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Abstract 

In certain situations the punching strength of a connection may become inadequate after 

construction due to changes of connection geometry from drilling or coring, or from changes of 

building use, or construction and design errors. The use of shear reinforcement in the form of Shear 

Bolts is a new approach to strengthening slab-column connections. 

Reported in this thesis are the results of research on the use of shear bolts for reinforced concrete 

interior slab-column connections without unbalanced moments. Six slab specimens were tested with 

different configurations of shear bolts and without shear reinforcement to verify the effectiveness of 

this method of reinforcement. 

The central idea is an externally applied shear reinforcing technique that provides strength in shear 

at par with other conventional reinforcement types on the one hand and offering the distinct 

advantage and flexibility of external application after construction. A shear bolt consists of an 

unhardened steel shaft threaded at one end and flared out to form a bearing/anchor surface on the 

other end. 

All six specimens were designed to fail in shear before reaching their flexural capacity, two of 

which were more critical than the others because of the presence of openings simulating utility 

ducts around the column perimeter. 

From the tests, comparisons of predicted loads with the failure loads indicated a higher ultimate 

load for slab reinforced with the bolt system. Similarly, strain measurements from strain gauges 

attached to the longitudinal steel and deflection profiles of the slab showed that the new method was 

efficient in increasing the shear capacity of the slabs. In summary, the test program showed that 

shear bolts are effective in transforming the behaviour of the slab-column connections from a brittle 

punching shear failure mode to a more ductile flexural one. Deflection profiles at different load 

stages, and particularly at failure, show increased deflections for specimens reinforced with bolt 

reinforcements. This indicates an increased ductility at the connection. Similarly, load and flexural 

reinforcement strain magnitudes show substantial improvements in the strength of the connections. 
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Chapter 1 

Introduction 

1.1 Background 

Reinforced concrete slabs are relatively thin and flat structural members that function to transfer 

loads applied perpendicular to their plane. Slabs have a variety of applications in building 

construction. Primarily they serve as floors and roofs in buildings but are also used as walls, 

foundation mats, and bridge decks, where they transmit uniformly distributed load components 

parallel to their plane or relatively heavy concentrated loading. 

Reinforced concrete floor slabs are constructed in a variety of ways: in-situ, precast or composite. 

These may also take a number of different structural forms including: solid, ribbed or waffle and 

may be reinforced or prestressed. In building construction, slabs are typically supported on beams 

or girders, which in turn frame into columns or walls. In Canada, slabs supported directly on 

columns without beams are called flat slabs. The first true North American flat slab was constructed 

in 1906 by C.A.P. Turner in Minneapolis (McGregor, 2000). Flat plates are flat slabs without drop 

panels and column capitals. Flat slabs are usually used rather than flat plates for loads in excess of 

4.8 kPa and for spans of 6 m to 9 m (McGregor, 2000). A flat plate floor is shown in Figure 1.1. 

Figure 1-1: Flat Plate 

Flat plate construction is very popular mainly because of economy reasons. They are used for 

multistory building construction because of such advantages as: flat ceilings, simplified formwork, 

reduced story height and unobstructed lightening. However, with flat plate construction there's 

I 



Chapter I: Introduction 2 

always the problem of high stresses at the column supports that can result in a so-called punching 

shear failure. 

1.2 Punching Shear 

Punching shear is a significant failure mode that must be accounted for in the design of slabs. It is 

critical because it happens without warning. Punching shear ( or two-way shear) involves movement 

of a truncated cone or pyramid-shaped surface around a column as shown in Figure 1.2. 

Figure 1-2: Punching Shear Failure Surface 

1.3 Openings Around Columns 

Holes and ducts around columns in slabs are undesirable structurally because they cause an 

effective reduction in the critical perimeter for punching shear. In some situations however, these 

cannot be avoided for functionality reasons. Therefore, codes of practice have recommended ways 

to take into account the strength reduction at slab-column connections due to such openings. 

Typically the codes recommend projecting the dimensions of the openings on the critical perimeter. 

Reagan (1974) has pointed out that the design standards have not accounted for unsymmetrical 

arrangement of openings. When openings are unsymmetrical in an interior connection eccentricity 

of loading is introduced at the critical perimeter. 
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1.4 Conventional Slab-Column Tests 

Two different types of set-ups have been adopted in tests studying the behavior of slab-column 

connections. These are isolated slab-column connections and slab-column subsystems. 

Isolated slab-column connections consist of a column stub integrally cast with an area of 

surrounding slab. The dimensions of the surrounding slab are chosen to represent the span of the 

lines of contraflexure or zero moment in a continuous slab system. In isolated tests, the slab is either 

supported along its boundary and load applied through the column or the column is supported and 

the load applied transversely at some distance from the column (FIB, 2001). 

Slab-column subsystem tests are not very popular due to their cost. They would usually consist of 

more than one column stub or columns integrally cast with an area of surrounding slab whose 

boundaries represent lines of contraflexure. 

1.5 Objectives 

Bent-up bars, stirrups (closed and U-shaped), shearheads and shear studs are some of the acceptable 

methods for reinforcing new slabs against punching shear failure. Dilger et al (1981) identified the 

requirements for ideal punching shear reinforcement as follows: good anchorage at top and bottom 

of shear reinforcement, minimal interference with placing flexural reinforcement, ease of 

installation in thin slabs, no significant anchor plate projection above slab surface and economy of 

use. When additional strength is needed after construction due to design errors or drilling of 

openings for local services a need arises for a method of retrofit reinforcing that will provide the 

additional punching shear resistance. 

The main objective of this program was to determine the effectiveness of a new type of 

reinforcement, called shear bolt, in strengthening interior slab-column connections against punching 

shear failure. 

In addition, the effectiveness of shear bolt reinforcement in strengthening slabs with openings 

around the column was also studied. 
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1.6 Scope of Research 

The present study was an experimental investigation of interior slab-colunm connections. A study 

on the use of shear bolts in strengthening edge slab colunm connection was previously carried out 

by El-Salakawy et al (2003). 

Six isolated slab-colunm specimens representing interior slab-colunm connections were 

constructed. The specimens had varying amounts of punching shear reinforcement and were with or 

without openings. Loading, displacement and strain data were collected during testing. The data 

was compared to predictions from codes of practice and other analytical methods. 

1.7 Contents of Thesis 

This thesis is divided into six chapters and three appendices. 

Chapter 1 is the introduction and contains a background, objectives and scope of the research 

program. 

Chapter 2 provides further background information and a review of past research in literature on 

punching shear. 

Chapter 3 is a detailed description of the test program designed to study the effects of shear bolts. 

Chapter 4 summarizes the design process. The stipulations of design specifications are 

investigated. The yield line method is presented as well as other methods used. 

Chapter 5 contains details of the experimental procedures and observations. Crack patterns, strain 

history and maximum deflections are discussed. 

Chapter 6 reviews the results and data from the test in light of codes of practice and other 

analytical methods. 

i 

J 
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Chapter 7 contains the conclusions drawn from this study and recommendations are provided for 

further research. 

Presented in the appendices is a print out of the elastic frame analysis and graphs showing the data 

collected during testing for all slabs. 

I 
I I 
11 

11 
11 



Chapter2 

Review of Literature 

2.1 Punching Shear Models 

2.1.1 Rotational Models 

2.1.1.1 Kinnunen and Nylander 

Kinnunen and Nylander (1960) published the first mathematical model for punching shear. Their 

model esseQtially considered a circular polar-symmetric slab supported by a centralized column and 

loaded externally with a uniformly distributed load on the slab area. The derivation was based on 

experimental testing on 61 slabs not reinforced transversely. The model consists of rigid sectors 

outside the punching cone of a typical punching shear failure. The boundaries of the sectors consist 

of two radial crack planes and an inclined crack surface. Further, the sectors are supported by a 

triaxially compressed truncated conical shell extending from the column to the root of the inclined 

shear crack surface. 

Failure criteria were defined as a limitation on either the inclined radial compressive stress or the 

tangential compressive strain at the shear crack. Kinnunen and Nylander derived Equation 2.1 and 

2.2 to predict the ultimate load of a non-shear-reinforced slab by iteration of the ratio of the 

concrete compression zone kx such that Vu,, and Vu,, are equal.. 

where, 

I 
2kx +--

v., = K=d 2kx-~TJ-cr,uf(a) ••. , k 

vu, 

f(a) = 

I+.....£ 
T] 

tana(I-tana) 

I+tan 2 a 

6 

(2.1) 

(2.2) 
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k, = concrete compression zone 

T/ = column size to depth ratio 

d = effective depth 

a = inclination of conical shell 

O'cu = ultimate concrete stress 

8 = [slab 

d 

ru = radius of conical shell 

r1 = radius of yielded circular area inside conical shell 

2.1.1.2 Shehata 

7 

Shehata and Regan (1989) modified the Kinnunen/Nylander model. He described the punching 

region of a slab as made up of rigid radial segments with a fulcrum at the level of the neutral axis on 

the column face. Shehata identified external and internal forces acting on a radial segment of the 

slab as follows: the external applied load P (Ll<l>/21t) at radius r = rp; the radial component of the 

resultant ring tension forces F,..11<1> due to slab deformation; the radial component of the resultant 

ring compression forces F,..11<1> due to slab deformation; the inclined bearing force dF" at the 

column face acting on the axis of symmetry of the prismatoid frontal part of the segment; the radial 

net force dF,.; and the dowel force dD on the steel cutting across the inclined crack (Figure 2-1). 

Failure criteria were defined by a limitation on the ability of the frontal part of the radial segment to 

support the force at the column face. There were three possible cases as follows: if the angle a of 

the compressive force reaches 20°, there are principal tensile stresses in the compressed front part 

and failure occurs by concrete splitting; if the average radial strain on the compressed face reaches a 

value of 0.0035 in the plastic length starting from the column face, there is a radial crushing of the 

concrete; or if the tangential strain of the compressed face reaches 0.0035 at a distance x from the 

column face, there is a tangential crushing of the concrete. 

The ultimate punching resistance can be obtained by satisfying Equation 2.3 and two other 

equations given in their publication, when a rotation 1/fu at which one of the critical states is reached 

is found. 
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P ~! ( rp - r0 ) = ( dFsr + dFs,,p + F,1 Llq> + F,,,pLlq>) · Z + dD( rw - r0 ) (2.3) 

'• 
la} 

ld-x}J 
dF~ 

lb} 

P(~J i)
m, 

Figure 2-1: Shehata's Model (a) Stress Concentration (b) Forces acting on a Segment (c) 

Forces acting on a Segment in a Radial Plane (Shehata and Regan, 1989) 

where, 

D = dowel force 

d = effective depth of a slab 

rp = radius of a peripheral load or reaction 

r0 = radius of the column or loaded area 

r w = wedge radius (punching radius) 

L1 rjJ = small sectoral angle 
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2.1.1.3 Broms 

Broms (1990) introduced two principal modifications to the Kinnunen/Nylander rotational model. 

First, he adopted standard values of concrete properties rather than calibrated values from test 

results. Secondly, he calculated different heights of the compression zone in the radial and 

tangential directions opposed to the Kinnunen and Nylander's iterative approach. He further 

accounts for unsymmetrical punching and size effect in his modified model. Just like the Kinnunen 

and Nylander' s model, two broad failure mechanisms were identified as possible causes of failure 

in punching. For the high tangential compressive strain failure mechanism, a limiting value of e,pu 

as in Equation 2.4 was proposed from which a value of punching load V, could be calculated (see 

Broms, 1990 for the equations for V,). 

= 0.0008.( 150 . 2:J0.333 
axpu f, 

(2.4) 

The radial concrete compressive stress failure mechanism comes into play when the compressive 

stress in the imaginary conical shell reaches a critical value of 1.1.fc' at the bottom of the shear 

crack. The punching load is described by Equation 2.5. 

'(300).333 
v" "' 0.46( b + 3.5y Jyf, Y 

The critical punching load is determined as the lesser of V, and V0 • 

where, 

Xpu = height of the compression zone at flexure in the tangential 
direction when punching occurs 

axpu = height of the equivalent rectangular stress block with the stress f', 
y = approximate thickness of conical shell 

b = diameter of column 

(2.5) 
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2.1.2 Models based on Classical Plasticity Theory 

2.1.2.1 Braestrup et al 

Braestrup et al (1976) observed that there are distinct surfaces of discontinuity when a shear failure 

occurs. They considered these discontinuities to be narrow, rigid-plastic regions of concrete that 

move relative to each other. By applying classical plasticity theory, they assumed that work 

dissipated in the discontinuity could be calculated. This work, added to any work dissipated in the 

reinforcement, is then equated to the work done by the applied load causing the relative movement, 

to arrive at an upper bound method. 

The failure criterion adopted for the concrete in the narrow plastic zone is the modified Coulomb 

Yield criterion defined by three parameters: cohesion c, the angle of friction <I>, and the effective 

tensile strength J,,. Further, the yield criterion was described as a combination of two parts: the 

sliding criterion in Equation 2.6 and the separation criterion in Equation 2.7. 

,; = c-atan<j> (2.6) 

= f .. (2.7) 

For the case of punching shear, an upper bound solution for the axisymmetric punching strength of 

a slab was derived. In general implicit form, the total work dissipated in a failure surface is obtained 

from Equation 2.8. 

h 

W; = ofF(r,r')dx 
0 

And the external work done by load is Pli 

(2.8) 

The work equation derived is shown in Equation 2.9. The explicit form is solved by variational 

calculus from which the lowest upper bound and hence the solution can be found. 

h 

P = fF(r,r')dx (2.9) 
0 
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where, 

o = virtual displacement 

F(r,r) = function of r and r' 

2.1.2.2 Plasticity Model by Bortolotti 

Bortolotti's model (1990), takes into account strain softening in concrete. A rigid-plastic failure 

mechanism subjected to a uniform vertical displacement rate field v was assumed. 

,. 
i-!!!-t 

r ., 
D I· 

h 

Figure 2-2: Bortolotti's Failure Mechanism and Failure Profile (Bortolotti, 1990) 

Bortolottf considered the failure profile shown in Figure 2-2 and assumed that every point in the 

tract AA, of the failure profile, where q, < <I>, undergoes a compression like softening. In tract AA2, 

where q, > <I>, it is assumed points undergo tension like softening. 

The failure conditions in Equations 2.10 and 2.11 were proposed: 

where, 

<p < <I> 

<p > <I> 

cr 1.(l + sin<I> )-all-sin<I> )-2!, = 0 

cr1 .(1 + sin <I> )-all-sin<I> )- f/1- sin<I>) = 0 

<p = internal friction angle 

<I> = instantaneous value of the internal friction angle 

(2.10) 

(2.11) 
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2.1.3 Other Models 

2.1.3.1 Fracture Mechanics Model by Bazant/Cao 

Bazant and Cao ( 1987) in their proposed model attempted to account for the variability of nominal 

shear stress at failure of geometrically similar reinforced concrete slabs on different scales. They 

based the failure load on energy and stability ultimate criteria rather than strength criteria as in the 

plasticity theory. A new nonlinear form of fracture mechanics was formulated that models the size 

effect more accurately from a blunt crack band model. 

For analysis based on plastic theory, the normal shear stress at failure Vu =P ,/bd of geometrically 

similar structures is independent of size. However, a decrease in normal . shear stress Vu was 

observed as structure size increases for both the classical linear elastic fracture mechanics and non­

linear fracture mechanics. Bazant/Cao proposed Equation 2.12 based on non-linear fracture 

mechanics theory. 

(2.12) 

where, 

k1,k2 = empirical constants 

b = punch diameter 

d = slab thickness 

:I.. = empirical parameter characterizing the fracture energy of 

the material and the shape of the structure 

d, = maximum aggregate size 
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2.1.3.2 Truss Model for Two-way Shear by Alexander and Simmonds 

Alexander and Simmonds (1987) developed a quantitative model for punching based on the 

plasticity theory. They suggest that an appropriate model for both ultimate capacity and slab­

column connection behavior must account for the following variation in parameters: the overall 

connection geometry, the concrete strength, and the yield strength of flexural reinforcement. 

Alexander and Simmonds proposed a 3-D space-truss model composed of concrete compression 

struts and steel tension ties. The compression struts were either parallel to the plane of the slab 

(anchoring struts) or were at some angle et to the plane of the slab (shear struts). The shear struts 

were further differentiated into: 

• Gravity Struts: these oppose the downward movement of the slab relative to the column and are 

tied by top mat steel. 

• Uplift Struts: Shear struts that oppose the upward movement of the slab relative to the column 

and are tied by bottom mat steel. 

Figure 2-3 shows a qualitative description of the truss model for punching shear. A failure criterion 

was defined in terms of three possible modes: first, failure of the tension tie, second, failure of the 

compression struts and lastly, a shear strut failure, which may occur if the out of plane component 

of the compression strut exceeds the confining strength of the slab. 

Figure 2-3: Assembly of Load Resisting Struts (Alexander and Simmonds, 1987) 
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2.1.3.1 Bond Model by Alexander and Simmonds 

Alexander and Simmonds (1992) developed a model describing the behavior of concentrically 

loaded flat-plate-column connections at failure. Their bond model, which is a modification of 

Alexander-Simmonds (1987), gave a description of the mechanism of shear transfer for 

orthogonally reinforced slab-column connections that is consistent with test observations. 

As in the truss model, the bond model describes the slab-column connection as an assembly of steel 

tension ties and concrete compression struts. Alexander and Simmonds noted from tests that the 

compression strut was actually a curved arch as shown in the Figure 2-4. 

The revised model suggests a link for shear transfer in a slab-column connection to force gradients 

in the reinforcement close to the column. However, since force gradient in reinforcement is closely 

linked to bond, the new model is called the Bond Model. Like the truss model, the bond model 

requires a rectangular layout of reinforcement. Four radial strips, which carry all loads reaching the 

column, extend from the column parallel to the reinforcement as shown in Figure 2-4. 

Reinforcing Bar 

Face of Column 

(Cwved compression strut) 

-1-·-·-·-·-,-,-·-·-·---·~· 
! j ! Radlal Strips ! 

i Column~! /[\ : 
, : : · Remote 
! j ! ! end 
! ........... _............. '..... ....... ... .. ....... ! ..-?" , .......................... -.................................. ~ 
i Ofrection of / ! ~-
j Reinforcement i ! Lines of zero j 
! + ) j shear ! 
I.._..,; I 
~--·-·----~·j·-·-·-·-·- +· 

Figure 2-4: Layout of Radial Strips (Alexander and Simmons, 1992) 
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The punching capacity of the slab-column connection P is obtained by summing the contribution of 

each radial strip. The final equation predicting the shear capacity of the connections is given in 

Equation 2.13. 

P= I;P, =8~M,xw 

M = 2xwl
2 

' 2 

2.1.3.3 Empirical Based Model by Moe 

(2.13) 

This empirical model proposed by Moe in 1961 is the basis of ACI 318 1963. Two limit states are 

used to describe punching failure, namely Vfl,x and V,hea,· Moe suggested the following relationship 

between flexural and shear capacity. 

(2.14) 

in Equation 2.14, A is an empirical factor from test results. The final equation for ultimate shear 

capacity he proposed is: 

where, 

w = 

YJ = 

= 

= Ci« 1- 0.59w )d 2 fc 

Jy 
p-

C2 

d 

ie 

C = Constant 

u,01 = perimeter of column or loaded area 

(2.15) 
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2.2 Shear Design Procedures for Reinforced Concrete Slabs 

The various reinforced concrete design standards (ACL CSA, BS8110, Euro code, Model Code) 

examined are based on a limit state design. The requirements for shear design in all the codes is 

such that the capacity must be greater than the nominal load, stated as follows: 

where, 

v. 

v. 

:5 v. 

= 
V 

u·d 

V. = Ve+ Vs 

v. = nominal shear capacity of the critical section 

v. = ultimate shear stress 

Ve = punching shear resistance of concrete 

V, = punching resistance of the steel 

(2.16) 

(2.17) 

(2.18) 

All the standards specify that in shear reinforced slabs, the nominal shear stress must be limited to 

the resistance of the slab at a critical perimeter. And then checks are made at outer perimeters such 

that the shear stress does not exceed the resistance anywhere at the connection. 

2.2.1 American Specification ACI 318-99 

Critical Perimeter 

The critical section is defined as 0.5d from column perimeter. 

Shear resistance ofa section without shear reinforcement 

!_? 
3 

,Jlc 

Ve = min ft(2 +_±_) 
12 /Jc 

(MPa) (2.19) 

ft(2 + a,d) 
12 b

0 
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a., = 40 for interior column, ~' = column aspect ratio 

Shear resistance with shear reinforcement 

V, :<:: 1/>V, (2.20) 

rp = 0.85 for shear 

v, = Ve.+ Vs (2.21) 

where, 

v, = 
1/>.,A,,,Jy, 

bos 
(2.22) 

Jyv :<:: 414MPa 

For headed shear reinforcement, maximum resistance of concrete with shear reinforcement, 

v, = 0.167.?.¢,.[i; 

Maximum shear resistance of section with shear reinforcement 

where, 

vfmax :<:: 0.67 .?.¢,.ff: 

Avs = the area of shear reinforcement 

f,, = yield strength of shear reinforcement 

bo = length of the critical perimeter 

s = spacing of concentric rows of shear reinforcement around a column 

y = strength factor of concrete 

cp, = resistance factor for concrete 

2.2.2 Canadian Standard CSA A23.3-94 

Critical Perimeter 

The critical section is defined as 0.5d from column perimeter 

(2.23) 

(2.24) 

17 
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Shear resistance ofa section without shear reinforcement 

0.4.[l; 

min 0.2.[1;(1+ ;J (MPa) 

ft(o.2+ iod) 

Shear resistance with shear reinforcement 

where, 

¢, A,, f Y" 

bos 
v, = 

' 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

For headed shear reinforcement maximum resistance of concrete with shear reinforcement, 

(2.29) 

Maximum shear resistance of section with shear reinforcement 

(2.30) 

2.2.3 Eurocode 2 ENV 1992-1-1 

. The Eurocode 2 ENV 1992-1-1 document defines the following parameters for shear design: 

18 

VRJ1 is the design shear resistance per unit length of the critical perimeter, for a slab without 

shear reinforcement 

VRd2 is the maximum design shear resistance per unit length of the critical perimeter, for a slab 

with shear reinforcement 

VRdJ is the design shear resistance per unit length of the critical perimeter, for a slab with shear 

reinforcement 
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Vsd the shear force per unit length along the critical section 

Critical Perimeter 

The critical perimeter is defined as the perimeter surrounding the loaded area and at a 

distance 1.5d from it. 

Shear resistance ofa section without shear reinforcement 

When, 

v sd :,; v Rdl , no shear reinforcement is required 

v.d, =r.dk(l.2+40p1)d 

TRd = 0.25fc,k0.05f rc 

k = (1.6- d) :2'.1.0 

Shear resistance ofa section with shear reinforcement 

When Equation 2.35 is not satisfied, shear reinforcement is required such that 

v,d :,; v.d, 

where, 

+ °" A f sina L..J SW yd u 

Maximum shear resistance of section with shear reinforcement 

where, 

v.,d = shear force per unit length along critical section 

f,,d = design yield stress of the reinforcement 

p1 = equivalent longitudinal reinforcement ratio 

TRd = basic Shear strength of members without shear reinforcement 

u = perimeter of critical section for punching shear 

a = angle between reinforcement and the plane of the slab 

19 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

(2.35) 
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2.2.4 CEB-FIP Model Code 90 

Critical Perimeter 

The critical section is defined as 2.0d from the column perimeter. 

Shear resistance ofa section without shear reinforcement 

It should be verified that 

Vsdc 5 VRdl 

where, 

1 

VRdl = 0.12;(100p · f,k )3 

and, 

; = 1+~200/d 

Shear resistance ofa section with shear reinforcement 

The model requires that punching shear resistance be verified in three zones 

• The zone immediately adjacent to the loaded area 

P,d 5 u0 d(0.5f,d2 ) 

• The zone in which the shear reinforcement is placed 

P,d 5 0.75V Rd! + 1.5.!!._A,wf ywd sin a 
S, 

f,wd 5 300 MPa 

• The zone outside the shear reinforcement 

1 

P,d 5 0.12;(100P.f,k) 3 un,,fd 

20 

(2.36) 

(2.37) 

(2.38) 

{2.39) 

(2.40) 
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Maximum shear resistance of section with shear reinforcement 

:,; 0.5 f,a2 (2.41) 

J,d2 = 0.6(1- f. /250). u • . d 

where, 

v,d, = shear stress on concrete section 

J,, = characteristic strength of concrete 

f.,wa = characteristic strength of steel 

p1 = ratio of flexural tensile reinforcement 

u0 = length of periphery of column or loaded area 

s, = radial spacing of layers of shear reinforcement 

u •. ,1 = the critical perimeter 2.0 d from the out layer of shear reinforcement 

A,w = area of shear reinforcement in a layer around the column 

2.3 Selected Experimental Studies on Punching Shear 

2.3.1 Dilger and Ghali: Shear Reinforcement for Concrete Slabs 

Dilger and Ghali (1981) investigated four different types of shear reinforcement at the University of 

Calgary. Figure 2-5 shows three of the types studied. 

They tested 40 slab-column connections with various types of shear reinforcement they developed. 

Most of the specimens were subjected to pure concentric axial load. The flexural reinforcement 

provided had a ratio of approximately 1.1 % and concrete design strength was 28 MPa. From their 

tests, they reported that full yield strength of the types of shear reinforcement was reached and that 

only shear in excess of 0.33"1/( (MPa) needed to be resisted by the shear reinforcement. CSA 

A23.3-M77 and ACI 318-1977 both require that shear stresses higher than 0.17"1/ ( (MPa) be 

carried by shear steel (CSA now requires 0.2"1/( due to lower load safety factors). 

They compared their findings to ACI Specification 318-1977 and Canadian Standard CAN A23.3-
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M77 (which both required 0.17'1/ f,' (MPa)) and an ultimate nominal shear resisted by steel and 

concrete as 0.5'1/f,' (MPa). A typical load-deflection curve from their test is shown in Figure 2-6. 

They suggested from their experiment that the upper limit of shear resistance could be as high as 

0.67'1/fc' (MPa). They also found that vc' decreases as the distance of the critical section from the 

column face increases. 

They suggested design rules for punching shear at the critical section at d/2 from the column face. 
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Figure 2-5: Types of Shear Reinforcement Investigated by Dilger and Ghali 

(Dilger and Ghali, 1981) 
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Figure 2-6: Load-Deflection Graphs from Dilger and Ghali 

(Dilger and Ghali, 1981) 
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2.3.2 Ghali, Sargious and Huizer: Vertical Prestressing of Flat Plates Around 

Columns 

Ghali et al (1974) tested 10 specimens to study the effect of vertical prestressing near the column 

perimeter on the punching shear capacity of reinforced concrete slabs. Vertical prestressing was 

provided by unbonded high tensile steel bolts. 

Figure 2-7 is a graph from their research showing a comparison of the non-prestressed and 

prestressed specimens. The figure and other results they presented showed that the prestressed slabs 

could withstand a much higher deflection before failure occurs. This is an indication of the merits of 

the prestressing in substantially increasing the ductility of the connection. 
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Figure 2-7: Comparison of Deflection for Prestressed and Non-Prestressed Slabs 

(Ghali et al, 1974.) 
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2.3.3 Marzouk and Hussein: Experimental Investigation on the Behavior of High­

Strength Concrete Slabs 

Marzouk and Hussein (1991) tested 17 reinforced concrete slabs to investigate the deformation and 

strength characteristics of punching shear failure of high-strength concrete slabs. These 

characteristics were studied with respect to the following parameters: deformation, slab-rotation, 

strains, ultimate capacity, ductility, energy absorption, and failure mode. 

Marzouk and Hussein described the slab stiffness in terms of the load deflection curve. "For most 

slabs failing in punching shear, the load deflection curves can be represented by two straight lines 

with different slopes". The first is the stiffness of the uncracked slab and the other is the stiffness of 

the cracked slab. The stiffness of the uncracked slab is described as the slope of the load deflection 

curves reaching loads of up to 0.2 times ultimate load. The stiffness of the cracked slab µ is the 

slope of the load- deflection curve extending up to the load that causes first yielding of 
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reinforcement. Ductility was also defined as the ratio of the ultimate deflection to the deflection at 

first yield. 

The variables of their test were slab depth, reinforcement ratio and concrete compressive strength. 

They defined three failure types as: pure flexural failure, pure punching failure and ductile shear 

failure. Pure flexural failure took place in slabs when most of the reinforcement yielded before 

punching occurred and the slab consequently experienced large deflections prior to failure. fu pure 

shear failure, the slab showed small deflections, with the yielding of the tension steel being much 

localized at the column head. The third type of failure was a transition between the two cases. 

They reported a punching shear surface for most slabs forming at a distance of 1.2 to 1.6 times the 

slab depth from the column face. One significant conclusion from their paper was that the influence 

of concrete strength in the North American codes of practice is conservative and that adopting a 

cubic root of the compressive strength will result in more accurate and consistent analysis. 

2.3.4 Elgabry and Ghali:Design of Stud-Shear Reinforcement for Slabs 

Elgabry and Ghali (1990) presented design and detailing rules for use of shear stud reinforcement 

based on previous experimental data. Based on extensive testing, they recommended the following 

as illustrated in Figure 2-8: 

• Bottom anchors should be in the form of steel strips and its width should be greater than 2.5D, 

• Top anchors could be in the form of circular or square plates with the limitations that the areas 

be at least 10 times the area of the stem, 

• fu the direction parallel to a column face, the distance between anchor strips should not exceed 

2d, d is the effective depth of the slab. 

• Bottom anchor strips should be aligned parallel to column faces 

• Minimum distance of the first peripheral line from the column s0 should be d/4. They suggested 

upper limits for both s0 and the spacing s based on the value of the factored shear stress. 



Chapter 2: Review of Literature 

TOP UICHOFI PLATES A"'CHOR AREA ~IOT1¥ES 
STEM I\REA 

1
1-"1 _j_;,. V3 D 

STUDS I t 
$1"1EIIC 01A. 

HOL E5 F"OA 1$ O 
ATTACHM!;NT b 
TO FORlilWORK 

BOTTOM 6NCHOR 
STfUP 

WELD, _j__ 

\--1 T!oD/2 

~2-~0 

S.ECTION A-A 
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2.3.5 EI-Salakawy et al: New Shear Strengthening Technique for Concrete Slab­

Column Connections 

El-Salakawy et al (2003) carried out a study on the same method of transverse reinforcing. They 

tested a total of six specimens. The objective of their study was to determine the effectiveness of 

shear bolt transverse reinforcement at edge slab-column connections with a combination of 

concentric and eccentric loading. Test slabs were 1540 x 1020 x 120 mm in dimension 

monolithically cast with a column 250 mm square section. The average reinforcement ratio in the 

tension mat of the specimens was 0.75 %, while they provided an average of 0.45 % in the 

compression mat. The arrangement of shear bolts from their paper is shown in Figure 2-9. 

El-Salakawy reported maximum deflections measured at ultimate load of between 54 - 162 % 

larger for the specimens reinforced with shear bolts than for those not reinforced. Secondly, they 

reported that maximum flexural steel strain was observed directly underneath the front face (parallel 

to the free edge) of the column. The maximum strains for the specimens reinforced with shear bolts 

were between 8 attd 39 % than for corresponding specimens without shear bolt reinforcement. 

Finally, there was a reported enhancement of ultimate strength of 12 to 13 % for the reinforced 

specimens. 

The conclusion was that the bolts were effective transverse reinforcement that can be used for 

strengthening and retrofit of existing slabs. 
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Figure 2-9: Typical Arrangement of Shear Bolts in El-Salakawy's Tests 

(El-Salakawy et al, 2003) 
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2.3.6 Rankin and Long: Predicting the Punching Strength of Conventional Slab­

Column Specimens 

Rankin and Long (1987) proposed a method for predicting the strength of conventional slab-column 

specimens from rational concepts of various failure modes. The failure modes were classified 

broadly as flexural or shear. For either failure mode, in conventional specimens, experiments have 

shown that the ultimate load capacity is reached when a truncated cone or pyramid of concrete is 

punched through the slab by the loaded column (Rankin and Long). 

Long (1975) suggested that punching strength is the lesser of either a flexural or shear criterion of 

· failure. Rankin and Long's approach is a modification of Long (1975) in which the ultimate 

moment capacity is derived as a (analytically based linear interpolative moment) factor of the yield 

moment. The punching shear capacity was based on a semi-empirical relationship of the vertical 

shear stress on the critical section for failure. Three possible modes of flexural failure are described 

as full-yielding (yield-line), localized compression failure, and partial yielding. The shear mode of 

failure is precipitated by internal diagonal tension cracking prior to the development of yielding of 

the reinforcement or crushing of the concrete (Long, 1975). 

The predicted punching strength of the conventional slab-column specimen was defined as a lesser 

of the flexural failure mode or the shear failure mode. 
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Test Program 

3.1 General Description 

A total of six slabs of dimensions 1800 mm by 1800 mm by 120 mm were built and tested. A typical 

specimen is shown in Figure 3-1. All specimens had the same amount and placement of orthogonal 

longitudinal reinforcement. The specimens had column stubs through which the loading was applied 

to the slab during testing. Each column had a square cross-section: 150 mm by 150 mm and a height 

of 150 mm extending beyond the top and bottom face of the slab. All columns were reinforced with 

four 20 mm bars enclosed in four 8 mm ties. 

Two of the specimens were built with openings placed next to the column stub; the remaining four 

had no openings. Openings were to simulate reinforced concrete construction in which openings are 

made in floors to allow wells or ducts for ventilation, electrical and other services. The six 

specimens constructed are shown in Figure 3-2. ' 

The variables of the test program were the number of peripheral rows of shear bolts reinforcement 

applied, and number of symmetrically placed openings around the column. 

3.1.1 Material Properties 

Concrete 

The specimens were cast with concrete made from normal Portland cement. Ready-mix concrete 

with a specified compressive strength of 25 MPa was used. A super-plasticizer was added to the 
\...---

second batch to improve workability. (\l,n,,<A f 1 < =') 5 tf ~o. 

A combination of at least six 150 mm by 300 mm and six 101.6 mm by 101.6 mm (4 inch by 8 inch) 

control cylinders was made for each casting batch. Standard material properties of concrete were 

determined from these control cylinders. The cylinders were made, compacted and tested according 

28 
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to Canadian Standard A23.3.2-9C and A23.3.2-13C, for the compressive strength and splitting 

tensile strength of the specimens respectively. 
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Figure 3-1: Typical Specimen in Plan and Elevation 
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The control cylinders were cured under the same conditions as the test specimens and compression 

tests were carried out at the end of the first test. Splitting tensile tests were carried out later. Table 

3-1 lists the results from the material properties tests. 
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Table 3-1: Compressive Strength of Test Cylinders 

Slab Specimens in Compressive Tensile 
Age at Description group Strength Strength 

(MPa) (MPa) testing 

4" X 8" 42.0 2.34 
25 weeks 

150 mm x 300 mm SB2, SB3, SB4 40.9 2.07 

' 
23 weeks 

150 mm x 300 mm SBl, SB5, SB6 44.1 2.19 

Reinforcing Steel 

Steel used for longitudinal reinforcement was supplied on site pre-bent by Albrecht Steel Ltd. The 

top and bottom longitudinal reinforcement mats consist of 10 mm bars. In the column, four 20 mm 

bars were used enclosed by 8 mm plain bars as ties. Shear bolts were manufactured and donated by 

Continental Steels (Decon). These were designated DECON STUD 3/8 x 5-7/8 in. 

Tension tests from standard coupons were carried out to determine the strengths of the steel. The 

longitudinal steel comprising of 10 mm ridged bars were tested using reduced cross-section coupons 

prepared according to ASTM E 8M-00b. The Shear Bolts were tested without any alterations by 

using a bracket in the jaws of the pulling device. 

From testing, the yield strength of 10 mm bars was determined to be 455 MPa on the average, the 

average tensile strength was found to be 610 MPa. A stress-strain curve for one of the coupons from 

which the average values were determined is shown in Figure 3-3. 

Also, the yield strength of the shear bolts was determined to be 381 MPa. A stress-strain is shown in 

Figure 3-4. 
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3.2 Experimental Program 

3.2.1 Equivalent Continuous Slab System 

The test specimens are full-scale models assumed to be equivalent to a slab-column connection in 

the continuous slab system shown in Figure 3-5. The continuous system shown is a flat plate 

construction consisting of five 3.75 m span bays in one direction and an infinite number of spans in 

the other direction. A summary of the experimental program is presented in Table 3-2. 

3.2.2 Test Specimens 

Test specimens represent a portion of the continuous slab system. The dimensions of the specimens 

are boundaries representing the lines of contraflexure (approximately 0.4 times the span). The 

typical specimen in Figure 3-1 shows outer boundaries of the slabs and the support lines at 1500 

mm. The simple support system at the support lines is assumed to have the same effect as the lines 

of contraflexure (no moment) in the parent system. The overhang portion over the supports, 150 mm 

length at each side, was to ensure adequate development length and to prevent anchorage or bond 

failure. 

A simple support system was achieved by the use of 1500 mm long flat solid bars. The solid bars 

had cross-section dimensions of 1500 mm by 40 mm by 25 mm thick. Neoprene strips of the same 

surface dimensions as the solid bars were bonded to the bars to ensure uniformity of contact during 

testing. The simple support system was placed on a symmetric square perimeter 1500 mm by 1500 

mm. 
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Figure 3-5: Test Specimen Shown in Equivalent Structure being Modelled (Units: 1fID) 

Table 3-2: Summary of Experimental Program 

p (%) 

Specimen 
b* a* h* average d* 

Number of Shear bolts (mm) (mm) (mm) of 2 layers (mm) 
Openings 

SBl 1800 1500 120 1.2 88.7 0 none 

SB2 1800 1500 120 1.2 88.7 0 8*2 rows 

SB3 1800 1500 120 1.2 88.7 0 8*3 rows 

SB4 1800 1500 120 1.2 88.7 0 8*4 rows 

SB5 1800 1500 120 1.2 88.7 4 8*4 rows 

SB6 1800 1500 120 1.2 88.7 2 8*4 rows 

* See Figure 3-1 
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3.2.3 Slab Flexural Reinforcement 

The design consideration for the slabs was according to CSA A23.3-94. The specimens were 

designed by varying the percentage of tensile reinforcement such that failure occurs in punching 

before the flexural capacity is reached for the specimen without shear bolts. 

All six specimens were reinforced with top and bottom layers running in orthogonal directions. The 

tension layer was designed such that the slab was as close as possible to being orthotropic. This was 

achieved by using slightly different spacing of reinforcement for the top and bottom layers of the 

tension (bottom) mat. The average main reinforcement ratio pis 1.2 % ( p = A,. /bd ). 
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Figure 3-6: Top Mat (Compression Reinforcement) 
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The tensile reinforcement used is as follows: 

• The bottom mat lower layer was lOM bars at 100 mm centres. The upper layer was 

1 OM bars at 90 mm centres. 

• For the top mat lOM bars were used. The spacing for both layers was 200 mm. 

The yield strength, as previously mentioned, was. determined to be 455 MPa. The clear cover at the 

top and bottom of the slabs was taken to ·be 20 mm. It should be noted, that due to the experimental 

set-up design, the slabs were tested in the "upside down" position when compared to the real slab­

column system. The tension reinforcement was therefore placed on the bottom of the specimens. 

Figures 3-6 and 3-7 below show the typical reinforcement layout for the slab specimens tested. For 

each layer in both mats two 10 M bars in both directions pass through the column between the 

column dowels, for purposes of structural integrity. 

All the bars used were hooked at their ends to provide adequate anchorage. A sketch of the 

anchorage hooks is shown in Figure 3-7 and blown up in Figure 3-8 for the two dimensions of 

hooks used. 

3.2.4 Slab Shear Reinforcement 

Shear reinforcement for the slab specimens consist of a new type of device referred to as shear 

bolts. They consist of a shaft with a forged circular head (30 _Il1!Il__<iiarm,t<:l.r) and a threaded end for 

the nuts that hold them in place. Fabricated, non-standard circular washers ( 44 mm diamet~r. 10 mm 

thick recommended) were used at the threaded end as anchor plates for the shear bolts. Shear bolts 

are installed in holes drilled in the slab shortly before testing. 

The holes were drilled perpendicular to the slab plane using 16 mm (5/8 inch) diamond coring bits. 

The bolts were torqued to a strain between 5 - 10% (200-250 µe) of their yield strength just before 

testing. The shear bolts were arranged in concentric rows parallel to the perimeter of the column, 

following CSA A23.3 Clause 13.4.8.4. Each concentric row consist of eight bolts- two each parallel 

to the faces of the square column. The first row was place at between 45 mm to 60 mm from the 
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face of the column and subsequent rows were between 75 - 90 mm. A typical bolt is shown in the 

Figure 3-9. 

Figure 3-9: Typical Shear Bolt 

3.2.5 Column Reinforcement 

The reinforcement in the stub column consist of four 20 mm bars running from top to bottom 

through the slab and enclosed by 8 mm ties placed at 100 mm spacing and tied to the column at the 

comers. 

3.3 Preparation of the Test Specimens 

3.3.1 Form-work Building 

Forms were designed and built using plywood and sectional lumber. Rigidity of the formwork was 

achieved using bracing systems and double ply in some cases. Connections were done using screws, 

nails and adhesives. 

3.3.2 Caging 

Caging was done in the laboratory. The reinforcement was ordered pre-bent from the supplier. 

Uniformity was achieved by building rigs for arranging the reinforcement in place prior to tying, 

which was done manually. The cages were then hoisted into place in the forms. A typical cage is 

shown in Figure 3-10. 
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3.3.3 Casting 

Casting took place in two batches of three slabs each. The concrete was ready-mix and was supplied 

by HOGG Ready-mix Concrete. The concrete was ordered in batches of about 2.0 cubic metres, 

providing enough concrete for three specimens and 10 test cylinders, 

The concrete was transferred from the delivery truck to the forrnwork using a bucket and crane 

available in the laboratory as shown in Figure 3-11. A 25 mm rod vibrator was used to vibrate and 

compact the concrete so that no segregation occurred. A superplasticizer was added to the second 

batch to improve workability. For lifting purposes, hooks were built into the slab while casting. 

Figure 3-10: Typical Cage 

3.3.4 Curing 

For at least 72 hours after casting the slabs were kept moist and covered with burlap and plastic 

sheets. The side forms were removed 24 hours after casting and the slabs continually wet and kept 

covered for a total of at least 7 days. 
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3.4 Test Set-Up and Experimental Apparatus 

The set-up for testing is shown in Figures 3-12 and 3-13. The set-up was built around a testing 

frame already on site in the University of Waterloo Structures Laboratory. The additional 

components added where made as rigid as possible. This was done to avoid deflections of supports. 

It is expected that future tests will involve application of unbalanced moments to similar specimens. 

Thus rigidity of the testing rig is required. The present study involves the application of pure axial 

load through the columns. This load was applied by means of a hydraulic actuator. 

Figure 3-11: Casting by Bucket and Crane Method 

3.4.1 Pedestal Support 

The Pedestal Support system consisted of a series of W-sections. The steel sections conformed to 

CSA S 16-94 (Steel Design Code) with regards to deflection and strength requirement. The pedestal 

system was arranged in such a way as to ensure easy access to the underside of the slabs for crack 

monitoring and shear bolt tightening. This was achieved by increasing the clear spans of the top W­

sections within the limits on deflection from the steel code. 
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Figure 3-12: Test Set-Up with Pedestals and Slab in Place (Front) 
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Figure 3-13: Testing Set-Up Frame Only (Side View) 
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3.4.2 Boundary Conditions 

The specimens were designed as simply supported slabs. Simple supports at the edges were 

achieved by using 40 mm wide, 25 mm-think steel plates. Placing neoprene strips between the 

bearing plates and the slab ensured uniformity of contact. 

3.4.3 Corner Restraint 

To simulate continuous slab construction and avoid the slab edges lifting during testing, tubular 

sections were used at each comer. The comers of the slabs were held down by sections cut out of 

standard tubular steel of dimension 76.2 mm square by 6.35 mm thickness (3 inch square by 1/.i inch 

thickness). Restraint was achieved by bolting to the base plate. The restraint is to simulate the 

continuity of a real continuous slab system. The comer restraints used are shown in Figure 3-15. 

Figure 3-14: Testing Frame, Data Acquisition and Specimen in Place 
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16 2 750 

0 0 

Figure 3-15: Dimensions of Corner Restraints and Connecting Rods (Dimensions in mm) 

3.5 Instrumentation 

3.5.1 Strain Gauges 

An average of fourteen electrical resistance strain gauges per specimen was provided on the tension 

flexural reinforcement to measure steel strains during testing. The Strain Gauges were all made by 

KYOWA. The type was KFG-5-120-C!-ll for steel. Gauge length was 5 mm and resistance was 

120.2 ohms. The strain gauges were bonded to the steel using an acrylate based strain gauge 

adhesive. The strain gauges were then connected to wires using bendable terminal Strips. The 

position of the strain gauges provided for all tests is shown in Figure 3-17. 

Figure 3-16: Strain Gauge and Terminals 
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U - Upper Layer 

L - Lower layer 

Figure 3-17: Position of Strain Gauges on Longitudinal Reinforcement (Dimensions in mm) 

3.5.2 Displacement Transducers 

A scheme of Linear Variable Displacement Transformers (L VDT), Direct Current Displacement 

Transformers (DCDT), and Potentiometers was used on each slab specimen to measure the 

magnitude of the deflection profile during testing. The positions of transducers are shown in Figure 

3-18. At three locations, 8, 9, 10, displacement transducers were placed both on top and bottom of 

the slab. This was done to monitor opening of the internal inclined crack during testing. Differential 

displacement readings from the top and bottom pairs gave an estimate of the vertical width of the 

inclined shear cracks. 
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Figure 3-18: Position of L VDT on a Typical Specimen (Dimensions in mm) 

3.5.3 Video Camera 

45 

A video camera was mounted underneath the slab during testing to monitor the formation of cracks. 

To enhance crack detection, the bottom of the slab was painted and a light source was used to 

increase flexural crack visibility. 

• 
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Design of Test Specimens 

4.1 Dimension and Specimen Selection 

Conventional slab-column test specimens were decided on in the early stages of the program. The 

conventional slab system is idealized as shown in Figure 4-1. As previously mentioned, a study was 

done by El-Salakawy (2003) on the use of shear bolt reinforcement at edge columns. The specimens 

in this program represent interior connections from the same continuous slab system used in the 

research by El-Salakawy. The continuous slab system was shown in Figure 3-6. In the final 

specimen, sufficient overhang was provided beyond the support lines of the specimen, at the lines 

of contraflexure, to meet anchorage provisions of CSA A23.3-94. 

I 
2S 

I 

,---, 
I D I 
I I 
L __ .J 

rn 
+ 
~ 

Q.41 

2S 
I 

I 

Figure 4-1: Conventional Slab-Column Specimen 
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4.2 Yield-Line Analysis 

Yield line analysis was done to ensure that the load corresponding to the flexural capacity of 

specimen without shear reinforcement was higher than the load at the punching capacity as 

predicted by different formulas. To select the longitudinal flexural reinforcement for the specimens, 

a yield line analysis was carried out. It is assumed that the yield line pattern shown in Figure 4-2 

forms at full yield for conventional slab-column specimens. 
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Figure 4-2: Yield-Line Pattern for Conventional Slab-Column Specimen 

K,, = s(-8 --0.112) 
a-c 

From CSA A23.3-94 

Mb = 39kNm 

With a= 1500 mm 
c= 150mm 
s= 1800mm 
K,1= 9.2907 

(4.1) 

(4.2) 

(4.3) 
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And with!,= 455 MPa,f'c= 42 MPa 

Assuming 10 M bars in both layers of the tension mat, d.,. = 90 mm 

Pnox = 9.2907 Mb 

The flexural reinforcement chosen for the specimens is as follows; 

10 M @ 100 in the bottom layer of the tension mat, nominal moment capacity of 39.8 MPa 

10 M @ 90 in the top layer of the tension mat, nominal moment capacity of 38.1 MPa 

Therefore, 

P flex = 362 kN 

4.3 Structural Analysis of Continuous Slab System 

48 

A structural design of an equivalent continuous slab system was carried out. As mentioned 

previously, it is shown that the tested slab represent portions of a slab with spans of 3.75 min each 

direction. The unfactored service load was a unifonnly distributed load of 18.5 kPa. The analyzed -slab system consists of five spans in one direction and theoretically an infinite number of spans in 

the other direction. A layout of the parent slab system was shown in Figure 3-5. 

CSA A23.3 -94 specifies a number of methods for analyzing a flat plate slab system. The Direct 

Design Method, which distributes the statical moment, M0 between positive and negative moment 

regions, was used as a rough initial design. Since the slab contained relatively high percentage of 

flexural reinforcement; it had to be designed for the high Live Loads. Therefore, to be consistent 

with the CSA, the elastic frame method was also used to analyze the equivalent continuous slab 

system. The slab was analyzed for a unifonnly distributed factored load over the slab area of 18.5 

kPa. 

4.3.1 Direct Design Method 

The coefficients given by A23.3-94 for the computation of moments in a continuous slab system 

without beams between columns are reproduced in Figure 4-4. For the factored load of 18.5 kPa, 
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a total statical moment of 113 kNm is obtained. This moment is distributed between positive and 

negative regions according to Figure 44. The moments are shown in Figure 4-5. The direct design 

method is recommended for structures with regularity of topology and loading. 

I\ 

0 70MA 

0 2~Mo lJ 

~ 

0 65Mo O 65Mo 0.70Mo 

l\ ;1 ~ ~26Mo 

~~ 
0.52Mo 0.35Mo 0.52Mo 

Figure 4-4: Moment Coefficients for the Direct Design Method (kNm) 

79.1 79.1 
29.4 29.4 

58.8 
39.6 58.8 

Figure 4-5: Distribution of Statical Moment by the Direct Design Method (kNm) 

4.3.2 Elastic Frame Analysis 

Recommended in the CSA A23 .3 -94 is the elastic frame method as a more accurate method for 

analyzing flat plates where the ratio of the live load to dead load exceeds 1.5. The analysis of the 

parent slab system has been carried out using SODA®. A gravity load analysis was carried out. The 

idealized frame analyzed is shown with the member section properties in Figure 4-6. 

A printout of the input data and analysis output has been presented in appendix A. 
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Figure 4-6: Elastic Frame Model Showing Moment of Inertia of Members 
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Figure 4-7: Moments from Elastic Frame Analysis 

The interior support moment from an elastic frame analysis was found to be about 71 kNm as 

shown in Figure 4-7. This requires the approximate amount of reinforcement A,: 

A "' M · 1926 mm2 

., Jy X0.9d 

50 

For a column strip width of 1875 mm, twenty lOM bars will satisfy this reinforcement requirement. 

This gives a ratio of 1.19 % which is equal to 1.2 % used in the specimens. 
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4.4 Two Step Approach to Conventional Slab Design by Rankin and Long 

An analysis was carried out based on equations developed by Rankin and Long (1987)" Sections 

4.4.1 to 4.4.4 show the equations. Table 4-1 summarizes the analysis based on their method. 

4.4.1 Full Yielding (Consideration of Yield Line) Flexural Failure 

kyl =8(-s--o.112J 
a-c 

This was shown earlier in section 4.2 

4.4.2 Localized Compression Failure 

k _ 25 

b -( 2.5aJ1.s 
log,--

c 

4.4.3 Partial Yielding Flexural Failure 

Compression Partial Yield Full Yield 

Figure 4-8: Modes of Flexural Failure (Rankin and Long, 1987) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 
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4.4.4 Shear Punching Resistance 

Shear mode of failure is precipitated by internal diagonal cracking prior to the development of 

yielding of the reinforcement or crushing of the concrete. Equation 4.10, determined empirically, 

was proposed by Rankin and Long. 

P,., = 1.66.f.Z(c + d)d(100p) 0
·
25 

The variables in the above equations are as follows: 

M = moment per unit width 

Mb = bending moment of resistance 

' 
M(bal) = balanced moment ofresistance ( = 0.333 J, d 2 ) 

a = distance between supports of conventional slab specimen ( =0.4L) 

c = length of column side 

d = average effective depth to tensile reinforcement 

f, = cylinder compressive strength 

kb = ratio of applied load to internal bending moment at column periphery 

kt = ratio of applied load to ultimate moment of resistance at failure 

k,1 = moment factor for overall tangential yielding 

s = side length of conventional slab specimen 

p = reinforcement ratio 

Table 4-1: Slab Capacity from Rankin and Long's Method 

C a s d p fy f, Pcn,x> P(par) 
(mm) (mm) (mm) (mm) (%) MPa MPa (kN) (kN) 

150 1500 1800 90 1.2 450 35 379 286 

(4.10) 

Pooc> 
(kN) 

406 

Pv, 
(kN) 

243 
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4.5 Shear Capacity by Code of Practice Approach 

A review of the shear requirements from various codes of practice was examined in 

Chapter 2. In this chapter, a standardized form of the same design specifications equations 

are used as described in the FIB Bulletin (2001). 

For ultimate limit state, the resistance of a section in shear needs to be greater the factored ultimate 

shear stress. The total punching resistance is given by Equation 4.11. 

(4.11) 

The various codes give different formulae for the parameters in Equation 4.11. Generally speaking 

in implicit form, 

V, 

where, 

Tc ' k · f (p1) • U • d 

= A · K · f · sin(a) sv s y 

V, shear resistance of the reinforced concrete section 

(4.12) 

(4.13) 

V c shear resistance of the reinforced concrete section without shear reinforcement or concrete 

contribution of the punching resistance with shear reinforcement 

V, Contribution of shear reinforcement to the resistance of the section 

V ,,oui,ide shear resistance outside of the shear reinforced area 

V max characteristic maximum shear resistance 

<l>, resistance factor for concrete 

<l>, resistance factor for steel 

T, concrete shear stress [MN/m2
] 

k size effect factor of the effective depth 

f(p1) function of the tension reinforcement 

p1 tension reinforcement ratio [%] 
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u control perimeter [mm] 

d effective depth [mm] 

A,v cross section area of the shear reinforcement [mm2
] 

K, efficiency of the shear reinforcement 

fy yield strength of the shear reinforcement [MPa J 
a inclination of the shear reinforcement 

The following tables show the shear resistance of the slab specimens (without transverse 

reinforcement) according to various code provisions. Table 4-2 shows the resistances for a slab 

without openings, Table 4-3 with two openings and Table 4-4 with four openings. 

Summarized in Table 4-5 is the shear capacity of specimens reinforced with transverse bolt 

reinforcement. 

4.5.1 Shear Resistance without Openings/No Shear Reinforcement 

Table 4-2: Shear Resistance of Specimens by Code Provisions 

Tc k u f(p,) v. 
(MN/m") (mm) (kN) 

Eurocode 0.423 1.511 1664 1.680 160 

Model Code 0.417 2.000 2019 1.095 166 

BS 8110 0.969 1.457 1664 1.063 223 

ACI 2.139 1.000 955 1.000 181 
0 

CSA 2.592 1.000 955 1.000 220 
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4.5.2 Shear Resistance with Two openings/No Shear Reinforcement 

Table 4-3: Shear Resistance of Specimens with Two Openings by Code Provisions 

Tc k u f(p,) Ve 

(MN/m2
) (mm) (kN) 

Eurocode 0.423 1.511 1272 1.680 122 

Model Code 0.417 2.000 1543 1.095 127 

BS8110 0.969 1.457 1272 1.063 17 

ACI 2.139 1.000 815 1.000 156 

CSA 2.592 1.000 815 1.000 189 

4.5.3 Shear Resistance with Four Openings/No Shear Reinforcement 

Table 4-4: Shear Resistance of Specimens with Four Openings by Code Provisions 

Tc k u f(pi) Ve 

(MN/m2
) (mm) (kN) 

Eurocode 0.423 1.511 880 1.680 85 

Model Code 0.417 2.000 1067 1.095 88 

BS 8110 0.969 1.457 880 1.063 118 

ACI 2.139 1.000 675 1.000 129 

CSA 2.592 1.000 675 1.000 156 
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4.5.4 Shear Resistance of Slabs with Transverse Reinforcement by CSA-A23.3-94 

Table 4-5: Shear Resistance of Specimens Reinforced with Shear Bolts 

b. Av, Yr 

(mm) (mm2) (kN) 

SBl 955 562 219 

SB2 955 562 261 

SB3 955 562 321 

SB4 955 562 380 

SBS 675 562 334 

SB6 815 562 359 

The area of shear reinforcement per line was found to be 567 rnm2 for shear bolts with yield stress 

of 381 MPa. A summary of the predicted capacity of the shear strengthened slab-column connection 

is show in Table 4-5. 



Chapters 

Experimental Procedures and Observations 

This chapter describes each test in detail. Testing procedures are presented first. Then the test 

observations are presented in terms of deflections, cracking and reinforcement strains. Six 

specimens were tested namely: SB 1, SB2, SB3, SB4, SB5 and SB6. A description of each test 

specimen with regards to configuration and transverse reinforcement was given in Figure 3-2. 

Initiation and propagation of cracks in a slab-column specimen consist of the following successive 

stages: 

• Initiation of flexural and shear cracks in the tension zone of the slab near the face of the 

column, 

• Yielding of tension steel close to the column, 

• Extension of flexural and shear cracks into the compression zone, 

• Failure due to rupture of the reduced compression zone. 

5.1 Testing Procedures 

Slab SB 1 was the first specimen to be tested. It served as a control specimen for this experimental 

program. SB 1 is typical of all six specimens. It was without openings or transverse reinforcement. 

All slabs were tested by displacement control. The displacement rate was chosen to approximately 

follow the required load steps: 4 kN/min until about 70% of the anticipated ultimate load, and 2 

kN/min from then on, until failure. While testing SB 1, the equipment experienced sudden (small) 

jumps in the loading, which did not significantly affect the results of the test. The malfunction was 

corrected for subsequent tests. Test time for SB 1 was 53 minutes. 

Slab SB2 was the first transversely reinforced specimen with two peripheral rows of shear bolt 

reinforcement. All shear bolts were torqued prior to commencing the test to a strain of within a 

range of 5 - 15 % of yield strain (180 - 300 microstrains (µe)). While testing SB2, the slab had to 

be unloaded and slowly reloaded four times. This was done because the load controller had to be re­

started after reaching its full range. The data between the drops in load was deleted from the load­

displacement graphs. Test time for SB2 was 230 minutes. 
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Slab SB3 was loaded by displacement control. SB3 had three peripheral lines of shear bolts. Test 

time for SB3 was 182 minutes. 

Slab SB4 had four peripheral lines of shear bolt reinforcement. 

Slab SB 5 had two openings symmetrically positioned next to the column. It was reinforced 

transversely with four peripheral lines of shear bolt reinforcement. At a load of 343 kN the 

hydraulic lines supplying the actuator lost pressure. The load dropped down to 118 kN before 

picking up again. The data between the drops in load have been deleted from that presented here. 

Test time for SB5 was 122 minutes. While testing SB5, no deflection reading was taken at the 

central bottom L VDT due to malfunction of the data acquisition system. 

SB6 had two openings on opposite sides of the column and was reinforced transversely with four 

peripheral lines of shear bolt reinforcement. At a load of 300 kN, the top displacement transducers 

were adjusted because the framing crossbars were in the way of the actuator and had been pushed 

down as the actuator went downwards. This somewhat affected the displacement readings taken 

from that point on. Test time for SB6 was 77 minutes. 

5.2 Test Observations 

5.2.1 Slab SBl 

Slab SBl failed in a sudden punching mode at a load of 253 kN. The load-displacement behavior 

(Figure B-1), flexural crack pattern and strain data (Figure B-3) all confirm this mode of failure. At 

failure, there was a complete loss of stiffness observed by the sudden drop in load. The data 

collected during testing for slab SBl is presented in Appendix B, Figures B-1 to B-3. 

Cracks were first noticed on the tension face of the slab along and perpendicular to the edges of the 

stub column. The flexural cracks became visible at about 126 kN starting from the column comers 

and extending a short distance towards the supports. At about 206 kN the flexural cracks had 

extended all the way to the supports. The crack patterns after failure for specimen SB 1 are shown in 

Figure 5-1. 
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An arrangement of displacement transducers was used for measuring deflections and estimating 

inclined shear cracking during the test. The arrangement was shown in Figure 3-18. A central 

L VDT placed at the center of the bottom column, data shown in Figure B-1 b, measured a maximum 

deflection of 10.4 mm. The value of 12 mm in Figure B-la includes the flexing of the frame and 

other errors. 

_I)isplasement~ were measured in pairs (top and bottom of the slab) at location 8, 9, 10. The 

difference in these displacements enabled the monitoring of the formation of inclined shear 

cracking. Figure B-2 shows a plot of load against the crack vertical width. A maximum crack width 

of 11.5 mm observed was at location 8 next to the column. After punching, the crack width 

increased to 15 mm. 

Strain measurements on longitudinal reinforcing steel was taken at different locations as shown in 

Figure 3-17. All strain gauges were placed on the tension reinforcement mat. "L" refers to lower 

layer and "U" refers to upper layer. First yielding occurred at 204.5 kN (81 % of ultimate load) at 

Strain Gauge L 7 in Figure B-3i. At Strain Gauges U6 and U7 yielding occurred at a load of 242 kN 

(95% of ultimate load) (Figure B-3g). Strain Gauges U4 and U5 in Figure B-3 show yielding in the 

longitudinal reinforcement after failure. No useful data was recorded at locations Ll, L2, L3, L4, LS 

and L6 for this specimen. 

Table 5-1: Longitudinal Reinforcement Strains at Ultimate Load of Slab SBl 

01 U2 U3 U4 us U6 U7 us L7 

Strain at 0.0015 0.0016 0.0015 0.002 0.002 0.002 0.002 0.001 0.002 
Ultimate 
Load 
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Figure 5-1: Crack Pattern after Failure of Specimen SB1 
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5.2.2 Slab SB2 

Slab SB2 failed in a punching mode at a load of 357.7 kN. The load-displacement graph (Figure B-

4 ), post failure crack pattern and strain measured on longitudinal reinforcement confirm this mode 

of failure. At failure there was a complete loss of stiffness observed by the sudden drop in load. 

However, though SB2 sustained a higher ultimate load and more deflection than SBl, it failed by 

punching outside of the shear reinforced zone. The data collected during testing for slab SB2 is 

presented as graphs in Appendix B, Figures B-4 to B-7. 

Cracks were first noticed at a load of 116 kN on the tension face of the slab. The first cracks were 

parallel to the colunm side between the first and second peripheral line of shear bolts. The flexural 

cracks became visible at about 125 kN starting from the colunms comers and extending a short 

distance towards the supports. At about 172 kN, the flexural cracks had extended all the way to the 

supports. Cracks were also observed, at failure, on the compression face (top) of the slab parallel to 

the comer restraints and offset by a distance of about 17-25 mm. 

Displacements were measured during testing. Inclined shear cracking width was also estimated by 

measuring displacements on the top and bottom of the slab. A central L VDT placed at the center of 

the bottom colunm (Figure B-5b) measured a maximum deflection of 17.2 mm at failure. The value 

of 28.7 mm in Figure B-4a includes the flexing of the frame and other errors. Figure B-5 shows a 

plot of load against the crack vertical width. The crack width was limited to 2.5 mm during the test. 

This value at location 10 furthest from the colunm may be due to failure of a shear bolt on the outer 

perimeter of the bolts. At the other locations (8 and 9) the crack width did not exceed 1 mm. 

First yielding of longitudinal reinforcement occurred at 166 kN (46% of ultimate load) at Strain 

Gauge L4 as seen in Figure B-6. Next, Strain Gauge Ll yielded at a load of 184 kN (51 % of 

ultimate load) as shown in Figure B-6, then U4 yielded at 186 kN (52% of ultimate load). L6, U3, 

L3, U2, LS, U7, US and Ul yielded subsequently at 197 kN (55% ultimate), 200 kN (56% 

ultimate), 209 kN (58% ultimate), 221 kN (62% ultimate), 252 kN (70% ultimate), 274 kN (77% 

ultimate), 277 kN (77% ultimate) and 300 kN (84% ultimate), respectively. 
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Figure 5-2: Crack Patterns after Failure of Specimen SB2 
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The strains at the strain gauge locations at failure load are shown in Table 5-2. For this specimen no 

data was collected at locations U6, U8, L2 and L 7 due to damaged strain gauges. 

Table 5-2: Longitudinal Reinforcement Strains at Ultimate Load of Slab SB2 

Ul U2 U3 us U7 Ll L3 L4 LS L6 

Failure 0.002 0.004 0.007 0.003 0.003 0.003 0.004 0.003 0.006 0.021 
Strain 

5.2.3 Slab SB3 

Slab SB3 failed at a load of 376 kN after considerable deflection. The final failure (loss of strength) 

happened through a punching cone. SB3 had three peripheral lines of shear bolts. The load­

displacement graph in Figure B-8, post failure crack patterns, and strains measured on longitudinal 

reinforcement confirm this mode of failure. At failure, there was a virtually complete loss of 

strength observed by the sudden drop in load. The data collected during testing for slab SB3 is 

presented as graphs in Appendix B, Figures B-8 to B-11. 

Cracks were first noticed at a load of 108 kN on the tension face of the slab. The flexural cracks 

became clearly visible at about 149 kN starting from the columns comers and extending a short 

distance towards the supports. At about 193 KN the flexural cracks had extended all the way to the 

supports. Final crack patterns are shown in Figure 5-3. Cracks were also observed, at failure, on the 

compression face (top) of the slab parallel to the comer restraints and offset at a distance of about 

15-20mm. 

A central L VDT placed at the center of the bottom column (Figure B-8b) measured a maximum 

deflection of 26 mm at failure. The value of 33 mm deflection in Figure B-8a includes the flexing of 

the frame and other errors. Figure B-9 shows a plot of load against the crack vertical width. Crack 

width was limited to about 1 mm at all three locations during testing. The difference between crack 

widths at locations 8, 9 and 10 monitored during testing was very small. 

Strain measurements on longitudinal reinforcing steel were done at different locations as shown in 

Figure 3-17. All strain gauges were placed on the tension mat. First yielding occurred at 194 kN 
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(52% of ultimate load) at Strain Gauge LI as seen in Figure B-10. Next Strain Gauge L2 yielded at 

a load of214 kN (57% of ultimate load) as shown in Figure B-!Oj, then U4 yielded at 

Top of Slab 

Figure 5.3: Crack Patterns after Failure of Specimen SB3 
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224 kN (60% of ultimate load). L3, U2, LS, U3, US, Ul, L6, US, U6, and U7 yielded subsequently, 

at 225 kN (60% ultimate), 226 kN (60% ultimate), 237 kN (63% ultimate), 238 kN (63% ultimate), 

245 kN (65% ultimate), 282 kN (75% ultimate), 282 kN (75% ultimate), 327 kN (87% ultimate), 

327 kN (87% ultimate) and 329 kN (87% ultimate) respectively. 

The strains at the respective monitoring locations at failure load are shown in Table 5-3. 

For this specimen no data was collected at locations L4 and L 7. 

Table 5-3: Longitudinal Reinforcement Strains at Ultimate Load of Slab SB3 

Ul U2 U3 U4 us U6 U7 us 
Failure 0.014 0.014 0.007 0.019 0.020 0.004 0.002 0.026 
Strain 

Ll L2 L3 LS L6 L7 

Failure 0.022 0.003 0.019 0.019 0.026 0.023 
Strain 

5.2.4 Slab SB 4 

Slab SB4 failed in a more ductile mode at a load of about 359.5 kN evidenced by the gradual loss of 

stiffness after the ultimate load. SB4 was reinforced with 4 peripheral lines of shear bolts. The data 

collected during testing for slab SB4 is presented as graphs in Appendix B, Figures B-12 to B-15. 

Cracks were first noticed at a load of about 125 kN on the tension face of the slab. The flexural 

cracks became clearly visible at about 132 kN. The more prominent one had formed between 

parallel peripheral rows of shear bolt. Subsequently at about 167 kN flexural cracks formed starting 

from the columns comers and extending a short distance towards the supports. At about 203 kN the 

flexural cracks were observed on all comers and had inched closer to the supports. At a load of 

about 321 kN there was widespread cracking noticeable all over the tension face of the slab. Cracks 

were also observed, at failure, on the compression face (top) of the slab parallel to the comer 

restraints and offset at a distance of about 15-20 mm. 



Chapter 5: Experimental Results and Observations 66 

Underside of Slab 

Figure 5-4: Crack Pattern after Failure of Specimen SB4 
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The LVDT placed at the center of the bottom column (Figure B-12b) measured a maximum 

deflection of 31 mm at ultimate load. Figure B-13 shows a plot of load against the crack vertical 

width. The crack widths at locations 8, 9, 10 were the same until about 175 kN. A maximum width 

of about 4 mm was observed at location 10. The lowest was at location 8. 

First yielding in the longitudinal reinforcement occurred at 182 kN (51 % of ultimate load) at Strain 

Gauge U7 as seen in Figure B-14. Next Strain Gauge U5 yielded at a load of 197 kN (55% of 

ultimate load) as shown in Figure B-14, then Ul yielded at 224 kN (62% of ultimate load). U6, L6, 

L4, Ll and LS yielded subsequently at 241 kN (67% ultimate), 242 kN (67% ultimate), 265 kN 

(74% ultimate), 270 kN (75% ultimate) and 284 kN (79% ultimate) respectively. There was no 

yielding at U4 and US. The strains at the strain gauge locations at ultimate load are shown in Table 

5-4. No data was collected at locations U2, U3, L2 and L3. 

Table 5-4: Longitudinal Reinforcement Strains at Ultimate Load of Slab SB4 

Ul U4 us U6 U7 us 
Failure 0.011 0.026 0.006 0.006 0.025 0.002 
Strain 

LI L4 LS L6 

Failure 0.003 0.026 0.020 0.018 
Strain 

5.2.5 Slab SB 5 

Slab SB5 failed in a ductile mode at a load of about 353 kN. At ultimate load, there was a 

constantly increasing deflection at constant load. This is typical of a flexural failure. Load­

Displacement graphs in Figure B-16, post failure crack pattern and strain measured on longitudinal 

reinforcement confirm a more ductile flexural failure mode. Data collected while testing slab SB5 

is presented as graphs in Figures B-16 to B-19. 

Cracks were first noticed at a load of about 125 kN on the tension face of the slab. At a load of 150 

kN cracks were noticed to be forming from the corners of openings around the columns. Flexural 
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cracks became visible at about 125 kN starting from the colunms and comers of the holes and 

extending a short distance towards the supports. At about 193.8 kN the flexural cracks were 

observed to be extending from the comers of the openings towards the edge of the slab. Inclined 

cracks became visible inside the openings at a load of about 299 kN. At a load of about 353 kN, 

there was a narrow punch perimeter indicating failure on the compression face of the slab roughly 

falling between the first and second peripheral lines of shear bolts around the openings. 

The maximum central displacement of this slab measured by an internal L VDT was 30.2 mm as 

shown in Figure B-16a. Figure B-17 show a plot of load against the crack vertical width. Crack 

width was limited to a low value of 2.5 mm at all three locations during the test. Location 8 had a 

slightly larger vertical crack width than the two other locations. 

First yielding in longitudinal reinforcement was noticed at 232 kN (65% of ultimate load) at Strain 

Gauge Ul as seen in Figure B-18a. Next Strain Gauge L3 yielded at a load of 236 kN (67% of 

ultimate load) as shown in Figure B-18h, then U4 yielded at 248 kN (70% of ultimate load). Ll, U2, 

U3, U7, L2 and LS yielded subsequently at 250 kN (71 % ultimate), 255 kN (72% ultimate), 269 kN 

(76% ultimate), 319 kN (90% ultimate), 323 kN (92% ultimate) and 343 kN (97% ultimate) 

respectively. Yielding was noticed after ultimate load at L4, L6 and L7. The strains at the strain 

gauge locations at ultimate load are shown in Table 5-5. For this specimen no data was collected at 

locations US, U6 and US. 

Table 5-5: Longitudinal Reinforcement Strains at Ultimate Load of Slab SBS 

Ul U2 U3 U4 U7 

Strain at 0.008 0.000 0.002 0.013 0.004 
Ultimate 
Load 

Ll L2 L3 LS L6 L7 

Strain at 0.015 0.000 0.001 0.003 0.000 0.000 
Ultimate 
Load 
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Figure 5-5: Crack Pattern after Failure of Specimen SB5 
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5.2.6 Slab SB 6 

Slab SB6 failed in a ductile flexural mode at a load of about 336 kN evidenced by the gradual loss 

of stiffness after the ultimate load and more intensive formation of cracks around the column as 

opposed to a punch through pattern on the tension face. SB6 was the most ductile of all slabs tested. 

Load-displacement graphs in Figure B-20, post failure crack patterns, and strains measured on 

longitudinal reinforcement all indicate a flexural failure mode. Data collected while testing slab 

SB6 is presented as graphs in Appendix B, Figures B-20 to B-23. 

Cracking was first noticed at a load of about 103 kN on the tension face of the slab. Flexural cracks 

were seen starting from the columns and corners of openings and extending a short distance towards 

the supports. At a load of 176 kN there was widespread cracking all over the tension face of this 

specimen. At about 250 KN the flexural cracks had extended almost all the way to the edges of the 

slab. At 336 kN, there was a failure evidenced by a narrow punch perimeter on the compression 

face of the slab almost coincident with the first peripheral line of studs. At failure the concrete 

closest to the column had disintegrated, had lost all strength and disintegrated exposing the 

longitudinal reinforcement towards the latter stages of the test. 

A central LVDT placed at the center of the bottom column (Figure B-20b) measured a maximum 

deflection of about 22 mm at ultimate load. The value of 26 mm in Figure B-20a is the 

displacement of the testing frame cross piece. Figure B-21 shows a plot of load against the crack 

vertical width. A maximum crack width of 10-15 mm was observed at location 9. Location 8 and 10 

had lower crack widths. 

First yielding of longitudinal reinforcement occurred at 244 kN (73% of ultimate load) at Strain 

Gauge L2 as seen in Figure B-22h. Next Strain Gauge L 7 yielded at a load of 250 kN (74% of 

ultimate load) as shown in Figure B-22m, US then yielded at 279 kN (83% of ultimate load). U4 

yielded subsequently at 303 kN (90% ultimate). Yielding occurred after ultimate load was reached 

at locations U3, U6, U7, Ll, L3, L4, LS and L6. No yielding was observed at UL The strains at the 

strain gauge locations at ultimate load 336 kN are shown in Table 5-6. For this specimen, because 

U2 and U8 were damaged, no data was collected at these locations. 
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Figure 5-6: Crack Pattern after Failure of Specimen SB6 
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Table 5-6: Longitudinal Reinforcement Strains at Ultimate Load of Slab SB6 

Ul U3 U4 us U6 U7 Ll L2 

Strain at 0 0 0.012 0.005 0.001 0 0.001 0.003 
Ultimate 
Load 

L3 L4 LS L6 L7 

Strain at 0.001 0.001 0.001 0.001 0.001 
Ultimate 
Load 

It is important to note that the diameter and thickness of washers used as anchors on the threaded 

end of the shear bolts appeared to influence the distribution of cracking at the connection. Though 

varying sizes of washers was not investigated, it was observed that smaller (thickness and diameter) 

washers resulted in more cracking around the bolts and a slightly lower ultimate load at the 

connection. It may be that smaller size washers prevent the attainment of the yield strength of the 

bolts before crushing of the concrete. 



Chapter6 

Analysis of Experimental Results 

This chapter summarises and analyses the relevant data collected from the slab tests carried out. 

Inferences are drawn and comparisons made to values predicted from empirical and analytical 

equations presented in Chapter 2. 

The data is analysed based on the crack pattern, deflection behaviour, stiffness, ductility and strain. 

The crack patterns at failure for the specimens tested were presented in Chapter 5. These patterns 

sometimes reflect the mode of failure. 

6.1 Comparison of Various Code Predictions and Theoretical Analysis 

The provisions from the codes of practice have been compared to the empirical failure loads in 

Table 6-1: Test Specimens, Code Predictions and Experimental results 

= § 
SBl SB2 SB3 SB4 SB5 SB6 

"'·-8 1a. Rows of shear 0 2 3 4 4 4 ·o ·c 
"' " bolts "' "' [JJ "' Noof i::i 0 0 0 0 4 2 

Openines 

;,, Eurocode 159 259 324 375 299 337 
.Q "' 
.0 ~ 164 250 305 360 ·- ·- Model Code 345 373 " -" " "' " " ... ui,.. 

AC! 181 309 309 309 282 295 
"' ... "' 

" 0 ]U 
CSA 220 361 321 380 334 358 

[JJ 

Yield- Flexural 362 362 362 362 362 362 
Line Canacitv 

s Failure Load P 253 358 376 360 353 336 = "' 23 
8 -·- - = ... if! 
~ ~ Failure Mode Punching Punching Punching/ Flexure Flexure Flexure 

&1 Flexure 
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Table 6-1. Summarised in the table are the shear resistances of the specimens tested in this program. 

6.2 Stiffness and Ductility 

It has been previously noted in literature that ductility can be defined as the ratio of the ultimate 

deflection to the deflection at first yield (Marzouk and Hussein, 1991). Table 6-2 lists the ductility 

of the various specimens tested. 

The stiffness has been defined as the slope of the load deflection curve for a typical slab-column 

specimen (Marzouk and Hussein, 1991). Also listed in Table 6-2 is the stiffnessµ, of the various 

specimens tested. 

Table 6-2: Stiffness, Displacement and Ductility 

Stiffness Ultimate Displacement Ductility 
µ Displacement at 151 yield 

(kN/mm) (mm) (mm) (mm/mm) 

SBl 19.1 10.4 7.7 1.4 

SB2 20.6 17.2 9.0 1.8 

SB3 24.0 25.9 12.0 2.2 

SB4 26.7 33.0 10.0 3.9 

SBS 22.5 30.l 11.9 2.5 

SB6 22.4 22.0 10.3 2.1 

6.3 Deflections 

As shown in Table 6-2, there was significant improvement in the maximum deflection recorded for 

slabs with shear bolts before failure than for the control specimen without shear bolts. Also, in slabs 

with four or three peripheral lines of shear bolts more deflections were observed than in the slab 

with only two rows or the slab without shear bolt reinforcement. 
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Figures 6-1 to 6-4 show the deflections for all slabs measured at the locations indicated and 

previously described in Chapter 3. Unless otherwise specified, the measurements are from the 

bottom LVDT's. In Figure 6-1, the deflection SBl has been shifted by 2.5 mm. The LVDT did not 

record any deflection until the load of 80kN. Therefore, the displacement at this load was estimated 

as approximately 2.5 mm and the deflection data was shifted accordingly. 

6.4 Strains in Longitudinal reinforcement 

The strains in the longitudinal reinforcement showed some variation in the location at which first 

yield occurred. Table 6-3 shows the locations with respect to Figure 3-17. The loads at which 

yielding in the longitudinal reinforcement was first observed is also shown, as well as the other 

strain gauge location at which yielding was observed at ultimate load. Figure 6-5 shows the strains 

at the L VDT L6 location. 

The load at which first yielding occurs is an indicator of the stiffness of the specimen. Also, the 

strain at first yield is an indicator of the ductility of the specimen being tested. 

Table 6-3: Test Results: Yielding of Longitudinal Reinforcement 

Specimen Failure Mode Load at 1" Location of Yielding at 
Load Yield first Yield Failure 
(kN) (kN) 

SBl 253 Punching 204 L7 U6, U7 

SB2 358 Punching 166 L4 Ll,U4,L6,U3,L3, 
U2,LS,U7,US 

SB3 376 Flexure/ 194 LI L2,U4,L3,U2,LS, 
Punching U3,U8,L6,U6,U7 

SB4 360 Flexure 182 U7 US,Ul,U6,L6, 
L4,Ll,LS 

SBS 353 Flexure 232 Ul L3,U4,U3,U7 ,L2 
,LS 

SB6 336 Flexure 250 L7 L2,US,U4 
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6.5 Strains in Shear Bolts 
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For all the slabs tested, strains were larger at the strain gauges closer to the column. Figures 6-7 to 

6-11 show the profile of strain in the Shear Bolts relative to their distance from the column as 

shown in Figure 6-6. Since individual shear bolts are installed in this method, it may be advisable to 

make use of steel with a bigger cross section or yield strength on the peripheral row closer to the 

column. Figure 6-11, showing strains for slab SB6 indicates some discrepancy with data 

acquisition. The strains at position I have been ignored. 

1 2 3 4 

Figure 6-6: Position of Shear Bolts in Figure 6· 7 to 6-11 
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Figure 6-10: Bolt Strain Relative to Distance from the Column of Specimen SBS 
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Figure 6-11: Bolt Strain Relative to Distance from the Column of Specimen SB6 

6.6 Effectiveness of Shear Bolts in Reducing Crack Width 

81 

Cracks were monitored as described in Section 3.5.2. Shear bolts effectively prevented propagation 

of shear cracking in slabs reinforced with shear bolts. Table 6-4 gives a comparison of the shear 

crack width for the control specimen and the other specimens with transverse shear reinforcement. 

Figure 6-12 is a graph of the crack widths for SBl. 

Table 6-4: Maximum Crack Widths 

Specimens Maximum Observed 
Crack Width 

SBl 10-12 mm 

SB2 <2.5 mm 

SB3 <2.5 mm 

SB4 <2.5 mm 

SB5 1.5-2.0 mm 

SB6 -



Chapter 6: Analysis of Experimental Results 82 

300 ---------- ------------------~ 

0-1--------------------------; 
0 2 4 6 8 10 12 14 

Crack Width (mm) 

Figure 6-12: Load vs Vertical Crack Width of Specimen SBl 



Chapter7 

Conclusions and Recommendations 

The feasibility and effectiveness of using shear bolt as a new method of transverse reinforcement 

has been examined in this research program. While previous research (El-Salakawy, 2003) had 

verified the feasibility of the use, this program was focused on determining the behavior of an 

interior slab-column connection when reinforced transversely with shear bolts. 

7 .1 Conclusions 

The data collected during testing and other visual observations made, as described in this thesis, 

resulted in the following inferences: 

• The experimental setup and procedures that were adopted for testing the interior slab-column 

connections subjected to pure axial load is practical. Throughout the course of testing, there 

were no major failures or malfunction of equipment. The procedures gave results very 

consistent with predictions. The results collected for the specimens showed very little 

deviations. 

• Shear bolts are effective in preventing punching shear failure in slab-column interior 

connections. 

• The use of shear bolts as transverse reinforcement allowed the slab-column connection to attain 

flexural capacity and increased the ductility of the connection. 

• Shear bolts are effective in enhancing the strength of a slab-column connection that has been 

subjected to a reduction in strength due to construction of openings and ducts after a structure 

has been built. Specimens SB5 and SB6 both failed in flexural mode. 

• It was observed that the diameter of the washers (which serve as anchor plates) had an effect on 

the ultimate strength of the connections by affecting the ability of the shear bolt to attain yield 

before failure at the connection. 
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7.2 Recommendations 

• Further testing should be carried out to collect more information on the use of shear bolts as 

transverse reinforcement. Different configurations and varied number of studs per peripheral 

row may be tested to provide more data. 

• Further testing should also consider reversed cyclic loading in order to establish the 

effectiveness of the shear bolt in providing ductility in seismic zones. 

• In future testing, code of practice requirements with regards to the minimum distance of the 

first row of bolts from the column ( d/2), and the maximum spacing between rows of transverse 

reinforcement should be followed. If possible code of practice requirements for shear studs 

should be adopted for shear bolts pending additional testing to determine specific requirements 

for shear bolts. 

• Design procedures for shear bolts should be developed. This should include size of bolt, size of 

the head, size of the opening drilled in the slab and layout of the shear bolts around the column. 

• In future tests, the edge hold down system should have a uniform specified torque. This is to 

avoid inconsistencies that may have arisen from different degrees of tightening. 
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Elastic Frame Analysis in SODA® 

A.1 Input File 

************************************************************************* 
I N P U T DAT A E C H 0 

************************************************************************* 

PROJECT TITLE 
Continuous Slab System Design 

PROJECT DESCRIPTION 
2-d elastic frame analysis according to CSA A23.3-94. 
The continuous slab system consists of 5 spans·in one direction and infinite 
number of spans in the other direction. 

GENERAL DATA 
Dimension 

2-D 

Analysis 

First Order 

STRUCTURE DATA 
Members 

51 

NODE DATA 
Node Name 

1 xOyO 
2 x3y0 
3 x6y0 
4 x9y0 
5 x12y0 
6 x15y0 
7 xOyl 
8 x0y2 
9 x0y4 
10 x0y5 
11 x0y6 
12 xly3 
13 x2y3 
14 x3yl 
15 x3y2 
16 x3y3 
17 x3y4 
18 x9yl 

Structure Action Design Code Output 

Normal 

Units 

Frame 

Sway 

Groups 

4 

Analysis 

Database 

None 

Nodes 

52 

X-Coordinate 
(m) 

Y-Coordinate 
(m ) 

0 0 
3.75 0 
7.5 0 
11.25 0 
15 0 
18.75 0 
0 0.06 
0 2.64 
0 2.76 
0 5.34 
0 5.4 
0.075 2.7 
3.675 2.7 
3.75 0.06 
3.75 2.64 
3.75 2.7 
3.75 2.76 
11.25 0.06 

85 

kN;m 

Foreign Sections 

Not Included 

Load Cases 

1 

Support Type 

Fixed 
Fixed 
Fixed 
Fixed 
Fixed 
Fixed 

Fixed 

Supports 

12 
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19 x9y2 11. 25 2.64 
20 x9y4 11. 25 2.76 
21 x9y5 11.25 5.34 
22 x9y6 11. 25 5.4 Fixed 
23 xl0y3 11. 325 2.7 
24 xlly3 14. 925 2.7 
25 xl2y3 15 2.7 
26 xl2yl 15 0.06 
27 xl2y2 15 2.64 
28 xl2y4 15 2.76 
29 xl2y5 15 5.34 
30 xl2y6 15 5.4 Fixed 
31 xl3y3 15.075 2.7 
32 xl4y3 18.675 2.7 
33 xl5y3 18.75 2.7 
34 xl5yl 18.75 0.06 
35 xl5y2 18.75 2.64 
36 xl5y4 18.75 2.76 
37 xl5y5 18.75 5.34 
38 xl5y6 18. 75 5.4 Fixed 
39 x0y3 0 2.7 
40 x3y5 3.75 5.34 
41 x3y6 3.75 5.4 Fixed 
42 x4y3 3.825 2.7 
43 x6y3 7.5 2.7 
44 x6yl 7.5 0.06 
45 x6y2 7.5 2.64 
46 x6y4 7.5 2.76 
47 x6y5 7.5 5.34 
48 x6y6 7.5 5.4 Fixed 
49 x7y3 7.56 2.7 
50 x8y3 11.175 2.7 
51 x9y3 11.25 2.7 
52 x5y3 7.425 2.7 

GROUP ANALYSIS DATA 
Group Shape X-Section Young's Shear X-Sect. Moment of 
Name File Designation Modulus Modulus Area Inertia 

(MPa) (MPa) (mm) 2 (mm) 4 
-----------------------------------------------------------------------

1 slab <None> <Unkown> 26622 77000 450000 5.4e+008 
2 column <None> <Unkown> 26622 77000 22500 
4.219e+007 
3 infinite <None> <Unkown> 26622 77000 9e+006 le+Oll 
4 sconn <None> <Unkown> 26622 77000 450000 5.86e+008 

MEMBER DATA 
Member Start End Joint Beta Length Factors Group 
Name Node Node Type Angle Kx Ky Bt Bb Name 

1 xOml xOyO xOyl +---+ 0 infinite 
2 x0m2 xOyl x0y2 +---+ 0 column 
3 x0m3 x0y2 x0y3 +---+ 0 infinite 
4 x0m4 x0y3 x0y4 +---+ 0 infinite 
5 x0m5 x0y4 x0y5 +---+ 0 column 
6 x0m6 x0y5 x0y6 +---+ 0 infinite 
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7 mly3 x0y3 xly3 +---+ 0 sconn 
8 m2y3 xly3 x2y3 +---+ 0 slab 
9 m3y3 x2y3 x3y3 +---+ 0 sconn 
10 m4y3 x3y3 x4y3 +---+ 0 sconn 
11 x3m3 x3y2 x3y3 +---+ 0 infinite 
12 x3m4 x3y3 x3y4 +---+ 0 infinite 
13 x3m5 x3y4 x3y5 +·---+ 0 column 
14 x3m6 x3y5 x3y6 +---+ 0 infinite 
15 x6ml x6y0 x6yl +---+ 0 infinite 
16 x6m2 x6yl x6y2 +---+ 0 column 
17 x6m3 x6y2 x6y3 +---+ 0 infinite 
18 x6m4 x6y3 x6y4 +---+ 0 infinite 
19 x6m6 x6y5 x6y6 +---+ 0 infinite 
20 x6m5 x6y4 x6y5 +---+ 0 column 
21 x9ml x9y0 x9yl +---+ 0 infinite 
22 x9m2 x9yl x9y2 +---+ 0 column 
23 x9m3 x9y2 x9y3 +---+ 0 infinite 
24 x9m4 x9y3 x9y4 +---+ 0 infinite 
25 x9m5 x9y4 x9y5 +---+ 0 column 
26 x9m6 x9y5 x9y6 +---+ 0 infinite 
27 x12ml xl2y0 x12yl +---+ 0 infinite 
28 x12m2 x12yl x12y2 +---+ 0 column 
29 x12m3 xl2y2 x12y3 +---+ 0 infinite 
30 xl2m4 xl2y3 x12y4 +---+ 0 infinite 
31 x12m5 x12y4 x12y5 +---+ 0 column 
32 xl2m6 xl2y5 x12y6 +---+ 0 infinite 
33 xl5ml x15y0 x15yl +---+ 0 infinite 
34 xl5m2 x15yl x15y2 +---+ 0 column 
35 x15m3 x15y2 x15y3 +---+ 0 infinite 
36 x15m4 xl5y3 x15y4 +---+ 0 infinite 
37 x15m5 x15y4 x15y5 +---+ 0 column 
38 x15m6 xl5y5 x15y6 +---+ 0 infinite 
39 m5y3 x4y3 x5y3 +---+ 0 slab 
40 m6y3 x5y3 x6y3 +---+ 0 sconn 
41 m7y3 x6y2 x7y3 +---+ 0 sconn 
42 m9y3 x8y3 x9y3 +---+ 0 sconn 
43 ml0y3 x9y3 x10y3 +---+ 0 sconn 
44 m8y3 x7y3 x8y3 +---+ 0 slab 
45 mlly3 xl0y3 xlly3 +---+ 0 slab 
46 m12y3 xlly3 x12y3 +---+ 0 sconn 
47 ml3y3 x12y3 x13y3 +---+ 0 sconn 
48 m14y3 x13y3 x14y3 +---+ 0 slab 
49 m15y3 x14y3 x15y3 +---+ 0 sconn 
50 x3ml x3y0 x3yl +---+ 0 infinite 
51 x3m2 x3yl x3y2 +---+ 0 column 

LOAD NAME DATA 
Member Load: udl 
Member w@Start Start w@Finish Finish Orient- Load Type 
Name (kN Im ) (L/100) (kN /m ) (L/100) ation 

-----------------------------------------------------------------------
1 m2y3 -69.4 0 -69.4 1 y FULL UNIDL 
2 m10y3 -69.4 0 -69.4 1 y FULL UNIDL 
3 mlly3 -69.4 0 -69.4 1 y FULL UNIDL 
4 ml2y3 -69.4 0 -69.4 1 y FULL UNIDL 
5 ml3y3 -69.4 0 -69.4 1 y FULL UNIDL 



Appendix A: Elastic Frame Analysis 88 

6 m14y3 -69.4 0 -69.4 1 y FULL UNIDL 
7 m15y3 -69.4 0 -69.4 1 y FULL UNIDL 
8 mly3 -69.4 0 -69.4 1 y FULL UNIDL 
9 m3y3 -69.4 0 -69.4 1 y FULL UNIDL 
10 m4y3 -69.4 0 -69.4 1 y FULL UNIDL 
11 m5y3 -69.4 0 -69.4 1 y FULL UNIDL 
12 m6y3 -69.4 0 -69.4 1 y FULL UNIDL 
13 m7y3 -69.4 0 -69.4 1 y FULL UNIDL 
14 m8y3 -69.4 0 -69.4 1 y FULL UNIDL 
15 m9y3 -69.4 0 -69.4 1 y FULL UNIDL 

LOAD COMBINATIONS 

L o a d C o m b ination 1 
===========---=-------------------------=----==---=---------====-======== 

unfactored 

Member Load: 'udl' with a Load Factor of 1 

A.2 Analysis Printout 

************************************************************************** 
ANALYSIS RESULTS 

************************************************************************** 
P-Delta Effects: not included 

Loads applied to SUPPORTS are ignored in Analysis and Design calculations. 

Sign Convention 
=========:::;;:;::;::;::;::::;; 

Unless noted otherwise, the Right-Hand-Screw Rule applies. 

REACTIONS & DISPLACEMENTS are with respect to the GLOBAL Axis 
y 

I 
z 

I 
J_x 

y 
MEMBER-END FORCES are with respect to the LOCAL Axis J x 

J/_z 

Positive Moment= tension on 11 top 11 face of member (the positive 
local y-axis projects from the top face). 

Positive Shear= member-end shear is in the same direction as 
the positive local y-axis. 

Axial Tension = negative axial force@ i-node, positive@ j-node. 

M-stg. : bending moment about the strong (x-x) axis. 
v-stg. : shear related to bending about the strong (x-x) axis. 
M-weak: bending moment about the weak (y-y) axis. 
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V-weak; shear related to bending about the weak (y-y) axis. 
Torque torsion about the longitudinal (z-z) axis. 

Max.Span Moments: location is given as distance from i-node. 

89 

======-====--============-==----------------=--=--=====================---
L o a d C o m b i n a t i o n # 1 of 1 

Title: unfactored 

M e m b e r - E n d Forces (w.r.t. local member axes) 

Member 
Name 

xOml 

x0m2 

x0m3 

x0m4 

x0m5 

x0m6 

mly3 

m2y3 

m3y3 

m4y3 

x3m3 

x3m4 

x3m5 

x3m6 

x6ml 

x6m2 

x6m3 

x6m4 

x6m6 

x6m5 

x9ml 

Node 
Name 

xOyO 
xOyl 
xOyl 
x0y2 
x0y2 
x0y3 
x0y3 
x0y4 
x0y4 
x0y5 
x0y5 
x0y6 
x0y3 
xly3 
xly3 
x2y3 
x2y3 
x3y3 
x3y3 
x4y3 
x3y2 
x3y3 
x3y3 
x3y4 
x3y4 
x3y5 
x3y5 
x3y6 
x6y0 
x6yl 
x6yl 
x6y2 
x6y2 
x6y3 
x6y3 
x6y4 
x6y5 
x6y6 
x6y4 
x6y5 
x9y0 

axial 
[kNl 

54.177 
-54.177 
54.177 

-54.177 
54 .177 

-54.177 
-54.177 
54.177 

-54.177 
54.177 

-54.177 
54 .177 

.009 
-.009 

.009 
-.009 

.009 
-.009 

.018 
-.018 

143.458 
-143.458 
-143.458 

143.458 
-143.458 
143.458 

-143.458 
143.458 
127.519 

-127.519 
127.519 

-127.519 
-2.283 
2.283 

-127.512 
127.512 

-127.512 
127.512 

-127.512 
127.512 
128.001 

shear 
[kNl 

-5.081 
5.081 

-5.081 
5.081 

-5.081 
5.081 

-5.072 
5.072 

-5.072 
5. 072 

-5. 072 
5.072 

108.355 
-103.150 
103.150 
146.690 

-146.690 
151.895 
135. 021 

-129.816 
1.128 

-1.128 
1.137 

-1.137 
1.137 

-1.137 
1.137 

-1.137 
-.262 

.262 
-.262 

.262 
-.233 

.233 
-.251 

.251 
-.251 

.251 
-.251 

.251 

.336 

moment 
[kN-ml 

-4. 773 
-4.468 
-4.468 
8.640 
8.640 
8.936 

-9.278 
-8.628 
-8.628 

4.457 
4.457 
4.761 

18.215 
10.282 
10.282 
88.655 
88.655 
99.852 
95.788 
85.857 
-1.920 
-1.986 
2. 078 
1. 932 
1. 932 

-1.001 
-1.001 
-1. 070 
-.248 
-.232 
-.232 

.444 
-77.903 
-77.889 

-.462 
-.429 

.219 

.234 
-.429 

.219 

. 317 

Max_Span_Moment LC 
& Location # 

18.215 
.00 [ml 

-66.374 
1. 49 [ml 

99.852 
.08 [ml 

95.788 
.00 [ml 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 
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x9yl -128.001 -.336 .297 

x9m2 x9yl 128.001 .336 .297 1 

x9y2 -128.001 -.336 -.569 

x9m3 x9y2 128.001 .336 -.569 1 

x9y3 -128.001 -.336 -.589 
x9m4 x9y3 -128.001 .326 .599 1 

x9y4 128.001 -.326 .556 

x9m5 x9y4 -128.001 .326 .556 1 

x9y5 128.001 -.326 -.285 

x9m6 x9y5 -128.001 .326 -.285 1 

x9y6 128.001 - . 326 -.304 

x12ml x12y0 143.265 -1.146 -1. 074 1 

x12yl -143.265 1.146 -1.005 

x12m2 x12yl 143.265 -1.146 -1.005 1 

x12y2 -143.265 1.146 1. 951 

x12m3 x12y2 143.265 -1.146 1. 951 1 

x12y3 -143.265 1.146 2.018 

x12m4 x12y3 -143.265 -1.155 -2 .111 1 

x12y4 143.265 1.155 -1.963 

x12m5 x12y4 -143.265 -1.155 -1.963 1 

x12y5 143.265 1.155 1. 018 

x12m6 x12y5 -143.265 -1.155 1. 018 1 

x12y6 143.265 1.155 1. 087 

x15ml x15y0 54.208 5.088 4.780 1 

x15yl -54.208 -5.088 4 .475 

x15m2 x15yl 54.208 5.088 4.475 1 

x15y2 -54.208 -5.088 -8.652 

x15m3 x15y2 54.208 5.088 -8.652 1 

x15y3 -54.208 -5.088 -8.949 

x15m4 x15y3 -54.208 5.078 9.290 1 

x15y4 54.208 -5.078 8.639 

x15m5 x15y4 -54.208 5. 078 8.639 1 

x15y5 54.208 -5.078 -4.462 

x15m6 x15y5 -54.208 5.078 -4.462 1 

x1Sy6 54.208 -5. 078 -4.767 

m5y3 x4y3 .018 129.816 85.857 -35.557 1 

x5y3 -.018 120.024 68.231 1.87 [ml 

m6y3 x5y3 .018 -120.024 68.231 77.428 1 

x6y3 -.018 125.229 77.428 .08 [ml 

m7y3 x6y2 91.805 91. 763 78.347 78.347 1 

x7y3 -88.860 -88.818 70.686 .00 [ml 

m9y3 x8y3 .029 -125. 243 69.973 79.561 1 

x9y3 -.029 130.448 79.561 .08 [ml 

m10y3 x9y3 .019 125.553 78.374 78.374 1 

x10y3 -.019 -120.348 69.153 .00 [ml 

m8y3 x7y3 .029 125.638 70.686 -43.038 1 

x8y3 -.029 125.243 69.973 1.81 [ml 

mlly3 x10y3 .019 120.348 69.153 -35.197 1 

xlly3 -.019 129. 492 85. 611 1. 73 [ml 

m12y3 xlly3 .019 -129.492 85.611 95.518 1 

x12y3 -.019 134. 697 95.518 .08 [ml 

m13y3 x12y3 .010 151. 834 99.646 99.646 1 

x13y3 - . 010 -146.629 88.454 .00 [ml 

m14y3 x13y3 .010 146.629 88.454 -66.445 1 

x14y3 - .010 103. 211 10.303 2 .11 [ml 

m15y3 x14y3 .010 -103. 211 10.303 18.239 1 
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x3rnl 

x3rn2 

x15y3 
x3y0 
x3yl 
x3yl 
x3y2 

-.010 
143.458 

-143.458 
143.458 

-143.458 

D i s p 1 a c e rn e n t s 

108.416 
1.128 

-1.128 
1.128 

-1.128 

& 

18.239 
1.057 

.990 

.990 
-1.920 

. 08 (ml 
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1 

1 

S u p p o r t R e a c t i o n s 

--------------------------------------------------------------------------
Node 
Name 

disp-X 
[mm] 

disp-Y 
[mm] 

rotn-Z 
[rad] 

force-X 
[kNJ 

force-Y 
[kN] 

rnornent-Z LC 
[kN-rn] # 

--------------------------------------------------------------------------
xOyO 
x3y0 
x6y0 
x9y0 
x12y0 
x15y0 
xOyl 
x0y2 
x0y4 
x0y5 
x0y6 
xly3 
x2y3 
x3yl 
x3y2 
x3y3 
x3y4 
x9yl 
x9y2 
x9y4 
x9y5 
x9y6 
x10y3 
xlly3 
x12y3 
x12yl 
x12y2 
x12y4 
x12y5 
x12y6 
x13y3 
x14y3 
x15y3 
x15yl 
x15y2 
x15y4 
x15y5 
x15y6 
x0y3 
x3y5 
x3y6 
x4y3 
x6y3 
x6yl 
x6y2 

.0000 

.0000 

.0000 

.0000 

.0000 

.0000 

.0000 
-.2932 

.2817 

.0000 

.0000 
-.0058 
-.0058 

.0000 

.0584 
-.0058 
-.0699 

.0000 

.0249 
-.0126 

.0000 

.0000 

.0062 

.0062 

.0062 

.0000 
-.0590 

. 0713 

.0000 

.0000 

.0062 

.0062 

.0062 

.0000 

.2940 
-.2817 

.0000 

.0000 
-.0058 

.0000 

.0000 
-.0058 
-.0058 

.0000 
-.0203 

.0000 

.0000 

.0000 

.0000 

.0000 

.0000 

.0000 
-.2334 
-.2334 

.0000 

.0000 
-.5955 
- . 7155 

.0000 
-.6179 
-.6180 
-.6179 

.0000 
-.5514 
-.5514 

.0000 

.0000 
-.5415 
-.5523 
- . 6171 

.0000 
- . 6171 
- . 6171 

.0000 

.0000 
-.7159 
-.5961 
-.2335 

.0000 
-.2335 
-.2335 

.0000 

.0000 
-.2334 

.0000 

.0000 
-.5545 
-.5493 

.0000 
-.5493 

.0000 

.0000 

.0000 

.0000 

.0000 

.0000 

.0000 
-.0048 
-.0048 

.0000 

.0000 
-.0049 

.0015 

.0000 

. 0011 

. 0011 

. 0011 

.0000 

.0003 

.0003 

.0000 

.0000 

.0000 
-.0007 
- . 0011 

.0000 
-.0011 
- . 0011 

.0000 

.0000 
-.0015 

.0049 

.0048 

.0000 

.0048 

.0048 

.0000 

.0000 
-.0048 

.0000 

.0000 

.0006 
-.0002 

.0000 
-.0002 

5.08 
-1.13 

.26 
-.34 
1.15 

-5.09 

-5.07 

.33 

-1.16 

5.08 

1.14 

54.18 
143.46 
127.52 
128.00 
143.27 

54.21 

54.18 

128.00 

143.27 

54.21 

143.46 

-4.773 1 
1. 057 1 
-.248 1 

.317 1 
-1. 074 1 

4.780 1 
1 
1 
1 
1 

-4.761 1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

.304 1 
1 
1 
1 
1 
1 
1 
1 

-1. 087 1 
1 
1 
1 
1 
1 
1 
1 

4.767 1 
1 
1 

1. 070 1 
1 
1 
1 
1 
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x6y4 
x6y5 
x6y6 
x7y3 
x8y3 
x9y3 
x5y3 

.0087 

.0000 

.0000 

.0062 

.0062 

.0062 
-.0058 

- . 5493 
.0000 
.0000 

-.5767 
-.5886 
-.5514 
-.5446 

-.0002 
.0000 
.0000 

-.0006 
.0007 
.0003 
.0001 

-.25 127.51 

92 

1 
1 

-.234 1 
1 
1 
l 
1 
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--------------------------------------------------------------------------
MAXIMUM Member - End Forces (w.r.t. local member axes) 

Member 
Name 

xOml 
x0m2 
x0m3 
x0m4 
x0m5 
x0m6 
mly3 
m2y3 
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m4y3 
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x3m5 
x3m6 
x6ml 
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x9m6 
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xl2m2 
xl2m3 
xl2m4 
xl2m5 

tension 
[kN] (LC) 

• 0 ( 0) 
. 0 ( 0) 
. 0 ( 0) 

54 .2 ( 1) 
54 .2 ( 1) 
54 .2 ( 1) 

. 0 ( 0) 

. 0 ( 0) 
• 0 ( 0) 
• 0 ( 0) 
• 0 ( 0) 

143.5 ( 1) 
143.5 ( 1) 
143. 5 ( 1) 

. 0 ( 0) 

. 0 ( 0) 
2. 3 ( 1) 
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. 0 ( 0) 

. 0 ( 0) 

. 0 ( 0) 
128.0 ( 1) 
128.0 ( 1) 
128.0 ( 1) 

• 0 ( 0) 
. 0 ( 0) 
. 0 ( 0) 

143. 3 ( 1) 
143. 3 ( 1) 

comp 1 n 
[kNJ (LC) 

-54.2 ( 1) 
-54.2 ( 1) 
-54.2 ( 1) 

. 0 ( 0) 

. 0 ( 0) 

. 0 ( 0) 

. 0 ( 1) 

. 0 ( 1) 

. 0 ( 1) 

. 0 ( 1) 
-143.5 ( 1) 
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-143.3 ( 1) 

. 0 ( 0) 

. 0 ( 0) 

shear end-moment 
[kN] (LC) [kN-m] (LC) 

5 .1 ( 1) 
5 .1 ( 1) 
5.1 ( 1) 
5 .1 ( 1) 
5 .1 ( 1) 
5 .1 ( 1) 

108.4 ( 1) 
146.7 ( 1) 
151.9 ( 1) 
135.0 ( 1) 

1.1 ( 1) 
1.1 ( 1) 
1.1 ( 1) 
1.1 ( 1) 

.3 ( 1) 

.3 ( 1) 

.2 ( 1) 

. 3 ( 1) 

.3 ( 1) 

.3 ( 1) 

. 3 ( 1) 

. 3 ( 1) 

. 3 ( 1) 

.3 ( 1) 

. 3 ( 1) 

.3 ( 1) 
1.1 ( 1) 

1.1 ( 1) 
1.1 ( 1) 
1.2 ( 1) 
1.2 ( 1) 

4.8 ( 1) 
8. 6 ( 1) 
8. 9 ( 1) 
9. 3 ( 1) 
8.6 ( 1) 
4. 8 ( 1) 

18 .2 ( 1) 
88. 7 ( 1) 
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2 .1 ( 1) 
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2.0 ( 1) 
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x12rn6 143.3 ( 1) .0 ( 0) 1.2 1) 1.1 1) 

x15rnl .0 ( 0) -54.2 ( 1) 5.1 1) 4.8 1) 

x15rn2 .0 ( 0) -54.2 ( 1) 5.1 1) 8.7 1) 

x15rn3 .0 ( 0) -54.2 ( 1) 5.1 1) 8.9 1) 

x15rn4 54.2 ( 1) . 0 ( 0) 5.1 1) 9.3 1) 

x15rn5 54.2 ( 1) .o ( 0) 5.1 1) 8.6 1) 

x15rn6 54.2 ( 1) .0 ( 0) 5.1 1) 4.8 1) 

rn5y3 . 0 ( 0) .0 ( 1) 129.8 1) 85.9 1) 

rn6y3 .0 ( 0) .0 ( 1) 125.2 1) 77.4 1) 

rn7y3 . 0 ( 0) -91.8 ( 1) 91. 8 1) 78.3 1) 

rn9y3 . 0 ( 0) . 0 ( 1) 130.4 1) 79.6 1) 

rn10y3 . 0 ( 0) . 0 ( 1) 125.6 1) 78.4 1) 

rn8y3 . 0 ( 0) . 0 ( 1) 125.6 1) 70.7 1) 

rnlly3 . 0 ( 0) . 0 ( 1) 129.5 1) 85.6 1) 

rn12y3 . 0 ( 0) .0 ( 1) 134. 7 1) 95.5 1) 

rn13y3 . 0 ( 0) .0 ( 1) 151.8 1) 99.6 1) 

rn14y3 . 0 ( 0) .0 ( 1) 146.6 1) 88.5 1) 

rn15y3 . 0 ( 0) .0 ( 1) 108.4 1) 18.2 1) 

x3rnl . 0 ( 0) -143.5 ( 1) 1.1 1) 1.1 1) 

x3rn2 . 0 ( 0) -143.5 ( 1) 1.1 1) 1.9 1) 



A.3 Node Labels in Elastic Frame Model 
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A.4 Member Labels in Elastic Frame Model 
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Figure B-2: Load vs Vertical Crack Width of Specimen SBl 

Note: * see Figure 3-18 
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Note: * see Figure 3-18 
Crack width was obtained as the absolute difference between L VDT at top and bottom. 
Negative crack width may be due to instrumentation noise. 
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Figure B-6: Load-Longitudinal Reinforcement Strain Graphs of Specimen SB2 
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Crack width was obtained as the absolute difference between L VDT at top and bottom. 
Negative crack width may be due to instrumentation noise. 
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Crack width was obtained as the absolute difference between L VDT at top and bottom. 
Negative crack width may be due to instrumentation noise. 
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