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Abstract

This thesis compares insurance premium principles with current �nancial risk para-

digms and uses distorted probabilities, a recent development in premium principle

literature, to synthesize the current models for �nancial risk measures in banking

and insurance. This work attempts to broaden the de�nition of value-at-risk beyond

the percentile measures. Examples are used to show how the percentile measure

fails to give consistent results, and how it can be manipulated. A new class of

consistent risk measures is investigated.
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Chapter 1

Introduction

This dissertation studies risk measures for capital requirements. The insu�ciency

of the current methods is illustrated and a new set of risk measures is proposed.

Chapter 1 motivates the valuation of a capital requirement, gives de�nitions for

risk and risk measure and uses the premium principle literature to de�ne proper-

ties that are desirable in a risk measure. Chapter 2 discusses risk measures that are

currently used for capital requirements; illustrates their inconsistencies and consid-

ers solutions that have been proposed in recent literature. Chapter 3 investigates a

new set of distorted risk measures, illustrates how they can improve upon the risk

measures discussed in Chapter 2. Two special cases of the new risk measure are

considered in depth. Chapter 4 generalizes the two special cases from Chapter 3

and studies this larger set and attempts to determine parameters appropriate for

capital requirements. Chapter 5 applies the risk measures from Chapters 3 and

4 to topical problems in insurance. Chapter 6 summarizes the results and pro-

poses problems for future research. Portions of this work have been published in

1



1.1. MOTIVATION 2

the North American Actuarial Journal (Wirch, 1999) and have been accepted for

publication in Insurance: Mathematics and Economics (Wirch and Hardy, 2000).

1.1 Motivation

Over the past decade there has been an increased incidence of insurance insolvency.

In the case of Confederation Life (McQueen, 1996), the most recent of the insol-

vencies, a large part of the blame falls on the lack of diversi�cation of risk. As

much as 60% of Confederation Life's asset portfolio was exposed to changes in real

estate prices. When real estate prices fell, this exposure was too great from which

to recover. Since then, modeling risk and determining appropriate levels of capital

have become of increased signi�cance for actuaries and insurance regulators.

One focus of this attention is on answering the question: how should we mea-

sure risk? The goal for �nancial regulators is to �nd a methodology for measuring

risk that is simple to implement and understand, yet is able to accurately compare

divisions within a �rm as well as between di�erent corporations, and which makes

the risks of each company transparent to the risk holders, including shareholders,

debtors, owners, policyholders, employees and potential investors.

In insurance, asset portfolios are allocated to funds in an attempt to match

assets and liabilities. The premiums from an insurance liability, say a ten-year en-

dowment insurance, are invested in assets that are often matched in duration to the

estimated duration of the liabilities (10 years) with some allowance for surrenders.

The premiums are calculated based on an assumed mortality table and interest

rate model. For ten-year term insurance, premiums might be invested in assets of
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varying duration, so that they match the bene�t payments required, based on an

assumed mortality table, lapse table and interest rate model.

In banking, risk measures are traditionally used to analyze asset portfolios

without reference to liabilities. Assets such as stocks, bonds, loans and mortgages

are held by the bank using deposits from individuals and corporations. The risk

from these investments is initially borne by the bank; however, the rate of interest

earned on the deposits uctuates based on the returns earned by the bank. The

majority of liabilities, not including deposits, are cleared through the bank, so that

the bank holds no risk. For example, bonds and T-bills, with �xed or oating

rates of return, are sold through the bank by a corporation or government, and

the investment risk is born by the individual or corporation investing in these

instruments. Mutual funds sold by a bank are pools of individuals' investments,

invested by the bank into stocks and bonds that determine the return earned on

the fund, thus the full risk is born by the investor. Thus the traditional risks that

banks were concerned with relate predominantly to their assets, and risk measures

relating to fund performance and asset management are of key importance.

Over the past decade, corporations have been investing more often in deriva-

tive products to hedge risk. Banks assuming these derivative products may not be

able to �nd an investor to take the opposite position in order to clear the risk, and

may hold the risk themselves, hedged by selling a set of assets/liabilities that repli-

cate the opposite position as best they can. In this case, the derivative may not be

completely matched, and the risk of both positions should be evaluated. To hedge

the risk in the derivative, the bank might have to assume an interest rate model,
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a credit risk model for the corporation, and a stock return model. Based on these

assumptions, they then invest in a hedged position that matches the risk in the

derivative. The �nancial instruments used in this example may be a combination

of assets and liabilities that are directly linked to each other. Using the tradi-

tional approach to managing risk by focusing on managing the risk in the assets by

themselves does not take this into account and may increase the risk overall.

Similarly, over the past decade, insurers have used derivatives to hedge some

of the risks, especially interest rate risk, inherent in their liabilities, and have sold

products containing options and guarantees, which complicate their assets and lia-

bilities.

In light of these changes, and the growing complexity of the assets and lia-

bilities in banking and insurance, the risk measures that have been traditionally

used must evolve, and overall risk measures that encompass the whole company or

�nancial conglomerate will have to be implemented.

1.2 Risk

Before a risk measurement system can be introduced, it is imperative to know

the basic unit to which it will be applied. A risk may be de�ned as an exposure

to events that may cause economic loss; the risk may be one bond, a portfolio

of assets and liabilities, or an entire �rm. The exposure events are a subset of

the possible outcomes of the world and may include variables such as economic

indicators, prices of goods, services and �nancial instruments as well as sociological

and environmental indicators.
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In this thesis, it is assumed that all risks have been speci�ed, and that the set

of events that will cause economic loss are known.

Let X(!) be a random variable de�ned on the probability space (
; P; F ) and let

X0 be its non-random initial value.

De�ne the set of events, L, as the set of losses, such that,

L = f!kX(!) < X0; ! 2 
g:

Similarly de�ne the set of gains, G, as,

G = f!kX(!) � X0; ! 2 
g:

What is unknown is which event will occur; however, based on this information, a

distribution for the change in portfolio value can be determined. The distribution

for the change in portfolio value can be referred to as the gain distribution, where

positive values pertain to gains and negative values pertain to losses. The gain

distribution is often used in economics or �nance. The negative of this distribution

is called the loss distribution, or the risk distribution, where positive values pertain

to losses and negative values pertain to gains. Actuaries predominantly use the

loss distribution. It is important to identify whether we are analyzing the loss

distribution or the gain distribution, and unless otherwise stated, we will use the

loss distribution.

The risks considered in this paper are meant to be general. The main appli-

cations are to the investment portfolios of insurance companies, banks, securities
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�rms, trading houses and other investment companies. The main di�erence be-

tween insurance portfolios and other investment �rm portfolios is that insurance

companies tend to invest in assets that match their liabilities, or hedge a liability

risk. They are not generally very concerned about day-to-day uctuations in the

value of their asset portfolio, but focus on much longer time scales, and only have to

prove solvency to regulators once or twice a year. Investment �rms tend to engage

in more speculative investments, and have more onerous regulatory requirements;

thus, they are much more concerned with day to day changes. With the increased

demutualization of insurance companies and the progressive amalgamation of the

insurance and banking industries, the regulatory requirements for the insurance

industry may veer towards that of the banking industry. We consider applications

in both industries.

1.3 Risk Measure

The importance of a risk measure is in its ability to di�erentiate between di�erent

types of risk, its ability to accurately and consistently compare the severity of

di�erent risk portfolios, and its ability to be easily understood and applied. Risk

measures are usually described in terms of positive numbers which relate to the

magnitude of a potential loss, or amount that should be held to cover a risk. The

application of a risk measurement technique should be general. Risk values can be

used in areas, such as: in the evaluation of investment risk, in the identi�cation

of the optimal capital allocation, in the development and evaluation of portfolio

strategies, in the measurement of the quality of a portfolio, or in the evaluation
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of portfolio managers. Unfortunately, the same risk measurement technique may

not be appropriate for all the above applications. For example, a risk measure that

rewards conservatism may not be appropriate to evaluate portfolio managers of an

aggressive fund, but it may be useful for an investor evaluating the fund.

1.4 Review of Premium Principles

In this section, we draw on the literature of premium principles. Insurance pre-

mium principles result from the assumption that random claims can be funded by

series of �xed payments, where the actual claims experience is considered to be the

realization of a `known' stochastic model (Goovaerts, DeVylder and Haezendonck,

1984). The insurance risk can be described as a non-negative real-valued random

variable, X, which represents the claims, or random losses that may occur, and a

premium principle is a rule, � that assigns a non-negative number to the insurance

risk X, which represents the initial capital that needs to be held to cover the risk.

� : X ! [0;1]

A set of axioms has been proposed in Goovaerts et al. (1984) to de�ne useful

premium principles; Wang (1995c) lists other characteristics and properties that

are often desirable for a premium principle. Similar sets of axioms and lists of

characteristics can be found in van Heerwaarden (1991), Kaas et al. (1994) and

Gerber (1979). We are interested in extending these criteria to general risk measures

and identifying whether these characteristics are relevant for investment portfolios.
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Premium principles in the insurance industry are formulae which attempt to

calculate the appropriate price to transfer a risk. Premiums are often set with the

knowledge that there will be a large pool of independent diversi�able risks with

similar characteristics. The central limit theorem can be used to get an accurate

estimate of the average cost and standard error for the average risk. This is di�erent

from risk measures that attempt to measure how much capital should be placed

into safe and fairly liquid investments in order to cover potential losses; there is

a limited amount of pooling of small risks in an asset portfolio (risk pooling may

occur more often in the case of credit risk). However, premium principles and risk

measures share many of the same characteristics and many theoretical properties

that de�ne a good premium principle can also be applied to de�ne a good risk

measure. As well, an initial single premium may be considered the time-zero risk

measure from the point of view of the company, though economic pricing issues will

also be important.

General risk random variables can take values in the extended real numbers.

Artzner et al. (1997) state that the size of possible gains should be irrelevant for a

consistent risk measure and therefore a loss distribution left-censored at zero should

be used to value the risk for the full loss distribution. This idea is simple when

discussed in terms of a capital requirement. If you have a gain of $G, no capital will

be required since there is no loss. However, if you have a loss of $L, you will need

capital of $L to pay o� the loss. Thus the capital requirement for this risk is $0 with

probability Pr(gain) and the capital requirement is positive with Pr(loss). Even if

the amount of the gain was much greater than the amount of the loss, the capital
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requirement would stay the same, thus we use a loss distribution left-censored at

zero to calculate the risk in a portfolio. Using the censored loss distribution, it is

possible to directly apply insurance premium principles to measure more general

risks.

Denote the risk measure for loss X as �(X) 2 R. Goovaerts et al. (1984) list
a set of properties that should hold for a useful premium principle, �(X):

A1. No unjusti�ed premium (certain gain):

�(X) � max(X) (1.1)

A2. Non-negative Risk Loading:

E[X] � �(X) (1.2)

A3. Scale Invariant:

�(aX) = a�(X); for constant a � 0 (1.3)

A4. Translation invariant:

�(X + b) = �(X) + b; for constant b � 0 (1.4)
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A5. Subadditive:

�(X + Y ) � �(X) + �(Y ); where Y is an arbitrary loss random variable.

(1.5)

Property A3 ensures that a change in currency does not a�ect the risk measure.

Property A4 ensures that a degenerate risk (speci�ed loss with probability 1) has

a premium equal to its certain loss. Often properties A3 and A4 are combined to

give a linearity property �(aX + b) = a�(X) + b. Property A5 ensures that there is

no incentive to split the risk into smaller risks.

At this point, it is illustrative to show that the translation invariant property

does not hold generally for the loss distribution, but only applies to censored loss

distributions. Consider portfolio X which has loss distribution Uniform[�1; 1].
The distribution of the loss censored at zero is given by X+ = max(0;X)

Pr(X+ = 0) = 1
2

Pr(X+ � u) = 1
2
+ u

2
; for 0 < u � 1:

In other words, X+ is 0 with probability 1
2
, or Uniform[0; 1] with probability 1

2
.

If we add a degenerate loss Y = 1
2
to the uncensored risk X, the loss distribution

is,

X + Y � Uniform

�
�1

2
;
3

2

�
;
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and the censored loss distribution of X + Y is

[X + Y ]+ = max(0;X + Y ) �

8><
>:

Pr([X + Y ]+ = 0) = 1
4

Pr([X + Y ]+ � u) = 1
4
+ u

2
; for 0 < u � 3

2
:

In other words, [X+Y ]+ is 0 with probability 1
4
, or Uniform[0; 3

2
] with probability

3
4
, which does not have the translation invariant property. However, if Y = 1

2
is

added to the censored risk X+ the loss distribution is non-negative,

X
+ + Y = max(0;X) + Y �

8><
>:

Pr(X+ + Y = 1
2
) = 1

2

Pr(X+ + Y � u) = 1
2
+

u� 1

2

2
for 1

2
< u � 3

2
:

which does follow the translation invariant property.

In adding a risk to a portfolio, it seems intuitive that the risk would be added

to the portfolio before censoring the portfolio loss distribution. This will not lead

to translation invariance. Thus there is still some debate over whether to use

the whole loss distribution or the censored loss distribution. Using the censored

distribution also leads to discrepancies between time zero pricing of risks and risk

measures. Although these two values serve very di�erent purposes, there should be

some reconciliation between the two.

Other properties listed in Goovaerts et al. (1994) and Wang (1995c), that are

often useful for premium calculations are:

Let X and Y be random variables de�ned on 
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B1. Iterativity (Goovaerts, DeVylder and Haezendonck, 1984):

�(X) = �(�(XjY )); (1.6)

where XjY is a conditional distribution, and Y is an observable random

variable.

B2. Multiplicativity: If X;Y are independent, then

�(XY ) = �(X)�(Y ): (1.7)

B3. Comonotonicity(Wang, 1996c): If X and Y are comonotonic, then for any

pair of outcomes, t1 and t2,

[X(t1)�X(t2)][Y (t1)� Y (t2)] � 0 (1.8)

and �(X + Y ) = �(X) + �(Y ): (1.9)

B4. Layer Additivity (Wang, 1996b): Given a partition of the domain of X,

f(xi; xi+1]; i = 0; 1; 2; :::g; 0 = x0 < x1 < x2 < :::; (1.10)
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and indicator function I such that,

I(xi;xi+1] =

8>>>><
>>>>:

0 for all x < xi

x� xi for all xi � x < xi+1

xi+1 � xi for all xi+1 � x

(1.11)

so that, X = I(x0;x1] + I(x1;x2] + :::,

then

�(X) =

1X
i=0

�(I(xi;xi+1]): (1.12)

B5. Decreasing Absolute Risk Load (Wang, 1996b):

For y < x and constant h,

�(I(x;x+h]) � �(I(y;y+h]): (1.13)

B6. Increasing Relative Risk Load (Wang, 1996b): For any �xed x,

�(x) = lim
h!0

�(I(x;x+h])

E[I(x;x+h]]
; (1.14)

is an increasing function in x.

Note that, as a special case,

�(x) =
�(I(0;x])

E[I(0;x]]
(1.15)
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is also an increasing function in x.

Iterativity suggests a possible method for obtaining marginal risk measures.

Multiplicativity parallels the property that E[XY ] = E[X]E[Y ] for independent

risks X;Y . Layer Additivity has applications in stop loss insurance and reinsur-

ance, and is implied for comonotonic risk measures. Decreasing Absolute Risk Load

provides that the absolute risk loading decreases at upper layers. Increasing Rela-

tive Risk Load ensures that higher levels have greater risk loading relative to the

mean loss for that layer.

There are many properties of premium principles which help with the ordering

of risks. X � Y denotes that X is less risky than Y , and usually pertains to

a speci�c type of ordering such as those listed below (C1-C4). For example a

premium principle � satis�es a speci�ed risk order if X � Y implies that �(X) <

�(Y ). Given that FX(x) is the cumulative distribution function (cdf) of X then

SX(x) = 1 � FX(x) is the decumulative distribution function (ddf) of X, some

ordering properties are de�ned below:

C1. First Order Stochastic Dominance (Goovaerts, DeVylder and Haezen-

donck, 1984): If SX(t) � SY (t) for all t � 0 then �(X) � �(Y ). (Note: There

are many other equivalent conditions. (Wang, 1998))

C2. Ordering of dangerousness (Goovaerts, DeVylder and Haezendonck, 1984):

If E[X] < E[Y ] <1 and there is a constant � such that FX(t) � FY (t) for

t < � and FX(t) � FY (t) for t � � then �(X) < �(Y ).
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C3. Second Order Stochastic Dominance (Wang, 1996b): If

Z 1

x

SX(t)dt �
Z 1

x

SY (t)dt;

for all x � 0, with strict inequality for some x 2 (0; 1) then �(X) < �(Y ).

(Note: There are many other equivalent conditions such as net stop-loss or-

dering. (Wang, 1998))

C4. Consistent partial ordering (Goovaerts, DeVylder and Haezendonck, 1984):

If A = f�jj @
@t

E(etX)

E(etY )�
> 0g, then for any � 2 A; �(X) � ��(Y ).

The de�nition for the ordering of dangerousness, is referred to as the once

crossing rule, and relates to second order stochastic dominance by the following

proposition from M�uller (1996):

Proposition 1.4.1 X precedes Y (denoted by X �SSD Y ) in second stochastic

order if, and only if, there exists a sequence of decumulative distribution functions

(ddf) fS1; S2; :::g such that,

� S1 = SX

� The means for this sequence of ddfs are non-decreasing and converge to E(Y ).

� Si and Si+1 cross once: there exists ti such that

Si(t) � Si+1 for t < ti;

Si(t) � Si+1 for t � ti:
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� SY (t) = lim
i!1

Si(t).

Thus, it is su�cient to show that

1. E[X] � E[Y ], and

2. There exists a once crossing point t0 such that

SX(t) � SY (t) for t < t0

SX(t) � SY (t) for t � t0;

for X �SSD Y .

Second order stochastic dominance (SSD) has become a common standard for re-

lating risks, and is equivalent to net stop-loss ordering (Wang, 1996b).

A list of traditional premium principles is given below. Based on a loss dis-

tribution for loss random variable X, an equation for the premium, �(X), is given

for each premium principle (Goovaerts, DeVylder and Haezendonck, 1984):

D1. Expected Value principle: �(X) = (1 + a)E[X]; a � 0.

D2. Maximum loss principle: �(X) = aE[X] + (1� a)max(X); 0 � a � 1.

D3. Generalized Percentile Principle: �(X) = aE[X] + (1� a)r�;

r� = minfrjFX(r) � 1 � �g; 0 � a � 1.

D4. Variance principle: �(X) = E[X] + a�
2
X; a � 0.

D5. Standard Deviation Principle: �(X) = E[X] + a�X; a � 0.
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D6. Semi-Variance Principle: �(X) = E[X] + a�
2
+(X);

�
2
+(X) =

R1
E[X ]

(x� E[X])2dFX(x); 0 < a � 1.

D7. Exponential Principle: �(X) = 1
a
logfE(eaX)g; a > 0.

D8. Mean value principle: u(�(X)) = E[u(X)], for any strictly increasing,

concave function u.

D9. Zero-Utility Principle: E[u(W + �(X) � X)] = E[u(W )], for any strictly

increasing, concave function u, where W is the initial wealth of the insurer.

D10. Swiss Principle: E[u(X � a�(X))] = u((1� a)�(X)), for any strictly

increasing, concave function u, 0 < a � 1.

D11. Orlicz principle: E[�( X
�(x)

)] = �(1); for any continuous increasing,

convex �.

D12. Dutch Principle: �(X) = E[X] + aE[(X � �E[X])+]; � � 1; a � 1:

D13. Esscher Principle: �(X) = E[XeaX]=E[eaX]; a � 0.

Each of the above principles either does not follow all of properties A1-A5,

or have a property that would limit its range of application as a risk measure. D1

only depends upon the expected value which is not translation invariant, and gives

an unjusti�ed premium for degenerate risks. If the loss distribution is unbounded,

D2 is either in�nite or gives the expected loss. D3 will be shown to allow super-

additivity (see Example 2.2.3). D4, D6, D7, D8, D9, D10, D11 and D13 do not

allow both proportional and translation invariance. D4 and D5 do not exist if the
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second moment of the distribution does not exist. D12 has a maximum relative

risk loading of 100%.

Although the purpose of a �nancial risk measure is not the same as the purpose

of an insurance premium principle, there are many similarities in the risks involved.

In both cases, it is important to realize that the size of possible positive outcomes

(the net of premium income less claims in the case of (re)insurance, or gains in the

case of an asset portfolio) is often irrelevant; however, the probability of obtaining

a positive outcome is relevant. Since the e�ects of a negative outcome are the main

concern, �nancial risk measures often consider all gains to be zero losses. This

makes the �nancial risk similar to the risk of the insurance provider who does not

participate in the gains of their clients, beyond the set premium.

The set of properties A1-A5 for a useful premium principle has recently been

applied to �nancial risk measures. Artzner (1999) adapted these principles to de�ne

a coherent risk measure.

De�nition 1.4.1 Consider two arbitrary risks X and Y. A risk measure � is called

a coherent risk measure if it satis�es the following characteristics:

A1, A2. A risk measure should be bounded above by the maximal loss, and bounded

below by the expected value of the loss: E[X] � �(X) � max(X):

A3. A risk measure should be scale invariant: �(aX) = a �(X); a � 0:

A4. A risk measure should be scalar additive(translativity):

�(X + b) = �(X) + b; b � 0,
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and a degenerate risk should have a risk measure equal to its certain loss:

If Pr(X = b) = 1; then �(X) = b; b � 0:

A5. A risk measure should be sub-additive, so that there is no motivation to divide

the risk: �(X + Y ) � �(X) + �(Y ):

The characteristics of a premium principle determine its usefulness. Many

authors consider a set of rules, analyze the traditional principles based on these

rules, and often develop new principles which follow these rules. Deprez and Gerber

(1985) consider convex premium principles that are invariant under translation, and

show that the principles are sub-additive if and only if the premium principle is

also proportional, ie. �(aX) = a �(X); a � 0.

Artzner et al. use their de�nition of a coherent risk measure to identify weak-

nesses in current risk measures and propose a new risk measure, using a conditional

expectation, which will be discussed later in Section 2.5.

Wang (1995a) uses a similar set of properties for risk premiums, and proposes

a new family of premium principles using distorted probabilities. These will also

be discussed later in this paper. Wang, Young and Panjer (1997) use this same set

of properties with an extra criterion which results in a unique distorted premium

principle.



Chapter 2

Problems with Current Risk

Measures

In this chapter, current capital requirement risk measures are investigated using the

coherency properties. Examples are used to illustrate where these risk measures

fail to give consistent results. Possible solutions that have been proposed in recent

literature are studied and applied to four two-parameter distributions.

2.1 Short Review of Value-at-Risk

The phrase `Value-at-Risk' (VaR) has become synonymous with the percentile risk

measure (Du�e and Pan, 1997; Morgan, 1995; Hull, 1997), which is identical to the

percentile premium principle, D3 on page 16 with a = 0. The typical VaR measure

uses a loss distribution for daily changes to the risk and the 95th or 99th percentile.

Generally, for a portfolio P , and an associated n-day loss random variable Ln, the

20
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� percentile-VaR, or V�(P ), can be determined by solving the following equation

(Du�e and Pan, 1997):

Pr(Ln � V�(P )) = �: (2.1)

In this thesis, the percentile de�nition of the value-at-risk will always be referred

to as the percentile-VaR.

The percentile-VaR risk measure has gained a lot of attention over the past

decade. Increased activity of banks in the derivatives markets and the rate at which

these markets are expanding, becoming global and more complex, has stimulated

concern over the risk management practices used in banks and other �nancial insti-

tutions. The Basel Capital Accord (Basel Committee, 1999), �rst drafted in 1988,

proposed a set of international capital requirements for banks and other �nancial

investment �rms based on the inherent volatility of their individual assets, and

accounting mostly for credit risk. The requirements were determined separately

for each asset, using the risk-based capital approach of multiplying the nominal

value of each type of asset by a capital charge or default rate. Then the capital

requirements for each asset type were added together to obtain the capital require-

ment of the portfolio. This method did not permit reduced capital requirements

for hedged portfolios. In the 1993 revision of the Accord, a standard model for the

evaluation of the capital requirement computed the capital requirement, using the

percentile-VaR measure applied to modeled or simulated distributions for each of

four risks: interest rate risk, exchange rate risk, commodity risk and equity risk, and

summed across the four categories to obtain the �nal capital requirement. Unfortu-
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nately, this method did not permit a reduction in capital requirements for diversi�ed

portfolios, but allowed some reduction for hedged portfolios. To account for the

sub-additivity of diversi�ed or hedged risks, the 1995 revisions allowed the use of

computer models to calculate the daily risk of a portfolio using the percentile-VaR,

as long as the models complied with Commission standards. The capital require-

ment, which is supposed to cover a ten-day period, is calculated at three times

the percentile VaR measure. The ten-day period is considered to be a reasonable

period over which it is possible to make a signi�cant change in a corporate port-

folio. This percentile-VaR measure was intended to be an appropriate amount to

cover most losses that could occur in a portfolio of assets due to adverse changes

in any of these four risks before the investment strategy could be revised and im-

plemented. The Basel rules came into e�ect in 1998. A revised capital adequacy

framework has been proposed in 1999 by the Basel Committee, which promotes

the development of internal capital assessment processes by bank management and

a more comprehensive approach to addressing risk including operational, liquidity,

legal and reputational risk as well as the current focus on credit and interest rate

risk (Basel Committee 1999).

In Europe, capital adequacy requirements have moved toward a common rule.

The European Union's Investment Services Directive allows �rms based in one EU

country to do business in any other EU country. As well, the Capital Adequacy Di-

rective(CAD), published in 1993, provides Europe-wide capital requirements which

were similar to those of the 1993 Basel Accord revisions. More recent revisions allow

the use of in-house models for risk calculations and also use percentile-VaR mea-
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sures. The CAD guidelines were put into e�ect in 1996 for all banks and security

�rms.

Risk-based capital (RBC) methods are currently used in Canada (Minimum

Continuing Capital and Surplus Requirements) and the United States to calculate

minimum capital requirements for insurers. Capital margins are calculated inde-

pendently for each type of asset within each type of risk based on ad hoc capital

charges which are multiplied by the nominal value of assets. The four main types

of risk are: C1 - Asset Risk, C2 - Underwriting Risk, C3 - Interest Rate Risk, and

C4 - Other Risks. The margins are combined using formulae speci�c to the type

of insurer that have been derived to allow for some correlation between risk types.

The capital charges for life insurers are slightly di�erent from the capital charges

for casualty insurers, due to the nature of their assets and liabilities; however both

suggest dynamic �nancial analysis or cashow testing to validate the adequacy of

the capital requirement.

Percentile-VaR is predominantly used in determining the capital requirements

for C1 or asset risk, for which a loss distribution can be modeled objectively; it may

be signi�cantly di�erent between insurers, depending on their investment strategy

and management philosophy. In contrast, the RBC capital charges are usually based

on credit rating of the assets, and are determined independently of any speci�c asset

portfolio by the regulators.

The usual percentile-VaR de�nition for the value-at-risk reduces the informa-

tion in the loss distribution to one number, or possibly a few numbers, and the user

loses much of the information needed to fully understand the risk of the portfolio.
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Using this measure for one portfolio will give very simple, easily interpreted results:

For a risk X, V:95(X) is the value that represents a division in the loss distribution

of X. There is a 95% chance that the loss will be less than this amount, and a

5% chance that the loss will be larger than this amount (subject to an accurate

assessment of the loss distribution). Thus, there is a 95% probability that the

percentile-VaR is su�cient, subject to model error.

The methodologies for calculating VaR take into consideration market factors,

such as domestic and foreign interest rate structures, exchange rates, stock prices

and ination rates, which are examples of risk factors that may have an impact on

the �nancial risks of a portfolio. There are many methods which use these market

factors to determine the distribution of Ln. These methods can be classi�ed into

three model types: the historical model, the analytic model and the simulation

model. Each of these methods determines a distribution for changes to the portfolio

value. Below we outline how the percentile-VaR measure can be used with each

method.

Historical Model: In the historical approach, using a one day holding pe-

riod, previous one day uctuations (typically using daily data for the last 10 years)

in market factors are used to model possible uctuations to current market factor

values. Alternative pro�t/loss realizations are valued based on these uctuations

and a distribution for pro�t/loss can be obtained from these realizations to produce

a con�dence interval. The algorithm is:

Let Fd = (f(1;d); f(2;d); :::; f(k;d)) the vector of observed risk factor values

on day d, where d = 0;�1; :::;�n, n = number of days used;
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P (F ) = the value of a portfolio, using the factor values F ;

F0 = today's risk factor values;

�Fd = Fd � Fd�1 are one-day factor changes;

P0 = P (F0) Initial value of the portfolio;

Pd = P (F0 +�Fd);

Order the Pd's to get fP(d)gnd=1, where P(d+1) � P(d);

Assign equal probability to each observed factor change;

Then, V�(P0) = P0 � P(�n):

Simulation Model: An alternative method, using simulation, requires a dis-

tribution for changes in each market factor, including correlations between factors.

Normal and lognormal distributions are often used, with correlations derived from

historical data. Given distributions for each of the risk factors, Monte Carlo simu-

lation is used to obtain simulated changes in the market factors, which are used to

obtain a pro�t/loss distribution and con�dence intervals in the same way as in the

historical method, using the algorithm:

Obtain the joint density function of the risk factors F = (f1; f2; :::; fk);

Let n be number of simulations;

Simulate n vectors fFjgnj=1;
Calculate fPjgnj=1, the value of the portfolio for factor values fFjgnj=1;
Order the Pj 's to get fP(j)gnj=1, where P(j+1) � P(j);

Let P0 = the initial value of the portfolio.

Then, V�(P0) = P0 � P(�n).

Analytic/Variance-Covariance Model: A more restrictive approach, the
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analytic method, decomposes the portfolio into elemental instruments each of which

is exposed to only one market factor. A set of distributions for changes in the market

factors is used to calculate the VaR and the portfolio variance. Since the portfolio

is the sum of the elemental instruments, if the market factors have a multivariate

normal distribution, then the portfolio is also normally distributed. The algorithm

for this model is as follows:

Let the random variables Pf1 ; Pf2 ; :::; Pfk be the decomposition of Port-

folio P into component securities.

Then,

P =

kX
i=1

Pfi :

Assuming that the component securities are related through a known

covariance structure, using the multivariate normal distribution, the

portfolio distribution can be calculated, and V�(P0) obtained from the

distribution.

Even though these models seem intuitively reasonable and they are easy to

explain, their tractability is based on the assumption that the percentile-VaR mea-

sure is sub-additive. Unfortunately, it is possible to show that percentile-VaR, as

with all percentile measures, can be super-additive (see Example 2.2.3). There are

simple examples that reveal the inconsistencies of the percentile-VaR, some of these

are illustrated in the next section.
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2.2 The Inconsistencies of VaR

Using the �ve basic properties for coherent premium principles, it is easy to show

that percentile-VaR satis�es properties A1 and A4.

For A1: Let L be a loss random variable censored from below at zero, where

max(L) � 0 is the maximum loss. For 0 � � � 1, we have that V�(L) is a

increasing function of �, and thus obtains its maximum when � = 1, thus

V�(L) � V1(L) = max(L): (2.2)

For A4: Given some arbitrary �, and some constant b > 0, using the same loss

random variable L, we know that

Pr(L � V�(L)) = �: (2.3)

Now, de�ne a new loss random variable Y = L+b, then we want to determine

x = V�(Y ) so that

Pr(Y � x) = �: (2.4)
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Then

Pr(Y � x) = Pr(L + b � x) = Pr(L � x� b) = �; (2.5)

which implies that x� b = V�(L) (2.6)

and V�(L+ b) = V�(L) + b: (2.7)

Note that if a degenerate risk is added to the uncensored instead of the cen-

sored distribution and VaR is calculated, then VaR is not necessarily scalar additive.

To illustrate this point, consider the portfolio with loss distribution Q that always

produces a gain of b+1, Q = �(b+1) for some constant b > 0. This portfolio has a

negative loss with probability 1 and V�(Q) = 0. As well, adding a degenerate risk of

b to the uncensored loss produces a portfolio with loss random variable Q+ b = �1
always produces a gain of 1, and V�(Q+ b). Thus, for any arbitrary �, V�(Q) = 0,

and

V�(Q+ b) = 0 6= V�(Q) + b: (2.8)

It is simple to show that percentile-VaR is not necessarily mean value exceed-

ing (A2). Choosing � = 0, V0 is the minimum value of the loss distribution, which

is less than E[L] for any non-degenerate loss.

The failure of percentile-VaR to satisfy subadditivity or proportionality (prop-

erties A3 and A5) is illustrated in Examples 2.2.2 and 2.2.3 later in this chapter.



2.2. THE INCONSISTENCIES OF VAR 29

The following three examples (Wirch, 1999) will be used to clarify how a per-

centile measure falls short of what is desirable in a risk measure. Example 2.2.1

shows how percentile-VaR is unable to di�erentiate between a risk averse and a risk

taking portfolio. Example 2.2.2 shows that percentile-VaR is not proportional and

may inadequately order portfolios. Example 2.2.3 identi�es a portfolio for which

percentile-VaR is super-additive. In these examples we use the loss distributions

censored from below at 0.

Example 2.2.1 Let S0 be the initial price of a stock and let Sn be the price of

the stock n days later, where log(Sn) � Normal(log(S0); �
2), and where � is

assumed to be a known constant.

Compare the following two portfolios:

Portfolio X:

Xn = Sn (2.9)

E[Xn] = S0e
�2

2 (2.10)

so, Ln(X) =

8><
>:

0; Sn � S0

S0 � Sn; Sn < S0

(2.11)
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Portfolio Y:

Y0 = S0 (2.12)

and for �2 < �2 log :95

Yn =

8><
>:

0; 1
�
log(Sn

S0
) � ��1(0:05)

1
0:95

S0e
�2

2 ;
1
�
log(Sn

S0
) > ��1(0:05)

(2.13)

E[Yn] = S0e
�2

2 (2.14)

so, Ln(Y ) =

8><
>:

S0;
1
�
log(Sn

S0
) � ��1(0:05)

0; 1
�
log(Sn

S0
) > ��1(0:05)

(2.15)

Both portfolios have the same initial value, and the same expected value at

time n. The maximal loss of each portfolio is S0; however, using the 95th percentile,

the VaR of portfolio Y is zero, and for portfolio X the percentile-VaR is positive

and equal to S0(1� e�1:645�). The risk in Portfolio Y is isolated to a speci�c range

of outcomes for the stock price. This range of outcomes has a probability of less

than 5%, resulting in a percentile-VaR of zero. In portfolio X, the risk of a loss

is distributed over a much larger range and the probability of losing everything is

negligible. If we rely on percentile-VaR to compare these two portfolios, we would

choose Portfolio Y as the least risky; however, if we consider a person who is looking
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for �nancial security, a 5% probability of losing everything is excessive.

Example 2.2.2 Let Z0 be the value of a risk factor today, and let Zn be the

random risk factor n days from now. Assume Zn has a Normal(0; 1) distribution.

Compare the loss distributions for the following two portfolios:

Portfolio X:

Ln(X) =

8><
>:

0; jZnj � ��1(0:975)

10; jZnj > ��1(0:975)
(2.16)

Portfolio Y:

Ln(Y ) =

8><
>:

0; jZnj � ��1(0:975)

100; jZnj > ��1(0:975)
(2.17)

Both portfolios have losses over the same risk factor values, and both portfolios

have losses only in a region having less than a 5% probability of occurring. So both

portfolios have a V:95 of zero. However, in the region where there is a loss, the loss

for portfolio Y is ten times that of portfolio X. If we rely on VaR as a percentile

measure, to compare these two portfolios, we would be indi�erent between them

even though it is clear to see that Portfolio X is the investment with less risk.

Example 2.2.3 Assume that our only risk factor is the price of a stock in n days,

Sn, which has a Lognormal(�; �2) distribution, with � = 0:05 and � = 0:1 (see

�gure 2.1). These parameters are appropriate for a 6 month (n = 180) duration.

Consider the following two portfolios:
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Figure 2.1: Loss Function for Portfolio A

Portfolio A is an n-day short put option with strike price F�1
Sn
(0:05) = x:05 (see

Figure 2.1 for the loss function of Portfolio A).

Portfolio B is a reverse buttery spread, consisting of ten short call options on

the same stock, �ve with a strike price of x:05 and the other �ve with a strike

price of F�1
Sn
(0:10) = x:10, and ten long call options on the stock, with a

strike price of x:10+x:05
2

. (See Figure 2.2 for loss function.)

The probability that the reverse buttery spread will produce a loss is 5%, and

the probability that the short put will produce a loss is 5%. Note that if portfolio
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Figure 2.2: Loss Function for Portfolio B

A has a loss, then portfolio B will not have a loss and vice versa; the support of the

loss distributions is non-overlapping. Now consider the combined portfolio, A + B.

The cost of entering into these contracts is not taken into account because they are

sunk costs and do not a�ect the change in value of the portfolio between time 0

and time n. The regions of the distribution of Sn, for which A and B have losses

are disjoint. The combined portfolio now has a 10% probability of having a loss.
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This implies that the percentile-VaR value for the combined portfolio is positive,

V:95(A+B) > 0; (2.18)

and greater than the sum of the percentile-VaR measures for the individual port-

folios,

V:95(A+B) > V:95(A) + V:95(B): (2.19)

This example has shown that the percentile-VaR can be superadditive, and

thus the percentile de�nition of value-at-risk fails to adhere to the subadditivity

property(A5) of a coherent measure.

The potential hazard of percentile-VaR is not that it produces useless results

all the time, but that in using derivatives, it is possible to manipulate percentile-

VaR by isolating small segments of the joint risk distribution, and concentrating

the losses of a portfolio on one of these small-probability segments. In removing

the risk(losses) from other outcomes it is necessary to trade for additional risk on

the same small-probability segment. By increasing the size of the loss on that

segment, we can reduce the probability of the occurrence of a loss. In this way it is

possible to set any portfolio's percentile-VaR to zero or any other desired number.

This example is revisited in Section 3.3. Considering the above characteristic of

percentile-VaR, it is important to ensure that the risk measures used satisfy the

coherency requirements.
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Often in insurance, liabilities and assets are valued separately and truncated

data is often the most readily available for losses. Adding the risk measures or

using the truncated data risk measure, will overestimate the total risk when using

a sub-additive risk measure. However, this may still be useful to obtain an upper

bound on the estimate.

2.3 Improving the Current Risk Measures

Risk functions that utilize more information from the loss distribution tend to be

more di�cult to implement or more computer intensive. It is very important to

consider the types of risks that these functions can identify, and how they would

improve upon the simpler models that lose much of the loss distribution information.

We have assumed that the distribution for the loss random variable holds as

much information as the user is capable of knowing. Sometimes a few characteristic

parameters fully de�ne this distribution. However, loss distributions for complex

portfolios rarely follow a simple distribution, and managers usually prefer to see

summary characteristics (statistics) of the distribution, rather than the distribution

itself.

There are three tools from statistics and actuarial science that will be dis-

cussed, which will help to produce a model that may overcome many of the limita-

tions of percentile-VaR: quantile distribution theory (Section 2.4), conditional tail

expectation (Section 2.5) and distortion functions (Chapter 3).
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2.4 Quantile Distribution Theory

(Embrechts, Kluppelberg and Mikosch, 1997) Right-tail risk analysis has proved to

be of considerable importance when comparing risks. Extremely large losses that

occur with very small probability tend to be overlooked by many �nancial risk tools;

however, there exists extensive literature on right-tail losses relating to insurance

risk (Wang, 1998).

Percentile-VaR is an extreme value statistic (Bassi, Embrechts and Kafetzaki,

1997). As such, if it is to be used, it is important to understand the properties of

this type of statistic in order to improve our understanding of our percentile-VaR

results.

A de�nition of a p-percentile, xp of the distribution F (x) is:

xp = F
�1(p) = inffx 2 R;F (x) � pg: (2.20)

Based on an independent identically distributed (i.i.d.) random sample of n data

points, X1; :::;Xn, the empirical distribution of the random variable X is de�ned

as:

Fn(x) =
#fi : 1 � i � n and Xi � xg

n
; x 2 R: (2.21)

De�ning the order statistics for this distribution as

X(1) = min(X1; :::;Xn) � X(2) � ::: � X(n) = max(X1; :::;Xn); (2.22)
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then xp can be estimated by

x̂p;n = F
�1
n (p) = X(k);

k

n
� p � k + 1

n
: (2.23)

By the Central Limit Theorem, it is possible to show that

x̂p;n � AN

�
xp;

p(1 � p)

nf2(xp)

�
(2.24)

where AN stands for asymptotically normal. Using this, we can obtain approximate

con�dence intervals for the estimated percentile.

As well, if X1; :::;Xn are i:i:d:, the binomial model for an order statistic can

be used to produce percentile con�dence intervals,

Pr(Xj;n � xp < Xi;n) =

j�1X
r=i

�
n

r

�
p
n�r(1 � p)r for i < j: (2.25)

The resulting con�dence intervals can help to identify the accuracy of a percentile-

VaR value.

2.5 Conditional Tail Expectation

One measure of right-tail risk, the conditional tail expectation, is similar to the

mean excess loss (MEL) (Bassi, Embrechts and Kafetzaki, 1997; Bowers et al.,

1997; Klugman, Panjer and Willmot, 1998),

e(x) = E[ X � x j X > x ] = E[ X j X > x ]� x; (2.26)
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which is the same as the Mean Residual Lifetime, or life expectancy, ex, used by

life actuaries. It is also the same as the expected loss given a loss occurs for the

reinsurer for a stop loss contract with attachment point x.

The Conditional Tail Expectation (CTE), conditioned at one tail value x, is

the expected loss taken over all losses in excess of x, where x is the lower bound of

the tail region being considered, referred to as the tail boundary value. Mathemat-

ically,

CTE (x) = E[ X j X > x ] = e(x) + x: (2.27)

The CTE evaluated at a speci�c tail boundary value does not hold much information

on its own; it is simply a conditional mean. However, as a function of the tail

boundary value, its shape can well describe the risk implied by the loss distribution.

A variation of the CTE is to de�ne the tail boundary by a percentile, V�. This

CTE� measure is also referred to as tail-VaR (Artzner, 1999), and is de�ned as the

expected value of the loss given that the loss falls in the upper (1 � �) tail of the

distribution. In de�ning CTE�, it is important to identify the case when V� falls

in a probability mass, where

V� = V�+�; for some � > 0:

In this case, we de�ne the conditional tail expectation function as:

CTE� =
(1� �

0)E[ X j X > V� ] + (�0 � �)V�

1 � � : (2.28)
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where �
0 = maxf� : V� = V�g: (2.29)

Intuitively, for a given loss distribution, the CTE:95 would be enough on average

to cover a 1 in 20 event.

2.6 Two-Parameter Distributions

In order to illustrate the characteristics of the CTE, we apply the CTE to four

two-parameter distributions. The Pareto distribution was chosen for its heavy-tail

and �nite number of moments. The second distribution chosen is the lognormal

distribution, which has tail that is not as heavy as the Pareto, and has many appli-

cations in �nance. It is often used for stochastic stock price models. The gamma

distribution is chosen because it is a generalization of the exponential distribution

which has a constant failure rate, and the gamma distribution has a moderate sized

tail. Lastly the normal distribution is chosen for its simplicity and light tail, and it

is used as a standard approximation tool when discussing con�dence intervals and

value-at-risk techniques.

To set parameters for these distributions we used two methods. In our �rst

comparison we matched the means, so that each distribution had a mean of 3.0, and

we matched the 95th percentile, so that each distribution had a 95th percentile of

10.415. The pdfs of these distributions are illustrated in Figure 2.3 and their ddfs

are illustrated in Figure 2.4. In our second comparison, we set parameters for the

distributions to match the �rst two moments, using a mean of 3.0 and a variance of

45.0. The pdfs of these uncensored distributions are illustrated in Figure 2.5 and
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their ddfs are illustrated in Figure 2.6.
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Figure 2.3: Two Parameter PDFs (Mean= 3 and 95%ile= 10:415)

For our �rst comparison, using the distributions with equated mean and 95th

percentile, we illustrate how the CTE measures the risk for each loss distribution

by plotting the CTE(x) against x, the truncation value in Figure 2.7. This �gure

illustrates the direct relation between the CTE and the tail of the distribution.

The heavier tailed Pareto and lognormal distributions are more steeply sloped and

have higher CTEs further out in the tail. The Pareto distribution has a constant

mean excess lifetime, which is linearly related to the CTE (see Equation 2.27), thus
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Figure 2.4: Two Parameter S(x) (Mean= 3 and 95%ile= 10:415)

the CTE for the Pareto is a straight line. At the 95th percentile, x = 10:41504,

there is a signi�cant di�erence between the CTE values, where the heavier tailed

distributions have signi�cantly larger CTE values. From this graph, one can see

the expected severity of the excess risk caused by a heavier tailed distribution.

Plotting the CTE against the truncation value compares the distributions

based on the same truncation value, however for the heavy tailed distributions,

this �gure does not illustrate the limit of the CTE as the truncation value tends

to in�nity, or the maximum of the distribution. In order to obtain a more com-
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Figure 2.5: Two Parameter PDFs (Mean= 3 and Variance= 45)

prehensive view of the risk, Figure 2.8 illustrates the CTE over the full tail of the

distribution by plotting the CTE(x) against the tail boundary percentiles of the

distribution, F (x). In this �gure we see a more signi�cant relation between the

CTE and the heaviness of the tail of the distribution, especially far out in the tail.

In both �gures, the CTE at the 95th percentile, V:95 = 10:41504, can be compared

directly.

When analyzing the empirical distribution of any portfolio, a common ap-

proach is to calculate the �rst few moments of the empirical distribution, and �t
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Figure 2.6: Two Parameter S(x) (Mean= 3 and Variance= 45)

the empirical distribution to some known distributions by equating the moments.

For a second comparison of the two-parameter distributions, we parameterize the

distribution to have the same �rst and second moments about the mean. In Figure

2.5, the four probability density functions are illustrated, each distribution has a

mean of 3 and a variance of 45.

Again, we illustrate how the CTE measures the risk in the distribution by

plotting the CTE(x) against x, the truncation value, for each distribution in Fig-

ure 2.9. From Figures 2.7 and 2.9 other than the normal distribution, the risk
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Figure 2.7: CTE vs. Tail Boundary Value (Mean= 3 and 95%ile= 10:415)

distributions with equated moments are more closely �tted than the distributions

with equated 95th percentile. To see this, compare the range of the CTEs at a tail

boundary value of 10, the lines in Figure 2.7 have a range from 14 to 20 and are

diverging, whereas the lines in Figure 2.9 have a range from 18 to 22 and do not

start to diverge until the tail boundary value is 12. This suggests that comparing

the risk in a distributions based on a percentile is not as informative as using the

moment approach. This is supported by the fact that a percentile is one number

obtained from one point on a distribution, whereas a moment of the distribution is
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Figure 2.8: CTE vs. Tail Boundary Percentile (Mean= 3 and 95%ile= 10:415)

one number but the whole distribution is used to calculate it.

In Figure 2.10, the ordering of the CTEs in the far right tail is consistent with

our intuition based on second order stochastic dominance. However, the CTE does

not consistently order the risks independently of the percentile chosen; the gamma

and the lognormal distributions seem to be more risky than the Pareto unless

a percentile greater than 98% is used. In the extreme tail of the distributions,

the Pareto distribution, which has the fattest tail, has the highest CTE values. In

Chapter 4, the CTE is shown to rank distributions inconsistently with second order
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Figure 2.9: CTE vs. Tail Boundary Value (Mean= 3 and Variance= 45)

stochastic dominance. The extreme tail is illustrated by plotting the CTE against

the tail boundary percentile in Figures 2.10 and 2.11. Comparing the �gures,

using tail boundary value and tail boundary percentile for this illustration, is not

as transparent, since the 95th percentiles are not equal.
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Figure 2.10: CTE vs. Tail Boundary Percentile (Mean= 3 and Variance= 45)
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Figure 2.11: CTE vs. Extreme Tail Boundary Percentile (Mean= 3 and Variance=
45)



Chapter 3

Synthesis of Transformations

In this chapter we consider distorted risk measures, and show that VaR and the

CTE risk measures are special cases. We specify the coherent set of distorted risk

measures and discuss their properties. Two of these measures are considered in

more depth and applied to the examples from the Chapter 2.

De�nition 3.0.1 A distortion function g : [0; 1]! [0; 1] is a non-decreasing func-

tion with g(0) = 0 and g(1) = 1.

Function g is a concave distortion function if for all a; b 2 [0; 1] such that a < b,

and given any arbitrary � 2 (0; 1),

g(a(1� �) + b�) � g(a)(1 � �) + g(b)�: (3.1)

A distorted probability � (Wang and Young, 1998) is de�ned on a �-algebra 
 as

�(A) = g[P (X 2 A)], where A 2 
, g is a distortion function, and P is a probability

measure on 
.

49
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Given that FX is the distribution function of X, a non-negative random vari-

able, and SX = 1� FX is the decumulative distribution function, then,

E�[X] =

Z 1

0

g[P (X > x)]dx =

Z 1

0

g[SX(x)]dx; (3.2)

which de�nes the premium principle developed by Wang (1995a):

�g(X) �
Z 1

0

g[SX(x)]dx =

Z 1

0

S
�
g (x)dx: (3.3)

Since X is a non-negative random variable, �g(X) � Eg[X]. The distortion ef-

fectively changes the measure to allow for risk, sometimes called a risk adjusted

measure.

3.1 Properties of Distorted Risk Measures

Theorem 3.1.1 If g is a concave distortion function, and SX(x) = 1 � FX(x),

then the distorted risk measure, �g(X) is a coherent risk measure (Wang, 1996b).

Proof: Given concave distortion function g and an arbitrary riskX, to prove �g(X)

is a coherent risk measure, we show that �g(X) satis�es properties A1-A5.
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For A1: Bounded above by maximal loss.

Since g is an increasing function and g(0) = 0 and g(1) = 1, then

g(S(x)) � 1 for x � max(X); (3.4)

and g(S(x)) = 0 for x > max(X): (3.5)

Thus, �g(X) =

Z 1

0

g(SX(x))dx �
Z max(X)

0

1 dx = max(X) 2 (3.6)

For A2: Bounded below by expected loss.

Since g is an increasing concave function of S(x),

g(SX(x)) � SX(x) for all x � 0 (3.7)

E[X] =

Z 1

0

SX(x) dx �
Z 1

0

g(SX(x)) dx = �g(X) 2 (3.8)

For A3, A4: Scalar multiplicative and scalar additive.

For a � 0 and b � 0,

SaX+b(u) =

8><
>:

1 for 0 < u < b

SX(
u�b
a
) for u � b

(3.9)
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�g(aX + b) =

Z b

0

1 du+

Z 1

b

g(SX(
u� b

a
))du (3.10)

= b+ a

Z 1

0

g(SX(t))dt = a�g(X) + b 2 (3.11)

For A5: Subadditive. (Based on proof in Wang, 1995b)

First note that if g is increasing and concave, then for 0 < a < b and x > 0,

g(b+ x)� g(a+ x) � g(b)� g(a): (3.12)

For any arbitrary increasing concave distortion function g, we de�ne �g(X) =R1
0
g(SX(x)) dx. Using mathematical induction for every g and related �g,

we prove the result for arbitrary loss random variable V , and U a discrete

loss random variable taking values in f0; :::; ng. By A4 the proof also holds

for U 2 fk; :::; n + kg and by A3 for U 2 fhk; :::; (n + k)hg; h > 0.

Any random variable can be approximated arbitrarily closely by a discrete

variable with small span h.

By mathematical induction:

(i) For n = 0; U0 = 0 almost surely, and �(U0) = 0, so for any V

�(V + U0) = �(V ) + 0: (3.13)

(ii) For n;Un 2 f0; :::; ng, we assume that

�(Un + V ) � �(Un) + �(V ): (3.14)
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(iii) For n + 1: Consider (Un+1; V ) with Un+1 2 f0; 1; :::; n + 1g; and let

(U�
; V ) be distributed as (Un+1; V jUn+1 > 0). By (ii) and A4 the result holds

for U� 2 f1; :::; n+ 1g. Thus

�(U� + V ) � �(U�) + �(V ): (3.15)

With !0 = Pr(U = 0) and SV j0(t) = Pr(V > tjU = 0), we have for t > 0

that

SU(t) = (1� !0)SU�(t); (3.16)

SV (t) = !0SV j0(t) + (1 � !0)SV (t); (3.17)

SU+V (t) = !0SV j0(t) + (1 � !0)SU�+V (t): (3.18)

This yields (according to Equation 3.12) for t > 0,

g[SU+V (t)] � g[SU(t)]� g[SV (t)]

= g[!0SV j0(t) + (1 � !0)SU�+V (t)] (3.19)

�g[(1� !0)SU�(t)]� g[!0SV j0(t) + (1 � !0)SV (t)]

� g[(1� !0)SU�+V (t)] (3.20)

�g[(1� !0)SU�(t)]� g[(1� !0)SV (t)] (3.21)

= g(1� !0)

(
g[(1 � !0)SU�+V (t)]

g(1 � !0)
(3.22)

�g[(1� !0)SU�(t)]

g(1� !0)
� g[(1� !0)SV (t)]

g(1� !0)

)
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Now de�ne h[S(t)] = g[(1�!0)S(t)]
g(1�!0)

, a new increasing concave distortion function,

and since g(1 � !0) is a positive constant, integration over t on both sides

implies that the right hand side is less than zero by Equation 3.15, and this

yields

�(U + V ) � �(U) + �(V ): 2 (3.23)

It is interesting to note that, similar to risk averse utility functions, coherent dis-

tortion functions are increasing and concave, but distortion functions modify the

probability and keep the wealth function unchanged, whereas utility functions mod-

ify the wealth and keep the probability unchanged.

Theorem 3.1.2 All distorted risk measures with increasing, concave distortion

functions are layer additive (B4) and have an increasing relative risk load (B6)

(Wang, 1996b).

Proof: B4: X = I(x0;x1](X) + I(x1;x2](X) + :::, where x0 = 0 and

I(xi;xi+1](X) =

8>>>><
>>>>:

0 X < xi

X � xi xi � X < xi+1

xi+1 �X xi+1 � X

(3.24)
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For layer (xi; xi+1],

�g(I(xi;xi+1]) =

Z xi+1

xi

g(SX(t))dt (3.25)

so that,

1X
i=0

�g(I(xi;xi+1]) =

Z 1

0

g(SX(t))dt = �g(X): (3.26)

For B6:

Let �(x) = lim
h!0

�g(I(x;x+h])

E[I(x;x+h]]
(3.27)

be the relative risk load for the in�nitesimal layer (x; x+ dt]. Then

�(x) =
�g(I(x;x+dt])

E[I(x;x+dt]]
=
g(SX(x))

SX(x)
(3.28)

and substituting u = SX(x), which is a decreasing function of x, then

�(x) =
g(u)� g(0)

u� 0
as g(0) = 0 (3.29)

and since g is increasing concave, �(x) is a decreasing function of SX(x), and

thus an increasing function of t. 2
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Also note that

g(SX(x))

SX(x)

8>>>><
>>>>:
� 1 if g is concave

> 1 if g is strictly concave

= constant if g is linear

(3.30)

Theorem 3.1.3 All distorted risk measures with increasing, concave distortion

functions preserve FSD(C1).

Proof: C1. Let X �FSD Y . Then SX(t) � SY (t) for all t � 0. Since g is an

increasing, concave distortion function, then

g(SX(t)) � g(SY (t)) (3.31)

and

Z 1

0

g(SX(t))dt �
Z 1

0

g(SY (t))dt (3.32)

which implies, �g(X) � �g(Y ): (3.33)

Theorem 3.1.4 All distorted risk measures with increasing, strictly concave dis-

tortion functions preserve ordering of dangerousness(C2) and SSD(C3).

Proof: C2, C3. Due to Proposition 1.4.1 (page 15) we only have to prove that the

increasing, strictly concave distortion risk measures preserve SSD with the

once crossing rule. (based on proof from Wang (1996c))
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Let E[X] � E[Y ], X �SSD Y and let t0 be the once crossing point, so that

SX(t) � SY (t) for t < t0

SX(t) � SY (t) for t � t0

(3.34)

and since X �SSD Y either

SX(t) < SY (t) for some t > t0 (3.35)

and/or SX(t) > SY (t) for some t < t0 (3.36)

Next, construct a new ddf,

SZ(t) = maxfSX(t); SY (t)g =

8><
>:

SX(t) t < t0

SY (t) t � t0

(3.37)

Since we have already shown that the distorted risk measures have increasing

relative risk loadings at upper layers,

�g(Z)� �g(X) � g[SX(t0)]

SX(t0)

Z 1

t0

[SY (t)� SX(t)]dt (3.38)

and

�g(Z)� �g(Y ) � g[SX(t0)]

SX(t0)

Z t0

0

[SX(t)� SY (t)]dt (3.39)
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with at least one of the above inequalities being a strict inequality.

Subtracting the last two equations, we obtain

�g(Y )� �g(X) >
g[SX(t0)]

SX(t0)

Z 1

0

[SY (t)� SX(t)]dt � 0 (3.40)

Thus, �g(Y ) > �g(X): 2 (3.41)

Corollary 3.1.1 All piece-wise linear distortion functions are coherent but do not

preserve SSD(C3).

Proof: The proof for the corollary parallels the proof of Theorem 3.1.4, however

over any linear portion of the distortion function g[SX(t)]

SX(t)
=M; a constant,

the slope of the linear portion.

For any risk X we can construct a risk Y such that E[X] = E[Y ] and X �SSD

Y , and where t0, the once crossing point, is such that SX(t0) = SY (t0) = b and

g(b) lies on one linear portion of the distortion function. Also suppose that

the linear portion containing g(b) covers the range from g(a) to g(c) where
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a < b < c. Then

SY (t)

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

= SX(t) for t � ta

= a for t = ta

� SX(t) for ta � t � tb

= b for t = tb

� SX(t) for tb � t � tc

= SX(t) for t � tc

(3.42)

which implies that

Z tc

0

[SY (t)� SX(t)]dt = 0 (3.43)

and

Z 1

ta

[SY (t)� SX(t)]dt = 0: (3.44)

Constructing the same equations as in (3.38), (3.39), (3.40), we obtain

�g(Z)� �g(X) =
g[SX(t0)]

SX(t0)

Z ta

tb

[SY (t)� SX(t)]dt (3.45)

and

�g(Z)� �g(Y ) =
g[SX(t0)]

SX(t0)

Z tb

tc

[SX(t)� SY (t)]dt (3.46)
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which gives,

�g(Y ) = �g(X): (3.47)

That is, we construct a risk such that X �SSD Y but �g(Y ) = �g(X): 2

Thus increasing concave distortion functions are coherent and increasing strictly

concave distortion functions are coherent and preserve second order stochastic dom-

inance.

3.2 Special Distortions

Using distorted probabilities, it is possible to derive a distortion function that

reproduces the CTE risk measure using Wang's premium principle (see Equation

3.3 on page 50). De�ne the distortion function as:

gc(t) =

8><
>:

1 if 1 � � < t � 1;

t
1�� if 0 < t < 1 � �:

(3.48)

Wang's distorted risk measure will replicate the CTE� risk measure where q� is

the tail boundary value. Since this distortion function is increasing and concave

(see Figure 3.1), and the portion of the loss distribution that we are concerned

with is the positive losses, the premium principle using this distortion function is

a member of the family of premium principles with concave distortion functions

and thus satis�es the properties of a coherent risk measure (see De�nition 1.4.1).

However, since the CTE distortion function is piecewise linear and not strictly
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Figure 3.1: Distortion Function for Conditional Tail Expectation Function

concave it need not preserve second order stochastic dominance. To illustrate this,

consider the expected value function which is a special case of the CTE (CTE0).

Using distorted probabilities, it is also possible to de�ne a distortion that will

produce the percentile-VaR, V�, as the risk measure. De�ne the distortion function

as

gV (t) =

8><
>:

1 if 1� � < t � 1;

0 if 0 < t < 1 � �:
(3.49)
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Figure 3.2: Distortion Function for Percentile-VaR

In this case, the distortion function is a step function(see Figure 3.2), with

a discontinuity at 1 � �. Thus, this distortion function is not concave, and the

premium principle is not coherent. As we have already shown, VaR can be super-

additive, illustrating that VaR is not a coherent risk measure.

The set of all concave distortion functions de�nes a large class of premium

principles. There are some special cases of distortion functions that have intuitive

explanations. These are described below:
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Piecewise Linear Distortions: The CTE is an example of a piecewise linear

distortion. The CTE can be interpreted as the mean loss given that the loss

is greater than a speci�ed value (discussed above). Piecewise linear distortion

divides the risk based on the linear segments, and multiplies the probability

of each subset by the slope of the linear segment. This assigns an outcome

more \probability" where the distortion is steep, and less when it is at.

The dual-power distortion: (Wang, 1996b) The function

gd(t) = 1� (1� t)�; � � 1 (3.50)

gives the dual-power risk measure,

�d(X) =

Z 1

0

1 � [1� SX(x)]
�
dx; (3.51)

which can be interpreted as the expected value of the maximum of � observa-

tions. Using extreme value theory from Section 2.4, if Y1; Y2; :::; Y� is a set of

� i:i:d: random variables with corresponding order statistics Y(1); Y(2); :::; Y(�),

then, �d(X) is equivalent to

E[Y(�)] � F
�1
�

�

�+ 1

�
: (3.52)

To obtain an approximation for the 95th or 99th percentile using the dual-

power risk measure, one could use � = 19 and � = 99 respectively.
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Figure 3.3: Proportional-Hazards and Dual-Power Distortion Functions

The proportional hazards (PH) distortion: (Wang, 1996a) The function

g(t) = t
1

 ;  � 1: (3.53)

gives the PH-distortion risk measure,

�g(X) =

Z 1

0

SX(x)
1=
dx;  > 1; (3.54)

which can be interpreted as a risk-adjusted risk measure, where  is the
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risk-averse index. Wang (1996a) shows how this resembles the risk neutral

valuation method in option pricing theory.

Of these risk measures only the PH-distortion principle has g0(0) =1 where

g0(0) is the upper bound for the relative loading at upper layers. Wang (1996a)

shows that in comparing a two-point risk and a Pareto risk with the same mean,

only the PH-distortion calculates the risk measure for the Pareto risk to be more

than the two point risk. Thus when g0(0) is �nite, the relative risk loading does

not increase fast enough at the upper layers, as the relative risk loading is limited

by a function of g0(0).
Wang, Young and Panjer (1997) consider premium functionals. They use a

similar set of axioms to A1-A5, and add a sixth axiom called the Reduction of

Compound Bernoulli Risks which states:

Let X = IY be a compound Bernoulli risk, where the Bernoulli

frequency random variable I is independent of the loss severity random

variable Y = XjX > 0, and let � be the distortion function. Then the

market prices for risks X = IY and I�(Y ) must be equal.

An equivalent condition for this property is that g(wq) = g(w)g(q) (Wang,

Young and Panjer, 1997), or that g is multiplicative (property B2). These six

axioms result in de�ning the market premium functional � uniquely as the propor-

tional hazard distortion risk measure.

The proportional hazard distortion functions are a special subclass of coherent

distortion functions that follow a larger set of properties and have proven useful

for insurance premium calculations. The PH-distortion applied to the survivor
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function S(x) is also known as the Lehmann family of survivor functions and is

related to proportional hazards models in statistics (Barlow and Proschan, 1965).

The application of the PH-distortions to premium principles has been considered

extensively in Wang (1996a) and Wang (1996c).

The subclass of premium principles that use PH-distortion functions preserves

all the same properties as the concave increasing distortion functions, however it

also satis�es the multiplicativity property(B2), which is equivalent to the compound

Bernoulli property from above and has a derivative of +1 at zero.

3.3 Illustrations

This section illustrates how the PH-distortion, dual-power distortion and the CTE

improve upon the percentile-VaR risk measure.

Often insurance data, or loss data, is recorded without the related data on

gains, or the probability of a gain. Example 3.3.1 identi�es why the censored distri-

bution is used, and the problems that would result if the full (uncensored) distribu-

tion or the truncated distribution were used. The next three Examples (3.3.2, 3.3.3

and 3.3.4) were used in section 2.2, to identify situations where percentile-VaR did

not adequately compare risks. The CTE, PH-distortion and dual-power distortion

risk measures are applied to these examples, and the results are discussed.
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Example 3.3.1 Let X, Y be discrete loss random variables de�ned by,

f(X = x) =

8>>>>>>>>>><
>>>>>>>>>>:

0:45; x = �10
0:32; x = �5
0:18; x = 0

0:04; x = 5

0:01; x = 10

(3.55)

and,

f(Y = y) =

8>>>>>>>>>><
>>>>>>>>>>:

0:71; y = �10
0:04; y = �5
0:0; y = 0

0:2; y = 5

0:05; y = 10:

(3.56)

A histogram for this example is shown in Figure 3.4. Using the full distribution,

the expected values for these distributions are the same :

E[X] = E[Y ] = �5:8: (3.57)

Considering the full distributions, the probability of having a loss in Y is 5

times greater than having a loss in X, however the gains in Y are also greater than

the gains in X. Thus the variance in Y is greater than the variance of X, but the

expected returns are the same. For second order stochastic dominance, comparing



3.3. ILLUSTRATIONS 68

-10 -5 0 5 10

0
20

40
60

80

x

Portfolio X

-10 -5 0 5 10

0
20

40
60

80

y

Portfolio Y

Figure 3.4: Histograms of Losses for Example 3.3.1

the mean and variance of two random variables is not enough. To show that X is
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Figure 3.5: Capital Requirements for Example 3.3.1 using Proportional-Hazards
and Dual-Power Distortions

less risky than Y , we compare ddfs.

1Z
x

SX(t)� SY (t)dt =

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

0 for t � �10
�1:3 + 0:26(�5 � x) for � 10 < x � �5
�1:2� 0:02(0 � x) for � 5 < x � 0

�0:2� 0:20(5 � x) for 0 < x � 5

0� 0:04(10 � x) for 5 < x � 10

0 for 10 < x

(3.58)
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For any value of x, this integral is always negative, implying that risk Y

dominates risk X using second order stochastic dominance (SSD). Based on the

full distribution, any risk averse individual would prefer to invest in X. In terms of

VaR, V:9(X) = V:9(Y ) = 0, however V:95(X) = 0, which is less than V:95(Y ) = 10.

Comparing these two random variables, the expected value of the loss, given

that the loss is greater than zero, is the same for each risk. That is,

E[XjX > 0] = E[Y jY > 0] = 6:0: (3.59)

As well, if only the positive losses were recorded (in other words, if the loss

distribution is truncated at 0) then the two truncated loss distributions would be

the same:

fT (X = t) = fT (Y = t) =

8><
>:

:8; t = 5

:2; t = 10:
(3.60)

Using the truncated distribution, there is no di�erence between these risks.

However, since we know the true full distribution of these risks, it is clear that any

risk measure must not be based solely on a truncated loss distribution.

If instead a censored distribution is used, where all gains are recorded as zero

losses, the censored distributions would be:

f(X = x) =

8>>>><
>>>>:

:95; x = 0

:04; x = 5

:01; x = 10

(3.61)
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f(Y = y) =

8>>>><
>>>>:

:75; y = 0

:2; y = 5

:05; y = 10:

(3.62)

and the expected, censored, losses would be:

E[max(0;X)] = 0:3 and E[max(0; Y )] = 1:5: (3.63)

Figure 3.5 applies the PH-distortion risk measure to the full distribution of

X and Y , the censored distribution, and the truncated distribution. The expected

value de�nition of the distortion risk measure (see Equation 3.3) is used in the full

distribution case, so that the integral of the distorted decumulative distribution

function would be over the entire real number line. This does not make sense, as

gains would add to the risk measure and the risk measure exceeds the maximum

loss. Thus, the full distribution should not be used in this way. For premium

calculations Wang (1999) uses a di�erent distortion for gains, the dual-power dis-

tortion. However for the purpose of capital adequacy, the size of a possible gains

is not relevant when a loss occurs. The second graph in Figure 3.5 applies the

PH-distortion to the truncated distributions, and there is no di�erence between

the risk measures for portfolio X and portfolio Y. Since the losses in each portfolio

are considerably di�erent, this implies that the probability that a gain occurs is of

importance and that the truncated distribution should not be used. The third and

fourth graphs apply the PH-distortion and the dual-power distortion risk measures

to the censored data. These graphs order the risks in accordance with second order
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Risk Measure Parameter Portfolio X Portfolio Y

Dual-Power 19 3.98 8.09

99 8.12 9.97

Proportional Hazards 4 3.95 5.90

19 8.19 8.92

Table 3.1: Risk Measures for Example 3.3.1 using Censored Data

stochastic dominance, are bounded below by the expected loss, are bounded above

by the maximal loss and follow the properties of coherence. Thus for the rest of this

thesis, we consider only the censored distribution. Using the censored distribution,

Table 3.1 compares portfolio X and portfolio Y using some speci�c risk measures.

Using the censored distribution, it seems that the dual-power distortion is

more sensitive than the PH-distortion to changes in the probability of a loss occur-

ring. However, for the dual-power the ordering of portfolios in terms of riskiness

depends on the value of the parameter, as is shown in the next example.

Example 3.3.2 This example is a continuation of Example 2.2.1. The histograms

and decumulative distribution functions for portfolio X and Y are shown in Figures

3.6 and 3.7 respectively. Based on V:95, portfolio X is more risky. However, if we

consider a person who is looking for �nancial security, a 5% probability of losing

everything may seem more risky. Based on a 95% quantile the CTE for portfolio

X is 1.246, and for portfolio Y is 2.689, which ranks the two portfolios in the same

order as the PH-distortion risk measure when the parameter is greater than 2, or

the dual-power risk measure when the parameter is over 8.
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Figure 3.6: Histograms of Losses for Example 3.3.2

Example 3.3.2 shows that the ordering of risk using the PH-distortion or

dual-power distortion may depend on the parameter chosen. The parameter relates

to a measure of risk aversion, so it is important to use the same parameter when

comparing portfolios; however, there is no strict rule for selecting a parameter value.
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Figure 3.9: Histograms of Losses for Example 3.3.3

Example 3.3.3 This example is described in Example 2.2.2. The histograms for

portfolio X and Y are shown in Figure 3.9. Both portfolios have a V:95 of zero,

which suggests that the two risks are equally risky, even though the potential loss

for portfolio Y is ten times that of portfolio X.

Based on a 95% quantile, the CTE for portfolio X is 4.950, and the CTE

for portfolio Y is 49.504. The PH-distortion and the dual-power distortion risk

measures also evaluate portfolio X as the less risky portfolio, independent of the

parameters see Figure 3.10.
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Figure 3.11: SA(a), SB(b) and SA+B(c) for Example 3.3.4

Example 3.3.4 This example is described in Example 2.2.3. The decumulative

distribution functions for portfolio A and B and A+B are shown in Figure 3.11.

The probability that the reverse buttery spread will produce a loss is 5%, and

the probability that the short put will produce a loss is 5%. Note that the support of

the loss distributions is non-overlapping, and based on V:95, the combined portfolio

has a higher percentile-VaR than the two portfolios separately. This shows that

percentile-VaR can be superadditive, and thus the percentile de�nition of value-at-

risk fails to adhere to the subadditivity property(A4) of a consistent measure.
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Table 3.2 illustrates the capital required using the risk measure discussed

so far. The PH-distortion and the dual-power distortion risk measures maintain

the same ordering between portfolios A and B; and the comined portfolio has a

sub-additive capital requirement.

Portfolio: A B A+B

Mean 0.1796 0.2058 0.3854

Maximum 89.18 8.249 89.18

V:95 0.0 0.0 3.42

CTE:90 1.796 2.058 3.854

PH 19 23.29 6.693 23.57

DP 19 2.722 2.952 4.573

Table 3.2: Comparison of Risk Measures for Example 2.2.3

3.4 Comparison of Distortion Methods

In this section, we use the distortion functions discussed previously to compare

the same two parameter distributions that were used in section 2.6. For both the

PH-distortion and the dual-power distortion, the value of the parameter deter-

mines the risk aversion inherent in the risk measure. Figure 3.12 shows how the

PH-distortion compares the four distributions. For all values of the risk aversion

parameter, the PH-distortion consistently ranks the distributions, identifying the

Pareto distribution as the most risky, as expected.

Figure 3.13 compares the dual-power distortion for the same four distribu-

tions. In this �gure, it is apparent that the ranking of the risks depends upon the
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Figure 3.12: Capital Requirements for Two-Parameter Distributions (Mean= 3 and
95%ile= 10:415) using Proportional-Hazards Distortion

value of the risk aversion parameter. When the parameter is large enough, the

order of risks is the same as the order seen when using the PH-distortion. However,

when using a small parameter, the Pareto distribution is shown to be the least

risky, which is the opposite of what would be expected for any risk averse person.

The CTE also indicates a change in risk ordering depending upon the percentile

chosen for truncation (see Figures 2.7 and 2.8).

The two-parameter distributions with the same mean and variance produce

similar results (see Figures 3.14, 3.15, 2.9 and 2.10); however, the dual-power risk
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Figure 3.13: Capital Requirements for Two-Parameter Distributions (Mean= 3 and
95%ile= 10:415) using Dual-Power Distortion

measure does not rank the Pareto distribution as the most risky until very far out

in the tail. The dual-power distortion risk measure for the gamma distribution

crosses the lognormal distribution and will cross the Pareto distributions for some

parameter value greater than 100.

This change in the ordering of risks has been postulated by Wang (1996b) to

be due to the �nite bound on the relative risk aversion at upper limits when using

the dual-power distortion or the CTE distortion function. Unfortunately, Wang

(1996b) has also shown that although an in�nite bound of the relative risk aversion
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Figure 3.14: Capital Requirements for Two-Parameter Distributions (Mean= 3 and
Variance= 45) using Proportional-Hazards Distortion

is necessary, it is not su�cient to ensure a consistent ranking of risks.
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Figure 3.15: Capital Requirements for Two-Parameter Distributions (Mean= 3 and
Variance= 45) using Dual-Power Distortion



Chapter 4

Features of the Beta Distortion

In this chapter, we recognize that both the PH-distortion and the dual-power dis-

tortion come from the beta family of distributions. Because of this generalization,

we consider the full class of beta distributions and �nd a set of beta distortions

that is coherent. As well, we consider characteristics of these risk measures in order

to compare them with the current standards and identify appropriate parameter

values.

4.1 The Beta Distortion

The PH-distortion and the dual-power distortion, discussed in Chapter 3, are spe-

cial cases of the beta distortion function. Each of these distortion functions is an

incomplete beta function (Hogg and Klugman, 1984):

84
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g�(S(x)) = �(a; b;S(x)) =

Z S(x)

0

1

�(a; b)
t
a�1 (1 � t)b�1 dt; (4.1)

= F�(S(x)) (4.2)

where F�(:) is the cdf of the Beta(a,b) distribution, and S(x) is the decumulative

distribution function, so that 0 � S(x) � 1, and �(a; b) is the beta function with

parameters a � 0 and b � 1

�(a; b) =
�(a)�(b)

�(a + b)
=

Z 1

0

t
a�1 (1 � t)b�1 dt: (4.3)

To obtain the PH-distortion function, let a = 1

,and b = 1, so that

gP (S(x)) =

Z S(x)

0

1

�( 1

; 1)

t
1


�1 (1� t)1�1 dt (4.4)

= S(x)
1

 : (4.5)

To obtain the dual-power distortion function, let a = 1, and b = �, so that

gD(S(x)) =

Z S(x)

0

1

�(1; �)
t
1�1 (1 � t)��1 dt (4.6)

= 1� (1 � S(x))�: (4.7)
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De�nition 4.1.1 The general beta distortion risk measure is de�ned as

��(X) =

Z 1

0

Z SX(x)

0

1

�(a; b)
t
a�1 (1� t)b�1 dt dx: (4.8)

for a > 0 and b > 0.

This risk measure is clearly di�erentiable for any a > 0 and b > 0. In order

to limit the beta class of distortion functions to the subset that have the properties

we need for coherence, we apply the following theorem:

Theorem 4.1.1 The beta risk measure with parameters a and b is coherent if and

only if 0 < a � 1 and b � 1.

Proof: The beta distortion risk measures (see De�nition 1.4.1) satisfy g�(0) = 0

and g�(1) = 1, since the beta distortions are beta distribution functions over

the interval [0; 1]. In addition, since a > 0 and b > 0, all beta distortion

functions are twice di�erentiable all coherent beta risk measures can be found

by determining the parameters a and b such that

g
0
�(p) � 0; g

00
�(p) � 0; for all p; where 0 � p � 1: (4.9)

Since, �(a+b)

�(a)�(b)
� 0; for all a > 0 and b > 0.

g
0
�(p) =

1

�(a; b)
p
a�1 (1� p)b�1 � 0 for all 0 � p � 1; (4.10)

and all beta distortion functions are increasing.
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Since,

g
00
�(p) =

1

�(a; b)
p
(a�2) (1 � p)(b�2)((a� 1) + (2� a� b)p) � 0 (4.11)

for all 0 � p � 1;

and
1

�(a; b)
p
(a�2) (1� p)(b�2) � 0; (4.12)

then the beta distortion function is concave if an only if

(a� 1) + (2� a� b)p � 0 for all 0 � p � 1: (4.13)

Splitting this into 3 cases we have

(a� 1) � 0 for p = 0; (4.14)

1� b � 0 for p = 1; (4.15)

(a� 1)(1� p) + (1� b)p � 0 for 0 < p < 1: (4.16)

It is easy to see that for all a � 1 and b � 1, all three cases hold. So that the

beta distortion function is concave if a � 1 and b � 1.

To show that the beta distortion function is concave only if a � 1 and b � 1,

assume g00�(p) � 0 for any p. Then a � 1 from setting p = 0.
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Also, g00�(p) � 0 if and only if

(a� 1) + (�a� b+ 2)p � 0 for any p

and for 0 < a � 1, this is true if and only if

(�b+ 1) � 0 by setting p = 1:

Hence, g00�(p) � 0 for any p implies a � 1 and b � 1.

Thus any beta distortion risk measure, ��(X), is coherent if and only if

0 < a � 1, 1 � b � 1: 2

The coherent beta distortion risk measures are de�ned as:

��(X) =

Z 1

0

Z SX(x)

0

1

�(a; b)
t
a�1 (1 � t)b�1 dt dx: (4.17)

where 0 < a � 1, 1 � b � 1.

In order to compare the beta distortion with the PH-distortion and the dual-

power distortion, set a = 1

and b = �, so that the beta distortion is

g�(t) =

Z t

0

1

�( 1

; �)

t
1


�1 (1� t)��1 dt; (4.18)
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and the dual-power distorted risk measure is

��(X) =

Z 1

0

Z SX(x)

0

1

�( 1

; �)

t
1


�1

(1 � t)��1 dt dx: (4.19)
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Figure 4.1: Beta( 1

; �) Distortion functions

Some examples of the beta distortion of the survival function are demonstrated

in Figure 4.1. These graphs illustrate the e�ect of varying the parameters. The

�rst graph demonstrates that higher values of the  parameter increase the initial
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gradient of the distortion, which corresponds to higher aversion to the far right tail

of the loss distribution. The second graph demonstrates that higher values of the

� parameter does little to a�ect the initial gradient, but increases the gradient for

the moderately extreme events, which corresponds to higher risk aversion overall.

Since all coherent distorted risk measures satisfy �rst and second order stochas-

tic dominance and are comonotonic (B4 on page 12), then we may consider further

ordering properties for comparison of the beta distortion.

De�nition 4.1.2 For risk measure � with parameter space 
, and arbitrary risks

X and Y , given some !0 2 
 assume �(X(!0)) < �(Y (!0)).

If �(X(!)) � �(Y (!)) for every ! 2 
;

then � is de�ned as a consistent risk measure, and Y is said to dominate X in

�-order.

For coherent beta distortions where  + � > 2, these measures order risks

consistently with second order stochastic dominance. When risks are not compa-

rable using second order stochastic dominance, the PH-distortion risk measure still

seems to consistently compare risks independently of the parameter.

De�nition 4.1.3 For any risks X and Y , if �P (X) < �P (Y ) for any  � 1, then

we say that Y dominates X in PH-order.

If Y dominates X, we say that X is less risky than Y . If we assume that
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the order of risks de�ned by the PH-distortion is what we want, and we call this

ordering PH-order, then the problem we would like to solve is this:

If X is less risky than Y in PH-order, then we would like to show

that

1

�( 1

; �)

Z 1

0

Z SX (x)

0

t
1


�1 (1 � t)��1 dt dx

� 1

�( 1

; �)

Z 1

0

Z SY (y)

0

t
1


�1 (1� t)��1 dt dy (4.20)

for all 0 < 1

� 1 and 1 � �:

We already know that this is true for any risks X and Y where Y dominates

X with respect to second order stochastic dominance (which includes FSD, net

stop loss order, order of dangerousness); however, we have not been able to prove

that beta-order implies PH-order in general. Analyzing the beta distortion g�(X)

for  6= 1, we have g0�(0) = 1, and if 1 < � then g0(1) = 0, whereas when � = 1

(PH-distortion) g0(1) = 1

. The gradient of g(x) at x = 1 is less than one, and

determines the risk-adjusted probability allocated to minimal losses.

In chapter 3, we noted that the PH-distortion satis�es the multiplicativity

property (B2), which is equivalent to the compound Bernoulli property, and as

a result has a derivative of +1 at zero. The beta distortion does not satisfy

the multiplicativity property (B2) but is submultiplicative and also has an in�nite

derivative at zero as long as  is strictly greater than 1.
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The compound Bernoulli property is desired for premium evaluations. If there

is a transfer of risk between two parties, economic no arbitrage theory implies that

there should be no free lunch for either party. However, in calculating capital ad-

equacy margins, there is a di�erence between the capital you should hold to cover

the frequency and severity risk and the capital you should hold to cover only the

frequency risk with a predetermined constant severity. Since the frequency and

severity risks are partially diversi�able, pooling the risk should lead to a lower cap-

ital requirement. Thus a comparable axiom could be that the capital requirement

for risk �(IY ) should be less than or equal to the capital requirement for the un-

pooled risk, �(I�(Y )). Using the same method as Wang (1997), distortion function

g must satisfy,

g(xy) � g(x)g(y); where 0 � x; y � 1: (4.21)

The functions g that satisfy this inequality are not as simple as in the case of

equality; however we consider the case of our beta distortion, g� with  � 1 and

� � 1 and prove that these functions satisfy the submultiplicative property.

First we need to show that the beta distortion dominates the PH-distortion:

Proposition 4.1.1 Given � � 1 and  � 1, the beta distortion dominates the

PH-distortion for all x 2 (0; 1); that is g�(x) � gP (x) for all x 2 (0; 1):
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Proof: In other words, we need to show that

g�(x) � gP (x) for all x 2 (0; 1): (4.22)

When � = 1, we have that g�(x) = gP (x) by de�nition, so assume � > 1.

We also have that gP (x) = x
1

 by de�nition. So consider the function

f(y) = g�(y)� y
1

 : (4.23)

Then, f(y) = 0 when y = 0 or y = 1, and

d

dy
f(y) = y

( 1

�1)

 
(1� y)��1

�( 1

; �)

� 1



!
(4.24)

which implies that d
dy
f(y) = 0 at y = 0 or at y = 1 �

�
�( 1


;�)



� 1

��1

, which

lies in the interval (0; 1) since �( 1

; �) � , and d

dy
f(y)jy=1 = � 1


. So, f(y)

does not have a root between 0 and 1, and f(y) > 0 for all y 2 (0; 1). Thus

g�(y) > y
1

 for all y 2 (0; 1): 2

Proposition 4.1.2 Let X = IY be a compound Bernoulli risk, where the Bernoulli

frequency random variable I is independent of the loss severity random variable

Y = XjX > 0. Then the capital requirement for risk X = IY is less than or equal

to the capital requirement for risk I�(Y ) for the beta distortion risk measure.

Proof: Based on the proof of Theorem 3 in Wang (1997), it is su�cient to prove

that g�, the beta distortion function with parameters 0 < 1

� 1 and � � 1
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satis�es submultiplicativity. That is, we want to prove that

g�(x) g�(y) � g�(xy); for all x; y 2 [0; 1]: (4.25)

For � = 1, g� is the PH-distortion and the proof from Wang (1997) shows

that gP (x) gP (y) = gP (xy), so we consider the case for � > 1.

Since g�(x) is a distortion function, we know that g�(0) = 0 and g�(1) = 1.

As well, g�(x) is a smooth continuous function, and the derivative exists for

all x 2 (0; 1). Since Equation 4.1 is symmetric in x and y, we choose any

arbitrary y in (0; 1), and consider the function

f(x) = g�(x) g�(y)� g�(xy) (4.26)

f(x) = 0 when x = 0 or x = 1.

To show that there are no other roots of f(x), we prove that d
dx
f(x) has a

unique root in (0; 1).

d

dx
f(x) = g�(y)g

0
�(x)� yg0�(xy) (4.27)

=
x

1


�1

�( 1

; �)

h
g�(y)(1� x)��1 � y

1

 (1� xy)��1
i

(4.28)
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which has a unique solution of

x =

g�(y)

y
1


1

��1 � 1

g�(y)

y
1


1

��1 � y

(4.29)

Since g�(y) > y
1

 and 1 > y, then x 2 (0; 1).

Next we show that lim
x!0+

d
dx
f(x) is positive, and since f(0) = 0, this proves

that f(x) is positive for all x 2 (0; 1).

We want to show that

d

dx
f(x) = g�(y)g

0
�(x)� yg0�(xy) > 0; as x! 0+: (4.30)

Which is the same as showing that

g�(y)

y
� g

0
�(xy)

g
0
�(x)

> 0; as x! 0+: (4.31)

We know that

lim
x!0+

g
0
�(xy)

g
0
�(x)

= lim
x!0+

(xy)
1


�1(1� xy)��1

(x)
1


�1(1� x)��1

= y
1


�1
: (4.32)

And so, we need to show that

g�(y)

y
� y

1


�1
> 0 for some y 2 (0; 1) (4.33)
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or g�(y) > y
1

 for some y 2 (0; 1) (4.34)

However, we know (see Proposition 4.1.1) that

g�(y) � y
1

 for any y 2 (0; 1) (4.35)

for � < 1 and  > 1. So we have that

g�(x) g�(y) � g�(xy); for all x; y 2 [0; 1]: 2 (4.36)

We have also illustrated that g� satis�es (4.1) by drawing contour graphs for

g(x)g(y) � g(xy) over a range of parameters for all combinations of x and y. See

Figure 4.2.
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Figure 4.2: Contours of g(x)g(y)� g(xy) for Various Beta Distortion Functions
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4.2 Parameterizing the Beta Distortion

Although there are many parameter values that make the beta distortion risk mea-

sure coherent risk, there is no strict preference for choice of parameters. In this

section we use a uniform distribution for the risk and the von Mises and Kullback-

Leibler Information measures to compare the beta risk measures with percentile-

VaR and the CTE. Using these comparisons, it is possible to identify parameters

that are consistent with current regulatory standards.

4.2.1 Non-Informative Risk

In order to set parameters for the risk measures that are appropriate for many

applications in a variety of industries, we must not put too much emphasis on

extreme risk exposures. For applications that are concerned with these, an auditor

would most likely be involved with analyzing the risk and should identify it as an

extreme exposure.

To choose a portfolio to compare the risk measures is subjective. In order

to limit the subjectivity of choosing a risk distribution, we rely on the idea of

maximum entropy. The entropy of a distribution f(x) is de�ned as

�(f) = �
Z 1

0

f(x) log(f(x))dx: (4.37)

Entropy is a measure of the missing information needed on average to describe a

random variable (Cover and Thomas, 1991). Entropy only depends on the proba-

bilities of the random variable and not on the value of the random variable. The
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distribution f(x) that maximizes the entropy, is the one that is least subjective

with respect to the unknown information (Buchen and Kelly, 1996).

The distribution that maximizes entropy on a �nite interval with no prior

information, is the uniform distribution. If the interval is in�nite, and the mean

is known, then the exponential distribution maximizes entropy. Since the maximal

loss is usually considered to be �nite (the maximal loss before bankruptcy), the

uniform distribution maximizes entropy. Similarly, in Bayesian statistics, the uni-

form distribution is considered to be the most uninformative prior distribution, as

all outcomes are equally probable.

To compare parameters, each risk measure is applied to a risk with a uniform

distribution. Since the risk distribution is completely arbitrary, the uniform dis-

tribution gives the most general results; equating this solution with the regulatory

standard gives a method to compare the risk measures and determine parameters

for the beta risk measures.

Equating these risk measures when applied to a uniform loss distribution

is equivalent to equating the areas under the distortion graphs. If we set the

percentile-VaR parameter to � = 0:95, then the equivalent CTE parameter is � =

0:90. For the PH-distortion risk measure,  = 19, the dual power risk measure, � =

19, and the general beta risk measure could use any (; �), as long as � = 19. For

our purposes, we have chosen to use  = � =
p
19. Figure 4.3 shows the distortion

functions using these parameters. Using extreme value theory from Section 2.4, the

dual-power distortion with � = 19 gives a value approximately equal to E[Y(19)]

from a sample of size 20, which is also an estimate of the 95th percentile.
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Figure 4.3: Distortion Functions Applied to a Uniform Risk

Both percentile-VaR and the CTE ignore the shape of a large portion of the

risk distribution. They may identify some extreme exposures; however, portfolios

with the same extreme exposures may vary greatly in the shape of the rest of their

distributions, and should not be considered equal. The beta risk measures consider

the full distribution. The PH-distortion risk measure parameter  penalizes extreme

tail risks more heavily, whereas the dual-power risk measure parameter � penalizes

moderate risks more heavily. This will be more evident with the illustrations in the

next chapter.
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4.2.2 Relative Entropy

Using a topic closely linked to entropy, relative entropy (Cover and Thomas, 1991)

or the Kullback-Leibler(KL) information, we are able to de�ne a distance between

the distorted distribution and the original risk distribution. Relative entropy or the

KL information between two density functions is de�ned as follows:

De�nition 4.2.1 Let f(x) and h(x) be two density functions. Then we de�ne the

KL information as:

I(f(x); h(x)) =

Z 1

0

f(x) log

�
f(x)

h(x)

�
dx: (4.38)

The KL information can be interpreted as the expected information when the

distribution with density function h(:) is transformed into the distribution with

density function f(:).

De�nition 4.2.2 The function M(:; :) is a metric on the set of real valued func-

tions 
, if for any arbitrary functions f , g, h 2 
, M(:; :) satis�es all of the

following:

1. Non-negative: M(f; h) � 0;

2. Zero: M(f; h) = 0 if and only if f � h almost surely;

3. Symmetry: M(f; h) =M(h; f);

4. Triangle inequality: M(f; h) �M(f; g) +M(g; h):
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The KL information measure is always non-negative. It is equal to zero when

f(x) = h(x), and additive for independent risks. However, it is not symmetric.

That is, I(f(x); h(x)) 6= I(h(x); f(x)), and thus I is not a metric, as the triangle

inequality does not hold. It is possible to create a metric form of this measure by

de�ning the metric information as

MI(f(x); h(x)) = I(f(x); h(x)) + I(h(x); f(x)): (4.39)

In most applications, relative entropy is minimized in order to �nd the density

that is the closest to what is observed. The parameters  = 1 and � = 1 (in

Equation 4.18) minimize relative entropy. However, if minimized, the distortion

function would be a uniform distortion and our risk measure would be the expected

value of the risk. For capital adequacy, the objective is not entropy minimization.

Instead we use this distance to equate the parameters of the various distortions, for

an arbitrary loss distribution.

Let S(x) be the pdf of an arbitrary loss random variable X with pdf h(x),

and let f(x) be the distorted pdf. Since h(x) = �S0(x) and f(x) = � d
dx
g(S(x)) =

g
0(S(x))h(x), then

I(f(x); h(x)) =

Z 1

0

g
0(S(x))h(x) log g0(S(x) dx; (4.40)

and I(f(x); h(x)) = EX [g
0(S(x)) log(g0(S(x))]: (4.41)
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where the expectation is taken with respect to the h(:) measure.

Applying the KL information to the PH-distortion we simplify and obtain:

IP (f(x); h(x)) =  � log()� 1; (4.42)

for the dual-power distortion:

ID(f(x); h(x)) =
1 � � + � log(�)

k
= log(k)� 1 +

1

k
(4.43)

= IP (f(x); h(x)) (4.44)

with  = �.

For the beta distortion:

I�(f(x); h(x)) = � log(�(�;
1


)) (4.45)

+

�
	(

1


)(
1


� 1) + (�� 1)	(�) �	(�+

1


)(
1


+ � � 2)

�

where 	(z) = d
dz
�(z) and �(z) =

R1
0

e
�t
t
z�1

dt:

In terms of the KL information, Table 4.1 compares the PH-distortion, the

dual-power distortion and the beta distortion information. Table 4.2 lists the pa-

rameters that give the same distance between the original loss distribution and the

distorted loss distribution.

Since this information measure is not a metric, we consider both the metric

form of the KL information, as well as the most common metric used in mathemat-

ics, the von Mises distance, or the L2 norm.
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Parameters Beta PH-Distortion Dual-Power

 �

1 1 0.00 0.00 0.00

2 2 1.75 0.31 0.19
4 4 2.99 1.61 0.64

19 19 18.42 15.06 2.00p
19

p
19 3.39 1.89 0.70

Table 4.1: Kullback-Leibler Distances

Beta PH-Distortion Dual-Power

KL Distance  �  �  �

0.765 2 2 4.730 1 1 2.792

2.993 4 4 53.21 1 1 5.741

3.386
p
19

p
19 70.28 1 1 6.212

Table 4.2: Parameters giving Equivalent Kullback-Leibler Distances
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The metric form of the KL information (MKL), is de�ned as,

MI(f(x); h(x)) = I(f(x); h(x)) + I(h(x); f(x)) (4.46)

which can be simpli�ed to,

MI(f(x); h(x)) =

Z 1

0

g
0(S(x))h(x) log(g0(S(x)) dx

�
Z 1

0

h(x) log(g0(S(x)) dx (4.47)

where S(x) is the ddf, and h(x) is the pdf of the loss random variable X. Hence,

MI(f(x); h(x)) = EX [(g0(S(x))� 1) log(g0(S(x)))] : (4.48)

Applying the MKL information to the PH-distortion, simpli�es to

MIP (f(x); h(x)) =  +
1


� 2; (4.49)

and for the dual-power distortion,

MID(f(x); h(x)) = �+
1

�
� 2: (4.50)

Thus, the metric form of the KL information introduces symmetry between the

dual-power and the PH-distortion. This symmetry is somewhat evident when the
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metric is applied to the beta distortion,

MI�(f(x); h(x)) = (
1


� 1)( (

1


)�  (�+

1


)) (4.51)

+(�� 1)( (�)�  (�+
1


)) +

1


+ �� 2:

However, this symmetry is only on the boundaries of the parameter space, that is

for the cases when � = 1, or when  = 1.

De�nition 4.2.3 For a function f(x), the Lp
norm is de�ned as,

L
p(u) =

�Z 1

0

j f(x) jpdx
� 1

p

:

The L2 norm, where f(x) is a di�erence between two functions is often called

the von Mises distance. For two distributions, f(x) and h(x), with respective ddfs

of S�(x) and S(x), the von Mises distance is de�ned as

W
2 = (L2(S�(x)� S(x)))p =

Z 1

0

jS�(x)� S(x)j2(�dS(x)): (4.52)

From Equation 4.52, it can be seen that this distance is a metric, and measures the

distance between the distortion and the identity distortion. This measure is strictly

positive, symmetric and zero when S(x) = S
�(x). Since S(x) is a Uniform(0; 1)

random variable, the von Mises distance is independent of the loss distribution and
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for the PH-distortion, the distance simpli�es to:

W
2
P =

1

3
� 2

 + 2
+

1

2 + 1
: (4.53)

For the dual-power distortion, the distance equates to:

W
2
D =

1

3
� 2

�+ 2
+

1

2� + 1
: (4.54)

The dual-power distortion and the PH-distortion with � = , are power func-

tions of the cumulative or decumulative distribution functions. These distortions

are symmetric in x+ y = 1.

Proposition 4.2.1 Given any p � 1, the L
p
norm for the di�erence between

g(S(x)) and S(x) gives the same distance measure for the dual-power distortion

as for the PH-distortion when  = �.

Here, both the dual-power and PH-distortion functions distort the survivor

distribution, but they focus the distortion on di�erent parts of the distribution.
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Proof: For the PH-distortion, the Lp norm is:

Z 1

0

jg(S(x))� S(x)jpdx =

Z 1

0

jS(x) 1 � S(x)jpdx (4.55)

=

Z 1

0

ju 1

 � ujpdu (4.56)

=

Z 1

0

u
p
 (1 � u

1� 1

 )pdu (4.57)

=


 � 1

�( p+1
�1 + 1)�(p + 1)

�((p+1)
�1 + p + 2)

(4.58)

=
1

 � 1

�( p+1
�1 )�(p + 1)

�((p+1)
�1 )

(4.59)

For the dual-power distortion, the Lp norm is:

Z 1

0

jg(S(x))� S(x)jpdx =

Z 1

0

jF (x)� F (x)jpdx (4.60)

=

Z 1

0

u
p(1 � u

�1)pdx (4.61)

=
1

 � 1

�( p+1
�1 )�(p + 1)

�((p+1)
�1 )

: 2 (4.62)

Table 4.3 shows the von Mises and MKL distances for parameters � and  such

that � = 20. An interesting aspect of this table is that, when we transpose the

parameters so that � > , the von Mises and the MKL distances are both greater

than when  > �. This di�erence is very small; however this is counter-intuitive

for the measures we are using.
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Parameters Distance

 � Von Mises MKL

1 20 0.2668 18.05
20 1 0.2668 18.05

5 4 0.2596 7.31
4 5 0.2598 7.38

10 2 0.2617 9.86
2 10 0.2624 10.17

Table 4.3: Von Mises and MKL Distances for Parameters � = 20

Beta PH Distortion Dual-Power

MKL Distance  �  �  �

1.55 2 2 3.24 1 1 3.24
6.21 4 4 8.08 1 1 8.08

38.24 19 19 40.21 1 1 40.21

Von Mises Distance  �  �  �

0.1065 2 2 3.85 1 1 3.85

0.2451 4 4 14.43 1 1 14.43

0.3281 19 19 286.36 1 1 286.36

Table 4.4: Parameters giving Equivalent von Mises and MKL Distances
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According to our objectives, we consider losses far out in the tail to be more

risky than medium sized losses; although the von Mises metric does suggest that

both parameters are equally important (see Table 4.4), the Kullback-Leibler dis-

tance gives us results that are much more intuitive for capital adequacy purposes.

The von Mises metric for the general beta distortion can not be as easily

simpli�ed,

W
2 =

Z 1

0

(
u�

Z u

0

1

�( 1

; �)

t
1


�1(1� t)��1dt

)2

du: (4.63)

In selecting parameters for the beta distortion, we rely on the KL information.

Using � = 19 for the dual-power distortion would give an approximation for the

95th percentile. Using current regulatory standards, the current approach uses a 95

percent VaR, and then multiplies by three. The KL information for the dual-power

� = 19 measure is 2.00. By equating the distorted risk measures applied to a risk

with a uniform distribution, the equivalent parameter for the PH-distortion is  =

19, which is quite extreme when applied to practical examples. The KL information

for the PH-distortion with  = 19 is 15.06. The equivalent beta parameters, when

applied to a uniform risk, are � = 19. If we choose  = � =
p
19, the KL

information is 3.39, which is not that much higher than choosing  = � = 4 with

an information of 2.99. In calculating premiums, Wang suggests a PH-distortion

parameter of 2, which would have a KL information of 0.31, which is extremely low;

however the risks used in his applications are often diversi�able. At this point, we

postulate that a beta distortion with parameters  = � = 4 seems appropriate for

capital adequacy purposes. These parameters will be tested in Chapter 5.
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4.3 Tail Behaviour Under Distortions

There are many ways of describing the tail behaviour of a distribution. Often in

actuarial science, we discuss distributions with increasing mean residual lifetimes

or decreasing failure rates. In statistics and �nance, these are often referred to

as heavy-tailed distributions, or distributions with kurtosis higher than the nor-

mal distribution. In this chapter, we would like to classify these characteristics and

determine how the distortions methods a�ect these characteristics. To start, we de-

�ne the tail measures that are currently used and discuss any associations between

them. Then we apply these measures to an unknown survival distribution and com-

pare this to the distorted survival distribution under the PH-distortion, dual-power

distortion and beta distortions, as well as the CTE and VaR distortions. Then, we

use the Weibull distribution, which can be heavy-tailed or light-tailed depending on

the parameters chosen, and see how these distortions a�ect the tail. Next, we see

that there are conclusions that translate to other families of distributions. Lastly,

we consider the four two-parameter distributions and apply some of these measures

to illustrate our observations.

4.3.1 Tail Measures

There are two functions that help to classify characteristics of the tail of a distribu-

tion. The �rst is the Mean Excess Loss (MEL), also known as the Mean Residual

Lifetime (MRL) (Klugman, Panjer and Willmot, 1998):
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De�nition 4.3.1 Given S(x), the ddf of a non-negative loss random variable X,

the mean residual lifetime e(x) is de�ned as:

e(x) =

Z 1

0

S(x+ y)

S(x)
dy; x � 0: (4.64)

Equivalently,

e(x) =

Z 1

0

S(t)

S(x)
dt; as long as 0 < e(0) <1 exists. (4.65)

If the MRL is large for large values of x, then the expected loss for X � x is large,

and the distribution is heavy-tailed. The MRL is a linear transformation of the

CTE,

e(x) = E[X � xjX > x] = CTE(x)� x: (4.66)

The second function to help characterize the tail of a distribution is the failure

rate, also called the hazard rate or the force of mortality:

De�nition 4.3.2 Given S(x) the ddf of loss random variable X, the failure rate

�(x) is de�ned as:

�(x) = � d

dx
log S(x): (4.67)
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Equivalently,

1

�(x)
=

f(x)

1� F (x)
; where f(x) is the pdf of x. (4.68)

In terms of a loss distribution, for small dx, �(x)dx is the probability that the

loss is close to x, given that the loss is greater than or equal to x. If �(x) is small

for large x, the loss is likely to be larger than x and the distribution is heavy-tailed.

If a distribution has a monotone decreasing failure rate (DFR) or a mono-

tone increasing mean residual lifetime (IMRL) then the distribution is said to have

a heavy tail. If a distribution has a monotone increasing failure rate (IFR) or a

monotone decreasing mean residual lifetime (DMRL) then the distribution is said

to have a light tail. If a distribution has monotone increasing failure rate (non-

decreasing), then it has a DMRL. As well, if distribution has monotone decreasing

failure rate (non-increasing), then it has an IMRL. Thus, monotone DFR implies

IMRL and monotone IFR implies DMRL; however the reverse is not implied (Klug-

man, Panjer and Willmot, 1998).

Another connection between the failure rate and the MRL lies in their limits:

lim
x!1

e(x) = lim
x!1

1

�(x)
if the limits exist: (4.69)

It is possible for a distribution to have both an increasing and a decreasing

failure rate. The lognormal failure rate starts out at zero, increases to a maximum,

and then decreases to a limit of zero. The maximum failure rate is attained at a
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solution to

N(z) = 1 � 1p
2�(� + z)

e
1

2
z2
; where z =

log(x)� �
�

; x � 0 (4.70)

and N(:) is the Normal cdf.

It is also possible for a distribution to have either an increasing or a decreasing

failure rate, depending on the value of its parameters. The Weibull and Gamma

distributions are examples of this. As a special case, the exponential distribution

has constant failure rate, �, and is considered to have both an increasing and a

decreasing failure rate. Table 4.5 illustrates some characteristics of the failure rate

for the Pareto, Lognormal, Weibull, Gamma and Normal distributions.

Another measure of the tail is the coe�cient of kurtosis (Hogg and Craig,

1995), which is de�ned by:

K =
E[(X � �)4]

�4
(4.71)

where � is the mean and � is the standard deviation of a random variable X. The

kurtosis of the normal distribution is 3. A fatter tailed distribution would have a

larger kurtosis.

To consider how distortion functions a�ect tail behaviour, the failure rate of

a loss is compared to the distorted failure rates. To start, we de�ne the survival

function under each of the �ve distortions:
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Distribution �(0) lim
x!1

�(x) Failure Rate

Pareto (�; �)
�

�
0 DFR

Lognormal (�; �) 0 0 neither

Weibull (�; �)

0 , � > 1
�
�

, � = 1

1 , � < 1

1 , � > 1
�
�

, � = 1

0 , � < 1

IFR , � > 1

constant , � = 1

DFR , � < 1

Gamma (�; �)

0 , � > 1
1
�

, � = 1
1 , � < 1

1
�

IFR , � > 1

constant , � = 1
DFR , � < 1

Normal (�; �)
�(��

�
)

N(��

�
)

1 IFR

Table 4.5: Failure Rate Analysis for Two-Parameter Distributions

Value-at-Risk:

SV (x) = gV (S(x)) =

8><
>:

0 if x > x�

1 otherwise
(4.72)

Conditional Tail Expectation:

SC(x) = gC(S(x)) =

8><
>:

S(x)

1�� if x > x�

1 otherwise
(4.73)

Proportional Hazard:

SP (x) = gP (S(x)) = S(x)
1

 (4.74)
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Dual Power:

SD(x) = gD(S(x)) = 1� (1� S(x))� (4.75)

Beta:

SB(x) = gB(S(x)) =

Z S(x)

0

1

�( 1

; �)

t
1


�1
(1 � t)�dt (4.76)

In terms of the failure rate, �(x), the distorted failure rates are:

Value-at-Risk:

�V (x) = � d

dx
log SV (x) =

8><
>:

0 if x 6= x�

undefined otherwise

(4.77)

Conditional Tail Expectation:

�C(x) = � d

dx
log SC(x) =

8><
>:

0 if x < x�

�(x) otherwise

(4.78)

Proportional Hazard:

�P (x) = � d

dx
log SP (x) =

�(x)


(4.79)

Dual Power:

�D(x) = � d

dx
log SD(x) =

�F (x)��1f(x)

1� F (x)�
(4.80)
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Beta:

�B(x) = � d

dx
log SB(x) = � d

dx
log

 Z S(x)

0

1

�( 1

; �)

t
1


�1
(1� t)��1dt

!
(4.81)

=

1

�( 1

;�)
S(x)

1

 (1 � S(x))��1

S�(x)
�(x) (4.82)

Under the percentile-VaR distortion, there is no rate of change of the failure

rate. Under the CTE distortion, the failure rate in the tail is the same as the

original failure rate. Under the dual-power distortion, the failure rate gets smaller,

and the rate of change has the same sign in the tail; however, �D(0) = 0, and for

DFR distributions, the distorted failure rate increases to a maximum, and then

decreases to the same limit as the original failure rate. For the PH-distortion, the

failure rate gets smaller, and the rate of change has the same sign. Under the beta

distortion, the failure rate is smaller than the failure rate under the PH-distortion,

and the rate of change has the same sign in the tail; however, ��(0) = 0, and for

DFR distributions, the distorted failure rate increases to a maximum, bounded by

the PH-distorted rate, and then decreases to the same limit as the PH-distorted

failure rate. The maximum failure rate for the beta distortion failure rates depends

on the distribution of the underlying risk.

Using the PH-distortion, the failure rate is multiplied by a positive constant

1

. The derivative of the distorted failure rate maintains its same sign. Thus, a

distribution that had an IFR still has an IFR, only the failure rate is smaller and



4.3. TAIL BEHAVIOUR UNDER DISTORTIONS 118

increasing at a slower rate, creating a risk loading for an IFR distribution. For a

DFR distribution, even though the derivative of the distorted failure rate decreases,

it remains negative, and the failure rate is proportionately smaller, creating a risk

loading for a DFR distribution.

Proposition 4.3.1 For any risk X, with ddf S(x) and failure rate �(x), if X has

an increasing failure rate (IFR) in the tail, or
d
dx
�(x) > 0 for some x, then there

exists some � such that for any x > �;
d
dx
��(x) > 0.

Corollary 4.3.1 If X has a decreasing failure rate in the tail, or
d
dx
�(x) < 0 for

some x, then there exists some � such that for any x > �;
d
dx
��(x) < 0.

This indicates that the sign of the rate of change of the failure rate is preserved in

the tail, under coherent beta distortions.

Proof: For the PH-distortion, the risk adjusted failure rate is �P (x) =
�(x)


. Thus,

the PH-distortion maintains the sign of the rate of change of the failure rate

of the original risk. Based on this, we show that the beta distorted failure

rate approaches the PH-distortion failure rate with the same slope as x!1.

By de�nition

��(x) = � d

dx
log

Z S(x)

0

1

�( 1

; �)

t
1


�1(1� t)��1dt (4.83)

= � d

dx
log S�(x) (4.84)
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For smooth, continuous S(x) with smooth continuous derivatives

lim
x!1

d

dx
��(x) = lim

x!1

d

dx
� 1

S�(x)

d

dx
S�(x) (4.85)

= lim
x!1

d

dx
� 1

S�(x)

1

�( 1

; �)

S(x)
1


�1(1� S(x))��1(�f(x))

(4.86)

=
d

dx
lim
x!1

1

�( 1

; �)

S(x)
1


�1(1 � S(x))��1f(x)

S�(x)
! 0

0
; (4.87)

by l'Hôpital,

=
d

dx
lim
x!1

(S(x)
1


�1(1 � S(x))��1f(x))�1(

(k � 1)S(x)
1


�1(1� S(x))��2f(x)2 (4.88)

+(1� S(x))��1
�
f
0(x)S(x)

1


�1 � (

1


� 1)S(x)

1


�2
f(x)2

�)

= � d

dx
lim
x!1

(�� 1)f(x)

1� S(x)
�
( 1

� 1)f(x)

S(x)
+
f
0(x)

f(x)
(4.89)

=
d

dx
lim
x!1

(
1


� 1)�(x) +

f
0(x)

f(x)
(4.90)

=
d

dx
lim
x!1

�(x)


= lim

x!1

d

dx

�(x)


(4.91)

= lim
x!1

d

dx
�P (x) (4.92)
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This also implies that

lim
x!1

[��(x)� �P (x)] = 0: (4.93)

Thus, the beta distorted failure rate approaches the same failure rate as the

PH-distortion with the same slope in the tail, and thus maintains the sign of

the rate of change of the failure rate in the tail. 2

Since lim
x!1

�(x) = lim
x!1

1
e(x)

, we also have that

lim
x!1

e�(x) = lim
x!1

eP (x): (4.94)

In terms of the mean excess loss,

e(x) =

Z 1

x

S(t)

S(x)
dt; (4.95)

the distorted MELs are:

Value-at-Risk:

eV (x) =

Z 1

x

SV (t)

SV (x)
dt =

8><
>:

x� � x if x < x�

0 otherwise
(4.96)

Conditional Tail Expectation:

eC(x) =

Z 1

x

SC(t)

SC(x)
dt =

8><
>:

e(x) if x > x�

x� � x+ e(x�) otherwise
(4.97)
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Proportional Hazard:

eP (x) =

Z 1

x

SP (t)

SP (x)
dt =

Z 1

x

�
S(t)

S(x)

� 1



dt (4.98)

Dual Power:

eD(x) =

Z 1

x

SD(t)

SD(x)
dt =

Z 1

x

1 � (1� S(t))�

1 � (1� S(x))�
dt (4.99)

Beta:

eB(x) =

Z 1

x

SB(t)

SB(x)
dt =

Z 1

x

R SB(t)
0

1

�( 1

;�
)t

1


�1(1 � t)��1dtR SB(x)

0
1

�( 1

;�
)t

1


�1(1� t)��1dt

dt (4.100)

If the failure rate is monotone, then the direction of the rate of change in

the MRL is already known. Most of the distributions we consider have a monotone

increasing or a monotone decreasing failure rate, dependent on the parameters, and

since it is much more di�cult to simplify the MRL under each of these transfor-

mations, we predominantly use results pertaining to the failure rate. However, if

�(x) and e(x) are known, for some loss distribution X, then the rate of change of

the MRL is equal to,

d

dx
e(x) = �(x)e(x)� 1: (4.101)
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To compare the tails of two distributions, a simple comparison can be done by

considering the limit of the ratio of their ddfs.

If lim
t!1

SX(t)

SY (t)
!

8>>>><
>>>>:

0 =) X has a heavier tail

constant =) X;Y have proportionate tails

1 =) Y has a heavier tail

(4.102)

4.3.2 Weibull Tails

The Weibull distribution has pdf:

f(x) =
�
�
x
�

��
e
�(x� )

�

x
(4.103)

and decumulative distribution function:

S(x) = e
�(x� )

�

: (4.104)

The failure rate for the Weibull distribution is:

�(x) =
�
x

�

��
(4.105)

and so,

d

dx
�(x) =

1

��
� (� � 1)x��2: (4.106)
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This implies that the Weibull distribution has an IFR for � � 1, and a DFR for

� � 1. This also implies that the Weibull distribution has a DMRL for � � 1, and an

IMRL for � � 1. The density and failure rate functions of two Weibull distributions

are illustrated in Figure 4.4. One distribution has light tails, � = 10 and kurtosis

= 3:5701, and the other has heavy tails � = 0:5 and kurtosis = 87:72. Figure 4.5

illustrates how the distortion functions distort the failure rates for the light-tailed

and heavy-tailed Weibull distributions. In the light-tailed example, the original

distribution has an IFR, and all of the distorted failure rates are also increasing.

Comparing this with the heavy-tailed distribution, the original distribution has a

DFR. Under the PH-distortion, the distribution is still DFR; however for the dual

power and the beta distortions, the failure rate �rst increases and then decreases.

The dual-power distorted failure rate approaches the original failure rate in the tail,

and the beta distorted failure rate approaches the PH-distorted failure rate.

The Weibull distribution is a two-parameter distribution. As such, we can

compare it to the four two-parameter distributions used in Chapter 2. If we choose

� = 0:802412 and � = 2:653522, the Weibull distribution has a mean of 3 and a

95th percentile of 10.415.

Table 4.6 compares some of the characteristics of each of these distributions.

The Pareto, Weibull and Gamma have monotone decreasing failure rates, and thus

also have IMRLs. The lognormal distribution has an increasing then a decreasing

failure rate, and the normal distribution has a monotone increasing failure rate.

The distorted failure rates for the Pareto and lognormal distributions are
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Figure 4.4: Weibull Density and Failure Rate Functions

illustrated in Figure 4.6 and for the normal and gamma distributions in Figure 4.7.

If � = 0:5 and � = 1:5, the Weibull distribution has a mean of 3 and a variance

of 45 and can be compared to the four two-parameter distributions with equated

mean and variance. Table 4.7 compares some of the characteristics of each of these

distributions.

From Table 4.7, we see that the normal distribution has a kurtosis independent

of its parameters. The kurtosis for the Pareto distribution does not exist, as the
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Distribution Kurtosis �(0) lim
x!1

�(x) FR

Pareto � = 2:5 � = 4:5 1 0.556 0 DFR

Lognormal � = 0:403 � = 1:180 437.6 0 0 neither

Weibull � = 0:803 � = 2:654 15.61 1 0 DFR
Gamma � = 0:663 � = 4:527 12.05 1 0.221 DFR

Normal � = 3 � = 4:508 3.0 0.095 1 IFR

Table 4.6: Tail Statistics for Distributions with Mean=3, x95 = 10:415

Distribution Kurtosis �(0) lim
x!1

�(x) FR

Pareto � = 2:5 � = 4:5 1 0.556 0 DFR

Lognormal � = 0:203 � = 1:339 1834. 0 0 neither

Weibull � = 0:5 � = 1:5 87.72 1 0 DFR

Gamma � = 0:2 � = 15 33 1 0.067 DFR
Normal � = 3 � = 6:708 3.0 0.080 1 IFR

Table 4.7: Tail Statistics for Distributions with Mean= 3, and Variance= 45
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Figure 4.5: Distorted Failure Rates for Heavy and Light-Tailed Weibull Distribu-

tions

parameter � is less than 4. The other three distributions have signi�cantly larger

kurtosis than the distributions with equated 95th percentile, and the limit of the

failure rate for the gamma distribution is signi�cantly smaller. The direction of

the failure rates for the �ve distributions is unchanged. The Pareto distribution is

identical to the one used in the previous illustration, and the distorted failure rates

for the Pareto can be seen in Figure 4.6. The distorted failure rates for the Weibull
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and lognormal distributions are illustrated in Figure 4.8 and for the normal and

gamma distributions in Figure 4.9.

Although the beta distortion transforms a DFR distribution into a distribu-

tion with increasing then decreasing failure rates, the tail of the distorted distribu-

tion maintains the decreasing failure rate and is still bounded by the failure rate of

the PH-distortion.

All the graphical illustrations in this section have used the parameters � =

 = 4. Choosing larger parameters would decrease the failure rate further. If

� <  the failure rates are closer to the PH-distortion failure rate curve, and the

maximum failure rate is increased. When � >  the failure rates are even smaller,

the maximum failure rate increases, and the failure rate in the tail still approaches

the PH-distorted failure rates.
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Figure 4.6: Distorted Failure Rates for a Pareto and Lognormal Distributions with

x95 = 10:415
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Figure 4.8: Distorted Failure Rates for a Pareto and Lognormal Distributions with
Variance = 45
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Figure 4.9: Distorted Failure Rates for a Gamma and Normal Distributions with
Variance = 45



Chapter 5

Illustrations

In this chapter, the ideas discussed in Chapters 3 and 4 are applied to problems

of topical interest that can contribute to our understanding of these risk measures

and their applications. In the �rst illustration a capital requirement is determined

for a maturity guarantee. Maturity guarantees often arise in segregated funds as

an added option that limits the investor's risk. The second illustration calculates

the capital requirement for an annuity rate guarantee, which is often applied in

the UK to retirement bene�ts. An annuity rate guarantee is an option to transfer

a lump sum bene�t into an annuity bene�t at a guaranteed rate. After analyzing

these portfolios separately, we combine them using di�erent weighting schemes, and

discuss two simple methods for allocating risk capital requirements between the two

portfolios. Lastly, we revisit the maturity guarantee and consider the implications

hedging has on the capital requirement for the maturity guarantee.

To accurately value any of these portfolios, a model must be chosen for the

interest rate process, the mortality process, lapses, ination, fund accumulation,

132
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etc. In order to keep these illustrations simple and transparent, we have chosen to

model the fund accumulation process using the Wilkie model and the lognormal

distribution. Using the Wilkie model we also consider modeling the long-term

interest rate. Some fairly strong assumptions are made about mortality and lapse.

In practice, provisions must be made for risk factors not taken into account here.

These illustrations are kept fairly simple as they are meant only to demonstrate

the capital requirement risk measures considered in the previous chapters.

5.1 The Wilkie Model

In order to model interest rates and stock fund accumulation we have chosen to

use the Wilkie stochastic asset model (Wilkie, 1995). This model consists of four

discrete annual time series which provide annual values for the retail prices index

(a function of the instantaneous rate of ination), the index of gross equity div-

idends, the current running gross dividend yield, and the gross yield on consols

(equivalent to the long-term interest rates). This model integrates interest rates

with accumulation rates for equities. The most recent full Wilkie model now in-

cludes simulations for wage ination, short term interest rates, exchange rates and

property accumulation. This model has met with a great deal of support and is of-

ten used for applications in actuarial science. However, the Wilkie model has been

in the public domain since 1986 and has been subject to scrutiny. Some criticism

has been expressed over its appropriateness with respect to short-term forecasting

and the subjective decisions Wilkie made in developing the model (Huber, 1997).

For our purposes, we feel the Wilkie model is su�cient. We are not exploring the
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adequacy of this speci�c model, but using this methodology for our illustrations.

As well, our illustrations involve assets with a maturity of 10 years or more, so the

short-term forecasting problems are not as relevant. The purpose of these illustra-

tions is to apply our risk measures to topical problems, to determine relationships

between portfolios, and to discuss methods for allocating capital.

The time series model was �tted to Canadian data from 1923-1993 (Wilkie,

1995). The model is used to simulate time series using the following equations:

1. Retail Price Index, Q(t)

log(
Q(t)

Q(t� 1)
) = 0:034 + 0:64(log(

Q(t� 1)

Q(t� 2)
)� 0:034) + 0:032Z1(t)

(5.1)

where I(t) = log( Q(t)

Q(t�1)) is the instantaneous rate of ination.

The instantaneous rate of ination for year t, I(t) is an autore-

gressive process and is calculated as the mean rate, 0.034, plus a

fraction, 0.64, of previous year's deviation from the mean plus a

random Normal(0; 0:0322) term, denoted by 0:032Z1(t).

2. An index of gross equity dividends, D(t)

log(
D(t)

D(t� 1)
) = 0:19DM(t) + 0:81 log(

Q(t)

Q(t� 1)
) + 0:001 (5.2)

� 0:0209Z2(t� 1)) + 0:0406Z3(t� 1) + 0:07Z3(t))
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where, DM(t) = 0:26 log( Q(t)

Q(t�1)) + 0:74DM(t � 1);

and Z3(t); Z3(t�1) and DM(t�1) are independent standard normal random
variables.

The change in the logarithm of the dividend index is equal to a

function of the current and past instantaneous rates of ination plus

the mean real dividend growth, 0:001, plus an inuence, �0:0209,
from last years random e�ect on dividend yield plus and inuence,

0:0406, from this years random e�ect on dividend yield plus a ran-

dom Normal(0; 0:072) term, denoted by 0:07Z3(t).

3. Gross dividend Yield, Y (t)

log(Y (t)) = 1:17 log(
Q(t)

Q(t� 1)
) + log(0:0375) + Y N(t) (5.3)

where, Y N(t) = 0:7Y N(t� 1) + 0:19Z2(t);

and Z2(t) is an independent standard normal random variable.

The logarithm of the dividend yield is equal to its mean value

(log(0:0375)) plus an adjustment (1.17) from last year's ination,

plus an inuence (0.7) from all the previous random e�ects on

dividend yield plus a random Normal(0; 0:192) term, denoted by

0:19Z2(t).

From the dividend index and the dividend yield, we can obtain a
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price index of ordinary shares as,

P (t) =
D(t)

Y (t)
(5.4)

and an accumulation factor for the value of ordinary shares,

J(t� 1) =
P (t) +D(t)

P (t� 1)
: (5.5)

4. Gross yield on Consols (Long-term Interest Rates), C(t)

C(t) = CM(t) + 0:037exp(CN(t)) (5.6)

CM(t) = 0:04 log(
Q(t)

Q(t� 1)
) + (0:96)CM(t� 1) (5.7)

CN(t) = 0:95CN(t � 1) + 0:019Z2(t) + 0:185Z4(t); (5.8)

where Z4(t) is an independent standard normal random variable.

The long-term interest rate is calculated in two parts, the �rst is

an allowance for expected future ination (CM(t)), and the second

is a real yield, where the logarithm of the real yield is equal to

its mean (log 0:037) plus a fraction (0.95) of its past random inu-

ences, plus an inuence (0.019) from the current random e�ect from

dividend yield plus a random Normal(0; 0:1852) term, denoted by

0:185Z4(t).
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The initial values required for these calculations are:

CM(0) = DM(0) = I(0) = 0:034 (5.9)

Y (0) = 0:0375e(0:03978) (5.10)

Q(0) = D(0) = J(0) = 1:0 (5.11)

CN(0) = Y N(0) = 0:0 (5.12)

5.2 Maturity Guarantees for Segregated Funds

In a segregated fund, premiums are invested for the insured by the insurer in the

assets of the fund. A management charge is deducted from the fund each year,

and bene�ts are paid out on death or on the maturity date. The death bene�t

and the maturity bene�t vary depending on the success of the fund. It is possible

that these bene�ts will be less than the sum of the premiums invested. Adding a

maturity guarantee onto the segregated fund guarantees a minimum bene�t for the

insured, at an additional cost to the insurer. This cost is often o�set by a higher

management charge. Our objective is to use risk measures to provide guidance

on the amount of capital required to support this segregated fund business. In

order to determine the capital needed to cover a maturity guarantee, we consider

four di�erent maturity guarantees on single premium 10-year policies based on the

same segregated fund. The �rst guarantees 75% of the premium with a 1% percent

management charge, the second guarantees 75% with a 2% management charge.

The third guarantees 100% of the premium with a 1% percent management charge,
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and the fourth guarantees 100% with a 2% management charge. Hardy (1998) and

Boyle and Hardy (1998) considered this problem using percentile-VaR to calculate

the reserve for the maturity guarantee.

The segregated fund policies are assumed to be single premium policies, pur-

chased at the same time and held to maturity, so that there are no intermediate

entrants, lapses or withdrawals. We also assume that there are no reinvestments at

maturity, so that the full cost of the guarantee is felt at the end of the tenth year.

The capital required is determined at this date and we discount using a risk free

instantaneous interest rate which determines the amount of capital invested today

in risk free assets so that it will accumulate to the amount of the required capital

at the end of 10 years. We also make the assumption that there is no mortality

risk. Mortality risk is partially diversi�able. We assume that any undiversi�able

mortality risk is funded by a portion of the management charge.

Intuitively, the 75% guarantee with a 1% management charge is the least likely

to exercise the maturity guarantee. If the segregated fund earns a zero return, and

the 1% management charge is deducted each year, the resulting fund is still more

than 90% of the original premium and the guarantee is not needed. Conversely, the

100% guarantee with a 2% management charge is the most likely to exercise the

maturity guarantee as the fund must earn more than 2% each year on average to

maintain its initial value.

Two models were used to determine the fund accumulation factors. The

�rst model for the accumulation factors uses the Wilkie investment model with

parameters �tted from Canadian data from Wilkie (1995), described in the previous
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section. Using the Wilkie model, the fund value at maturity was simulated 150,000

times. For each simulation if the simulated accumulated fund was less than the

original premium, the di�erence between the original premium and the accumulated

fund is discounted using a constant instantaneous rate risk free of interest of 6% to

the beginning of the 10 year period, otherwise the cost of the maturity guarantee is

zero. Since our risk measures are scalar multiplicative (A3) discounting the cost of

the maturity guarantee before applying the risk measure is equivalent to applying

the risk measure and then discounting. The censored loss random variable for the

maturity guarantee is:

L
Wilkie
MG = max

"
0; g � (1�m)n

nY
t=1

J(t)

#
e
�0:06n

; (5.13)

where m is the yearly management charge and n = 10. Using 150,000 simulations,

an empirical distribution function is obtained. The beta risk measure was applied

to this empirical distribution function to determine the capital requirements for the

risk.

The second method assumes a lognormal distribution for a one-year accu-

mulation function (1 + it), with parameters consistent with the Wilkie model

(� = 0:081; � = 0:17). We also assume that the accumulation factors are inde-

pendent for each year. The accumulated value of the fund, less any management

charges m, has a lognormal distribution, so that (1 + i)n(1 � m)n is distributed

lognormal(n(�+ log(1 �m)); n�). The discounted loss random variable is

L
Logn
MG = [g � (1 + i)n(1 �m)n]+e�n(�) (5.14)
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where [x]+ = max(x; 0) and � is the risk free instantaneous interest rate. We

calculate the expected cost and use numerical integration to determine the capital

requirements for the risk, based on the beta risk measure. Figure 5.1 compares the

maturity guarantee loss distributions under the Wilkie and lognormal assumptions.

The similarity of these curves suggest that the lognormal closely approximates the

Wilkie simulation model for fund accumulation.

To illustrate this problem more carefully, consider a segregated fund for a

10-year single premium endowment policy with a 75% maturity guarantee. At the

end of the 10 years, the policy pays the market value of the segregated fund, as

long as it is worth at least 75% of the value of the insured's premiums. The loss

distribution for this guarantee is bounded, the maximum payout (loss) at maturity

in this case is 75% of the invested premiums, the minimum payout is 0. If the fund

value at maturity is only 65% of the premiums, the guarantee will be exercised and

the cost of the guarantee is 10% (75%-65%) of the invested premium. If the fund

value is in excess of 75% of invested premiums, the investor gets the full fund value

and the guarantee is not exercised.

In comparison, a 100% maturity guarantee on the same segregated fund has

a maximum payout at maturity of 100% of the invested premium, and there is

a greater probability of having a payout under this guarantee. It is obvious to

see that the 100% maturity guarantee carries a higher risk for the insurer than

the 75% guarantee. Conversely, the management charge on the segregated fund is

deducted yearly, and reduces the accumulated value of the fund. If the fund has

a 2% management charge, the average yearly accumulation rate on the fund must
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be more than 2.04% in order for the fund to maintain its initial investment. The

lower the management charge, the more likely the fund is to maintain its initial

investment, and the fund will have a lower probability of needing a payout under

the maturity guarantee. Thus the 100% maturity guarantee with a 2% management

charge is the most risky of the four combinations, while the 75% maturity guarantee

with a 1% management charge is the least risky.

To compare the other two maturity guarantees, we consider the accumulated

cost of the management charge and compare this with the guarantees. Assuming

no fund accumulations, a 2% management charge for each of the 10 years reduces

$1 of initial investment to $1(1�0:02)10 = $0:817. Since 81.7% is greater than 75%,

for a 75% maturity guarantee, the average accumulation rate can be less than zero

and no payout is required from the guarantee. A 1% management charge reduces

$1 of initial investment to $1(1 � 0:01)10 = $0:904. Since 90.4% is less than 100%,

for a 100% maturity guarantee, the average accumulation rate must be greater than

1 .01% for the accumulated fund to be greater than the initial investment. Thus

a 100% maturity guarantee with a 1% management charge is more risky than the

75% maturity guarantee with a 2% management charge. If the guarantee rates were

85% and 90% instead of 75% and 100% respectively, it would be more di�cult to

compare these guarantees.

Using the Wilkie investment model to simulate interest rates over the 10 year

duration of the segregated fund, and a 6% risk free discount rate, the expected

value of the initial cost of the 100% maturity guarantee with a 2% management

charge is $1.44. The discounted value of the maximum loss is $54.88. For the 75%



5.2. MATURITY GUARANTEES FOR SEGREGATED FUNDS 142

100% Maturity Guarantee 75% Maturity Guarantee

Mgmt. Charge: 2% 1% 2% 1%

Mean 1.437 0.938 0.295 0.175

Std. Dev. 4.707 3.769 1.784 1.348
Maximum 54.88 54.88 41.16 41.16
Kurtosis 19.13 29.18 67.43 110.8

DP 19 15.29 11.70 4.559 2.915

PH 19 34.52 32.98 22.46 21.17
PH 4 14.82 13.02 7.496 6.405

Beta(1
2
; 2) 9.143 7.299 3.452 2.613

Beta (1
4
;4) 21.94 19.45 11.36 9.75

Beta( 1p
19
;
p
19) 23.50 21.02 12.44 10.78

VaR 95% 12.27 7.713 0.000 0.000

VaR 99% 24.38 21.12 10.66 7.402

CTE 90% 13.72 9.373 2.953 1.752
CTE 95% 19.52 15.75 5.906 3.503

Table 5.1: $100, 10-Year, Maturity Guarantee Capital Requirements, using the

Wilkie Model

maturity guarantee with a 1% management charge the expected value of the initial

cost is $0.18 and the discounted value of the maximum loss is $41.16. Table 5.1

compares the risk measures discussed in the previous chapters, applied to all four

combinations of guarantees and management charges. Table 5.1 illustrates two of

the problems with VaR. Based on a 95% VaR, the 75% maturity guarantee does

not seem to have any risk even though the mean loss is greater than zero (negative

risk loading). As well, VaR 95% does not di�erentiate between the segregated

fund with a 1% management charge and the fund with a 2% management charge

(superadditivity). Even though the 75% maturity guarantee is less risky than the
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100% guarantee, the 75% guarantee has a much higher kurtosis. The kurtosis of

each maturity guarantee is more easily compared when the mean of each portfolio

is equated. However, for censored distributions, the kurtosis of the distribution

does not directly relate to the thickness of the one-sided tail.
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Figure 5.1: Density Functions for the Discounted Loss of a $1 Maturity Guarantee
(2% Management Charge)

As seen in the previous chapter, there are many combinations of beta parame-

ters that can be used. Figure 5.2 shows the e�ect of varying each parameter for the

100% maturity guarantee with a 2% management charge, whereas Figure 5.3 shows

the same e�ect for the 75% maturity guarantee with a 1% management charge.
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Figure 5.2: Required Capital using the Beta Measures for 100% Guarantees with
2% Management Charge, Assuming Wilkie Investment Model

From these graphs, it is evident that the risk measure is more sensitive to changes

in the PH-distortion parameter . However, the di�erence in risk between the 75%

maturity guarantee and the 100% maturity guarantee is very slight, and since these

liabilities are similar in nature, we consider the 100% maturity guarantee with a

2% management charge as our base maturity guarantee for the rest of this thesis.

The density of the Wilkie simulated maturity guarantee loss distribution,

censored at zero, is shown in Figure 5.1. The maturity guarantee loss distributions

are far from being normally distributed. Losses for the 100% maturity guarantees
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Figure 5.3: Required Capital using the Beta Measures for 75% Guarantees with 1%
Management Charge, Assuming Wilkie Investment Model

occur with roughly 10% probability. For the 75% guarantee, losses occur with less

than a 5% probability. Losses, in all cases, have an upper bound, but using the

Wilkie model or any other reasonable model, it is practically impossible to reach

that upper bound. To compare our simulated solutions with a parametric model,

we assume that the underlying annual returns are independent and lognormal with

parameters that are consistent with the returns from the Wilkie model, � = 0:081

and � = 0:17. Since there is a closed form solution for the beta risk measure,

numerical integration instead of simulation is used to calculate the risk measure,
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and the results are shown in Table 5.2, for 100% and 75% maturity guarantees.

Again we see the same problems with 95% VaR, however all the other risk

measures rank the risks consistently. In all cases Beta(1
4
; 4) is larger than 95% VaR

and CTE 95%, and is larger than 99% VaR for the 75% maturity guarantee. Since

the beta risk measure is coherent, these results lend support to the Beta(1
4
; 4) risk

measure.

100% Maturity Guarantee 75% Maturity Guarantee

Mgmt. Charge: 2% 1% 2% 1%

Mean 1.538(5.037) 1.052 0.365 0.231
Maximum 54.88 54.88 41.16 41.16

DP 19 16.42 12.95 5.502 3.745
PH 19 38.59 37.49 26.56 25.69

PH 4 15.83 14.14 8.465 7.411
Beta(1

2
; 2) 9.782 8.010 4.002 3.137

Beta(1
4
;4) 23.43 21.10 12.77 11.22

Beta( 1p
19
;

p
19) 25.10 22.79 14.02 12.44

VaR 95% 13.25 8.800 0.000 0.000
VaR 99% 26.02 22.94 12.30 9.215

CTE 90% 14.76 11.25 3.652 2.30
CTE 95% 21.02 17.40 7.305 4.61

Table 5.2: $100, 10-Year, Maturity Guarantee Capital Requirements, using the
Lognormal Model

Figure 5.1 compares the densities of the maturity guarantee loss distribution

using the Wilkie and the lognormal models from 5.1 and 5.2.

The upper bound on the loss for the maturity guarantee, and the 5-10%

probability that a loss occurs illustrates how the beta risk measure determine the
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capital requirement for one type of portfolio. Thus we would like to compare this

illustration with another portfolio that has a larger probability of a loss and no

bound on the loss.

5.3 Annuity Rate Guarantees

Annuity rate guarantees were popular when interest rates were high, and thus an-

nuity rates were low. An annuity rate guarantee allows the policyholder to convert

their insurance policy or endowment bene�t into a life annuity at a prespeci�ed rate

and a prespeci�ed time. For instance, if a policy holder had a 10-year endowment

insurance, with an annuity rate guarantee of 9 at maturity; then for every 9 dollars

of endowment insurance that matures at the end of the 10th year, the policyholder

has the option to purchase a 1 dollar per year life annuity or
1

s
12j

i12
12

per month

paid at the end of each month for as long as the policy holder lives. Again, if the

insured carried whole life insurance with an option to convert at the end of the 15th

year at an annuity rate of 8, then the accumulated value of the insurance at the

end of the 15th year, could be used to purchase a life annuity at a rate of 8 units

life insurance to 1 unit life annuity.

Unfortunately for the insurers, this product was used extensively in the UK

as a \free" option when interest rates were high. Since then, interest rates have

declined, life expectancy has increased, and the cost of this option is much greater

than originally anticipated, and the valuation of these liabilities has become very

topical in the UK. The value of an annuity rate guarantee depends on the accu-

mulated value of the insurance fund or the amount of the bene�t at the time of



5.3. ANNUITY RATE GUARANTEES 148

conversion, the interest rate at the time of conversion and beyond, as well as the

mortality rate of the cohorts purchasing this insurance. This guarantee often was

attached to retirement bene�ts, whereby a lump sum retirement bene�t could be

transformed into a life annuity, where the age at conversion was approximately 65

and life expectancy at age 65 was roughly 15 years.

In this illustration we assume that the annuity rate guarantee is added to a 10-

year endowment insurance with a $1 single premium. The Wilkie investment model

used for maturity guarantees is used to simulate the insurance fund accumulation

rate, as well as the long-term interest rate at the end of the 10 years. This interest

rate is used to determine the present value of the annuity at conversion in 10 years,

which is then discounted 10 years at an instantaneous rate of 6%. In practice, each

insured could be from a di�erent cohort with di�erent expected lifetimes; however,

we have simpli�ed this illustration by assuming that the life insured will live exactly

15 years after conversion instead of having a life expectancy of 15 years. Thus, a

15-year annuity certain is used to determine the present value of the converted

annuity.

In calculating the risk of an annuity rate guarantee, the rate of the guarantee is

determined at the inception date. At the conversion date the annuity rate guarantee

will be exercised if an annuity for the bene�ciary costs more than the guarantee rate.

Thus, the lower the guarantee rate, the higher the expected cost of the guarantee.

As well, the size of a loss is proportional to the size of the endowment fund. An

endowment fund with a 1% management charge will accumulate to more than a

fund with a 2% management charge. Thus, the risk associated with the annuity
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rate guarantee decreases as the management charge increases. The loss random

variable for the annuity rate guarantee is

L
Wilkie
AG = (1�m)n

nY
t=1

J(t)max
h
0; a �180j i12

12

�Ag
i
e
�0:06n

; (5.15)

where Ag is the guaranteed annuity rate, and i12
12

= (1 + C(n))
1

12 � 1.

In order to identify the signi�cance of the risk pertaining to the fund accu-

mulation and the risk pertaining to the interest rate at the end of 10 years, this

same annuity rate guarantee is simulated using the Wilkie accumulation factors,

but using an assumed year 10 interest rate. This model is referred to as the Partial

Wilkie model. The long-term interest rate chosen, C(n) = 6.01%, gives the same

expected cost for the guarantee as the long-term interest rate from the complete

Wilkie investment simulation. Using this �xed rate, the present value of a 15-year

annuity certain is 9.705 and the loss random variable for the Partial Wilkie model

is

L
Partial
AG = (1 �m)n

nY
t=1

J(t)max [0; 9:705 �Ag] e�0:06n: (5.16)

Figure 5.4 compares the loss density for the annuity rate guarantee using the Partial

Wilkie model (with an assumed annuity present value of 9.705) with the loss density

for the annuity rate guarantee using the simulated annuity present values from the

Wilkie model.

Comparing the Wilkie investment model assumptions with the Partial Wilkie

model, the di�erences in the densities relate to the tenth year long-term interest
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Figure 5.4: Density Functions for the Discounted Loss of an Annuity Rate Guar-
antee

rate. In practice, an assumed rate may be chosen to maintain the value of a speci�c

risk measure other than the mean, in order to be more conservative.

The loss distribution using the complete Wilkie model is heavier tailed than

Partial Wilkie with an assumed tenth year interest rate (see Tables 5.3 and 5.4).

There is approximately half of the variability in the model when the tenth year

interest rate is assumed. Even though the assumed interest rate guarantees a loss,

the variability only relates to the accumulated size of the fund.

Using this same 10th year interest rate, we consider this problem using the
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2% Mgmt Charge 1% Mgmt Charge

Mean 0.749 0.829
Std. Dev. 0.806 0.892

Kurtosis 7.292 7.292

DP 19 2.688 2.975

PH 19 7.786 8.618
PH 4 3.005 3.326
Beta(1

2
; 2) 2.053 2.272

Beta(1
4
;4) 4.166 4.611

Beta( 1p
19
;
p
19) 4.475 4.953

VaR 95% 2.294 2.539

VaR 99% 3.413 3.778

CTE 90% 2.513 2.781

CTE 95% 3.001 3.322

Table 5.3: Annuity Rate Guarantee Capital Requirements, using the complete
Wilkie Model

lognormal assumption for the accumulation rate. Figure 5.4 compares the density of

the annuity rate guarantee using the lognormal assumption and the same 10th year

interest rate of 6.01%, with the Wilkie and Partial Wilkie models. The lognormal

assumption gives results between the full Wilkie and the Partial Wilkie model. For

the annuity rate guarantee, the lognormal model capital requirements are more

sensitive to changes in  than the Wilkie and Partial Wilkie models. This was not

the case when comparing the requirements for the maturity guarantee.

Comparing the annuity rate guarantee to the maturity guarantee based on

kurtosis, the loss distribution for the maturity guarantee seems to be much heavier

tailed. However, using the beta distortion, the heavier tailed the distribution,

the more sensitive the risk measure is to the �rst beta parameter, . Using the
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2% Mgmt Charge 1% Mgmt Charge

Mean 0.749 0.829
Std. Dev. 0.387 0.429

Kurtosis 9.598 9.598

DP 19 1.691 1.872

PH 19 4.892 5.415
PH 4 1.966 2.176
Beta(1

2
; 2) 1.548 1.548

Beta(1
4
;4) 2.594 2.871

Beta( 1p
19
;
p
19) 2.780 3.077

VaR 95% 1.479 1.637

VaR 99% 2.063 2.283

CTE 90% 1.597 1.768

CTE 95% 1.850 2.048

Table 5.4: Annuity Rate Guarantee Capital Requirements, using the Partial Wilkie
Model (assumed 10th year interest rate)

lognormal model for the maturity guarantee, the PH-distortion with  = 19 gives

values 2 to 3 times the values given by the PH-distortion with  = 4. Whereas,

for the annuity rate guarantee with the lognormal assumption, the PH-distortion

with  = 19 gives values 7 to 8 times the values given by the PH-distortion with

 = 4. Under the Wilkie and Partial Wilkie models, the PH-distortion with  = 19

are only 2 to 3 times the values given by the PH-distortion with  = 4, for both

the annuity rate and maturity guarantees. Thus the lognormal assumption for the

accumulation rates, creates a heavy-tailed loss distribution for the annuity rate

guarantee which is not identi�ed by the kurtosis. Thus the kurtosis may not be a

reliable indicator of heavy-tails for non-symmetric censored random variables.
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2% Mgmt Charge 1% Mgmt Charge

Mean 0.822 0.909
Std. Dev. 0.480 0.526

Kurtosis 10.57 9.930

DP 19 2.000 2.214

PH 19 18.87 20.88
PH 4 2.515 2.784
Beta(1

2
; 2) 1.633 1.807

Beta(1
4
;4) 3.392 3.754

Beta( 1p
19
;
p
19) 3.748 4.149

VaR 95% 1.722 1.907

VaR 99% 2.484 2.749

CTE 90% 1.879 2.079

CTE 95% 2.204 2.441

Table 5.5: Annuity Rate Guarantee Capital Requirements, using the Lognormal
Model

5.4 Combining Portfolios

When combining portfolios or subsidiaries, and calculating required capital for the

combined portfolio, one of the main problems is to determine how much of the

required capital should be held by each portfolio. The allocation of capital re-

quirements based on simple subjective methods can lead to a lot of controversy.

However, a more accurate division of capital requirements can lead to onerous cal-

culations. Thus we discuss two fairly simple methods of capital allocation; the �rst

is marginal allocation and the second is a beta weighted allocation.

Marginal Capital Allocation: For measuring the risk of a �nancial conglomer-

ate, where there is a large parent corporation and a number of small sub-
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sidiaries, one method to determine the allocation of the capital requirement

is to use marginal allocation. First the capital requirement is determined for

the parent corporation alone, then one subsidiary is added at a time, possibly

in ascending order in terms of size of their portfolios, and the capital require-

ment is recalculated for the combined portfolio. The capital requirement for

the subsidiary is the increase in the capital requirement when the subsidiary

is added. This method is repeated for each successive subsidiary.

To illustrate, let X be the risk portfolio for the parent corporation, and let

Y and Z be the risk portfolios for two subsidiaries. If �(:) is the capital re-

quirement risk measure, then assuming �(Y ) > �(Z), the capital requirement

for the parent corporation is �(X), the capital requirement for the subsidiary

with portfolio Y is �(X + Y ) � �(X), and the capital requirement for the

subsidiary with portfolio Z is �(X + Y + Z)� �(X + Y ).

This method is obviously order dependent and puts heavier capital require-

ments on the risks in the parent company and the subsidiaries that are added

�rst. The sum of all the capital requirements add to the combined require-

ment �(X + Y + Z).

Weighted Capital Allocation: The second method values each portfolio indi-

vidually assuming some capital requirement measure �(:), and also deter-

mines the capital requirement for the total combined portfolio. Then the

total capital requirement is divided up based on the weighting of their indi-

vidual measures.
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To illustrate using risk portfolios X1, X2 and X3, the combined portfolio has

capital requirement �(X1 +X2 +X3). The individual portfolio risk measures

are �(X1), �(X2) and �(X3) respectively, and the capital requirement for

portfolio Xi is

�(X1 +X2 +X3)
�(Xi)

�(X1) + �(X2) + �(X3)
(5.17)

where the sum of all the capital requirements adds to the combined require-

ment of �(X1 +X2 +X3).

To illustrate the two methods of allocating capital requirements among sub-

portfolios, we combine the two portfolios used in the previous section. A maturity

guarantee is combined with an annuity rate guarantee, where the accumulation of

the underlying asset is based upon the same lognormal(0:081; 0:17) fund accumu-

lation model. Since maturity guarantees have a loss when the fund accumulation

is low, and annuity rate guarantees losses are proportional to the fund accumula-

tion factors, these products should provide some insight into combining negatively

correlated portfolios. We also assume that the annuity has a certain 15 year term

and is valued based on a constant year 10 long-term interest rate of 6.01%.

To start, consider a portfolio with a $1 initial investment in each fund. Using

a Beta(1
4
; 4) risk capital requirement from Table 5.6, the marginal capital allocation

method requires that the annuity rate guarantee portfolio hold the entire capital

requirement, 3.392. Using the proportional allocation method, the maturity guar-

antee portfolio requires 0.219 and the annuity rate guarantee portfolio would hold

3.173.
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Combined Maturity Guarantee Annuity Guarantee

Mean 0.837 0.015 0.822
Std. Dev. 0.460 0.050 0.480

Kurtosis 11.86 19.12 10.57

DP 19 2.000 0.164 2.000

PH 19 18.87 0.386 18.87
PH 4 2.519 0.158 2.515
Beta(1

2
; 2) 1.634 0.098 1.633

Beta(1
4
;4) 3.392 0.234 3.392

Beta( 1p
19
;
p
19) 3.748 0.251 3.748

VaR 95% 1.723 0.132 1.722

VaR 99% 2.484 0.260 2.484

CTE 90% 1.879 0.148 1.879

CTE 95% 2.204 0.210 2.204

Table 5.6: Combined Portfolio Capital Requirements, using the Lognormal Model

Since both funds accumulate, but only the annuity rate guarantee liability

increases with the size of the fund, assuming a $1 initial investment in each fund

leads to a much higher risk in the annuity rate guarantee than in the maturity

guarantee. This is illustrated in Figure 5.5 which shows the densities for each

portfolio and the density for the combined portfolio. In this example the annuity

rate guarantee dominates the portfolio and has a much higher capital requirement;

however, the proportional allocation method seems more fair than the marginal

allocation method. Figure 5.6 illustrates the failure rates for the two portfolios.

Both portfolios are heavy tailed, but the annuity rate guarantee has a much stronger

inuence on the combined portfolio.

To obtain a more illustrative comparison of the two portfolios, consider a

large portfolio of maturity guarantees, so that the mean loss of the maturity guar-
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Figure 5.5: Combined Density Function (2% Management Charge), Assuming Log-
normal Investment Model

antee portfolio equals that of the annuity guarantee. In e�ect, for every $1 initially

invested in the annuity rate guarantee there is $53.4 invested in the maturity guar-

antees. Using a 2% management charge, the results are shown in Table 5.7, and

a comparison of the individual densities with the combined portfolio density is in

Figure 5.7.

In this mean equated portfolio, we have increased the size of the maturity

guarantee position 53.4 times, and the maturity guarantee position dominates the

portfolio. In terms of capital allocation, using the marginal allocation method with
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Figure 5.6: Failure Rates for the Combined Portfolio

expected loss to determine the order of inclusion, either portfolio could be added

�rst. If the maturity guarantees portfolio is added �rst, it would have to hold 12.52

in required capital and the annuity rate guarantee portfolio would require capital of

0.437. If the annuity rate guarantee portfolio is added �rst, it would have 3.392 in

required capital and the maturity guarantees portfolio would hold 9.560. Using the

proportional allocation method the maturity guarantee portfolio would have 10.19

and the annuity rate guarantee portfolio would have 2.762.
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Figure 5.7: Mean Equated Combined Density (2% Management Charge), Assuming
Lognormal Investment Model

To consider another weighting scheme, we equate the 95% VaR. In this case,

for every $1 initially invested in the annuity rate guarantee, invest $13.0 in the

maturity guarantees. The results can be seen in Table 5.8, a comparison of the

individual densities with the combined portfolio density can be see in Figure 5.8,

and a comparison of their failure rates in Figure 5.9. In all these combined portfolio

analyses, Beta(1
4
; 4) is larger than 95% VaR and 95% CTE, and is often larger than

99% VaR.
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Combined Maturity Guarantee Annuity Guarantee

Mean 1.643 0.822 0.822
Std. Dev. 2.559 2.691 0.480

Kurtosis 19.29 19.12 10.57

DP 19 9.205 8.772 2.000

PH 19 26.80 20.62 18.87
PH 4 9.042 8.455 2.515
Beta(1

2
; 2) 5.981 5.226 1.633

Beta(1
4
;4) 12.95 12.52 3.392

Beta( 1p
19
;
p
19) 13.83 13.41 3.748

VaR 95% 7.372 7.077 1.722

VaR 99% 14.11 13.90 2.484

CTE 90% 8.200 7.887 1.879

CTE 95% 11.47 11.23 2.204

Table 5.7: Mean Equated Combined Portfolio Capital Requirements, using the
Lognormal Model

In terms of capital allocation, using marginal allocation, the annuity rate

guarantee portfolio would be added �rst and have to hold 3.392, and the maturity

guarantee portfolio would have to hold 0.667. Using the proportional allocation

method, the annuity rate guarantee portfolio would have to hold 2.139 and the

maturity rate guarantee portfolio would have 1.920 in required capital.

Considering the two allocation strategies, the marginal allocation method

strongly favours smaller risks and does not allow the parent corporation any reduc-

tion in terms of capital requirements, for diversi�cation through subsidiaries. The

proportional method of allocation of capital requirements allows for hedging or di-

versi�cation through subsidiaries and is also independent of the order of inclusion,

thus it is the preferred approach.
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Figure 5.8: VaR Equated, Combined Density (2% Management Charge), Assuming
Lognormal Investment Model

5.5 Hedging Error for Maturity Guarantees

Hardy (1998) uses percentile VaR to study hedging and reserving of maturity guar-

antees for segregated funds. In this section we use some of the same methods

to model and hedge maturity guarantees, however we apply the beta distortion

risk measures to this problem. Since a hedge portfolio can have gains as well as

losses, the combination of the maturity guarantee and the hedge portfolio can not

be compared in the same way we compared maturity guarantees and annuity rate
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Figure 5.9: Smoothed Failure Rates for VaR Equated Combined Portfolio

guarantees. The losses for the maturity guarantee are directly o�set by the gains

in the hedge fund. If the maturity guarantee risk is hedged, instead of having some

fairly large losses with less than a 10% probability, we will have paid a �xed cost

for the hedge and have considerably reduced our risk.

To illustrate, the liability of a maturity guarantee is simply a put option, where the

payo� is the maximum of zero and the guarantee amount minus the fund accumu-
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Combined Maturity Guarantee Annuity Guarantee

Mean 1.022 0.200 0.822
Std. Dev. 0.657 0.655 0.480

Kurtosis 10.34 19.12 10.57

DP 19 2.785 2.135 2.000

PH 19 19.15 5.018 18.87
PH 4 3.021 2.058 2.515
Beta(1

2
; 2) 2.119 1.272 1.633

Beta(1
4
;4) 4.059 3.046 3.392

Beta( 1p
19
;
p
19) 4.413 3.263 3.748

VaR 95% 2.375 1.723 1.722

VaR 99% 3.671 3.383 2.484

CTE 90% 2.601 1.920 1.879

CTE 95% 3.151 2.733 2.204

Table 5.8: VaR Equated Combined Portfolio Capital Requirements, using the Log-
normal Model

lation at the end of the guarantee.

L = max [0;K � S(T )] (5.18)

Thus during the accumulation period, the insurer can use the Black-Scholes option

pricing formula to determine the price of the guarantee as:

BSPPut(St; t) = Ke
�r(T�t)

N(�d2(t))� S(t)N(�d1(t)) (5.19)

where d1(t) =
log(S(t)

K
) + (r + �2

2
)(T � t)

�
p
T � t

(5.20)

and d2(t) = d1(t)� �

p
T � t (5.21)
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The constant K is the guarantee per initial value of the fund S(0), r is the risk

free rate of return, � is the volatility of the yearly fund accumulation rate and

N(:) is the standard normal cumulative probability. The option matures at time T

and the Black-Scholes price is determined at time t. Using this formula, one can

easily hedge against the liability by investing in N(�d2(t)) units of risk free bonds

maturing at time T and taking a short position in N(�d1(t)) units of the asset. In
our case, the asset is the segregated fund, K = 100, S(0) = 100(1�0:02)T , T = 10,

� = 0:17 and r = 0:06.

The Black-Scholes hedging formula assumes continuous adjustments of the

hedge ratio. In practice this is neither e�cient nor practical, due to transaction

costs. In our illustration we assume no transactions costs. If we assume monthly

or weekly hedge ratio adjustments, we can determine the initial price of the hedge,

and by simulating the fund value determine the adjustments required to rebalance

the hedge. In rebalancing the hedge, changes to the investments in bonds and in

short assets are needed, the net cost of an adjustment is the di�erence between the

cost of the position that should be held at time t:

BSPPut(t; hedget) = Ke
�r(T�t)

N(�d2(t))� S(t)N(�d1(t)) (5.22)

and the value at time t of the position taken at time t � 1, that is N(�d2(t� 1))

units of the risk free bond and a short position of N(�d1(t� 1)) units of the asset,

which has a current time t value of

BSPPut(t; hedget�1) = Ke
�r(T�t)

N(�d2(t� 1))� S(t)N(�d1(t� 1)): (5.23)
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To adjust the hedge portfolio, N(�d2(t)) � N(�d2(t � 1)) units of risk free

bonds are purchased and a short position is taken in N(�d1(t)) � N(�d1(t � 1))

units of the asset. The net cost is:

ADJPut(t) = Ke
�r(T�t) [N(�d2(t))�N(�d2(t� 1))]

�S(t) [N(�d1(t))�N(�d1(t� 1))] : (5.24)

Any negative values of this adjustment can be viewed as a release of capital, which

can be used to fund positive values of the adjustment. The total hedging error is

the present value of the series of adjustments, and the risk inherent in the hedged

maturity guarantee is based on the distribution of the present value of these ad-

justments.

Using the Wilkie investment model, readjustments to the hedge only occur

yearly, since this model is designed as an annual model. A monthly or weekly

model similar to Wilkie's, if available, would have a di�erent structure. In practice,

monthly, weekly or daily adjustments to the hedge portfolio are more appropriate

than yearly adjustments. Thus we rely on the lognormal distribution for the fund

accumulation factors. The parameters of the lognormal distribution, � = 0:081 and

� = 0:17 are the same as in the previous sections. For a 100% maturity guarantee

with a 2% management charge, the initial cost to hedge the maturity guarantee is

$2.58. Using this model, 100,000 simulations of the ten-year monthly, weekly and

daily accumulation processes are used to determine the distribution of the present

value of the hedging error. Table 5.9 shows an analysis of the hedging error, when



5.5. HEDGING ERROR FOR MATURITY GUARANTEES 166

Monthly Weekly Daily

MEAN 0.231 0.110 0.041
Std. Dev. 0.432 0.207 0.077

Uncensored Kurtosis 7.518 7.879 8.023

Censored Kurtosis 17.91 18.90 18.99

DP 19 1.437 0.685 0.257
PH 19 4.271 2.299 0.782
PH 4 1.645 0.825 0.301

Beta(1
2
; 2) 1.003 0.484 0.181

Beta(1
4
;4) 2.387 1.199 0.437

Beta( 1p
19
;

p
19) 2.576 1.302 0.472

VaR 95% 1.100 0.525 0.195
VaR 99% 2.038 0.973 0.365

CTE 90% 1.286 0.614 0.230
CTE 95% 1.691 0.805 0.301

Table 5.9: Hedging Error Capital Requirements, using the Lognormal Maturity
Guarantee

rebalancing occurs monthly, weekly, and daily. For all three rebalancing periods

the beta risk measure, Beta(1
4
; 4), is larger than 99% VaR and 95% CTE. These

numbers assume no transaction costs.

Figures 5.10 and 5.11 illustrate the density function for the uncensored and

censored hedging errors for a 100% maturity guarantee with a 2% management

charge, and Figure 5.12 shows the failure rates. The original capital requirement of

$23.43 is the amount the investor has to hold for the unhedged maturity guarantee.

There is more than a 90% probability that none of this capital will actually be

needed, since the maturity guarantee will not be exercised. However, if the maturity

guarantee is hedged, the cost of the hedge is $2.58, a �xed cost, and the investor



5.5. HEDGING ERROR FOR MATURITY GUARANTEES 167

Hedge Error

de
ns

ity

-1.0 -0.5 0.0 0.5 1.0

0
1

2
3

4
5

Rebalancing
Daily
Weekly
Monthly

Figure 5.10: Density for Uncensored Hedging Errors of a Maturity Guarantee with
a 2% Management Charge, Assuming Lognormal Investment Model

will still have a capital requirement for the hedging error of up to $2.39 (monthly

hedging). The risk in the maturity guarantee has been traded for a certain payment

with a small residual risk.

This example illustrates how hedging risk can limit the capital required to

cover the risk in a portfolio. If the maturity guarantee and the hedge were parts

of two di�erent portfolios, and the risk measure was applied separately to each

portfolio, the capital requirement would not account for their o�setting nature.

Thus there is great advantage to using a holistic approach to measuring risk capital.
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Figure 5.11: Density for Censored Hedging Errors for a Maturity Guarantee with
a 2% Management Charge, Assuming Lognormal Investment Model
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Chapter 6

Review, Conclusions and Areas

for Further Research

6.1 Review and Conclusions

The main purposes of this dissertation have been (i) to illustrate the insu�ciency

of the value-at-risk methodology for determining capital requirements and (ii) to

provide a new coherent risk measure that can be applied to loss distributions in a

way that coincides with the underlying purpose for having capital requirements.

Coherent risk measures have properties that are consistent with popular ideas

of risk aversion, including �rst and second stochastic dominance. Value-at-risk is

not a coherent risk measure, and fails three of the �ve coherency requirements.

In contrast, all concave distorted risk measures are coherent. There is a distor-

tion function that replicates VaR, however it is not concave, and is not coherent.

The PH-transform and the dual power transform are two coherent distorted risk

170
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measures that have been introduced by Wang for applications in premium princi-

ples. Both the PH-transform and the dual power transform are members of the

beta family of distribution functions. We have shown that the beta distribution

function is a concave distortion function over a speci�c range of parameters, with

the PH-transform and the dual power transform as special cases. The Kullback-

Leibler mean information was used to compare parameters for the beta transform

with parameters for the PH-transform and the dual power transform. Using second

order stochastic dominance, we were able to prove that strictly concave distor-

tion functions preserve second order stochastic dominance whereas general concave

distortion functions only preserve this weakly. This leads to a preference for the

beta distorted risk measure over the CTE and all other piecewise linear concave

distortion functions.

Tail analysis was used to determine that the transformed failure rate in the

tail of the distribution became heavier tailed, but always maintained the increasing

or decreasing failure rate property. The Beta risk measures were applied to three

portfolios, a portfolio of maturity guarantees and a portfolio of annuity rate guar-

antees, and a combined portfolio of maturity and annuity rate guarantees. Even

though the maturity guarantees have an upper bound to the loss, the annuity rate

guarantee loss distribution has a lighter tail than the maturity guarantees. This is

evident by the kurtosis of the two portfolios, and from the comparison of the two

portfolios in the mean equated combined portfolio example. Using two techniques

for allocating risk capital, we illustrated how the Beta risk measure can be used to

determine the division of capital requirements among portfolios. Lastly, we consid-
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ered hedging a portfolio of maturity guarantees and illustrated how the required

capital would be reduced in these circumstances. Throughout these illustrations,

the Beta(1
4
; 4) risk measure provided a good estimate of the risk capital that should

be held for each portfolio.

6.2 Areas for Further Research

6.2.1 Censored vs. Uncensored Loss Distribution

Using a censored distribution leads to discrepancies between time zero pricing of

risks and time zero risk measure values. As well, for risk measures using the censored

loss distribution, the translation invariant property of coherency generally applies

only to the censored risk. In order to remove this discrepancy and to have the

translation invariant property apply to the uncensored risk, a method used by

Wang (1999) should be investigated. This method allows the loss random variable

to be negative (uncensored) and uses a dual distortion of g, g�(u) = 1 � g(1 � u),

to transform the negative losses. In other words, for any risk X, with ddf SX(x),

the risk measure ��g(X) is de�ned by,

�
�
g(X) =

Z 0

�1
g[SX(x)]� 1 dx +

Z 1

0

g[SX(x)] dx (6.1)

If g is a concave distortion function, then g� is a convex distortion function. For

the PH-transform g(x) = x
1

 , the dual distortion g�(x) = 1 � (1� x)�, is the dual
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power transform. As well, for the beta distortion,

g(x) =

Z x

0

1

�( 1

; �)

t
1


�1
(1 � t)��1dt (6.2)

the dual distortion is

g
�(x) =

Z 1�x

0

1

�( 1

; �)

(1 � t)
1


�1
t
��1

dt; (6.3)

which is also Beta. If � = , then g
� is Beta with inverted parameters. This

risk measure is a�ected by the size of the possible gains, and may have limited

application in capital adequacy, however there may be more appropriate application

for this risk measure in valuation and pricing aspects of insurance and �nance.

6.2.2 Extreme Value Theory

We have used extreme value theory(Bassi, Embrechts and Kafetzaki, 1997) to help

with our understanding of percentile-VaR and the dual power risk measure, however

we have not considered the application of this theory to the general Beta risk

measure.

6.2.3 Dynamic Risk Measures

This dissertation considers single period risk measures. To generalize these risk

measures to the multiperiod case, properties of dynamic risk measures will have to

be investigated. Tan Wang (1999) develops a set of properties that are desirable

for dynamic risk measures which may help to suggest a method to generalize the
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beta risk measure.

6.2.4 Mixture Problems

Another desirable property that has not been incorporated in this thesis is that

a risk measure should have an extra risk loading for parameter uncertainty. This

does not lead to a contradiction of the subadditivity rule, but pertains to mixture

problems in insurance. The PH-distortion risk measures for  > 1 satisfy this

property (Wang, 1995a), which may be able to be extended to the Beta distortion

risk measures with  > 1 and � > 1. Applications of this property may include

risks with limited available history, or in modeling liquidity risk or credit risk.

6.2.5 Allocating Risk Capital Among Portfolios

The marginal and proportional methods for capital allocation among portfolios

were used in Chapter 5. De�ning correlation structures between portfolios, or

subdividing portfolios into independent subportfolios, may facilitate this process.

As well, another method using conditional allocation could be incorporated based

on the following relation:

Let �g(:) be any coherent risk measure, then for any censored risks X and Y

we have,

�(X + Y ) � �g(X) + �g(Y ) (6.4)

= EY [�g(XjY )] + EX [�g(Y jX)] (6.5)

= �U [�g(XjY )] + �U [�g(Y jX)] (6.6)
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where U is the Uniform distorted risk measure.

6.2.6 Allocating Risk Capital Among Risk Factors Within

One Portfolio

In this application, we are considering dividing the risk capital among risk factors.

Examples of risk factors already discussed are: the short-term interest rate, the

long-term interest rate, the fund accumulation rate, the ination rate, the mortality

rate, and the lapse rate. Once the relevant risk factors have been identi�ed, we

would like to determine the size or amount of risk that relates to each risk factor.

To illustrate, given a portfolio X, let Q be a vector of risk factors, so that Q =

(q1; q2; :::; qk), using risk measure �, we would like to divide the total risk capital

�(X) into portions relating to the risk capital required due to the risk from each

risk factor, �(X; qi), i = 1; :::; k. First we assume that the relevant risk factors

are independent and discuss how this e�ects capital allocation, then we introduce

dependence between the factors.

Independent Risk Factors

If risk factors are independent, then changes in one factor do not e�ect the value of

other factors, and the cumulative distribution of risk factors can be factored into a

product of their marginal distributions. Depending on the risk measure used and the

construction of the portfolio, having independent risk factors can lead to di�erent

results. To illustrate, let Q be a vector of risk factors, so that Q = (q1; q2; :::; qk),

since the qi's are independent, the decumulative distribution function for Q can be
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factored, so that

FQ(X) = Fq1(X) Fq2(X)::: Fqk(X) (6.7)

If the portfolio can also be divided into subportfolios that only depend on one risk

factor, so that X = Xq1 + Xq2 + :::+Xqk , then by using an additive risk measure,

for example �(X) = E[X], we would have

�U (X) = E[X] =

Z 1

0

XdFQ(x) (6.8)

=

Z 1

0

Xq1 +Xq2 + :::+Xqkd(Fq1(X) Fq2(X)::: Fqk(X)) (6.9)

=

Z 1

0

Xq1dFq1(X) +

Z 1

0

Xq2dFq2(X) + :::+

Z 1

0

XqkdFqk(X) (6.10)

= �(X; q1) + �(X; q2) + :::+ �(X; qk) (6.11)

Since E[X] is an additive risk measure, for independent risks with independent

subportfolios, we have

�(X) =

kX
i=1

�(X; qi) (6.12)

Examples of additive risk models:
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Example 6.2.1 Historical Price Sensitivity: Let �(X) be distributed as

@XQ =

kX
i=1

dXqi

dqi
@qi: (6.13)

This implies that �(X; qi) is distributed as

dXqi

dqi

@qi (6.14)

and �(X;Q) =

kX
i=1

�(X; qi) (6.15)

This is similar to the method suggested by the 1993 revision of the Basel Capital

Accord, where the four risk factors considered were interest rate risk, exchange rate

risk, commodity risk and equity risk, if these risks are assumed independent.

Example 6.2.2 The Analytical Method: The analytic model assumes that the

portfolio can be broken into smaller units, each unit depending on one variable. In

this case:

X =

kX
i=1

Xqi : (6.16)

Using �(X) = V ar(X) the variance, and using the assumption that the risk factors

are independent, let

�(X;Q) = V arQ(X) = V arQ(

kX
i=1

Xqi) =

kX
i=1

V arqi(Xqi) =

kX
i=1

�(Xqi) (6.17)
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Additive models provide a natural algorithm to determine the relative importance

or the sensitivity of the portfolio to each risk factor, by comparing individual risk

measure values. The higher the risk measure value for an individual risk factor, the

higher the exposure and the relative importance of that risk factor. Non-additive

models are not as easily decomposed. Assuming that the risk factors are known to

be independent, in special cases a transformation can produce an additive model;

however this is generally not the case.

Dependent Risk Factors

A common technique used to compute a risk measure in practice is to use the sim-

ulation approach. Often it is assumed that the joint distribution of the risk factors

follows a multivariate normal model (Frees and Valdez, 1998). This facilitates the

calculation and analysis of the risk measure; however, it limits the risk measure

to only evaluating risk related to second order dependencies in risk factors. Risk

factors are each assumed to follow a normal distribution, and are related to other

risk factors only through a correlation factor. The risk related to the change in

price of a �nancial investment could depend on an underlying risk factor through

the skewness or kurtosis of the distribution of the risk factor, or on the change in

volatility. As well, dependencies between risk factors may be insu�ciently modeled

by a correlation. Derivative securities often provide examples of the �rst problem.

Using the multivariate normal assumption, only delta and gamma risks are evalu-

ated. Methods in �nance that are used to value derivatives often consider the theta

and vega risks of a portfolio, the risk related to the change in price of the investment

with respect to time, and volatility. Using the simulation approach, it is possible to
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use any form for the joint density function, and more complex relationships between

risk factors can be implemented.

An alternative option to assuming multivariate normal risk factor distribu-

tions is to assume some relation between the marginal and joint risk factor distribu-

tions using a copula (Frees and Valdez, 1998). Preliminary investigations into this

area have identi�ed that copulas are very useful in modeling dependence of random

variables. They provide relevant information about the dependence structure of a

multidimensional random vector. Thus copulas merit further attention and may

prove useful for our study of multiple sub-portfolios and for our study of portfo-

lios with multiple risk factors. Frees and Valdez (1998) illustrates two methods to

specify a family of copulas for bivariate data, however copulas for higher dimension

multivariate data are not always convenient to identify.
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