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Abstract 
 

There are many applications in which sensing and monitoring volatile organic compounds (VOCs) 

and other gas analytes are important.  This thesis focusses on finding suitable sensing materials for 

ethanol to reduce the instances of people driving while intoxicated.  To find suitable sensing 

materials, many constraints must be taken into consideration.  For example, a sensing material and 

sensor must have the appropriate sensitivity and selectivity required. 

 

The goal is to create a sensing material or multiple materials capable of detecting ethanol that is 

emitted from the skin (transdermally).  This requires highly sensitive sensing materials and sensors 

capable of detecting ethanol close to 5 ppm.  This limit of 5 ppm was confirmed by measuring 

transdermal ethanol.  In addition, to avoid false positives, the sensor must be able to selectively 

identify ethanol (i.e. respond preferentially to ethanol). 

 

To achieve this goal, polymeric sensing materials were used because of their ability to be tailored 

towards a target analyte.  Multiple polymeric sensing materials were designed, synthesized, and 

evaluated as a sensing material for ethanol.  Both the sensitivity and selectivity of the sensing 

materials were evaluated using a specially designed experimental test set-up that included a highly 

sensitive gas chromatograph (GC) capable of detecting down to the ppb range.   

 

In total, over thirty potential sensing materials were evaluated for ethanol.  These sensing 

materials, which include polyaniline (PANI) and two of its derivatives, poly (o-anisidine) (PoANI) 

and poly (2,5-dimethyl aniline) (P25DMA), doped with various concentrations of five different 

metal oxide nanoparticles (Al2O3, CuO, NiO, TiO2, and ZnO), were synthesized and evaluated for 

sensitivity and selectivity to ethanol.  In addition, specialized siloxane-based polymers and other 

polymers such as poly (methyl methacrylate) (PMMA) and polypyrrole (PPy) were evaluated. 

 

From these thirty plus sensing materials, P25DMA doped with TiO2, NiO, and Al2O3, along with 

PPy, had the best sensitivity towards ethanol.  Most of the materials tested, with the exception of 

the CuO doped P25DMA, P25DMA doped with 20% ZnO, poly (ethylene imine) (PEI), and the 

siloxane-based sensing materials, were able to sorb, and therefore detect, 5 ppm of ethanol.  

Therefore, the sensitivity requirement of 5 ppm was satisfied.  In terms of selectivity, P25DMA 

doped with 5% Al2O3 and P25DMA doped with 10% TiO2 had the best selectivity towards ethanol 

with respect to five typical interferent gases (acetaldehyde, acetone, benzene, formaldehyde, and 

methanol). 

 

Some of the most promising polymeric sensing materials were then deposited onto two different 

kinds of sensors: a capacitive radio frequency identification (RFID) sensor and a mass-based 

microcantilever microelectromechanical systems (MEMS) sensor.  These sensors were evaluated 

for sensitivity, selectivity, and response and recovery times.  It was found that P25DMA doped 
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with 20% NiO had a detection limit of 3 ppm on the RFID sensor, whereas P25DMA had a 

detection limit of 5 ppm on the MEMS sensor.  It should be noted that not all sensing materials 

work well on all sensors. 

 

To improve the selectivity of a sensor, a sensor array or electronic nose can be used.  These use a 

pattern-recognition algorithm to separate the responses for different gas analytes.  A proof-of-

principle study was done using principal component analysis that was capable of distinguishing 

between six different VOCs using five different polymeric sensing materials.  In addition, a three 

sensor array was evaluated on the RFID platform.  Using PCA as the filtering algorithm, four gas 

analytes (ethanol, methanol, acetone, and benzene) were able to be identified.  These four analytes 

could also be identified even when in gas mixtures of twos and threes and when all four gas 

analytes were present.  

 

After this wide experimentation, and based on the knowledge gained from the sorption responses 

between various VOCs and polymers, along with what has been reported in the literature, various 

sensing mechanisms were proposed.  These sensing mechanisms explain why certain VOCs sorb 

more preferentially onto certain polymers.  Therefore, identifying the dominant sensing 

mechanisms for a target analyte can improve sensing material selection. 

 

Based on these sensing mechanisms, potential sensing materials can be chosen for a target analyte.  

By including other constraints from the specific application target and sensor, this list of potential 

sensing materials can be further narrowed.  From here, these sensing materials can be evaluated 

for sensitivity and selectivity, before the most promising ones are deposited onto sensors for further 

testing. 

 

This has led to prescriptions that can be followed when designing a new sensing material for a 

target application.  These prescriptions take into consideration the chemical nature of the target 

analyte (and thus, the dominant mechanisms by which it is likely to interact), any constraints of 

the target application (including operational temperature and type of sensor), and the chemical 

nature of the common interferents present with the target analyte.  These prescriptions allow one 

to narrow down a list of hundreds or thousands of potential sensing materials to a manageable few, 

which can then be evaluated.    
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1 

 

1. Outline and Objectives 
 

1.1 Introduction and Motivation 

 

Drinking and driving is still a major problem, despite strict laws for blood alcohol content (BAC) 

when driving.  In 2009, “1,074 Canadians were killed and more than 63,000 were injured in 

impairment-related crashes”.  The current system of random alcohol testing, through roadside 

checks, does not deter people from driving while intoxicated (Solomon et al., 2012).   

 

The best way to reduce drinking and driving is to install an ignition interlock system in every 

vehicle.  Currently, ignition interlock systems are only placed in a vehicle by court order.  Ignition 

interlock systems work by locking the gear shift in park, preventing the vehicle from moving when 

alcohol is detected using a breathalyzer (Webster and Gabler, 2007).   

 

The current ignition interlock systems are very bulky and there is a stigma associated with a person 

having one in their vehicle.  In addition, these systems do not monitor the driver throughout a 

journey.  Therefore, a small and discreet ethanol sensor that is able to monitor the driver 

periodically throughout a journey without diverting his/her attention from the road would be 

beneficial.   

 

One way to do this would be to create a transdermal ethanol sensor that was tied to a vehicle’s 

ignition interlock system that was designed to check the driver before starting the vehicle, as well 

as periodically while the vehicle was in motion.  A discreet sensor that is easily reached by the 

driver could provide this solution (Kanable, 2006).  An alternative solution could be a wearable 

ethanol sensor (Chen et al., 2015a). 

 

The most important part of a sensor is the sensing material(s).  By changing the sensing materials 

on a sensor, the sensor is able to detect different analytes.  For an ethanol gas sensor, it is important 

to design sensing materials that are both sensitive and selective.    

 

1.2 Objectives 

 

There were three main objectives for this thesis.  The first was to design sensitive and selective 

polymeric sensing materials for ethanol as the target analyte ethanol.  The second objective was to 

take the knowledge gained from evaluating potential polymeric sensing materials for ethanol and 

other common interferents and identify the main sensing mechanisms by which the analytes 

interact with the sensing material.  The third objective was to use this knowledge to come up with 

general prescriptions to guide selection of a polymeric sensing material for a target analyte (design 

stage). 
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Designing potential sensing materials is typically done through a trial and error approach.  Instead, 

a more direct approach was taken targeting specific analytes (e.g. ethanol).  Initially, the polymeric 

sensing materials were chosen based on previous experience and literature.  From here, this first 

set of sensing materials was evaluated and then new potential sensing materials were chosen based 

on the trends observed.  It was important to find sensing materials that were both highly sensitive 

to ethanol, as well as selective to common interferents (other gas analytes present). 

 

Analytes and sensing materials interact through sensing mechanisms.  These sensing mechanisms 

are based on the chemical nature of both the sensing material and the analyte.  This thesis focuses 

on the interactions between polymeric sensing materials and volatile organic compounds (VOCs).  

By comparing polymeric sensing materials for multiple VOCs evaluated or presented in the 

literature, trends were found that suggested specific sensing mechanisms.   

 

These trends and sensing mechanisms were evaluated using specifically designed case studies.  

Based on this additional information, the sensing mechanisms were categorized and organized to 

produce a set of prescriptions that could be followed when designing new potential sensing 

materials for a target analyte.  These prescriptions also take into account any constraints due to the 

sensor application.  This approach is a more direct route to designing polymeric sensing materials 

for a target analyte and sensor application than typically used trial and error procedures.   

 

1.3 Outline 

 

The first chapter is an introduction to the thesis.  It discusses the motivation and objectives of this 

work.  In addition, the first chapter outlines what is presented in subsequent chapters. 

 

The second chapter covers relevant literature background.  In the second chapter, gas sensors for 

volatile organic compounds (VOCs) and, specifically, ethanol are discussed.  In addition, sensing 

characteristics, including sensitivity and selectivity, are defined as well as types of sensing 

materials and sensors.  Chapter 2 wraps up with sensing materials and sensors that have been 

designed for ethanol. 

 

The third chapter explains the experimental procedures that were used.  An experimental test 

system was designed to evaluate both sensing materials and complete sensors (sensors with sensing 

materials) that contain a highly specialized gas chromatograph (GC) with a photon discharge 

helium ionization detector (PDHID).  This chapter also includes the synthesis of the polymers and 

polymeric nanocomposites, as well as the deposition onto the various sensors used.  Both the 

polymeric materials and sensors were evaluated using the experimental test system and the results 

were examined using various methods of statistical analysis. 
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There are four results and discussion chapters.  The results and discussion have been broken down 

into four parts: Sensing Material Analysis (Chapter 4), Sensors and Further Analysis (Chapter 5), 

Mechanistic Explanations (Chapter 6), and Selecting a Sensing Material (Chapter 7).  This was 

done for ease of reading. 

 

The fourth chapter covers the experimental results pertaining to the transdermal gas emission 

studies that were performed to determine the concentration of ethanol, and other interferents, 

emitted from a person’s skin.  This gave a basis for the concentrations used to evaluate the various 

sensing materials and sensors.  In addition, this chapter contains the characterization results and 

sorption studies of all the polymeric sensing materials.  This includes both ethanol and up to five 

other interferent gases (acetaldehyde, acetone, benzene, formaldehyde, and methanol), if the 

sensing materials were promising.  Based on these results, the best sensing materials were then 

deposited onto various sensors and further evaluated. 

 

The fifth chapter contains the experimental results pertaining to the evaluation of different sensor 

and sensing material combinations, as well as other comparisons including backbone and 

functional group analysis, and the reproducibility of the polymer synthesis.  Two different types 

of sensors were evaluated, a microelectromechanical systems (MEMS) microcantilever mass-

based sensor and a radio frequency identification (RFID) capacitive sensor.  In addition, different 

backbones and functional groups were evaluated to determine if any trends could be observed.  

Finally, comparisons such as those between batches and operators were analyzed to confirm the 

reproducibility of the polymerization process as well as the reliability of the experimental test 

system. 

 

The sixth chapter discusses the sensing mechanisms that occur when polymeric sensing materials 

and gas analytes, specifically VOCs, interact.  These mechanisms are broken down into primary 

and secondary effects.  In addition, this chapter includes the dominant mechanisms for different 

VOC classes, based on their functional groups. 

 

The seventh chapter begins by looking at the requirements or constraints a target application may 

have.  By combining this with the dominant sensing mechanisms of the target analyte, potential 

sensing materials can be efficiently identified.  This idea was tested using various case studies, 

which ultimately led to practical prescriptions that can be followed when designing a new sensing 

material for a target analyte and application. 

 

Finally, the eighth chapter contains the concluding remarks and main contributions to the field of 

sensors and sensing materials.  The chapter also includes both short term and long term future 

goals. 
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Note that all of the references used in this thesis are listed in the Reference Section.  The references 

are listed alphabetically by the first author’s last name. 

 

In addition, ten appendices are attached at the end of the thesis.  These appendices provide 

extensive overview tables for VOCs emitted from a person (Appendix A), and sensing materials 

for VOCs (Appendix B and C).  Additional information including typical chromatograms 

(Appendix D), experimental data (Appendix E), statistical analysis (Appendix F), polymeric and 

other material characterization data (Appendix G), and principal component analysis (Appendix 

H) are listed in the respective appendices.  A table of potential polymeric sensing materials for 

ethanol has been compiled (Appendix I).  Finally, some safety considerations are briefly cited in 

Appendix J. 
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2. Literature Background 
 

2.1 Volatile Organic Compound (VOC) Detection 

 

2.1.1 Gas Sensors 

 

It is important to detect toxic gas analytes in a variety of applications, including ethanol detection 

to prevent a person from driving while intoxicated (Winther-Jensen et al., 2014); acetone detection 

in disease diagnosis such as diabetes (Choi et al., 2013); and formaldehyde and benzene detection 

for indoor air quality (González-Chavarri et al., 2015).  Therefore, highly sensitive and selective 

sensing materials are required. 

 

2.2.2 Ethanol Sensors 

 

Driving under the influence of alcohol (ethanol) is a major problem and results in numerous 

casualties and deaths each year (Solomon et al., 2012).  In addition, these crashes cost the economy 

billions of dollars every year (Sullivan, 2015).  Therefore, reliable monitoring of blood alcohol 

content (BAC) is needed.   

 

Currently, breathalyzers, which measure ethanol in the breath, are used; however, their frequency 

of use (typically sporadic spot checks) is limited.  Ignition interlock systems are available, which 

do not allow a person to put the car into gear if a person’s BAC is above a threshold value.  These 

are only placed into vehicles by court order once a person has been convicted of driving under the 

influence of alcohol (Sullivan, 2015).  Also, current interlock ignition systems are cumbersome 

and a distraction to the driver (Sawyer and Hancock, 2014). 

 

Therefore, the goal is to create a reliable method of continuous or frequent monitoring of a person’s 

BAC.  A transdermal ethanol sensor mounted conveniently close to the driver would be less 

distracting to the driver and could autolock the vehicle’s ignition or slow a vehicle to a stop when 

ethanol is detected from the driver. 

 

2.2 Sensing Characteristics 

 

Sensors are evaluated based on their sensing characteristics.  The desired sensing characteristics 

with which to evaluate different sensors are based on the target application.  The two most 

important sensing characteristics are sensitivity and selectivity.  These two characteristics dictate 

how low a concentration of an analyte can be detected (sensitivity) and how well only the target 

analyte is detected when other interferents are present (selectivity).   
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In addition, other sensing characteristics are also important, such as response and recovery times 

and operational temperature.  The response and recovery times are the times required for the sensor 

to produce a response when exposed to a target analyte and the time it takes for the sensor to return 

back to its baseline after exposure (recover).  The operational temperature is the temperature at 

which the sensor typically operates.   

 

2.2.1 Sensitivity 

 

Sensitivity is related to the lowest concentration detectable (limit of detection) by a sensor or 

sensing material. The lower the concentration a sensor can detect, the more sensitive that sensor 

is. The morphology of sensing materials affects sensing properties (see Figure 2.1). Singh et al. 

(2008) compared nanorods and nanoparticles made of ZnO as sensing materials for ethanol. It was 

found that the nanoparticles had higher sensitivity, which can be attributed to nanoparticles having 

a higher effective surface area (surface to volume ratio), and thus more available sensing (or active) 

sites for the ethanol to sorb to. Therefore, sensing materials with higher surface areas, and thus 

more sensing sites for analytes, have increased sensitivity (Nair and Alam, 2007). 

 

 
Figure 2.1: Comparison of ethanol sensitivity (R-R0/R0, where R is the response to ethanol and R0 is the 

response to air) of ZnO nanoparticles and nanorods (Singh et al., 2008). 

 

The limit of detection (LoD), or detection limit, is the lowest signal that can be detected, which is 

not buried in the noise of the baseline, and is calculated from the signal-to-noise ratio. Generally, 

a signal-to-noise ratio of 3 is used to find the limit of detection, where the LoD is equal to 3 times 

the noise response, where the response corresponding to noise is converted to a concentration (see 

Equation 2.1). This ensures that the signal is not lost within the noise of the baseline exhibited by 
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the sensor; however, the signal may still be present and detectable (discernible) but is considered 

buried within the noise (see Figure 2.2).   

 

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝐿𝑖𝑚𝑖𝑡 = 3 𝑥 [𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒]𝑁𝑜𝑖𝑠𝑒 (Equation 2.1) 

 

 
Figure 2.2: Chromatogram of 0.05 ppm formaldehyde.  

 

Although Figure 2.2 shows a signal (response) that is discernible, the signal is considered buried 

within the noise of the baseline.  The signal itself is only 2 times the noise and thus, considered 

buried within the noise. 

 

2.2.2 Selectivity 

 

Selectivity is a unitless measurement of how much the target analyte is favoured over interferent 

analytes. Ideally, the response from the target analyte should be much higher than the response 

from an interferent. Figure 2.3 shows a highly selective sensor for formaldehyde. At 250 ppm, 

formaldehyde produced a response that was five times greater than methanol did (Wang et al., 

2009a).  
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Figure 2.3: Selectivity of Ag doped In2O3 gas sensor (Wang et al., 2009a).  

 

Selectivity can be measured in two ways. Either the same concentration of two different gases is 

tested to determine the ratio of the magnitude of the two responses or the same response is 

measured for two gases at different concentrations. In both cases, the ratio between the two gases 

(response or concentration) is the selectivity (see Equations 2.2 and 2.3). 

 

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑎𝑟𝑔𝑒𝑡 𝐴𝑛𝑎𝑙𝑦𝑡𝑒𝑆𝑜𝑟𝑏𝑒𝑑

𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑡𝑆𝑜𝑟𝑏𝑒𝑑
  (Equation 2.2) 

 

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =  
[𝑇𝑎𝑟𝑔𝑒𝑡 𝐴𝑛𝑎𝑙𝑦𝑡𝑒]𝑇𝑒𝑠𝑡𝑒𝑑

[𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑡]𝑇𝑒𝑠𝑡𝑒𝑑
 (Equation 2.3) 

 

The larger the ratio between the target analyte and an interferent, the better the selectivity.  It 

should be noted that a sensing material or sensor may be highly selective to some interferents but 

not to others.   

 

2.2.3 Response and Recovery Times 

 

Sensing (or response) time is the time needed to reach 90% of the maximum signal, whereas 

recovery time is the time the response takes to return within 10% of the original baseline (Virji et 

al., 2004). These times are not always mentioned in publications; however, estimates may be taken 

in some cases based on cited response graphs, such as Figure 2.4.  Note that for the response shown 

in Figure 2.4, the response time was recorded by the authors as 3 seconds.  If the response and 

recovery time were only shown by graphical representation, it would be impossible to tell that the 

response time was 3 seconds due to the timescale of the graph (Jia et al., 2014). 
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Figure 2.4: Response and recovery times of ZnO gas sensor for acetone at (a) multiple concentrations and 

(b) 100 ppm (Jia et al., 2014). 

 

2.2.4 Operational Temperature 

 

Operational temperature is the typical temperature at which the sensor operates while sensing. 

Different sensing materials work best at different temperatures for a given analyte. It is possible 

to change both the sensitivity and/or selectivity of a sensing material depending on the operational 

temperature (see Figure 2.5).  

 

 
Figure 2.5: Sensitivity versus operational temperature for various doped ZnO sensing materials for (a) 

benzene and (b) toluene (Zhu et al., 2004).  

 

Note that in Figure 2.5a, at 350°C, ZnO-10 wt. % TiO2 has a higher sensitivity than ZnO-5 wt. % 

TiO2, but at 450°C, this is reversed. As well, at 325°C, the sensitivity of ZnO-10 wt. % TiO2 is 

~18 for benzene (Figure 2.5a) and ~16 for toluene (Figure 2.5b); however, at 375°C, the sensitivity 

of ZnO-10 wt. % TiO2 is ~24 for benzene (Figure 2.5a) and ~34 for toluene (Figure 2.5b). 
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Therefore, in some cases, it is even possible to change which analyte a sensing material is more 

selective towards based on operational temperature (Zhu et al., 2004). 

 

The majority of metal and metal oxide sensors operate at these high temperatures; however, not 

all applications require sensors that operate at such high temperatures.  If the application is to 

detect a gas analyte at room temperature, then sensing materials that are able to detect at room 

temperature are better than sensing materials that detect at much higher temperatures since the 

latter require a heater (Sun et al., 2012). 

 

2.3 Transdermal Ethanol 

 

Humans emit a multitude of volatile organic compounds (VOCs), which vary with age, sex, diet, 

state of health, genetic background, environmental exposure, climatic conditions, and medication 

(Shirasu and Touhara, 2011, Acevedo et al., 2007, and Ruzsanyi et al., 2012).  Appendix A lists a 

selection of chemical compounds that have been identified in blood, in breath and emitted from 

the skin of human beings with their possible concentrations, when available, and literature sources 

for each particular piece of information.  VOCs enter the body through inhalation and transdermal 

sorption or they are the result of metabolic pathways.  After entering the blood stream, these VOCs 

are transported through the body for final removal.  The body removes unwanted VOCs through 

breath, sweat, skin, and urine (and other bodily secretions).  Some VOCs are also produced from 

the metabolism of symbiotic bacteria that live on the skin (Shirasu and Touhara, 2011), as well as 

residues that are left on the skin from various substances such as soaps, deodorants, colognes, 

perfumes, lotions, and tobacco smoke (Soini et al., 2006).   
 

Soini et al. (2006) sampled the inner arm of five volunteers and detected around 400 compounds 

using a gas chromatograph/mass spectrometer (GC/MS).  Of those 400 compounds, approximately 

100 compounds could be identified.  These compounds included aldehydes, ketones, fatty acids, 

and alcohols.  It should be noted that there was a large variation between the individuals studied; 

however, the results from a single person were repeatable (Ruzsanyi et al., 2012) (see Table 2.1). 

 

Table 2.1: Mean Concentration of Compounds from Three Different Volunteers  

Compound 
Mean Concentration Detected from GC/MS (ppb) 

Volunteer 5 Volunteer 6 Volunteer 7 

Benzaldehyde 0 10.1 3.8 

6-methyl-5-hepten-2-one 5.2 2 11.5 

Octanal 5.3 0 11.4 

(Ruzsanyi et al., 2012) 
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A larger study conducted by Mochalski et al. (2014), with 60 participants, also noted an abundance 

of aldehyde and ketones emitted from the skin.  In addition, there was a large variance in the 

amount of analyte emitted (see Figure 2.6).  The emission rates (fmol cm-2 min-1) were calculated 

as a normalized flux observed.  Figure 2.6 shows many gas analytes, colour coded by compound 

classes, and the broad range of emission rates at which these compounds were emitted.  Note, 

however, that the majority of these emission rates translate to the ppb range and thus would not 

likely produce a response for a sensor designed to detect ethanol in the ppm range. 

 

 
Figure 2.6: Emission rate of gas analytes emitted from the skin.  Note the compounds (analytes) are colour 

coded by compound class (Mochalski et al., 2014). 

 

2.4 Sensing Materials  

 

The sensing material is the ‘heart’ of the sensor, since it is the material that interacts with the target 

gas (e.g. ethanol) through “sorption” (adsorption and/or absorption). Adsorption is defined as a 

gas sticking to the surface of the sensing material, whereas absorption is defined as a gas entering 

(diffusing) into the interstitial spaces between the sensing material layers (see Figure 2.7).  
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Figure 2.7: Adsorption and absorption of ethanol. 

 

By just changing the sensor material the same sensor is able to detect different analytes.  Many 

different materials can be used as sensing materials to target specific analytes.  The two main 

classes of sensing materials, currently used, are polymers and metals and metal oxides.  In addition, 

these sensing materials can be doped by adding a small amount of a desired compound (essentially 

an impurity), which can significantly change some of the sensing materials’ properties.  Due to the 

extent with which sensing materials can be combined and modified, there are a near endless 

number of compounds that can be used as sensing materials to target specific analytes.    

 

2.4.1 Polymeric Materials 

 

Polymeric sensing materials are ideal because they can be tailor-made to attract a specific gas and 

thus, can have high selectivity (Talwar et al., 2014). This can be done by adding one or more side 

chains, a dopant (small amount of another material such as a metal oxide), or creating a copolymer 

(Rochat and Swager, 2013). Polymeric sensors work mainly at low temperatures (below 100ºC) 

and are relatively inexpensive (Mabrook and Hawkins, 2001).   

 

Polymers are generally used in the form of thin films because thin films have a high surface area 

to volume ratio. Since analytes are more likely to interact with active (or sorption) sites on the 

surface of a sensing material, a higher surface to volume ratio provides more readily available 

sensing sites for the target gas. These thin films can be used in a variety of sensor types including 

resistive sensors, mechanical sensors, and optical sensors (Fink, 2012). 

 

2.4.2 Metals and Metal Oxides 

 

Metal and metal oxide sensing materials are widely used in resistive type sensors due to their high 

thermal and mechanical stability, ease of processability, and low cost (Sun et al., 2012). The 

catalytic nature of both metals and metal oxides is exploited, such as the oxidation of formaldehyde 

(see Equations 2.4 – 2.9). A similar mechanism occurs for the oxidation of any small organic 

molecule (Wang et al., 2009b).  
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O2(gas) ↔ O2(adsorbed)  (Equation 2.4)  

 

O2(adsorbed) + e- ↔ O2
-
(adsorbed)  (Equation 2.5)  

 

O2
-
(adsorbed) + e- ↔ 2 O-

(adsorbed)  (Equation 2.6)  

 

O-
(adsorbed) + e- ↔ O2-

(adsorbed)  (Equation 2.7)  

 

HCHO(gas) ↔ HCHO(adsorbed)  (Equation 2.8)  

 

O2-
(adsorbed) + HCHO(adsorbed) ↔ H2O(adsorbed) + CO2(adsorbed) + 4 e-  (Equation 2.9)  

 

This process is a redox reaction.  The oxidation utilizes the partial pressure of oxygen in the 

atmosphere. Small amounts of other metals and metal oxides can be added to the sensing material 

to increase the amount of adsorbed oxygen on the surface, thereby improving the sensitivity of the 

sensor. As the oxidation takes place, electrons (e-) are created that reduce the resistance of the 

sensor, which is monitored (Lee et al., 2006). 

 

2.4.3 Dopants  

 

A dopant is usually a small amount of a desired additive used to improve the properties of a 

material. In sensing materials, dopants are generally used to improve the sensitivity and/or 

selectivity, although they can also be used to improve other properties such as thermal or chemical 

stability or electrical conductivity.  Compounds used as dopants include metals and metal oxides, 

acids, and surfactants (Talwar et al., 2014).  

 

The addition of metal and metal oxide dopants to polymeric sensing materials generally improves 

the thermal and mechanical properties of the polymers (Chen et al., 2009). Metal and metal oxide 

dopants can also increase the electrical conductivity of conductive polymers (Dirksen et al., 2001).  

 

The catalytic nature of metals and metal oxides, in small amounts, can be used to improve the 

sensing properties. When a dopant coordinates with a polymer, a conformational change occurs, 

which can result in larger interstitial spaces and less order amongst the polymer chains (Han et al., 

2006).  If too much of a dopant is added, the polymer chains become too disordered and/or the 

chains are pushed too far apart, which can result in a decrease of sensitivity and selectivity.   This 

can also negatively affect other properties, such as mechanical stability (Arsuaga et al., 2013). 

 

Any compound can be used as a dopant. For example, acids are added to polyaniline (PANI) to 

make it conductive. PANI is unique in that it is nonconductive unless it has been doped. The 

addition of protons to PANI creates positively charged nitrogen (N+) atoms, creating holes along 
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the polymer chain (see Figure 2.8). These holes allow valence electrons to travel along the polymer 

chain by jumping from one hole to another, thereby making PANI conductive (Kukla et al., 1996).  

 

 
Figure 2.8: Schematic of PANI-acid doping mechanism (Virji et al., 2004).  Note that this figure shows HCl 

as the acid, but the mechanism can be extended to all other acids. 

 

2.4.4 Polymeric Nanocomposites 

 

Polymeric nanocomposites (polymers doped with metal and metal oxide nanoparticles) are ideal 

sensing materials because they can be tailored towards specific target analytes (Pandey and 

Thostenson, 2012).  In addition, polymeric nanocomposites can have improved sensitivity and 

selectivity (Vaddiraju and Gleason, 2010) towards specific analytes and operate at room 

temperature (Zhan et al., 2013).  The addition of metal oxide nanoparticles into a polymer can also 

improve the material’s mechanical and electrical properties (Nehete et al., 2012). 

 

2.4.5 Sensing Materials for Volatile Organic Compounds (VOCs) 

 

Many sensors and sensing materials have been developed for a variety of volatile organic 

compounds (VOCs).  These sensing materials include both metal oxide-based sensing materials 

and polymeric-based sensing materials.  In both cases, dopants were sometimes added to improve 

the sensing characteristics of the sensing materials.  Appendix B includes multiple tables of sensing 

materials for various VOCs. 

 

The tables of sensing materials in Appendix B are divided by the target gas analyte.  These tables 

include the sensing materials and dopants (if used), as well as the detection limit, operational 

temperature, and response and recovery times.  If an entry in the table is missing, it is because the 

author(s) did not include the specific information in their paper.  Given that this thesis focuses on 

sensing materials for ethanol, Appendix C contains selectivity data presented in the literature. 

 

2.5 Types of Sensors 

 

There are many different types of sensors onto which a sensing material can be placed.  Each type 

of sensor has its own advantages and disadvantages.  In addition, some types of sensors have 

constraints on the type of sensing material that can be used. 
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It should be noted that the type of sensor, not just the sensing material, can also affect the sensitivity 

of a sensor.  Shen et al. (2012) tested the same sensing material on three different sensor types (see 

Figure 2.9).  Sensor A was an indirect heated sensor; Sensor B was a microsensor with 

interdigitated fingers; and Sensor C was a plane sensor with a large sensing area.  All three sensors 

exhibited the same trend over the temperature range tested; however, sensor C produced the largest 

response.  The larger surface area created more active sites for the analyte, thereby increasing 

sensor sensitivity. 

 

(a)   (b)   

(c)  (d)   

Figure 2.9: (a) Sensor A, (b) Sensor B, (c) Sensor C, and (d) response of all three sensors to 100 ppm of 

ethanol at different temperatures (Shen et al., 2012). 

 

2.5.1 Resistive Sensors 

 

Conductive sensing materials are needed in resistive type sensors where the conductivity is 

exploited.  The sensing materials become chemiresistors in the circuit and the resistivity of the 

sensing material is measured. The change in resistivity caused by the adsorption or absorption of 

a target analyte onto the sensing material is then detected/monitored (Agbor et al., 1995).  
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Resistive sensors have many advantages including low power, low cost, and fast response times 

(Righettoni et al., 2015).  Traditionally, metals and metal oxides were used as sensing materials in 

resistive type sensors; however, conducting polymeric materials can also be used in resistive 

sensors (Nicolas-Debarnot and Poncin-Epaillard, 2003).  Conducting polymers have some 

advantages in resistive sensors including high sensitivity and selectivity and low operating 

temperatures, near room temperature (Chiang et al., 2013). 

 

2.5.2 Capacitive Sensors 

 

Capacitance is the charge-storing ability of a capacitor and is defined as the amount of charge 

stored on one plate divided by the applied voltage (Callister, 2005).  Capacitive sensors usually 

work in two ways.  Either the swelling of the sensing material when a target analyte is absorbed 

causes the capacitance to change, or a change in dielectric permittivity is caused by the adsorption 

of the target analyte to the sensing material, which subsequently results in a change in capacitance 

(Mlsna et al., 2006; Pich et al., 2004). 

 

Capacitive sensors can have a variety of structures in which a capacitor is formed.  For example a 

sensor may consist of parallel plates (Mlsna et al., 2006) or interdigitated fingers (Chen et al., 

2013).  In both cases, the sensing material is deposited between the capacitor elements (plates or 

fingers) and a change in dielectric constant or swelling of the sensing material produces a response.   

 

Chen et al. (2015b) designed a capacitive sensor that operated in the radio frequency (RF) range.  

By using RFs, the electronic field (E-field) distribution was narrowed as it passed across the 

capacitor (see Figure 2.10).  This narrow distribution allowed more field lines to pass through the 

sensing material, thereby increasing the sensitivity of the sensor. 

 

 
Figure 2.10: E-field distribution across a capacitor using low frequencies (left) and RF frequencies (right) 

(Chen et al., 2015b). 
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2.5.3 Mass-based Sensors 

 

Mass-based sensors measure a change in mass that occurs when an analyte sorbs onto the sensing 

material of a sensor.  Commonly used mass-based sensors are quartz crystal microbalances 

(QCMs).  QCMs exploit the piezoelectric properties of quartz that convert mechanical energy into 

electrical energy.  A QCM with a sensing material vibrates at an initial frequency.  When an analyte 

sorbs onto the sensing material, mass is added and the frequency at which the QCM vibrates shifts.  

This shift in frequency is measured and can be calibrated to the amount of mass added and thus, 

the concentration of the analyte (Nguyen et al., 2011).  The more mass (and thus analyte) sorbed, 

the greater the frequency shift (Chen et al., 1997). 

 

Another type of mass-based sensor is the microelectromechanical systems (MEMS) 

microcantilever that is displaced when a gas sorbs onto the sensing material (see Figure 2.11).  

This displacement produces an electrical signal that represents the sensor’s response to the gas 

sorbed.  These sensors can be calibrated such that the response from the displacement of the 

microcantilever can be used to determine the concentration of the gas that sorbed.  The sensing 

material is chosen for a target analyte, but cannot weigh too much (causing the microcantilever to 

stick to its housing); otherwise the sensor is rendered useless (Khater et al., 2009). 

 

 
Figure 2.11: Schematic of microcantilever sensor (Khater et al., 2009). 

 

2.5.4 Optical and Spectroscopic Sensors 

 

Optical sensors or spectroscopic techniques use part of the electromagnetic spectrum (specific 

wavelengths) to identify a target analyte.  A light (such as a laser or LED) is shone on the sensing 

material (and sorbed analyte), then deflected to a detector, which measures the intensity of the 

light across a range of wavelengths.  When the light reaches a compound, different bonds (at 

specific bond energies) absorb at specific wavelengths.  This results in characteristic peaks for 

different analytes (Mondin et al., 2014).  By selecting a small number of peaks characteristic to a 

target analyte (typically one to three), a target analyte can be identified.  In addition, the intensity 

of the wavelengths can be used to determine the concentration of analyte present (Tavoli and 

Alizadeh, 2013).  Note that it is important that the sensing material not absorb in that range of light 

(Yebo et al., 2010). 
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2.5.5 Sensor Arrays and Electronic Noses 

 

Electronic noses are designed to mimic the mammalian nose and combine multiple partially 

selective sensing materials (mimicking the nose) with a sophisticated software and reference 

database (mimicking the brain). Electronic noses are generally non-specific sensors used to 

identify multiple gas components simultaneously (see Figure 2.12). When gases interact with the 

partially selective sensing materials, the data obtained are analyzed using multivariate (pattern 

recognition) statistical techniques such as principal component analysis (PCA). This analysis 

produces a response pattern that is compared to the database for identification. The larger the 

reference database, the better the electronic nose (De Wit et al., 1998; Beltrán et al., 2006). 

 

 
Figure 2.12: Three dimensional PCA plot for six different VOCs (Li et al., 2013a). 

 

2.5.6 Other Sensors 

 

The sensors discussed in the previous sections are the most commonly used; however, there are 

other types of sensors in use.  Other types of sensors include biosensors and chemical reaction-

based sensors. 

 

Biosensors use some form of biological agent, such as enzymes or antibodies, as their sensing 

material (Mitsubayashi et al., 1994).  Biosensors have high selectivity; however, they have a very 

short shelf-life (usually only a few days) because the biological agents require controlled 

environments to survive (Putzbach and Ronkainen, 2013).  These controlled environments are 

liquid in nature and therefore, the target gas must first dissolve into the liquid before it can be 

tested (Mitsubayashi and Hashimoto, 2002).     
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Reaction-based sensing materials produce a response when the analyte chemically binds to the 

sensing material.  This reaction is typically not reversible and thus, the sensing materials are not 

reusable.  This results in consumable sensing materials, such as filters that are replaced for each 

test (Kawamura et al., 2005).  Many of these reaction-based sensors are colourimetric in nature, 

with the reaction occurring between the analyte and a dye (Meng et al., 2014). 

 

2.6 Sensing Materials and Sensors for Ethanol 

 

2.6.1 Polymeric Sensing Materials 

 

2.6.1.1 Polyaniline (PANI) 

 

Polyaniline (PANI) (see Figure 2.13) is a widely used sensing material for resistive type sensors 

due to its conductivity; however, polyaniline may also be non-conductive, as in its basic form 

(Kukla et al., 1996).  This widens the types of potential sensors onto which PANI can be used.  

PANI, like other polymeric sensing materials, has the advantage of sensing at room temperature 

or other low temperatures (below 100˚C).  In addition, PANI can be doped with different acids 

and/or metal oxides to improve the sensing properties (Virji et al., 2004).   

 

 
Figure 2.13: Chemical structure of polyaniline (PANI). 

 

PANI has been used as a sensing material for ethanol in multiple sensors (see Table 2.2).  Ethanol 

is able to bind to PANI through hydrogen bonding (see Chapter 6).  When the OH group of ethanol 

hydrogen bonds to the NH of PANI, a conformation change of PANI results, which increases the 

resistance of the sensing material, which is then measured in a resistive type sensor (Choudhury, 

2009).   
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Table 2.2: Summary of Sensing Characteristics for Various PANI Sensors for Ethanol 

Dopant 
Detection 

Limit 
Selectivity 

Operational 

Temperature 

Response/ 

Recovery 

Time 

Reference 

Ag  

2.5 mol %  
100 ppm - 

Room 

Temperature 

102 seconds/ 

20 minutes 
Choudhury (2009) 

NiO 

10 wt. % 
1 ppm 

Benzene  

(6.2) 

Methanol  

(1.2) 

Formaldehyde 

(1.1) 

21˚C - 
Stewart et al. 

(2012) 

Dinonyl-

naphthalene-

sulfonic acid 

764 ppm - 
Room 

Temperature 

5 minutes/  

2 minutes 

Svetlicic et al. 

(1998) 

TiO2 

10 wt. % 
150 ppm 

Acetaldehyde 

(1.8) 

Formaldehyde 

(1.3) 

- 
58 seconds/ 

300 seconds 
Zheng et al. (2008) 

 

In Table 2.2, and in the tables to follow in Chapter 2, a summary of sensing characteristics are 

shown.  The two most important characteristics are the detection limit and selectivity.  The 

detection limit recorded in the tables is either the lower measured concentration or the detection 

limit calculated by the authors from the noise measured.  The selectivity is the ratio between the 

response of the target analyte ethanol and the response from an interferent.  The higher the ratio, 

the more selective the sensor and sensing material are to ethanol.  In Table 2.2, the interferents are 

listed followed by the selectivity in brackets.  For example, for PANI doped with 10 wt. % NiO 

(second entry in Table 2.2) with benzene as the interferent, the selectivity is 6.2.  This means that 

PANI 10 wt. % NiO is 6.2 times more sensitive to ethanol than to benzene (i.e. ethanol produced 

a response 6.2 times larger than benzene). 

 

2.6.1.2 Poly (o-anisidine) (PoANI) 

 

Poly (o-anisidine) (PoANI), also known as poly (methoxyaniline), is both chemically and 

environmentally stable, conductive, and more readily processable than polyaniline due to its 

greater solubility (Valentini et al., 2004); see Figure 2.14.  Note that PoANI is soluble in ethanol 

(Rawat et al., 2015).  The processability of PoANI is also increased due to the decreased rigidity 

of the polymer chains (Wang et al., 2012).  Torsion is created along the chain due to the steric 

repulsion between hydrogen and the methoxy group.  This steric repulsion, or hindrance, reduces 

the chains’ crystallinity (Gupta and Umare, 1992).  Despite the reduction in crystallinity, PoANI’s 
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thermal and chemical stability and processability are why it is still used as a sensing material (see 

Table 2.3).  

 

 
Figure 2.14: Chemical Structure of PoANI. 

 

Table 2.3: Summary of Sensing Characteristics for Various PoANI Sensors for Ethanol 

Dopant/ 

Copolymer 

Detection 

Limit 
Selectivity 

Operational 

Temperature 

Response/ 

Recovery 

Times 

Reference 

None 3000 ppm 

Propanol  

(2.0) 

Butanol  

(1.9)1 

Room 

Temperature 

1 minute/  

4 minutes 

Athawale and 

Kulkarni (2000) 

Polystyrene 3850 ppm Water (2.1) 25°C 
30 minutes/ 

30 minutes 

Aussawasathien et 

al. (2011) 

Silver-

Multiwall 

Carbon 

Nanotubes 

0.1 μM2 

n-hexane 

(5.6) 

Dichloro-

methane  

(3.8) 

Acetaldehyde 

(2.0) 

Methanol 

(1.3) 

Acetone (1.1)3 

- 
10 seconds/ 

Not given 

Rahman et al. 

(2015) 

1Note that PoANI was more selective to methanol than ethanol. 
2 In solution, with phosphate buffer. 
3 More selective to tetrahydrofuran, pyridine, phenol, and 3-methoxyphenol. 

 

2.6.1.3 Poly (2,5-dimethyl aniline) (P25DMA) 

 

Poly (2,5-dimethyl aniline) (P25DMA) (see Figure 2.15) has many of the same desirable sensing 

material traits as PANI; however, P25DMA is more processable than PANI since its chains are 
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not packed as closely.  The steric hindrance produced by the two methyl groups reduces the ability 

of the polymer to pack closely, which thereby increases the size of the interstitial spaces in the 

polymer.  This improves its sensitivity, by allowing easier access to more active sites.   P25DMA 

is less stable when doped with an acid since the chain has a restricted ability to make 

conformational changes caused by steric hindrance (Bavastrello et al., 2004). 

 

 
Figure 2.15: Chemical Structure of P25DMA. 

 

P25DMA had previously only been used as a sensing material for ethanol in one instance, where 

Athawale and Kulkarni (2000) evaluated PANI and many of its derivatives as sensing materials 

for aliphatic alcohols.  P25DMA had the highest selectivity towards ethanol with respect to larger 

alcohols; however, P25DMA was more selective to methanol than ethanol (see Table 2.4).  Note 

that ethanol was used as an interferent for P25DMA intercalated with MoO3 where the target 

analyte was formaldehyde (Itoh et al., 2007a).  Ethanol showed very little response when P25DMA 

was used intercalated with MoO3, and this was likely due to MoO3’s poor affinity to ethanol.  Other 

polymers (such as polyaniline (Itoh et al., 2008), poly (o-anisidine) (Itoh et al., 2008), poly (N-

methylaniline) (Itoh et al., 2007c), and polypyrrole (Hosono et al., 2005) intercalated with MoO3 

proved to be good sensing materials for aldehydes.  This suggests that the affinity and selectivity 

for aldehydes were due to the MoO3 and not the polymers used.  

 

Table 2.4: Summary of Sensing Characteristics for Various P25DMA Sensors for Ethanol 

Dopant/ 

Copolymer 

Detection 

Limit 
Selectivity 

Operational 

Temperature 

Response/ 

Recovery 

Times 

Reference 

None - 3.61 Room 

Temperature 
1 minute/ 

4 minutes 
Athawale and 

Kulkarni (2000) 

1Towards larger alcohols; however, methanol produced a stronger signal. 
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2.6.2 Metal Oxide Sensing Materials and Dopants 

 

2.6.2.1 Aluminum Oxide (Al2O3) 

 

Aluminum oxide (Al2O3) is typically used as a dopant in other sensing materials such as ZnO 

(Ruchika et al., 2016) and graphene (Jiang et al., 2011), although Al2O3 has been used doped with 

dysprosium (Dy3+) (Okabayashi et al., 2000).  Table 2.5 lists a variety of sensors in which Al2O3 

was employed for the detection of ethanol. 

 

Table 2.5: Summary of Sensing Characteristics for Various Al2O3 Sensors 

Material Dopant 
Detection 

Limit 
Selectivity 

Operational 

Temperature 

Sensing/ 

Recovery 

Time 

Reference 

γ-Al2O3 
Dy3+  

(1 mol %) 
500 ppm - 450 ˚C - 

Okabayashi 

et al. (2000) 

Graphene Al2O3  1225 ppm - 200 ˚C 
10/ 100 

seconds 

Jiang et al. 

(2011) 

ZnO 
Al2O3  

(1 wt. %) 
400 ppm - 300˚C 6 / 20 

seconds 

Ruchika et 

al. (2016) 

ZnO 
Al2O3  

(1 wt. %) 
500 ppm 

Carbon 

Monoxide 

(34.5) 

Ammonia 

(12.0) 

Hydrogen Gas  

(90.1) 

400 ˚C 
10 / 40 

seconds 

Deore and 

Jain (2014) 

ZnO 
Al2O3  

(1 wt. %) 
100 ppm 

LPG 

( 6.1) 

Hydrogen Gas 

(2.9) 

Carbon Dioxide 

(5.1) 

Ammonia 

(6.4) 

Chlorine Gas 

(15.1) 

300 ˚C 
18 / 40 

seconds 

Patil et al. 

(2007) 

ZnO 
Al2O3  

(2 at. %) 
1000 ppm - 290 ˚C 

8 / 10 

seconds 

Yang et al. 

(2009b) 
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When ethanol interacts with Al2O3, ethanol is catalytically decomposed into formaldehyde, 

resulting in some type of response detectable by the sensor (Okabayashi et al., 2000).  For a 

resistive type sensor, this catalytic activity produces electrons (see Equation 2.10), which results 

in an increase in conductivity on the sensor (Patil et al., 2007).   

 

C2H5OH (gas) + 6O2- (surface)  2CO2 (gas) + 3H2O (gas) + 12 e-   (Equation 2.10) 

 

The addition of a small amount of Al2O3 to ZnO improved the sensitivity to ethanol.  Yang et al. 

(2009b) found that an optimal amount of Al2O3 was 2 at. % and increasing the amount of Al2O3 

further resulted in a poorer response (sensitivity) than ZnO alone (see Figure 2.16). 

 

 
Figure 2.16: Sensitivity to ethanol versus temperature for ZnO doped with 0 atomic (at.) % (C05), 1 at. % 

(C15), 2 at. % (C25), 3 at. % (C35), and 4 at. % (C45) (Yang et al., 2009b). 

 

2.6.2.2 Copper Oxide (CuO) 

 

Copper oxide (CuO) has been used as a sensing material for ethanol since it is catalytically active 

towards ethanol (Zhou et al., 2006).  In addition, cuprous oxide (Cu2O) has also been used as a 

sensing material for ethanol (see Table 2.6). 
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Table 2.6: Summary of Sensing Characteristics for Various CuO Sensors 

Material Dopant 
Detection 

Limit 
Selectivity 

Operational 

Temperature 

Sensing/ 

Recovery 

Time 

Reference 

CuO - 100 ppm - 240 ˚C 
110 / 120 

seconds 

Raksa et al. 

(2009) 

CuO Pt 5 ppm *1 200 ˚C 
4 / 7 

seconds 

Gou et al. 

(2008) 

CuO Au 5 ppm *1 200 ˚C 
4 / 7 

seconds 

Gou et al. 

(2008) 

Cu2O - 10 ppm 
Acetone  

(1.1) 
200 ˚C 

170 / 180 

seconds 

Barreca et 

al. (2009) 

 

Cu2O - 10 ppm - 210 ˚C 
15 / -

seconds 

Zhang et al. 

(2006) 
1More sensitive to formaldehyde than ethanol 

 

Cuprous oxide (Cu2O) and copper oxide (CuO) were compared as sensing materials for ethanol.  

Barreca et al. (2009) found that while the CuO produced a larger response to ethanol, Cu2O was 

slightly more selective towards ethanol with respect to acetone.  Zhang et al. (2006) found that 

Cu2O was more sensitive to ethanol than CuO.  It should be noted that the morphology and 

structure were different for these comparisons.   

 

Various morphologies have been used including nanowires (Raksa et al., 2009), nanospheres 

(Zhang et al., 2006), nanoribbons (Gou et al., 2008), and nanoplates (Gou et al., 2008).  Gou et al. 

(2008) evaluated the effect of morphology on the response of CuO to ethanol and found that the 

nanoribbons were much more responsive (i.e. sensitive) to ethanol than the nanoplates. 

 

CuO has also been doped to improve its sensing properties towards ethanol.  CuO doped with Pt 

was shown to be more sensitive (produced a larger response to the same concentration) to ethanol 

than CuO doped with Au; however, both of these sensing materials produced a larger response 

when exposed to formaldehyde than to ethanol (Gou et al., 2008).   

 

2.6.2.3 Nickel Oxide (NiO) 

 

NiO has been used as both the sensing material and dopant in a variety of ethanol sensors (see 

Table 2.7).  Although many metal oxide sensors operate at high temperatures (above 100˚C), NiO 

is able to detect ethanol at room temperature (Li, 2016).  This demonstrates that despite the need 

to operate at high temperatures for catalytic activity, NiO is able to sense at both high and low 

temperatures. 
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Table 2.7: Summary of Sensing Characteristics for Various NiO Sensors 

Material Dopant 
Detection 

Limit 
Selectivity 

Oper. 

Temp. 

Sensing/ 

Recovery 

Time 

Reference 

NiO - 5 ppm 
Acetone (1.5) 

Carbon Monoxide (3)1 
300 ˚C - 

Kaur et al. 

(2016) 

NiO - 10 ppm - 
Room 

Temp. 
- Li (2016) 

NiO 
TiO2  

(25 wt. %) 
2000 ppm Methanol (2.8)2 

Room 

Temp. 

9 / 16 

seconds 

Arshak et 

al. (2004) 

SnO2 
NiO  

(5 mol %) 
5 ppm 

Acetone (3.2) 

Hydrogen Gas (6.8) 

Methane (10.2) 

Ethyne (12.6) 

Benzene (18.7) 

Carbon Monoxide (21.8) 

 

300 ˚C 
2 / 3 

seconds 

Liu et al. 

(2011a) 

SnO2 NiO 6.7 ppm 

Formaldehyde (3.4) 

Carbon Monoxide (6.9) 

Water Vapour (8.1) 

Ethene (8.7) 

Nitrogen Monoxide (9.2) 

Carbon Dioxide(8.7) 

Chlorine Gas (5.8) 

Methane (8.1) 

Nitrogen Dioxide  (8.1) 

Hydrogen Sulfide  (8.7) 

 

280°C 
0.6 / 10 

seconds 

Lou et al. 

(2012) 

Polyaniline 

(PANI) 

NiO  

(10 wt. %) 
0.31 ppm 

Formaldehyde (1.1) 

Acetaldehyde (1.2) 

Benzene (6.2) 
21 ˚C - 

Stewart et 

al. (2012) 

1 More selective to hydrogen gas. 
2 More selective to toluene and propanol. 

 

The addition of NiO to SnO2 nanofibers significantly increased the sensitivity towards ethanol (see 

Figure 2.17) (Liu et al., 2011a).  Furthermore, Zheng et al. (2012) noted that adding NiO as a 

dopant to SnO2 polyhedra also increased the selectivity to ethanol (see Figure 2.18). Therefore, 

both sensitivity and selectivity are improved by the addition of NiO.  It should be noted that the 

structures of the sensing materials in both these cases are different. 
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Figure 2.17: Effect of NiO dopant concentrations on the sensitivity of SnO2 to ethanol (Liu et al., 2011a). 

 

 
Figure 2.18: Effects of NiO addition on sensitivity and selectivity (Zheng et al., 2012). 

 

2.6.2.4 Titanium Dioxide (TiO2) 

 

Titanium dioxide (TiO2) is a relatively sensitive sensing material for ethanol; however, not much 

work has been done on the selectivity of TiO2 with respect to ethanol (see Table 2.8).  In addition, 

TiO2 has been used as a dopant in a ZnO sensor (Zhu et al., 2004) and a polyaniline (PANI) sensor 

(Zheng et al. 2008).   
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Table 2.8: Summary of Sensing Characteristics for Various TiO2 Sensors 

Material Dopant 
Detection 

Limit 
Selectivity 

 Oper. 

Temp. 

Sensing/ 

Recovery 

Time 

Reference 

TiO2 - 20 ppm - 350 ˚C 
12 / 9 

seconds 

Wang et al. 

(2010a) 

TiO2 - 40 ppm Hydrogen Gas (7.2) 400 ˚C 
1 / 10 

seconds 

Tang et al. 

(1995) 

TiO2 Ag 5 ppm - 250 ˚C 
1 / 2 

seconds 

Hu et al. 

(2010) 

ZnO 
TiO2  

(10 wt. %) 
100 ppm Acetone (1.9) 370 ˚C 

10 / 5 

seconds 

Zhu et al. 

(2004) 

Polyaniline 

(PANI) 
TiO2  150 ppm 

Formaldehyde (1.3) 

Acetaldehyde (1.8)1 
Room 

Temp. 

280 / - 

seconds 

Zheng et al. 

(2008) 
1 More selective towards trimethylamine and trimethylamine. 

 

It is important to note that for PANI doped with TiO2, the detection limit listed in Table 2.8 is 

likely much higher than the actual detection limit for ethanol due to the large response Zheng et 

al. (2008) observed for ethanol.  Ethanol was only evaluated at 150 ppm since the paper focused 

on sensing materials for trimethylamine and triethylamine.   

 

2.6.2.5 Zinc Oxide (ZnO) 

 

ZnO was one of the first and is still widely used as a sensing material in a variety of sensors (see 

Table 2.9) (Xu et al., 2000). It is a desirable sensing material due to its high chemical stability, 

non-toxicity, and low cost (Liu, 2010). In addition, ZnO can be doped with other metal oxides to 

improve both its sensitivity and selectivity.  Note that Table 2.5 also contains some ZnO sensing 

materials which were doped with Al2O3. 
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Table 2.9: Summary of Sensing Characteristics for Various ZnO Sensors 

Material Dopant 
Detection 

Limit 
Selectivity 

Oper. 

Temp. 

Sensing/ 

Recovery 

Time 

Reference 

ZnO - 10 ppm - 400 ˚C 
5 / 10 

seconds 

Singh et al. 

(2008) 

ZnO - 25 ppm - 400°C 
1 / many 

minutes 

Liewhiran 

et al. (2007) 

ZnO - 50 ppm - 220 ˚C 
25 / 50 

seconds 

Choopun et 

al. (2007) 

ZnO-

Graphene 
- 5 ppm 

Acetone (1.5) 

Formaldehyde (3.3) 

Hydrogen Sulfide (3.7) 

Nitrogen Dioxide (6.5) 

Ammonia (6.8) 

Hydrogen Gas (7.0) 

Carbon Monoxide (7.6) 

 
10 / 10 

seconds 

Zou et al. 

(2013) 

ZnO NiO 0.3 ppm 

Formaldehyde (3.1) 

Acetone (7.3) 

Carbon Monoxide (7.3) 

Benzene (9.7) 

450 ˚C 
~ 60 / 60 

seconds 

Na et al. 

(2012) 

ZnO 
Ti 

(1.86 at %) 
50 ppm - 250 ˚C 

~ 200 /60 

seconds 

Hsu et al. 

(2014) 

 

ZnO has high sensitivity to ethanol. The high sensitivity can be attributed to both its catalytic 

activity and small grain size. By reducing the grain size, the specific area is increased, and thus 

more active sites are available (Xu et al., 2000). Nanoparticles have a high surface area to volume 

ratio and therefore have more active sites available than larger particles.  
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3. Experimental 
 

3.1 Gas Test System 

 

3.1.1 Experimental Set-up 

 

To evaluate the potential sensing materials, gas sorption tests were performed.  Each sensing 

material was exposed to a known concentration of analyte (e.g. 5 ppm ethanol gas in a balance of 

nitrogen) and the amount of analyte that sorbed onto the sample was measured.  The more analyte 

that sorbed onto the sensing material, the more sensitive the sensing material was to that analyte.  

Measurements were conducted at room temperature (21°C) and slightly above atmospheric 

pressure (15 psi).   

 

The gas test system was designed to be able to evaluate both sensing materials and complete 

sensors at room temperature (see Figure 3.1).  Gas analytes were mixed, if necessary, using an 

inline passive mixer, after which the gas line was split using an MKS RS-485 mass flow controller 

on one side and an MKS 640A pressure controller and MKS 1179A flow meter on the other to 

ensure a 50:50 volumetric split.  Both the sensing materials and sensors were tested using a flow 

rate of 200 sccm.  When splitting the gas stream, a total initial flow rate of 400 sccm was used. 

Half of the gas stream (200 sccm) was directed into a test chamber that contained the full sensor 

(sensor with the sensing material).  The other half (200 sccm) passed through a 100 mL round 

bottom flask (with or without a sensing material) into a specialized Varian 450 gas chromatograph 

(GC) with a photon discharge helium ionization detector (PDHID), capable of measuring down to 

the ppb level for different compounds.  The flask could be removed from the system so that the 

gas stream ran directly into the GC.  This allowed for simultaneous parallel measurement of the 

concentration of gas analyte(s) while a sensor was being tested (Stewart and Penlidis, 2013), for 

reference purposes. 

 

 
Figure 3.1. Schematic of the test system, where MFC, PC, and FM are mass flow controller, pressure 

controller, and flow meter, respectively.  Note that the analytes shown are ethanol, methanol, and benzene, 

but represent the individual tanks of all the different analytes used. 
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3.1.2 Specialized Gas Chromatograph 

 

A very sensitive, specialized gas chromatograph (GC) was used to qualitatively and quantitatively 

identify components in either a liquid or a gas sample.  The components of a sample were separated 

as they flowed through a column, which contained a suitable packing material (see paragraph that 

follows).  The packing material was chosen based on what components were known to be in the 

sample.  As the components of a sample passed through the column, they sorbed (adsorbed or 

absorbed) onto the packing material at different rates, resulting in each component having its own 

retention time.  Hence, the components of the sample were separated based on their retention times.  

The retention time indicated qualitatively which components were present in a sample.  The data 

from the GC appeared as peaks on a voltage versus time graph.  The areas under the peaks were 

integrated, and compared to those of a standard with a known concentration, to determine 

quantitatively the concentration of each component in the sample (Grob and Barry, 2004). 

 

The specialized (highly sensitive) GC needed to be able to separate very chemically similar 

compounds (see Figure 3.2) and detect very low concentrations (see Figures 3.3).  Additional 

chromatograms appear in Appendix D.  For example, the separation was achieved using a Varian 

CP-Sil 5 CB (column packing identifier) for formaldehyde with a capillary column of dimensions 

60m x 0.32mm x 8µm.   

 

 
Figure 3.2: Chromatogram of four different gas analytes (formaldehyde, acetaldehyde, ethanol, and 

benzene), eluting out at different times. 
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Figure 3.3: Chromatogram of formaldehyde at 0.09 ppm. 

 

The GC used a pulsed discharge helium ionization detector (PDHID) which was very sensitive 

and could detect in the parts per billion (ppb) range.  Pulsed direct current (DC) discharge caused 

the helium to ionize. As the helium returned to its natural state, photons were released and ionized 

the sample as it flowed down the column, producing electrons.  These electrons were forced 

towards the detector and generated a response.  This detector was virtually non-destructive to the 

sample and very sensitive.  Because of the sensitivity of the detector, the detector was encased in 

helium to limit interference from the atmosphere (Agilent Technologies, 2006). 

 

3.1.3 Gas Analytes Tested 

 

Six gas analytes (ethanol, methanol, acetone, benzene, formaldehyde, and acetaldehyde) were 

available to use in the gas test system (see Table 3.1 for the concentrations of each gas analyte 

available).  All of these gases were specialty gas mixtures (standard grade) in a balance of nitrogen 

gas (Praxair, California, USA).  In addition, other concentrations of each of these gases could be 

achieved by dilution with 5.0 grade nitrogen (Praxair, Mississauga, Ontario, Canada).  Note that 

dilutions were limited by the accuracy of the mass flow controllers and were done down to 12.5% 

(1/8) of the original concentration in the tank.   
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Table 3.1: Gas Analytes and Concentrations Used 

Gas Analyte Concentration (ppm) 

Ethanol 5.00, 9.41, 20.03, 101, 1000, 5000 

Methanol 4.66, 4895 

Acetone 5.50, 5030 

Benzene 5.10, 5040 

Formaldehyde 5.05 

Acetaldehyde 5.08 

 

3.2 Transdermal Gas Determination 

 

3.2.1 Transdermal Volatile Organic Compounds (VOCs) 

 

To determine which gases are emitted from a person’s hand, the GC was first calibrated using 13 

different gases: ethanol, methanol, isopropyl alcohol, acetone, acetic acid, benzene, toluene, 

formaldehyde, acetaldehyde, pentane, chloroform, methylene chloride, and 1-butanol.  Some of 

these gases came from gas mixtures in tanks and the rest came (as vapours) from a head space over 

their liquid counterpart.  The gases in the tanks were calibrated standards and hence their 

concentration could be used directly to calibrate the GC.  The concentrations of the other vapours 

from the head spaces were approximated using the corresponding vapour pressure at a given 

temperature.   

 

Once the GC was calibrated, a gas-tight 5 mL syringe was used to take samples.  A 5 mL sample 

ensured that any previous sample was plunged out of the sampling chamber in the GC with enough 

remaining for the 1 mL sample needed.  The 5 mL volume was slowly injected into the inlet port 

of the GC over 30 seconds. 

 

The lab air was tested first to determine the background.  Only nitrogen, helium (carrier gas), 

water, and a peak from the plastic tubing used, were observed (see Figure 3.4).  This ensured that 

the peaks observed from the hand were in fact from the skin and not from the surrounding 

environment. 
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Figure 3.4: Chromatogram of lab air (reference point for further determinations).  

 

A sample from the palm of a hand was then taken.  The hand was cupped, while the sample was 

taken from the head space just above the palm.  This was done with unwashed hands to determine 

what gases are present from both transdermally emitted gases and residues from various items a 

person comes into contact with.  The sample was then injected into the GC to identify the gases 

emitted from a person’s hand (see Figure 3.5). 

 

 
Figure 3.5: Chromatogram from the palm of a hand.  Note formaldehyde and acetic acid labels are 

overlapping.  

 

3.2.2 Transdermal Ethanol Concentration 

 

This experimentation was conducted to assess whether or not a target of 5 ppm was reasonable for 

transdermal ethanol.  The transdermal ethanol concentration (in ppm) was compared to the blood 

alcohol content (BAC) measured using a commercially available (BACtrack) breathalyzer.  The 
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goal was to determine what the concentration of transdermal ethanol was in relation to a BAC of 

0.05. Since only one person was used for the study, these results can be used to show qualitative 

trends and give an idea about transdermal ethanol concentration levels, but cannot be used as a 

definitive concentration comparison as the sample size was too small.   

 

One test was performed per day.  Each test consisted of one shot (1.5 oz of 40% v/v vodka).  Vodka 

was chosen since it has little flavour, and thus fewer organic compounds that may have interfered 

with the test.  The tests were conducted on an empty stomach (no food for 12+ hours prior to the 

tests).  A single shot was consumed and measurements commenced at time zero. 

 

Prior to the sample being consumed, the lab air was sampled and at least one sample was taken 

from the hand as a baseline.  Taking two consecutive samples from the hand allowed replication 

of the process.   

 

Samples were taken using a gas tight syringe (without a needle).  The tip of the syringe was placed 

in the palm of the hand (with the hand cupped) and a 5 mL sample of air was drawn.  This 

procedure was designed to mimic a hand cupping the steering wheel, with a pump drawing a 

sample from the palm of the hand.  The sample was immediately injected into the sensitive gas 

chromatograph.  A sample from the hand was taken every 10 minutes, up to 90 minutes per test.   

 

A breathalyzer was used to measure the blood alcohol content (BAC) from the breath.  

Measurements from the breath were conducted 15 seconds before the sample was taken from the 

hand.  This allowed the response from the hand to be correlated to the BAC. 

 

A double shot (3 oz of vodka) was taken once as a comparison to the single shots.  After the double 

shot was consumed, the same procedure was followed as for the single shots.  The only difference 

was that the response was measured over 4 hours. 

 

3.3 Sensing Material Preparation 

 

Polyaniline (PANI) was synthesized by mixing aniline, ammonium persulfate, and, if present, the 

dopants, in deionized water. 0.39 mL of aniline (A.C.S. reagent, Sigma-Aldrich, Oakville, Ontario, 

Canada) was added to 20 mL of deionized water and then mixed using a sonicator for 30 minutes.  

This solution was then cooled to -1°C before the addition of a solution containing 1.0 g of 

ammonium persulfate (A.C.S. Reagent, Sigma-Aldrich, Oakville, Ontario, Canada) in 5 mL of 

deionized water.  The solution was shaken for one minute to ensure thorough mixing.  The mixture 

was subsequently left to react at -1°C for 6 hours (Stewart et al., 2012).  The polymer was filtered 

out using a funnel and Wattman #5 filter paper and left overnight.  The polymer was then washed 

with acetone until the liquid ran clear.  Finally, the polymer was scraped into a glass vial for storage 

under atmospheric conditions.  
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To obtain the doped polymer, the monomer was polymerized with the dopant suspended in the 

starting solution.  The dopant was added up to 20% by weight with respect to the monomer, before 

the solution was initially cooled prior to the addition of the ammonium persulfate.  Other than the 

addition of the dopant, which was aluminum oxide (Al2O3) (particle size < 50 nm, 10 wt. % 

dispersion in water, Sigma-Aldrich, Oakville, Ontario, Canada), copper (II) oxide (CuO) (particle 

size <50 nm, Sigma-Aldrich, Oakville, Ontario, Canada), nickel (II) oxide (NiO) (particle size <50 

nm, concentration of 99.8%, Sigma-Aldrich, Oakville, Ontario, Canada), titanium (IV) oxide 

(TiO2) (particle size 21 nm, concentration of 99.5%, Sigma-Aldrich, Oakville, Ontario, Canada), 

or zinc oxide (ZnO) (particle size <100 nm, 50 wt. % in water, Sigma-Aldrich, Oakville, Ontario, 

Canada), the polymerization procedure was the same as described above for PANI without any 

dopant.  

 

Poly (o-anidisine) (PoANI) was prepared in the same manner as PANI, except o-anisidine (A.C.S. 

reagent, Sigma-Aldrich, Oakville, Ontario, Canada) was used as the monomer instead of aniline.  

Similarly, poly (2,5-dimethyl aniline) (P25DMA) was prepared using its monomer,  

2,5-dimethyl aniline (A.C.S. reagent, Sigma-Aldrich, Oakville, Ontario, Canada).   

 

PANI, PoANI, and P25DMA were initially doped with 10 wt. % and 20 wt. % NiO or ZnO, giving 

rise to a total of fifteen polymeric nanocomposites, and subsequently evaluated for their 

effectiveness as sensing materials for ethanol.  Since P25DMA performed significantly better, 

P25DMA was further doped with 5 wt. %, 10 wt. %, and 20 wt. % of Al2O3, CuO, NiO, TiO2, or 

ZnO, resulting in an additional 11 polymer nanocomposites evaluated as sensing materials for 

ethanol.  Note that for ease of naming, the polymer nanocomposites will be referred to as polymer 

wt. % dopant (i.e. PANI doped with 10 wt. % NiO will be named PANI 10% NiO).   

 

The sensing materials were evaluated using gaseous ethanol in tanks from Praxair (California, 

USA).  The 5 ppm of standard grade gaseous ethanol in nitrogen was used.  Nitrogen (5.0 grade, 

Praxair, Mississauga, Ontario, Canada) was used to purge the sensing materials prior to evaluation 

using ethanol.  The potential polymeric sensing materials were evaluated using the gas test system 

described in Section 3.1.  

 

Note that other commercially available polymers were also evaluated.  These polymers were used 

as obtained, except poly (ethylene imine), which was dried first before use.  These include specialty 

polymers such as OV 225, OV 275, and SXFA from Seacoast Sciences, Inc. (Carlsbad, California, 

USA), and other polymers such as poly (methyl methacrylate) (PMMA) (Average  

Mw = 15,000, Sigma-Aldrich, Oakville, Ontario, Canada), poly (ethylene imine) (PEI) (Average 

Mn = 60,000,  50 wt. % in water, Sigma-Aldrich, Oakville, Ontario, Canada), polypyrrole (PPy) 

(Conductivity 10 – 50 S/cm, pressed pellet, Sigma-Aldrich, Oakville, Ontario, Canada), poly 

(vinyl pyrrolidone) (PVP) (Average Mw = 40,000, Sigma-Aldrich, Oakville, Ontario, Canada), and 
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poly (2,6-dimethyl-1,4-phenylene oxide) (PPO) (Average Mw = 30,000, Sigma-Aldrich, Oakville, 

Ontario, Canada). 

 

3.4 Deposition onto Sensors 

 

3.4.1 Radio Frequency Identification (RFID) Sensor 

 

Each of the polymeric sensing materials was suspended/dissolved into a solvent at a concentration 

of 0.1 wt. %.  The OV 225, OV 275, and SXFA were suspended in diethyl ether and the polyaniline 

(PANI) derivatives and nanocomposites were suspended in N-methylpyrrolidone (NMP).  The 

suspension was deposited using a microplotter (30 μm tip) onto the RFID sensors.  The solvent 

was evaporated off at 120˚C for the OV 225, OV 275, and SXFA, and at 60˚C for the PANI 

derivatives and nanocomposites.  The temperatures were selected based on the degradation 

temperatures of polymeric sensing materials so as to to avoid degradation.  Multiple applications 

(or coats) were applied to ensure full coverage was achieved and a deposition thickness of 5 μm ± 

0.5 μm, which was measured using an optical microscope (Chen et al., 2015b). 

 

3.4.2 Microelectromechanical Systems (MEMS) Microcantilever Sensor 

 

Two polymers were deposited onto the MEMS microcantilever sensor: polyaniline (PANI) doped 

with 10% NiO and poly (2,5-dimethyl aniline) (P25DMA).  0.1 g of the polymeric sensing material 

was mixed with approximately 1 mL of ethylene glycol to form a paste.  This paste was spread 

onto the end plate on the microcantilever and the ethylene glycol was allowed to dry in atmosphere 

(Khater et al., 2014).  Because the sensor plate was on the micron scale, the deposition was done 

under a microscope.   

 

3.5 Evaluation of Sensing Materials and Sensors 

 

3.5.1 Evaluation of Sensing Materials 

 

All potential polymeric sensing materials were evaluated based on the amount of gas analyte they 

sorbed.  0.120 g of polymer was weighed into a 100 mL round bottom flask.  5 mL of ethanol was 

added to the flask and the flask was swirled for 30 seconds to disperse the polymer and coat the 

flask.  This was done to increase the surface area of the polymer exposed to the analyte.  The flask 

was then placed in a 50 ºC oven for 18 hours to evaporate off the ethanol and dry the polymer 

samples.  The samples were cooled to room temperature (21ºC) prior to testing. 

 

As described in Section 3.1.1, the polymer samples were purged with dry nitrogen for 30 minutes 

before being exposed to the gas analyte.  This ensured any residual analyte sorbed onto the polymer 

was released.  The polymer samples were exposed to gas analytes individually and the highly 
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specialized gas chromatograph (GC) was used to measure the amount of gas that did not sorb 

(residual gas).  By subtracting the residual analyte concentration ([Analyte]residual) from the initial 

concentration of analyte ([Analyte]initial) exposed to the polymer sample, the amount sorbed could 

be obtained (see Equation 3.1). 

 

[𝐴𝑛𝑎𝑙𝑦𝑡𝑒]𝑠𝑜𝑟𝑏𝑒𝑑 = [𝐴𝑛𝑎𝑙𝑦𝑡𝑒]𝑖𝑛𝑖𝑡𝑎𝑙 − [𝐴𝑛𝑎𝑙𝑦𝑡𝑒]𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 (Equation 3.1) 

 

The amount of analyte sorbed was measured at equilibrium.  To ensure equilibrium had been 

reached, two consecutive samples were measured by the GC, typically 12 minutes apart.  The time 

between samples run by the GC was limited by the amount of time it took for the gas analyte to 

elute out of the GC column.   

 

3.5.2 Evaluation of Sensors 

 

3.5.2.1 RFID Sensors 

 

The RFID sensors were placed inside the sensor chamber described in Section 3.1.1.  The chamber 

contained an inlet where the gas analytes entered, two holes for the cables connecting the sensors 

and the sensor readout, and an outlet hole.  Two RFID sensors could be evaluated simultaneously.  

 

The output signal from the RFID sensors were recorded using a Hewlett Packard 8722E5 S-

parameter network analyzer, which measured amplitude versus frequency.  Specific peaks (in the 

GHz range) and the frequency shifts of these peaks, which resulted from the analyte sorbing onto 

the sensing material, were monitored and recorded. 

 

Both the transient (real time) and equilibrium responses were measured for the RFID sensors.  The 

equilibrium responses were used to determine the sensitivity and selectivity of the sensor, while 

the transient response was used to determine the response and recovery times of the sensor.  Due 

to equipment limitations, the transient responses were measured every 15 seconds over an 8 minute 

period (4 minutes of analyte exposure, followed by 4 minutes of dry nitrogen purge).   

 

3.5.2.2 MEMS-based Sensors 

 

The MEMS sensors were evaluated in a specially designed test chamber (see Figure 3.6).  The test 

chamber contained an inlet, outlet, and ports for electrical wires.  The test chamber was large 

enough to accommodate a microscope that was used to visually monitor the MEMS sensor.  A 

pressurized canister of standard grade gas analyte was used to fill the chamber with analyte at a 

specific concentration.  The chamber was purged between runs. 
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Figure 3.6: Schematic of the test chamber used for evaluation of the MEMS-based sensor. 

 

The MEMS sensor was a binary cantilever sensor that “switched on” when a threshold 

concentration of analyte was reached.  The cantilever response was mass-based; therefore, when 

enough analyte sorbed onto the sensing material, the added weight caused the cantilever to bend.  

When enough mass was added (a threshold concentration was reached), the sensor “switched on”.  

This “switch” was observed visually using a microscope.  Note that the amount of mass sorbed 

onto the sensor was correlated to the analyte concentration in the chamber.   

 

3.6 Statistical Analysis 

 

The experiments were run using a full factorial design with three independent replicates each.  

Therefore, all levels of one factor were combined with all levels of the other factors.  For example, 

all the gas analytes (one factor) were evaluated against all of the sensing materials (the other 

factor).  Note that the samples were randomly ordered before testing to minimize any bias that may 

have been present day to day. 

 

Not every possible dopant and polymer combination was run.  Screening experiments were used 

to determine the best sensing materials in terms of ethanol sorption.  Based on these results, 

specific polymers and dopants were chosen to be evaluated further.  For example, the sensing 

materials which sorbed more ethanol were the ones further evaluated using other interferents. 

 

The data collected (see Appendix E) were analyzed using analysis of variance (ANOVA), which 

determines if there is a significant difference between the means (μ) of two or more samples.  

ANOVA begins with a null hypothesis (H0) that states there is no difference between the means 

of all samples evaluated (see Equation 3.2) under a multiple comparison scenario. 

 

H0: μi – μj = 0  for all i, j (Equation 3.2) 
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The sum of squares (SS), degrees of freedom (df), and the mean square (MS) are all calculated for 

the data and summarized in an ANOVA table (see Appendix F for the ANOVA tables pertaining 

to the results discussed in Chapters 4 and 6).  In addition, an Fobserved value was calculated from the 

MS and MSerror.  The equations used for the ANOVA are listed in Appendix F (see Equations F.1 

- F.10).  If the Fobserved is larger than the Fcritical (from an F-table at a given confidence level, typically 

95%, α = 0.05), then the null hypothesis is rejected.  Otherwise, there is not sufficient evidence to 

reject the null hypothesis. 

 

If the null hypothesis is rejected, it means at least two of the sample means are significantly 

different at a confidence level (typically 95%, α = 0.05) for a given number of samples evaluated.  

ANOVA does not distinguish which pairs of means show a difference, just whether there is a 

difference between at least two means.  If the null hypothesis cannot be rejected, then there is no 

significant difference between the means.  Therefore, the response from all the polymer samples 

evaluated is effectively the same. 

 

For special cases, where one factor may affect another factor being evaluated, ANOVA with 

blocking was used.  This was the case for evaluating different sensors using different sensing 

materials, where lurking differences in the sensing material structure could affect the comparison 

between the types of sensors.  By blocking one factor (the sensing materials), the effects of the 

blocks could be separated from the effects of the treatment (the sensors).  The equations used for 

the ANOVA with blocking are also listed in Appendix F (see Equations F.11 - F.17) 

 

To determine which polymers/analytes are significantly different, a multiple comparisons test must 

be done, since the ANOVA only determines if at least one sample mean is different from the others.  

ANOVA does not identify which samples mean(s) are different.  Two multiple comparisons tests 

were carried out: the Bonferroni t-test and Fisher’s Least Significant Difference (LSD).  Both of 

these tests are paired comparison tests, used to evaluate whether two sample means are 

significantly different from one another.  Both the Bonferroni t-test and the Fisher’s LSD were 

done at 95% confidence levels (α = 0.05, α/2 = 0.025).  The equations used for both the Bonferroni 

t-test (see Equations F.18 - F.20) and Fisher’s LSD (see Equations F.20 - F.22) are listed in 

Appendix F. 

 

In addition to calculating whether the responses were significantly different from each other, the 

error was also calculated from the three independent replicates.  The percent error was calculated 

by dividing the sample mean by the standard deviation.  The equations used to calculate the error 

are listed in Appendix F (see Equations F.23 - F.27).  The percent error for each of the cases 

analyzed is listed in the tables in Appendix F.  Note that the error measured was less than 10% for 

all cases and typically below 5%.  These are very reasonable error estimates.   
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3.7 Polymerization Kinetics of Aniline  

 

After detailed scrutiny of the literature, kinetic information on the polymerization characteristics 

of aniline is scarce or non-existent.  Many literature sources mention a (relatively common) recipe, 

which is employed to produce polyaniline (PANI) for further investigations, with qualitative 

statements such as “very high molecular weight PANI was synthesized” (Steiskal and Gilbert, 

2002).  Several publications discuss postulated mechanisms for the polymerization of aniline, 

which are useful in visualizing the polymerization steps, but do not include any estimates of 

propagation or termination rate constants.  Some sources offer estimates of activation energies for 

propagation or termination, which are within a reasonable range of expected values based on 

typical polymerization understanding (Mu et al., 1997).  Table 3.2 includes the most useful 

references located with some relevant information about polymerization kinetic aspects of aniline.   

 

Based on the information from the references in Table 3.2, it seems that PANI below a molecular 

weight of 50,000 Da is usually referred to as “low molecular weight PANI” (Yang and Mattes, 

2002).  Molecular weight estimates in the literature range from 50,000 to 1,500,000.  Typical 

information about molecular weight ranges comes either from solution viscometry, which is useful 

for qualitative comparisons at best, or gel permeation chromatography (GPC).  GPC is usually 

carried out in exotic solvents such as N-methyl-2-pyrrolidone (NMP), since PANI is not readily 

soluble in many solvents (Brandrup et al., 1999).  Unfortunately, not a lot of useful and reliable 

information is given in terms of calibration, replication, error estimates, refractive index 

determination, etc. 

 

From this, it is evident that a more quantitative description of polymerization kinetics of aniline is 

rather elusive.  The best that can be done is to resort to an order of magnitude analysis based on 

the poor information given by the references in Table 3.2, and/or on typical polymerization theory 

and understanding.   

 

Note that in Table 3.2, individual rate constants are denoted by a subscripted k, whereas a simple 

k denotes a pseudo (overall) rate constant. The initiator decomposition rate constant is denoted by 

kd, and the polymerization (propagation) rate constant is denoted by kp.  In addition, the estimate 

of the activation energy of the overall polymerization is denoted by EA.  Table 3.2 also includes 

molecular weight estimates for polyaniline measured by either gel permeation chromatography 

(GPC) or dynamic light scattering (DLS). 
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Table 3.2: Polymerization Kinetic Aspects of Aniline from the Literature 

Initial 

Conditions 

Rate Constants/ 

Activation Energy 
Temperature 

Molecular 

Weight  
Reference 

0.05 M ANI 

1 M H2SO4 

k = 0.48 (±13%) s-1 - - 
Shim and Park 

(1989) 

0.082 M ANI 

0.110 M DBSA 

0.017 APS 

kd = 5 (±1) x 10-4 

M-1 min-1 

kp = 3 (±1) x 10-1 

M-1 min-1 

-10 ºC - 
Gomes de Souza 

et al. (2009) 

0.2 M ANI 

0.8 M HCl 

EA = 20.9 kJ/mol 

EA = 5.4 kJ/mol 

1 – 20 ºC 

20 – 35 ºC 
- Mu et al. (1997) 

0.5 M ANI 

0.5 M APS 

1 M HCl 

6 M LiCl 

- - 30 ºC 

Mw = 127,866 

(GPC)  

Mw = 911,737 

(DLS) 

Ramamurthy et 

al. (2012) 

0.2 M ANI 

0.25 M APS 

0.1 M H2SO4 

- 21 ºC Mw ≈ 40,000 
Sapurina and 

Shishov (2012) 

0.2 M ANI 

0.25 M APS 

0.2 M Acetic 

Acid 

- 21 ºC Mw = 44,600 
Sapurina and 

Shishov (2012) 

0.04 M ANI 

1 M HCl 

0.4 M APS 

- 5 ºC - Wei et al. (1989) 

Where ANI is aniline, APS ammonium persulfate, H2SO4 is sulfuric acid, DBSA isododecylbenzene sulfonic 

acid, HCl is hydrochloric acid, LiCl is lithium chloride. 

 

Our exact recipe and rather straight forward polymerization procedure are described in Table 3.3.  

Based on the recipe shown in Table 3.3, an order of magnitude analysis was conducted.  As part 

of the order of magnitude analysis, some rounding was done on the numbers representing initial 

concentrations of the ingredients.  Note that the temperature used for the calculations was 0 ºC, 

since the temperature varied between -2 ºC and +2 ºC during the polymerization (aniline 

polymerization is highly exothermic and hence it is difficult to control the polymerization 

temperature at such low temperature levels).   
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Table 3.3: Recipe used to Synthesize Polyaniline 

Monomer Initiator Solvent Temperature Time 

Aniline 

0.4 g 

Ammonium 

persulfate 

1.0 g 

Deionized Water 

25 mL 
-1 ºC 6 hours 

93.13 g/mol 228.18 g/mol    

[M] = 0.2 mol/L [I] = 0.2 mol/L    

 

The excess of ammonium persulfate used for the polymerization is indicative of oxidative 

mechanisms, which have been proposed for the aniline polymerization (see Figure 3.7).  Note that 

this mechanism has not been extensively studied and is not well understood.  For example, it is 

unknown why this polymerization results in 95% on the aniline adding in the para position 

(Sapurina and Stejskal, 2008).   

 

 
Figure 3.7: Proposed oxidation mechanism for the polymerization of aniline (Bocchini et al., 2013). 

 

Typical rate constant, kd, values for a decomposition of ammonium persulfate are seen in Table 

3.4. 

 

Table 3.4: Rates Constant Values for Ammonium Persulfate (APS) 

Rate Constant Temperature Reference 

kd = 5 x 10-6 s-1 50 ºC Gao and Penlidis 

(2002) kd = 1.6 x 10-7 s-1 0 ºC 

 

Conversion versus time data were collected for the synthesis of polyaniline (see Figure 3.8).  The 

procedure was the same as described in Section 3.3, except that the polymerization was carried out 
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in test tubes with ¼ of all ingredients (such that the concentrations remained the same), and the 

polymerization was stopped by dropping the test tube into liquid nitrogen.  The samples were 

filtered and weighed. 

 

 
Figure 3.8: Typical conversion versus time graph for the polymerization of polyaniline.  

 

Given the uncertainty surrounding the values of the kinetic rate constants involved in aniline 

polymerization, a typical molecular weight range at our polymerization conditions (and recipe) 

would be:  

 

Mn ≈ 200,000 – 500,000  

 

The estimated range above is in agreement with the reported molecular weight values in the 

literature for a similar recipe and conditions (see Table 3.2).  Note that the range of molecular 

weights shown in Table 3.2 is from 40,000 Da (for room temperature polymerization) to about 

1,000,000 Da (for very low temperature polymerization). 

 

The molecular weight of PANI in DMSO was measured using a Viscotek TDA 305 GPC.  Given 

that no dn/dc value for PANI in DMSO could be found in the literature, two reasonable estimates 

of 0.4 and 0.2 were used to calculate the molecular weight (see Table 3.5).  Note that these dn/dc 

values are estimated from PANI in other solvents (see Appendix D.2). 

 

Table 3.5: Molecular Weight of PANI 

Sample dn/dc (estimate) Mw (Da) Mn (Da) PDI 

PANI 1 0.4 386,866 176,975 2.186 

PANI 2 0.4 407,761 204,403 1.995 

PANI 1 0.2 773,733 353,950 2.186 

PANI 2 0.2 815,521 408,807 1.995 

 

0.00

0.20

0.40

0.60

0.80

1.00

0 600 1200 1800 2400

C
o

n
v

er
si

o
n

 (
x
)

Time (s)





47 

 

4. Results and Discussion: Sensing Material Analysis 
 

4.1 Transdermal Gas Studies 

 

4.1.1 Transdermal Volatile Organic Compounds (VOCs) 

 

Identification of compounds (or gases) using a gas chromatograph (GC) is based on elution 

(retention) time.  It is possible for multiple compounds to have the same (or very close, essentially 

indistinguishable) elution times.  Therefore, there is potential for misidentification of the gases 

emitted from a person’s hand when using a GC due to some gases having similar elution times.  

As well, some peaks on the chromatogram, such as the peak for water, which have a long tail, may 

obscure very small response peaks from other analytes that happen to elute out within the same 

range.   

 

It is worth noting that the majority of gases emitted from the human body are in the sub ppb range, 

and therefore not detectable by GC.  This is a good sign for sensors that are designed to detect 

analytes in the ppm to high ppb range, because the sensor would not have the appropriate 

sensitivity for all these interferents, and thus selectivity towards the target analyte, ethanol, would 

be very good.     

 

When designing a sensor for a target analyte (i.e. ethanol), the interferents of concern are those 

which are in the same (or higher) concentration range than the target analyte.  For example, if 

acetone were to come off a subject’s hand at a concentration of 10 ppb, it would not likely result 

in a false positive from a sensor designed to detect analytes around 1 ppm; however, if acetone 

came off a subject’s hand at 10 ppm, then it would be possible for acetone to give a false positive.  

Therefore, the VOCs that come off a subject’s hand in concentrations of (high) ppb – (low) ppm 

are the interferents of interest, as they may affect the selectivity of a sensor.    

 

The results from the study of the gases that are emitted from one particular person’s hand are 

summarized in Figure 4.1.  These results show that there is a large variability of gases emitted 

from one person’s hand over time.  They also show, for this particular person, that most of the 

gases emitted from the hand are in the 1 - 2 ppm range, and therefore, are less likely to produce a 

false positive when testing for ethanol. 
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Figure 4.1: Gases emitted from one individual’s hand over time. 

 

It should be noted that there were a number of unidentified gases in the 1-5 ppm range that 

appeared on the chromatograms (see Figure 4.2).  Also, the presence of ethanol (seen on February 

5th in Figure 4.1) was observed after the person tested had consumed less than one ounce of alcohol 

within one hour prior to testing. 
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Figure 4.2: Gas chromatogram of unidentified (unknown) compounds emitted from the person’s hand. 

 

4.1.2 Transdermal Ethanol Concentration 

 

At time equal to zero, the amount of ethanol from both the hand and the mouth was zero (0 ppm 

from the hand and 0.00 BAC from the breathalyzer) for every test.  These samples were measured 

just before the shot was taken to give a true baseline.  Samples taken immediately after the shot 

resulted in excessively high concentrations of ethanol from both the mouth and hand.  When the 

BAC was measured using a breathalyzer immediately after taking a shot, the breathalyzer maxed 

out (at 0.50 BAC) due to the alcohol in the mouth.  It took a few minutes for the residual ethanol 

to be absorbed through the mouth or washed away with saliva.  When a sample was taken from 

the hand immediately after consuming the vodka shot, the concentration of ethanol measured was 

approximately 10 times higher than the highest concentration measured around 20 or 30 minutes.  

This was due to ethanol vapour from the shot collecting on the palm of the hand while lifting the 

filled shot glass (to take the shot) due to ethanol’s high vapour pressure. 

 

The amount of ethanol from subsequent samples, taken every 10 minutes, was plotted.  Figures 

4.3 through 4.5 show the amount of ethanol measured from both the hand and mouth.  Note that 

the amount of ethanol measured is very similar for all three days.  In each case, the amount of 

ethanol measured from the hand initially peaked around 30 minutes, with a second spike around 

80 minutes.  The breathalyzer, which was used to measure BAC from the mouth, steadily decreased 

after 20 minutes.  A sharper drop was observed between 10 and 20 minutes, which may have been 

due to residual alcohol in the mouth after the shot.  This likely produced a higher reading from the 

breathalyzer at 10 minutes than the actual BAC.  
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Figure 4.3: Comparison of the transdermal ethanol concentration and BAC measured from the mouth, 

March 25, 2015. 

 

 
Figure 4.4: Comparison of the transdermal ethanol concentration and BAC measured from the mouth, 

April 1, 2015. 
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Figure 4.5: Comparison of the transdermal ethanol concentration and BAC measured from the mouth, 

April 14, 2015. 

 

Due to possible fluctuations in metabolism, there are some variations in both the magnitude of the 

amount of ethanol emitted from the skin and the time at which the peaks occur.  Note that the 

initial peak appears between 20 and 30 minutes for all of the samples, see Figure 4.6.  Figure 4.6 

shows the amount of ethanol that is emitted transdermally on six different days.  These tests were 

conducted over three months, at different times in the month (beginning, middle, and end), but all 

tests were conducted in the morning on an empty stomach.  Despite the fluctuations shown, trends 

are still visible.  Note that the first few experiments (including those on Feb. 3 and 4, 2015) were 

not conducted for a full 90 minutes.  The experiments were initially run for 60 minutes, but were 

later extended to 90 minutes.   

 

 
Figure 4.6: Transdermal ethanol concentration shown for different days over three months in 2015. 
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The average of the measurements shown in Figure 4.6 at both 20 minutes and 30 minutes is shown 

in Table 4.1.  The breathalyzer concentrations were also averaged and are shown in Table 4.1.  

Comparing the average concentration from the hand to the BAC from the breathalyzer, it is found 

that the transdermal concentration from the hand is between 5 and 10 ppm at a BAC of 0.05.  

Therefore, qualitatively, a value of 7.5 ppm (since it is in the middle of the 5 and 10 range) is 

roughly equivalent to 0.05 BAC.  This means that the target value of 5 ppm is appropriate as a 

threshold, but the lower the detection limit of a sensor, the better.   

 

Table 4.1: Ethanol Concentration for both Hand and Mouth at 20 and 30 Minutes 

Time of Peak 20 Minutes 30 Minutes 

Average from Hand (ppm) 8.08 ± 1.95 6.48 ± 1.26 

Average from Mouth (BAC) 0.049 ±  0.003 0.047 ± 0.002 

Note: The error is for a 95.44% confidence interval. 

 

In terms of error, the breathalyzer had a much lower error.  Results from the BAC from the mouth 

are shown in Figure 4.7.  Note that at 10 minutes, there was a higher concentration measured on 

March 25, 2015.  This was probably due to residual ethanol in the mouth; however, after 20 

minutes, the results are in close agreement with one another. 

 

 
Figure 4.7: BAC from the breathalyzer shown for different days over three months in 2015. 
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A double shot was taken one day to compare the transdermal ethanol concentration between one 

shot and two (see Figure 4.8).  Note that there was no sample taken at 220 minutes.  This was due 

to the fact that the experiment proceeded longer than anticipated and the person sampled needed 

to eat.  However, it is worth noting that the consumption of food hours after the consumption of 

ethanol did not affect the rate at which ethanol was metabolized in the body. 

 

 
Figure 4.8: Transdermal ethanol concentration and BAC from the breathalyzer for the double shot (3 oz.), 

February 19, 2015. 

   

Overall, the concentration of transdermal ethanol from the double shot was approximately triple 

that of the single shots (see Figure 4.9).  This means that transdermal ethanol concentration does 

not likely scale linearly with the amount of alcohol consumed.  Note that the six days shown in 

Figure 4.9 are the same as in Figure 4.6. 

 

 
Figure 4.9: Transdermal ethanol concentration measurements for six days plus the double shot (shown as 

the first bar, February 19) for comparison. 
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The goal of these experiments was to determine whether a target of 5 ppm for the transdermal 

ethanol concentration was appropriate.  The transdermal ethanol concentration was compared to 

the BAC that was measured from the mouth using a commercially available breathalyzer.  It was 

found that the transdermal ethanol concentration peaked between 20 and 30 minutes after a single 

1.5 oz. shot of vodka was taken.  The average concentration at 20 and 30 minutes was between 5 

and 10 ppm, given typical experimental fluctuations due to various metabolic processes.  

Therefore, the transdermal concentration was about 7.5 ppm, which corresponded to a 0.05 BAC.  

Hence, the target of 5 ppm is appropriate.   

 

Note that since only one person was used for the study, these results can be used to show trends 

and give an idea about transdermal ethanol concentration, but cannot be used as a definitive 

concentration comparison as the sample size was too small.  These tests were not meant to be a 

detailed comparison; they were meant to establish a feasible target for the ethanol sensing 

materials.   

 

4.2 Characterization of Polymer Nanocomposites 

 

The poly (2,5-dimethyl aniline) (P25DMA) nanocomposites (P25DMA doped with Al2O3, CuO, 

NiO, TiO2, and ZnO) were characterized using multiple techniques.  The amount of dopant 

incorporated was measured using energy dispersive X-rays (EDX), the morphology was imaged 

using scanning electron microscopy (SEM), and the crystallinity of the polymer nanocomposites 

was analyzed using X-ray diffraction (XRD).  Appendix G contains additional characterization 

data and plots. 

 

4.2.1 Dopant Concentration (EDX) and Morphology (SEM) 

 

Poly (2,5-dimethyl aniline) (P25DMA) was doped with five different metal oxides at three 

different concentrations (5, 10 and 20 wt. %).  These concentrations of dopant were added during 

synthesis of the polymer (e.g. 5 wt. % Al2O3 to 95% P25DMA).  The actual amount of metal oxide 

dopant that was incorporated into the P25DMA was measured using energy dispersive X-rays 

(EDX, Ametek EDAX, New Jersey, USA).  This was used to confirm if the amount of metal oxide 

dopant (e.g. 5 wt. %) added during synthesis was actually incorporated into the polymer 

nanocomposite (see Table 4.2).  In addition, the morphology of the polymer nanocomposites was 

imaged using scanning electron microscopy (SEM, Zeiss Merlin, Oberkochen, Germany).  Note 

that additional EDX data appears in Appendix G. 
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Table 4.2: Weight Percent of Metal in Each Polymer Nanocomposite at Different Concentrations  

Polymeric Nanocomposite 
Weight Percent of Each Metal (M) 

Al Cu Ni Ti Zn 

P25DMA 5% MOx 0.61 0.16 5.58 3.68 0.34 

P25DMA 10% MOx 0.57 0.07 8.11 12.37 0.86 

P25DMA 20% MOx 0.49 0.11 19.14 17.09 46.89 

 

No CuO was incorporated into the P25DMA matrix, which means Cu is unable to coordinate with 

the P25DMA.  Only a small amount of Al2O3 was incorporated into the P25DMA; however, it was 

the same amount regardless of how much Al2O3 was available during synthesis.  Both NiO and 

TiO2 were incorporated at roughly the same concentration (within error) as available during 

synthesis.  ZnO showed an odd trend, with very little being incorporated at lower concentrations 

available (5 and 10 wt. %) and more than double ZnO present in the P25DMA matrix than what 

was available during synthesis at 20 wt. %.  This was due to less polymer being formed around the 

ZnO nanoparticles, resulting in a higher weight percent of ZnO.   

 

The amount and type of metal oxide present during synthesis affected the resulting P25DMA 

polymer nanocomposite.  Not all of the metal oxides incorporated well into the P25DMA matrix.  

In addition, the morphology of the P25DMA nanocomposites varied when different metal oxides 

were present.  The following subsections (4.2.1.1 - 4.2.1.5) discuss how including the metal oxides 

in the synthesis affected the resulting polymer nanocomposite, for each metal oxide.  The polymer 

nanocomposites were compared to the undoped P25DMA. 

 

4.2.1.1 P25DMA doped with CuO 

 

P25DMA was doped with 5 wt. %, 10 wt. %, and 20 wt. % of copper oxide (CuO), denoted as 

P25DMA 5% CuO, P25DMA 10% CuO, and P25DMA 20% CuO.  These concentrations reflect 

the amount of CuO added during synthesis, with respect to the total polymer weight (i.e. 5% CuO 

and 95% P25DMA).  EDX was used to confirm whether the amount of CuO added during synthesis 

was actually incorporated into the polymer matrix.  It was found that for all three P25DMA 

nanocomposites, less than 0.20 wt. % of copper was in each sample.  This effectively means that 

no Cu was actually incorporated into the P25DMA (see Table 4.2). 

 

Images from scanning electron microscopy (SEM) show very similar morphology for all three 

samples that “contain” CuO (see Figure 4.10).  The morphologies of P25DMA and the P25DMA 

made with CuO in Figure 4.10 are different.  It is likely that the CuO acted as a “catalyst” and 

“shaped” the P25DMA by inducing conformational changes or “kinks” in the polymer chain.  In 

essence, the 2,5-dimethyl aniline (the monomer) is able to coordinate with the CuO; however, the 

strain between the growing polymer chains and CuO is too large to be compensated by a 

conformational change.  This temporary coordination (similar to how a molecule interacts with a 
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catalyst) would result in morphological changes in the polymer, which were observed (see Figure 

4.10a (undoped P25DMA) and Fig. 4.10b-d (P25DMA doped with CuO)). 

 

 
Figure 4.10:  SEM of (a) P25DMA, (b) P25DMA 5% CuO, (c) P25DMA 10% CuO, and (d) P25DMA 20% 

CuO. 

 

The morphology observed for the CuO-doped P25DMA had less surface area exposed than 

undoped P25DMA, thus reducing the amount of sensing sites available to the analytes.  Note that 

P25DMA had thin layered sheets stacked as petals of a flower (see Figure 4.10 a) and thus, had a 

large surface area exposed.  This large surface area meant that more sensing sites were available 

for the analytes to bond in P25DMA, which were not present in the P25DMA doped with CuO.  

Therefore, more analyte was able to sorb onto the undoped P25DMA. 

   

4.2.1.2 P25DMA doped with Al2O3 

 

P25DMA was doped with 5 wt. %, 10 wt. %, and 20 wt. % of aluminum oxide (Al2O3), denoted 

as P25DMA 5% Al2O3, P25DMA 10% Al2O3, and P25DMA 20% Al2O3.  These concentrations 

represent the amount of Al2O3 added during synthesis, based on the total polymer weight (i.e. 5% 

Al2O3 and 95% P25DMA).   EDX was used to confirm the amount of Al2O3 that was actually 

incorporated into the polymer matrix.  It was found that for all three P25DMA nanocomposites, 

only a small amount of Al2O3 (approximately 0.5 wt. %) was actually incorporated (see Table 4.2).  

Despite increasing the amount of Al2O3 available during synthesis from 5 wt. % to 20 wt. %, 



57 

 

roughly the same amount of Al2O3 was incorporated.  Therefore, it is likely that P25DMA can only 

support a small amount of Al2O3 without incurring too much strain on the polymer.  

 

 
Figure 4.11: SEM images of (a) P25DMA, (b) P25DMA 5% Al2O3, (c) P25DMA 10% Al2O3, and (d) 

P25DMA 20% Al2O3. 

 

The three Al2O3 polymeric nanocomposites had similar morphology (see Figure 4.11) and 

contained approximately the same amount of Al2O3 (see Table 4.2).  The addition of Al2O3 gave 

rise to a porous polymer when compared to the undoped P25DMA, and also kept some of the thin 

layered structure of the undoped P25DMA.  This is especially apparent when comparing Fig. 4.11a 

(undoped P25DMA) to Figure 4.11d (P25DMA 20% Al2O3.  The morphology of the P25DMA 

doped with Al2O3 had increased surface area and thus more sensing sites available to the analytes.  

In addition, some Al2O3 was incorporated into the P25DMA matrix (see Table 4.2).  Therefore, 

with the increased surface area and the incorporation of Al2O3, P25DMA doped with Al2O3 should 

have improved sensitivity and/or selectivity to ethanol.   

 

4.2.1.3 P25DMA Doped with ZnO 

 

Very little zinc oxide (ZnO) was incorporated into P25DMA when 5 wt. % and 10 wt. % were 

present during synthesis (see Table 4.2).  A significantly higher amount of ZnO was observed 

when 20 wt. % was used during synthesis.  According to the EDX, double the amount of ZnO was 

incorporated, than initially present, which means much less polymer (P25DMA) was polymerized 

when so much ZnO was present.   
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From the SEM images (see Figure 4.12d), it appears that the synthesis of P25DMA 20% ZnO 

resulted in ZnO nanoparticles (or aggregated ZnO nanoparticles) coated in P25DMA, rather than 

ZnO nanoparticles dispersed within the P25DMA matrix (for instance, contrast Figure 4.12d with 

Figure 4.12c).  Following this observation, this would mean that less 2,5-dimethyl aniline 

monomer was able to polymerize in the presence of ZnO, resulting in a lower conversion to 

P25DMA (in other words, it appears that the presence of ZnO effectively inhibits the 

polymerization of 2,5-dimethyl aniline).  Hence, a smaller amount of P25DMA is produced.  This 

reduced amount of P25DMA would explain the 47 wt. % of ZnO observed within the P25DMA 

20% ZnO sample.  Given the evidence from both the SEM (Figure 4.12d) and EDX (Table 4.2), 

this is likely the case. 

 

 
Figure 4.12: SEM images of (a) P25DMA, (b) P25DMA 5% ZnO, (c) P25DMA 10% ZnO, and    (d) 

P25DMA 20% ZnO. 

 

Only a small amount of ZnO was incorporated when 5% ZnO was available during synthesis and 

it appears that the ZnO did not affect the structure; in fact, it may have increased the spacing 

between the P25DMA layers (see Figure 4.12b).  The particles that appear in the center of the 

“flowers” are ZnO nanoparticles coated in P25DMA.  As more ZnO was available, the morphology 

deteriorated; however, some of the P25DMA sheets can still be seen in the 10% ZnO sample (see 

Figure 4.12c).  Therefore, not much ZnO can be incorporated into the P25DMA matrix. 
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4.2.1.4 P25DMA doped with NiO 

 

NiO was incorporated at roughly the amount added during the polymerization (see Table 4.2).  

This means that Ni is able to coordinate with the P25DMA, by binding to the nitrogen in the amine 

groups (Han et al., 2006), without causing too much strain on the polymer chain.  This is ideal for 

incorporating nanoparticles into a polymer matrix, where the polymer remains almost intact and is 

able to bind to the nanoparticles. 

   

Increasing the amount of NiO incorporated into the P25DMA changed the morphology of the 

polymeric nanocomposite (see Figure 4.13).  As more NiO was incorporated, the thin sheets of 

P25DMA (Figure 4.13 a) changed into more porous and globular structures (Figures 4.13 b-d).  

This is due to the Ni-N bonds causing “kinks” along the polymer chain where the ring in P25DMA 

changes conformation, to reduce strain caused by the NiO binding.  More “kinks” result in a more 

porous structure, since the P25DMA chains are no longer able to stack as compactly.      

 

 
Figure 4.13: SEM images of (a) P25DMA, (b) P25DMA 5% NiO, (c) P25DMA 10% NiO, and (d) P25DMA 

20% NiO. 

 

4.2.1.5 P25DMA doped with TiO2 

 

The incorporation of TiO2 to P25DMA was effective and the amount added during polymerization 

(5%, 10%, and 20%) was approximately the amount of TiO2 incorporated into the P25DMA, by 

weight (see Table 4.2).  NiO and TiO2 have energy bands (or levels) where their electrons sit, that 
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are close in energy to one another (Ibupoto et al., 2014).  Given this, it is likely that some of the 

energy levels for P25DMA are similar to those of NiO and TiO2, given how well both metal oxides 

were able to coordinate to P25DMA. 

 

In addition, the morphology of the P25DMA doped with TiO2 was similar for all three 

concentrations of TiO2 but different from that of P25DMA (see Figure 4.14).  This suggests that 

as TiO2 is incorporated into the P25DMA, the morphology also is changed due to “kinks” that 

form along the polymer chains, similar to what was described earlier for NiO. 

 

  
Figure 4.14: SEM images of (a) P25DMA, (b) P25DMA 5% TiO2, (c) P25DMA 10% TiO2, and (d) P25DMA 

20% TiO2. 

 

4.2.2 Crystallinity (XRD) 

 

The polymer nanocomposites were also characterized using X-ray diffraction (XRD, X'Pert PRO 

PANalytical Material Powder Diffractometer (MPD), source: CuK-alpha radiation, wavelength: 

0.154 nm, Almelo, The Netherlands) to determine their crystallinity.  As seen in Figure 4.15, all 

of the polymeric nanocomposites are semi-crystalline, with the least crystalline material (no 

distinct crystalline peaks) being P25DMA doped with 5% CuO (see Figure 4.15b).  Since the peaks 

in XRD are additive, the additional peaks observed (when compared to the undoped P25DMA) 

are from the addition of the metal oxide or a change in the morphology (resulting in more 
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crystallinity) caused by the metal oxide (see Figure 4.16).  Additional XRD information is 

available in Appendix G. 

 

 
Figure 4.15: XRD of (a) P25DMA, (b) P25DMA 5% CuO, (c) P25DMA 5% Al2O3, (d) P25DMA 5% NiO, 

(e) P25DMA 5% TiO2, and (f) P25DMA 5% ZnO 
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Figure 4.16: XRD of P25DMA, NiO nanoparticles, P25DMA, and P25DMA 10% NiO. 

 

4.3 Ethanol Sorption Studies 

 

4.3.1 Polyaniline (PANI) and its Derivatives 

 

Initially, polyaniline (PANI) and two of its derivatives, poly (o-anisidine) (PoANI) and poly (2,5-

dimethyl aniline) (P25DMA), were evaluated as potential sensing materials for ethanol.  Each 

polymer sample was exposed to 5 ppm of ethanol and the amount of ethanol sorbed was measured 

(see Figure 4.17). 

 

 
Figure 4.17: Amount of ethanol sorbed onto PANI, PoANI, and P25DMA. 

 

Analysis of variance (ANOVA) found that there was a statistically significant difference between 

the average amount of ethanol sorbed (see Section F.1.1 in Appendix F).  Further analysis (the 
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Bonferonni t-test and the Fisher’s least significant difference (LSD)) found that PoANI and 

P25DMA sorbed significantly different amounts of ethanol; however, the amount of ethanol PANI 

sorbed was not significantly different from either PoANI or P25DMA (see Section F.1.1 in 

Appendix F).  Therefore, P25DMA was more sensitive to ethanol than PoANI; however, neither 

P25DMA nor PoANI were significantly better or worse (respectively) than PANI at sorbing 

ethanol.   

 

The addition of a methoxy group to PANI (e.g. PoANI) reduced the sensitivity to ethanol.  This 

may be due to the amine in PoANI binding to the methoxy group and reducing the number of 

sensing sites available to ethanol.  The two methyl side groups on P25DMA, on the other hand, 

improved the sorption of ethanol which was likely due to the reduced packing efficiency of 

P25DMA versus PANI.  The methyl groups provided steric hindrance that created larger interstitial 

spaces in the polymer chains of P25DMA, compared to PANI, allowing ethanol to diffuse more 

easily into the P25DMA matrix.   

 

4.3.2 Doped Polyaniline (PANI) and Poly (o-anisidine) (PoANI) 

 

In an attempt to improve the sensitivity of polyaniline (PANI) and poly (o-anisidine) (PoANI), 

both polymers were doped with 10 wt. % and 20 wt. % NiO or ZnO.  Note that each doped polymer 

will be referred to by the amount of dopant added during synthesis (e.g. PANI doped with 10 wt. 

% NiO will be referred to as PANI 10% NiO, and so on).  These four polymer nanocomposites 

were also exposed to 5 ppm of ethanol and the amount sorbed was measured (see Figure 4.18).  

These results were compared to those with the undoped polymers. 

 

 
Figure 4.18:  Ethanol sorption onto undoped and doped PANI and PoANI. 
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The addition of either NiO or ZnO did not significantly change the amount of ethanol that sorbed 

onto PANI; however, the addition of NiO and, especially ZnO, did significantly affect the amount 

of ethanol sorbed onto PoANI.  See Section F.1.2 in Appendix F for the summary of the statistical 

analysis.   

 

The apparent reduction in ethanol sorption when 10 wt. % NiO was incorporated into PoANI (seen 

in Figure 4.18) was not actually significantly different (at a 95% confidence level).  Therefore, the 

addition of 10 wt. % NiO did not significantly affect the sensitivity of PoANI to ethanol.  This is 

likely to be a result of competing sensing mechanisms (hydrogen bonding with PoANI vs. metal 

coordination with the NiO) caused by the addition of NiO (see Section 6.1).  Note that ethanol and 

NiO compete for the amine groups on PoANI, since the NiO coordinates with PoANI by binding 

to the amine groups on PoANI, which removes sensing sites for analytes like ethanol.  There is, 

however, a significant (at a 95% confidence level) increase in ethanol sorption for PoANI 20% 

NiO when compared to undoped PoANI, which means that the sensing mechanisms related to NiO 

have become dominant (i.e. the metal coordination with NiO has overcome the reduction in 

sensing sites caused by NiO coordinating with PoANI).   

 

The addition of both 10 wt. % and 20 wt. % ZnO did improve the sorption of ethanol to PoANI; 

however, there was no significant difference between the amounts of ethanol sorbed for PoANI 

10% ZnO compared to PoANI 20% ZnO.  This means that adding more ZnO during synthesis 

(20% vs. 10%) did not improve the sorption.  Therefore, any further testing should be done on the 

material with 10% ZnO, since PoANI 10% ZnO is more cost effective to produce because the 

nanoparticles are more expensive than the polymer. 

 

4.3.3 Doped Poly (2,5-dimethyl aniline) (P25DMA) 

 

Since P25DMA performed the best out of the PANI and PANI derivatives, P25DMA was doped 

with five different metal oxide dopants (Al2O3, CuO, NiO, TiO2, and ZnO) at three different 

concentrations (5 wt. %, 10 wt. %, and 20 wt. %).  Note that each doped polymer will be referred 

to by the amount of dopant added during synthesis (e.g. P25DMA doped with 5 wt. % Al2O3 will 

be referred to as P25DMA 5% Al2O3, and so on).  This resulted in a total of 16 sensing materials, 

including undoped P25DMA.  Each sensing material was exposed to 5 ppm of ethanol and the 

amounts sorbed are shown in Figure 4.19. 
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Figure 4.19: Ethanol sorption onto undoped and doped P25DMA. 

 

4.3.3.1 P25DMA Doped with Al2O3 

 

A comparison of the three Al2O3 polymer nanocomposites showed that the amounts of ethanol 

sorbed onto the polymer nanocomposites were not significantly different (at a 95% confidence 

level) despite the addition of more Al2O3 during synthesis (see Figure 4.20).  This is further support 

that only a small percentage of Al2O3 can be incorporated into P25DMA (see Table 4.2 in Section 

4.2.1).   
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Figure 4.20: Ethanol sorption of P25DMA and P25DMA doped with 5%, 10%, and 20% Al2O3. 

 

By incorporating only 5% Al2O3 into P25DMA, the sensitivity to ethanol significantly increased 

(the amount sorbed almost doubled).  Since the addition of more Al2O3 during synthesis did not 

improve the sorption, only 5 wt. % of Al2O3 is needed to significantly improve the sorption of 

ethanol on P25DMA.   

 

4.3.3.2 P25DMA Doped with CuO 

 

P25DMA doped with 5% CuO, 10% CuO, and 20% CuO were individually evaluated using 5 ppm 

ethanol.  The amount of ethanol sorbed onto the P25DMA doped with CuO was the same (a low 

level, close to zero) for all three CuO samples (see Figure 4.21).  The amounts of ethanol sorbed 

onto each CuO nanocomposite were not significantly different, at a confidence level of 95%.  

Therefore, adding more CuO to P25DMA during polymerization did not affect the sorption of 

ethanol (see Figure 4.21); however, the addition of CuO did significantly decrease the amount of 

ethanol sorbed compared to the undoped P25DMA.  The CuO doped P25DMA sorbed 

approximately five times less than the amount of ethanol sorbed onto the undoped P25DMA.   
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Figure 4.21: Ethanol sorption of P25DMA doped with CuO.  

 

4.3.3.3 P25DMA Doped with NiO 

 

The addition of 5 wt. % NiO increased the amount of ethanol sorbed; however, increasing the 

concentration of NiO to 10 wt. % significantly reduced the amount of ethanol sorbed.  The trend 

then reversed itself when more NiO (20 wt. %) was added (see Figure 4.22).  This trend can be 

explained by the dominant mechanism at different concentrations of NiO (see Section 6.1). 

 

 
Figure 4.22: Amount of sorbed analyte for P25DMA, P25DMA 5% NiO, P25DMA 10% NiO, and P25DMA 

20% NiO. 
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For both P25DMA and P25DMA 5% NiO, the dominant mechanism was hydrogen bonding 

between the amine group of P25DMA and the oxygen on ethanol.  However, as more NiO was 

added, the amines in P25DMA were less available to the analytes because the Ni bound to the 

amine instead.  At a certain point, somewhere between 5 wt. % and 10 wt. %, metal coordination 

took over as the dominant mechanism, where the gas analytes were more likely to bond with the 

Ni than hydrogen bond with the amine.  This resulted in a significantly reduced amount of sorption 

because coordinating with the Ni was limited (by less access to the NiO nanoparticles) through 

diffusion.  As more NiO was added (increasing to 20 wt. %), more Ni was available for the analyte 

to coordinate to and thus, sorption was increased (Stewart and Penlidis, 2016). 

 

4.3.3.4 P25DMA Doped with TiO2 

 

Overall, it was found that adding more TiO2 improved the amount of each analyte sorbed, with 

P25DMA 20% TiO2 sorbing the most ethanol (see Figure 4.23).  Note that the addition of 5% TiO2 

did not significantly affect the sorption of ethanol (at a 95% confidence level), whereas the addition 

of 10% and 20% TiO2 did significantly improve the amount of ethanol sorbed onto the polymer 

nanocomposite, compared to the undoped P25DMA.  This is likely due to the P25DMA doped 

with TiO2 having more “kinks” along the polymer chains where the TiO2 is bound and thus, larger 

interstitial spaces are formed, allowing easier diffusion of the analytes.  

 

 
Figure 4.23: Amount of sorbed analyte for P25DMA, P25DMA 5% TiO2, P25DMA 10% TiO2, and 

P25DMA 20% TiO2. 
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4.3.3.5 P25DMA Doped with ZnO 

 

ZnO did not incorporate well into P25DMA, as seen in Table 4.2. A tiny amount of ZnO (0.34 wt. 

%) that incorporated in the P25DMA 5% ZnO did appear to improve the sorption of ethanol (see 

Figure 4.24); however, both the Bonferroni t-test and the Fisher’s LSD determined that there was 

no significant difference between P25DMA and P25DMA 5% ZnO (see Section F.1.3 in Appendix 

F).  On the other hand, the amount of ethanol sorbed by both P25DMA 10% ZnO and P25DMA 

20% ZnO was significantly less than the amount that sorbed onto the undoped P25DMA (at a 95% 

confidence level).  Therefore, in general, as more ZnO was added during synthesis, the amount of 

ethanol sorbed significantly decreased (see Figure 4.24).   

 

 
Figure 4.24: Amount of sorbed analyte for P25DMA, P25DMA 5% ZnO, P25DMA 10% ZnO, and P25DMA 

20% ZnO. 

 

P25DMA 20% ZnO actually sorbed no ethanol, when exposed to 5 ppm.  This is likely due to the 

ZnO nanoparticles being coated with a thin layer of P25DMA that “pacified” the ZnO.  In addition, 

ethanol could not bind to P25DMA due to the amine groups on P25DMA binding to the ZnO.   

 

4.4 Selectivity Studies 

 

Based on the sorption tests shown in Section 4.3, the most promising sensing materials for ethanol 

were P25DMA doped with 5% Al2O3, 5% ZnO, 5% and 20% NiO, and 5%, 10%, and 20% TiO2.  

These materials were further evaluated for selectivity along with undoped P25DMA and 

P25DMA10% NiO (for completeness of the NiO trends).  Five interferent gases (formaldehyde, 
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methanol, acetaldehyde, acetone, and benzene) were used to evaluate the selectivity towards 

ethanol.   

 

While P25DMA sorbed significantly less ethanol than when doped with various metal oxides at 

certain concentrations, undoped P25DMA was evaluated for its selectivity to ethanol and used as 

a reference with which to compare the doped P25DMA sensing materials.  Note that undoped 

P25DMA is more selective to formaldehyde and methanol than to ethanol.  In addition, the values 

reported for each gas (to compare selectivity) represent an average of three independent replicates. 

 

4.4.1 P25DMA Doped with Al2O3 

 

A comparison of the three Al2O3 polymer nanocomposites showed that the amounts of ethanol 

sorbed onto the polymer nanocomposites were not significantly different (at a 95% confidence 

level, see Section F.1.3 in Appendix F), despite the addition of more Al2O3 during synthesis (see 

Figure 4.25 a).  Due to the similar morphologies (see Figure 4.11 in Section 4.2.1.2), uptake of 

Al2O3 (see Table 4.2), and sorption of ethanol, only P25DMA 5% Al2O3 was used to evaluate 

further the nanocomposite’s effectiveness as a sensing material for different toxic analytes (Figure 

4.25 b).   

 

 
Figure 4.25: (a) Ethanol sorption of P25DMA and P25DMA doped with 5%, 10%, and 20% Al2O3 and (b) 

Amount of sorbed analyte for P25DMA and P25DMA 5% Al2O3.  Note that for (b), the gases, from left to 

right (black to white), are ethanol, formaldehyde, methanol, acetaldehyde, acetone, and benzene. 

 

By incorporating only 5% Al2O3 into P25DMA, the sensitivity to ethanol significantly increased 

(the amount sorbed almost doubled) and the selectivity with respect to five typical interferents was 

significantly improved (see Figure 4.25 b).  The addition of Al2O3 did not affect the amount of 
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acetone sorbed; however, the amount of acetone sorbed was still significantly less than that of 

ethanol.  Overall, P25DMA 5% Al2O3 is a highly selective sensing material for ethanol. 

 

4.4.2 P25DMA Doped with ZnO 

 

Since P25DMA 10% ZnO and P25DMA 20% ZnO sorbed significantly less ethanol than 

P25DMA, only P25DMA 5% ZnO was evaluated for selectivity with five different interferents 

(see Figure 4.26).  The addition of 5% ZnO improved the selectivity of undoped P25DMA towards 

ethanol, especially towards formaldehyde and methanol.   

 

 
Figure 4.26: Amount of sorbed analyte for P25DMA and P25DMA 5% ZnO. Note that from left to right 

(black to white), the gases are ethanol, formaldehyde, methanol, acetaldehyde, acetone, and benzene. 

 

4.4.3 P25DMA Doped with NiO 

 

All three concentrations (5%, 10%, and 20%) of P25DMA doped with NiO were evaluated for 

selectivity to ethanol (see Figure 4.27), despite P25DMA 10% NiO showing poorer ethanol 

sorption than undoped P25DMA.  This was done to assess any trends observed as the amount of 

NiO incorporated into the P25DMA increased.   
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Figure 4.27: Amount of sorbed analyte for P25DMA, P25DMA 5% NiO, P25DMA 10% NiO, and P25DMA 

20% NiO. 

 

The amount of methanol, acetaldehyde, and acetone that sorbed remained roughly the same (not 

significantly different) despite the increased concentration of NiO.  It should be noted that a 

significant drop in the amount of methanol sorbed occurred with the addition of NiO compared to 

the undoped P25DMA.  This is likely due to methanol readily desorbing from NiO at room 

temperature (Natile and Glisenti, 2002). 

 

As the concentration of NiO increased, so did the concentration of benzene (see Figure 4.27).  This 

is likely due to the larger interstitial spaces created in the polymer matrix as more NiO is 

incorporated, since a benzene molecule is significantly larger in size than the other analytes tested. 

 

An interesting trend is observed for both ethanol and formaldehyde (see Figure 4.27).  The addition 

of 5 wt. % NiO increases the amount of both analytes sorbed, especially for ethanol; however, 

increasing the concentration of NiO to 10%, significantly reduces the amount of both ethanol and 

formaldehyde being sorbed.  The trend then reverses itself again with more NiO (20 wt. %).  This 

trend can be explained by the dominant mechanism at the different concentrations of NiO (see 

Section 6.1).   

 

4.4.4 P25DMA Doped with TiO2 

 

The three TiO2 polymeric nanocomposites (5 wt. %, 10 wt. %, 20wt. %) were all evaluated for 

their selectivity towards ethanol.  It was found that adding more TiO2, overall, improved the 

amount of each analyte sorbed (see Figure 4.28).  This is likely due to TiO2 producing more 
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“kinks” along the polymer chains as more TiO2 was incorporated into the P25DMA.  These “kinks” 

would reduce the polymer chains’ ability to pack closely and thus, create larger interstitial spaces 

allowing for easier diffusion of the analytes.  

 

 
Figure 4.28: Amount of sorbed analyte for P25DMA, P25DMA 5% TiO2, P25DMA 10% TiO2, and 

P25DMA 20% TiO2. 

 

Overall, incorporating more TiO2 into P25DMA resulted in better sorption of all the analytes 

evaluated.  P25DMA 20% TiO2 sorbed the most ethanol of all the polymeric nanocomposites 

evaluated; however, P25DMA had better methanol sorption.  Therefore, TiO2 more selectively 

attracts ethanol than methanol, especially below 10 wt. %.  With the exception of formaldehyde, 

P25DMA 5% TiO2 and P25DMA 10% TiO2 had good selectivity with respect to ethanol. 

 

4.5 Optimal Sensing Materials for Ethanol 

 

The selectivity ratios towards ethanol (ratio of ethanol sorption to interferent gas sorption), are 

listed in Table 4.3.  If the selectivity is below 1, then the sensing material is more selective to the 

interferent rather than ethanol, which is the case for P25DMA for formaldehyde and methanol.  

The higher the selectivity, the better.  Table 4.3 is colour coded: the darker the red, the poorer the 

selectivity; the darker the green, the better the selectivity.  For reference, poor selectivity is below 

1.5, moderate selectivity is round 3 and good selectivity is above 5.   
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Table 4.3: Selectivity of Doped and Undoped P25DMA towards Ethanol 

Sensing Material  Formaldehyde Methanol Acetaldehyde Acetone Benzene 

P25DMA 0.73 0.67 1.20 3.26 47.73 

P25DMA 5% Al2O3 2.48 151.50 15.95 6.27 22.17 

P25DMA 5% ZnO 1.63 4.14 4.00 13.27 23.51 

P25DMA 5% NiO 1.16 2.78 2.81 4.14 55.59 

P25DMA 10% NiO 0.74 1.03 1.08 1.23 3.21 

P25DMA 20% NiO 1.08 1.47 2.19 1.76 1.84 

P25DMA 5% TiO2 1.05 19.78 5.79 4.72 178.00 

P25DMA 10% TiO2 1.89 4.28 6.76 8.20 26.85 

P25DMA 20% TiO2 1.33 1.77 2.46 3.18 6.28 

 

None of the sensing materials evaluated were very selective towards ethanol with respect to 

formaldehyde.  This may be due to the fact that ethanol is readily catalytically decomposed into 

formaldehyde and thus, both ethanol and formaldehyde are able to coordinate well to the metal 

oxides used to catalyze the oxidation of ethanol into formaldehyde (Okabayashi et al., 2000).  

Overall, P25DMA 5% Al2O3 and P25DMA 10% TiO2 had the best selectivity towards ethanol.  In 

addition, P25DMA 5% ZnO and P25DMA 5% TiO2 were also acceptable, although formaldehyde 

as an interferent will pose a problem. 

 

4.6 Sensor Array 

 

To improve the selectivity of a sensor, multiple sensing materials can be used in an array.  By 

combining the responses on multiple sensing materials, different gas analytes can be separated 

using a statistical algorithm.  These algorithms compare the different responses from different 

analytes on different sensing materials and capture the basic trends of the underlying correlation 

structure of the whole data set. 

 

A common algorithm used is principal component analysis (PCA).  PCA is a multivariate statistical 

method that converts an array of data into principal components that are a linear combination of 

the original variables.  The goal is to reduce the number of principal components (the maximum 

number of principal components is equal to the total number of variables), while 

capturing/retaining the maximum amount of variability/basic underlying information from the 

whole data set.  Therefore, only the first few principal components are typically used, where the 

first principal component contains the most variance and the nth principal component contains the 

least (Scott and Penlidis, 2013). 

 

For the sensor array of the current investigation, only the first two principal components (Factor 1 

and Factor 2) were employed in the plots that follow, since these two principals contain the most 

variance (they captured 95% of the variability).  In this case, the variables were the sensing 
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materials and the data were grouped by gas analyte.  This correlated the data (amounts sorbed) 

with the corresponding gas analyte, resulting in gas analytes being separated into clusters when 

Factor 1 was plotted against Factor 2.   

 

The five sensing materials used in this sensor array were P25DMA, P25DMA 5% Al2O3, P25DMA 

5% NiO, P25DMA 5% TiO2, and P25DMA 5% ZnO.  Each of the five sensing materials was 

initially evaluated for selectivity, individually.  Each sensing material was exposed to 

approximately 5 ppm of each of six gas analytes (acetaldehyde, acetone, benzene, ethanol, 

formaldehyde, and methanol).  The amount of gas analyte that sorbed onto each sensing material 

is shown in Figure 4.29 (effectively, a sensitivity indicator). 

 

 
Figure 4.29: Amount of gas analyte sorbed onto each sensing material.  Note that from left to right, the 

bars represent acetaldehyde, acetone, benzene, ethanol, formaldehyde, and methanol, respectively. 

 

From Figure 4.29, one can see that high concentrations of both ethanol and formaldehyde sorbed 

onto each sensing material.  Therefore, none of the sensing materials is particularly selective to 

any of the gas analytes evaluated.  However, it should be noted that all of these sensing materials 

are very sensitive to the six gas analytes evaluated since gas sorption (i.e. a response) was observed 

when these sensing materials were exposed to 5 ppm of gas analyte, which is a very low 

concentration to detect.   
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The most selective sensing material was P25DMA 5% Al2O3, which is fairly selective towards 

ethanol.  For comparison, P25DMA had the worst selectivity towards any of the gas analytes.  

Therefore, as a single sensing material on a gas sensor, none of these sensing materials, with the 

possible exception of P25DMA 5% Al2O3, would have the required selectivity.  However, their 

partial selectivity could be exploited on a sensor array.   

 

The data collected from the sorption tests in the previous section were entered into the algorithm 

(using Statistica).  Four replicates for each sensing material-gas analyte combination were used.  

The resulting bi-plots (Factor 2 vs Factor 1, i.e., the first two principal components) are shown 

below, starting with Figure 4.30, which is essentially the reference or calibration graph with which 

unknown gases are compared.  See Appendix H for additional information on the PCA results. 

 

 
Figure 4.30: PCA reference plot. 

 

Note that Factor 1 includes 78.74% of the variability and Factor 2 includes 16.52% of the 

variability (the scree plot in Figure 4.31 shows the variability of each Factor).  This means that 

plotting Factor 2 versus Factor 1 accounts for 95.26% of the total variability, which is quite high.   
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Figure 4.31: Scree plot showing the percent of variability for each Factor. 

 

Using the plot in Figure 4.30 as a reference, six unknown gases were subsequently evaluated.  Each 

of these gases was singular in nature (i.e. only one gas analyte was measured at a time).  The 

resulting points for each unknown, after being analyzed using PCA, were plotted on top of the 

reference graph (Figure 4.32).  In all cases, the unknown (single gas) could easily be identified 

since the response on the unknown landed very close to the previously identified gas clusters. 

 

 
Figure 4.32: PCA plot with unknowns (single gases). 
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A gas mixture was also evaluated (again for initial proof-of-concept), using ethanol and 

acetaldehyde in a 2:1 ratio.  Two replicates were run, which produced four points (two for ethanol 

and two for acetaldehyde).  These points landed partway between ethanol and acetaldehyde on the 

reference plot (Figure 4.33).  In addition, these points did not overlap with any of the other gas 

clusters. This was promising.  

 

 
Figure 4.33: Unknown gas mixture. 

 

It should be noted that an interaction between acetaldehyde and ethanol did occur (i.e. the presence 

of acetaldehyde did affect how much ethanol sorbed and vice versa).  In this case, ethanol 

facilitated the sorption of acetaldehyde resulting in acetaldehyde more readily sorbing than 

ethanol.  Therefore, these interactions in binary, ternary, etc. gas mixtures should be further 

evaluated to improve the discriminating capabilities of the algorithm in better separating gas 

analytes in mixtures.  However, for single gas analytes, a sensor array consisting of these five 

sensing materials (P25DMA, P25DMA 5% Al2O3, P25DMA 5% NiO, P25DMA 5% TiO2, and 

P25DMA 5% ZnO) is able to distinguish quite reliably between six different gas analytes 

(acetaldehyde, acetone, benzene, ethanol, formaldehyde, and methanol). 

 

Note that this is a first attempt (proof-of-concept) and seems quite promising.  Of course, the more 

data points PCA uses, the better the data correlation structure will be identified.   
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5. Results and Discussion: Sensors and Further Analysis 
 

The more promising potential polymeric sensing materials that were evaluated in Chapter 4 were 

subsequently deposited onto different sensors for further evaluation in this chapter.  In addition, 

some other studies were conducted on these polymeric nanocomposites to assess any other trends 

and obtain a reproducibility measure for the polymer nanocomposites. 

 

5.1 Sensor Evaluation 

 

Two different types of sensors were evaluated using multiple sensing materials: a radio frequency 

identification (RFID) sensor that measured a change in capacitance and a microelectromechanical 

systems (MEMS) microcantilever that measured a change in mass.  Note that the data presented 

in Section 5.1 were collected in collaboration with other graduate students.  The RFID sensors 

(Section 5.1.1) were done in collaboration with Wei Ting (Scott) Chen, who designed the RFID 

sensors that were used to evaluate the sensing materials (Chen et al., 2015a; Chen et al., 2015b; 

Chen et al., 2015c; Stewart et al., 2015).  The MEMS-based microcantilever sensors (Section 5.1.2) 

were done in collaboration with Mahmoud Khater who designed the MEMS sensors that were used 

to evaluate the sensing materials (Khater et al., 2014).   

 

5.1.1 Radio Frequency Identification (RFID) 

 

The RFID sensor is a capacitive sensor that was designed with interdigitated fingers.  Six different 

sensing materials were deposited onto various RFID sensors.  Two substrates onto which the RFID 

sensors were made, rigid and flexible, were evaluated (see Section 5.1.1.1).  Further analysis for 

selectivity was done on the rigid RFID sensor (See Section 5.1.1.2).  In addition, a three sensor 

array, using two different sets of polymeric sensing materials was also evaluated on the rigid RFID 

(see Section 5.1.1.3). 

 

5.1.1.1 Rigid versus Flexible RFID Sensor 

 

These radio frequency identification (RFID) sensors were composed of an interdigital chemi-

capacitor and operated at RF frequencies.  The sensing material was deposited on top of the 

interdigitated capacitor, which interacted with the gaseous analytes resulting in a change in the 

dielectric constant. The change in capacitance shifted the resonant frequency, which could 

subsequently be observed as a change in the response amplitude (Ampl) at a specific frequency (f) 

(see Figure 5.1).  Note that each sensing material resonates at its own unique resonant frequency 

(Chen et al., 2013). 
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Figure 5.1: Response schematic of RFID sensor.  A change in capacitance (ΔC) results in a change in 

response amplitude as the resonant frequency shifts (Stewart et al., 2015). 

 

Two different types of RFID sensors (rigid and flexible) were compared using six different sensing 

materials (OV 275, OV 225, SXFA, P25DMA, P25DMA 20% NiO, and P25DMA 20% ZnO) to 

determine if there was a significant difference in the responses of the two types of sensors.  The 

rigid sensor was made on a rigid, unbending substrate, whereas the flexible sensor was made on a 

flexible substrate that could bend up to 90˚ (Chen et al., 2015a).  For this comparison, the rigid 

sensor had a flat configuration and the flexible sensor was bent at a 90° angle, fixed by an L-shaped 

acrylic form (see Figure 5.2). 

 

 
Figure 5.2: Rigid RFID sensor (left) and flexible RFID (right) sensors, with a Canadian quarter for 

scale. The flexible RFID sensor is bent at 90º in an acrylic form.  

 

Two different sets of sensing materials were evaluated: OV 225, OV 275, and SXFA (all from 

Seacoast Sciences, Inc.), which will be denoted as the siloxane-based sensing materials, and 



81 

 

P25DMA, P25DMA 20% NiO, and P25DMA 20% ZnO, which will be denoted as the P25DMA-

based sensing materials.  Four gas analytes (ethanol, methanol, acetone, and benzene) were tested 

at a concentration of 1250 ppm.  Note that a higer concentration was used to show proof-of-concept 

for this newly designed sensor.  A change in the response amplitude at specific frequencies was 

measured.  Note that the frequency at which the responses were measured was dependent on the 

sensing material. 

 

Ethanol (1250 ppm) was used to determine whether there was a significant difference between 

these two types of sensors.  Note that each of these sensing materials (OV 275, OV 225, SXFA, 

P25DMA, P25DMA 20% NiO, and P25DMA 20% ZnO) responded differently to ethanol, with 

some sensing materials responding with greater amplitude than others.  Because of these different 

responses, analysis of variance (ANOVA) with blocking was done.  The blocking was used to 

minimize the differences (and thus error) observed between the sensing materials on the same 

sensor.  It was found that the Fobserved was less than Fcritical; therefore, the response to ethanol on 

both the rigid and flexible sensors was not significantly different from one another.  In addition, 

this analysis confirmed that there was a significant difference between at least two of the responses 

of the sensing materials on one sensor.  Further analysis using the Bonferroni t-test and the Fisher’s 

Least Significant Difference (LSD) was done on the responses for each sensing material on both 

sensors, individually.  The summary of this analysis is listed in Section F.2.1 in Appendix F. 

 

Each of these six sensing materials was evaluated for selectivity towards ethanol at 1250 ppm, 

using three different interferents (methanol, benzene, and acetone), with each interferent also 

evaluated at 1250 ppm.  In addition, combinations of two, three, and four gases flowed over the 

sensor and the response was recorded.  Ethanol was always included and the concentration of the 

gases was initially equal.  Then, only the concentration of ethanol was halved, while the interferent 

gases remained at the initial concentration (i.e. initially all the gases were at 1250 ppm; then 

ethanol was halved to 625 ppm, while the rest remained at 1250 ppm).  Nitrogen gas was used to 

balance the concentrations to keep the flow rate at 200 sccm.  For a perfectly selective sensor, by 

halving the concentration of ethanol, the response should also be halved; however, this was not 

the case.   

 

In general, a sensing material will sorb many analytes that have a similar chemical nature.  For 

example, methanol and ethanol are likely to interact similarly because they both contain an alcohol 

(OH) functional group.  Therefore, it is expected that when either ethanol or methanol interact with 

a sensing material, they will both produce a response; however, since mechanisms are complex 

and multiple mechanisms occur simultaneously, it is possible for one analyte (ethanol or methanol) 

to interact more preferentially (see Chapters 6 and 7).  Therefore, it is possible that one analyte, 

such as ethanol, will produce a larger response than methanol despite their similar chemical 

nature.  When both ethanol and methanol are exposed to a sensing material simultaneously, the 

response produced is due to the interaction between the sensing material and both analytes; 
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however, it is impossible to separate which percentage of the response is due to ethanol (and which 

is due to methanol) with a single sensing material. 

 

The first test for selectivity (see Figure 5.3), and the only test for selectivity often performed in the 

literature, is individually testing multiple gases (target analyte and interferents) to determine how 

a sensor and sensing material respond.  This shows the response of the sensor and sensing material 

to a specific analyte; however, it does not show how analytes interact.  In most cases, analytes do 

interact with one another.  For instance, two molecules may bind to the same sensing site on the 

sensing material with one analyte binding to a second analyte that is already bound to the sensing 

material.   

 

  
Figure 5.3: The response amplitude (unitless) for all six sensing materials for both the rigid and flexible 

sensor.  Each analyte (ethanol, blue; methanol, green; acetone, orange; benzene, yellow) was individually 

exposed to the sensing materials at 1250 ppm. 

 

Each sensing material was exposed to pure ethanol at 1250 ppm and then halved to 625 ppm.  This 

provided a reference point to which the various combinations of multiple gases were compared. 

The percent change of the responses is shown in Table 5.1.  Ideally, the response should drop by 

50% when reducing the concentration of ethanol by half; however, mechanisms are complex and 

sometimes the affinity between a sensing material and analyte is strong.  This means that if the 

sensing material was exposed to the higher concentration first, then at the lower concentration, a 

strong affinity for an analyte would result in the sensing material retaining more analyte, and thus 

eventually result in a lower percentage drop than 50%.   
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Table 5.1: Percentage by which the Response Dropped when Ethanol Concentration was Halved 

for Both Sensors 

Sensing 

Material 
P25DMA 

P25DMA 

20% NiO 

P25DMA 

20% ZnO 
OV 275 OV 225 SXFA 

Rigid 50 53 1001 44 77 57 

Flexible 44 62 1001 51 15 48 
1 Response in both cases went from 0.01 to 0, which is essentially no change (negligible), within error. 

 

Overall, the response drops were around 50%, assuming a 10% error of the response (not response 

drop).  P25DMA with 20% ZnO had a response drop of 100%; however, the initial response (to 

1250 ppm) was 0.01 in both cases and dropped to 0.  Therefore, within error, no response was 

measured for ethanol at 1250 ppm, and thus the drop of 100% should be considered a drop of 0% 

or no change.  The response change for OV 225 was an anomaly that should be re-evaluated to 

determine why there is such a difference in responses between the two types of sensors, when none 

of the other sensing materials showed such a wide variation in response.   

 

The individually tested gases were all run at 1250 ppm to compare the response when additional 

gases were simultaneously exposed.  If a sensing material is perfectly selective towards ethanol, 

then the response to ethanol when tested by itself and the response of ethanol with another analyte 

would be equal.  Generally, as more analytes are exposed to the sensing material, the response 

from the sensing material increases. 

 

Further selectivity analysis was done by exposing the six sensing materials to mixtures of two 

gases (ethanol with one of the interferent gas analytes).  Both gases had a concentration of 1250 

ppm and the concentration of ethanol was halved to 625 ppm to determine how the response varied 

with the ethanol concentration (see Figure 5.3).  Both the rigid and flexible RFID sensors had 

similar responses for the same sensing material.   

 

In general, when ethanol was halved, there was a significant drop in response for all sensing 

materials (see Figure 5.4).  Tables 5.2 and 5.3 show the amount the response dropped for each 

sensing material when the concentration of ethanol was halved, for the rigid and flexible sensors, 

respectively.  The closer the drop in response to halving the ethanol concentration was to 50%, the 

more selective the sensing material was to ethanol with respect to the interferent (acetone, 

methanol, or benzene).   
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Figure 5.4: Response Amplitude (unitless) of all six sensing materials when exposed to ethanol and one 

other interferent simultaneously at 1250 ppm for both the rigid (grey) and flexible (orange) sensors. The 

second and fourth column for each sensing material show the response amplitude when the concentration 

of ethanol was halved to 625 ppm (lighter columns). 
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Table 5.2: Percentage by which the Response Dropped when Ethanol Concentration was Halved 

for the Rigid Sensor 

Sensing 

Material 
P25DMA 

P25DMA 

20% NiO 

P25DMA 

20% ZnO 
OV 275 OV 225 SXFA 

Ethanol-

Methanol 
40 37 33 32 27 33 

Ethanol-

Acetone 
25 39 25 37 41 0 

Ethanol-

Benzene 
46 46 4 27 59 -431 

1 The negative denotes that the response increased instead of decreasing when the concentration of ethanol 

was halved. 

 

Table 5.3: Percentage by which the Response Dropped when Ethanol Concentration was Halved 

for the Flexible Sensor 

Sensing 

Material 
P25DMA 

P25DMA 

20% NiO 

P25DMA 

20% ZnO 
OV 275 OV 225 SXFA 

Ethanol-

Methanol 
34 46 43 27 27 16 

Ethanol-

Acetone 
25 47 0 23 45 21 

Ethanol-

Benzene 
40 52 -23 30 42 -351 

1 The negative denotes that the response increased instead of decreasing when the concentration of ethanol 

was halved. 

 

P25DMA had the best selectivity towards ethanol with respect to benzene, at 46% (rigid) and 40% 

(flexible).  High selectivity with respect to benzene was expected since P25DMA had a much 

lower response to benzene than ethanol when the gases were individually exposed (see Figure 

5.3).   When the methanol and acetone were individually exposed to P25DMA, methanol produced 

a larger response than acetone; however, the combination of ethanol and acetone produced a 

smaller change in response when the concentration of ethanol was halved than the combination of 

ethanol and methanol (see Tables 5.2 and 5.3).  This difference between the individually and 

simultaneously exposed gases shows that there is some interaction between ethanol and acetone.   

 

P25DMA 20% NiO also had high selectivity towards ethanol with respect to benzene, with 

responses of 46% (rigid) and 52% (flexible).  Error within the response accounts for the slightly 

above 50% drop in response when the concentration of ethanol was halved.  P25DMA 20% NiO 

had similar percent drops for acetone and methanol, which were still close to 50%, especially for 

the flexible sensor.  Overall, P25DMA 20% NiO had the best selectivity towards ethanol with 

respect to all three interferents, when two gases were exposed to the sensing materials 

simultaneously.   
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P25DMA 20% ZnO had a very small to no response for most of the gases.  Because the responses 

were so small, the percent change appears better, in some cases, than was actually the case.  For 

example, when the concentration of ethanol was halved (on the rigid sensor) the response went 

from 0.03 to 0.02, a 33% drop; however, a 0.01 drop in response is negligible.  Overall, P25DMA 

20% ZnO had a poor response to ethanol and the selectivity towards ethanol was also poor. 

 

OV 275 had similar and moderate selectivity towards ethanol with respect to all three 

interferents.  All three mixtures, on both the rigid and flexible sensors, had a percent drop of 

approximately 30%.  Given the difference in responses to ethanol and benzene when the gases 

were individually exposed to OV 275, it is surprising that the percent drop for ethanol and benzene 

was only ~30%.   

 

OV 225 had a large percent drop (over 40% for both the rigid and flexible sensors) when the 

concentration of ethanol was halved for both the acetone and benzene mixtures.  While this was 

expected for benzene due to the large difference in responses when the gases were individually 

exposed, acetone produced a larger response to OV 225 than ethanol.  Therefore, it was expected 

that very little drop in the response would have occurred when the concentration of ethanol was 

halved.  Methanol also had either a very similar response or larger response than ethanol when the 

gases were individually tested.  However, the percent drop was lower at 27% (for both rigid and 

flexible sensors), which still seems high, especially since the response to methanol was more than 

double that of ethanol when the gases were individually tested.  It is possible that the larger drop 

is due to two analytes binding to a sensing site (i.e. methanol binding to ethanol that is already 

bound).  When the concentration of ethanol is halved, both analytes are ejected from the sensing 

site which results in a greater drop in response.  It is important to note that the response is not 

likely linearly correlated with the number of sensing sites; therefore, two analytes at one sensing 

site would have an unpredictable response. 

 

SXFA produced larger signals for acetone and methanol than ethanol on the rigid sensor and all 

three gases produced a similar response on the flexible sensor.  Benzene produced a response that 

was about half that of ethanol’s on both the rigid and flexible sensors.  When exposed to two gases 

simultaneously, the results were very strange.  On the rigid sensor, ethanol and methanol produced 

a moderate percent drop in response at 33%, which seems high since methanol produced a much 

larger response than ethanol when the gases were tested individually; however, no change was 

observed when the ethanol concentration was halved and the concentration of acetone remained 

the same.  Given that the response of the individually tested gases on the rigid sensor was much 

higher for acetone and methanol, than ethanol, the percent drop probably should have been 

similar.  As for the flexible sensor, the results seem more in line with what was expected.  The 

percent drop in response when the concentration of ethanol was halved was low at 16% (methanol) 

and 20% (acetone).  The drop in ethanol concentration should have resulted in some change, but 
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since all three (ethanol, methanol, and acetone) were equally competing for sites, the selectivity 

towards ethanol was low, and thus a small drop was expected.   

 

An anomaly for benzene occurred for both the rigid and flexible sensors with SXFA as the sensing 

material.  For some reason, the response increased when the concentration of the analytes 

decreased.  It is possible that by lowering the concentration for ethanol,  the ratio of benzene in the 

mixture increased (from 1:1 to 2:1), which allowed more benzene to bind due to less competition 

for sites from benzene; however, further evaluation is needed to test this theory.   

 

The selectivity evaluation was furthered using three gases (ethanol with two interferents).  All 

three gases were simultaneously exposed to the sensing materials on both the rigid and flexible 

sensor.  By introducing more types of analytes, there was more competition for sensing sites and 

more ability for multiple analytes to bond to the same sensing site.  Because of this, generally, 

selectivity is decreased as more analytes are available, especially when analytes are chemically 

similar, as ethanol, methanol, and even acetone, are.  Overall, the responses to the three gas 

mixtures produced a smaller percent drop when the concentration was halved (see Figure 5.5 and 

Tables 5.4 and 5.5); however, P25DMA 20% NiO still had very good selectivity with percent 

drops near 50%. 
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Figure 5.5: Response Amplitude (unitless) of all six sensing materials when exposed to ethanol and two 

interferents simultaneously at 1250 ppm for both the rigid (grey) and flexible (orange) sensors. The second 

and fourth column for each sensing material show the response amplitude when the concentration of 

ethanol was halved to 625 ppm (lighter columns). 
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Table 5.4: Percentage by which the Response Dropped when Ethanol Concentration was Halved 

for the Rigid Sensor 

Sensing 

Material 
P25DMA 

P25DMA 

20% NiO 

P25DMA 

20% ZnO 
OV 275 OV 225 SXFA 

Ethanol-

Methanol-

Acetone 

19 46 0 4 2 1 

Ethanol-

Acetone-

Benzene 

23 42 0 20 44 15 

Ethanol-

Methanol-

Benzene 

28 42 1 16 23 23 

 

Table 5.5: Percentage by which the Response Dropped when Ethanol Concentration was Halved 

for the Flexible Sensor 

Sensing 

Material 
P25DMA 

P25DMA 

20% NiO 

P25DMA 

20% ZnO 
OV 275 OV 225 SXFA 

Ethanol-

Methanol-

Acetone 

24 46 14 2 3 6 

Ethanol-

Acetone-

Benzene 

17 50 2 19 -241 8 

Ethanol-

Methanol-

Benzene 

27 49 0 17 27 20 

1 The negative denotes that the response increased instead of decreasing when the concentration of ethanol 

was halved. 

 

P25DMA had moderate selectivity with percent drops around 20% to 30% when the concentration 

of ethanol was halved.  A higher percent drop was observed when acetone was not present in the 

gas mixture (ethanol, methanol, and benzene).  Therefore, it is possible to conclude that ethanol 

and acetone competed more for sensing sites than ethanol did with the other interferents.   

 

P25DMA 20% NiO had a percent drop for both types of sensors of around 50% when the 

concentration of ethanol was halved for each mixture of three gases.  This shows that P25DMA 

20% NiO had very good selectivity even when more interferents were present.   

 

P25DMA 20% ZnO had really low responses to all mixtures of the analytes.  Because of this, a 

small drop in response could amount to a larger drop in percent (i.e. 14% decrease for the ethanol, 

methanol, and acetone mixture in Table 5.5).  Overall, the P25DMA 20% ZnO had a poor response 
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to ethanol and poor selectivity, given that almost no change in response was observed when the 

concentration of ethanol was halved. 

 

OV 275 had moderate selectivity when only one of acetone or methanol was present and poor 

selectivity when exposed to ethanol, methanol, and acetone.  This was expected since the 

individual gas tests showed that acetone produced a greater response to ethanol, whereas methanol 

produced a very similar response to ethanol.  Because OV 275 was more selective towards acetone 

(and possibly methanol) than ethanol, it is not surprising that in a mixture of these three gases, 

ethanol likely lost when competing with acetone and methanol for sensing sites on OV 

275.  Therefore, when the concentration of ethanol was halved, there wasn’t much ethanol to be 

removed from OV 275 and thus, the response only dropped slightly.  When only one of acetone or 

methanol was present, a larger drop was observed since ethanol had less competition for sensing 

sites and benzene (the third gas) did not offer much competition. 

 

OV 225 behaved very similarly to OV 275; however, the mixture of ethanol, acetone, and benzene 

produced odd results.  Generally, the rigid and flexible sensors showed similar results and trends; 

however, the mixture of ethanol, acetone, and benzene did not.  Given that acetone produced a 

larger response than ethanol on OV 225 when the gases were tested individually, it is strange that 

a percent drop of 44% was observed for the rigid sensor and an increase of 24% (hence the negative 

entry in Table 5.5) was observed for the flexible sensor.  An increase should not occur when the 

total number of analytes decreases, thus leaving fewer analyte molecules to bind to the sensing 

material; however, the reduction in ethanol could mean less competition for the available sensing 

sites (that ethanol just vacated), allowing the interferents to bind and ultimately increase the 

response.  More tests should be conducted to evaluate this further. 

 

SXFA also had a larger (or at least equal) response to acetone and methanol than ethanol when the 

gases were tested individually.  Therefore, when the gas mixture of ethanol, methanol, and acetone 

was exposed to SXFA, almost no percent drop was expected when the concentration of ethanol 

was halved.  This was observed.  It appears that acetone competed more with ethanol than 

methanol based on the larger percent drop observed when acetone was not present (ethanol, 

methanol, and benzene), than when methanol was present (ethanol, acetone, and benzene).  This 

was also observed for P25DMA.   

 

Finally, all four gases (ethanol, methanol, acetone, and benzene) were tested simultaneously (see 

Figure 5.6).  For four of the sensing materials, poor selectivity was observed, with very little 

percent drop (see Table 5.6) when the concentration of ethanol was halved.  P25DMA had 

moderate selectivity and P25DMA 20% NiO had good selectivity.  As more interferents are 

present, the selectivity tends to decrease since there are more analytes competing for the same 

sensing sites and more interactions between the analytes occur. 
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Figure 5.6: Response Amplitude (unitless) of all six sensing materials when exposed to all four gases 

simultaneously at 1250 ppm for both the rigid (grey) and flexible (orange) sensors. The second and fourth 

column for each sensing material show the response amplitude when the concentration of ethanol was 

halved to 625 ppm (lighter columns). 

 

Table 5.6: Percentage by which the Response Dropped when Ethanol Concentration was Halved 

for Both Sensors 

Sensing 

Material 
P25DMA 

P25DMA 

20% NiO 

P25DMA 

20% ZnO 
OV 275 OV 225 SXFA 

Rigid 23 36 -31 -11 15 8 

Flexible 25 38 4 1 4 4 
1 The negative denotes that the response increased instead of decreasing when the concentration of ethanol 

was halved. 

 

A percent drop of ~25% (for both sensors) for P25DMA means that P25DMA had moderate 

selectivity when exposed to all four analytes simultaneously.  As the number of analytes 

simultaneously exposed increased, the selectivity towards ethanol decreased; however, ethanol 

was still somewhat preferentially sorbed.   

 

P25DMA 20% NiO showed a good percent drop when exposed to all four analytes.  Similar to 

P25DMA, the percent drop was smaller as more analytes were added; however, to a much lesser 

degree.  Overall, P25DMA 20% NiO still had good selectivity to ethanol despite three other 

interferents present. 
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The other four sensing materials all had really poor selectivity, below 10%, except OV 225 on the 

rigid sensor.  The negative values, within error, are likely to indicate no change when the 

concentration of ethanol was halved since they are so close to zero.  The increased response (larger 

percent drop) for the rigid sensor as opposed to the flexible sensor for OV 225 should be further 

investigated because the rigid and flexible sensors showed similar responses and trends. 

 

After comparing the selectivity towards ethanol for six different sensing materials using three 

interferents (methanol, acetone, and benzene), it was found that there were interactions between 

the gas analytes that affected the selectivity of the sensing materials towards ethanol.  As the 

number of analytes was increased, the percent drop got smaller indicating poorer selectivity.  This 

is most likely due to increased competition between ethanol and the other interferents.  P25DMA 

20% NiO had the best selectivity to ethanol by far, with a percent drop near 50% for two and three 

analyte mixtures and almost 40% when exposed to all four analytes.  This is near a perfectly 

selective sensor which would have dropped 50% when the concentration of ethanol was halved 

despite which and how many other analytes were present.   

   

In addition to selectivity, the response and recovery times were also measured for the flexible 

sensor with each of the six sensing materials with each of the four analytes (ethanol and three 

interferents).  The response time is the time it takes for the signal to reach 90% of the final signal 

(full response) and the recovery time is 90% of the time it takes the signal to return to the 

baseline.  The response and recovery times were measured at 5000 ppm for each analyte.  This is 

because response and recovery times tend to be proportional to concentration: the higher the 

concentration, the larger the response signal, and the longer the response and recovery 

times.  Therefore, the response and recovery times are likely to be longer than the response and 

recovery times in this application.   

 

The response and recovery times can be measured in two ways: amplitude and delay.  A shift in 

resonant frequency is measured when ethanol sorbs onto the sensing material. This sorption causes 

a change in capacitance, which affects both the amplitude and time delay of the radio frequency 

(RF) pulse that is reflected back.  A RF pulse is sent across the sensor, where most of the energy 

is stored, but a minimal amount is returned.  Both the amplitude and time delay of the returning 

RF pulse are measured.  The amplitude response is the same response measured for the selectivity 

measurements.  In general, the amplitude and delay responses gave very similar responses; 

however, the delay response was generally much greater in magnitude.   

 

Due to limitations of the equipment, the response was measured every 15 seconds.  Therefore, the 

response and recovery times are a multiple of 15.  The response and recovery times were more 

dependent on type of sensor than the interaction of the sensing material with the analytes.  This 

can be seen in Figures 5.7 to 5.12 where the response times for all the sensing materials for all four 

analytes were ~90 seconds and the recovery times were ~120 seconds.   



93 

 

 

  
Figure 5.7: The amplitude and delay response and recovery curves for P25DMA for each analyte 

individually tested at 5000 ppm.  

 

  
Figure 5.8: The amplitude and delay response and recovery curves for P25DMA 20% NiO for each analyte 

individually tested at 5000 ppm.  
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Figure 5.9: The amplitude and delay response and recovery curves for P25DMA 20% ZnO for each analyte 

individually tested at 5000 ppm.  

 

   
Figure 5.10: The amplitude and delay response and recovery curves for OV 275 for each analyte 

individually tested at 5000 ppm.  
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Figure 5.11: The amplitude and delay response and recovery curves for OV 225 for each analyte 

individually tested at 5000 ppm.  

 

  
Figure 5.12: The amplitude and delay response and recovery curves for SXFA for each analyte individually 

tested at 5000 ppm.  
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5.1.1.2 RFID Rigid Sensor 

 

Given that both the flexible and rigid radio frequency identification (RFID) sensor designs 

responded similarly, the RFID rigid sensor was further evaluated for sensitivity.  Three sensing 

materials (poly (2,5-dimethyl aniline), poly (2,5-dimethyl aniline) doped with 20 wt. % NiO, and 

poly (2,5-dimethyl aniline) doped with 20 wt. % ZnO (denoted as P25DMA, P25DMA 20% NiO, 

and P25DMA 20% ZnO, respectively) were evaluated on the rigid RFID sensor.  Each sensor was 

exposed to three different gas analytes (ethanol, methanol, and benzene) and their response 

recorded.  Initially, ethanol was evaluated to determine the sensitivity and the limit of detection 

(LoD) to ethanol.  

 

The twelve ethanol concentrations ranged from 2.5 to 5000 ppm of ethanol (in dry nitrogen).  It 

should be noted that ethanol fully saturated P25DMA around 2500 ppm and P25DMA 20% ZnO 

around 1000 ppm (see Figure 5.13).  When saturation occurred, increasing the concentration of 

analyte exposed to the sensing material no longer produced a change in response. 

 

In these tests, ethanol was the single analyte to be detected.  Responses could be detected at levels 

as low as 2.5 ppm; however, the LoD was calculated relative to the level of noise for each sensing 

material on the RFID sensor. 

  

 
Figure 5.13: Change in sensor response amplitude for each sensing material at different concentrations of 

ethanol.  Note that for clarity, the concentration has been placed on a log scale with a concentration of 0 

ppm of ethanol equal to 1 on the scale. 
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The LoD was calculated from (baseline) noise measurements.  The sensors were purged with 

nitrogen for 60 minutes while recording a measurement every 5 minutes.  Noise was considered 

to be the standard deviation of the response signal to pure nitrogen.  Ultimately, the LoD was 

calculated as three times the noise (by convention).  Results from these calculations are cited in 

Table 5.7, where the noise response from the sensor was first converted into a concentration of 

ethanol based on a calibration curve produced from Figure 5.13, and then multiplied by 3 to get 

LoD.   

 

Table 5.7: Noise and Limit of Detection for Ethanol for each Sensing Material on the RFID Sensor 

Sensing Material Noise (response) Noise (ppm) LoD (ppm) 

P25DMA 0.0088 1 3 

P25DMA 20% NiO 0.049 8 24 

P25DMA 20% ZnO 0.069 140 420 

 

Both P25DMA and P25DMA 20% NiO had similar responses to 2.5 ppm of ethanol (as seen from 

Figure 5.13); however, the noise for P25DMA 20% NiO was larger.  The noise variation observed 

between sensing materials may have been due to interactions between the analytes and the sensing 

material or slight changes in the capacitive response of the sensing materials measured by the 

sensor.  A high LoD was expected for P25DMA 20% ZnO based on the low ethanol sorption 

observed in the sorption studies (see Section 4.3.2). 

 

Based on the LoD results shown in Table 5.7, P25DMA has the sensitivity needed for a transdermal 

ethanol sensor.  By optimizing the sensing film thickness, it may be possible to reduce the noise 

observed for P25DMA 20% NiO and therefore reduce its LoD.  While sensitivity is important, 

selectivity is equally important.   

 

Selectivity towards ethanol was measured by exposing the sensing materials to ethanol and two 

typical interferent gases (benzene and methanol).  The change in response amplitude was measured 

for three different analytes, for each sensing material.  The gases were tested individually at four 

different concentrations (5000, 2500, 1250, and 625 ppm) and similar trends were seen at all four 

concentrations.  Representative results are shown in Figure 5.14 a-b for 5000 and 625 ppm, 

respectively, i.e., at the two extremes of the concentration range.  The response (change in response 

amplitude) for each gas is graphically displayed.  The target analyte’s response (ethanol, in this 

case) was much larger than the response to the interferents, thus indicating a highly selective 

sensor.  This was the case for both P25DMA and P25DMA 20% NiO.  
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Figure 5.14: The change in resonant frequency measured at equilibrium for different analytes at (a) 5000 

ppm and (b) 625 ppm for each sensing material. 

 

Selectivity of the sensing materials was compared based on the same concentration of gas tested.  

At 5000 ppm, ethanol, benzene, and methanol had very similar responses with P25DMA 20% 

ZnO, which was due to the analytes saturating P25DMA 20% ZnO.  However, at 625 ppm, 

P25DMA 20% ZnO’s response was approximately twice as large for ethanol.  Therefore, once 

saturation has been reached, the change in response amplitude will not increase, despite an increase 

in analyte concentration.  Saturation of ethanol can be seen in Figure 5.13.   

 

For P25DMA 20% NiO and P25DMA, similar trends were seen in Figure 5.3 at both 5000 ppm 

and 625 ppm, since saturation was much less of an issue.  Both P25DMA 20% NiO and P25DMA 

produced a much higher response to ethanol, than the other two interferents, when exposed to the 

same concentration of each gas. 

 

Therefore, both P25DMA and P25DMA 20% NiO exhibited high selectivity towards ethanol since 

ethanol produced a much larger response than the interferents.  P25DMA 20% ZnO, on the other 

hand, had moderate selectivity at 625 ppm and poor selectivity at 5000 ppm.   

 

In addition, the response and recovery times were measured at 5000 ppm of ethanol, since 5000 

ppm produced the largest response signal.  Generally, the larger the response, the slower the 

response and recovery times because the response time is measured as 90% of the full response 

and the recovery time is measured as 90% recovery with respect to the baseline (see Figure 5.15).  

Therefore, the response and recovery times for lower concentrations should be shorter, thus 

making the tests at 5000 ppm essentially ‘worst case scenario’ tests.  The response and recovery 
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times were 35 and 100 seconds for P25DMA, 60 and 70 seconds for P25DMA 20% NiO, and 60 

and 60 seconds for P25DMA 20% ZnO.  These response and recovery times are acceptable for a 

transdermal ethanol sensor and are of the same time scale as current breathalyzers (Abdul Rahim 

and Syed Hassan, 2010); however, these times could be improved in the future with improvements 

to the sensor such as optimization of sensing material thickness and sensor electronics 

(improvements that are beyond the “proof-of-concept” scope of the current investigation).    

 

 
Figure 5.15: Response and recovery times for each sensing material measured for ethanol at 5000 ppm.  

Relative response amplitude is the percent change in the amplitude of the response from the baseline, when 

the sensing material is exposed to an analyte. 

 

Overall, P25DMA and P25DMA 20% NiO are good sensing materials, on this RFID sensor, for 

ethanol with high selectivity and LoD of 3 and 24 ppm, respectively.  P25DMA 20% ZnO had 

poor sensitivity and selectivity to ethanol; however, it may still be useful in a sensing array 

application as a way to avoid false positives.  Response and recovery times were all acceptable in 

the order of a few tens of seconds. 

 

5.1.1.3 RFID Sensor Array 

 

Two rigid RFID sensor arrays were constructed and tested.  Each sensor array contained three 

different sensing materials (see Figure 5.16).  One sensor array contained the siloxane-based 

sensing materials (OV 225, OV 275, and SXFA) and the other sensor array contained the 

polyaniline-based sensing materials (P25DMA, P25DMA doped with 20 wt. % NiO, and P25DMA 

doped with 20 wt. % ZnO).  These two sensor arrays will be referred to as the siloxane-based and 

the P25DMA-based sensor arrays. 
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Figure 5.16: The three sensor array on the rigid RFID platform.  These RFID arrays are the same size as 

those shown in Figure 5.2. 

 

The responses from each sensing material on the sensor array were able to be separated (see Figure 

5.17) since all three sensing materials (in both cases) resonated at frequencies that were far enough 

from one another that peaks observed for each sensing material did not overlap.  However, the 

magnitude of the peak for each additional sensing material is reduced.  Note that for the P25DMA-

based sensor array, P25DMA was the first sensing material sampled in the array, followed by 

P25DMA 20% NiO, and then P25DMA 20% ZnO.  A similar response was observed for the 

siloxane-based sensing materials (Chen, 2015). 

 

 
Figure 5.17: Sample readout of the RFID three sensor array for the P25DMA-based sensing materials.  

Note that the peaks for each sensing material are separate and distinct (Chen, 2015). 

 

Each sensor array was exposed to four different gas analytes (ethanol, methanol, acetone, and 

benzene) at 1250 ppm (individually) and the responses were measured in terms of magnitude (S11) 

in decibels (dB).  These responses were normalized as % change (see Figure 5.18).   



101 

 

Note that OV 225 had the highest response to ethanol out of all the sensing materials.  Also note 

that for the single gas analytes, many of these sensing materials are much more selective towards 

the interferent gas analytes and not ethanol.  For example, SXFA produced a much larger response 

to benzene than any of the other gases and all of the P25DMA-based polymers were more selective 

to acetone than ethanol.  

 

(a)  (b)  

Figure 5.18: Single gas analytes for (a) the siloxane-based and (b) the P25DMA-based sensor arrays. 

 

These sensors were then exposed to various gas mixtures, where all the gases were evaluated at 

1250 ppm.  Each gas mixture contained ethanol and at least one other of the interferents (methanol, 

acetone, and benzene).   Initially two gas mixtures were prepared (see Figure 5.19), followed by 

three gas mixtures (see Figure 5.20), and finally all four gas analytes were evaluated 

simultaneously (see Figure 5.21).  In each case, the concentration was initially measured at 1250 

ppm, and then only the ethanol concentration was halved to 625 ppm, while all the other gas 

analytes (interferents) remained at a concentration of 1250 ppm.  Nitrogen gas was used as the 

balance to ensure the flow rate and pressure remained the same throughout all measurements.   
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(a)  (b)  

Figure 5.19: Two gas mixtures for (a) the siloxane-based and (b) the P25DMA-based sensor arrays.  Note 

that E, M, A, and B denote ethanol, methanol, acetone, and benzene, respectively. 

 

The two gas mixtures consisted of ethanol and methanol; ethanol and acetone; and ethanol and 

benzene.  An ideal sensor for ethanol would halve its response when the concentration of ethanol 

was halved, despite the other interferent gas’s concentration remaining the same.  This, however, 

was not the case (see Table 5.8) since gas analytes interact with one another both in the 

environment while diffusing through the air and on the sensing materials when competing for 

sensing sites.  Note that it is possible for two analyte molecules to sorb to the same sensing site, if 

one molecule binds to another that is already sorbed at the sensing site.   

 

Table 5.8: Percent Drop of Response when the Ethanol Concentration was Halved 

Gas 

Mixture1 

Percent Drop of Response (%) 

OV 275 OV 225 SXFA P25DMA 
P25DMA 

20% NiO 

P25DMA 

20% ZnO 

E-M 32 27 33 40 37 33 

E-A 37 41 25 25 39 -1002 

E-B 27 59 -432 46 46 4 
1 E is ethanol, M is methanol, A is acetone, and B is benzene 
2 Negative numbers represent an increase in response 

  

Overall, in the two gas mixtures, the responses dropped by about one third, when the concentration 

of ethanol was halved.  The best sensing materials for selectivity towards ethanol would be 

P25DMA 20% NiO, P25DMA, and OV 225.  These three sensing materials had the closest percent 

drops to the ideal 50%, for all three gas mixtures. 

 

E-M 
E-A 
E-B 

E-M  (E Halved) 
E-A  (E Halved) 
E-B  (E Halved) 
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Note that the response for SXFA increased when the ethanol concentration was halved, in the 

presence of benzene.  This is due to SXFA producing a large response to benzene (as already seen 

in Figure 5.18 for the individual gases).  When benzene has less competition with ethanol (when 

the concentration of ethanol is halved), benzene is able to more readily bind to SXFA, thereby 

increasing the response.  Also note the 100% increase in response for P25DMA 20% ZnO when 

exposed to the ethanol-acetone mixture.  In this case, the large percent drop is misleading due to 

the small responses observed (0.01 to 0.02) and thus, the response would be considered the same, 

within error. 

 

(a)  (b)  

Figure 5.20: Three gas mixtures for (a) the siloxane-based and (b) the P25DMA-based sensor arrays. Note 

that E, M, A, and B denote ethanol, methanol, acetone, and benzene, respectively. 

 

The three gas mixtures produced less of a percent drop, as expected.  As more gas analytes were 

present, the more the analytes interacted.  Again, the ideal case is a 50% drop when the 

concentration of ethanol is halved; however this was not observed for any of the sensing materials 

(see Table 5.9).  Note that P25DMA 20% NiO produced close to a 50% drop when the 

concentration of ethanol was halved and therefore, had very good selectivity for all of the mixtures 

of the three gas analytes.   

 

Table 5.9: Percent Drop of Response when the Ethanol Concentration was Halved 

Gas 

Mixture1 

Percent Drop of Response (%) 

OV 275 OV 225 SXFA P25DMA 
P25DMA 

20% NiO 

P25DMA 

20% ZnO 

E-M-A 4 2 1 19 46 0 

E-M-B 20 44 15 23 42 0 

E-A-B 16 23 23 28 42 1 
1 E is ethanol, M is methanol, A is acetone, and B is benzene. 
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(a)  (b)  

Figure 5.21: All four gases for (a) the siloxane-based and (b) the P25DMA-based sensor arrays.  

 

The gas mixture containing all four gas analytes generated even lower selectivity, as expected (see 

Table 5.10).  However, the best sensing material, in terms of selectivity towards ethanol, was 

P25DMA 20% NiO.   It is interesting to note that P25DMA 20% NiO had the highest selectivity 

towards ethanol when interferents were present in the gas mixture, but produced a larger response 

to acetone than ethanol when single gases were used.  Therefore, when acetone and ethanol are 

present together, ethanol seemed to bind more preferentially to the P25DMA 20% NiO, thereby 

effectively blocking (or significantly minimizing) the acetone’s ability to bond to P25DMA 20% 

NiO.  This again confirms that gas analytes do interact with one another. 

 

Table 5.10: Percent Drop of Response when the Ethanol Concentration was Halved 

Gas 

Mixture1 

Percent Drop of Response (%) 

OV 275 OV 225 SXFA P25DMA 
P25DMA 

20% NiO 

P25DMA 

20% ZnO 

E-M-A-B -12 15 8 23 36 -32 

1 E is ethanol, M is methanol, A is acetone, and B is benzene. 
2 Negative numbers represent an increase in response. 

 

All of the data collected for the various gas mixtures shown in Figures 5.16 – 5.19 were 

subsequently run through a filtering algorithm.  Principal component analysis (PCA) was used to 

separate the responses of each of the gas analytes evaluated (ethanol, methanol, acetone, and 

benzene) on the two sensor arrays described above (siloxane-based and P25DMA-based). 

 

The gas analytes interacted with one another, which in turn affected how the analytes interacted 

with the sensing materials.  This can be seen from the responses observed when the gas analytes 

were mixed and exposed to the sensor array.  If there was no interaction or competition between 
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sensing sites, the response of a sensing material/sensor to two analytes would be (more or less) 

additive.  This, however, was not the case and is why poorer selectivity was observed as more gas 

analytes were mixed together and simultaneously tested.  Because of the gas analyte interactions 

and poor selectivity, the gas mixtures were likely to appear as their own clusters on a PCA plot.  

In other words, each gas mixture (e.g. single gas analytes, two gas mixtures, three gas mixtures, 

etc.) was likely to present its own cluster.  This was the case for the RFID three sensor array and 

the sensor array shown in Section 4.6 (see Figure 4.33).  Note that for the data used in this PCA 

analysis, each gas mixture, except for the single gas analytes, contained some ethanol.  Therefore, 

the separation of gas analytes was more noticeable for the three interferents (acetone, methanol, 

and benzene). 

 

Figure 5.22 shows the PCA plot for the siloxane-based sensor array (see Appendix H for additional 

details on PCA).  Overall, the four gas analytes are well separated.  The two gas mixtures all fall 

close to the respective single gas mixture.  For example, the benzene (green circle) and benzene 

and ethanol mixture (light green diamonds) are close together in the upper middle portion of the 

PCA plot.  In addition, the three gas mixtures (triangles) fall between the two interferent gas 

mixtures (diamonds).  For example, the ethanol, methanol, and benzene (E-M-B) (orange 

triangles) is between ethanol and benzene (E-B) (light green diamonds) and ethanol and methanol 

(E-M) (pink diamonds).  Finally, the four component gas mixture (E-M-A-B) (black squares) is in 

the middle, which is between all the other gas analyte combinations.   

 

 
Figure 5.22: PCA plot for the siloxane-based RFID sensor array. Note that E is ethanol, M is methanol, A 

is acetone, and B is benzene in the gas mixtures. 
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Similarly, Figure 5.23 shows the PCA plot of Factor 3 vs Factor 2 for the P25DMA-based RFID 

sensor array.  Again, the clusters for each single gas (ethanol (grey circle), methanol (red circle), 

benzene (green circle), and acetone (blue circle)) are well separated.  In addition, the two gas 

mixtures of the analytes with ethanol are close to the single gas analytes and the three gas mixtures 

(triangles) are clustered between the two gas mixtures (diamonds).  For example, the ethanol, 

methanol, and acetone three gas mixture (purple triangles, middle left) is about halfway between 

the two gas mixtures of ethanol and methanol (pink diamonds, lower left) and the acetone and 

ethanol mixture (lighter blue diamonds, upper left).   

 

 
Figure 5.23: PCA plot for the P25DMA-based RFID sensor array. Note that E is ethanol, M is methanol, 

A is acetone, and B is benzene in the gas mixtures. 

 

Note that the Factors used in both Figures 5.22 and 5.23 to separate the analytes were Factor 2 and 

3, instead of Factors 1 and 2 (as seen in Figure 4.33 in Section 4.6).  This was because Factors 2 

and 3 were much more dependent on the type of gas analyte than Factors 1 and 2.  When the 

projection of the variables (gas analytes and sensing materials) onto the Factor 2 x 3 plane was 

plotted (see Figure 5.24), the contribution of the gas analytes was more prevalent (larger), which 

translated into the  type of gas analyte affecting the Factors.  In essence, the longer the lines from 

the centre on the projection plot (Figure 5.24), the more that variable affected the clusters in the 

PCA plot for those two Factors.  In this case, the four gas analytes (variables) had much longer 

lines from the centre of the plot than the sensing materials.  Therefore, the gas analytes affected 
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the location of the clusters much more than the sensing materials.  This resulted in clusters that 

were well separated by analyte.   

 

It is important to understand that despite Factor 1 containing the majority of the variability for both 

of the RFID sensor arrays, the variability masked the effects of the type of gas analyte.  In some 

cases, it is better to plot lower variability factors to separate the effects. 

 

 
Figure 5.24: Factor 2 vs. Factor 3 projection of variables onto the 2 x 3 plane for the siloxane-based RFID 

sensor array. 

 

Overall, both the siloxane-based and the P25DMA-based RFID sensor arrays were able to 

differentiate and identify three interferents for ethanol (acetone, methanol, and benzene).  To 

distinguish between ethanol and benzene, Factor 1 vs. Factor 4 could be plotted which separated 

benzene and ethanol quite well (see Figure 5.25).  Ethanol and benzene are represented by larger 

circles in Figure 5.25 for emphasis.  In addition, the four component gas mixture (E-M-A-B) is 

clearly separated in the upper left quadrant. 
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Figure 5.25: Factor 1 vs Factor 4 PCA plot for the siloxane-based RFID sensor array. The two squares 

emphasize ethanol and benzene.  Note that E is ethanol, M is methanol, A is acetone, and B is benzene in 

the gas mixtures. 

 

5.1.2 Microelectromechanical Systems (MEMS) Microcantilever 

 

A small amount of polymer was deposited onto the sensing plate.  The sensing plate is shown at 

the bottom of Figure 5.26 a-b, with a “blob” of polymer on it.  A current was applied to the 

microcantilever such that the microcantilever was poised to “pull-in”.  This is referred to as 

preloading the cantilever.  Pull-in occurred when a gas analyte (ethanol, in this case) sorbed onto 

the sensing material.  Figure 5.26 shows the microcantilever before (a) and after (b) ethanol was 

sorbed.  Note the “fringe fields” in Figure 5.26b.  This is a visual indication that the microcantilever 

experienced pull-in (Khater et al., 2014). 
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Figure 5.26: (a) before and (b) after ethanol sorption onto the MEMS microcantilever (Khater et al., 2014). 

 

Two sensing materials were evaluated on this MEMS microcantilever: polyaniline doped with 10 

wt. % NiO (PANI 10% NiO) and poly (2,5-dimethyl aniline) (P25DMA).  Each sensing material 

was evaluated at different concentrations of ethanol (see Table 5.11).  Note that the limit of 

detection for this sensor was equal to the concentration of analyte that corresponded to a set-off 

voltage of 1 mV.  Therefore, PANI 10% NiO had a limit of detection of 50 ppm and P25DMA had 

a limit of detection of 5 ppm. 

 

Table 5.11: Ethanol Response 

Sensing Material 
Set-off Voltage 

(mV) 

Estimated Mass 

(pg) 

Ethanol Concentration 

(ppm) 

PANI 10% NiO 20 845 1000 

PANI 10% NiO 15 727 100 

PANI 10% NiO 1 165 50 

P25DMA 5 407 50 

P25DMA 1 165 5 
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5.2 Polymer Backbone Studies 

 

Two cases were examined where the polymeric side chains or functional groups were identical, 

but polymer backbones were different.  The amounts of gas analyte sorbed onto each polymeric 

material were compared to determine if the backbone of a polymeric sensing material significantly 

affected the sorption, and thus sensing properties, of a polymeric sensing material.    

 

5.2.1 No Side Chains or Groups 

 

Two polymers were chosen that were similar in nature, but that had no side chains or functional 

groups off of the polymeric backbone.  These two polymers, polyaniline (PANI) and polypyrrole 

(PPy), are both aromatic in nature and have a secondary amine (see Figure 5.27).  Both polymers 

were evaluated, using the test system described in Chapter 3, to determine if there was a significant 

difference between the amounts of ethanol that sorbed onto each polymer (see Figure 5.28).  

Analysis of variance (ANOVA) was used to evaluate the results to determine if there was a 

statistically significant difference (at the 95% confidence level) between the sorption of the 

polymers (see Section F.2.2 in Appendix F).    

 

(a) (b)  

Figure 5.27: Chemical structure of (a) PANI and (b) PPy. 

 

 
Figure 5.28: Amount of ethanol sorbed onto PANI and PPy. 
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It was found that there was a significant difference (at a 95% confidence level) between the amount 

of ethanol that sorbed onto PANI and PPy.  Therefore, the backbone of a polymeric sensing 

material does affect the sensing properties.  Thus, the backbone of a polymer must be considered 

when selecting potential polymeric sensing materials. 

 

5.2.2 Dimethyl Side Groups 

 

A further comparison was conducted to determine the effect the polymer backbone had on the 

sensing properties using two polymers that had identical side groups (functional groups), but 

different backbones.  The polymers chosen were poly (2,5-dimethyl aniline) (P25DMA) and poly 

(2,6-dimethyl-1,4-phenylene oxide) (PPO), both of which contain an aromatic ring and two methyl 

functional groups (see Figure 5.29).  Both of these polymers have a similar “bulkiness” and thus 

similar steric interactions (see Section 6.1.5).  Therefore, the sensitivity (amount of analyte sorbed) 

should not be limited by steric considerations, but only by the other sensing mechanisms (see 

Chapter 6 for more details on sensing mechanisms). 

 

(a) (b)  

Figure 5.29: Chemical structure of (a) P25DMA and (b) PPO. 

 

P25DMA and PPO were evaluated using 5 ppm of ethanol.  The amount of ethanol sorbed onto 

each polymeric sensing material was measured using the test system described in Chapter 3 and 

these results are shown in Figure 5.30. 

 

 
Figure 5.30: Amount of ethanol sorbed onto P25DMA and PPO. 
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Analysis of variance (ANOVA) was used to determine whether there were significant differences 

between the amounts of ethanol sorbed onto each polymeric sensing material.  It was found that 

there was no significant difference (at a 95% confidence level) in the responses of the two polymers 

(see Section F.2. in Appendix F). This may be due to the similar backbone structures, both 

containing an aromatic ring, with the primary difference between P25DMA and PPO being an 

amine and an ether, respectively.  

 

Given the previous results for PANI and PPy that showed a significant difference in the response, 

a further analysis was done using another analyte, methanol (see Figure 5.31). When methanol was 

used instead of ethanol to compare P25DMA and PPO (see Section F.1.1 in Appendix F), there 

was a significant difference (at a 95% confidence level) in the amount of analyte sorbed.  In 

addition, the selectivity towards ethanol, with respect to methanol, was significantly different, 

especially since P25DMA was more selective to methanol than ethanol (see Table 5.12). 

 

 
Figure 5.31: Amount of methanol sorbed onto P25DMA and PPO. 

 

Table 5.12: Selectivity towards Ethanol with respect to methanol for P25DMA and PPO 

Sensing Material Selectivity to Methanol 

P25DMA 0.67 

PPO 6.60 

 

Despite the not statistically significant difference in the amount of ethanol sorbed onto P25DMA 

and PPO, there was a statistically significant difference in the amount of methanol sorbed.  In 

addition, there was a large difference in selectivity towards ethanol between P25DMA and PPO.  

This means that despite both polymers having the same dimethyl functional groups, P25DMA and 

PPO responded differently to methanol, which means that their difference in polymer backbone 

structure affected their response to methanol.  Therefore, the backbone of a polymeric sensing 
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material does affect the sorption of different analytes and thus, must be considered when selecting 

potential sensing materials.   

 

5.2.3 Effect of Polymeric Backbones 

 

Two different cases (no functional groups and dimethyl functional groups) were evaluated to 

determine if the backbone of a polymer affected the sorption of an analyte.  PANI and PPy sorbed 

statistically significant amounts of ethanol, whereas P25DMA and PPO sorbed significantly 

different amounts of methanol, despite sorbing similar amounts of ethanol.  Therefore, the 

polymeric backbone does affect the sorption of analytes and polymer backbones must be taken 

into consideration when designing polymeric sensing materials towards a target analyte.  In 

addition, how interferents interact with the polymer backbone must also be considered, since the 

analyte affects the sorption and response of a polymeric sensing material. 

 

5.3 Polymer Functional Groups and Side Chain Studies 

 

A similar study was conducted comparing different side chains or functional groups on polymers 

with the same backbone.  Three different backbones were considered, an ethylene (CH2-CH2-) 

backbone, a polyaniline (C6H6-NH-) backbone, and a siloxane (Si-O-) backbone. 

 

5.3.1 Linear Polyethylene Backbone 

 

Two polymers, poly (methyl methacrylate) (PMMA) and poly (vinyl pyrrolidone) (PVP), which 

both have a typical vinyl backbone (CH2-CH2-) were considered for determining the effect of 

functional groups on a polymeric sensing material.  PMMA contains an ester and a methyl group 

whereas PVP contains an amide and a five-member ring (see Figure 5.32). 

 

(a) (b)  

Figure 5.32: Chemical structure of (a) PMMA and (b) PVP.  

 

The amounts of ethanol sorbed onto PMMA and PVP (see Figure 5.33) were compared using 

analysis of variance (ANOVA).  It was found that there was no statistically significant difference 

in the amount of ethanol that sorbed onto PMMA versus PVP (see Section F.2.3 in Appendix F).   
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Figure 5.33: Amount of ethanol sorbed onto PMMA and PVP. 

 

The ANOVA showed no significant difference (at a 95% confidence level) between the amount of 

ethanol sorbed onto PMMA and PVP.  A further analysis of these two polymers using methanol 

and acetone (see Section F.2.3 in Appendix F) also showed no significant difference (at a 95% 

confidence level) between the amounts of each analyte sorbed onto the two polymers.  This may 

be because the functional groups are somewhat similar (both containing double bonded oxygens 

and being of similar bulkiness, and hence, of similar steric hindrance (see Section 6.1)). 

 

Therefore, it is possible that the functional groups may play a lesser role in affecting the amount 

of gas analytes sorbed onto the polymers.  Two further analyses using different backbones were 

conducted to see if they followed the same trend. 

 

5.3.2 Polyaniline Backbone 

 

Three different polyaniline (PANI) derivatives, PANI, poly (o-anisidine) PoANI, and poly (2,5-

dimethyl aniline) (P25DMA), were compared using ethanol to determine the effect of functional 

groups on sorption and sensing properties (see Figure 5.34).  The amount of ethanol sorbed onto 

each polymeric material (see Figure 5.35) was analyzed using analysis of variance (ANOVA) and 

the Bonferroni t-test and the Fisher’s least significant difference (LSD) (see Section F.2.3 in 

Appendix F).  Note that these are the same sets of data as those compared in Section 4.3.1. 

 

(a) (b) (c)  

Figure 5.34:  Chemical structure of (a) PANI, (b) PoANI, and (c) P25DMA.  
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Figure 5.35: Amount of ethanol sorbed onto PANI, PoANI, and P25DMA. 

 

As stated in Section 4.3.1, it was found that P25DMA and PoANI sorbed significantly different 

(at a 95% confidence level) amounts of ethanol; however, PANI did not sorb statistically 

significantly different amounts of ethanol compared to PoANI or P25DMA.  Since P25DMA and 

PoANI have different functional groups off the same backbone and sorb significantly different 

amounts of ethanol, it can be suggested that the functional groups, and by extension side chains, 

do affect the sorption properties of a polymeric sensing material.  Therefore, it is important to 

consider how the functional groups on a polymer will interact with the analytes. 

 

5.3.3 Siloxane Backbone 

 

Three polymers (OV 225, OV 275, and SXFA; Seacoast Sciences Inc., California, USA) were 

compared to determine the effect of functional groups.  Each of these three polymers has a siloxane 

backbone (Si-O-), but different functional groups (see Figure 5.36).  Note that OV 225 and OV 

275 have very similar side chains, except OV 275 has two cyano (C≡N) groups and  

OV 225 has one cyano group and one benzene group. 
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(a)  (b)  (c)  

Figure 5.36: Chemical structure of (a) OV 225, (b) OV 275, and (c) SXFA. 

 

These three polymers were evaluated on an RFID sensor (Chen et al., 2015b) and the response to 

ethanol gas was recorded (see Figure 5.37).  These responses were compared using analysis of 

variance (ANOVA), the Bonferroni t-test, and the Fisher’s least significant difference (LSD) (see 

Section F.2.3 in Appendix F).  It was found that there was a significant difference (at the 95% 

confidence level) between the responses of all three polymeric sensing materials.   

 

 
Figure 5.37: Response to ethanol for OV 225, OV 275, and SXFA. 

 

Therefore, it can be concluded that the functional groups or side chains do have an effect on the 

sensing properties of a polymeric sensing material.  Given that both the polyaniline derivatives 

and the siloxane-based polymers showed some difference (a significant difference between at least 

two polymers with the same backbone but different side groups), the similar responses between 

PMMA and PVP were likely a coincidence.   
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5.3.4 Effect of Functional Groups and Side Chains  

 

Based on the results evaluated in the previous subsections of Section 5.3, the functional groups do 

have an effect on the amount of analyte sorbed onto the polymeric materials.  Significant statistical 

differences between the responses to ethanol of the PANI backbones and the siloxane backbones 

show that the functional groups on the polymer do affect the interaction between the polymer and 

the analyte.  PMMA and PVP, which have an ethylene backbone, sorbed similar amounts of 

ethanol, methanol, and acetone, despite having different functional groups.  This is likely a 

coincidence.  Therefore, by tailoring the functional groups on a polymer, one can target specific 

analytes.   

 

5.4 Sample Stability  

 

The environmental stability of polyaniline (PANI) was evaluated to determine if storage at 

atmospheric conditions (atmospheric pressure and room temperature, 21ºC) caused degradation.  

Three samples that were five years old, two years old, and freshly made (zero years/months old) 

were evaluated based on the amount of ethanol sorbed.  The older samples (five and two years old) 

were stored for their respective amounts of time in 20 mL scintillation vials in air at atmospheric 

pressure and room temperature (21ºC).   

 

Each sample was exposed to 10 ppm of ethanol and the amount of ethanol sorbed onto each 

polymer sample was measured (see Figure 5.38).  The amount of ethanol sorbed by each sample 

was compared using analysis of variance (ANOVA).  The Fobserved was calculated to be 3.42, which 

is less than the Fcritical (see Section F.2.4 in Appendix F).  The null hypothesis could therefore not 

be rejected.  Thus, there is no statistically significant difference between these polymer samples. 

 

 

 
Figure 5.38: Amount of ethanol sorbed onto varying ages of PANI (five, two, and zero years old). 
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Since there was no significant difference between the three PANI samples, it can be assumed that 

PANI did not significantly degrade when stored at room temperature (21ºC) in atmospheric 

conditions (i.e. no special storage considerations were used).  Therefore, PANI is environmentally 

stable and storage up to five years will not affect the analyte sorption of PANI.  This may or may 

not apply to other backbones; however, the comparison result is encouraging for the aniline-based 

sensing materials (PANI, PoANI, and P25DMA).  Similar comparative investigations can be 

conducted for other polymeric sensing materials, if these experimental investigations are designed 

properly and for the long term.   

 

5.5 Further Comparisons 

 

Some other comparisons were conducted to determine the effect of batch to batch variability, 

different operators, day to day variability, and form (powder versus film) of the polymer.  These 

comparisons were done to ensure the polymeric sensing materials could be reliably evaluated.   

 

5.5.1 Batch to Batch Comparison 

 

Two batches of the same polymer (poly (2,5-dimethyl aniline) doped with 5 wt. % NiO, denoted 

as P25DMA 5% NiO) were prepared by the same operator.  The same recipe was followed and 

was prepared at the same time, under the same conditions.  The resulting polymer batches were 

evaluated using 10 ppm ethanol (see Figure 5.39). 

 

 
Figure 5.39: Amount of ethanol sorbed onto two different batches of P25DMA 5% NiO. 

 

It was found that there was no difference, at a 95% confidence level, between the amount of ethanol 

that sorbed for both batches (Batch 1 and Batch 2) of P25DMA 5% NiO (see Secton F.2.5 in 

Appendix F for the ANOVA table).  Therefore, the recipe produced consistent polymer 
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nanocomposites.  It is important that batch to batch variability is low so that the polymer 

nanocomposites can be reproduced for further sensing material production and sensor preparation.  

 

5.5.2 Operator Comparison 

 

Since there was no batch to batch difference by the same operator, a further comparison was done 

with two different batches of the same polymer made by two different operators (people).  The 

recipe was the same for each batch and the only difference was the operator making and testing 

the sample.  The operator made and tested (gas sorption study) his/her own sample.  The same 

polymer nanocomposite was used (P25DMA 5% NiO) and was evaluated using 10 ppm ethanol 

(see Figure 5.40), a level higher than the previously employed 5 ppm.   

 

 
Figure 5.40: Amount of ethanol sorbed onto two different batches of P25DMA 5% NiO made by two 

different operators. 

 

ANOVA was used to compare the average response of the polymers to each other (see Section 

F.2.6 in Appendix F).  It was found that at a 95% confidence level no significant difference was 

observed between operators.  Therefore, the operator did not affect the polymer nanocomposite 

and multiple batches of the polymer nanocomposite could be made using different (but suitably 

trained) operators, with reproducible results. 

 

5.5.3 Day to Day Comparison 

 

To ensure that there was no variability in both the test system and polymeric samples from day to 

day, the same polymer was evaluated on multiples days.  P25DMA 5% NiO was evaluated using 

10 ppm of ethanol and the amounts of ethanol sorbed on three different days were compared (see 

Figure 5.41).  Note that three days were chosen at random over a two week period and the time of 
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day was also varied.  ANOVA was used to compare the amount of ethanol sorbed on each day (see 

Section F.27 in Appendix F). 

 

 
Figure 5.41: Amount of ethanol sorbed onto P25DMA 5% NiO on multiple days. 

 

It was found that there was no significant difference (at a 95% confidence level) in the response 

of P25DMA 5% NiO.  Therefore, there was no day to day variability.  This allowed for 

measurements to be taken on multiple days and still be comparable.  This also meant that the test 

system could be relied upon to evaluate and compare the effectiveness of multiple polymeric 

nanocomposites as sensing materials for gas analytes. 

 

5.5.4 Powder vs. Film 

 

Two polymers, poly (vinyl pyrrolidone) (PVP) and poly (methyl methacrylate) (PMMA), were 

evaluated as both a powder and a film.  The same amount of polymer was added to a round bottom 

flask as described in Section 3.1.1.  The powder form was left to dry in air (atmospheric conditions) 

and the film form was left to dry in the oven at 60ºC until a film had formed across the bottom of 

the round bottom flask (approximately 12 hours).   

 

Both the powder and film were exposed to 5 ppm ethanol and the amount that sorbed was measured 

(see Figure 5.42).  ANOVA was used to determine if there was a difference in response between 

the powder and film forms for each polymer (see Section F.2.8 in Appendix F).  It was found that 

there was no significant difference (at a 95% confidence level) between the amount of ethanol that 

sorbed onto the powder and the film of the same polymer. 
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Figure 5.42: Ethanol sorption onto film and powder forms of PVP and PMMA. 

 

The fact that both the film and powder are not significantly different is beneficial since a film may 

form during the deposition process on a sensor.  While removing the solvent used to deposit the 

sensing material, it is possible that the sensing material may melt and form a film.  Whether a film, 

or partial film, is formed is due to the temperature at which the “curing” process (solvent removal) 

occurs.  Given that for two different polymeric sensing materials the sorption was not affected by 

the form (powder or film), it is likely this may be the case for many different polymeric materials 

as well.   
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6. Results and Discussion: Mechanistic Explanations 
 

Sensing mechanisms describe how an analyte and a sensing material interact.  Aspects may include 

what attracts/repels the analyte, as well as how the analyte sorbs onto the sensing material.  An 

analyte may either adsorb onto the surface of a sensing material (at a sensing site) and weakly bind 

through electrostatic interactions, or absorb into the sensing material, by diffusing into the 

interstitial spaces created within the packed polymeric chains of a sensing material.   

 

By examining the chemical nature of both the analyte and the sensing material, it is possible to 

determine the predominant mechanism(s) by which the analyte and sensing material will likely 

interact.  However, multiple mechanisms are always at play and they may counteract one another.  

For example, polarity and Lewis acid-base mechanisms are attractive in nature, whereas steric 

hindrance is repulsive; the attractive and repulsive forces will counteract one another.  Often, one 

mechanism may dominate (even if slightly), which results in the analyte sorbing or not sorbing 

onto the sensing material.  Understanding potential mechanisms allows their identification given 

an analyte’s chemical composition, and this allows in turn sensing materials to be designed to 

target specific analytes. 

 

6.1 Primary Sensing Mechanisms 

 

Primary sensing mechanisms are what attract or repel an analyte to a sensing material.  All of these 

effects are electrostatic in nature.  Polarity, Lewis acid-base interactions, and metal coordination 

all attract analytes based on electrostatic forces.  Steric hindrance, on the other hand, is a repulsive 

force that pushes analytes away from a sensing material. 

 

6.1.1 Polarity and Hydrogen Bonding 

 

A covalently bound compound may either be polar or non-polar (assuming a net charge of zero on 

the molecule).  The polarity is based on whether some atoms within a molecule disproportionately 

draw electron density towards themselves.  Atoms with high electro-negativities, such as nitrogen 

(3.0), oxygen (3.5), and fluorine (4.0), draw electron density from nearby atoms that are less 

electronegative, such as carbon (2.55) and hydrogen (2.1) towards themselves.  If a 

disproportionate amount of electron density surrounds one or more atoms, then it results in the 

molecule having a slightly more negative charge on the electron dense atom(s) and a slightly 

positive charge on the electron deficient atoms, which results in an overall charge distribution (or 

dipole moment) on the molecule.  This is known as a polar molecule (Stewart et al., 2016).  For 

reference, Table 6.1 includes the dipole moments of common VOCs.  The higher the dipole 

moment, the larger the charge difference on the molecule; and thus the more polar the molecule. 
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Table 6.1: Dipole Moment of Common Volatile Organic Compounds (VOCs) 

Analyte Dipole Moment (D)1 

Methane 0.00 

Ethane 0.00 

Benzene 0.00 

Toluene 0.36 

Ethylbenzene 0.58 

Xylene 0.64 

Triethylamine 0.87 

Dichloromethane 1.14 

Chloroform 1.15 

Phenol 1.22 

Formic Acid 1.41 

Ammonia 1.42 

Tetrahydrofuran 1.63 

Isopropanol 1.66 

Ethanol 1.69 

Methanol 1.70 

Acetic Acid 1.74 

Ethyl Acetate 1.78 

Water 1.85 

Ethylene Glycol 2.28 

Formaldehyde 2.33 

Acetaldehyde 2.70 

Acetone 2.91 

Acetonitrile 3.92 
1Haynes (2016) 

 

The geometry of a molecule is also important.  A perfectly symmetric molecule, such as a 

tetrahedral shape where all four atoms/functional groups surrounding a central atom are identical, 

is non-polar since the overall charge on the molecule is zero.  For example, carbon tetrachloride 

(CF4) has a charge distribution between the carbon (2.55) and each fluorine (4.0) atom, where the 

fluorine draws electron density away from the carbon.  But since this occurs in four equally 

opposite directions, due to the tetrahedral shape, the net charge on CF4 is zero (no dipole) and thus, 

CF4 is non-polar.  Other symmetric geometries include linear (CO2), trigonal planar (BF3), trigonal 

bipyramidal (PF5), and octahedral (SF6). 

 

Non-polar molecules have a dipole moment of less than 0.4 D.  This is why hydrocarbons, which 

contain only hydrogen and carbon, are non-polar, despite a small difference in electronegativities 

(2.55 for carbon and 2.2 for hydrogen).  The dipole created between the hydrogen and carbon 
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atoms is considered negligible.  In addition, many hydrocarbons are symmetric and have an overall 

net dipole of zero, as is the case for linear alkanes (Coulson, 1942).   

 

Two polar molecules are attracted to one another through electrostatic forces.  The more polar the 

molecules, the stronger the attraction.  A special case of this is called hydrogen bonding.  This 

occurs when a highly electronegative atom, nitrogen (3.0), oxygen (3.5), or fluorine (4.0), is bound 

to a hydrogen (2.2).  This large electronegativity difference results in the nitrogen, oxygen, or 

fluorine atom stealing most of the electron density away from the hydrogen atom and thus, a large 

dipole is created.  This results in electrostatic forces strong enough to create a weak (physical) 

bond between the hydrogen of one molecule and the nitrogen, oxygen, or fluorine of another 

molecule.  For example, polyaniline (PANI) is able to hydrogen bond to alcohols, such as 

methanol.  The amine (NH) in PANI is able to hydrogen bond to the alcohol (OH) in methanol 

(Tan and Blackwood, 2000). 

 

6.1.2 Lewis Acid-Base Interactions 

 

A Lewis acid-base interaction occurs when a Lewis acid binds to a Lewis base.  A Lewis acid is 

characterized as an electron deficient atom, such as a positively charged hydrogen or carbon atom.  

A Lewis base contains at least one lone pair of electrons, such as on an oxygen or nitrogen atom.  

The Lewis base behaves as a nucleophile, and seeks out (attacks) an electron deficient atom with 

which to donate a lone pair of electrons.  This donation is not “complete”, in that the electron 

density is shared between the two molecules and thus, a weak physical bond is formed.   

 

For example, acetaldehyde contains a double bonded oxygen atom that has two pairs of lone 

electrons that are capable of behaving as a Lewis base.  One pair of electrons is able to bond to a 

Lewis acid, such as an electron-deficient carbon.  The electron deficient carbon must also be 

sterically unhindered (see Section 6.1.5), in that the Lewis base must be able to get close enough 

to bond.  The electron deficient carbons in aldehydes and ketones, which have a trigonal planar 

geometry, are very susceptible to nucleophilic attack since there is little steric hindrance that repels 

the nucleophile.  The carbon attached to a double bonded oxygen atom is electron-deficient (since 

the oxygen draws the carbon’s electrons away from the carbon and towards itself), such as that in 

methyl methacrylate.  Both aldehydes and ketones can behave as a Lewis acid (deficient carbon) 

and Lewis base (lone pairs on the double bonded oxygen).  Similarly, methyl methacrylate can 

also behave as a Lewis acid or base.  Therefore, the addition of methyl methacrylate to a sensing 

material for acetaldehyde may improve the sensitivity to acetaldehyde (Hirayama et al., 2002).  

 

6.1.3 p-orbitals and π-bonds 

 

Volatile organic compounds (VOCs) and carbon-based polymers all contain p-orbitals since many 

of the atoms (i.e. carbon, nitrogen, and oxygen) covalently bond using p-orbitals.  If a p-orbital is 
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covalently bound, the pair of electrons is shared between two atoms and cannot be further shared 

with another molecule.  The p-orbitals of interest are those with a lone pair of electrons, as in the 

case of nitrogen (one pair) and oxygen (two pairs), assuming a neutral charge on the atom.  These 

lone pairs can behave as Lewis-bases (as described in Section 6.1.2), but they can also become 

delocalized in certain cases.  In addition, the p-orbitals that are shared in double bonds (e.g. C=C), 

can also become delocalized in specific cases such as in conjugated systems, discussed below. 

 

Alternating single and double bonds in a molecule result in an overlap of p-orbitals (or π-bonds).  

This alternation of single and double bonds in a ring may produce an aromatic compound.  

Delocalization of electrons across π-bonds occurs due to this overlap of p-orbitals and allows 

electrons to travel freely between multiple atoms.  This delocalization of electrons results in the 

formation of a so-called ‘conjugated system’.  Aromatic rings, such as benzene, are a prime 

example of structures that can delocalize electrons; however, delocalization can also occur along 

linear chains.  This delocalization results in lower energy, and therefore, more stable molecules.   

 

π-bonds will overlap with one another if given the opportunity.  Since the electrons in π-bonds are 

delocalized across p-orbitals (Figure 6.1), π-bonds are able to easily interact with other molecules 

that contain p-orbitals oriented in the same direction, which results in stacking of aromatic rings 

and other π-bonds (Miller et al., 1997).  Overlap can occur when the energy of the p-orbitals in 

one molecule is similar to the energy of the p-orbitals in another.  π-bonds commonly occur across 

carbon atoms, which have the same energies since they are the same atom; however, other atoms 

that are bound to these carbons can change energy levels of the orbital of the electrons available 

to bind.  

 

 
Figure 6.1: Overlap of p-orbitals and π-bonds. 

 

It is also possible for other p-orbitals to stack with π-bonds, since π-bonds are delocalized p-

orbitals.  If the p-orbitals are oriented in the appropriate geometry, then π-bonds are able to stack 

on top of the p-orbitals, as they would stack on π-bonds.  For example, three fluorine atoms on a 

carbon have p-orbitals capable of this.  Each fluorine atom has a p-orbital in the z-direction, which 

is not used in bonding with the carbon.  These p-orbitals (one on each of the fluorine atoms) are 

oriented in a trigonal planar geometry, essentially appearing as a ring.  This planar geometry of 
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the p-orbitals is perfect for π-bonds stacking on p-orbitals (see also Figure 6.8 in Section 6.5.4, 

which discusses dominant sensing mechanisms for aromatics). 

 

6.1.4 Metal Coordination 

 

Metal coordination only exists as a sensing mechanism when a metal or metal oxide is present in 

the sensing material.  Coordination between an analyte and a metal is what allows basic catalysis 

to occur.  Therefore, if chemical reactions involving a specific analyte are catalyzed by a specific 

metal oxide, such as platinum (Pt) used to oxidize methanol, then that metal oxide may improve 

the sensing properties (sensitivity and selectivity) of a polymeric sensing material (Xiong et al., 

2013; Wang et al., 2013a). 

 

Metals and metal oxides are commonly used as sensing materials and typically work on the basis 

of catalyzing (facilitating) an oxidation reaction. A typical mechanism for formaldehyde (HCHO) 

is shown below (see Equations 6.1 – 6.6).  A similar mechanism occurs for the oxidation of any 

small organic molecule, where the oxygen gas (O2) comes from air and adsorbs to the surface of 

the metal or metal oxide (catalyst) (Wang et al., 2009a).  

 

O2(gas) ↔ O2(adsorbed)  (Equation 6.1) 

 

O2(adsorbed) + e- ↔ O2
-
(adsorbed)  (Equation 6.2) 

 

O2
-
(adsorbed) + e- ↔ 2 O-

(adsorbed)  (Equation 6.3) 

 

O-
(adsorbed) + e- ↔ O2-

(adsorbed)  (Equation 6.4) 

 

HCHO(gas) ↔ HCHO(adsorbed)  (Equation 6.5) 

 

O2-
(adsorbed) + HCHO(adsorbed) ↔ H2O(adsorbed) + CO2(adsorbed) + 4e-  (Equation 6.6) 

 

Oxidation utilizes the partial pressure of oxygen in the atmosphere. The oxygen is adsorbed onto 

the surface of the sensing material.  As oxidation takes place, electrons (e-) are created that reduce 

the resistance of the sensor.  This change in resistance is monitored as the sensor response.  Very 

small amounts of other metals and metal oxides can be added to the sensing material to increase 

the amount of adsorbed oxygen onto the surface, thereby improving the sensitivity of the sensor 

(Lee et al., 2006). 

 

When metals and metal oxides are incorporated into a polymer, the amount of adsorbed (or 

coordinated) oxygen onto the metal is significantly reduced due to reduced access of oxygen to 

the metal.  This reduced access is caused by two things.  First, there is a reduced amount of 
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coordination sites on the metal since the polymer is occupying some of the coordination sites 

(hence the metal, for instance, nickel (Ni), is bound to the polymer; see Figure 6.2).  Second, the 

steric hindrance caused by the polymer repels some of the oxygen molecules so that the oxygen is 

not able to get close enough to coordinate to the metal. 

 

 
 

Figure 6.2: Ni coordination to the nitrogens in the quinoid ring (Han et al., 2006). 

 

The geometry is important to consider when the metal or metal oxide is incorporated into a 

polymeric sensing material.  The addition of a metal or metal oxide will cause the polymer to 

coordinate around the metal, creating a ‘kink’ (or change in conformation) in the polymeric chain 

(see Figure 6.2).  This reduces the number of available spots for analyte coordination and also 

causes a steric interaction that creates a cavity within the polymer, which can improve the sorption 

of an analyte into the polymer.   

 

Coordination of the polymer also, generally, creates strain on the bonds within the polymer, since 

the polymer bends (or changes conformation) to bind to the metal.  The preferred conformation of 

an aromatic ring is a flat plane.  This strain can be seen in Figure 6.2 by the “boat” conformation 

(the aromatic ring has been bent into the shape of a “boat”, with two carbons bent upwards) that is 

created when polyaniline (PANI) coordinates to the Ni.  To bend into the “boat” conformation, the 

double bonds in the carbon ring have moved (the electron density has shifted) to allow the carbon 

to bend.  If too much metal is added as a dopant, the polymer chains will become too strained and 

begin to break, thereby significantly reducing the benefit of the addition of the metal or metal oxide 

dopant.   

 

It should also be noted that the metal oxide may not actually incorporate itself into the polymer 

because the strain is too great for the polymer to conform around the metal oxide.  For example, 

poly (2,5-dimethyl aniline) (P25DMA) is unable to coordinate with zinc oxide (ZnO).  In this case, 

the ZnO was added during the polymerization of P25DMA and resulted in minimal polymer 

formed around the ZnO nanoparticles because the strain was too great and the polymer chains 

could not withstand the strain caused by conforming around the ZnO (Stewart et al., 2015). 



129 

 

6.1.5 Steric Hindrance 

 

The previous four primary effects are all attractive forces that draw an analyte towards the sensing 

material. Steric hindrance, on the other hand, is a repulsive force.  Each atom is surrounded by an 

electron cloud that repels other atoms.  Therefore, the larger (and bulkier) the molecule, the larger 

the electron cloud.  However, the geometry of a molecule plays a role as well. 

 

Steric hindrance is caused by the electronic repulsion of the electrons on molecules.  All molecules 

are surrounded by a cloud of electrons that repel the molecule in question from other molecules.  

The bulkier a molecule (analyte), the larger the electronic cloud that surrounds it and therefore, the 

harder it is for that molecule to come near another molecule or fit into an interstitial space of a 

sensing material.  Therefore, smaller, less bulky analytes (such as formaldehyde or methanol) are 

able to interact with a sensing material more easily than larger, bulkier analytes (such as 

triethylamine). This, as a result, can improve the selectivity of a sensing material. 

 

Note that as more atoms are added onto the side group, the electron cloud gets larger.  A t-butyl 

group (three methyl groups off one carbon atom) is much larger than hydrogen and therefore, 

exhibits more repulsion due to a larger electron density.  A t-butyl group also requires more space 

due to the increased number of atoms and is therefore, a very bulky side group.  Due to the 

bulkiness of t-butyl, it is much more difficult for an analyte to reach the central carbon.  This can 

be thought of as the t-butyl group protecting the central carbon.  This can be used to an advantage 

in sensing materials by excluding (and thus “protecting” the sensing material from) larger analytes, 

similar to a molecular sieve.  The bulkiness can also be used to increase interstitial spaces or 

cavities in a sensing material to improve access of the analyte into the sensing material, thereby 

improving sensitivity. 

 

6.1.6 Dispersion and van der Waals Forces 

 

Electron density shifts around an atom and appears to have an average symmetric distribution 

around an atom; however, at any given time, the electron density may be greater on one side of an 

atom or compound.  This results in a slight negative charge on that side and a slight positive charge 

on the opposite side.  These charges last very briefly, but are enough to induce small electrostatic 

forces that bring molecules together in close proximity. 

 

Dispersion and van der Waals forces are the result of induced dipoles created when two molecules 

come into close proximity.  These induced dipoles are stabilized by electrostatic forces created 

with one molecule being slightly positive and the other slightly negative, where the two molecules 

are “touching”.  The electron density does not shift between the two molecules, just around each 

molecule, such that one side of the molecule is positive and the other side is negative (Grate and 

Abraham, 1991).   
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6.2 Secondary Sensing Mechanisms 

 

Secondary sensing mechanisms are effects that occur once the analyte is in close proximity to the 

sensing material.  These effects are not what initially attracts the analyte to the sensing material; 

however, these secondary effects can also contribute considerably and often appear as part of the 

dominant mechanism. 

 

6.2.1 Swelling 

 

Absorption of an analyte (or multiple analytes) can reach a point where the analyte(s) pushes the 

polymer chains away from one another.  When this happens, the polymer swells, increasing in 

overall volume.  It should be noted that swelling of a conductive polymer, which is typically in a 

glassy state at room temperature, is expected to be low; however, swelling has been observed for 

multiple conductive polymers (Bai and Shi, 2007).   

 

Polymer swelling can affect the response in different ways.  For example, when water absorbs into 

polyaniline (PANI), swelling increases the resistance (reduces the conductivity); however, when 

water absorbs into polypyrrole (PPy), swelling reduces the resistance (increases the conductivity) 

(Joulazadeh et al., 2014).   

 

PANI’s conductivity is related to its conjugation and defects along the polymer chain and the 

conjugation between the polymer chains.  When water molecules are absorbed into PANI, initially 

the water increases the conductivity by increasing the number of defects and altering the 

conjugation along the polymer chains.  However, when too much water is absorbed, the water 

molecules push the polymer chains further apart, resulting in the polymer swelling, and reducing 

the amount of conjugation between polymer chains.  This means that it is more difficult for a 

charge to be carried across multiple polymer chains, thus resulting in a decrease in PANI’s 

conductivity (Joulazadeh et al., 2014). 

 

Conversely, the absorption of water molecules into PPy initially causes a reduction in conductivity 

because the water molecules increase the space between polymer chains, causing minor swelling.  

This reduces the charge transfer between polymer chains and thus, reduces conductivity as well.  

However, as the concentration of water increases, a threshold is reached and the conductivity of 

PPy begins to increase with an increase in water concentration.  This may be due to the water 

molecules forming a continuous layer between the PPy chains, effectively creating a charge 

transfer bridge between the conductive PPy chains (Joulazadeh et al., 2014). 
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6.2.2 Solvent Effects 

 

Swelling of a polymer may lead to solvent effects, where the analyte sorbs and diffuses into the 

polymer matrix to the point at which the analyte begins to behave as a “solvent”.  When this occurs, 

the polymer chains become mobile.  For conductive polymers, this may result in a decrease in 

conductivity because electrons may no longer be able to jump from one chain to another (Slater et 

al., 1993).  However, the solvation of the polymer chains increases the conductivity if the solvent 

(analyte) has a higher electrical permittivity than the polymer (Vercelli et al., 2002). 

 

6.3 Multiple Mechanisms 

 

Multiple mechanisms occur, sometimes simultaneously, when a gas analyte interacts with a 

sensing material.  Some of these mechanisms may be the result of (triggered by) other mechanisms.  

For example, an analyte may be attracted to a polymer and sorb by hydrogen bonding or Lewis 

acid-base interactions.  As more analyte sorbs, the sensing material begins to swell.  This changes 

the properties of the sensing material and may result in more analyte sorbed than would be 

otherwise.  In a sense, the partitioning characteristics of the target analyte change between the bulk 

phase and the polymer (interaction/sensing) sites. This, of course, affects the diffusivity 

characteristics of the analyte, whereby the movement of the polymer chains, as the sensing material 

swells, results in a change of pore size and distribution and thus, a corresponding change in the 

diffusion of the analyte into the sensing material.  Swelling can also lead to solvent effects, 

whereby the analyte concentration has passed a threshold and begins to behave more like a 

“solvent” than an analyte.   

 

In a crystalline polymer, as an analyte is sorbed, it enters the larger pores first.  Many pores are 

interconnected and the analyte continues to move (diffuse) into the polymer with ease until all of 

these larger pores are saturated.  Once these pores are saturated, the analyte can continue to migrate 

into smaller pores as the analyte begins to behave as a “solvent”, which results in some polymer 

chain mobility.  As the chains move, some of the smaller pores are widened, which intensifies the 

solvent effects.  This also results in further swelling of the polymer (and enhanced sorption).  

Eventually, the polymer is not able to swell any further, which results in no more analyte being 

able to sorb into the polymer since saturation has been reached (Bonavoglia et al., 2006).  At that 

point, no more analyte can be sorbed onto the polymer and thus, the maximum limit (highest 

concentration) of how much analyte can be detected has been reached. 

 

6.4 Solubility and Solubility Parameters 

 

Solubility, in general, is the ability of one substance to mix with another.  Solubility between a 

solute and a solvent ranges from fully miscible, such as ethanol and water, to essentially insoluble, 

such as silver chloride in water.  For gas sensors, the solubility of the target gas analyte, and the 
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interferents in the sensing material, particularly in the polymeric sensing material, is important.  If 

the gas analytes are even somewhat soluble in the sensing material, then the gas analyte is able to 

diffuse into the sensing material, thereby increasing the amount of analyte that is able to bind and 

ultimately produce a measurable response. 

 

Many factors affect the solubility of a substance in another substance; for example, the polarity of 

the two substances.  The general rule is that polar molecules dissolve in other polar molecules and 

non-polar molecules dissolve in non-polar ones; however, solubility is much more complicated 

since other factors, not just polarity, influence a molecule’s solubility. 

 

Solubility parameters are useful indicators in assessing whether two molecules are miscible since 

they are based on both a molecule’s chemical structure and physical state.  Each substance 

(molecule) has a solubility parameter that in essence summarizes the forces with which the 

substance is likely to interact with another substance, given the substance’s chemical nature and 

state.  If the solubility parameters of two substances are similar, then they are likely soluble in one 

another.   

 

It should be noted that these solubility parameters are either determined experimentally (where 

some error is always present) or calculated based on models (that always use certain 

approximations and assumptions).  This often results in discrepancies between solubility 

parameters published in the literature.   

 

There are two types of solubility parameters, the Hildebrand solubility parameter (δ) and the 

Hansen solubility parameters (δD, δP, δH).  The Hildebrand solubility parameter summarizes the 

different contributions to the cohesive energy density (CED) function of the specific substance and 

therefore, some information about solubility is lost.  On the other hand, the Hansen solubility 

parameters break down the CED of a substance into three types of contributions: dispersive energy 

(δD), polarity (δP), and ability to hydrogen bond (δH); see Tables 6.2 and 6.3.  The Hildebrand and 

Hansen solubility parameters are related as per Equation 6.7 (Hansen, 2007). 

 

𝛿2 = 𝛿𝐷
2 + 𝛿𝑃

2 + 𝛿𝐻
2   (Equation 6.7) 

 

In general, if two compounds have similar Hildebrand parameters, then they are likely to dissolve 

within one another.  For example, acetone (19.9 MPa1/2) and aniline (21.1 MPa1/2) should be fairly 

miscible due to their similar solubility parameters.  However, due to the simplification of the 

calculation, this is not always the case.  For instance, toluene (18.2 MPa1/2), which is not capable 

of hydrogen bonding, has an identical Hildebrand parameter to ethyl acetate (18.2 MPa1/2), which 

is capable of hydrogen bonding.  However, their Hansen Solubility parameters are quite different 

(see Table 6.2); Grate and Abraham, 1991. 
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Therefore, the Hansen solubility parameters, which break down the solubility into dispersive 

energy (δD), polarity (δP), and ability to hydrogen bond (δH) contributions will give a better 

indication.  If these three parameters are close in nature (i.e. when plotted against one another, the 

two substances are located close in the 3-D space), then the two substances are likely to be soluble.  

For example, benzene and chloroform have similar Hildebrand solubility parameters (18.6 MPa1/2 

and 19.0 MPa1/2, respectively), but different Hansen solubility parameters (see Table 6.2), whereas 

benzene and toluene have similar Hildebrand and Hansen solubility parameters.   

 

Table 6.2: Hansen and Hildebrand Solubility Parameters for Various VOCs 

Analyte 
Hansen (MPa1/2)1 Hildebrand 

(MPa1/2)1 

δD δH δP δ 

Butane 14.1 0.0 0.0 14.1 

Xylene 17.8 1.0 3.1 18.0 

Ethyl Acetate 15.8 5.3 7.2 18.2 

Toluene 18.0 1.4 2.0 18.2 

Benzene 18.4 0.0 2.0 18.6 

Chloroform 17.8 3.1 5.5 19.0 

Tetrahydrofuran 16.8 5.7 8.0 19.4 

Acetone 15.5 10.4 7.0 20.1 

Dichloromethane 18.2 6.3 6.1 20.3 

Acetaldehyde 14.7 8.0 11.3 21.1 

Acetic Acid 14.5 8.0 13.5 21.3 

Phenol 18.0 5.9 14.9 24.1 

Acetonitrile 15.3 18.0 6.1 24.6 

Formaldehyde 12.8 14.4 15.4 24.7 

Ethanol 15.8 8.8 19.4 26.6 

Methanol 15.1 12.3 22.3 29.7 

Ethylene Glycol 17.0 11.0 26.0 32.9 

Water 15.5 16.0 42.4 47.9 
1Brandrup et al. (1999) 

 

Note that the δP of the Hansen solubility parameters for benzene is not zero (see Table 6.2), despite 

benzene being non-polar.  This is because the electron density is constantly shifting across the 

atoms in a molecule, even in non-polar molecules, such as benzene.  This can result in a small 

polarity for a brief moment, and thus have a non-zero polarity solubility parameter (Hansen, 2007).  

Therefore, an aromatic molecule such as benzene, which contains delocalized electrons, has a δP 

of 2.0.  Non-polar molecules, which cannot exchange electrons, such as butane, have both a δP and 

δH of zero, as seen in Table 6.2.   
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Table 6.3: Hansen and Hildebrand Solubility Parameters for Various Polymers 

Polymer 
Hansen (MPa1/2) 

Hildebrand 

(MPa1/2) 

δD δH δP δ 

Polyethylene - - - 16.2 1 

Poly (butadiene-co-styrene) 17.55 3.36 2.7 18.07 1 

Poly (2,6-dimethyl-1,4-

phenylene oxide) 
- - - 19.6 4 

Poly (ethylene oxide) 17.3 3.0 9.4 19.9 1 

Poly (2,5-dimethyl aniline) - - - 21 2 

Poly (vinyl chloride) 18.72 10.03 3.07 21.46 1 

Polyaniline 17.4 8.1 10.7 22.2 3 

Polystyrene 

(LG, BASF) 
21.28 5.75 4.3 22.47 1 

Poly (methyl methacrylate) 18.69 10.56 7.51 22.8 1 

Poly (vinylidene fluoride) 17.2 12.5 9.2 23.2 1 

Polypyrrole - - - 25.2 5 

Poly (vinyl pyrrolidone) - - - 25.6 1 

Poly (vinyl acetate) - - - 19.2 1 

1Brandrup et al. (1999)   2Itoh et al. (2007a)  3Shacklette and Han (1993)  4Puskas et al. (2007)  5Bradner 

et al. (1989) 

 

Note that the solubility parameters for polymers are simply estimates.  Typically, the solubility 

parameters of a polymer are experimentally obtained by dissolving the polymer in solvents and 

estimating the solubility of the polymer based on how well the polymer dissolves in different 

solvents (Duaij et al., 2013).  Thus, typically, only the Hildebrand solubility parameter is available 

(if a parameter is available at all).  Therefore, the Hildebrand solubility parameter is used in the 

discussion that follows as an indicator of solubility.  

 

In addition, the solubility parameters of a monomer (i.e. aniline) will be different from those of its 

corresponding polymer (i.e. polyaniline (PANI)), although the values are close.  For example, 

aniline has a Hildebrand solubility parameter of 21.1 MPa1/2, whereas PANI has a Hildebrand 

solubility parameter of 22.2 MPa1/2 (Shacklette, 1994).  Therefore, the solubility parameter for the 

monomer may be used as a very rough guide for that of the corresponding polymer, if the solubility 

parameter is not available. 

 

Note that the composition of a polymer, including amorphous and crystalline fractions, copolymer 

composition, and crosslinking, all affect the solubility parameters of a polymer.  Table 6.4 shows 

five different values observed for the Hildebrand solubility parameter for polystyrene, two values 

observed for poly (styrene-co-divinylbenzene), and the effect crosslinking has on the solubility 

parameters of poly (styrene-co-divinylbenzene). 
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Table 6.4: Hildebrand Solubility Parameters for Polystyrene 

Polymer Hildebrand (MPa1/2)1 

Polystyrene 17.5 

 18.6 

 18.6 

 18.7 

 
20.2 

22.47 

Poly (styrene-co-divinylbenzene) 14.8 

 17.4 

5% Crosslinking 15.7 

10% crosslinking 17.8 

20% crosslinking 15.1 
1Brandrup et al. (1999) 

 

6.5 Dominant Mechanisms for Different Volatile Organic Compounds (VOCs) 

 

The dominant mechanisms for how different analytes interact are discussed next.  The analytes are 

classified by their functional groups such as alcohols and amines.  In total, six different functional 

groups are discussed in the subsequent subsections (alcohols, aldehydes, alkanes, amines, 

aromatics, and ketones).  At the end of each subsection, a table summarizes various sensing 

materials used for the detection of the analytes, as well as sensitivity (detection limit) and 

selectivity (if available).  Note that in many of the tables in this section, there are no entries for 

selectivity.  This is due to the fact that very few publications conduct or report any selectivity 

experiments (i.e. most often, only one analyte is used to evaluate the efficacy of a sensing material). 

 

6.5.1 Alcohols 

 

Alcohols are organic compounds that contain a hydroxyl (-OH) group, such as methanol and 

ethanol.  These small alcohols are polar, due to the oxygen atom pulling electron density towards 

itself, away from the other atoms in the molecule, making the oxygen more electronegative and 

the other atoms more electropositive.  Alcohols are also able to hydrogen bond because of the large 

dipole created between the oxygen and hydrogen.  Therefore, alcohols are attracted to sensing 

materials that are polar, especially those able to hydrogen bond. 

 

As an example, polyaniline (PANI) is a common sensing material for both methanol and ethanol 

(Athawale et al., 2006; Gao et al., 2008; Kim et al., 2005).  PANI contains an amine group that 

makes it polar and able to hydrogen bond.  PANI is also conductive when doped with an acid, 

which makes it an ideal sensing material in resistive type sensors (see Figure 6.3a).  The doping 
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leads to positive charges on the nitrogen atoms, due to the additional hydrogen sharing electron 

density from the acid, and creates holes along the polymer chain that allow electrons to hop from 

one to another, thus making PANI conductive (Kukla et al., 1996).  These positive charges also 

more strongly attract electronegative atoms and molecules, such as the oxygen in methanol and 

ethanol because of the larger dipole and therefore, stronger electrostatic forces.  When an 

electronegative atom binds to the amine on PANI, by donating some electron density, the hole on 

the nitrogen is filled and the resistance on the polymer chain increases, which can be measured  

(Athawale et al., 2006). 

 

(a) (b)  

Figure 6.3: a) Polyaniline (PANI) and b) Polypyrrole (PPy) 

 

By modifying PANI, the sensitivity and/or selectivity can be improved.  Athawale and Kulkarni 

(2000) compared how different PANI derivatives responded to different aliphatic alcohols and 

found that selectivity was overall improved towards methanol when an ethyl group was added to 

the amine group.  This ethyl group “protected” the nitrogen from the larger alcohols through steric 

hindrance, since an ethyl group is much larger than a single hydrogen atom.  Due to methanol’s 

smaller size, methanol is able to more easily reach the nitrogen, despite the added steric hindrance 

from the ethyl group.  In addition, methanol is more polar than ethanol and is, therefore, more 

strongly attacted to the nitrogen on the polymer. 

 

Polypyrrole (PPy) is very similar to PANI (see Figure 6.3b), containing a conjugated chain and an 

amine group.  The conjugated chain allows electrons to migrate down the PPy chain and is thus, 

conductive, making it a common sensing material in resistive type sensors (Babaei and Alizadeh, 

2013; Mabrook et al., 2006).  PPy attracts alcohols through electrostatic forces with its amine 

group (slightly positively charged hydrogen on a nitrogen).  The amine is able to hydrogen bond 

with the –OH in the alcohol (Das et al., 2014).  Because the amine is a secondary amine in nature 

(it is bonded to two carbon atoms, and one hydrogen atom), there is some steric hindrance 

surrounding the positively charged nitrogen.  Due to the rigid nature of PPy, the chains are able to 

pack more closely together, creating smaller interstitial spaces for the analytes to diffuse into 

(Fonner et al., 2010).  The combination of the polar amine (-NH) on PPy, which is more attracted 

to other, more polar species that are able to hydrogen bond (such as small alcohols), with the steric 

hindrance that repulses larger molecules than methanol, explains the selectivity shown by Mabrook 

et al. (2006).  Similarly, Babaei and Alizadeh (2013) demonstrated better selectivity by using 
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perchlorate as a dopant.  The perchlorate is negatively charged and thus attracted to the positively 

charged hydrogen on the amine group.  By binding to the amine, the perchlorate “protected” some 

of the amines, thus reducing the number of available sensing sites (amine groups, in this case) for 

the analytes to bond to.  Since perchlorate was only used as a dopant, not every amine would be 

protected. 

 

Table 6.5 summarizes various polymeric sensing materials used for either methanol or ethanol.  

Selectivity values towards the target analyte are also shown in Table 6.5.  The higher the value for 

the selectivity, the lower the response from the interferent.  Typical interferents were other alcohols 

(e.g. methanol, ethanol, and propanol) and aromatics (e.g. benzene and toluene), amongst others. 

 

Poly (diallyldimethyl ammonium chloride) (PDDAC) (see Figure 6.4a) contains a positively 

charged nitrogen that acts as a Lewis acid.  The oxygen on an alcohol, such as ethanol, has two 

lone pairs of electrons, capable of acting as a Lewis base.  The electrostatic force draws the ethanol 

towards the PDDAC.  Zhan et al. (2013) doped PDDAC with tin oxide (SnO2), a common 

inorganic sensing material for volatile organic compounds (VOCs).  By incorporating SnO2 into 

the PDDAC, the SnO2 nanoparticles were stabilized in the PDDAC matrix, and therefore 

aggregation of the nanoparticles was reduced, allowing for more SnO2 to be available to interact, 

through metal coordination, with the analytes.  This resulted in the doped PDDAC being more 

sensitive to ethanol than either PDDAC or SnO2 alone.  It should be noted that Zhan et al. (2013) 

claimed high selectivity towards ethanol by using inorganic gases as a comparison, which often 

behave differently than organic gases.   

 

 (b) (c)  

Figure 6.4: a) Poly (diallyldimethyl ammonium chloride) (PDDAC), b) Poly(3,4-ethylenedioxy thiophene): 

poly(styrene sulfonate) (PEDOT: PSS), c) OV 275 
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Table 6.5: Polymeric Sensing Materials for Alcohols 

Analyte 
Sensing 

Material 
Dopant 

Detection 

Limit 
Selectivity Reference 

Methanol 

Poly (N-ethyl 

aniline) 

PNEA 

HCl  

Propanol (1.48) 

Ethanol (1.86) 

Butanol (2.88) 

Heptanol (18.40) 

Athawale and 

Kulkarni 

(2000) 

Methanol 
Polyaniline 

(PANI) 
Pd 1 ppm  

Athawale et al. 

(2006) 

Methanol 
Polypyrrole 

(PPy) 

Perchlorate 

(ClO4) 
300 ppm 

Nitromethane (4.5) 

Ethanol (4.9) 

Acetonitrile (7.5) 

Acetone (10.3) 

1-propanol (11.5) 

Ethyl Acetate (12.5) 

Chloroform (13) 

2-propanol (16.9) 

Toluene (20.5) 

Babaei and 

Alizadeh 

(2013) 

Methanol 
Polyaniline 

(PANI) 
 100 ppm 

Diimine 

Triethylamine 

Gao et al. 

(2008) 

Methanol 
Polypyrrole 

(PPy) 
None 5000 ppm 

Ethanol (1.3) 

Propanol (1.6) 

Chloroform (2.2) 

Benzene (2.9) 

Mabrook et al. 

(2006) 

Ethanol 
Polyaniline 

(PANI) 

Poly 

(vinylidene 

fluoride) 

(PVF2) 

100 ppm 

Methanol (2.0) 

Benzene (5.0) 

Toluene (3.3) 

Kim et al. 

(2005) 

Ethanol 

Poly (2,5-

dimethyl 

aniline) 

(P25DMA) 

None 3 ppm 
Methanol (3.5) 

Benzene (4.8) 

Stewart et al. 

(2015) 

Ethanol 

Poly(diallyldi

methyl 

ammonium 

chloride) 

(PDDAC) 

Tin Oxide 

(SnO2) 
10 ppm 

Nitrogen dioxide (19.6) 

Hydrogen gas (9.9) 

Sulfur dioxide (95.6) 

Hydrogen Sulfide 

(49.0) 

Zhan et al. 

(2013) 

Ethanol 

Poly(3,4-

ethylenedioxyt

hiophene): 

poly(styrene 

sulfonate) 

(PEDOT: 

PSS) 

None 5000 ppm - 
Jung et al. 

(2008) 

Ethanol OV 275 None 500 ppm 
Benzene (7.1) 

Methanol (8.8) 

Chen et al. 

(2015b) 

 

Poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT: PSS) (see Figure 6.4b) also 

is likely to interact with ethanol through Lewis acid-base interactions, with the sulfur and oxygen 
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atoms on the PEDOT:PSS behaving as Lewis bases with their lone pairs of electrons.  Ethanol, a 

Lewis acid, is able to hydrogen bond to the PEDOT:PSS.  Similarly, the cyano groups on OV 275 

(see Figure 6.4c) behave as Lewis acids and the ethanol is able to hydrogen bond to the nitrogen 

in the cyano group.  In terms of selectivity, ethanol probably has a similar solubility to OV 275, 

compared to methanol, despite ethanol and methanol being chemically similar.  The Hildebrand 

solubility parameters of ethanol and methanol are 26.6 and 29.7, respectively (see Table 6.2).   

 

6.5.2 Aldehydes and Ketones 

 

Aldehydes and ketones are very similar.  Aldehydes have at least one double bonded oxygen 

(C=O) on a terminal carbon and ketones have at least one double bonded oxygen on a non-terminal 

carbon (see Figure 6.5).  This oxygen draws electron density towards itself, resulting in a dipole 

with a slight negative charge on the oxygen, thus aldehydes and ketones are polar, but not as polar 

as alcohols.  The two lone pairs on the oxygen act as a Lewis base, thus sensing materials that 

behave as Lewis acids are ideal.  In addition, the high electronegativity of oxygen allows other 

molecules capable of hydrogen bonding to hydrogen bond to the oxygen in the aldehyde or ketone.   

 

(a)   (b)  

Figure 6.5: Schematic of an (a) aldehyde and a (b) ketone. 

 

Due to the double bonded oxygen drawing electron density away from the carbon, both aldehydes 

and ketones are susceptible to nucleophilic attack from a nucleophile.  In addition, the planar 

geometry of aldehydes and ketones limits steric hindrance; thus, the carbon is easily accessed by 

the nucleophile.  However, ketones are more sterically hindered than aldehydes due to the fact that 

the ketone is surrounded by two carbon chains and an aldehyde has a hydrogen on one side.  

Nucleophilic attack is similar to Lewis acid-base interactions where the Lewis base (the 

nucleophile) donates electron density to the Lewis acid (electron deficient carbon) in the aldehyde 

or ketone.  While Lewis acid-base interactions are likely to occur when hydrogen bonding is a 

possibility, it is more likely the dominant mechanism is hydrogen bonding due to the electrostatic 

forces (Zhang et al., 2016).   

 

Formaldehyde is the simplest aldehyde, containing only one carbon.  Many sensing materials have 

been investigated for formaldehyde due to its role in poor indoor air quality (WHO, 2010).  It 

should be noted however, that many papers which describe sensing materials for formaldehyde 

use formalin (liquid formaldehyde) as their formaldehyde source (Antwi-Boampong and 
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BelBruno, 2013; Zhang et al., 2016; Alizadeh and Soltani, 2013; Wang et al., 2010b).  The problem 

is that formalin is 37% formaldehyde and 10 - 15% of stabilizer, typically methanol, in water.  

Therefore, it is difficult to assess whether the response is from formaldehyde or methanol, unless 

methanol is used as an interferent.  If methanol shows a much poorer response than what was 

observed from formalin, then it can be assumed the response from the formalin is indeed from the 

formaldehyde.  Otherwise, it is likely that response from the formalin is at least partially from both 

formaldehyde and methanol; however, it is impossible to distinguish which gas produces what 

percentage of the response.  Therefore, the best method to evaluate a formaldehyde sensor is to 

use formaldehyde in gaseous form from a compressed gas cylinder rather than the vapour from 

formalin. 

 

For example, for both polyaniline (PANI) doped with silver (Ag) nanoparticles (Zhang et al., 2016) 

and graphene-poly (methyl methacrylate) (graphene-PMMA) nanocomposite (Alizadeh and 

Soltani, 2013), the combination of methanol, formaldehyde and water is more likely to cause the 

response observed than formaldehyde alone.  This is due to the ability of both methanol and water 

to hydrogen bond.   

 

PANI is hydrophilic and both water and methanol are able to hydrogen bond to either the nitrogen 

or hydrogen in the amine; however, the hydrogen in PANI’s amine is only able to hydrogen bond 

to formaldehyde.  This effectively means that two molecules of methanol and/or water can bind to 

one amine (sensing site) on PANI (with one bound to the nitrogen and the other to the hydrogen) 

and only one formaldehyde molecule can bind to the amine.  So for each sensing site (amine) on 

PANI, half as much formaldehyde is able to bond as its interferents, water and methanol.  This 

results in a more sensitive sensor for the interferents than for formaldehyde.  Additionally, this is 

why PANI is often used as a sensing material for methanol, as shown in Table 6.5. 

 

Zhang et al. (2016) modified PANI by doping it with silver (Ag).  The addition of Ag largely 

increased the porosity of the PANI matrix, which allowed more surface area, and therefore more 

sensing sites, for the analytes to bond to.  The authors suggested nucleophilic attack as to why 

formaldehyde produced a larger response than the interferents tested; however, since formalin was 

used as the source for formaldehyde, this is not likely the case.  Hydrogen bonding may be more 

likely between the amine group and the oxygen on formaldehyde, due to the electrostatic forces, 

since formaldehyde is polar (2.33 D).  This may also explain why there was such a large response 

to formaldehyde and methanol (which is capable of hydrogen bonding).  In addition, acetone was 

tested as an interferent and a smaller response was observed for acetone than formaldehyde.  This 

is despite the fact that acetone (2.91 D) is more polar than formaldehyde (2.33 D), also behaves as 

a Lewis base (electrophile), and is susceptible to nucleophilic attack. However, Ag is often used 

to catalyze the oxidation of methanol into formaldehyde for industrial applications and thus, 

methanol and formaldehyde would be highly attracted to the Ag (more than acetone) and both are 
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able to easily coordinate with the Ag, thus increasing the response observed for formalin (Lefferts 

et al., 1986). 

 

In some cases, the combination of methanol and formaldehyde can improve the sensitivity to 

formaldehyde.  For example, Antwi-Boampong and BelBruno (2013) combined PANI and poly 

(ethylene imine) (PEI) (see Figure 6.6a) and doped it with formic acid to create a selective sensing 

material for formaldehyde.  PANI, which is conductive, has increased resistance when an analyte 

sorbs onto it and thus was the responsive part of the sensing material.  PEI was used to protect the 

PANI and improved its selectivity.  The authors suggested a mechanism in which the PEI “trapped” 

the formaldehyde, which then was able to interact with PANI, resulting in a response.  However, 

this does not explain the selectivity since PEI would “trap” many of the other interferents such as 

acetone, methanol, and ammonia, in a similar way to formaldehyde (acetone) or through hydrogen 

bonding (methanol and ammonia).  A better explanation as to why formaldehyde produced such a 

large response, compared to the other interferents tested, is due to the way in which the materials 

were tested.  The six interferents are all liquid at room temperature, whereas formaldehyde is not.  

Since formalin was used for formaldehyde, three vapours (formaldehyde, methanol, and water) 

were simultaneously exposed to the sensing material and thus, would result in all three gases 

interacting with the sensing material.  Since methanol and water are able to hydrogen bond, they 

would more readily bind to the amine groups in PEI, reducing the number of available sorption 

sites on PEI.  Formaldehyde would then not be able to bind to the PEI; however, it could bind to 

PANI, resulting in a large response since PANI’s conductivity decreases as more analyte sorbs 

onto it. 

 

(a)  (b) (c) (d)  

Figure 6.6: (a) Poly (ethylene imine) (PEI), (b) poly (methyl methacrylate) (PMMA), (c) poly (vinyl alcohol) 

(PVA), and (d) poly (2,5-dimethyl aniline) (P25DMA). 

 

Similarly, Alizadeh and Soltani (2013) created a graphene-poly (methyl methacrylate) (graphene-

PMMA) nanocomposite that used the less hydrophilic nature of PMMA (see Figure 6.6b) to 

“protect” the graphene from highly polar analytes such as water.  The PMMA sorbs interferents 

capable of hydrogen bonding, such as methanol and ethanol, and sterically repels larger 

interferents such as tetrahydrofuran and acetonitrile.  Small molecules that cannot hydrogen bond, 

such as formaldehyde, are able to diffuse through the PMMA and sorb onto the alkoxy functional 

groups on graphene, reducing graphene’s conductivity, and thus producing a response.   
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The morphology of the sensing material is also important.  Wang et al. (2010a) compared flat and 

nanofibrous membranes of polyethyleneimine/poly (vinyl alcohol) (PEI/PVA) (see Figure 6.6c) 

as a sensing material for formaldehyde.  It was found that the nanofibrous membrane was about 

three times more responsive than the flat membrane.  The nanofibers created a more porous 

membrane that allowed for easier diffusion into the matrix.  This also resulted in a much higher 

specific surface area of the nanofibers than the flat membrane.  A higher surface area results in 

more sensing sites available to the analytes and therefore, a potential for a larger response.  

 

Wang et al. (2010a) also compared different compositions of PEI/PVA and found that more than 

just morphology affected the sensing material’s response.  Two sensing materials were made with 

different PEI-PVA compositions that had similar specific surface area; however, the material with 

the higher PEI content produced a larger response.  The authors suggest that PEI interacting with 

formaldehyde through Lewis acid-base interactions is the dominant sensing mechanism, with the 

formaldehyde acting as a Lewis base.  However, both PEI and PVA are able to hydrogen bond to 

formaldehyde and thus, hydrogen bonding seems to be the dominant mechanism.  In addition, the 

amines in PEI are stronger nucleophiles and Lewis bases and thus, if Lewis acid-base interactions 

did occur, it was more likely for formaldehyde to act as a Lewis acid.  Further evidence for 

hydrogen bonding as the dominant mechanism exists when comparing ethanol and formaldehyde, 

which are of similar size.  Ethanol is capable of hydrogen bonding, but formaldehyde is not; 

however, formaldehyde produced a much larger response.  Steric interactions can explain why 

acetone, which is also susceptible to nucleophilic attack (acts as a Lewis acid), produces a much 

lower response than formaldehyde since formaldehyde is smaller than acetone.  In addition, 

aldehydes are more reactive (stronger Lewis acids) than ketones. 

 

Itoh et al. (2007a) created a sensor able to detect aldehydes, with acetaldehyde producing a larger 

response than formaldehyde.  The sensor used intercalated layers of poly (2,5-dimethyl aniline) 

(P25DMA) (see Figure 6.6d) and molybdenum trioxide (MoO3).  The MoO3 is used as a catalyst 

to oxidize alcohols into aldehydes and ketones (Velusamy et al., 2004 and Maiti et al., 2004).  

Therefore, alcohols, ketones, and aldehydes are all able to coordinate with Mo.  The greater 

sensitivity to acetaldehyde and formaldehyde, than to ethanol, methanol, and acetone, suggests 

that the MoO3 was protected by the P25DMA and the analytes had to first diffuse through the 

P25DMA to reach the MoO3.  The aromatic interferents would have much larger steric hindrance 

due to their larger size and bulkier configuration and thus, they did not readily diffuse into the 

P25DMA.  In addition, the aromatic compounds may have bonded to the P25DMA through  

π-stacking with the aromatic rings in P25DMA; however, the change in resistance came from 

binding with the Mo, not the P25DMA.   

 

Comparing the solubility parameters of P25DMA to these analytes (see Table 6.6), shows that 

P25DMA has a similar Hildebrand solubility parameter to acetaldehyde.  The Hildebrand 

solubility parameter essentially amalgamates many of the different factors that affect solubility, 
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thus giving a general rule for determining whether two compounds are miscible with one another.  

The Hansen solubility parameters are related to the Hildebrand solubility parameter (see Equation 

6.1); they break down the solubility into three different contributions/parameters (δD, δH, and δP, 

which correspond to the dispersion forces, hydrogen bonding, and polar intermolecular forces, 

respectively).  If two compounds have similar solubility parameters, they are likely to be miscible 

with one another.  Therefore, P25DMA is more soluble in acetaldehyde than the other eight 

interferents, and vice versa.  This can be extended to diffusion, where more soluble analytes are 

able to more readily diffuse into the polymer matrix.  Thus, acetaldehyde is more likely to diffuse 

into the P25DMA and be able to coordinate with the MoO3 creating a response from the resistive 

sensor.      

 

Table 6.6: Hansen and Hildebrand Solubility Parameters for P25DMA, PANI, and Gas Analytes  

Polymer/ 

Analyte 

Hansen Hildebrand 

δ δD δH δP 

P25DMA - - - 211 

PANI 17.4 8.1 10.7 22.22 

Xylene 17.8 1 3.1 18.03 

Toluene 18 1.4 2 18.23 

Benzene 18.4 0 2 18.63 

Chloroform 17.8 3.1 5.5 19.03 

Acetone 15.5 10.4 7 20.13 

Acetaldehyde 14.7 8 11.3 21.13 

Formaldehyde 12.8 14.4 15.4 24.73 

Ethanol 15.8 8.8 19.4 26.63 

Methanol 15.1 12.3 22.3 29.73 
1Itoh et al. (2007a)  

 2Shacklette and Han (1993)  

 3Brandrup et al. (1999) 

 

Acetone is the simplest ketone.  Acetone will interact with PANI in a similar manner to 

formaldehyde, although acetone is bulkier.  When comparing the detection limits of acetone and 

formaldehyde in Table 6.7, note that PANI has been doped with various metal oxides or used in a 

copolymer, which would affect the response.   

 

A blend of polypyrrole (PPy) and poly methyl methacrylate (PMMA) was also used as a sensing 

material for acetone.  The amine group on PPy would behave similarly to the amine in PANI, 

hydrogen bonding to the double bonded oxygen in acetone.  Ruangchuay et al. (2003) noted that 

while acetone reversibly bound to PPy, acetic acid (which was evaluated as an interferent) 

permanently bound to PPy.  This is because PPy, which contains conjugated bonds (alternating 

double and single bonds), will partially oxidize in the presence of an anionic dopant such as α-

naphthalene sulfonate (α-NS-).  This results in a positively charged nitrogen (=N-) on PPy that is 

able to stabilize the negatively charged dopant.  When acetic acid is present, the α-NS- steals a 

hydrogen from acetic acid, resulting in the acetic acid becoming its conjugate base (acetate), which 
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then strongly binds to the positively charged PPy through electrostatic interactions (see Figure 

6.7). 

 

 
Figure 6.7: Substitution of α-naphthalene sulfonate (α-NS-) with acetic acid in polypyrrole (PPy). 

 

The addition of PMMA to PPy resulted in a polymer that swelled when analyte was present, which 

pushed the conductive PPy chains apart and reduced the conductivity of the sensing material.  The 

greater the swelling of a polymer, the greater the resistance, and the larger the response observed. 

When acetone interacted with PPy/α-NS-/PMMA, a lot of swelling occurred when acetone 

absorbed into the sensing material to hydrogen bond to PPy.  However, when acetic acid absorbed 

into the sensing material, it displaced the α-NS- molecules by first neutralizing the α-NS, and 

subsequently stabilizing the positively charged =N- in PPy.  Therefore, the α-NS would be free to 

migrate through the sensing material matrix to a spot where the α-NS had more space (and was 

less sterically repulsed).  This would result in less swelling of the PMMA, since acetic acid is 

smaller than α-NS; however, the PMMA would not shrink since the α-NS would still be in the 

polymer matrix. The difference in swelling results in a larger response to acetone than to acetic 

acid, thereby creating a sensor that is more selective towards acetone (Ruangchuy et al., 2003). 
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Table 6.7: Polymeric Sensing Materials for Aldehydes and Ketones 

Analyte 
Sensing 

Material 
Dopant 

Detection 

Limit 
Selectivity Reference 

Form-

aldehyde 

Polyaniline/ 

Poly (ethylene 

imine) 

(PANI/PEI) 

Formic Acid 38 ppm 

Chloroform (4068) 

Acetone (2582) 

Dichloromethane 

(2469) 

Water (186) 

Methanol (121) 

Ammonia (91) 

Antwi-

Boampong 

and BelBruno 

(2013) 

Form-

aldehyde 

Polyaniline 

(PANI) 

NiO 

(5 wt. %) 

Al2O3 

(wt.15%) 

5 ppm 

Acetaldehyde (1.79) 

Benzene (2.11) 

Ethanol (1.86) 

Stewart et al. 

(2012) 

Form-

aldehyde 

Polyaniline 

(PANI) 

Ag 

(25 mol %) 

Nitric acid 

1.24 ppm 

Acetone (112) 

Hexane (105) 

Chloroform (25) 

Benzene (3) 

Zhang et al. 

(2016) 

Form-

aldehyde 

Graphene-Poly 

(methyl 

methacrylate) 

(Graphene-

PMMA) 

None 0.01 ppm 

Dichlromethane (27.4) 

Acetone (11.4) 

Water (11.4) 

Acetonitrile (10.5) 

Tetrahydrofuran (8.6) 

Ethanol (6.9) 

Methanol (6.2) 

Alizadeh and 

Soltani (2013) 

Form-

aldehyde 

Poly (ethylene 

imine) (PEI) 

Poly (vinyl 

alcohol) 

(PVA) 

(~40 wt.%) 

10 ppm 

Ethanol (7.4) 

Acetone (9.6) 

Benzene (125) 

Dicholoromethane 

(125) 

Toluene (125) 

Chloroform (125) 

Wang et al. 

(2010b) 

Acet-

aldehyde 

Poly (2,5-

dimethyl 

aniline)/ 

Molybdenum 

trioxide 

(P25DMA/ 

MoO3) 

None 0.91 ppm 

Formaldehyde (1.3) 

Chloroform (9.2) 

Methanol (235) 

Ethanol (235) 

Acetone (47.1) 

Benzene (235) 

Toluene (42.8) 

Xylene (118) 

Itoh et al. 

(2007a) 

Acetone 
Polyaniline 

(PANI) 
HCl 29 ppm - 

Do and Wang 

(2013) 

Acetone 

Polypyrrole/ 

Poly (methyl 

methacrylate) 

(PPy/ 

PMMA) 

α-

naphthalene 

sulfonate 

(α-NS-) 

(~8%) 

30.3% Acetic Acid (3.9) 
Ruangchuay et 

al., 2003 
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6.5.3 Amines 

 

Despite the emphasis on how volatile organic compounds (VOCs) interact with polymeric sensing 

materials, ammonia has been included even though it is not a VOC.  Ammonia has been included 

because it is essentially the simplest form of an amine group, where all R-groups are hydrogens.   

 

Ammonia is a small, polar molecule capable of behaving as a Lewis base and able to hydrogen 

bond.  Ammonia is electrostatically attracted to sensing materials that are also polar and able to 

hydrogen bond.  This includes polymers that have polar functional groups, including amines such 

as polyaniline (PANI) (Gong et al., 2010; Venditti et al., 2013) and polypyrrole (PPy) (Bhat et al., 

2001); carboxylic acids such as poly (acrylic acid) (PAA) (Lee et al., 2010); and esters such as 

poly (methyl methacrylate) (PMMA) (Matsugushi et al., 2002).   

 

The amine groups in PANI and PPy are able to hydrogen bond to ammonia.  Acid-doped PANI 

and PPy are both conductive and have better conductivity when the polymer chains are more 

crystalline, which results in closer stacking of the polymer chains (Andreatta et al., 1988).  The 

small size of ammonia means it is less sterically hindered and thus, still able to diffuse into the 

smaller interstitial spaces of PANI and PPy.  In addition, the acid doping results in positively 

charged amine groups (acid) on both polymers that attract the slightly negative nitrogen in 

ammonia (base), resulting in a Lewis acid-base interaction (Bhat et al., 2001). 

 

Similarly, ammonia is able to hydrogen bond to the OH in the carboxylic acid on PAA; however, 

ammonia is also able to hydrogen bond to the double bonded oxygen as well.  It should be noted 

that ammonia and carboxylic acids commonly undergo acid-base reactions, creating an amide, and 

therefore, ammonia can chemically bind to the PAA, making it extremely difficult to remove and 

thus reduce the reusability of the sensing material.  This was observed by Lee et al. (2010). 

 

Multiple sensors listed in Table 6.8 used titanium dioxide (TiO2) nanoparticles to improve the 

sensitivity towards ammonia.  TiO2 is commonly used to oxidize ammonia into nitrogen monoxide 

(NO) and nitrogen dioxide (NO2) (Kebede et al., 2013).  Therefore, ammonia will coordinate well 

with TiO2.  In addition, TiO2 was able to coordinate well with both PAA and PANI.  Gold (Au) 

nanoparticles were also used as a dopant in PANI (Venditti et al., 2013); however, it was not likely 

that Au improved the sensitivity to ammonia.  It is more likely that the mercaptans (which in this 

case contain an SO3
- group) that stabilized the Au nanoparticles are what improved the response 

to ammonia, compared to undoped PANI.  The negatively charged mercaptan electrostatically 

attracted the slightly positively charged hydrogens on ammonia.   

 

Triethylamine (TEA) contains three ethyl (C2H5) groups instead of three hydrogen atoms around 

a nitrogen atom.  TEA is therefore much bulkier than ammonia, and it is also less polar than 

ammonia.  In both cases, the nitrogen carries a slight negative charge; however, TEA is unable to 
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hydrogen bond unless it bonds to something capable of hydrogen bonding like an amine or alcohol.  

Ji et al. (2008) used a copolymer of PANI-PMMA doped with toluene sulfonic acid (TSA).  The 

TSA protonated the amine on PANI and also provided some steric hindrance (since TSA is a bulky 

acid), increasing the interstitial spaces between the polymer chains, thus making the amines on 

PANI more accessible.  The slightly negatively charged nitrogen in TEA was attracted to the 

positively charged amine on PANI.   

 

Note that doping a sensing material may improve non-sensing properties, such as mechanical or 

electrical, and thus, doping may not always be beneficial in terms of sensitivity and selectivity.   

The addition of poly (vinyl alcohol) (PVA) to PPy was to improve the mechanical properties of 

PPy (Bhat et al., 2001).  While the PVA likely increased the interstitial spaces in the polymeric 

material, thereby improving diffusion into the polymer, the alcohol groups on PVA were also able 

to hydrogen bond to ammonia.  This would have reduced the sensor’s sensitivity, since sorption 

onto PPy is what created a change in conductivity (in this case) and thus, a measurable response.  

Any ammonia bound to PVA would not have produced a measureable response. 
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Table 6.8: Polymeric Sensing Materials for Amines 

Analyte 
Sensing 

Material 
Dopant 

Detection 

Limit 
Selectivity Reference 

Ammonia 

Poly (methyl 

methacrylate)-

Polyaniline 

(PMMA-

PANI) 

bis(2-ethyl 

hexyl) 

hydrogen 

phosphate 

(DiOHP) 

10 ppm - 
Matsugushi 

et al. (2002) 

Ammonia 

Titanium 

dioxide/ 

poly(acrylic 

acid) 

(TiO2/PAA) 

 

None 

 

0.11 ppm 

Butyl amine (1.9) 

Pyridine (3.8) 

Ethanol (13.8) 

Toluene (20.4) 

Chloroform (43.6) 

Lee et al. 

(2010) 

Ammonia 
Titanium 

dioxide (TiO2) 

Polyaniline 

(PANI) 

Hydro-

chloric 

Acid (HCl) 

50 ppt* - 
Gong et al. 

(2010) 

Ammonia 
Polypyrrole 

(PPy) 

Poly (vinyl 

alcohol) 

PVA 

(5 w/v %) 

1000 ppm - 
Bhat et al. 

(2001) 

Ammonia 
Polyaniline 

(PANI) 

Gold (Au) 

3-

mercapto-

1-propane 

sulfonic 

acid 

(3MPS) 

10.8 ppm 

Ethanol 

Toluene 

Acetonitrile 

Venditti et al. 

(2013) 

Triethyl-

amine 

PMMA/ 

PANI 

Toluene 

sulfonic 

acid (TSA) 

20 ppm - 
Ji et al. 

(2008) 

*parts per trillion (ppt) 

 

6.5.4 Aromatics 

 

Aromatics are molecules that contain conjugated (alternating single and double bonds) planar 

rings.  The alternating single and double bonds, combined with the planar geometry, result in 

delocalized electron density across the p-orbitals in the aromatic ring.  Filled p-orbitals that are 

oriented such that the delocalization is in a planar geometry allow for π-stacking and therefore, 

aromatics are attracted to other aromatics.  There are cases where an aromatic can π-stack with 

other functional groups such as a trifluoro-group (as in SXFA, see Figure 6.8), where the pz-
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orbitals of the three fluorine atoms are in a planar configuration and benzene, which is also planar, 

is able to π-stack (Chen et al., 2015b). 

 

 
Figure 6.8: Benzene π-stacking onto SXFA. 

 

All of the polymeric materials used for aromatic analyte detection are at least partly conjugated 

and thus, have an aromatic component to them.  This is what the aromatic rings in benzene, toluene, 

and xylene are able to π-stack with.  Because aromatic compounds are typically the only VOCs 

that are able to π-stack, many non-aromatic interferents will not bind very well and thus high 

selectivity will be observed towards the aromatic compounds (Li et al., 2007).  Aromatic molecules 

are also bulkier than the other VOCs discussed and therefore, need larger interstitial spaces to 

easily diffuse into the polymer matrix.    

 

For example, as shown in Figure 6.9 a, a copolymer (poly (methyl methacrylate-co-chloromethyl 

styrene) modified with N,N-dimethyl-1,3-propanediamine (MCD)) contains multiple aromatic 

rings and other long R-chains that create large interstitial spaces between the polymer chains.  

These larger interstitial spaces allow toluene to diffuse into MCD more easily and bind to the 

aromatic rings through π-stacking, which pulls charge density away from the conductive MCD.  

This effectively makes it harder for the charge to travel along the copolymer chains, which results 

in a reduction of MCD’s conductivity (Matsuguchi et al., 2013).  Note that this displacement of 

charge density while the polymer and aromatic analytes interact through π-stacking results in a 

change in conductivity.  This is how most of the responses are measured for the sensors listed in 

Table 6.9.  Resistive-type sensors are commonly used for aromatic analytes because a conjugated 

polymer is typically conductive (Barisci et al., 2002). 
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(a) (b)  

Figure 6.9: (a) MCD and (b) single wall carbon nanotubes doped with iron-tetraphenylporphyrin (SWCNT-

Fe-TPP) 

 

Toluene has one methyl functional group and thus, has a small dipole moment (0.36 D).  However, 

it is below 0.4 D and therefore, toluene is still considered non-polar.  Xylene, on the other hand, is 

considered polar with a dipole moment of 0.64 D.  This is why polymers, such as polyaniline 

(PANI) and polypyrrole (PPy), are slightly more selective towards xylene than toluene and 

benzene.  The electrostatic forces are why xylene is favoured over toluene and benzene when 

interacting with PANI (Li et al., 2009) and PPy (Lin et al., 2003). Note that while ethylbenzene is 

also polar (0.58 D), it is slightly less polar than xylene; ethylbenzene is also bulkier, which means 

ethyl benzene is also more sterically hindered than xylene.   

 

Rushi et al. (2014) did, however, demonstrate that single wall carbon nanotubes doped with iron-

tetraphenylporphyrin (SWCNT-Fe-TPP) (see Figure 6.9b) had slightly better selectivity towards 

toluene than xylene, despite all three aromatic compounds (benzene, toluene, and xylene) being 

able to π-stack with the aromatic rings on both the porphyrin and SWCNT.  This is due to the 

incorporation of Fe.  Toluene coordinates well with Fe and thus, is more preferentially bound than 

xylene and benzene (Albonetti et al., 2010).  
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Table 6.9: Polymeric Sensing Materials for Aromatics 

Analyte 
Sensing 

Material 
Dopant 

Detection 

Limit 
Selectivity Reference 

Benzene SXFA None 500 ppm 
Ethanol (11.3) 

Methanol (12.5) 

Chen et al. 

(2015b) 

Toluene 
MMA-CMSt-

DMPDA 

Carbon 

Black 

(~10%) 

50 ppm - 
Matsuguchi 

et al. (2013) 

Toluene 

Single wall 

carbon 

nanotubes 

(SWNT) 

Iron-

tetraphenyl 

porphyrin 

(Fe-TPP) 

500 ppb 
Xylene (1.8) 

Benzene (2.8) 

Rushi et al. 

(2014) 

Toluene P3HT-benzyl  1 ppm 

Methanol (6.1) 

Ethanol (>4000) 

Isopropanol (>4000) 

Acetone (>4000) 

Methylene Chloride 

(4.6) 

Acetonitrile (6.8) 

Benzene (2.1) 

Hexane (>4000) 

Cyclohexane (>4000) 

Li et al. 

(2007) 

Xylene Polyaniline HCl 

 

200 ppm 

 

Toluene (1.3) 

Benzene (1.9) 

Li et al. 

(2009) 

Xylene Polypyrrole Cl- 67 ppm 

Ethylbenzene (2) 

Toluene (4) 

Benzene (10) 

Lin et al. 

(2003) 

 

6.5.5 Alkanes 

 

Unlike most of the volatile organic compounds (VOCs) discussed, alkanes are non-polar.  

Therefore, alkanes are not attracted to sensing materials through large electrostatic forces from 

dipoles.  Instead, alkanes are attracted by very small van der Waals forces, which only occur at 

very short distances. 

 

Alkanes are simple hydrocarbons that only have singly bonded carbons and hydrogens.  They can 

be either linear or branched; branched alkanes are bulkier and thus more sterically hindered.  As 

an example, methane, the simplest hydrocarbon and alkane is discussed.   

 

Methane is a small, non-polar molecule which is typically detected through the catalytic oxidation 

over metal and metal oxide catalysts (Simplicio et al., 2006).  In some cases, a polymer matrix is 

used to support the catalytic metal oxide (see Table 6.10).  For example, Xie et al. (2010) used a 

polyaniline (PANI) doped with camphor sulfonic acid as a matrix for palladium oxide (PdO).  PdO 
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is used as a catalyst to oxidize methane and thus, readily coordinates with methane.  It is important 

that these materials have a porous structure that allows methane (and O2) to diffuse through the 

polymer and reach the metal oxide, as is the case for the PANI-PdO nanocomposite.  The PANI 

matrix was used to “filter” out interferents such as water (humidity), since PANI is hydrophilic 

and water is able to hydrogen bond to the amines in PANI.  The removal of water as an interferent 

is important, since water reduces PdO’s effectiveness as a catalyst for methane (Fujimoto et al., 

1998). 

 

Supramolecular cryptophane-A, which has a cage-like structure (see Figure 6.10), has also been 

used as a sensing material for methane (Benounis et al., 2005; Sun et al., 2009).  Cryptophane-A 

has a shell-like structure and is able to form a stable complex with methane (Garel et al., 1993).  

Methane’s small size means it is not easily sterically hindered and thus can enter the cryptophane-

A, since it is not being electrostatically repelled.  This lack of repulsion is also due to methane’s 

non-polar nature.  The complex formed between methane and cryptophane-A is a result of van der 

Waals forces (Sun et al., 2009).  

 

 
Figure 6.10: Cryptophane-A 
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Table 6.10: Polymeric Sensing Materials for Alkanes 

Analyte 
Sensing 

Material 
Dopant 

Detection 

Limit 
Selectivity Reference 

Methane 
Polyaniline 

(PANI) 

PdO (17%) 

Camphor 

sulfonic 

acid (CSA) 

3000 ppm - 
Xie et al. 

(2010) 

Methane 

 

Crytophane-

A 

None 5000 ppm - 
Benounis et 

al. (2005) 

Methane 
Crytophane-

A 
None 

20 000 

ppm 

Ammonia 

(1.4) 

Nitrogen Dioxide 

(3.2) 

Carbon Monoxide 

(51.5) 

Hydrogen Gas 

(9.4) 

Sun et al. 

(2009) 

 

6.6 Final Remarks about Sensing Mechanisms 

 

By examining the way an analyte interacts with a sensing material, it is possible to determine the 

dominant sensing mechanisms.  This chapter examined a multitude of potential sensing 

mechanisms and what the likely dominant mechanisms are for various types of volatile organic 

compounds (VOCs).  Identifying the dominant mechanisms of a target analyte can improve 

sensing material selection since the sensing materials and analytes interact via these mechanisms.   

 

Chapter 7 further explores these sensing mechanisms through case studies (and counter-examples).  

In addition, practical prescriptions are suggested which can be used to improve the efficiency of 

designing and tailoring sensing materials for target analytes.  These prescriptions are then followed 

to select potential sensing materials for ethanol. 
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7. Results and Discussion: Selecting a Sensing Material 
 

When designing or selecting sensing materials for gas analytes, there are a few factors to be 

considered.  The first step is to choose a target analyte (volatile organic compound, VOC) for a 

specific application.  Then, examining the chemical nature of the target analyte, determine which 

functional group(s) are present on the analyte.  These functional groups will dictate the dominant 

sensing mechanisms with which the sensing material and analyte will interact.   

 

Before continuing with sensing material selection, it is important to look at the type of sensor that 

will be used since the type of sensor may constrain the types of polymers used.  For example, a 

resistive type sensor requires a conductive polymer and a capacitive sensor may require a polymer 

that is capable of swelling.  If the type of sensor is unknown, then the issue becomes more 

complicated, but still a sensing material could be chosen that is able to work on a variety of 

different types of sensors. 

 

In addition, the environment the sensor will be used in may also provide constraints.  These include 

the types of interferents present which have an effect on selectivity, operational temperatures, size 

of sensor, response and recovery times.  It is important to consider all these factors when selecting 

potential sensing materials. 

 

7.1 Sensor Application Requirements 

 

A sensor’s application will always carry some constraints such as operational temperature and 

sensitivity required.  It is important to consider these constraints when designing a sensing 

material.  The sensor application designates not only the target analyte, but also the environment 

in which the sensor will be used.   

 

7.1.1 Sensitivity 

 

The sensor application determines how sensitive the sensor needs to be.  For example, a 

formaldehyde sensor for indoor air quality must be able to detect formaldehyde below the 

concentration that has been determined as toxic.  According to the World Health Organization 

(WHO), the concentration of formaldehyde should not exceed 0.08 ppm (80 ppb) over a 30 minute 

exposure (WHO, 2010).  Therefore, a formaldehyde sensor for indoor air quality must be able to 

at least detect 0.08 ppm of formaldehyde (the target detection limit).  Ideally, a sensor’s sensitivity 

should be lower than the target detection limit. 

 

To achieve such high sensitivity (low detection limit), the sensing material must have as many 

sensing sites as possible.  This is because there is a correlation between the amount of analyte that 

sorbs and the sensitivity; the more the analyte sorbs, the more sensitive the sensing material.  In 
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addition, when less analyte is present (i.e. lower concentration), less analyte sorbs onto the sensing 

material.  Therefore, having more sensing sites available is likely to increase the number of analyte 

molecules that sorb (barring steric hindrance and other counterbalancing sensing mechanisms), 

thereby increasing the sensitivity of the sensing material.   

 

Furthermore, the sensitivity of the sensor should not be limited by the sensor electronics.  The 

noise should be at least three times lower than the response of the sensor to the target analyte at 

the detection limit.  The sensitivity of the sensor must be evaluated with the sensing material on 

the sensor, since some sensing materials work better (have better sensitivity) than other materials 

on the same sensor.  Also, two different sensing materials may produce different noise levels (one 

material may produce more noise than the other) on the same sensor (Stewart et al., 2015). 

 

7.1.2 Selectivity 

 

In any given environment, there will be the target analyte, as well as other interferents present.  

The application, and thus the environment the sensor will be used in, determines what these 

interferents are.  For example, in an indoor air quality sensor, where the target analyte is 

formaldehyde, common interferents include acetone, ammonia, butanol, formic acid, toluene, and 

xylene (Wolkoff, 2013).  Therefore, a selective sensor for formaldehyde must selectively identify 

formaldehyde when all of these other VOCs are present.   

 

It is important to note that the concentrations of all VOCs present in an environment are not equal.  

Some interferents may be at concentrations an order of magnitude lower than the target analyte’s 

concentration.  If this is the case, the interferents present in the environment at very low 

concentrations (i.e. present at the ppb level when the concentration of the target analyte is at the 

ppm level) can be ignored (considered negligible), since they are not likely to create a response 

from the sensor at such low concentrations (Wolkoff, 2013).   

 

7.1.3 Operational Temperature 

 

The operational temperature is an important consideration, especially with regards to polymeric 

materials.  It is important that the polymeric sensing materials are in their glassy states, since 

polymers above their glass transition temperature (Tg) begin to soften and “flow”.  If this occurs 

while a sensor is in operation, a response may not be detectable or the softened polymer chains 

may produce an erroneous or biased response.  Because of this, the Tg of a potential sensing 

material should be above (ideally, well above) the operational temperature.  Therefore, the 

operational temperature may eliminate some potential polymeric sensing materials.  The 

operational temperature may also be optimized to improve the selectivity of the sensor (Lee et al., 

2007). 
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In addition to the temperature at which the analyte is being sensed, the temperature at which the 

sensor recovery takes place may also be a consideration.  This is the case for sensors with built-in 

heaters that are used to speed up the recovery times of a sensor by providing more energy (heat) 

to break the bond between the analyte and sensing material, regenerating the sensing material (Lee 

et al., 2006).  Therefore, the Tg of potential polymeric sensing materials must be above the 

temperature at which the sensor is heated, not just the sensing temperature.   

 

7.1.4 Response and Recovery Times 

 

Most applications require fast response and recovery times, ideally in the order of seconds or 

quicker.  The response time is the time needed to reach 90% of the final signal (100% response); 

recovery time is the time the response takes to return to the baseline.  Generally, the recovery time 

is longer than the response time. 

 

It is possible to reduce the response time by doping a polymeric material with a metal or metal 

oxide dopant, especially in conductive sensors.  For example, the incorporation of platinum (Pt) 

into polyaniline (PANI) increases the conversion rate between conductor and insulator, which 

decreases both the response and recovery times (Ulmann et al., 1992).  The recovery time can also 

be reduced by heating the sensing layer, which gives energy to the analyte molecules and breaks 

the physical bonds formed between the analyte and sensing material (Nicolas-Debarnot and 

Poncin-Epaillard, 2003). 

 

7.2 Target Analyte’s Chemistry (Mechanisms) 

 

When choosing sensing materials for a target analyte, it is important to look at the functional 

groups of the target analyte.  For example, ethanol has a hydroxyl (alcohol) group, formaldehyde 

has an aldehyde group, and benzene is aromatic.  The functional groups dictate the chemistry with 

which the analyte will interact with the polymeric sensing materials.  Therefore, the functional 

groups on the polymeric materials are also important.  Chapter 6 described the dominant 

mechanisms for different volatile organic compounds (VOCs).  Determining the mechanisms by 

which the target analyte is likely to interact with a sensing material will help narrow down potential 

sensing materials for a target analyte.   

 

For example, ethanol contains an alcohol functional group and thus, ethanol is a polar molecule 

with a hydrogen attached to an oxygen.  Therefore, ethanol is able to hydrogen bond. 

Consequently, a corresponding sensing material that would show affinity to ethanol should also 

be polar and ideally be able to hydrogen bond. Polymers that fall into this category are, for 

example, polymers containing alcohols, amines, and carboxylic acids. 
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7.3 Case Studies 

 

This section provides examples and counter examples of the dominant mechanisms that occur.  In 

some cases, it is more difficult to determine the dominant sensing mechanism because more than 

one mechanisms have a strong effect and the mechanisms may compete with one another. 

 

7.3.1 Examples 

 

7.3.1.1 Effect of Hydrogen Bonding 

 

Polyaniline (PANI) and poly (N-methyl aniline) (PNMA) were evaluated using ethanol and 

acetone to determine if ethanol interacted with PANI through hydrogen bonding.  Both PANI and 

PNMA were synthesized as described in Section 3.3 using their respective monomers: aniline 

(A.C.S. reagent, Sigma-Aldrich, Oakville, Ontario, Canada) and N-methyl aniline (A.C.S. reagent, 

Sigma-Aldrich, Oakville, Ontario, Canada).  It was hypothesized that ethanol’s OH group 

hydrogen bonded to the NH group on PANI.  PNMA was chosen as a counter example since 

PNMA is chemically similar to PANI, except the amine group on PNMA is “protected” through 

steric hindrance by a methyl group (see Figure 7.1).  Acetone was chosen as a counter example (to 

ethanol) since PANI may still hydrogen bond to the double bonded oxygen (=O) on acetone, but 

acetone itself cannot hydrogen bond and thus would not sorb onto PNMA.  It should be noted that 

acetone is a little larger than ethanol (77.5 cm3/mol and 62.6 cm3/mol, respectively; however, 

acetone is more polar than ethanol (2.91 D and 1.69 D, respectively).  Despite these differences, 

on the whole, acetone and ethanol are similar molecules. 

 

(a) (b)  

Figure 7.1: Schematic of (a) polyaniline (PANI) and (b) poly (N-methyl aniline) (PNMA) 

 

Acetone is able to act as a Lewis-base; however, PANI would prefer to hydrogen bond since the 

hydrogen in the amine on PANI is electron deficient and wants to gain electron density through 

hydrogen bonding.  The electronegative oxygen (on acetone) will seek out the positively charged 

hydrogen, resulting in a hydrogen bond.  The tertiary amine on PNMA will act as a Lewis-base 

and does not have a hydrogen attached to its amine able to hydrogen bond to acetone.  Therefore, 

acetone is unable to bond with PNMA.  However, ethanol is still capable of hydrogen bonding to 

the tertiary amine on PNMA because of the alcohol (OH) group in ethanol. 
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Both PANI and PNMA were subjected to 5 ppm of ethanol (balance of nitrogen) and 5.5 ppm of 

acetone (balance of nitrogen), separately. The amount of gas (ethanol or acetone) that sorbed onto 

the sensing material (PANI or PNMA) was subsequently measured using the test system described 

in Chapter 3.  It was found that significantly more ethanol and acetone sorbed onto PANI than 

onto PNMA.  In addition, significantly more ethanol sorbed onto both PANI and PNMA than 

acetone (see Figure 7.2). 

 

 
Figure 7.2: Amount of ethanol (circles) and acetone (squares) sorbed onto both PANI and PNMA. 

 

Despite acetone being more polar than ethanol, acetone is only a hydrogen bond acceptor, which 

means that it doesn’t have a hydrogen capable of hydrogen bonding.  This results in acetone being 

attracted to both PANI and PNMA through electrostatic forces, but is limited in physically bonding 

with these polymeric sensing materials.  Ethanol’s ability to hydrogen bond allows it to sorb onto 

both PANI and PNMA.  Since PANI is also able to hydrogen bond and PNMA is only a hydrogen 

bond acceptor, due to PNMA’s a tertiary amine, PANI will more readily sorb both acetone and 

ethanol.   

 

There is some steric hindrance that occurs as well, which enhances the difference in sorption 

between ethanol and acetone.  Acetone is larger than ethanol and has a bulkier shape.  Acetone is 

trigonal planar in shape, whereas ethanol is linear and has one less carbon atom.  This means that 

acetone is more sterically hindered.  It should be noted that the polar attractive forces and the steric 

repulsion do compete against one another and given that acetone is not that bulky, in general, the 

attractive forces are likely to win out, especially for PANI, where the amine is unprotected.  

However, the steric repulsion is more of an issue when it comes to PNMA, where the amine is 

somewhat “protected” by a methyl group, which would exert greater steric repulsion. 
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7.3.1.2 Incorporation of Metal Oxide Dopants into a Polymeric Sensing Material 

 

The incorporation of a metal oxide nanoparticle into a polymer (doping) can improve both the 

sensitivity and selectivity of a sensing material.  For example, doping poly (2,5-dimethyl aniline) 

(P25DMA) with just 5 wt. % alumina (Al2O3) improved both the sensitivity to ethanol, as well as 

the selectivity (see Figure 7.3).  The P25DMA was synthesized using 2,5-dimethyl aniline (A.C.S. 

reagent, Sigma-Aldrich, Oakville, Ontario, Canada) with 5 wt. % Al2O3 nanoparticles (particle size 

<50 nm, 10 wt. % dispersion in H2O, Sigma-Aldrich, Oakville, Ontario, Canada), as described in 

Section 3.3 in Chapter 3.   

 

 
Figure 7.3: Sorption of different gases (left to right, ethanol, formaldehyde, methanol, acetaldehyde, 

acetone, and benzene) to P25DMA and P25DMA 5% Al2O3. 

 

Al2O3 was added to increase the sensitivity (Yang et al., 2009a) and selectivity of P25DMA to 

ethanol (Papadopoulos et al., 1996).  Ethanol more readily decomposes on Al2O3 than other 

volatile organic compounds (VOCs) such as methanol and acetaldehyde (Cordi and Falconer, 

1996).  Therefore, ethanol may be able to coordinate better with the Al amongst other factors.  

Note that decomposition is influenced by more than just coordination with the catalyst.  Thus, 

adding Al2O3 should ideally improve the selectivity of P25DMA, which it did. 

 

The addition of Al2O3 to P25DMA also changed the morphology of the sensing material.  The 

addition of Al2O3 created “kinks” along the P25DMA chain, resulting in polymer chains that could 

not stack as neatly.  This resulted in an increase in surface area available for the analytes to sorb 

to.  In addition, the structure became more porous (see Figure 7.4), which also increased the 

number of sensing sites for the analytes to bond to.  This increase in number of sensing sites 

improved the selectivity of the P25DMA.   
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Figure 7.4: SEM images of (a) P25DMA and (b) P25DMA doped with Al2O3. 

 

7.3.1.3 Competing Mechanisms 

 

Poly (2,5-dimethyl aniline) (P25DMA) was doped with nickel oxide (NiO) nanoparticles and 

exposed to ethanol gas to evaluate P25DMA doped with NiO as a potential sensing material for 

ethanol (see Figure 7.5).  The P25DMA was synthesized using 2,5-dimethyl aniline (A.C.S. 

reagent, Sigma-Aldrich, Oakville, Ontario, Canada), with 5 wt. %, 10 wt. %, and 20 wt. % NiO 

nanoparticles (particle size < 50 nm, concentration of 99.8%, Sigma-Aldrich, Oakville, Ontario, 

Canada) as described in Section 3.3.   

 

 
Figure 7.5: Ethanol sorption on P25DMA and P25DMA doped with different concentrations of NiO. 

 

P25DMA primarily interacts with ethanol through hydrogen bonding.  Adding 5% NiO created 

“kinks” in the polymer chain, where the P25DMA changed conformation to reduce strain caused 

by the bond between the Ni and the amine groups on P25DMA (Han et al., 2006).  This created 
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larger interstitial spaces in the polymer and thus, improved diffusivity into the polymer.  This 

resulted in the amount of ethanol sorbed which significantly increased for P25DMA 5% NiO 

compared to the undoped P25DMA.  Even with the added NiO, the dominant mechanism for 

P25DMA 5% NiO was still hydrogen bonding, although metal coordination did play a minor role 

in the improved sorption observed. 

 

Further increasing the amount of NiO to 10 wt. % resulted in a large and significant drop in ethanol 

sorption, likely due to competing mechanisms. At a concentration of 10 wt. %, metal coordination 

likely began to take over.  The larger and more numerous interstitial spaces created by the kinks 

in the polymer chain would have increased the diffusion into the polymer matrix where most of 

the NiO resided.  Note that the NiO bound to multiple amine groups in the polymers, thereby 

reducing the number of sites (amines) to which ethanol hydrogen bonded.  This reduction in 

sensing sites coupled with reduced access to NiO (where metal coordination occurs) resulted in a 

reduced amount of ethanol sorbed. 

 

By increasing the amount of NiO to 20 wt. %, the amount of ethanol sorbed increased again, 

although not back to the level of P25DMA 5% NiO.  This increase in ethanol sorption from 10% 

to 20% NiO was likely due to the higher availability of NiO with which ethanol was able to 

coordinate.  P25DMA 20% NiO had the most kinks in the polymer chains and thus, an increased 

number of larger interstitial spaces to improve diffusion (and therefore, less steric hindrance).  In 

addition, the increased amount of NiO allowed more ethanol to coordinate to the Ni, despite the 

NiO reducing the number of amines on the P25DMA to which the ethanol could hydrogen bond.   

 

In the case for P25DMA doped with NiO, two competing mechanisms dominated.  At low 

concentrations of NiO (5 wt. %), hydrogen bonding dominated and resulted in a large amount of 

ethanol sorption.  As more NiO was added, the NiO coordinated to more and more amine sites on 

the P25DMA, significantly reducing the number of amines available to which ethanol could 

hydrogen bond.  However, as the concentration of NiO increased, the dominance of metal 

coordination increased.  At 20 wt. %, the increased NiO content allowed metal coordination to 

dominate due to the availability of NiO and reduction in hydrogen bonding sites on the P25DMA.   

 

7.3.2 Counter Examples 

 

Sometimes the dominant mechanism for a target analyte and/or sensing material can have 

detrimental effects on sensitivity and selectivity.  For example, a sensing material that is capable 

of hydrogen bonding, such as polyethyleneimine (PEI), may sorb interferents more preferentially 

or may bind too strongly to certain analytes to be useful.  Another example is when a metal oxide 

is added to improve the sensing properties of a polymer, but instead it is either not incorporated 

into the polymer matrix or destroys the polymer matrix, resulting simply in polymer coated 

nanoparticles. 



163 

 

7.3.2.1 Competing Analytes (Poor Selectivity) 

 

Polyethyleneimine (PEI) was chosen as a potential sensing material for ethanol due to its numerous 

amine groups (see Figure 7.6).  PEI (50 wt. % in water, Sigma-Aldrich, Oakville, Ontario, Canada) 

was dried at room temperature (21˚C) for two months, then purged with nitrogen (5.0 grade) for 4 

hours before being evaluated with 5 ppm of ethanol (balance of nitrogen).  It was found that PEI 

sorbed only 0.05 ppm, which can be considered negligible, since the error was determined as 1% 

(based on three independent replicates). 

 

 
Figure 7.6: Schematic of polyethyleneimine (PEI). 

 

Based on the chemical structure of PEI, it would appear that there is a high density of sensing sites 

due to all the amines present.  In addition, the branching would reduce the polymers ability to pack, 

increasing the interstitial spaces between the polymer chains, thereby improving diffusion of an 

analyte into the polymeric material.  However, because of these amine groups, PEI is extremely 

hydrophilic and thus, PEI was saturated with water molecules, even after PEI had been dried, 

which left no open sensing sites for ethanol.  A few ethanol molecules may have sorbed onto the 

water molecules through hydrogen bonding, but it was a negligible amount.   

 

While it may have been possible to remove more water from the PEI, its use as a sensing material 

is limited due to its affinity to water.  In atmospheric conditions, where water vapour is present 

(relative humidity), water vapour will preferentially bind to PEI since it is much more polar than 

any other polar analyte.  Note that PEI has been used in sensor applications; however, it has been 

combined with other materials such as poly (vinyl alcohol) for a formaldehyde sensor (Wang et 

al., 2010b) or combined with multi-walled carbon nanotubes for a humidity sensor (Yu et al., 

2006). 

 

7.3.2.2 Incompatible Metal Oxides and Polymers 

 

There are cases where a metal oxide either does not bind to the polymer at all or only a small 

percentage will be incorporated.  In the case where the metal oxide is not incorporated into the 



164 

 

polymer, the polymer is not considered doped with the metal oxide.  In the case where only a small 

percentage of metal oxide is incorporated, despite adding more metal oxide (i.e. only 5% of a metal 

oxide is taken up, despite 20% being available), the polymer is considered doped.  These two cases 

are the result of poor coordination between the metal oxide and the polymer. 

 

Copper (II) oxide (CuO) (particle size <50 nm, Sigma-Aldrich, Oakville, Ontario, Canada) was 

polymerized with 2,5-dimethyl aniline (A.C.S. reagent, Sigma-Aldrich, Oakville, Ontario, 

Canada) at three concentrations of CuO (5 wt.%, 10 wt.%, and 20 wt.%, based on amount added 

during polymerization) to form a doped poly (2,5-dimethyl aniline) (P25DMA).  Note that the 

three samples will be referred to as P25DMA 5% CuO, P25DMA 10% CuO, and P25DMA 20% 

CuO.  However, none of the CuO was incorporated into the final polymer.  The lack of CuO was 

confirmed by electron dispersive spectroscopy (Ametek EDAX, New Jersey, USA); see Table 7.1.  

In addition, there was no significant difference between the amount of ethanol sorbed between 

P25DMA 5% CuO, P25DMA 10% CuO, and P25DMA 20% CuO (see Figure 7.7) and the 

scanning electron microscopy (SEM) images showed that P25DMA 5% CuO, P25DMA 10% 

CuO, and P25DMA 20% CuO all had similar morphologies (see Figure 7.8).  It was, however, 

interesting to note that the morphology of the P25DMA made in the presence of CuO had a 

different morphology and sorption response to ethanol than P25DMA made without any dopant 

added during polymerization (see Figures 7.7 and 7.8).   

 

Table 7.1: EDAX Measurements for P25DMA Doped with CuO 

Polymeric Nanocomposite 
Weight Percent 

of Cu 

P25DMA 5% CuO 0.16 

P25DMA 10% CuO 0.07 

P25DMA 20% CuO 0.11 

 

 
Figure 7.7: Amount of ethanol sorbed onto P25DMA doped with CuO. 
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Figure 7.8: SEM images of (a) P25DMA, (b) P25DMA doped with 5% CuO, (c) P25DMA doped with 10% 

CuO, and (d) P25DMA doped with 20% CuO. 

 

This suggests that despite the CuO not incorporating into the P25DMA matrix, it did have an effect 

on the synthesis.  It is likely that the CuO created “kinks” along the P25DMA chain as the polymer 

attempted to conform around a CuO nanoparticle as the polymer chain grew; however the strain 

was too great and the weak bond between Cu and the P25DMA would break to relieve this strain.  

The “kinks” would, however, remain and result in a more porous morphology since the polymer 

chains would not be able to stack more closely together.  Note that a more porous morphology 

does not necessarily mean the polymer has a larger number of accessible sensing sites.  This is the 

case for the CuO doped P25DMA versus the undoped P25DMA.   

 

The conformational strain of a polymer chain when the polymer is bound to the metal oxide 

nanoparticle results in a polymer coated nanoparticle, as is the case of P25DMA with 20 wt. % 

zinc oxide (ZnO) (Thompson et al., 2001).  By coating the ZnO nanoparticle with P25DMA, the 

ZnO is no longer accessible by the analyte and thus, the ZnO cannot interact with the analyte.  In 

addition, the P25DMA is essentially ‘destroyed’ and thus the ZnO decreases the number of 

sorption sites on P25DMA, resulting in significantly reduced sensing ability of the P25DMA to 

ethanol (Stewart et al., 2015). 
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Both of these examples, P25DMA with CuO and ZnO, show that choosing dopants that coordinate 

well with the polymer matrix is important.  However, this may not always be evident, and as such, 

dopants are chosen based on their likelihood to improve sorption of the target analyte.  Therefore, 

preliminary screening tests are important to determine if the dopant (metal oxide) is incorporated 

well into the polymer matrix and if the dopant has an effect on the sensing properties. 

 

7.4 Practical Prescriptions  

 

7.4.1 Practical Prescriptions 

 

The prescriptions herein are for designing and selecting polymeric sensing materials for volatile 

organic compounds (VOC); see Figure 7.9 for an overview.  They take into consideration the 

previously described dominant sensing mechanisms with which the analytes and sensing materials 

interact (see Chapter 6).    

 

When designing a sensing material for a target analyte, it is best to begin by looking at the 

chemistry of the target analyte.  Determining the type of functional group(s) on the target analyte 

will help narrow down the types of polymers that could work as sensing materials.  In addition, 

the size of the target analyte is a consideration.  If the target analyte is bulky such as benzene or 

trimethylamine, then a polymer whose chains do not pack as tightly (i.e. has larger interstitial 

spaces) would be better; however, a small molecule such as methanol or formaldehyde can more 

easily penetrate smaller interstitial spaces due to reduced steric hindrance.   

 

The type of functional groups on the target analyte will determine the dominant mechanisms with 

which the target analyte and the polymeric sensing material interact. See Section 6.5 for further 

details about which mechanisms dominate for which functional groups.  Based on the sensing 

mechanisms, potential polymer classes can be selected, which will be further refined by other 

constraints. 

 

The next step is to look at the target application.  The target application will have some constraints 

such as operational temperature and environmental stability.  The polymer must be able to remain 

in its glassy state at the operating temperature (range).  Therefore, the glass transition temperature 

(Tg) must be above the operational temperature of the sensor.  In addition, the polymer must have 

good mechanical and environmental stability to withstand repeated and long term use. 

 

The main constraint is sensitivity (detection limit).  For a particular application, the detection limit 

of a sensor must be lower than the target limit.  In general, a sensing material with more “sensing 

sites” has a lower limit of detection and is thus more sensitive.  The more accessible (available) 

sensing sites are on the surface of the sensing material; thus, a morphology with high surface area-

to-volume ratios is best.   
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The target application will also determine the types of typical analytes (interferents) present with 

the analyte, as well as typical concentrations of all analytes.  If the interferents are present at an 

order of magnitude (or more) lower than the target analyte, then those interferents may not 

appreciably interact with a sensing material.  In addition, the list of potential polymers may be 

reduced by considering the chemistry and functional groups of the interferents.  For example, the 

response from larger interferents can be reduced through steric hindrance since the larger 

interferents will be repelled by steric effects and thus not be able to sorb onto the sensing material 

and produce a response.  Therefore, polymers with bulkier side groups/chains may be eliminated 

from the list of potential polymers. Another example is using hydrophobic and hydrophilic 

copolymers to reduce a response caused by water vapour (humidity). 

 

The type of sensor used will significantly affect the types of polymers considered.  If a resistive 

(conductive)-based sensor is used, then the sensing material must be conductive.  Therefore, a 

conductive polymer is needed for resistive type sensors.  Currently, resistive type sensors are most 

commonly used.  Other types of sensors include capacitive-based sensors, where a conductive 

polymer may hinder the sensor performance, and mass-based sensors, where polymeric sensing 

materials are advantageous because they are of light weight compared to metal and metal oxide 

sensing materials. 

 

The list of potential polymers has now been reduced through dominant mechanisms, application 

constraints, and types of sensor.  The resulting polymers can also be modified by adding, removing, 

and/or changing some functional groups on a polymer backbone.  This can be done to improve any 

number of properties.  Two or more polymers can be combined, creating a copolymer to change 

the properties.  In addition, dopants can also be added.  In some cases, dopants can be used to make 

a polymer conductive, such as adding acid to polyaniline. In many cases, metal and metal oxide 

dopants are added to improve the sensitivity and/or selectivity of the polymeric material.  It is 

important to note that not all metals are able to coordinate with all polymers.  

 

Once a final list of potential polymers has been selected, they can be ranked in terms of what may 

be the most effective in terms of sensitivity and/or selectivity.  These polymers can now be 

synthesized and evaluated as sensing materials for the target analyte.   

 

Note that selection of potential sensing materials is a two pronged approach.  The selection 

combines the chemical nature of the target analyte and how it is likely to interact with a polymeric 

sensing material with the practical constraints placed on the application of the final sensor.  

Therefore, when looking at the chart in Figure 7.9, begin at the top.  There are three paths (factors) 

to consider: target analyte, target application constraints, and typical interferents.  Combining these 

three factors will result in a set of potential polymeric materials. Next, dopants can also be added.  

These polymers (with or without dopants) can then be evaluated as sensing materials for the target 

analyte and application. 
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Figure 7.9: Prescription Flow Chart for Sensing Material Selection. 
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7.4.2 Polymeric Sensing Material Selection Example 

 

As an example, an ethanol gas sensor will be used, with a target detection limit of 5 ppm.  This 

sensor will typically operate at room temperature (around 21ºC) and may be either a resistive or 

mass-based sensor.  The sensor will be used where appreciable amounts of methanol and acetone 

may also be present as interferents.   

 

Initially, looking at ethanol, it has an alcohol group and therefore, it is able to hydrogen bond.  It 

can also act as a Lewis-base; however, hydrogen bonding is the dominant mechanism.  Therefore, 

potential polymers should include amines, alcohols, carboxylic acids, ethers, esters, amides, etc.  

This is a long list that needs to be pared down.  For this example, one may start with 30 – 50 

possible candidate polymers (see Appendix I), reducing this list down to 12 potential polymers to 

be considered further (see Table 7.2). 

 

For a sensor working at room temperature, the polymers need to be in a glassy state above room 

temperature.  Given that sensors are often pushed outside their typical operational range, the 

sensing material must not soften considerably or begin to flow.  Therefore, for this application 

which can result in storage near 50ºC, a Tg above 60ºC is preferable.  This drops the list of 12 

candidates in Table 7.2 down to 8. 

 

Looking at the functional groups of the main interferents (acetone and methanol) reduced the list 

of potential materials further.  Methanol, similar to ethanol, is also an alcohol and thus, is also able 

to hydrogen bond.  Acetone, on the other hand, cannot hydrogen bond, but as a ketone, will behave 

as a Lewis base.  Therefore, keeping polymers that are not able to hydrogen bond, but have oxygen 

or nitrogen that ethanol is able to hydrogen bond to may improve selectivity.  Therefore, the OH, 

COOH, and NH functionalized polymer chains will be eliminated, leaving 4 candidate polymers 

at this stage, namely, PETE, PMMA, PVP, and PPO.   

 

A check with the Hildebrand solubility parameters, where ethanol is 26.6 MPa1/2, shows that the 

Hildebrand solubility parameter of PPy is 25.15 MPa1/2, which is close to that of ethanol.  

Therefore PPy will be added back to the list, bringing the number up to 5 potential polymeric 

sensing materials.  PETE (21.9 MPa1/2) and PPO (19.6 MPa1/2) were the most different in terms of 

Hildebrand solubility parameters.  To reduce the list to 4 potential polymers, PETE was eliminated 

and PPO was kept because PPO is conductive and PETE is not.  This leaves 2 polymers that are 

conductive (PPy and PPO) and 2 polymers that are non-conductive (PMMA and PVP).  This 

allows for flexibility on the type of sensor that may be used. 
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Table 7.2: Potential Polymeric Sensing Materials for Ethanol 

Polymer 

Glass Transition 

Temperature, Tg 

(˚C)1 

Hildebrand 

Solubility 

Parameter (MPa1/2)1 

Structure 

 

Functional 

Groups 

Poly (ethylene oxide) 

(PEO) 
-43 19.9 

 
-O- 

Poly (vinyl acetate) 

(PVAc) 
30 19.2 

 

COOR 

Polyamide 

(PA) 
502 23.02 

 

CONR2 

Poly (lactic acid) 

(PLA) 
57 21 

 

COOR 

Poly (ethylene 

terephthalate) 

(PETE) 

67 21.9 

 

COOR x2 

Poly (vinyl alcohol) 

(PVA) 
85 21.7 

 

OH 

Polyaniline 

(PANI) 
100 22.2 

 

NH 

Poly (methyl 

methacrylate) 

(PMMA) 

105 22.8 

 

COOR 

Poly (acrylic acid) 

(PAA) 
106 19.2 

 

COOH 

Poly (vinyl 

pyrrolidone) 

(PVP) 

128 25.6 

 

CONR2 

Poly (2,6-dimethyl-

1,4-phenylene oxide) 

(PPO) 

215 19.6 

 

-O- 

Polypyrrole 

(PPy) 
270 25.15 

 

NH 

1Brandrup et al. (1999)  

 2For the structure shown 
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These four polymers (PMMA, PVP, PPO, and PPy) were evaluated with respect to their sorption 

of ethanol, methanol, and acetone.  PMMA (Average Mw= 15,000, Sigma-Aldrich, Oakville, 

Ontario, Canada), PVP (Average Mw= 40,000, Sigma-Aldrich, Oakville, Ontario, Canada), PPO 

(Average Mw = 30,000 Sigma-Aldrich, Oakville, Ontario, Canada), and PPy (Conductivity 10 – 

50 S/cm, pressed pellet, Sigma-Aldrich, Oakville, Ontario, Canada) were all used as obtained, 

without further modification. The polymer samples were prepared in round bottom flasks and 

tested using the gas test system as described in Section 3.5 of Chapter 3. 

 

All four polymers showed good sorption of ethanol.  In addition, all four polymers showed poorer 

sorption of methanol and acetone (see Figure 7.10).  Therefore, all four polymers had good 

selectivity towards ethanol with respect to methanol and especially to acetone.  From here, only a 

couple of polymers need to be deposited onto a sensor for further evaluation.  If a resistive type 

sensor is chosen, then PPy and PPO can be used; if a mass-based sensor is selected, then any of 

the four polymers could be employed; however PVP had the best selectivity and thus would be the 

best choice, despite PVP sorbing the least ethanol of the four polymers.  This demonstrates that 

the practical prescriptions can significantly improve the efficiency of choosing (and further testing) 

potential sensing materials.  When coupled with preliminary evaluation of a sensing material’s 

sorption characteristics to specific gas analytes, the cost of deposition and sensor testing is also 

significantly reduced. 

 

 
Figure 7.10: Sorption of the four polymers to ethanol, methanol, and acetone. 
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8. Concluding Remarks and Recommendations 
 

8.1 Concluding Remarks 

 

There were three main objectives for this thesis: to design sensitive and selective polymeric 

sensing materials for ethanol; to identify the main sensing mechanisms with which sensing 

materials and analytes interact; and to create general prescriptions that could be used to design 

new polymeric sensing materials.  All three of these main objectives were met. 

 

In total, 22 different polymers and polymeric nanocomposites were synthesized and evaluated as 

sensing materials for ethanol.  In addition, 8 other commercially available sensing materials were 

also evaluated as sensing materials for ethanol.  From these 30 polymeric sensing materials, it was 

found that poly (2,5-dimethyl aniline) (P25DMA) doped TiO2, NiO, and Al2O3, and polypyrrole 

(PPy) had the highest sensitivity to ethanol based on sorption tests.  However, when comparing 

the selectivity, P25DMA 5% Al2O3 and P25DMA 10% TiO2 had the best selectivity out of the 

polymeric nanocomposites and poly (vinyl pyrrolidone) (PVP) had the best selectivity of the 

commercially available polymers.   

 

High selectivity was also achieved using five partially selective polymeric sensing materials.  

P25DMA and P25DMA doped with 5% Al2O3, NiO, TiO2, and ZnO were used to create a sensor 

array capable of detecting six different gas analytes (acetaldehyde, acetone, benzene, ethanol, 

formaldehyde, and methanol).  This was done using principal component analysis (PCA) as a 

filtering algorithm.   

 

Two different sensors, a radio frequency identification (RFID) capacitive sensor and a 

microelectromechanical system (MEMS) microcantilever sensor, were used to evaluate various 

sensing materials.  It was found that on the various types of RFID sensors P25DMA doped with 

20% NiO had the best sensitivity and selectivity towards ethanol and had a limit of detection of 3 

ppm on the rigid type RFID sensor.  On the MEMS microcantilever, P25DMA had a limit of 

detection of 5 ppm for ethanol. 

 

The information obtained from these experiments (sensitivity and selectivity to ethanol) also 

improved the understanding of how sensing materials and gas analytes interact.  Based on carefully 

chosen polymeric sensing materials, it was determined that both the polymer backbone and the 

side chains (functional groups) have an effect on the sensing properties.  This led to the exploration 

of various sensing mechanisms with which volatile organic compounds (VOCs) and polymeric 

sensing materials interact. 

 

Combining the information obtained from the experiments with that in the literature has led to an 

evaluation of sensing mechanisms for various classes of VOCs.  Some of these mechanisms were 
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evaluated with carefully chosen polymeric sensing materials and gas analytes, which confirmed 

the dominant mechanisms.  Based on these sensing mechanisms, as well as sensor application 

constraints, general prescriptions were developed that can be used to select potential polymeric 

sensing materials for VOC sensor applications.  These prescriptions were evaluated by selecting 

potential sensing materials for ethanol.  Four potential sensing materials were evaluated for 

sensitivity and selectivity.  It was found that all four of the polymeric sensing materials evaluated 

had good sensitivity and overall, good selectivity, especially PVP. 

 

Therefore, all three main objectives for this thesis were met.  In addition, many smaller side-

concepts that contributed to the main objectives were explored. 

 

The experimental test set-up (Chapter 3; used throughout the thesis) was discussed in detail in 

“Novel Test System for Gas Sensing Materials and Sensors” published in Macromolecular 

Symposia (Stewart et al., 2013). 

 

The polymeric nanocomposites made with poly (2,5-dimethyl aniline) (P25DMA) doped with 

Al2O3, CuO, NiO, TiO2 (Chapter 4) has been accepted in the Journal of Macromolecular Science 

A: Pure and Applied Chemistry under the title “Evaluation of Polymeric Nanocomposites for the 

Detection of Toxic Gas Analytes” (Stewart and Penlidis, 2016a).  In addition, a paper discussing 

the sensor array (also from Chapter 4) has been accepted in Macromolecular Symposia under the 

title “Detection of Six Volatile Organic Compounds using a Sensor Array”.   

 

The sensors onto which the polymeric sensing materials were deposited and evaluated (Chapter 5) 

were done in collaboration with two other groups.  The RFID sensors were done in collaboration 

with Wei Ting (Scott) Chen who designed the various RFID sensors, onto which my sensing 

materials were placed and analyzed using my test system.  The results from these experiments are 

published in multiple papers including “Doped Poly (2,5-dimethyl aniline) for the Detection of 

Ethanol” (Stewart et al., 2015), “Novel Undercoupled Radio-frequency (RF) Resonant Sensor for 

Gaseous Ethanol and Interferents Detection” (Chen et al., 2015b), and “Wearable RF Sensor Array 

Implementing Coupling-Matrix Readout Extraction Technique” (Chen et al., 2015a).  The MEMS-

based microcantilever was done in collaboration with Mahmoud Khater and the results are 

published under “Binary MEMS Gas Sensors” (Khater et al., 2014).   

 

An overview of sensing mechanisms and how they can be used to select potential sensing materials 

for a target gas analyte and application (Chapters 6 and 7) has been published in Polymers for 

Advanced Technologies under the title “Designing Polymeric Sensing Materials: What are we 

Doing Wrong?” (Stewart and Penlidis, 2016b).  In addition, a shorter paper entitled “Designing 

Polymeric Sensing Materials for Analyte Detection and Related Mechanisms” that presents a 

systematic approach to selecting sensing materials using sensing mechanisms has been published 

in Macromolecular Symposia (Stewart and Penlidis, 2016c). 
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In total, the work presented in this thesis has produced results that have been published in 9 

refereed papers (6 of which are “first author”, 2 are “second author”, and one other).   

 

8.3 Future Work 

 

8.3.1 Short Term Goals 

 

8.3.1.1 Improve the Sensor Array for Six VOCs 

 

The sensor array described in Section 4.6 could be improved to be able to identify the components 

of gas mixtures as well.  By evaluating known concentrations of gas analytes in various mixtures 

(two gases, three gases, and so forth), it may be possible to identify multiple gas analytes in a 

mixture of gases.  To accomplish this, a more sophisticated “neural net” or filtering algorithm may 

be needed to achieve this separation of VOCs. 

 

8.3.1.2 Improve Understanding of Sensing Mechanisms and Dopant Incorporation 

 

A greater understanding of how analytes (and interferents) interact with polymeric sensing 

materials will result in more efficient and better selection of sensing materials for future sensor 

development.  In addition, a better understanding of how dopants, especially metal oxides, 

incorporate themselves into a polymeric matrix will improve sensing material synthesis and dopant 

selection.  This will also improve polymer nanocomposite selection in a variety of applications 

such as membrane separation and catalysis.  Note that multiple sensing mechanisms occur 

simultaneously when an analyte interacts with a sensing material; therefore, it may be difficult to 

identify the dominant mechanisms in operation (only based on theory).   

 

8.3.1.3 Improve Understanding of Sensing Mechanisms for Inorganic Analytes 

 

Inorganic compounds such as nitrogen oxides (NOx) (EPA, 1999), sulfur oxides (SOx) (Shahbazi 

et al., 2016), and carbon monoxide (CO) (Smith, 1987) all contribute to environmental and air 

pollution.  The majority of sensing materials for inorganic analytes are based on metals and metal 

oxides (Shinde et al., 2012; Korotcenkov, 2013); however, the selectivity towards a specific 

analyte may not be sufficient (Comini et al., 2002).  As a potential solution to increase selectivity 

of sensing materials for inorganic analytes, polymeric materials could be used instead since they 

can be tailored to interact with a target analyte.  Analyzing trends in literature could lead to 

identifying sensing mechanisms for inorganic analytes and understanding how inorganic analytes 

and polymeric sensing materials interact.  This improved understanding of how inorganic analytes 

(and interferents) interact with polymeric sensing materials will result in more efficient and better 

selection of sensing materials for future sensor development.   
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8.3.2 Long Term Goals 

 

8.3.2.1 Build and Evaluate a Prototype of the Ethanol Sensing Device for a Vehicle 

 

One of the ultimate objectives of this research was to build a protoype for an ethanol sensor that 

could be placed inside a vehicle.  The goal was to have an ignition interlock system that would be 

triggered by the sensor, if ethanol was detected from a person’s skin above a set threshold. 

Therefore, further evaluation of the most promising sensing materials for ethanol should be 

conducted on various sensors, creating complete sensors.  These complete sensors must be 

evaluated for their sensing ability and their durability in a vehicle.   

 

8.3.2.2 Design, Synthesize, and Evaluate Sensing Materials for Acetone  

 

Acetone is an indicator for disease, including diabetes (Fleischer et al., 2002).  A sensor able to 

detect low concentrations of acetone in the breath, similar to breathalyzers for ethanol, could be 

used as a non-invasive method for screening for diabetes.  A sensor for acetone needs a limit of 

detection below 1 ppm and a high selectivity to avoid false positives (Deng et al., 2004). 

 

Note that a highly sensitive and selective sensing material may be difficult to create; however, 

designing multiple sensing materials that are sensitive to acetone and/or other common interferents 

to be used in a sensor array or electronic nose could be a viable solution. 

 

8.3.2.3 Design, Synthesize, and Evaluate Sensing Materials for Benzene 

 

Benzene is toxic, even at very low concentrations (no safe level of benzene can be recommended 

by WHO) (WHO, 2010) and therefore, contributes to poor indoor air quality.  Benzene is also a 

by-product of industrial processes and vehicle exhaust (Lee et al., 2002).  Because of its high 

toxicity, it is important to monitor benzene levels in air. 

 

Similar to acetone, a sensor array could be used to improve the selectivity towards benzene.  This 

would require designing multiple sensing materials for benzene and/or other common interferents 

present in the target application.  Note that the sensing materials required for an indoor air 

application and those for monitoring benzene in industrial by-products or vehicle exhaust are likely 

to be very different.  This is because the environment with which the sensor needs to function is 

very different, especially in terms of temperature. 
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8.3.2.4 Sensing Materials for Inorganic Pollutants 

 

Inorganic compounds such as nitrogen oxides (NOx) (EPA, 1999), sulfur oxides (SOx) (Shahbazi 

et al., 2016), and carbon monoxide (CO) (Smith, 1987) all contribute to air pollution.  NOx and 

SOx are pollutants released from a variety of industrial processes, including pulp and paper and 

combustion engines (Bajpai, 2015).  All three cause environmental air pollution and thus, it is 

important to monitor and reduce the amount released into the air.   

 

To detect all three, amongst other inorganic analytes (such as CO2, O3, and H2S), a sensor array 

that is able to identify many different gas analytes would be the best solution.  A sensor array could 

be designed to detect threshold concentrations of each analyte, where the threshold concentration 

is the maximum “safe level” determined by government standards. 

 

8.3.2.5 Sensing Materials for Toxic Aqueous Analytes 

 

There are many toxic analytes that affect the quality of drinking water.  These toxic analytes 

include heavy metals (such as mercury (Nolan et al., 2006) and arsenic (Akpor and Muchie, 2010)), 

sulfide ions (Hassan et al., 2002), and chlorophenols (Kuleyin, 2007).  It is important to both 

monitor and remove these toxic analytes.  Therefore, designing sensing materials and absorbents 

capable of detecting and sorbing low concentrations (ppb levels) of these toxic analytes would 

improve the quality of drinking water. 

 

8.3.2.6 Modelling of the Interactions between Sensing Materials and Analytes 

 

Molecular orbital theory can be used to evaluate potential sensing materials and gas analytes.  

When an analyte molecule sorbs onto a sensing material, there is an interaction between the 

molecular orbitals of both molecules.  The energies of these orbitals can be predicted using 

molecular orbital theory and can be modelled using various computational chemistry software and 

wave function approximations such as Hartree-Fock.  Note that two compounds will only bind, 

even temporarily, if their highest occupied molecular orbital (HOMO) and their lowest unoccupied 

molecular orbital (LUMO) are similar in energy.  This could also be extended to determine how 

well certain metal oxides will bind to a polymer to create polymeric nanocomposites. 
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Appendix A: Volatile Organic Compounds (VOCs) Emitted from the 

Human Body 
 

Appendix A summarizes the VOCs that have been measured from a person in either the blood, 

breath, or off the skin (transdermally).  This is a much more comprehensive list than that shown in 

Section 3.2.  The concentration of each of these VOCs is also included, where possible (i.e. as 

reported in the literature).    

 

Table A.1: Selected VOCs Emitted from the Human Body  

Volatile Organic Compound (VOC) 
In Blood 

(ppb) 
In Breath 

From Skin 

(ppb) 

1,2-dichloroethane 0.028 a   

1,2-pentadiene  X j  

1,3-dichlorobenzene 0.079 a   

1-butanol   X h 

1-hexadecanol   X c 

1-methoxyhexane   X h 

1-methyl hexyl acetate   X h 

2-(2-propyl)-5-methyl-1-cyclohexanol (menthol)   X h 

2-butanone 2.1 a   

2-pentanone  X j  

2-propanol  X g  

3-hexanol   X h 

Acetaldehyde  X g  

Acetic acid   X h 

Acetone (2-propanone) 520 a X g,j X h 

Ammonia  Xg X d 

Benzaldehyde X f  
1.5 d 

X e,f,h,i 

Benzene 0.094 a   
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Volatile Organic Compound (VOC) 
In Blood 

(ppb) 
In Breath 

From Skin 

(ppb) 

Benzoic acid   X h 

Benzyl Alcohol   X f 

Carbon disulfide 11 a X g  

Carbon tetrachloride 0.094 a   

Chlorobenzene 0.034 a X j  

Chloroform 0.054 a   

Cyclohexanol   X e 

Cyclopentadecane   X i 

Decanal   
4.7 d 

X c,f,h,i 

Dimethylamine  X g  

Dimethylsulfide  X g,j  

Diphenyl ether   X i 

Dodecanal   X h 

Dodecane  X j X f,i 

Dodecanoic acid   X f,h 

Ethane  X g  

Ethanol  X g X d 

Ethyl carbamate (urethane)   X h 

Ethylbenzene 0.17 a   

Heptanal X f X f X f 

Hexadecane   X f,i 

 Hexanoic acid   X h 

Isoprene  X b,g,j  

Lactic acid   X h 
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Volatile Organic Compound (VOC) 
In Blood 

(ppb) 
In Breath 

From Skin 

(ppb) 

m/p-xylene 0.23 a X j  

Methanol  X g  

Methyl mercaptanes  X g  

Methyl salicylate   X i 

Methylene chloride 0.069 a   

n-Butyl acetate   X d 

Naphthalene   X f 

Octanal   
4.3 d 

X f,h,i 

Octanonic acid   X h 

Pentadecane   X i 

Pentane  X b,g  

Phenol   X f,h 

Propane-1,2,3-triol (glycerin)   X h 

Propanoic acid   X h 

Styrene 0.057 a  X e 

Toluene 
0.55 a 

X f 
 X f 

Trichloroethene 0.057 a   

Triethylamine  X g  

Undecanal   X f 

Undecane  X f X f,i 

 X denotes the compound is present, but has not been quantified. 
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a. Ashley et al. (1992) 
b. Jones et al. (1995) 
c. Soini et al. (2006) 

d. Ruzsanyi et al. (2012) 
e. Acevedo et al. (2007) 
f. Curran et al. (2005) 
g. Miekisch et al. (2004) 
h. Gallagher et al. (2008) 

i. Zhang et al. (2005) 
j. Phillips (1997) 
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Appendix B: Sensing Materials for Volatile Organic Compounds  
 

Appendix B contains multiple overview tables of different sensing materials used for various gas analytes (VOCs), briefly discussed in 

Section 2.4.5.  These tables summarize what has been presented in the literature for both polymeric and inorganic (metal and metal 

oxide) sensing materials.  The tables are divided by gas analyte and include the sensing material, any dopants, limit of detection (LoD), 

operational temperature, and response and recovery times.  Note that not all of this data was present in some of the papers and the 

missing data is marked by a dash (-).  In addition, estimated response and recovery times are preceded by a tilde (~). 

 

Table B.1: Sensing Materials for Acetone 

Sensing Material Dopant 
Detection 

Limit 

Operational 

Temperature 

Response 

Time 

Recovery 

Time 
Reference 

Polyaniline HCl 29 ppm 25 °C 1 minute 3 minutes 
Do and Wang 

(2013) 

Polypyrrole/ 

Poly (methyl 

methacrylate) 

(PPy/ 

PMMA) 

α-naphthalene 

sulfonate 

(α-NS-)  

(~8%) 

30.3% 25 °C - - 
Ruangchuay et 

al., 2003 

Single wall carbon 

nanotubes-poly 

(tetraphenyl-porphorin) 

None 9 ppm 
Room 

Temperature 
~ 10 minutes ~15 minutes 

Sarkar et al. 

(2014) 

α-Fe2O3 
La 

(7 wt. %) 
50 ppm 240 °C 3 seconds 10 seconds Shan et al. (2013) 

InN None 400 ppb 200 °C 1260 seconds 3740 seconds Kao et al. (2012) 
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Sensing Material Dopant 
Detection 

Limit 

Operational 

Temperature 

Response 

Time 

Recovery 

Time 
Reference 

La2O3 None 
0.08 μg/mL 

(~65 ppm) 
360 °C 5 seconds 25 seconds 

Tang et al. 

(2008) 

NiFe2O4 Co0.01, Mn0.02 - 215 °C 3 minutes 5.5  minutes 
Rezlescu et al. 

(2006) 

SnO2 None 200 ppm - Minutes Minutes 
Mwakikunga et 

al. (2013) 

SnO2 
Ni 

(5 at. %) 
2 ppm 340 °C 7 seconds 30 seconds 

Cheng et al. 

(2014) 

SnO2-reduced graphene 

oxide 
None 10 ppm 

Room 

Temperature 
107 seconds 146 seconds 

Zhang et al. 

(2015) 

WO3 None 100 ppm 200 °C 32 seconds 45 seconds 
Zhang et al. 

(2013) 

WO3 
Cu 

(3 mol %) 
20 ppm 300 °C 5 seconds 20 seconds Bai et al. (2014) 

WO3 Pt  120 ppb 300 °C ~ 2 minutes ~3 minutes Lee et al. (2014) 

WO3 Pt 120 ppb 350 °C ~ 4 minutes ~ 2 minutes Choi et al. (2013) 

WO3 
Si 

(10 mol %) 
100 ppb 400 °C ~ 1.5 minutes ~1.5 minutes 

Righettoni et al. 

(2010) 
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Sensing Material Dopant 
Detection 

Limit 

Operational 

Temperature 

Response 

Time 

Recovery 

Time 
Reference 

ZnO 
Co 

(0.5 wt. %) 
5 ppm 360 °C 6 seconds 4 seconds Liu et al. (2011b) 

ZnO 
La2O3  

(1.0 wt. %) 
10 ppm 350 °C 9 seconds 13 seconds He et al. (2013) 

ZnO None 250 ppb 230 °C 3 seconds - Jia et al. (2014) 

ZnO None 2 ppm 310 °C 3-5 seconds 4-5 seconds Li et al. (2013b) 

ZnO None 4 ppm 300 °C 1.5 seconds 3 seconds Qi et al. (2008) 

ZnO None 8.1 ppm 260 °C 1.5 seconds 3 seconds Qi et al. (2008) 

ZnO 
TiO2 

(10 wt.%) 
100 ppm 370 °C 10 seconds 5 seconds Zhu et al. (2004) 

ZnO2 None 1000 ppm 325 °C ~ 2 minutes 5 minutes Sahay  (2005) 

ZnFe2O4 None 30 ppm 200 °C 9 seconds 272 seconds 
Zhou et al. 

(2015) 
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Table B.2: Sensing Materials for Acetaldehyde 

Sensing Material Dopant 
Detection 

Limit 

Operational 

Temperature 

Response 

Time 

Recovery 

Time 
Reference 

Polyaniline (PANI) None 560 ppm - - - Ai et al. (2007) 

Polyaniline (PANI) HClO4 5 ppm 20 °C 90 seconds 4 minutes Kukla et al. (1996) 

Polyaniline (PANI) 

Dodecyl-hydrogen 

sulfate salt and 

maleic acid 

10 ppm 
Room 

Temperature 
5 minutes 2 minutes 

Palaniappan and 

Saravanan (2010) 

Poly (2,5-dimethyl aniline) 

(P25DMA) 
MoO3 0.96 ppm 40 °C 20 minutes - Itoh et al. (2007a) 

Poly (5,6,7,8-tetrahydro-1-

naphthyl-amine) (PTHNA) 
MoO3 25 ppb - - - Itoh et al. (2007b) 

Ethylene dimethacrylate 
Methyl methacrylate 

(0.5 mol %) 
9886 ppm - 30 seconds - 

Hirayama et al. 

(2002) 

Al2Ti2O7 None 
~400 ppb 

(0.5 mg/m3) 
295  °C - - Zhou et al. (2013) 

BaCO3 None 0.5 ppm 225 °C - - Cao et al. (2004) 

In2O3 Au 10 ppm 250 °C ~10 seconds ~10 seconds 
Han and Sohn 

(2011) 

SnO2 
In  

(10 %) 
200 ppb 200 °C ~ 15 minutes ~15 minutes Cindemir et al. 

(2016) 
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Sensing Material Dopant 
Detection 

Limit 

Operational 

Temperature 

Response 

Time 

Recovery 

Time 
Reference 

Ti 
SnO2 

(10 mol %) 
10 ppb 500 °C - - 

Giberti et al. 

(2012) 

TiO2 None 5 ppm 
Room 

Temperature 
~30 seconds ~30 seconds Muthukrishnan et 

al. (2015) 

WO3 

Ru 

(1 wt. %) 

SnO2 

(5 wt. %) 

20 ppm 300 °C 10 seconds 20 seconds Jun et al. (2011) 

ZnO 
Co  

(5 wt. %) 
10 ppm 

Room 

Temperature 
~200 seconds ~200 seconds Mani and 

Rayappan (2016) 

ZnO None 10 ppb 450 °C - - Giberti et al. 

(2012) 

ZnO None 50 ppb 250 °C 35 seconds 5 minutes Calestani et al. 

(2011) 
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Table B.3: Sensing Materials for Benzene 

Sensing 

Material 
Dopant 

Detection 

Limit 

Operational 

Temperature 

Response 

Time 

Recovery 

Time 
Reference 

Poly (dimethyl 

siloxane) 

Polystyrene 

(2.0 (w/v) %) 
10 ng/mL - - - Endo et al. (2007) 

Bi4SnV2O13 None 
~100 ppb 

(0.12 mg/m3) 
150 ˚C - - Fan et al. (2016) 

Pd/i-diamond/ 

p-diamond 
None 

~1300 ppm 

(1 torr) 
200 ˚C ~100 seconds ~100 seconds 

Gurbuz et al. 

(2004) 

SnO2 
Au  

(1%) 
150 ppb 30 ˚C 2 seconds 1 second Gràcia et al. (2008) 

SnO2 None 220 ppb 240 ˚C 3 seconds 12 seconds Huang et al. (2012) 

SnO2 None 300 ppm 
Room 

Temperature 
- - 

Panchal et al. 

(2015) 

WO3 None 200 ppb 300 ˚C 35 seconds - Ke et al. (2009) 

ZnO 
Au  

(6.5 wt. %) 
1 ppm 340 ˚C 80 seconds 11 seconds 

Wang et al. 

(2013b) 

ZnO 
TiO2  

(10 wt. %) 
10 ppm 375 ˚C 10 seconds 5 seconds Zhu et al. (2004) 
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Table B.4: Sensing Materials for Ethanol 

Sensing Material Dopant 
Detection 

Limit 

Operational 

Temperature 

Response 

Time 

Recovery 

Time 
Reference 

Poly (2,5-dimethyl 

aniline) 

NiO 

(20 wt.%) 
24 ppm 21 ˚C 60 seconds 60 Seconds 

Stewart et al. 

(2015) 

Poly (2,5-dimethyl 

aniline) 
None 3 ppm 21 ˚C 35 seconds 100 Seconds 

Stewart et al. 

(2015) 

Polyaniline 

(PANI) 

NiO  

(10 wt. %) 
0.31 ppm 21 ˚C - - 

Stewart et al. 

(2012) 

Polyaniline 

(PANI) 
TiO2  150 ppm 

Room 

Temperature 
280 seconds - Zheng et al. (2008) 

Alcohol oxidase None 0.348 ppm Room temp. 120 seconds 120 seconds 
Mitsubayashi et al. 

(1994) 

Alcohol oxidase None 268.6 ppm - - - 
Mitsubayashi et al. 

(2003) 

Bis [(E)-1,1,1-

trifluoro-2-

(thrifluoromethyl) 

pent-4-en-2-ol] 

siloxane (ADIOL) 

None - 20 ˚C 90 seconds 2 seconds Yang et al. (2009a) 

Cu2O - 10 ppm 200 ˚C 170 seconds 180 seconds 
Barreca et al. 

(2009) 

Cu2O - 10 ppm 210 ˚C 15 seconds - Zhang et al. (2006) 

CuO - 100 ppm 240 ˚C 110 seconds 120 seconds Raksa et al. (2009) 
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Sensing Material Dopant 
Detection 

Limit 

Operational 

Temperature 

Response 

Time 

Recovery 

Time 
Reference 

CuO Au 5 ppm 200 ˚C 4 seconds 7 seconds Gou et al. (2008) 

CuO Pt 5 ppm 200 ˚C 4 seconds 7 seconds Gou et al. (2008) 

CuS Hollow 

Spheres 
None 3 ppm 250 ˚C 15 seconds 15 seconds Yu et al. (2009) 

Graphene Al2O3  1225 ppm 200 ˚C 10 seconds 100 seconds Jiang et al. (2011) 

NiO None 10 ppm 
Room 

Temperature 
- - Li (2016) 

NiO None 5 ppm 300 ˚C - - Kaur et al. (2016) 

NiO 
TiO2  

(25 wt. %) 
2000 ppm 

Room 

Temperature 
9 seconds 16 seconds 

Arshak et al. 

(2004) 

SnO2 Lao (3 at. %) - 300 10 seconds 10 seconds 
Stambolova et al. 

(2000) 

SnO2 
NiO  

(5 mol %) 
5 ppm 300 ˚C 2 seconds 3 seconds Liu et al. (2011a) 

SnO2 NiO 6.7 ppm 280°C 0.6 seconds 10 seconds Lou et al. (2012) 

SnO2 Pt (0.3 wt. %) 2 ppm 400 ~30 seconds - Lee et al. (2009) 

TiO2 Ag 5 ppm 250 ˚C 1 second 2 seconds Hu et al. (2010) 

TiO2 None 20 ppm 350 ˚C 12 seconds 9 seconds 
Wang et al. 

(2010a) 
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Sensing Material Dopant 
Detection 

Limit 

Operational 

Temperature 

Response 

Time 

Recovery 

Time 
Reference 

TiO2 None 

40  μg/mL 

(~26 000 

ppm) 

440 ˚C 50 seconds 160 seconds Zhu et al. (2002) 

TiO2 None 40 ppm 400 ˚C 1 second 10 seconds Tang et al. (1995) 

ZnO 
Al2O3  

(1 wt. %) 
100 ppm 300 ˚C 18 seconds 40 seconds Patil et al. (2007) 

ZnO 
Al2O3  

(2 at. %) 
1000 ppm 290 ˚C 8 seconds 10 seconds Yang et al. (2009b) 

ZnO 
Al2O3  

(1 wt. %) 
400 ppm 300˚C 6 seconds 20 seconds 

Ruchika et al. 

(2016) 

ZnO 
Al2O3  

(1 wt. %) 
500 ppm 400 ˚C 10 seconds 40 seconds 

Deore and Jain 

(2014) 

ZnO Lao (3 at. %) - 300 60 seconds - 
Stambolova et al. 

(2000) 

ZnO NiO 0.3 ppm 450 ˚C ~60 seconds ~60 seconds Na et al. (2012) 

ZnO None 1 ppm 300 - - Wan et al. (2004) 

ZnO None 1 ppm 320 ˚C 35 seconds 24 seconds Wang et al. (2012) 

ZnO None 10 ppm 400 ˚C 25 seconds ~20 seconds Singh et al. (2008) 

ZnO None 10 ppm 400 ˚C 5 seconds 5 / 10 seconds Singh et al. (2008) 

ZnO None 1000 ppm 350 120 seconds 90 seconds Sahay et al. (2005) 
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Sensing Material Dopant 
Detection 

Limit 

Operational 

Temperature 

Response 

Time 

Recovery 

Time 
Reference 

ZnO None 25 ppm 400 60 seconds Minutes 
Liewhiran et al. 

(2007) 

ZnO None 50 ppm 220 ˚C 25 seconds 50 seconds 
Choopun et al. 

(2007) 

ZnO 
Ti 

(1.86 at %) 
50 ppm 250 ˚C ~200 seconds ~60 seconds Hsu et al. (2014) 

ZnO 
TiO2  

(10 wt. %) 
100 ppm 370 ˚C 10 seconds 5 seconds Zhu et al. (2004) 

ZnO 
TiO2 

 (10 wt. %) 
100 ppm 320 ˚C - - Zhu et al. (2004) 

ZnO Flakes None 300 ppm 400 62 seconds 62 Seconds Liu et al. (2005a) 

ZnO nanorods None 10 ppm 330 10 seconds 30 seconds Xu et al. (2005) 

ZnO-Graphene None 5 ppm - 10 seconds 10 seconds Zou et al. (2013) 

γ-Al2O3 
Dy3+  

(1 mol %) 
500 ppm 450 ˚C - - 

Okabayashi et al. 

(2000) 
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Table B.5: Sensing Materials for Formaldehyde 

Sensing 

Material 
Dopant 

Detection 

Limit 

Operational 

Temperature 

Response 

Time 

Recovery 

Time 
Reference 

Polyaniline 

(PANI) 
MoO3 - - - - Wang et al. (2006) 

Polyaniline 

(PANI) 

NiO 

(15 wt. %) 
0.3 ppm 21 °C - - 

Stewart et al. 

(2012) 

Polyaniline 

(PANI) 

NiO 

(5 wt. %) 

Al2O3 

(15 wt. %) 

1 ppm 21 °C - - 
Stewart et al. 

(2012) 

Polyaniline 

(PANI) 
None 500 ppm 20 °C 60 minutes - 

Hosseini et al. 

(2005) 

Cascade laser 

based quartz-

enhanced 

photoaccoustic 

spectroscopy 

None 25 ppbv - 10 seconds - 
Horstjann et al. 

(2004) 

Cavity Leak-out 

Spectroscopy 

(CALOS) 

None 2 ppb 25 °C 5 seconds - 
Dahnke et al. 

(2002) 

Cu2O None 6 ppb 250  °C ~150 seconds ~75 seconds Park et al. (2014) 
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Sensing 

Material 
Dopant 

Detection 

Limit 

Operational 

Temperature 

Response 

Time 

Recovery 

Time 
Reference 

Fe3O4 magnetic 

microspheres with 

acylhydrazine 

groups on the 

surface 

pH 5.5 

10 µg/L 

 

(0.3µg/L 

estimated) 

- - - Yang et al. (2001) 

Gold coated 

Nafion 
None 13 ppb 25 °C 2 minutes - Knake et al. (2001) 

Graphene ZnO 180 ppb 
Room 

Temperature 
36 seconds ~1500 seconds Mu et al. (2014) 

Graphene-Poly 

(methyl 

methacrylate) 

None 10 ppb 
Room 

Temperature 
~ 600 seconds - 

Alizadeh and 

Soltani (2013) 

In2O3 
Ag 

(8 wt. %) 
2 ppm 100 °C 10 seconds 60 seconds 

Wang et al. 

(2009a) 

LaFeO3 
Ag 

(1 mol %) 
500 ppb 40 °C 67 seconds 104 seconds Zhang et al. (2014) 

Multiwall carbon 

nanotubes 

(MWCNT)  

Amino groups 

(18.19%) 
20 ppb 

Room 

Temperature 
7 – 10 seconds 100s seconds Xie et al. (2012) 

NAD+/NADH 

pH 8 

0.1M 

potassium 

phosphate 

0.2 ppbv 
Room 

Temperature 
~ 60 seconds ~120 seconds Hershkovitz (2000) 
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Sensing 

Material 
Dopant 

Detection 

Limit 

Operational 

Temperature 

Response 

Time 

Recovery 

Time 
Reference 

Nafion Pd-Pt 3μM - - - Zhou et al. (2009) 

NiO None 1.2 ppm 280 °C 13 seconds - Lee et al. (2006) 

NiO 
PANI  

(20 wt. %) 
10-7 mol/L - 90 minutes - 

Campanella and 

Battilotti (2006) 

NiO/Al2O3 None 40 ppb 280 °C 7 seconds - Wang et al. (2008) 

Pd Nanoparticles 0.1M NaOH 0.01M 25 °C - - Safavi et al. (2009) 

SnO2 Au, Cu, Pt, Pd 0.06 ppm 200 °C 15 minutes - Lv et al. (2007) 

SnO2 

In 

(4.43 at. %) 

Pd 

(0.66 at. %) 

5 ppm 160 °C 3 seconds 6 seconds Lin et al. (2015) 

SnO2 None 10 ppb 215 °C 14 seconds 140 seconds Xing et al. (2013) 
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Table B.6: Sensing Materials for Methanol 

Sensing 

Material 
Dopant 

Detection 

Limit 

Operational 

Temperature 

Response 

Time 

Recovery 

Time 
Reference 

Graphene oxide-

PANI 
None 100 ppm 110 °C ~5 seconds ~15 seconds 

Konwer et al. 

(2013) 

Poly (o-anisidine) 

(PoANI) 

HCl 

 
- 

Room 

Temperature 
10 minutes 10 minutes 

Athawale and 

Kulkarni (2000) 

Poly (2,3-dimethyl 

aniline) 

(P2,3DMA) 

HCl 

 
- 

Room 

Temperature 
10 minutes 10 minutes 

Athawale and 

Kulkarni (2000) 

Poly (methyl 

acrylic acid) 
None 1 ppm 130 °C 40 seconds 50 seconds Zhu et al. (2015) 

Polyaniline 
HCl 

 
- 

Room 

Temperature 
10 minutes 10 minutes 

Athawale and 

Kulkarni (2000) 

Polyaniline colloid None 25 ppm - 3 seconds 90 seconds Li et al. (2005) 

Polypyrrole ClO4 300 ppm 30 °C < 1 second 3500 seconds 
Babaei and 

Alizadeh (2013) 

In2O3 
SnO2  

(17 %) 
200 ppm 

Room 

Temperature 
- - Patel et al. (2003) 

SiO2 
P2O5  

(5 mol %) 

10,000 ppm 

(1%) 
25 °C ~10 seconds ~90 seconds 

Nagomi et al. 

(2009) 

TiO2 None 100 ppm 500 °C ½ minute < 1 minute 
Garzella et al. 

(2000) 
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Table B.7: Sensing Materials for Toluene 

Sensing 

Material 
Dopant 

Detection 

Limit 

Operational 

Temperature 

Response 

Time 

Recovery 

Time 
Reference 

Poly (dimethyl 

siloxane) 

Polystyrene 

(2.0 (w/v)%) 
10 ng/mL - - - Endo et al. (2007) 

Polyethyleneimine 

(PEI) 
None 200 ppm 20 °C 90 seconds 2 seconds Yang et al. (2009b) 

Polyaniline  

(PANI) 
None 100 ppm 30 11 minutes 22 minutes 

Parmar et al. 

(2013) 

Pd/i-diamond/ 

p-diamond 
None 

~1300 ppm 

(1 torr) 
150 °C ~100 seconds ~100 seconds 

Gurbuz et al. 

(2004) 

ZnO 
Au  

(6.5 wt. %) 
1 ppm 340 °C 60 seconds 10 seconds 

Wang et al. 

(2013b) 

SnO2 None 90 ppb 240 °C 3 seconds 13 seconds Huang et al. (2012) 

TiO2 Pd 50 ppm 
Room 

Temperature 
~ 90 seconds ~200 seconds Kim et al. (2010) 

IO5 None 50 ppb 
Room 

Temperature 
- - 

Kawamura et al. 

(2006) 

SnO2 
Pd 

(0.2 mol %) 
100 ppb 300 - - 

Suematsu et al. 

(2014) 

WO3 
Pd 

(1 wt. %) 
20 ppb 350 11 seconds 16 seconds Kim et al. (2014) 

ZnO 
TiO2  

(10 wt. %) 
10 ppm 375 °C 10 seconds 5 seconds Zhu et al. (2004) 
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Appendix C: Selectivity towards Ethanol 
 

Appendix C contains an overview table of selective gas sensing materials for ethanol.  This table includes the sensing material and any 

dopants.  The selectivity (ratio between the responses of ethanol to that of an interferent) towards different gas interferents is listed.  

 

Table C.1: Selectivity of Sensors towards Ethanol with Respect to Other VOCs  

Sensing Material Dopant 

Selectivity with Respect to Reference 

Acetone 
Acetal-

dehyde 
Ammonia Benzene 

Form-

aldehyde 
Methane Methanol 

Octane/ 

LPG 
 

Cu2O None 1.1        
Barreca et al. 

(2009) 

CuS Hollow 

Spheres 
None ~4.6  ~5.75  ~11.5    

Yu et al. 

(2009) 

In2O3 

Pt 

4.5 wt.% 

La2O3 

1.35 wt.% 

     ~325  ~2.6 
Zhan et al. 

(2007) 

NiO None 1.5        
Kaur et al. 

(2016) 

NiO 
TiO2  

(25 wt. %) 
      2.8  

Arshak et al. 

(2004) 

Poly (2,5-

dimethyl aniline) 

NiO 

20 wt. % 
4.2   6.6   72.3  

Stewart et al. 

(2015) 

Poly (2,5-

dimethyl aniline) 
None 1.6   5.3   11.4  

Stewart et al. 

(2015) 

Polyaniline 
NiO 

(10 wt. %) 
 1.2  6.2 1.1    

Stewart et al. 

(2012) 
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Sensing Material Dopant 

Selectivity with Respect to Reference 

Acetone 
Acetal-

dehyde 
Ammonia Benzene 

Form-

aldehyde 
Methane Methanol 

Octane/ 

LPG 
 

Polyaniline 

Poly (vinyl-

idene 

fluoride) 

   5   2  
Kim et al. 

(2005) 

Polyaniline TiO2  1.8   1.3    
Zheng et al. 

(2008) 

SnO2 
CeO2 

2 wt.% 
     ~3.5  ~35 

Pourfayaz et 

al. (2005) 

SnO2 
NiO 

(5 mol %) 
3.2   18.7  10.2   

Liu et al. 

(2011a) 

SnO2 NiO     3.4 8.1   
Lou et al. 

(2012) 

SnO2 None       ~6666  
Beckers et 

al. (2013) 

SnO2 
Pt 

0.3 wt. % 
    ~2.5    

Lee et al. 

(2009) 

SnO2 ZnO ~2        
Kim et al. 

(2007) 

SnO2 ZnO   ~3.1     ~4.8 
Nguyen et al. 

(2012) 

TiO2 
Nb 

3 wt.% 
       ~14 

Singh et al. 

(2012) 

TiO2 None ~2        
Zhu et al. 

(2002) 
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Sensing Material Dopant 

Selectivity with Respect to Reference 

Acetone 
Acetal-

dehyde 
Ammonia Benzene 

Form-

aldehyde 
Methane Methanol 

Octane/ 

LPG 
 

VO5 None   Good1      
Liu et al. 

(2005b) 

ZnO 
Al2O3 

(1 wt. %) 
  12      

Deore and 

Jain (2014) 

ZnO 
Al2O3 

(1 wt. %) 
       6.1 

Patil et al. 

(2007) 

ZnO La2O3-Pd        ~5 Rao (2000) 

ZnO NiO  ~3.3  ~4 ~2.9    
Na et al. 

(2012) 

ZnO NiO 7.3   9.7     
Na et al. 

(2012) 

ZnO None  ~1.7       
Calestani et 

al. (2011) 

ZnO None      ~5   
Hamedani et 

al. (2011) 

ZnO None   ~8.5  ~4.25   ~1.7 
Xu et al. 

(2005) 

ZnO 
TiO2 

(10 wt. %) 
1.9        

Zhu et al. 

(2004) 

ZnO-Graphene None 1.5  6.8  3.3    
Zou et al. 

(2013) 

LPG- liquid petroleum gas 
1Authors did not show number in a table or graph.  They just stated that they had good selectivity. 
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Appendix D: Miscellaneous Chromatograms 
 

Appendix D has two sections. Section D.1 provides a sample of the gas chromatograms obtained while evaluating the various sensing 

materials. Section D.2 contains typical gel permeation chromatography (GPC) responses (traces) obtained. 

 

D.1: Gas Chromatograms 

 

These additional chromatograms, to those presented in Section 3.1, show additional details.  Figure D.1 shows the good separation 

achieved between the different gas interferents used.  The proximity of methanol and acetaldehyde (as seen in the inset in Figure D.1) 

did not pose a problem since these two analytes were never run at the same time (i.e. mixed); however, at a different column temperature, 

these two gases could be separated a little more. 

 

 
Figure D.1: Gas chromatogram of all six gas analytes evaluated.  Note the separation between all the gases, except methanol and acetaldehyde.  

Benzene eluted after 17 minutes (lone peak on the right).  There was also a water peak to the right of formaldehyde around 5.5 minutes. 
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Figure D.2 shows two consecutive measurements taken at 48 and 60 minutes for one ethanol sample.  The fact that both chromatograms 

are on top of one another shows that equilibrium has been reached.   For all of the samples, except benzene, the GC run took 12 minutes; 

hence the 48 and 60 minute sampling times.  The runs containing benzene took 20 minutes and had 40 and 60 minute sampling times 

for the equilibrium runs (instead of 48 and 60). 

 

 
Figure D.2: Two ethanol chromatograms measured at 48 minutes (red) and 60 minutes (black).  Note that the two chromatograms are on top of one 

another.  This shows that equilibrium has been reached. 

 

Figures D.3 – D.8 show the peaks observed for each gas analyte tested.  Acetaldehyde, acetone, benzene, ethanol, formaldehyde, and 

methanol eluted out at 6.4, 8.1, 17.2, 7.2, 5.7, and 6.1, respectively when the column temperature was 110 ºC.  The acetaldehyde and 

methanol peaks were too close to separate had the two been in the same; however, this was not an issue.   
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Figure D.3: Gas chromatogram of acetaldehyde. 

 

 
Figure D.4: Gas chromatogram of acetone. 
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Figure D.5: Gas chromatogram of benzene. 

 

 
Figure D.6: Gas chromatogram of ethanol. 
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Figure D.7: Gas chromatogram of formaldehyde. 

 

 
Figure D.8: Gas chromatogram of methanol. 
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D.2 Gel Permeation Chromatography (GPC) Responses 

 

The molecular weights measured (see also section 3.7) were obtained using a Viscotek TDA 305 GPC, with refractive index (RI), right 

angle light scattering (RALS), and low angle light scattering (LALS) detectors.  Since no value for the dn/dc for PANI in DMSO could 

be found in the literature, and the value calculated by the GPC software was 0.0012 (which seemed excessively low and resulted in 

molecular weights that were not detectable on the GPC set-up used), two values of dn/dc were used to estimate the average molecular 

weight of PANI.  Therefore, dn/dc values were estimated based on PANI in other solvents (see Table D.1). 

 

 
Figure D.9: Gel permeation chromatogram of polyaniline (PANI), where the RI is red, the RALS is green, and the LALS is black. 

 

Retention Volume (mL)

  9.78  12.99  16.20  19.41  22.62  25.83  29.04  32.25  35.47

360.88

335.30

309.72

284.14

258.57

232.99

207.41

181.83

156.25

Data File: 2016-06-14_12;33;12_P1_01.vdt   Method: METHOD-0009.vcm

386.46

130.68

6.57   38.68
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Table D.1: dn/dc Values 

Polymer Solvent dn/dc (mL/g) λ0 (nm) Reference 

PANI NMP/LiBF4 0.41 785 Kolla et al. (2005) 

PANI NMP/LiBF4 0.43 632 Surwade et al. (2009) 

PANI Chloroform  0.48 632 Surwade et al. (2009) 

Poly (acrylamide) Water 0.182 546 Brandrup et al. (1999) 

Poly (acrylamide) Acetic Acid 0.194 546 Brandrup et al. (1999) 

Poly (acrylamide) DMSO 0.089 546 Brandrup et al. (1999) 

Poly (acrylonitrile) DMF 0.080 546 Brandrup et al. (1999) 

Poly (acrylonitrile) DMSO 0.042 546 Brandrup et al. (1999) 

N-methyl-2-pyrrolidone (NMP); dimethyl sulfoxide (DMSO); dimethyl formide (DMF) 

 

Given that the measured dn/dc values for PANI were around 0.4 in different solvents, 0.4 was used as an estimate of dn/dc to calculate 

the average molecular weight of PANI.  However, since the dn/dc for poly (acrylamide) and poly (acrylonitrile) in DMSO was about 

half that of the dn/dc in other solvents, a dn/dc of 0.2 was also used to calculate molecular weights of PANI (see Table D.2).   

 

Table D.2: Molecular Weight Averages of PANI 

Sample dn/dc (estimate) Mw (Da) Mn (Da) PDI 

PANI 1 0.4 386,866 176,975 2.186 

PANI 2 0.4 407,761 204,761 1.995 

PANI 1 0.2 773,733 353,950 2.186 

PANI 2 0.2 815,521 408,807 1.995 

Note that PANI was dissolved in DMSO and run through a Viscotek GPC with an RI, RALS, and LALS detector. 

 

A known standard was also run to obtain a measure of reproducibility for the system (see Table D.3). 
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Table D.3: Pullulan Standard (Mw = 108,000 Da) 

 Standard 1 Standard 2 Average Standard Deviation Percent Error (%) 

Mn (Da) 97,591 99,461 98,526 1322 1.3 

Mw (Da) 104,392 108,129 106,261 262 2.5 

PDI 1.070 1.087    

dn/dc in DMSO is 0.066. 
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Appendix E: Data 
 

Appendix E contains all of the data that were collected experimentally for this thesis.  This 

appendix has been separated into subsections that correspond to subsections in the text.  This was 

done for ease of relating the data to the analysis described in the corresponding chapters. 

 

E.1 Chapter 4 Data 

 

E.1.1 Polyaniline (PANI) Nanocomposites (Section 4.3.2) 

 

Table E.1 Amount of Ethanol Sorbed onto Each PANI Nanocomposite 

Polymer Sample Average Amount of Ethanol Sorbed (ppm) 

PANI 0.600 0.630 0.617 

PANI 10% NiO 0.683 0.540 0.680 

PANI 20% NiO 0.557 0.530 0.540 

PANI 10% ZnO 0.723 0.880 0.727 

PANI 20% ZnO 0.630 0.540 0.493 

 

E.1.2 Poly (o-anisidine) (PoANI) Nanocomposites (Section 4.3.2) 

 

Table E.2 Amount of Ethanol Sorbed onto Each PoANI Nanocomposite 

Polymer Sample Average Amount of Ethanol Sorbed (ppm) 

PoANI 0.253 0.387 0.400 

PoANI 10% NiO 0.220 0.227 0.203 

PoANI 20% NiO 0.697 0.633 0.693 

PoANI 10% ZnO 0.920 1.060 0.980 

PoANI 20% ZnO 0.807 1.050 1.007 
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E.1.3 Poly (2,5-dimethyl aniline) (P25DMA) Nanocomposites (Section 4.3.3) 

 

Table E.3: Amount of Ethanol Sorbed onto the P25DMA Nanocomposites 

 Amount Sorbed (ppm) 

Time (min) 60 72 60 72 60 72 

P25DMA 1.04 0.95 0.94 0.78 0.71 0.83 

P25DMA 5% Al2O3 1.42 1.44 1.36 1.41 1.76 1.70 

P25DMA 10% Al2O3 1.19 1.15 1.5 1.48 1.62 1.46 

P25DMA 20% Al2O3 1.04 1.03 1.39 1.53 1.62 1.45 

P25DMA 5% CuO 0.10 0.10 0.11 0.06 0.10 0.00 

P25DMA 10% CuO 0.08 0.17 0.34 0.29 0.24 0.14 

P25DMA 20% CuO 0.19 0.22 0.4 0.21 0.28 0.33 

P25DMA 5% NiO 1.26 1.37 1.63 1.64 1.82 1.73 

P25DMA 10% NiO 0.88 0.64 0.66 0.31 0.80 0.59 

P25DMA 20% NiO 0.81 0.92 1.34 1.23 1.28 1.00 

P25DMA 5% TiO2 1.16 1.13 0.92 0.98 1.46 1.47 

P25DMA 10% TiO2 1.49 1.54 1.41 1.45 1.58 1.39 

P25DMA 20% TiO2 1.66 1.56 1.51 1.58 1.94 1.92 

P25DMA 5% ZnO 0.84 0.87 1.48 1.37 1.58 1.49 

P25DMA 10% ZnO 0.33 -0.19 0.53 0.18 0.48 0.19 

P25DMA 20% ZnO -0.07 -0.26 -0.49 -0.36 -0.24 -0.47 

 

Table E.4: Amount of Acetaldehyde Sorbed onto the P25DMA Nanocomposites 

 Amount Sorbed (ppm) 

Time (min) 36 48 36 48 36 48 

P25DMA 0.73 0.68 0.80 0.69 0.76 0.70 

P25DMA 5% Al2O3 -0.17 -0.19 -0.11 -0.09 0.27 0.30 

P25DMA 5% NiO 0.50 0.50 0.50 0.54 0.62 0.70 

P25DMA 10% NiO 0.70 0.47 0.87 0.56 0.53 0.47 

P25DMA 20% NiO 0.43 0.63 0.40 0.45 0.60 0.49 

P25DMA 5% ZnO 0.32 0.29 0.38 0.32 0.40 0.35 

P25DMA 5% TiO2 0.24 0.23 0.18 0.17 0.21 0.20 

P25DMA 10% TiO2 0.24 0.33 0.13 0.16 0.24 0.21 

P25DMA 20% TiO2 0.76 0.69 0.66 0.66 0.70 0.66 
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Table E.5: Amount of Acetone Sorbed onto the P25DMA Nanocomposites 

 Amount Sorbed (ppm) 

Time (min) 60 72 60 72 60 72 

P25DMA 0.29 0.25 0.24 0.17 0.34 0.32 

P25DMA 5% Al2O3 0.23 0.17 0.33 0.33 0.22 0.17 

P25DMA 5% NiO 0.41 0.40 0.29 0.27 0.47 0.44 

P25DMA 10% NiO 0.50 0.53 0.49 0.51 0.57 0.56 

P25DMA 20% NiO 0.59 0.57 0.70 0.70 0.59 0.59 

P25DMA 5% ZnO 0.22 0.14 0.03 0.02 0.14 0.07 

P25DMA 5% TiO2 0.21 0.20 0.30 0.28 0.28 0.24 

P25DMA 10% TiO2 0.29 0.32 0.08 0.13 0.13 0.13 

P25DMA 20% TiO2 0.47 0.45 0.33 0.28 0.90 0.77 

 

Table E.6: Benzene onto the P25DMA Nanocomposites 

 Amount Sorbed (ppm) 

Time (min) 40 60 40 60 40 60 

P25DMA 0.08 0.07 -0.05 -0.12 0.05 -0.01 

P25DMA 5% Al2O3 0.10 0.06 0.27 0.06 -0.03 -0.04 

P25DMA 5% NiO 0.13 0.08 -0.05 -0.07 0.02 0.00 

P25DMA 10% NiO 0.21 0.18 0.24 0.23 0.24 0.23 

P25DMA 20% NiO 1.23 1.20 0.36 0.30 0.31 0.29 

P25DMA 5% ZnO -0.02 -0.04 0.34 0.05 -0.04 -0.07 

P25DMA 5% TiO2 0.03 0.02 0.04 0.03 -0.10 -0.14 

P25DMA 10% TiO2 0.03 0.01 0.09 0.10 0.11 0.11 

P25DMA 20% TiO2 0.38 0.25 0.41 0.29 0.27 0.14 

 

Table E.7: Formaldehyde onto the P25DMA Nanocomposites 

 Amount Sorbed (ppm) 

Time (min) 48 60 48 60 48 60 

P25DMA 1.44 1.42 1.09 0.97 1.16 1.1 

P25DMA 5% Al2O3 0.41 0.48 0.68 0.78 0.73 0.59 

P25DMA 5% NiO 1.29 1.18 1.42 1.42 1.44 1.43 

P25DMA 10% NiO 0.97 0.97 0.8 0.82 0.83 0.85 

P25DMA 20% NiO 1.05 1.08 1.02 1.02 0.98 0.94 

P25DMA 5% ZnO 0.76 0.82 0.9 0.74 0.97 0.86 

P25DMA 5% TiO2 1.17 1.09 1.08 1.02 1.15 1.27 

P25DMA 10% TiO2 0.75 0.72 0.86 0.87 0.74 0.76 

P25DMA 20% TiO2 1.03 0.95 1.4 1.33 1.47 1.49 
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Table E.8: Methanol onto the P25DMA Nanocomposites 

 Amount Sorbed (ppm) 

Time (min) 72 84 72 84 72 84 

P25DMA 1.27 1.18 1.61 1.52 1.31 0.94 

P25DMA 5% Al2O3 -0.03 -0.10 -0.70 -0.62 -0.30 -0.30 

P25DMA 5% NiO 0.47 0.43 0.96 0.94 0.32 0.28 

P25DMA 10% NiO 0.49 0.50 0.91 0.63 0.72 0.50 

P25DMA 20% NiO 0.67 0.65 0.83 0.79 0.83 0.70 

P25DMA 5% ZnO 0.75 0.58 0.21 0.02 0.31 0.12 

P25DMA 5% TiO2 0.15 0.21 -0.18 -0.39 -0.06 -0.20 

P25DMA 10% TiO2 0.26 0.27 0.44 0.35 0.46 0.29 

P25DMA 20% TiO2 1.06 0.96 1.01 0.77 0.98 0.98 

 

E.2 Chapter 5 Data 

 

E.2.1 RFID Sensor (Section 5.1.1) 

 

Table E.9: Flexible vs. Rigid RFID Sensor 

Gas 

Mixture 

Ethanol 

Concentration 

Rigid Flexible 

OV 275 OV 225 SXFA OV 275 OV 225 SXFA 

Ethanol 1250 1.35 0.73 1.01 1.08 0.41 1.47 

Methanol 1250 1.03 0.64 1.86 1.47 1.25 1.46 

Benzene 1250 0.43 0.12 0.65 0.41 0.16 0.71 

Acetone 1250 1.75 1.35 1.74 1.42 0.82 1.35 

E-M 1250 2.28 1.18 3.08 2.71 1.25 2.85 

 625 1.54 0.86 2.07 1.97 0.91 2.4 

E-A 1250 2.44 1.17 2.81 2.39 1.14 2.76 

 625 1.54 0.69 2.11 1.85 0.63 2.17 

E-B 1250 1.82 0.87 1.53 1.61 0.73 1.44 

 625 1.33 0.36 2.19 1.12 0.42 1.95 

E-M-A 1250 3.56 2.81 4.17 3.53 2.67 4.21 

 625 3.42 2.74 4.13 3.47 2.59 3.97 

E-M-B 1250 2.65 1.27 3.21 2.81 1.44 3.13 

 625 2.13 0.71 2.74 2.27 1.79 2.87 

E-A-B 1250 3.57 2.31 3.45 3.31 1.98 3.47 

 625 2.99 1.78 2.65 2.76 1.44 2.79 

E-M-B-A 1250 3.66 2.91 5.44 3.69 2.78 4.89 

 625 3.68 2.48 4.98 3.66 2.66 4.68 

Note that E, M, A, and B are ethanol, methanol, acetone, and benzene, respectively. 
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Table E.10: Rigid vs Flexible Sensor 

Gas 

Mixture 

Ethanol 

Concentration 

Rigid Flexible 

P25DMA 20% NiO 20% ZnO P25DMA 20% NiO 20% ZnO 

Ethanol 1250 1.51 3.92 0.01 1.22 4.75 0.02 

Methanol 1250 0.91 1.21 0.03 0.70 1.35 0.05 

Benzene 1250 0.39 0.18 0.71 0.29 0.13 0.59 

Acetone 1250 0.71 0.64 0.00 0.69 0.43 0.02 

E-M 1250 2.53 5.33 0.06 2.21 5.71 0.07 

 625 1.51 3.34 0.04 1.45 3.11 0.04 

E-A 1250 2.18 4.74 0.01 1.97 5.01 0.01 

 625 1.63 2.89 0.02 1.48 2.65 0.01 

E-B 1250 1.85 4.33 0.75 1.71 4.28 0.51 

 625 1.00 2.35 0.72 1.03 2.07 0.52 

E-M-A 1250 2.97 6.35 0.06 2.88 6.39 0.07 

 625 2.41 3.44 0.06 2.19 3.47 0.06 

E-M-B 1250 2.73 6.00 0.73 2.36 6.18 0.51 

 625 2.11 3.49 0.73 1.97 3.1 0.5 

E-A-B 1250 2.69 4.99 0.73 2.37 5.07 0.52 

 625 1.94 2.88 0.72 1.73 2.61 0.52 

E-M-B-A 1250 3.27 6.3 0.76 3.41 6.47 0.71 

 625 2.53 4.05 0.78 2.56 4.01 0.68 

Note that E, M, A, and B are ethanol, methanol, acetone, and benzene, respectively. 

 

Table E.11. RFID Sensor Array Data 

Gas 

Mixture 

Ethanol 

Concentration 

Rigid Flexible 

P25DMA 20% NiO 20% ZnO P25DMA 20% NiO 20% ZnO 

Ethanol 1250 1.35 0.73 1.01 1.51 3.92 0.01 

Methanol 1250 1.03 0.64 1.86 0.91 1.21 0.03 

Benzene 1250 0.43 0.12 0.65 0.39 0.18 0.71 

Acetone 1250 1.75 1.35 1.74 0.71 0.64 0.00 

E-M 1250 2.28 1.18 3.08 2.53 5.33 0.06 

 625 1.54 0.86 2.07 1.51 3.34 0.04 

E-A 1250 2.44 1.17 2.81 2.18 4.74 0.01 

 625 1.54 0.69 2.11 1.63 2.89 0.02 

E-B 1250 1.82 0.87 1.53 1.85 4.33 0.75 

 625 1.33 0.36 2.19 1.00 2.35 0.72 

E-M-A 1250 3.56 2.81 4.17 2.97 6.35 0.06 

 625 3.42 2.74 4.13 2.41 3.44 0.06 

E-M-B 1250 2.65 1.27 3.21 2.73 6.00 0.73 

 625 2.13 0.71 2.74 2.11 3.49 0.73 

E-A-B 1250 3.57 2.31 3.45 2.69 4.99 0.73 

 625 2.99 1.78 2.65 1.94 2.88 0.72 

E-M-B-A 1250 3.66 2.91 5.44 3.27 6.3 0.76 

 625 3.68 2.48 4.98 2.53 4.05 0.78 

Note that E, M, A, and B are ethanol, methanol, acetone, and benzene, respectively. 
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E.2.2 MEMS Sensor (Section 5.1.2) 

 

Table E.12: MEMS Sensor 

Sensing 

Material 
Set-off Voltage 

Ethanol Concentration 

(ppm) 

PANI 10% NiO 

20 

15 

1 

1000 

100 

50 

P25DMA 
5 

1 

50 

5 

 

E.2.3 Backbone Studies (Section 5.2) 

 

Table E.13: PANI vs PPy to Ethanol 

 Amount Not Sorbed (ppm) 

Time (min) 60 72 60 72 60 72 

PANI 3.78 3.80 3.96 4.02 3.99 3.89 

PPy 3.40 3.49 3.43 3.48 3.39 3.49 

 

Table E.14: P25DMA vs PDPMO to Ethanol 

 Amount Not Sorbed (ppm) 

Time (min) 60 72 60 72 60 72 

P25DMA 3.39 3.48 3.05 3.14 3.35 3.72 

PDMPO 4.71 4.66 4.33 4.30 4.46 4.52 

 

E.2.4 Functional Group Studies (Section 5.3) 

 

Table E.15: PMMA vs PVP to Ethanol 

 Amount Not Sorbed (ppm) 

Time (min) 60 72 60 72 60 72 

PMMA 3.64 3.64 3.65 3.70 3.97 3.67 

PVP 4.14 4.10 3.47 3.77 3.91 3.94 

 

Table E.16: PANI and Derivatives to Ethanol 

 Amount Not Sorbed (ppm) 

Time (min) 60 72 60 72 60 72 

PANI 4.33 4.44 4.32 4.46 4.32 4.42 

PoANI 4.71 4.88 4.57 4.69 4.86 5.00 

P25DMA 3.66 4.05 4.06 4.22 3.76 4.17 
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Table E.17: Percent Response to Ethanol, Methanol, and Acetone 

 
Percent Response Change (%) 

Ethanol Acetone Methanol 

OV275 
3.72 5.76 3.99 

3.85 4.88 3.75 

OV225 1.54 3.57 2.46 

1.36 3.49 2.21 

SXFA 4.76 5.58 7.13 

4.78 5.03 6.84 

 

E.2.5 Batch to Batch Comparison (Section 5.5.1) 

 

Table E.18: Amount of Ethanol Sorbed onto Two Batches of PANI 5% NiO  

 
Amount Sorbed (ppm) 

Sample 1 Sample 2 

Batch 1 3.12 3.22 

Batch 2 3.28 3.15 

Note 10 ppm of ethanol was used instead of 5 ppm. 

 

E.2.6 Operator Comparison (Section 5.5.2) 

 

Table E.19: Amount of Ethanol Sorbed onto PANI 5% NiO Prepared by Two Operators 

 Amount Sorbed (ppm) 
 Sample 1 Sample 2 Sample 3 

Operator 1 3.48 3.37 3.49 

Operator 2 3.53 3.35 3.36 

Note 10 ppm of ethanol was used instead of 5 ppm. 

 

E.2.7 Day to Day Comparison (Section 5.5.3) 

 

Table E.20: Amount of Ethanol Sorbed onto PANI 5% NiO Measured on Different Days 

 Amount Sorbed (ppm) 
 Sample 1 Sample 2 

Day 1 3.48 3.53 

Day 2 3.37 3.35 

Day 3 3.49 3.36 

Note 10 ppm of ethanol was used instead of 5 ppm. 
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E.2.8 Powder vs. Film (Section 5.5.4) 

 

Table E.21: Amount of Ethanol Sorbed onto PVP and PMMA Powders and Films 

 Amount of Ethanol Sorbed (ppm) 

Time (min) 60 72 60 72 60 72 

PVP Film 0.86 0.90 1.14 1.18 1.09 1.06 

PVP Powder 0.77 0.76 1.07 0.98 1.3 1.09 

PMMA Film 1.36 1.36 1.35 1.30 1.07 1.02 

PMMA Powder 1.03 0.74 0.86 0.73 1.41 1.13 

 

E.3 Chapter 7 Data 

 

E.3.1 PANI vs. PNMA (Section 7.3.1.1) 

 

Table E.22: Amount of Analyte Sorbed onto PANI and PNMA 

 Amount Sorbed (ppm) 

Time (min) 60 72 60 72 60 72 

Ethanol-PANI 1.20 1.18 1.02 0.96 0.99 1.09 

Acetone-PANI 0.38 0.38 0.32 0.35 0.48 0.50 

Ethanol-PNMA 0.51 0.44 0.42 0.40 0.47 0.48 

Acetone-PNMA 0.00 0.00 0.09 0.05 0.03 0.03 

 

E.3.2 Commercial Polymers (Section 7.4.2) 

 

Table E.23: Amount of Ethanol Sorbed 

 Amount of Ethanol Sorbed (ppm) 

Time (min) 60 72 60 72 60 72 

PPO 0.91 1.20 1.50 1.48 0.78 0.81 

PPy 1.58 1.49 1.55 1.50 1.59 1.49 

PMMA 1.34 1.34 1.33 1.28 1.01 1.31 

PVP 0.84 0.88 1.51 1.21 1.07 1.04 

PEI 0.01 0.04 0.13 0.05 -0.01 0.01 

 

Table E.24: Amount of Acetone Sorbed 

 Amount of Acetone Sorbed (ppm) 

Time (min) 60 72 60 72 60 72 

PPO 0.31 0.27 0.29 0.28 0.38 0.36 

PPy 0.09 0.13 0.14 0.13 0.23 0.18 

PMMA 0.17 0.18 0.09 0.09 0.27 0.29 

PVP 0.00 0.00 0.00 0.09 0.05 0.00 
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Table E.25: Amount of Methanol Sorbed  

 Amount of Methanol Sorbed (ppm) 

Time (min) 60 72 60 72 60 72 

PPO 0.00 0.00 0.33 0.36 0.20 0.14 

PPy 0.61 0.52 0.79 0.65 0.79 0.72 

PMMA 0.00 0.02 0.39 0.32 0.35 0.38 

PVP 0.00 0.00 0.00 0.00 0.00 0.00 
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Appendix F: Statistical Analysis Tables 
 

Appendix F contains all the statistical analysis that was done with the data shown in Appendix E.  

The data were analyzed using analysis of variance (ANOVA), Bonferroni’s t-test and Fisher’s least 

significant difference (LSD).  Again, this appendix has been divided into subsections similar to 

Appendix E, for ease of relating the data to the analysis. 

 

The Analysis of Variance (ANOVA) tables list the sum of squares (SS) (see Equations F.2 – F.4), 

the degrees of freedom (DF) (see Equations F.5 – F.7), and mean square (MS) (see Equations F.8 

– F.9), as well as the Fobserved (see Equation F.10) and the Fcritical (from the F-table).  Note that B 

stands for ‘between treatments’, and W stands for ‘within treatment’ (a.k.a. error).  In addition, all 

these equations assume N is the total number of samples, where n is the sample size for k 

treatments. 

 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑚𝑒𝑎𝑛 =
1

∑ 𝑛𝑡
𝑘
𝑡=1

(∑ ∑ 𝑦𝑡𝑖
𝑛𝑘
𝑖=1

𝑘
𝑡=1 )

2
  (Equation F.1) 

 

𝑆𝑆𝐵 = ∑ 𝑛𝑡(𝑦𝑡̅ − 𝑦̅)2 = ∑
(𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑡𝑜𝑡𝑎𝑙𝑠)2

𝑛𝑡

𝑘
𝑡=1

𝑘
𝑡=1 − 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑚𝑒𝑎𝑛

 (Equation F.2) 

 

𝑆𝑆𝑊 = ∑ ∑ (𝑦𝑡𝑖 − 𝑦𝑡̅)2 = 𝑆𝑆𝑇𝑜𝑡𝑎𝑙 − 𝑆𝑆𝐵
𝑛𝑡
𝑖=1

𝑘
𝑡=1  (Equation F.3) 

 

𝑆𝑆𝑇𝑜𝑡𝑎𝑙 = ∑ ∑ (𝑦𝑡𝑖 − 𝑦̅)2𝑛𝑡
𝑖=1

𝑘
𝑡=1 = ∑ ∑ 𝑂𝑏𝑠2 − 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑚𝑒𝑎𝑛

𝑛𝑡
𝑖=1

𝑘
𝑡=1   

 (Equation F.4) 

 

𝑑𝑓𝐵 = 𝑘 − 1   (Equation F.5) 

 

𝑑𝑓𝑊 = ∑ (𝑛𝑡 − 1)𝑘
𝑡=1 = 𝑑𝑓𝑇𝑜𝑡𝑎𝑙 − 𝑑𝑓𝐵    (Equation F.6) 

 

𝑑𝑓𝑇𝑜𝑡𝑎𝑙 = ∑ 𝑛𝑘 − 1𝑘
𝑡=1    (Equation F.7) 

 

𝑀𝑆𝐵 =
𝑆𝑆𝐵

𝑑𝑓𝐵
  (Equation F.8) 

 

𝑀𝑆𝑊 =
𝑆𝑆𝑊

𝑑𝑓𝑊
   (Equation F.9) 

 

𝐹𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 =
𝑀𝑆𝐵

𝑀𝑆𝑊
     (Equation F.10) 
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If blocking was used to separate the effects of the blocks from the treatments (as was the case for 

the sensing materials (blocks) on different sensors (treatments)), then the following equations (see 

Equations F.11 – F.17) were used instead of Equations F.1 – F. 10 for the ANOVA table. 

 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛 =
1

𝑘𝑛
(∑ ∑ 𝑦𝑖𝑡

𝑛
𝑖=1

𝑘
𝑡=1 )

2
 (Equation F.11) 

 

𝑆𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 =
1

𝑛
∑ (𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑇𝑜𝑡𝑎𝑙𝑠)2 − 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛𝑘

𝑡=1  (Equation F.12) 

 

𝑑𝑓𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 = 𝑘 − 1  (Equation F.13) 

 

𝑆𝐵𝑙𝑜𝑐𝑘 =
1

𝑘
∑ (𝐵; 𝑙𝑜𝑐𝑘 𝑇𝑜𝑡𝑎𝑙𝑠)2 − 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛𝑛

𝑖=1   (Equation F.14) 

 

𝑑𝑓𝐵𝑙𝑜𝑐𝑘 = 𝑘 − 1  (Equation F.15) 

 

𝑆𝑇𝑜𝑡𝑎𝑙 = ∑ ∑ 𝑦𝑡𝑖
2

𝑖 − 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛𝑡  (Equation F.16) 

 

𝑑𝑓𝑇𝑜𝑡𝑎𝑙 = 𝑛 ∙ 𝑘 − 1  (Equation F.17) 

 

When the null hypothesis was rejected, a paired comparison test was needed to identify which 

pairs of means (μ) were significantly different from one another.  Therefore the Bonferroni t-test 

(see Equations F.18 – F.20) and the Fisher’s Least Significant Difference (LSD) (see Equations 

F.20 - F.22) were used.   

 

𝑠 = √𝑀𝑆𝑊 (Equation F.18) 

 

𝑇𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 =
𝑦̅𝑖−𝑦̅𝑗

𝑠√
1

𝑛𝑖
+

1

𝑛𝑗

  (Equation F.19) 

 

𝑡𝑁−𝑘,
𝛼

2
, where 𝑁 = ∑ 𝑛𝑡

𝑘
𝑡=1  (Equation F.20) 

 

𝑠. 𝑒. = √
2𝑠2

𝑛
  (Equation F.21) 

 

𝐿𝑆𝐷 = 𝑠. 𝑒.∙ 𝑡𝑁−𝑘,
𝛼

2
 (Equation F.22) 
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Below are the ANOVA tables that summarize the data evaluated in Chapters 4 and 6.  In addition, 

the paired comparisons are also summarized in tables, with the significantly different means (μ) 

highlighted.  Also, the percent error (see Equations F.23 – F.26) corresponding to the data analyzed 

by ANOVA is summarized in a table below the appropriate ANOVA table (i.e. for each 

comparison made in the thesis, the ANOVA table and percent error are listed together).   

 

𝑋̅ =
1

𝑛
∑ 𝑋𝑖  𝑛

𝑖=1  (Equation F.23) 

 

𝑠2 =
∑ (𝑋𝑖−𝑋̅)2𝑛

𝑖=1

𝑛−1
=

1

𝑛−1
{∑ 𝑋𝑖

2 −
1

𝑛
(∑ 𝑋𝑖

𝑛
𝑖=1 )2𝑛

𝑖=1 } (Equation F.24) 

 

𝑠 = √𝑠2 (Equation F.25) 

 

% 𝑒𝑟𝑟𝑜𝑟 =
𝑠

𝑋̅
× 100 (Equation F.26) 

 

F.1 Analysis from Chapter 4 

 

F.1.1 Analysis for PANI and Its Derivatives (Section 4.3.1) 

 

Table F.1: ANOVA Comparing Ethanol Sorption on PANI, PoANI, and P25DMA 

Source SS df MS Fobserved F2,6,,0.05 

Between Polymers 0.40 2 0.20 39.69 5.14 

Within Polymers 0.03 6 0.01   

Total 0.43 8      

 

There is a significant difference between at least one pair of means, therefore the Bonferroni t-test 

and Fisher’s LSD were used to determine which means were different.  The means highlighted in 

red in Table F.2 were significantly different.  The polymers are labelled A-C in Table F.3, which 

also lists the percent error based on three independent replicates for each polymer. 

 

Table F.2: Bonferroni t-test and Fisher’s LSD Comparing Ethanol Sorption PANI and Its 

Derivatives 

Mean Comparison Tobs LSD 

A-B 4.67 0.269 

A-C 4.24 0.244 

B-C 8.91 0.513 

 

See Table F.3 for polymer designations A-C.  Highlighted rows are those that have means that are 

significantly different.  Note that t6, 0.0005 = 5.959 and LSD = 0.343. 
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Table F.3 Percent Error for Ethanol Sorption onto PANI, PoANI, and P25DMA 

Polymer Average (ppm) 
Standard 

Deviation 

Percent Error 

(%) 

A PANI 0.62 0.02 0.34 

B PoANI 0.35 0.08 1.75 

C P25DMA 0.88 0.12 2.98 

 

F.1.2 Analysis for Doped PANI and PoANI (Section 4.3.2) 

 

Table F.4: ANOVA Comparing Ethanol Sorption on Doped and Undoped PANI and PoANI 

Source SS df MS Fobserved F9,20,0.05 

Between Polymers 1.56 9 0.17 34.89 2.39 

Within Polymers 0.10 20 0.01   

Total 1.66 29    

 

There is a significant difference between at least one pair of means, therefore the Bonferroni t-test 

and Fisher’s LSD were employed to determine which means were different.  The means 

highlighted in red in Table F.5 were significantly different.  The polymers are labelled A-J in Table 

F.6, which also lists the percent error based on three independent replicates for each polymer. 

 

Table F.5: Bonferroni t-test and Fisher’s LSD Comparing Ethanol Sorption on Doped and 

Undoped PANI and PoANI 

Mean 

Comparison 
Tobs LSD 

Mean 

Comparison 
Tobs LSD 

Mean 

Comparison 
Tobs LSD 

A-B 0.32 0.019 B-I 6.12 0.352 E-F 3.61 0.208 

A-C 1.27 0.073 B-J 5.56 0.320 E-G 5.86 0.338 

A-D 2.80 0.161 C-D 4.07 0.234 E-H 2.08 0.120 

A-E 1.06 0.061 C-E 0.21 0.012 E-I 7.51 0.432 

A-F 4.67 0.269 C-F 3.40 0.196 E-J 6.95 0.400 

A-G 6.93 0.399 C-G 5.65 0.326 F-G 2.26 0.130 

A-H 1.02 0.059 C-H 2.29 0.132 F-H 5.69 0.328 

A-I 6.44 0.371 C-I 7.71 0.444 F-I 11.11 0.640 

A-J 5.89 0.339 C-J 7.16 0.412 F-J 10.56 0.608 

B-C 1.60 0.092 D-E 3.86 0.222 G-H 7.95 0.458 

B-D 2.47 0.142 D-F 7.47 0.430 G-I 13.37 0.770 

B-E 1.39 0.080 D-G 9.72 0.560 G-J 12.81 0.738 

B-F 4.99 0.288 D-H 1.78 0.102 H-I 5.42 0.312 

B-G 7.25 0.418 D-I 3.65 0.210 H-J 4.87 0.280 

B-H 1.02 0.040 D-J 3.09 0.178 I-J 0.56 0.032 

 

See Table F.6 for polymer designations A-J.  Highlighted rows are those that have means that are 

significantly different.  Note that t20, 0.0005 = 3.850 and LSD = 0.222. 
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Table F.6: Percent Error Comparing Ethanol Sorption on Doped and Undoped PANI and PoANI 

Polymer Average (ppm) 
Standard 

Deviation 

Percent Error 

(%) 

A PANI 0.62 0.02 0.34 

B PANI 10% NiO 0.63 0.08 1.87 

C PANI 20% NiO 0.54 0.01 0.31 

D PANI 10% ZnO 0.78 0.09 2.12 

E PANI 20% ZnO 0.55 0.07 1.57 

F PoANI 0.35 0.08 1.75 

G PoANI 10% NiO 0.22 0.01 0.26 

H PoANI 20% NiO 0.67 0.04 0.83 

I PoANI 10% ZnO 0.99 0.07 1.75 

J PoANI 20% ZnO 0.95 0.13 3.21 

 

F.1.3 Analysis for Doped P25DMA (Section 4.3.3) 

 

Table F.7: ANOVA Comparing Ethanol Sorption on P25DMA and P25DMA Doped with Al2O3 

Source SS df MS Fobserved F3,8,0.05 

Between Polymers 0.71 3 0.24 5.90 4.07 

Within Polymers 0.32 8 0.04   

Total 1.03 11    

There is a significant difference between at least one pair of means, therefore the Bonferroni t-test 

and Fisher’s LSD were used to determine which means were different.  The means highlighted in 

red in Table F.8 were significantly different.  The polymers are labelled A-D in Table F.9, which 

also lists the percent error based on three independent replicates for each polymer. 

 

Table F.8: Bonferroni t-test and Fisher’s LSD Comparing Ethanol Sorption on P25DMA and 

P25DMA Doped with Al2O3 

Mean Comparison Tobs LSD 

A-B 0.640 3.91 

A-C 0.525 3.20 

A-D 0.468 2.86 

B-C 0.115 0.70 

B-D 0.172 1.05 

C-D 0.057 0.35 

 

See Table F.9 for polymer designations A-D.  Highlighted rows are those that have means that are 

significantly different.  Note that t8, 0.0005 = 3.355 and LSD = 0.550. 

 



254 

 

Table F.9: Percent Error Comparing Ethanol Sorption on P25DMA and P25DMA Doped with 

CuO 

Polymer Average (ppm) 
Standard 

Deviation 

Percent Error 

(%) 

A P25DMA 0.88 0.12 2.98 

B P25DMA 5% Al2O3 1.52 0.17 4.87 

C P25DMA 10% Al2O3 1.40 0.19 5.20 

D P25DMA 20% Al2O3 1.34 0.25 6.87 

 

Table F.10: ANOVA Comparing Ethanol Sorption on P25DMA and P25DMA Doped with CuO 

Source SS df MS Fobserved F3,8,0.05 

Between Polymers 1.12 3 0.37 57.36 4.07 

Within Polymers 0.05 8 0.01   

Total 1.18 11      

 

There is a significant difference between at least one pair of means, therefore the Bonferroni t-test 

and Fisher’s LSD were employed to determine which means were different.  The means 

highlighted in red in Table F.11 were significantly different.  The polymers are labelled A-D in 

Table F.12, which also lists the percent error based on three independent replicates for each 

polymer. 

 

Table F.11: Bonferroni t-test and Fisher’s LSD Comparing Ethanol Sorption on P25DMA and 

P25DMA Doped with CuO 

Mean Comparison Tobs LSD 

A-B 11.26 0.743 

A-C 9.17 0.605 

A-D 8.23 0.543 

B-C 2.10 0.138 

B-D 3.03 0.200 

C-D 0.93 0.062 

 

See Table F.12 for polymer designations A-D.  Highlighted rows are those that have means that 

are significantly different.  Note that t8, 0.0005 = 3.355 and LSD = 0.221. 
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Table F.12: Percent Error Comparing Ethanol Sorption on P25DMA and P25DMA Doped with 

CuO 

Polymer Average (ppm) 
Standard 

Deviation 

Percent Error 

(%) 

A P25DMA 0.88 0.12 2.98 

B P25DMA 5% CuO 0.08 0.06 1.18 

C P25DMA 10% CuO 0.21 0.10 2.06 

D P25DMA 20% CuO 0.27 0.08 1.74 

 

Table F.13: ANOVA Comparing Ethanol Sorption on P25DMA and P25DMA Doped with NiO 

Source SS df MS Fobserved F3,8,0.05 

Between Polymers 1.41 3 0.47 14.00 4.07 

Within Polymers 0.27 8 0.03   

Total 1.68 11    

 

There is a significant difference between at least one pair of means, therefore the Bonferroni t-test 

and Fisher’s LSD were used to determine which means were different.  The means highlighted in 

red in Table F.14 were significantly different.  The polymers are labelled A-D in Table F.15, which 

also lists the percent error based on three independent replicates for each polymer. 

 

Table F.14: Bonferroni t-test and Fisher’s LSD Comparing Ethanol Sorption on P25DMA and 

P25DMA Doped with NiO 

Mean Comparison Tobs LSD 

A-B 4.15 0.700 

A-C 4.67 0.228 

A-D 1.52 0.240 

B-C 1.60 0.928 

B-D 6.20 0.460 

C-D 3.07 0.468 

 

See Table F.15 for polymer designations A-D.  Highlighted rows are those that have means that 

are significantly different.  Note that t8, 0.0005 = 3.355 and LSD = 0.502. 

 

Table F.15: Percent Error Comparing Ethanol Sorption on P25DMA and P25DMA Doped with 

NiO 

Polymer Average (ppm) 
Standard 

Deviation 

Percent Error 

(%) 

A P25DMA 0.88 0.12 2.98 

B P25DMA 5% NiO 1.58 0.22 6.30 

C P25DMA 10% NiO 0.65 0.20 4.53 

D P25DMA 20% NiO 1.10 0.22 5.53 
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Table F.16: ANOVA Comparing Ethanol Sorption on P25DMA and P25DMA Doped with TiO2 

Source SS df MS Fobserved F3,8,0.05 

Between Polymers 1.14 3 0.38 12.20 4.07 

Within Polymers 0.25 8 0.03   

Total 1.39 11    

 

There is a significant difference between at least one pair of means, therefore the Bonferroni t-test 

and Fisher’s LSD were used to determine which means were different.  The means highlighted in 

red in Table F.17 were significantly different.  The polymers are labelled A-D in Table F.18, which 

also lists the percent error based on three independent replicates for each polymer. 

 

Table F.17: Bonferroni t-test and Fisher’s LSD Comparing Ethanol Sorption on P25DMA and 

P25DMA Doped with TiO2 

Mean Comparison Tobs LSD 

A-B 2.16 0.312 

A-C 4.17 0.602 

A-D 5.61 0.808 

B-C 2.01 0.290 

B-D 3.44 0.497 

C-D 1.43 0.207 

 

See Table F.18 for polymer designations A-D.  Highlighted rows are those that have means that 

are significantly different.  Note that t8, 0.0005 = 3.355 and LSD = 0.484. 

 

Table F.18: Percent Error Comparing Ethanol Sorption on P25DMA and P25DMA Doped with 

TiO2 

Polymer Average (ppm) 
Standard 

Deviation 

Percent Error 

(%) 

A P25DMA 0.88 0.12 2.98 

B P25DMA 5% TiO2 1.19 0.23 6.12 

C P25DMA 10% TiO2 1.48 0.07 2.11 

D P25DMA 20% TiO2 1.70 0.19 5.70 

 

Table F.19: ANOVA Comparing Ethanol Sorption on P25DMA and P25DMA Doped with ZnO 

Source SS df MS Fobserved F3,8,0.05 

Between Polymers 3.45 3 1.15 60.17 4.07 

Within Polymers 0.15 8 0.02   

Total 3.60 11    

 

There is a significant difference between at least one pair of means, therefore the Bonferroni t-test 

and Fisher’s LSD were employed to determine which means were different.  The means 
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highlighted in red in Table F.20 were significantly different.  The polymers are labelled A-D in 

Table F.21, which also lists the percent error based on three independent replicates for each 

polymer. 

 

Table F.20: Bonferroni t-test and Fisher’s LSD Comparing Ethanol Sorption on P25DMA and 

P25DMA Doped with ZnO 

Mean Comparison Tobs LSD 

A-B 4.40 0.497 

A-C 5.51 0.622 

A-D 10.74 1.212 

B-C 9.91 1.118 

B-D 15.14 1.708 

C-D 5.23 0.590 

 

See Table F.21 for polymer designations A-D.  Highlighted rows are those that have means that 

are significantly different.  Note that t8, 0.0005 = 3.355 and LSD = 0.397. 

 

Table F.21: Percent Error Comparing Ethanol Sorption on P25DMA and P25DMA Doped with 

ZnO 

Polymer Average (ppm) 
Standard 

Deviation 

Percent Error 

(%) 

A P25DMA 0.88 0.12 2.98 

B P25DMA 5% ZnO 1.37 0.18 4.98 

C P25DMA 10% ZnO 0.25 0.26 5.49 

D P25DMA 20% ZnO 0.00 0.16 2.98 

 

F.1.4 Analysis for Other Polymers (Section 4.3.4) 

 

Table F.22: ANOVA Comparing Ethanol Sorption on the Other Polymers 

Source SS df MS Fobserved F4,10,0.05 

Between Polymers 4.07 4 1.02 35.38 3.478 

Within Polymers 0.29 10 0.03   

Total 4.36 14    

 

There is a significant difference between at least one pair of means, therefore the Bonferroni t-test 

and Fisher’s LSD were used to determine which means were different.  The means highlighted in 

red in Table F.23 were significantly different.  The polymers are labelled A-E in Table F.24, which 

also lists the percent error based on three independent replicates for each polymer. 
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Table F.23: Bonferroni t-test and Fisher’s LSD Comparing Ethanol Sorption on the Other 

Polymers 

Mean Comparison Tobs LSD 

A-B 3.03 0.420 

A-C 1.12 0.155 

A-D 0.16 0.022 

A-E 7.77 1.075 

B-C 1.91 0.265 

B-D 3.19 0.442 

B-E 10.80 1.495 

C-D 1.28 0.177 

C-E 8.88 1.230 

D-E 7.61 1.053 

See Table F.24 for polymer designations A-E.  Highlighted rows are those that have means that 

are significantly different.  Note that t10, 0.0005 = 3.169 and LSD = 0.439. 

 

Table F.24: Percent Error Comparing Ethanol Sorption on the Other Polymers 

Polymer Average (ppm) 
Standard 

Deviation 

Percent Error 

(%) 

A PPO 1.11 0.33 8.47 

B PPy 1.53 0.05 1.33 

C PMMA 1.27 0.13 3.46 

D PVP 1.27 0.25 6.30 

E PEI 0.04 0.05 1.01 

 

F.1.5 Analysis for Selectivity Studies (Section 4.4) 

 

Table F.25: ANOVA Comparing Different Analyte Sorption on P25DMA 

Source SS df MS Fobserved F9,20,0.05 

Between Polymers 3.98 5 0.80 59.30 3.151 

Within Polymers 0.16 12 0.01   

Total 4.14 17    

 

There is a significant difference between at least one pair of means, therefore the Bonferroni t-test 

and Fisher’s LSD were used to determine which means were different.  The means highlighted in 

red in Table F.26 were significantly different.  The analytes are labelled A-F in Table F.27, which 

also lists the percent error based on three independent replicates for each analyte. 
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Table F.26: Bonferroni t-test and Fisher’s LSD Comparing Different Analyte Sorption on 

P25DMA 

Mean 

Comparison 
Tobs LSD 

Mean 

Comparison 
Tobs LSD 

Mean 

Comparison 
Tobs LSD 

A-B 4.97 0.46 B-C 2.73 0.25 C-E 12.33 1.13 

A-C 7.70 0.71 B-D 6.54 0.60 C-F 14.77 1.35 

A-D 1.57 0.14 B-E 9.60 0.88 D-E 3.06 0.28 

A-E 4.63 0.42 B-F 12.04 1.10 D-F 5.50 0.50 

A-F 7.07 0.65 C-D 9.27 0.85 E-F 2.44 0.22 

See Table F.6 for analyte designations A-F.  Highlighted rows are those that have means that are 

significantly different.  Note that t12, 0.005 = 3.055 and LSD = 0.199. 

 

Table F.27: Percent Error Comparing Different Analyte Sorption on P25DMA 

Analyte Average (ppm) 
Standard 

Deviation 

Percent Error 

(%) 

A Acetaldehyde 4.37 0.040 0.91 

B Acetone 5.24 0.064 1.22 

C Benzene 5.09 0.010 0.20 

D Ethanol 4.14 0.088 2.11 

E Formaldehyde 3.91 0.113 2.88 

F Methanol 3.30 0.222 6.73 

 

F.2 Analysis for Chapter 5 

 

F.2.1 Analysis for RFID Ethanol Sensitivity (Section 5.1.1) 

 

Table F.28: ANOVA Comparing Rigid vs Flexible Sensors 

Source SS df MS Fobserved F9,20,0.05 

Sensors (target comparison) 0.029 1 0.029 0.391 4.45 

Sensing Materials (blocks) 45.05 5 9.011 119.88 2.81 

Error 1.28 17 0.075   

Total 46.36 23    

 

There is a not a statistically significant difference between the types of RFID sensors, therefore 

the Bonferroni t-test and Fisher’s LSD were not needed between the two types of sensors (rigid 

and flexible).  However, the siloxane-based sensing materials and the P25DMA-based sensing 

materials did show a significant difference.  Therefore, the Bonferroni t-test and the Fisher’s LSD 

were used to determine which sensing materials were significantly different from one another on 

the rigid sensor (see Table F.29 and F.30). 
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Table F.29: Bonferroni t-test and Fisher’s LSD Comparing the Rigid and Flexible Sensors 

Mean 

Comparison 
Tobs LSD 

Mean 

Comparison 
Tobs LSD 

Mean 

Comparison 
Tobs LSD 

A-B 6.01 0.62 B-C 2.72 0.28 C-E 28.22 2.91 

A-C 3.30 0.34 B-D 7.56 0.78 C-F 9.70 1.00 

A-D 1.55 0.16 B-E 30.94 3.19 D-E 23.37 2.41 

A-E 24.92 2.57 B-F 6.98 0.72 D-F 14.55 1.50 

A-F 12.99 1.34 C-D 4.85 0.50 E-F 37.92 3.91 

 

See Table F.30 for analyte designations A-F.  Highlighted rows are those that have means that are 

significantly different.  Note that t6, 0.0025 = 4.317 and LSD = 0.509.  Note that the C-D comparison 

was significantly different when using the t-test but not when using the LSD.  At a higher 

confidence level, the t-test would show that the Tobs is less than the tcritical and therefore, SXFA and 

P25DMA did not have responses to ethanol that were statistically significantly different. 

 

Table F.30: Percent Error Comparing the Siloxane-based and P25DMA-based Sensing Materials  

Sensing Material 
Average  

(% Change) 

Standard 

Deviation 

Percent Error 

(%) 

A OV 275 3.79 0.10 2.42 

B OV 225 1.45 0.13 8.78 

C SXFA 4.77 0.01 0.30 

D P25DMA 5.52 0.44 7.94 

E P25DMA 20% NiO 14.13 0.06 0.45 

F P25DMA 20% ZnO 0.10 0.01 14.14 

 

F.2.2 Analysis for Backbone Studies (Section 5.2) 

 

Table F.31: PANI vs PPy 

Source SS df MS Fobserved F1,4, 0.05 

Between Polymers 0.32 1 0.32 58.28 7.71 

Within Polymers 0.02 4 0.01   

Total 0.34 5    

 

Therefore, there is a statistically significant difference between PANI and PPy.  

 

Table F.32: Percent Error Comparing PANI and PPy 

Polymer Average (ppm) Standard Deviation Percent Error (%) 

PANI 3.91 0.10 2.57 

PPy 3.45 0.05 1.33 
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Table F.33: P25DMA vs PPO for Ethanol 

Source SS df MS Fobserved F1,4, 0.05 

Between Polymers 0.01 1 0.01 0.09 7.71 

Within Polymers 0.34 4 0.09   

Total 0.35 5    

 

Therefore, there is no significant difference between P25DMA and PPO when sorbing ethanol.  

 

Table F.34: Percent Error Comparing P25DMA and PPO for Ethanol 

Polymer Average (ppm) Standard Deviation Percent Error (%) 

P25DMA 1.06 0.22 5.49 

PPO 1.11 0.33 8.47 

 

Table F.35: P25DMA vs PPO for Methanol 

Source SS df MS Fobserved F1,4, 0.05 

Between Polymers 1.98 1 1.98 42.38 7.71 

Within Polymers 0.19 4 0.05   

Total 2.17 5    

 

Therefore, there is a statistically significant difference between P25DMA and PPO when sorbing 

methanol.  

 

Table F.36: Percent Error Comparing P25DMA and PPO for Methanol 

Polymer Average (ppm) Standard Deviation Percent Error (%) 

P25DMA 3.94 0.25 7.54 

PPO 3.87 0.17 3.73 

 

F.2.3 Analysis for Functional Group Studies (Section 5.3) 

 

Table F.37: PMMA vs PVP 

Source SS df MS Fobserved F1,4, 0.05 

Between Polymers 0.05 1 0.05 1.29 7.71 

Within Polymers 0.15 4 0.04   

Total 0.19 5    

 

Therefore, there is no significant difference between P25DMA and PPO when sorbing ethanol.  
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Table F.38: Percent Error Comparing PMMA vs PVP 

Polymer Average (ppm) Standard Deviation Percent Error (%) 

PMMA 3.71 0.13 3.46 

PVP 3.89 0.25 6.30 

 

Table F.39: PANI, PoANI, P25DMA 

Source SS df MS Fobserved F2,6, 0.05 

Between Polymers 0.67 2 0.34 36.81 5.14 

Within Polymers 0.06 6 0.01   

Total 0.73 8    

 

There is a significant difference between at least one pair of means, therefore the Bonferroni t-test 

and Fisher’s LSD were used to determine which means were different.  The means highlighted in 

red in Table F.40 were significantly different.  The analytes are labelled A-C in Table F.41, which 

also lists the percent error based on three independent replicates for each analyte. 

 

Table F.40: Bonferroni t-test and Fisher’s LSD Comparing  

Mean 

Comparison 
Tobs LSD 

A-B 3.44 0.269 

A-C 5.09 0.398 

B-C 8.53 0.667 

See Table F.41 for analyte designations A-C.  Highlighted rows are those that have means that are 

significantly different.  Note that t6, 0.005 = 5.959 and LSD = 0.466. 

 

Table F.41: Percent Error Comparing PANI, PoANI, P25DMA 

 
Polymer Average (ppm) 

Standard 

Deviation 

Percent Error 

(%) 

A PANI 3.91 0.10 2.57 

B PoANI 4.29 0.15 3.41 

C P25DMA 3.99 0.23 5.67 

 

Table F.42: OV 275, OV 225, SXFA 

Source SS df MS Fobserved F2,3, 0.05 

Between Polymers 17.791 5 3.558 255.979 4.39 

Within Polymers 0.083 6 0.014   

Total 17.874 11 1.625   
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Table F.43: Bonferroni t-test and Fisher’s LSD Comparing OV 275, OV 225, SXFA 

Mean 

Comparison 
Tobs LSD 

A-B 6.01 0.62 

A-C 3.30 0.34 

B-C 2.72 0.28 

See Table F.6 for analyte designations A-F.  Highlighted rows are those that have means that are 

significantly different.  Note that t6, 0.005 =4.317 and LSD = 0.509. 

 

Table F.44: Percent Error Comparing OV 275, OV 225, SXFA 

 
Polymer 

Average  

(% Change) 

Standard 

Deviation 

Percent Error 

(%) 

A OV 275 3.79 0.10 2.42 

B OV 225 1.45 0.13 8.78 

C SXFA 4.77 0.01 0.30 

 

F.2.4 Analysis for Sample Stability (Section 5.4) 

 

Table F.45 shows summary of the ANOVA.  Since Fobserved is larger than Fcritical, the null hypothesis 

cannot be rejected, therefore there was no significant difference in the amount of ethanol sorbed 

onto each polymer.  All of the polymers performed similarly.  Thus, no further analysis was 

needed.  The percent error for the amount of ethanol sorbed onto each polymer was obtained using 

three independent replicates are shown in Table F.46. 

 

Table F.45: ANOVA Table Comparing Sample Stability of PANI 

Source SS df MS Fobserved F2,6, 0.05 

Between Polymers 0.14 2.00 0.07 3.42 5.14 

Within Polymers 0.12 6.00 0.02   

Total 0.26 8.00    

 

Table F.46: Percent Error Comparing Sample Stability of PANI 

Polymer Average (ppm) Standard Deviation Percent Error (%) 

PANI (5 years) 8.00 0.22 2.71 

PANI (2 years) 8.31 0.06 0.67 

PANI (0 years) 8.16 0.10 1.22 

 

F.2.5 Analysis for Batch to Batch Comparison (Section 5.5.1) 

 

Table F.47 shows summary of the ANOVA.  Since Fobserved is larger than Fcritical, the null hypothesis 

cannot be rejected, therefore there was no significant difference in the amount of ethanol sorbed 

onto each polymer batch.  All of the batches performed similarly.  Thus, no further analysis was 
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needed.  The percent error for the amount of ethanol sorbed onto each polymer batch was obtained 

using two independent replicates is shown in Table F.48. 

 

Table F.47: ANOVA Table Comparing Batches 

Source SS df MS Fobserved F1,2, 0.05 

Between Polymers 0.0001 1 0.0001 0.012 18.51 

Within Polymers 0.016 2 0.008   

Total 0.016 3    

 

Table F.48: Percent Error Comparing Batches 

Polymer Average (ppm) Standard Deviation Percent Error (%) 

Batch 1 3.18 0.08 2.45 

Batch 2 3.22 0.09 2.86 

 

F.2.6 Analysis for Operator Comparison (Section 5.5.2) 

 

Table F.49 shows summary of the ANOVA.  Since Fobserved is larger than Fcritical, the null hypothesis 

cannot be rejected, therefore there was no significant difference in the amount of ethanol sorbed 

onto each polymer made by different operators.  Thus, no further analysis was needed.  The percent 

error for the amount of ethanol sorbed onto each polymer made by different operators was obtained 

using two independent replicates is shown in Table F.50. 

 

Table F.49: ANOVA Table Comparing Operators 

Source SS df MS Fobserved F2,3, 0.05 

Between Polymers 0.021 2 0.011 3.20 9.55 

Within Polymers 0.010 3 0.003   

Total 0.031 5    

 

Table F.50: Percent Error Comparing Operators 

Polymer Average (ppm) Standard Deviation Percent Error (%) 

Operator 1 3.45 0.07 1.93 

Operator 2 3.41 0.10 2.96 

 

F.2.7 Analysis for Day to Day Comparison (Section 5.5.3) 

 

Table F.51 shows summary of the ANOVA.  Since Fobserved is larger than Fcritical, the null hypothesis 

cannot be rejected, therefore there was no significant difference in the amount of ethanol sorbed 

onto each polymer when tested on different days.  Thus, no further analysis was needed.  The 

percent error for the amount of ethanol sorbed onto each polymer on different days was obtained 

using two independent replicates is shown in Table F.52. 
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Table F.51: ANOVA Table Comparing Days 

Source SS df MS Fobserved F1,4, 0.05 

Between Polymers 0.002 1 0.002 0.22 7.71 

Within Polymers 0.029 4 0.007   

Total 0.031 5    

 

Table F.52: Percent Error Comparing Days 

Polymer Average (ppm) Standard Deviation Percent Error (%) 

Day 1 3.51 0.04 1.01 

Day 2 3.36 0.01 0.42 

Day 3 3.43 0.09 2.68 

 

F.2.8 Analysis for Powder versus Film (Section 5.5.4) 

 

Table F.53 shows summary of the ANOVA.  Since Fobserved is larger than Fcritical, the null hypothesis 

cannot be rejected, therefore there was no significant difference in the amount of ethanol sorbed 

onto the polymers deposited as a powder or a film.  Thus, no further analysis was needed.  The 

percent error for the amount of ethanol sorbed onto each polymer (powder and film) was obtained 

using three independent replicates is shown in Table F.54. 

 

Table F.53: ANOVA Table Comparing Powder vs Film Deposition 

Source SS df MS Fobserved F3,8,0.05 

Between Polymers 0.12 3 0.04 0.95 4.07 

Within Polymers 0.32 8 0.04   

Total 0.44 11    

 

Table F.54: Percent Error Comparing Powder vs Film Deposition 

Polymer Average (ppm) Standard Deviation Percent Error (%) 

PVP Film 3.96 0.13 3.28 

PVP Powder 3.99 0.21 5.19 

PMMA Film 3.76 0.16 4.15 

PMMA Powder 4.00 0.26 6.57 
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F.3 Analysis for Chapter 7 

 

F.3.1 Effect of Hydrogen Bonding (Section 7.3.1.1) 

 

Table F.55: ANOVA Comparing PANI vs PNMA 

Source SS df MS Fobserved F3,8,0.05 

Between Polymers 1.67 3 0.56 112.53 4.07 

Within Polymers 0.04 8 0.005   

Total 1.71 11    

 

There is a significant difference between at least one pair of means, therefore the Bonferroni t-test 

and Fisher’s LSD were used to determine which means were different.  The means highlighted in 

red in Table F.56 were significantly different.  The analytes are labelled A-D in Table F.57, which 

also lists the percent error based on three independent replicates for each analyte. 

 

Table F.56: Bonferroni t-test and Fisher’s LSD Comparing PANI and PNMA 

Mean 

Comparison 
Tobs LSD 

A-B 11.68 0.672 

A-C 10.78 0.620 

A-D 18.09 1.040 

B-C 0.90 0.052 

B-D 6.41 0.368 

C-D 7.31 0.420 

See Table F.6 for analyte designations A-F.  Highlighted rows are those that have means that are 

significantly different.  Note that t8, 0.005 = 3.355 and LSD = 0.193. 

 

Table F.57: Percent Error Comparing PANI to PNMA 

Sensing Material Average (ppm) 
Standard 

Deviation 

Percent Error 

(%) 

A PANI (Ethanol) 3.91 0.10 2.57 

B PANI (Acetone) 5.10 0.07 1.42 

C PNMA (Ethanol) 4.53 0.04 0.90 

D PNMA (Acetone) 5.59 0.06 1.11 
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F.3.2 Polymeric Sensing Material Selection Example (Section 7.4.2) 

 

Table F.58: ANOVA Comparing Potential Sensing Materials for Ethanol 

Source SS df MS Fobserved F3,8,0.05 

Between Polymers 0.27 3 0.09 2.58 4.07 

Within Polymers 0.28 8 0.04   

Total 0.56 11    

 

Since Fobserved is less than Fcritical, there is no statistically significant difference between the sorption 

of ethanol onto these polymeric samples. 

 

Table F.59: Percent Error Comparing Potential Sensing Materials for Ethanol 

Sensing Material Average (ppm) 
Standard 

Deviation 

Percent Error 

(%) 

A PPO 3.87 0.33 8.47 

B PPy 3.45 0.05 1.33 

C PMMA 3.71 0.13 3.46 

D PVP 3.89 0.25 6.30 

 

Table F.60: ANOVA Comparing Potential Sensing Materials for Methanol 

Source SS df MS Fobserved F3,8,0.05 

Between Polymers 0.75 3.00 0.25 12.14 4.07 

Within Polymers 0.17 8.00 0.02   

Total 0.92 11.00    

 

Since Fobserved is greater than Fcritical, there is a statistically significant difference between the 

sorption of ethanol onto these polymeric samples.  Therefore the Bonferroni t-test and Fisher’s 

LSD were used to determine which means were different.  The means highlighted in red in Table 

F.61 were significantly different.  The analytes are labelled A-D in Table F.62, which also lists the 

percent error based on three independent replicates for each analyte. 

 

Table F.61: Bonferroni t-test and Fisher’s LSD Comparing Potential Sensing Materials for 

Methanol 

Mean 

Comparison 
Tobs LSD 

Mean 

Comparison 
Tobs LSD 

A-B 4.440 0.517 B-C 3.789 0.445 

A-C 0.610 0.072 B-D 7.834 0.920 

A-D 3.435 0.403 C-D 4.045 0.475 

 

See Table F.62 for analyte designations A-D.  Highlighted rows are those that have means that are 

significantly different.  Note that t8, 0.005 = 5.041 and LSD = 0.592. 
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Table F.62: Percent Error Comparing Potential Sensing Materials for Methanol 

Sensing Material Average (ppm) 
Standard 

Deviation 

Percent Error 

(%) 

A PPO 4.50 0.17 3.73 

B PPy 3.98 0.11 2.69 

C PMMA 4.43 0.20 4.44 

D PVP 4.90 0.15 3.16 

 

Table F.63: ANOVA Comparing Potential Sensing Materials for Acetone 

Source SS df MS Fobserved F3,8,0.05 

Between Polymers 0.13 3 0.04 12.07 4.07 

Within Polymers 0.03 8 0.00   

Total 0.16 11    

 

Since Fobserved is greater than Fcritical, there is a statistically significant difference between the 

sorption of ethanol onto these polymeric samples.  Therefore the Bonferroni t-test and Fisher’s 

LSD were employed to determine which means were different.  The means highlighted in red in 

Table F.64 were significantly different.  The analytes are labelled A-D in Table F.65, which also 

lists the percent error based on three independent replicates for each analyte. 

 

Table F.64: Bonferroni t-test and Fisher’s LSD Comparing Potential Sensing Materials for 

Acetone  

Mean 

Comparison 
Tobs LSD 

Mean 

Comparison 
Tobs LSD 

A-B 3.384 0.165 B-C 0.649 0.032 

A-C 2.734 0.133 B-D 3.452 0.168 

A-D 6.836 0.333 C-D 4.102 0.200 

 

See Table F.65 for analyte designations A-D.  Highlighted rows (in Table F.64) are those that have 

means that are significantly different.  Note that t8, 0.005 = 5.041 and LSD = 0.246. 

 

Table F.65: Percent Error Comparing Potential Sensing Materials for Ethanol 

Sensing Material Average (ppm) 
Standard 

Deviation 

Percent Error 

(%) 

A PPO 5.19 0.05 0.87 

B PPy 5.35 0.05 0.91 

C PMMA 5.32 0.09 1.61 

D PVP 5.52 0.09 1.55 
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Appendix G: Characterization Details 
  

Appendix G includes additional characterization data that were not included in the main text 

(complementary material to the information of Chapter 4).   

 

G.1 Additional Energy Dispersive X-ray (EDX) Data 

 

Table G.1: EDX Data 

Sample 
Weight Percent (%) 

C N O Metal S 

P25DMA 75.99 10.74 6.25 - 4.51 

P25DMA 5% Al2O3 44.42 15.58 33.18 0.61 6.21 

P25DMA 10% Al2O3 32.69 9.57 16.70 0.57 40.46 

P25DMA 20% Al2O3 71.02 7.49 17.46 0.49 3.54 

P25DMA 5% CuO 69.31 9.25 19.78 0.08 0.06 

P25DMA 10% CuO 71.94 6.66 19.41 0.07 0.19 

P25DMA 20% CuO 68.22 9.64 18.77 0.07 0.24 

P25DMA 5% NiO 59.56 6.15 14.94 5.58 5.71 

P25DMA 10% NiO 40.09 7.38 32.04 8.11 7.89 

P25DMA 20% NiO 47.90 5.05 21.06 19.14 2.27 

P25DMA 5% TiO2 57.89 7.77 24.94 3.68 0.07 

P25DMA 10% TiO2 44.75 7.32 31.65 12.37 1.88 

P25DMA 20% TiO2 41.04 9.69 24.20 17.09 1.53 

P25DMA 5% ZnO 66.44 6.10 17.89 0.20 3.75 

P25DMA 10% ZnO 60.52 5.37 26.24 0.86 1.05 

P25DMA 20% ZnO 19.17 1.52 22.63 46.89 4.58 

 

Table G.2: Representative Percent Error for Three EDX Samples 

Sample  C N O Metal S 

P25DMA 5% ZnO 
Avg. 66.30 6.55 23.68 0.34 2.89 

Stdev 0.12 0.08 0.36 0.01 0.04 

% Error 0.18 1.19 1.52 2.11 1.47 

P25DMA 10% 

TiO2 

Avg. 45.49 7.67 29.32 13.25 1.11 

Stdev 1.05 0.49 3.30 1.24 1.09 

% Error 2.30 6.37 11.24 9.34 98.10 

P25DMA 20% 

Al2O3 

Avg. 69.42 7.56 19.70 0.48 2.83 

Stdev 2.26 0.10 3.17 0.01 1.00 

% Error 3.26 1.31 16.08 2.95 35.48 
Note that two replicates each were used in these calculations.   
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G.2 Additional X-ray Diffraction (XRD) Data 

 

Two independent replicates of P25DMA 5% NiO were measured using XRD (see Figure G.1).  

Note that the peaks appear at approximately the same angles for both replicates.   

 

 
Figure G.1: XRD for P25DMA 5% NiO and a P25DMA 5% NiO Replicate. 
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Appendix H:  Sensor Array Analysis 
 

Appendix H contains additional details about the principal component analysis (PCA) described 

in Sections 4.6 and 5.1.1.3.   These include the data used in the PCA analysis, the factor coordinates 

of different cases (used to plot the Factors), the factor coordinates of variables, and the eigenvalues 

(used to create the scree plot). 

 

H.1 P25DMA Five Sensor Array (Section 4.6) 

 

Table H.1: Data Used for the P25DMA Five Sensor Array 

Case P25DMA 
P25DMA 

5% Al2O3 

P25DMA 

5% NiO 

P25DMA 

5% ZnO 

P25DMA 

5% TiO2 
Group1 

1 0.76 0.00 0.57 0.4 0.23 1 

2 0.70 0.00 0.51 0.35 0.19 1 

3 0.80 0.00 0.5 0.38 0.21 1 

4 0.69 0.00 0.54 0.32 0.2 1 

5 1.09 0.68 1.42 0.9 1.17 2 

6 1.42 0.78 1.42 0.76 1.09 2 

7 1.16 0.73 1.44 0.82 1.02 2 

8 1.10 0.59 1.43 0.74 1.08 2 

9 1.27 0.00 0.47 0.21 0.00 3 

10 1.18 0.00 0.43 0.02 0.00 3 

11 1.61 0.00 0.32 0.31 0.00 3 

12 1.52 0.00 0.28 0.12 0.00 3 

13 1.04 1.42 1.63 1.48 1.16 4 

14 0.95 1.44 1.64 1.37 1.13 4 

15 0.94 1.36 1.82 1.58 0.92 4 

16 0.78 1.41 1.73 1.49 0.98 4 

17 0.29 0.33 0.40 0.22 0.30 5 

18 0.25 0.33 0.41 0.14 0.28 5 

19 0.24 0.23 0.47 0.14 0.28 5 

20 0.17 0.17 0.44 0.07 0.24 5 

21 0.05 0.10 0.02 0.00 0.03 6 

22 0.00 0.06 0.00 0.00 0.02 6 

23 0.00 0.00 0.00 0.00 0.04 6 

24 0.00 0.00 0.00 0.00 0.03 6 
1 Where group 1, 2, 3, 4, 5, and 6 are acetaldehyde, formaldehyde, methanol, ethanol, acetone, and benzene. 
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Table H.2: Factor Coordinates of Cases for the P25DMA Five Sensor Array 

Case Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 

1 0.79888 0.314934 -0.001185 -0.403787 -0.041763 

2 0.96393 0.223868 -0.027990 -0.349530 -0.027546 

3 0.87385 0.396690 -0.039274 -0.332632 -0.098220 

4 0.96255 0.207956 0.026551 -0.336770 0.027494 

5 -2.08145 0.196998 0.724823 -0.120780 -0.167440 

6 -2.12409 0.795445 0.615993 0.266129 0.004229 

7 -1.94966 0.356046 0.520808 0.008456 0.066235 

8 -1.77291 0.318547 0.802669 -0.102302 0.041810 

9 1.03631 1.350877 -0.277734 -0.014917 0.137478 

10 1.28927 1.216393 -0.097635 0.172620 0.264240 

11 0.89405 1.957201 -0.456912 0.094438 -0.181728 

12 1.14700 1.822717 -0.276813 0.281976 -0.054966 

13 -3.41829 -0.394568 -0.333787 0.149887 -0.209940 

14 -3.26677 -0.543799 -0.278477 0.245158 -0.057807 

15 -3.31341 -0.488061 -0.701174 -0.244038 0.158634 

16 -3.18485 -0.814038 -0.564251 -0.074330 0.104674 

17 0.96671 -0.725089 0.040149 0.177561 -0.013943 

18 1.07330 -0.779268 0.092021 0.235248 0.091237 

19 1.12044 -0.741462 0.185929 0.059381 0.142252 

20 1.33910 -0.813962 0.233259 0.030938 0.197440 

21 2.07684 -0.928361 -0.091937 0.152226 -0.067726 

22 2.16395 -0.995516 -0.077788 0.087530 -0.085913 

23 2.19752 -0.968252 -0.000614 0.010022 -0.118962 

24 2.20775 -0.965293 -0.016630 0.007514 -0.109769 
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Table H.3: Factor Coordinates of Variables for the P25DMA Five Sensor Array 

Variable Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 

P25DMA -0.860587 -0.093836 0.075355 0.493083 -0.004609 

P25DMA  

5% Al2O3 
-0.421810 -0.260193 -0.689165 -0.527827 0.019266 

P25DMA  

5% NiO 
-0.247501 0.963506 0.023637 -0.097486 0.006925 

P25DMA  

5% ZnO 
-0.268272 -0.252787 0.792929 -0.484276 0.025879 

P25DMA  

5% TiO2 
-0.974124 -0.111747 0.046294 -0.167896 -0.088667 

 

Table H.4: Eigenvalues for the P25DMA Five Sensor Array 

Factor Eigenvalue % Total Cumulative Cumulative 

1 3.742809 53.46869 3.742809 53.4687 

2 1.146553 16.37933 4.889362 69.8480 

3 1.120678 16.00968 6.010039 85.8577 

4 0.842708 12.03868 6.852747 97.8964 

5 0.094470 1.34958 6.947218 99.2460 

6 0.033436 0.47766 6.980654 99.7236 

7 0.019346 0.27638 7.000000 100.0000 
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H.2 RFID Three Sensor Arrays (Section 5.1.1.3) 

 

H.2.1 RFID Siloxane-based Three Sensor Array 

  

Table H.5: Data Used for the Siloxane-based RFID Three Sensor Array 

Case Ethanol Methanol Benzene Acetone P25DMA 
P25DMA 

20% NiO 

P25DMA 

20% ZnO 

1 1250 0 0 0 1.35 0.73 1.01 

2 0 1250 0 0 1.03 0.64 1.86 

3 0 0 1250 0 0.43 0.12 0.65 

4 0 0 0 1250 1.75 1.35 1.74 

5 1250 1250 0 0 2.28 1.18 3.08 

6 625 1250 0 0 1.54 0.86 2.07 

7 1250 0 0 1250 2.44 1.17 2.81 

8 625 0 0 1250 1.54 0.69 2.11 

9 1250 0 1250 0 1.82 0.87 1.53 

10 625 0 1250 0 1.33 0.36 2.19 

11 1250 1250 0 1250 3.56 2.81 4.17 

12 625 1250 0 1250 3.42 2.74 4.13 

13 1250 1250 1250 0 2.65 1.27 3.21 

14 625 1250 1250 0 2.13 0.71 2.74 

15 1250 0 1250 1250 3.57 2.31 3.45 

16 625 0 1250 1250 2.99 1.78 2.65 

17 1250 1250 1250 1250 3.66 2.91 5.44 

18 625 1250 1250 1250 3.68 2.48 4.98 
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Table H.6: Factor Coordinates of Cases for the Siloxane-based RFID Three Sensor Array 

Case Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 

1 1.89308 0.16523 0.01400 -1.79232 0.360346 -0.122906 0.014319 

2 1.98425 -1.07138 -1.60590 0.87769 0.056694 -0.050704 0.013841 

3 3.38903 0.31117 0.62781 1.28821 0.143305 -0.165325 -0.189848 

4 1.04586 1.70905 -1.38742 0.79639 0.222799 0.001999 0.044145 

5 -0.07206 -1.44616 -0.54844 -1.19327 -0.107575 -0.012335 0.185261 

6 1.19305 -1.22100 -1.08397 -0.20192 0.086861 0.066973 -0.068668 

7 -0.27377 1.25063 -0.31641 -1.33433 -0.552730 0.112197 0.034468 

8 1.04261 1.41425 -0.85217 -0.31977 -0.652602 0.058486 -0.173120 

9 1.27507 0.00600 1.67875 -0.80534 0.320869 -0.022304 -0.093471 

10 1.88735 0.02069 1.18703 0.34489 -0.311349 -0.292982 0.319244 

11 -2.72545 -0.13967 -0.97409 -0.72805 0.252070 -0.021799 -0.148254 

12 -2.26700 0.02189 -1.47389 0.37546 0.342835 -0.040987 0.138909 

13 -0.46441 -1.56816 1.11099 -0.24955 -0.035913 0.192822 -0.080323 

14 0.61920 -1.42396 0.62029 0.77883 -0.216859 0.343502 -0.015292 

15 -1.82256 1.21300 1.31790 -0.27217 0.270214 0.069029 0.093372 

16 -0.60046 1.39751 0.81822 0.72441 0.244505 0.285974 0.022918 

17 -3.42073 -0.40994 0.65870 0.33943 -0.227439 -0.415163 -0.203175 

18 -2.68306 -0.22914 0.20860 1.37140 -0.196031 0.013524 0.105675 

 

Table H.7: Factor Coordinates of Variables for the Siloxane-based RFID Three Sensor Array 

Variable Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 

Ethanol -0.860587 -0.093836 0.075355 0.493083 -0.004609 0.041767 -0.003295 

Methanol -0.421810 -0.260193 -0.689165 -0.527827 0.019266 0.021192 -0.002220 

Benzene -0.247501 0.963506 0.023637 -0.097486 0.006925 -0.006885 -0.015524 

Acetone -0.268272 -0.252787 0.792929 -0.484276 0.025879 0.014101 -0.001189 

P25DMA -0.974124 -0.111747 0.046294 -0.167896 -0.088667 -0.019981 0.001207 

P25DMA 

20% NiO 
-0.972977 -0.145724 -0.040321 0.154732 0.073962 -0.032172 0.002553 

P25DMA 

20% ZnO 
-0.284534 0.950657 0.004965 -0.121781 0.005596 0.013370 0.015018 
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Table H.8: Eigenvalues for the Siloxane-based RFID Three Sensor Array 

Factor Eigenvalue % Total Cumulative Cumulative 

1 3.742809 53.46869 3.742809 53.4687 

2 1.146553 16.37933 4.889362 69.8480 

3 1.120678 16.00968 6.010039 85.8577 

4 0.842708 12.03868 6.852747 97.8964 

5 0.094470 1.34958 6.947218 99.2460 

6 0.033436 0.47766 6.980654 99.7236 

7 0.019346 0.27638 7.000000 100.0000 

 

H.2.2 RFID P25DMA-based Three Sensor Array 

 

Table H.9: Data Used for the P25DMA-based RFID Three Sensor Array 

Case Ethanol Methanol Benzene Acetone P25DMA 
P25DMA 

20% NiO 

P25DMA 

20% ZnO 

1 1250 0 0 0 1.51 3.92 0.01 

2 0 1250 0 0 0.91 1.21 0.03 

3 0 0 1250 0 0.39 0.18 0.71 

4 0 0 0 1250 0.71 0.64 0.00 

5 1250 1250 0 0 2.53 5.33 0.06 

6 625 1250 0 0 1.51 3.34 0.04 

7 1250 0 0 1250 2.18 4.74 0.01 

8 625 0 0 1250 1.63 2.89 0.02 

9 1250 0 1250 0 1.85 4.33 0.75 

10 625 0 1250 0 1.00 2.35 0.72 

11 1250 1250 0 1250 2.97 6.35 0.06 

12 625 1250 0 1250 2.41 3.44 0.06 

13 1250 1250 1250 0 2.73 6.00 0.73 

14 625 1250 1250 0 2.11 3.49 0.73 

15 1250 0 1250 1250 2.69 4.99 0.73 

16 625 0 1250 1250 1.94 2.88 0.72 

17 1250 1250 1250 1250 3.27 6.30 0.76 

18 625 1250 1250 1250 2.53 4.05 0.78 
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Table H.10: Factor Coordinates of Cases for the P25DMA-based RFID Three Sensor Array 

Case Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 

1 0.43938 -1.03656 -0.08133 1.95585 -0.042649 0.080369 -0.025268 

2 2.51760 -0.96941 -1.51563 -0.73024 -0.000612 -0.023785 0.001324 

3 3.07850 2.07503 -0.20032 -0.04236 0.008377 -0.002190 0.003748 

4 3.01458 -0.96319 1.21486 -0.63449 0.090342 -0.022638 -0.013548 

5 -1.18578 -1.47931 -1.32478 0.71487 -0.168893 -0.026694 0.030433 

6 0.79051 -1.21728 -1.43301 0.04795 0.127622 0.033097 -0.003008 

7 -0.57092 -1.49444 1.39781 0.84988 0.048023 0.026044 -0.032994 

8 1.02696 -1.23025 1.31226 0.07915 -0.028223 -0.116167 0.029671 

9 -0.52901 1.59737 -0.01856 1.43788 -0.004202 0.053808 0.042749 

10 1.33228 1.82394 -0.11800 0.73729 0.141095 0.039751 0.002611 

11 -2.09994 -1.92629 0.13781 -0.32071 0.196713 -0.048182 0.020033 

12 -0.16529 -1.61973 0.07384 -1.18419 -0.229610 0.101790 -0.003632 

13 -2.10658 1.02406 -1.27589 0.27835 0.074610 -0.112116 -0.024993 

14 -0.25364 1.31382 -1.35148 -0.53439 -0.162579 -0.050092 -0.027366 

15 -1.59763 1.09514 1.47280 0.28608 -0.123414 -0.032977 -0.001072 

16 0.22607 1.35637 1.38171 -0.45647 -0.109621 -0.037800 -0.005466 

17 -2.88170 0.66355 0.20757 -0.85780 0.110831 0.045124 -0.018298 

18 -1.03539 0.98717 0.12034 -1.62666 0.072190 0.092658 0.025075 

 

Table H.11: Factor Coordinates of Variables for the P25DMA-based RFID Three Sensor Array 

Variable Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 

Ethanol -0.860587 -0.093836 0.075355 0.493083 -0.004609 0.041767 -0.003295 

Methanol -0.421810 -0.260193 -0.689165 -0.527827 0.019266 0.021192 -0.002220 

Benzene -0.247501 0.963506 0.023637 -0.097486 0.006925 -0.006885 -0.015524 

Acetone -0.268272 -0.252787 0.792929 -0.484276 0.025879 0.014101 -0.001189 

P25DMA -0.974124 -0.111747 0.046294 -0.167896 -0.088667 -0.019981 0.001207 

P25DMA 

20% NiO 
-0.972977 -0.145724 -0.040321 0.154732 0.073962 -0.032172 0.002553 

P25DMA 

20% ZnO 
-0.284534 0.950657 0.004965 -0.121781 0.005596 0.013370 0.015018 
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Table H.12: Eigenvalues for the P25DMA-based RFID Three Sensor Array 

Factor Eigenvalue % Total Cumulative Cumulative 

1 3.028322 43.26174 3.028322 43.2617 

2 2.006224 28.66034 5.034546 71.9221 

3 1.113715 15.91021 6.148261 87.8323 

4 0.832721 11.89601 6.980982 99.7283 

5 0.014474 0.20676 6.995455 99.9351 

6 0.004053 0.05790 6.999508 99.9930 

7 0.000492 0.00702 7.000000 100.0000 
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Appendix I: Potential Polymeric Sensing Materials for Ethanol 
 

Appendix I contains a list of 50 potential polymeric sensing materials for ethanol, which were identified and ranked based on their 

likelihood to bind to ethanol.  These 50 polymers were ordered based on their potential as sensing materials.  The “best” materials are 

listed at the top and decrease in potential as the list continues.  In general, the copolymers are more complicated since copolymer 

composition can significantly affect the properties.  Therefore, the copolymers ranked lower on the list (see Table I.2). 

 

These polymers were chosen based on their chemical nature, using the sensing mechanisms discussed in Chapter 6.  Based on the 

chemical nature of ethanol, three dominant sensing mechanisms, as discussed in Section 6.5.1, were determined for ethanol: hydrogen 

bonding, polarity, and Lewis acid-base interactions.  Based on these sensing mechanisms, polymers were chosen as potential sensing 

materials for ethanol.   

 

The dominant sensing mechanisms for each polymer are dictated by its functional groups.  Table I.1 contains a list of nine functional 

groups with which ethanol may interact, based on the three dominant mechanisms identified for ethanol.  The 50 potential polymeric 

sensing materials for ethanol all contain at least one of these functional groups and are listed in Table I.2 with their functional groups 

identified (marked by an x). 

 

Table I.1: Sensing Mechanisms for Polymer Functional Groups 

Functional Group 
Sensing Mechanism 

Hydrogen Bonding Polarity Lewis Acid-Base 

Alcohol OH x x x 

Amine NH x x x 

Carboxylic Acid COOH x x x 

Amide CON  x x 

Cyano CN  x x 

Double Bonded Oxygen =O  x x 

Ester COOR  x x 

Ether COR  x x 

Trifluoro CF3  x x 
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Table I.2: Potential Polymeric Sensing Materials and their Functional Groups  

Polymer 

Functional 

Groups 

Structure 

OH NH COOH CON CN =O COOR COR CF3 

Polyaniline 

 

 x        

Poly (o-anisidine) 

 

 x      x  

Poly (2,5-dimethyl 

aniline) 
 

 x        

Poly (ethylene imine) 

 

 x        

Polypyrrole 

 

 x        

Polyvinyl-pyrrolidone 

 

   x      
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Polymer 

Functional 

Groups 

Structure 

OH NH COOH CON CN =O COOR COR CF3 

Poly (methyl 

methacrylate) 

 

      x   

Poly (acrylic acid) 

 

  x       

Polyurethane 

 

   x   x   

Poly (vinyl acetate) 

 

      x   

Poly (maleic 

anhydride) 

 

      x x  

Poly (N-isopropyl 

acrylamide) 

 

   x      
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Polymer 

Functional 

Groups 

Structure 

OH NH COOH CON CN =O COOR COR CF3 

Poly (hydroxyethyl 

methacrylate) 

 

x      x   

Poly (2-oxazoline) 

 

   x      

Poly (L-lactide) 

 

      x   

Poly (vinyl alcohol) 

 

x         

poly(butyl acrylate) 

 

      x   

poly(2-hydroxy-1,3-

phenylenemethylene) 
 

x         

poly(2-

carboxystyrene) 

 

  x       

javascript:window_open('http://polymer.nims.go.jp/PoLyInfo/cgi-bin/pi-id-search.cgi?PID=P510015'%20,%20'matnavi01')
javascript:window_open('http://polymer.nims.go.jp/PoLyInfo/cgi-bin/pi-id-search.cgi?PID=P510015'%20,%20'matnavi01')
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Polymer 

Functional 

Groups 

Structure 

OH NH COOH CON CN =O COOR COR CF3 

poly(p-vinylphenol) 

 

x         

poly[2-

(methoxycarbonyl) 

styrene] 

 

      x   

poly(o-

methoxystyrene) 

 

       x  

Polyethylene 

terephthalate 

 

      x   

Poly (2,6-dimethyl-

1,4-phenylene oxide) 

 

       x  

OV 275 (Seacoast) 

 

    x     
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Polymer 

Functional 

Groups 

Structure 

OH NH COOH CON CN =O COOR COR CF3 

OV 225 (Seacoast) 

 

    x     

poly[4-(4-

methoxybenzoyl) 

styrene] 

 

     x  x  

poly(ethyl 6-

aminohexanoate) 
 

   x      

Poly(trimellitic 

anhydride chloride-co-

4,4′-

methylenedianiline) 

 

 x  x      

Poly (4-

styrenesulfonic acid) 

 

x     x    
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Polymer 

Functional 

Groups 

Structure 

OH NH COOH CON CN =O COOR COR CF3 

Poly (methacrylic 

acid) 

(sodium salt) 
 

  x       

poly(3,3'-

carbonyldiphenylene 

3,3',4,4'-

benzophenonetetra 

carboxydiimide) 
 

   x  x    

Poly (3,4-

ethylenedioxy 

thiophene) 

 

       x  

Poly (ethylene glycol) 

 

       x  

poly(methylene oxide) 

 

       x  

Poly (vinyl butyral-co-

vinyl alcohol-co-vinyl 

acetate) 
 

x      x x  

poly[pyrrole-co-

aniline] 
 

 x        
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Polymer 

Functional 

Groups 

Structure 

OH NH COOH CON CN =O COOR COR CF3 

poly[aniline-co-(p-

phenylenediamine)] 
 

 x        

Poly (1-

vinylpyrrolidone-co-

vinyl acetate) 
 

   x   x   

Poly (N-isopropyl 

acrylamide-co-

butylacrylate) 

 

   x   x   

Poly (methyl 

methacrylate-co-

methacrylic acid) 
 

  x    x   

poly[acrylonitrile-co-

(methyl methacrylate) 

 

    x  x   

poly(trimethylene 

terephthalate) 
 

      x   

Poly (vinyl chloride-

co-vinyl acetate-co-

vinyl alcohol) 

 

x      x   
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Polymer 

Functional 

Groups 

Structure 

OH NH COOH CON CN =O COOR COR CF3 

Poly (ethylene-co-

vinyl acetate) 

 

      x   

Poly (styrene-co-allyl 

alcohol) 

 

x         

Adiol (Seacoast) 

 

x        x 

SXFA (Seacoast) 

 

x        x 
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Appendix J: Safety Considerations 
 

Appendix J contains brief safety considerations (excerpt from the author’s safety report). 

 

Table J.1: Safety Precautions for Various Chemicals 

Chemical 

Name 

Carcinogen, 

Toxic, Etc. 

Properties Safety Precautions 

Acetone Toxic Colourless liquid 

B.P. 56 C 

F.P. -16.99 C 

Highly flammable 

liquid and vapour 

Safety glasses and gloves 

Incompatible and reactive with: 

Bases, oxidizing agents, reducing 

agents, phosphorous oxychloride 

Exposure through: inhalation, 

ingestion, eye or skin contact 

Symptoms: irritated eyes, nose, 

respiratory tract and skin, dizziness 

and drowsiness 

Ammonium 

persulfate 

 White crystals Safety glasses and gloves 

Incompatible and reactive with: 

acids alkalis, halides (fluorides, 

chlorides, bromides), combustible 

materials, heavy materials, 

moisture, reducing agents, heat 

Decomposes to form: fumes of 

sulfuric acid mist, oxygen 

Exposure through: inhalation 

Symptoms: irritated eyes, nose, 

respiratory tract and skin 
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Chemical 

Name 

Carcinogen, 

Toxic, Etc. 

Properties Safety Precautions 

Aniline Toxic 

 

Colourless, oily liquid 

B.P. 184 C 

F.P. 70C 

Combustible liquid 

and vapour 

Air and light sensitive 

Safety glasses and gloves 

Work under fumehood 

Incompatible and reactive with: 

strong acids, strong oxidizers, 

albumin, solutions of iron, zinc 

aluminum, toluene diisocyanate, 

alkalis, red fuming nitric acid, and 

sodium, heat, ignition sources 

Burns to form: nitrogen oxides, 

carbon monoxide, carbon dioxide 

Exposure through: inhalation, 

ingestion, eye or skin contact 

Symptoms: bluish discolouration of 

lips and tongue, severe headache, 

dizziness, nausea, confusion, shock, 

irritated skin and eyes, blurred 

vision 

Benzene Highly 

carcinogenic 

 

Colourless liquid 

MW 78.11 g/mol 

B.P. 80 C 

F.P. -11 C 

Combustible liquid 

and vapour 

Safety glasses and gloves 

Work under a fumehood 

Incompatible and reactive with: 

oxidizing materials and halogens 

Exposure through: inhalation, 

ingestion, or skin contact 

Symptoms: irritated skin, and 

respiratory tract. 

Ethanol Mutagen Colourless liquid 

Mild, pleasant odor 

B.P. 78 oC  

F.P. -16 oC 

Flammable 

 

Safety glasses and gloves 

Work under a fumehood 

Has caused adverse reproductive 

and fetal effects in humans 
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Chemical 

Name 

Carcinogen, 

Toxic, Etc. 

Properties Safety Precautions 

Formaldehyde Toxic 

Possible 

carcinogen 

Clear, colourless 

liquid 

MW 30.17 g/mol 

B.P. 96 ºC at 

760mmHg 

F.P. 60 ºC 

Combustible liquid 

and vapour 

Safety glasses and gloves 

Work under a fumehood 

Incompatible and reactive with: 

oxidizing materials, alkalis, 

nitrogen dioxide (~180C), 

perchloric acid, perchloric acid-

aniline mixtures, nitromethane, 

hydrochloric acid, heat, flames, and 

ignition sources 

Decompose to form: carbon 

monoxide 

Hazardous polymerization: 

trioxymethylene precipitate formed 

on long standing at very low 

temperature 

Exposure through: inhalation, 

ingestion, eye or skin contact 

Symptoms: irritated eyes, skin, and 

respiratory tract, severe abdominal 

pain, violent vomiting, dizziness, 

headache, blurred vision, shortness 

of breath  

Methanol 

 

Mutagen 

Toxic 

Colourless liquid 

B.P. = 64.7 oC  

F.P. = 11 oC 

Flammable 

Very volatile 

Safety glasses and gloves 

Work under a fumehood 

Incompatible and reactive with: 

strong oxidizing materials 

Exposure through: inhalation, 

ingestion, eyes, or skin contact 

Symptoms: irritated skin, eyes, and 

respiratory tract, coughing, 

dizziness, headache, nausea. 
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Chemical 

Name 

Carcinogen, 

Toxic, Etc. 

Properties Safety Precautions 

Nickel Oxide Chronic 

toxicity 

Carcinogen 

Skin sensitizer 

Dark grey solid 

powder  

M.W. 74.96 g/mol 

 

Safety glasses and gloves 

Respirator 

Exposure through: inhalation, 

ingestion, eyes, or skin contact 

Symptoms: irritated skin, eyes, and 

respiratory tract 

 

Nitrogen (gas)  Colourless 

Odorless 

Acts as an asphyxiant 

by displacing air 

Safety glasses 

Can cause rapid suffocation 

 

Titanium 

Oxide 

Toxic 

Carcinogen 

 

White solid powder  

M.W. 79.87 g/mol 

 

Safety glasses and gloves 

Respirator 

Exposure through: inhalation, 

ingestion, eyes, or skin contact 

Symptoms: irritated skin, eyes, and 

respiratory tract 

 

Zinc Oxide Toxic 

 

White liquid (particle 

suspension) 

 

Safety glasses and gloves 

Respirator 

Exposure through: inhalation, 

ingestion, eyes, or skin contact 

Symptoms: irritated skin, eyes, and 

respiratory tract 

 

 

 


