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Abstract

Age-related neurodegenerative diseases, including Alzheimer’s Disease (AD), are an in-
creasing cause of concern for the world’s ageing population. The current consensus in the
research community is that the main setbacks in the treatment of AD include the inability
to diagnose it in its early stages and the lack of accurate stratification techniques for the
prodromal stages of the disease and normal control (NC) subject groups. Numerous studies
show that AD causes damage to the white matter microstructure in the brain. Commonly
used techniques for diagnosing this disease include, neuropsychological assessments, ge-
netics, proteomics, and image-based analysis. However, unlike these techniques, recent
advances in Diffusion Magnetic Resonance Imaging (dMRI) analysis posits its sensitivity
to the microstructural organization of cerebral white matter, and hence its applicability
for early diagnosis of AD. Since tissue damage is reflected in the pattern of water diffu-
sion in neural fibre structures, dMRI can be used to track disease-related changes in the
brain. Contemporary dMRI approaches are broadly classified as being either region-based
or tract-based. This thesis draws on the strengths of both these approaches by propos-
ing an original extension of region-based methods to the simultaneous analysis of multiple
brain regions. A predefined set of features is derived from dMRI data and used to compute
the probabilistic distances between different brain regions. The resulting statistical asso-
ciations can be modelled as an undirected and fully-connected graph encoding a unique
brain connectivity pattern. Subsequently, the characteristics of this graph are used for the
stratification of AD and NC subjects. Although the current work focuses on AD and NC
subject populations, the perfect separability achieved between the two groups suggests the
suitability of the technique for separating NC, AD, in addition to subjects in the prodromal
stage of the disease, i.e., mild cognitive impairment (MCI).
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Chapter 1

Introduction

Medical imaging, a set of techniques used to capture visual information of internal body
structures without surgical intervention, has made rapid progress since its advent in the
late 1800s. From the first medical use of X-rays [5] to mapping the human connectome with
magnetic resonance imaging [6], much work has been done to develop imaging technologies
that are more precise, efficient and accessible to clinicians. Research in medical imaging is
driven by two main purposes: first, to acquire diagnostic images to detect disease pathology
and assess the effect of treatment, and second, to explore the functionality of internal tissue
and organ structures in the body in response to external stimuli.

The choice of a particular image modality is governed by the desired objective, and
often involves a trade-off in terms of level of invasiveness, the image resolution, and the
signal-to-noise ratio (SNR). For instance, diagnostic ultrasound, an inexpensive and non-
invasive imaging modality, is typically used for the assessment of cardiac function and
blood perfusion in real time. Alternatively, X-ray imaging provides better representation
of anatomical structures and improved SNR, but has the disadvantage of using ioniz-
ing radiation and, consequently, cannot be performed frequently. In contrast, Magnetic
Resonance Imaging (MRI), a safer and non-ionizing tomographic imaging technique, uses
electromagnetic radiation of the radio frequency (RF) spectrum to acquire anatomical and
functional information from the body. Since its inception in the 1970s, MRI has rapidly
evolved in terms of both hardware and software design, as well as new physical principles,
to become the gold standard of modern medical imaging. There are multiple variants of
MRI that differ with regard to the data acquisition protocol used and the type of infor-
mation captured. For example, functional MRI (fMRI) sensitizes the MR signal to blood
oxygenation levels in order to monitor the metabolic functioning of the cerebral matter.
However, the development of diffusion MRI (dMRI) for quantitative analysis of the random
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motion of water molecules has dramatically increased our understanding of microstructural
organization and cellular integrity of biological tissue.

In this chapter, the use of MRI-based methods for diagnostic imaging of the brain is
highlighted, followed by a brief description of the main contributions presented in this work
and an overview of the thesis outline.

1.1 MRI-based Methods for Brain Imaging

The human brain is a highly complex organ that determines a person’s thoughts, sensory
perceptions and actions. Research has proven that the functional and anatomical con-
nectivity of the brain contains the answers to many prevailing medical questions. The
development of MRI techniques has rendered doctors and researchers capable of studying
the brain’s structure and functionality in a non-invasive manner. MRI offers superior im-
age contrast and spatial resolution in addition to employing non-ionizing radio frequency
fields for brain imaging. These favourable characteristics of MRI have made it the method
of choice for diagnostic imaging of the brain in both the structural and functional domains
[7] [8]. Thus, for example, structural MRI (sMRI) focuses on delineating cerebral cytoar-
chitecture and anatomy, while fMRI monitors blood perfusion in the brain in response to
external stimuli.

Diffusion MRI has garnered much interest from the medical and research communi-
ties in recent years. This is because the white matter of the brain, which is composed of
neural fibre tracts and accounts for nearly half the brain mass, appears homogeneous in
conventional MRI scans [9], making standard MRI an inadequate choice for studying its
anatomical organization. However, dMRI quantifies the random thermal motion of wa-
ter molecules in tissue structures on the micron-scale, enabling the mapping of the fibre
tracts in the brain. Particularly, since white matter is known to be implicated in a num-
ber of neurological disorders, dMRI can be used for diagnosis of white matter pathology.
Consequently, in this thesis, we focus primarily on diffusion MRI and its applications to
diagnostic brain imaging.

1.2 Main Contribution

A significant and increasing cause of concern for the world’s population is age-related
neurodegenerative pathologies, including Alzheimer’s Disease (AD). AD is typically char-
acterized by increased forgetfulness, a steady decline in cognitive functioning, and the
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inability to perform daily activities. AD affects more than 48 million people worldwide,
and half a million Canadians according to the Canadian Mental Health Association. The
risk of developing Alzheimer’s Disease increases with age, affecting 1 in 11 people over 65
years of age, and 1 in 3 people over the age of 85 [10].

Treatment options for AD are limited largely due to the inability to diagnose the disease
in its early stages. Currently, a combination of neuropsychological assessments, genetics,
proteomics, and image-based analysis is employed for its diagnosis. Unfortunately, current
clinical trends are such that by the time AD is detected, there has already been significant,
irreversible brain atrophy in both the gray and white matter [11] [12]. Mild cognitive
impairment (MCI), which is widely regarded as a transitional phase between healthy aging
and AD, has been the focus of much attention for researchers and medical doctors alike.
As it is a known prodromal stage of AD, MCI is regarded as a crucial phase for therapeutic
intervention. The past decade has witnessed numerous studies postulating the applicability
of dMRI for probing the structural integrity of the white matter for clinical diagnosis of
neurological disorders, including AD, Multiple Sclerosis, and epilepsy [13] [14] [15] [16] [17].
The success of this technique can be attributed to its sensitivity to the microstructural
properties of cerebral white matter and its ability to delineate complex neural architecture
that would otherwise go undetected with conventional MRI. Since disease-related tissue
damage is reflected in the pattern of the Brownian motion of water molecules through
neural structures, dMRI is well-suited for extracting diagnostic biomarkers from diseased
brains.

The fundamental objective of this thesis is the predictive diagnosis of Alzheimer’s
Disease using information gleaned from diffusion MRI. Specifically, we have developed
a conceptually novel scheme to extract diagnostic markers from commonly-available dMRI
protocols that can be used for the stratification of AD and NC subject groups. In this
work, a predefined set of features derived from diffusion data is used to compute the prob-
abilistic distances between different brain regions. These are then employed as the weights
of an undirected and fully-connected graph that encodes the brain connectivity pattern.
Subsequently, the characteristics of this graph serve as diagnostic markers to identify AD
populations.

The proposed method is characterized by two distinctive features. First, we demon-
strate how to adapt diffusion markers usually obtained from sophisticated dMRI acquisition
schemes to simpler and clinically-feasible protocols that have already been used to accrue
large amounts of study data. Thus, we underscore the usefulness of existing diffusion
imaging data for extracting relevant information about the structural integrity of white
matter and the development of diagnostic biomarkers. Second, as diffusion imaging analy-
ses may be broadly categorized as region-based, where multiple brain regions are assessed
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independently, or tract-based, which reconstruct fibre tracts to investigate brain connec-
tivity, we propose an original extension of region-based approaches to the simultaneous
delineation of multiple brain regions, thereby drawing upon the advantages of both ap-
proaches. It should be noted that as the proposed method achieves perfect separability
between NC and AD groups with considerable margin, the technique holds great promise
for fine-grained stratification of NC, AD and MCI populations.

1.3 Outline

The remainder of the thesis is organized as follows:

• Chapter 2 provides a description of the basic principles and concepts underlying
diffusion MRI. The effect of the white matter microstructure on diffusion MR signals
is also briefly touched upon.

• In Chapter 3, a taxonomy of prevalent, state-of-the-art dMRI imaging techniques
and their corresponding acquisition protocols is presented. The taxonomy serves as
a comprehensive overview of the diffusion MRI spectrum and establishes the need
for analytical methods to exploit information available from simple dMRI protocols.

• The main contribution of the thesis, and the results obtained therefrom are presented
in Chapter 4. Specifically, we present the necessary mathematical formulation for the
generalization of diffusion metrics usually procured from complex dMRI protocols
to simpler acquisition schemes and provide details on how to formulate and apply
probabilistically-weighted graphs for clinical diagnosis of AD. The results demon-
strate the applicability of the proposed method for clinical diagnosis of Alzheimer’s
Disease by providing a promising stratification technique for the AD and NC groups.

• The thesis is concluded in Chapter 5 with a summary of the main contributions
depicted in this work, and its potential implications for fine-grained stratification of
NC, AD and MCI subject groups in the future.
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Chapter 2

Principles of Diffusion MRI

MRI is regarded as the modality of choice for diagnostic brain imaging in the clinical setting.
It exploits the fact that water accounts for nearly 70% of the human body to generate
high-quality images of the underlying anatomical structures. However, the inability of
conventional MRI scans to satisfactorily delineate fibre tracts in the brain white matter
has prompted the use of diffusion MRI for clinical applications.

The following section provides a brief introduction to the physical principles upon which
MRI is based, followed by a description of diffusion MRI and its relevance in diagnosing
neurological disorders.

2.1 Magnetic Resonance Imaging

The human body is comprised largely of water and fat, and therefore, contains an abun-
dance of hydrogen nuclei. Each nuclei possesses a magnetic dipole and is spinning, or
precessing about its axis. This phenomenon is called a nuclear spin system. Broadly
speaking, the system can have two fundamental energy states (excited and relaxed), and
the absorption and emission of RF energy causes it to oscillate between the two. This
inherent property of the nuclear spins is the basis of MRI.

A typical MRI scanner is composed of a constant-field magnet, RF coils and a magnetic
field gradient system [18]. The imaging magnet produces a strong homogeneous static
magnetic field, B0, with a field strength in the range of 1.5T–3T directed along the scanner
bore. When the patient enters the MRI machine, a substantial proportion of the hydrogen
nuclei in her or his body are aligned in the direction of the B0 field, and precessing about
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their axes in the lower energy state mentioned earlier. The precession frequency, w0, of
each spin, also called the Larmour frequency, is dependent on the strength of the magnetic
field and the nuclei themselves and is described by the Larmour equation as

w0 = γB0, (2.1)

where γ is the gyromagnetic ratio, a physical constant that is specific to the type of nuclei
measured in units of rad/s/T.

The nuclear spin system can be excited to the higher energy level from its steady state
by the application of an RF pulse at the Larmour frequency, which generates a time-varying
magnetic field, B1(t), perpendicular to B0. The effect is to rotate the bulk magnetization
about B1 and away from B0, thus creating a forced precession. Once the RF field is
switched off, the nuclei return to their original state through a process of relaxation. The
resulting electromagnetic radiation that is emitted from coherently precessing spins induces
an equivalent exponential signal decay in the MR receiver coils from which the MRI image
can be reconstructed. This phenomenon is termed nuclear magnetic resonance (NMR).

In the absence of any additional magnetic fields, the Larmour frequency, and hence the
electromagnetic signal decay, would be the same for all hydrogen nuclei, irrespective of their
position in the body, preventing us from obtaining any useful information about internal
tissue structures. Therefore, the main B0 field is augmented with a spatially-varying mag-
netic field produced by the scanner’s gradient magnets for spatial encoding. The gradient
magnets can linearly vary the main magnetic field along one of three orthogonal directions
and are hence often called Gx(t), Gy(t) and Gz(t) [1]. This essentially makes the Larmour
frequency of each spin position dependent, enabling us to discriminate between the signals
coming from different positions of the body. The NMR phenomenon, coupled with the
aforementioned spatial encoding technique, forms the foundation of MRI[18].

The observable image contrast in a typical MRI scan is governed by multiple factors,
including the underlying tissue density and relaxation times of the bulk vector magnetiza-
tion after the absorption of RF energy. Measuring the signal decay of different projections
of this vector can provide us with various decay constants with the representative images
reflecting the relative distribution of the relaxation times. For instance, the T1 decay
constant is determined by the time taken for the spin system to realign itself with the
B0 field and accounts for spin-lattice interaction, while T2 depends on the decay of the
precessing part of the magnetization [1] and accounts for the spin-spin interaction. Con-
sequently, both contrasts tend to complement each other: tissues with high fat content
appear bright and water-filled regions show up dark in a T1 scan, while the converse is
true for T2-weighted images. It should be noted that T1 and T2 are the most prevalent
contrasts among others.
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2.1.1 MRI Imaging Sequences

The pixel values of an MRI image depend on the signal strength induced in the receiver
coils, which in turn is determined by the phase coherence of the hydrogen spins undergoing
relaxation. Minor variations in the B0 field can lead to small irregularities in the frequencies
of precessing spins (according to Equation 2.1). This in turn causes spins to lose their phase
coherence, resulting in the electromagnetic MR signal decaying much more rapidly than
it would if only governed by T2 decay [1]. To ensure signal loss detected by the MR
receiver coils is only due to T2 decay and not spin dephasing, it is a standard practice to
use another refocusing RF pulse (known as a 180◦ pulse), which is applied a time τ after
the application of the first excitation pulse (90◦ pulse) to remove phase incoherence. First
introduced by Erwin Hahn [19], this allows the slower precessing spins to “catch up” with
the faster ones, until they are all back in phase at a time 2τ after the initial RF pulse,
called the spin echo. The aforementioned protocol is termed a spin echo pulse sequence.
Imaging sequences that do not employ refocusing pulses are called gradient echo sequences
[1].

Spin echo sequences are characterized by two parameters: the echo time (TE) and the
repetition time (TR). TE = 2τ is defined as the time between the application of the first
90◦ RF pulse that induces spin excitation and the occurrence of the spin echo at which the
signal is detected by the scanner (see Figure 2.1). The 180◦ refocusing RF pulse is generally
applied at a time TE/2 = τ . TR is the time between two consecutive RF excitation pulses.

Figure 2.1: Hahn’s spin echo pulse sequence. A 90◦ RF pulse is applied to induce
spin excitation, followed by a 180◦ refocusing pulse applied at a time τ to remove
phase incoherence of the spins. The spin echo is detected by the MR receiver coils
at a time 2τ after the initial RF pulse. Credit: [1].
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2.2 Diffusion MRI

According to Fick’s law, diffusion is described as the net motion of particles from a region of
relatively higher concentration to one of lower concentration. However, on the molecular
level, particles continue to exhibit thermal motion at temperatures above zero degrees
kelvin, even in the absence of a concentration gradient [1]. This gives rise to the process of
self-diffusion or Brownian motion which is different from bulk transport mechanisms (e.g.,
convection or dispersion). Since diffusive mixing arises from collisions between molecules
and atoms, it is influenced not only by the size of the diffusing molecules but also the
microstructural features of the surroundings and hence, it can serve as a sensitive measure
for probing the characteristics of biological tissue.

The trajectory followed by a self-diffusing molecule in three-dimensional space is a
random walk, making it impossible to predict where a single particle will diffuse to in a
given time interval. However, in the early 20th century, Albert Einstein showed that the
diffusion behaviour for a large number of freely-moving particles could be characterised as

〈r2〉 = 6Dt, (2.2)

where 〈r2〉, the mean-squared displacement undergone by the particles is directly propor-
tional to the diffusion time t, and the self-diffusion coefficient, D.

If the probability of displacing a given distance from the origin is equal in all directions,
the molecules are said to exhibit isotropic motion. Equation 2.2 is derived based on the
assumption that this isotropic diffusion can be characterized by a Gaussian function, and
encapsulates the variance of the distribution. Figure 2.2 depicts the Gaussian distributions
of displacements in one, two, and three dimensions, along with their respective standard
deviations as functions of time.
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Figure 2.2: Gaussian diffusion as characterized in (a) one, (b) two, and (c) three
dimensions. The diffusion probability distribution in an isotropic medium (i.e.,
probability of diffusion is uniform in all directions) has a spherical shape in three
dimensions. Credit: [1].

2.2.1 Adding Diffusion Weighting to MRI Imaging Sequences

In 1950, Hahn proposed that the spin echo MR signal (Figure 2.1) could be made sensitive
to the thermal motion of water molecules [19], which was expanded upon by Carr and
Purcell in 1954 [20]. They noted that since the precessional frequency of a molecule de-
pended on the strength of the local magnetic field (refer to Equation 2.1), the application
of a linearly varying magnetic field gradient across the specimen would cause molecules to
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experience varying magnetic fields at different locations, thereby leading spins at different
positions to precess at different frequencies. This would cause particles to accrue spatially-
dependent phase shifts determined by their respective locations. The net phase shift of the
MR signal would then rely on the diffusive motion of the molecular ensemble, making the
spin echo signal susceptive to diffusion. The superimposition of such diffusion-encoding
gradients on the standard MRI pulse sequence is termed diffusion weighting, and lies at
the heart of dMRI.

Figure 2.3: Dephasing and rephasing gradient pulses for diffusion encoding.
Credit: [2].

Figure 2.3 demonstrates the effect of applying diffusion-encoding gradients on the re-
sulting MR signal strength. After the RF excitation pulse, the spins are in phase, leading
to an increase in the MR signal detected by the receiver coils. The dephasing gradient
pulse at t2 introduces a linearly varying phase shift across the volume. Specifically, spins
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to the left (shown in red) are subjected to a weaker magnetic field, while spins on the
right (shown in blue) experience a stronger field. Consequently, spins on the left precess at
slower frequencies than the ones on the right, accruing spatially dependent phase shifts for
the duration of t3. Once the dephasing pulse has been turned off, the spins revert to their
original precessional frequencies but are no longer in phase. The phase incoherence of the
spins causes the MR signal output to be attenuated. The rephasing pulse at t4 seeks to
remove the dephasing by applying a linearly varying magnetic field in the reverse direction
to the volume. If there has been no net molecular motion between the two gradient pulses,
the phase shift introduced at t2 will be cancelled out by the rephasing pulse, and the spins
will once again be in phase, leading to an increase in the signal strength. However, if
the molecules have undergone diffusion-induced displacement, the phase shift will not be
entirely removed, which will be reflected in the strength of the MR signal. The principle
thus described forms the basis for the Pulsed Gradient Spin Echo (PGSE) sequence, first
proposed by Stejskal and Tanner in 1965, and described in detail in the following section.

2.2.2 The Pulsed Gradient Spin Echo Sequence

It was not until the advancements put forward by Stejskal and Tanner in 1965 that modern-
day diffusion measurements in MRI became viable. In their seminal work, they introduced
a new MR acquisition protocol, the pulsed gradient spin echo sequence (PGSE) onto which
diffusion-encoding gradient fields could be superimposed to finish the work started by Carr
and Purcell [21]. Instead of a constant magnetic field gradient, they proposed using dual
“narrow pulse” gradients of a shorter duration, i.e., a pair of dephasing and rephasing short
gradient pulses were employed to sensitize the MR signal to molecular displacements. The
narrow pulse approximation stipulated that molecular diffusion for the duration of the
gradient pulses could be disregarded.

Figure 2.4 depicts a schematic of the PGSE sequence. The first gradient (the dephasing
gradient), applied after the 90◦ RF pulse, tags nuclear spins with a positive phase, the
strength of which depends on their position in the medium. In the one-dimensional case,
the resulting net phase shift of the molecular ensemble can be expressed by

φ1 = −qx1,

where the variable q = γδG summarizes the PGSE experimental parameters, δ denoting
the duration of the pulse gradient, G the strength of the magnetic gradient and x1 the
location of the spin under consideration. Similarly, the second pulse gradient applied after
a diffusion time, ∆, induces a net phase change in a particle positioned at x2 given by

φ2 = −qx2.
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Figure 2.4: Stejskal and Tanner’s PGSE sequence. Credit: [1].

Since the second gradient lobe occurs after the 180◦ RF pulse, it introduces a phase change
that is equivalent but reversed in direction to the first. Hence, the cumulative phase shift
can be represented as

φ2 − φ1 = −q(x2 − x1).

If spins remain stationary throughout the sequence, φ2−φ1 will be zero since the phase shift
triggered by the first pulse gradient will be entirely cancelled out by the second. However,
if spins diffuse throughout the imaging specimen, the phase difference will not cancel out
and the resulting signal will be attenuated due to the phase incoherence of the spins. This
signal decay can be attributed to the phase dispersion or self-diffusion of the spin system.

Since the orientation of the diffusion-encoding pulses characterizes the diffusion profile
along that direction, it is necessary to apply diffusion gradients in a multitude of directions
to gain a more complete representation of molecular diffusion. In such a case, both G and
x will be three-dimensional vectors, and hence so will q. It follows that the space of all
possible gradient directions is known as the q-space. The acquisition parameters of the
PGSE sequence, including the gyromagnetic ratio γ, the duration δ and strength |G| of
the magnetic field gradients, and the time ∆ between the application of the two opposing
pulses can be summed up in a single variable known as the b-value, which is related to q
by the following equation

b = ||q||2(∆− δ/3). (2.3)

The MR signal attenuation is measured with respect to a signal acquired in the absence
of diffusion-encoding gradients. Hence, a single diffusion measurement involves acquiring
a signal with no diffusion weighting, i.e., b = 0, and one with non-zero diffusion weighting
in the direction along which diffusion is to be measured. Generally, the attenuative effect
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of diffusion is described in terms of the ADC as shown

S

S0

= e−b·ADC , (2.4)

where S is the diffusion signal acquired at a high b-value, S0 is the signal obtained with-
out diffusion weighting, and ADC is the apparent diffusion coefficient. The ADC can be
formally defined as

ADC = − log(S/S0)

b
. (2.5)

Consequently, the ADC in each voxel of the imaged volume can be estimated using Equa-
tion 2.5.

The Stejskal-Tanner formalism has led to the development of a variety of tools and
protocols that fall under the umbrella of diffusion MRI. As water molecules will diffuse
at different rates in different brain regions depending on their constituent compartments
and cellular concentrations, diffusion MRI is particularly useful for probing the diffusion
process, and thereby the underlying the structural integrity of the white matter of the
central nervous system (CNS) at a microscopic scale.

2.2.3 q-Space Acquisition

In the PGSE sequence, the effect of diffusion-encoding is represented by means of a 3D
vector q in the q-space, which is oriented in the direction of diffusion and proportional
to the product of the gradient strength and pulse length. Therefore, the application of
a PGSE sequence samples a 3D point in the q-space, resulting in one diffusion-weighted
image (DWI). In other words, in brain imaging, a single PGSE sequence amounts to a
full cranial scan. Sampling the entirety of the q-space entails repeated applications of the
PGSE sequence at multiple q values, i.e., gradient strengths and orientations, providing
us with a myriad of DWIs, each of which corresponds to a distinct diffusion weighting.
Consequently, each voxel in the imaged volume will have a q-space signal with many
samples acquired at multiple directions. The signal can be shown to be related to the
displacement distribution through the Fourier Transform (FT).
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Figure 2.5: Sampling schemes for dMRI. (a) Cartesian sampling of the q-space,
(b), (c) single-shell sampling with small and large number of measurements, and
(d) Multi-Shell Diffusion Imaging. The q-space origin is featured in red. Credit:
[3].

dMRI methods differ depending on the specific q-space sampling scheme employed for
DWI acquisition. Sampling schemes may be single-shell, multi-shell or Cartesian. In single-
shell diffusion imaging, q-space acquisition is performed at a single b-value or spherical shell
(magnitude of q is fixed) at different diffusion-encoding directions. In contrast, Multi-
Shell Diffusion Imaging (MSDI) samples the q-space at more than one b-value (multiple
spherical shells) and multiple gradient directions. Sampling the q-space on a Cartesian
grid is currently infeasible due to the long acquisition times it would necessitate [3].

The following section highlights the applicability of diffusion MRI for discriminating
the white matter of the brain and diagnosing neurodegenerative disorders.

2.2.4 Diffusion MRI in Neurological Disorders

The white matter of the brain is highly ordered due to the underlying axonal architecture.
Neural tracts in the central nervous system (CNS) are typically composed of bundles
of axons surrounded by myelin sheaths. The tracts appear to be “white” because of the
myelin, which serves as an electrical insulator between the fibres. Due to the highly oriented
nature of white matter, water molecules tend to diffuse along the length of fibre tracts,
with movement being largely restricted in the orthogonal directions. Preferential diffusion
in one direction over another is termed anisotropic and is characteristic of tightly-packed
directional fibrous structures, such as the corpus callosum. When molecular motion is
unrestricted and equally likely in all directions, as is the case in the cerebrospinal fluid
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(CSF), diffusion is said to be isotropic. Recent studies have shown that the myelin coating
around nerve fibres is conducive to their integrity [22], indicating that water diffusion in
myelinated axons is found to be more anisotropic than in demyelinated ones. This is termed
the myelin hypothesis [23].

Conventional MRI scans are unable to discern this complex microstructure owing to the
fibre diameters being roughly on the order of 1µm–30µm [24]. Diffusion MRI has the ability
to gauge molecular displacements in the 5µm–10µm range, and since these displacements
depend on interactions with the underlying microstructure, it can be used to visualize the
neuroanatomy of the cerebral tissue despite the image resolution being several orders of
magnitude lower.

Diffusion MRI can be used for the diagnosis of white matter pathology. A number of
neurological disorders and diseases lead to alteration of the white matter tissue and loss
of structural integrity. Demyelination and axonal degeneration are the two main causes of
morphological changes in the white matter [1]. Thus, for example, Multiple Sclerosis (MS)
is one such demyelinating disease that affects myelin sheaths in the CNS. Degradation of
the axonal architecture can be instigated by a range of disorders, including MS, motor
neuron disease and Alzheimer’s Disease [1]. In such cases, dMRI is commonly preferred
as the method of choice for non-invasively imaging the cerebral tissue microstructure, as
it quantifies the demyelination and axonal loss in terms of diffusion measurements, which
would otherwise go undetected with conventional MRI. In particular, there are clinical
applications, such as in the diagnosis of acute ischemia, in which a T1 or T2-weighted scan
of the brain appears to be normal, while a dMRI scan shows a reduction in the displacement
of water molecules per unit time [1] [25]. dMRI-based clinical diagnosis holds great promise
for a diverse range of neurological disorders and conditions, as demonstrated in a large
number of clinical studies involving Parkinson’s Disease, AD, MS, and Huntington’s Disease
to name a few [26].
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Chapter 3

Methods and Models of Diffusion
MRI

There are many variants of diffusion MRI that differ with regard to the modeling assump-
tions employed to represent the diffusion profile. For example, Diffusion Tensor Imag-
ing (DTI), the simplest and most commonly used dMRI technique, ascribes a unimodal
Gaussian model to water diffusion at each voxel [27]. It requires a minimal number of
measurements but is unable to satisfactorily resolve crossing fibre regions in the brain. Al-
ternatively, multi-compartment models, such as the “ball and stick” proposed by Behren
et al. [28], more accurately depict the diffusion process by characterising it as a weighted
combination of isotropic (ball) and anisotropic (stick) terms. More accurate models are sug-
gested by Diffusion Spectrum Imaging (DSI) and Q-Ball Imaging (QBI), albeit at the cost
of a substantial increase in the number of measurements. Such techniques their attempt to
approximate the diffusion probability distribution directly without explicitly attributing a
geometric model to the diffusion signal.

It is important to realize that each approach, whether it be model-based or non-
parametric i.e., “model-free”, places its own stringent requirements on the data acquisition
protocol needed to characterize the diffusion signal. For instance, the DTI model can be
fit with as few as 6 measurements (although it is common to acquire more to counteract
the effect of noise via averaging). More commonly, most DTI regimes acquire 20-30 DWIs
along gradient directions uniformly distributed on a single spherical shell (i.e., constant
b-value), indicating a relatively short acquisition time (under 15 minutes). In contrast,
methods that provide analytical representations of the diffusion signal such as Mean Ap-
parent Propagator (MAP) MRI typically depend on data acquired on a very large set of
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q-vectors (greater than 500) at multiple b-values, leading to scan times approximately an
hour long if not more [29].

Clinical scan durations are a critical factor when designing MR experiments. Most
patients suffering from neurological or psychiatric conditions are unable to withstand scan
times longer than 15 minutes [30]. Hence, standard clinical protocols generally do not make
allowances for scan times of 30 minutes or higher, rendering modern dMRI techniques that
rely on more complex data-acquisition schemes clinically infeasible.

This chapter presents an abbreviated taxonomy of parametric and non-parametric dif-
fusion MRI methods that have gained traction over the last decade. Details of the tech-
niques, along with their respective data acquisition requirements have been summarised,
with particular focus given to DTI as it is the most widely used dMRI protocol today.
Before delving into the various approaches, it is instructive to describe some useful quan-
tities that can be approximated from dMRI and utilised for delineating the architectural
features of the imaged volume.

3.0.1 Fibre Orientation Distribution Function

A particularly important quantity that reflects the distribution of fibre configurations is
the fibre orientation distribution function or fODF. The fODF is essentially a probability
distribution defined on the sphere and is used to determine the fraction of fibre populations
oriented along each direction within a voxel. If estimated correctly, the fODF would be
able to discriminate a range of fibre configurations, including situations wherein fibres vary
in orientation along their length (e.g., fanning and bending populations).

3.0.2 Ensemble Average Propagator

The diffusion propagator, P (x1,x2,∆) expresses the probability of a spin undergoing a
spatial displacement from an initial location x1 to a final location x2 in a diffusion time
∆. Since a local propagator can be assigned to each location or voxel in the image, it is
possible to obtain an aggregate measure of molecular diffusion in the specimen, termed
the Ensemble Average Propagator (EAP), by integrating over all initial spin positions as
shown [21] [31]

EAP = P (x,∆) =

∫
R3

ρ(x1)P (x1,x2,∆) dx1, (3.1)
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where x = x2 − x1 is the displacement incurred and ρ(x1) quantifies the spin density at
x1. Hence, P (x,∆) describes the total probability of a spin experiencing a displacement
x from all possible spin densities ρ(x1).

The normalized diffusion signal, E(q) =
S(q)

S0

, is related to the EAP through the

Fourier Transform [21] [31]

P (x,∆) =

∫
R3

ei2πq·xE(q) dq, (3.2)

where · represents the Euclidean dot product, q is the wave vector comprising the exper-
imental parameters of the MR experiment, which can now be redefined as q = γδ|G|u,
with u denoting the unit vector of the corresponding diffusion gradient. It should be noted
that equation (3.2) assumes that the narrow pulse approximation holds for the specific
pulse sequence used for data acquisition, i.e., the magnetic field gradients are of such a
short duration that molecular diffusion during this time span can be neglected.

3.0.3 Diffusion Orientation Distribution Function

An additional quantity of interest that can be derived from the EAP is the dODF or ODF.
Like the EAP, the ODF is a probability distribution of the diffusion displacement, the
difference being that it is defined over the unit sphere. Hence, the ODF indicates the
orientation along which diffusion is likely to take place within a voxel. First introduced by
Tuch, the ODF can be obtained from the EAP by integrating over the radial component
[32]

ψ(u) =
1

Z

∫ ∞
0

P (ru)r2dr, (3.3)

where Z is a dimensionless normalization constant, and P (ru) estimated in the direction
of u and expressed in spherical coordinates. Therefore, ψ(u) is simply the radial projection
of the ensemble average propagator and is considered a marginal distribution of the EAP.
Figure 3.1 depicts the ODFs associated with specific fibre configurations, including parallel
and crossing fibre tracts. As can be seen, the normalized version of the dODF and the
fODF emphasize the directional characteristics of the fibre distribution.
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Figure 3.1: Orientation distribution functions corresponding to different white
matter configurations. The normalized dODF highlights the directional charac-
teristics of the original dODF. Credit: [1].

Both the MR signal and the EAP are representative of the underlying microstructural
environment. Specifically, the ODF is considered to be a blurred version of the fODF [33].
Since the limited image resolution of diffusion MRI prohibits their direct measurement
from diffusion data, the goal of most dMRI schemes is to attain an approximate represen-
tation instead, enabling the characterization of voxel-averaged diffusion descriptors in the
imaged volume. dMRI methods can be broadly categorized as being either model-based
or parametric, where an explicit model is employed to represent distinct fibre populations
and hence, the diffusion behaviour, or non-parametric, which focus on obtaining a direct
representation of the fODF without relying on an exact model.

3.1 Model-Based Approaches

A number of well-established parametric diffusion MRI methods are described in this sec-
tion, starting with the ubiquitous diffusion tensor model [27].

3.1.1 Diffusion Tensor Imaging

A single value of the apparent diffusion coefficient at each voxel (refer to Equation 2.5)
proves to be insufficient in delineating anisotropic tissue structures in the imaged volume.
It becomes necessary to employ a model to characterize the diffusion profile of water
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molecules in such regions. One of the simplest models that can be used for this purpose
is the diffusion tensor, which assumes the diffusion process to be Gaussian. Conceptually,
the diffusion tensor can be depicted as an ellipsoid, with its surface expressing the distance
a particle will diffuse with equal probability from the origin. Hence, in an anisotropic
medium, the tensor resembles an elongated ellipsoid, with its major axis denoting the
long axis of the medium, i.e., the direction along which molecular diffusion predominates
whereas in an isotropic region, such as the CSF, the diffusion tensor tends to be spherical
in shape.

Mathematically, the diffusion tensor is a 3×3 symmetric positive-definite matrix repre-
senting the covariances of molecular displacements along the scanner measurement frame
axes (x, y and z-axes). The diagonal elements Dxx, Dyy and Dzz depict the diffusivities
along the respective axes while the off-diagonal elements indicate the correlations between
displacements along those axes [1], for instance, Dxz is the covariance between displace-
ments along the x- and z-axes. Hence, the diffusion tensor D is shown to be

D =

Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 .
Diagonalizing D provides us with its eigensystem so that the principal axes of the

ellipsoid are defined by the mutually orthogonal eigenvectors (ε1, ε2, ε3), and scaled with
respect to the square root of the eigenvalues (λ1, λ2, λ3) which correspond to diffusivites
along those axes. Hence, the diffusion tensor is oriented along the principal eigenvector,
i.e., the eigenvector related to the largest eigenvalue and represents the orientation of the
dominant fibre population in each voxel of the imaged volume. Figure 3.2 demonstrates
how a single fibre tract can be modelled using DTI, with the major axis of the ellipsoid
oriented along the length of the tract.
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Figure 3.2: Modelling a coherently-oriented fibre tract with the diffusion tensor
ellipsoid. The ellipsoid is characterized by the eigensystem of the diffusion tensor,
with the principal eigenvector denoting the dominant fibre direction. Credit: [4].

Estimating the Diffusion Tensor

For Gaussian displacement distributions, the Stejskal-Tanner formalism in equation (2.4),
can be encapsulated as follows

S

S0

= e−bu
TDu, (3.4)

where b is the b-value (refer to Equation 2.3), u is the unit vector of the diffusion-encoding
gradient and D is the diffusion tensor. Since the diffusion tensor is symmetric about
the diagonal, there are only six elements to be determined, namely Dxx, Dyy, Dzz, Dxy,
Dxz, and Dyz and therefore, a minimum of six diffusion-weighted images 1 are sufficient
to fit the tensor. However, to alleviate the effect of noise in the data, it is usual to
acquire images along a larger set of diffusion-encoding directions, usually 20-30 gradient
orientations distributed uniformly on a unit sphere [3], after which D can be computed
from the log-transformed signals using a least squares estimation routine [1].

1Often, a DWI with no diffusion-weighting is also acquired for normalization purposes
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Figure 3.3: Diffusion tensor matrices and ellipsoids corresponding to isotropic
and anisotropic diffusion profiles. The diffusion ellipsoid resembles a sphere in
isotropic media (e.g., free water), with the diagonal elements of the tensor denoting
the diffusion coefficients along the axes. The presence of random barriers in an
isotropic medium implies only effective values of D can be measured. For the case
of anisotropic diffusion, the diffusion ellipsoid is oriented in the fibre direction.
Credit: [4].

Tensor Metrics

The eigenvalues of the diffusion tensor can be manipulated to provide rotationally-invariant
metrics within each voxel of the image. The trace, mean diffusivity (MD), fractional
anisotropy (FA), relative anisotropy (RA) and volume ratio (VR) are some of the metrics
derived from D that can provide useful information about diffusion anisotropy. The trace
is essentially a measure of the diffusivity while mean diffusivity is defined as the average
of the tensor eigenvalues. Specifically,

Trace = λ1 + λ2 + λ3, (3.5)

MD = 〈λ〉 =
λ1 + λ2 + λ3

3
. (3.6)

The FA is particularly useful for quantifying the diffusion anisotropy within a voxel. If
diffusion is isotropic, the tensor eigenvalues tend to be similar and consequently, the FA
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values approach 0. Alternatively, in anisotropic regions such as a highly directional fi-
bre population, the diffusion tensor resembles an elongated ellipsoid with one eigenvalue
dominating the others, causing FA values to peak closer to 1. The FA is defined as,

FA =

√
3

2

√
(λ1 − 〈λ〉)2 + (λ2 − 〈λ〉)2 + (λ3 − 〈λ〉)2√

λ21 + λ22 + λ23
. (3.7)

Similarly, the RA and VR have been derived to be

RA =

√
1

3

√
(λ1 − 〈λ〉)2 + (λ2 − 〈λ〉)2 + (λ3 − 〈λ〉)2

〈λ〉
, (3.8)

VR =
λ1λ2λ3
〈λ〉3

. (3.9)

Finally, it should be noted that the aforestated anisotropy indices do not reflect the shape
of the tensor ellipsoid as different combinations of eigenvalues can result in high anisotropy
values. To this end, Westin et al. [34] proposed his linearity (Cl) and planarity (Cp) metrics
in 1997. These measures allow the quantification of the prolateness and oblateness of the
diffusion ellipsoid. Namely,

Cl =
λ1 − λ2
λ1

, (3.10)

Cp =
λ2 − λ3
λ1

. (3.11)

One of the major clinical applications for DTI metrics is the diagnosis of acute ischemic
lesions in the CNS where the MD or trace is found to decrease in the acute phase and
increase for chronic lesions [35] [36]. Additionally, a recent study on paediatric brain
tumour patients found correlations between the MD and tumour grade and cellularity
[37]. Since FA estimates how anisotropic the diffusion process is, it can serve as a useful
indicator of demyelination in white matter fibre tracts, with studies showing a reduction
in FA in brains suffering from myelin loss [38]. It has also been recognized that the FA
is significantly reduced in selected white matter regions including the hippocampal white
matter, corpus callosum, cingulum and uncincate fasciculus for patients suffering from AD
[26]. Furthermore, both FA and MD in the cerebellum and basal ganglia have been utilized
for the discrimination of different types of Parkinsonian disorders as outlined in [39] [40]
[41].
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Acquisition Requirements

The underlying modelling assumptions of DTI entail that it can only determine a single
fibre population in each voxel of the imaged volume, and hence fails in areas of crossing
fibres. As a result, FA and MD might not serve as accurate diffusion metrics in regions of
crossing fibre tracts. Despite this limitation, DTI remains popular in the clinical setting
largely due to its clinically feasible acquisition times. This is an important factor to
consider when designing MR experiments as shorter acquisition times are well-tolerated
by patients and can result in reduced motion artifacts. It is now possible to obtain high
quality diffusion tensor MR data with whole-brain coverage at 2.5 mm isotropic resolution
and 64 diffusion-encoding directions with a 1.5T scanner in approximately 15 minutes, as
described in [30].

3.1.2 Multi-Compartment Models

Multi-compartment models represent brain white matter as a weighted combination of
three types of compartments, where each compartment captures a different property of
molecular diffusion. Notably, diffusion can be categorized as being restricted in the intra-
axonal space, hindered in the extra-axonal space, or isotropically restricted in other cellular
structures [42], with the underlying assumption being that there is no molecular exchange
between the compartments. Combinations of two or three compartments provide a more
coherent picture of the diffusion process in highly-ordered brain tissues and specifically in
regions of crossing fibres, which the DTI model is unable to satisfactorily resolve. The
general equation for the multi-compartment model is expressed as

S =
3∑
i=0

fiSi

3∑
i=1

fi = 1, 0 ≤ fi ≤ 1,

(3.12)

where S1, S2 and S3 are the diffusion signals corresponding to the three compartments,
and f1, f2 and f3 represent the volume ratio of each population.

Ball and Stick Model

Behren’s ball and stick model is a simple yet useful approach for characterizing molec-
ular diffusion as a two-compartment model [28]. The free diffusion in the extra-axonal
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compartment is assumed to be an isotropic Gaussian (“the ball”), while the unidirectional
diffusion within the axon, i.e., in the fibre direction, is modelled with a Gaussian for which
the tensor has a single non-zero eigenvalue (“the stick”).

The isotropic extra-axonal component is described by the normalized DTI signal (see
Equation 3.4)

S1 = e−bu
TDu,

with the tensor D = dI, d denoting the mean diffusivity and I the identity tensor. The
signal for the stick can be mathematically formulated as follows

S2 = e−bd(n·u)
2

,

where b is the b-value in equation (2.3) and u denotes the orientation of the diffusion
gradient. The fibre direction, n, and d are the model parameters to be estimated. Finally,
equation (3.12) becomes

S = fS1 + (1− f)S2. (3.13)

Acquisition Requirements

The data acquisition requirements for the ball and stick model are not particularly strin-
gent; the original experiment was conducted using a single-shell sampling scheme with 60
DWIs acquired at a b-value of 1000 s/mm2. The total scan time was 15 minutes [28].

Composite Hindered and Restricted Model of Diffusion

The Composite Hindered and Restricted Model of Diffusion proposed by Assaf et al. [43],
better known as CHARMED, is another two-compartment model representing the diffusion
signal as a combination of restricted diffusion in the intra-axonal space and an anisotropic
Gaussian depicting hindered diffusion in the extra-axonal space. The restricted diffusion
component can be further decomposed into spin populations diffusing parallel and perpen-
dicular to the axon’s axis. Displacements parallel to the fibre axis are considered to be free
and hence, modelled as a 1D Gaussian which simplifies to the well-known Stejskal Tanner
equation (Equation 3.4). In contrast, movement perpendicular to the axon is represented
using Neuman’s depiction of restricted diffusion in a cylinder. More details can be found
in [44]. Formally, in this model, S is given by

S = frSr + fhSh, (3.14)

where Sr and Sh are the normalized diffusion signals from the restricted and hindered
compartments, with fr and fh denoting the respective volume fractions.
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Acquisition Requirements

The experimental design proposed by the authors for the CHARMED framework not only
entails the acquisition of low angular resolution DWIs (6 directions) at low b-values, but also
high angular resolution diffusion images (192 acquisitions) at b-values ranging from 2000–
10,000 s/mm2. The high angular resolution sampling is necessary for accurate estimation
of the restricted diffusion profile in the intra-axonal compartments [43]. The total scan
time for the dataset is around 17 minutes.

3.1.3 Metrics derived from Multi-Compartment Models

Multi-compartment models can be used to obtain geometrical features of the fibre tis-
sue architecture, including axon density, diameter, orientation and permeability [45]. For
instance, the well-known application AxCaliber, introduced by Assaf et al. extends the
CHARMED framework to measure the axon diameter distribution and density [46]. The
fibre diameter distributions thus obtained were comparable with those estimated using
invasive histological techniques.

3.2 Non-parametric Methods

Model-based methods for depicting the diffusion process are naturally dependent on the
constraints and complexity of the model employed, and hence might be unable to discern
more intricate fibre configurations. For instance, in the case of fanning and bending fibre
tracts, the diffusion tensor model estimates the principal direction of diffusion to be the
same as in a population of parallel fibres. Additionally, it is difficult to know whether it is
only the physical properties of the axonal tracts, such as the density and size, that affect
the tensor shape or the actual underlying fibre structure.

Consequently, recent work has focused on evaluating the fibre orientation distribution
function (fODF) from diffusion data. The methods described in this section attempt to
recover the fODF either directly or by reconstructing other spherical functions that can
approximate the fODF or dODF.

3.2.1 Diffusion Spectrum Imaging

As mentioned in the previous chapter, the space of all possible q-vectors is referred to
as the q-space, giving rise to the notion of q-space imaging (QSI) or diffusion spectrum

26



imaging (DSI) [47]. Three-dimensional q-space coverage is beneficial in its ability to discern
characteristics of the diffusion behaviour that provide information about cell size, shape and
transmembrane exchange [48]. Hence DSI, proposed by Wedeen et al. [49], requires dense
sampling of the diffusion signal on a three-dimensional Cartesian grid at a multitude of high
b-values in order to reconstruct the EAP through a numerical Fourier Transform (Equation
3.2). Often, the dODF is also computed from the EAP, enabling the approximation of the
underlying fibre orientation distribution.

Acquisition Requirements

It is obvious that DSI is a significant improvement over the DTI model, allowing us to
resolve crossing fibre configurations and gain further insight into complex tissue structures.
However, the method remains clinically infeasible due to the prohibitively long acquisition
times (typically an hour long) and large b-values required. As an example, more than 500
DWI acquisitions at b-values up to 20,000 s/mm2 are obtained in [49] [50] to recover the
EAP which is impractical in the clinical setting.

3.2.2 Q-Ball Imaging

High Angular Resolution Diffusion Imaging (HARDI), a spherical acquisition scheme de-
veloped by Tuch et al. [51] samples the q-space at a large number of q-vectors uniformly
distributed on a spherical shell as opposed to the dense Cartesian sampling required by
DSI. However, HARDI is only an acquisition protocol and must be used in conjunction
with a reconstruction scheme to relate the diffusion signal to the diffusion propagator. A
HARDI-based, non-parametric approach for reconstructing an unnormalised dODF using a
spherical tomographic inversion, namely the Funk-Radon Transform (FRT), was advanced
in [32]. The method, termed q-ball imaging (QBI) circumvents the need for dense q-space
sampling.

The FRT of a spherical function f defined at a point x on the sphere can be computed
as the integral of f along the arc length of the great circle C(x) comprising all unit
vectors perpendicular to x. Mathematically, the dODF can be estimated as the FRT of
the diffusion signal, E(q), on the spherical shell in q-space

ψ(x) =

∫
q∈C(x)

E(q)dq, (3.15)

where q is a unit vector. It should be noted that the dODF computed in this way may
suffer from blurring and low angular resolution [33].
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Acquisition Requirements

The acquisition requirements of q-ball imaging are not as rigorous as DSI, with gradient
directions typically ranging from 100-500, and b-values varying from 2000 to 4000 s/mm2.
However, MRI scan times still tend to be 30 minutes or higher, limiting its applicability in
the clinical domain.

3.2.3 Spherical Deconvolution

Spherical deconvolution (SD) uses HARDI data to directly recover the fODF without
making any prior assumptions on the underlying fibre structures. The diffusion-weighted
signal attenuation emanating from a uniquely-oriented fibre population can be expressed
in terms of a response function, R(θ). Here, θ is the elevation angle of the population,
assuming it is aligned along the z-axis. Hence in SD, the total diffusion-weighted signal
originating from a sample containing multiple distinct fibre populations is considered to
be the sum of the response functions from each, weighted by their corresponding volume
fractions and rotated onto their respective directions expressed in spherical coordinates
(θ, φ) [52]. The signal is represented as

S(θ, φ) =
∑
i

fiAiR(θ), (3.16)

where fi is the volume fraction of the ith coherently-oriented fibre population, R(θ) is the
aforementioned response function and Ai is the operator constituting a rotation into the
orientation (θi, φi).

The model in Equations 3.16 and 3.17 is founded on the assumption that the order of
displacement of water molecules measurable in a typical dMRI experiment is small enough
for molecular exchange between orientationally-distinct fibres to be precluded. Accordingly,
the diffusion-weighted signal attenuation can be represented as a convolution over the unit
sphere of the fODF with the response function for a particular orientation. In particular,
denoting the fODF as f(θ, φ) in spherical coordinates, the signal can be represented as

S(θ, φ) = f(θ, φ)⊗R(θ). (3.17)

The fODF encapsulates the volume fractions of coherently-distinct fibres. If R(θ) is
known beforehand, a spherical deconvolution can then be used to extract the fODF in
terms of its spherical harmonic decomposition [52].
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Acquisition Requirements

In the original experiment, the authors acquired diffusion-weighted data along 60 gradient
directions at a b-value of 3000 s/mm2, allowing discrimination of fibre crossings at 40◦

angles and more. The total scan time was approximately 20 minutes. It is noted in [52]
that results are expected to improve with increasing angular and spatial resolution and
higher b-values.

3.2.4 Persistent Angular Structure (PAS) MRI

As stated previously, most dMRI methods aim to reconstruct the fibre orientation density
function or its marginal distributions. Similarly, PAS MRI computes the (radially) per-
sistent angular structure of the EAP which provides information about the movement of
water molecules in each direction, and by extension about the underlying fODF [53]. The
PAS can be considered to be the projection of the propagator onto a sphere of constant
radius, obtained from the Fourier Transform that best fits the diffusion measurements.

In the original algorithm, Jansons and Alexander use a maximum-entropy parametriza-
tion to acquire an optimal representation of the PAS, which results in [53]

p̃(x̂) = exp(λ0 +
N∑
j=1

λj cos(rqj · x̂)), (3.18)

where r is the smoothness operator and the λj, j = 0, ..., N are calculated using a non-linear
optimization fitting procedure. Further information about the method is described in [53].
A significant benefit of the maximum-entropy representation over other linear bases is that
it is positive definite and captures the spiky shapes that can better depict the white matter
structure.

Acquisition Requirements

Even though the PAS function is a highly accurate characterization of the fODF compared
to other dMRI methods discussed so far, it should be noted that it tends to be computa-
tionally slow. However, its acquisition requirements are relatively low, and the technique
provides good performance with 54 diffusion-encoding directions and b-values in the range
1500-2000 s/mm2 [54].
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3.2.5 Mean Apparent Propagator (MAP) MRI

Since the long acquisition times involved in DSI curtail the clinical applicability of the
method, a number of analytical representations of the diffusion signal that aim to compute
the EAP from less arduous multi-shell acquisition sequences have recently been proposed
[55] [56] [57] [58] [59]. Analytical representations of the diffusion signal are advantageous
in that they tend to be more robust and their corresponding Fourier transformations also
have closed form expressions. One such technique is the Mean Apparent Propagator (MAP)
MRI formalism introduced by Özarslan et al. in 2013 which models the three-dimensional
q-space signal as a weighted sum of the eigenfunctions of the simple harmonic oscilla-
tor (SHO) Hamiltonian, i.e., the Hermite polynomial basis functions [48]. The first term
in the expansion is equivalent to the DTI model, where diffusion of water molecules is
assumed to follow a Gaussian distribution, while higher order terms are used to represent
the non-Gaussian character of anisotropic diffusion.

The aforementioned Hermite functions form a complete orthogonal basis for the space
of square-integrable functions [60]. Additionally, their Fourier Transforms are also Hermite
functions, enabling both the diffusion signal attenuation in 3D q-space and the propagator
or MAP in the displacement domain to be expressed as a weighted sum of basis functions.
In particular, in the rotated anatomical system, the diffusion tensor reduces to a diagonal
matrix, with separable basis functions in three dimensions. Specifically,

A = 2RTDRtd =

 u2x 0 0
0 u2y 0
0 0 u2z

 , (3.19)

where R is the rotation matrix that diagonalizes the diffusion tensor D, and ux, uy and uz
are the scaling parameters given by u2k = 2λktd where td denotes the diffusion time and λk
are the eigenvalues of D.

Finally, the normalized diffusion-weighted signal, E(q) can be expressed in terms of
the Hermitian polynomial basis functions, φn(u,q) as

E(q) =
Nmax∑
n=0

∑
{n1,n2,n3}

an1n2n3φn1n2n3(A,q). (3.20)

The diffusion propagator in the displacement domain can be expanded similarly

P (r) =
Nmax∑
n=0

∑
{n1,n2,n3}

an1n2n3ψn1n2n3(A, r), (3.21)
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with n1 + n2 + n3 = N signifying the total order of the expansion, truncated at Nmax.
Since the basis functions are separable, they can be written as

φn1n2n3(A,q) = φn1(ux, qx)φn2(uy, qy)φn3(uz, qz)

ψn1n2n3(A, r) = ψn1(ux, x)ψn2(uy, y)ψn3(uz, z),
(3.22)

and are related through the Fourier Transform

φn(u,q) =
i−n√
2nn!

e−2πqu
2
Hn(2πqu)

FT↔ ψn(u,x) =
1√

2n+1πn!u
e

−x2

2u2 Hn

(x

u

)
, (3.23)

where Hn(x) is the nth order Hermite polynomial. The coefficients of the expansion are
calculated by solving a quadratic minimization problem once A has been estimated. For
further details of the algorithm, the reader is referred to the original paper [48].

Acquisition Requirements

Although MAP MRI should ideally be able to represent any kind of signal decay and
hence, more complex diffusion processes, its acquisition requirements are exacting and
necessitate dense q-space sampling. For example, a total of 698 diffusion-weighted images
were acquired on b-values ranging from 1000-6000 s/mm2 in an acquisition time of 72
minutes in [61].

3.2.6 Derived Metrics

A variety of metrics can be derived from the diffusion measurements based on the specific
diffusion model employed for signal representation. Processing HARDI data often entails
computing metrics for the comparison of reconstructed ODFs across subject populations.
For instance, the Kullback Leibler and Jensen-Shannon divergences have been employed
for comparing different ODFs in [62] and [63]. Additionally, there has been considerable
interest in formulating rotationally-invariant scalar measures for HARDI data. Özarslan
et al. proposed a Generalized Anisotropy (GA) index based on the variance of diffusion
coefficients and an information-theoretical parametrization of the anisotropy, termed the
Scaled Entropy (SE) generalizable to higher-order tensor models and functions defined on
the unit sphere [64]. Tuch introduced a mathematical framework to extract geometrical
features from the spherical harmonic (SH) representation of the reconstructed ODF in
[32], including a Generalized Fractional Anisotropy (GFA) index. The GFA measures the
variation of the dODF. Similarly, the authors in [65] outline the use of the power spectrum
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of the spherical harmonic analysis of the ODFs as a rotationally invariant diffusion measure,
while [66] describes the application of SH coefficients to obtain spherical shape descriptors
of the underlying functions. As the principle motivation of many dMRI schemes is the
approximation of the fibre orientation distribution, many studies attempt to extract the
peak shape and anisotropy corresponding to fibre tracts from the Hessian or matrix of
second partial derivatives of the function [1].

3.3 Summary

Table 3.1 summarizes the parametric and non-parametric dMRI methods discussed in this
chapter, along with their acquisition requirements and computation times.

Model/Method Acquisition Requirements Computation Time

DTI single-shell, minimum 6 samples low

Ball and Stick single-shell medium

CHARMED single-shell, ≤ 200 samples medium

DSI dense Cartesian sampling high

QBI single-shell, 100− 500 samples low/medium

SD single-shell, ≈ 60 samples low/medium

PAS MRI single-shell, ≤ 60 samples high

MAP MRI dense multi-shell sampling medium

Table 3.1: Comparison of Non-Parametric and Model-Based dMRI Methods

Many of the dMRI methods just described rely on high angular resolution single and
multi-shell data. Such data can be characterized with complex mathematical models which
are capable of shedding light on intricate sub-voxel structures, such as crossing and bend-
ing fibre geometries. For instance, some of the methods are able to compute marginal
distributions of the fODF, including the dODF, allowing us to obtain information on the
underlying fibre directions.

Despite this, it is apparent that a majority of the aforementioned algorithms tend to be
concomitant with sophisticated dMRI acquisition protocols, relying on dense, high angular
q-space sampling. Such schemes would require significant changes to standard clinical
protocols and longer acquisition times. The scan time is a singularly important feature of
diffusion imaging protocols. Not only are lengthy scan times costly for hospitals, but also
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it is impractical to expect patients to endure such extensive imaging. Consequently, the
in-vivo data usually acquired for such diffusion studies is taken from cooperative, healthy
individuals. Much work is required before current imaging hardware will be able to match
the needs of the latest developments in dMRI. However, in the meantime, it would be
prudent to capitalize on large imaging data repositories which have already been amassed
using relatively simple, clinically-feasible diffusion protocols. Accordingly, the main focus of
this research has been to develop accurate diagnostic markers from clinical dMRI protocols.
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Chapter 4

Main Contribution

The main contributions of the thesis are twofold. First, we propose a conceptually novel
approach for stratification of AD and NC subject groups via simultaneous analysis of
multiple brain regions by drawing upon their mutual statistical associations, and second,
we formulate a mathematical framework for generalizing diffusion metrics usually computed
from data acquired using complex dMRI acquisition protocols (see Chapter 3) to standard,
clinically-plausible acquisition schemes. We demonstrate the applicability of the technique
to existing dMRI datasets, and hence, its ability to utilize diffusion data that has already
been collected in the clinical setting. This chapter describes in detail the two main stages
of the proposed work; a diffusion MRI pipeline developed for data preprocessing prior to
image analysis and the implementation details of the proposed algorithm for discrimination
between AD and NC subjects.

4.1 Diffusion Data

The data used for the purpose of this thesis was obtained from the publicly available
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. ADNI began in 2003 with
support from the National Institute of Aging (NIA), the National Institute of Biomedical
Imaging and Bioengineering (NIBIB), the Food and Drug Administration (FDA), Canadian
Institutes of Health Research (CIHR), private pharmaceutical companies and various other
not-for-proit corporations as a global research effort to track the progression of Alzheimer’s
Disease[67]. The ADNI project is a colossal effort, providing longitudinal study data taken
from more than 1700 participants recruited over 50 sites across North America, who are
either cognitively normal, implicated with Mild Cognitive Impairment or diagnosed with
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Alzheimer’s Disease. Participants are made to undergo MRI and PET scans periodically,
at the first screening visit (baseline), after 3 months, 6 months, and annually thereafter over
the course of a few years. The overarching goal of the ADNI study has been to combine
clinical, neuroimaging, genetic, and biospecimen data for the development of diagnostic
biomarkers to assess the brain’s structure over the course of the disease.

A portion of the imaging data available in the ADNI database was utilized for the
evaluation of the proposed algorithm. A total of 40 age-matched subjects were selected
in the age range of 60-80, 20 of which were cognitively normal (10 males, 10 females) and
20 with AD. The primary motivation for using the ADNI database was to highlight the
usefulness of existing dMRI data for the development of diagnostic markers for Alzheimer’s
Disease. The MRI data used for the study was acquired on a 3 Tesla GE Medical Systems
Signa HDxt scanner, and consisted of the following images:

1. Diffusion-weighted magnetic resonance images. These were obtained using a spin
echo pulse sequence (256 × 256 matrix; voxel size: 2.7 × 1.37 × 1.37 mm3; TR =
12,500 ms; TE = 68.4 ms; flip angle = 90◦). Each DTI scan comprised a total of 46
images: 5 T2-weighted images with no diffusion sensitization (B01 . . . B05) and 41
diffusion-weighted images (DWIs) acquired with a b-value of 1000 s/mm2 [68].

2. T1-weighted magnetic resonance images. The T1-weighted images were obtained
with a high signal-to-noise ratio (SNR) Spoiled Gradient Echo (SPGR) protocol
(256× 256 matrix; voxel size = 1.2× 1.0× 1.0 mm3; TR = 6.98 ms; TE = 2.85 ms;
flip angle = 11◦) [68] [69].

3. T2-weighted magnetic resonance images. The T2-weighted images were acquired
using a gradient echo sequence (256×256 matrix; voxel size = 4.0×0.78×0.78 mm3;
TR = 650 ms; TE = 20 ms; flip angle = 20◦).

4.2 Diffusion MRI Pipeline

Data preprocessing is a crucial stage for dMRI-based image analysis involving multiple
data manipulation routines intended for motion artifact and eddy current correction, re-
moval of non-cerebral tissue via skull stripping methods and automated brain labeling for
brain segmentation. Identifying and removing outliers, along with compensating for mis-
alignments between images ensures as little error as possible will be carried forward to
the later stages. The significance and implementation of each stage of the diffusion MRI
pipeline is described below.
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Head Motion and Eddy Current Correction

It is difficult for ADNI study participants to remain completely motionless for the duration
of the T1, T2 and diffusion-weighted imaging procedure, oftentimes resulting in misalign-
ment between scans corresponding to the same subject. Cardiac pulsation may also be a
source of undesirable motion in the scans. Additionally, the long diffusion gradients em-
ployed in DW MRI pulse sequences may cause a warping or stretching of diffusion images
along the phase-encoding direction due to the presence of eddy currents. Hence, there is a
need to compensate for the misalignment and warping caused by the aforementioned effects
which can be achieved by registering diffusion-weighted images to non-diffusion-weighted
ones [70].

1. The first step was affine registration with 12 Degrees of Freedom (DOF) and a least
squares cost function of the non-diffusion weighted images B02 . . .B05 to the first, i.e.,
the B01 . This was accomplished using FMRIB (FSL) software library’s FMRIB’s
Linear Image Registration Tool (FLIRT) 1. The resulting registered images were then
averaged to generate a final SNR-enhanced B0 image using FSL’s fslmaths tool
which allows the mathematical manipulation of images.

2. Next, each of the 41 diffusion-weighted images was registered using affine transforma-
tions to the B0 generated in the preceding step using FSL’s FLIRT tool with 12 DOF
and a correlation ratio cost function. The diffusion-encoding gradients corresponding
to each DWI were also updated through rotation, according to the transformation
matrices produced during the initial registration process.

Automatic Brain Segmentation

To enable the extraction of multiple brain regions, we used the Freesurfer Software Suite
2, a well-known open-source automatic brain segmentation tool [71] [72] [73] [74] [75] de-
veloped by the Athinoula A. Martinos Center for Biomedical Imaging at Massachusetts
General Hospital to assign labels to different cortical and subcortical structures of the
brain. Freesurfer requires the T1-weighted scan of the subject as input in addition to an
optional brain mask which is used to keep only voxels that correspond to cerebral tissue
and neglect voxels that are not part of brain tissue (e.g., the skull and nasal cavities). If

1More details regarding the tools available in the FSL library can be found at http://fsl.fmrib.ox.
ac.uk/fsl/fslwiki/

2Implementation details can be found at https://surfer.nmr.mgh.harvard.edu/
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not provided with a brain mask, the Freesurfer software uses the watershed segmentation
algorithm to fit a spherical surface to the brain and produce its own mask [75]. However,
we found that segmentation improved considerably when we employed a more rigorous
procedure to generate the brain mask. Specifically, we adopted a method used by Har-
vard Medical School Psychiatry Neuroimaging Laboratory’s (PNL) Injury and Traumatic
Stress (INTRuST) unit in their publicly available diffusion and structural MRI processing
pipeline 3. The masking script used by PNL computes a number of registrations of the
T1-weighted scan to a set of training images along with a weight metric measuring image
similarity of each. Subsequently, it warps and adds the weighted maps together to procure
the brain mask.

Before segmenting and parcellating the brain volume, Freesurfer first brings the data
into Talairach space via affine registrations with the standard MNI305 template. The final
outputs generated by Freesurfer are a number of labelled volumes, each corresponding
to a different brain structure. An example of a Freesurfer output volume of particular
interest to us is depicted in Figure 4.1.

3The INTRuST pipeline is publicly available at https://github.com/pnlbwh/pnlutil
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Figure 4.1: The sagittal, axial and coronal views (in clockwise order) of the par-
cellated white matter volume output by Freesurfer. The legend (white insert)
depicts the Freesurfer labels corresponding to different white matter regions in
the brain.

Transforming Freesurfer Labels to Diffusion Space

The labelled volumes extracted from a subject’s structural scan by Freesurfer are com-
puted in the aforementioned Talairach space. Before various white matter regions in dif-
fusion data could be explored, these volumes needed to be resampled to the subject’s
corresponding diffusion space. The Advanced Normalization Tools (ANTs) software 4, an
open-source framework for linear, elastic and diffeomorphic image registration [76], was
employed to bring Freesurfer labels into diffusion space.

The T1-weighted image in the Talairach space was registered to the associated DWI
with zero diffusion-weighting, i.e., the B0, in a two-step registration process involving
the subject’s T2-weighted scan. A direct registration of the T1-weighted image to B0 is

4The ANTs software is publicly available at http://stnava.github.io/ANTs/
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undesirable because of the substantial differences in their image resolutions and contrasts;
i.e., T1-weighted scans are high resolution while diffusion images are acquired with a coarser
resolution. To overcome this difficulty, we exploited the fact that the T1 and T2-weighted
images have similar resolutions , while the B0 and T2-weighted scans share very similar
contrasts. Thus, the T1-weighted image was first registered to the T2-weighted image,
followed by a registration of the T2-weighted scan to the B0-weighted image. Finally, the
resulting geometric warps were combined and applied to the labelled volume.

The algorithmic steps described above are summarized as follows:

1. In particular, the T1-weighted scan in the Talairach space is rigidly registered to
the subject’s T2-weighted image using the ANTs registration package and mutual
information as the similarity metric.

2. Next, a purely rigid registration with mean squared intensity difference as the sim-
ilarity metric is used to register the T2-weighted scan to the average B0 image and
bring it into diffusion space. A symmetric diffeomorphic registration technique pro-
vided by ANTs, Symmetric Image Normalization (SyN), [77] with a cross-correlation
similarity metric is then used to register the B0 to the rigidly aligned T2-weighted
image with a higher weighting along the phase-encoding direction to account for eddy
current distortion.

3. Finally, the aforementioned transforms are composed in the correct order (the T1
to T2 forward transform, the T2 to B0 forward transform, and the B0 to rigidly
registered T2 reverse transform) and applied to the segmented volumes to bring
them into diffusion space.

It is worth emphasizing that the aforementioned procedure constitutes a critical step in the
diffusion MRI pipeline since inaccurate registration can cause labels to be “off”, leading
to further errors in diffusion analysis.

Skull Stripping

In order to retain relevant information from the diffusion-weighted magnetic resonance
images, we made use of FSL’s Brain Extraction Tool (BET) [78] to remove non-cerebral
tissue including the skull, scalp, nasal cavities and meninges [79]. A fractional intensity
threshold of 0.3 and a vertical gradient of 0.3 in the threshold were found to be the optimal
BET parameters to skull-strip the B0 and 41 DWIs, providing a relatively good brain
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estimation. The BET tool was also used to produce a binary brain mask for the average
B0, with 1s representing voxels that correspond to brain tissue and 0s depicting non-brain
tissue voxels.

Saving Output Images

The 41 registered, skull-stripped DWIs, the B0, and the Freesurfer labels in diffusion
space were concatenated and stored in lexicographical order as a three-dimensional matrix
for ease of analysis, with the first 41 rows corresponding to each diffusion-weighted image,
the 42nd row storing the brain mask and the 43rd corresponding to the labelled image
volume. The mask was also stored as a separate 3D matrix to be used for later evaluation
of the diffusion data.

Quality Control

Though the diffusion MRI pipeline aims to reduce image artifacts due to patient motion,
eddy currents and other sources of error, it is naturally subject to pitfalls and errors. If not
rectified immediately, these errors will be carried forward in the later stages of diffusion
image analysis and will be reflected in the calculation of diffusion metrics. For this reason,
a quality control (QC) procedure was applied after each intermediate step of the pipeline
to identify and correct any issues. Most of our QC was done in the usual way, i.e., by
manual inspection of the diffusion-weighted images on a gradient by gradient, slice by slice
basis [80]. The following steps were taken for this purpose:

1. Registered images are overlaid onto the reference image and checked slice by slice to
see how well-aligned they are. For instance, it can be done by ensuring the ventricles
of the brain volumes line up well.

2. The skull-stripped diffusion images and the brain mask are also visualized and exam-
ined for any irregularities such as “holes” in the brain surface, and the BET parameters
adjusted if need be.

3. A basic yet essential step to verify the final outputs of the pipeline involves extracting
the labels associated with the corpus callosum, an easily identifiable white matter
structure made up of highly-oriented fibres. Diffusion data corresponding to the
corpus callosum has long been known to be characterized by relatively high values
of FA, suggesting its usefulness as a QC measure. Hence, a diffusion tensor fit is
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computed in each voxel of the ROI, followed by calculating the FA values (refer to
Section 3.1.1). In particular, we expect the FA values to be distributed around 0.7
indicating a high degree of anisotropic diffusion in the corpus callosum (see Figure
4.2b). Subjects that did not meet this criteria were discarded and not used for further
analysis (see Figure 4.2a).

(a) FA histogram for a poorly-registered subject (b) FA histogram for a well-registered subject

4.3 Adapting Diffusion Metrics to the Spherical Shell

High angular resolution acquisitions provide access to distinctive measures of the diffusion
process and the underlying tissue microstructure, for e.g., the size and shape of axonal
populations not usually available from simpler indices. Such features can be extracted from
the analytical representations of the full EAP. Of particular interest to us are the return-to-
origin probability, propagator anisotropy and the non-gaussianity indices. Although these
indices are typically computed from diffusion data acquired using complex acquisition
protocols (e.g., multi-shell sampling), this section outlines how they can be adapted for
the single-shell diffusion sampling while still imparting meaninful information about tissue
microstructure. Before proceeding, we briefly review a meaningful basis for representation
of diffusion data, i.e., the spherical harmonic (SH) transform.
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Spherical Harmonic Representation of Diffusion Data

Spherical harmonics constitute a particularly useful representation and analysis for diffu-
sion data [81]. The spherical harmonic transform is an extension of the Fourier transform
to the spherical domain, and is hence well-suited for the spectral-domain representation
of spherical functions [82]. Since diffusion signals are acquired over spherical shells in q-
space, the SH transform can be used to characterize any diffusion signal acquired on the
sphere. Accordingly, the spherical harmonic (SH) functions have been previously adopted
for depicting the diffusion signal in each voxel as outlined in Frank [81] and Alexander et
al. [83].

The spherical harmonics form a complete orthogonal basis for complex-valued functions
on the three-dimensional unit sphere, S2. Subsequently, the normalized diffusion signal
E(q) can expressed as a linear combination of the SH functions Y m

l (q) such that

E(q) =
∞∑
l=0

l∑
m=−l

cml Y
m
l (q), (4.1)

where q is assumed to be a unit vector in R3 and cml represents the series coefficient for
the associated SH of order l and phase factor m. In practice, the order l is normally
bounded by a maximum L based on standard considerations of sampling theory, known as
the harmonic series order of the expansion. It follows that linear approximation of diffusion
signals is finite in many cases, albeit approximate. For each l, there are a total of (l+ 1)/2
spherical harmonic functions affiliated with it. In spherical coordinates, the unit vector q
can be equivalently expressed as (θ, φ). Thus, the diffusion signal attenuation and the SH
coefficients in the spherical coordinate system can be represented as E(θ, φ) and Y m

l (θ, φ)
respectively, with θ corresponding to the latitude and φ to the longitude. Y m

l (θ, φ) can be
expanded as

Y m
l (θ, φ) = (−1m)

√
(2l + 1)

4π

(l −m)!

(l +m)!
Pm
l (cosθ)eimφ, (4.2)

where Pm
l (x) are the associated Legendre polynomials given by the following equation

Pm
l (x) =

(1− x2)m
2

2ll!

dl+m

dxl+m
(x2 − 1)l. (4.3)

The approximation power of a truncated SH expansion is determined by the maximum
spherical harmonic order, L. Ideally, a large value of L would be preferable for a more
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accurate characterization of diffusion signals. In practice, since diffusion signals are ban-
dlimited, it is possible to use relatively small values of L for fitting the diffusion mea-
surements, leading to a truncated series expansion for the diffusion signal [84]. Moreover,
since E(q) exhibits antipodal symmetry, its SH expansion involves only even-order spher-
ical harmonics, reducing the total number of coefficients to be estimated from (L+ 1)2 to
N = (L+ 1)(L+ 2)/2.

In practical implementations, the number of spherical samples are finited and can be
denoted by ui, i ∈ {1 . . . k}. In this case, Equation (4.1) can be compactly represented as
a matrix vector multiplication E = Yc such that Y ∈ RK×N is the matrix of SH functions
evaluated at each of the K diffusion-encoding directions, ui = (θi, φi), and c ∈ RN is the
vector of SH coefficients. Namely,

Y =


y00(u1) y−11 (u1) y01(u1) . . . yLL(u1)
y00(u2) y−11 (u2) y01(u2) . . . yLL(u2)

...
...

...
. . .

...
y00(uK) y−11 (uK) y01(uK) . . . yLL(uK)

 , c =



c00

c−11

c01
...

cLL


. (4.4)

A particularly effective way of estimating the SH coefficients for the series expansion in-
volves a constrained least squares formulation, as proposed by Descoteaux et al. in [85].
If E denotes the column vector of diffusion measurements acquired at the uis, the optimal
SH coefficients can be estimated as shown

argmin
c
‖Yc− E‖22 + λ‖Λc‖22, (4.5)

where λ > 0 is a user-defined regularization parameter usually equal to 0.006 [85] and
Λ ∈ RN×N is the diagonal matrix representing the Laplace-Beltrami regularization, with its
kth diagonal entry being l2k(l

2
k+1) while lk corresponds to the order of the kth SH coefficient.

The closed form solution to Equation 4.5 is given by

c∗ = (YTY + λΛTΛ)−1YTE, (4.6)

where c∗ denotes the optimal SH coefficients.

4.3.1 Return-to-Origin Probability

The return-to-origin probability, henceforth referred to as the RTOP, is the probability
that a diffusing molecule undergoes zero displacement in the diffusion time ∆, i.e the time
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between the two diffusion-sensitizing pulses [86] [87]. From the definition, RTOP can be
deduced to be P (0,∆), where P (x,∆) is the probability distribution of a spin displacing
a distance x in ∆ time (refer to Section 3.0.2). Substituting x = 0 into Equation 3.2
provides the following expression for the RTOP

RTOP =

∫
R3

ei2πq·0E(q)dq

=

∫
R3

E(q)dq.

(4.7)

Hence, the return-to-origin probability is simply the integral of the diffusion signal com-
puted over the entire q-space [48].

From a neurophysiological perspective, the RTOP is a measure of the restricted nature
of the diffusion process. The probability is found to be higher in white matter-rich areas
(e.g., the corpus callosum) than in grey matter regions like the CSF, and may be a better
indicator of complex cellular structure.

Monoexponential Assumption

The diffusion data acquired using single-shell imaging is available only on a single sphere
in R3, and hence a model is needed to characterize the behaviour of the signal over the
whole sphere (i.e., inside and outside the shell). In our particular case, we use the mono-
exponential model which assumes the diffusion signal decays exponentially in the radial
direction [33]. Specifically, at the origin, E(0) = 1, and varies exponentially according to

E(q) = E(q0u)
q2

q20 = Ẽ(u)
q2

q20 , (4.8)

where u ∈ S2, q0 is the radius of the spherical shell over which data is acquired, and E(qu) =
e−τq

2·ADC . The monoexponential model is analogous to the Stejskal Tanner formalism
(refer to equation (2.4)) [21] and is the same assumption made in the DTI model which
encapsulates the diffusion process with an oriented Gaussian function. Monoexponentiality
is a satisfactory model for the radial profile of the signal attenuation in regions with a
dominant fibre population [88], and is well-suited for the single-shell diffusion data available
to us in the ADNI database.

To calculate the RTOP, we fit the monoexponential model to the diffusion measurements
and compute the integral in equation (4.7) in spherical coordinates. The vector q can
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be factored into spherical coordinates as qu and hence, the diffusion signal can now be
represented as

E(θ, φ, q) = Ẽ(θ, φ)
q2

q20 . (4.9)

Using the above monoexponential model, RTOP can be evaluated using the following
integral

RTOP =

∫ 2π

0

∫ π

0

∫ ∞
0

Ẽ(θ, φ)
q2

q20 q2 sin θ dq dθ dφ. (4.10)

Using the substitution y =
q

q0
and integrating with respect to q, the equation reduces to

RTOP =

∫ 2π

0

∫ π

0

√
π

4(τADC(θ, φ))
3
2

dθ dφ

= k

∫
S2

1

ADC(u)
3
2

,

(4.11)

where k =

√
π

4τ
3
2

. Thus, the computation of RTOP is reduced to evaluating a spherical

integral over S2 which can be evaluated using the Lebedev quadrature method [89]. In
particular, the Lebedev approximation for equation (4.11) works out to be

RTOP ' 4πk
N∑
i=1

wi
1

ADC(ui)
3
2

, (4.12)

where N denotes the number of grid points and wi, i ∈ {1 · · ·N} their corresponding
weights. We use a 1202-point Lebedev angular quadrature approximation with a precision
of 59 to calculate the RTOP. More details on the construction of the grid points can be
found in [90].

4.3.2 Similarity Measures for Propagators

Given two EAPs, P (r) and Q(r) defined as functions of the displacement coordinate r ∈ R3,
a useful method for measuring similarity between the two is based on their inner product,
i.e.,

〈P (r), Q(r)〉 =

∫
P (r)Q(r)dr. (4.13)
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Using the definition of the inner product, an angular metric can be devised to gauge the
similarity between the propagators

cos θPQ =
〈P (r), Q(r)〉

(〈P (r), P (r)〉〈Q(r), Q(r)〉) 1
2

. (4.14)

This is analogous to the dot product, and hence provides information on the angular
similarity of the diffusion displacement profiles. It is pertinent to note that this quantity
can be evaluated in the q-space as well. This is a consequence of the Parseval and Plancherel
theorems, which underscore the unitarity property of the Fourier transform. The Parseval
theorem states that the sum of the squares of the Fourier coefficients of a function is
equivalent to the integral of the square of the function. Namely,

∞∑
n=−∞

|an|2 =
1

2π

∫ π

−π
|f(x)|2dx, (4.15)

where an are the Fourier coefficients of f . In its most general form, this can be expressed
as

∞∑
n=−∞

anbn =
1

2π

∫ π

−π
f(x)g(x)dx, (4.16)

with f̂(ξ) denoting the FT of the function.

It follows that the inner product of two vectors is preserved under orthogonal transfor-
mations. Thus, denoting the diffusion signals corresponding to the propagators as E(q)
and F (q) respectively, we can express Equation 4.14 as

cos θPQ = cos θEF . (4.17)

To make the similarity measure more intuitive for our specific application, it can be con-
verted into a dissimilarity metric by computing sin θEF =

√
1− cos θ2EF . This ensures that

identical propagators have zero distance, making it a true metric.

Non-Gaussianity

The non-Gaussianity (NG) metric quantifies the deviation of the diffusion signal from the
Gaussian approximation of employed in the DTI model. The concept of the similarity
metric can be extended to evaluate the non-Gaussianity as the angular measure between
the SH representations of the diffusion signal and its Gaussian counterpart (i.e., the DTI fit
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of the diffusion data) based on the method outlined in Özarslan et al. [48]. In the original
method, the inner products are computed by integration over the entire q-space. Since we
do not have access to the whole space but only a subset of the data over a spherical shell
in our case, we demonstrate in this thesis that it is possible to obtain a good diagnostic
diffusion measure by integrating over S2 instead. Hence, Cartesian integration is replaced
by spherical integration. The Spherical Harmonic basis functions are used to represent
the diffusion signal and its Gaussian approximation, after which the angular metric is
computed between them using Equations 4.14 and 4.17.

Specifically, we start by expressing the diffusion signal E(q), and its Gaussian approx-
imation F (q) using a matrix vector multiplication of the form

E(q) = Ya
f(q) = Yb,

(4.18)

where the respective SH coefficients, a and b are computed based on the least squares
formulation as described in Equation 4.6. The Gaussian approximation of E(q) is obtained
by fitting the DTI model to the diffusion measurements, also with a least square estimation
routine (refer to Section 3.1.1). Consequently, the resulting NG can now be evaluated as

cos θEF =
〈a, b〉
‖a‖‖b‖

sin θEF =
√

1− cos θ2EF ,

(4.19)

where 〈a, b〉 and ‖a‖‖b‖ denotes the Euclidean dot product and the vector norms respec-
tively.

Propagator Anisotropy

The applicability of anisotropy indices to the delineation of white matter tissue is well-
recognized in the literature. Notably, the FA and RA indices have served as markers for
tracking neurological disorders that implicate the CNS white matter. However, based as
they are on the DTI model for diffusion, these indices suffer from the same limitations and
are unable to characterize intricate fibrous structures. For example, the FA is found to be
lower in regions with crossing fibre populations due to the averaging caused by the Gaussian
assumption of diffusion in the DTI model [91] [92]. Consequently, methods for deriving
anisotropy indices from high angular resolution data have recently been proposed, many
of which attempt to relate the full EAP to an anisotropy measure. One such approach is
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outlined in Özarslan et al.’s MAP MRI framework, where an angular similarity measure is
computed between the propagator and its respective isotropic component using the MAP
MRI series coefficients [48].

An approach similar to the one outlined in the previous section can be used to calculate
an anisotropy index which quantifies the isotropicity of the diffusion signal. To this end,
we replace the isotropic form with a spherical approximation instead, where the latter is
completely described in terms of the first coefficient of the SH signal representation which
is known to encapsulate the isotropicity [81]. Hence, using equation (4.14), the anisotropy
index can now be evaluated as

cos θEG =
〈a, a0〉
‖a‖‖a0‖

, (4.20)

with a and a0 representing the coefficients of the SH representation for the diffusion signal
and the isotropic component respectively. Thus, Equation (4.20) can be reduced to

cos θEG =
a00
‖a‖

, (4.21)

and finally, the anisotropy index can be quantified in terms of

sin θEG =
√

1− cos θ2EG. (4.22)

Although the anisotropy index ranges from 0 to 1, it is desirable to use a scaling function
to accentuate the values in a certain range, thereby enhancing contrast. Accordingly,
Özarslan et al. define a family of scaling functions in [48]

σ(t, ε) =
t3ε

1− 3tε + 3t2ε
, (4.23)

which require as input the quantity ε being scaled, i.e., sin θEO in our case, and a parameter
t to govern the range of values to be magnified. For our specific case, the value of ε was
taken to be 0.4.

4.3.3 Rotation-Invariant Spherical Harmonic Descriptors

In [81], Frank proposes a technique for classifying the diffusion of a voxel to be either
isotropic, single-fibre or multiple-fibre based on the SH expansion of diffusion data acquired
through high angular resolution schemes, i.e., HARDI measurements. Specifically, it was
demonstrated that
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1. Isotropic diffusion is encapsulated by the first term of the SH expansion, i.e., c00Y
0
0 (u).

2. The case of single-fibre diffusion reduces to the diffusion tensor model and can be
described by

∑
l=0,2

∑
m c

m
l Y

m
l (u).

3. Multiple-fibre diffusion can be described by the even orders of the SH expansion up
to order L = 4, i.e.,

∑
l=0,2,4

∑
m c

m
l Y

m
l (u).

To summarize, the local diffusion can be characterized by the behaviour of their SH
components of even order. The energy of these components is known to be invariant to
the orientation of the signals within their respective voxels. The energies of the even
order components have been known to provide important structural information about the
underlying tissue, and can be formally defined as

el =
1

2l + 1

l∑
m=−l

|cml |2, l = 0, 2, 4 . . . . (4.24)

The SH descriptors thus described prove to be useful for the analysis of diffusion signals
[81].

4.4 Probabilistically-Weighted Graphs for AD Diag-

nosis

Characterization of the diffusion signal via parametric or model-free approaches is often
followed by quantitative analysis of the diffusion measures that can be extracted from
them. Typically, these approaches will be either region-based or tract-based. Region-
based methods involve evaluating summary statistics of measures in different regions of
the brain independently. Hence, region-based methods rely on “average” diffusion char-
acteristics which can sometimes be a misrepresentation of the underlying distributions of
the parameters. Furthermore, they are unable to gauge the interconnectivity of neuronal
processing elements as brain regions are investigated independent of each other.

Alternatively, tract-based approaches employ tractography algorithms to decipher brain
connectivity, after which spatial statistics and quantitative changes in the anatomical tracts
can be computed [93] [94]. Although these methods take neuroanatomical connections into
consideration, they are limited by the accuracy of the underlying tractography algorithm
which often rely on user intervention to define tracts. Furthermore, there is much variability
among the tractography results available from different software packages.
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The method proposed in this work seeks a compromise between the aforementioned
techniques by extending region-based approaches to the simultaneous analysis of multiple
brain regions. Specifically, a set of measures corresponding to multiple brain regions is
extracted from single-shell diffusion data, consisting of standard DTI metrics (such as FA,
MD etc.) and metrics adapted from more complex acquisition schemes (such as the NG,
RTOP) to the single-shell formalism. Since the dMRI measures tend to exhibit significant
correlations with each other, the feature set is projected onto a lower dimensional subspace
to reduce the interdependence. The culmination of our method is the construction of
an undirected, fully-connected graph with nodes corresponding to distinct brain regions
and edge weights to probabilistic distances between their respective features. Finally, the
characteristics that can be extracted from such a graph serve as discriminative markers to
stratify the AD and NC populations with substantial margin. Details of the implementation
are presented in the following sections.

4.4.1 Feature Set Extraction

We begin by extracting white matter brain regions from Freesurfer-segmented volumes
and characterizing each with a predefined set of features. Some of the diffusion measures
are conventional metrics obtained from the diffusion tensor model, while others are metrics
typically associated with high angular resolution schemes that have been adapted to the
single-shell (as described in Section 4.3). The diffusion measures are summarized in Table
4.1 on the next page. Metrics are computed voxel-wise for each brain region for each
subject. The dimensionality of each feature set is m× n where m is the number of voxels
in the brain region and n is the number of features.
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Diffusion Metric Description Method

Fractional
Anisotropy

Proportion of tensor at-
tributed to anisotropic
diffusion

Fit DTI model to diffusion data and
calculate FA as in Equation 3.7.

Relative
Anisotropy

A normalized standard
deviation

Fit DTI model to diffusion data and
calculate RA as in Equation 3.8

Mean Diffusivity Average diffusivity Fit DTI model to diffusion data and
calculate MD as in Equation 3.6

Volume Ratio Ratio of diffusion ellip-
soidal volume to a sphere
with its radius equal to
trace

Fit DTI model to diffusion data and
calculate VR as in Equation 3.9

Linearity Prolateness of diffusion
ellipsoid

Fit DTI model to diffusion data and
calculate measure as in Equation 3.10

Planarity Oblateness of diffusion
ellipsoid

Fit DTI model to diffusion data and
calculate measure as in Equation 3.11

Rotation Invariant
SH Descriptors

Power spectra of SH rep-
resentation of diffusion
signal

Estimate SH coefficients of diffusion
data and compute power spectra (Sec-
tion 4.3.3)

Return-to-Origin
Probability

Probability of spins with
zero displacement

Estimate SH coefficients and calculate
RTOP as outlined in Section 4.3.1

Propagator
Anisotropy

Dissimilarity of the SH
representation of the dif-
fusion signal and its
isotropic counterpart

Estimate SH coefficients of diffusion
data and compute anisotropy as in Sec-
tion 4.3.2

Non-Gaussianity Deviation of diffusion
signal from Gaussian
distribution

Estimate SH coefficients and calculate
index as outlined in Section 4.3.2

Table 4.1: A description of the feature set extracted from diffusion data. Refer to Sec-
tion 3.1.1 for estimation of DTI fit of the data and Section 4.3 on computing the SH
representation of the diffusion signal.
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4.4.2 Reducing Feature Interdependence

Unfortunately, the diffusion metrics exhibit excessive correlation with each other. For
instance, three of our metrics (i.e., the FA, RA and propagator aisotropy) are variants
of anisotropy. Additionally, we found Tuch’s GFA to be proportional to the propagator
anisotropy metric generalized to the single-shell formalism.

The FA index can be succinctly expressed as std(λ)
rms(λ)

with λ denoting the eigenvalues of the

diffusion tensor model fitted to the data. Tuch extended this concept in [32] to formulate
a generalized fractional anisotropy measure, i.e., the GFA, as shown below where ψ is the
dODF computed by means of the Funk-Radon Transform (FRT) of the diffusion signal in
the direction of ui, i.e., ψ ≈ FRT(E). To show this, we recall that the GFA is defined as

GFA =

√
n
∑N

i=1(ψ(ui)− 〈ψ〉)2

(n− 1)
∑N

i=1 ψ(ui)2
, (4.25)

where ψ(ui) denotes the dODF along the ith diffusion-encoding direction and 〈ψ〉, the mean
of the dODF, can be simplified as = 1

n

∑n
i=1 ψ(ui) = 1

n
due to the ODFs being normalized.

By expanding the square and rearranging terms, the numerator in Equation 4.25 can be
simplified as shown

n∑
i=1

(ψ(ui)− 〈ψ〉)2 =
N∑
i=1

ψ(ui)
2 − 2

N∑
i=1

〈ψ〉+ 〈ψ〉2

−→
N→∞

||ψ||22 − 2〈ψ〉2 + 〈ψ〉2

= ||ψ||22 − 〈ψ〉2.

(4.26)

Similarly, the denominator in Equation 4.25 can be expressed as

N∑
i=1

|ψ(ui)|2 −→
N→∞

α

∫
S2
|ψ(u)|2du

= ||ψ||22.
(4.27)

Finally, it should be noted that there is a linear relationship between the SH coefficients of
the dODF and the coefficents of the HARDI representation of the diffusion signal. Notably,

HARDI→ E(u) =
∑
n,l

cn,lYn,l

dODF→ ψ(u) =
∑
n,l

sn,lYn,l
(4.28)
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where the SH coefficients c and s are related by

sn,l = λncn,l, (4.29)

with λn denoting the eigenvalues of the FRT. Hence, it is possible to obtain an approxi-
mation of the dODF and by extension, the GFA, from the HARDI representation of the
diffusion signal. In particular, the GFA can now be computed as

GFA =
||ψ||22 − 〈ψ〉2

||ψ||22

=

∑
n,l |λncn,l|2 − λ0c20,0∑

n,l |λncn,l|2

= 1−
c20,0∑
n,l |cn,l|2

,

(4.30)

and the last equation follows since λ0 = 1. The GFA is entirely dependent on the first
coefficient c0,0, and is essentially a measure of isotropicity. Thus, it is completely analogous
to the anisotropy index described in Section 4.3.2. To demonstrate this relationship, a
scatter plot depicting the two metrics is displayed in Figure 4.3. One can see the plot is
virtually linear, implying that one of the two metrics is redundant.
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Figure 4.3: A plot depicting the virtually linear relationship between the GFA
and anisotropy values.

To reduce excessive correlations within the set and retain only those features with
maximum variance, a robust PCA was employed in a subject-wise fashion. In particular,
the feature set for each subject was transformed to a new coordinate system to eliminate
correlations between the metrics. The robust PCA implementation involved computing
a robust covariance matrix using the Minimum Covariance Determinant method (FAST-
MCD) [95], followed by an eigenvalue decomposition. Scree plots were used to determine
the largest eigenvalues to retain. In particular, the first three features were found to have
the greatest variance and were thus preserved, reducing the dimensionality of the feature
set from twelve to three. Finally, the feature sets corresponding to each brain region were
projected onto this new coordinate system. It should be noted that our approach focused
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on utilizing second order moments of the feature set as first order moments are more
susceptible to outliers. Additionally, a robust version of the PCA ensured outliers were
accounted for.

4.4.3 Computing Probabilistic Distances between Brain Regions

Since AD is considered to affect multiple domains in the brain, it is particularly interesting
to explore the statistical dependencies between diffusion measures corresponding to dif-
ferent brain regions, rather than focusing on a single region. Consequently, the next step
involved computing probabilistic distances between the dimensionality-reduced feature sets
within each subject.

Several choices are available for evaluating probability distance metrics. Notably, the
Kullback-Leibler divergence is a widely accepted measure used to quantify the difference
between two probability distributions. Given two discrete probability distributions, p and
q, the KL divergence can be defined as

DKL(p||q) =
∑
i

p(i) log
p(i)

q(i)
. (4.31)

Assuming diffusion measures in each region follow a Gaussian distribution, the following
closed-form expression can be used to compute the KL divergence for multivariate Gaussian
distributions

DKL(p||q) =
1

2

(
Tr(Σ−1q Σp) + (µq − µp)TΣ−1q (µq − µp)− k + ln

(
det Σq

det Σp

))
, (4.32)

where µ and Σ denote the means and covariances of the distributions. Using the above
equation, one can assess the probabilistic distances between any pair of empirical distribu-
tions which in our case correspond to different brain regions.

It should be noted, however, that the KL divergence is not a true metric as it is
asymmetric and does not follow the triangle inequality. Hence, symmetrizing the KL
divergence was given due consideration when developing the technique. We opted to use
the non-negative symmetric version of the divergence as defined in [96], better known as
the J-divergence. Namely,

J (P,Q) = DKL(P ||Q) +DKL(Q||P ). (4.33)
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4.4.4 Graph Construction

A conceptually novel part of the proposed work is the use of graph-theoretical network
structures to represent the probabilistic distances described in the previous section. In
network theory, graphs are mathematical structures comprising a set of nodes and vertices,
which are frequently employed to characterize pairwise distances between objects. Graphs
are often represented as matrix structures, with rows and columns indexed by vertices,
and the elements denoting pairwise distances between two vertices. As the symmetrized
KL divergence is computed between each pair of brain regions, a graph representation
is a suitable depiction of the probabilistic distances between the dimensionality-reduced
feature sets. Accordingly, the KL divergences were used to formulate a symmetrical, graph-
theoretical data matrix. As an example, computing distances between 5 different brain
regions resulted in a symmetric 5 × 5 matrix, with zeros on the diagonal. This can be
interpreted as a graph with 5 vertices or nodes corresponding to each region, with each
element of the matrix denoting the probabilistic distance between them. Specifically, the
following matrix depicts the pairwise probabilistic distances between the corpus callosum,
parahippocampal white matter, the posterior cingulate, the cerebral white matter, and the
cerebellum white matter,

J =


0 5.02 11.06 1.88 8.16

5.02 0 13.81 2.05 2.29
11.06 13.81 0 15.58 5.85
1.88 2.05 15.58 0 3.60
8.16 2.29 5.85 3.60 0

.

 (4.34)

Hence, the divergence between regions 1 and 2 is J (R1, R2) = 5.02 while that between
regions 1 and 5 is J (R1, R5) = 8.16.

4.4.5 Graph Characteristics as Discriminative Markers

The properties of the graph that depend wholly on its structure and remain invariant under
isomorphisms are useful for graph characterization. The final step of the work proposed
the use of these graph characteristics as discriminative markers for stratification of AD
and NC populations. In particular, two of these properties were found to exhibit perfect
separability between AD and NC subject groups, i.e., the closeness centrality and graph
distance. Once the symmetric KL divergence matrices were computed for all subjects in
our study, the closeness centrality and the graph distance were evaluated from each subject
matrix as described in the following sections.
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Closeness Centrality

Closeness centrality is essentially a measure of the distance of a given node to all other
nodes. Specifically, the normalized average closeness centrality is computed as

CLOC =
1

N

N∑
n=1

(
N − 1∑
j 6=i dn(i, j)

)
, (4.35)

where N is the total number of nodes and d(i, j) signifies the weight on the edge joining
nodes i and j.

Graph Distance

The graph distance is simply the sum of all edge weights of the graph.

GD =
∑
i

∑
j

d(i, j). (4.36)

Interestingly, we found the graph distance and the eigenvalue centrality (the maximum
eigenvalue of the KL divergence matrix) to exhibit one-to-one correspondence with each
other.

4.5 Results

The Freesurfer labels corresponding to 5 distinct white matter brain regions were used
for the analysis. Specifically, the following brain regions were employed: the corpus cal-
losum, parahippocampal white matter, the posterior cingulate, the cerebral white matter
(comprising the internal capsule among other regions), and the cerebellum white matter.
Grey matter regions were not selected for the analysis as it is difficult to obtain connec-
tivity information from grey matter at a b-value of 1000 s/mm2, i.e., at relatively low
b-values. The following figures demonstrate the results obtained when the proposed graph
characteristics, in other words, the closeness centrality and graph distance, were applied
to the AD and NC populations.
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(a) (b)

Figure 4.4: (a) depicts the closeness centrality and graph distance as discrimina-
tive markers for the two subject groups, with red circles corresponding to the AD
population and blue crosses denoting the NC population. (b) displays the same
plot with the addition of support vectors serving as discriminative boundaries for
the two subject groups

As can be seen from Figure 4.4, the characteristics derived from the connectivity matrix
provide excellent separability between the two populations with no observable overlap.
Additionally, a support vector machine classifier with a linear kernel was trained on the
data points to find the support vectors and the optimal separating plane for the two groups.
The resulting support vectors and the classification boundary are displayed alongside the
data points in Figure 4.4.
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Figure 4.5: The mean FA and MD for stratification of AD and NC groups in (a)
the central corpus callosum, and (b) the parahippocampal white matter. The AD
subjects are represented as red circles and the NC subjects as blue crosses.

To demonstrate the merit of our proposed technique with respect to other current meth-
ods for stratification of AD and NC populations based on dMRI diagnostic markers, the
average fractional anisotropy and mean diffusivity measures were evaluated from individual
white matter regions and used as discriminative markers [97] [98]. Specifically, the mean FA
and MD values were calculated from the corpus callosum and the parahippocampal white
matter regions of the subjects and used for separating the two populations. Significant
overlap was observed, as can be seen in Figure 4.5 above.

It is apparent from Figures 4.4 and 4.5 that discrimination of NC and AD subjects
is a complex problem. Particularly, independent analysis of distinct brain regions using
averaged diffusion measures (e.g., FA and MD) is not sufficient for separating the two
groups. Not only are average statistics of diffusion measures heavily influenced by outliers,
but assessing brain regions independently also limits the ability to gauge useful connectivity
information. In contrast, our method offers the advantage of simultaneous analysis of
multiple brain regions by exploiting statistical dependencies between them, resulting in a
significant improvement in stratification of the two groups.
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Chapter 5

Summary and Future Works

The results presented in this thesis lays the groundwork for the applicability of dMRI
towards diagnosing neurodegenerative pathologies. In particular, we demonstrated the use
of dMRI-based markers for the stratification of subjects diagnosed with Alzheimer’s Disease
and those who were cognitively normal. The thesis exploited the strengths of both region
and tract-based approaches by proposing a conceptually-novel extension of region-based
statistical methods to the simultaneous analysis of multiple brain regions. Additionally,
we developed a mathematical formulation for adapting diffusion metrics typically obtained
from sophisticated dMRI protocols (e.g., return-to-origin probability) to simpler, clinically-
feasible protocols. These diffusion metrics, along with other standard diffusion measures
were used to characterize each brain region. Next, the statistical associations between them
were evaluated as probabilistic distances. The resulting connectivity pattern was modelled
as an undirected, fully-connected graph with probabilistic weights. The characteristics of
such graphs were shown to be excellent discriminative markers for AD and NC subjects,
as verified using samples from the ADNI database.

Thus, the proposed methodology method underscored the usefulness of simple dMRI
acquisition protocols for extracting useful structural information about the white matter.
Furthermore, the significance of investigating brain regions altogether rather than indepen-
dently of each other was also highlighted. Since many neurological disorders affect multiple
domains of the brain, the joint analysis of regions holds more promise for clinical diagnosis,
as was demonstrated in the results presented in this work.

Recently, MCI, which is widely regarded as a prodromal stage of AD has been the
focus of clinicians and researchers alike. Subjects in the MCI stage may either develop
full-blown AD, remain in their current condition or even improve. Being a transitional
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phase between healthy ageing and the onset of Alzheimer’s Disease, MCI is considered
a critical stage for therapeutic intervention. Hence, there is a need for a stratification
technique capable of handling, AD, NC and MCI subject groups. Although subjects in
the prodromal stage of AD were omitted in this work, the perfect separability achieved
between the two populations suggests that the technique holds enormous potential for fine-
grained stratification of NC, MCI and AD subject groups. Therefore, future extensions to
the thesis will involve the inclusion of MCI subjects in a longitudinal setting. Additionally,
more subject cases should be incorporated to further corroborate the robustness of the
method. It is hoped that accurate discrimination of these three groups would pave the way
for early diagnosis of Alzheimer’s Disease.
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