
Design and applications of
single-photon devices based on
waveguides coupled to quantum

emitters

by

Golam Raqeeb Bappi

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering (Quantum Information)

Waterloo, Ontario, Canada, 2016

c© Golam Raqeeb Bappi 2016



I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

Engineering photon-photon interactions is fundamentally challenging because photons
in vacuum do not interact with each other. While their interactions can be mediated us-
ing optical nonlinearities, these effects are negligible for individual photons. This thesis
explores two topics related to optical nonlinearities in waveguides. In the first part, we
perform a numerical simulation study of hollow core antiresonant reflecting optical waveg-
uides (ARROWs) fabricated using standard lithographic techniques in the context of their
suitability as a platform for on-chip photonic quantum information processing. We investi-
gate the effects of the core size, the number of pairs of antiresonant layers surrounding the
hollow core, and the refractive index contrast between cladding materials on propagation
losses in the waveguide. Additionally, we explore the feasibility of integrating these waveg-
uides with Bragg gratings and dielectric metasurface mirrors to form on-chip cavities, that
when loaded with atomic ensembles could act as nonlinear optical devices controllable with
single photons.

The second part of this thesis studies the application of a 3 level quantum emitter
coupled to a directional optical waveguide to deterministically subtract a single photon
from a propagating optical pulse. Subtracting a single photon from a light state is one
of the most fundamental operations with important applications in quantum information
processing. However, current methods to subtract a photon such as using a low reflectivity
beam splitter suffer from inherently low success probabilities as well as a strong dependence
on the number of photons in the input. We explore implementing this single photon
subtraction operation in our proposed system when the optical input is a continuous wave
coherent state, coherent pulsed state containing a finite number of photons, or a Fock state.
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Chapter 1

Introduction

Realizing interactions between single photons has long been a difficult goal of optical sci-
ence, given that photons in vacuum do not interact with each other. However, effective
photon-photon interactions can be implemented through the use of optical nonlinearities.
While optical nonlinearities can be found in a range of systems, they can be close to neg-
ligible at electric fields associated with individual photons. Optical waveguides offer an
excellent platform for enhancing optical nonlinearities by increasing the field of a single
photon through transverse confinement. Additionally, the optical nonlinearities can be
further enhanced by confining the photons longitudinally, by increasing the light-matter
interaction time, and through the use of coherent control techniques. This work explores
two topics related to optical nonlinearities in optical waveguides.

The first topic investigates the design of antiresonant reflection on-chip hollow core
waveguides and the feasibility of adding new functionalities to such waveguides. Filled
with ensembles of quantum emitters such as dilute gas at room temperature or laser cooled
atoms, on-chip hollow core waveguides have the potential to become building blocks for
scalable optical devices operating with single photons given their relatively low propagation
losses and small optical mode areas (Figure 2.6). Several notable demonstrations of strong
light-matter interaction in hollow core waveguides have been reported in recent years, such
as all optical switching with a few hundred photons in a hollow core photonic crystal fibre
with laser cooled atoms [6], cross-phase modulation with few photons [7], and single photon
broadband quantum memory [8] in a photonic crystal fibre filled with room temperature
alkali atoms, as well as demonstration of quantum state control of warm alkali vapor in a
hollow core antiresonant section optical waveguide on a chip [9].

In Chapter 2 we introduce the principles of operation of antiresonant reflecting optical
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waveguides (ARROW). We study how the propagation losses of hollow core ARROW
waveguides are affected for various core sizes, cladding material pairs, and number of
periods of antiresonant layers. We also give an overview of their fabrication, along with
our results. In Chapter 3, we study how grating structures can be implemented within
these hollow core waveguides to possibly create mirrors and cavities to enhance the electric
field. We will also look at integrated cavities created using highly reflective photonic
crystal membrane mirrors attached to hollow core ARROW waveguides, and determine
the strength of light-matter interaction.

The second topic studies the behaviour of a single 3 level quantum emitter coupled to
a directional optical waveguide and the application of this system for subtracting single
photons from light propagating in the waveguide. Deterministic single photon operations
have long been a goal of fundamental science and quantum information processing [10].
Subtracting a single photon from a state of light could be intuitively seen as one of the
most basic of such operations but it is actually surprisingly complicated both in its operator
description and its experimental implementation. While it can be typically done with a
low reflectivity beam splitter, the success probability of extracting exactly one photon is
inherently low and depends on the number of photons present [11]. Deterministic single
photon subtraction was recently demonstrated by Rosenblum et al. [5] with a Λ scheme
atom coupled to the evanescent field of a nanofibre coupled microsphere resonator. However
recent demonstrations of a novel type of chiral waveguide [12] presents another way to
implement these single photon operations. In these waveguides the polarization of the
photon determines the direction of propagation. Coupling these waveguides to a 3 level
atom is a promising approach to investigate the implementation of single photon operations.

In Chapter 4 we study the dynamics of a chiral waveguide coupled to a 3 level quantum
emitter for deterministic single photon extraction from an optical pulse. We begin by
looking at the case of a continuously driven coherent input, which can be solved analytically.
Next we study the pulsed coherent and Fock state input cases using numerical analysis.
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Chapter 2

ARROW Waveguides

2.1 Motivation

2.1.1 Total Internal Reflection

Optical waveguides have traditionally been based on the principle of total internal reflection
(TIR). Here, light is confined to a high refractive index core surrounded by lower index
cladding layers as shown below where n1 > n2.

Figure 2.1: Incident, reflected, and transmitted rays at a waveguide interface.

The relation between the incident and transmitted angle is given by Snell’s Law.
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n1 cos(θi) = n2 cos(θt) (2.1)

Given that the minimum angle of the refracted light is 0◦, the critical incident angle is
given by

θcritical = arccos

(
n2

n1

)
(2.2)

Below this critical incident angle, light does not propagate in the cladding material and
is totally internally reflected. Solid core optical fibres are one example of a device where
waveguiding is based upon TIR. The main drawback of TIR is that it cannot be used to
guide light when the refractive index of the core is less than that of the cladding. In that
case for all incident angles, light will refract into the cladding and the power in the core
will quickly leak out. Given that there does not exist a material with refractive index lower
than that of air (n = 1), hollow core waveguides cannot operate based on TIR.

2.1.2 Hollow core optical fibres

Optical confinement in a waveguide can also based upon interference effects along the
transverse direction. The Bragg fibre utilizing a 1D photonic crystal was first proposed
by Yeh et al. [13] in 1978. The multiple partially transmitted and reflected waves in the
cladding interfere destructively which leads to high reflection of light into the core. Figure
2.2a shows the cladding which is composed of concentric periodic alternating dielectric
layers which act as a highly reflective mirror for a wide range of incident angles, leading to
a low loss waveguide. However these fibres have large cross sections, and thus large mode
areas. For enhanced light-matter interaction with loaded atomic gases, both low losses and
small optical mode areas are required.

Interference effects can also be used to confine light when the cladding region consists of
a 2D periodic lattice of holes in silica as shown in Figure 2.2b. The size of the holes, their
shape, and the spacing between them determines the optical properties of this ”photonic
crystal” region. Light cannot propagate along the transverse direction due to the photonic
band gap in frequencies where there is no real wavevector solution. Thus, it evanescently
decays into the cladding, but still propagates along the core. Fundamental mode losses as
low as 1.2 dB/km [14] have been reported which is almost as low as the 0.15 dB/km [15]
that has been achieved in conventional fibres. These hollow core photonic crystal fibres
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(HC-PCFs) have small mode areas and low losses which make them ideal for engineering
single atom-photon interactions.

Another class of hollow core photonic crystal fibres are Kagome fibres which operate on
the principle of inhibited coupling (IC) guidance [2]. Figure 2.2c shows the fibre which is
designed such that there are modes guided within the hollow core as well as a continuum
of modes supported by the cladding. The significant phase mismatch between the core and
cladding modes prevents light in the core from leaking into the cladding [16].

2 � C.M. Haapamaki et al., Mesoscale cavities in hollow-core waveguides

Fig. 1. The core diameter (A) and normalized propagating mode area (B) plotted against the propagation loss for the most common types of
optical waveguides that are available o�-the-shelf [2] or have been demonstrated experimentally (* indicates waveguides with air-guided
fundamental modes, SM = Single Mode).

Fig. 2. Cross-section of (A) Bragg �ber (Source: [12]) (B) HCPC �ber
(C) Kagome �ber. (Source: [13]).

ing on recent experimental demonstrations. The review
focuses on two types of single-mode hollow-core opti-
cal waveguides in particular: hollow-core photonic crystal
(HCPC) �bers, and hollow-core antiresonant re�ection op-
tical waveguides (ARROW) and also provides a summary
of the principles behind their operation.

To begin, let us consider a comparative overview of
some of the most common types of optical waveguides
with both solid and hollow cores shown in Figure 1. We
see that ARROWs and HCPC �bers o�er a convenient com-
bination of core size and propagating mode area for ap-
plications utilizing cold atomic ensembles, as well as rea-
sonably lowpropagation losses. In particular, their hollow
coreswith diameters of ~10 µmallow con�nement of laser-
cooled atoms with conventional atom-trapping methods
with negligible e�ects from surface forces [10, 11]. While
the propagating mode area of ⇠ ��λ� in these waveg-
uides is not ideal, as the probability of interaction between
one photon and one atom is approximately λ�/Amode [1],
the mode area is actually comparable to that of standard
single-mode �bers. More importantly though, the propa-
gating mode area of HCPC �bers and ARROWs is small

enough that integratingmirrors of moderately good re�ec-
tivity into these waveguides should form a cavity with suf-
�cient �nesse to push the single photon-single atom inter-
action probability to unity.

� Hollow-core photonic crystal
�bres

Conventional index-guiding optical �bers control light
propagation by total internal re�ection, which is achieved
by having a high index core surrounded by a low index
cladding.HCPC�bers belong to a recently introduced class
of microstructured optical �bers for which the cladding
features a periodic lattice of microsized holes extending
along the length of the �ber. The initial idea of a photonic
crystal �ber for guiding light in a low-refractive index re-
gionwas �rst proposed in 1978 by Yeh et al. [14] in the form
of a Bragg �ber (Figure 2A), in which the hollow or low re-
fractive index core is surrounded by concentric layers of
alternating dielectrics analogous to a dielectric stack mir-
ror formed by a 1D photonic crystal.

In 1992, this concept was extended by Russell [15]
where the core was surrounded with a 2D photonic crystal
pattern. The �rst practical HCPC �bers were demonstrated
in 1996 byKnight et al. [16]. Currently, there are two classes
of HCPC �bers: photonic band gap (PBG) �bers (Figure 2B)
and Kagome (or bound continuum) �bers (Figure 2C).

The light is guided by distinct physical principles
within the core of these two classes of�bers. Kagome�bers
were only fully understood in 2007, when their broadband
guidance spectrum was attributed to inhibited coupling

Unauthenticated
Download Date | 5/20/16 9:28 AM

Figure 2.2: (a) Bragg fibre, (b) Photonic crystal fibre (Source: [1]), and (c) Kagome fibre
(Source: [2])

The light-matter interaction could be further enhanced by additional control over the
photonic environment, which is not easily possible with these fibre based geometries. Mov-
ing to a planar on-chip platform will allow us to introduce structures for dispersion en-
gineering, integrated mirrors and cavities, and atom trapping and cooling infrastructure.
This will open up new ways for us to study fundamental quantum optics phenomena and
their practical applications.

2.2 ARROW Principles and Analysis

Antiresonant reflection optical waveguides (ARROWs) were first proposed and demon-
strated by Duguay et al. [17] in 1986 for light propagation in low index media. ARROWs
consist of a core surrounded by multiple dielectric layers whose thicknesses are chosen
such that there is destructive interference of the multiple incident and reflected waves in
each cladding layer, and constructive interference in the core for a given wavelength. The

5



cladding acts as a highly reflective mirror that confines light to the core and results in low
loss propagation. The initial demonstration guided light in a silicon dioxide core using a
single pair of Si/SiO2 antiresonant layers below and total internal reflection from the air
above for confinement. Hollow core ARROW waveguides were first demonstrated by De-
longe and Fouckhardt [18] in 1995. Since then ARROWs have found applications in lasers
[19], single molecule detection [20], and have been used to demonstrate electromagneti-
cally induced transparency and slow light on a chip [9]. Here we will explain the principles
behind the ARROW [17] shown in Figure 2.3.

Figure 2.3: Resonance in the core and antiresonance in the cladding confines light within
the core.

In order to maximize the field intensity within the core, there must be constructive
interference of the incident and reflected waves.

2kc,ydc + 2φ1 = 2mπ

2nck0 sin(θc)dc + 2φ1 = 2mπ

where φ1 is the phase shift of the reflected wave at the interface between the core and
the first cladding layer. If the core is hollow (ncore = 1), then the reflected wave obtains a
π phase shift and we have that
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2nck0 sin(θc)dc = 2(m− 1)π

2πnc
λ

sin(θc)dc = (m− 1)π

sin(θc) =
(m− 1)λ

2ncdc

Finally for the fundamental mode, we have

sin(θc) =
λ

2ncdc
(2.3)

In the cladding layers, we must have destructive interference so that light leakage from
the core is minimized. In the jth layer, we must have that

2njk0 sin(θj)tj + 2φj = 2

(
m+

1

2

)
π (2.4)

If layer i is surrounded by lower refractive index layers, then the phase shift of the
reflected wave from those interfaces is 0. Otherwise if the refractive index of the surrounding
layers is greater, then the phase shift of the reflected wave from those interfaces is π. The
general condition can then simply be written as

2nik0 sin(θi)ti = 2

(
N +

1

2

)
π

2πni
λ

sin(θi)ti =

(
N +

1

2

)
π

Using Snell’s Law, we know that

ni cos(θi) = nc cos(θc)

cos(θi) =
nc
ni

cos(θc)
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and using the identity cos2(θ) + sin2(θ) = 1,

sin(θi) =

√
1− n2

c

n2
i

cos2(θc)

=

√
1− n2

c

n2
i

(
1− λ2

4n2
cd

2
c

)

=

√
1− n2

c

n2
i

+
λ2

4n2
i d

2
c

Combining this with the previous equation, we obtain the thickness of each layer for
the antiresonance condition to be satisfied.

ti =
λ

4ni
(2N + 1)

(
1− n2

c

n2
i

+
λ2

4n2
i d

2
c

)− 1
2

(2.5)

We note that the antiresonance condition differs slightly from the Bragg condition for
normal incidence (ti = λ/4ni).

One of the advantages of ARROWs is that the cladding layers do not need to be
periodic with respect to the refractive index or their thicknesses as long as they satisfy
the antiresonance condition specified in Equation 2.5. Although for the sake of simplicity,
here we will only consider two different materials to be used for the cladding layer. As
shown by Duguay [17], while a single pair of cladding layers was sufficient to achieve low
loss propagation in the core, adding more layers should reduce the loss further.

The loss of the waveguide can be estimated using the transfer matrix method [21]. This
method takes the 1D refractive index profile of the waveguide and calculates the propaga-
tion loss. This is done by calculating the reflectivity of the dielectric stacks surrounding the
core given the incident glancing angle (Equation 2.3). The propagation losses of the TE-
like and TM-like waves with respect to the vertical and horizontal directions respectively
are estimated as

αvertical =
2−Rtop −Rbottom

2hc
tan(θc,vertical) (2.6)

αhorizontal =
2−Rleft −Rright

2wc
tan(θc,horizontal) (2.7)
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where hc is the height of the core, wc is the width of the core, θc,vertical is the glancing
angle along the vertical direction, and θc,horizontal is the glancing angle along the horizontal
direction. Given that the ARROW has a 2D refractive index profile, its propagation loss
(Equation 2.8) can be estimated as the average of the losses of the two 1D cross sectional
profiles. This technique allows us to design waveguides that are polarization sensitive given
that TE and TM waves have different reflection coefficients.

αwaveguide =
αvertical + αhorizontal

2
(2.8)

The dielectrics used for the cladding layers have included Si3N4(n = 1.7 − 2), SiO2

(n = 1.44), TiO2 (n = 2.1), and Ta2O5 (n = 2.4). A Si3N4/SiO2 pair has been commonly
used [3, 22, 23], although a combination of TiO2 [18] or Ta2O5 [24] along with SiO2 has
been explored as well. Si3N4 has been typically used as as the high index antiresonant
layer given that its ease of deposition using plasma enhanced chemical vapor deposition
(PECVD), relatively high refractive index (n = 1.7 − 2, depending on the deposition
parameters), and negligible absorption in the desired optical range [25].

There are 3 different types of ARROWs that have been developed. They are the regular
ARROW, prealigned pedestal (PAP) ARROW, and self aligned pedestal (SAP) ARROW as
shown in Figure 2.4. The self aligned pedestal ARROWs which have air as the terminating
layer on both sides have been found to have the lowest losses [23]. Numerically, the losses for
the three variants using Si3N4/SiO2 for the antiresonant layers and a 5.8µm× 12µm core,
were found to be 7.23cm−1, 1.09cm−1, and 0.36cm−1 respectively while experimentally the
losses for these variants were found to be 9.5cm−1, 4.2cm−1, and 2.2cm−1 respectively [3].
The higher experimental losses arise due to deviation of the cladding layer thicknesses from
the ideal values, and the surface roughness which increases the scattering losses. Given the
lower losses, only the SAP variant hollow core ARROW will be considered in our analysis.

Chapter 7

Self-Aligned Pedestal ARROWs

As discussed in Chapter 2, the ideal structure for low-loss ARROW waveguides is to have

the hollow waveguide on the top of a self-aligned pedestal (SAP). To compare the losses between

this structure, the standard ARROW design, and the ARROWs on pre-etched pedestals, simu-

lations were run using FIMMWAVE and optimized layer designs for water and air-filled cores.

Simulations show that losses with water-filled cores at 690 nm and with air-filled cores at 785 nm

could be several times better than simulated losses for the pre-etched pedestal structure. These

simulated losses for the SAP structure are also roughly an order of magnitude lower than the best

achieved results with actual devices. Unlike the first-generation pedestal ARROWs and the SOC

ARROWs discussed previously, SAP ARROWs surround the hollow core with uniform layers and

avoid the shoulders formed by the wider pedestals with the previous structures. A similar self-

aligned structure has been developed by others, where anisotropic plasma etching was used to

create self-aligned ARROW waveguides with solid-cores [118].

(a) (b) (c)

Figure 7.1: Three generations of ARROW structures and simulated losses for water-filled cores (690
nm): (a) 0.91 cm�1, (b) 0.20 cm�1, (c) 0.03 cm�1 and air-filled cores (785 nm): (a) 7.23 cm�1, (b) 1.09
cm�1, (c) 0.36 cm�1.

121

Figure 2.4: First generation ARROW shown in (a), prealigned pedestal variant in (b), and
self aligned pedestal variant in (c). Figure reproduced from [3].
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In addition to the transfer matrix method, the modal characteristics of the ARROW can
also be found using photonic modelling software such as the finite element solver FemSIM
by RSoft. The main source of loss in these waveguides is due to the fundamental leaky
mode. This can be minimized by using higher refractive index contrast cladding materials
or a larger number of antiresonant layers, and optimizing the thickness of each cladding
layer using the RSoft MOST optimization tool. The waveguide loss can be calculated from
the imaginary part of the effective propagation index of the fundamental mode using

α =
4πIm{neff}

λ
(2.9)

5.30e-18
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Figure 2.5: (a) Cross section of hollow core ARROW using 3 periods of antiresonant
cladding materials (n1 = 1.74, n2 = 1.44). (b) Fundamental mode profile, and (c) prop-
agation loss spectrum of an optimized hollow core ARROW with a 5.8µm × 12µm core
surrounded by 3 periods of Si3N4(1.74)/SiO2 cladding layers. The waveguide is designed
for a wavelength of 852 nm. The fringes above (y > 2.9µm), below (y < −2.9µm), and
beside (x > 6µm) the core represent the fundamental mode’s leakage of power from the
core into the cladding layers and out of the waveguide.
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The core dimensions also affect the propagation loss. We can reduce the optical mode
area by reducing the core width. However the light will then propagate at a larger glancing
angle relative to the sidewalls according to Equation 2.3. For the fundamental TE mode,
the light has TM-like polarization relative to the sidewalls. Due to the same phenomenon
that gives rise to the Brewster angle, the reflectivity of the TM-like waves off the sidewalls
will be lower, thus increasing the propagation loss. This is why the width of the core is
typically chosen to be larger than its height. In Figure 2.6 we show how the propagation
loss increases as we decrease the core size. The optical mode area is defined as

Amode =

∫∫
ε(x, y)|E(x, y)|2dxdy

max{ε(x, y)|E(x, y)|2} (2.10)
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Figure 2.6: Plot of loss versus mode field area for a 3 period hollow core ARROW using
Si3N4(1.74)/SiO2 cladding layers for various core sizes.

All the ARROW waveguides studied thus far place the high index layer adjacent to the
core because of the larger Fresnel reflection coefficient given by

R =

∣∣∣∣nc sin(θc)− n1 sin(θ1)

nc sin(θc) + n1 sin(θ1)

∣∣∣∣2 (2.11)
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where a larger refractive index difference between core and adjacent layer leads to a
higher reflectivity. Due to the symmetry of the waveguide about the vertical axis, the
mode profile (Figure 2.5a) is symmetric as well. The simulation parameters for the finite
element solver are given in Appendix A where the design wavelength is chosen to be 852
nm. We also obtain the propagation loss spectrum in Figure 2.5b and observe that the
loss is minimized at the design wavelength.

In Figure 2.7, using finite element modeling and the optimization tool by RSoft, we de-
termine the minimum achievable propagation loss for hollow core ARROW waveguides for
different antiresonant material pairs, and using 2, 3, 4 periods of these layers surrounding
the core. These loss values were found by first choosing the thicknesses of the cladding
layers according to the antiresonance condition given by Equation 2.5, and locating the
fundamental quasi-Gaussian mode of the waveguide. Using this mode as a seed, an opti-
mization procedure is performed whereby the thicknesses of each layer are varied according
to a genetic algorithm. Slowly the loss is minimized and the optimization tool determines
the corresponding cladding layer thicknesses to achieve it.
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Figure 2.7: Comparison of the propagation loss for hollow core ARROWs with a 5.8µm×
12µm core using various cladding material pairs. The design wavelength is 852 nm.

We find that the propagation loss of the ARROW can be lowered by using higher
refractive index contrast cladding material pairs, or by increasing the number of periods of
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antiresonant layers surrounding the core. We observe that adding more periods does not
necessarily yield a steady decrease in the mode loss (ie. going from 2 to 3 periods decreases
the loss more than by going from 3 to 4 periods). There seems to be a lower bound on
the loss for a given material pair as well. It should be noted that the 4 period TiO2/SiO2

waveguide loss could not be lowered below that of the 3 period version during the multiple
optimization runs. However, we believe that with some more tweaking of the optimization
parameter space, this should be possible.

The waveguides in Figure 2.7 and in the literature [3, 18, 22, 23, 24, 25, 4] surround the
core with the high index layer as shown in Figure 2.8a because it is intuitively expected
for the higher Fresnel reflection coefficient at the interface to result in a lower overall
waveguide loss. However another possibility that has not yet been explored is to have the
layer immediately beneath the core be the low index layer as shown in Figure 2.8b. The
propagation losses of the optimized waveguides for this variant is compared with that of
the typical configurations in Figure 2.9.

Figure 2.8: A) ARROW with high index layer beneath the core, B) low index layer beneath
the core where n1 > n2.
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Figure 2.9: Comparison of the propagation loss for the two variants of hollow core ARROWs
with a 5.8µm× 12µm core using different cladding material pairs. The design wavelength
is 852 nm.

We find that there is not a significant difference in the propagation loss between the
two variants given the same cladding material pair, and number of antiresonant layers
used. In each case, the waveguides can be optimized such that they have comparable
propagation losses. It should be noted that the loss of the 4 period TiO2/SiO2 waveguide
using TiO2 below the core could not be lowered below that of the 3 period version during
the multiple optimization runs. However, we believe that with some more tweaking of the
optimization parameter space, this should be possible. The cladding layer thicknesses for
all the waveguides in Figure 2.9 are given in Appendix A.

2.3 Fabrication methods

There are two main methods to fabricate hollow core ARROWs. The first method reported
by Bernini et al. [4] uses silicon to silicon wafer bonding as shown in Figure 2.10. Initially
a square groove is etched into the silicon wafer, followed by deposition of the bottom
antiresonant layers. The top layers are deposited onto another wafer. The two pieces are
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then wafer bonded to create the hollow core waveguide. These devices have achieved losses
as low as 6.7cm−1, but the large core size (130µm × 130µm) is not particularly suitable
for applications trying to achieve optical mode areas closer to those found in single-mode
optical fibres. The second method, explored extensively by the Schmidt group at UC
Santa Cruz and the Hawkins group at BYU, uses a bottom-up fabrication process with a
sacrificial core material which is later removed to create the hollow core.

Figure 2.11-I shows the fabrication process for the first generation of hollow core AR-
ROWs. The first step is to deposit the bottom antiresonant layers using PECVD. This
is followed by deposition of the sacrificial layer and photolithography to pattern the core.
Using aluminum as the core material has been investigated [26], but it tended to have a
trapezoidal shape instead of the desired rectangular profile. Multiple positive and negative
photoresists [22] have been investigated for the core material, but SU-8 is typically used
due to the fact that it can be hard baked to prevent it from reflowing when placed in
the high temperature PECVD chamber [25]. After patterning the sacrificial core, the top
antiresonant layers are deposited. The top layer is chosen to be significantly thicker than
the other ones for mechanical stability. Finally, the sacrificial core material is removed to
create the hollow core. One drawback of using PECVD to deposit the top antiresonant
layers is the nonconformal deposition process, whereby layers on top of the core are thicker
than those on the sides [23]. Characterizing this ratio th/tv allows one to account for it
when modelling the waveguide.

There have been some variations of this first generation fabrication process to decrease
the loss of the waveguide by having an air terminating layer on the sides [3]. One variant is
known as the prealigned pedestal (PAP) ARROW. As shown in Figure 2.11-II, initially a
pedestal with the core width is created on the substrate using a photolithography and etch
process before depositing the bottom layers. Another variant is the self-aligned pedestal
(SAP) ARROW depicted in Figure 2.11-III. After the core is patterned, it is used as a mask
to create the pedestal by etching through the bottom antiresonant layers and a portion
of the substrate depending on the desired pedestal height. The pedestal height must be
greater than the total thickness of the cladding layers above the core so that the core has an
air terminating layer on both sides. A pedestal height of 6µm has been shown be sufficient
given the cladding layer thicknesses of optical hollow core ARROWs but larger pedestals
are possible as well. During etching, the core can be protected using a thin metal layer
such as chromium or nickel on top. This is needed to prevent the core surface on top from
being roughened when creating the pedestal in order to minimize scattering losses in the
final hollow core waveguide.
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Fig. 4. Hollow core ARROW waveguide structure and SEM picture of the transverse cross-section.

bonding (see Fig. 4). One of the two halves of the waveguide
is formed by anisotropic etching of ⟨1 1 0⟩ silicon wafers.
Etching results in a square cross-section. On both halves,
two dielectric layers are grown on them, having refractive
index and thickness n2, d2 and n1, d1, respectively.
The light is confined inside the core region, where the

refractive index nc is lower than the one in the surround-
ing media, by the two cladding layers designed to form a
Fabry–Perot antiresonant cavity [8]. The hollow waveguide
has been fabricated by deep silicon dry etching followed
by a PECVD process at temperature of 400 ◦C. After the
deposition the two halves were joined by silicon nitride
direct wafer bonding. The cladding layers thicknesses are:
d1 = 285 nm and d2 = 155 nm, according to the antires-
onant condition. Preliminary measurements, made on a
130!m × 130!m square-core waveguide, have shown
an attenuation of 2 dB/cm with an air filled core. Since
the presented hollow waveguide can guide the light in
the fluid (air, gases, and liquid) used as the core, it can
be employed, besides as optical waveguide, in spectro-
scopic sensing, allowing long optical path. Furthermore,
since the attenuation in the waveguide depends on the
core refractive index, the hollow waveguide can be used
as directly intensity-modulated refractometric sensor, in
which the fluid acts, at the same time, as the core and the
analyte.

4. Conclusions

Peculiar properties of antiresonant reflecting optical
waveguides have been used in order to design and realize
integrated optical sensors for both direct and indirect liquid
probing.

First, we show that, simply by a suitable design of the
ARROW waveguide, in terms of thicknesses and refractive
indexes of its layers, an evanescent-field refractometer for
sensing refractive index of liquids is achieved. In this paper,
the design, the fabrication with standard silicon microelec-
tronics technology using CMOS compatible process, and the
characterization of the sensor are illustrated. The proposed
sensor exhibits a refractive index measurements range of
1.33–1.47 and minimum refractive index variation apprecia-
ble of !n = 6e − 4.
Second, since the ARROW waveguide can confine the

light inside a low refractive index core, an hollow core
ARROW-based waveguide has been proposed in which the
hollow core is surrounded with highly reflective antireso-
nant claddings. The hollow core has been realized on silicon
substrate and coated with antiresonant dielectric layers. The
main advantage of using antiresonance is related to the sim-
plicity with which the hollow waveguide can be realized,
also avoiding the use of metallic walls. Next step will re-
gard the investigation of the proposed hollow waveguide as
refractometric sensor and in spectroscopic sensing.
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Figure 2.10: Hollow core ARROW fabrication using wafer bonding (Source: [4]).
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The basic process f ow for hollow-core ARROW waveguide fabrication is shown in Fig-

3.1. First, antiresonant layers are deposited by plasma-enhanced chemical vapor deposition
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Figure 5.2: Fabrication process for ARROWs on pedestals: (a) Etch mask applied. (b) Pedestal etched.
(c) Etch mask removed. (d) PECVD layers deposited. (e) Sacrif cial core deposited. (f) Top PECVD
layers deposited.

The f rst consideration for fabrication of ARROWs on pedestals is the size of the pedestal

In order to achieve the air-surrounded structure that is desired to reduce the hollow-core waveguide

88

pedestal would be etched after the sacrif cial core is def ned, and the SU-8 sacrif cial core would

function as the etch mask for the pedestal. The total pedestal height must be greater than the total

thickness of the top ARROW cladding layers so that the hollow waveguide retains the horizontal air

terminal layer. Therefore, to form the pedestal, the etching would need to remove approximately

1-1.5 µm of SiN and SiO2 bottom PECVD layers and 4-5 µm of the silicon substrate. Isotropic

etching cannot be used for this process because most chemistries that etch silicon would also etch

the bottom PECVD SiO2 and SiN layers, undercutting the SU-8 core and increasing the loss of the

waveguides. This precludes the use of most wet-etch chemistries. After the pedestal etching, the

structure would be coated with the top PECVD cladding layers. Finally, the sacrif cial core would

be exposed and removed, as usual.
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Figure 7 2: Fabrication of self aligned pedestal ARROWs: (a) Bottom ARROW layers deposited on

Figure 2.11: Fabrication process for I. First generation ARROW, II. Prealigned pedestal
ARROW, and III. Self aligned pedestal ARROW. Figure reproduced from [3].
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2.4 Fabrication challenges

We encountered multiple challenges when trying to fabricate self aligned pedestal hollow
core ARROW waveguides which have been found to have the lowest losses [25]. We chose
to use silicon nitride and silicon oxide (n = 1.44) cladding layers given their availability
in the Quantum Nanofab PECVD tool. However the refractive index of the silicon nitride
film was much lower (n = 1.74) than what has been reported (n = 2−2.1) in the literature
[22, 25]. This is not desirable because as we discussed in Section 2.2, using lower refractive
index contrast cladding materials increases the loss of the waveguide. We also found
that while the conformality ratio of silicon nitride films was fairly consistent, those of
silicon oxide films varied widely over multiple cores on the same substrate as shown in
Figure 2.12. This made it difficult to model the waveguide because we need to assume a
constant confomality ratio for both materials. We believe that a thorough investigation of
the deposition parameters (gas flow rates, temperature, pressure, RF power) would have
allowed us to minimize the variance in the conformality ratio of silicon oxide films.

To pattern the sacrificial core, we used SU8 which is an epoxy based negative photore-
sist. This particular photoresist was chosen because it could be hard baked such that it
does not reflow [3] at the PECVD deposition temperature (∼ 250o) and deform the desired
rectangular shape of the core. However we discovered that the SU8 core had poor adhesion
to silicon nitride films, whereby it was washed out during the development step. While the
SU8 core had excellent adhesion to the silicon substrate, we believe that the silicon nitride
deposition recipe (30 sccm SiH4 : 900 sccm N2) contributed to a lower ratio of silicon to
nitrogen in the film which resulted in poor adhesion. The lower concentration of silicon
atoms most likely resulted in the relatively low refractive index of the film as well. However
we also found that the SU8 core adhered well to silicon oxide films. This motivated us
to explore how the propagation loss is affected when a silicon oxide layer is used beneath
the core rather than silicon nitride. In Figure 2.9 we showed that an optimized waveguide
for either case had comparable losses, thus removing the poor adhesion of SU8 to silicon
nitride films as a barrier to fabrication.

17



Figure 2.12: The cross sections of SU8 cores with (a) silicon nitride and (b) silicon oxide
films deposited on top were imaged using the Raith 150 electron beam lithography tool.
The silicon nitride samples have a conformality ratio of ∼ 1.3. The silicon oxide samples
on the left and right have conformality ratios of 1.69 and 1.28 respectively.

rougher, and so is undesirable for this application. Chromium and nickel are very resistant to both

ion bombardment and chemical etching in the etch recipes employed.

The first difficulty presented with this method is how to deposit the metal only on the top of

the SU-8. Since the metal layers are not transparent to the UV light used to expose the SU-8, the

core layer of SU-8 must be exposed before the metal is deposited. Because of this, the SU-8 can

be processed as usual until the development step. If the metal is deposited before the development

of the SU-8, the development could remove the metal from the field of the wafer by dissolving the

underlying layer of unexposed SU-8, as depicted in Figure 7.19.
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structure

Si wafer

Pedestal 
Etched

Metal layer 
removed

Core SU-8 
deposited

SU-8 
exposed

Metal mask 
depositedPECVD layers

(b) (c)

(d) (e) (f)

Figure 7.19: Metal liftoff with SU-8: (a) Core SU-8 layer deposited. (b) SU-8 exposed. (c) Metal etch
mask layer deposited. (d) SU-8 developed to liftoff extra metal. (e) Pedestal etched. (f) Metal etch
mask removed.

Using this liftoff method, 60 nm of chromium was deposited by E-beam evaporation on

top of SU-8 that had been exposed and post-exposure baked. However, after the metal deposition,

development of the underlying SU-8 proved to be impossible, even if the metal layer was scratched

to expose the underlying layer. The heating of the SU-8 layer which occurred during the metal

evaporation cross-linked the unexposed SU-8 to the degree that it was impossible to dissolve in

developer. The post-exposure bake was reduced to see if it would improve development. With

very low baking times and temperatures, the SU-8 was not sufficiently crosslinked and it was

completely removed during development. With more baking, which was sufficient to cross-link

145

Figure 2.13: Procedure to create the pedestal using a protective metal layer on top of the
SU8 core. (Source: [3])
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Creating the self aligned pedestal itself as shown in Figure 2.11-III presented yet another
challenge. In order to protect the top surface of the core from being roughened during
etching, we needed to deposit a thin metal layer on top. As shown in Figure 2.13, the metal
can be deposited just before developing the SU8 core. During development the unexposed
resist should dissolve, leaving only the core with a metal layer on top of it. Next, deep
reactive-ion etching (DRIE) can be used to etch through the bottom antiresonant layers
and the substrate underneath to create the pedestal. We chose to use chromium for the
protective metal layer because it is highly etch resistant [27], and available for deposition
in the Quantum Nanofab using electron beam evaporation. We were able to successfully
obtain a chromium layer on top of the SU8 cores as seen in Figure 2.14.

Figure 2.14: Chromium on SU8 core obtained using the procedure depicted in Figure 2.13.

2.4.1 Future work

The next step to successfully fabricate low loss hollow core ARROW waveguides is mini-
mizing the variance in the conformality ratio of silicon oxide films. This requires exploring
how the deposition parameters (gas flow rates, pressure, temperature, RF power) affect
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the uniformity of the film over a substrate and its conformality. The refractive index of
PECVD silicon nitride can be increased by decreasing the flow rate of N2 to incorporate
more silicon atoms into the film. This offers another way to lower the loss of the waveguide
as discussed in section 2.2. Once the fabrication process for the waveguides has been opti-
mized, further work remains to try and implement a Bragg grating into them. This is best
done using electron beam lithography to create the mask, followed by deep reactive ion
etching (DRIE) to etch a grating into a particular antiresonant layer as shown in Figure
3.1.
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Chapter 3

Field enhancement in hollow core
ARROW waveguides

For a single atom in the hollow core ARROW waveguide, its probability of interaction with
a single photon is given by p = σ2/A ≈ µE2τ/A where µ is the atomic dipole moment, E
is the electric field of the photon, τ is the interaction time, and A is the optical mode area.
This probability can be very small for wavelengths associated with atomic transitions. We
can use to increase the probability of interaction using two methods. We can place the
atom in a cavity so that the photon has multiple chances to interact as it travels back
and forth. Another option would be to slow down the incoming photon so that it has
more time to interact with the atom. This can be done with the use of grating structures.
Here we will discuss ways to implement gratings within hollow core ARROW waveguides
to possibly create mirrors, cavities, and change the dispersion properties to slow light. We
will also analyze a novel type of cavity created using highly reflective dielectric metasurface
mirrors attached to these hollow core waveguides.

3.1 Bragg Gratings

For solid core fibres, mirrors and dispersion engineering may be realized using fibre Bragg
gratings (FBG) which are implemented by periodically modulating the refractive index
in the core [28]. This is not possible with hollow core waveguides because their core is
empty, hence there is no material that can be modified. With hollow core ARROWs, we
can instead implement a grating by modulating the effective index of propagation. We

21



propose to do this by etching a grating in the various antiresonant layers. The waveguide
will then have a slightly different propagation index along the section where one of cladding
layers above or below the core has been etched. Given that the ARROW has a bottom
up fabrication process, the grating can be implemented in any particular layer. This has
the advantage of leaving the hollow core unobstructed so that atomic ensembles can be
loaded inside. As shown in Figure 3.1, we will consider cases where the grating is etched
either into the layer immediately above the core, the layer beneath the core, or the very
top layer. For the 3 period Si3N4(1.74)/SiO2 hollow core ARROW, Figure 3.2 shows how
the effective index of propagation changes along the etched region for the 3 different types
of gratings.

Figure 3.1: Etched gratings in the various antiresonant layers: (A) first layer above the
core, (B) first layer beneath the core, (C) top layer. (D) Schematic of ARROW Bragg
grating implemented using the first antiresonant layer beneath the core.
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Figure 3.2: Change in the effective index of propagation for a hollow core ARROW with a
5.8µm × 12µm core using 3 periods of Si3N4(1.74)/SiO2 antiresonant layers. The x-axis
refers to the etch depth relative to the original thickness of that particular layer.

We see that changing the thickness of a particular antiresonant layer increases the
propagation loss because the waveguide is no longer optimized. Layers closer to the core
have a greater overlap with the fundamental leaky mode, hence etching them creates a
larger perturbation relative to the original waveguide. This explains why etching the layer
beneath the core causes a large change in the effective index of propagation (∼ 5× 10−4)
whereas it is only 2.9× 10−4 when etching the very top layer. We also found that etching
> 80% of a particular layer causes the loss to increase drastically because the optical mode
is no longer Gaussian and confined to the core.

When studying the 3 period Si3N4(n = 2)/SiO2 ARROW, we found that the maximum
effective propagation index change is approximately 4×10−4. Using higher refractive index
contrast cladding materials yields a waveguide with lower loss where the optical mode is
more confined to the core. Now there is less overlap between the antiresonant layers and the
the fundamental mode, causing a smaller perturbation. Using more periods of antiresonant
layers has the same effect because the lower loss waveguide has a smaller overlap between
the cladding layers and the fundamental mode which is more tightly confined within the
core.
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3.1.1 Mirrors

Mirrors can be created by etching a Bragg grating into the hollow core ARROW as shown
in Figure 3.1. Given that the waveguide has nonnegligible loss, the standard transfer
matrix method [29] can not be used to determine the reflectivity of these gratings. We
can instead use the Method of Single Expression (MSE) developed by Baghdasaryan et
al. [30] to properly account for the absorption loss in each grating layer. Starting from
the transmitting side, the field in each Bragg layer is calculated as we travel back to the
illuminated side by numerically solving the coupled differential equations below.

Figure 3.3: Normal incidence of a plane wave on a multilayer dielectric stack. Given the
transmitted field, the incident and reflected fields can be calculated using MSE.

dU(z)

d(k0z)
= Y (z)

dY (z)

d(k0z)
=
P 2(z)

U3(z)
−Re{ε(z)}U(z)

dP (z)

d(k0z)
= Im{ε(z)}U2(z)

where the electric field is E(z) = U(z)e−iS(z), Y (z) = dU(z)/d(k0z), and the power
is P (z) = U2(z)/[dS(z)/d(k0z)]. Given a grating of length L, the initial conditions are
U(L) = 1, Y (L) = 0, and P (L) =

√
εt where εt is the relative permittivity of the transmit-

ting side. The reflectivity is then given by
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R =

∣∣∣∣U2(0)
√
εi − P (0)− jU(0)Y (0)

U2(0)
√
εi + P (0) + jU(0)Y (0)

∣∣∣∣2 (3.1)

where εi is the relative permittivity of the incident side. Now our grating can be
thought of as being composed of two alternating dielectric materials n1 (the effective index
of propagation of the waveguide), and n2 (the effective index of propagation when one of the
antiresonant layers has been etched). This approximation is valid because the modes in the
two regions are similarly quasi-Gaussian in the core. The corresponding Bragg thicknesses
are t1 = λ

4·Re{n1} , and t2 = λ
4·Re{n2} . For the 3 period Si3N4(1.74)/SiO2 ARROW explored

in Figure 3.2, the reflectivity of the mirror is shown in Figure 3.4a for various etched layer
cases. The etch depth is chosen such that it creates the highest effective propagation index
contrast relative to the original waveguide. The reflectivity spectrum of the best mirror
created by etching the layer beneath the core is shown in Figure 3.4b.
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Figure 3.4: (a) Mirror reflectivites of the possible ARROW Bragg gratings. Dotted lines
denote the maximum reflectivity for a particular grating. The relative etch depths for
the layer above the core, layer beneath the core, and top layer are 74%, 70%, and 68%
respectively. (b) Using MSE with plane wave incidence, we obtain the reflectivity spectrum
of a 10000 period Bragg mirror created by periodically etching the antiresonant layer
beneath the core. The etch depth is 70% of this layer, which creates an effective propagation
index contrast of 5× 10−4 with a 8% increase in loss.

We find that implementing the grating in the antiresonant layer beneath the core yields
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the highest reflectivity (∼ 84%) mirror. The next best mirror with ∼ 55% reflectivity can
be implemented using the layer above the core, while using the top layer yields a poor
mirror (∼ 23%) due to its low effective index contrast. Notice that with a typical lossless
Bragg grating, its reflectivity increases with higher refractive contrast materials and larger
number of periods. Regardless of the refractive index contrast, the reflectivity approaches
1 as we add more periods. However, with our ARROW gratings the upper bound on the
reflectivity is less than 1 due to the presence of absorption loss.

3.1.2 Cavities

Cavities have typically been used to enhance the electric field inside a medium. A linear
Fabry-Perot cavity consists of a spacer region surrounded by two mirrors. The interference
between the multiple forward and backward propagating waves creates a standing wave
inside the spacer where the electrical field intensity can be increased. This effectively
enhances the electric field of a single photon over the longitudinal modal length which
increases the probability of single atom-photon interaction. Here we look at creating a
distributed Bragg reflector (DBR) cavity using a half wavelength spacer region as shown
in Figure 3.5c. Given the high losses of the ARROWs, the shortest possible spacer length
was chosen. Using MSE, we look at the 3 period Si3N4(1.74)/SiO2 ARROW analyzed in
Figure 3.4. Figure 3.5a shows how the the number of periods in the mirror affects the field
intensity enhancement. The electric field intensity distribution using the optimal number
of Bragg mirror periods is shown in Figure 3.5b.
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Figure 3.5: (a) Field intensity enhancement in a cavity using a half wavelength spacer
for various grating mirror periods. (b) Electric field intensity distribution throughout the
cavity with 7000 period Bragg mirrors. z = 0 marks the start of the cavity with the
field being 1. (c) Schematic of proposed ARROW waveguide cavity with integrated Bragg
grating mirrors.

We find that there is an optimal number of Bragg mirror periods to maximize the field
intensity enhancement. While adding more periods can lead to a higher field intensity,
adding too many increases the amount of absorption loss inside which lowers this enhance-
ment. In a typical cavity, the field is enhanced in the spacer region. However with our
proposed ARROW cavity, the field intensity is actually enhanced in the mirror region near
the incident light. The high propagation loss of the ARROW prevents the field from build-
ing up inside the spacer because the waves decay quickly in the Bragg layers. Nonetheless,
we find that there is moderate field intensity enhancement (∼ 8) using these lossy ARROW
waveguides. We note that the field monotonically decays once it enters this ”cavity” and
that the power is distributed throughout, unlike a traditional cavity where the power is
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mostly confined to the spacer region.

3.2 Metasurface cavities

Another approach to create integrated cavities is to attach highly reflective (> 99%) pho-
tonic crystal membranes to both ends of a hollow core ARROW waveguide. These meta-
surfaces are comprised of a thin dielectric film with a pattern of holes which can cause light
that is incident perpendicular to the plane of the membrane to be completely reflected [31].
The main parameters used to design these mirrors are the refractive index of the dielectric,
radius of the holes, spacing between the holes, and the thickness of the membrane. The
mirrors can be made polarization selective by changing the circular holes to elliptical ones.
Using these dielectric metasurface mirrors allows for loading of atomic ensembles into the
waveguide through the porous membrane.

Figure 3.6: A photonic crystal membrane may act as a mirror for light that is incident
perpendicular to the plane.

The strength of light-matter interaction inside the cavity can be characterized by three
parameters: the photon loss rate κ out of the cavity (determined by the waveguide loss),
the atomic spontaneous emission rate γ into a non-cavity mode, and the coupling strength
between the cavity mode and the atom g. The coupling strength is given by

g =
µ

~

√
~ω

2εMVmode
(3.2)
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where µ is the atomic transition dipole moment, and εM is the permittivity where the
field intensity is highest. The mode volume is given by

Vmode =

∫∫∫
V
ε|E|2 dV

max{ε|E|2}
= AmodeLeff

where Amode is the waveguide mode area, and Leff is the effective mode length of
the standing wave in the cavity. Unlike the previous DBR cavity using ARROW Bragg
gratings where the power is distributed throughout the mirror regions and the spacer, here
the power is mostly concentrated in the waveguide spacer region due to the use of flat
mirrors. Taking into account the waveguide loss α and mirror reflectivity R, the quality
factor of the cavity is given by

Q =
ωLn

c(αL− lnR)
(3.3)

where c is the speed of light, L is the waveguide length, and n ∼ 1 is the index of
propagation in the waveguide. The radiative decay rate out of the cavity is then κ = ω/Q.

There are two regimes of light-matter interaction that we are interested in. There is
the high cooperativity regime (g2 > κγ) where the presence of a single atom changes the
transmission properties of the cavity. There is also the strong coupling regime (g > κ, γ)
where a single photon coherently interacts with a single atom which undergoes multiple
Rabi oscillations. These two regimes are pivotal in cavity QED experiments [32, 33]. The
high cooperativity regime is easier to attain because the coupling strength does not have
to exceed both the atomic decay rate and the cavity decay rate simultaenously. In the
high cooperativity regime it is still possible to observe nonlinear quantum phenomena such
as polariton induced cavity mode splitting and electromagnetically induced transparency
(EIT). Given the fairly large waveguide losses, the strong coupling regime is not attainable
with ARROWs because photon leakage rate out of the cavity is much greater than the
coupling strength between an atom and a single photon. Figure 3.7a shows the cooperativ-
ity (g2/κγ) of the cavities formed using a 3 period SiN(1.74)/SiO2 hollow core ARROW
with cesium atoms loaded inside.
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Figure 3.7: Cooperativity of hollow core ARROW (Amode = 18µm2) cavity formed using
dielectric metasurface mirrors for various waveguide lengths and mirror reflectivities.

Unfortunately we find that when using a hollow core ARROW, even with highly reflec-
tive mirrors the waveguide loss required to achieve the high cooperativity regime is orders
of magnitude below what has been reported theoretically or experimentally. When using
the best Bragg mirror (R ∼ 84%) from Figure 3.4a, the upper limit on the cooperativity
is ∼ 2.5× 10−2, far below what is required. Here we note that the cooperativity depends
only on the mirror reflectivity when the waveguide loss is low, and on the cavity length
when the waveguide loss is high which is expected given Equations 3.3 and 3.2.
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Chapter 4

Single photon extraction

4.1 Motivation

Extracting a single photon from an optical pulse is one of most fundamental operations can
be performed on it [10]. It has important applications in quantum information processing
[34, 35, 36]. Single photon subtraction has typically been done using a low reflectivity beam
splitter [11]. However, this method is not very deterministic and depends strongly on the
number of input photons. Rosenblum et al. have recently demonstrated deterministic
single photon extraction from an optical pulse using a 3 level atom atom evanescently
coupled to a microsphere resonator [5]. This particular implementation uses an atom with
two ground states where the transitions have opposite spins (Figure 4.1).

strengths, this realization closely approximates the three-level
Λ-system required for SPRINT. The average coherent coupling rate
between this atomic transition and the TM mode was g∼ 24 MHz,
significantly above the free-space amplitude decay rate of γ = 3 MHz.
To optimize the SPRINT efficiency, the coupling rate between the
cavity and the nanofibre was tuned to κex = 40 MHz (see Methods and
ref. 13), which together with the intrinsic cavity loss of κi = 6.6 MHz
results in 48% linear loss in the absence of an atom. These parameters
enable efficient interaction between incoming photons and the
atom, as the total emission rate of the atom into both directions of
the waveguide is larger than γ by 4C = 2g2/((κi + κex)γ) = 8.2 ≫ 1.

To experimentally demonstrate photon extraction, we sent
85-ns-wide coherent laser pulses with average photon numbers
ranging from 0.2 to 11 to the cavity-enhanced atom, which was
initialized in |α〉. Multiple single-photon detectors (five in each
direction) acquired the photon statistics of the transmitted and
the reflected light.

Figure 2a displays the mean number of reflected and transmitted
photons as a function of the mean input photon number, both with
and without the presence of an atom. The mean reflection, which is
zero without an atom, quickly saturates to ∼1 in the presence of an
atom. This corresponds to the fact that a reflected photon results in
the passage of the atom to |β〉, where it is transparent to additional
photons. The transmission, in accordance, follows the expected
complementary behaviour of a single-photon subtracted pulse. In
more detail, for very low average photon numbers (!nin ≪ 1), the
measured extraction efficiency is 40%. This value should be com-
pared with the 52% extraction efficiency expected from an ideal
photon extractor in the presence of 48% linear loss of the cavity.
However, in cases where the loss occurred prior to the Raman
passage of the atom to |β〉, the atom has a renewed chance of suc-
cessfully extracting the next photon, if present. As a result, for
large input photon numbers, the number of reflected photons is
expected to approach ∼0.73, ultimately limited by the probability
of losing the extracted photon after the Raman passage. In our
current system, however, every photon still has a ∼4% overlap with
a polarization that can interact with the atom even after its passage
to |β〉, possibly resulting in an additional reflection. This results in
a slight upward slope in the reflection after saturation, leading to
∼1 photon being reflected for 11 input photons.

To establish that the reflected pulse is indeed close to a single-
photon Fock state, rather than to a classical state of mean 1, we show

in Fig. 2b its normalized two-photon detection probability. As is
evident for all measured input photon numbers, the statistics are
sub-Poissonian, remaining well below the classical limit of 1. Note
that Fig. 2b presents the second-order photon-number statistics
integrated over the entire pulse duration. It is therefore a much
stronger indication for a single-photon state than the time-dependent
antibunching g2(0) < 1, which reflects only the inability of a single
emitter to scatter two photons simultaneously. The main limiting
factor of the sub-Poissonian behaviour is the 4% overlap of the
TM mode with the unwanted circular polarization, which leads to
the possibility of an additional reflection even after Raman passage
of the atom—an event that becomes more likely for larger input
photon numbers.

The extraction mechanism is further illustrated by the photon-
number distributions of the transmitted pulses (Fig. 2c–e), which
are essentially the Poissonian distributions of the input pulses
shifted down by one photon times the extraction efficiency, in
excellent agreement with theory.

The most direct indication of the destructive interference, which
lies at the heart of SPRINT and gives rise to the deterministic nature
of the photon-extraction scheme, is the temporal correlation
between transmitted and reflected photons. The uncertainty in the
arrival times of the incoming photons leads to some spread in the
ensemble-averaged shape of both the reflected and the transmitted
pulses, and accordingly to an apparent overlap between them
(Fig. 3a). Yet when examining the arrival times of photons in
each individual run (see Fig. 3b for theory and Fig. 3c for exper-
iment), we find that transmission before reflection is an unlikely

Γ

|α〉 |β〉

|e〉

Γ

b̂

â
} = 0

Figure 1 | Schematic depiction of single-photon Raman interaction
(SPRINT). The two transitions in a three-level Λ-system (a single atom in
this case) are coupled via a microresonator to different directions of a
waveguide. A photon coming from the left is deterministically reflected (red
arrows) due to destructive interference in the transmission (blue arrows),
resulting in the Raman transfer of the atom from ground state |α〉 to |β〉.
The atom then becomes transparent to subsequent photons, which are
therefore transmitted.
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Figure 2 | Experimental results of single-photon extraction. a, Measured
mean number of reflected (red) and transmitted (blue) output photons, with
(solid markers) and without (empty markers) an atom, as a function of the
average number of input photons !nin. The lines present the results of
simulations with (solid) and without (dashed) an atom, with no free
parameters. Error bars are of equal size or smaller than the markers. The
measurements closely follow the behaviour expected from an ideal
deterministic single-photon extractor in the presence of the measured 48%
linear loss. b, Normalized two-photon detection probability of the reflected
pulse, displaying sub-Poissonian statistics (limited mostly by polarization
impurity), clearly demonstrating that the system preferentially extracts only
a single photon, even if illuminated by more than ten photons. The dotted
red line shows the result of simulations without free parameters.
c–e, Reconstructed photon-number distributions P(n) for the transmitted
light without (dashed lines) and with (crosses) an atom, for 2.5, 5.8, and
11.3 photons at the input (corresponding to the three strongest input data
points in a,b). In the absence of an atom the distributions are Poissonian,
whereas in the presence of an atom they are shifted down, following the
theoretically predicted distribution (solid lines). The shaded areas represent
the uncertainty in the retrieved distributions due to shot noise.
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Figure 4.1: Schematic of single photon extraction using single-photon Raman interaction
(SPRINT) [5]. Γ is the spontaneous emission rate into a resonator mode.
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Here the atom is initially in first ground state |α〉. The incoming photons from the fibre
couple into the counter-clockwise propagating mode of the resonator. The resonator modes
are TM, hence the clockwise and counter-clockwise travelling modes have opposite handed
circular polarizations of the electric field in the plane of propagation. Given this, the
two atomic transitions couple to counter propagating modes. Once the atom is excited,
the waveguide transmission and radiative atomic transition into |α〉 is blocked due to
destructive interference. It will eventually undergo transition to the second ground state
|β〉 and emit a clockwise propagating photon into the resonator. This photon then couples
into the backward propagating waveguide mode and is collected. Once atom is in the
second ground state, it no longer interacts with the incoming photons which do not have
the right spin and the waveguide becomes transparent once again. However for this method
to work, the coupling between the fibre and resonator must be tuned such that destructive
interference occurs between the waveguide transmission and atom emission so that the
atom preferentially goes into the second ground state. Here we propose using a similar
Λ system coupled coupled to a chiral waveguide to perform deterministic single photon
extraction.

Typically a quantum emitter couples equally to the counter-propagating modes of a
waveguide. However this symmetry can be broken in certain nanophotonic structures such
as the glide plane waveguide (GPW) [12], or a gold nanoparticle evanescently coupled
to the TM mode of a nanofibre [37]. In each case the helicity of the atomic transition
determines the photon’s direction of propagation in the waveguide (ie. photons of opposite
handed circular polarizations propagate in opposite directions). If a 3 level system were
to be coupled to the waveguide, the two transitions would couple to counter propagating
mode as shown in Figure 4.2

Figure 4.2: Overview of a 3 level system coupled to a chiral waveguide.

The basic principle is that given some input photons from the left with the emitter
initially in the |1〉 state, it will excite to the |3〉 state. Subsequent emission of a photon
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via the |3〉 → |1〉 transition is blocked due to destructive interference with the incoming
photons. This causes the transmission of the waveguide to drop until the emitter transitions
to the |2〉 state and emits a left propagating photon which can then be collected. Once
this happens, the emitter no longer interacts with the incoming photons because they do
not couple to the |2〉 → |3〉 transition. Now we have subtracted exactly one photon from
the incoming light, while letting the rest of it continue propagating forward as before. The
extracted photon is redirected and can be used for other purposes.

4.2 Initial calculations

We begin with the simplest case of a continuous wave coherent input which can be solved
analytically. We will utilize the input-output formalism first developed by Gardiner and
Collet [38] and later extended by Fan et al. [39, 40] to study resonance fluorescence of a
two level quantum emitter in a waveguide geometry. We begin with the Hamiltonian for
the system shown in Figure 4.2.

H = Hwaveguide +Hatom +Hinteraction

Hwaveguide =

∫
dωω(r†ωrω − l†ωlω)

Hatom = Ωσ33 + δσ22

Hinteraction = V1

∫
dω(σ31rω + r†ωσ13) + V2

∫
dω(σ32lω + l†ωσ23)

where the density operator is σab = |a〉 〈b|. We obtain the Heisenberg equations of
motion for the left and right waveguide mode operators.

ṙω = −iωrω − iV1σ13
l̇ω = iωrω − iV2σ23

The input and output operator of these modes are defined by
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rin(t) =
1√
2π

∫
dωrω(t0)e

−iω(t−t0)

rout(t) =
1√
2π

∫
dωrω(t1)e

−iω(t−t1)

lin(t) =
1√
2π

∫
dωlω(t0)e

iω(t−t0)

lout(t) =
1√
2π

∫
dωlω(t1)e

iω(t−t1)

where at t0 →∞ and t1 → −∞ the input and output operators respectively are define
long before and long after the interaction has taken place. Now defining two new operators
φr and φl

φr =
1√
2π

∫
dωrω(t)

= rin − i
√

2

π
V1σ13

= rout + i

√
2

π
V1σ13

φl =
1√
2π

∫
dωlω(t)

= lin − i
√

2

π
V2σ23

= lout + i

√
2

π
V2σ23

we can combine these relations to arrive at the input output formalism of the waveguide.

rout = rin − i
√

2πV1σ13

lout = lin − i
√

2πV2σ23
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Now applying the Heisenberg equation of motion to the various density operators, and
adding the Lindblad superoperator to account for the emitter’s spontaneous emission rate
(2γ1 for |3〉 → |1〉 transition and 2γ2 for |3〉 → |2〉) into a non-waveguide mode, we have

ρ̇ = −i[H, ρ] + L(
√

2γ1σ13)ρ+ L(
√

2γ2σ23)ρ

= −i[H, ρ] + 2γ1σ13ρσ31 + 2γ2σ23ρσ32 − (γ1 + γ2)(σ33ρ+ ρσ33)

Finally, we arrive at the Bloch equations for this system.

σ̇13 = i
√

2πV1(σ33 − σ11)rin − i
√

2πV2σ12lin − (π(V 2
1 + V 2

2 ) + γ1 + γ2 + iΩ)σ13

σ̇31 = −i
√

2πV1r
†
in(σ33 − σ11) + i

√
2πV2l

†
inσ21 − (π(V 2

1 + V 2
2 ) + γ1 + γ2 − iΩ)σ31

σ̇23 = i
√

2πV2(σ33 − σ22)lin − i
√

2πV1σ21rin − (π(V 2
1 + V 2

2 ) + γ1 + γ2 + i(Ω− δ))σ23
σ̇32 = −i

√
2πV2l

†
in(σ33 − σ22) + i

√
2πV1r

†
inσ12 − (π(V 2

1 + V 2
2 ) + γ1 + γ2 − i(Ω− δ))σ32

σ̇33 = −i
√

2πV1(σ31rin − r†inσ13)− i
√

2πV2(σ32lin − l†inσ23)− 2(π(V 2
1 + V 2

2 ) + γ1 + γ2)σ33

σ̇11 = i
√

2πV1(σ31rin − r†inσ13) + 2(πV 2
1 + γ1)σ33

σ̇22 = i
√

2πV2(σ32lin − l†inσ23) + 2(πV 2
2 + γ2)σ33

σ̇12 = i
√

2πV1σ32rin − i
√

2πV2l
†
inσ13 − iδσ12

σ̇21 = −i
√

2πV1r
†
inσ23 + i

√
2πV2σ31lin + iδσ21

Now given a continuous wave coherent input state |αω〉 at frequency ω coming from the
left where

rin(t) |αω〉 =
α√
2π
e−iωt |αω〉 (4.1)

we can find the expectation values of the Bloch operators. Taking these values into the
the rotating frame (σ13 → σ13e

−iωt, σ23 → σ23e
−iωt), we have
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〈σ̇13〉 = iV1α(〈σ33〉 − 〈σ11〉)− (π(V 2
1 + V 2

2 ) + γ1 + γ2 + i(Ω− ω)) 〈σ13〉
〈σ̇31〉 = −iV1ᾱ(〈σ33〉 − 〈σ11〉)− (π(V 2

1 + V 2
2 ) + γ1 + γ2 − i(Ω− ω)) 〈σ31〉

〈σ̇23〉 = −iV1α 〈σ21〉 − (π(V 2
1 + V 2

2 ) + γ1 + γ2 + i(Ω− ω − δ)) 〈σ23〉
〈σ̇32〉 = iV1ᾱ 〈σ12〉 − (π(V 2

1 + V 2
2 ) + γ1 + γ2 − i(Ω− ω − δ)) 〈σ32〉

〈σ̇33〉 = −iV1(〈σ31〉α− ᾱ 〈σ13〉)− 2(π(V 2
1 + V 2

2 ) + γ1 + γ2) 〈σ33〉
〈σ̇11〉 = iV1(〈σ31〉α− ᾱ 〈σ13〉) + 2(πV 2

1 + γ1) 〈σ33〉
〈σ̇22〉 = 2(πV 2

2 + γ2) 〈σ33〉
〈σ̇12〉 = iV1α 〈σ32〉 − iδ 〈σ12〉
〈σ̇21〉 = −iV1ᾱ 〈σ23〉+ iδ 〈σ21〉

Next we can take the Laplace transform of the equations above with the initial condition
that the emitter is in the first ground state (〈σab(0)〉 = 0 with the exception of 〈σ11(0)〉 = 1)
and use the Laplace identity (L{〈σ̇ab〉} = sL{〈σab〉}−〈σab(0)〉). Then after solving we have

L{〈σ13〉} =
−iV1α(s + 2(π(V 2

1 + V 2
2 ) + γ1 + γ2))(s + π(V 2

1 + V 2
2 ) + γ1 + γ2 − i(Ω− ω))

s(s + 2(π(V 2
1 + V 2

2 ) + γ1 + γ2))((s + π(V 2
1 + V 2

2 ) + γ1 + γ2)2 + (Ω− ω)2) + 4V 2
1 |α|2(s + πV 2

2 + γ2)(s + π(V 2
1 + V 2

2 ) + γ1 + γ2)

L{〈σ31〉} =
iV1ᾱ(s + 2(π(V 2

1 + V 2
2 ) + γ1 + γ2))(s + π(V 2

1 + V 2
2 ) + γ1 + γ2 + i(Ω− ω))

s(s + 2(π(V 2
1 + V 2

2 ) + γ1 + γ2))((s + π(V 2
1 + V 2

2 ) + γ1 + γ2)2 + (Ω− ω)2) + 4V 2
1 |α|2(s + πV 2

2 + γ2)(s + π(V 2
1 + V 2

2 ) + γ1 + γ2)

L{〈σ33〉} =
2V 2

1 |α|
2(s + π(V 2

1 + V 2
2 ) + γ1 + γ2)

s(s + 2(π(V 2
1 + V 2

2 ) + γ1 + γ2))((s + π(V 2
1 + V 2

2 ) + γ1 + γ2)2 + (Ω− ω)2) + 4V 2
1 |α|2(s + πV 2

2 + γ2)(s + π(V 2
1 + V 2

2 ) + γ1 + γ2)

Now the reflected field is given by

〈
l†outlout

〉
=
〈
l†inlin

〉
+ iV2ᾱ 〈σ23〉 − iV2α 〈σ32〉+ 2πV 2

2 〈σ33〉
= 2πV 2

2 〈σ33〉

The probability of detecting a single photon at the left output is given by

Pl =

∫ ∞
0

〈
l†outlout

〉
dt

=

∫ ∞
0

2πV 2
2 〈σ33〉 dt
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Now applying the Laplace identity
(
L{
∫ t
0
〈σab〉 dt} = L{〈σab〉}

s

)
, and the final value the-

orem (limt→∞ 〈σab(t)〉 = lims→0 sL{〈σab〉}), we have that

Pl = 2πV 2
2 lim
s→0

s
L{〈σ33〉}

s
= 2πV 2

2 lim
s→0
L{〈σ33〉}

=
πV 2

2

πV 2
2 + γ2

= 1− γ2
πV 2

2 + γ2

We find that the probability of detecting a single photon on the left side depends only
on the rate of emitter decay from |3〉 → |2〉 and the emission rate into the left propagating
mode of the waveguide (Pl ∼ 1 for γ2 � V 2

2 ). Now we need to take a look at the outgoing
beam to find the number of photons subtracted.

〈
r†outrout

〉
=
〈
r†inrin

〉
+ iV1(α 〈σ31〉 − ᾱ 〈σ13〉) + 2πV 2

1 〈σ33〉

Nsubtracted =

∫ ∞
0

dt
(〈
r†inrin

〉
−
〈
r†outrout

〉)
= lim

s→0
iV1(αL{〈σ31〉} − ᾱL{〈σ13〉}) + 2πV 2

1 L{〈σ33〉}

= 1 +
γ1

πV 2
2 + γ2

We find that slightly more than one photon is subtracted from the input due to the
excited emitter state decay from |3〉 → |1〉 via a non-waveguide mode while it has not
transitioned to the noninteracting |2〉 state. We do not always collect the extracted photon
at the left output due to γ2. The number of photons subtracted is independent of both the
coupling between the right propagating waveguide mode and the |1〉 → |3〉 transition and
the rate of incoming photons (|α|2).
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〈
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(〈
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〉
−
〈
r†outrout

〉)
dt ′〈

σ11

〉

Figure 4.3: Output values of the various operators given a continuous wave coherent input.

Figure 4.3 shows the expectation values of the various observables for a set of system
parameters. When the rate of incoming photons is low, there is a greater drop in the
transmission of the waveguide until a photon is subtracted. This is because the emitted
photon from the |3〉 → |1〉 transition has a longer effective interaction time with the
incoming photons with which it destructively interferes. Also, the time it takes to extract
a single photon increases for weaker coupling strengths between the waveguide modes and
the 3 level Λ emitter, as well as a lower rate of incoming photons. A weaker coupling
strength implies a longer lifetime in the excited state.

4.3 Coherent pulse calculations

The previous was straightforward and educational, but for practical purposes we now take
a look at how successful the photon subtraction operation is if the input is actually a
coherent pulse containing a finite number of photons. The initial calculations were akin to
a single photon source because we do not gain any information about the continuous wave
output. Here we will consider the case of a coherent Gaussian like input wave-packet [41].
The input state is defined as
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|ψin〉 = erin,α−r
†
in,α |0〉 (4.2)

where α satisfies ∫
|α(t)|2dt =

∫
|α(ω)|2dω = 〈n〉 (4.3)

with 〈n〉 being the number of photons in the wave-packet. Applying the input operators
to this state, we get that

rin(t) |ψin〉 = α(t) |ψin〉
rin(ω) |ψin〉 = α(ω) |ψin〉

These input operators are related by the Fourier transform

rin(t) =
1√
2π

∫
dωrin(ω)eiωt

rin(ω) =
1√
2π

∫
dtrin(t)e−iωt

and satisfy the commutation relations

[rin(t), r†in(t′)] = δ(t− t′)
[rin(ω), r†in(ω′)] = δ(ω − ω′)

Now choosing a Gaussian wave-packet with width τ , we can define

α(t) =

√
2 〈n〉

4
√
πτ 2

e−2t
2/τ2

(4.4)

The expectation values of the Bloch equations in the rotating frame become
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〈σ̇13〉 = i
√

2πV1α(t)(〈σ33〉 − 〈σ11〉)− (π(V 2
1 + V 2

2 ) + γ1 + γ2 + i(Ω− ω)) 〈σ13〉
〈σ̇31〉 = −i

√
2πV1ᾱ(t)(〈σ33〉 − 〈σ11〉)− (π(V 2

1 + V 2
2 ) + γ1 + γ2 − i(Ω− ω)) 〈σ31〉

〈σ̇23〉 = −i
√

2πV1α(t) 〈σ21〉 − (π(V 2
1 + V 2

2 ) + γ1 + γ2 + i(Ω− ω − δ)) 〈σ23〉
〈σ̇32〉 = i

√
2πV1ᾱ(t) 〈σ12〉 − (π(V 2

1 + V 2
2 ) + γ1 + γ2 − i(Ω− ω − δ)) 〈σ32〉

〈σ̇33〉 = −i
√

2πV1(〈σ31〉α(t)− ᾱ(t) 〈σ13〉)− 2(π(V 2
1 + V 2

2 ) + γ1 + γ2) 〈σ33〉
〈σ̇11〉 = i

√
2πV1(〈σ31〉α(t)− ᾱ(t) 〈σ13〉) + 2(πV 2

1 + γ1) 〈σ33〉
〈σ̇22〉 = 2(πV 2

2 + γ2) 〈σ33〉
〈σ̇12〉 = i

√
2πV1α(t) 〈σ32〉 − iδ 〈σ12〉

〈σ̇21〉 = −i
√

2πV1ᾱ(t) 〈σ23〉+ iδ 〈σ21〉

with the same initial condition that the emitter is in the first ground state. We can
numerically solve these equations to determine the expectation values of the various outputs
as shown in Figure 4.4. We find that

4 2 0 2 4

time

0

1

2

3

4

5

6
V 2 = 10, γ= 0,

〈
n
〉
= 5, τ= 1〈

r†inrin
〉〈

r†outrout
〉〈

l †outlout
〉

∫ t

−∞

〈
l †outlout

〉
dt ′〈

σ11

〉

Figure 4.4: Output values for a coherent pulsed input state.

In Figure 4.3, we show that the probability of extracting a single photon is a function of
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the τV 2 product. This can be thought of as the interaction product (interaction time (τ) x
rate of interaction (V 2)). Compared to continuous driving, the probability of single photon
extraction is always less than unity because the pulse only interacts with the emitter for a
limited time (τ).

100 101 102

V 2

10-2

10-1

100

101

τV
2

〈
n
〉
= 10, γ= 0

0.2

0.3
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0.5

0.6

0.7

0.8

0.9

Figure 4.5: The probability of extracting a single photon is a function of the τV 2 product.
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Figure 4.6: The probability of single photon extraction as a function of the interaction
product and the number of photons in the input.
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Therefore the probability of extracting a single photon is a function of only the inter-
action product and the number of photons in the input wave-packet as shown in Figure
4.6. A higher interaction product or a larger number of photons in the input wave-packet
increases the probability of extracting a single photon from it.

4.4 Fock state calculations

Next, we study the single photon extraction from a Fock state pulse. Ideally we want the
single photon extraction probability to be independent of the Fock state number. We begin
by defining the photon wave-packet creation operator [41].

r†in,α(t) =

∫
dtα(t)r†in(t)

=

∫
dωα(ω)r†in(ω)

where ∫
|α(t)|2dt =

∫
|α(ω)|2dω = 1 (4.5)

The N photon Fock state is then defined as

|Nα〉 =
(r†in,α)

N

√
N !

|0〉 (4.6)

which consists of N independent single photon wave-packets. Now applying the input
operator rin(t) to this state, we have the following relation.

rin(t) |Nα〉 =
√
Nα(t) |(N − 1)α〉 (4.7)

We can similarly apply this relation to the Bloch equations to get
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〈Nα | σ̇13 |Kα〉 = i
√

2πV1

√
Kα(t)(〈Nα |σ33 | (K − 1)α〉 − 〈Nα |σ11 | (K − 1)α〉)− (π(V

2
1 + V

2
2 ) + γ1 + γ2 + i(Ω− ω)) 〈Nα |σ13 |Kα〉

〈Nα | σ̇31 |Kα〉 = −i
√

2πV1

√
Nᾱ(t)(〈(N − 1)α |σ33 |Kα〉 − 〈(N − 1)α |σ11 |Kα〉)− (π(V

2
1 + V

2
2 ) + γ1 + γ2 − i(Ω− ω)) 〈Nα |σ31 |Kα〉

〈Nα | σ̇23 |Kα〉 = −i
√

2πV1

√
Kα(t) 〈Nα |σ21 | (K − 1)α〉 − (π(V

2
1 + V

2
2 ) + γ1 + γ2 + i(Ω− ω − δ)) 〈Nα |σ23 |Kα〉

〈Nα | σ̇32 |Kα〉 = i
√

2πV1

√
Nᾱ(t) 〈(N − 1)α |σ12 |Kα〉 − (π(V

2
1 + V

2
2 ) + γ1 + γ2 − i(Ω− ω − δ)) 〈Nα |σ32 |Kα〉

〈Nα | σ̇33 |Kα〉 = −i
√

2πV1(〈Nα |σ31 | (K − 1)α〉
√
Kα(t)−

√
Nᾱ(t) 〈(N − 1)α |σ13 |Kα〉)− 2(π(V

2
1 + V

2
2 ) + γ1 + γ2) 〈Nα |σ33 |Kα〉

〈Nα | σ̇11 |Kα〉 = i
√

2πV1(〈Nα |σ31 | (K − 1)α〉
√
Kα(t)−

√
Nᾱ(t) 〈(N − 1)ασ13 |Kα〉) + 2(πV

2
1 + γ1) 〈Nα |σ33 |Kα〉

〈Nα | σ̇22 |Kα〉 = 2(πV
2
2 + γ2) 〈Nα |σ33 |Kα〉

〈Nα | σ̇12 |Kα〉 = i
√

2πV1

√
Kα(t) 〈Nα |σ32 | (K − 1)α〉 − iδ 〈Nα |σ12 |Kα〉

〈Nα | σ̇21 |Kα〉 = −i
√

2πV1

√
Nᾱ(t) 〈(N − 1)α |σ23 |Kα〉 + iδ 〈Nα |σ21 |Kα〉

and numerically solve for the expectation values of the various operators as before.
Output from a sample calculation is shown in Figure 4.7.
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Figure 4.7: Output values for a N = 10 Fock state input.
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Figure 4.8: Probability of extracting a single photon from a Fock state.

We find that the probability of extracting a single photon is relatively independent of
the Fock state number (> 99%) for V 2 = 10 and τ = 1. As before with the coherent
pulsed input state in Figure 4.6, we found that the probability is a function of only the
interaction product and the number of photons in the input (τV 2). In Figure 4.9 we
compare our results for a Fock state input with those for a coherent pulsed input. We find
that the probability of extraction from a Fock state is consistently greater than from a
coherent state containing the same number of photons. We also find that for a particular
interaction product, the success probabilities for both converge with more photons in the
input as we would expect. For both Fock and coherent state inputs the probability does
not seem to increase with larger interaction products (τV 2 > 10) due to some saturation
effect.
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Figure 4.9: Comparison of the probability of single photon extraction from a coherent
pulsed state (triangles) and a Fock state (squares).
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Figure 4.10: Comparison of the probability of single photon extraction from a coherent
pulsed state (triangles) and a Fock state (squares) with a non-zero decay rate of the emitter.
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With some emitter decay we find that the probability of extracting a single photon is
reduced. Also, we observe that for higher values of the interaction product, this probability
is lowered by a relatively smaller amount. Hence, there is a distinction between the τV 2 =
10 and τV 2 = 100 cases unlike in Figure 4.9.

4.5 Imperfectly directional waveguides

While in the previous calculations we assumed the waveguide to be perfectly directional
(ie. opposite handed circularly polarized photons travel only in opposite directions), this
is not aways the case in real systems (Figure 4.11). Specifically, the atom can emit with
non-zero probability a left propagating photon after undergoing the |3〉 → |1〉 transition
or a right propagating photon after undergoing the |3〉 → |2〉 transition.

Figure 4.11: Overview of a 3 level system coupled to a non perfect chiral waveguide.

Thus, we define the directionality of the waveguide β as

β =
V 2
1R

V 2
1R + V 2

1L

=
V 2
2L

V 2
2L + V 2

2R

(4.8)

where

V 2
1 = V 2

1R + V 2
1L

V 2
2 = V 2

2R + V 2
2L
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Now we have a slightly different Hamiltonian than before

H = Hwaveguide +Hatom +Hinteraction

Hwaveguide =

∫
dωω(r†ω1

rω1 + r†ω2
rω2 − l†ω1

lω1 − l†ω2
lω2)

Hatom = Ωσ33 + δσ22

Hinteraction = V1R

∫
dω(σ31rω1 + r†ω1

σ13) + V2L

∫
dω(σ32lω2 + l†ω2

σ23)

+ V1L

∫
dω(σ31lω1 + l†ω1

σ13) + V2R

∫
dω(σ32rω2 + r†ω2

σ23)

Working out the Bloch equations as before, we can then apply a continuously driven
coherent input state |αω1〉 from the left where

rin(t) |αω1〉 =
α√
2π
e−iω1t |αω1〉 (4.9)

Taking the expectation values of the Bloch equations, and solving them using the
Laplace transform we then arrive at the probability of detecting a single photon.

P2L =

∫ ∞
0

dt
〈
l†out,2lout,2

〉
=

πβV 2
2

πV 2
2 + γ2

P2R =

∫ ∞
0

dt
〈
r†out,2rout,2

〉
=
π(1− β)V 2

2

πV 2
2 + γ2

P1L =

∫ ∞
0

dt
〈
l†out,1lout,1

〉
=
π(1− β)V 2

1

πV 2
2 + γ2

We see that the probability of detecting the photon via the left channel is reduced by
a factor of β. We also have some non-zero probability of detecting a photon from the
right from the second ground state transition, and in the left from the first ground state
transition due to a directionality that is less than 1. Also we can calculate the number of
photons extracted from the incoming light.

∫ ∞
0

dt
(〈
r†in,1rin,1

〉
−
〈
r†out,1rout,1

〉)
= 1 +

π(1− β)V 2
1 + γ1

πV 2
2 + γ2

(4.10)
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We extract more than one photon from the incoming light due to the imperfect direc-
tionality of the waveguide and the excited state decay via |3〉 → |1〉. We extract exactly
one photon via transition to the second ground state which can only occur once. However
if the emitter transitions to the first ground state and emits a photon into the waveguide,
it will travel left with probability 1−β, causing us to remove more photons than we desire.
Next we compare the probability of extracting a single photon via the left channel when
the input is a coherent pulsed state or a Fock state.
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Figure 4.12: Comparison of the probability of single photon extraction via the left channel
from a coherent pulsed state (triangles) and a Fock state (squares) with β = 0.75.
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Figure 4.13: Comparison of the probability of single photon extraction via the left channel
from a coherent pulsed state (triangles) and a Fock state (squares) using a nondirectional
waveguide.

We find that the probability of extracting a single photon and reflecting it is limited
by the directionality of the waveguide as we would intuitively expect. The extracted
photon only travels in the correct direction with some probability less than unity. However
as before, the probability of extracting a single photon from a pulsed coherent state is
less than from a Fock state with the same number of photons. For the Fock state, this
probability is independent of the number of photons above some threshold. This threshold
is higher for waveguides with lower directionality.
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Chapter 5

Conclusion

5.1 ARROW waveguides

We have looked at how the the propagation loss of a hollow core ARROW waveguide is
affected by use of different cladding material pairs and the number of antiresonant layers.
It is shown that using higher refracting index contrast materials and more antiresonant
layers can decrease the propagation loss. We have also looked at how gratings can be
implemented within the cladding structure of an ARROW to modulate the effective index
of propagation. This has the advantage of leaving the hollow core unobstructed to allow
the loading of atomic ensembles inside, which can be made to interact with tightly confined
light. We demonstrated lossy mirrors with a reflectivity of up to 84% and unconventional
cavities that can enhance the electric field intensity by up to 8×. We have also shown that
even with the use of highly reflective dielectric metasurface mirrors, we can not achieve
the high cooperativity regime or strong coupling regime for light-matter interaction due to
the highly lossy nature of the hollow core ARROW waveguides.

5.2 Single photon extraction

Our calculations have shown how deterministic single photon extraction can be performed
on an input pulse using a Λ scheme emitter coupled to a chiral waveguide. We have
also shown that when continuously driving with a coherent state, we subtract exactly one
photon from the input given that the atomic decay rate via emission into non-waveguide
mode is much less than the waveguide-emitter coupling strength. We have also shown
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that for Guassian pulsed coherent and Fock state inputs, the probability of single photon
extraction is a function of the product of the temporal width and the waveguide emitter
coupling strength, as well as the the number of photons in the input. For Fock state inputs,
the probability of single photon extraction is independent of the number of photons above
some threshold with the threshold being higher for larger interaction products. For non
ideal chiral waveguides, we have shown that when continuously driving with coherent light,
we extract more than one photon due to the imperfect directionality and the emitter decay.
Also for coherent pulses and similar Fock state inputs, the probability of detecting the
extracted single photon is limited by the directionality of the waveguide β. Some possible
applications of our proposed system include photon number resolving detectors, attacks
on quantum cryptography schemes, and quantum computation.
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Appendix A

Waveguide and FEM simulation
parameters

Table A.1: Finite element modelling simulation parameters
Wavelength 852 nm

Simulation region width1 200 µm
Perfectly Matched Layer (PML) width2 20 µm

Number of divisions per element3 17

Table A.2: Self aligned pedestal ARROW parameters
Pedestal height4 6 µm

Si3N4/TiO2 conformality ratio5 1.25
SiO2 conformality ratio5 1.58

SiO2 conformality ratio5 (top thick layer) 1.63

1. Using larger values of the simulation region width yields more accurate results from the
mode solver, but at the expense of more computational time.

2. PML refers to boundaries that absorb any outgoing radiation. The width determines how
much radiation can be absorbed. A thicker PML yields more accurate results from the
mode solver.
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3. The waveguide cross section is modelled by combining multiple elements. This parameter
determines how precisely each element is discretized when using the mode solver.

4. The height of the pedestal on silicon substrate as shown in Figure 2.5a.

5. Ratio of the top film thickness above the core to the side film thickness (Figure 2.5a).

Table A.3: Layer thicknesses of optimized 3 period hollow core ARROWs using
Si3N4(1.74)/SiO2 cladding layers for various core sizes

5.8µm× 8µm 5.8µm× 12µm 10.6µm× 22µm 13µm× 27µm
Propagation Loss (cm−1) 6.536 0.87 0.118 0.052

nlow (top) 5.163 µm 5.917 µm 5.702 µm 2.475 µm
nhigh 250 nm 65 nm 250 nm 235 nm
nlow 128 nm 291 nm 166 nm 145 nm
nhigh 65 nm 172 nm 84 nm 241 nm
nlow 339 nm 175 nm 329 nm 197 nm
nhigh 325 nm 81 nm 370 nm 377 nm
ncore 5.8 µm 5.8 µm 5.8 µm 5.8 µm
nhigh 280 nm 213 nm 219 nm 100 nm
nlow 157 nm 173 nm 82 nm 364 nm
nhigh 103 nm 90 nm 349 nm 259 nm
nlow 271 nm 174 nm 362 nm 408 nm
nhigh 67 nm 180 nm 219 nm 390 nm

nlow (bottom) 338 nm 268 nm 120 nm 421 nm
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Table A.4: Layer thicknesses of optimized 2 period hollow core (5.8µm×12µm) ARROWs
with high index layer beneath the core

nhigh = 1.74 nhigh = 2 nhigh = 2.4
nlow = 1.44 nlow = 1.44 nlow = 1.44

Propagation Loss (cm−1) 1.68 1.46 1.38
nlow (top) 4.8 µm 2.534 µm 4.689 µm
nhigh 378 nm 159 nm 112 nm
nlow 265 nm 157 nm 292 nm
nhigh 109 nm 359 nm 263 nm
ncore 5.8 µm 5.8 µm 5.8 µm
nhigh 260 nm 262 nm 146 nm
nlow 229 nm 183 nm 364 nm
nhigh 271 nm 249 nm 76 nm

nlow (bottom) 190 nm 310 nm 352 nm

Table A.5: Layer thicknesses of optimized 3 period hollow core (5.8µm×12µm) ARROWs
with high index layer beneath the core

nhigh = 1.74 nhigh = 2 nhigh = 2.4
nlow = 1.44 nlow = 1.44 nlow = 1.44

Propagation Loss (cm−1) 0.87 0.86 0.77
nlow (top) 5.917 µm 3.604 µm 2.479 µm
nhigh 65 nm 194 nm 148 nm
nlow 291 nm 429 nm 258 nm
nhigh 172 nm 120 nm 112 nm
nlow 175 nm 327 nm 215 nm
nhigh 81 nm 306 nm 276 nm
ncore 5.8 µm 5.8 µm 5.8 µm
nhigh 213 nm 92 nm 387 nm
nlow 173 nm 209 nm 107 nm
nhigh 90 nm 166 nm 243 nm
nlow 174 nm 486 nm 187 nm
nhigh 180 nm 422 nm 366 nm

nlow (bottom) 268 nm 278 nm 323 nm
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Table A.6: Layer thicknesses of optimized 4 period hollow core (5.8µm×12µm) ARROWs
with high index layer beneath the core

nhigh = 1.74 nhigh = 2 nhigh = 2.4
nlow = 1.44 nlow = 1.44 nlow = 1.44

Propagation Loss (cm−1) 0.56 0.38 0.65
nlow (top) 3.59 µm 4.538 µm 4.669 µm
nhigh 87 nm 220 nm 64 nm
nlow 217 nm 175 nm 463 nm
nhigh 182 nm 362 nm 362 nm
nlow 130 nm 345 nm 303 nm
nhigh 349 nm 229 nm 392 nm
nlow 78 nm 299 nm 99 nm
nhigh 69 nm 354 nm 55 nm
ncore 5.8 µm 5.8 µm 5.8 µm
nhigh 155 nm 243 nm 377 nm
nlow 304 nm 78 nm 142 nm
nhigh 74 nm 174 nm 100 nm
nlow 260 nm 74 nm 249 nm
nhigh 335 nm 291 nm 293 nm
nlow 219 nm 96 nm 203 nm
nhigh 85 nm 364 nm 367 nm

nlow (bottom) 127 nm 133 nm 276 nm
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Table A.7: Layer thicknesses of optimized 2 period hollow core (5.8µm×12µm) ARROWs
with low index layer beneath the core

nhigh = 1.74 nhigh = 2 nhigh = 2.4
nlow = 1.44 nlow = 1.44 nlow = 1.44

Propagation Loss (cm−1) 1.74 1.38 1.24
nlow (top) 4.176 µm 3.105 µm 3.045 µm
nhigh 219 nm 80 nm 86 nm
nlow 427 nm 217 nm 409 nm
nhigh 154 nm 384 nm 219 nm
ncore 5.8 µm 5.8 µm 5.8 µm
nlow 211 nm 265 nm 79 nm
nhigh 231 nm 266 nm 177 nm
nlow 290 nm 263 nm 380 nm

nhigh (bottom) 101 nm 171 nm 313 nm

Table A.8: Layer thicknesses of optimized 3 period hollow core (5.8µm×12µm) ARROWs
with low index layer beneath the core

nhigh = 1.74 nhigh = 2 nhigh = 2.4
nlow = 1.44 nlow = 1.44 nlow = 1.44

Propagation Loss (cm−1) 1.11 0.9 0.74
nlow (top) 2.98 µm 5.417 µm 4.742 µm
nhigh 239 nm 364 nm 88 nm
nlow 231 nm 142 nm 411 nm
nhigh 62 nm 346 nm 328 nm
nlow 239 nm 220 nm 206 nm
nhigh 210 nm 331 nm 323 nm
ncore 5.8 µm 5.8 µm 5.8 µm
nlow 473 nm 341 nm 473 nm
nhigh 125 nm 189 nm 343 nm
nlow 71 nm 249 nm 139 nm
nhigh 73 nm 64 nm 80 nm
nlow 392 nm 444 nm 313 nm

nhigh (bottom) 355 nm 126 nm 248 nm
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Table A.9: Layer thicknesses of optimized 4 period hollow core (5.8µm×12µm) ARROWs
with low index layer beneath the core

nhigh = 1.74 nhigh = 2 nhigh = 2.4
nlow = 1.44 nlow = 1.44 nlow = 1.44

Propagation Loss (cm−1) 0.93 0.61 0.24
nlow (top) 2.931 µm 3.096 µm 2.46 µm
nhigh 264 nm 409 nm 108 nm
nlow 283 nm 335 nm 217 nm
nhigh 81 nm 245 nm 396 nm
nlow 166 nm 231 nm 417 nm
nhigh 388 nm 469 nm 112 nm
nlow 305 nm 125 nm 183 nm
nhigh 381 nm 122 nm 293 nm
ncore 5.8 µm 5.8 µm 5.8 µm
nlow 220 nm 374 nm 396 nm
nhigh 121 nm 72 nm 58 nm
nlow 152 nm 257 nm 304 nm
nhigh 323 nm 377 nm 233 nm
nlow 83 nm 410 nm 220 nm
nhigh 272 nm 405 nm 194 nm
nlow 198 nm 174 nm 183 nm

nhigh (bottom) 325 nm 486 nm 211 nm
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Appendix B

Python code for single photon
extraction calculations

B.1 Continuously driven coherent input

import numpy as np
import s c ipy . l i n a l g as l i n
import matp lo t l i b . pyplot as p l t
import numpy . matl ib

V1 = np . s q r t (10)
V2 = np . s q r t (10)
beta = 1
VR1 = np . s q r t ( beta )∗V1
VL2 = np . s q r t ( beta )∗V2
VL1 = np . s q r t (1−beta )∗V1
VR2 = np . s q r t (1−beta )∗V2
alpha = np . s q r t (2∗np . p i ∗10)
gamma1 = 0
gamma2 = gamma1

x0 = np . matrix ( [ [ 0 ] , [ 0 ] , [ 0 ] , [ 1 ] , [ 0 ] ] )
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M = np . matrix ( [ [ − ( np . p i ∗(VR1∗∗2+VL1∗∗2+VR2∗∗2+VL2∗∗2)+gamma1+
gamma2) ,0 ,1 j ∗VR1∗alpha ,−1 j ∗VR1∗alpha , 0 ] ,

[0 ,−(np . p i ∗(VR1∗∗2+VL1∗∗2+VR2∗∗2+VL2∗∗2)+gamma1+
gamma2) ,−1 j ∗VR1∗alpha , 1 j ∗VR1∗alpha , 0 ] ,

[ 1 j ∗VR1∗alpha ,−1 j ∗VR1∗alpha ,−2∗(np . p i ∗(VR1∗∗2+VL1
∗∗2+VR2∗∗2+VL2∗∗2)+gamma1+gamma2) , 0 , 0 ] ,

[−1 j ∗VR1∗alpha , 1 j ∗VR1∗alpha , 2∗ ( np . p i ∗(VR1∗∗2+VL1
∗∗2)+gamma1) , 0 , 0 ] ,

[ 0 , 0 , 2∗ ( np . p i ∗(VR2∗∗2+VL2∗∗2)+gamma2) , 0 , 0 ] ] )

t = np . l i n s p a c e (0 ,1 , 1001)
g1 = np . z e r o s ( len ( t ) )
g2 = np . z e r o s ( len ( t ) )
l out1 = np . z e r o s ( len ( t ) )
l out2 = np . z e r o s ( len ( t ) )
rout1 = np . z e r o s ( len ( t ) )
rout2 = np . z e r o s ( len ( t ) )

g1 [ 0 ] = 1
rout1 [ 0 ] = alpha ∗∗2/(2∗np . p i )

for i in range (1 , len ( t ) ) :
x = l i n . expm(M∗ t [ i ] ) ∗x0
g1 [ i ] = abs ( x . item (3) )
g2 [ i ] = abs ( x . item (4) )
l out1 [ i ] = 2∗np . p i ∗(VL1∗∗2)∗abs ( x . item (2) )
l out2 [ i ] = 2∗np . p i ∗(VL2∗∗2)∗abs ( x . item (2) )
rout1 [ i ] = abs ( alpha ∗∗2/(2∗np . p i )+1j ∗VR1∗( alpha∗x . item (1)−

alpha∗x . item (0) )+2∗np . p i ∗VR1∗∗2∗x . item (2) )
rout2 [ i ] = 2∗np . p i ∗(VR2∗∗2)∗abs ( x . item (2) )

p l t . p l o t ( t , l out2 / rout1 [ 0 ] , l i n ew id th =1.5 , l a b e l=r ’ $\ l a n g l e l ˆ{\dag}
{2 , out} l {2 , out} \ rang l e$ ’ )

p l t . p l o t ( t , rout1 / rout1 [ 0 ] , l i n ew id th =1.5 , l a b e l=r ’ $\ l a n g l e r ˆ{\dag}
{1 , out} r {1 , out} \ rang l e$ ’ )

p l t . p l o t ( t , g2∗beta , l i n ew id th =1.5 , l a b e l=r ’ $\ i n t {0}ˆ{ t} \ l a n g l e l
ˆ{\dag} {2 , out} l {2 , out} \ rang l e$ ’ )

p l t . p l o t ( t , g2∗VL1∗∗2/(VR2∗∗2+VL2∗∗2) , l i n ew id th =1.5 , l a b e l=r ’ $\ i n t
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{0}ˆ{ t} \ l a n g l e l ˆ{\dag} {1 , out} l {1 , out} \ rang l e$ ’ )
p l t . p l o t ( t , g2∗(1−beta ) , l i n ew id th =1.5 , l a b e l=r ’ $\ i n t {0}ˆ{ t} \

l a n g l e r ˆ{\dag} {2 , out} r {2 , out} \ rang l e$ ’ )
p l t . p l o t ( t , g1 , l i n ew id th =1.5 , l a b e l=r ’ $\ l a n g l e \ s igma {11} \ rang l e$

’ )
p l t . x l a b e l ( ’ time ’ )
p l t . t i t l e ( r ’$Vˆ{2} = %g , \beta = %g , \gamma = %g , | \ alpha |ˆ{2} =

%g$ ’ %(V1∗∗2 , beta , gamma1 , alpha ∗∗2/(2∗np . p i ) ) , f o n t s i z e =20)
p l t . l egend ( l o c =0)
p l t . s a v e f i g ( ’ 3 LS expec ta t i on va lue s V %g be ta %g gamma %g a lpha %

g . pdf ’ %(V1∗∗2 , beta , gamma1 , alpha ∗∗2/(2∗np . p i ) ) )

B.2 Coherent input pulse

import numpy as np
import s c ipy . l i n a l g as l i n
import matp lo t l i b . pyplot as p l t
import time as t imer

def f ( t , tau ) :
return np . s q r t (2 ) ∗np . exp(−2∗( t / tau ) ∗∗2) /np . power (np . p i ∗ tau
∗∗2 ,1/4)

V1 = np . s q r t (10)
V2 = np . s q r t (10)
beta = 1
VR1 = np . s q r t ( beta )∗V1
VL2 = np . s q r t ( beta )∗V2
VL1 = np . s q r t (1−beta )∗V1
VR2 = np . s q r t (1−beta )∗V2
alpha = np . s q r t (5 )
gamma1 = 0
gamma2 = gamma1
tau = 1

x0 = np . matrix ( [ [ 0 ] , [ 0 ] , [ 0 ] , [ 1 ] , [ 0 ] ] )
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t = np . l i n s p a c e (−5∗tau ,5∗ tau ,50001)
g1 = np . z e r o s ( len ( t ) )
g2 = np . z e r o s ( len ( t ) )
l out1 = np . z e r o s ( len ( t ) )
l out2 = np . z e r o s ( len ( t ) )
rout1 = np . z e r o s ( len ( t ) )
rout2 = np . z e r o s ( len ( t ) )
r ou t1 in t = np . z e r o s ( len ( t ) , dtype=np . complex)

g1 [ 0 ] = 1
rout1 [ 0 ] = abs ( alpha∗ f ( t [ 0 ] , tau ) ) ∗∗2
x = x0

s t a r t = timer . time ( )

for i in range (1 , len ( t ) ) :
M = np . matrix ( [ [ − ( np . p i ∗(VR1∗∗2+VL1∗∗2+VR2∗∗2+VL2∗∗2)+gamma1+

gamma2) ,0 ,1 j ∗np . s q r t (2∗np . p i )∗VR1∗alpha∗ f ( t [ i ] , tau ) ,−1 j ∗np
. s q r t (2∗np . p i )∗VR1∗alpha∗ f ( t [ i ] , tau ) , 0 ] ,

[0 ,−(np . p i ∗(VR1∗∗2+VL1∗∗2+VR2∗∗2+VL2∗∗2)+
gamma1+gamma2) ,−1 j ∗np . s q r t (2∗np . p i )∗VR1∗
alpha∗ f ( t [ i ] , tau ) ,1 j ∗np . s q r t (2∗np . p i )∗VR1∗
alpha∗ f ( t [ i ] , tau ) , 0 ] ,

[ 1 j ∗np . s q r t (2∗np . p i )∗VR1∗alpha∗ f ( t [ i ] , tau ) ,−1 j
∗np . s q r t (2∗np . p i )∗VR1∗alpha∗ f ( t [ i ] , tau )
,−2∗(np . p i ∗(VR1∗∗2+VL1∗∗2+VR2∗∗2+VL2∗∗2)+
gamma1+gamma2) , 0 , 0 ] ,

[−1 j ∗np . s q r t (2∗np . p i )∗VR1∗alpha∗ f ( t [ i ] , tau ) ,1 j
∗np . s q r t (2∗np . p i )∗VR1∗alpha∗ f ( t [ i ] , tau ) ,2∗ (
np . p i ∗(VR1∗∗2+VL1∗∗2)+gamma1) , 0 , 0 ] ,

[ 0 , 0 , 2∗ ( np . p i ∗(VR2∗∗2+VL2∗∗2)+gamma2) , 0 , 0 ] ] )

x = x + ( t [ i ]− t [ i −1])∗M∗x
g1 [ i ] = abs ( x . item (3) )
g2 [ i ] = abs ( x . item (4) )
l out1 [ i ] = 2∗np . p i ∗(VL1∗∗2)∗abs ( x . item (2) )
l out2 [ i ] = 2∗np . p i ∗(VL2∗∗2)∗abs ( x . item (2) )
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rout1 [ i ] = abs (abs ( alpha∗ f ( t [ i ] , tau ) )∗∗2+1 j ∗VR1∗( alpha∗ f ( t [ i
] , tau )∗x . item (1)−alpha∗ f ( t [ i ] , tau )∗x . item (0) )+2∗np . p i ∗VR1
∗∗2∗x . item (2) )

r ou t1 in t [ i ] = rou t1 in t [ i −1] + (1 j ∗VR1∗( alpha∗ f ( t [ i ] , tau )∗x .
item (1)−alpha∗ f ( t [ i ] , tau )∗x . item (0) )+2∗np . p i ∗VR1∗∗2∗x . item
(2) ) ∗( t [ i ]− t [ i −1])

rout2 [ i ] = 2∗np . p i ∗(VR2∗∗2)∗abs ( x . item (2) )

print ( ( t imer . time ( )−s t a r t ) /60)

p l t . p l o t ( t , lout2 , l i n ew id th =1.5 , l a b e l=r ’ $\ l a n g l e l ˆ{\dag} {2 , out}
l {2 , out} \ rang l e$ ’ )

p l t . p l o t ( t , rout1 , l i n ew id th =1.5 , l a b e l=r ’ $\ l a n g l e r ˆ{\dag} {1 , out}
r {1 , out} \ rang l e$ ’ )

p l t . p l o t ( t , g2∗beta , l i n ew id th =1.5 , l a b e l=r ’ $\ i n t {0}ˆ{ t} \ l a n g l e l
ˆ{\dag} {2 , out} l {2 , out} \ rang l e$ ’ )

p l t . p l o t ( t , g2∗(1−beta ) , l i n ew id th =1.5 , l a b e l=r ’ $\ i n t {0}ˆ{ t} \
l a n g l e r ˆ{\dag} {2 , out} r {2 , out} \ rang l e$ ’ )

p l t . p l o t ( t , g1 , l i n ew id th =1.5 , l a b e l=r ’ $\ l a n g l e \ s igma {11} \ rang l e$
’ )

p l t . x l a b e l ( ’ time ’ )
p l t . xl im ( t [ 0 ] , t [−1])
p l t . t i t l e ( r ’$Vˆ{2} = %g , \beta = %g , \gamma = %g , \ l a n g l e n \

r ang l e = %g , \ tau = %g$ ’ %(VR1∗∗2 , beta , gamma1 , alpha ∗∗2 , tau ) ,
f o n t s i z e =20)

p l t . l egend ( l o c =0)
p l t . s a v e f i g ( ’ 3 LS expec ta t i on va lue s pu l s ed V %g be ta %g gamma %

g n %g tau %g . pdf ’ %(VR1∗∗2 , beta , gamma1 , alpha ∗∗2 , tau ) )

B.3 Fock state input

import numpy as np
import s c ipy . l i n a l g as l i n
import matp lo t l i b . pyplot as p l t
import time as t imer
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def f ( t , tau ) :
return np . s q r t (2 ) ∗np . exp(−2∗( t / tau ) ∗∗2) /np . power (np . p i ∗ tau
∗∗2 ,1/4)

V1 = np . s q r t (10)
V2 = np . s q r t (10)
beta = 1
VR1 = np . s q r t ( beta )∗V1
VL2 = np . s q r t ( beta )∗V2
VL1 = np . s q r t (1−beta )∗V1
VR2 = np . s q r t (1−beta )∗V2
N = 10
gamma1 = 0
gamma2 = gamma1
tau = 1

t = np . l i n s p a c e (−5∗tau ,5∗ tau ,50001)

g1 = np . z e r o s ( (N+1, len ( t ) ) )
l out2 = np . z e r o s ( (N+1, len ( t ) ) )
rout1 = np . z e r o s ( (N+1, len ( t ) ) , dtype=np . complex)
rout2 = np . z e r o s ( (N+1, len ( t ) ) )
l o u t 2 i n t = np . z e r o s ( (N+1, len ( t ) ) )
r ou t1 in t = np . z e r o s ( (N+1, len ( t ) ) , dtype=np . complex)
r ou t2 in t = np . z e r o s ( (N+1, len ( t ) ) )

M = np . matl ib . z e r o s ( ( 4∗ (N+1)∗∗2 ,4∗(N+1)∗∗2) , dtype=np . complex)
x = np . matl ib . z e r o s ( ( 4∗ (N+1)∗∗2 ,1) )

s t a r t = timer . time ( )

for i in range (N+1) :
x [ 4 ∗ ( (N+1)∗ i+i ) +3] = 1
g1 [ i ] [ 0 ] = 1
rout1 [ i ] [ 0 ] = i ∗ f ( t [ 0 ] , tau ) ∗∗2
for j in range (N+1) :

M[ 4 ∗ ( (N+1)∗ i+j ) , 4∗ ( (N+1)∗ i+j ) ] = −(np . p i ∗(VR1∗∗2+VL1∗∗2+
VR2∗∗2+VL2∗∗2)+gamma1+gamma2)
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M[ 4 ∗ ( (N+1)∗ i+j ) +1 ,4∗((N+1)∗ i+j ) +1] = −(np . p i ∗(VR1∗∗2+VL1
∗∗2+VR2∗∗2+VL2∗∗2)+gamma1+gamma2)

M[ 4 ∗ ( (N+1)∗ i+j ) +2 ,4∗((N+1)∗ i+j ) +2] = −2∗(np . p i ∗(VR1∗∗2+
VL1∗∗2+VR2∗∗2+VL2∗∗2)+gamma1+gamma2)

M[ 4 ∗ ( (N+1)∗ i+j ) +3 ,4∗((N+1)∗ i+j ) +2] = 2∗(np . p i ∗(VR1∗∗2+VL1
∗∗2)+gamma1)

for i in range (1 , len ( t ) ) :
for j in range (N+1) :

for k in range (N+1) :
i f k >= 1 :

M[ 4 ∗ ( (N+1)∗ j+k ) , 4∗ ( (N+1)∗ j+k−1)+2] = 1 j ∗np . s q r t
(2∗np . p i )∗VR1∗np . s q r t ( k )∗ f ( t [ i ] , tau )

M[ 4 ∗ ( (N+1)∗ j+k ) , 4∗ ( (N+1)∗ j+k−1)+3] = −1 j ∗np . s q r t
(2∗np . p i )∗VR1∗np . s q r t ( k )∗ f ( t [ i ] , tau )

M[ 4 ∗ ( (N+1)∗ j+k ) +2 ,4∗((N+1)∗ j+k−1)+1] = −1 j ∗np .
s q r t (2∗np . p i )∗VR1∗np . s q r t ( k )∗ f ( t [ i ] , tau )

M[ 4 ∗ ( (N+1)∗ j+k ) +3 ,4∗((N+1)∗ j+k−1)+1] = 1 j ∗np . s q r t
(2∗np . p i )∗VR1∗np . s q r t ( k )∗ f ( t [ i ] , tau )

i f j >= 1 :
M[ 4 ∗ ( (N+1)∗ j+k ) +1 ,4∗((N+1)∗( j−1)+k ) +2] = −1 j ∗np .

s q r t (2∗np . p i )∗VR1∗np . s q r t ( j )∗ f ( t [ i ] , tau )
M[ 4 ∗ ( (N+1)∗ j+k ) +1 ,4∗((N+1)∗( j−1)+k ) +3] = 1 j ∗np .

s q r t (2∗np . p i )∗VR1∗np . s q r t ( j )∗ f ( t [ i ] , tau )

M[ 4 ∗ ( (N+1)∗ j+k ) +2 ,4∗((N+1)∗( j−1)+k ) ] = 1 j ∗np . s q r t
(2∗np . p i )∗VR1∗np . s q r t ( j )∗ f ( t [ i ] , tau )

M[ 4 ∗ ( (N+1)∗ j+k ) +3 ,4∗((N+1)∗( j−1)+k ) ] = −1 j ∗np .
s q r t (2∗np . p i )∗VR1∗np . s q r t ( j )∗ f ( t [ i ] , tau )

x = x + ( t [ i ]− t [ i −1])∗M∗x
for j in range (N+1) :

g1 [ j ] [ i ] = abs ( x . item (4∗ ( (N+1)∗ j+j )+3) )
rout1 [ j ] [ i ] = j ∗ f ( t [ i ] , tau ) ∗∗2 + 1 j ∗np . s q r t (2∗np . p i )∗VR1∗

np . s q r t ( j )∗ f ( t [ i ] , tau ) ∗(x . item (4∗ ( (N+1)∗ j+j )+1)−x . item
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( 4∗ ( (N+1)∗ j+j ) ) )+2∗np . p i ∗VR1∗∗2∗x . item (4∗ ( (N+1)∗ j+j )
+2)

lout2 [ j ] [ i ] = 2∗np . p i ∗VL2∗∗2∗abs ( x . item (4∗ ( (N+1)∗ j+j )+2) )
rout2 [ j ] [ i ] = 2∗np . p i ∗VR2∗∗2∗abs ( x . item (4∗ ( (N+1)∗ j+j )+2) )
r ou t1 in t [ j ] [ i ] = rou t1 in t [ j ] [ i −1] + rout1 [ j ] [ i ] ∗ ( t [ i ]− t [ i
−1])

l o u t 2 i n t [ j ] [ i ] = l o u t 2 i n t [ j ] [ i −1] + lout2 [ j ] [ i ] ∗ ( t [ i ]− t [ i
−1])

r ou t2 in t [ j ] [ i ] = rou t2 in t [ j ] [ i −1] + rout2 [ j ] [ i ] ∗ ( t [ i ]− t [ i
−1])

print ( ( t imer . time ( )−s t a r t ) /60)

p l t . p l o t ( t , l out2 [N] , l i n ew id th =1.5 , l a b e l=r ’ $\ l a n g l e l ˆ{\dag} {out
,2} l {out ,2} \ rang l e$ ’ )

p l t . p l o t ( t , l o u t 2 i n t [N] , l i n ew id th =1.5 , l a b e l=r ’ $\ i n t {−\ i n f t y }ˆ{ t}
\ l a n g l e l ˆ{\dag} {out ,2} l {out ,2} \ r ang l e dt ˆ{\prime}$ ’ )

p l t . p l o t ( t , g1 [N] , l i n ew id th =1.5 , l a b e l=r ’ $\ l a n g l e \ s igma {11} \
rang l e$ ’ )

p l t . x l a b e l ( ’ time ’ , f o n t s i z e =18)
p l t . xl im ( t [ 0 ] , t [−1])
p l t . t i t l e ( r ’$Vˆ{2} = %g , \beta = %g , \gamma = %g , N = %g , \ tau =

%g$ ’ %(VR1∗∗2 , beta , gamma1 ,N, tau ) , f o n t s i z e =20)
p l t . l egend ( l o c =0, f o n t s i z e =18)
p l t . s a v e f i g ( ’ 3 LS Fock expectat ion va lues V %g be ta %g gamma %g N

%g tau %g . pdf ’ %(VR1∗∗2 , beta , gamma1 ,N, tau ) )

p l t . c l f ( )

p l t . p l o t ( range (1 ,N+1),1− l o u t 2 i n t [ 1 : , −1 ] , ’ o ’ , l i n ew id th =1.5 , l a b e l=r
’ $P {L2}$ ’ )

p l t . p l o t ( range (1 ,N+1),1− r ou t2 in t [ 1 : , −1 ] , ’ o ’ , l i n ew id th =1.5 , l a b e l=r
’ $P {R2}$ ’ )

p l t . p l o t ( range (1 ,N+1) ,1−( l o u t 2 i n t [1: ,−1]+ rou t2 in t [ 1 : , −1 ] ) , ’ o ’ ,
l i n ew id th =1.5 , l a b e l=r ’ $P {L2}+P {R2}$ ’ )

p l t . x l a b e l ( r ’$N$ ’ , f o n t s i z e =18)
p l t . y l a b e l ( r ’ $1−P$ ’ , f o n t s i z e =18)
p l t . y s c a l e ( ’ l og ’ )
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p l t . x t i c k s ( range (N+2) )
p l t . l egend ( l o c =0, f o n t s i z e =18)
p l t . t i t l e ( r ’$Vˆ{2} = %g , \beta = %g , \gamma = %g , \ tau = %g$ ’ %(

VR1∗∗2 , beta , gamma1 , tau ) , f o n t s i z e =18)
p l t . s a v e f i g ( ’ 3 LS Fock prob V %g be ta %g gamma %g tau %g . pdf ’ %(

VR1∗∗2 , beta , gamma1 , tau ) )
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