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Abstract 

 

We have isolated a complement of gene homologs from the simplest extant eukaryotic 

species to possess voltage-gated sodium (Na+) and calcium (Ca2+) channels, Salpingoeca rosetta. 

The isolated channels share the same 4 Domain, 6 Transmembrane helices (4x6TM) architecture 

characteristic of voltage-gated ion channels and do not exhibit any alternative splicing. 

Transfection and expression of both channels in Human Embryonic Kidney-293T (HEK-293T) 

cells generate voltage-dependent ionic currents. SroNav2 codes for an 1831 amino-acid 

transmembrane protein of four repeat domains with a selectivity filter ring, DEEA, resembling 

Ca2+-selective sodium channel genes found exclusively in non-vertebrate animals. The 

structurally similar to Nav1, SroNav2 shows non-selective ion permeability and allows the 

passage of both divalent and monovalent ions. The SroNav2 selectivity filter mutant, DEKA, 

produced to mimic neuronal vertebrate Nav1 channels, produces a highly selective channel that 

exclusively passes monovalent ions. SroCav1 codes for a 1664 amino-acid transmembrane 

protein, requires co-expression of a native β auxiliary subunit, and is highly selective and does 

not allow the passage of sodium. SroCav1 lacks obvious calcium-dependent inactivation and 

does not exhibit the same long-lasting currents characteristic of L-type channels with Ba2+ as a 

charge carrier. We envisage that these homologs of voltage-gated Ca2+ and Na+ channels found in 

single cell choanoflagellate Salpingoeca rosetta may generate Ca2+-dependent action potentials 

that signal between cells of choanoflagellate colonies, regulate intra-cellular events, or control 

movement of it’s single flagellum or cilia. 
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Chapter 1 

Introduction 

1.1 The origin of animals in the Opisthokonts 

The appearance of a nervous system was a major event at the roots of evolution of 

multicellular organisms from single cell ancestors.  For nervous systems to evolve, it required 

specific ion channels, especially the voltage-gated sodium- and calcium-selective channels, to 

generate the electrical activity for neural communication and neurotransmission at nerve 

synapses.  In this thesis, I will describe our discovery of homologs of voltage-gated sodium- and 

calcium-selective channels in the simplest extant organisms to have them, the single cell 

choanoflagellates.   Before proceeding with an introduction to ion channels in simple organisms, 

I will first explain why it is important for us to study single cell eukaryotes as a model organism 

to gain insights into animal and nervous system evolution. 

Understanding the roots of human and animal evolution remains a topic of great debate and 

source of curiosity for scientists and researchers. Categorizing and defining the biological world 

rose independently in both the Eastern (Chinese) and Western (Greek, Roman) worlds thousands 

of years ago by the efforts of early scientists such as Aristotle, Theophrastus, and Brunfels. 

Modern efforts in research have been put into uncovering the roots of our last common ancestors 

on both fundamental organismal and molecular levels (Fairclough et al., 2013; King, 2004; Lang, 

et al., 2002; Nichols et al., 2012; Richter & King, 2013; Ruiz-Trillo et al., 2007; Shalchian-

tabrizi et al., 2008; Tarvin et al., 2016; Watanabe et al., 2009). Inconsistencies and gaps in fossil 

records lead to reconstructing the identity of the last common Metazoan ancestors by observing 

differences and similarities to extant species (Borowiec et al., 2015; Burger et al., 2003; 

Fairclough et al., 2013; Love et al., 2009; Nosenko et al., 2013; Parfrey et al., 2011; Philippe et 

al., 2005; Richter & King, 2013; Ruiz-Trillo et al., 2007). The current widely accepted 

hypothesis suggests that Homo sapiens, animals and many other eukaryotes, reside within a 

single super-group known as the Opisthokonta (Richter & King, 2013; Ruiz-Trillo et al., 2008; 

Torruella et al., 2012). The Opisthokonta clade is divided into two sub-groups, the ‘holozoa’ and 

‘holomycota’, the former of which encompass not only all animals but also includes 

choanoflagellates, filasterea, ichthyosporea (Fig. 1.1) (Paps et al., 2015; Richter & King, 2013). 
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The ability to discern, analyze and evaluate the relationships of the clade’s members cannot be 

done without understanding the fundamentals that make them members of the Opisthokonta. 

Identifying the similarities and differences between members can help to establish relationships 

in hopes to allow for a better understanding and possible predictions of basic homologous 

biological processes that may be integral or in some ways beneficial to life.  

 

Figure 1.1 Phylogenetic representation of Opisthokonta 

Nodes represent a proposed single relative for branching outgroups. Choanoflagellates are 

proposed at the most closely related sister group to animals. Dotted lines indicate uncertainty in 

relationships of early branching animals. (Adopted from Richter and King, 2013) 

 

1.2 The timeline for the evolution of the eukaryotes 

The methods currently employed to study basal organisms make use of small subunit 

ribosomal RNA (rRNA) and mitochondrial DNA, body patterning genes, body plan and tissue 

specific genes, various enzyme encoding genes and other bio-markers (Hedges et al., 2004; 

Osigus et al., 2013; Pakendorf & Stoneking, 2005; Paps et al., 2015; Sogin, 1991; Torruella et 

al., 2012). Current fossil records place eukaryotic origins approximately 600 million years, while 

biochemically and molecular-derived estimates place the emergence and diversification of the 

earliest eukaryotes at nearly 1900 million years ago (Mya) (Hedges et al., 2004; Richter & King, 

2013; Wegener et al., 2011). 
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Fungi present the first divide in the Opisthokonta and create the dichotomy of holomycota 

(fungi) and holozoa. Within the holozoa the ichthyosporea and filasterea (Choanozoa) appear to 

represent the first divergent sub-lineages, while choanoflagellates diverged next and are more 

closely related to metazoans (Paps et al., 2015; Torruella et al., 2012). Holomycota divergence 

estimates place them at just over 1,500 Mya, while ichthyosporea, filasterea and 

choanoflagellates diverged at later time estimates of ~1,200 Mya (Bullerwell et al., 2003; Carr et 

al., 2008; Parfrey et al., 2011; Richter & King, 2013; Wakefield et al., 2010). The remaining sub-

group contains more than 1.3 million ‘higher’ members known as the Metazoa or Animalia 

(which include lophotrochozoa and deuterostomia), and identifiable non-bilaterian members 

including placozoa, cnidarian, ctenophora and porifera (sponge) (Moran et al., 2015; Nosenko et 

al., 2013). 

Ichthyosporea, filasterea and choanoflagellates are often grouped together because they 

are often used as model organisms for studying the origins of eukaryotic multicellularity (Ruiz-

Trillo et al., 2007). Several research initiatives have screened and analyzed cellular 

characteristics and molecular markers of these species and have consistently implied their 

relationships as the closest relatives to the Metazoa, or modern day animals (Carr et al., 2008; 

Hedges et al., 2004; Nosenko et al., 2013; Richter & King, 2013; Shalchian-tabrizi et al., 2008). 

All currently acknowledged members of these groups appear to at least divide through binary 

fission but also posses the genes for sexual reproduction within their genomes (Suga, 2015). 

Choanoflagellates have recently been experimentally shown to undergo sexual reproduction 

marking the earliest signs of gender-mediated procreation (Levin & King, 2013). Several 

representative strains within each species appear to share biological characteristics including the 

ability to aggregate into a multicellular form, a flagellum (likely for movement) and a sponge-

like cellular morphology that is characteristics of choanocytes (Carr et al., 2008; Glockling et al., 

2013; King, 2004; Paps et al., 2015; Suga, 2015). The presence of choanocyte-related aspects 

provides the first evidence for a close relationship to Porifera (sponge) – a non-bilaterian 

member of Metazoa. Demospongiae fossils analyzed based on hydrocarbon sterane biomarker 

content date the earliest porifera species at ~751 Mya, a time frame several million years prior to 

early Metazoa fossils (Love et al., 2009). Porifera is an enigmatic group of extant organisms. 

Sponge genomes possess genes associated with a central nervous system (CNS) and neurons yet 

they lack a central nervous system and many critical CNS developmental genes (Moroz, 2015; 
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Watanabe et al., 2009). The close relationship between choanoflagellates and metazoans has 

been well-supported implying that the eukaryotic last common ancestor was likely similar to a 

choanoflagellate (Hedges et al., 2004; Paps et al., 2015; Richter & King, 2013; Torruella et al., 

2012). 

 

1.3 Salpingoeca rosetta as a representative of the closest single-cell ancestor to the 

Metazoans 

The current accepted hypothesis places the first definitive Metazoan animals appearing at 

a time over six hundred million years ago (Richter & King, 2013), a proposed time when unique 

microbial eukaryotes (protists), mainly single-celled organisms, first began to undergo a 

“diversification explosion” that would eventually lead to the organisms that currently exist today 

(Fairclough et al., 2013; Jekely, 2013; Richter & King, 2013; Ruiz-Trillo et al., 2007; Wegener 

et al., 2011). One specific candidate has come to light with strong evidence as being closely 

related to the last common ancestor of animals, the choanoflagellate Salpingoeca rosetta 

(referred to as Salpingoeca henceforth in this work). Choanoflagellates are considered by many 

as being a sister evolutionary lineage to the Metazoa, and their divergence from that lineage may 

mark a pivotal transitioning point of multicellularity (King, 2004; Richter & King, 2013; Ruiz-

Trillo et al., 2007). First characterized as part of the Proterospongia family due to its high degree 

of structural similarity to sponge choanocytes (porifera), Salpingoeca is actually an extant 

choanoflagellate with fossil records dating back to more than 1,200 million years ago (Carr et al., 

2008; Richter & King, 2013; Wegener et al., 2011). Genome evaluation with Salpingoeca has 

revealed a surprising number of gene homologs present in higher species within the animal clade 

that were previously thought to be exclusive to more complex, multicellular species. 

 

1.4 Cellular differentiation, life cycles, and sexual reproduction of Salpingoeca rosetta 

A unique characteristic of Salpingoeca is its ability to undergo several life stages 

including three solitary stages; fast or slow swimming, and a single cell-attached/anchored stage 

(thecate), and two multicellular colonial stages; rosette colonies where cell connections are 

robust and resistant to mechanical stressors, and chain colonies with weaker intercellular 
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connections (Dayel et al., 2011; Levin, 2014) (Fig.1.2).  A possible origin of multicellular 

colonies of single cell organisms is illustrated in the observation that colonies form by cell 

division and incomplete cytokinesis, and not aggregation. (Fairclough et al., 2010).  Incomplete 

cytokinesis may have been a possible way that tissues evolved from a single cell.  The 

membranes of adjoining cells in Salpingoeca colonies are continuous with each other as a result 

of the incomplete cytokinesis, and electron- dense plates bridging the cells prevent mixing of 

cellular contents between adjacent cells (Dayel et al., 2011).  Salpingoeca rosetta can colonize 

into a rosette pattern, but this life stage transition requires a commensal bacteria that normally 

resides with Salpingoeca, such as Bacteroides, Algoriphagus machipongonensis (Dayel et al., 

2011). A machinpongonensis produces a C-type lectin-like protein that triggers the formation of 

Salpingoeca rosette colonies. Treatment with antibiotics that eliminate the commensal bacteria 

prevent rosette formation. The gene responsible for rosette multicellularity has been identified in 

a mutant strain of Salpingoeca rosetta insensitive to the extracellular C-type lectin-like protein, 

dubbed “Rosetteless” (Levin et al., 2014).  The relationship that Salpingoeca shares with A. 

machipongonensis presents one of the earliest branching commensal relationships currently 

described for an extant eukaryote.  Such research in animal-bacteria relationships are of a 

growing interest, especially as it relates to the human gut microbiome (Ley et al., 2008). 

Salpingoeca rosetta differentiate into at least five distinct cell types, including three 

solitary cell types (slow swimmers, fast swimmers, and thecate cells) and two colonial forms 

(rosettes and chains).  Salpingoeca cells are also observed to transition from haploid to diploid 

cell states via fusion of male and female gametes in response to an unenriched growth 

environment (Levin & King, 2013).  
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Figure 1.2 Life stages of Salpingoeca rosetta 

(A) Salpingoeca rosetta in rosette colony. (B) S. rosetta in chain colony (C-D) Cells in surface-

attached thecate stage. (E-F Slow swimmers. Morphology more closely resembles thecate stage 

(G-H) Fast swimmers, prominent flagellum. Unlabelled arrow indicates short ciliary collar. C: 

cilia collar, T: thecate stem, S: skirt, f: flagellum, Fp: filipodia. (Adopted from Dayel et al., 

2011) 

 

1.5 Prey capture and phagocytosis 

Salpingoeca exhibits a commensal relationship in its native environment with many 

strains of bacteria, including the Bacteriodes, Algoriphagus machipongonensis and closely 

related strains.  The bacteria are prey and a source of sphingolipids capable of inducing rosette 

formation in the basal eukaryote (Alegado et al., 2012, 2013). Prey capture has been observed in 

the thecate where the out-facing flagellum beats in a sinusoidal pattern likely as a method to 

draw bacteria towards the cell where they are then ‘caught’ in the microvilli collar. Prey capture 

occurs in the rosette colony life stage as well. Rosette colonies lack a prominent collar skirt but 

create a phagocytic cup that is capable of engulfing large bacterial prey and in some observed 

cases, large yeast cells such as Saccharomyces cerevisiae (Dayel & King, 2014). Ingestion of 
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bacterium is restricted to within 700nm of the apical pole where large groupings of food 

vacuoles exist.  

 

1.6 Phylogenetic and molecular patterns 

Phylogenetic studies using small subunit and large subunit ribosomal DNA (Carr et al., 

2008), mitochondrial DNA (Lang et al., 2002; Ruiz-Trillo et al., 2008), and fragmented whole 

genome DNA (Fairclough et al., 2013) consistently place the choanoflagellates as a closest 

single cell pre-metazoan group to the human lineage.  

The Salpingoeca genome is approximately 55Mb (mega-bases) and is comprised of 

greater than 9,400 ortholog gene clusters. Work by Fairclough and colleagues (2013) compared 

these ortholog clusters to Metazoa, fungi, and the sister choanoflagellate Monosiga brevicolis to 

theorize that Salpingoeca most closely represents the gene content of an animal precursor. 

Salpingoeca expresses genes previously thought to be specific to higher organisms within the 

Metazoan clade. Genes involved in cell adhesion, including δ-catenin and a form of classic 

cadherin are integral to multicellularity and are identified in Salpingoeca (Dayel & King, 2014). 

Tyrosine kinases (TK) and associated receptors, and voltage-gated ion channels, including 

calcium (Cav) and sodium (Nav) channels (Fairclough et al., 2013; Fairclough, 2011; Moran et 

al., 2015; Moran & Zakon, 2014; Nichols et al., 2012).  Salpingoeca has a voltage-gated sodium 

channel (Nav2), a high voltage-activated calcium channel Cav1, and a low voltage-activated Cav3 

calcium channel.  These channels are involved in neuronal signalling, pain sense, pace-making, 

muscle contraction, and neurotransmitter release among other functions in higher animals, many 

of which are functions that are not present in single-celled eukaryotes.  Studies of these sodium 

and calcium channels in Salpingoeca rosetta will provide insights into the roles that these ion 

channels played before the advent of multicellularity. These channels are of the most distant and 

basally positioned calcium and sodium channel homologs, which provides opportunities to 

evaluate the different structure and functional features related to key ion channel functions such 

as their calcium and sodium selectivity, their voltage and drug sensitivity, and kinetics. 
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1.7 Structure of voltage-gated ion channels 

The ion channel superfamily members are divided based on their respective permeant 

ions; calcium (Ca2+), sodium (Na+), potassium (K+), and/or chloride (Cl-) ions and are denoted 

“Iv”, where ‘I’ represents primary conducted ion and ‘v’ - voltage.  The first experimental 

evidence for the structure of a member of the superfamily of ion channels was achieved by Doyle 

and colleagues (Doyle et al., 1998) who resolved the crystal structure of the inward rectifying 

potassium channel (K+) from the Actinobacterium Streptomyces lividans to a resolution of 3.2 

angstroms (Ậ).  Since then other research teams have been able to further isolate the crystal 

structure of a member of the Shaker family K+ channel (Long et al., 2005) and of a bacterial 

voltage-gated sodium channel from Arcobacter butzleri to a resolution of 2.7Ậ (Payandeh et al., 

2012).  All resolved ion channel structures serve as a template in the predictions on the structures 

and mechanisms of other ion channels. 

Cav, Nav, and Kv channel types possess a homologous core protein structure and have the 

ability to interact with auxiliary subunits that can affect functional channel expression patterns 

and kinetic/gating properties (Canti et al., 2003; Doyle et al., 1998; Fang & Colecraft, 2011; 

Lory et al., 1992; Moran & Zakon, 2014; Murakami et al., 2002; Simms & Zamponi, 2014; 

Spafford et al., 2004; Wiser et al., 1996).  The ability to differentiate and allow or block certain 

ions is attributed to the channels’ selectivity filters and extracellular turret domains linked to the 

conduction pore (Catterall, 2012; Favre et al., 1996; Hille, 1975; Krauss et al., 2011;  Senatore et 

al., 2014; Senatore et al., 2014; Stephens et al., 2015; Yamagishi et al., 1997). The pore-forming 

α-subunit of Cav and Nav channels consists of 24 transmembrane helices, a four homologous 

domain protein comprised of six transmembrane helices (S1-S6) per domain (4x6TM) that are 

connected via inter-domain linkers that protrude into the cell, along with the N- and C-termini 

(Fig. 1.3).  The α subunit is the primary conducting component of the ion channel protein and in 

some cases is capable of full functional expression without any associated auxiliary subunit. The 

four domain architecture is proposed to have risen from two rounds of duplication of a 1x6TM 

channel, and resulted in domain-pairing pattern where Domains I-III and Domains II-IV are 

more similar than the others (Stephens et al., 2015).  Each homologous domain is divided into 

two distinct functional components, a voltage sensor domain (S1-S4) and a pore domain (S5-S6).  

The pore domain contains a short re-entrant loop, the pore-loop or P-loop, between S5 and S6 
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segments that is responsible for forming the extracellular component of the pore, while S5 and 

S6 form the narrow intracellular-facing portion (Catterall et al., 2007; Senatore et al., 2014; 

Senatore et al., 2014). 

 

Figure 1.3 Expanded transmembrane view of 4x6TM voltage-activated ion channels 

Eukaryotic voltage-activated calcium and sodium channels formed by a single peptide divided 

into 4 Domains (DI-DIV) of 6 transmembrane helices. Red indicates voltage-sensor helices; 

green indicates pore helices. Indicated residues represent location of selectivity filter residues in 

calcium and sodium channels (Nav1 family filter depicted) 

 

The ability to, and the physiological mechanics for conducting ions through the channel 

have been theorized by Eisenman (Eisenman, 1962; Krauss et al., 2011). Eisenman proposes that 

monovalent alkali ions act as charged spheres that must coordinate between attraction and entry 

into a channel’s binding site, or remaining part of a hydration shell (Eisenman, 1962; Krauss et 

al., 2011). These two states are constantly in competition as a single ion must shed parts of its 

hydration shell in order to fit into the binding site of its channel. This is one way that channels 

are able to differentiate between extracellular ions; the correct ion will have the greatest affinity 

for the channel’s binding site due to adequate reduction of hydration state and resultant size.  

Eisenman defined the binding site of ions as either ‘high field strength’ or ‘low field strength’ 

which correspond to a small or a large ion sphere, respectively. The purpose of the proposed 

model was based on the theory first proposed by Hille who theorized that ions face barriers to 

diffusion and must coordinate in a manner that maximally reduces such barriers in order to pass 

through the hydrophobic membranes of cells at rates nearing free diffusion (Hille, 1975). 
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Before ions are able to enter the high or low field strength site they must first overcome 

the barrier of the outer selectivity filter and an extracellular turret (Stephens et al., 2015). The 

turret of an ion channel is likened to an extracellular dome that contributes to passing or blocking 

of specific ions. Both the selectivity filter and turret are retained within the P-loops of each 

domain of the ion channel. The N-terminal end of each P-loop, closest to S5, first extends up 

over the protein and forms a cap-like structure (P-loop turrets are joined in a pairwise manner 

with the opposing domain; DI-DIII, DII-DIV).  The pore loop then descends to the pore helix 

which ascends to forming the narrowest extracellular facing constriction point where key 

selectivity residues reside (Stephens et al., 2015). The narrowest amino acid contributing to the 

selectivity filter are 4 key amino acid residue side chains, one from each domain P-loop, that 

function cooperatively to highly regulate the ion selectivity of the channel. Calcium channels 

selectivity filter are an EEEE/EDEE configuration and sodium channel selectivity filters are 

DEKA, DKEA, and DEEA (Bendahhou et al., 1999; Boda et al., 2015; Borowiec et al., 2015; 

Sands et al., 2005; Stephens et al., 2015). Both the extracellular turret and selectivity filters are 

variable and highly influence ionic selectivity both independently and cooperatively (Senatore et 

al., 2014; Senatore et al., 2014; Stephens et al., 2015). 

 

1.8 Function and biophysical properties 

Voltage-gated channels conduct ions, possess regulatory gates, and are modified by post-

translational modification such as phosphorylation or regulated by auxiliary subunits or other 

proteins  (Catterall et al., 2007).  Voltage sensor domains (S1-S4) are positioned laterally and 

outward from the central pore and are responsible for detecting changes in membrane voltage. 

The S4 segment of the voltage sensor is composed of a repeating motif of a positively charged 

amino acid residue in every third position of the channel pore gates (Catterall et al., 2007).  

Recordings of gating currents and the modeling of crystalized ion channels in different 

conformations has provided a hypothesis that the S4 segment, upon membrane depolarization, 

moves outward (towards the extracellular region) in a helical or corkscrew motion (Bezanilla, 

2000; Payandeh et al., 2012).  Gating charges denoted ‘R2’ and ‘R3’ interact with extracellular 

negatively charged clusters while an ‘R4’ charge interacts with an intracellular negatively 

charged cluster in a manner that stabilizes the voltage sensor domain during the conformation 
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change that occurs with the movement of the S4 segment during depolarization.  Segments S1, 

S2 and S3 provide a set of counter-charges that interact with S4 charges as the S4 helix 

corkscrews up and down the membrane (Payandeh et al., 2012). 

Ion channel gating is assessed by looking at kinetic properties such as activation, 

deactivation and inactivation. Activation and deactivation in sodium and calcium channels refer 

to the opening and closing of these channels in response to membrane depolarization and 

repolarization, respectively (Canti et al., 2003; Catterall, 2012; Gerster et al., 1999; Senatore et 

al. 2012; Simms & Zamponi, 2014). Inactivation however refers to refractory state that the 

sodium or calcium channel enters following a prolonged channel opening during accumulative 

membrane depolarization.  In this state the sodium or calcium channel is no longer able to 

respond to any depolarizing stimulus regardless of its amplitude, and its recovery from 

inactivation is facilitated by hyperpolarization.  Normally inactivation is a process that 

accumulates during rapid trains of action potential spikes, which in whole cell patch clamp 

recording, is evaluated by the rate of change (tau of inactivation) of the decaying current during 

prolonged voltage steps clamped to depolarizing potentials.  Deactivation is measured in whole 

cell patch clamp as the rate of channel closure (tau activation), upon removal of a rapid 

depolarizing step that opens channels.  The activation is measured in whole cell patch clamp as 

the time to peak current, or the slope of the current increase to peak current over time upon 

depolarizing voltage step.  Recovery from inactivation is measured as the percent fractional 

recovery of maximal peak current size after time intervals have passed after a protocol that 

depolarizes ion channels to maximal (100%) inactivation. 

 

1.9 Voltage-gated sodium channels 

Two classes of voltage-gated cation channels include the sodium-selective (Nav) channels 

and the calcium-selective (Cav) channels.  Voltage-gated sodium channels have been found to 

predate the divergence of animals, choanoflagellates and fungi by their presence in apusozoans 

(Cai, 2012, Liebenskind, 2011). The apusozoans are a group of small heterotrophic flagellates 

that are proposed as a sister group to the Opisthokont superfamily in several molecular 

phylogenies (Cavalier-Smith and Chao, 1995, Paps et al., 2013). Thecamonas trahens (a 

representative organism of the apusozoans) possesses a four-domain homolog of sodium 
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channels, TtrNav2, an Nav2 family sodium channel that is also found in choanoflagellates and 

most non-vertebrate animals, but missing in fungi, a sister group to the animals (Cai, 2012).  A 

key determinant for ion selectivity is the single residue in the selectivity filter contributed by 

each of the four domains located as the most constricted point of the aqueous pore.  T. trahens 

selectivity filter key amino acids are DEES, and similar to Salpingoeca rosetta (DEEA), where 

DEEA is the configuration of almost all Nav2 channels (Cai, 2012).  While Nav2 channels 

possess DEEA selectivity filters typically, all Nav1 channels have a lysine residue in either the 

second position (DKEA, cnidarians) or the third position (DEKA- all non-cnidarian Nav1 

channels in metazoans).  Nav2 channels are related to Nav1 channels with an overall homology 

including their genomic structure with twenty intron splice sites conserved in all Nav2 and Nav1 

channels.  DEEA Nav2 channels likely predate Nav1 channels, since Nav2 channels are present in 

single cell choanoflagellates, while DEKA/DKEA Nav1 channels are only present in more 

advanced, multicellular organisms with nervous systems (eg. cnidarians and other metazoans). 

The choanoflagellate Salpingoeca rosetta possess the most primitive Nav2 sodium 

channel with a DEEA selectivity filter. This homolog represents the most basal DEEA sodium 

channel to arise following the animal-fungal split, and may be the progenitor for the evolution of 

other Nav2 and Nav1 sodium channel genes within the Metazoa. 

Voltage-gated sodium and calcium channels are postulated to have evolved as a result of 

gene duplications of a one domain channel such as a potassium K+ channel.   Sodium channels 

are responsible for the rapid rising phase of nerve, muscle and endocrine cell action potentials 

(Catterall et al., 2007; Hille, 2001; Hodgekin & Huxley, 1952; Lipkind & Fozzard, 2008) and 

calcium channels play a role in excitability and activation of calcium dependent intracellular 

processes. Sodium channels are divided into two distinct groups, Nav1 channels, containing 10 

genes in humans (Nav1.1 – Nav1.9 and NaX), and Nav2 channels, with only one gene in most 

invertebrates to more rarely, as many as four members (Nav2.1 – Nav2.4) in Anthozoa (e.g. sea 

anemone) cnidarians.  In many cases the core α1 subunits of the sodium channel are sufficient for 

functional expression but still possess the propensity to be modulated by auxiliary subunits (i.e. β 

subunits).  The two sub-families are distinguished from another in several ways, including 

expression patterns, selectivity filters, ion conductance and drug-binding properties (Boda et al., 

2015; Catterall, 2012; Gur Barzilai et al., 2012; Watanabe et al., 2002).  Expression patterns of 
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the vertebrate α1 subunits are tissue specific where Nav1.1-Nav1.3 and Nav1.6 are the primary 

channels of the central nervous system, and Nav1.7-Nav1.9 are found in the peripheral nervous 

system. Nav1.4 is abundant in skeletal muscle, and Nav1.5 is located in the heart (Catterall, 

2012). The appearance of a highly sodium selective channel is hypothesized as the trigger for the 

evolution of nervous systems. The first class of organisms identified to possess a nervous system 

are in the cnidarians, an example of which is jellyfish containing a centralized ring of 

interconnected neurons with sensory and motor neurons (Anderson & Spencer, 1989; Mackie, 

2004; Spafford et al., 1996; Spencer, 1979; Spencer, 1995; Watanbe at al., 2009).  Nav2 sodium 

channels differ functionally from Nav1 channels in lacking rapid N-type channel inactivation 

kinetics of Nav1 channels, primarily influenced by a putative ‘hinged-lid’ formed by the 

intracellular III-IV linker connecting Domains III and IV. They also lack a lysine in the 

selectivity filter that engenders sodium-selectivity in Nav1 channels, expressed Nav2 channels to 

date are non-selective allowing Ca2+, Ba2+, Na+, K+ to pass through the pore(Dong et al., 2015; 

Gur Barzilai et al., 2012b; Zhang et al. 2011).  Functionally expressed Nav2 channels have 

significantly slower kinetics of channel inactivation than classical Nav1 channels that generate 

nerve action potentials, suggesting that a lack of a “hinged lid” responsible for rapid inactivation 

may be lacking in Nav2 channels. 

 

1.10 Selectivity filter 

Based on crystal structure architecture analysis, the selectivity filter creates the tightest 

bottleneck of the channel pore of approximately 3.1 x 5.1Ậ, which leads into a highly 

electronegative conduction pathway that allows the movement of partially hydrated Na+ ions 

(Hille, 1975; Krauss et al., 2011; Payandeh et al., 2011). A major difference between Nav1 and 

Nav2 channels lies within their selectivity filters, which then lead to dramatically different ion 

permeation kinetics. Nav1 channels are only found expressed in vertebrates, and possess the 

selectivity filter of DEKA or DKEA which makes the members of this group highly selective for 

sodium ions; whereas Nav2 channels have only been identified in invertebrates and possess 

selectivity filters of DEEA or DEES, and thus far been shown to be non-selective (Gur Barzilai 

et al., 2012a; Moran et al., 2015; Stephens et al., 2015). The difference between the selectivity 

filters lies in the presence (or absence) of a lysine residue in either second or third position of the 
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filter, where substitution of the positively charged lysine residue results in dramatic alterations in 

channel properties including sodium ion permeability (Favre et al., 1996; Kim et al., 1993; 

Lipkind & Fozzard, 2008; Yamagishi et al., 1997).  Mutations of the lysine residue in the rat 

muscle Nav1.4 sodium channel results in a shift of the current-voltage (IV) relationship of 

channel opening and peak current to a more depolarized/positive direction, and changes in ion 

permeability ratios for K+/Na+ and Ca2+/Na2+ to favor passage of ions other than sodium ions as 

the dominant charge carrier. Mimicking the calcium channel selectivity filter (DEKA  EEEE) 

results in a calcium permeant channel (Heinemann, 1992). Furthermore, substitution of the basic 

charged lysine (DIII) with an equal basic charge arginine (R) does not maintain sodium 

selectivity over calcium ions and allows potassium to permeate (Favre et al., 1996; Heinemann et 

al., 1992). It may relate to a stabilizing effect of the charged lysine (DIII) and a carboxyl group 

from the adjacent glutamate (DII) residue to the selectivity filter glutamate residue with the 

hydrated sodium ion in the pore to create an energetically favourable binding site (Lipkind & 

Fozzard, 2008). 

 

1.11 Rapid deactivation and inactivation 

A definitive characteristic of sodium channels is their rapid opening and closing, in that 

once sodium channels open upon membrane depolarization, channel conductance is quickly 

minimized (<4 ms) by a [1] rapid N-type inactivation and [2] slower C-type inactivation (Kass, 

2004; Vandenberg & Bezanilla, 1991).  Activation, deactivation and inactivation are voltage-

dependent gating mechanisms. Activation is the state of channel opening and deactivation is a 

state of channel closing.  Inactivation is the state where a channel becomes refractory to re-open 

(Catterall, 2012). 

The opening and closing is evident in single channel recordings, where channels flicker 

between different opening and closed states.  The opening (activation) and closing (deactivation) 

states are related to occlusion or extension in diameter of the pore, while a slow pore collapse is 

considered to be associated with a slow C-type inactivation.  A fast N-type inactivation of 

sodium channels is regulated outside the pore domain, by a ‘capping off’ of the internal portion 

of the conduction pathway by the intracellular linker connecting domains III and IV; the rapid 

inactivation mechanism has been likened to a “hinged-lid” (Catterall, 2012; West et al., 1992). 
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Once occluded the channel is refractory (inactivated) for a period of time.  A three amino acid 

cluster (IFM: Ile-1488, Phe-1489, Met-1490) in the III-IV linker (West et al., 1992) interact with 

docking site residues located on linkers between S4-S5 of domains III and IV (Ala-1329[III], 

Asp-1662[IV]) (Goldin, 2003; West et al., 1992) of the rat Nav1.2 channel.  Injection of a 

protease in the cytoplasm (Armstrong et al., 1973) or mutating residues of the IFM motif results 

in abolishment of inactivation during depolarization (West et al., 1992) and altering the residues 

of S4-S5 linkers serving in the reception of the putative “hinged lid” leads to a slower channel 

inactivation (Smith et al., 1997).  Nervous systems encode information in the rate of generation 

of action potentials.  So the appearance of elements on Nav1 sodium channels that allowed for 

fast action potential spikes was a key requirement for evolution of nervous systems  (Vandenberg 

& Bezanilla, 1991).  

 

1.12 Unconventional “sodium” channel, Nav2  

Many invertebrate species possess a single Nav1 channel homolog, that is representative 

of the ten Nav1 channels isolated in mammals including humans.  Besides an Nav1 channel, 

many invertebrates possessed a different sodium channel gene not present in vertebrates dubbed 

Nav2.  The first Nav2 channel was isolated from American cockroach, Blattella germanica and 

functionally expressed by Ke Dong in Xenopus oocytes.  Blattella Sodium Channel 1 (or BSC1) 

bore a likeness to close homolog DSC1 which was functionally characterized from the fruit fly, 

Drosophila melanogaster.  Outside of insects, four different Nav2 channel homologs dubbed 

Nav2.1 to Nav2.4, were cloned and characterized from sea anemone Nematostella vectensis.  The 

sea anemone Nav2 channels, as well as the insect ones characterized are permeable to both 

calcium ions and monovalent sodium and potassium ions, and possess the DEEA selectivity filter 

(Gur Barzilai et al., 2012; Zhou et al., 2004). Substitution of entire p-loop regions, the short 2-

helix segment that connects transmembrane helices S5 and S6 and harbours selectivity filter 

residues, from another N. vectensis channel NvNav2.5 with the selectivity filter DKEA results in 

greater monovalent ion selectivity than substitution of selectivity filter residues alone (Gur 

Barzilai et al., 2012a). In contrast to the rapid nature of Nav1 kinetics, the insect and sea 

anemone Nav2 channels activate and inactivate at much slower rates requiring up to 40ms to 

reach peak conductance and remain open for a significantly longer period (>500 ms) (Dong et 
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al., 2015; Gur Barzilai et al., 2012; Song et al., 2004; Zhou et al., 2004).  Furthermore, these 

channels possess a “MFL” motif in their III-IV linker place of the “IFM” motif (mammalian), 

and appear to be resistant to tetrodotoxin (TTX), a potent sodium channel blocker routinely used 

as a marker for sodium channels (Song et al., 2004; Zhang et al., 2011).  

Thus far DSC1 mutants in Drosophila  fruit flies reveal that Nav2 channels are involved 

in odorant sensing (Kulkarni et al., 2002) and involved in the neural circuits of the ‘giant fibre 

system’ that mediates the fight-or-flight response in Drosophila (Zhang et al., 2013). The Nav2 

channel genes of sea anemone Nematostella have been shown to be spatiotemporally expressed 

during development.  The form and function of Nav2 channels is not well understood, outside 

what little we can infer from a few studies in insects by the Dong group (Dong et al., 2015; 

Zhang et al., 2013, 2011; Zhou et al., 2004) and a study in sea anemone by Moran group (Gur 

Barzilai et al., 2012b).  In this thesis, we describe the characterization of an Nav2 channel with a 

DEEA selectivity filter, from the simplest organism known to have an Nav2 channel, the SroNav2 

channel from the single cell choanoflagellate, Salpingoeca rosetta. 

 

1.13 Voltage-gated calcium channels 

Voltage-gated calcium channels are a different group of related cation channels and play 

central roles in neurotransmitter transmission, muscular contraction and pain sensation (Simms 

& Zamponi, 2014; Yu et al., 2005; Cox & Dunlap, 1992; Huang et al. 2010; Murakami et al., 

2002; Weissgerber et al., 2006).). Voltage-gated calcium channels are segregated into two 

categories: High Voltage-Activated (HVA) and Low Voltage-Activated channels are activated 

by depolarisations to high voltages or lower voltages closer to resting membrane potentials, 

respectively (Bean, 1985) (Simms & Zamponi, 2014). HVA channels are comprised of 7 

members in vertebrates, Cav1.1-Cav1.4 (exclusively L-type) and Cav2.1-Cav2.3(N-, P/Q-, R- 

type), while LVA channels are a 3-member family in vertebrates: Cav3.1-Cav3.3 (T-type).  

Alongside differing voltage-sensitivities and kinetic properties between calcium channels types, 

they are distinguished by blockade using different classes of drugs, peptides and natural toxins. 

L-type channels are susceptible to modulation by a class of drugs known as dihydropyridines 

(Catterall, 2011; Hofmann et al., 2014; Senatore et al., 2011).  Cav2 group channels (Cav2.1 – 

Cav2.3), while all HVA channels can be disrupted by gabapentin which targets their auxiliary 
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alpha2 delta subunits (Cox & Dunlap, 1992; Hendrich et al., 2008; Marais et al., 2001).  LVA 

(T-type) channels are highly sensitive to the piperidine-derived molecule TTA-P2 with near 

complete block of mammalian Cav3 channel currents in the low micromolar range (Dreyfus et 

al., 2010). 

Besides a sensitive block to dihydropyridines, L-type or Cav1 calcium channels have 

several distinct characteristics including long lasting currents when barium ion is substituted as 

the charge carrier for calcium ion.  Both Cav1 and Cav2 channels require the co-expression of 

auxiliary subunit proteins, in 1:1 stoichiometric ratios, to not only promote membrane expression 

but also to regulate kinetic properties (Buraei & Yang, 2010; Dzhura & Neely, 2003; Fang & 

Colecraft, 2011; Gerster et al., 1999; Hendrich et al., 2008; Lory et al., 1992; Opatowsky et al., 

2004; Van Petegem et al., 2004).  The kinetic properties of  calcium channels are also highly 

influenced by highly conserved, calcium sensor protein calmodulin, which is bound to a primary 

IQ motif in the C-terminus of L-type channels to promotes rapid inactivation kinetics in the 

presence of increasing intracellular calcium ions (Brehm & Eckert, 1978; DeMaria et al., 2001; 

Lee et al., 2000; Lee et al., 2000; Peterson et al., 1999). 

We have identified an L-type Cav1 channel homolog in the simplest known organism to 

have one (Fig. 1.3), that is, the choanoflagellate, Salpingoeca rosetta, and evaluate its functional 

properties expressed in HEK-293T cells.  The studies of an extant relative of the earliest 

branching L-type calcium channel will provide insights into the evolution of calcium channels, 

first appearing animals before multicellularity.  

 

1.14 Ancillary subunits 

HVA calcium channels (L-type, N-/P-/Q-/R- type channels), and Nav1 channels, require 

the co-expression of accessory protein subunits in order to be functionally expressed at the 

cellular membrane and exhibit proper gating kinetics (Buraei & Yang, 2010; Gerster et al., 1999; 

Opatowsky et al., 2004; Van Petegem et al., 2004).  Accessory β-subunits in Nav1 sodium 

channels are not related genes in mammals and invertebrates, and β-subunits of sodium channels 

appear to be completely lacking in the Nav2 channels of invertebrates. 
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The calcium channel accessory β-subunits on the other hand, are homologous subunits in 

both invertebrates and mammals.  Invertebrates have a singleton gene for beta subunits, with four 

genes (β1-β4) in mammals.  They are intracellularly-bound proteins closely resembling the 

MAGUK (membrane-associated guanylate kinase) family of proteins, appearing to act as 

intracellular protein scaffold proteins at the cellular membrane (Van Petegem et al., 2004).  

Experimental evidence indicates that without co-expression of β subunits, core α-subunits show 

diffuse localization within the cell likely associated with the endoplasmic reticulum, but in the 

presence of β-subunits there is enhanced membrane expression of both proteins (Gerster et al., 

1999; Weissgerber et al., 2006).  β subunits are also known to prevent ubiquitination and 

proteosomal degradation of calcium channels, to also enhance expression of calcium channels 

(Altier et al., 2010). 

β subunits comprise two highly conserved core regions, a Src3 homologous (SH3) 

domain and a guanylate kinase (GK) domain, connected by a weakly conserved HOOK domain 

and flanked by variable N- and C- termini (Buraei & Yang, 2010). The association of β subunit 

with the core α subunit of the ion channel is mediated through the interaction of the α subunits 

‘α-interaction domain’ (AID), a highly conserved 16 residue region within the I-II linker of 

HVCCs, and the β subunit ‘β-interaction domain’ (BID), also known as the AID-binding pocket 

(ABP) (Buraei & Yang, 2010; Van Petegem et al., 2004). The exact mechanism of how this 

interaction results in the up-regulation of functional α1-subunits is not completely understood. 

One theory has hypothesized the I-II linker of the Cav1.2 channel contains a ‘signal switch’ 

mechanism that triggers ER retention or export (Fang & Colecraft, 2011).  It is proposed that the 

I-II linker possesses an ER export signal which is masked by the ER retention signal of the other 

linkers, as well as the N- and C- termini of the channel. The β subunit interactions are proposed 

to cause enough of a conformational change to allow the ER export signal to dominate and cause 

trafficking of the channel to the cellular membrane (Fang & Colecraft, 2011).  Additionally, β 

subunit association prevents proteosomal degradation, further enhancing the cellular density of 

calcium channels.  Alongside their influences on expression of calcium channels, β subunits 

modulate channel gating properties including activation and inactivation kinetics, and voltage-

sensitivities.  All calcium channel β subunit appear to shift both the midpoint of channel 

activation and inactivation to a more hyperpolarized potentials, causing changes in calcium-

dependent inactivation (CDI) and voltage-dependent inactivation (VDI), and increasing open 
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state probability of a channel and therefore resulting in potentially larger transients (Buraei & 

Yang, 2010; Dzhura & Neely, 2003; Murakami et al., 2002; Weissgerber et al., 2006).  Different 

calcium channel β subunit isoforms also speed up or slow down the kinetics of inactivation of 

calcium channels, and this is the case for mammalian and invertebrate calcium channel beta 

subunits (Dawson et al., 2014). 

Alongside the various β subunits high voltage activated calcium channels require the co-

expression of a primarily extracellular α2δ subunit. The α2δ subunit is a highly glycosolated 

protein composed of an α2 subunit and a δ subunit that are linked via disulphide bonds (Canti et 

al., 2003), and generated from the same mRNA transcript.  The N-terminal region and α2 portion 

of the protein appear to be extracellular, while the C-terminal region is more hydrophobic and 

likely glycosylphosphatidylinositol (GPI) anchored to the membrane through the delta subunit  

(Brickley et al., 1995; Canti et al., 2003; Dolphin et al., 1999; Dolphin, 2012; Wiser et al., 1996). 

The primary role of the α2 and δ subunits are in promoting membrane expression of calcium 

channels and has a more minor effect on the biophysical properties of calcium channels (Canti et 

al., 2003; Hendrich et al., 2008; Marais et al., 2001; Wiser et al., 1996). 

We have identified both an α2δ and β subunit Salpingoeca rosetta.  There have been 

many studies that suggest that auxiliary alpha2-delta and beta subunits of calcium channels have 

functions outside of calcium channels.  The omni-presence of the calcium channel α2δ and β 

subunit gene in Salpingoeca rosetta and other organisms that also possess a Cav1 and/or Cav2 

calcium channel, is evidence of the co-evolution of calcium channels and their accessory 

subunits during the early evolution of calcium channels in eukaryotes. 

 

1.15 Calmodulin regulation 

Calmodulin (CaM) is a bi-lobed molecule containing two calcium-binding pairs of EF-

hand motifs connected via a flexible linker.  Calmodulin was identified to interact with calcium 

to increase inactivation kinetics of calcium channels first in the single cell protist, Paramecium 

(Brehm & Eckert, 1978; Kovalevskaya et al., 2013). CaM requires the presence of Ca2+ to 

become “activated” which causes a conformational change from a compact folded state (apo-

CaM) to an open conformation allowing exposure of its interaction site with its target proteins 
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through recognition of a melittin amino acid pattern within the calmodulin binding site (Ben-

Johny & Yue, 2014; Jarrett & Madhavan, 1991; Kovalevskaya et al., 2013). This configuration 

involves the placement of two clusters of basic amino acids residues adjacent to hydrophobic 

residues and operates via interaction with both N- and C-termini of target protein molecules 

(Ben-Johny & Yue, 2014; Jarrett & Madhavan, 1991). Voltage-gated calcium channels possess 

several CaM interaction elements as well as conservation of N-terminus and C-terminus effector 

elements.   N-terminal modulation occurs via interaction with an N-terminal Spatial Ca2+ 

Transforming Element (NSCaTE) site, while C-terminal regulatory elements include two EF 

hands, an IQ (isoleucine-glutamine) motif (some channels possess an ‘IM’ – methionine – motif) 

and a Calmodulin Binding Domain (CBD) (Ben-Johny & Yue, 2014; DeMaria et al., 2001; Dick 

et al., 2008; Jarrett & Madhavan, 1991; Wong, et al., 2000; Peterson et al., 1999).   The presence 

of N- and C-terminal calcium binding motifs such as an NSCaTE and carboxyl terminal EF hand 

motif, respectively, involved in bridging a tethered and ‘resident’ CaM molecule present the 

possibility of generating a rapid inactivation via calcium-calmodulin interaction characteristic of  

calcium channels (Dick et al., 2008; Peterson et al., 1999). NSCaTE interaction is not present in 

all native high voltage-activated calcium channels (i.e. Cav2.2) (Dick et al., 2008) however when 

present has the ability to interact with the CaM N-lobe and shift global CaM modulation to local 

modulation that most commonly result in attenuation of calcium-dependent inactivation (CDI) 

and reduced excitation sensitivity of the channel (Ben-Johny & Yue, 2014; Dick et al., 2008; 

Saimi & Kung, 1994).  Our finding that the L-type calcium channel of one of the simplest 

eukaryotic organisms to have an L-type calcium channel, Salpingoeca rosetta, possesses a 

mostly conserved calmodulin interaction elements. A C-terminus which includes an IQ-like 

motif where calmodulin is expected to associate, and an N-terminus with a potential NSCaTE 

motif.  The finding of potential regulation of L-type calcium channels in choanoflagellate 

Salpingoeca rosetta, suggests that calcium regulation of L-type calcium channels by calmodulin 

evolved with the appearance of the first calcium channels in eukaryotic ancestors. 
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1.16 Proposed functions of sodium and calcium channels in single celled organisms 

Sodium-selective Nav1 channels only appear in multicellular organisms, which also have 

a nervous system.  The function Nav1 channels is involved in generating fast action potential 

spikes for neuron-to-neuron communication, involving sodium ion influx and not calcium ion 

influx, which is toxic to cells at high intracellular levels.  Calcium channels have a primary role 

in linking electrical signals to calcium-dependent intra-cellular pathways that we normally 

associate with multicellular organisms, like the contraction of heart and skeletal muscle, synaptic 

transmission in nervous systems and secretion of hormones.  The finding of the presence of 

sodium (Nav2) and calcium (Cav1) channels in single celled organisms raises the question of 

what Nav2 channels and Cav1 channels are doing in a single cell organism. 

One theory proposes that the control of ionic flux across cellular membranes evolved as 

an “emergency response” to cellular damage.  It may also be a trigger for mediating flagellar 

beating and amoeboid movement in a single cell organism (Brunet & Arendt, 2016).  It is also 

known that bacteria can communicate amongst each other in a manner that is analogous to nerve-

nerve communication via action potential spikes.  Bacteria communicate with other bacteria 

when nutrient source, glutamate becomes low, by changing the membrane potential in the 

extracellular biofilm by potassium channel flux-inducing waves (Beagle & Lockless, 2015; 

Prindle et al., 2015) 

Salpingoeca rosetta can be considered a reduced model for understanding the control of 

cellular repair, movement and inter-organismal communication by means of calcium and sodium 

channels.  Salpingoeca rosetta exists in single cell fast and slow “swimmer”, a sedentary 

“thecate” stage, and colonial “rosetta” stages triggered by co-factors released by Bacteriodes 

bacteria, which is commensal with Salpingoeca rosetta.  The presence of only a single gene 

representative of these channel types more ancestral to the channels currently known (Fig. 1.4) 

provides an opportunity to gain insights into what was the impetus to create these sodium and 

calcium channel classes in the first eukaryotes. Through PCR amplification, molecular cloning, 

and electrophysiological analyses of expressed channel plasmids in HEK293T cells we have 

been able to characterise the Cav1 L-type calcium channel and Nav2 sodium channel of 

Salpingoeca rosetta. The Cav1 channel is a highly calcium-selective and rapid calcium channel 

that lacks prominent calcium-dependent inactivation characteristics. The Nav2 channel is a 
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“slow” sodium channel that is non-selective for extracellular cations allowing the passage of 

calcium [Ca2+], sodium [Na+], and barium [Ba2+]. Altering the native Nav2 selectivity filter to 

mimic vertebrate homologs (DEEA  DEKA) results in a channel highly selective for 

monovalent ions. 
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Figure 1.4 Phylogenetic alignment of Salpingoeca rosetta cation channels 

A phylogenetic tree illustrating the position of the voltage-gated ion channels (Nav2, Cav1, and 

Cav3) of Salpingoeca rosetta in relation to other vertebrate and invertebrate homologs. TPC: two-

pore channel, Catsper: sperm-specific calcium channel, Nachbac: bacterial sodium channel. 
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Chapter 2 

Materials & Methods 

 

2.1 General cloning methods 

2.1.1 mRNA treatment 

The calcium and sodium channels introduced in this thesis were isolated via polymerase 

chain reaction (PCR) using complementary DNA (cDNA) prepared from messenger RNA 

(mRNA) kindly provided by the Nicole King Laboratory (University of California, Berkeley 

campus). Pre-treatment of mRNA was carried out to remove any residual contaminating genomic 

DNA sequences.  8µL mRNA sample, 1µL DNAse buffer and 1µL DNAse I (Thermo-Fisher, 

#AM2222) were added to a 0.2mL microcentrifuge tube and incubate at 37˚C for 30 minutes. 

1µL   50mM EDTA was then added and temperature was increased to 70˚C for 15 minutes to 

inactivate the DNase enzyme. The reaction was then stored in -80˚C until ready for cDNA 

preparation. 

 

2.1.2 cDNA preparation 

cDNA was produced using the SuperScript III Reverse Transcriptase (ThermoFisher, 

#18080044). 5.5µL mRNA, 5.5µL milli-Q water, 1µL of 1µM random hexamer primer 

(ThermoFisher, #N8080127) and 1µL of 10mM dNTP (ThermoFisher, #18427013) were 

combined in a 0.2mL microcentrifuge tube. Mixture was then heated to 65˚C for 6 minutes to 

relax secondary mRNA structures, followed by incubation at 25˚C for 4 minutes. At this point, 

1µL of 0.1M DTT, 4µL of 5x First Strand buffer (ThermoFisher, #18080044) and 1µL of 

RiboLock RNase Inhibitor (ThermoFisher, #EO0381) were added and incubated at 25˚C for a 

further 10 minutes. Finally, 1µL SuperScript III RT was added and total reaction incubated at 

42˚C for 60 minutes, followed by heat inactivation of the reverse transcriptase at 65˚C for 15 

minutes. To concentrate cDNA product and remove extraneous salts and proteins, 2µL of 

molecular grade glycogen (ThermoFisher, #R0561), 30µL of 10M ammonium acetate and 
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100µL of 100% molecular grade ethanol were added to tube and allowed to incubate overnight at 

-20˚C. The next day the pelleted product was centrifuged at 4˚C for 30 minutes, followed by 2 

wash spins with cold 70% ethanol. After brief air-drying, 20µL of autoclaved milli-Q water was 

added to resuspend the pellet and final product was stored at -20˚C. 

 

2.1.3 Nested polymerase chain reaction  

PCR primers were designed by Dr. J. David Spafford and supplied by Eurofins Genomics 

(Table 4-6). Primers were designed based on available Salpingoeca rosetta channel sequences 

from genome sequences (PRJNA37927, PRJNA193541, PRJNA222515) and transcriptome 

(PRJNA62005) sequences deposited from the Broad Institute (MIT, Massachusetts) and Dr. 

Nicole King (University of California, Berkeley).  Primers were resuspended in milli-Q water as 

per provided instructions to create a stock solution, a 1/10 dilution was made in 1.5mL 

microcentrifuge tubes as working stocks of each primer.  Prior to addition into master PCR 

mixture each working primer stock was quantified using the Nanodrop 1000 spectrophotometer 

to ensure that quantity of each added primer were equal and ranged from 120 – 140ng per 50µL 

reaction.  In some instances, primers were designed to span intron splice sites (intron-spanning 

primers) when it was noticed that PCR products were subject to genomic contamination.  

Primers were designed to isolate the coding sequence of each channel in several smaller 

fragments. SroNav2 and SroCav1 coding sequences were divided into 4 and 5 fragments, 

respectively. 

All components of PCR reaction were combined in a 0.2mL microcentrifuge tube on ice. 

The components were added in the following order; milli-Q water, 5µL 10x PCR buffer 

(Aligent, #600250), 1µL of 10mM dNTP mix (ThermoFisher, #18427013), 1µL 50mM MgSO4, 

2.5µL DMSO, 2µL cDNA template, 120-140ng of each forward-reverse primer pair, 1µL 

PfuTurbo AD DNA Polymerase (Aligent, #600250).  A nested PCR protocol was conducted 

using a set of outer flanking primers to generate an initial product.  A second PCR reaction using 

the product of the first PCR reaction (diluted 1000 fold) as template amplfied with an nested 

PCR primer set to the outer flanking set.  Cycling parameters for outer primer pairs were as 

follows: initial denaturation at 95˚C for 2.5 minutes, temperature increase to 97˚C for 30 

seconds, followed by 10 cycles of denaturation at 95˚C, primer annealing (Tm – 7) for 15 seconds 
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and strand extension at 68˚C at a rate of 2 minutes per kilobase. After these initial 10 cycles, per 

cycle denaturation was increased to 20 seconds, primer annealing duration was increased to 20 

seconds, followed by extension duration increase to 2 minutes and 10 seconds per kilobase; these 

cycling parameters were carried out for an additional 20 cycles. Final extensions were performed 

at 68˚C for 5 – 10 minutes. Inner nested PCR was performed using standard PCR protocols; 2.5-

minute denaturation at 95˚C, temperature increase to 97˚C for 30 seconds, followed by 30-35 

cycles of initial denaturation at 95˚C for 30 seconds, primer annealing at Tm-7 for 30 seconds, 

strand extension at 68˚C for 1 minute per kilobase (Fig. 1). Final PCR reactions were then 

screened by taking a 5µL sample on a 1% agarose gel. Successfully amplified products were 

then run on a subsequent 1% agarose gel and extracted. 

 

2.1.4 DNA agarose gel extraction 

 All agarose gels were made by combining 75mL of TAE buffer (40mM Tris-acetate, 

1mM Ethylenediaminetetraacetic acid, 0.11% glacial acetic acid) with 0.75g Agarose A 

(BioBasic, D0012).  A microwave was used to heat and dissolve the agarose into solution, and 

then the flask of melted agarose was allowed to cool on a countertop prior to being poured into a 

gel cast.  Gel cast was taped of using green painters tape to block open ends and a gel comb was 

inserted into appropriate slot of cast to create gel lanes. Liquid TAE-agarose mixture was poured 

into taped cast once mixture was cool to touch based on contact to inner forearm. Gel was 

allowed to solidify for 20-30 minutes at room temperature, after which tape and gel comb were 

carefully removed. Solid gel and surrounding cast were then lowered into an electrophoresis 

chamber containing TAE as a running buffer and with lanes positioned at the negative terminal. 

TAE buffer was added until a thin layer of liquid lay over top of the gel. A 6x loading dye was 

then diluted in each sample and samples were loaded into wells of prepared gel. A current of 

100mV was applied across the gel and allowed to run for ~30-40 minutes, until migration of 

loading dye was deemed sufficient. Completed gels were then visualized using AlphaImager 

software (AlphaInnotech) on a PC computer connected to an AlphaImager HP Gel 

Documentation system into which the gel was placed and documented under UV light 

illumination. 
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When not using commercially available pre-cut TOPO or pGEMT-Easy vectors, PCR 

products were cloned in vectors by ligation of restriction enzyme excised fragments.  Restriction 

endonuclease digested PCR and cloning plasmids were run and isolated on a 1% agarose gel, 

excised and extracted using the QIAquick Gel Extraction Kit (Qiagen, #28706) with some 

modifications.  Binding buffer was added to the excised gel slice at a determined volume of 1µL 

per 1µg of gel in a 1.5mL microcentrifuge tube. Tube and contents were then heated to 55˚C 

with shaking at 750rpm to the melt agarose. Once melted, the mixture was added to the provided 

columns in 700µL aliquots (volumes greater than 700µL were centrifuged in same column in 

series). Columns were centrifuged at 5,000g for 2 minutes, the centrifuged mixture in lower 

collection tube was added to the upper column and spun again; this was repeated for a total of 4 

spins. After the final spin, 500µL of binding buffer was added to column and spun at 10,000g for 

1 minute and flow-through contents were discarded. 700µL of wash solution containing 100% 

molecular grade ethanol (4:1, EtOH: buffer) was added and spun at 10,000g for 1 minute. 

Following wash, upper column was transferred to sterile 1.5mL microcentrifuge tube and spun at 

16,100g for 2 minutes to remove residual ethanol. To elute DNA product, 3 rounds of 67µL of 

milli-Q water heated to 85˚C was added to the column, incubated for 1 minute at room 

temperature and spun at 16,100g for 1.5 minutes. DNA was then concentrated by adding 2.5µL 

molecular grade glycogen (ThermoFisher, #R0561), 50µL of 10M ammonium acetate, and 

700µL of molecular grade 100% ethanol. Tubes were incubated at -20˚C for a minimum of 2 

hours, at which point they were centrifuged for 30 minutes at 4˚C to pellet product, washed with 

200µL ice cold 70% ethanol, briefly air-dried and resuspended in 20µL autoclaved milli-Q 

water. 

 

2.1.5 TOPO cloning and sequencing of channel fragments 

For large PCR fragments freshly isolated from Salpingoeca cDNA template, we cloned 

their blunt-end PCR products into Zero Blunt TOPO PCR Cloning kit (ThermoFisher, #450245). 

All components were combined in a 0.2mL microcentrifuge tube; 4.5µL of purified PCR 

product, 1µL of provided salt buffer solution, 0.5µL TOPO vector. Reaction was allowed to 

incubate at room temperature for a minimum 25 minutes, at which point it was diluted 4-fold 

with sterile milli-Q water to be transformed into DH5-alpha or STBL2 Escherichia coli strain via 
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electroporation.  SroNav2 and SroCav1 channel fragments were sequenced directly off the 

TOPO vector using commercially available M13 forward (-20: 

5’GTAAAACGACGGCCAGT’3) and M13 reverse (5’CAGGAAACAGCTATGAC’3) primers 

(Table 4). Sequencing was outsourced to The Centre for Applied Genomics (TCAG) at The 

Hospital for Sick Children (Toronto, Ontario). Consensus sequences were created by identifying 

three independently sequenced fragments per nucleotide position. Analysis and identifying 

consensus sequences were carried out by Dr. J. David Spafford.  

 

2.1.6 A-tailing and pGEM-T Easy cloning of channel fragments 

The N-terminal sequence of SroCav1 was cloned into pGEM-T Easy (Promega, A1360) 

vector for sequencing.  Following PCR amplification with Pfu Turbo AD DNA polymerase 

(Aligent, #600250), the PCR product was isolated via agarose gel electrophoresis and recovered 

in solution using gel extraction technique.  Due to the 3’ to 5’ exonuclease activity of Pfu Turbo 

AD which produces blunt-ended products, the isolated channel fragment was modified by the 

addition of deoxyadenine nucleotide from dATP on each blunt end using Taq polymerase 

(ThermoFisher, #18038018). To add an A tail to the blunt ended PCR product, the following 

components were combined in a 0.2mL microcentrifuge tube: 7µL of purified PCR product, 1µL 

of 100mM dATP (ThermoFisher, R1041), 1µL 10X Taq buffer without MgCl2, 1µL of 25mM 

MgCl2 ThermoFisher, R0971), total reaction volume of 10µL. Reaction was incubated at 72˚C 

for 30 minutes. Following incubation, product was ready to use in ligation with pGEM-T Easy 

vector. Ligation was composed by adding in a 0.2mL microcentrifuge tube: 0.5µL of pGEM-T 

Easy vector (@50ng/µL), 5µL of A-tailed PCR product, 2.5µL of 10X ligation buffer, 1µL of T4 

DNA ligase (BioBasic, B1125). Ligation was carried out overnight at 16o C. 

 

2.1.7 Preparing electro-competent E. coli cells 

All plasmid constructs were transformed by electroporation with prepared 

electrocompetent cells and grown as bacterial cultures that were purified in a standard plasmid 

mini-prep protocol. To make electrocompetent cells, frozen aliquots (ThermoFisher; Stbl4 - 

#11635018, TOP10 - C404050) were streaked onto Luria Bertani (LB) agar plates without 
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antibiotic and grown overnight at 37˚C.  Single, well-isolated colonies were then used to 

inoculate 10mL of Super Broth (SB) without antibiotic, which was then incubated overnight at 

37˚C in a shaking incubator rotating at 300rpm. The following day the 10mL Super Broth culture 

was divided and added to two 250mL fresh Super Broth aliquots without antibiotic and incubated 

at 37˚C in a shaking incubator until bacterial growth density reached an OD600 of 0.03 – 0.06 as 

measured by a Nanodrop spectrophotometer. Cells were then chilled on ice for 20 minutes then 

transferred to chilled centrifuge bottles and spun for 15 minutes at 4000g (4˚C) to pellet cells 

(Beckman Coulter Alegra 25R). Supernatant was removed and cells were then washed twice 

with 250mL of a chilled, filtered 10% glycerol solution by resuspending the cells and spinning 

the bottles for 15 minutes at 4000g (4˚C) - supernatant was removed after each wash. After the 

second wash, cells were resuspended in 20mL of chilled 10% glycerol and transferred to a 50mL 

falcon tube, then spun for 15 minutes at 4000g (4˚C). Supernatant was then discarded and cells 

were then resuspended in 2-4mL of chilled 10% glycerol until cell density was measured to be 

0.375 at an OD600, as measured by Nanodrop spectrophotometer. Once desired density was 

reached, cell aliquots of 40-80µL were made in 0.2mL microcentrifuge tubes that were then 

dropped into liquid nitrogen to flash freeze. Cells were then kept at -80˚C until needed for 

plasmid transformation by electroporation. 

 

2.1.8 Bacterial transformation 

Bacterial transformations of plasmid constructs were carried out via the electroporation 

method of transformation, with the parameters in electroporation voltage and time optimized for 

Escherichia coli (E. coli). Frozen aliquots of competent E. coli stored in -80˚C were allowed to 

thaw on ice for 5 minutes, after which 1-6µL of plasmid containing solution were added to cells 

and allowed to incubate further on ice for 30 minutes. Fresh 1mL of Super broth (SB) media was 

warmed to 37˚C in a 1.5mL microcentrifuge tube. After 30 minutes, cell-plasmid mixture was 

transferred to an ice cold 0.2cm electroporation cuvette (ThermoFisher, P45050) and 

transformed using an Eppendorf 2510 electroporator (Sigma, #618969) (TOP10 strain of E. coli 

shocked with voltage of 1120V for TOP10 cells, (while all other strains were transformed with 

1200V).  Immediately following electric shock, the cells were placed on ice, then 1mL of warm 

media was added to cells and transferred to a 1.5mL microcentrifuge tube to allow for recovery 
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on a heat block at 37˚C with shaking at 500rpm for 1 hour. After one hour, cells were spun down 

at 4000g for 3 minutes, 850µL of supernatant was removed and discarded, cells resuspended in 

remaining media and plated onto a petri dish of Luria-Bertani (LB) agar with the proper 

antibiotic. Plates were parafilmed, inverted and incubated overnight at 37˚C. Single, isolated 

colonies were chosen to grow up and screened for positive recombinants containing the expected 

plasmid. 

 

2.1.9 Mini-prep plasmid isolation 

Single, well-isolated colonies from overnight LB agar plates were grown and amplified 

overnight in 10mL SB media with proper antibiotic. Cells were then spun in 2mL aliquots in 

2mL microcentrifuge tubes at 4500g for 1.5 minutes. Pellet was resuspended in 270µL 

resuspension solution (25mM Tris, 10mM EDTA, 50mM glucose), followed by addition of 

540µL of lysis buffer (0.2M NaOH, 1% SDS) and 405µL neutralization solution (3M K+, 5M 

acetate). Tubes was inverted, rotated and then vortexed to distribute solutions and break down 

cellular membranes. Tubes were then spun at 5000g for 3 minutes to pellet cell debris and large 

chromosomal DNA, supernatant was transferred to fresh 2mL microcentrifuge tube and 800µL 

of 2-propanol was added and incubated at -20˚C for minimum 1 hour to precipitate plasmid. 

Tubes were then spun at 16,100g for 30 minutes, the supernatant was discarded and tubes briefly 

air-dried before resuspending in 200µL milli-Q water. 400µL of 5M LiCl was added to tubes, 

incubated on ice for minimum 20 minutes then spun at 16,100g for 10 minutes, the supernatant 

was transferred to fresh 1.5mL tube and 500µL of 2-propanol was added to tubes, and incubated 

at -20˚C for minimum 1 hour to precipitate DNA. Tubes were then spun for 30 minutes at 

16,100g (4˚C).  The supernatant was discarded, and the resulting pellet was resuspended in 

400µL milli-Q water. To remove residual RNA, 2µL heat-treated RNAse A was added to each 

tube and incubated at 37˚C for 45-60 minutes. Following sufficient incubation, equal amount 

(400µL) of 50:50 phenol:chloroform was added to each tube, shaken and vortexed, then spun for 

5 minutes at 16,100g to separate phases. The upper aqueous phase containing the plasmid DNA 

was then transferred to fresh 1.5mL microcentrifuge tube and the lower remaining organic phase 

was discarded along with the tube. The removed upper phase was then washed with the addition 

of an equal amount pure chloroform (400µL), tube was then shaken and vortexed, followed by 
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centrifugation at 16,100g for 5 minutes to separate phases. The upper aqueous layer was 

transferred to fresh 1.5mL microcentrifuge tube, to which 90µL 10M ammonium acetate and 

1mL 100% molecular grade ethanol was added and allowed to incubate at -20˚C overnight. 

Tubes were spun for 30 minutes at 16,100g (4˚C) to pellet DNA, supernatant was discarded.  The 

pellet was then washed with 450µL ice cold 70% ethanol, supernatant was discarded and pellet 

allowed to air-dry for 5 minutes before being suspended in 30-50µL sterile Milli-Q sterile water. 

2.1.10 Restriction Digests 

Restriction enzymes were obtained from New England Biolabs and were used to clone 

ion channel fragments into the mammalian expression vector pIRES2-eGFP (pIRES2-dsRED for 

SroCav1 β-subunit). All reactions contained 10% v/v of 10x NEB reaction buffer, ≤5% v/v total 

enzyme volume, variable plasmid amount, and the remaining volume of reaction was filled with 

Milli-Q water. 

To determine successful acquisition of full length SroNav2 channel construct, plasmids 

were digested twice, in parallel, with (1) 2µL NEB Cutsmart buffer (B7204S), 2µL mini-prep 

isolated plasmid, 1µL SacII enzyme (R0157S), with expected banding pattern of 2100 bp and 

9500 bp; (2) 2µL NEB buffer 3.1 (B7203S), 2µL mini-prep isolated plasmid, 1µL BglII 

(R0144S) and 1µL HindIII (R0104S) enzymes, with an expected banding pattern of 1150 bp,  

 

2.1.11 Ligation 

 Cloning of channel fragments into pIRES2-eGFP with adapters and SroCav1 N-terminal 

sequence into pGEM-T Easy vector was done using T4 DNA ligase (BioBasic, B1125). 

Concentrations of prepared inserts and vector backbones were determined with a Nanodrop 

spectrophotometer. A ratio of 3:1 (insert:vector) was used in most cases (5:1 and 6:1 were also 

used) where vector concentration was set at 50ng per reaction and insert concentration was 

determined based on size ratio using the following equation: 

3 × (
𝑖𝑛𝑠𝑒𝑟𝑡 𝑠𝑖𝑧𝑒 (𝑏𝑝)

𝑣𝑒𝑐𝑡𝑜𝑟 𝑠𝑖𝑧𝑒 (𝑏𝑝)
) × 50𝑛𝑔 = 𝑛𝑔 𝑜𝑓 𝑖𝑛𝑠𝑒𝑟𝑡 
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From this, x-µL of insert and y-µL of vector were determined and combined with 2.5µL of 

buffer, and milli-Q water to bring total reaction volume to 25µL in a 0.2mL microcentrifuge 

tube. Reaction was then incubated at 16˚C for 6.5 hours followed by a decrease in temperature at 

a rate of 1˚C per 30 minutes to a final temperature of 4˚C where it was held until bacterial 

transformation. 

 

2.2 Mammalian cell culture 

Human embryonic kidney – 293T (HEK-293T) cells were cultured and maintained in 

Dulbecco’s Modified Eagle Medium (DMEM) (Sigma, D5796), supplemented with 10% v/v 

fetal bovine serum solution (Sigma, F1051), 1% v/v sodium pyruvate (Sigma, S8636), and 

250mg/mL of penicillin/streptomycin (Sigma, P4458). Media was pre-warmed to 37˚C in a water 

bath prior to each use. All HEK-293T cell work and manipulation was done in a laminar flow 

hood. Fetal bovine serum (FBS) was heat-inactivated in a 56˚C water bath for 30 minutes with 

manual shaking at 5 minute intervals, prior to being divided into aliquots and frozen until ready 

to use. 

 

2.2.1 Thawing HEK cells 

HEK-293T cells were received from ATCC and aliquots were stored in liquid nitrogen 

for long-term storage. A new cell aliquot was thawed for use after every 20-25 passages. Prior to 

thawing a cell aliquot, prepared DMEM was warmed to 37˚C in water bath, at which point 4mL 

of media was added to new, sterile 25cm2 tissue culture flask (Cell Star, #690-071). A single 

tube aliquot was removed from liquid nitrogen storage and submerged in 37˚C water bath to 

quickly thaw. Once thawed, 1mL of warm media was added to tube and mixed with the pipette 

before being transferred to prepared tissue culture flask. Flask was then placed into a water-

jacked 37˚C incubator with circulating 5% CO2 for 3-4 hours to allow cells to adhere. After this 

incubation period, media was removed and replaced with 6mL of warm fresh media and returned 

to incubator until cells reached confluency. 
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2.2.2 Cell culture maintenance  

HEK-293T cell cultures were maintained by allowing culture to grow to ~70-100% 

confluency in 25cm2 tissue culture flask at 37˚C. Cells were passaged once confluent by being 

split to various ratios (ie. 1:8, 1:12, 1:16, 1:20). To passage (split), media was aspirated by 

inverting flask and removing media, 1mL of 0.25% of trypsin-EDTA solution (Sigma, T4049) 

was added to opposite side of cell monolayer. Flask was then rotated to neutral position and 

rocked back and forth to distribute trypsin across the monolayer.  The Flask was once again 

inverted and trypsin solution was removed. Another 500µL of trypsin solution was added to flask 

and allowed to incubate in neutral position for 3-5 minutes at 37˚C. Following sufficient 

incubation, 7mL of warm media was added to flask to inactivate trypsin, and cells were 

resuspended by pipette mixing up and down. Cells were then divided into desired ratios labelled 

with subsequent passage number. Cells were split to a ratio of 1:4 (cells:media) and incubated for 

minimum 4 hours at 37˚C prior to transfection with a plasmid construct. 

 

2.2.3 Transient transfection of ion channel plasmid constructs 

To allow for transfection, HEK-293T cells were split to a ratio of 1:4 earlier the same 

day. A standard calcium phosphate precipitate transfection protocol was utilized (Senatore et al., 

2011). Plasmid concentrations were standardized to 1µg/mL of tissue culture media, for a total of 

6µg in a 600µL transfection mixture. Standard protocol requires two sterile 1.5mL 

microcentrifuge tubes. Microcentrifuge tube #1 contains 6µg of desired plasmid, 30µL of 2.5M 

CaCl2 (filtered through a 0.2µm cellulose filter (ThermoFisher, #726-2520)), and remaining 

volume was made up with sterile Milli-Q water. This mixture was then added drop-wise into 

microcentrifuge tube #2 containing 300µL of a HEPES-buffered saline solution (containing 

280mM NaCl, 50mM HEPES, and 1.5mM Na2PO4-7H2O; filtered through a 0.2µm cellulose 

filter (ThermoFisher, #726-2520)), was then mixed and allowed to incubate for 20-30 minutes at 

room temperature. After this short incubation, transfection solution was then added to HEK cell 

flask and placed in 37˚C incubator for 16-20 hours. 

The following day, the transfection was washed with warmed media in a fashion similar 

to passaging the cell line. Culture flask was inverted and media removed via aspiration, warm 
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media was then added to the flask opposite the layer of HEK cells, flask was rotated back to a 

neutral position and gently rocked back and forth several times before once again removing 

media. This process was repeated for a total of 3 “washes”, after which a final 6mL of warm 

media was added to the flask and replaced in the 37˚C incubator. Cells were left in 37˚C 

incubator for 1-3 hours to allow adherence to flask surface, after which the flask was transferred 

to an identical incubator with an ambient temperature of 28˚C until ready to record. 

 

2.2.4 Poly-L-Lysine coated coverslips 

In order to record HEK cells transfected with the SroCav1 channel, the cultured HEK 

cells needed to be plated several days in advance on poly-L-lysine coated coverslips. To coat 

coverslips, a 0.01% poly-lysine solution is prepared from a 0.1% stock solution (Sigma, P8920) 

and filter sterilized. Circular glass coverslips (Fisher Scientific, #12-545-80) were placed in a 

60mm petri dish (Corning Life Sciences, #430166), washed with 100% molecular grade ethanol 

and allowed to air-dry at room temperature. 5mL of working poly-l-lysine solution was then 

added to coverslips in the dish and allowed to incubate at room temperature for 30-45 minutes. 

Following incubation, poly-L-lysine solution was removed via aspiration, and coverslips were 

washed by adding 5mL of sterile milli-Q water, removing again via aspiration. Coverslips in the 

petri dish were then placed into a 55˚C oven to dry for approximately 2 hours at which point they 

could be used to plate transfected HEK cells or placed at 4˚C until needed. 

 

2.2.5 Plating of transfected HEK cells 

In order to perform whole-cell patch clamp electrophysiology transfected HEK cells need 

to be plated onto glass coverslips. Cell plating follows a modified passage protocol and cells 

were plated on uncoated, or poly-L-lysine coated for SroCav1, coverslips. Cell media was 

removed and cells were trypsinized in the same manner previously outlined (see 2.2.2) for 

passaging. Following 3-5 minute incubation at 37˚C, 7-10mL of fresh media was added to the  

flask containing cells.  Cells were mixed by pipette mixing up and down, and 5mL of these cells 

were added to a 60mm petri dish (Corning Life Sciences, #430166) containing coverslips. Petri 

dish was then incubated at 37˚C for 3-5 hours to allow cells to adhere to coverslips, after which 
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point the cells were ready to be recorded. For SroCav1 cells were plated 3-days post-transfection, 

and after 4 hours at 37˚C to allow adherence to coverslips were moved to 28˚C for several days 

until ready to record. 

 

2.3 Electrophysiology recordings 

Coverslips of attached cells were transferred from DMEM containing petri dish to a 

35mm petri dish (Sarstedt, #83.3900) containing extracellular ionic recording solution. Ground 

electrodes were composed of 1.25% agarose in 3M cesium chloride (CsCl) filled with 3M CsCl. 

Patch pipettes were produced by pulling thin-walled borosilicate glass capillaries using a Sutter-

1000 pipette puller with a trough-shaped platinum filament. Pipette tips were then heat polished 

using a microforge (Narishige, MF-830).  

All whole cell patch clamp recordings were carried out at room temperature. Recording 

were carried out using an Axopatch 200B amplifier that was sampled through a Digidata 1440 

A/D converter outputted to a PC computer, controlled through pClamp 10 software (Molecular 

Devices).  Pipette resistance was kept to between 2-6 MΩ, pipettes with higher or lower 

resistance were discarded. During patch access, cells with an access resistance of <12 MΩ, and a 

leak of less than 10% of peak current size were kept and used for analysis. Leak subtraction was 

done offline in post analyses, and background noise was smoothed with a 1000Hz Gaussian filter 

using Clampfit software (Molecular Devices).  Analysis was carried out using Clampfit software, 

Data was tabulated within Microsoft Excel, and illustrated through OriginLab 9.1.  

 

2.3.1 Electrophysiology solutions 

Solutions for recording SroNav2 currents and SroCav1 currents were adopted from 

solutions previously used by former graduate students in the laboratory, Wendy Guan (2014) and 

Adriano Senatore (2011), respectively.  

SroNav2 external kinetic bath solution was composed of 2mM calcium chloride (CaCl2), 

160mM tetraethylammonium chloride (TEA-Cl), 10mM 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES); solution pH was adjusted to 7.4 using TEA-OH. 
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Internal pipette solution contained 110mM cesium chloride (CsCl), 10mM ethylene 

glycol tetraacetic acid (EGTA), and 10mM HEPES. Solution pH was adjusted to 7.2 and filtered 

through 0.2µm cellulose filter. 

SroCav1 external kinetic bath solution was composed of 20mM CaCl2, 40mM TEA-Cl, 

1mM magnesium chloride (MgCl2), 10mM glucose, 10mM HEPES, 65mM CsCl. Solution pH 

was adjusted to 7.2. 

Internal pipette solution was consisted of 108mM cesium methanosulfonate (CsMSF), 

4mM MgCl2, 10mM EGTA, 9mM HEPES, 3mM MgATP, 0.6mM Li-GTP. Solution pH was 

adjusted to 7.2 and filtered through 0.2µm cellulose syringe filter. 

 

 

Table 2.1. SroNav2, SroCav1 kinetic solutions 

 SroNav2 SroCav1 

(mM) Internal External Internal External 

[Ca2+] - 2 - 20 

TEA-Cl - 160 - 40 

HEPES 10 10 9 10 

EGTA 10 - 10 - 

CsCl 110 - - 65 

MgCl2 - - 4 1 

Glucose - - - 10 

Li-GTP - - 0.6 - 

Mg-ATP - - 3 - 

Cs-MSF - - 108 - 

     

SroNav2 solutions adopted from Wendy Guan (2014). SroCav1 solution adopted from Adriano 

Senatore (Senatore et al., 2011). 

pH to 7.2-7.3 (External: TEA-OH; Internal CsOH) 
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Table 2.2. Na-NMDG experiment solutions 

External ionic composition (mM) 

CaCl2 NaCl NMDG HEPES TEA-Cl 

2 135 - 10 25 

2 - 135 10 25 

 

Internal ionic composition (mM) 

CsCl Li-GTP Mg-ATP HEPES EGTA 

110 0.6 3 10 10 

Adopted from Wendy Guan (2014). 

pH to 7.2-7.3 (External: TEA-OH; Internal CsOH) 

 

Table 2.3. Bi-ionic condition solutions 

 

External ionic composition (mM) 

CaCl2 HEPES TEA-Cl 

4 155 10 

 

Internal ionic composition (mM) 

 CsCl NaCl LiCl KCl EGTA TEA-Cl HEPES 

1 100 - - - 10 10 10 

2 - 100 - - 10 10 10 

3 - - 100 - 10 10 10 

4 - - - 100 10 10 10 

Adopted from Wendy Guan (2014). 

pH to 7.2-7.3 (External: TEA-OH; Internal XOH, X=Cs+, Na+, Li+, K+) 
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Figure 2.1: Polymerase chain reaction strategy employing intron-spanning primer sets 
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Table 2.4: Primers used in nested PCR cloning of SroCav1 α1 subunit 

Cloning of SroCav1 α subunit    

 Name Sequence Leng

th 

T

m 

(ᵒC

) 

GC

% 

 SroCav1SalFseIF1 CAGCAACTGTGAAAACACACG 21 55.

1 

47.6 

 SroCav1BsmBIb1 GGATGGACAACAGGATCGAG 20 55.

1 

55 

 SroCav1SalIFseIF2 GTCGACGGCCGGCCACCATGACCAACG

ATGACCTGAGC 

38 72.

7 

65.8 

 SroCav1BsmBIb2 CACGGATGTGATGAGACGAA 20 54.

6 

50 

 SroCav1BsmBIf1 CTTTATCATCGTCGCAGTCG 20 53.

4 

50 

 SroCav1SgrAIb1 CCAGCTTCACCAGCATCTC 19 55.

9 

57.9 

 SroCav1BsmBIf2 GGAGCAATCTGGCAGCAG 18 56.

6 

61.1 

 SroCav1SgrAIb2 AGTACAAACAGGCCCACAAA 20 54.

7 

45 

 SroCav1SgrAIf1 AACCTCGTGGTGACGTTCAT 20 56.

6 

50 

 SroCav1PpuMIb1 ATGTCCGCTGTTTCCAAATC 20 53.

5 

45 

 SroCav1SgrAIf2 CTGGTGAACACTGTGCTGCT 20 58 55 

 SroCav1PpuMIb2 TCAAGATTGACGGGGTCCT 19 55.

8 

52.6 

 SroCav1PpuMIf1 CAACCGGTTTGAGTCTGTGA 20 55.

1 

50 

 SroCav1SacIIb1 ATCAGAGCAGCAACATACGG 20 55 50 

 SroCav1PpuMIf2 GCAGCGCTCTTCTTGCTG 18 57.

2 

61.1 

 SroCav1SacIb2 ATTTCGCAAACGTCCACAG 19 53.

8 

47.4 

 SroCav1SacIIf1 GGGATAGCGGTGTCAACATT 20 55.

1 

50 

 SroCav1XmaIb1 ACGAAAACGAAGGGTTCCAT 20 54.

7 

45 

 SroCav1SacIIf2 CTTGTGAGCCGCGGTAAG 18 56.

3 

61.1 

 SroCav1XmaIb2 CCCGGGTTAGAAAGCATGTTCCACCAG 27 63 55.6 

      



40 
 

Table 2.5: Primers used in nested PCR cloning of SroCav1 β subunit 

Cloning of SroCav1 β subunit    

 Name Sequence Lengt

h 

Tm 

(ᵒC) 

GC

% 

 SroCavbetaF1 GCCAACGACAACGAACAAA      19 54.2 47.

4 

 SroCavbetaB1 CATCATCATCATCATCGCATC 21 51.5 42.

9 

 SroCavbetaF2-

XhoI 

GGAACTCGAGACCATGATGCAGCGAA

GCCGCCGG    

34 70.9 64.

7 

 SroCavbetaB2-

XmaI 

CCATGCCCGGGCTACACGGGGTGCAGC

ATGCG 

32 74.1 71.

9 

 Srocavbetaintro

nB3 

CCACTTCTGGGGACTAGGGA 20 58 60 

 Srocavbetaintro

nF3 

TCCCTAGTCCCCAGAAGTGG 20 58 60 

 SroCavbetaF5 CGACAACGAACAAACATGATGC 22 55.2 45.

5 

 SroCavbetaB6 GGACCAAAGAAGACGAGGGG 20 57.6 60 

 SroCavbetaF7 CCCCTCGTCTTCTTTGGTCC 20 57.6 60 

 SroCavbetaB8 ATCATCGCATCTACACGGGG 20 56.9 55 

 

 

 

 

 

 

 

 

 

 

 

 



41 
 

Table 2.6: Primers used in nested PCR cloning of SroNav2 α1 subunit 

Cloning of SroNav2 α subunit    

Name Sequence Length Tm 

(ᵒC) 

GC

% 

SroNav2SpeIF1      

    

TTGTTGCAGTTGTCCCTCTG 20 55.4 50 

SroNav2PvuIB1      

    

GTTGTCCAGGAGCCAGTAGC 20 57.9 60 

SroNav2ISpeIF2    

      

ACTAGTCCACCATGTCGGCCAGCCCTG

ACACTCGT 

35 70.5 60 

SroNav2PvuIB2      

    

GAGTTGAGCAAGGCGTCAC 19 56.5 57.9 

SroNav2PvuIF1      

    

TCTGCGTCTTCTCCATCCTC 20 56.3 55 

SroNav2SacIB1      

    

AGAGCGTGCAACATCTCTCC 20 57.3 55 

SroNav2PvuIF2      

    

GAACCTGCGATCGGTGAC 18 56 61.1 

SroNav2SacIB2   GAGCTCGCCACTATCATCACTG 22 57.4 54.5 

SroNav2SacIF1      

    

TTCCTTCTCCAGCAGTCAGC 20 57 55 

SroNav2BspEIB1  

        

AAGGATGCCCAGCTCAAAC 19 55.6 52.6 

SroNav2SacIF2      

    

GAGCTCGGCAAAGATGCTG 19 56.6 57.9 

SroNav2BspEIB2  

        

ACCAGGCGAAACACAAACTT 20 55.4 45 

SroNav2BspEIF1    

      

AACCGCAAGCCTGTGAAG 18 56 55.6 

SroNav2XmaIB1    

      

AGCGGATGGTTGTCTGAAGT 20 56.5 50 

SroNav2BspEIF2    

      

AAGGTGGAGCCCAAGTCAC 19 57.5 57.9 

SroNav2XmaIB2    

      

CCCGGGCTACAAAGTTGTTGCTTGGAT

G 

28 63.4 53.6 
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Table 2.7: Primers used for sequencing of subunit fragments in TOPO and pGem-T  

Sequencing primers    

 Name Sequence Length Tm 

(ᵒC) 

GC% 

 M13 

Forward (-

20) 

GTAAAACGACGGCCAG 16 50.7 56.2 

 M13 

Reverse 

CAGGAAACAGTATGAC 16 43.2 43.8 

 T7 TAATACGACTCACTATAGGG 20 47.5 40 

 SP6 ATTTAGGTGACACTATAG 18 42.1 33.3 

Synthetic oligonucleotide for insertion into pIRES2-eGFP 

 SroNav2 TCGACGGCCGGCCCCTGCGATCGTGGCGAGCTCCCGGCATCCGGA

AGTTC 

 SroCav1/S

roCav1 β 

subunit 

TCGACGGCCGGCCGGCTTCGTCTCATCACATCGGACGCCGGCGAC

CGAGGACCCCGTCCCGCGGTCGTC 

 

 

SroCav1 gene synthesis (SgrAI-SgrAI: 470bp) 

CGCCGGTGCTGATGGGAATGACGGCGACGACGACGATGACGACATTGACGA

TGACGCGACCACCGTGCTGGTCCTCGGCCTCTCCCTACCCAGCGGCAATCGA

GACTTTGTTGAAGCGGAGCCAACAGAGCCCATCAGCAACATCCGCACGCGCA

TTATGCAGAAGTTTGCTGAGCAGGGCGAGGACAGGGACAAGCTGATGTCGTT

TGTGCTGGCGCATCCGCACGACGGCCACATTCTTGATGAGACACGCACGCTC

GGGGAACAAGGCGTCCAAGTGAAGTCACTGCGGGAGTACAACGAAATCCTCA

CGATGTCGCAGCACAATCAGCACGAACTGTTGAAGCCGGCGACAGTGCAGAT

GCTCTCAAAATTGGGCGCCGTTGTCAAGTCGCGCTGGTTCAACCTCGTGGTG

ACGTTCATGGTGCTGGTGAACACTGTGCTGCTCGCCGTCCAGACGGACGCCG

GCG 

 

Figure 2.2. Synthetic oligonucleotide for SroCav1 

Synthetic oligonucleotide provided by BioBasic Inc. (Markham, ON, CA) to complete cloning of 

SroCav1.  
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Chapter 3  

Results 

 

3.1 Isolation of channel gene coding sequences 

PCR amplification of the genes encoding for the α1 subunit of SroNav2 and α1 subunit 

and β subunit of SroCav1 proved to be difficult due to various spurious intron sequences being 

amplified. A significant amount of PCR amplification resulted in larger than expected products 

which were found to be a result of introns not being removed from the coding sequence. To 

counter this, intron-spanning primers were created which would only anneal to adjacent exon 

sequences in which the contaminating intro was excised. Consensus sequence data was compiled 

by Dr. David Spafford to confirm correct coding sequence. In each consensus, a minimum of 3 

independently amplified PCR products sequenced at The Center for Applied Genomics (TCAG) 

at Sick Kids Hospital (Toronto) were aligned using Sequencher5.1 software (GeneCodes Corp.). 

The two fully isolated channel α1-subunits had no alternative splice variants. For both 

SroNav2 and SroCav1 α1-subunits previously unidentified sequences (Fig. 3A,B) were found to 

be exon coding sequence. To confirm, the sections of each respective channel were PCR 

amplified with additional primer sets, including intron-spanning primers. Fragments were then 

identified at TCAG to confirm amino acid sequence, from which a consensus was built with a 

minimum of three independent clones. 
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A 

Previously identified intron of SroNav2 
5’-

CACTTCCAGCAGCACTTCCAGCAGCAGCACAGCTCAGAGTATACGTGTGAATGGTATTGGC

ACGCGTGGCAAAGCAAGCAGGCAGCCAGTCTCGACAGAGCAGCGGCTGCAGAGCATGGAG

ACGATCAAGGCAACGAAAGCCGGTTCGAGGAATGTCATCAAGCACGTGTGGAGTGAAGACG

GCGCTGACCCCACAAGCACCAGTGTTGTCGACTCAGATGCGCGCGCGCACAGGGGCGCTGG

TGATGTGGTGCTCGTTCCAAGTTGAGAGCACCATCACCGTTTGGACACGATGCTGCACGCA

CCGGTGTGATGGCGGTGAACGAGGGCTTCCTCAGGGTGGGCGCCAACCAGGCAGCCCTTCT

GTCGAGCCCAAAGGCCAAGTTTGGTGCAGACAGCAACGACGACAGTGATGAGGACGTCGAT

CATGACATGACAGGGAGATGGGCAGTCCACAGGCACGGGGGTGGCAAGAGCAATGAGAGT

AGCGACGACGACACAATCTCAAGAGCATCGTCTCTGCCACAGAAGAGGATGCAAGGCAAGC

AGGTGACGCTGGTTGAGGAGCCAACTGTCGTGCCACACCAACAACGGCTTGGGACACGGAC

AGCGAGCGTGGCACCGTGGATACTGTTGCGATGCTAG 

CTGGGGACGGAGCCGCTGCTGTGATGCCGCGATACCGCCGCCG-3’ 

 

B 

Previously unidentified SroCav1 coding sequence 
5’-

GCTGTGTCTTGCTGGATCGTCGCCAAACTCCAACATCACCGCGTTCGACCACGCAGGGATT

GCCATTCTTGCCGTCTTCCAGTCAATCACACTCGAGGGATGGACTGATATCCTCTACAACGT

GGACGATGCTGTTGGTTACAAGAACATCAACTGGCTGTTCTTTGTGTCTCTGGTGATTGTGG

GCGCATTCTTCGTCATCAACCTCGTCCTCGGTGTTCTCAGCGGGCAGTTCACCCGCGAGGGT

GACCGCATGAAGGCGTCTGTGAAGTTTCTTCGCGCGCGGCGCAAAGAACAGCACCGCTTCC

AAGTCGCCGGGTACAGGGACTGGCTCTCAACAGCGCGCACGCTGCAGCCGAATGAGCCGTG

GCAGTCGGAGCTCCCAGACCACATGGTGCTCTACCACCGCGACAAGTTTCTCAAGTTTGATG

CGGCGGAGAGCATGGCAGAGCACGAGCAGAACTTCTTCAACAGCAGCGCCGGTGCTGATGG

GAATGACGGCGACGACGACGATGACGACATTGACGATGACGCGACCACCGTGCTGGTCCTC

GGCC TCTCCCTACCCAGCGGCAATCGAGACTTTGTTGAAGCGGAGCC-3’ 

 

Figure 3.1. Newly identified coding sequence in SroNav2 and SroCav1 

(A) Coding sequence previously identified as intron sequence was found as part of Domain III 

of SroNav2. (B) Previously unidentified coding sequence was found at the N-terminus of the 

SroCav1 channel.  

 

 

 

 

 

 



45 
 

SroNav2 shares only 33% - 51% sequence similarity among the channels examined. The 

fully expressed channel has an open reading frame of 5502 base pairs (bp) long transcript, 

producing a protein of 1834 amino acids (AA). The full coding sequence of SroNav2 was 

aligned with vertebrate Nav and invertebrate channel homologs that have either been 

functionally characterized or have been proposed as basal proteins but remain categorized as 

putative proteins as per GenBank (NCBI) (Fig. 3.2A). 

A cladogram was generated (Jalview) based on neighbouring % identity scores (Fig. 

3.2B). Based purely on the selected sodium channel gene coding sequence, SroNav2 branches 

basally to all vertebrate homologs and closely with Nav2 channels from Drosophila 

melanogaster and Blattella germanica. The Trichoplax adhaerens Nav channel has not been 

isolated or functionally analysed to confirm identity and remains a putative channel based on 

transcriptome data entry. 

SroNav2 possess the DEEA selectivity filter configuration in agreeance with other 

invertebrate channels, with the differentiating factor from Nav1 homologs being the lysine (K) 

residue in primarily in Domain III but also Domain II in the case of Cyanea capillata (jellyfish) 

(Figure 3.3A). In the III-IV linker, the residues of the IFM-motif (boxed) are replaced by VLL 

(valine-leucine-leucine) (Fig 3.3B). Furthermore, the proposed docking site alanine (A) residue 

of Domain III is substituted with a serine (S). These likely play a role in the slow inactivation 

seen in SroNav2 (Fig. 3.10C) and other Nav2 channel homologs from other invertebrates. 

SroCav1 shares 45% - 58% sequence similarity among the channels examined. The fully 

expressed channel produces an open reading frame of 4998 bp, producing a protein of 1666 AA. 

SroCav1 sequence was aligned with vertebrate HVA calcium channels, including all human 

homologs, as well as invertebrate channels that have been experimentally confirmed and 

functionally characterized (Fig. 3.4A) Invertebrate channels include those that remain as 

putative proteins as per GenBank (NCBI). A cladogram was then created based neighbouring % 

identity scores of calcium channel gene CDS (Fig. 3.4A). SroCav1 branches basally to all 

vertebrate channels but at a later node than all other invertebrate channels (except Lynmaea 

stagnalis). This could reflect the similarity and degree of conservation between the S. rosetta 

and human homologs.  
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SroCav1 appears to be the only channel to possess an ‘EDEE’ selectivity filter, while all 

other HVA calcium channels possess an ‘EEEE’ filter (Fig. 3.5A). Comparison of the calcium-

calmodulin (CaM) binding domain (Fig. 3.5B) which contains the critical IQ-motif for CaM 

binding reveals that SroCav1 is the only channel to possess an ‘LQ’. Interestingly, this does not 

seem to affect channel inactivation with calcium as the charge carrier (Fig. 3.13). 

During cloning of SroCav1 it was discovered that S. rosetta possessed the gene for an 

auxiliary β-subunit to SroCav1. This subunit was isolated and cloned into the mammalian 

expression vector pIRES2-dsRED. The gene CDS is aligned in Figure 3.7A. SroCavβ shares 

only 24-26% sequence similarity with other vertebrate and invertebrate β-subunits examined and 

based on neighbouring % identity scores places basely to all other β-subunits. It is essential to 

successful expression of SroCav1. 
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Figure 3.2. SroNav2 Sequence alignment and neighbour % identity cladogram 

A) Amino acid alignment of Nav1 (Homo sapiens) and Nav2 (invertebrate) sodium channel 

homolog. Input sequences on left (top to bottom): Salpingoeca rosetta; SCN1A [Homo sapiens]; 

SCN2A [Homo sapiens]; SCN1A [Homo sapiens]; SCN4A [Homo sapiens]; SCN5A [Homo 

sapiens]; SCN6A [Homo sapiens]; SCN7A [Homo sapiens]; SCN8A [Homo sapiens]; SCN9A 

[Homo sapiens]; SCN11A [Homo sapiens]; Mnemiopsis leidyi; Thecamonas trahens; 

Nematostella vectensis;  Trichoplax adhaerens; Cyanea capillata; Aiptasia pallida . Sequence 

similarity is indicated by colour blocks. Salpingoeca rosetta Nav2 (highlighted by red box) 

exhibits a high degree of similarity to other recognized Nav1 and Nav2 channels. Extraneous 3’ 

sequence trimmed. (B) Phylogenetic tree generated based on ‘% sequence similarity scores of 

Nav1/2 channels. Branch numbers indicate distance scores based on % neighbour identity. Black 

star represents emergence of Lysine-K residue in selectivity filter. Red star channels lack Lysine-

K. Green star indicates Nav1-DKEA channel in jellyfish. Alignment done using Clustal Omega 

and Jalview, phylogenetic tree produced using Jalview. 
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Figure 3.3. Selectivity and inactivation features of SroNav2 

(A) Expanded view of selectivity filter (star) and neighbouring residues of each Domain in 

SroNav2. Red box in Domain III highlights major substitution between vertebrate lysine (K) to 

invertebrate glutamate (E). (B) Expanded view of docking site residues on the S4-S5 linkers of 

Domain III & IV (stars) and IFM-motif (boxed) responsible for fast inactivation kinetics in Nav1 

channels. 

A 

B 
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Figure 3.4. SroCav1 Sequence alignment and neighbour % identity cladogram 

(A) Amino acid alignment of Cav1 L-type calcium channel homologs. Input sequences on left 

(top to bottom): Salpingoeca rosetta; CACNA1S [Homo sapiens]; CACNA1F [Homo sapiens]; 

CACNA1D [Homo sapiens]; CACNA1C [Homo sapiens]; CACNA1E [Homo sapiens]; 

CACNA1B [Homo sapiens]; CACNA1A [Homo sapiens]; Trichoplax adhaerens; Amphimedon 

queenslandica; Rattus norvegicus; Stylophora pistillata; Mnemiopsis leidyi; Cyanea capillata; 

Lymnaea stagnalis. Sequence similarity is indicated by colour blocks. Salpingoeca rosetta Cav1 

channel (highlighted in red) shows a high degree of similarity to identified homolog L-type 

calcium channels in higher vertebrates and invertebrates. Extraneous 3’ sequence trimmed. (B) 

Phylogenetic tree generated using Cav1 channel sequence based on ‘% sequence identity’. 

Alignment done using Clustal Omega and Jalview, phylogenetic tree produced using Jalview. 
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Figure 3.5. Selectivity filter and calcium-calmodulin docking site of SroCav1 

(A) Expanded view of aligned selectivity filter residues (star) within Domains I-IV. (B) Calcium-

calmodulin (CaM) binding site (black bracket) at C-terminus of HVA calcium channel. 

Highlighted (red box) indicates key residues of the IQ-motif responsible for CaM binding. 

Alignments done using ClustalOmega and Jalview. 
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Figure 3.6. SroCavβ alignment and cladogram 

(A) Alignment of isolated SroCavβ subunit against vertebrate homologs and invertebrate 

homologs from Lymnaea stagnalis, including all splice variants. (B) Phylogenetic tree produced 

based on neighbouring % identity scores (Jalview). 
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3.2 HEK cell expression 

 SroNav2 exhibits striking levels of expression observed in HEK-293T cells by using the 

standard calcium phosphate transient transfection strategy. Channel currents are observable in as 

little as 12 hours after transfection and remain at significant current measurements for 

approximately 72-hours post-transfection, at which point peak current produced by SroNav2 

increased significantly in 2mM extracellular calcium. Also, HEK cell membranes exhibited 

decreased integrity as seen by significant current leakage, unstable membrane potential, and cell 

death during patch clamp protocols. Visually, cells would appear shriveled or appeared to lose 

the distinct outline of a cellular membrane. While expressing SroNav2, HEK cells were found to 

be highly unstable when resting membrane potentials were maintained below -100mV during 

whole-cell patch. Only cells expressing the channel 12-14 hours after transfection could be used 

to obtain steady state inactivation data where membrane potential needed to be set at -130mV. 

After this time the patch holding potential had to be adjusted to more depolarized potentials ([-

110mV] – [-90mV]). This phenomenon was not seen when expressing the SroCav1 channel 

where cells could be held indefinitely at -110mV. The precise reason(s) behind the cellular 

instability was not investigated but currently remains unknown. 

SroCav1 currents were observable 7-days post-transfection and were recordable for 

approximately 48 hours. HEK cells maintained for >9-days post-transfection exhibited signs of 

senescence similar to SroNav2. Increased leak current, cellular death during patch clamp 

recording and loss of a distinct cell membrane restricted experimentation to a 48-hour window.  

Additionally, SroCav1 expression required co-expression with the SroCav1 β subunit and human 

α2δ subunit. Expression attempted without the SroCav1 β subunit resulted in no observable 

current up to 14-days post-transfection. Human β-subunit (β1, β2, and β3) co-expression was also 

attempted in various combinations but no observable currents were seen up to 14-days post-

transfection. Combinations of human β-subunits with the Salpingoeca β-subunit were also tested 

but no differences in kinetics compared to expression of only SroCavβ were seen. 

 Interestingly, under mercury lamp excitation HEK cells transfected with SroCav1 α1 

channel construct but without SroCav1 β-subunit continued to fluoresce green starting at 3-days 

post-transfection. This could only confirm successful transfection of cell aliquot and did not 

reflect channel expression. 
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3.3 Activity of SroNav2 

SroNav2 appears to be permeable to calcium ions as measurable currents were seen in 

2mM calcium (extracellular). Interestingly, substituting barium in place of calcium as the 

primary charge carrier resulted in approximately 30% decrease in peak current amplitude at 

equal molar concentrations (Fig. 3.7B). An anomalous effect between calcium and barium was 

not tested. We cannot conclude whether SroNav2 is impermeable to barium and the seen 

decrease in current size is from barium pore block thereby restricting the conducting calcium 

ions, or the channel pore affinity for barium is lower. 

SroNav2 peak currents were elicited at depolarising steps to -10mV in 2mM Ca2+ 

(Fig.3.8B) with V1/2 achieved at approximately -31mV (Fig. 3.9B). SroNav2 is a “slow” sodium 

channel as time to peak data indicates approximately 15.5ms (±3.62ms) to maximal current. It 

also appears to require >300ms for complete current decay (Fig. 3.8C). Recovery from 

inactivation of the channel is dependant on patch holding potential but requires at minimum 13 

seconds (holding potential [-90mV]) to achieve full recovery (Fig. 3.9G, H). The most 

interesting feature comes from steady state inactivation data indicating that SroNav2 is 90% 

inactivated at a holding potential of -90mV (Fig. 3.9C, D). Full recruitment of channels is 

achieved with a holding potential of [-120mV] to [-130mV], with half inactivation achieved at a 

potential of -103mV. This implies that in several physiological contexts where other sodium 

channel homologs are expressed (muscle, myocardial, neuronal cell) SroNav2 is likely to be in an 

inactivated state. The activation and activation curves of SroNav2 do not overlap and there is no 

window current possible. 
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Figure 3.7. SroNav2 extracellular ion permeability  

(A, B) Normalized barium perfusion data indicating a decrease in inward current with increased 

barium concentrations. (C) Bar graph showing decrease in average peak current for barium 

perfusion experiments. Error bars represent standard deviation (D) Sample trace showing 

relationship of Ca2+ [red] conductance against Ba2+ [grey] through SroNav2. No change in 

kinetics, inactivation decay or speed are seen. (E) Sample representative trace recording of 

Ca2++NMDG+ (grey) and Ca2++Na+ (blue) to illustrate increase in current at peak conductance 

voltage. (F) Bar graph showing the average increase in current size at peak conductance voltage 

of Na+ against impermeable NMDG+. Error bars represent standard deviation. 
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Figure 3.8. SroNav2 current-voltage relationship 

(A) Pooled normalized to peak current IV data of inward current, 2mM [Ca2+]ext. (B) Averaged, 

fitted IV curve analysis of SroNav2. Maximal conductance occurs at depolarisations to -10mV. 

(C) Sample trace of expressed SroNav2 in 2mM [Ca2+]ext/[110mM Cs+]int 

  

A B 

C 
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Figure 3.9. SroNav2 activation-inactivation 

SroNav2 Activation/Inactivation Data. (A) Pooled normalized activation data. Peak current size 

achieved at -10mV. (B) Averaged activation data (C) Pooled inactivation data (D) Averaged 

inactivation data (E) Combined activation and inactivation data. SroNav2 activation/inactivation 

curves do not overlap and the channel does not appear to possess a persistent window current. 

(F) Time to peak data determined from IV trace recordings. Inset: Tau activation data. (G) 

Pooled recovery from inactivation (RFIA) data (H) Averaged RFIA data 
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3.4 SroNav2 Permeability to monovalent ions 

To assess ion permeation properties of the SroNav2 channel Na+-NMDG perfusion 

experiments were performed wherein Ca2+ ion concentration was kept a constant 2 mM and 

perfusion of 135 mM NMDG+ was toggled with 135 mM Na+. SroNavv2 allows the passage of 

sodium ions alongside calcium through its pore with a ratio of Na+: Ca2+ near 1.6:1 (Fig. 3.9E, 

F). Some recordings indicated greater than double increase in peak current size while others 

indicated none to minimal change in current size. The discrepancies could be due to patch 

current leak during recording, voltage error and shifted peak currents, or differences between 

experiment-to-experiment setup of perfusion experiments. 

To further assess permeability of cations through SroNav2 and confirm the viability of 

Na+ ion permeation seen in Na+-NMDG+ experiments bi-ionic condition experiments were 

performed. Monovalent ions at a concentration of 100mM were added to the intracellular 

solution and external calcium was kept at 4mM. Currents were elicited by voltage steps from -

50mV to +100mV, while the cell was held between [-95mV] to [-90mV]. There is a 

hyperpolarizing shift in the reversal potential as you move up periods on the periodic table. Bi-

ionic reversal potential shows permeability to monovalent ions in the order of Li+ > K+ > Na+ > 

Cs+, with reversal potentials of +7.0mV < +15.0mV, +18.0mV < +42mV, respectively. SroNav2 

produces large outward currents at voltage steps above each respective ions reversal potential. 

This condition allows for direct measure of the channels ability to pass monovalent ions as there 

is a large concentration gradient created entirely from the monovalent ion (100mMint > 0mMext) 

and a lack competition from divalent Ca2+ in the extracellular solution.  
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Figure 3.10. SroNav2 Bi-Ionic reversal experiment 

[Left to Right; Lithium-Sodium-Potassium-Cesium] (A-D) Pooled recording data normalized to 

peak conductance for intracellular monovalent ions. (E-H) Averaged pooled data, used to fit to 

determine reversal potential of each ion. (I-L) Representative traces of each ion. Colours tracings 

coincide with voltage steps taken from 0mV – 55mV (shown in M, right) from a holding 

potential of -90mV. (M) Combined graph of figures E-F, with expanded view showing 

differences in reversal potentials (inset). All recordings done in 4 mM [Ca2+]ext 

 

Table 3.1. Bi-ionic reversal potentials of SroNav2 

 Lithium Potassium Sodium Cesium 

SroNav2     

Erev (mV) 6.7809 15.5243 18.76907 42.90918 

S.E.M. 1.08614 2.1202 1.38874 4.18464 

PCa / Px 19.1974 34.90017 41.39771 273.3869 

S.E.M. 1.463359 4.325008 3.739147 80.20794 

n 10 9 9 7 

 

Values are reported as means ± standard error of mean (S.E.M.), n denotes the sample size. 

PCa/Px is the permeability ratio of the monovalent ion (x) in respect to calcium. 
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3.5 Activity of SroCav1 

 SroCav1 produces measureable currents in 20 mM Ca2+. The current-voltage relationship 

indicates peak inward currents achieved at approximately -3.5mV (Fig. 3.13A), and a V1/2 

achieved at -30mV in Ca2+ (Fig. 3.14B). SroCav1 appears to be a rapid channel as complete 

current decay occurs in approximately 200 ms, and complete recovery from inactivation occurs 

in approximately 8.1 seconds (Fig. 3.14H). Steady-state current is tested with voltage steps to 

peak current with increasing holding potentials to determine the percentage of channels available 

at the varying holding potentials for firing. Half inactivation from this is achieved at holding 

potential of -47mV, and the overlap in activation and inactivation data shows that there is a small 

window current of the channel (Fig. 3.14D, E). 

 SroCav1 is impermeable to extracellular monovalent ions as tested using the Na+-NMDG+ 

experiments (data not shown). No obvious outward current was seen with 110 mM Cs+ 

indicating a lack of conduction in either direction of monovalent ions. SroCav1 appears to be a 

highly divalent cation selective channel. 

 Most interestingly, the substitution of 20 mM Ba2+ in place of extracellular calcium does 

not produce the long-lasting currents during depolarisation typical of L-type calcium channels 

(Fig. 3.15E). However, there is a hyperpolarizing shift in reversal potential and peak of the I-V 

curve with barium and the charge carrier (Fig. 3.16; Table 2). Unlike SroNav2, Ba2+ appears to 

be equally permeable as Ca2+ through SroCav1 (data not shown). 
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Figure 3.11. SroCav1 current-voltage relationship 

(A) Average normalized, fitted IV analysis. Maximal currents were seen at depolarisations to 

approximately [-5mV]. (B) Pooled normalized IV curve data of expressed SroCav1. Recorded in 

20mM [Ca2+]ext. (C) Sample trace of expressed SroCav1 in 20mM [Ca2+]ext. 
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Figure 3.12. SroCav1 activation-inactivation 

(A-B) Pooled activation traces and fitted average activation curves (Boltzmann fit), from holding 

potential of -110mV. (C-D) Steady state inactivation recoding, pooled and fitted average curves 

(Boltzmann fit). (E)  Combined activation and inactivation curves for SroCav1 (F) Time to peak 

curve and Tauinact curve [inset] (Boltzmann fit) (G-H) Pooled and average fitted curves 

(Exponential fit). n values denote sample size of presented parameter. Data collected in bath 

solution containing 20 mM [Ca2+]ext 
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Figure 3.13. SroCav1 in Ba2+
 charge carrier 

(A-B) Normalized pooled and fitted average I-V curves for SroCav1 with Ba2+ as the charge 

carrier (Gaussian fit). (C-D) Normalized pooled and fitted activation curve (Boltzmann fit) (E) 

Sample trace of SroCav1 with Ba2+ as charge carrier. (F) Fitted time to peak curve 

A 
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Figure 3.14. SroCav1 Ca2+ vs. Ba2+ 

(A) Combined activation curves for Ca2+ (blue) and Ba2+ (blue) (B) Combined I-V curves, 

normalized to peak (C) Sample traces to outline difference in kinetics utilizing either Ca2+ (blue) 

or Ba2+ (red) as charge carrier, depolarising voltage step take to -10mV. (D) Combined Tauinact 

(τinact) curves. 

 

Table 3.2. Difference in SroCav1 kinetics dependent on charge carrier 

 Calcium Barium 

Activation kinetics   

V1/2 -29.83 -31.99 

K 5.60 5.75 

Peak of IV -3.5 mV -9.1 mV 

Reversal Potential +46.25 mV +34.34 mV 

n 11 10 
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3.6 Bi-ionic analysis SroNav2 DEKA mutant 

 The mutant SroNav2 channel was found to be more stable post-transfection than wild-

type. Wild-type channel caused instability cellular membrane resulting unstable and leaky 

whole-cell patch conditions, and cells were only at acceptable measureable currents for 32 hours 

post-transfection. HEK cells expressing the SroNav2-DEKA mutant were able to be held at 

resting membrane potentials below [-90mV], and cell death during recording was not as 

prevalent with the mutant versus wild-type channel. Furthermore, the mutant channel requires a 

minimum 30 hours of incubation post-transfection for observable currents, which could be 

achieved within 12 hours post-transfection with wild-type SroNav2. 

Mutating the selectivity filter of the SroNav2 channel Domain III glutamate (E) to lysine 

(K) to mirror vertebrate Nav1 sodium channels produced a stark change in channel selectivity. 

Up to 80 hours post-transfection there were not detectable inward currents with bath solutions 

containing 2-4 mM Ca2+. Na+-NMDG+ experimentation revealed the first inward currents when 

135 mM Na+ was perfused onto the patched cell. Based on this observation bi-ionic reversal 

potential experiments were performed to examine the degree of permeability of monovalent ions 

revealing that the DEKA mutant is exclusively permeable to monovalent ions. With a lack of a 

peak inward current to standardize against, an average of the first 3 sweeps was taken as 

baseline/standard. 

 The bi-ionic condition for the SroNav2 DEKA mutant produces a dramatic 

hyperpolarizing shift in reversal potentials of the monovalent ions tested indicating a preferential 

permeability for intracellular monovalent ions over the extracellular divalent Ca2+. Shifts range 

from [-27mV] – [-43mV]. Mutant permeability replicates the same order as the wild-type with 

Li+ > K+ = Na+ > Cs+; however, reversal potentials are shift to -28mV < -12mV = -12mV < -

1mV, respectively. 
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Figure 3.15. SroNav2 DEKA mutation bi-ionic reversal 

 [Left to Right; Lithium-Sodium-Potassium-Cesium] (A-D) Pooled recording data normalized to 

peak conductance for intracellular monovalent ions. (E-H) Averaged pooled data, used to linear 

fit to determine reversal potential (I-L) Representative traces of each ion. Colours tracings 

coincide with voltage steps taken from 0mV – 55mV (shown in M) from a holding potential of   

[-100mV]. (M) Expanded view of combined graph of figures E-Fdifferences. All recordings 

done in 4 mM [Ca2+]ext 

 

Table 3.3. Bi-ionic reversal potential of wild-type SroNav2 and DEKA mutant 

 Lithium Potassium Sodium Cesium 

 

SroNav2:DEKA 
 

    

Erev (mV) -28.75749 -12.15726 -12.1704 -1.3319 

S.E.M. 1.62473 2.44236 6.00684 8.10938 

Permeability  

ratio 

    

PCa / PX 2.779097 6.916222 9.432046 22.59269 

S.E.M. 0.219993 0.96639 2.548279 10.52104 

n 9 10 9 6 

 

SroNav2 
 

    

Erev (mV) 6.7809 15.5243 18.76907 42.90918 

S.E.M. 1.08614 2.1202 1.38874 4.18464 

Permeability  

ratio 

    

PCa / PX 19.1974 34.90017 41.39771 273.3869 

S.E.M. 1.463359 4.325008 3.739147 80.20794 

n 10 9 9 7 

Values are expressed at means ±standard error of mean (S.E.M.). PCa/Px denotes permeability 

ratio of given ion [X] relative to calcium. n denotes sample size for tested ion. All recordings 

done in 4 mM [Ca2+]ext  

 

 

 

 



75 
 

Chapter 4 

Discussion 

 

4.1 Salpingoeca rosetta channels as earliest eukaryotic homologs 

Work for this thesis involves an investigation of the earliest eukaryotic homologs for 

voltage-gated sodium and calcium channels.  Recent analyses have consistently placed 

choanoflagellates as the most basal eukaryotic sister group to the Metazoa to have diverged 

following the animal-fungal split.  The choanoflagellate species of Salpingoeca rosetta, is the 

simplest known candidate to possess voltage-gated sodium channels, SroNav2, and calcium 

channels, SroCav1 and SroCav3 (Moran et al., 2015; Moran & Zakon, 2014; Richter & King, 

2013).   Described here, we isolated the full length homologs and functionally characterize 

SroNav2 and SroCav1 electrophysiologically in vitro, providing an opportunity to evaluate the 

common and different features in the earliest branching sodium and calcium channels.  It is 

important to note that previously cloned and expressed cnidarian and arthropod Nav2 channels 

were heterologously expressed in Xenopus oocytes which possess very large calcium-dependent 

chloride currents, and prevented analyses of direct measurement of inward calcium currents.  

Previously all voltage-sensitive Nav2 currents were assessed from tail currents in Xenopus 

oocytes.   The mammalian HEK-293T cell host allowed a direct analysis of Ca2+ ion containing 

conductances through Nav2 channels, which enabled the first evaluation of the contribution of 

sodium and calcium ion selectivity on Nav2 channels, as well as being able to evaluate a 

homolog from an extant species, representative of a possible earliest diverging ancestor.   

PCR amplification of target cDNA from Salpingoeca rosetta generated by RT-PCR 

produced a full length Nav2 channel transcript of 5502 base pair (bp) resulting in an 1831 amino 

acid (AA) polypeptide that contained no alternative splicing in any sequenced PCR product. The 

isolated Cav
2+ channel and associated β-subunit have a transcript and protein lengths of 

4998bp/1666 AA and 1190bp/381 AA, respectively, also lacking in any obvious alternative 

splicing.  SroNav2 and SroCav1 possess a 4x6 transmembrane domain protein structure of 

voltage-gated sodium and calcium channels (Fig. 1.2).  They are true homologs of eukaryotic 

voltage-gated ion channels, (SroCav1) as their high degree of sequence similarity of the 

Salpingoeca rosetta channels (illustrated in Figures 3.4A, 3.4B), to other homologs in the classes 



76 
 

suggest.  Sequence identity of SroNav2, SroCav1 and SroCavβ are 33%-51%, 45%-58%, and 

24%-26%, respectively.  The key residue in all four ion selectivity filters of the isolated SroNav2 

channel that is expected to be primarily responsible for their ion selectivity is DEEA (aspartate-

glutamate-glutamate-alanine).  The DEEA selectivity filter is consistent with those of previously 

characterized invertebrate Nav2 channels, including that of Blattella germanica (cockroach), 

Drosophila melanogaster (fruit fly), and Nematostella vectensis (sea anemone).  The more basal, 

apusozoan homolog, Thecamonas trahens has the only differing selectivity filter sequence as 

DEES (Fig. 3.3 – T. trahens filter not shown) (Cai, 2012).  A major differentiating factor of Nav2 

channels from Nav1 channels is in the replacement of the lysine (K) residue with a glutamate (E) 

in Domain III of vertebrate homologs or Domain II of cnidarian homologs (Cai, 2012; Catterall, 

2012). This single amino acid change to a lysine residue is expected to be responsible for altering 

channel ion selectivity toward higher preference for sodium ions (Gur Barzilai et al., 2012b; 

Lipkind & Fozzard, 2008). SroNav2 demonstrates a relaxed cation selectivity with equal passage 

of sodium, calcium or potassium ions associated (Fig. 3.9, 3.12) with the DEEA selectivity filter 

and mimics the cation selectivity of other recorded Nav2 channels from N. vectensis and D. 

melanogaster (Gur Barzilai et al., 2012b; Zhang et al., 2011). SroCav1 is most closely-related to 

vertebrate voltage-activated (HVA) Cav1.2 channels and other invertebrate Cav1 homologs (Fig. 

3.4).  It is the only observed Cav1 or Cav2 channel with an ‘EDEE’ selectivity filter, although 

calcium-selective pores of NALCN representatives typically possess an EEEE selectivity filter, 

but a more unusual EDEE selectivity filter is found in NALCN selectivity filters of a cnidarian 

(Nematostella) or mollusk (Aplysia) (Senatore et al., 2013).   SroCav1 shares ~39% identity with 

the calcium binding domain to human HVA channels in the proximal C-terminus with a calcium-

calmodulin binding ‘IQ’ domain substituted with ‘LQ’. SroCav1, like other Cav1 or Cav2 channel 

homologs requires co-expression of its own Cavβ-subunit. The SroCavβ subunit is not found in 

other single cell eukaryotes such as Monosiga or Thecamonas which lack a Cav1 channel 

homolog but possess an Nav2 homolog.  The association of a Cavβ gene only in genomes which 

also contain a Cav1 channel homolog, is consistent with a proposed requirement of Cavβ subunits 

in the expression of Cav1 channels (Nishimura et al., 1993; Welling et al., 1993).  SroCavβ 

subunit shares only 24-26% sequence identity with mammalian (human or rat) and Lymnaea 

snail LCavβ subunit isoforms (Dawson et al., 2014) which is likely a factor in our observation 
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that other snail or mammalian Cavβ-subunit homologs will not facilitate the membrane 

expression of the Salpingoeca Cav1 channel. 

 

4.2 Unique non-selective ion permeability characteristics of SroNav2 

 We illustrate in patch clamp recording that SroNav2 is a non-selective for extracellular 

sodium and calcium ions.  We observed inward currents with extracellular calcium or barium 

solutions, and an approximate increase of 1.6x current size when extracellular sodium ions 

replace equimolar, larger and impermeant N-methyl-D-glucamine (NMDG) along with 

extracellular calcium or barium ions, indicating an expected non-selectivity of Nav2 channels 

allowing passage of both incoming sodium and calcium ions (Du et al., 2016; Gur Barzilai et al., 

2012b; Zhang et al., 2011; Zhou et al., 2004).  We had confirmed the dual monovalent and 

divalent ion selectivity in bi-ionic conditions, where high intracellular monovalent ion 

concentrations lead to large outward currents observed in the order of Li+ > Na+ ≈ K+ > Cs+ to 

large depolarizing voltage-steps beyond the reversal potential, and a generation of large inward 

calcium currents at steps to lower voltages, due to the presence of extracellular calcium ions.  

This rank order of monovalent ions of Li+ > Na+ ≈ K+ > Cs+ follows the Eisenman’s ion 

selectivity model (Eisenman et al., 1967) and has been previously shown to be true of other type 

of voltage-gated channels including the invertebrate T-type calcium channel variants in Lymnaea 

stagnalis (Senatore, et al., 2014).  The equal permeability of sodium and calcium ions is 

consistent with the DEEA selectivity filter that allow the passage of cations in a non-selective 

manner in Nav2 channel homologs (Gur Barzilai et al., 2012b; Zhang et al., 2011; Zhou et al., 

2004).  Some calcium-selective channels generate larger or smaller ionic currents when divalent 

ion barium replaces equimolar calcium ions in the external medium.  SroNav2 has reduced 

conductance with barium ions with peak current sizes reduced by 30% or 0.7x. 

 DSC1, the Nav2 channel from Drosophila passes extracellular cations in the order of 

Ba2+>Ca2+>Na+ (Zhang et al., 2011) which is different from SroNav2 which is much weaker in 

passing barium ions, with a rank order of passing extracellular cations of Ca2+>Na+>Ba2+.  Ba2+ 

is a much larger ion, with an ionic radius of 1.44 Å compared to Ca2+ and Na+ which have ionic 

radii of 1.08 and 1.07 Å, respectively (Whittaker & Muntus, 1970).  A small relative barium 

current is consistent with a greatly reduced outward current of larger monovalent Cs+ with an 
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ionic radius of 1.78 Å that we recorded in bi-ionic conditions (Fig. 3.10).  On the other hand, 

larger barium currents have often been attributed to a greater ligand binding of native calcium 

ions to channel pores compared to barium ions, in what has been termed the “sticky pore” 

hypothesis that limits the conductance rate of calcium through calcium-selective channels.  No 

explanation is satisfactory in explaining what causes the differing relative permeability for 

calcium or barium ions.  

 SroNav2 exhibits a slow activation of gating and slow inactivation gating relative to 

typical fast vertebrate Nav1 channels upon depolarizing voltage steps in patch clamp recording.  

Average time to peak data indicates that SroNav2 is upwards of 15x slower than neuronal Nav1.1 

and Nav1.3, and cardiac Nav1.5 (Chen et al., 2015; Veerman et al., 2015).  Inactivation is 50x 

slower than typical brain sodium channel sodium channel of less than 1 ms, and more similar to 

slow-inactivating cardiac Nav1.5 which requires ~50 ms to inactivate (Veerman et al., 2015); the 

inactivation decay rate of SroNav2 is consistent with previously reported data from expressed 

cockroach BSC1 Nav2 channels (Zhou et al., 2004).  Fast inactivation kinetics and fast recovery 

rates from inactivation allow typical Nav1 sodium channels to generate action potential spikes at 

rates of 100 Hz in nervous systems (Catterall, 2012).  SroNav2 appears to have a very slow 

recovery rate from 100% inactivation of ~15s, at a holding potential of -100 mV.  Such a channel 

would not be a good candidate for fast inter-cellular communication as the rate of membrane 

depolarization would be very slow due to its slow activation gating, and limited in number of 

spikes generated with sustained depolarization because of its slow recovery rate from 

accumulated inactivation. 

 A most unique feature of SroNav2 lies in its odd pairing of the voltage dependence of 

activation and inactivation.  SroNav2 is completely inactivated at normal resting membrane 

potentials ([-90mV] to [-45mV]) (Fig. 3.8E), with a midpoint (50%) of voltage-dependent 

inactivation of SroNav2 of ~[-103mV]) which theoretically would mean that a large 

hyperpolarizing input below -95 mV would be required to remove SroNav2 from complete 

inactivation.  We don’t know the resting membrane potential of Salpingoeca rosetta to determine 

whether membrane potentials could fall below 95 mV to remove the inactivation of SroNav2 

channels. 
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Usually when voltage-sensitivities of ion channels are dramatically shifted to hyperpolarizing or 

depolarizing directions, they are usually more equally leftward shifted in the midpoints of 50% 

voltage of activation and inactivation, contributing to a changing operating window of channel 

excitability and refractoriness to more hyperpolarized potentials (i.e. low voltage activated 

channels) or depolarized potentials (i.e. high voltage-activated channels) (Chen et al., 2015; 

Loussouarn et al., 2016; Veerman et al., 2015).  The most similar mammalian sodium channel as 

SroNav2 with a leftward shifted inactivation curve is heart sodium channel Nav1.5 which exhibits 

a 50% voltage-dependent inactivation at ~[-89mV].  But Nav1.5 also possess a hyperpolarizing 

shift in the voltage-dependence of activation compared to typical sodium channels, where 

V50.activation of ~[-41mV]) (Veerman et al., 2015; Zhang et al., 2013).  SroNav2 is not only left 

shifted in the midpoint of the voltage dependence of inactivation compared to Nav1.5 by more 

than 10 mV, but it is ~20 mV more right-shifted in the 50% of voltage dependence of activation 

compared to Nav1.5.  With a large, ~80 mV voltage-divide between the voltage-dependence of 

inactivation and activation, would mean that hyperpolarization input which would adequately 

recover SroNav2 from inactivation, would need to be succeeded by 80 mV of depolarizing input 

to adequately recruit SroNav2 channels to open.  The strangely wide gap between the voltage-

sensitivities of activation and inactivation, may be understood in the context of SroNav2 in its 

native environment.  The native Salpingoeca environment may possess second messenger 

signalling or biological components not present in HEK293T cells that may be required for the 

native properties of the SroNav2 channel.  For example, the voltage-dependent inactivation of 

SroNav2 may be strongly influenced by G-protein coupled receptor signalling like vertebrate 

Cav2 channels (Gray et al., 2007; Huang et al., 2010), or perhaps there is an auxiliary subunit of 

SroNav2 within native Salpingoeca rosetta that dramatically alters voltage dependent properties 

of SroNav2 channels, such as the Cavβ or vertebrate Nav β subunit.  Another consideration is that 

SroNav2 is unusual as a sodium channel in passing lots of calcium ions, and perhaps there are 

intracellular calcium-associated modulators of gating such as the calcium calmodulin IQ motif 

that generates a calcium dependent inactivation of typical invertebrate and vertebrate Cav1 

channels (Byerly et al., 1985; Taiakina et al., 2013; Zamponi & Snutch, 1996).  Lastly, 

theoretically, SroNav2 is a channel serves only as a voltage-sensor or salt-sensor, such as 

mammalian Cav1.1 or Nax channels, respectively which are non-conducting, but couple ion 

binding to a downstream signalling mechanisms (Watanabe et al., 2002). 
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The SroNav2 channel was cloned, like other Nav2 channels by its homology to Nav1 channels in 

coding sequence.  No one has tried to isolate a specific Nav2 accessory subunit complexed with 

the Nav2 channels in a protein homogenate.  It is logical to assume that Nav2 channels may lack 

an accessory subunit because they Nav2 channels express well in vitro without an accessory 

subunit (Gur Barzilai et al., 2012b; Zhang et al., 2011; Zhou et al., 2004).  To date it remains that 

all functionally expressed Nav2 channel α-subunits have been done without the use of accessory 

subunits (Gur Barzilai et al., 2012b; Zhang et al., 2011; Zhou et al., 2004).  It is also noteworthy 

to consider that Drosophila fruit fly mutants of Nav2 genes, generate an olfactory sensing 

impairment, and no other Drosophila mutant has a similar phenotype that would suggest co-

requirement for Nav2 channel function.  Drosophila mutant para is a paralytic phenotype as a 

result of a lack of Nav1 channel gene, and its accessory subunit TipE causes a comparable 

paralytic phenotype as a result of its mutation in Drosophila (Feng et al., 1995; Li et al., 2011).  

Functional activity of Nav1 channels are observed in vitro only after co-expression of an 

accessory Navβ subunit.  The Spafford lab found a barely detectable size of maximal current 

expression in vitro of Lymnaea pond snail LNav1 channel, and its expression was not compatible 

with Drosophila or vertebrate Navβ accessory subunits for expression (unpublished).  There 

might be an auxiliary subunit present in the native S. rosetta environment responsible for 

modulating SroNav2 channel functions.  β-subunits are required auxiliary subunits with all Nav1 

channels and possess similar tissue-specific expression patterns as Nav1 α-subunits. Vertebrate β-

subunits are transmembrane proteins encoded by four genes (Scna1b – Scna4b) and each subunit 

interacts with the core α-subunit via either disulfide bonds or non-covalent interactions in a 1:1 

stoichiometric fashion (Brackenbury & Isom, 2011; Catterall, 1988; Morgan et al., 2000; Yu et 

al., 2003). They are typically found expressed in a paired combinations of β1 or β3 with β2 or β4 

(Namadurai et al., 2015; Yu et al., 2003) in mammals, or TipE and TEHs (TipE Homologous 

proteins) in Drosophila, or unique CUB domain containing Navβ subunits in Lymnaea pond snail 

(Feng et al. 1995; Li et al., 2011; Zhang et al., 2011).  Like the calcium channels, the β-subunits 

of sodium channels increase membrane expression of the pore forming α-subunits, and modify 

channel kinetic properties (Fang & Colecraft, 2011; Morgan et al., 2000; Yu et al., 2005). 

Combinations of different invertebrate Cavβ (Dawson et al., 2014) or vertebrate Cavβ1 to Cav β4 

subunits results in altered inactivation and current decay kinetics compared expression of the 

calcium channels α-subunit alone (Yu et al., 2003). It remains to be clearly demonstrated 
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whether SroNav2 is susceptible to modulation by co-expression of known auxiliary sodium 

channel β-subunits from other species, such as the ones found in Drosophila, Lymnaea or 

mammalian Navβ subunits. 

 

4.3 Change in selectivity with selectivity filter mutation DEKA 

 Changing the Domain III glutamate (E) residue to lysine (K) in the selectivity filter to 

replicate the selectivity filter of non-cnidarian, neuronal Nav1 channels dramatically increases the 

selectivity of SroNav2. Previous investigators mutated the same Nav2 channel residue from 

Nematostella vectensis (Gur Barzilai et al., 2012b) but extracellular calcium ion selectivity was 

not tested, a consequence of working with Xenopus oocytes, where calcium-activated chloride 

currents obscure the detection of calcium currents.  

The Nav1 sodium channel family is encoded by 10 genes, and nine of these Nav1 genes 

possess the DEKA selectivity filter (outside of SCN7A gene with selectivity filter DENA), and 

are highly selective to sodium ions. The Nav channel pore likely resembles the pore dimensions 

of bacterial sodium channel, NavAb, for example, resolved as a high resolution X-ray crystal 

structure (Payandeh et al., 2011). It is believed through molecular modeling experiments that in 

the absence of Na+ ions the carboxylate group of glutamate (DII) forms a hydrogen bond with 

lysine (DIII) thereby stabilizing the channel and preventing permeation of cations. The ionic size 

and hydration shell of Na+ allow it to replace lysine (DIII) more easily than other ions (Lipkind 

& Fozzard, 2008). Mutations of the selectivity filter to the Nav2.1 channel from N. vectensis 

produces a functional channel that is less selective for potassium over sodium (Gur Barzilai et 

al., 2012b). However, the degree of change in selectivity depended on the magnitude of 

mutation, with a single amino acid change within the selectivity filter (DII/III EK) producing 

the smallest change, and altering the entire pore loops of each domain inferring the greatest 

change in sodium to potassium ion selectivity.  In Salpingoeca, we report that just changing the 

single glutamate to lysine residue change in Domain III selectivity filter generated sodium 

channels with no selectivity for calcium ions, but may have some permeability to K ions as large 

outward K+ or Na+ currents were observable in bi-ionic conditions with Ca+ as the external ion, 

and K+ ion or Na+ ion as the only internal ion. 
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4.4 Functional role of the Nav2 channel family 

 The function of Nav2 channels has been linked to olfaction sensing in fruit flies, and a 

motor related function, where Drosophila mutants have a hyperkinetic response to threatening 

external stimuli (Dong et al., 2015).  It may be that SroNav2 has a parallel role to play in single 

cell Salpingoeca, in transduction of chemical sensing, a single cell functional correlate to 

olfaction. 

 

4.5 Quintessential high voltage-activated calcium channel, SroCav1  

SroCav1 is a functional homolog of vertebrate Cav1.2 calcium channels which is widely 

expressed in the brain and heart (Brickley et al., 1995; Catterall et al. 2005; Hofmann et al., 

2014), and to single Cav1 homologs in invertebrates, such as LCav1 from Lymnaea pond snail.  

SroCav1 is the most basal eukaryotic organism to possess a high voltage-activated calcium 

channel. 

SroCav1 also exhibits many of the same features characteristic of invertebrate Cav1 or 

mammalian Cav1.2 calcium channel homologs including the generation of a calcium current that 

begins to activate at -40 mV and peaks near the overshoot (0 mV).  Like other Cav1 channels 

SroCav1 possess faster kinetics compared to SroNav2 with peak currents attained in under 10ms, 

but are much slower than the typical invertebrate or vertebrate Nav1 channel from nervous 

systems.  Another unique feature of Cav1 channels that SroCav1 possesses is a current rundown 

which can be remedied by using GTP and ATP in the intracellular recording pipette.  The most 

characteristic feature of L-type calcium channels shared in invertebrate Cav1 or mammalian 

Cav1.2 channels comes from a slowing of inactivation when Ba2+ is substituted in the bath 

solution for Ca2+ resulting in long-lasting currents during sustained membrane depolarization 

(Hofmann et al., 2014; Senatore et al., 2011; Wheeler et al., 2012).  The faster inactivation 

kinetics when calcium is the charge carrier is an effect known as calcium-dependent inactivation 

(CDI), resulting from calcium binding to an IQ motif in the proximal C-terminus of L-type 

Cav1calcium channels. Vertebrate Cav2.1 and Cav2.2 channels lack a calcium-dependent 

inactivation also.  Instead it has a calcium-calmodulin regulated facilitation of calcium currents 
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involving the homologous IQ motif common in vertebrate Cav2 channels.  P/Q-type and N-type 

channels are responsible for neurotransmitter release at the synaptic terminal and play a role in 

synaptic plasticity in hippocampal neurons (Nanou et al., 2016).  In all cases calmodulin (CaM), 

a calcium-sensing bi-lobed protein covalently linked to the proximal C-termini of calcium 

channels, plays a role in modulating channel kinetics whether this is CDI and calcium-dependent 

facilitation (CDF) (Zuhlke et al., 1999).  It currently remains to be shown whether CaM is 

associated with SroCav1 which appears to possess a conserved calcium-calmodulin IQ motif. 

When substituting extracellular Ba2+ for Ca2+ there is a depolarizing shift in V1/2 of 

activation, a shift in the reversal potential, and a shift in the peak of the I-V curve. This 

phenomenon is consistent with previously documented data on α1A/ P/Q-type channels from 

vertebrates that shift as much as +15mV in a depolarizing direction, and in the invertebrate 

jellyfish Cyanea capillata L-type calcium channels to near similar magnitude of [+11mV] to 

[+12mV] (Jeziorski et al., 1998; Zamponi et al., 1996).  This effect has been theorized as a result 

of charge screening of extracellular cations to the channel’s protonation site causing 

conformational changes in the tertiary structure of the channel to coordinate Ca2+ binding (Hom 

et al., 1989; Zamponi et al., 1996). This phenomenon may likely be occurring in SroCav1 as 

evidenced by the differences in Ca2+ versus Ba2+ kinetics (Fig. 3.13).  

 

4.6 Functional role of the SroCav1 

 High voltage-activated channels have critical sets of roles in both vertebrates and 

invertebrates including coupling excitation to muscle contraction (smooth and striated), 

neurotransmitter release, hormone regulation, neuroplasticity, pain perception, and vision (Beam, 

et al.,, 1989; Lipscombe, 2004; Mcrory et al., 2004; Murakami et al., 2002). In the genome of 

sister choanoflagellate, Monosiga brevicolis, exists genes encoding for α-, β-, βH-spectrins, and 

a complete set of SNARE proteins (synaptobrevin 2, syntaxin 1, SNAP-25), which have roles in 

cytoskeleton formation and stabilization and establishing epithelial cell polarity, and vesicle 

secretion, respectively (Baines, 2010; Burkhardt et al., 2011; Williams et al., 2014). In 

invertebrates, spectrins establish epithelial brush border polarity in the gut of Drosophila 

(Phillips & Thomas, 2006), while SNARE proteins were found restricted to the posterior end of 

M. brevicolis (Burkhardt et al., 2011). M. brevicolis also produces an extracellular matrix likely 
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allowing for cell-cell interactions composed of various components including proteins related to 

collagen, epithelial growth factor, laminin G, and fibrinogen among others (Williams et al., 

2014).  The morphology of S. rosetta is highly related to choanoflagellate M. brevicolis so it is 

likely to possess the same complement of homologous genes as Monosiga (Fairclough et al., 

2013). Burkhardt and colleagues have shown that prey capture in S. rosetta occurs at the 

posterior pole via vesicular engulfment of targets and is facilitated by cilia (Burkhardt et al., 

2011). It could be possible that SroCav1 is co-localized with SNARE proteins, and plays a role in 

a form of calcium-mediated vesicle release.  This parallels the neurotransmitter release in pre-

synaptic terminals of invertebrate and vertebrate nervous systems which is initiated by an influx 

of calcium through calcium channels causing intracellular vesicles to fuse to the cellular 

membrane through the action of SNARE proteins and release their contents (Catterall, 1999).  

Another possible role of L-type calcium channels is in a calcium dependent, muscular 

contraction and cellular mobility, in a manner that parallels roles that L-type calcium channels 

play in initiating muscle contraction of heart and skeletal muscle of invertebrates and vertebrates.  

Other protozoans, Paramecium (unicellular ciliates) swim by beating their cilia, and make turns 

by transiently reversing their power stroke.  This ciliary reversal is caused by Ca2+ entering the 

cilium through voltage-gated Cav1 channels that are found exclusively in the cilia (Kink et al., 

1990; Lodh et al., 2016). Salpingoeca rosetta have a collar of cilia surrounding the posterior 

flagellum for driving bacteria towards the cell to phagocytose.  It is possible that Salpingoeca 

rosetta also use L-type calcium channels within their posterior collar of cilia to regulate ciliary 

beating. 

The choanoflagellates offer a window to early eukaryotic development and the origins of 

multicellularity. Their emergence occurs at a time just after the fungal-animal split and prior to 

the expansion of multicellular organism. There are parallels to a commensalism of the human gut 

microbiome and the effect of native gut bacteria on the metabolism, and possible nervous system 

related activity including neurotransmitter release (Cryan et al., 2012; Stilling et al. 2016). In 

their native environments choanoflagellates form commensal relationships with bacteria in which 

they not only feed on those bacteria but are influenced by their by-products to form multicellular 

complexes (Alegado et al., 2012; Woznica et al., 2016). The genome size of Salpingoeca rosetta 

is the largest among other basal extant Opisthokonta (placozoa, cnidaria, ctenophora) and the 

number of orthologue clusters nearly matches that of higher Metazoa (Fairclough et al., 2013; 
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Osigus et al., 2013).  The presence of a single member of each voltage-gated ion channel 

homolog (Nav2, Cav1 and Cav3) and accessory calcium channel subunits Cavβ and Cav-α2δ in 

Salpingoeca allows for direct evaluation of the consequences of manipulation of genes without 

the complexity resulting from multiple calcium and sodium channel isoforms, but a total gene 

pool that reflex a metazoan type cellular complexity.  

 

4.7 Future directions and considerations 

 There is a number of opportunities for future research involving both in-vitro work of the 

Salpingoeca rosetta voltage-gated ion channels in vitro and in-vivo experimentation within 

Salpingoeca rosetta. 

 SroNav2 has been shown to be a non-selective channel allowing the passage of both 

sodium and calcium ions.  A short term experiment is to test whether there is competition 

between calcium and sodium for pore binding.  Anomalous mole fraction experimentation can be 

performed where sodium is held at a constant concentration while perfusion of increasing 

calcium concentrations to examine the ability of calcium ions to displace sodium ions in passing 

through SroNav2.  

 In combination of the DEKA selectivity filter mutation that dramatically changes ionic 

selectivity to match the selectivity filter of Nav1 channels, a mutation involving the IFM-motif of 

the III-IV linker can be examined in an attempt to accelerate channel inactivation to resemble 

Nav1 channels. The IFM-motif is largely responsible for the rapid inactivation of the Nav1 family 

of channels and is often key component behind the ‘ball-and-chain’ or ‘hinge-lid’ mechanism 

often referred to in topic of fast inactivation. 

 Another experiment is to mutate the Domain II glutamate (E) to lysine (K) to produce a 

DKEA selectivity filter that is the condition present in cnidarians such as jellyfish Polyorchis 

penicillatus (Spafford et al. 1996)  and sea anemone Nematostella vectensis (Zakon, 2012).  Our 

goal will be to address whether the cnidarian DKEA selectivity filter is equivalent to the DEKA 

selectivity filter in Nav1 channels of non-cnidarian metazoans in generating a high sodium 

selectivity. 
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 In preliminary experiments, SroNav2 has been shown to be highly sensitive to block by 

the channel blocker lidocaine in the low µM ranges (data not shown). Determining the state-

dependent block and other modulatory properties of lidocaine can be fully assessed, as well 

assessment of the drug blockade with other known sodium channel blockers including 

tetrodotoxin and saxitoxin.  Highly selective drug blocker can be used to directly test the role of 

SroNav2 channels on Salpingoeca rosetta behavior in vivo.  We can carry out time-lapse 

microscopy before and drug application to evaluate the physiological relevance of SroNav2 in the 

behavioral context of S. rosetta. 

SroCav1 appears to be a quintessential high voltage-activated Cav1 calcium channel 

homolog that requires co-expression of auxiliary subunits for functional expression. Thus far to 

invertebrate or mammalian Cavβ-subunits other than SroCavβ do not promote the membrane 

expression and recording of SroCav1. Salpingoeca rosetta also appears to possess the gene 

encoding an α2δ-subunit. We are currently trying to isolate this auxiliary subunit and test whether 

it can be used in conjunction with native β-subunits to put together the native assembly of 

calcium channel subunits in vitro.  In vertebrates, it is thought that both Cavβ and Cav-α2δ have 

roles to play outside of their functions with calcium channels.  We are now generating SroCav1 

and SroNav2 antibodies, and also SroCavβ and SroCav-α2δ antibodies to evaluate the spatial co-

localization of calcium and sodium channel subunits within Salpingoeca.  In no other eukaryotic 

model than Salpingoeca is there only a single calcium channel and solitary Cavβ and Cavα2δ 

subunits, for evaluating the relationship between subunits without the complexity of other 

multiple isoforms in the cell. 

Since SroCav1 is structurally homologous and shares many key sequence features with 

vertebrate L-type calcium channels we expect that SroCav1 can be blocked with calcium channel 

blockers that are potent in vertebrates. We will be testing the isradapine, nifedipine, verapamil 

and diltiazem for their ability to block SroCav1. As with SroNav2, we can then test these drug 

effects directly on Salpingoeca rosetta to assess consequences of ion channel loss to behavior. 

Calmodulin, a bilobed calcium-binding protein, has been shown to play a role in 

modulating properties of calcium and sodium voltage-gated channels.  It has been found to have 

effects not only on vertebrate L-type calcium channels, but also invertebrates, such as Cyanea 

capillata (jellyfish) (Jeziorski et al., 1998), Lymnaea stagnalis (pond snail) (Taiakina et al., 
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2013) and likely unicellular ciliate, Paramecium. We are curious as to whether a similar 

conservation of calmodulin regulation is shared for SroCav1 or SroNav2.  

Transcriptome data reveals that Salpingoeca rosetta also possesses the gene for a 

homologous low voltage-activated (T-type) calcium channel. Thus far we have isolated 2/3 of 

the channel and will be working towards isolating the channel in its entirety. The barrier to 

overcome lies in the difficult nature of the S. rosetta genome which has a high GC content 

(~60%), and what appears to be ‘lazy’ intron splicing evidenced by several isolated PCR 

products of both SroCav1 and SroNav2 contaminated with intron sequence. 
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Chapter 5 

General Conclusions 

 

We have isolated and electrophysiologically characterized two voltage-gated ion channel 

homologs (SroNav2 and SroCav1) from the most basal, extant eukaryote known to date to 

possess them, the choanoflagellate, Salpingoeca rosetta. The channels follow the 4 domain, 6 

transmembrane helix architecture characteristic of the eukaryotic voltage-gated ion channel 

superfamily. The original hypothesis for this thesis was to assess the similarity of SroNav2 to 

other Nav2 channels with the identical DEEA selectivity filter, and to compare SroCav1 to 

vertebrate and invertebrate high voltage-activated L-type calcium channels. This thesis has 

confirmed that even in the most basal sodium channel the slow activation-inactivation kinetics of 

the Nav2 channel family are conserved, as well as their non-selective nature for permeating ions. 

Replacing the Domain III glutamate (E) with a lysine (K) in the selectivity filter to replicate 

vertebrate neural and cardiac sodium channel homologs causes a significant change in 

selectivity. SroCav1 supports evidence that the co-expression of auxiliary subunits is required for 

functional expression of the core α-subunit in vitro. The channel maintains high selectivity for 

divalent ions and has kinetics properties faster than SroNav2, but slower than Nav1 channels. 

SroCav1 lacks both the slowing of kinetics and the prominent calcium-dependent inactivation 

observed through the long lasting currents during depolarization characteristic of L-type 

channels when barium is substituted as the charge carrier. 

 This thesis has provided evidence for the basic functions and characteristics of sodium 

and calcium channels. The presence of these channels in a single-celled extant eukaryote brings 

into question the purpose for the evolution of electrical signalling through such facilitated means. 

 

 

 

 

 



89 
 

References 

 

Alegado, R. A., Brown, L. W., Cao, S., Dermenjian, R. K., Zuzow, R., Fairclough, S. R., … 

King, N. (2012). A bacterial sulfonolipid triggers multicellular development in the closest 

living relatives of animals. eLife, 2012(1), 1–16. http://doi.org/10.7554/eLife.00013 

Alegado, R. A., Grabenstatter, J. D., Zuzow, R., Morris, A., Huang, S. Y., Summons, R. E., & 

King, N. (2013). Algoriphagus machipongonensis sp. nov., co-isolated with a colonial 

choanoflagellate. International Journal of Systematic and Evolutionary Microbiology, 

63(1), 163–168. http://doi.org/10.1099/ijs.0.038646-0 

Altier, C., Garcia-caballero, A., Simms, B., You, H., Chen, L., Walcher, J., … Zamponi, G. W. 

(2010). The Cavβ subunit prevents RFP2-mediated ubiquitination and proteasomal 

degradation of L-type channels. Nature Publishing Group, 14(2), 173–180. 

http://doi.org/10.1038/nn.2712 

Anderson, P. A. V, & Spencer, A. N. (1989). The Importance of Cnidarian Synapses for 

Neurobiology, 20(5), 435–457. 

Armstrong, C. M., Bezanilla, F., & Rojas, E. (1973). Destruction of Sodium Conductance 

Inactivation in Squid Axons Perfused with Pronase. Journal of General Physiology, 62, 

375–391. 

Baines, A. J. (2010). Evolution of the spectrin-based membrane skeleton. Transfusion Clinique 

et Biologique, 17(3), 95–103. http://doi.org/10.1016/j.tracli.2010.06.008 

Beagle, S. D., & Lockless, S. W. (2015). Electrical signalling goes bacterial. Nature, 527, 44–45. 

Beam, K. G., Tanabe, T., & Numa, S. (1989). Structure , Function , and Regulation of the 

Skeletal Muscle Dihydropyridine Receptor ”. Annals of the New York Academy of Sciences, 

560, 127–137. 

Bean, B. P. (1985). Two kinds of calcium channels in canine atrial cells. Differences in kinetics, 

selectivity, and pharmacology. The Journal of General Physiology, 86(1), 1–30. 

http://doi.org/10.1085/jgp.86.1.1 



90 
 

Bendahhou, S., Cummins, T. R., Tawil, R., Waxman, S. G., & Ptácek, L. J. (1999). Activation 

and inactivation of the voltage-gated sodium channel: role of segment S5 revealed by a 

novel hyperkalaemic periodic paralysis mutation. The Journal of Neuroscience : The 

Official Journal of the Society for Neuroscience, 19(12), 4762–71. Retrieved from 

http://www.ncbi.nlm.nih.gov/pubmed/10366610 

Ben-Johny, M., & Yue, D. T. (2014). Calmodulin regulation (calmodulation) of voltage-gated 

calcium channels. The Journal of General Physiology, 143(6), 679–692. 

http://doi.org/10.1085/jgp.201311153 

Bezanilla, F. (2000). The voltage sensor in voltage-dependent ion channels. Physiological 

Reviews, 80(2), 555–592. http://doi.org/10.1126/science.279.5349.403 

Boda, D., Leaf, G., Fonseca, J., & Eisenberg, B. (2015). Energetics of ion competition in the 

DEKA selectivity filter of neuronal sodium channels. Condensed Matter Physics, 18(1), 1–

14. http://doi.org/10.5488/CMP.18.13601 

Borowiec, M. L., Lee, E. K., Chiu, J. C., & Plachetzki, D. C. (2015). Dissecting phylogenetic 

signal and accounting for bias in whole-genome data sets: a case study of the Metazoa. 

bioRxiv, 13946. http://doi.org/10.1101/013946 

Brackenbury, W. J., & Isom, L. L. (2011). Na+ channel β subunits : overachievers of the ion 

channel family, 2(September), 1–11. http://doi.org/10.3389/fphar.2011.00053 

Brehm, P., & Eckert, R. (1978). Calcium entry leads to inactivation of calcium channel in 

Paramecium. Science (New York, N.Y.). Retrieved from 

http://www.ncbi.nlm.nih.gov/pubmed/103199 

Brickley, K., Campbell, V., Berrow, N., Leach, R., Norman, R. I., Wray, D., … Baldwin, S. A. 

(1995). Use of site-directed antibodies to probe the topography of the of voltage-gated Ca2+ 

channels subunit, 364, 129–133. 

Brickley, K., Campbell, V., Berrow, N., Leach, R., Norman, R. I., Wray, D., … Uk, L. S. (1995). 

Use of site-directed antibodies to probe the topography of the of voltage-gated Ca2+ 

channels subunit, 364, 129–133. 

Brunet, T., & Arendt, D. (2016). From damage response to action potentials: early evolution of 



91 
 

neural and contractile modules in stem eukaryotes. Philosophical Transactions of the Royal 

Society of London. Series B, Biological Sciences, 371(1685), 20150043-. 

http://doi.org/10.1098/rstb.2015.0043 

Bullerwell, C. E., Forget, L., Lang, B. F., Edouard-montpetit, B., & Ht, Â. (2003). Evolution of 

monoblepharidalean fungi based on complete mitochondrial genome sequences, 31(6), 

1614–1623. http://doi.org/10.1093/nar/gkg264 

Buraei, Z., & Yang, J. (2010). Structure and function of the beta subunit of voltage-gated Ca2+ 

channels, 48(Suppl 2), 1–6. http://doi.org/10.1097/MPG.0b013e3181a15ae8.Screening 

Burger, G., Forget, L., Zhu, Y., Gray, M. W., & Lang, B. F. (2003). Unique mitochondrial 

genome architecture in unicellular relatives of animals. Proceedings of the National 

Academy of Sciences of the United States of America, 100(3), 892–897. 

http://doi.org/10.1073/pnas.0336115100 

Burkhardt, P., Stegmann, C. M., Cooper, B., Kloepper, T. H., Imig, C., Varoqueaux, F., … 

Fasshauer, D. (2011). Primordial neurosecretory apparatus identified in the choanoflagellate 

Monosiga brevicollis. Proc. Natl. Acad. Sci. USA, 108(37), 15264–9. 

http://doi.org/10.1073/pnas.1106189108 

Byerly, L. O. U., Chase, P. B., & Stimers, J. R. (1985). Permeation and Interaction of Divalent 

Cations in Calcium Channels of Snail Neurons. J. Gen. Physiol., 85(April). 

Cai, X. (2012). Ancient origin of four-domain voltage-gated Na+ channels predates the 

divergence of animals and fungi. Journal of Membrane Biology, 245(2), 117–123. 

http://doi.org/10.1007/s00232-012-9415-9 

Canti, C., Davies, A., & Dolphin, A. C. (2003). Calcium channel α2δ subunits - Structure, 

functions and target site for drugs. Current Neuropharmacology, 1, 209–217. 

http://doi.org/10.2174/1570159033477116 

Carpenter, J. (2012). Multicellularity Driven by Bacteria. Science, 337, 510 

http://doi.org/10.1126/science.337.6094.510 

Carr, M., Leadbeater, B. S. C., Hassan, R., Nelson, M., & Baldauf, S. L. (2008). Molecular 

phylogeny of choanoflagellates , the sister group to Metazoa, 7–9. 



92 
 

Catterall, W. A. (1988). Structure and Function of Voltage-Sensitive Ion Channels. Science, 

242(4875), 50–61. 

Catterall, W. A. (1999). Interactions of Presynaptic Ca2+ Channels and Snare Proteins in 

Neurotransmitter Release. Annals of the New York Academy of Sciences, 144–159. 

Catterall, W. A. (2011). Voltage-Gated Calcium Channels. Cold Spring Harbor Perspectives in 

Biology , 3(8). http://doi.org/10.1101/cshperspect.a003947 

Catterall, W. A. (2012). Voltage-gated sodium channels at 60: structure, function and 

pathophysiology. The Journal of Physiology, 590(Pt 11), 2577–89. 

http://doi.org/10.1113/jphysiol.2011.224204 

Catterall, W. A., Cestèle, S., Yarov-Yarovoy, V., Yu, F. H., Konoki, K., & Scheuer, T. (2007). 

Voltage-gated ion channels and gating modifier toxins. Toxicon, 49(2), 124–141. 

http://doi.org/10.1016/j.toxicon.2006.09.022 

Catterall, W. a, Perez-Reyes, E., Snutch, T. P., & Striessnig, J. (2005). International Union of 

Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated 

calcium channels. Pharmacological Reviews, 57(4), 411–425. 

http://doi.org/10.1124/pr.57.4.5.units 

Chen, Y. J., Shi, Y. W., Xu, H. Q., Chen, M. L., Gao, M. M., Sun, W. W., … Liao, W. P. (2015). 

Electrophysiological Differences between the Same Pore Region Mutation in SCN1A and 

SCN3A. Molecular Neurobiology, 51(3), 1263–1270. http://doi.org/10.1007/s12035-014-

8802-x 

Cox, D. H., & Dunlap, K. (1992). Pharmacological discrimination of N-type from L-type 

calcium current and its selective modulation by transmitters. The Journal of Neuroscience : 

The Official Journal of the Society for Neuroscience, 12(3), 906–14. Retrieved from 

http://www.ncbi.nlm.nih.gov/pubmed/1347563 

Cryan, J. F., Dinan, T. G., Bernard, C., Pavlov, I., Beaumont, W., James, W., … Charles, E. 

(2012). Mind-altering microorganisms : the impact of the gut microbiota on brain and 

behaviour of the nineteenth century through the pioneering work, 13. 

http://doi.org/10.1038/nrn3346 



93 
 

Dawson, T. F., Boone, A. N., Senatore, A., Piticaru, J., Thiyagalingam, S., Jackson, D., … 

Spafford, J. D. (2014). Gene Splicing of an Invertebrate Beta Subunit ( LCavβ) in the N-

Terminal and HOOK Domains and Its Regulation of LCav1 and LCav2 Calcium Channels, 

9(4). http://doi.org/10.1371/journal.pone.0092941 

Dayel, M. J., Alegado, R. A., Fairclough, S. R., Levin, T. C., Nichols, S. A., McDonald, K., & 

King, N. (2011). Cell differentiation and morphogenesis in the colony-forming 

choanoflagellate Salpingoeca rosetta. Developmental Biology, 357(1), 73–82. 

http://doi.org/10.1016/j.ydbio.2011.06.003 

Dayel, M. J., & King, N. (2014). Prey capture and phagocytosis in the choanoflagellate 

Salpingoeca rosetta. PLoS ONE, 9(5), 1–6. http://doi.org/10.1371/journal.pone.0095577 

DeMaria, C. D., Soong, T. W., Alseikhan, B. A., Alvania, R. S., & Yue, D. T. (2001). 

Calmodulin bifurcates the local Ca2+ signal that modulates P/Q-type Ca2+ channels. Nature, 

411(0028–0836 SB–IM), 484–489. http://doi.org/10.1038/35078091 

Dick, I. E., Tadross, M. R., Liang, H., Hock Tay, L., Yabg, W., & Yue, D. T. (2008). A modular 

switch for sptial Ca2+ selectivity in the calmodulin regulation of CaV channels. Nature, 

451(7180), 830–834. http://doi.org/10.1038/nature06529.A 

Dolphin, A. C. (2012). Calcium channel auxiliary α2δ and β subunits : trafficking and one step 

beyond. Nature, 13(August), 542–555. http://doi.org/10.1038/nrn3311 

Dolphin, A. C., Wyatt, C. N., Richards, J., Beattie, R. E., Craig, P., Lee, J., … Volsen, S. G. 

(1999). The effect of α2δ and other accessory subunits on expression and properties of the 

calcium channel á1G, 35–45. 

Dong, K., Du, Y., Rinkevich, F., Wang, L., & Xu, P. (2015). The Drosophila Sodium Channel 1 

(DSC1): The founding member of a new family of voltage-gated cation channels. Pesticide 

Biochemistry and Physiology, 120, 36–39. http://doi.org/10.1016/j.pestbp.2014.12.005 

Doyle, D. A., Cabral, J. M., Pfuetzner, R. A., Kuo, A., Gulbis, J. M., Cohen, S. L., … 

MacKinnon, R. (1998). The structure of the potassium channel: molecular basis of K+ 

conduction and selectivity. Science (New York, N.Y.), 280(5360), 69–77. 

http://doi.org/10.1126/science.280.5360.69 



94 
 

Dreyfus, F. M., Tscherter, A., Errington, A. C., Renger, J. J., Shin, H.-S., Uebele, V. N., … 

Leresche, N. (2010). Selective T-type calcium channel block in thalamic neurons reveals 

channel redundancy and physiological impact of I(T)window. The Journal of 

Neuroscience : The Official Journal of the Society for Neuroscience, 30(1), 99–109. 

http://doi.org/10.1523/JNEUROSCI.4305-09.2010 

Du, H., Wang, Y., Shi, Y., Yu, J., Sun, W., & Zhang, Y. (2016). Effect of Traditional Chinese 

Medicine on Inflammatory Mediators in Pediatric Asthma, 2016. 

Dzhura, I., & Neely, A. (2003). Differential Modulation of Cardiac Ca2+ Channel Gating by β-

Subunits. Biophysical Journal, 85(1), 274–289. http://doi.org/10.1016/S0006-

3495(03)74473-7 

Eisenman, A. G., Sandblom, J. P., & Walker, J. L. (1967). Membrane Structure and Ion 

Permeation. Study of ion exchange membrane structure and function is relevant to analysis 

of biological ion permeation, 155(3765), 965–974. 

Eisenman, G. (1962). Cation selective glass electrodes and their mode of operation. Biophysical 

Journal, 2(2 Pt 2), 259–323. http://doi.org/10.1016/S0006-3495(62)86959-8 

Fairclough, S. R. (2011). The Cellular and Molecular Basis of Multicellular Development in the 

Choanoflagellate. 

Fairclough, S. R., Chen, Z., Kramer, E., Zeng, Q., Young, S., Robertson, H. M., … King, N. 

(2013). Premetazoan genome evolution and the regulation of cell differentiation in the 

choanoflagellate Salpingoeca rosetta. Genome Biology, 14(2), R15. 

http://doi.org/10.1186/gb-2013-14-2-r15 

Fairclough, S. R., Dayel, M. J., & King, N. (2010). Multicellular development in a 

choanoflagellate. Current Biology, 20(20), 875–876. 

http://doi.org/10.1016/j.cub.2010.09.014 

Fang, K., & Colecraft, H. M. (2011). Mechanism of auxiliary β-subunit-mediated membrane 

targeting of L-type (CaV1.2) channels. The Journal of Physiology, 589(Pt 18), 4437–4455. 

http://doi.org/10.1016/j.bpj.2010.12.3088 

Favre, I., Moczydlowski, E., & Schild, L. (1996). On the Structural Basis for Ionic Selectivity 



95 
 

Among Na+, K+, and Ca2+ in the Voltage-Gated Sodium Channel, 71(December), 3110–

3125. 

Feng, G., Dedk, P., Chopra, M., & Hall, L. M. (1995). Cloning and Functional Analysis of TipE , 

a Novel Membrane Protein That Enhances Drosophila para Sodium Channel Function 

Deduced Amino Acid Position, 82, 1001–1011. 

Gerster, U., Neuhuber, B., Groschner, K., Striessnig, J., & Flucher, B. E. (1999). Current 

modulation and membrane targeting of the calcium channel α1C subunit are independent 

functions of the beta subunit. The Journal of Physiology, 517 ( Pt 2, 353–368. 

http://doi.org/PHY_8939 [pii] 

Glockling, S. L., Marshall, W. L., & Gleason, F. H. (2013). Phylogenetic interpretations and 

ecological potentials of the Mesomycetozoea ( Ichthyosporea ). Fungal Ecology, 6(4), 237–

247. http://doi.org/10.1016/j.funeco.2013.03.005 

Goldin, A. L. (2003). Mechanisms of sodium channel inactivation. Current Opinion in 

Neurobiology, 13(3), 284–290. http://doi.org/10.1016/S0959-4388(03)00065-5 

Gray, A. C., Raingo, J., & Lipscombe, D. (2007). Neuronal calcium channels: Splicing for 

optimal performance. Cell Calcium, 42(4–5), 409–417. 

http://doi.org/10.1016/j.ceca.2007.04.003 

Gur Barzilai, M., Reitzel, A. M., Kraus, J. E. M., Gordon, D., Technau, U., Gurevitz, M., & 

Moran, Y. (2012a). Convergent Evolution of Sodium Ion Selectivity in Metazoan Neuronal 

Signaling. Cell Reports, 2(2), 242–248. http://doi.org/10.1016/j.celrep.2012.06.016 

Gur Barzilai, M., Reitzel, A. M., Kraus, J. E. M., Gordon, D., Technau, U., Gurevitz, M., & 

Moran, Y. (2012b). Convergent Evolution of Sodium Ion Selectivity in Metazoan Neuronal 

Signaling. Cell Reports, 2(2), 242–248. http://doi.org/10.1016/j.celrep.2012.06.016 

Hedges, S. B., Blair, J. E., Venturi, M. L., & Shoe, J. L. (2004). A molecular timescale of 

eukaryote evolution and the rise of complex multicellular life, BMC Evolutionary Biology, 

9, 1–9. 

Heinemann, S. H., Terlau, H., Stuehmer, W., Imoto, K., & Numa, S. (1992). Calcium-channel 

characteristics conferred on the sodium-channel by single mutations. Nature, 356(6368), 



96 
 

441–443. Retrieved from http://pubman.mpdl.mpg.de/pubman/item/escidoc:602454:2 

Hendrich, J., Van Minh, A. T., Heblich, F., Nieto-Rostro, M., Watschinger, K., Striessnig, J., … 

Dolphin, A. C. (2008). Pharmacological disruption of calcium channel trafficking by the α2δ 

ligand gabapentin. Proc Natl Acad Sci U S A, 105(9), 3628–3633. 

http://doi.org/10.1073/pnas.0708930105 

Hille, B. (1975). Ionic selectivity, saturation, and block in sodium channels. A four-barrier 

model. The Journal of General Physiology, 66(5), 535–60. 

http://doi.org/10.1085/jgp.66.5.535 

Hille, B. (2001). Ion Channel Excitable Membranes. Sunderland Massachusetts USA. 

http://doi.org/10.1007/3-540-29623-9_5640 

Hodgekin, A. L., & Huxley, A. F. (1952). Currents carried by sodium and potassium ions 

through the mmebrane of the giant axon of Loligo. J. Physiol., 116, 449–472. 

Hofmann, F., Flockerzi, V., Kahl, S., & Wegener, J. W. (2014). L-Type CaV1.2 Calcium 

Channels: From In Vitro Findings to In Vivo Function. Physiological Reviews, 94(1), 303–

326. http://doi.org/10.1152/physrev.00016.2013 

Hom, B. P., Pietrobon, D., & Hess, P. (1989). Interactions of Protons with Single Open L-Type 

Calcium Channels Location of Protonation Site and Dependence of Proton-induced Current 

Fluctuations on Concentration and Species of Permeant Ion. J. Gen. Physiol., 94(94), 23–

42. 

Huang, X., Senatore, A., Dawson, T. F., Quan, Q., & Spafford, J. D. (2010). G-proteins modulate 

invertebrate synaptic calcium channel (LCav2) differently from the classical voltage-

dependent regulation of mammalian Cav2.1 and Cav2.2 channels. The Journal of 

Experimental Biology, 213(Pt 12), 2094–103. http://doi.org/10.1242/jeb.042242 

Jarrett, H. W., & Madhavan, R. (1991). Calmodulin-binding proteins also have a calmodulin-like 

binding site within their structure: The flip-flop model. Journal of Biological Chemistry, 

266(1), 362–371. 

Jekely, G. (2013). Global view of the evolution and diversity of metazoan neuropeptide 

signaling. Proc Natl Acad Sci U S A, 110(21), 8702–8707. http://doi.org/Doi 



97 
 

10.1073/Pnas.1221833110 

Jeziorski, M. C., Greenberg, R. M., Clark, K. S., Anderson, P. A. V, & Augustine, S. (1998). 

Cloning and Functional Expression of a Voltage-gated Calcium Channel  α1 Subunit from 

Jellyfish *, 273(35), 22792–22799. 

Kass, R. S. (2004). Sodium channel inactivation goes with the flow. The Journal of General 

Physiology, 124(1), 7–8. http://doi.org/10.1085/jgp.200409123 

Kim, M. S., Morii, T., Sun, L. X., Imoto, K., & Mori, Y. (1993). Structural determinants of ion 

selectivity in brain calcium channel. FEBS Letters, 318(2), 145–148. 

http://doi.org/10.1016/0014-5793(93)80009-J 

King, N. (2004). The Unicellular Ancestry of Animal Development, Developmental Cell, 7, 313–

325. 

Kink, J. A., Maley, M. E., Preston, R. R., Ling, K., & Waken-friedman, M. A. (1990). Mutations 

in Paramecium Calmodulin Indicate Functional Differences between the C-Terminal and N-

Terminal Lobes In Vivo, 62, 165–174. 

Kovalevskaya, N. V., Van De Waterbeemd, M., Bokhovchuk, F. M., Bate, N., Bindels, R. J. M., 

Hoenderop, J. G. J., & Vuister, G. W. (2013). Structural analysis of calmodulin binding to 

ion channels demonstrates the role of its plasticity in regulation. Pflugers Archiv European 

Journal of Physiology, 465(11), 1507–1519. http://doi.org/10.1007/s00424-013-1278-0 

Krauss, D., Eisenber, B., & Gillespie, D. (2011). Selectivity sequences in a model calcium 

channel: role of electrostatic field strength. European Journal of Biophysics, 141(4), 520–

529. http://doi.org/10.1016/j.surg.2006.10.010.Use 

Kulkarni, N. H., Yamamoto, A. H., Robinson, K. O., Mackay, T. F. C., & Anholt, R. R. H. 

(2002). The DSC1 channel, encoded by the smi60E locus, contributes to odor-guided 

behavior in Drosophila melanogaster. Genetics, 161(4), 1507–1516. 

http://doi.org/10.1126/science.287.5461.2185 

Lang, B. F., O’Kelly, C., Nerad, T., Gray, M. W., & Burger, G. (2002). The closest unicellular 

relatives of animals. Current Biology, 12(20), 1773–1778. http://doi.org/10.1016/S0960-

9822(02)01187-9 



98 
 

Lee, A., Scheuer, T., & Catterall, W. a. (2000). Ca2+/Calmodulin-Dependent Facilitation and 

Inactivation of P/Q-Type Ca2+ Channels. Journal of Neuroscience, 20(18), 6830–6838. 

Lee, A., Wong, S. T., Gallagher, D., Li, B., Storm, D. R., Scheuer, T., & Catterall, W. a. (2000). 

Ca2+/ calmodulin binds to and modulates P / Q-type calcium channels. Nature, 399(May 

1999), 155–159. 

Levin, T. C., Greaney, A. J., Wetzel, L., & King, N. (2014). The Rosetteless gene controls 

development in the choanoflagellate S. rosetta. eLife, 3, e04070. 

http://doi.org/10.7554/eLife.04070 

Levin, T. C., & King, N. (2013). Report Evidence for Sex and Recombination in the 

Choanoflagellate Salpingoeca rosetta. CURBIO, 23(21), 2176–2180. 

http://doi.org/10.1016/j.cub.2013.08.061 

Ley, R. E., Hamady, M., Lozupone, C., Turnbaugh, P. J., Ramey, R. R., Bircher, J. S., … 

Gordon, J. I. (2008). Evolution of mammals and their gut microbes. Science, 

777(November). 

Li, J., Waterhouse, R. M., & Zdobnov, E. M. (2011). A remarkably stable TipE gene cluster : 

evolution of insect Para sodium channel auxiliary subunits, BMC Evolutionary Biology, 11,  

1–11. 

Lipkind, G. M., & Fozzard, H. a. (2008). Voltage-gated Na+ channel selectivity: the role of the 

conserved domain III lysine residue. The Journal of General Physiology, 131(6), 523–9. 

http://doi.org/10.1085/jgp.200809991 

Lipscombe, D. (2004). L-Type Calcium Channels: The Low Down. Journal of Neurophysiology, 

92(5), 2633–2641. http://doi.org/10.1152/jn.00486.2004 

Lodh, S., Yano, J., Valentine, M. S., & Houten, J. L. Van. (2016). Voltage-gated calcium 

channels of Paramecium cilia. J. Exper. Buiol., 219, 3028–3038. 

http://doi.org/10.1242/jeb.141234 

Long, S. B., Campbell, E. B., & Mackinnon, R. (2005). Crystal Structure of a Mammalinan 

Voltage-Dependent Shaker Family K+ Channel. Science, 897(August), 897–903. 

http://doi.org/10.1126/science.1116269 



99 
 

Lory, P., Varadi, G., & Schwartz,  A. (1992). The beta subunit controls the gating and 

dihydropyridine sensitivity of the skeletal muscle Ca2+ channel. Biophysical Journal, 63(5), 

1421–4. http://doi.org/10.1016/S0006-3495(92)81705-8 

Loussouarn, G., Sternberg, D., Nicole, S., Marionneau, C., Le Bouffant, F., Toumaniantz, G., … 

Charpentier, F. (2016). Physiological and pathophysiological insights of Nav1.4 and Nav1.5 

comparison. Frontiers in Pharmacology, 6(JAN). http://doi.org/10.3389/fphar.2015.00314 

Love, G. D., Grosjean, E., Stalvies, C., Fike, D. a, Grotzinger, J. P., Bradley, A. S., … Summons, 

R. E. (2009). Fossil steroids record the appearance of Demospongiae during the Cryogenian 

period. Nature, 457(7230), 718–21. http://doi.org/10.1038/nature07673 

Mackie, G. O. (2004). Central Neural Circuitry in the Jellyfish Aglantha, 5, 5–19. 

http://doi.org/10.1159/000076155 

Marais, E., Klugbauer, N., & Hofmann, F. (2001). Calcium channel α2δ subunits-structure and 

Gabapentin binding. Molecular Pharmacology, 59(5), 1243–8. 

http://doi.org/10.1124/mol.59.5.1243 

Mcrory, J. E., Hamid, J., Doering, C. J., Garcia, E., Parker, R., Hamming, K., … Snutch, T. P. 

(2004). The CACNA1F Gene Encodes an L-Type Calcium Channel with Unique 

Biophysical Properties and Tissue Distribution, 24(7), 1707–1718. 

http://doi.org/10.1523/JNEUROSCI.4846-03.2004 

Moran, Y., Barzilai, M. G., Liebeskind, B. J., & Zakon, H. H. (2015). Evolution of voltage-gated 

ion channels at the emergence of Metazoa. The Journal of Experimental Biology, 218(Pt 4), 

515–25. http://doi.org/10.1242/jeb.110270 

Moran, Y., & Zakon, H. H. (2014). The evolution of the four subunits of voltage-gated calcium 

channels: Ancient roots, increasing complexity, and multiple losses. Genome Biology and 

Evolution, 6(9), 2210–2217. http://doi.org/10.1093/gbe/evu177 

Morgan, K., Morgan, K., Stevens, E. B., Shah, B., Cox, P. J., Dixon, A. K., … Jackson, A. P. 

(2000). β3 : An additional auxiliary subunit of the voltage- sensitive sodium channel that 

modulates channel gating with distinct kinetics, PNAS, 97(5), 2308-2313. 

http://doi.org/10.1073/pnas.030362197 



100 
 

Moroz, L. L. (2015). Convergent evolution of neural systems in ctenophores, 598–611. 

http://doi.org/10.1242/jeb.110692 

Murakami, M., Fleischmann, B., De Felipe, C., Freichel, M., Trost, C., Ludwig, A., … Cavali??, 

A. (2002). Pain perception in mice lacking the β3 subunit of voltage-activated calcium 

channels. Journal of Biological Chemistry, 277(43), 40342–40351. 

http://doi.org/10.1074/jbc.M203425200 

Namadurai, S., Yereddi, N. R., Cusdin, F. S., Huang, C. L., Chirgadze, D. Y., Jackson, A. P., & 

Jackson, A. P. (2015). A new look at sodium channel β subunits. Open Biology, 5. 

Nanou, E., Sullivan, J. M., Scheuer, T., & Catterall, W. A. (2016). Calcium sensor regulation of 

the Cav2.1 Ca2+ channel contributes to short-term synaptic plasticity in hippocampal 

neurons, 113(4), 1062–1067. http://doi.org/10.1073/pnas.1524636113 

Nichols, S. A., Roberts, B. W., Richter, D. J., Fairclough, S. R., & King, N. (2012). Origin of 

metazoan cadherin diversity and the antiquity of the classical cadherin/β-catenin complex. 

Proc. Natl. Acad. Sci. USA, 109(32), 13046–51. http://doi.org/10.1073/pnas.1120685109 

Nishimura, S., Takeshima, H., Hofmann, F., Flockerzib, V., & Imoto, K. (1993). Requirement of 

the calcium channel β subunit for functional conformation. FEBS Letters, 324(3), 283–286. 

Nosenko, T., Schreiber, F., Adamska, M., Adamski, M., Eitel, M., Hammel, J., … Wörheide, G. 

(2013). Deep metazoan phylogeny: When different genes tell different stories. Molecular 

Phylogenetics and Evolution, 67(1), 223–233. http://doi.org/10.1016/j.ympev.2013.01.010 

Opatowsky, Y., Chen, C.-C., Campbell, K. P., & Hirsch, J. a. (2004). Structural analysis of the 

voltage-dependent calcium channel β subunit functional core and its complex with the α1 

interaction domain. Neuron, 42, 387–399. http://doi.org/10.1016/S0896-6273(04)00250-8 

Osigus, H., Eitel, M., & Schierwater, B. (2013). Molecular Phylogenetics and Evolution Chasing 

the urmetazoon : Striking a blow for quality data?, Molecular Phylogenetics and Evolution, 

66, 551–557. http://doi.org/10.1016/j.ympev.2012.05.028 

Pakendorf, B., & Stoneking, M. (2005). Mitochondrial DNA and human evolution. Annu. Rev. 

Genomics Hum. Genet., (6), 165–183. 

http://doi.org/10.1146/annurev.genom.6.080604.162249 



101 
 

Paps, J., Medina-chacón, L. A., Marshall, W., Suga, H., & Ruiz-, I. (2015). Molecular phylogeny 

of Unikonts : new insights into the position of apusomonads and ancyromonads and the 

internal relationships of opisthokonts, Protist, 164(1), 2–12. 

http://doi.org/10.1016/j.protis.2012.09.002.Molecular 

Parfrey, L. W., Lahr, D. J. G., Knoll, A. H., & Katz, L. A. (2011). Estimating the timing of early 

eukaryotic diversification with multigene molecular clocks. Proceedings of the National 

Academy of Sciences of the United States of America, 108(33), 13624–9. 

http://doi.org/10.1073/pnas.1110633108 

Payandeh, J., Scheuer, T., Zheng, N., & Catterall, W. A. (2011). The crystal structure of a 

voltage-gated sodium channel. Nature, 475(7356), 353–358. 

http://doi.org/10.1038/nature10238 

Payandeh, J., Scheuer, T., Zheng, N., & Catterall, W. A. (2012). The Crystal Structure of a 

Voltage-Gated Sodium Channel. Nature, 475(7356), 353–358. 

http://doi.org/10.1038/nature10238.THE 

Peterson, B. Z., DeMaria, C. D., & Yue, D. T. (1999). Calmodulin is the Ca2+  sensor for 

Ca2+dependent inactivation of L-type calcium channels. Neuron, 22, 549–558. 

Philippe, H., Lartillot, N., & Brinkmann, H. (2005). Multigene analyses of bilaterian animals 

corroborate the monophyly of Ecdysozoa, Lophotrochozoa, and protostomia. Molecular 

Biology and Evolution, 22(5), 1246–1253. http://doi.org/10.1093/molbev/msi111 

Phillips, M. D., & Thomas, G. H. (2006). Brush border spectrin is required for early endosome 

recycling in Drosophila. http://doi.org/10.1242/jcs.02839 

Prindle, A., Liu, J., Asallay, M., Ly, S., Garcia-Ojalvo, J., & Suel, G. M. (2015). Ion channels 

enable electrical communication in bacterial communities. Nature, 527, 59–70. 

http://doi.org/10.1038/nature15709 

Richter, D., & King, N. (2013). The Genomic and Cellular Foundations of Animal Origins. 

Annual Review of Genetics, 1–31. http://doi.org/10.1146/annurev-genet-111212-133456 

Ruiz-Trillo, I., Burger, G., Holland, P. W. H., King, N., Lang, B. F., Roger, A. J., & Gray, M. W. 

(2007). The origins of multicellularity : a multi-taxon genome initiative, Genetics, 23(3). 



102 
 

http://doi.org/10.1016/j.tig.2007.01.005 

Ruiz-Trillo, I., Roger, A. J., Burger, G., Gray, M. W., & Lang, B. F. (2008). A phylogenomic 

investigation into the origin of Metazoa. Molecular Biology and Evolution, 25(4), 664–672. 

http://doi.org/10.1093/molbev/msn006 

Saimi, Y., & Kung, C. (1994). Ion channel regulation by calmodulin binding. FEBS Lett, 350(2–

3), 155–158. http://doi.org/0014-5793(94)00782-9 [pii] 

Sands, Z., Grottesi, A., & Sansom, M. S. P. (2005). Voltage-gated ion channels. Current 

Biology : CB, 15(2), R44–R47. http://doi.org/10.1016/j.cub.2004.12.050 

Senatore, A., Boone, A. N., Lam, S., Dawson, T. F., Zhorov, B. S., & Spafford, J. D. (2011). 

Mapping of dihydropyridine binding residues in a less sensitive invertebrate L-type calcium 

channel (LCav1). Channels, 5(2), 173–187. http://doi.org/10.4161/chan.5.2.15141 

Senatore, A., Boone, A. N., & Spafford, J. D. (2011). Optimized Transfection Strategy for 

Expression and Electrophysiological Recording of Recombinant Voltage-Gated Ion 

Channels in HEK-293T Cells, JOVE, 4–11. http://doi.org/10.3791/2314 

Senatore, A., Guan, W., Boone, A. N., & Spafford, J. D. (2014). T-type channels become highly 

permeable to sodium ions using an alternative extracellular turret region (s5-p) outside the 

selectivity filter. Journal of Biological Chemistry, 289(17), 11952–11969. 

http://doi.org/10.1074/jbc.M114.551473 

Senatore, A., Guan, W., & Spafford, J. D. (2014). Cav3 T-type channels: Regulators for gating, 

membrane expression, and cation selectivity. Pflugers Archiv European Journal of 

Physiology, 466(4), 645–660. http://doi.org/10.1007/s00424-014-1449-7 

Senatore, A., Monteil, A., Minnen, J. Van, Smit, A. B., & Spafford, J. D. (2013). NALCN Ion 

Channels Have Alternative Selectivity Filters Resembling Calcium Channels or Sodium 

Channels, 8(1). http://doi.org/10.1371/journal.pone.0055088 

Senatore, A., Zhorov, B. S., & Spafford, J. D. (2012). Cav3 T-type calcium channels. Wiley 

Interdisciplinary Reviews: Membrane Transport and Signaling, 1(4), 467–491. 

http://doi.org/10.1002/wmts.41 



103 
 

Shalchian-tabrizi, K., Minge, M. A., Espelund, M., Orr, R., Ruden, T., Kjetill, S., & Cavalier-

smith, T. (2008). Multigene Phylogeny of Choanozoa and the Origin of Animals, 3(5). 

http://doi.org/10.1371/journal.pone.0002098 

Simms, B. A., & Zamponi, G. W. (2014). Neuronal voltage-gated calcium channels: Structure, 

function, and dysfunction. Neuron, 82(1), 24–45. 

http://doi.org/10.1016/j.neuron.2014.03.016 

Smith, M. R., Yu, E. J., & Goldin, A. L. (1997). Interaction between the putative sodium channel 

inactivation particle and domain III S4-S5. Biophysical Journal, 72(2), A261. 

Sogin, M. L. (1991). Early evolution and the origin of eukaryotes.Current Biology, 1, 457-463 

Song, W., Liu, Z., Tan, J., Nomura, Y., & Dong, K. (2004). RNA editing generates tissue-

specific sodium channels with distinct gating properties. Journal of Biological Chemistry, 

279(31), 32554–32561. http://doi.org/10.1074/jbc.M402392200 

Spafford, J. D., Grigoriev, N. G., & Spencer, A. N. (1996). Pharmacological properties of 

voltage-gated Na+ currents in motor neurones from a hydrozoan jellyfish Polyorchis 

penicillatus. Journal of Experimental Biology, 199, 941–948. 

Spafford, J. D., Van Minnen, J., Larsen, P., Smit, A. B., Syed, N. I., & Zamponi, G. W. (2004). 

Uncoupling of calcium channel α1 and β subunits in developing neurons. Journal of 

Biological Chemistry, 279(39), 41157–41167. http://doi.org/10.1074/jbc.M403781200 

Spencer, A. N. (1979). Neurobiology of Polyorchis. II. Structure of effector systems, J. 

Neurobio., 10(2), 95–117. 

Spencer, A. N. (1995). Modulatory Mechanisms at a Primitive Neuromuscular Synapse : 

Membrane Currents, Transmitter Release and Modulation by Transmitters in a Cnidarian 

Motor Neuron, Amer. Zool. 528, 520–528. 

Stephens, R. F., Guan, W., Zhorov, B. S., & Spafford, J. D. (2015). Selectivity filters and 

cysteine-rich extracellular loops in voltage-gated sodium, calcium, and NALCN channels. 

Frontiers in Physiology, 6, 153. http://doi.org/10.3389/fphys.2015.00153 

Stephens, R., Zhorov, B. S., & Spafford, J. D. (2015). Regulation of ion selectivity in voltage-



104 
 

gated sodium channels, calcium channels and NALCN pores by selectivity filter residues 

and extracellular turrets. Frontiers in Physiology, 53(9), 1689–1699. 

http://doi.org/10.1017/CBO9781107415324.004 

Stilling, R. M., Dinan, T. G., & Cryan, J. F. (2016). The brain’s Geppetto — microbes as 

puppeteers of neural function and behaviour ?, Journal of NeuroVirology, (22), 14–21. 

http://doi.org/10.1007/s13365-015-0355-x 

Suga, H. (2015). Filastereans and Ichthyosporeans : Models to Understand the Origin of 

Metazoan, 117–128. http://doi.org/10.1007/978-94-017-9642-2 

Taiakina, V., Boone, A. N., Fux, J., Senatore, A., Weber-adrian, D., Guillemette, G., & Spafford, 

J. D. (2013). The Calmodulin-Binding , Short Linear Motif , NSCaTE Is Conserved in L-

Type Channel Ancestors of Vertebrate. PLoS ONE, 8(4). 

http://doi.org/10.1371/journal.pone.0061765 

Tarvin, R. D., Santos, J. C., O’Connell, L. A., Zakon, H. H., & Cannatella, D. C. (2016). 

Convergent Substitutions in a Sodium Channel Suggest Multiple Origins of Toxin 

Resistance in Poison Frogs. Molecular Biology and Evolution, 33(4), msv350. 

http://doi.org/10.1093/molbev/msv350 

Torruella, G., Derelle, R., Paps, J., Lang, B. F., Roger, A. J., Salchian-Tabrizi, K., & Ruiz-Trillo, 

I. (2012). Phylogenetic Relationships within the Opisthokonta Based on Phylogenomic 

Analyses of Conserved Single-Copy Protein Domains Research article, 29(2), 531–544. 

http://doi.org/10.1093/molbev/msr185 

Van Petegem, F., Clark, K. A., Chatelain, F. C., & Minor, D. L. (2004). Structure of a complex 

between a voltage-gated calcium channel β-subunit and an α-subunit domain. Nature, 

429(6992), 671–5. http://doi.org/10.1038/nature02588 

Vandenberg, C. A., & Bezanilla, F. (1991). A sodium channel gating model based on single 

channel, macroscopic ionic, and gating currents in the squid giant axon. Biophysical 

Journal, 60(6), 1511–1533. http://doi.org/10.1016/S0006-3495(91)82186-5 

Veerman, C. C., Wilde, A. A. M., & Lodder, E. M. (2015). The cardiac sodium channel gene 

SCN5A and its gene product NaV1.5: Role in physiology and pathophysiology. Gene, 



105 
 

573(2), 177–187. http://doi.org/10.1016/j.gene.2015.08.062 

Wakefield, W. S., Powell, M. J., Barr, D. J. S., Churchill, P. F., Longcore, J. E., & Chen, S. 

(2010). A molecular phylogenetic evaluation of the Spizellomycetales, 102(3), 596–604. 

http://doi.org/10.3852/09-120 

Watanabe, E., Hiyama, T. Y., Kodama, R., & Noda, M. (2002). Nax sodium channel is expressed 

in non-myelinating Schwann cells and alveolar type II cells in mice. Neuroscience Letters, 

330(1), 109–113. http://doi.org/10.1016/S0304-3940(02)00708-5 

Watanabe, H., Fujisawa, T., & Holstein, T. W. (2009). Cnidarians and the evolutionary origin of 

the nervous system. Development Growth and Differentiation, 51(3), 167–183. 

http://doi.org/10.1111/j.1440-169X.2009.01103.x 

Wegener, L., Lahr, D. J. G., Knoll, A. H., & Katz, L. A. (2011). Estimating the timing of early 

eukaryotic diversification with multigene molecular clocks, 108(33), 13624–13629. 

http://doi.org/10.1073/pnas.1110633108 

Weissgerber, P., Held, B., Bloch, W., Kaestner, L., Chien, K. R., Fleischmann, B. K., … 

Freichel, M. (2006). Reduced cardiac L-type Ca2+ current in Cavβ2-/- embryos impairs 

cardiac development and contraction with secondary defects in vascular maturation. 

Circulation Research, 99(7), 749–757. 

http://doi.org/10.1161/01.RES.0000243978.15182.c1 

Welling, B. Y. A., Bosse, E. V. A., Cavalie, A., Ludwig, A., Nastainczykt, W., Psychiatrie, I., & 

Klopferspitz, A. (1993). Stable co-expresion of calcium channel α1, β and α2δ subunits in 

somatic cell line. J. Physiol, 471, 749–765. 

West, J. W., Patton, D. E., Scheuer, T., Wang, Y., Goldin, A. L., & Catterall, W. A. (1992). A 

cluster of hydrophobic amino acid residues required for fast Na+-channel inactivation. 

Proceedings of the National Academy of Sciences of the United States of America, 89(22), 

10910–4. http://doi.org/10.1073/pnas.89.22.10910 

Wheeler, D. G., Groth, R. D., Ma, H., Barrett, C. F., Owen, S. F., Safa, P., & Tsien, R. W. 

(2012). CaV1 and CaV2 channels engage distinct modes of Ca2+ signaling to control CREB-

dependent gene expression. Cell, 149(5), 1112–1124. 



106 
 

http://doi.org/10.1016/j.cell.2012.03.041 

Whittaker, E. W., & Muntus, R. (1970). Ionic radii for use in geochemistry, Geochimica et 

cosmochimica Acta, 34, 945-956. 

Williams, F., Tew, H. A., Paul, C. E., & Adams, J. C. (2014). The predicted secretomes of 

Monosiga brevicollis and Capsaspora owczarzaki, close unicellular relatives of metazoans , 

reveal new insights into the evolution of the metazoan extracellular matrix. Matrix Biology, 

37, 60–68. http://doi.org/10.1016/j.matbio.2014.02.002 

Wiser, O., Trus, M., Tobi, D., Halevi, S., Giladi, E., & Atlas, D. (1996). The α2δ subunit of 

voltage sensitive Ca2+ channels is a single transmembrane extracellular protein which is 

involved in regulated secretion. FEBS Letters, 379(1), 15–20. http://doi.org/10.1016/0014-

5793(95)01475-6 

Woznica, A., Cantley, A. M., Beemelmanns, C., Freinkman, E., & Clardy, J. (2016). Bacterial 

lipids activate , synergize , and inhibit a developmental switch in choanoflagellates, 

113(28). http://doi.org/10.1073/pnas.1605015113 

Yamagishi, T., Janecki, M., Marban, E., & Tomaselli, G. F. (1997). Topology of the P segments 

in the sodium channel pore revealed by cysteine mutagenesis. Biophysical Journal, 73(1), 

195–204. http://doi.org/10.1016/S0006-3495(97)78060-3 

Yu, E. J., Ko, S., Lenkowski, P. W., Pance, A., Patel, M. K., & Jackson, A. P. (2005). Distinct 

domains of the sodium channel β3-subunit modulate channel-gating kinetics and subcellular 

location, 526, 519–526. http://doi.org/10.1042/BJ20050518 

Yu, F. H., Westenbroek, R. E., Silos-santiago, I., Mccormick, K. A., Lawson, D., Ge, P., … 

Curtis, R. (2003). Sodium Channel β4, a New Disulfide-Linked Auxiliary Subunit with 

Similarity to β2, J. NeuroSci. 23(20), 7577–7585. 

Yu, F. H., Yarov-Yarovoy, V., Gutman, G. a, & Catterall, W. a. (2005). Overview of molecular 

relationships in the voltage-gated ion channel superfamily. Pharmacological Reviews, 

57(4), 387–395. http://doi.org/10.1124/pr.57.4.13.1 

Zakon, H. H. (2012). Adaptive evolution of voltage-gated sodium channels: the first 800 million 

years. Proceedings of the National Academy of Sciences of the United States of America, 



107 
 

109 Suppl(Supplement_1), 10619–25. http://doi.org/10.1073/pnas.1201884109 

Zamponi, G. W., & Snutch, T. P. (1996). Evidence for a specific site for modulation of calcium 

channel activation by external calcium ions, Eur. J. Physiol., 431, 470–472. 

Zhang, T., Liu, Z., Song, W., Du, Y., & Dong, K. (2011). Molecular Characterization and 

Functional Analysis of the DSC1 Channel. Insect Biochem Mol Biol, 41(7), 451–458. 

http://doi.org/10.1016/j.ibmb.2011.04.010.MOLECULAR 

Zhang, T., Wang, Z., Wang, L., Luo, N., Jiang, L., Liu, Z., … Dong, K. (2013). Role of the 

DSC1 Channel in Regulating Neuronal Excitability in Drosophila melanogaster: Extending 

Nervous System Stability under Stress. PLoS Genetics, 9(3). 

http://doi.org/10.1371/journal.pgen.1003327 

Zhang, Z., Zhao, Z., Liu, Y., Wang, W., Wu, Y., & Ding, J. (2013). Kinetic Model of Nav1.5 

Channel Provides a Subtle Insight into Slow Inactivation Associated Excitability in Cardiac 

Cells, PLoS One, 8(5). http://doi.org/10.1371/journal.pone.0064286 

Zhou, W., Chung, I., Liu, Z., Goldin, A. L., & Dong, K. (2004). A voltage-gated calcium-

selective channel encoded by a sodium channel-like gene. Neuron, 42(1), 101–112. 

http://doi.org/10.1016/S0896-6273(04)00148-5 

Zuhlke, R. D., Pitt, G. S., Deisseroth, K., Tsien, R. W., & Reuter, H. (1999). Calmodulin 

supports both inactivation and facilitation of L-type calcium channels. Nature, 42(1995), 

159–162. 

 


