.

Fact 91. Let 〈Ei〉t0 be an LA edit pair sequence, where Ei = ((X [i]; ΛX [i]), (Y [i]; ΛY[i]))
for 0 ≤ i ≤ t. For a given 1 ≤ i ≤ t, let Ai = 〈(A[j]; ΛA[j])〉i0 be an antecedent
sequence and Mi = 〈(M [j]; ΛM [j])〉i1 be a merge sequence. Then, Pi[0] = {ω(xi) | xi ∈
V (X [i])} ∩ V (A[0]).

Definition 92. Let 〈Ei〉t0 be an LA edit pair sequence, where Ei =
((X [i]; ΛX [i]), (Y [i]; ΛY[i])) for 0 ≤ i ≤ t. For a given 1 ≤ i ≤ t, let Ai = 〈(A[j]; ΛA[j])〉i0
be an antecedent sequence and Mi = 〈(M [j]; ΛM [j])〉i1 be a merge sequence. Then,
the origin graph of (X [i]; ΛX [i]), denoted (Ω(X [i]); ΛΩ(X [i])), is given by Ω(X [i]) =
(A[0])[Pi[0]] and ΛΩ(X [i])(x) = ΛA[0](x) for each x ∈ Ω(X [i]).

An LA edit pair sequence 〈Ei〉t0 fits G0 with respect to a graph sequence 〈Gj〉t0 only
if Ei fits Gi for each 0 ≤ i ≤ t (Definition 39). To determine whether Ei fits Gi, by
Definition 16, we need to check a list-isomorphism condition and a degree condition. In
Lemma 93, we reduce the list-isomorphism condition on (X [i]; ΛX [i]) and Gi to a list-
isomorphism condition on the origin graph of (X [i]; ΛX [i]) and G0 by applying Lemma
80.

Lemma 93. Let 〈Ei〉t0 be an LA edit pair sequence, where Ei = ((X [i]; ΛX [i]), (Y [i]; ΛY[i]))
for 0 ≤ i ≤ t. For 1 ≤ i ≤ t, suppose there exists a sequence of graphs 〈Gj〉i0 such that
〈Ej〉i−1

0 is complete in G0 with respect to 〈Gj〉i0.
Then, for any good antecedent and merge sequences with respect to 〈Gj〉i0,

(X [i]; ΛX [i]) is list-isomorphic to an induced subgraph of Gi if and only if
(Ω(X [i]); ΛΩ(X [i])) is list-isomorphic to an induced subgraph of G0.

62

Proof. Consider an arbitrary 1 ≤ i ≤ t. Since 〈Ej〉i−1
0 is complete in G0, we know

Ej is complete in Gj for each 0 ≤ j ≤ i − 1 (Definition 40), and so (Y [j]; ΛY[j]) is
list-isomorphic to an induced subgraph of Gj+1 (Fact 29).

Let Ai = 〈(A[j]; ΛA[j])〉i0 andMi = 〈(M [j]; ΛM [j])〉i1 be good with respect to 〈Gj〉i0.
Let 〈(B[j]; ΛB[j])〉i0 be a sequence of LA graphs defined by B[j] = (A[i])[Pi[j]] and

ΛB[j](b) = ΛA[j](b) for each b ∈ V (B[j]). Note that V (B[j]) = Pi[j]. Also, observe that
(X [i]; ΛX [i]) = (B[i]; ΛB[i]) and (Ω(X [i]); ΛΩ(X [i])) = (B[0]; ΛB[0]) by Definitions 82 and
89.

We will show that (B[j]; ΛB[j]) is list-isomorphic to an induced subgraph of Gj if and
only if (B[j−1]; ΛB[j−1]) is list-isomorphic to an induced subgraph of Gj−1 for each 1 ≤
j ≤ i by directly applying Lemma 80. This will imply (B[i]; ΛB[i]) = (X [i]; ΛX [i]) is list-
isomorphic to an induced subgraph of Gi if and only if (B[0]; ΛB[0]) = (Ω(X [i]); ΛΩ(X [i]))
is list-isomorphic to an induced subgraph of G0, and complete our proof.

We show that if we substitute (B[j]; ΛB[j]) for (Z; ΛZ), then (B[j − 1]; ΛB[j−1]) can
substitute for (R; ΛR) in Lemma 80.

In Lemma 80, we assign G = Gj−1, E = Ej−1, G′ = Gj, (A; ΛA) = (A[j]; ΛA[j]),
(M ; ΛM) = (M [j]; ΛM [j]), and (Z; ΛZ) = (B[j]; ΛB[j]).

Now, we show (R; ΛR) = (B[j − 1]; ΛB[j−1]). First, we begin with R =
α(M)[σM(V (Z)) ∩ V (α(M))] as given in Lemma 80 and show that R = B[j − 1].
Note that α(M) = α(M [j]) = (A[j − 1]; ΛA[j−1]) by Definition 82, which means
R = (A[j − 1])[σM(V (Z))∩ V (α(M))]. Moreover, since V (Z) = V (B[j]) = Pi[j], using
the substitutions stated above, we obtain the substitute set σM(V (Z)) ∩ V (α(M)) =
σM [j](Pi[j]) ∩ V (A[j − 1]). By Definition 89, we know this set equals Pi[j − 1].
Hence, R = (A[j − 1])[Pi[j − 1]] = B[j − 1]. Furthermore, as defined in Lemma
80, ΛR(r) = Λα(M)(r) = ΛA[j−1](r) for each r ∈ V (R). Now, ΛA[j−1](r) = ΛB[j−1](r)
because B[j − 1] is a subgraph of A[j − 1], which implies ΛR(r) = ΛB[j−1](r) for each
r ∈ V (R). Therefore, (R; ΛR) = (B[j − 1]; ΛB[j−1]).

First, we show that the four assumptions of Lemma 80 hold. Since 〈Ej〉i−1
0 fits G0,

Gj is a (Gj−1, Ej−1)-produced graph for each 1 ≤ j ≤ i (Definition 39). Since Ai and
Mi are good with respect to 〈Gj〉i0, (A[j]; ΛA[j]) and (M [j]; ΛM [j]) are list-isomorphic to
subgraphs of Gj, i.e., (M [j]; ΛM [j]) is Gj-realized. Finally, B[j] is an induced subgraph
of A[j] and hence satisfies ΛB[j](b) = ΛA[j](b) for each b ∈ V (B[j]).

Next, applying Lemma 80, we obtain (Z; ΛZ) = (B[j]; ΛB[j]) is list-isomorphic to an
induced subgraph of Gj if and only if (R; ΛR) = (B[j − 1]; ΛB[j−1]) is list-isomorphic
to an induced subgraph of Gj−1 for each 1 ≤ j ≤ i. Continuing similarly, we obtain
(B[j]; ΛB[j]) is list-isomorphic to an induced subgraph of Gi if and only if (B[0]; ΛB[0])
list-isomorphic to an induced subgraph of G0 for each 1 ≤ j ≤ i. Setting j = i proves
our result.

63

To determine whether Ei fits Gi, we also need to check the degree condition in
Definition 16 on the vertices in V−(Ei)∪Mdeg(Ei) with respect to Gi. In Lemma 94, we
reduce it to a degree condition on the origins of these vertices with respect to G0.

Furthermore, for a vertex x ∈ V (X [i]), the reduced condition requires that the
degree of a proxy of x in A[j] be the same as the degree of the substitute of the proxy
in M [j] for each j ≤ i.

For each vertex of X [i] whose origin is not present in A[0], we show the degree
condition with respect to Gi holds.

Lemma 94. Let 〈Ei〉t0 be an LA edit pair sequence, where Ei = ((X [i]; ΛX [i]), (Y [i]; ΛY[i]))
for 0 ≤ i ≤ t. For a given 1 ≤ i ≤ t, suppose there exists a sequence of graphs 〈Gj〉i0
such that 〈Ej〉i−1

0 is complete in G0 with respect to 〈Gj〉i0. Also suppose antecedent and
merge sequences Ai = 〈(A[j]; ΛA[j])〉i0 and Mi = 〈(M [j]; ΛM [j])〉i1 are good with respect
to 〈Gj〉i0.

Suppose (X [i]; ΛX [i]) is list-isomorphic to an induced subgraph of Gi with respect to a
bijection fi and (A[0]; ΛA[0]) is list-isomorphic to an induced subgraph of G0 with respect
to a bijection f0. Consider a vertex x ∈ V (X [i]) and let ω(x) ∈ Pi[k] for some k ≥ 0.
Then, dX [i](x) = dGi

(fi(x)) if and only if

1. dA[0](ω(x)) = dG0(f0(ω(x))) if k = 0, and

2. dA[j](p(x, j)) = dM [j](sM [j](p(x, j))) for each k ≤ j ≤ i.

Proof. Since Ai andMi are good with respect to 〈Gj〉i0, (A[j]; ΛA[j]) and (M [j]; ΛM [j])
are list-isomorphic to subgraphs of Gj with respect to bijections, say, aj and mj, re-
spectively, for each 0 ≤ j ≤ i (Definition 83). Note that (A[i]; ΛA[i]) = (X [i]; ΛX [i]) by
Definition 82. Hence, ai = fi and a0 = f0.

To prove the lemma, we prove Claim 95, which reduces a degree condition on a
vertex v of A[j] with respect to Gj to a degree condition on the substitute of v with
respect to M [j] and Gj−1.

Observe that, by Definition 90, the sequence sM [j](v), sM [j−1](sM [j](v)), . . . is the
same as p(v, j), p(v, j − 1), . . . because, for any 0 ≤ h ≤ j, the sequence of vertices
sM [h](. . . (sM [j](v)) . . .), . . . , sM [j](v) satisfies Conditions (1) and (2) of Definition 90.
Therefore, continuing the sequence, we obtain the origin ω(v) = p(v, k) (Definition 90).
Furthermore, Pi[0] contains the origins of the vertices of X [i] that are present in A[0].
Therefore, since sM [h](. . . (sM [j](v)) . . .) = p(v, h) for 0 ≤ h ≤ j, Conditions (1) and (2)
of the lemma follow from Claim 95. Later, we will show that, when k > 0, the condition
analogous to Condition (1) automatically holds.

64

Claim 95. For each 1 ≤ j ≤ i, dA[j](v) = dGj
(aj(v)) if and only if dA[j−1](sM [j](v)) =

dGj−1(aj−1(sM [j](v))) and dA[j](v) = dM [j](sM [j](v)) for each v ∈ Pi[j] such that
sM [j](v) ∈ V (A[j − 1]).

Proof of Claim 95. Consider v ∈ Pi[j] such that sM [j](v) ∈ V (A[j − 1]). We know
sM [j](v) ∈ V (M [j]) by Definition 68, which means sM [j](v) ∈ V (M [j]) ∩ V (A[j − 1]).
This further implies mj(sM [j](v)) = aj−1(sM [j](v)) because they both refer to the same
vertex in V (Gj) ∩ V (Gj−1).

We use Lemma 81 to prove either direction of our claim. In Lemma 81, we substitute
G = Gj−1, G′ = Gj, E = Ej−1, (M ; ΛM) = (M [j]; ΛM [j]), (A; ΛA) = (A[j]; ΛA[j]), and
the function g = mj. Then, α(M) = α(M [j]) = (A[j − 1]; ΛA[j−1]) by Definition 82.
Note that the assumption of Lemma 81 holds because (M [j]; ΛM [j]) is list-isomorphic
to a subgraph of Gj with respect to mj. Furthermore, we know sM [j](v) ∈ V (M [j]) ∩
V (A[j − 1]) = V (M) ∩ V (α(M)).

To show the forward direction, we suppose dA[j](v) = dGj
(aj(v)). Since

(M [j]; ΛM [j]) ∈ (Y [j − 1]; ΛY[j−1]) ↔ (A[j]; ΛA[j]), we know by Lemma 71 that A[j]
is isomorphic to an induced subgraph of M [j] with respect to the bijection sM [j], which
implies aj(v) = mj(sM [j](v)). Therefore, since M [j] is isomorphic to a subgraph of Gj,
we obtain dM [j](sM [j](v)) = dGj

(mj(sM [j](v))), which implies dA[j](v) = dM [j](sM [j](v))
since aj(v) = mj(sM [j](v)).

Now, we prove dA[j−1](sM [j](v)) = dGj−1(aj−1(sM [j](v))) using Lemma 81. Since we
know dM [j](sM [j](v)) = dGj

(mj(sM [j](v))), applying Lemma 81 in the forward direction
leads to dA[j−1](sM [j](v)) = dGj−1(mj(sM [j](v))). But we also know mj(sM [j](v)) =
aj−1(sM [j](v)), which means dGj−1(mj(sM [j](v))) = dGj−1(aj−1(sM [j](v))). Therefore, we
obtain dA[j−1](sM [j](v)) = dGj−1(aj−1(sM [j](v))).

To prove the backward direction, suppose dA[j−1](sM [j](v)) = dGj−1(aj−1(sM [j](v)))
and dA[j](v) = dM [j](sM [j](v)). Since we know mj(sM [j](v)) = aj−1(sM [j](v)), our first
supposition can be rewritten as dA[j−1](sM [j](v)) = dGj−1(mj(sM [j](v))). Now, applying
Lemma 81 in the backward direction, we obtain dM [j](sM [j](v)) = dGj

(mj(sM [j](v))).
But since we have also supposed dA[j](v) = dM [j](sM [j](v)), we obtain dA[j](v) =
dGj

(mj(sM [j](v))). Finally, we know aj(v) = mj(sM [j](v)), which implies dA[j](v) =
dGj

(aj(v)).

Now, if ω(x) ∈ Pi[k] for some k > 0, then we show dA[k](ω(z)) = dGk
(ak(ω(z))) = 0.

In other words, we show an origin not present in A[0] must be introduced in the sequence
as an isolated vertex, and so it must satisfy the degree condition with respect to Gk.

Let u = ω(x) ∈ Pi[k] be the origin of x. We know u is the “earliest” proxy of x, and
so x has no proxy in A[k − 1] (Definition 90). In other words, sM [k](u) /∈ V (A[k − 1])
because, otherwise, sM [k](u) would be a proxy of x in A[k − 1]. Since Pi[k] ⊆ V (A[k])

65

by item (2) of Definition 89 and A[k] is isomorphic to an induced subgraph of M [k]
with respect to sM [k] by Lemma 71, it follows that sM [k](u) ∈ V (M [k]). Moreover, by
Definition 82, we know A[k−1] = α(M [k]), which means sM [k](u) /∈ V (α(M [k]) because
we know sM [k](u) /∈ V (A[k − 1]). Therefore, sM [k](u) ∈ V (M [k]) \ V (α(M [k])), which
implies sM [k](u) ∈ V+(Ek−1) by Definition 74. In other words, Gk is obtained by inserting
the vertex mk(sM [k](u)) in Gk−1, which means dM [k](sM [k](u)) = dGk

(mk(sM [k](u))) =
0 by Definition 12. But sM [k](u) is the substitute of u in M [k], and so ak(u) and
mk(sM [k](u)) refer to the same inserted vertex in Gk. Therefore, dA[k](u) = dGk

(ak(u)) =
0.

Recall that by Theorem 66, to solve GEN, we need to determine whether there
exists a provisionally complete LA edit pair sequence 〈Ei〉t0 that fits an input graph G0.
We use Lemmas 93 and 94, and Fact 88 to reduce it to a condition on the origin graph
and G0.

Theorem 96. Let 〈Ei〉t0, where Ei = ((X [i]; ΛX [i]), (Y [i]; ΛY[i])) for 0 ≤ i ≤ t, be a
provisionally complete LA edit pair sequence. Then, 〈Ei〉t0 is complete in a graph G0
if and only if E0 fits G0 and, for each 1 ≤ i ≤ t, there exist an antecedent sequence
Ai = 〈(A[j]; ΛA[j])〉i0 and a merge sequenceMi = 〈(M [j]; ΛM [j])〉i1 such that

1. (A[0]; ΛA[0]) is list-isomorphic to a subgraph of G0 with respect to a bijection f0,

2. (Ω(X [i]); ΛΩ(X [i])) is list-isomorphic to an induced subgraph of G0, and

3. for each x ∈ V−(Ei) ∪Mdeg(Ei), letting ω(x) ∈ Pi[k],

(a) dA[0])(ω(x)) = dG0(f0(ω(x))) if k = 0, and
(b) dA[j](p(x, j)) = dM [j](sM [j](p(x, j))) for each i ≥ j ≥ k.

Proof. First, we show that 〈Ei〉t0 is complete in G0 if and only if 〈Ej〉i0 is complete in G0
for each 0 ≤ i ≤ t.

Suppose 〈Ei〉t0 is complete in G0. Then, there exists a graph sequence 〈Gj〉t+1
0 such

that Gi+1 is a (Gi, Ei)-produced graph and Ei is complete in Gi for each 0 ≤ i ≤ t
(Definition 40). Hence, Ei fits Gi for each 0 ≤ i ≤ t (Definition 26). This implies 〈Ej〉i0
fits G0 and, since Ej fits Gj for each 0 ≤ j ≤ i, 〈Ej〉i0 is complete in G0 for each 0 ≤ i ≤ t
(Definition 40).

For the other direction, if 〈Ej〉i0 is complete in G0 for each 0 ≤ i ≤ t, then obviously
〈Ei〉t0 is complete in G0.

Now, by induction on i, we show that 〈Ej〉i0 is complete in G0 for each 0 ≤ i ≤ t if
and only if Conditions (1), (2), and (3) of the lemma are satisfied.

66

Base case. Since 〈Ei〉t0 is provisionally complete, Ei is provisionally complete for each
0 ≤ i ≤ t (Definition 41), and so E0 is provisionally complete. Hence, E0 is complete if
and only if E0 fits G0 (Definitions 26 and 30). We do not need to argue further for the
base case because the statement that E0 fits G0 is a condition in the theorem.

Induction step. Suppose 〈Ej〉i−1
0 is complete in G0 with respect to a graph sequence

〈Gj〉i0. By Definitions 39 and 40, 〈Ej〉i0 is complete in G0 if and only if Ei fits Gi and
is complete in Gi. But since Ei is provisionally complete, we only need to determine
whether Ei fits Gi (Definition 30). By Definition 16, then, this reduces to determining
whether (X [i]; ΛX [i]) is list-isomorphic to an induced subgraph of Gi and dX [i](x) =
dGi

(fi(x)) for each x ∈ V−(Ei) ∪Mdeg(Ei).
By Fact 88, for any graph sequence 〈Gj〉i0, Ai and Mi are good with respect to

〈Gj〉i0 if and only if (A[0]; ΛA[0]) is list-isomorphic to a subgraph of G0 (Condition
(1)). If there exist such good sequences Ai andMi, then we know by Lemma 93 that
(X [i]; ΛX [i]) is list-isomorphic to an induced subgraph of Gi with respect to a bijection,
say, fi, if and only if (Ω(X [i]); ΛΩ(X [i])) is list-isomorphic to an induced subgraph of G0
(Condition (2)). Finally, for each vertex x ∈ V−(Ei) ∪Mdeg(Ei), x ∈ V (X [i]) because
V−(Ei) ⊆ V (X [i]) (Definition 14) and Mdeg(Ei) ⊆ VR(Ei) = V (X [i])∩V (Y [i]) (Fact 13).
By (1) in Lemma 94, we know dX [i](x) = dGi

(fi(x)) if and only if Conditions (3a) and
(3b).

Hence, Ei fits Gi, and so is complete in Gi, if and only if Conditions (1), (2), and
(3) are satisfied. This means, for each 1 ≤ i ≤ t, 〈Ej〉i0 is complete in G0 if and only if
the three conditions are satisfied.

Thus, 〈Ei〉t0 is complete in G0 if and only if E0 fits G0 and Conditions (1), (2), and
(3) are satisfied for each 1 ≤ i ≤ t.

Theorem 97. Let 〈Ei〉t0, where Ei = ((X [i]; ΛX [i]), (Y [i]; ΛY[i])) for 0 ≤ i ≤ t, be a
provisionally complete LA edit pair sequence. Determining whether 〈Ei〉t0 is complete in
a graph G0 is in FPT when parameterized by ∆(G0) + t.

Proof. To show 〈Ei〉t0 is complete in a graph G0, we need to check whether E0 fits G0 and
the three conditions in Theorem 96 hold for each 1 ≤ i ≤ t. For a given i, we will show
that each condition can be checked in FPT time for the parameter ∆(G0) + t using the
fact that k1

i = |V (X [i])|+∑i−1
p=0 |V (Y [p])| is bounded by a function of ∆(G0) + t (Fact

86).
First, we bound the time for computing all possibilities of antecedent and merge

sequences Ai and Mi. By Fact 85, the number of choices for Ai and Mi is bounded
by a function of i + k1

i , which is a function of ∆(G0) + t since i ≤ t. Now, referring
to Definition 82, (M [j]; ΛM [j]) can be computed in time O(|V (Y [j − 1])|2 + |V (A[j])|2)
(Fact 69) and (A[j − 1]; ΛA[j−1]) can be computed in time O(|V (X [j − 1])|) (Fact 75)

67

for each 1 ≤ j ≤ i. We know |V (A[j])| ≤ kji + 1 < k1
i + 1 by Fact 84 and 〈Ei〉t0 fits

G0 only if |V (X [j − 1])| and |V (Y [j − 1])| are each at most (∆(G0) + t+ 1)2 + 1 (Fact
43), which is a function of ∆(G0) + t. Therefore, (A[j − 1]; ΛA[j−1]) and (M [j]; ΛM [j])
can each be computed in time bounded by a function of ∆(G0) + t. Hence, Ai andMi

can be computed in time bounded by a function of ∆(G0) + t because i ≤ t. Therefore,
since the number of choices for Ai andMi is bounded by a function of ∆(G0) + t, the
time for computing all possibilities of Ai andMi is bounded by a function of ∆(G0)+t.

Observe that if Ai and Mi are given, then the proxy set Pi[j] for each 0 ≤ j ≤ i
can be computed by Definition 89. Given the proxy sets, and the proxy p(x, j) for each
x ∈ V (X [i]) can be computed by Definition 90. Given the proxies, the origin ω(x),
which is the “earliest” proxy, is given for each x ∈ V (X [i]).

To determine whether 〈Ei〉t0 is complete in G0, we try to find a choice of Ai andMi

that satisfies the three conditions in Theorem 96. We show that each condition can be
checked in FPT time when parameterized by ∆(G0) + t.

(1) and (3a) We know |V (A[0])| ≤ k1
i + i + 1 by substituting j = 1 in Fact 84. Since

i ≤ t, this implies there exists a function f such that

|V (A[0])| ≤ f(∆(G0) + t) (7.3.1)

By Lemma 35, checking whether (A[0]; ΛA[0]) is list-isomorphic to a sub-
graph of G0 such that Condition (3a) in Theorem 96 holds is in FPT when
parameterized by ∆(G0) + |V (A[0])|, and so is in FPT when parameterized
by ∆(G0) + t.

(2) Since (Ω(X [i]); ΛΩ(X [i])) is an induced subgraph of A[0] (Definition 92),
|V (Ω(X [i]))| ≤ |V (A[0])|, and so by Equation 7.3.1 |V (Ω(X [i]))| is bounded
by a function of ∆(G0) + t. Hence, by Lemma 35, checking whether
(Ω(X [i]); ΛΩ(X [i])) is list-isomorphic to an induced subgraph of G0 is in FPT
when parameterized by ∆(G0) + |V (Ω(X [i]))|, and so is in FPT when pa-
rameterized by ∆(G0) + t.

(3b) For each x ∈ V−(Ei) ∪ Mdeg(Ei), checking whether dA[j](p(x, j)) =
dM [j](sM [j](p(x, j))) takes time bounded by a function of ∆(G0) + t. This
is because |V (A[j])| is bounded by a function of kj+1

i + 1 ≤ k1
i + 1 and

|V (M [j])| is bounded by a function of kji ≤ k1
i (Fact 84), and we know k1

i is
bounded by a function of ∆(G0) + t. Therefore, the number of neighbours
of a vertex of A[j] or M [j] is bounded by a function of ∆(G0) + t. Hence,
checking (3b) takes time bounded by a function of ∆(G0) + t.

68

Thus, checking the three conditions for a given i takes FPT time when parame-
terized by ∆(G0) + t. Since i ≤ t, checking them for all i also takes FPT time when
parameterized by ∆(G0) + t. Furthermore, since the number of choices for Ai andMi

is bounded by a function of ∆(G0) + t, the total time taken to check the conditions for
all choices of Ai andMi is bounded by a function of ∆(G0) + t.

Finally, notice that we have yet to determine whether E0 is complete in G0. Since
E0 is provisionally complete by Definition 41, we only need to check whether E0 fits
G0. By Lemma 35, determining whether (X [0]; ΛX [0]) is list-isomorphic to an induced
subgraph of G0 with respect to a bijection f such that dX(x) = dG(f(x)) for each
x ∈ V−(E) ∪Mdeg(E) is in FPT when parameterized by ∆(G0) + |V (X [0])|, or, when
parameterized by ∆(G0) + t since |V (X [0])| is bounded by O((∆(G0) + t)2).

69

Chapter 8

FPT Algorithms for GEN and
CGEN

8.1 FPT algorithm for GEN
To decide a GEN instance (G0, T , `), recall that we need to determine whether there

exists an LA edit pair sequence of length at most ` that is complete in G0 and produces
a graph with NDL T (see page 31 for the problem statement). Given a provisionally
complete LA edit pair sequence of length t, we can check whether it is complete in
G0 (Theorem 96) and determine the NDL of the graph produced. But first, to decide
(G0, T , `) in FPT time for the parameter ∆(G0)+`, we must show that the search space
of LA edit pair sequences of length at most ` is bounded by a function of ∆(G0) + `.

8.1.1 Bounding the search space
We know an LA edit pair sequence 〈Ei〉t0 fits G0 only if |V (X [i])| and |V (Y [i])| are

at most (∆(G0) + t + 1)2 + 1 for each 0 ≤ i ≤ t (Fact 43). Hence, we limit the search
space to LA edit pair sequences that satisfy this condition.

For a given t ≤ `, we compute the number of list-attributed graphs on at most n
vertices, where n = ∆(G0 + t+ 1)2 + 1.

First, we bound the number of list-attributions possible for such a graph, i.e., the
number of possibilities for ΛX [i] and ΛY[i]. Suppose 〈Ei〉t0 fits G0 with respect to a graph
sequence 〈Gj〉t+1

0 . Since ∆(Gi+1) ≤ ∆(Gi) + 1 by Fact 22, ∆(Gi+1) ≤ ∆(G0) + t for
each 0 ≤ i ≤ t. Now, since (X [i]; ΛX [i]) is list-isomorphic to an induced subgraph of Gi

(Definition 16) and (Y [i]; ΛY[i]) is list-isomorphic to an induced subgraph of Gi+1 (Fact
29), |ΛX [i](x)| ≤ ∆(Gi) ≤ ∆(G0) + t for each x ∈ V (X [i]) and |ΛY[i](y)| ≤ ∆(Gi+1) ≤

70

∆(G0) + t for each y ∈ V (Y [i]). Therefore, the number of possibilities for ΛX [i](x) and
ΛY[i](y) is bounded by (∆(G0) + t)(∆(G0)+t), which is a function of ∆(G0) + t. Since
there are at most (∆(G0) + t + 1)2 + 1 vertices of X [i] and Y [i], the total number of
possibilities for each ΛX [i] and ΛY[i] is bounded by a function of ∆(G0) + t.

Next, for each 0 ≤ m ≤ n, there are 2(m
2) ≤ 2(n

2) graphs on m vertices. For
each such graph, we have shown above that the number of list-attributions is bounded
by a function of ∆(G0) + t. Thus, the total number of LA graphs on at most n =
∆(G0 + t+ 1)2 + 1 vertices is bounded by a function of ∆(G0) + t.

This implies the number of possibilities for Ei = ((X [i]; ΛX [i]), (Y [i]; ΛY[i])) is
bounded by a function of ∆(G0) + t, and so the number of possible LA edit pair
sequences is also bounded by a function of ∆(G0) + t. Hence, the total number of LA
edit pair sequences of length at most ` in the search space is bounded by a function of
∆(G0) + `.

8.1.2 Solve-GEN procedure
In Solve-GEN, we iterate over all LA edit pair sequences in the search space. We

output yes if we find a sequence that is provisionally complete (Line 5), produces a
graph with NDL T (Line 10), and is complete in G0 (Line 12), and no otherwise. The
sequence of Young tableaux N stores the NDLs of the graphs in the graph sequence
produced by an LA edit pair sequence.

Algorithm 3 Solve Graph-Edit-to-NDL
1: procedure Solve-GEN(G0,T ,`)
2: for each 〈Ei〉t0 in the search space do
3: Declare sequence of Young tableaux N of length t
4: for i = 0 to t do
5: if Check-Provisional-Completeness(Ei)=no then
6: return no
7: N [0] = NDL(G0)
8: for i = 0 to t do
9: N [i+ 1] =Compute-NDL(N [i],Ei)

10: if N [t+ 1] 6= T then
11: return no
12: if E is complete in G0 then
13: return yes
14: return no

71

Theorem 98. Solve-GEN correctly decides a GEN instance (G0, T , `) in FPT time
when parameterized by ∆(G0) + `.

Proof. First, we show Solve-GEN correctly decides a GEN instance (G0, T , `). Given an
LA edit pair sequence 〈Ei〉t0 in the search space, Check-Provisional-Completeness
(on Line 5) correctly determines the provisional completeness of Ei for each 0 ≤ i ≤ t
(Lemma 61), and so the provisional completeness of 〈Ei〉t0 (Definition 41). Next, given
the NDL of a (G0, 〈Ei〉n0)-produced graph, we know Compute-NDL computes the NDL
of a (G0, 〈Ei〉n+1

0)-produced graph (Lemma 55), and so the for-loop on Line 8 computes
the NDL of a (G0, 〈Ei〉n+1

0)-produced graph for each 0 ≤ n ≤ t − 1. We check on Line
10 whether the NDL of a (G0, 〈Ei〉t0)-produced graph equals T . Finally, we output yes
if and only if 〈Ei〉t0 is complete in G0, which can be determined by Theorem 97 because
〈Ei〉t0 is provisionally complete. By Theorem 66, then, Solve-GEN correctly decides
(G0, T , `).

To show a bound on the running time, we note that the number of LA edit pair
sequences in the search space is bounded by a function of ∆(G0) + `.

For each candidate LA edit pair sequence 〈Ei〉t0, since t ≤ `, the for loop on
Line 4 that checks whether 〈Ei〉t0 is provisionally complete has t + 1 ≤ ` + 1 it-
erations. By Lemma 63, each iteration takes O(|V (X [i])|2) time, where Ei =
((X [i]; ΛX [i]), (Y [i]; ΛY[i])). Since we know |V (X [i])| ≤ (∆(G0) + t + 1)2 + 1 for each
0 ≤ i ≤ t (Fact 43), the for loop takes O(t · (∆(G0) + t)4) time, which is a function of
∆(G0) + t, and hence a function of ∆(G0) + `.

Next, the for loop on Line 8 that computes the NDL of a (G0, 〈Ei〉t0)-produced graph
has t+ 1 ≤ `+ 1 iterations, and the ith iteration takes time polynomial in |V (Gi)| for
each 0 ≤ i ≤ t (Lemma 56). We know |V (Gi)| ≤ |V (G0)| + t since at most t vertices
are inserted by an LA edit pair sequence of length t. Hence, the for loop takes time
polynomial in t · (|V (G0)|+ t).

Finally, checking whether 〈Ei〉t0 is complete in G0 takes FPT time when parame-
terized by ∆(G0) + t (Theorem 97), and so takes FPT time when parameterized by
∆(G0) + `.

Therefore, the total running time is bounded by f(∆(G0) + `) · |V (G0)|O(1) for some
function f .

8.2 FPT algorithm for CGEN
We adapt Solve-GEN to decide a CGEN instance (G0, π, T , `) in FPT time when

parameterized by ∆(G0) + `. If 〈Ei〉t0 is a solution to a GEN instance (G0, T , `), then
〈Ei〉t0 is a solution to the CGEN instance (G0, π, T , `) if and only if the NDL of a

72

(G0, 〈Ei〉n0)-produced graph satisfies π for each 0 ≤ n ≤ t (see page 31 for the definition
of CGEN). Moreover, for any solution 〈Ei〉t0 to (G0, π, T , `), 〈Ei〉t0 is a solution to the
GEN instance (G0, T , `). Therefore, the search space of LA edit pair sequences for
(G0, π, T , `) is the same as that for (G0, T , `).

Theorem 99. A CGEN instance (G0, π, T , `) can be decided in FPT time when pa-
rameterized by ∆(G0) + `.

Proof. Note that, given an LA edit pair sequence 〈Ei〉t0 in the search space, Solve-
GEN computes the NDL of a (G0, 〈Ej〉i0)-produced graph for each 0 ≤ i ≤ t (Line 9),
which is stored in N [i]. Therefore, to check whether an LA edit pair sequence 〈Ei〉t0 is a
solution to (G0, π, T , `), we only need to check whether N [i] satisfies the NDL-property
π for each 0 ≤ i ≤ t.

Now, the definition of CGEN states that π is verifiable in polynomial time, i.e., in
time polynomial in |N [i]|. If 〈Gj〉t+1

0 is the graph sequence produced by 〈Ei〉t0, we know
|N [i]| ≤ (|V (Gi)|)2 because the NDS of each vertex of Gi has at most |V (Gi)| elements
and there are |V (Gi)| such vertices. We also know that |V (Gi)| ≤ |V (G0)|+ t because
at most t vertices are inserted by an LA edit pair sequence of length t. Therefore,
we can verify whether every NDL in the sequence N satisfies π in time polynomial in
|V (G0)|+ t, or, polynomial in |V (G0)|+ ` since t ≤ `.

Thus, (G0, π, T , `) can be decided in FPT time when parameterized by ∆(G0) +
`.

8.3 Implications
Consider a variant of GEN where we do not specify the NDL of the final graph in

the sequence Gt+1, but only a property π that it needs to satisfy. By Theorem 99, this
variant of GEN is in FPT when parameterized by ∆(G0) + ` because we can replace
the condition NDL(Gt+1) = T in GEN with the condition that NDL(Gt+1) satisfies π.

This implies, for any graph property ψ which can be expressed as a Young property
π of NDLs that is verifiable in polynomial time, the following problem is in FPT when
parameterized by ∆(G0) + `.

Instance: A triple (G0, ψ, `), where G0 is a graph, ψ is a graph property which can be
expressed as a Young property of NDLs, and ` is an integer.

Question: Is there an edit pair sequence 〈(X [i],Y [i])〉t0, where t ≤ `, such that the
graph Gt+1 = geditt(G0, 〈(X [i],Y [i])〉t0) satisfies ψ?

73

Recall that k-neighbourhood degree anonymity (Example 5), assortativity (Example
6), and average nearest neighbours degree (Example 7) are such graph properties.

74

Chapter 9

Conclusion

We have given an algorithm to show that the problems Graph-Edit-to-NDL and
Constrained-Graph-Edit-to-NDL are in FPT when parameterized by ∆(G0) + `,
where G0 is the input graph and ` is the bound on the number of graph edits. We
have also shown these problems are NP-complete. Moreover, our results imply, for any
graph property that can be determined by the NDL alone, editing to a graph with the
property is in FPT for the parameter ∆(G0) + `.

For the combined parameter ∆(G0)+`, our FPT solution is a stronger result than the
FPT solution for editing to a graph with a given degree sequence [22] because the NDL
is a stronger graph invariant than the degree sequence. However, to exploit this greater
strength, we need to study in more detail the graph properties that can be expressed
as properties of NDLs but not as properties of degree sequences. We have mentioned
three such properties in this work − k-neighbourhood degree anonymity, assortativity,
and average nearest neighbours degree. But the notion of NDL was introduced only
recently [4], and the relationship between graph properties and properties of NDLs has
not been studied.

Regarding the choice of our combined parameter, notice that we have not shown
GEN is W-hard for ∆(G0) or `. However, we believe GEN is not in FPT when param-
eterized by ` since editing to a graph with a given degree sequence is W[1]-hard when
parameterized by ` [22]. The complexity of GEN when parameterized by ∆(G0) is a
question for future study.

Finally, we believe the idea of determining whether a candidate sequence of graph
edits is a solution by checking whether a certain graph is a subgraph of G0 can be
applied to various other graph editing problems. The only other problem we know
where this idea is applied is graph editing to a k-degree anonymous graph [5]. We
believe it can be applied to any editing problem where we do not need to compute the

75

intermediate graphs produced by a candidate sequence of graph edits to check whether
they satisfy a certain graph property.

76

Notation

Antecedent (Def. 74 on page 53)

Antecedent sequence (Def. 82 on page 59)

Assortativity (Example 6 on page 14)

Average nearest neighbours degree (Example 7 on page 14)

CGEN The problem Constrained-Graph-Edit-to-
NDL. (Page 31)

Complete (LA edit pair sequence) (Def. 40 on page 30)

Complete (LA edit pair) (Def. 26 on page 25)

Degree anonymity (Example 4 on page 13)

Edit pair (Def. 8 on page 15)

Fits (edit pair sequence) (Def. 38 on page 30)

Fits (edit pair) (Def. 9 on page 15)

Fits (LA edit pair sequence) (Def. 39 on page 30)

Fits (LA edit pair) (Def. 16 on page 19)

GEN The problem Graph-Edit-to-NDL. (Page 31)

Good Property of an antecedent sequence or merge se-
quence with respect to a graph sequence. (Def. 83
on page 59

LA edit pair (Def. 12 on page 17)

77

List isomorphism (Def. 15 on page 19)

List-attributed (LA) graph (Def. 11 on page 17)

Merge graph (Def. 67 on page 49)

Merge sequence (Def. 82 on page 59)

Neighbourhood degree anonymity (Example 5 on page 13)

Provisionally complete (LA edit pair sequence) (Def. 41 on page 30)

Provisionally complete (LA edit pair) (Def. 30 on page 27)

Substitute (Def. 68 on page 50)

Substitute set (Def. 68 on page 50)

Young property Property defined on Young tableaux. (Page 12)

Young tableau (Page 12)

Greek Symbols

α(M) The antecedent of an LA merge graph (M ; ΛM).
(Def. 74 on page 53)

Ω(X [n]) The origin graph of X [n]. (Def. 92 on page 63

ω(xi) The origin of a vertex xi ∈ V (Xi). (Def. 90 on page
62)

σM(C) The substitute set of the vertex set C in (M ; ΛM .
(Def. 68 on page 50)

ϕ′L Formula specifying list-isomorphism with a sub-
graph. (Def. 32 on page 28)

ϕL Formula specifying list-isomorphism with an induced
subgraph. (Def. 32 on page 28)

Mathematical Symbols

(A; Λ) ' H (A; Λ) is list-isomorphic to H. (Def. 15 on page 19)

78

(A; ΛA)↔ (B; ΛB) The family of merge graphs obtained by merging
(A; ΛA) and (B; ΛB) (Page 49)

(G, E)-produced graph (Def. 21 on page 21)

(G, E , H, f) NDL-tuple. (Def. 16 on page 19)

(G; Λ) A list-attributed graph. (Def. 11 on page 17)

(G0, 〈Ei〉t0)-produced graph A graph produced by a sequence of NDL graph edits
performed in G0. (Def. 39 on page 30)

〈(X [i],Y [i])〉t0 Edit pair sequence. (Def. 36 on page 30)

〈Ei〉t0 LA edit pair sequence. (Def. 37 on page 30)

Ai Antecedent sequence. (Def. 82 on page 59)

E LA edit pair. (Def. 12 on page 17)

L 	 a List contraction: remove a from the nonincreasing
list L. (Page 12)

L ⊕ a List extension: add a to the nonincreasing list L.
(Page 12)

Mi Merge sequence. (Def. 82 on page 59)

Pi The sequence of proxy sets of X [i]. (Def. 89 on page
62)

ER(E) Set of retained edges. (Page 17)

G-realized merge graph A merge graph which is list-isomorphic to a subgraph
of G. (Lemma 72 on page 52)

Mdeg(E) Set of degree-modified vertices. (Page 17)

Mlist(E) Set of list-modified vertices. (Page 17)

p(x, j) The proxy of x ∈ V (Xi) in Pi[j]. (Def. 90 on page
62)

79

SA, SB Vertex sets of subgraphs involved in merging. (Def.
67 on page 49)

sM(b) The substitute of the vertex b in (M ; ΛM). (Def. 68
on page 50)

V+(E), V−(E), E+(E), and E−(E) (Def. 14 on page 18)

V+(Φ), V−(Φ), E+(Φ), and E−(Φ) (Def. 17 on page 19)

VR(E) Set of retained vertices. (Page 17)

Origin (Def. 90 on page 62)

Origin graph (Def. 92 on page 63)

Proxy (Def. 90 on page 62)

Abbreviations

gedit The graph edit operation. (Def. 9 on page 15)

ndledit The NDL graph edit operation. (Def. 18 on page 20)

NDL(G) Neighbourhood degree list of G. (Def. 3 on page 13)

NDS(G, v) NDS of the vertex v in G. (Def. 2 on page 13)

80

References

[1] Achuthan, Nirmala. “Characterization of potentially connected integer-pair se-
quences.” Combinatorics and Graph Theory. pp. 153-164. Springer Berlin Heidel-
berg (1981)

[2] Aho, Alfred V., Hopcroft, John E., and Ullman, Jeffrey D. The design and analysis
of computer algorithms, 1974. Reading: Addison-Wesley, pp. 207–209 (1987)

[3] Asano, Takao, and Hirata, Tomio. “Edge-deletion and edge-contraction problems.”
Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing.
pp. 245-254. ACM (1982)

[4] Barrus, Michael D., and Donovan, Elizabeth. “Neighborhood degree lists of
graphs.” arXiv preprint arXiv:1507.08212 (2015).

[5] Bazgan, Cristina, and Nichterlein, André. “Parameterized inapproximability of de-
gree anonymization.” International Symposium on Parameterized and Exact Com-
putation. pp. 75-84. Springer International Publishing (2014)

[6] Bodlaender, Hans L., Tan, Richard B., and van Leeuwen, Jan. “Finding a ∆-
regular supergraph of minimum order.” Discrete applied mathematics 131.1: 3-9.
(2003)

[7] Bose, Prosenjit, and Hurtado, Ferran. “Flips in planar graphs.” Computational
Geometry 42.1: 60-80. (2009)

[8] Choudum, S. A. “A simple proof of the Erdos-Gallai theorem on graph sequences.”
Bulletin of the Australian Mathematical Society 33.01: 67-70. (1986)

[9] Casas-Roma, Jordi, Herrera-Joancomartí, Jordi, and Torra, Vicenç. “A summary
of k-degree anonymous methods for privacy-preserving on networks.” Advanced
Research in Data Privacy. pp. 231-250. Springer International Publishing (2015)

81

[10] Dabrowski, Konrad K., et al. “Editing to a planar graph of given degrees.” Interna-
tional Computer Science Symposium in Russia. pp. 143-156. Springer International
Publishing (2015)

[11] Das, Prabir. “Characterization of unigraphic and unidigraphic integer-pair se-
quences.” Discrete Mathematics 37.1: 51-66. (1981)

[12] Diestel, Reinhard. “Graph theory. 2005.” Grad. Texts in Math 101 (2005).

[13] Downey, Rodney G., and Fellows, Michael R.. Fundamentals of parameterized
complexity. Vol. 4. London: Springer (2013)

[14] Eppstein, David. “Diameter and treewidth in minor-closed graph families.” Algo-
rithmica 27.3-4: 275-291. (2000)

[15] Ferrara, Michael. “Some problems on graphic sequences.” Graph Theory Notes of
New York 64: 19-25. (2013)

[16] Frick, Markus, and Grohe, Martin. “Deciding first-order properties of locally tree-
decomposable structures.” Journal of the ACM (JACM) 48.6: 1184-1206. (2001)

[17] Froese, Vincent, Nichterlein, André, and Niedermeier, Rolf. “Win-win kernelization
for degree sequence completion problems.” Scandinavian Workshop on Algorithm
Theory. pp. 194-205. Springer International Publishing (2014)

[18] Gale, David. “A theorem on flows in networks.” Pacific J. Math 7.2: 1073-1082.
(1957)

[19] Garey, Michael R., Johnson, David S., and Stockmeyer, Larry. “Some simplified
NP-complete problems.” Proceedings of the Sixth Annual ACM Symposium on
Theory of Computing. pp. 47-63. ACM, (1974)

[20] Gary, Michael R., and Johnson, David S. “Computers and Intractability: A Guide
to the Theory of NP-completeness.” (1979)

[21] Goldberg, Paul W., et al. “Four strikes against physical mapping of DNA.” Journal
of Computational Biology 2.1: 139-152. (1995)

[22] Golovach, Petr A., and Mertzios, George B. “Graph Editing to a Given Degree
Sequence.” International Computer Science Symposium in Russia. pp. 177-191.
Springer International Publishing (2016)

82

[23] Golumbic, Martin Charles, Kaplan, Haim, and Shamir, Ron. “Graph sandwich
problems.” Journal of Algorithms 19.3: 449-473. (1995)

[24] Hakimi, S. Louis. “On realizability of a set of integers as degrees of the vertices of
a linear graph. I.” Journal of the Society for Industrial and Applied Mathematics
10.3: 496-506. (1962)

[25] Hammer, P. L., Ibaraki, T., and Simeone, B. “Threshold sequences.” SIAM Journal
on Algebraic Discrete Methods 2.1: 39-49. (1981)

[26] Harary, Frank. “A survey of the reconstruction conjecture.” Graphs and Combina-
torics. pp. 18-28. Springer Berlin Heidelberg (1974)

[27] Havel, Václav. “A remark on the existence of finite graphs.” Casopis Pest. Mat
80.477-480: 1253. (1955)

[28] Heggernes, Pinar, et al. “A parameterized algorithm for chordal sandwich.” Inter-
national Conference on Algorithms and Complexity. pp. 120-130. Springer Berlin
Heidelberg (2010)

[29] van den Heuvel, Jan. “The complexity of change.” Surveys in Combinatorics 409:
127-160. (2013)

[30] Hüffner, Falk, et al. “Fixed-parameter algorithms for cluster vertex deletion.” The-
ory of Computing Systems 47.1: 196-217. (2010)

[31] Ito, Takehiro, et al. “On the complexity of reconfiguration problems.”Theoretical
Computer Science 412.12: 1054-1065. (2011)

[32] Karp, Richard M. “Reducibility among combinatorial problems.” Complexity of
Computer Computations. Springer US: 85-103. (1972)

[33] Kelly, Paul J. “A congruence theorem for trees.” Pacific J. Math 7.1: 961-968.
(1957)

[34] Kamiński, Marcin, Medvedev, Paul, and Milanič, Martin. “Complexity of inde-
pendent set reconfigurability problems.” Theoretical computer science 439: 9-15.
(2012)

[35] Lewis, John M., and Yannakakis, Mihalis. “The node-deletion problem for hered-
itary properties is NP-complete.” Journal of Computer and System Sciences 20.2:
219-230. (1980)

83

[36] Li, Shuo-Yen R. “Graphic sequences with unique realization.” Journal of Combi-
natorial Theory, Series B 19.1: 42-68. (1975)

[37] Liu, Kun, and Terzi, Evimaria . “Towards identity anonymization on graphs.”
Proceedings of the 2008 ACM SIGMOD International Conference on Management
of Data. pp. 93-106. ACM (2008)

[38] Margot, Francois. “Some complexity results about threshold graphs.” Discrete ap-
plied mathematics 49.1-3: 299-308. (1994)

[39] Mathieson, Luke, and Szeider, Stefan . “Editing graphs to satisfy degree con-
straints: A parameterized approach.” Journal of Computer and System Sciences
78.1: 179-191. (2012)

[40] Moser, Hannes, and Thilikos, Dimitrios M. “Parameterized complexity of finding
regular induced subgraphs.” Journal of Discrete Algorithms 7.2: 181-190. (2009)

[41] Mouawad, Amer E., Nishimura, Naomi, and Raman, Venkatesh. “Vertex cover
reconfiguration and beyond.” International Symposium on Algorithms and Com-
putation. pp. 452-463. Springer International Publishing. (2014)

[42] Natanzon, Assaf. Complexity and approximation of some graph modification prob-
lems. Diss. Tel Aviv University. (1999)

[43] Newman, Mark EJ. “Assortative mixing in networks.” Physical Review Letters
89.20: 208701. (2002)

[44] Noldus, Rogier, and Van Mieghem, Piet. “Assortativity in complex networks.”
Journal of Complex Networks: cnv005. (2015)

[45] Pastor-Satorras, Romualdo, Vázquez, Alexei, and Vespignani, Alessandro. “Dy-
namical and correlation properties of the Internet.” Physical Review Letters 87.25:
258701. (2001)

[46] Patrinos, A. N., and Hakimi, S. L. “Relations between graphs and integer-pair
sequences.” Discrete Mathematics 15.4: 347-358. (1976)

[47] Plesník, Ján. “A note on the complexity of finding regular subgraphs.” Discrete
mathematics 49.2: 161-167. (1984)

[48] Ryser, H. J. “Combinatorial properties of matrices of zeros and ones.” Classic
Papers in Combinatorics. pp. 269-275. Birkhäuser Boston (2009)

84

[49] Senior, James K. “Unimerism.” The Journal of Chemical Physics 19.7: 865-873.
(1951)

[50] Stewart, Iain A. “Finding regular subgraphs in both arbitrary and planar graphs.”
Discrete Applied Mathematics 68.3: 223-235. (1996)

[51] Tamassia, Roberto, Di Battista, Giuseppe, and Batini, Carlo. “Automatic graph
drawing and readability of diagrams.” IEEE Transactions on Systems, Man, and
Cybernetics 18.1: 61-79. (1988)

[52] Ulam, Stanislaw M. A collection of mathematical problems. Vol. 8. Interscience
Publishers, 1960.

[53] Watanabe, Toshimasa, Ae, Tadashi, and Nakamura, Akira. “On the NP-hardness
of edge-deletion and-contraction problems.” Discrete Applied Mathematics 6.1: 63-
78. (1983)

[54] Wu, Wentao, et al. “K-symmetry model for identity anonymization in social net-
works.” Proceedings of the 13th International Conference on Extending Database
Technology. pp. 111-122. ACM (2010)

[55] Young, Alfred. “On quantitative substitutional analysis.” Proceedings of the Lon-
don Mathematical Society 2.1. pp. 196-230. (1932)

[56] Zhou, Bin, and Pei, Jian. “Preserving privacy in social networks against neighbor-
hood attacks.” 2008 IEEE 24th International Conference on Data Engineering. pp.
506-515. IEEE (2008)

85

	Abstract
	Acknowledgements
	Introduction
	Parameterized complexity
	Our contributions
	Our method
	Organization

	Literature Survey
	Graph editing
	Degree-based graph invariants
	Editing to a graph specified by a degree-based graph invariant
	Reconfiguration problems

	Basic Definitions
	Graph definitions
	List definitions
	Data structure
	Neighbourhood Degree List
	Graph properties expressed as Young properties of NDLs

	Graph edit
	NDL graph edit
	List-attributed edit pair
	NDL graph edit
	Complete LA edit pairs

	Time complexity of checking list-isomorphism and degree conditions
	Sequences of edit pairs and LA edit pairs
	Problem statement

	Complexity Results
	Preliminary Results
	Restatement of GEN and CGEN in terms of NDL graph edit
	NDL of (G,E)-produced graphs

	Provisional Completeness of an LA Edit Pair Sequence
	Check-Provisional-Completeness procedure

	Determining the completeness of an LA edit pair sequence in a graph
	Merging LA graphs
	Antecedent of a merge graph
	Origin graph
	Antecedent and merge sequences
	Origin graph

	FPT Algorithms for GEN and CGEN
	FPT algorithm for GEN
	Bounding the search space
	Solve-GEN procedure

	FPT algorithm for CGEN
	Implications

	Conclusion
	Notation
	References

