
Feedback Controls in Droplet Microfluidics

by

Yuk Hei Wong

A thesis
presented to the University Of Waterloo

in fulfilment of the
thesis requirement for the degree of

Master of Applied Science
in

Mechanical and Mechatronics Engineering

Waterloo, Ontario, 2016
c©Yuk Hei Wong 2016

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners. I understand that my
thesis may be made electronically available to the public.

ii

Abstract

The ability to stabilize and move individual droplets would allow scientists to perform micro-
scale manipulation, and unlock the advantages of microfluidics. The challenge lies in the fact
that droplet displacements are unstable, and that the system is multi-input-multi-output in
nature. This dissertation begins with construction of a state-space model to represents fluid
dynamics in a channel network. The model is validated with experimental data, and used to
design LQR controllers. The controllers utilize feedback provided from computer vision, to
actuate electro-pneumatic transducers appropriately in order to stabilize and control droplet
movements. A significant portion of this report is dedicated to describing a custom computer
program that was created for implementing the controllers. The program enables users to ma-
nipulate droplets in real time by interacting with an augmented video stream. A demonstration
is provided in which droplets are generated, stored, merged and split repeatedly on-demand.

iii

Acknowledgement

I would like to sincerely thank Professor Carolyn Ren for her supervision and support during
my self-discovery journey in the last two years. I want to thank her for her tolerance, and
especially the encouragement she gave me during my moments of doubt. I would also like to
thank Professor Kaan Erkorkmaz for his teaching, his intuitive and insightful explanation, and
his personal advice.

In addition, I would like to thank Professor Jan Huissoon for taking the time to read this
thesis, and for joining my seminar committee.

iv

For Mom and Dad,
and Vivien

v

Table of Contents

Author’s Declaration . ii
Abstract . iii
Acknowledgement . iv
Dedication . v
List of Figures . vii
List of Tables . ix

1 Introduction 1

2 Literature Review 4
2.1 Controls in Microfluidics . 6

3 Hardware and Methodology 9
3.1 Microfluidic Chip . 10
3.2 Optics and Camera . 11
3.3 Pressure Pump . 12

3.3.1 System Identification in Time Domain . 13
3.3.2 System Identification in Frequency domain 15

4 Modelling 18
4.1 Passive Circuit Elements . 19
4.2 Channel Network . 21
4.3 Discretization . 23
4.4 Current to Charge . 25
4.5 Chip with Pump . 26

5 Validation 27
5.1 Validation Approach . 28
5.2 PID Controller . 30

5.2.1 Closed-loop Stability . 30
5.2.2 Noise Rejection . 32

5.3 Kalman Filter . 34
5.3.1 Derivation . 34
5.3.2 Disturbance Estimation . 36

5.4 Open-Loop Validation . 37

vi

TABLE OF CONTENTS TABLE OF CONTENTS

6 Controller Design 40
6.1 Model Reduction . 41
6.2 Controllability and Observability . 43
6.3 Control Law and Observer . 45

6.3.1 Integral States . 46
6.3.2 Closed Loop State Space . 46
6.3.3 Linear Quadratic Regulation . 48

6.4 Closed-loop Simulation . 49

7 Software Implementation 52
7.1 RoboDrop Architecture . 53

7.1.1 GUI Components . 53
7.1.2 Multi-threading . 57

7.2 RoboDrop Image Processing . 59
7.2.1 Object Detection . 59
7.2.2 Neck Detection . 62
7.2.3 Decision Trees . 63

7.3 RoboDrop Controller . 65
7.3.1 References Linking . 65
7.3.2 Necking Feedback . 65
7.3.3 Measurement Offset . 66
7.3.4 Controller Calculations . 67

8 Results 68
8.1 Droplet Generation . 71
8.2 Droplet Splitting and Merging . 72
8.3 Droplet Sorting and Retrieving . 73

9 Conclusion 74
9.1 Hardware Recommendations . 75
9.2 Controller Recommendations . 76

bibliography 78

A Appendix: MATLAB Script 79
A.1 Pump System Identification . 79
A.2 Modelling and Controller Design . 79

B Appendix: C++ Source Code 80
B.1 RoboDrop . 80

C Appendix: Experiment Video with Single T-Junction 81
C.1 Video Clip . 81

D Appendix: Experiment Video with Double T-Junction 82
D.1 Video Clip . 82

vii

List of Figures

2.1 Garstecki droplet formation[1] . 4
2.2 Niu et al. droplet merging[2] . 5
2.3 Huebner et al. droplet trapping[3] . 5
2.4 Kim et al. interface control[4] . 6
2.5 Miller et al. controlled generation[5] . 6
2.6 Niu et al. electrode sensing[6] . 7
2.7 Armani et al. particle steering[7] . 7
2.8 Garstecki’s chemostat[8] . 8

3.1 Controls hardware . 9
3.2 Microfluidic chip . 10
3.3 Scientific CMOS camera . 11
3.4 Pump assembly . 12
3.5 Pump time domain fit . 14
3.6 Pump fit vs. test data . 15
3.7 Pump sinusoid output . 16
3.8 Pump frequency response . 17

4.1 Control volumes . 19
4.2 An arbitrary electric circuit . 21
4.3 Fluid element . 21
4.4 Electric circuit in Simulink . 22

5.1 Droplet and interface . 28
5.2 Validation step 1 . 28
5.3 Validation step 2 . 29
5.4 Validation step 3 . 29
5.5 PID block diagram . 30
5.6 Simplified plant . 30
5.7 Definition of simplified plants . 31
5.8 PID design . 33
5.9 Validation data: Displacement . 37
5.10 Validation data: Command . 38
5.11 Validation data: Velocity . 39

6.1 Droplet moves from channel to channel . 41
6.2 Plant reduction . 42

viii

LIST OF FIGURES LIST OF FIGURES

6.3 Droplet motions are no longer independent . 43
6.4 Controller topology . 45
6.5 Simulation set up . 49
6.6 Simulation data: Displacement . 50
6.7 Simulation data: Pressure . 51

7.1 RoboDrop work flow . 52
7.2 RoboDrop Setup panels . 53
7.3 RoboDrop Dashboard . 54
7.4 RoboDrop Mainwindow . 55
7.5 RoboDrop Plotter . 56
7.6 RoboDrop multi-threading . 57
7.7 Image masks . 59
7.8 Object detection . 60
7.9 Object tracking . 61
7.10 Neck detection . 62
7.11 Neck distance: case 1 . 62
7.12 Neck distance: case 2 . 63
7.13 Decision tree: discard . 63
7.14 Decision tree: user interactions . 64
7.15 Decision tree: automatic selection . 64
7.16 Reference linking . 65
7.17 Neck distance as feedback . 66
7.18 Measurement extraction . 67

8.1 Screen-shot: ch0, ch1, ch2 active . 68
8.2 Closed-loop data: ch0, ch1, ch2 active . 69
8.3 Screen-shot: ch0, ch1, ch5 active . 70
8.4 Closed-loop data: ch0, ch1, ch5 active . 70
8.5 Droplet generation . 71
8.6 Merging and splitting . 72
8.7 Sorting and retrieving . 73

9.1 Proposed hardware . 75
9.2 Proposed artificial neural network . 76

ix

List of Tables

3.1 Camera settings . 11

5.1 Simplified plant definitions . 31
5.2 Kalman filter post processing . 36

7.1 Controller calculations . 67

x

Chapter 1

Introduction

Vision without action is merely a dream.
Action without vision just passes the time.
Vision with action can change the world.

Joel A. Barker

Microfluidics is the study of fluid behaviour in micro scale. Fluid flow in micro scale has
several unique properties. First and foremost, due to small Reynolds numbers, fluid flow is
laminar and can be analysed and controlled with relative ease. On the other hand, due to
large surface-to-volume ratios, thermal diffusion is rapid, allowing sample temperature to be
uniformly adjusted without delay. In addition, electrokinetics phenomena induced by surface
charges is prominent. Combining electrophoresis, thermal diffusion and electrokinetics leads to
an optimum tool for performing numerous biochemical analysis such as PCR amplification, and
the subsequent focusing and detection of DNA fragments [9].

Another advantage of microfluidics is the small sample volume involved. Typical microflu-
idics experiments consumes only nano-litres of chemical reagents. Compare with an equivalent
macro-scale experiment, significant cost and sample preparation time is saved. Small sam-
ple sizes also allow reagents to be dispensed with high concentration accuracy, and results in
precisive control over chemical reactions and synthesis [10].

One of the key research areas in microfluidics is lab-on-a-chip devices. This research field
attempts to perform laboratory procedures and experiments within a micro scale device, in
order to benefit from the use of microfluidics. Successful lab-on-a-chip applications range from
isolating plasma from whole blood samples [11], to measuring reaction kinetics with nuclear
magnetic resonance [12], to cell detection, sorting, and enrichment [13].

A recent development in lab-on-a-chip is droplet microfluidics, where fluid of two or more
immiscible phases co-exist within the same device. Surface tension dictates that one of the
phases will form discrete droplets, surrounded by the other continuous phase. Each droplets
act as individual compartment in which chemical reactions can take place. Unwanted mass
diffusion and contamination between samples are eliminated. Droplet microfluidics has proven
to be particularly useful for bioassay [14] [15], drug screening [16], or acting as versatile chemical
reactors [17].

In most applications, droplets are generated passively by maintaining a constant ratio be-
tween flow rates of the continuous phase and the discrete phase. This technique generates a

1

CHAPTER 1. INTRODUCTION

sequence of droplets, whose length is dependent on the spacing between itself and other droplets.
By designing intricate channel geometries, a train of droplets can be split; two trains of droplets
can be merged. However, there is no mechanism yet to manipulate each individual droplets.
Furthermore, the droplet generation, merging, and splitting geometries have narrow ranges of
operation. Small changes in channel dimensions due to manufacturing defects will likely render
them non-functional. For the same reason, combining several geometries to expand function-
ality is challenging as geometries will interfere with upstream and downstream components,
resulting in their stable operating range being exceeded

An ideal droplet microfluidic device would be one that 1) can function despite of high
manufacturing tolerances, and is insusceptible to environmental disturbance; 2) allows multiple
geometries to be connected and perform without self interference; 3) can be designed following
a general approach instead of requiring specialized knowledge; 4) eliminates the need of sample
preparation.

The first three aspired features can be achieved by introducing feedback controls into chip
operations. First, the robustness of a feedback systems would overcome effects of minor manu-
facturing defects. Meanwhile, its disturbance rejection ability counteracts environmental influ-
ence, compensating to guarantee performance. Furthermore, a feedback controller can appre-
hend the coupling effects when connecting multiple geometries, such that each of them remain
functional under feedback controls. Better still, once a control law is formulated, it can be
applied to other chips.

Although feedback is essential in controls theory, introducing sensors into microfluidic de-
vices is challenging. Electrodes can be embedded into chips to provide sensing [18], but only
at the expense of increased chip complexity, extra source of error, and limited design freedom.
This in effect defeats the benefits of feedback.

Fortunately, droplets have visible boundaries, and they provide a unique opportunity for
exploitation. Using computer vision, fluid flow rates that would otherwise be invisible can be
observed through droplet movements. In control terms, the loop can be closed by using vision
information as feedback.

Another critical component for feedback controls is actuation, which defines a mean for
controllers to take action upon the system. Common actuators used in lab-on-a-chip experiment
are the pressure pumps and the syringe pumps. They are external equipments that connect
to chips to deliver precise flow rates or pressures at the chip inlets. To prevent interference
between different parts within a network, pneumatic valves [19] can be fabricated onto chips.
These internal actuators allow manipulation of individual fluid volumes. Yet again, it comes at
the expense of chip vulnerability and the ease of design and manufacturing.

A feedback controller would embrace instead of trying to eliminate interference between
different parts of a chip. It does so by capturing the coupling effects in a mathematical model,
and calculating appropriate external actuations that will compensate for internal interferences.
In this fashion, de-coupling can be achieved without the need of on-chip pneumatic valves.

Henceforth, the subject of this thesis is on applying controls theory in droplet microfluidics.
The introduction of controls theory leads to an unexpected advantage. Since the controller can
command fluid to flow at arbitrary rates at any given moment, processes that were previously
unstable is now possible. This implies that droplet lengths can be adjusted independent of
droplet spacing, and individual droplets can be moved, merged, split, and sorted at any time
according to user’s request.

The proposed method is rather new in the field of lab-on-a-chip. In the initial phrase,

2

CHAPTER 1. INTRODUCTION

the proposed method will be slow compare to prevalent techniques in droplet microfluidics.
Compare with existing open-loop techniques which can generate tens to hundreds of droplets
in a second, the proposed closed-loop method would take seconds to generate one droplet.

As the proposed method matures, improvements in hardware and controller should lead to
speed recovery. However, regardless of speed, being able to manipulate each individual droplets
independently should bring benefits that far out-weight the through-put deficiency.

It is important to note that the proposed method is entirely software-based. The core
enabling component is a computer program, whereas the required hardware consist simply of
a camera and a pressure pump, both are prerequisites for operating lab-on-a-chip devices, and
are commonly found in microfluidics laboratories. No additional exotic equipment nor exclusive
chip designs nor special sample preparation is needed.

This thesis is laid out as follow. Prior art of controls theory being applied to microfluidics
is summarized in Chapter 2. The methodology and hardware set up is mentioned in Chapter
3. Chapter 4 develops a general modelling approach to describe fluid dynamics in a channel
network. Chapter 5 validates the model with experimental data. Chapter 6 describes the design
of feedback controllers, while Chapter 7 contains details regarding the computer program used
in implementation. Chapter 8 demonstrates the results, while recommendations for future
research is noted in Chapter 9.

3

Chapter 2

Literature Review

Figure 2.1: Garstecki droplet formation[1]

The prevalent droplet formation technique[1] is shown in figure 2.1. Constant flow rates of
the dispersed and continuous phases are supplied to generate a train of droplets. The resultant
droplet sizes and spacings depend on the steady state flow rate ratios, fluid properties, and chan-
nel dimensions. Non dimensional empirical relations were extracted from experimental data,
allowing researchers to target a certain droplet size, and design microfludic chips accordingly.

4

CHAPTER 2. LITERATURE REVIEW

To merge two in-coming droplets, special geometries are fabricated into chips, such as the
pilers [2] shown in figure 2.2. The first arriving droplet is shorter than the piler array. This
traps the droplet temporarily by allowing the continuous phase to escape between pilers and
reducing pressure behind the droplet. The second droplet would arrive and merge with the
first. The extended droplet would then block all the pilers, raising back pressure to push the
droplet away.

Figure 2.2: Niu et al. droplet merging[2]

Droplets might be stored to carry out prolonged chemical reactions and observations.
Huebner[3] had designed traps for capturing droplets as shown in figure 2.3. The droplets
could be released by reversing the flow inside the microfluidic chip.

Figure 2.3: Huebner et al. droplet trapping[3]

5

2.1. CONTROLS IN MICROFLUIDICS CHAPTER 2. LITERATURE REVIEW

2.1 Controls in Microfluidics

In this section, previous work that involves microfluidics and controls theory is reviewed.

Figure 2.4: Kim et al. interface control[4]

Kuczenski[20] and Kim[4] had developed a mechanical device for actuating inlet pressures
in a two-phase flow device. Using feedback provided by pressure sensors, they were able to
accurately manipulate the interface location of a focused fluid stream, as shown in figure 2.4.
Their focus is on regulating the laminar interface in a specific geometry, instead of droplets in
an arbitrary channel network.

Figure 2.5: Miller et al. controlled generation[5]

In Miller’s work[5], droplet generation is regulated using a PI controller. They measured
droplet diameters with image processing, and controled flow rate ratios by actuating syringe
pumps. Drolets were generated within stable regimes, and they managed relatively slow closed-
loop response as shown in figure 2.5, in which a desired droplet size was achieved in 20 − 50s
depending on fluid properties. Zeng[21] has proposed similar techniques, but their study only
provided simulation results and lacked experimental validation. Even though these studies
employed feedback controllers, they were concerned with continuous droplet generation, and
did not attempt to manipulate individual droplet movements.

6

2.1. CONTROLS IN MICROFLUIDICS CHAPTER 2. LITERATURE REVIEW

By embedding electrodes into the microfluidic chip, Niu[6] was able to sense droplet pres-
ences through capacitive measurements. In addition, they were able to deflect droplets into a
targeted channel by differentiating dielectric properties of different reagents. This method only
works for a specific set of fluids and channel geometry, and requires embedded electrods and
custom designed electronics.

Figure 2.6: Niu et al. electrode sensing[6]

Figure 2.7 shows a particle steering system invented by Armani[7]. The microfluidic chip
contained multiple electrodes for inducing 2-dimensional electrokinetic flow. Image processing
was used to measure instantaneous position of the particle. Electrode voltages were actuated
to achieve pre-calculated electric field profiles, in order to steer the particle.

Figure 2.7: Armani et al. particle steering[7]

Separately, Shenoy[22] was able to steer particle in a similar manner, but by actuating chip
inlet pressures, thereby eliminating the need of electrodes. A model predictive controller was
employed to handle the non linear fluid dynamics.

7

2.1. CONTROLS IN MICROFLUIDICS CHAPTER 2. LITERATURE REVIEW

Figure 2.8: Garstecki’s chemostat[8]

Piotr Garstecki, a leading researcher in droplet microfluidics, has recently demonstrated
the potential of automated droplet-based system. In his work[8], droplet generation, splitting,
merging, and sorting were performed all in a single chip, creating micro-chemostats for cul-
tivating and studying bacterial growth. The device is shown in figure 2.8, and its operation
relies on a series of high precision on-off valves. Little information is provided regarding the
control principles. It is possible that droplet presences were detected in image processing, and
a group of pre-calculated valve actions were executed in a timed sequence. This technique is
effective and straight forward, but might be difficult to expand to accommodate larger channel
networks.

8

Chapter 3

Hardware and Methodology

In this chapter, I will describe the equipment used in the project, and provide instructions
on setting up hardware and fabricating devices, such that experiment can be replicated. In
figure 3.1, all the controls related hardware are shown. The flow of information starts at
the microfluidic chip, where droplet movements take place. A scientific camera captures the
movements and provide video live-stream to the personal computer(PC). In the PC, image
processing and control calculations are performed in real time using a custom program, which
will be described in chapter 7. The PC then command the pressure pump to supply varying inlet
pressures to the microfluidic chip, affecting droplet movements, and completing the information
loop.

Figure 3.1: Hardware used in this project, arrow represents the flow of information. Microscope
drawing obtained from user manual [23]

9

3.1. MICROFLUIDIC CHIP CHAPTER 3. HARDWARE AND METHODOLOGY

3.1 Microfluidic Chip

The microfluidic chip is constructed with standard soft-lithography techniques [24]. First, chan-
nel networks are drawn in AutoCAD and printed onto transparent photomasks. Then, a silicon
wafer is prepared with positive photoresist (MicroChem Su-8 2000). The photoresist is selec-
tively cured by being exposed to UV through the photomasks. By developing the photoresist,
an extrusion of the channel network is formed on the silicon wafer. Afterwards, PDMS (Dow
Corning sylgard 184) is pour onto the silicon wafer, and peeled off after cure, with the pho-
toresist extrusions now creating cavities in the PDMS. The PDMS is then plasma bonded with
glass slides to form a sealed channel network. Lastly, to recover the hydrophobocity lost during
plasma treatment, the chip is heated to 195C for 48 hours prior to use.

A typical channel network design is shown in figure 3.2b. The center cross (500um end-to-
end) is used for image processing calibration. Lengths of each channels are patterned onto the
PDMS for easy record tracking. In addition, a drain channel is added to assist initial bleeding,
but is plugged during experiment.

Figure 3.2: (a) Photo masks for various channel network designs. (b) Closed-up view of a 4
inlets channel network. (c) Fabricated microfludic chip.

10

3.2. OPTICS AND CAMERA CHAPTER 3. HARDWARE AND METHODOLOGY

3.2 Optics and Camera

An Andor Zyla 5.5 scientific camera and a Nikon Eclipse Ti-E microscope are used in this
project. Neither of them are designed for computer vision applications, and were chosen simply
because they were available in the laboratory. Nevertheless, I have carefully reviewed their
specifications to ensure that their performance are sufficient.

The Zyla camera shown in figure 3.3 has a 16.6mm × 14.0mm CMOS sensor. It is de-
signed for capturing high quality scientific images, hence is equipped with exotic features such
as Peltier cooling, 16 bit depth, global shutter, and a maximum quantum efficiency of 60%.
Although the large sensor dimensions result in very high image quality, it necessitates the use
of high quality microscope objectives and a uniform light source. The need of a microscope in
turn prevents the control system from becoming portable, and will potentially interfere with
biochemical procedures that require different magnifications and illuminations. In chapter 9, I
will recommend replacing the current set up with much cheaper cameras and lenses that are
used in smart phones and mobile devices.

Figure 3.3: Scientific CMOS camera

The camera connects to PC through a USB 3.0 connection, and has a purchasable software
development kit (SDK). Although it can live-stream full frame resolution (2560× 2160) videos
at 40 frame-per-second (fps), processing that many images, each 5.5 megapixel with a 16bit
depth, is beyond the capability of consumer grade PC. Therefore, images are binned to reduce
resolution and processed at lower rates. Typical camera settings are listed in table .

Settings Value Settings Value

Overlap false ElectronicShutteringMode Rolling
StaticBlemishCorrection true PixelEncoding Mono16
SensorCooling true TargetSensorTemperature 0
FullAOIControl true AOIBinning 2x2
ExposureTime 0.004 FrameRate 40
TriggerMode Internal CycleMode Continuous
FrameCount 1 AccumulateCount 1

Table 3.1: Camera settings

11

3.3. PRESSURE PUMP CHAPTER 3. HARDWARE AND METHODOLOGY

3.3 Pressure Pump

In this project, the Fluigent MFCS series pressure pumps are used. Figure 3.4a shows the
pump system in experiment configuration. The pump receives 35psi pressurized air from an
external compressors, and regulates pressure of each outlets within the range of 0 → 2Bar at
a 0.3mBar resolution. Pump outlets are connected through Tygon tubings to the reservoirs,
in which chemical solutions reside. When pressurized, solutions flow through PFA tubings into
the chip.

The pressure pump connects to PC through a USB 2.0 connection. Due to a proprietary
communication protocol, command speed is limited to 10 samples per second per outlet. Be-
cause of this, the sampling frequency of the entire control and image processing system is set
to 10Hz.

Figure 3.4: (a) Experiment set up showing pressure pump, air tubings, reservoirs, liquid tubings,
and microfluidic chip. (b) System identification set up showing reservoir being plugged

Although the pressure pump technology is proprietary, I reasoned that its underlying mecha-
nism is an array of electro-pneumatic (E/P) transducers. A typical E/P transducer is comprised
of an embedded micro-controller and a integral volume booster. The micro-controller regulates
airflow into and out of the integral volume booster base on feedback from an integrated pressure
sensor. The integral volume booster is a flexible chamber, whose shape controls the main valves
to which the outlet port is connected to the inlet and exhaust ports.

Behaviour of the integral volume booster and computation sequences in the micro-controller
give rise to delays and overshoots that characterize a certain E/P transducer. In the rest of
the chapter, I will approximate these behaviour using system identification techniques. For
the system identification experiments, the pump is set up as shown in figure 3.4b. In this
configuration, the reservoirs are plugged, and the pump model will capture pump dynamics as
well as effects due to compliance of the air tubings and the reservoir.

12

3.3. PRESSURE PUMP CHAPTER 3. HARDWARE AND METHODOLOGY

3.3.1 System Identification in Time Domain

A linear time-invariant (LTI) system is represented by an ordinary differential equation (ODE).
Given input u(t) the system will output v(t), and the system’s characteristics are determined
by constant coefficients a and b.

v(n) + an−1v
(n−1) + · · ·+ a1v + a0 = bmu

m + b(m−1)u
(m−1) + · · ·+ b1u+ b0 (3.1)

Using the derivative property of Laplace transforms, the ODE is converted into a transfer
function.

L{f(t)} =

∫ ∞
0

f(t)e−stdt (3.2)

L{df
dt
} =sL{f(t)} whenf(0) = 0 (3.3)

H(s) =
bms

m + bm−1s
m−1 + · · ·+ b1s+ b0

sn + an−1sn−1 + · · ·+ a1s+ a0
=
V (s)

U(s)
(3.4)

The convolution theorem states that output in the Laplace domain is simply multiplication
of input with the system transfer function V (s) = H(s)U(s). In addition, roots of the nominator
polynomial (zeros) and roots of the denominator polynomial (poles) provide insights into the
system transient response. Intuitive understanding can be drawn from values of poles and zeros
without having to solve the ODE.

Since I can only command and sample the pressure pump at 10Hz, it is more accurate to
describe the system with a difference equation instead of an ODE.

vk = α1vk−1 + · · ·+ αnvk−n + β0uk + β1uk−1 + · · ·+ βmuk−m (3.5)

A discrete transfer function is obtained from the difference equation using the shifting
property of the Z transform.

Z{fk} =

∞∑
k=0

fkz
−k (3.6)

Z{fk−1} =z−1Z{fk} (3.7)

H(z) =
β0 + β1z

−1 + · · ·+ βmz
m

1− α1z−1 − · · · − αnz−n|
=
V (z)

U(z)
(3.8)

To identify the characterizing coefficients α and β, equation 3.5 is re-written in matrix form,

13

3.3. PRESSURE PUMP CHAPTER 3. HARDWARE AND METHODOLOGY

where N is the total number of data points, and e is the error between model and measurement.

V︷ ︸︸ ︷
vN
vN−1

...
vn

 =

Ψ︷ ︸︸ ︷
vN−1 . . . vN−n uN uN−1 . . . uN−m
vN−2 . . . vN−n−1 uN−1 uN−2 . . . uN−m−1

...
...

...
...

...
vn−1 . . . v0 un un−1 . . . un−m



Θ︷ ︸︸ ︷

α1
...
αn
β0

β1
...
βm


+

E︷ ︸︸ ︷
eN
eN−1

...
en

 (3.9)

Experiments were performed to obtain an input time series and an output time series,
allowing vector V and regression matrix Ψ to be constructed. Provided that ΨTΨ is invertible,
the best fit Θ was obtained by minimizing E

Θ = (ΨTΨ)−1ΨTV (3.10)

Using the above method, pump models of different orders m = n = 1, 2, . . . , 10 were fitted.
Figure 3.5 shows a comparison between the model predictions and experiment data. It is
obvious that low order models did not capture pressure pump dynamics very well.

Figure 3.5: Pump time domain fit (3rd, 5th, and 10th order)

Furthermore, models obtained from one response type performed poorly when predicting
a different response type. In figure 3.6a, a model that was fitted from step response yielded

14

3.3. PRESSURE PUMP CHAPTER 3. HARDWARE AND METHODOLOGY

significant error when predicting ramp responses. On the contrary, figure 3.6b shows a model
being fitted from ramp response having problems predicting step responses.

(a) Step fit vs ramp data (b) ramp fit vs step data

Figure 3.6: Pump fit vs. test data

These results suggested that pressure pump dynamics are non-linear. Instead of spending
time on modelling the non-linearity, which would certainly complicates later modelling and the
following controller designs, I decided to approximate the pressure pump dynamics in frequency
domain instead, and move on to more important issues.

3.3.2 System Identification in Frequency domain

The convolution theorem states that given a LTI system, the corresponding output is convolu-
tion between input u(t) and the system’s impulse response h(t).

v(t) =

∫ ∞
−∞

u(τ)h(t− τ)dτ =

∫ ∞
−∞

u(t− τ)h(τ)dτ (3.11)

In the event when input is an exponent u∗(t) = ejωt, the time domain output v(t) becomes
simply the multiplication of u∗(t) and system transfer function H(jωt)

v(t) =

∫ ∞
0

ejω(t−τ)h(τ)dτ (3.12)

=ejωt
∫ ∞

0
h(τ)ejωτdτ (3.13)

=u∗(t)H(jω) (3.14)

This implies that a sinusoidal input will result in a sinusoidal output with equal frequency.
Furthermore, magnitude and phase shift of the output signal are each functions of frequency,
and that function is the system transfer function.

u(t) = cos(ωt) =
ejωt + e−jωt

2
(3.15)

v(t) =|H(jω)| cos[ωt+ 6 H(jω)] (3.16)

15

3.3. PRESSURE PUMP CHAPTER 3. HARDWARE AND METHODOLOGY

Figure 3.7: Pump output data, 0.1Hz to 5Hz

Experiments were performed where the pressure pump was excited by sinusoidal inputs of
various frequencies. Figure 3.7 shows the corresponding output measurements. To extract the
relative magnitude |H(jω)| and phase 6 H(jω), the least square regression technique was used
again.

V︷ ︸︸ ︷
vN
vN−1

...
v0

 =

Ψ︷ ︸︸ ︷
sin(ωtN) cos(ωtN) 1

sin(ωtN−1) cos(ωtN−1) 1
...

...
...

sin(ωt0) cos(ωt0) 1


Θ︷ ︸︸ ︷θ1

θ2

θ3

+

E︷ ︸︸ ︷
eN
eN−1

...
e0

 (3.17)

|H(jω)| =
√
θ2

1 + θ2
2 (3.18)

6 H(jω) = arctan(
θ2

θ1
) (3.19)

offset = θ3 (3.20)

Once the experimental magnitudes and phases were known, I attempted to construct a
pump transfer function base on the experiment data. Base on observation, the pump transfer
function Ppump(s) should contain a delay component and a low-pass filter component.

16

3.3. PRESSURE PUMP CHAPTER 3. HARDWARE AND METHODOLOGY

Ppump(s) =

Delay︷︸︸︷
e−sd

Low−pass︷ ︸︸ ︷
K

s+ p
(3.21)

Ppump(s) ≈
1− sd2
1 + sd2

K

s+ p
(Pade approximation) (3.22)

Delay d is caused by communication with the embedded micro-controller, and is measured
on the PC during experiment. Gain K and pole p are unknowns need to be found. Knowing
that DCgain = 1, final value theorem shows that K = p.

lim
t→∞

v(t) = lim
s→0

sPpump(s)
1

s
(3.23)

DCgain = 1 =Ppump(0) =
1− 0

1 + 0

K

0 + p
=
K

p
(3.24)

Lastly, to account for discretization effects of the experiment data, a zero-order-hold com-
ponent Hzoh(s) was added to the pump transfer function Ppump(s).

(3.25)

Hzoh(s) =L{step(t)} − L{step(t− T)} (3.26)

=
1− esT

s
(3.27)

Gpump(s) =Hzoh(s)Ppump(s) (3.28)

In figure 3.8, the pump model Gpump(s) is compared with experimental |H(jω)| and 6 H(jω),
to confirm that the fit is reasonable.

(a) Pump channel 1 Bode (b) Pump channel 2 Bode

Figure 3.8: Pump frequency response

17

Chapter 4

Modelling

In this chapter, I attempt to model fluid dynamics in a microfluidic channel network. In
particular, I am interested in predicting droplet positions when the network is subjected to
known inlet pressures. The problem is multi-input-multi-output (MIMO) by nature, i.e. the
chip has multiple inlets, and changing pressures at each inlet will affect the entire chip and
disrupt droplets everywhere on the network. A second challenge concerns with how to capture
a huge variety of different channel dimensions and network topologies that are commonly used
in microfluidic experiments.

The MIMO problem is solved by representing the model in state space form. On the other
hand, the challenge of topology varieties is solved using electric circuit analogy. Fluid dynamics
of a single channel is captured as passive circuit elements, i.e. resistance, inductance, and
capacitance. They are then combined into an electric circuit that can represent any channel
networks. The state space model is then extracted from the electric circuit, and used for
controller design in chapter 6.

The model assumes that fluid flow in channels are 1-dimensional, and that droplet lengths
are small (< 1mm) compare to channel lengths (∼ 10mm). It also assumes that droplets are in
the squeezing regime, and move with relatively small slippages relative to the continuous phase.

18

4.1. PASSIVE CIRCUIT ELEMENTS CHAPTER 4. MODELLING

4.1 Passive Circuit Elements

(a) Rigid control volume (b) Axial flexible control volume

Figure 4.1: Control volumes

Figure 4.1 shows two control volumes (CV) representing the same fluid channel. The first
CV is rigid, has cross section area A, contains incompressible fluid of density ρ, mass m, volume
V , and is moving at velocity vl. The second CV is axial flexible, and changes length 4l depends
on incoming flow with velocity vc.

Applying Reynolds transport theorem on the rigid CV’s momentum results in

d

dt

∫
ρ · vldV =

∫
∂

∂t
(ρ · vl)dV + flux (4.1)

The flux term is eliminated since CV is rigid and contains incompressible fluid. The LHS of
the equation is derivative of momentum, which is equal to netforce acting on the CV. Realizing
that netforce = 4P ·A, the equation becomes

netforce =
d

dt
(m · vl) = m · v̇l + ṁ · vl (4.2)

4P ·A =ρ · l ·A · v̇l (4.3)

Making the analogy that pressure 4P is voltage, velocity vl is current, definition of induc-
tance L is obtained. In this analogy, L depends only on density of the fluid and length of the
channel.

L =
4P
v̇l

= ρ · l (4.4)

Applying Reynolds transport theorem on the mass of the axial flexible CV results in

d

dt

∫
ρdV =

∫
∂ρ

∂t
dV + flux (4.5)

By neglecting ∂ρ
∂t and substituting flux = ρ ·A · vc, the equation becomes

d

dt
(ρ · V) = ρ · V̇ + ρ̇ · V = ρ ·A · vc (4.6)

Density change is substituted as ρ̇ = (ρβ
4P
4t), where β is the adiabatic bulk modulus.

ρ · (A · 4l
4t

) + (
ρ

β

4P
4t

) ·A · l = ρ ·A · vc (4.7)

19

4.1. PASSIVE CIRCUIT ELEMENTS CHAPTER 4. MODELLING

Lastly, Hooke’s law is applied to recover4l = 4P ·A
κ . The equation is integrated with respect

to time and becomes

A · 4P ·A
κ

+
4P ·A · l

β
=A · xc (4.8)

4P (
A

κ
+
l

β
) =xc (4.9)

Making the analogy that pressure 4P is voltage, displacement xc is charge, this equation
defines capacitance C. In this definition, C depends on the cross section area of the channel A,
effective stiffness κ which is calculated from the chip material Young modulus, channel length
l, as well as adiabatic bulk modulus β of the fluid.

C =
xc
4P

=
A

κ
+
l

β
(4.10)

The definition of resistance is attained from the Hagen-Poiseuille law.

R =
4P
v

=
32 · µ · l
d2
h

(4.11)

Altogether, equation 4.4, 4.10 and 4.11 describes the inertial, compliance, and damping
effects that take place in a single microfludic channel.

20

4.2. CHANNEL NETWORK CHAPTER 4. MODELLING

4.2 Channel Network

Figure 4.2: An arbitrary electric circuit

For an arbitrary electric circuit such as the one shown in figure 4.2, its state space model
is derived using the Kirchoff’s circuit laws. For example, a hand derived state space model
is shown below, which describes the currents at all three branches i1(t), i2(t), i3(t) given any
voltage inputs v1(t), v2(t), v3(t).

˙[i2
i1

]
=

 R1+R2−R1L1/(L1+L3)
L1+L2−(L2

1/(L1+L3))
R1−L1(R1+R3)/(L1+L3)
L1+L2−(L2

1/(L1+L3))
R1−L1(R1+R2)/(L1+L2)
L1+L3−L2

1/(L1+L3)
R1+R3−R1L1/(L1+L2)
L1+L3−L2

1/(L1+L3)

[i2
i1

]
+

 L1/(L1+L3)−1
L1+L2−(L2

1/(L1+L3))
1

L1+L2−(L2
1/(L1+L3))

(−L1)/(L1+L3)
L1+L2−(L2

1/(L1+L3))
L1/(L1+L2)−1

L1+L3−L2
1/(L1+L3)

(−L1)/(L1+L2)
L1+L3−L2

1/(L1+L3)
1

L1+L3−L2
1/(L1+L3)

v1

v2

v3


(4.12)

i3i2
i1

 =

−1 −1
1 0
0 1

[v2

v1

]
+

0 0 0
0 0 0
0 0 0

v1

v2

v3

 (4.13)

However, deriving state space models in symbolic form is tedious and time consuming. The
task is automated using the Simulink Simscape toolbox instead.

Figure 4.3: The electric circuit that describe a single microfluidic channel

21

4.2. CHANNEL NETWORK CHAPTER 4. MODELLING

First, each channel in a network is represented by the circuit shown in figure 4.3. Resistors
and inductors are connected in series since they contribute mutual exclusively to the pressure
loss of a channel. Capacitors on the other hand, are connected in parallel to ground, since the
pressure that drives fluid motion simultaneously expands the channel.

To represent a vast network, figure 4.3 is cloned and connected according to the design of
the microfluidic chip. A Matlab script then calculates the values of R, L, and C automatically
according to channel geometries and material properties. In figure 4.4, the Simulink model is
shown together with its matching chip.

Figure 4.4: (a) Simulink model for a 4 inlets chip, each block contains the circuit shown in
figure 4.3. (b) The 4 inlets chip viewed under microscope

˙[i
v∗

]
=
[
A
] states︷︸︸︷[

i
v∗

]
+
[
B
] inputs︷︸︸︷[

v
]

(4.14)

[
i
]︸︷︷︸

outputs

=
[
C
] [i
v∗

]
︸︷︷︸
states

+
[
D
] [

v
]︸︷︷︸

inputs

(4.15)

The state space model obtained is shown above in equation 4.14. The states contain currents
i and junction voltages v∗ internal to the circuit. The model inputs are source voltages v, while
the outputs are channel currents i. Recall from the fluid-electric analogy that source voltages
represent inlet pressures driven by the pressure pump, while output currents represent fluid
velocities in each individual channels inside a network.

22

4.3. DISCRETIZATION CHAPTER 4. MODELLING

4.3 Discretization

The governing equations of electric circuits are ODEs, which corresponds to continuous state
space models. However, with a low sampling frequency, models in discrete form is preferred.
Conversion between continuous and discrete states space is discussed below. The process is
analogous to the conversion between ODEs and difference equations shown earlier.

ẋ =Ax+Bu (4.16)

y =Cx+Du (4.17)

Given the above general state space model, its homogeneous solution xh(t) corresponds to
when input u(t) is absent. xh(t) is solved by defining the matrix exponent eAt as a power series.

ẋh =Ax (4.18)

xh(t) =eAtx(0) (4.19)

eAt =

∞∑
N=0

1

N !
Ak = I + tA+

t2AA

2!
+ . . . (4.20)

(4.21)

To solve for the particular solution xp(t), an unknown function v(t) is introduced.

xp(t) = eAtv(t) (4.22)

xp(t) is substituted back to the state space equation, then expanded using chain rule. This
allows the identity of v(t) to be found, as well as xp(t).

ẋp =Axp +Bu (4.23)

AeAtv(t) + eAtv̇(t) =AeAtv(t) +Bu(t) (4.24)

v̇(t) =[eAt]−1Bu(t) = e−AtBu(t) (4.25)

v(t) =

∫ t

t0

e−AτBu(τ)dτ (4.26)

xp(t) =eAt
∫ t

t0

e−AτBu(τ)dτ =

∫ t

t0

eA(t−τ)Bu(τ)dτ (4.27)

The general solution to the state space model is a combination of its homogeneous solution
and particular solution.

x(t) =xh(t) + xp(t) (4.28)

=eAtx(0) +

∫ t

t0

eA(t−τ)Bu(τ)dτ (4.29)

23

4.3. DISCRETIZATION CHAPTER 4. MODELLING

For a given sampling period T , the general solution allows current sampled state x(kT +T)
to be related to previous sampled state x(kT).

x(kT + T) =eATx(kT) +

∫ kT+T

kT
eA(t−τ)Bu(τ)dτ (4.30)

= eAT︸︷︷︸
Ad

x(kT) +B

∫ T

0
eAηdη︸ ︷︷ ︸

Bd

u(kT) (4.31)

By applying 1) the zero-order-hold condition u(τ) = u(kT) for kT < τ < (kT + T) and 2)
a change of variable η = kT − τ , the equation is grouped into the desired form x(kT + T) =
Adx(kT) + Bdu(kT), and the conversion A → Ad and B → Bd is found. The discrete state
space model is summarized below.

xk =Adxk−1 +Bduk−1 (4.32)

yk =Cdxk +Dduk (4.33)

Ad =eAT (4.34)

Bd =B

∫ T

0
eAηdη (4.35)

Cd =C (4.36)

Dd =D (4.37)

24

4.4. CURRENT TO CHARGE CHAPTER 4. MODELLING

4.4 Current to Charge

The discrete conversion is applied to equation 4.14 to yield its discrete counterpart.

[
ik
v∗k

]
=
[
Ad
] [ik−1

v∗k−1

]
+
[
Bd
] [
vk−1

]
(4.38)

[
ik
]︸︷︷︸

currents

=
[
Cd
] [ik
v∗k

]
+
[
Dd

] [
vk
]

(4.39)

Equation 4.38 is the discrete model. Ad, Bd, Cd, Dd receives voltage inputs v and outputs
currents i, which translate to pump pressures and droplet velocities. For control purposes, the
outputs of interest are droplet displacements, or electric charges q. Hence, Ad, Bd, Cd, Dd are
integrated.

qkik
v∗k

 =

Ac︷ ︸︸ ︷[
[1] CdT
[0] Ad

]qk−1

ik−1

v∗k−1

+

Bc︷ ︸︸ ︷[
DdT
Bd

] [
vk−1

]
(4.40)

[
qk
]︸︷︷︸

charge

=
[
[1] [0]

]︸ ︷︷ ︸
Cc

qkik
v∗k

+
[
[0]
]︸︷︷︸

Dd

[
vk
]

(4.41)

Equatioin 4.40 is the chip model. Ac, Bc, Cc, Dc now outputs charges q, which represent
droplet displacements in a channel network.

25

4.5. CHIP WITH PUMP CHAPTER 4. MODELLING

4.5 Chip with Pump

To account for the pressure pump’s dynamics, pump transfer functions attained earlier from
experiments are converted to state space form, and combined with the chip model.

Given a pump transfer function Ppump(s), its corresponding state space model is obtained
from canonical realization.

Ppump(s) =
V (s)

U(s)
=

bn−1s
n+1 + · · ·+ b1s+ b0

sn + an−1sn−1 + · · ·+ a1s+ a0
(4.42)

˙
p1

p2
...

pn−1

pn

 =

Ap︷ ︸︸ ︷
0 1 . . . 0 0
0 0 . . . 0 0
...

...
...

...
0 0 . . . 0 1
−a0 −a1 . . . −an−2 −an−1




p1

p2
...

pn−1

pn

+

Bp︷︸︸︷
0
0
...
0
1


[
u
]

(4.43)

[
v
]

=
[
b0 b1 . . . bn−2 bn−1

]︸ ︷︷ ︸
Cp

p1
...
pn

+
[
[0]
]︸︷︷︸

Dp

[
u
]

(4.44)

Equation 4.43 is the pump state space model. Ap, Bp, Cp, Dp receives command u as inputs,
and outputs pressures v. Pump states are denoted by p.


qkik
v∗k


pk

 =

[
Ac BcCp
[0] Ap

]
qk−1

ik−1

v∗k−1


pk−1

+

[
BcDp

Bp

] [
uk−1

]
(4.45)

[
qk
]

=
[
Cc DcCp

] 
qkik
v∗k


pk

+
[
DcDp

] [
uk
]

(4.46)

Since pump outputs are essentially inputs to the microfluidic chip, the pump model in
equation 4.43 is connected in series with the chip model in equation 4.40, yielding the combined
state space model shown in equation 4.45.

26

Chapter 5

Validation

A tailor measures his or her client carefully, prior to making a suit. It is equally important to
validate a model prior to designing a controller. The task of validation, however, presents its
own challenges.

For a single-input-single-output (SISO) system, the transfer function H(s) can be factorized
into two polynomials. The roots of the denominator polynomial become poles pi of the system.

H(s) =
Y (s)

U(s)
=
bms

m + bm−1s
m−1 + · · ·+ b1s+ b0

sn + an−1sn−1 + · · ·+ a1s+ a0
= K

(s+ z1)(s+ z2) . . . (s+ zm)

(s+ p1)(s+ p2) . . . (s+ pn)
(5.1)

Poles are important because they dictate system’s response. From equation 5.2, it is appar-
ent that negative poles Re(p) < 0 would result in output decay hence a stable system, while
positive poles Re(p) ≥ 0 would result output divergence hence an unstable system.

y(t) = c0 + c1e
p1t + c2e

p2t + · · ·+ cne
pnt (5.2)

A MIMO system has many transfer functions, yet its poles can be found in a similar fashion.
The following equations show that all MIMO transfer functions share the same denominator
polynomial det(sI −A), and the eigenvalues of A are the poles.

˙x(t) = Ax(t) +Bu(t) (5.3)

sX(s) = AX(s) +BU(s) (5.4)

X(s) = (sI −A)−1BU(s) (5.5)

Y (s) = C[(sI −A)−1BU(s)] +DU(s) (5.6)

H(s) =
Y (s)

U(s)
= C(sI −A)−1B +D (5.7)

=
C adj(sI −A)B

det(sI −A)︸ ︷︷ ︸
charisteristic eqn.

+D (5.8)

Referring back to the chip model shown in equation 4.40, multiple zero poles pi = 0 appear
as eigenvalues of Ac. Consequently, the system of interest will oscillate indefinitely at best, and
diverge at the slightest disturbance.

27

5.1. VALIDATION APPROACH CHAPTER 5. VALIDATION

5.1 Validation Approach

Figure 5.1: Droplet and interface

Figure 5.1, shows a T-junction with a newly generated droplet. Without intervention, the
droplet would quickly drift out of view, while the water interface would likely overflow and
flood the visible portion of the chip. Since measurements are made with image processing, no
valuable data would be obtained in such scenarios.

To overcome this challenge, the validation process begins with designing simple PID con-
trollers to stabilize the system. Unlike the more sophisticated controllers presented in chapter
6, the PID controllers are expected to perform poorly because they ignore coupling dynamics.
Furthermore, they lack generality, and will only work in the specific geometry shown in figure
5.1. Nevertheless, they stabilize the system, allowing data acquisition to take place.

Figure 5.2: Step 1: Experiment with PID controllers

Figure 5.2 shows the experiment set up with PID controllers. During the test, droplet and

28

5.1. VALIDATION APPROACH CHAPTER 5. VALIDATION

interface are requested to move according to references r, while the commanded pressures u
and measured positions y are recorded.

These raw data are not yet ready to be used for comparison with simulation due to the
effects of Laplace pressure. The water-oil interface is known to exhibit a pressure discontinuity
due to surface tension. The Laplace pressure effect necessitates a constant bias term in the
model, to which a linear system is by definition in-capable of capturing.

Instead, the Laplace pressure is modelled as disturbances d. Although d can not be measured
directly, a Kalman filter can provide reasonable estimations d∗, base on analysis of the recorded
inputs u and outputs y.

Figure 5.3: Step 2: Estimate disturbance with Kalman filter

After post processing, the estimated disturbances d∗ are time averaged and subtracted
from inputs u. The modified inputs u∗ are fed into the chip state space model in equation
4.40, to generate open-loop output predictions y∗. Finally, predictions y∗ are compared with
experimental measurements y to validate the model.

Figure 5.4: Step 3: Open loop simulation

29

5.2. PID CONTROLLER CHAPTER 5. VALIDATION

5.2 PID Controller

To quickly stabilize the system, a pair of PID controllers are designed following the emulation
approach. Figure 5.5 shows a close-loop system formed by a PID controller, a delay component,
and a simplified plant of the channel network. Technically, the problem at hand is a sampled-
data system, and controllers ought to be designed in discrete-time. Nevertheless, as a crude
approximation, controllers are designed in continuous time, and the sampled-data system is
emulated coarsely by the addition of a delay component.

Figure 5.5: PID block diagram

5.2.1 Closed-loop Stability

C =
U(s)

E(s)
= Kp +

Ki

s
+Kd

a · s
s+ a

=
g2s

2 + g1s+ g0

f2s2 + f1s
(5.9)

A PID controller consists of position gain Kp, integral gain Ki, and differential gains Kd, a
is listed above. For design purposes, it is expanded into polynomials g(s) and f(s).

L{u(t− T

2
)} = e−s

T
2 U(s) ≈

1− sT2
1 + sT2

U(s) (5.10)

As mentioned earlier, a delay equals to half the sampling-period T/2 is included to emu-
late the discretization effects. Pade approximation is used to describe the delay as a transfer
function.

Figure 5.6: Simplified plant

30

5.2. PID CONTROLLER CHAPTER 5. VALIDATION

The simplified plant is derived from the governing equations of the fluid element shown in
figure 5.6. The plant transfer function is obtained and expanded into polynomials b(s) and a(s)
for controller design purposes.

vA − vB = ˙qRReq + q̈RLeq (5.11)

vB =
qC
Ceq

(5.12)

q̇ = ˙qR + ˙qC (5.13)

Q(s)

4P (s)
=

1/Leq
s(s+Req/Leq

(5.14)

P =
Q(s)

4P (s)

1− sT2
1 + sT2

==
b3s

3 + b2s
2 + b1s+ b0

a3s3 + a2s2 + a1s+ a0
(5.15)

Referring back to figure 5.1, the T-junction has two degrees of freedom, thus requires two
simplified plants and two separate PID controllers. Definition of the two simplified plants are
shown in figure 5.7, while table 5.1 contains the definitions of Req, Leq, Ceq, vA, and vB in each
simplification.

Variable First Plant Second Plant

vA v2 v1

vB v3
v2+v3

2

Req R1 + R2R3
R2+R3

R2 + R3R1
R3+R1

Leq L1 + L2L3
L2+L3

L2 + L3L1
L3+L1

Ceq C1 + C2 + C3 C1 + C2 + C3

Table 5.1: Simplified plant definitions

(a) Definition of first plant (b) Definition of second plant

Figure 5.7: Definition of simplified plants

31

5.2. PID CONTROLLER CHAPTER 5. VALIDATION

The PID controller C, simplified plant with delay P now forms a closed-loop system Try as
shown in figure 5.5. The objective here is to stabilized Try by finding the appropriate controller
gains.

Q(s) = PCE(s) (5.16)

= PC(R(s)−Q(s)) (5.17)

Try =
Q(s)

R(s)
=

PC

1 + PC︸ ︷︷ ︸
charisteristic eqn.

(5.18)

Within Try, the characteristic equation contains the closed-loop poles. A desirable closed-
loop system will contain a characteristic equation that is composed from stable and desirable
poles. By choosing the values of these poles and expanding the characterising equation, the
following is obtained, in which 4i are the desirable coefficients.

0 = 45s
5 +44s

4 +43s
3 +42s

2 +41s+40 (desirable characteristic eqn.) (5.19)

To realize the desired closed-loop system, equation 5.9 and 5.15 are substituted into equation
5.18 to yield the following matrix.

Φ︷ ︸︸ ︷

a3 0 b3 0 0
a2 a3 b2 b3 0
a1 a2 b1 b2 b3
a0 a1 b0 b1 b2
0 a0 0 b0 b1
0 0 0 0 b0



θ︷ ︸︸ ︷
f2

f1

g2

g1

g0

 =

4︷ ︸︸ ︷

45

44

43

42

41

40

 (5.20)

θ = (ΦTΦ)−1ΦT4 (5.21)

The desirable controller gains are obtained by solving for θ.

5.2.2 Noise Rejection

In reality, the T junction is a coupled system, where actuating the droplet will influence the
interface, and vice versa. From a SISO closed-loop system’s perspective, these coupling effects
appear as noise N(s). To maintain stability, the PID controllers need to be good at noise
rejection.

The noise-to-output Tny and disturbance-to-output Tdy transfer functions are derived below.
Closed-loop frequency responses with respect to noise and disturbance are then extracted.

Tny =
Q(s)

N(s)
= − 1

1 + PC
(5.22)

Tdy =
Q(s)

D(s)
= − P

1 + PC
(5.23)

32

5.2. PID CONTROLLER CHAPTER 5. VALIDATION

Figure 5.8(a) and (b) shows frequency response comparison between Try and Tny. Controller
gains are tuned such that noise induced by another system is attenuated instead of magnified. In
other words, the two SISO closed-loop systems each responds to noise and reference in different
frequency spectrum, eliminating the ability to resonate with each other.

Figure 5.8: (a,b) Noise from one plant interfering with reference of the other plant. (c)Predicted
closed-loop step responses. (d) Frequency response of the disturbance to output transfer func-
tion

Once satisfactory controllers are obtained, they are discretized using the trapezoid approx-
imation, and implemented as difference equations in the computer program.

33

5.3. KALMAN FILTER CHAPTER 5. VALIDATION

5.3 Kalman Filter

Here, the Kalman filter is used as a data post-processing tool. Later on, it will be used in
real-time for control purposes. The derivation is provided below.

5.3.1 Derivation

For a general state space model A,B,C,D where D = [0] for a physical system, errors ek are
defined as the difference between measured outputs yk and predicted outputs yk|k−1. Such
errors ek provide information that can be used upon the state predictions xk|k−1, turning them
into the more accurate state estimates xk|k.

xk|k−1 = Axk−1|k−1 +Buk−1 (5.24)

yk|k−1 = Cxk|k−1 (5.25)

ek = yk − yk|k−1 (5.26)

xk|k = xk|k−1 +Kkek (5.27)

The state estimation error covariance matrix Pk|k is defined below. Having a minimized
Pk|k is akin to having state estimates xk|k being as close to the real states xk as possible.

Pk|k = Cov{xk − xk|k} = E{(xk − xk|k)(xk − xTk|k} (5.28)

=

E{(x1k − x1k|k)(x1k − x1k|k)
T } . . . E{(x1k − x1k|k)(xnk − xnk|k)T }

...
...

E{(xnk − xnk|k)(x1k − x1k|k)
T } . . . E{(xnk − xnk|k)(xnk − xnk|k)T }

 (5.29)

The steps below present the means to calculate Kalman gainsKk such that Pk|k is minimized.
First, the real behaviour of the system is represented as the model plus process noises wk−1 and
sensor noises vk. The noises are assumed to have zero bias, and their covariance are renamed
as Rw and Rv for convenience.

xk = Axk−1 +Buk−1 +Wwk−1 (5.30)

yk = Cxk + vk (5.31)

E{wk} = E{vk} = 0 (5.32)

Cov{wk} = Rw (5.33)

Cov{vk} = Rv (5.34)

Then, the state prediction error covariance matrix Pk|k−1 is written in terms of the state
space model and noises.

Pk|k = Cov{xk − xk|k−1} (5.35)

= Cov{Axk−1 +Buk−1 +Wwk−1 −Axk−1|k−1 −Buk−1} (5.36)

= ACov{xk−1 − xk−1|k−1}AT +WRwW T (5.37)

= APk−1|k−1A
T +WRwW

T (5.38)

34

5.3. KALMAN FILTER CHAPTER 5. VALIDATION

The error covariance matrix Sk is also derived, and represents covariances of ek

Sk = Cov{ek} = Cov{yk − yk|k−1} (5.39)

= CPk|k−1C
T +Rv (5.40)

Then, the state estimation error covariance matrix Pk|k is also written as

Pk|k = Cov{xk − xk|k} = Cov{xk − (xk|k−1 +Kkek)} (5.41)

= Pk|k−1 − Pk|k−1C
TKT

k −KkCPk|k−1 +KkSkK
T
k (5.42)

Finally, Pk|k is minimized by requiring ∂
∂Kk

trace(Pk|k) = 0.

∂tr

∂Kk
(Pk|k) =

∂tr

∂Kk
(Pk|k−1)− ∂tr

∂Kk
(Pk|k−1C

TKT
k)− ∂tr

∂Kk
(KkCPk|k−1)+

∂tr

∂Kk
(KkSkK

T
k) (5.43)

∂tr

∂Kk
(Pk|k−1) = 0 (5.44)

∂tr

∂Kk
(Pk|k−1C

TKT
k) = Pk|k−1C

T (5.45)

∂tr

∂Kk
(KkCPk|k−1) = Pk|k−1C

T (5.46)

∂tr

∂Kk
(KkSkK

T
k) = 2KkSk (5.47)

Which yields the expression for obtaining the optimal Kk.

0 = 2KkSk − 2Pk|k−1C
T (5.48)

Kk = Pk|k−1C
T (CPk|k−1C

T +Rv)
−1 (5.49)

35

5.3. KALMAN FILTER CHAPTER 5. VALIDATION

5.3.2 Disturbance Estimation

For the problem at hand, Rv manifests from quantization of the camera sensor. Each pixel of
the sensor represents a length 4q, which is measured during camera calibration. When a pixel
is triggered, the location probability of the actual object distributes uniformly over the area
represented by the pixel. The sensor noise covariance is consequently derived.

Rv = [1]× 4q
2

12
(5.50)

To estimate disturbances, d∗ has to be incorporated into the chip state space model (equation
4.40). This is achieved by adding u∗d = u− d∗ and d∗k = d∗k−1 + [1]×Rd into the model, yielding
the augmented plant Al, Bl, Cl,Wl, shown in 5.51.

xk|k−1︷ ︸︸ ︷
qkik
v∗k


d∗k

 =

Al︷ ︸︸ ︷[
Ac −Bc
[0] [1]

]
xk−1|k−1︷ ︸︸ ︷
qk−1

ik−1

v∗k−1


d∗k−1

+

Bl︷ ︸︸ ︷[
Bc
[0]

] uk−1︷ ︸︸ ︷[
vk−1

]
+

Wl︷︸︸︷[
[1]
] Rw︷ ︸︸ ︷[

[1]×Rm [0]
[0] [1]×Rd

]
(5.51)

[
qk
]︸︷︷︸

yk|k−1

=
[
Cc [0]

]︸ ︷︷ ︸
Cl


qkik
v∗k


d∗k

 (5.52)

To summarized, the equations used for post processing are listed in table 5.2.

State Prediction Error Covariance Pk|k−1 = AlPk−1|k−1A
T
l +WlRwW

T
l

Kalman Gains Kk = Pk|k−1C
T
l (ClPk|k−1C

T
l +Rv)

−1

State Prediction xk|k−1 = Alxk−1|k−1 +Bluk−1

Output Prediction yk|k−1 = Clxk|k−1

Error ek = yk − yk|k−1

State Estimation xk|k = xk|k−1 +Kkek
State Estimation Error Covariance Pk|k = ([1]−KkCl)Pk|k−1

Table 5.2: Kalman filter post processing

36

5.4. OPEN-LOOP VALIDATION CHAPTER 5. VALIDATION

5.4 Open-Loop Validation

Figure 5.9 shows measurements of system output during experiment. Channel 1 output cor-
responds to the water interface displacement. Channel 2 output corresponds to the droplet
displacement. Channel 3 is empty, but for the sake of completeness, it’s displacement is cal-
culated as y3 = −(y1 + y2) as dictated by conservation of mass. The data shows the PID
controller regulating droplet and interface displacements according to references that is con-
sisted of a series of steps. Open loop simulation results are overlapped on top to show model
accuracy.

Figure 5.9: Validation data: Displacement

37

5.4. OPEN-LOOP VALIDATION CHAPTER 5. VALIDATION

Figure 5.10 plots the raw commands u as well as the modified commands u∗ = u− avg(d∗)
used in simulation. The Kalman filter successfully estimated the disturbances due to Laplace
pressure at the interface.

Figure 5.10: Validation data: Command

38

5.4. OPEN-LOOP VALIDATION CHAPTER 5. VALIDATION

In figure 5.11, measured droplet and interface velocities are plotted against open loop sim-
ulation results. The match is reasonably good, and confirms that the model obtained from
chapter 4 is successful at capturing the dynamics of the system.

Figure 5.11: Validation data: Velocity

39

Chapter 6

Controller Design

I begin this chapter by describing the challenges I faced when attempting to design controllers.
Given an arbitrary channel network, the first challenge concerns with identifying the inde-
pendent degree of freedoms. This problem is solved by computing the controllability and
observability of the plant state space model. The second challenge arise from the computer
vision generated feedbacks. Only droplets that are visible could be detected and measured.
As droplets move through a channel network, they create many permutations of the same chip
model, all of which have to be controlled. This challenge is handled by expanding a single chip
model into multiple reduced plants, each corresponds to a special situation. I will then design
specific controllers for each of the reduced plant.

Unlike the PID controllers in chapter 5, controllers in this chapter are aware of coupling
effects, and can compensate to provide much improved tracking performance. In addition, the
controller design process is fully automatic. For a new network topology or channel dimensions,
once the chip model is obtained, optimized controllers are calculated without requiring further
human interactions.

In the end of this chapter, I test the controllers by applying them in a simulated environment.
The ability to ”hot-swap” controllers is demonstrated, and the disturbance cancelling feature
is verified.

40

6.1. MODEL REDUCTION CHAPTER 6. CONTROLLER DESIGN

6.1 Model Reduction

Figure 6.1 illustrates a channel network divided into individual channels ch1, ch2, . . . , ch5. The
network has four inlets labelled in1, in2, in3, in4.

Recall that feedback from the system comes from image data. From the controller’s per-
spective, when a droplet moves from ch3 to ch5, it is as if ch3 ceased to exist, while ch5 suddenly
appeared from thin air, even though in reality fluid continues to flow inside ch3. Similarly, when
the droplet moves from ch5 to ch4, controllers will need to be switched to reflect that ch5 is no
longer measured, while ch4 has become the new target.

Figure 6.1: Droplet moves from channel to channel

In fact, there are many channel combinations in which the controllers might have to serve.
In a given instance, there can be a single droplet visible in ch1, ch2, ch3, ch4, ch5, or there
might be two droplets visible in (ch1, ch2), (ch1, ch3), (ch1, ch4), etc. To identify all possible
combinations, binomial coefficients are used iteratively. Given a network with c number of
channels and i number of inlets, the number of combinations Nf with a certain degree-of-
freedoms f is calculated as follow.

Ni−1 =

(
c

i− 1

)
(6.1)

Ni−2 =

(
c

i− 2

)
(6.2)

... =
... (6.3)

N1 =

(
c

1

)
(6.4)

41

6.1. MODEL REDUCTION CHAPTER 6. CONTROLLER DESIGN

For each channel combination, a reduced plant is created by modifying the full state space
chip model. Figure 6.2 shows the chip model Ac, Bc, Cc, Dc derived in equation 4.40 being
reduced to the reduced plant Ar, Br, Cr, Dr by eliminating rolls and columns that correspond
to the invisible output qk2

While the full chip model describes droplet displacement qk in every channel, the reduced
plant only contains output qk1 and qk3. It is important to note that dynamics of channel 2
remains and continues to affect the model, as evidenced by its velocity state ik2 and internal
pressure states v∗k2. It is only the displacement state and output qk2 that is no longer keep
tracked of.

Figure 6.2: Plant reduction

For practical reasons, a channel network as shown in figure 6.1 will be divided into 6 chan-
nels instead of 5. For i = 4, c = 6, the process described above yields 41 reduced plants
Ar, Br, Cr, Dr, each describing a unique possibility, and each requires a specifically designed
controller.

42

6.2. CONTROLLABILITY AND OBSERVABILITYCHAPTER 6. CONTROLLER DESIGN

6.2 Controllability and Observability

Not all channel combinations can be controlled. Refer to figure 6.3, it is intuitively impossible
to move all three high-lighted droplets independently. For example, if the interface in ch1 is
moved downward while the droplet in ch3 is moved to the left, conservation of mass dictates
that the ch5 droplet must move to the left. In other words, there are only 2 degree-of-freedoms
in those 3 chosen channels.

Figure 6.3: Droplet motions are no longer independent

Formally, controllability is defined as: given initial states x0 and final states xk, the corre-
sponding inputs u0, . . . uk−1 exist and can be solved for.

x1 = Ax0 +Bu0 (6.5)

x2 = Ax1 +Bu1 = A2x0 +ABu0 +Bu1 (6.6)

x3 = Ax2 +Bu2 = A3x0 +A2Bu0 +ABu1 +Bu2 (6.7)

... =
... (6.8)

xk = Akx0 +
[
B AB A2B . . . Ak−1B

] uk−1
...
u0

 (6.9)

u =
[
B AB A2B . . . Ak−1B

]−1
(xk −Akx0) (6.10)

For u to have a solution,
[
B AB A2B . . . Ak−1B

]
needs to be invertible. This criteria

is further simplified by the Popov-Belevitch-Hautus (PBH) test, which states that a system

43

6.2. CONTROLLABILITY AND OBSERVABILITYCHAPTER 6. CONTROLLER DESIGN

is controllable if and only if rank(
[
A− λ[1] B

]
) = n, where λ and n are eigenvalues and

dimension of A respectively.
The observability of a system is defined as: given outputs yk in the absence of inputs

u0, . . . , uk, the initial states x0 can be found.

x1 = Ax0 (6.11)

x2 = Ax1 = A2x0 (6.12)

... =
... (6.13)

xk = Akx0 (6.14)

yk = Cxk = CAk−1x0 (6.15)y0
...
yk

 =


C
CA

...
CAk−1

x0 (6.16)

For the initial states x0 to have a solution,
[
C CA . . . CAk−1

]T
needs to be invertible.

Conversely, using the PBH test, a system is observable if and only if rank(

[
C

A− λ[1]

]
) = n.

Conceptually, testing for controllability and observability is as simple as finding the rank
of a matrix. However, as Paige [25] has thoroughly demonstrated, matrix rank calculation is
numerically challenging. Instead, the following alternative algorithm is used to test if a given
reduced plant is controllable and observable.

Given matrix Ar of size n× n
Given matrix Br of size n×m
Given matrix Cr of size p× n
Generate random matrix G of size m× p

let λ = eigenvalue(Ar)
let ζ = eigenvalue(Ar +Br random(m, p)Cr)

For i = 1→ n: For j = 1→ n:
If |λi − ζj | < toleranace×max(|λi|, |ζj |)
Then system is controllable and observable

44

6.3. CONTROL LAW AND OBSERVER CHAPTER 6. CONTROLLER DESIGN

6.3 Control Law and Observer

Figure 6.4: Controller topology

Figure 6.4 shows the controller topology that is applied to every channel combinations. A
user would indicates the desired droplet movements as reference rk. This topology would then
calculates the required inlet pressure commands uk, such that droplet displacements yk moves
according to rk.

The real plant block in figure 6.4 represents the microfluidic chip. Due to assumptions
made during modelling, chip manufacturing tolerance, and environmental disturbance, the real
plant will behave slightly different from the reduced plant Ar, Br, Cr, Dr. Furthermore, the
real states xk corresponds to instantaneous pressures and flow velocities that are internal of the
chip and cannot be measured directly. Since the controller can not function without knowing
these system states, a Luenburger observer is introduced to calculate the state estimates x∗k. It
does so by making predictions y∗k based on Ar, Br, Cr, Dr and comparing the predictions with
measurements yk to generate state estimates.

The state feedback block comprise of two parts. First, state estimates x∗k are multiplied with
gain matrix K1. Secondly, the difference between measurements and references are integrated
and then multiplied with gain matrix K2. The use of integral action zk =

∫
(yk − rk)dt allows

rk to track yk with zero steady-state error even when system is subjected to noise. Both state
feedback −K1x

∗
k and integral state feedback −K2zk contributes to forming the new commands

uk.
As mentioned in chapter 5, Laplace pressure across oil-ater interfaces result in static offsets

dk internal to the real plant, to which linear models Ar, Br, Cr, Dr are incapable of handling.
While the integral state feedback mechanism will correct for this effect in a matter of seconds,
problem arise when the system switches from one channel combination to another. When
Ar, Br, Cr, Dr is switched, so must K1,K2, H. During a switch, the states estimates x∗k and

45

6.3. CONTROL LAW AND OBSERVER CHAPTER 6. CONTROLLER DESIGN

integral states zk reset to zero, as neither their identities nor their dimensions are compatible
across combinations. Unfortunately, this reset process zk = [0] is equivalent to erasing the
”memory” of the integral state feedback mechanism. This will result in an unsettling oscillation
during every combination switch that is damaging and unacceptable.

Consequently, a Kalman filter is employed to estimate d∗k. The estimated disturbances are
accumulated over time to form dck, and added to command uk. This way, over time the effects
of dk are cancelled by dck, and uk converges into the imaginary udk. Since the identities and
dimensions of dck and uk are the same across all combinations, the Kalman filter disturbance
correction mechanism essentially relieves any static correction burden from the integral state
feedback mechanism, over a longer period of time.

6.3.1 Integral States

zk =

∫
(yk − rk)dt (6.17)

= zk−1 +

∫ kT

(k−1)T
Crx(t) +Dru(t)− r(t)dt (6.18)

= zk−1 + TCrxk−1 + TDruk−1 − T [1]rk−1 (6.19)

In the equations above, the integral states are written in discrete form under the zero-order-
hold assumption. The reduced plant Ar, Br, Cr, Dr is then augmented with the integral states
to yield the integral plant Az, Bz, Cz, Dz as shown in equation 6.20.

[
xk
zk

]
=

Az︷ ︸︸ ︷[
Ar [0]
TCr [1]

] [
xk−1

zk−1

]
+

Bz︷ ︸︸ ︷[
Br
TDr

] uk−1︷ ︸︸ ︷[
vk−1

]
+

[
[0]
−T [1]

] [
rk−1

]
(6.20)

[
qk
]︸︷︷︸

yk

=
[
Cr [0]

]︸ ︷︷ ︸
Cz

[
xk−1

zk−1

]
+
[
Dr

]︸ ︷︷ ︸
Dz

[
vk
]︸︷︷︸

uk

(6.21)

6.3.2 Closed Loop State Space

From a designer’s point of view, commands u are merely dependent variables in the system,
and might as well be replaced by uk−1 = −k1x

∗
k−1 − K2zk−1. On the other hand, observer

performance is quantified by the state estimation errors ek−1 = xk−1−x∗k−1. Substituting these
relations into the reduced plant results in the closed-loop state space as shown in equation 6.38.
Acl, Bcl, Ccl, Dcl describes how the system outputs yk response to references rk.

46

6.3. CONTROL LAW AND OBSERVER CHAPTER 6. CONTROLLER DESIGN

xk = Arxk−1 +Bruk−1 (6.22)

= Arxk−1 +Br(−k1x
∗
k−1 −K2zk−1) (6.23)

= Arxk−1 −BrK1(xk−1 − ek−1)−K2zk−1 (6.24)

= (Ar −BrK1)xk−1 −BrK2zk−1 +BrK1ek−1 (6.25)

zk = zk−1 + TCrxk−1 + TDruk−1 − T [1]rk−1 (6.26)

= TCrxk−1 + zk−1 + TDr(−k1x
∗
k−1 −K2zk−1)− T [1]rk−1 (6.27)

= TCrxk−1 + ([1]−K2TDr)zk−1 − TDrK1(xk−1 − ek−1)− T [1]rk−1 (6.28)

= (TCr − TDrK1)xk−1 + ([1]−K2TDr)zk−1 + TDrK1ek−1 − T [1]rk−1 (6.29)

ek = xk − x∗k (6.30)

= Arxk−1 +Bruk−1 −Arx∗k−1 −Bruk−1 −H(yk−1 − y∗k−1) (6.31)

= Ar(xk−1 − x∗k−1)−H(Crxk−1 +Druk−1 − Crx∗k−1 −Druk−1) (6.32)

= Ar(xk−1 − x∗k−1)−HCr(xk−1 − x∗k−1) (6.33)

= (Ar −HCr)ek−1 (6.34)

yk = Crxk +Druk (6.35)

= Crxk −DrK1(xk − ek)−DrK2zk (6.36)

= (Cr −DrK1)xk −DrK2zk +DrK1ek (6.37)

xkzk
ek

 =

Acl︷ ︸︸ ︷ Ar −BrK1 −BrK2 BrL1

TCr − TDrK1 [1]− TDrK2 TDrK1

[0] [0] Ar −HCr

xk−1

zk−1

ek−1

+

Bcl︷ ︸︸ ︷ [0]
−T [1]

[0]

 [rk−1

]
(6.38)

[
yk
]

=
[
Cr −DrK1 −DrK2 DrK1

]︸ ︷︷ ︸
Ccl

xkzk
ek

+
[
[0]
]︸︷︷︸

Dcl

[
rk
]

(6.39)

Alternatively, the closed loop state space matrices Acl, Bcl, Ccl, Dcl can be rewritten in terms
of the integral plant Az, Bz, Cz, Dz. Notice that in the following equations, K =

[
K1 K2

]
.

[xkzk
]

ek

 =

Acl︷ ︸︸ ︷Az −BzK [
BrK1

TDrK1

]
[0] Ar −HCr

[xk−1

zk−1

]
ek−1

+

[[0]
−T [1]

]
[0]

 [rk−1

]
(6.40)

[
yk
]

=
[
Cz −DzK DrK1

] [xkzk
]

ek

+
[
[0]
] [
rk
]

(6.41)

Recall that a dynamic system is defined by its A matrix eigenvalues. On the other hand,
for a block triangular matrix such as Acl as shown in equation 6.40, its eigenvalues are simply
the union of its diagonal sub-matrix’s eigenvalues.

eig(Acl) = eig(Az −BzK) ∪ eig(Ar −HCr) (6.42)

47

6.3. CONTROL LAW AND OBSERVER CHAPTER 6. CONTROLLER DESIGN

The above logic implies that the closed-loop system behaviour is completely dependent on
K1,K2, H. Furthermore, in the spirit of the separation principle, the state feedback block can
be designed in isolation from the observer block.

6.3.3 Linear Quadratic Regulation

Linear Quadratic Regulation (LQR) is employed to identify the values of K1,K2, H that cor-
responds to a desirable closed-loop system.

J =

∫ ∞
0

(xTQx+ uTRu)dt (6.43)

xTQx = Q11x
2
1 +Q22x

2
2 + . . . (6.44)

uTRu = R11u
2
1 +R22u

2
2 + . . . (6.45)

(6.46)

A desirable closed-loop system is one that is stable and responses quickly. In controls terms,
that means having states x and commands u decay to zero as fast as possible. The cost function
J above precisely quantifies the system’s tendency to settle. By minimizing J , the desirable
closed-loop system will be obtained.

In addition to creating a stable closed-loop system, J provides a means to penalize individual
states and commands, allowing the controller to be tuned. For example, a large Q11 results
in droplet displacement state x1 being penalized heavily, hence droplet in channel 1 will move
quicker to achieve its reference position, at the expense of having big velocity and pressure
states.

To minimize J , equation 6.40 is simplified by neglecting the effects of r, which yields xk =
(Az − BzK)xk−1 and uk = −K(Az − BzK)xk−1. Substituting them into the cost function in
equation 6.43, the algebraic Riccati equation(ARE) is obtained. The optimal state feedback
gain Kopt is then found by solving for P in the ARE.

ATz P + PAz − PBzR−1BT
z P +Q = 0 (6.47)

Koptimum = R−1BTP (6.48)

For the observer, the duality property allows ek = (Ar − HCr)ek−1 to be modified into
e∗k = (ATr −CTr HT)e∗k−1, which shares the same format as xk = (Az−BzK)xk−1. The Hoptimum

is then obtained by solving the ARE again and transposing the result.

48

6.4. CLOSED-LOOP SIMULATION CHAPTER 6. CONTROLLER DESIGN

6.4 Closed-loop Simulation

A simulink model is created to assess the closed-loop performance of the designed controllers.
In simulation, the real plant is represented by the full chip model that contains outputs to all
channels, regardless of whether they are visible or invisible. Also, a continuous version of the
full chip model is simulated in contrast to the discrete controllers and observers. This allows
discretization and quantization effects to be studied.

Figure 6.5: Simulation set up

49

6.4. CLOSED-LOOP SIMULATION CHAPTER 6. CONTROLLER DESIGN

Figure 6.6 shows the simulation results. The plant contains 6 channels and 4 inlets. Only
ch1, ch2, ch5 are being controlled as shown, the rest are invisible and can be thought of as having
no residing droplets. At t = 10s, t = 20s, t = 30s, controller references r is stepped up, as if the
user is requesting each droplets to move to a new location. At t = 40s, the controller is reset,
states and outputs are ”zeroed” or ”re-calibrated”, while the real plant is not affected.

Figure 6.6: Simulation data: Displacement

It is observed that at each step, the output response settles within 3 seconds with no steady-
state error. The coupling responses are minor and are dependent on channel geometry and fluid
properties. Overall, controller performance is acceptable.

Paying closer attention to t = 40s , a very small fluctuation can be spotted on ch1 output.
But comparing to fluctuation at t = 0s, where the integral state feedback action has to scramble
to counteract initial disturbance, the oscillation induced during reset is negligible, suggesting
that the Kalman filter disturbance mechanism is performing. Based on this observation, it can
be expected that controller switching during experiment should be a smooth and unnoticeable
process.

50

6.4. CLOSED-LOOP SIMULATION CHAPTER 6. CONTROLLER DESIGN

Figure 6.7: Simulation data: Pressure

Figure 6.7 shows pressure related data from the simulation. To simulate the effect of Laplace
pressures in the real plant, static offset disturbances d is introduced. When the simulation
starts, the integral states feedback mechanism took action and command u immediately to
approach d to cancel the static offsets. Over a period of 20s, the Kalman filter estimates
such disturbances d∗, allowing disturbance corrections dc to accumulate and counteract the
disturbances. Gradually, u operate closer and closer to 0, and the integral states feedback
mechanism is relieved from having to deal with Laplace pressures.

51

Chapter 7

Software Implementation

RoboDrop is a software created for implementing the controllers designed in chapter 6. Ro-
boDrop contains a Graphic User Interface (GUI) in which user generates, splits, merges, and
moves droplets by clicking and dragging them with the mouse. RoboDrop is coded in C++,
and the GUI portion is constructed using the Qt library. Underneath the GUI, RoboDrop runs
on a multi-thread architecture that facilitates connection with cameras and pressure pumps.
The real-time image processing and controller calculation is coded using openCV.

The general work flow for using RoboDrop is as follow. First, the user clones and re-
arranges the Simulink electric circuit model to represent the microfluidic chip at hand. Then,
the optimized controllers are generated automatically by MATLAB and exported into a YAML
configuration file. The user then imports the YAML file into RoboDrop, and proceeds to carry
out experiments.

Figure 7.1: RoboDrop work flow

52

7.1. ROBODROP ARCHITECTURE CHAPTER 7. SOFTWARE IMPLEMENTATION

7.1 RoboDrop Architecture

7.1.1 GUI Components

The RoboDrop GUI has four components: Setup, Dashboard, Mainwindow, and Plotter. Setup
is a window that contains all the initial settings. The user only interacts with Setup when the
program starts up. The Setup window is hidden away during experiment.

Figure 7.2: RoboDrop Setup panels

Figure 7.2 shows each of the four panels inside the Setup window. The first panel is for
connecting to camera, adjusting camera settings, reading camera status, and starting the video
stream.

The second panel configures pressure pumps. RoboDrop is designed to work with more than
one pressure pumps. Each of the pressure channels can be re-numbered according to how the
model is built in Simulink, and how the tubings are connected to the microfluidic.

The third panel contains image processing preparations. Here, the user would create pixel-
to-micron calibrations, record a background for use in later subtractions, and define image
masks that represent channels.

The last panel displays information about controllers that are currently loaded. It provides
the option to load a different sets of controllers, or to change the global sampling period of
RoboDrop.

53

7.1. ROBODROP ARCHITECTURE CHAPTER 7. SOFTWARE IMPLEMENTATION

Figure 7.3: RoboDrop Dashboard

The second component of the RoboDrop GUI is the Dashboard. It contains all the frequently
used settings that the user would need to generate droplets, and perform split and merge
operations.

The Dashboard window is shown in figure 7.3. The block at the top of the window acti-
vates data acquisition functions. When activated, controllers data such as state estimates and
measured displacements are recorded into a .csv file. Similarly, real-time droplet necking infor-
mation can be recorded. RoboDrop can also record the raw video stream and the augmented
video stream into .avi files.

Underneath, several sliders allow users to manually change pump pressures when the con-
trollers are not active. This is necessary for purging and bleeding the microfluidic chip prior
to starting experiments. Note that the amount and the order of the sliders change depends on
the number of pressure pumps that are connected.

The rest of the Dashboard contains image processing parameters such as filter size and
threshold, as well as controllers settings such as Kalman filter process noise Rw and disturbance
correction gain K3.

54

7.1. ROBODROP ARCHITECTURE CHAPTER 7. SOFTWARE IMPLEMENTATION

The Mainwindow is where users interact most with RoboDrop. In figure 7.4, the Main-
window is displaying a live video stream from the camera. The stream has been augmented,
highlighting the detected interface, heads and tails of droplets, and the instantaneous neck
length. By dragging on these highlighting rectangles, the droplets or interface will follow the
user’s mouse movement. Splitting and merging can be achieved by clicking and dragging in
combination with keyboard short-cuts. The Mainwindow also contains a task bar at the top for
resizing the display and for turning the image augmentation on and off. Meanwhile, a status
bar at the bottom provides information on computation delay, pump delay, and total delay.

Figure 7.4: RoboDrop Mainwindow

55

7.1. ROBODROP ARCHITECTURE CHAPTER 7. SOFTWARE IMPLEMENTATION

The last GUI component is the Plotter, which allows users to visualize ten seconds of data.
User can choose from a range of variables such as state estimates, droplet displacements, or the
pressure pump write and read values as currently shown in figure 7.5.

Figure 7.5: RoboDrop Plotter

56

7.1. ROBODROP ARCHITECTURE CHAPTER 7. SOFTWARE IMPLEMENTATION

7.1.2 Multi-threading

Underneath the GUI, various processes take place such as communication with pumps, receiving
camera data, and image processing. To allocate computational resources to these processes
while keeping the GUI responsive, a multi-threading frame work is constructed as shown in
figure 7.6.

Figure 7.6: RoboDrop multi-threading

The camera thread is responsible for receiving raw video stream from the camera, and
constructing image objects from the memory buffer. Occasionally, the camera thread also sends
settings to the camera as requested by the user. The camera thread wakes up every 25ms and
runs at 40fps, which is much faster than the RoboDrop global sampling period Ts = 100ms.
This is such that an image will never be ”older” than 25ms, hence putting a cap on acquisition
delay TAcq.

The engine thread is where image processing and controller calculations take place. Image
processing is computationally expensive, and since the result from which is directly used by
controller calculations, it is beneficial to isolate these processes into their own thread. This
further allows theoretical improvements such as new image processing algorithm and better
controller designs to be made separately from the software development.

The pump thread is necessary since communications with pressure pumps are slow. Pump
delay Tpmp ranges from 30ms to 60ms, so for the most part the pump thread is just waiting
for the hardware to response.

When a thread is in the middle of a process, its variables must be locked, and prevented from
being accessed by other threads. Therefore, communication between threads can only happen
before or after a process. The Settings and Data objects are designed specifically for this. The
Settings object contains user related information such as image processing parameters and pump

57

7.1. ROBODROP ARCHITECTURE CHAPTER 7. SOFTWARE IMPLEMENTATION

settings. The Data object contains images, augmentation information, controller variables, and
pump command. Notice that Settings is a persistent object. Its content continues to evolve as
the user interacts with RoboDrop. Only a snapshot of Settings is sent out each time it is used
for thread communication. In contrast, the Data object is a one-used throwaway item.

A timer resides within the GUI thread, and triggers at every Ts = 100ms. When it triggers,
the GUI thread obtains the latest image from the camera thread, put the image into a brand
new Data object, and sends it towards the engine thread while waking it up. The engine thread
processes the image, and fills up the Data object with augmentation information, controller
calculations, and pump commands. The engine thread then sends the Data object back to the
GUI Thread, and goes back to sleep. After receiving the Data object from the engine thread,
the GUI thread updates the display with the new image and corresponding augmentation, then
sends the Data object towards the pump thread, waking it up in the progress. The pump thread
actuates the pumps, and records additional pump read data into the Data object. The pump
thread then passes the Data object back to the GUI thread and goes to sleep. At this point,
the GUI thread updates the plotter, and discards the Data object.

The time it takes to update display and plotter is minimal, hence the GUI thread is mostly
idle. This allows the GUI to stay responsive despite of the gruelling image processing, etc.
The computational delay Tcom is a measure of the time it takes to perform image processing
and controller calculations. In this framework, RoboDrop will remain operational even when
Ttotal > Ts, as long as Tcom < Ts.

58

7.2. ROBODROP IMAGE PROCESSINGCHAPTER 7. SOFTWARE IMPLEMENTATION

7.2 RoboDrop Image Processing

7.2.1 Object Detection

A few preparations are needed before starting the image detection process. The user performs
these tasks using the Setup window in RoboDrop, prior to experiment. The preparations involve
obtaining the Background, the Droplet Mask, the Marker Mask, and a series of Channel Masks.
The Background is required for background subtraction during object detection. The Droplet
Mask and Marker Mask are used to exclude noise, while the Channel Masks allow RoboDrop
to identify which channel an object is residing in at a given moment.

Figure 7.7: Image masks

Figure 7.7 shows the process for obtain these masks. First, an image of the Background is
taken from the camera stream and stored. The channel walls are identified using a Sobel filter.
Then, the user needs to click inside the channel network in order to provide a seed point for
the floodfill operation. The image is then cleaned up with erosion followed by dilation to yield
the Droplet Mask. The Marker Mask is obtained by further eroding the Droplet Mask, while
the Channel Masks are produced when user cuts the Marker Mask into seperate regions.

59

7.2. ROBODROP IMAGE PROCESSINGCHAPTER 7. SOFTWARE IMPLEMENTATION

Figure 7.8: Object detection

After masks preparation, the image detection begins. The object detection process occurs
repeatedly at every global sampling period Ts = 100ms, and provides a continuous update of
information. The process is demonstrated in figure 7.8.

First, a raw image is acquired from the camera stream, which shows visible droplets captured
within the frame. In addition, the raw image might contain noise and artefacts caused by light
source fluctuations. In the next step, the raw image is subtracted by the background and
thresholded to yield the Edges of the objects. At this point, the Marker Mask is applied
to obtain the Markers, which contain droplet displacements information. Meanwhile, the Edge
image is floodfilled from the corner, in order to isolate the object Internals. The object Internals
are combined with object Externals to reconstruct intact objects. Lastly, the Droplet Mask is
applied to exclude noise, and the remaining objects are stored as individual Droplets.

It is not enough to simply detect droplets. To calculate an object’s displacement, its posi-
tions at the current instance t = kT and the previous instance t = (k − 1)T must be known.
This implies that each object must have an identity that is unchanged from time to time.

Figure 7.9 shows a simplified scenario, where droplets enter and exit a straight channel.
The same channel is shown at two instances t = (k− 1)T and t = kT . The following algorithm
is created to track the droplet identities.

60

7.2. ROBODROP IMAGE PROCESSINGCHAPTER 7. SOFTWARE IMPLEMENTATION

Figure 7.9: Object tracking

First, a ”new-to-old L2 norm matrix” is formed, describing the distances from each current
droplet to each previous droplet. The ”new-to-old L2 norm matrix” would have size 3 × 3 as
there are 3 visible droplets in both instances. By locating the minimum in each column of the
”new-to-old L2 norm matrix”, each new droplet identifies an old droplet that is most likely to
be itself. These preferences are shown as red arrows in figure 7.9.

Later, an ”old-to-new L2 norm matrix” is formed, describing the distances from each previ-
ous droplet to each current droplet. By locating the minimum in each column, each old droplet
identifies a new droplet that is most likely to be itself. These preferences are shown as green
arrows in figure 7.9.

Droplets identities are transferred if a new droplet and an old droplet reach consensus that
they are the same. For example, droplet c1 and droplet c2 are identified as the same droplet as
they both prefer each other. In contrast, droplet a2 prefers b1, while b1 prefers b2, hence, they
are not the same.

61

7.2. ROBODROP IMAGE PROCESSINGCHAPTER 7. SOFTWARE IMPLEMENTATION

7.2.2 Neck Detection

For reasons that will be disclosed later, it is important to detect neck distances from droplets
that are being generated. Figure 7.10 shows a screen-shot of RoboDrop detecting the neck
distance.

The detection process has two phrases. First, it identifies a kink in the droplet, which is
achieved by calculating the convex hull of a given droplet. Convex hull is a polygon with the
least vertices that is still capable of enveloping an object. Once the convex hull is generated,
the kink is identified as the point on the droplet contour, at which convex defect is the greatest.

Figure 7.10: Neck detection

From the kink, L2 norms are calculated around the droplet contour. Figure 7.11 shows the
L2 norm vs. contour index profile. In the scenario shown below, the profile’s local minimum
corresponds to the neck distance.

Figure 7.11: Neck distance: case 1

During droplet generation, the droplet might also overflow into the T-junction as shown in
figure 7.12. In this case, the L2 norms are again calculated, and the neck distance is found by

62

7.2. ROBODROP IMAGE PROCESSINGCHAPTER 7. SOFTWARE IMPLEMENTATION

locating the 2nd maximum in the profile.

Figure 7.12: Neck distance: case 2

7.2.3 Decision Trees

Previous discussions explained the processes in which, Droplets, Markers,and neck distances
are detected. To utilize these information as controllers’ inputs, RoboDrop has three decision
making processes. The first decision tree is shown in figure 7.13. It describes how RoboDrop
discards selected Markers and neck feed-back Droplets that are no longer relevant.

The second decision tree is shown in figure 7.14, in which users are allowed to select or
discard a Marker, triggering a controller switch in the process.

Lastly, when users are busy, or when in-coming droplets are moving too fast to be caught
by a human, automatic selection assistance is provided according to figure 7.15.

Figure 7.13: Decision tree: discard

63

7.2. ROBODROP IMAGE PROCESSINGCHAPTER 7. SOFTWARE IMPLEMENTATION

Figure 7.14: Decision tree: user interactions

Figure 7.15: Decision tree: automatic selection

64

7.3. ROBODROP CONTROLLER CHAPTER 7. SOFTWARE IMPLEMENTATION

7.3 RoboDrop Controller

A typical microfluidic channel network has many degree of freedoms (DOF). As discussed in
chapter 6, droplets correspondingg to each DOF can be moved independent of each other. Yet,
in RoboDrop, the user moves droplets with only a single device - the mouse.

7.3.1 References Linking

Figure 7.16: Reference linking

To fully utilize the potential of RoboDrop, signal from the mouse has to be shared between
multiple channels, and this is achieved through reference linking.

Figure 7.16 shows a T-junction with 2 DOF. Without reference linking, the user can only
move ch3 or ch2 one at a time. If a droplet happens to reside in both channels, it would be
difficult to move across.

When reference linking is enabled through keyboard short-cuts, the user mouse movement
4r is applied not only to ch3, but ch2 as well. This allows the droplet to cross the junction and
remain intact. The reference linking can also be inverted, in which case, when the user drags
on ch3, an inverted reference −4 r is applied to ch2, forcing the droplet to split.

7.3.2 Necking Feedback

During droplet generation, water displacement within the supply channel is a critical feedback
parameter. Yet, when water floods the entire supply channel, there is nothing for the image
detection to observe, since movement is no longer visible without an interface.

This problem is solved by substituting neck distance as a feedback parameter. Figure 7.17
shows a T-junction where ch1 is the flooded supply channel. While ch2 displacement y2 is
measured by image detection. y1 is not observable.

65

7.3. ROBODROP CONTROLLER CHAPTER 7. SOFTWARE IMPLEMENTATION

Figure 7.17: Neck distance as feedback

When user input is absent 4r = 0, the controllers will attempt to hold y1 stationary, and
the ideal displacement y1ideal is simply its previous position y1k−1. To reconstruct y1k, a non
linear neck distance function f(nk) is added to y1ideal. The controllers will then monitor the
droplet neck and adjust flow rate in ch1 based on n.

When user lengthens or shortens the droplet, the ideal displacement becomes y1ideal =
y1k−1 ±4r2k, depending on channel directions. ch1 displacement is once again reconstructed
from y1ideal and f(nk), allowing the controllers to maintain a targeted neck distance while
moving ch2.

7.3.3 Measurement Offset

Multiple droplets might reside within the same channel, and RoboDrop allows users to choose
which Marker to be used as controller measurement. When the user selects a different Marker,
or when a different channel combination is activated, the absolute Marker position yabs jumps
discontinuously even when there is no real movement in the channel.

66

7.3. ROBODROP CONTROLLER CHAPTER 7. SOFTWARE IMPLEMENTATION

Figure 7.18: Measurement extraction

This problem is accounted for by introducing the displacement offset variable yoff . Figure
7.18 shows that before a switch, yoffk−1 contains the Marker’s initial position, and the Marker

relative displacement yrelk−1 is calculated as yabsk−1 − y
off
k−1. After the switch, yjump is calculated

from yabsk − yabsk−1 and added to the offset variable yoffk . The relative displacement yrelk is then

calculated from the updated offset variable yabsk − yoffk to maintain its continuity.

7.3.4 Controller Calculations

Finally, table 7.1 contains all the controller variables and corresponding equations. These
variables are updated at every Ts = 100ms, following the order that they are listed.

Error Covariance Matrix (States Estimation) Pe Pek−1 = ([1]−Kk−1Cl)Ppk−1

Error Covariance Matrix (States Predictions) Pp Ppk = AlPek−1A
T
l +WlRwW

T
l

Kalman Gain Matrix K Kk = PpkC
T
l (ClPpkC

T
l +Rv)

−1

States (Kalman Prediction) xp xpk = Alxek−1 +Bluk−1

Output (Kalman Prediction) yp ypk = Clxpk
States (Kalman Estimation) xe xek = xpk +Kk(yk − ypk)
Disturbances (Kalman Estimation) de dek = subset{xek}
Outputs (Luenburger Prediction) yl ylk = Crxlk−1 +Druk−1

States (Luenburger Estimation) xl xlk = Arxlk−1 +Bruk−1 +H(yk−1 − ylk−1)

Integral States z zk = zk−1 + T (yk − rk)
Commands u uk = −K1xlk −K2zk

Grounds g g = i0
Disturbance Corrections dc dck = dck−1 +K3Tdek
Inlet Pressures i ik = g + ck + uk

Table 7.1: Controller calculations

67

Chapter 8

Results

Figure 8.1 shows RoboDrop in action. The chip used during experiment had 4 inlets and 5
channels. The 5 channels were further divided in 6 segments labelled ch0 → ch5 for convenience
during droplet generation. ch0 and ch1 contained water, while the rest contained oil. At the
moment when figure 8.1 was captured, there were two droplets, one in ch2, the other in ch4.
At that instance, the markers in ch0, ch1, ch2 were coloured blue, while the rest were coloured
cyan. Blue indicates that those were the selected markers, and ch0, ch1, ch2 were the activated
channels. Displacement data for these markers were recorded, and shown in figure 8.2.

Figure 8.1: Screen-shot: ch0, ch1, ch2 active

68

CHAPTER 8. RESULTS

Figure 8.2: Closed-loop data: ch0, ch1, ch2 active

From t = 0 to t = 12s, the water interface in ch0 was moved up and down. From t = 13s to
t = 28s, the water droplet in ch2 was moved left and right. From t = 28s onwards, the second
water interface in ch1 was moved. The coupling responses were minimal, and the experimental
closed-loop responses roughly followed the simulated responses.

In the next screen-shot, figure 8.3, ch5 instead of ch2 was activated, and the user can be
seen dragging a marker in ch5 to the left. Noticed that the ch1 label had turned from green to
red. This indicates that reference linking was taking place.

The corresponding displacement data is shown in figure 8.4. As expected, the references for
both ch1 and ch5 were the same due to reference linking. This resulted in the ch1 interface and
ch5 droplet moving simultaneously. Note that a jump occurred at t = 56.8s. This was caused
by the user switching markers within ch5. During the transition, controllers were unaffected,
and closed-loop response remained smooth.

69

CHAPTER 8. RESULTS

Figure 8.3: Screen-shot: ch0, ch1, ch5 active

Figure 8.4: Closed-loop data: ch0, ch1, ch5 active

70

8.1. DROPLET GENERATION CHAPTER 8. RESULTS

8.1 Droplet Generation

Figure 8.5 shows the droplet generation process using neck distance as feedback. The user first
moved the water interface in ch1 towards the T-junction. Once the interface had protruded
into the junction, the neck distance became regulated by the controller. The user then linked
the references between ch1 and ch5 to adjust droplet length. Once the desired droplet length
was achieved, reference linking was inverted, and the droplet was split by moving ch5 in the
opposite direction against ch1. Later on, a similar process was repeated and a droplet was
generated from ch0 into ch4.

Figure 8.5: Droplet generation

71

8.2. DROPLET SPLITTING AND MERGING CHAPTER 8. RESULTS

8.2 Droplet Splitting and Merging

Figure 8.6 shows the user merging and splitting droplets.

Figure 8.6: Merging and splitting

72

8.3. DROPLET SORTING AND RETRIEVING CHAPTER 8. RESULTS

8.3 Droplet Sorting and Retrieving

Lastly, the ability to isolate an individual droplet is demonstrated. In figure 8.7, the experiment
started with two droplets, one in ch2, the other in ch4. The ch2 droplet was moved into ch0.
Then, the ch4 droplet was moved across junction and pushed out-of-screen from ch3. Finally,
the droplet stored in ch0 was retrieved.

Figure 8.7: Sorting and retrieving

73

Chapter 9

Conclusion

In conclusion, an approach to model droplet movements under pressure actuation is proposed.
The model comprises of state-space matrices that represent fluid dynamics in a channel network,
and can predicts droplet displacements when they are in the squeezing regime. The model is
validated by comparing experimental data to open-loop simulations. Most importantly, the
model building process requires minimal human intervention. By taking advantage of the
electric circuit analogy, the model is also capable of scaling-up to represent any arbitrary channel
networks. Control law is then designed to stabilize droplet movements, and to de-couple the
system such that individual droplets can be moved independent of each other. The control law
contains state feedbacks, integral feedbacks, a Luenburger observer for states estimation, and
a Kalman filter for disturbance cancelling. Optimal controller gains are obtained using LQR,
while attention is dedicated to maintain a smooth transition when switching from one controller
to another. Once again, the controller design process is fully automated and universal. Lastly,
a C++ program is created for implementing the controllers. The program detects droplet
positions with computer vision, and allows users to move the droplets by clicking and dragging
them in an augmented video stream. With this program, the ability to generate, move, split,
merge, and sort droplets is demonstrated.

74

9.1. HARDWARE RECOMMENDATIONS CHAPTER 9. CONCLUSION

9.1 Hardware Recommendations

The hardware put together in this study is far from ideal. A few pieces of proposed equipment
are shown below. Figure 9.1a shows a pocket CO2 canister commonly used by cyclist to re-
inflate tires during field repairs. Figure 9.1b shows a commercially available EP transducer. A
GoPro action camera is shown in Figure 9.1c, in which the camera has been modified to mount
custom lenses, such as the ones shown in figure 9.1d.

(a) CO2 canister (ebay.com) (b) EP transducer (controlair.com)

(c) goPro camera (back-bone.ca) (d) Macro lenses (thorlabs.com)

Figure 9.1: Proposed hardware

These hardware are chosen to improve the system in four categories. The first category is
cost. Comparing to scientific grade instruments, they are a lot cheaper, yet offer sufficient or
better performance for computer vision and control purposes. The second category is mobility.
By replacing the air compressor and the microscope with a CO2 canister and a macro lens, the
system can be designed to be portable. Replacing the microscope and scientific camera with
an action-camera-macro-lens combo also results in a smaller system footprint, and frees up the
microscope for other uses such as monitoring biochemical processes. Lastly, general purpose
EP transducers can overcome the Ts = 100ms limitation and speed up the system.

75

9.2. CONTROLLER RECOMMENDATIONS CHAPTER 9. CONCLUSION

9.2 Controller Recommendations

The current system has a few major limitations. First, the use of background subtraction
forbids set up changes during experiment. Not being able to move the microscope stage nor
adjusting illumination are huge problems that must be solved, until then the deployment of
this technology will be constrained.

The second limitation arises from the camera sensor size. At a given time, only a certain
portion of the microfluidic chip can be imaged. Important information that could be used for
controller feedback is lost once they are out of frame.

The third limitation concerns with the non-linearity of droplet behaviour near junctions.
While the current system does a modest job during droplet generation, a non linear model
would better capture surface tension related physics, and yields better performance.

For the above reasons, Artificial Neural Networks (ANN) might be used to replace the cur-
rent model and controllers. Instead of extracting displacement data through image processing,
the ANN would directly accept pixel values as inputs. Instead of having n modelling outputs
correspond to n channels, the ANN would have as many outputs as image pixels. Given an
image at instance t = kT and the current applied pressures, the ANN would predict which
pixels the droplets would occupy in the next instance t = (k + 1)T .

First of all, the ANN would have no problem capturing non-linearity. It would simply relate
droplet behaviour to the channel topology, and provide location-dependent predictions. Fur-
thermore, using methods similar to convolution neural nets, the ANN would function regardless
of image zoom magnification and stage position. Lastly, the ANN approach can be expanded
directly to monitor the entire microfluidic chip, either through laser scanning or opto-fluidic
technologies.

Figure 9.2: Proposed artificial neural network

76

Bibliography

[1] Piotr Garstecki, Michael J Fuerstman, Howard A Stone, and George M Whitesides. Forma-
tion of droplets and bubbles in a microfluidic t-junctionscaling and mechanism of break-up.
Lab on a Chip, 6(3):437–446, 2006.

[2] Xize Niu, Shelly Gulati, Joshua B Edel, et al. Pillar-induced droplet merging in microfluidic
circuits. Lab on a chip, 8(11):1837–1841, 2008.

[3] Ansgar Huebner, Dan Bratton, Graeme Whyte, Min Yang, Chris Abell, Florian Hollfelder,
et al. Static microdroplet arrays: a microfluidic device for droplet trapping, incubation
and release for enzymatic and cell-based assays. Lab on a Chip, 9(5):692–698, 2009.

[4] YongTae Kim, Philip LeDuc, and Willam Messner. Modeling and control of a nonlinear
mechanism for high performance microfluidic systems. Control Systems Technology, IEEE
Transactions on, 21(1):203–211, 2013.

[5] Erik Miller, Mario Rotea, and Jonathan P Rothstein. Microfluidic device incorporating
closed loop feedback control for uniform and tunable production of micro-droplets. Lab on
a Chip, 10(10):1293–1301, 2010.

[6] Xize Niu, Mengying Zhang, Suili Peng, Weijia Wen, and Ping Sheng. Real-time detection,
control, and sorting of microfluidic droplets. Biomicrofluidics, 1(4):044101, 2007.

[7] Michael D Armani, Satej V Chaudhary, Roland Probst, and Benjamin Shapiro. Using
feedback control of microflows to independently steer multiple particles. Microelectrome-
chanical Systems, Journal of, 15(4):945–956, 2006.

[8] Slawomir Jakiela, Tomasz S Kaminski, Olgierd Cybulski, Douglas B Weibel, and Piotr
Garstecki. Bacterial growth and adaptation in microdroplet chemostats. Angewandte
Chemie, 125(34):9076–9079, 2013.

[9] Julia Khandurina, Timothy E McKnight, Stephen C Jacobson, Larry C Waters, Robert S
Foote, and J Michael Ramsey. Integrated system for rapid pcr-based dna analysis in
microfluidic devices. Analytical Chemistry, 72(13):2995–3000, 2000.

[10] Chung-Cheng Lee, Guodong Sui, Arkadij Elizarov, Chengyi Jenny Shu, Young-Shik Shin,
Alek N Dooley, Jiang Huang, Antoine Daridon, Paul Wyatt, David Stout, et al. Mul-
tistep synthesis of a radiolabeled imaging probe using integrated microfluidics. Science,
310(5755):1793–1796, 2005.

[11] Timothy A Crowley and Vincent Pizziconi. Isolation of plasma from whole blood using
planar microfilters for lab-on-a-chip applications. Lab on a Chip, 5(9):922–929, 2005.

77

BIBLIOGRAPHY BIBLIOGRAPHY

[12] Henk Wensink, Fernando Benito-Lopez, Dorothee C Hermes, Willem Verboom, Han JGE
Gardeniers, David N Reinhoudt, and Albert van den Berg. Measuring reaction kinetics in
a lab-on-a-chip by microcoil nmr. Lab on a Chip, 5(3):280–284, 2005.

[13] Tohid Fatanat Didar and Maryam Tabrizian. Adhesion based detection, sorting and en-
richment of cells in microfluidic lab-on-chip devices. Lab on a Chip, 10(22):3043–3053,
2010.

[14] Mira T Guo, Assaf Rotem, John A Heyman, and David A Weitz. Droplet microfluidics for
high-throughput biological assays. Lab on a Chip, 12(12):2146–2155, 2012.

[15] Jenifer Clausell-Tormos, Diana Lieber, Jean-Christophe Baret, Abdeslam El-Harrak,
Oliver J Miller, Lucas Frenz, Joshua Blouwolff, Katherine J Humphry, Sarah Köster, Honey
Duan, et al. Droplet-based microfluidic platforms for the encapsulation and screening of
mammalian cells and multicellular organisms. Chemistry & biology, 15(5):427–437, 2008.

[16] Linfen Yu, Michael CW Chen, and Karen C Cheung. Droplet-based microfluidic system
for multicellular tumor spheroid formation and anticancer drug testing. Lab on a Chip,
10(18):2424–2432, 2010.

[17] Helen Song, Delai L Chen, and Rustem F Ismagilov. Reactions in droplets in microfluidic
channels. Angewandte chemie international edition, 45(44):7336–7356, 2006.

[18] MG Pollack, AD Shenderov, and RB Fair. Electrowetting-based actuation of droplets for
integrated microfluidics. Lab on a Chip, 2(2):96–101, 2002.

[19] Elizabeth A Ottesen, Jong Wook Hong, Stephen R Quake, and Jared R Leadbetter. Mi-
crofluidic digital pcr enables multigene analysis of individual environmental bacteria. sci-
ence, 314(5804):1464–1467, 2006.

[20] Brandon Kuczenski, Philip R LeDuc, and William C Messner. Pressure-driven spatiotem-
poral control of the laminar flow interface in a microfluidic network. Lab on a Chip,
7(5):647–649, 2007.

[21] Wen Zeng, Songjing Li, and Zuwen Wang. Closed-loop feedback control of droplet forma-
tion in a t-junction microdroplet generator. Sensors and Actuators A: Physical, 233:542–
547, 2015.

[22] Anish Shenoy, Melikhan Tanyeri, and Charles M Schroeder. Characterizing the per-
formance of the hydrodynamic trap using a control-based approach. Microfluidics and
Nanofluidics, 18(5-6):1055–1066, 2015.

[23] Nikon. Inverted Microscope ECLIPSE Ti-E Ti-E/B Instructions. Nikon, 2010.

[24] Dong Qin, Younan Xia, and George M Whitesides. Soft lithography for micro-and
nanoscale patterning. Nature protocols, 5(3):491–502, 2010.

[25] Chris Paige. Properties of numerical algorithms related to computing controllability. IEEE
Transactions on Automatic Control, 26(1):130–138, 1981.

78

Appendix A

Matlab Script

A.1 Pump System Identification

Matlab scripts and pump test data resides on:
https://github.com/DaveSketchySpeedway/uEVA/tree/master/pump_sysid

A.2 Modelling and Controller Design

Matlab scripts and Simulink models are located at:
https://github.com/DaveSketchySpeedway/uEVA/tree/master/model_ctrl

79

https://github.com/DaveSketchySpeedway/uEVA/tree/master/pump_sysid
https://github.com/DaveSketchySpeedway/uEVA/tree/master/model_ctrl

Appendix B

C++ Source Code

B.1 RoboDrop

The source code for RoboDrop and instruction for compilation is hosted on GitHub:
https://github.com/DaveSketchySpeedway/uEVA/tree/master/RoboDrop02

80

https://github.com/DaveSketchySpeedway/uEVA/tree/master/RoboDrop02

Appendix C

Experiment video with Single
T-Junction

C.1 Video Clip

This appendix is a video file. The file name of this video file is “robodrop1t.avi”.
The footage is a screen-capture showcasing the RoboDrop software in operation. Micro-

scope images were processed in real time to detect droplets and interfaces displacements. The
processed images were augmented with the displacement information and displayed in real time.
Furthermore, the controllers were activated in RoboDrop, allowing droplets to be manipulated
arbitrarily by the user.

If you accessed this thesis from a source other than the University of Waterloo, you may not
have access to this file. You may access it by searching for this thesis on https://uwspace.

uwaterloo.ca/UWSpace

‘

81

https://uwspace.uwaterloo.ca/UWSpace
https://uwspace.uwaterloo.ca/UWSpace

Appendix D

Experiment Video with Double
T-Junction

D.1 Video Clip

This appendix is a video file. The file name of this video file is “robodrop2thd.avi”.
The footage is a screen-capture showing the RoboDrop software operating in a channel

network that has 2 T-junctions. Is shows the user manipulating droplets, performing genera-
tion, splitting, merging, and sorting operations. The real-time telemetry feature of RoboDrop
was also showcased, where pressure values commanded by the controllers were plotted as the
experiment was carried out.

If you accessed this thesis from a source other than the University of Waterloo, you may not
have access to this file. You may access it by searching for this thesis on https://uwspace.

uwaterloo.ca/UWSpace

82

https://uwspace.uwaterloo.ca/UWSpace
https://uwspace.uwaterloo.ca/UWSpace

	Author's Declaration
	Abstract
	Acknowledgement
	Dedication
	List of Figures
	List of Tables
	Introduction
	Literature Review
	Controls in Microfluidics

	Hardware and Methodology
	Microfluidic Chip
	Optics and Camera
	Pressure Pump
	System Identification in Time Domain
	System Identification in Frequency domain

	Modelling
	Passive Circuit Elements
	Channel Network
	Discretization
	Current to Charge
	Chip with Pump

	Validation
	Validation Approach
	PID Controller
	Closed-loop Stability
	Noise Rejection

	Kalman Filter
	Derivation
	Disturbance Estimation

	Open-Loop Validation

	Controller Design
	Model Reduction
	Controllability and Observability
	Control Law and Observer
	Integral States
	Closed Loop State Space
	Linear Quadratic Regulation

	Closed-loop Simulation

	Software Implementation
	RoboDrop Architecture
	GUI Components
	Multi-threading

	RoboDrop Image Processing
	Object Detection
	Neck Detection
	Decision Trees

	RoboDrop Controller
	References Linking
	Necking Feedback
	Measurement Offset
	Controller Calculations

	Results
	Droplet Generation
	Droplet Splitting and Merging
	Droplet Sorting and Retrieving

	Conclusion
	Hardware Recommendations
	Controller Recommendations

	bibliography
	Appendix: MATLAB Script
	Pump System Identification
	Modelling and Controller Design

	Appendix: C++ Source Code
	RoboDrop

	Appendix: Experiment Video with Single T-Junction
	Video Clip

	Appendix: Experiment Video with Double T-Junction
	Video Clip

