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Abstract

This thesis studies two important carbon structures, graphene and carbon nan-

otubes, with the purpose of understanding how their three-dimensional electron

density distribution affects the way fast ions interact with them.

A brief introduction to research in pure carbon structures is made. We then

use different models to calculate the equilibrium electron density distribution in

graphene and carbon nanotubes.

In the second part of the thesis we investigate fast ions moving parallel to a

graphene sheet and experiencing forces due to the dynamic polarization of car-

bon valence electrons. Using the three-dimensional electron density distribution of

graphene, we calculate the force directly opposing the ion’s motion (stopping force),

as well as the force which bends the ion’s trajectory towards the sheet (image force).

It is our purpose to compare these results with those based on a two-dimensional

hydrodynamic model of graphene, which approximates the electron distribution of

graphene by a charged fluid confined to the two-dimensional plane of the sheet.

The results obtained for interactions of ions with a single graphene sheet should

be useful for a further analysis of ion channeling through carbon nanostructures.
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Chapter 1

Introduction

1.1 Motivation

In the final decades of the 20th century, condensed matter physics was marked by

a revival of research interest in carbon-based materials. In addition to the conven-

tional forms in which pure carbon was known to exist (graphite and diamond),

new forms were discovered. The first shock to the scientific community came in

1985, when C60 molecules were first discovered in laboratories by Sir Harold Kroto,

Richard E. Smalley and Robert F. Curl [1]. The C60 molecule is an arrangement of

60 carbon atoms in a highly symmetrical hollow polygon structure that resembles

a soccer ball (see figure 1.1). The search for new carbon nanostructures drove sci-

entific research in the field and in 1991 Iijima first produced carbon nanotubes [2],

pure carbon cylinders with walls just one atom thick (see figure 1.2). These new

macromolecules immediately sparked much excitement because of their remarkable

shape and structure; they are only a few nanometers in diameter, yet (presently)

up to a few millimeters long.

Carbon nanotubes have now been found to have a broad range of intriguing elec-

tronic, thermal, and structural properties, that change depending on the different

1



2 Electric Response in Graphite and Carbon Nanotubes

Figure 1.1: C60 molecule, called Buckminsterfullerene, or “buckyball”.

kinds of nanotube (defined by diameter, length, and orientation of the hexagonal

lattice forming their walls). They are 100-1000 times stronger than the strongest

steel, and can be either metallic or semiconducting. They are also excellent thermal

conductors. Because of their shape and size, carbon nanotubes are currently being

used as probes in extremely sensitive scanning microscopes. They have also been

used to reinforce ordinary materials, yielding compounds with greatly increased

strength and heat conducting properties.

Nanotubes are now being grown on glass in a well aligned manner, resembling a

wheat field, and they are expected to be used in flat panel displays such as laptop

and desktop computers. Researchers have also envisioned these miniature hose-like

molecules as current conductors in ever-smaller electrical circuits. Their immense

field of applications has made them the “hottest topic in physics” in 2006 [3].

All these newly discovered pure carbon structures, including C60, carbon nan-

otubes, and other polygon shaped, cage-like molecules are collectively referred to

as fullerenes. Fullerenes can be thought of as wrapped up sheets of graphite (see

figure 1.2). For decades scientists believed that a two-dimensional (2D) sheet of

graphite (know as graphene) could not exist in its free state; they presumed that

its planar structure would be thermodynamically unstable. In 2004, however, An-
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Figure 1.2: A graphene sheet and a carbon nanotube, which can be thought of as
a graphene sheet rolled up into a cylinder.

dre Geim and colleagues at the University of Manchester and at the Institute for

Microelectronics Technology in Chernogolovka, Russia, succeeded in isolating single

graphene sheets. Their work showed that graphene is stable, chemically inert, and

crystalline under ambient conditions. Graphene has also been found to tolerate huge

current densities–about 108 A/cm2, roughly two orders of magnitude greater than

copper. Electrons in graphene can move at high speeds and suffer little energy loss.

The one-atom-thick sheets of carbon have aroused much interest and are currently

being studied extensively because of their fascinating physical properties and their

large range of potential applications. Walt deHeer and his research group at Geor-

gia Tech have built graphene structures (including a graphene transistor) as small

as 80 nm, and expect to get down to the 10 nm size. They believe graphene will

provide a more controllable platform for integrated electronics than is possible with

carbon nanotubes, since graphene structures can be fabricated lithographically as

large wafers.

1.2 Physical Model of the Problem

Researchers are currently trying to learn more fullerene physics. This is where the

purpose of this work lays. We are primarily interested in the interactions of ions
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with graphene and nanotubes under channeling conditions, where the ion (typically

a proton) is represented by a point charge moving (almost) parallel to the plane

with carbon atoms in the case of graphene, or to the axis of a cylinder representing

a nanotube with single wall. These ions typically move at the speeds in excess of the

Bohr velocity, and are striking the walls of these carbon structures under the angles

of the order of 1o. In the case of graphene, one can think of the so-called planar

channeling, where the ions move between the parallel planes of graphene which are

stuck at a separation of about 3.4 Å to form a crystal known as highly oriented

pyrolytic graphite (HOPG). As for the carbon nanotubes, channeling can occur in

three different ways: through the hollow cylindrical region of either a single-wall

carbon nanotube (SWNT) or a multi-wall carbon nanotube (MWNT), between the

concentric cylinders of a MWNT (which are separated by approximately 3.4 Å),

and in the regions outside the cylinders representing SWNTs stuck into a rope or

a bundle with the nearest carbon walls again separated by about 3.4 Å. Rather

intense studies of ion channeling through carbon nanotubes have been underway

over the past several years (see the review by X. Artru et al. [4]. The main interest

in ion channeling through carbon nanotubes comes from their possible applications

in several areas, such as

• creating and transporting highly-focused nano-beams of ions

• nano-implantation of particles in electronics, biology, and medicine

• beam steering and collimation at particle accelerators

• sources of hard X– and gamma – rays by channeled particles

While we do not pursue in this thesis any detailed study of ion channeling per

se, the results obtained for the interactions of ions with a single sheet of graphene

are the important first step towards full analysis of ion channeling through carbon

nanostructures.
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Under the channeling conditions, an ion undergoes a sequence of small-angle

deflections from a large number of carbon atoms in a wall by their repulsive atomic

potentials. This superposition of atomic potentials, as seen by the incident ion,

results in a natural “smearing-out” of the distribution of carbon atomic positions

into a continuous sheet of positive charge, which then amounts to the well-known

“jellium” model for calculations of the carbon valence electron distributions in the

ground (unperturbed) state. For this purpose, we use generalizations of the well-

known Thomas-Fermi (TF) model for a single atom to the planar and cylindrical

geometries corresponding to the cases of graphene and a single wall nanotube, re-

spectively. Besides obtaining the exact solutions of the relevant TF equations, we

also use variational methods with simple trial forms for electron densities based

on minimizing the electron energy functional. In addition, we also use the Pois-

son equation to derive the ground-state electron distribution from the well-known

atomic repulsive potentials (such as Molière’s approximation to the TF potential),

which are commonly used in the standard theory of ion channeling through solid

crystals.

Given that the projectile charges move at the speeds in excess of the typi-

cal speeds of carbon valence electrons in the graphene or nanotube, the dynamic

polarization of such electrons can be modeled by a hydrodynamic model which

represents the four carbon valence electrons by a continuous charged fluid whose

internal quantum degrees of freedom can be described by an equation of state re-

sulting from TF model. Our main goal is to calculate forces acting on fast ions

under channeling conditions coming from the dynamic perturbation of the three-

dimensional (3D) electron distributions obtained from the above mentioned TF

models for the electron density in the ground state. To this end, we employ a high-

frequency approximation for the dielectric function of a non-homogeneous electron

gas, which was developed by Mukhopadhyay and Lundqvist [5], rediscovered in the
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classical limit by Kitagawa [6], and recently used by Apel, Sabin and Trickey [7]. In

Appendix A, we present a derivation of this approximation for the dielectric func-

tion which is consistent with the TF model of electrons in the ground-state. In this

way, we are able to ensure that the dynamical polarization forces are obtained in

a manner consistent with modeling of the repulsive forces coming from the carbon

atoms in the graphene or nanotube walls. Such consistency is very important for

ion channeling since the ion trajectories are known to be extremely sensitive to the

details of all the forces involved.

1.3 Purpose and Outline

We have studied both graphene sheets and carbon nanotubes. Our goal has been

to study the electron density distribution in these structures and how this affects

the way fast moving ions interact with them.

The first part of this work (chapters 2 and 3) is devoted to the study of equi-

librium electron densities. In chapter 2, the three-dimensional equilibrium electron

density for graphene is computed using different models. Chapter 3 shows calcula-

tions of the three-dimensional equilibrium electron density for carbon nanotubes.

In the second part of this work we study fast ions moving parallel to a graphene

sheet and experiencing forces due to the dynamic polarization of carbon valence

electrons.

When studying the energy loss of such ions, it is important to look at the force

which directly opposes the ion’s motion, called the stopping force. In chapter 4 we

develop the theory used to calculate the stopping force. Chapter 5 shows results

for calculations of the stopping force using the three-dimensional electron density

distribution of graphene.

It is also of interest to study the force which bends the ion’s trajectory towards
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the sheet (image force), which plays a major role in the study of ion channeling. In

chapter 6 we develop the theory used to calculate the image force, and in chapter

7 we show results for calculations of the image force using the three-dimensional

electron density distribution of graphene.

It is our purpose to compare our calculations of stopping and image forces with

calculations based on a two-dimensional hydrodynamic model of graphene, which

approximates the electron distribution of graphene by a charged fluid confined to the

two-dimensional plane of the sheet. In this way we intend to better appreciate the

effect of having a three-dimensional electron density distribution on the interactions

of fast ions with graphene. The calculations of the stopping and image forces based

on the two-dimensional hydrodynamic model are well known in the literature, so

we have only briefly summarized the main results in Appendix B.

Finally, we conclude with a discussion of the results and suggestions for future

work in the last chapter.





Chapter 2

Equilibrium Electron Density In

Graphene

In this chapter we compute the three dimensional equilibrium electron density for

graphene. We shall use various models to calculate this electron density and then

compare the results.

In graphene, carbon atoms form a hexagonal lattice with inter-atomic distance

d ≈ 1.421 Å[8]. The surface density of atoms is na = 4/(3
√

3d2) Å−2. We use the

jellium model to study graphene. In this model, the sheet made of individual nuclear

cores is modeled by a sheet of uniform charge density σ. Considering each carbon

atom to have 4 valence electrons, the surface charge density for our jellium model

is given by σ = 4ena ≈ 0.428 in atomic units (a.u.). We then consider an electron

gas around our positive sheet to account for the valence electrons in graphene. We

shall be interested in finding the equilibrium electron density distribution around

the positively charged sheet.

9
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2.1 Equilibrium Density

In many-electron systems, equilibrium electron behavior is defined in terms of the

following energy functional [9]

E [n (r)] =

∫

dr






CFn

5/3(r) + CvW

[

~∇n(r)
]2

n(r)
− Cxn

4/3(r)







+
1

2

e2

(4πε0)

∫

dr

∫

dr′
n(r)n(r′)

|r− r′| − e

∫

dr V+(r)n (r) , (2.1)

where n(r) is the electron density and V+(r) is the electrostatic potential produced

by the positive ion cores. The first two terms are the Thomas-Fermi kinetic energy

functional and its von Weizsäcker correction, respectively. The third term is the

Dirac exchange energy. The coefficients are given by

CF =
3

10

~
2

m

(

3π2
)2/3

, Cx =
3e2

4

(

3

π

)1/3

, CvW =
1

72

~
2

m
, (2.2)

with ~, m, and e being Planck’s constant divided by 2π, the electron mass, and

the proton charge, respectively. We shall be working in atomic units (a.u.) so that

~ = m = e = 1, as well as in Gaussian units of electrostatics, so that 1/(4πε0) = 1.

In (2.1) the fourth term represents the Coulomb interaction of the electrons with

each other, while the fifth term represents the Coulomb interaction between the

electrons and the positive ion cores.

2.2 Thomas-Fermi Analytical Solution

When using a Thomas-Fermi (TF) model to describe the electron density around

graphene, we consider only the Thomas-Fermi term in (2.1), as well as the last two
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terms describing the Coulomb interaction. If we set Cx = CvW = 0 in (2.1) we have

E [n (r)] =

∫

dr CFn
5/3(r) +

1

2

∫

dr

∫

dr′
n(r)n(r′)

|r− r′| −
∫

dr V+(r)n (r) . (2.3)

We want to find the electron density n(r) that minimizes the energy functional

(2.3). To do this, we perform a functional derivative of (2.3) and obtain

δE

δn
=

5

3
CFn

2/3(r)− Ve(r)− V+(r) = 0, (2.4)

where

Ve(r) = −
∫

dr′
n(r′)

|r− r′| . (2.5)

The total electrostatic potential at point r is

Φ(r) = Ve(r) + V+(r), (2.6)

so we may write (2.4) as
5CF

3
n2/3(r)− Φ(r) = 0, (2.7)

or solving for n(r)

n(r) =

(

3

5CF

Φ(r)

)3/2

. (2.8)

Now, Poisson’s equation reads

∇2Φ(r) = −4πρ(r), (2.9)

where ρ(r) is the total charge density. We may write (2.9) as

∇2Φ(r) = −4π [−n(r) + n+(r)] , (2.10)



12 Electric Response in Graphite and Carbon Nanotubes

where −n(r) is the charge density due to the electrons and n+(r) is the charge

density due to the positive ion cores. Since for a graphene sheet the charge density

due to the positive ion cores is zero everywhere except at the sheet 1, we may write

(2.10) as

∇2Φ(r) = 4πn(r) (2.11)

for all r that are not on the sheet.

Now, using (2.11) together with (2.8), we have

∇2Φ(r) =
27/2

3π
Φ3/2(r), (2.12)

which is known as the Thomas-Fermi (TF) equation.

By symmetry the electron density around an infinite graphene sheet depends on

only the distance |z| from the sheet. To calculate this density using a Thomas-Fermi

approach, we write down the TF equation (2.12) for z 6= 0 in one dimension

d2Φ(z)

dz2
= ξΦ(z)3/2, (2.13)

where we have let

ξ =
27/2

3π
, (2.14)

and where Φ(z) is the electric potential a distance z from the sheet. Notice that

by symmetry, Φ(z) is an even function. On the other hand, the electric field in the

vicinity of the sheet is given by E = (0, 0, Ez(z)), where Ez(z) is an odd function

given by Ez(z) = −dΦ/dz.

1Recall that in our jellium model the nuclear cores are modeled by a uniform charge density
σ, so that the charge density due to the protons is n+(r) = σδ(z).
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Multiplying both sides of (2.13) by Φ′ = dΦ/dz, we have

Φ′Φ′′ = ξΦ3/2Φ′, (2.15)

and integrating with respect to the distance z, we get

1

2
(Φ′)

2
+ C0 = ξ

2

5
Φ5/2 (2.16)

E2
z + 2C0 = ξ

4

5
Φ5/2 (2.17)

(

E2
z + 2C0

)3/5
=

(

4

5
ξ

)3/5

Φ3/2. (2.18)

Since we define the electric field Ez and the electric potential Φ to be zero at infinity,

the constant of integration C0 = 0, and we write

(Ez)
6/5 =

(

4

5
ξ

)3/5

Φ3/2. (2.19)

Since the electric field is given by the negative gradient of the electric potential,

from (2.13) we have that

−dEz

dz
= ξΦ3/2, (2.20)

and using (2.19) we get

−dEz

dz
= ξ

(Ez)
6/5

(

4
5
ξ
)3/5

(2.21)

or

−dEz

dz
= ζ (Ez)

6/5 , (2.22)

where we have set

ζ =

(

250

9π2

)1/5

(2.23)

Integrating (2.22) with respect to the distance z we get an expression for the
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magnitude of the electric field a distance z from the graphene sheet

Ez = (C0 + ζz/5)−5, (2.24)

where C0 is a constant of integration.

To calculate the electric field at an infinitesimal distance away from the graphene

sheet, we use Gauss’s law:
∮

E · dA = 4πQenc, (2.25)

where Qenc is the charge enclosed by whatever Gaussian surface we choose. Using a

so-called “Gaussian pillbox”2, which is a thin Gaussian surface of thickness 2h and

cross-sectional area A, that goes across the graphene sheet, we have

A [Ez(h)− Ez(−h)] = 2AEz(h) = 4π

∫

dr ρ(r). (2.26)

Here, ρ(r) = −n(r) + n+(r) is the total charge density, −n(r) is the charge density

due to the electrons, and n+(r) = σδ(z) is the charge density due to the positive

ion cores. Letting the thickness of the Gaussian surface go to zero, we get

lim
h→0+

2AEz(h) =

−4π lim
h→0+

∫

A

dR

∫ 0+h

0−h

dz n(R, z) + 4π lim
h→0+

∫

A

dR

∫ 0+h

0−h

dz σδ(z)

= 4πAσ. (2.27)

So the magnitude of the electric field right next to the graphene sheet is given by

lim
h→0+

Ez(h) = 2πσ. (2.28)

2For a discussion of the electrodynamics of a charged plane using a “Gaussian pillbox”, see
[10].
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Taking this boundary condition into account for (2.24) we calculate that

C0 = (2πσ)−1/5. (2.29)

We now have an expression for the magnitude of the electric field in the vicinity

of the graphene sheet

Ez(z) =
[

(2πσ)−1/5 + ζz/5
]−5

(2.30)

Integrating (2.30) we obtain the electric potential in the vicinity of the graphene

sheet

Φ(z) =
1

4b(bz + c)4
, (2.31)

where b = ζ/5 and c = (2πσ)−1/5. Now that we have an expression for Φ(z), (2.8)

gives an expression for the electron density n as a function of the distance z from

the sheet, namely

n(z) =

(

1

2b

)3/2
1

3π2

1

(bz + c)6
. (2.32)

Figure 2.1 shows this analytical Thomas-Fermi electron density as a function of

the distance from the sheet, for z ≥ 0. We can see that the TF electron density

(2.32) has an inverse power decay and might overestimate the real electron density

distribution because of its long range.

2.3 Minimizing Energy Functional

We have shown that an analytical solution for the electron density may be found

using the Thomas-Fermi (TF) model. Now we want to find approximations to the

electron density using a Thomas-Fermi-Dirac (TFD) model, so we want to include

the Thomas-Fermi and Dirac terms in the energy functional (2.1).

Motivated by the fact that electron density in atomic orbitals typically decays
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Figure 2.1: Analytical TF electron density for graphene. We plot the electron density
as a function of the distance from the sheet.

exponentially with distance, we represent the electron density around a graphene

sheet by using exponential approximations of the form

n(r) = n0e
−|z|/λ, (2.33)

where n0 is a constant, z is the distance from the graphene sheet, and λ is a free

parameter that we may choose so that (2.33) approximates well the electron density.

In the TFD model, the electron density minimizes the energy functional

E [n (r)] =

∫

dr
[

CFn
5/3(r)− Cxn

4/3(r)
]

+
1

2

∫

dr

∫

dr′
n(r)n(r′)

|r− r′| −
∫

dr V+(r)n (r) . (2.34)

To find our approximation to the electron density for graphene, we must then

minimize (2.34) with respect to the parameter λ in (2.33).
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First we must express n0 in (2.33) as a function of λ. The number of electrons

per unit area is known from the neutrality condition, and it is given by

σ = n0

∫ ∞

−∞
dz e−|z|/λ = 2λn0, (2.35)

so we have

n0 =
σ

2λ
. (2.36)

Now we may substitute (2.33) in (2.34) and minimize with respect to λ. The

first two terms in (2.34) have the generic form

Cα

∫

dr [n(r)]α = Cα

∫

dR

∫ ∞

−∞
dz nα

0 e
−α|z|/λ = 2Cα

λ

α
(n0)

α

∫

dR, (2.37)

and using (2.36) we may write them as

2ACα
λ

α

( σ

2λ

)α

, (2.38)

where

A ≡
∫

dR. (2.39)

So, from the first and second terms in (2.34), we obtain the TF energy and exchange

energy per unit area, respectively, as follows

2CF
3

5
λ
( σ

2λ

)5/3

and − 2Cx
3

4
λ
( σ

2λ

)4/3

. (2.40)

Now we look at the last two terms of the energy functional (2.34). These two

terms represent the Coulomb interaction, and may be represented in terms of the

total charge density ρ(r), so that the total Coulomb interaction is written in the

form
1

2

∫

dr

∫

dr′
ρ(r)ρ(r′)

|r− r′| . (2.41)
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To write this term in a more useful form, we look further into the expression for

the total charge density at r, and write it as

ρ(r) = ρe(r) + ρn(r), (2.42)

where ρe(r) represents the charge density due to the electrons and ρn(r) represents

the charge density due to the nuclear cores in the graphene sheet.3 For a graphene

sheet, we have

ρe(r) = −n(r) and ρn(r) = σδ(z), (2.43)

where δ(z) is the Dirac delta function.

It is useful to take the Fourier transform of (2.42), and we obtain this in the

usual manner:

ρ̃(k) =

∫

dr e−i(k·r)ρ(r) = σ

∫

dr e−i(k·r)
[

δ(z)− 1

2λ
e−|z|/λ

]

. (2.44)

We may express the vector k as k = (K, kz), where K is the component of k

parallel to the graphene sheet and kz is the component of k perpendicular to the

graphene sheet. In the same way we may write r = (R, z), with R and z being the

components of r parallel and perpendicular to the sheet, respectively. Using this

notation we may write (2.44) as

ρ̃(k) = σ

∫

dR e−i(K·R)

∫ ∞

−∞
dz e−ikzz

[

δ(z)− 1

2λ
e−

|z|
λ

]

. (2.45)

The z integral in (2.45) may be written

∫ ∞

−∞
dz e−ikzz

[

δ(z)− 1

2λ
e−

|z|
λ

]

= 1− 1

2λ

∫ ∞

−∞
dz e−ikzze−

|z|
λ , (2.46)

3Recall that, in our jellium model, these nuclear cores are approximated by a uniform charge
distribution.
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and we consider only the real part of e−ikzz = cos (kzz) − i sin (kzz), because the

imaginary part is odd and vanishes in the integral from −∞ to ∞. The z integral

then gives

1− 1

2λ
· 2
∫ ∞

0

dz cos (kzz)e
−|z|/λ = 1−

(

1

λ2k2
z + 1

)

=
λ2k2

z

λ2k2
z + 1

. (2.47)

Using (2.47) together with the fact that a two dimensional delta function may

be written

δ(K) =
1

(2π)2

∫

dR e−i(K·R), (2.48)

we have that the Fourier transform of the charge density ρ(r) is given by

ρ̃(k) = σ(2π)2δ(K)

(

λ2k2
z

λ2k2
z + 1

)

. (2.49)

Going back to our expression for the total Coulomb interaction, we may express

the term 1/|r− r′| in (2.41) as

1

|r− r′| =

∫

dk
1

(2π)3

4π

k2
eik·(r−r′), (2.50)

where k = |k| =
√

K2 + k2
z , with K = |K|. We may then write the Coulomb

interaction term (2.41) as

1

2

∫

dr

∫

dr′
∫

dk
1

(2π)3

4π

k2
eik·(r−r′)ρ(r)ρ(r′). (2.51)

The r and r′ integrals give the Fourier transform of the charge density, so we

may write (2.51) as
1

2

1

(2π)3
4π

∫

dk |ρ̃(k)|2 1

k2
. (2.52)
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Now we may substitute ρ̃(k) by its expression (2.49) and write (2.52) as

1

2
8π2σ2

∫

dk |δ(K)|2 λ4k4
z

(λ2k2
z + 1)2k2

. (2.53)

For notational convenience we let

Θ =
1

2
8π2σ2, (2.54)

to abbreviate the constant in front of the integral. We also use (2.48) to express

the two dimensional delta function in our Coulomb interaction (2.53), so we write

(2.53) as

Θ

∫

dk
1

(2π)4

∫

dR e−i(K·R)

∫

dR′ ei(K·R′) λ4k4
z

λ2k2
z + 1

1

k2
(2.55)

or

Θ

∫

dk
1

(2π)4

∫

dR

∫

dR′ e−iK·(R−R′) λ4k4
z

λ2k2
z + 1

1

(K2 + k2
z)
. (2.56)

Since we are dealing with an infinite graphene sheet, we are interested only in the

energy per unit area, so we do not consider the integral with respect to R over the

area of the sheet.

For the integral over R′ we have

∫

dR′ e−iK·(R−R′) = (2π)2δ(K), (2.57)

so that the total Coulomb interaction4 (2.56) may be written

Θ
1

(2π)4

∫

dk (2π)2δ(K)
λ4k4

z

(λ2k2
z + 1)2

1

(K2 + k2
z)

=

4Here we are considering the total Coulomb energy per unit area, since we are not considering
the integral with respect to R in (2.56).
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Θ
1

(2π)4

∫

dK

∫ ∞

−∞
dkz (2π)2δ(K)

λ4k4
z

(λ2k2
z + 1)2

1

(K2 + k2
z)

=

Θ
1

(2π)2

∫ ∞

−∞
dkz

λ4k2
z

(λ2k2
z + 1)2

= Θ
1

(2π)2
λ
π

2
=
πσ2λ

2
. (2.58)

Using (2.40) and (2.58), we express the total energy per unit area for our graphene

sheet as

E [n(r)] = 2CF
3

5
λ
( σ

2λ

)5/3

− 2Cx
3

4
λ
( σ

2λ

)4/3

+
πσ2λ

2
. (2.59)

We want to minimize (2.59) with respect to our parameter λ. Differentiating (2.59)

with respect to λ, multiplying it by λ5/3, and setting the result equal to zero, we

get the quintic equation

−4CF

5

(σ

2

)5/3

+
Cx

2

(σ

2

)4/3

λ1/3 +
πσ2

2
λ5/3 = 0. (2.60)

We solve this equation numerically using Newton’s method and find a zero at

λ ≈ 0.6357 a.u. 5 Using this value for λ we have a TFD exponential approxima-

tion of the form (2.33) to the electron density of graphene. We call this the TFD

exponential approximation. Figure 2.2 shows this TFD exponential approximation

to the electron density as a function of the distance from the sheet.

2.4 Least Squares Minimization

The Thomas-Fermi method gives an analytical electron density for graphene. Using

a Thomas-Fermi-Dirac approach, we found an exponential approximation to the

electron density by minimizing the energy functional (2.34).

We have found another exponential approximation of the form (2.33) by choos-

ing a value of λ that minimizes the error with respect to the analytical TF electron

5This is the only real root of (2.60), so it is the one we consider for an approximation of the
form (2.33).
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Figure 2.2: TFD exponential approximation to graphene electron density. We plot
the electron density as a function of the distance from the sheet.

density.

By numerically minimizing the least squares error between the exponential ap-

proximation and the analytical TF electron density, we found a value of λ ≈ 0.7.

Using this λ in (2.33) we get what we call the least squares (LS) exponential

approximation to the electron density. Figure 2.3 shows this LS exponential ap-

proximation to the electron density as a function of the distance from the sheet.

2.5 Molière Approximation

We have also computed the electron density distribution for graphene using the

Molière approximation. Molière found that a single atom’s electrostatic potential

may be approximated by a function of the form [11] :

Φ1(r) =
Z1

r
ϕ(r/am), (2.61)
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Figure 2.3: LS exponential approximation to graphene electron density. We plot the
electron density as a function of the distance from the sheet.

where Z1 is the nuclear charge, ϕ(r/am) is a screening function that accounts for

the electron density around the nucleus, and am is a screening length. The screening

function is given by

ϕ(r/am) =
3
∑

i=1

αie
−βir/am , (2.62)

where {αi} ≈ {0.1, 0.55, 0.35} and {βi} ≈ {6.0, 1.2, 0.3}. In Thomas-Fermi theory,

the screening length am in (2.62) is given by am = (9π2/128Z1)
1/3 ≈ 0.8853Z

−1/3
1

[11].

To find the electrostatic potential around a graphene sheet, we must sum the

contributions of the electrostatic potentials of the individual atoms making the

sheet. We use the jellium approximation, so we assume the atoms are smeared out

to form a uniform distribution on the sheet. The total electrostatic potential due
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to all the atoms in the sheet is then given by

Φ(r) =

∫

dr′ D(r′)Φ1(r− r′), (2.63)

where D(r′) is the atomic density distribution. By choosing a coordinate system

where our sheet lays in the xy-plane, the atomic density distribution is

D(r′) = σaδ(z
′), (2.64)

where σa is the surface atomic density in the sheet and z ′ is the distance from the

sheet. Using (2.62) and (2.64) in (2.63) we have

Φ(r) =

∫

dr σaδ(z
′)

Z1

|r− r′|

3
∑

i=1

αie
−βi|r−r′|/am

=

∫

dR′
∫

dz′ σaδ(z
′)

Z1
√

|R−R′|2 + (z − z′)2

3
∑

i=1

αie
−βi

√
|R−R′|2+(z−z′)2/am

=

∫

dR
σaZ1√
R2 + z2

3
∑

i=1

αie
−βi

√
R2+z2/am

=

∫ ∞

0

dR R

∫ π

−π

dθ
σaZ1√
R2 + z2

3
∑

i=1

αie
−βi

√
R2+z2/am

=

∫ ∞

0

dR R
2πσaZ1√
R2 + z2

3
∑

i=1

αie
−βi

√
R2+z2/am . (2.65)

Now we let r =
√
R2 + z2, so dr = R/

√
R2 + z2 dR, and we have

Φ(r) =

∫ ∞

|z|
dr 2πσaZ1

3
∑

i=1

αie
−βi|r|/am
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Figure 2.4: Graphene electron density obtained by different models. We plot the
logarithm to base 10 of the electron density as a function of the distance from the
sheet.

= 2πσaZ1am

3
∑

i=1

αi

βi

e−βi|z|/am . (2.66)

We are interested in finding the electron density distribution around the graphene

sheet. From Poisson’s equation (2.11) we have

n(r) =
1

4π
∇2Φ(r). (2.67)

Inserting the Laplacian of (2.66) into (2.67) we have what we call the Molière

approximation to the electron density for graphene:

n(r) =
σaZ1

2am

3
∑

i=1

αiβie
−βi|z|/am . (2.68)

Figure 2.4 compares the various approximations to the electron density for graphene.
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We can see how the TFD exponential density and the LS exponential density are

much smaller than the analytical TF density, which has longer ranged inverse power

decay. The Moliere electron density is given by a sum of exponentials, one of which

is very long ranged, so at large distances from the sheet the plot shows it to be even

higher than the analytical TF solution, although it will eventually drop below it at

even farther distances.

2.6 Cruz Approximation

We now compute the electron density distribution for graphene using the approxi-

mation developed by Cruz et al. [12]. They found an expression for a single atom’s

electron density:

ρat(r) =
∑

k

ωk|φk|2, (2.69)

where ωk is the number of electrons in orbital k, and the sum is taken over all the

occupied orbitals of the atom. In (2.69), φk is given by

φk(r) = Nkr
nk−1e−ξkr, (2.70)

where Nk is a constant chosen so that

∫

dr |φk(r)|2 = 4π

∫ ∞

0

dr r2|φk(r)|2 = 1, (2.71)

nk is the principal quantum number of orbital k, and ξk is an orbital parameter.

The ground state of carbon has two 1s electrons, two 2s electrons, and two 2p

electrons. For carbon, Cruz’s model then gives

ρat(r) = ω1s|φ1s|2 + ω2s|φ2s|2 + ω2p|φ2p|2, (2.72)
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where ω1s = ω2s = ω2p = 2; n1s = 1, n2s = n2p = 2; and ξ1s ≈ 5.5707, ξ2s ≈ 2.7034,

ξ2p ≈ 1.2353 [12]. We may write (2.72) as

ρat(r) = C1e
−λ1r + r2

(

C2e
−λ2r + C3e

−λ3r
)

, (2.73)

with λ1 ≈ 11.14, λ2 ≈ 5.41, λ3 ≈ 2.47, and

C1 =
2

4π
∫∞

0
dr r2e−λ1r

=
λ3

1

4π
, (2.74)

C2 =
2

4π
∫∞

0
dr r4e−λ2r

=
λ5

2

48π
, (2.75)

C3 =
2

4π
∫∞

0
dr r4e−λ3r

=
λ5

3

48π
. (2.76)

Finally, we have that the electron density distribution for a carbon atom is given

by

ρat(r) =
λ1

4π
e−λ1r +

r2

48π

(

λ5
2e
−λ2r + λ5

3e
−λ3r

)

, (2.77)

which may be written as

ρat(r) = −λ
3
1

4π

∂

∂λ1

(

e−λ1r

r

)

− λ5
2

48π

∂3

∂λ3
2

(

e−λ2r

r

)

− λ5
3

48π

∂3

∂λ3
3

(

e−λ3r

r

)

. (2.78)

To find the electron density distribution around a graphene sheet, we must sum

the contribution of the electron densities of the individual atoms making the sheet.

Again, we use the two-dimensional jellium approximation, so we assume the atoms

are smeared out to form a uniform distribution on the sheet. The total density

distribution due to all the atoms in the sheet is then given by

n(r) =

∫

dr′ D(r′)ρat(r− r′), (2.79)
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where D(r′) is the atomic density distribution. Choosing a coordinate system where

our sheet lays in the xy-plane, the atomic density distribution is given by (2.64):

D(r′) = σaδ(z
′). (2.80)

Using the result of (2.65) and (2.66), we may see that

∫

dr′ D(r′)
e−λ|r−r′|

|r− r′| =

∫

dr′ σaδ(z
′)
e−λ|r−r′|

|r− r′| = 2πσa
e−λ|z|

λ
. (2.81)

Using (2.81) in (2.78) we get

n(z) = −σaλ
3
1

2

∂

∂λ1

(

e−λ1|z|

λ1

)

− σaλ
5
2

24

∂3

∂λ3
2

(

e−λ2|z|

λ2

)

− σaλ
5
3

24

∂3

∂λ3
3

(

e−λ3|z|

λ3

)

, (2.82)

which we call Cruz’s approximation to the electron density distribution around a

graphene sheet.

The Cruz model takes all six of carbon’s electrons into account when calculating

the electron density distribution. In figure 2.5 we compare the electron density for

a graphene sheet calculated using Cruz’s model as well as the TF analytical, TFD

exponential, and Molière models. For these computations we have adapted the TF

analytical, TFD exponential and Molière models to take into account all six of

carbon’s electrons in the calculation of the electron density.

Figure 2.6 compares the electron density for a graphene sheet using Cruz’s

model, the TFD exponential model for four electrons, the TF analytical model for

six electrons, and the TF analytical model for four electrons. We can see that the

Cruz electron density (2.82), which is given by a sum of exponentials multiplied

by polynomials, gives an electron density which at some distances is above and at

some distances is below the TFD single exponential approximation.
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Figure 2.5: Graphene electron density obtained by different models. We plot the
logarithm to base 10 of the electron density as a function of the distance from the
sheet.
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Figure 2.6: Graphene electron density obtained by different models. We plot the
logarithm to base 10 of the electron density as a function of the distance from the
sheet.



Chapter 3

Equilibrium Electron Density in

Carbon Nanotubes

We are now interested in computing the three dimensional equilibrium electron

density for carbon nanotubes. As we did for graphene, we shall use various models

to calculate this electron density and then compare the results.

A carbon nanotube may be considered to be part of a graphene sheet that is

rolled up to form a cylinder [13]. Analogously to our jellium model of graphene, we

model a carbon nanotube as a cylinder with uniform charge density (representing

the positive ion cores) surrounded by an electron gas. The surface charge density

for the cylinder is the same as for graphene, namely, σ ≈ 0.428 a.u.

3.1 Numerical Solution for Single-Walled Nanotubes

3.1.1 Thomas-Fermi Electron Density

Our goal is to find the electron density distribution around a single-walled nanotube

(SWNT) of radius Rt. By symmetry, this equilibrium density will depend on only

31
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the radial distance from the nanotube axis. Using a Thomas-Fermi (TF) model, we

start with the TF equation (2.12). Writing this equation in cylindrical coordinates

we get 1

∂2Φ

∂r2
+

1

r

∂Φ

∂r
= ξΦ3/2, (3.1)

where r is the perpendicular distance from the axis of the nanotube and ξ is defined

in (2.14). We must solve this nonlinear second order differential equation subject

to the following physical boundary conditions:

1. By symmetry requirements, the electric field must be zero at the nanotube

axis, therefore
∂Φ

∂r

∣

∣

∣

∣

r=0

= 0. (3.2)

2. The electric field and electron density must approach zero as r →∞, yielding

lim
r0→∞

Φ(r0) = 0. (3.3)

3. The electric potential must be continuous across the nanotube wall, so we

have

Φin(Rt) = Φout(Rt). (3.4)

4. The electric field at the nanotube wall must have a discontinuity equal to 4π

times the surface charge density:

∂Φin

∂r

∣

∣

∣

∣

r=Rt

= 4πσ +
∂Φout

∂r

∣

∣

∣

∣

r=Rt

. (3.5)

The first step in solving (3.1) numerically is to discretize the domain and

derivatives. We choose a domain over which we want to compute the solution,

1In writing the Laplacian in cylindrical coordinates, we have assumed Φ(r, φ, z) = Φ(r), by
symmetry.
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say r ∈ [0, R]. We then partition this domain into N equal intervals defined by

(N + 1) equally spaced points with separation distance ∆r. The (N + 1) points

are given by rn = n∆r, where n ∈ {0, 1, 2, . . . , N}. We then approximate the first

derivative of Φ at rn using a backward step

∂Φ(rn)

∂r
≈ Φ(rn)− Φ(rn−1)

∆r
. (3.6)

The second derivative of Φ at rn is approximated using a forward step

∂2Φ(rn)

∂r2
≈ Φ(rn+1)− 2Φ(rn) + Φ(rrn−1)

(∆r)2
. (3.7)

Now we may write our Thomas-Fermi equation as

Φ(rn+1)− 2Φ(rn) + Φ(rrn−1)

(∆r)2
+

1

rn

Φ(rn)− Φ(rn−1)

∆r
= ξΦ(rn)3/2, (3.8)

which is a discretized approximation to (3.1). At this point, we define Φn as the

numerical approximation of Φ(rn). We may then write (3.8) as

Φn+1 − 2Φn + Φn−1

(∆r)2
+

1

rn

Φn − Φn−1

∆r
= ξΦ3/2

n , (3.9)

and, solving for Φn+1, we get

Φn+1 = (∆r)2

(

ξΦ3/2
n − 1

rn

Φn − Φn−1

∆r

)

+ 2Φn − Φn−1. (3.10)

Using this numerical scheme, we may iteratively compute the solution at rn+1 when

we know the solution at rn and rn−1.

The value Φ0 of the potential at the origin is unknown. We have used a shooting

method to search for a value of Φ0 that makes the numerical solution satisfy the

boundary conditions (3.2)-(3.5). Having found a value of Φ0, we set Φ1 = Φ0, due
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Figure 3.1: TF numerical electron density for a SWNT of radius Rt = 3.4 Å. We
plot the electron density as a function of the distance from the nanotube axis.

to boundary condition (3.2), and we use the numerical scheme (3.10) to compute

the solution for all n ∈ {2, 3, . . . , N}.

The numerical solution was computed in this way for a nanotube of radius

Rt = 3.4 Å. Having computed the potential Φ, we may compute the electron density

using (2.8). We plot this numerical Thomas-Fermi electron density in figure 3.1.

Notice that when computing this numerical solution, in order to satisfy bound-

ary condition (3.3), we need to set the potential Φ(r) and its derivative equal to

zero at infinity. To actually do the numerical computation we need to choose a value

which we will consider infinity. For the results shown in figure (3.1) we chose this

value to be 2 times the radius of the nanotube. Later on we will compare results in

which we choose this value to be different.
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Figure 3.2: Fraction of electrons inside the tube as a function of the radius.

3.1.2 Electrons Inside and Outside the Nanotube

Using our TF numerical electron density, we have calculated the fraction of electrons

inside and outside of a SWNT for different nanotube radii. We find, as expected,

that for smaller radii, a smaller fraction of electrons is found inside the nanotube.

As the radius increases, the density of electrons inside the nanotube approaches the

density of electrons outside the nanotube. As the radius Rt → ∞, we expect the

nanotube electron density to approach that of the graphene sheet, so we have the

same fraction of electrons on each side of the wall. Figure 3.2 shows the fraction

Fin of electrons inside the tube for different radii.

3.1.3 Thomas-Fermi-Dirac Electron Density

We now use a Thomas-Fermi-Dirac (TFD) model to find the electron density dis-

tribution around a single-walled nanotube. We consider the Thomas-Fermi-Dirac
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energy functional

E [n (r)] =

∫

dr
[

CFn
5/3(r)− Cxn

4/3(r)
]

+
1

2

∫

dr

∫

dr′
n(r)n(r′)

|r− r′| −
∫

drV+(r)n (r) . (3.11)

We want to find the electron density n(r) that minimizes (3.11). Performing a

functional derivative we have

δE

δn
=

5

3
CFn

2/3(r)− 4

3
Cxn

1/3(r)− Ve(r)− V+(r) = 0, (3.12)

where

Ve(r) = −
∫

dr′
n(r′)

|r− r′| . (3.13)

The total electrostatic potential at point r is

Φ(r) = Ve(r) + V+(r), (3.14)

so we may write (3.12) as

5CF

3
n2/3(r)− 4Cx

3
n1/3(r)− Φ(r) = 0. (3.15)

Now letting X(r) = n1/3(r), we have the quadratic equation

5CF

3
X2(r)− 4Cx

3
X(r)− Φ(r) = 0, (3.16)

which we may solve for X(r) to get

X(r) =
0.4Cx + [0.16C2

x + 0.6CF Φ(r)]
1/2

CF

. (3.17)
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We now write Poisson’s equation

∇2Φ(r) =
∂2Φ

∂r2
+

1

r

∂Φ

∂r
= 4πn(r) = 4πX3(r), (3.18)

and we discretize the domain and derivatives as we did in (3.6) and (3.7), obtaining

Φ(rn+1)− 2Φ(rn) + Φ(rrn−1)

(∆r)2
+

1

rn

Φ(rn)− Φ(rn−1)

∆r
= 4πX3(rn). (3.19)

Again, we define Φn and Xn as the numerical approximations of Φ(rn) and X(rn),

respectively. So we write (3.19) as

Φn+1 − 2Φn + Φn−1

(∆r)2
+

1

rn

Φn − Φn−1

∆r
= 4πX3

n. (3.20)

Solving for Φn+1 we have

Φn+1 = (∆r)2

(

4πX3
n −

1

rn

Φn − Φn−1

∆r

)

+ 2Φn − Φn−1. (3.21)

Using (3.17) we also write

Xn =
0.4Cx + [0.16C2

x + 0.6CF Φn]
1/2

CF

. (3.22)

We may use the numerical scheme (3.21) with (3.22) to iteratively compute the

solution at rn+1 when we know the solution at rn and rn−1. We once again use a

shooting method to find a value Φ0 for the potential at the origin, such that the

boundary conditions (3.2)-(3.5) are satisfied.

The numerical solution was computed in this way for a nanotube of radius

Rt = 3.4 Å. Having computed the potential Φ, we may compute the electron density

using (3.22) and n = X1/3. In figure 3.3 we compare this numerical Thomas-Fermi-

Dirac electron density with the numerical Thomas-Fermi electron density.
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Figure 3.3: TF and TFD numerical electron densities for a SWNT of radius
Rt = 3.4 Å. We plot the electron density as a function of the distance from the
nanotube axis.

3.2 Molière Approximation

As we did for graphene in section 2.5, we now want to compute the electron density

distribution for a nanotube using the Molière approximation. We had from (2.61)

an expression for the total electrostatic potential of a single atom. We also had

from (2.63) an expression for the total electrostatic potential of a configuration of

atoms. We now work in cylindrical coordinates and the atomic density distribution

D(r′) in (2.63) is

D(r′) = σaδ(r
′ −Rt), (3.23)
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where σa is the surface atomic density in the nanotube, r′ is the radial coordinate

and Rt is the nanotube radius. Using (2.61) and (3.23) in (2.63) we have

Φ(r) =

∫

dr′ σaδ(r
′ −Rt)

Z1

|r− r′|

3
∑

i=1

αie
−βi|r−r′|/am

=

∫ ∞

0

dr′ r′
∫ ∞

−∞
dz′
∫ 2π

0

dθ′ σaδ(r
′ −Rt) ×

Z1
√

r2 + r′2 − 2rr′ cos (θ − θ′) + (z − z′)2

3
∑

i=1

αie
−βi

√
r2+r′2−2rr′ cos (θ−θ′)+(z−z′)2/am

=

∫ ∞

0

dz

∫ 2π

0

dθ
2σaZ1Rt

√

r2 +R2
t − 2rRt cos θ + z2

3
∑

i=1

αie
−βi

√
r2+R2

t−2rRt cos θ+z2/am .

(3.24)

We now let ξ =
√

r2 +R2
t − 2rRt cos θ + z2, so that

z =
√

ξ2 − (r2 +R2
t − 2rRt cos θ), and dz =

ξ dξ
√

ξ2 − (r2 +R2
t − 2rRt cos θ)

.

(3.25)

We may now write (3.24) as

Φ(r) =

∫ 2π

0

dθ

∫ ∞

√
r2+R2

t−2rRt cos θ

dξ
2σaZ1Rt

√

ξ2 − (r2 +R2
t − 2rRt cos θ)

3
∑

i=1

αie
−βiξ/am ,

(3.26)

or letting h =
√

r2 +R2
t − 2rRt cos θ,

Φ(r) = 2σaZ1Rt

∫ 2π

0

dθ

∫ ∞

h

dξ
1

√

ξ2 − h2

3
∑

i=1

αie
−βiξ/am . (3.27)
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By making the change of variable x = ξ/h, we may write (3.27) as

Φ(r) = 2σaZ1Rt

∫ 2π

0

dθ
3
∑

i=1

αi

∫ ∞

1

dx
e−βixh/am

√
x2 − 1

= 2σaZ1Rt

∫ 2π

0

dθ
3
∑

i=1

αiK0

(

βih

am

)

, (3.28)

whereK0(βih/am) is the zeroth order modified Bessel function. We may write (3.28)

as

Φ(r) = 4σaZ1Rt

∫ π

0

dθ
3
∑

i=1

αiK0

(

βi

√

r2 +R2
t − 2rRt cos θ

am

)

= 4σaZ1Rt

∫ π

0

dθ

∫ ∞

0

dξ δ
(

ξ −
√

r2 +R2
t − 2rRt cos θ

)

3
∑

i=1

αiK0

(

βiξ

am

)

= 4σaZ1Rt

∫ ∞

0

dξ
3
∑

i=1

αiK0

(

βiξ

am

)
∫ π

0

dθ δ
(

ξ −
√

r2 +R2
t − 2rRt cos θ

)

. (3.29)

Now we let t = cos θ and we use the property that a delta function of a function

g(x) may be written as

δ (g(x)) =
∑

i

δ(x− xi)

|g′(xi)|
, (3.30)

where the xi’s are the zeros of g(x). We may then write the integral over θ in (3.29)

as

∫ π

0

dθ δ
(

ξ −
√

r2 +R2
t − 2rRt cos θ

)

=
ξ

rRt

∫ 1

−1

dt
δ
(

t−
(

r2+R2
t−ξ2

2rRt

))

√
1− t2

=
ξ

rRt

1
√

1−
(

r2+R2
t−ξ2

2rRt

)2
=

2ξ
√

(2rRt)2 − (r2 +R2
t − ξ2)2

, (3.31)



CHAPTER 3. EQUILIBRIUM ELECTRON DENSITY IN CARBON

NANOTUBES 41

so that the total electrostatic potential of the nanotube is

Φ(r) = 4σaZ1Rt

∫ |r+Rt|

|r−Rt|
dξ

2ξ
√

(2rRt)2 − (r2 +R2
t − ξ2)2

3
∑

i=1

αiK0

(

βiξ

am

)

. (3.32)

We may write the square root in the integrand as

√

(2rRt)2 − (r2 +R2
t − ξ2)2 =

√

[2rRt + (r2 +R2
t − ξ2)] [2rRt − (r2 +R2

t − ξ2)]

=
√

[(r +Rt)2 − ξ2] [ξ2 − (r −Rt)2], (3.33)

so we get

Φ(r) = 4σaZ1Rt

∫ |r+Rt|

|r−Rt|
dξ

2ξ
√

[(r +Rt)2 − ξ2] [ξ2 − (r −Rt)2]

3
∑

i=1

αiK0

(

βiξ

am

)

.

(3.34)

The integral in (3.34) has an analytic solution [14], so we get

Φ(r) = 4πσaZ1Rt

3
∑

i=1

αiI0

(

βir<

am

)

K0

(

βir>

am

)

, (3.35)

where I0 and K0 are the zeroth order modified Bessel functions, r< = min(r, Rt),

and r> = max(r, Rt).

We are interested in finding the electron density distribution around the nan-

otube. From (2.11) we have

n(r) =
1

4π
∇2Φ(r). (3.36)

Taking the Laplacian of (3.35) we get

∇2Φ(r) =
1

r

d

dr

(

r
dΦ(r)

dr

)
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=
4πσaZ1Rt

a2
m

3
∑

i=1

αiβ
2
i I0

(

βir<

am

)

K0

(

βir>

am

)

, (3.37)

The Molière approximation to the electron density around a SWNT is then

n(r) =
σaZ1Rt

a2
m

3
∑

i=1

αiβ
2
i I0

(

βir<

am

)

K0

(

βir>

am

)

. (3.38)

3.3 Least-Squares Minimization

The form of the Molière electron density (3.38) suggests that we can approximate

the electron density of a SWNT by using functions of the form

n(r) = no

[

I0

(r<

a

)

K0

(r>

b

)]

, (3.39)

with r< = min(r, Rt), and r> = max(r, Rt), where r is the distance from the

nanotube axis, and Rt is the radius of the nanotube. Both a and b in (3.39) are free

parameters that may be chosen so that n(r) approximates well the electron density

distribution. Here, no is a normalization constant, that is fixed for any given a, b,

and Rt. We call (3.39) the Bessel approximation.

In section 3.1, we computed numerically the electron density for a SWNT, using

both a TF and a TFD method. Now we will find an analytical approximation to the

electron density by using least-squares minimization. We assume an electron density

of the form (3.39) and choose parameters a and b that minimize the least-squares

error with respect to the numerical solution. This least-squares minimization is done

numerically with respect to both the TF and TFD numerical electron densities. The

two analytical approximations obtained are compared in figure 3.4.

In figure 3.5 we show the TF numerical electron density computed by setting

the potential Φ(r) to be approximately zero at r = 2Rt ( ) and at r = 3Rt ( ).

We also show the Molière approximation to the electron density and the Bessel LS
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Figure 3.4: Bessel approximations (3.39) to electron density by least-squares mini-
mization. We plot the logarithm to base 10 of the electron density as a function of
the distance from the nanotube axis.

approximation minimized with respect to the numerical solution (I).

3.4 Minimizing Energy Functional

It is possible to obtain another analytical approximation to the electron density for a

SWNT. Since equilibrium electron behavior for a single-walled nanotube is defined

in terms of the functional (2.1), an analytical approximation to the equilibrium

electron density may be found by inserting a trial function of the form (3.39) into

the energy functional (2.1), and minimizing the functional with respect to the free

parameters a and b. We have done this minimization by numerically evaluating the

energy functional over a grid of values in a and b. We then choose the a and b values

that give the minimum energy. Here, we have done this minimization by taking into

account only the TF and Coulomb terms in (2.1) in order to obtain a TF electron



44 Electric Response in Graphite and Carbon Nanotubes

0 2 4 6 8
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

r Å
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Figure 3.5: Electron density for a SWNT of radius Rt = 3.4 Å. We show the TF nu-
merical electron density computed by setting the potential Φ(r) to be approximately
zero at r = 2Rt (I) and at r = 3Rt (II). We also show the Molière approximation
to the electron density and the Bessel LS approximation minimized with respect to
the numerical solution (I).
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density.

3.5 Multi-Walled Nanotubes

3.5.1 Numerical Solution

In section 3.1.1 we calculated the numerical TF electron density distribution for a

single-walled nanotube. The numerical scheme we used was given by (3.10):

Φn+1 = (∆r)2

(

ξΦ3/2
n − 1

rn

Φn − Φn−1

∆r

)

+ 2Φn − Φn−1. (3.40)

Now we use this scheme together with boundary conditions (3.2)-(3.5) to calculate

the numerical TF electron density distribution for a multi-walled nanotube. We

have done this calculation for a 2-walled nanotube of inner radius Rt1 = 3.4 Å

and outer radius Rt2 = 6.8 Å. We have also done this calculation for a 3-walled

nanotube of radii Rt1 = 3.4 Å, Rt2 = 6.8 Å, and Rt3 = 10.2 Å. Figures 3.6 and 3.7

show these results.

3.5.2 Bessel Approximations

In sections 3.2–3.4 we found analytical Bessel approximations to the electron density

distributions of single-walled nanotubes. We now consider these analytical Bessel

approximations for single-walled nanotubes of radii Rt1 , Rt2 , and Rt3 . We use the su-

perposition of these analytical Bessel approximations to model the electron density

distribution of multi-walled nanotubes. The analytical Bessel approximations may

be found using any of the methods discussed previously. Figure 3.8 compares the

numerical TF electron density for a 3-walled nanotube with its analytical TF Bessel

approximation obtained by minimization of the energy functional. The calculation

was done for radii Rt1 = 3.4 Å, Rt2 = 6.8 Å, and Rt3 = 10.2 Å.
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Figure 3.6: TF numerical electron density for a 2-walled nanotube of inner radius
Rt1 = 3.4 Å and outer radius Rt2 = 6.8 Å. We plot the electron density as a function
of the distance from the nanotube axis.
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Figure 3.7: TF numerical electron density for 3-walled nanotube of radii Rt1 = 3.4
Å, Rt2 = 6.8 Å, and Rt3 = 10.2 Å. We plot the electron density as a function of the
distance from the nanotube axis.
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Figure 3.8: TF numerical electron density and its analytical TF Bessel approxima-
tion for 3-walled nanotube.



Chapter 4

Stopping Force

We will now be interested in studying ions moving parallel to a graphene sheet and

experiencing forces due to the dynamic polarization of carbon valence electrons.

When studying the energy loss of such ions, it is important to look at the force

which directly opposes the ion’s motion, called the stopping force (see figure 4.1).

In this chapter, we develop the theory used to calculate the stopping force.

For an ion moving through an electron gas, the stopping force 1 is defined by

FS(t) = −Z1v̂ · E(r)

∣

∣

∣

∣

r=r0(t)

, (4.1)

where Z1 is the ion’s electric charge, v̂ = v(t)/v(t),2 and E(r) is the induced electric

field. We may write (4.1) as

FS(t) = Z1v̂ · ~∇φind(r, t)

∣

∣

∣

∣

r=r0(t)

, (4.2)

where φind(r, t) is the induced electric potential. Our goal is to find an expression

1Often incorrectly called “stopping power” in the literature.

2Here v(t) = dr0(t)/dt is the ion’s velocity and v(t) is |v(t)|, i.e., the ion’s speed.

49
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Figure 4.1: Ion moving parallel to a graphene sheet.

that we can use to calculate the stopping force for ions moving parallel to a graphene

sheet.

4.1 Induced Electric Potential

Our first step in finding an expression for the stopping force that we can use is to

find a way of expressing φind(r, t) in (4.2). The induced electric potential is given

by

φind(r, t) =

∫

dr′ ρind(r
′, t)Vc(r− r′), (4.3)
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where ρind(r
′, t) is the induced charge density and Vc(r − r′) ≡ 1/|r − r′|, is the

Coulomb interaction. We know that the induced charge density is given by [15]

ρind(r
′, t) =

∫

dr′′
∫

dτ
[

ε−1(r′, r′′, t− τ)− δ(r′ − r′′)δ(t− τ)
]

ρext(r
′′, τ), (4.4)

where ε−1(r′, r′′, t−τ) is the inverse dielectric function of the medium and ρext(r
′′, τ)

is the external charge density, which is the charge density of the ion alone. The term

[ε−1(r′, r′′, t− τ)− δ(r′ − r′′)δ(t− τ)] in (4.4) is called the density-density response

function. Using (4.3) with (4.4) we may write

φind(r, t) =

∫

dr′
∫

dr′′
∫

dτ Vc(r− r′)

×
[

ε−1(r′, r′′, t− τ)− δ(r′ − r′′)δ(t− τ)
]

ρext(r
′′, τ), (4.5)

or using the notation r = (R, z), 3

φind(r, t) =

∫

dz′
∫

dz′′
∫

dR′
∫

dR′′
∫

dτ Vc(R−R′; z − z′)

×
[

ε−1(R′ −R′′; z′, z′′; t− τ)− δ(R′ −R′′)δ(z′ − z′′)δ(t− τ)
]

ρext(R
′′, z′′, τ).

(4.6)

In (4.6) we may write the inverse dielectric function in terms of its Fourier transform

as

ε−1(R′ −R′′; z′, z′′; t− τ) =

∫

dK

(2π)2

∫

dω

2π
eiK·(R′−R′′)e−iω(t−τ)ε−1(K; z′, z′′;ω),

(4.7)

and the term δ(R′ −R′′)δ(t− τ) as

δ(R′ −R′′)δ(t− τ) =

∫

dK

(2π)2

∫

dω

2π
eiK·(R′−R′′)e−iω(t−τ), (4.8)

3See p. 18.
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so we get

φind(r, t) =

∫

dz′
∫

dz′′
∫

dR′
∫

dR′′
∫

dτ

∫

dK

(2π)2

∫

dω

2π
eiK·(R′−R′′)−iω(t−τ)

× Vc(R−R′; z − z′)
[

ε−1(K; z′, z′′;ω)− δ(z′ − z′′)
]

ρext(R
′′, z′′, τ). (4.9)

We may also write the exponential in (4.9) as

eiK·(R′−R′′)−iω(t−τ) = eiK·[R−(R−R′)−R′′]−iω(t−τ), (4.10)

so that the integral over R′ becomes

∫

dR′ e−iK·(R−R′)Vc(R−R′; z − z′) = Vc(K; z − z′). (4.11)

The induced potential (4.9) may then be written as

φind(r, t) =

∫

dz′
∫

dz′′
∫

dK

(2π)2
eiK·R

∫

dω

2π
e−iωt Vc(K; z − z′)

×
[

ε−1(K; z′, z′′;ω)− δ(z′ − z′′)
]

∫

dR′′
∫

dτ e−i(K·R′′)eiωτρext(R
′′, z′′, τ). (4.12)

We write the velocity of a moving ion as v(t) = (V, vz), where V = (vx, vy) is

the component of v in the xy-plane. For an ion of charge Z1, moving at constant

velocity v(t) ≡ (V, vz) = (V, 0) parallel to the xy-plane, and at a distance b from

the xy-plane, the charge density is given by

ρext(R
′′, z′′, τ) = Z1δ(R

′′ −Vτ)δ(z′′ − b). (4.13)

In (4.12) the integrals over R′′ and τ then become

∫

dR′′
∫

dτ e−i(K·R′′)eiωτρext(R
′′, z′′, τ) = Z1

∫

dτ e−i(K·Vτ)eiωτδ(z′′ − b). (4.14)
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Using the exponential integral form of the Dirac delta function

δ(ω −K ·V) =
1

2π

∫

dτ eiτ(ω−K·V), (4.15)

we write (4.14) as

∫

dR′′
∫

dτ e−i(K·R′′)eiωτρext(R
′′, z′′, τ) = 2πZ1δ(ω −K ·V)δ(z′′ − b). (4.16)

Substituting (4.16) in (4.12) we get

φind(r, t) =

∫

dz′
∫

dz′′
∫

dK

(2π)2
eiK·R

∫

dω e−iωt Vc(K; z − z′)

×
[

ε−1(K; z′, z′′;ω)− δ(z′ − z′′)
]

Z1δ(ω −K ·V)δ(z′′ − b). (4.17)

The integrals over ω and z′′ may be done taking advantage of the delta functions.

We get

φind(r, t) =
Z1

(2π)2

∫

dz′
∫

dK eiK·(R−Vt)Vc(K; z−z′)
[

ε−1(K; z′, b;K ·V)− δ(z′ − b)
]

.

(4.18)

4.2 Expressing the Coulomb Interaction

We now need an expression for Vc(K; z − z′) in (4.18). We know

Vc(r− r′) =
1

|r− r′| =
1

√

|R−R′|2 + (z − z′)2
=

1
√

R2
d + (z − z′)2

, (4.19)

where Rd ≡ R−R′, and Rd = |Rd|. Using Fourier transforms we have

Vc(K; z − z′) =

∫

dRd e
−iK·RdVc(r− r′)
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=

∫ ∞

0

dRd Rd

∫ π

−π

dθ
e−iKRd cos θ

√

(z − z′)2 +R2
d

=

∫ ∞

0

dRd Rd
2

√

(z − z′)2 +R2
d

∫ π

0

dθ cos (KRd cos θ). (4.20)

Now we use the integral representation of the Bessel function of the first kind [16]

J0(z) =
1

π

∫ π

0

dθ cos (z cos θ), (4.21)

and we write (4.20) as

Vc(K; z − z′) = 2π

∫ ∞

0

dRd Rd
1

√

(z − z′)2 +R2
d

J0(KRd)

=
2πe−|z−z′|K

K
. (4.22)

We may now substitute (4.22) into (4.18) and get

φind(r, t) =
Z1

2π

∫

dz′
∫

dK

K
eiK·(R−Vt)e−|z−z′|K [ε−1(K; z′, b;K ·V)− δ(z′ − b)

]

.

(4.23)

4.3 Expressing the Stopping Force

In our expression for the stopping force (4.2), what we need is the gradient of

φind(r, t). Actually, because of the dot product of ~∇φind(r, t) with v(t) in (4.2), we

care about only the component of ~∇φind(r, t) in the direction of v(t), that is, of V.
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From (4.23) we have 4

~∇Rφind(r, t) =
Z1

2π

∫

dz′
∫

dK

K
(iK)eiK·(R−Vt)

[

ε−1(K, z′, b,K·V)−δ(z′−b)
]

e−|z−z′|K .

(4.24)

Using this equation, we write the stopping force (4.2) as

FS = Z1
v(t)

v(t)
· ~∇φind(r, t)

∣

∣

∣

∣

r=r0(t)

= Z1
v(t)

v(t)
· ~∇Rφind(r, t)

∣

∣

∣

∣

r=r0(t)

= i
(Z1)

2

2πv

∫

dz′
∫

dK (K ·V)
[

ε−1(K, z′, b,K ·V)− δ(z′ − b)
]e−|b−z′|K

K
.

(4.25)

Notice that when we set r = r0(t), the first exponential from (4.24) vanishes because

we have R = Vt. This means that the stopping force is independent of time.

To write (4.25) in a more convenient form, we now introduce some notation.

First of all, we are interested in studying an ion moving through an electron gas,

and for simplicity we assume the ion to be moving parallel to the xy-plane and at a

distance b from the xy-plane. To simplify things more, we may choose our coordinate

system so that the ion moves parallel to the x-axis. We then have V = (v, 0), and

since K = (Kx, Ky),
5 we may write K ·V = Kxv.

We had previously set ω = K ·V because of the delta function in (4.17), so we

have ω = K · V = Kxv. Now we define Kx ≡ ω/v and Ky ≡ q, so dKx = dω/v,

dKy = dq, and dK = dKxdKy = (1/v)dωdq. We also have

K =
√

K2
x +K2

y =

√

ω2

v2
+ q2, (4.26)

4In (4.24), ~∇Rφind(r, t) is the component of ~∇φind(r, t) in the R direction. We don’t need the

component in the z direction, since it will vanish when doing the dot product v̂ · ~∇φind(r, t) in
(4.2).

5Recall K was the Fourier transform of R = (x, y).
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and we know z = b throughout the ion’s trajectory.

Finally we may write the stopping force (4.25) as

FS = i
Z2

1

2πv

∫

dz′
∫

dq

∫

dω
ω

v

×
[

ε−1
(

z′, b,
√

q2 + ω2/v2, ω
)

− δ(z′ − b)
] e−|b−z′|

√
q2+ω2/v2

√

q2 + ω2/v2
(4.27)

or

FS = − Z2
1

2πv2

∫

dz′
∫

dq 2

∫ ∞

0

dω ω
e−|b−z′|

√
q2+ω2/v2

√

q2 + ω2/v2

×Im
[

ε−1 (z′, b, q, ω/v;ω)− δ(z′ − b)
]

, (4.28)

where we have used the property that Re[ε−1(ω)] is an even function of ω, and

Im[ε−1(ω)] is an odd function of ω. Equation (4.28) gives us an expression for the

stopping force in terms of the inverse dielectric function.

4.4 Inverse Dielectric Function

To calculate the stopping force using (4.28), we need to know the inverse dielec-

tric function. By using the high frequency approximation, Kitagawa derived an

expression for the inverse dielectric function of a nonuniform electron gas with

ground-state density n(r) [6]. His inverse dielectric function is

ε−1(r1, r2, ω) ∼= ω2

ω2 − ω2
p(r1)

[

δ(r1 − r2)−
1

ω2 − ω2
p(r2)

(r2 − r1)

|r2 − r1|3
· ~∇n(r1)

]

,

(4.29)

where ω2
p(r) = 4πn(r) is the so-called local plasma frequency. We need to find

the imaginary part of ε−1(r1, r2, ω) in order to calculate the stopping force. To do

this, we first look at the factor ω2/
(

ω2 − ω2
p(r1)

)

in the first term of ε−1(r1, r2, ω).
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Letting ω −→ (ω + iη) with η → 0+ to distinguish the real and imaginary parts,

we write ω2/
(

ω2 − ω2
p(r1)

)

as 6

(ω + iη)2

(ω + iη)2 − ω2
p

=
ω2 − η2 + i2ωη

ω2 − η2 + i2ωη − ω2
p

= 1 +
ω2

p

ω2 − η2 + i2ωη − ω2
p

= 1 +
ω2

p

(

ω2 − η2 − ω2
p

)

(ω2 − η2 − ω2
p)

2 + (2ωη)2
− i

ω2
p2ωη

(ω2 − η2 − ω2
p)

2 + (2ωη)2
. (4.30)

Now letting η → 0+, we have

(ω + iη)2

(ω + iη)2 − ω2
p

−→ 1 + P

(

ω2
p

ω2 − ω2
p

)

− i
ω2

p2ωη

(ω2 − ω2
p)

2 + (2ωη)2

= 1 + P

(

ω2
p

ω2 − ω2
p

)

− iω2
p sign(ω)π

[ |ω|2η/π
(ω2 − ω2

p)
2 + (2|ω|η)2

]

, (4.31)

where P (ω2
p/(ω

2 − ω2
p)) means we take the Cauchy principal part of ω2

p/(ω
2 − ω2

p).

Using the representation of the delta function

δ(x) = lim
γ→0+

1

π

γ

x2 + γ2
, (4.32)

we may write the right hand side of (4.31) as

1 + P

(

ω2
p

ω2 − ω2
p

)

− iω2
p sign(ω)πδ(ω2 − ω2

p). (4.33)

We may express the delta function in this expression as δ ((ω + ωp)(ω − ωp)). Now

we may use the property that a delta function of a function g(x) may be written as

δ (g(x)) =
∑

i

δ(x− xi)

|g′(xi)|
, (4.34)

6η > 0 to ensure that the density-density response function in (4.4) is causal, that is ε−1(t−τ) =
0 for τ > t upon performing the inverse Fourier transform of ε−1(ω).



58 Electric Response in Graphite and Carbon Nanotubes

where the xi’s are the zeros of g(x). So we have , as η → 0+,

(ω + iη)2

(ω + iη)2 − ω2
p

−→ 1 + P

(

ω2
p

ω2 − ω2
p

)

− iω2
p sign(ω)π

[

δ(ω − ωp)

2ωp

+
δ(ω + ωp)

2ωp

]

=

= 1 + P

(

ω2
p

ω2 − ω2
p

)

− iωp
π

2
[δ(ω − ωp)− δ(ω + ωp)] . (4.35)

The second term in (4.29) has the factor

ω2

ω2 − ω2
p(r1)

1

ω2 − ω2
p(r2)

= − 1

(ω2
2 − ω2

1)

[

ω2

(ω2 − ω2
1)
− ω2

(ω2 − ω2
2)

]

, (4.36)

where we have abbreviated ω2
p(r1) and ω2

p(r2) by ω2
1 and ω2

2, respectively.

As we did previously, we let ω −→ (ω+iη) to distinguish the real and imaginary

parts. Then, letting η → 0+, we use the result of (4.35) to write the right hand side

of (4.36) as

− 1

ω2
2 − ω2

1

[

{

1 + P

(

ω2
1

ω2 − ω2
1

)

− iω1
π

2
[δ(ω − ω1)− δ(ω + ω1)]

}

−
{

1 + P

(

ω2
2

ω2 − ω2
2

)

− iω2
π

2
[δ(ω − ω2)− δ(ω + ω2)]

}

]

= − 1

ω2
2 − ω2

1

{

P

(

ω2
1

ω2 − ω2
1

− ω2
2

ω2 − ω2
2

)

−iω1
π

2
[δ(ω − ω1)− δ(ω + ω1)] + iω2

π

2
[δ(ω − ω2)− δ(ω + ω2)]

}

= P

(

ω2

(ω2 − ω2
1)(ω

2 − ω2
2)

)

− i
π

2
P

(

1

ω2
2 − ω2

1

)

×
{

− ω1 [δ(ω − ω1)− δ(ω + ω1)] + ω2 [δ(ω − ω2)− δ(ω + ω2)]

}

,(4.37)
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where in the last step we have used

ω2
1

ω2 − ω2
1

− ω2
2

ω2 − ω2
2

=
ω2(ω2

1 − ω2
2)

(ω2 − ω2
1)(ω

2 − ω2
2)
. (4.38)

The factors
ω2

ω2 − ω2
1

and
ω2

ω2 − ω2
1

1

ω2 − ω2
2

, (4.39)

in Kitagawa’s inverse dielectric function (4.29), are given by (4.35) and (4.37),

respectively. Taking the imaginary parts of (4.35) and (4.37) we may write the

imaginary part of ε−1(r1, r2, ω) as

Im
[

ε−1(r1, r2, ω)
]

= −ωp(r1)
π

2
[δ (ω − ωp(r1))− δ (ω + ωp(r1))] δ(r1 − r2)

+
r2 − r1

|r2 − r1|3
·~∇n(r1)

[

π

2
P

(

1

ωp(r2)2 − ωp(r1)2

)

(

ωp(r2) [δ(ω − ωp(r2))− δ(ω + ωp(r2))]

−ωp(r1) [δ(ω − ωp(r1))− δ(ω + ωp(r1))]
)

]

. (4.40)

We consider an electron density that varies only in one dimension, and we write

r1 = z′, r2 = z, and

~∇n(r1) =
dn(z′)

dz′
êz. (4.41)

We also have

r2 − r1

|r2 − r1|3
= ~∇r1

1

|r1 − r2|
= ~∇r1Vc(r1 − r2) = ~∇r1Vc(R1 −R2, z

′ − z) (4.42)

so
r2 − r1

|r2 − r1|3
· ~∇n(r1) =

∂Vc(R1 −R2, z
′ − z)

∂z′
dn(z′)

dz′
. (4.43)
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Taking the Fourier transform of (4.43) with respect to Rd12 ≡ R1 −R2 we have

∫

dRd12 e
iK·(R1−R2) r2 − r1

|r2 − r1|3
· ~∇n(r1)

=
∂Vc(K, z

′ − z)

∂z′
dn(z′)

dz′
, (4.44)

or using (4.22) for Vc(K, z
′ − z) we have

∫

dRd12 e
iK·(R1−R2) r2 − r1

|r2 − r1|3
· ~∇n(r1)

=
∂

∂z′

(

2πe−K|z′−z|

K

)

dn(z′)

dz′
= 2πe−K|z′−z|dn(z′)

dz′
z − z′

|z − z′| . (4.45)

We may then use (4.40) to obtain the Fourier transform of the density-density

response function

Im

[

ε−1 (K, z, b, ω)− δ(z′ − b)

]

= −ωp(z
′)
π

2

[

δ (ω − ωp(z
′))− δ (ω + ωp(z

′))
]

δ(z′ − b)

+π2 b− z′

|b− z′|e
−|z′−b|K dn(z′)

dz′
P

(

1

ωp(b)2 − ωp(z′)2

)

×
{

ωp(b) [δ(ω − ωp(b))− δ(ω + ωp(b))]− ωp(z
′) [δ(ω − ωp(z

′))− δ(ω + ωp(z
′))]

}

.

(4.46)

4.5 Final Expression for Stopping Force

We may now use (4.46) with (4.26) in our expression (4.28) for stopping force.

Substituting the first term of (4.46) in (4.28) we are left with the first term of our

stopping force:

FS1 =
Z2

1

2v2

∫

dz′
∫

dq

∫ ∞

0

dω ω
e−|z−z′|

√
q2+ω2/v2

√

q2 + ω2/v2
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× ωp(z
′) [δ(ω − ωp(z

′))− δ(ω + ωp(z
′))] δ(z′ − b) (4.47)

Taking advantage of the delta functions to do the z ′ and ω integrals, we get 7

FS1 =
(Z1)

2

v2
ω2

p(b)

∫ qmax

0

dq
e−|z−b|

√
q2+ω2

p(b)/v2

√

q2 +
ω2

p(b)

v2

, (4.48)

and since z = b throughout the ion’s trajectory,

FS1 =
(Z1)

2

v2
ω2

p(b)

∫ qmax

0

dq
1

√

q2 +
ω2

p(b)

v2

=
(Z1)

2

v2
ω2

p(b)

[

ln

(

qmax +

√

q2
max +

ω2
p(b)

v2

)

− ln

(

ωp(b)

v

)]

=
(Z1)

2

v2
ω2

p(b) ln

(

qmaxv

ωp(b)
+

√

q2
maxv

2

ωp(b)
+ 1

)

. (4.49)

In the limit as v → ∞, (4.49) corresponds to the well-known Bethe formula for

stopping force in homogeneous media [17]. Substituting the second term of (4.46)

in (4.28) we get the second term of our stopping force:

FS2 = −(Z1)
2π

v2

∫

dz′
∫

dq

∫ ∞

0

dω ω
e−|z−z′|

√
q2+ω2/v2

√

q2 + ω2/v2

(b− z′)

|b− z′| ×

e−|z
′−b|
√

q2+ω2/v2 dn(z′)

dz′
P

(

1

ω2
p(b)− ω2

p(z
′)

)

×

{ωp(b) [δ(ω − ωp(b))− δ(ω + ωp(b))]− ωp(z
′) [δ(ω − ωp(z

′))− δ(ω + ωp(z
′))]} .

(4.50)

7The integral in (4.48) is divergent if we take the upper limit to be infinity. For this reason we
introduce a cutoff qmax corresponding the the maximum momentum transfer to an electron.
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Taking advantage of the delta functions to do the ω integrals and using ω2
p(z) =

4πn(z), we get

FS2 = −(Z1)
2

2v2

∫

dz′
dω2

p(z
′)

dz′
b− z′

|b− z′|P
(

1

ω2
p(b)− ω2

p(z
′)

)

×



ω2
p(b)

∫ ∞

0

dq
e−2|z′−b|

√
q2+ω2

p(b)/v2

√

q2 + ω2
p(b)/v

2
− ω2

p(z
′)

∫ ∞

0

dq
e−2|z′−b|

√
q2+ω2

p(z′)/v2

√

q2 + ω2
p(z

′)/v2



 .

(4.51)

Noting that the integrals over q in (4.51) are convergent, we get

FS2 = −(Z1)
2

v2

1

2

∫

dz′
dω2

p(z
′)

dz′
b− z′

|b− z′|P
(

1

ω2
p(b)− ω2

p(z
′)

)

×
[

ω2
p(b)K0

(

2ωp(b)

v
|z′ − b|

)

− ω2
p(z

′)K0

(

2ωp(z
′)

v
|z′ − b|

)]

, (4.52)

where K0 is the zeroth order modified Bessel function of the second kind.

The total stopping force is then given by the sum of (4.49) and (4.52):

FS = FS1 + FS2

=
(Z1)

2

v2
ω2

p(b) ln

(

qmaxv

ωp(b)
+

√

q2
maxv

2

ωp(b)
+ 1

)

− (Z1)
2

v2

1

2

∫

dz′
dω2

p(z
′)

dz′
b− z′

|b− z′|

×P
(

1

ω2
p(b)− ω2

p(z
′)

)[

ω2
p(b)K0

(

2ωp(b)

v
|z′ − b|

)

− ω2
p(z

′)K0

(

2ωp(z
′)

v
|z′ − b|

)]

.

(4.53)

FS1 is called the local stopping force and corresponds to the Bethe formula for

stopping in a homogeneous medium. FS2 is called nonlocal stopping force, and

gives a correction to the local stopping force.



Chapter 5

Calculation of Stopping Force

Now that we have an expression for the stopping force (4.53), we go ahead and

calculate it.

5.1 Stopping Force at Metal Surface

Before working with graphene, we are interested in calculating the stopping force for

a particle moving next to a metal, for example aluminum, in order to compare our

result with that of [18]. To use (4.53) we need an expression for the electron density

near the aluminum surface. We use the Thomas-Fermi electron density distribution,

fitted by simple analytical functions of the form

n(z) =







no − 1
2
noe

βz, (z < 0)

1
2
noe

−βz, (z > 0)
, (5.1)

where z is the distance from the surface, no is the electron density in the bulk and

β is a parameter that determines the electron tail. For aluminum no ≈ 2.69× 10−2

a.u. and β ≈ 1.24 a.u. [18].

Using this electron density distribution together with (4.53), we compute the
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Figure 5.1: Stopping force for a proton of v = 3.16 a.u. moving parallel to an
aluminum surface. The dotted line ( ) shows the first term of (4.53), called the
local contribution. The dashed line ( ) shows the second term of (4.53), called the
nonlocal contribution. The solid line ( ) shows the sum of the local and nonlocal
terms. We plot the logarithm to base 10 of the stopping force as a function of the
distance from the metal surface.
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stopping force for a proton of speed v = 3.16 a.u., for different distances z from the

surface. In figure 5.1 we plot the first and second terms of (4.53) as well as their sum,

reproducing the results of [18]. The first term ( ) is called the local contribution.

The second term ( ) is a correction to the local contribution and is called the

nonlocal contribution. It is clear from the figure that the nonlocal contribution

is important at larger distances from the surface, while the local contribution is

important near the surface.

5.2 Stopping Force Near a Graphene Sheet

Now we are interested in using the equilibrium electron density for graphene that

we calculated in chapter 2, together with (4.53), to calculate the stopping force for

an ion moving parallel to a graphene sheet.

Using the Thomas-Fermi analytical electron density for graphene (2.32), we

compute the stopping force for a proton of speed v = 3 a.u., for different distances z

from the surface. Figure 5.2 shows the contribution of each term of (4.53) to the total

stopping force. Again, the first term ( ) is the local contribution and the second

term ( ) is the correction to the local contribution, or the nonlocal contribution.

Here we again see how the nonlocal term is important at larger distances from the

surface, while the local term is important near the surface. We also compare our

results with the stopping force calculated using a 2D-Fluid model for the electron

gas on the graphene sheet 1 ( ). The 2D-Fluid model approximates the electron

distribution of graphene by a charged fluid confined to the two-dimensional plane of

the sheet. We can see in figure 5.2 that the three-dimensional electron distribution

of graphene greatly affects the stopping force on ions moving parallel to the sheet.

In figure 5.3 we compare the stopping force for a proton moving parallel to

1Refer to appendix B for a discussion of this 2D-Fluid model.
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Figure 5.2: Stopping force for a proton of v = 3 a.u. moving parallel to a graphene
sheet. The dotted line ( ) shows the first term of (4.53), called the local contri-
bution. The dashed line ( ) shows the second term of (4.53), called the nonlocal
contribution. The solid line ( ) shows the sum of local and nonlocal contribu-
tions. The dashed-dotted line ( ) is calculated using a 2D-Fluid model. We plot
the logarithm to base 10 of the stopping force as a function of the distance from
the sheet.
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Figure 5.3: Stopping force for a proton moving parallel to graphene at speeds v = 3
a.u., v = 5 a.u., and v = 10 a.u. The solid line ( ) is calculated using the TF
analytical electron density for graphene. The dotted line ( ) is calculated using
the 2D-Fluid model. We plot the logarithm to base 10 of the stopping force as a
function of the distance from the sheet.
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Figure 5.4: Stopping force for a proton moving parallel to graphene at speeds v = 3
a.u., v = 5 a.u., and v = 10 a.u. The solid line ( ) is calculated using the TFD
exponential approximation to the electron density for graphene. The dotted line
( ) is calculated using the 2D-Fluid model. We plot the logarithm to base 10 of
the stopping force as a function of the distance from the sheet.
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Figure 5.5: Stopping force for a proton moving parallel to graphene at speeds v = 3
a.u., v = 5 a.u., and v = 10 a.u. The solid line ( ) is calculated using the TF
analytical electron density for graphene. The dotted line ( ) is calculated using
the Molière approximation to the electron density. We plot the logarithm to base
10 of the stopping force as a function of the distance from the sheet.

graphene at speeds v = 3 a.u., v = 5 a.u., and v = 10 a.u. The stopping force is

calculated using the analytical TF electron density as well as the 2D-Fluid model.

We again see how the stopping force is much greater when we don’t restrict the

electron density of graphene to the plane of the sheet. We also see how the stopping

force is smaller for ions moving at higher speeds.

Figure 5.4 also compares the stopping force for a proton moving parallel to

a graphene sheet. The calculations shown are done using the TFD exponential

approximation to the electron density (2.33) as well as the 2D-Fluid model.

We also calculate the stopping force using the Molière approximation to the

electron density. We compare this with the stopping force calculated using the ana-

lytical TF electron density and the TFD exponential approximation to the electron
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Figure 5.6: Stopping force for a proton moving parallel to graphene at speeds v = 3
a.u., v = 5 a.u., and v = 10 a.u. The solid line ( ) is calculated using the
TFD exponential approximation to the electron density. The dotted line ( ) is
calculated using the Molière approximation to the electron density. We plot the
logarithm to base 10 of the stopping force as a function of the distance from the
sheet.
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Figure 5.7: Stopping force for a proton moving parallel to graphene at speed v = 3
a.u. The dashed line ( ) is calculated using the analytical TF electron density for
graphene. The dotted line ( ) is calculated using the TFD exponential approx-
imation to the electron density. The dashed-dotted line ( ) is calculated using
the Molière approximation to the electron density. The solid line ( ) is calculated
using the Cruz approximation to the electron density. The circles (o o o) are cal-
culated using a 2D-Fluid model. We plot the logarithm to base 10 of the stopping
force as a function of the distance from the sheet.

density. The results are shown in figures 5.5 and 5.6. We can see how at close dis-

tances to the sheet, the stopping force calculated using the Molière electron density

is smaller than the stopping force calculated using the TF and TFD electron densi-

ties. At larger distances from the sheet, where the Molière electron density is larger

than the TF and TFD electron densities, the stopping force calculated using the

Molière electron density is larger.

In figure 5.7 we show the stopping force for a proton moving parallel to a

graphene sheet at speed v = 3 a.u. The stopping force is calculated using five

different models for the electron density. Since Cruz’s model takes into account all
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Figure 5.8: Stopping force for a proton moving parallel to graphene at distance
d = 3 a.u., d = 5 a.u., and d = 10 a.u. from the sheet. The dotted line ( ) is
calculated using the Analytical TF electron density for graphene. The solid line
( ) is calculated using the 2D-Fluid model. We plot the logarithm to base 10 of
the stopping force as a function of the proton’s speed.

six of carbon’s electrons in the calculation of the electron density, all models in this

plot have been adjusted to include all of carbon’s six electrons when calculating the

electron density.

Now we study the dependence of the stopping force on the velocity of the moving

ion. In figure 5.8 we show the stopping force as a function of the proton’s speed,

for a proton moving parallel to graphene at distances d = 3 a.u., d = 5 a.u., and

d = 10 a.u. from the sheet. The stopping force is calculated using the analytical

TF electron density (2.32) as well as the 2D-Fluid model. We see how the stopping

force is smaller for ions moving farther from the sheet, and we can also notice the

large effect of having a three-dimensional electron density distribution, especially

at smaller speeds.
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Figure 5.9: Stopping force for a proton moving parallel to graphene at distance
d = 3 a.u. The dashed line ( ) is calculated using the analytical TF electron
density for graphene. The dotted line ( ) is calculated using the TFD exponential
approximation to the electron density. The dashed-dotted line ( ) is calculated
using the Molière approximation to the electron density. The solid line ( ) is
calculated using the Cruz approximation to the electron density. The circles (o o o)
are calculated using the 2D-Fluid model. We plot the logarithm to base 10 of the
stopping force as a function of the proton’s speed.

In figure 5.9 we show the stopping force for a proton moving parallel to a

graphene sheet and at distance d = 3 a.u. from the sheet. The stopping force

is calculated using 5 different models for the electron density. All models in this

plot have been adjusted to include all of carbon’s six electrons when calculating

the electron density. We plot the logarithm to base 10 of the stopping force as

a function of the proton’s speed. We can again see the large effect of having a

three-dimensional electron density distribution, especially at smaller speeds.





Chapter 6

Image Force

When investigating ions moving parallel to a graphene sheet, it is also of interest to

study the force which bends the ion’s trajectory towards the sheet, called the image

force (see figure 6.1). This force plays a major role in the study of ion channeling.

In the present chapter we develop the theory used to calculate the image force.

Our goal is to derive a formula that we can use to compute the image force for

ions moving parallel to a graphene sheet. For an ion moving through an electron

gas, the dynamical image force is defined as the force perpendicular to its motion.

Choosing our graphene sheet to lay in the xy-plane, we consider an ion of charge

Z1, moving at constant velocity v ≡ (V, vz) = (V, 0) parallel to the xy-plane, and

at a distance b from the xy-plane, so that the image force is given by

F⊥ = −Z1
∂φind

∂z









z=b, R=Vt

, (6.1)

where φind is the induced electric potential at the ion’s position. To calculate the
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Figure 6.1: Ion moving parallel to a graphene sheet.

image force we need an expression for φind in (6.1). We had from (4.23) that

φind(r, t) =
Z1

2π

∫

dz′
∫

dK

K
eiK·(R−Vt)e−|z−z′|K [ε−1(K; z′, b;K ·V)− δ(z′ − b)

]

.

(6.2)

Here we have that eiK·(R−Vt) = 1, since R = Vt. The induced potential at the ion’s

position is then

φind(z) =
Z1

2π

∫

dz′
∫

dK

K
e−|z−z′|K [ε−1(K; z′, b;K ·V)− δ(z′ − b)

]

. (6.3)

Now we need an expression for the inverse dielectric function in (6.3). We had from
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(4.29) that the inverse dielectric function is given by

ε−1(r1, r2, ω) ∼= ω2

ω2 − ω2
p(r1)

[

δ(r1 − r2)−
e2

m

1

ω2 − ω2
p(r2)

(r2 − r1)

|r2 − r1|3
· ~∇n(r1)

]

,

(6.4)

with ω2
p(r) = 4πn(r). If we consider the electron density to vary only in one dimen-

sion, we have from (4.45) that

∫

dRd12 e
iK·(R1−R2)

r2 − r1

|r2 − r1|3
· ~∇n(r1) = 2πe−K|z′−z|dn(z′)

dz′
z − z′

|z − z′| , (6.5)

so we may write the Fourier transform of our inverse dielectric function as

ε−1(K, z′, z, ω) ∼= ω2

ω2 − ω2
p(z

′)
δ(z′ − z)

−1

2

ω2 sign(z − z′)
[

ω2 − ω2
p(z

′)
] [

ω2 − ω2
p(z)

]

dω2
p(z

′)

dz′
e−|z−z′|K . (6.6)

Now we may substitute (6.6) into (6.3) and write the induced potential as

φind(z) =
Z1

2π

∫

dK

K

∫

dz′ e−|z−z′|K
[

ω2

ω2 − ω2
p(z

′)
δ(z′ − b)

−1

2

ω2 sign(b− z′)
[

ω2 − ω2
p(z

′)
] [

ω2 − ω2
p(b)

]

dω2
p(z

′)

dz′
e−|b−z′|K − δ(z′ − b)

]

, (6.7)

where ω = K ·V. The first and third terms inside the integral may be evaluated

taking advantage of the delta function. We then have

φind(z) =
Z1

2π

∫

dK

K

[

ω2

ω2 − ω2
p(b)

e−|z−b|K

+

(

∫

dz′
e−|z−z′|K

2

ω2 sign(z′ − b)
[

ω2 − ω2
p(z

′)
] [

ω2 − ω2
p(b)

]

dω2
p(z

′)

dz′
e−|b−z′|K

)

− e−|z−b|K
]

. (6.8)
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Now we must obtain ∂φind/∂z to calculate the image force (6.1). When differenti-

ating (6.8) with respect to z, the first and last terms go to zero, since

∂

∂z

[

e−|z−b|K
]

z=b
= lim

h→0

e−|b+h/2−b|K − e−|b−h/2−b|K

h
= 0. (6.9)

We then have

∂φind

∂z

∣

∣

∣

∣

z=b, R=Vt

=
Z1

2π

∫

dK

∫

dz′
ω2e−2|b−z′|K

2
[

ω2 − ω2
p(z

′)
] [

ω2 − ω2
p(b)

]

dω2
p(z

′)

dz′
. (6.10)

The image force is then

F⊥ = −Z1
∂φind

∂z

∣

∣

∣

∣

z=b, R=Vt

=

−(Z1)
2

4π

∫

dK

∫

dz′
e−2|b−z′|Kω2

[

ω2 − ω2
p(z

′)
] [

ω2 − ω2
p(b)

]

dω2
p(z

′)

dz′
(6.11)

It is easy to see that

ω2

[

ω2 − ω2
p(z

′)
] [

ω2 − ω2
p(b)

] =
1

ω2
p(z

′)− ω2
p(b)

(

ω2
p(z

′)

ω2 − ω2
p(z

′)
−

ω2
p(b)

ω2 − ω2
p(b)

)

,

(6.12)

so we may rewrite (6.11) as

F⊥ = −Z1
∂φind

∂z

∣

∣

∣

∣

z=b, R=Vt

=

−(Z1)
2

4π

∫

dK

∫

dz′
dω2

p(z
′)

dz′
e−2|b−z′|K

ω2
p(z

′)− ω2
p(b)

(

ω2
p(z

′)

ω2 − ω2
p(z

′)
−

ω2
p(b)

ω2 − ω2
p(b)

)

. (6.13)

We may also write (6.13) as

F⊥(b) = −(Z1)
2

4π

∫ ∞

−∞
dz′

dω2
p(z

′)

dz′
1

ω2
p(z

′)− ω2
p(b)
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× [G(z′ − b, z′)−G(z′ − b, b)] , (6.14)

where

G(x, y) =

∫

dK e−2K|x| P

∫ ∞

−∞
dω δ(ω −K ·V)

ω2
p(y)

ω2 − ω2
p(y)

. (6.15)

6.1 Simplifying G(x, y)

Now we want to write G(x, y) in (6.14) in a more useful form. First we write (6.15)

as

G(x, y) =

∫ ∞

0

dK Ke−2K|x| P

∫ ∞

−∞
dω

ω2
p(y)

ω2 − ω2
p(y)

∫ π

−π

dθ δ(ω −KV cos θ). (6.16)

Now we use the property of delta functions

δ(cx) =
1

|c|δ(x) (6.17)

and we have

G(x, y) =

∫ ∞

0

dK Ke−2K|x| P

∫ ∞

−∞
dω

ω2
p(y)

ω2 − ω2
p(y)

2

∫ π

0

dθ
1

KV
δ
( ω

KV
− cos θ

)

.

(6.18)

We define τ ≡ cos θ, so dτ = − sin θ dθ, and making the change of variable in the

θ integral, we have

G(x, y) = 4

∫ ∞

0

dK
1

V
e−2K|x| P

∫ ∞

0

dω
ω2

p(y)

ω2 − ω2
p(y)

∫ 1

−1

dτ
δ( ω

KV
− τ)√

1− τ 2
. (6.19)
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The τ integral becomes

∫ 1

−1

dτ
δ( ω

KV
− τ)√

1− τ 2
=

1
√

1− ω2

(KV )2

=
KV

√

(KV )2 − ω2
, (6.20)

where we must have (KV )2 ≥ ω2, so we may write (6.19) as

G(x, y) = 4

∫ ∞

0

dK
1

V
e−2K|x| P

∫ ∞

0

dω
ω2

p(y)

ω2 − ω2
p(y)

KV
√

(KV )2 − ω2
H(K2V 2 − ω2),

(6.21)

where the unit step function, H(K2V 2 − ω2), guarantees that (KV )2 ≥ ω2.

Now we define up ≡ ωp/(KV ) and u ≡ ω/(KV ), so that du = dω/(KV ). Using

these changes of variable, the ω integral in (6.21) gives

∫ KV

0

dω
ω2

p(y)

ω2 − ω2
p(y)

KV
√

(KV )2 − ω2
=

∫ 1

0

du
KV u2

p(y)
(

u2 − u2
p(y)

)√
1− u2

= −π
2

KV up(y)
√

u2
p(y)− 1

, (6.22)

where we need u2
p(y) > 1. We may now write (6.21) as

G(x, y) = −2π

∫ ∞

0

dK Ke−2K|x| up(y)H (up(y)− 1)
√

u2
p(y)− 1

= −2π

∫

ωp(y)

V

0

dK e−2K|x| ωp(y)

V

1
√

ω2
p(y)

K2V 2 − 1
, (6.23)

= −2π

∫

ωp(y)

V

0

dK e−2K|x| K
√

1− K2V 2

ω2
p(y)

. (6.24)

Now we define γ ≡ (KV )/ωp(y), so that K = γωp(y)/V and dK = (ωp(y)/V )dγ.
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We then have

G(x, y) = −2π

(

ωp(y)

V

)2 ∫ 1

0

dγ γ
e−2|x|γωp(y)/V

√

1− γ2
. (6.25)

We also define the following function

g(x) =

∫ 1

0

dγ γ
e−xγ

√

1− γ2
= 1− π

2
[I1(x)− L1(x)] , (6.26)

where I1 and L1 are the modified Bessel function of the first kind of order 1 and

the modified Struve function of order 1, respectively. We may then write (6.25) as

G(x, y) = −2π

(

ωp(y)

V

)2

g

(

2|x|ωp(y)

V

)

. (6.27)

6.2 Final Expression for the Image Force

We had from (6.14) that the image force was given by

F⊥(b) = −(Z1)
2

4π

∫ ∞

−∞
dz′

dω2
p(z

′)

dz′
1

ω2
p(z

′)− ω2
p(b)

×

[G(z′ − b, z′)−G(z′ − b, b)] . (6.28)

Using (6.27) in (6.28) we have our final expression for the image force:

F⊥(b) =
(Z1)

2

2V 2

∫ ∞

−∞
dz′

dω2
p(z

′)

dz′
1

ω2
p(z

′)− ω2
p(b)

×

[

ω2
p(z

′)g

(

2|z′ − b|ωp(z
′)

V

)

− ω2
p(b)g

(

2|z′ − b|ωp(b)

V

)]

, (6.29)

with ω2
p(z) = 4πn(z), and g defined in (6.26).





Chapter 7

Calculation of Image Force

Now that we have an expression for the image force (6.29), we go ahead and calculate

it.

7.1 Image Force at Metal Surface

As we did for the stopping force, we are first interested in calculating the image

force for a particle moving next to a metal, for example aluminum, in order to

compare our result with that of [19]. To use (6.29) we need an expression for the

electron density. We had from (5.1) an expression for the electron density near an

aluminum surface:

n(z) =







no − 1
2
noe

βz, (z < 0)

1
2
noe

−βz, (z > 0)
, (7.1)

where z is the distance from the surface, no ≈ 2.69 × 10−2 a.u. and β ≈ 1.24 a.u.

[18].

Using this electron density distribution together with (6.29), we compute the

image force for a proton of speed v = 3.16 a.u., for different distances z from the

surface. Figure 7.1 shows these results, which reproduce those of [19].
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Figure 7.1: Image force for a proton of v = 3.16 a.u. moving parallel to an aluminum
surface.

7.2 Image Force Near a Graphene Sheet

Now we are interested in using the equilibrium electron density for graphene that

we calculated in chapter 2, together with (6.29), to calculate the image force for an

ion moving parallel to a graphene sheet. In figure 7.2 we show the image force as

a function of the distance from the sheet for a proton moving parallel to the sheet

at speeds v = 3 a.u., v = 5 a.u., and v = 10 a.u. We compare the image force for a

Thomas-Fermi analytical electron density (2.32) with the 2D-Fluid model. We can

see how, as for the stopping force, the magnitude of the image force is smaller for

ions moving a higher speeds. We can also see the considerable difference between

the image force calculated calculated using a two-dimensional electron density and

the image force calculated using a three-dimensional electron density.

Similarly, figures 7.3 and 7.4 show the image force as a function of the distance

from the sheet for protons moving parallel to the sheet at speeds v = 3 a.u.,
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Figure 7.2: Image force for a proton moving parallel to graphene at speeds v = 3
a.u., v = 5 a.u., and v = 10 a.u. The solid line ( ) is calculated using the TF
analytical electron density for graphene. The dotted line ( ) is calculated using
the 2D-Fluid model. We plot the image force as a function of the distance from the
sheet.
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Figure 7.3: Image force for a proton moving parallel to graphene at speeds v = 3
a.u., v = 5 a.u., and v = 10 a.u. The solid line ( ) is calculated using the
TFD exponential approximation to the electron density. The dotted line ( ) is
calculated using the Molière approximation to the electron density. We plot the
image force as a function of the distance from the sheet.

v = 5 a.u., and v = 10 a.u. Figure 7.3 shows the image force calculated using a

TFD exponential approximation to the electron density (2.33) and the image force

calculated using a Molière approximation to the electron density (2.68). Figure 7.4

shows the image force calculated using the TF analytical electron density (2.32)

and the image force calculated using Cruz’s approximation to the electron density

(2.82).

Now we study the dependence of the image force on the velocity of the moving

ion. In figure 7.5 we show the image force as a function of the proton’s speed,

for a proton moving parallel to graphene at distances d = 3 a.u., d = 5 a.u., and

d = 10 a.u. from the sheet. The image force is calculated using the TFD exponential

approximation to the electron density (2.33) as well as the 2D-Fluid model.
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Figure 7.4: Image force for a proton moving parallel to graphene at speeds v = 3
a.u., v = 5 a.u., and v = 10 a.u. The solid line ( ) is calculated using the TF
analytical electron density for graphene. The dotted line ( ) is calculated using
Cruz’s approximation to the electron density. We plot the image force as a function
of the distance from the sheet.
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Figure 7.5: Image force for a proton moving parallel to graphene at distances d = 3
a.u., d = 5 a.u., and d = 10 a.u. from the sheet. The solid line ( ) is calculated
using the TFD exponential approximation to the electron density. The dotted line
( ) is calculated using the 2D-Fluid model. We plot the image force as a function
of the proton’s speed.
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Figure 7.6: Image force for a proton moving parallel to graphene at distances d = 3
a.u., d = 5 a.u., and d = 10 a.u. from the sheet. The solid line ( ) is calculated
using the TF analytical electron density for graphene. The dotted line ( ) is
calculated using the Molière approximation to the electron density. We plot the
image force as a function of the proton’s speed.

Similarly, figures 7.6 and 7.7 show the image force as a function of the proton’s

speed, for a proton moving parallel to graphene at distances d = 3 a.u., d = 5 a.u.,

and d = 10 a.u. from the sheet. Figure 7.6 shows the image force calculated using

the TF analytical electron density (2.32) and the image force calculated using the

Molière approximation to the electron density (2.68). Figure 7.7 shows the image

force calculated using the TFD exponential approximation to the electron density

(2.33) and the image force calculated using Cruz’s approximation to the electron

density (2.82).
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Figure 7.7: Image force for a proton moving parallel to graphene at distances d = 3
a.u., d = 5 a.u., and d = 10 a.u. from the sheet. The solid line ( ) is calculated
using the TFD exponential approximation to the electron density. The dotted line
( ) is calculated using Cruz’s approximation to the electron density. We plot the
image force as a function of the proton’s speed.



Chapter 8

Concluding Remarks

8.1 Summary

In this work we have studied both graphene sheets and carbon nanotubes. We have

analyzed the electron density distribution in these structures and how this affects

the way fast moving ions interact with them.

In chapters 2 and 3 we calculated the three-dimensional equilibrium electron

density for graphene and carbon nanotubes by using the generalized Thomas Fermi

model in the jellium approximation where the carbon atoms are continuously dis-

tributed over, respectively, a single plane and a cylinder.

Next, we investigated fast ions moving parallel to a graphene sheet and expe-

riencing forces due to the dynamic polarization of carbon valence electrons. First

we studied the force which directly opposes the ion’s motion, or the stopping force.

In chapter 4 we developed the theory used to calculate the stopping force, and in

chapter 5 we showed results for calculations of the stopping force using the three-

dimensional electron density distribution of graphene.

Finally, we studied the force which bends the ion’s trajectory towards the sheet,

or the image force, which plays a major role in the study of ion channeling. In
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chapter 6 we developed the theory used to calculate the image force, and in chapter

7 we showed results for calculations of the image force using the three-dimensional

electron density distribution of graphene.

8.2 Conclusions

When studying the equilibrium electron density of graphene, we first found an

analytical TF solution (2.32). This electron density had an inverse power decay,

which might overestimate the real electron density because of its long range. We

then found exponential approximations to the electron density by minimizing the

TFD energy functional and by least squares minimization. Due to their faster de-

cay, these exponential approximations gave us electron densities with much smaller

tails than those of the analytical TF electron density. We also found other ana-

lytical approximations to the electron density distribution, first by using Poisson’s

equation together with the well-know Molière repulsive atomic potential, and then

by generalizing Cruz’s expression for a single atom’s electron density to the case

of a graphene sheet. We found that the Molière electron density was given by a

sum of exponentials, one of which is very long ranged, so at large distances from

the sheet it is even higher than the analytical TF solution. The Cruz electron den-

sity was given by a sum of exponentials multiplied by polynomials, and gives an

electron density which at some distances is above and at some distances is below

the TFD single exponential approximation. Since the Cruz model is designed from

spherically averaged electron densities for all populated shells in a free carbon atom

(two electrons in each of the 1s, 2s, and 2p shells), it is expected to provide the

most realistic electron density dependence on the distance from graphene or the

nanotube wall. However, it should be borne in mind that neither the Molière nor

the Cruz approximation take into account electron hybridization that takes place
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when carbon atoms form covalent bonds in graphene.

When studying the equilibrium electron density for carbon nanotubes, we first

found numerical solutions using both a TF and a TFD model. As for graphene, we

found that at large distances from the nanotube wall the TF density is larger than

the TFD density. We also used a Molière approximation to the electron density and

found how, like for graphene, it is higher than the TF solution at large distances

from the nanotube wall.

In the second part of the thesis we studied ions moving parallel to graphene

sheets. We calculated the stopping and image forces for these ions by using the three

dimensional electron density distribution of graphene. We saw how the magnitude

of stopping and image forces decreases with distance from the sheet and with the

ion speed. In calculating the stopping force, we obtained an expression consisting

of two terms, one called the local term, which corresponds to the well-known Bethe

formula for stopping in a homogeneous medium, and one called the nonlocal term,

which has a significant contribution to the stopping force at large distances from

the graphene sheet.

We also compared our results for calculations of stopping and image force with

calculations based on a two-dimensional hydrodynamic model of graphene, which

approximates the electron distribution of graphene by a charged fluid confined to

the two-dimensional plane of the sheet. We saw how considering a three-dimensional

electron distribution for a graphene sheet has a considerable effect on the stopping

and image forces for moving ions.

8.3 Future Work

The results obtained for interactions of ions with a single graphene sheet should be

useful for a further analysis of ion channeling through carbon nanostructures. In
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particular, it would be natural to extend our results for ions interacting with single

graphene sheets to the case of multiple parallel planes of graphene, which form

highly oriented pyrolytic graphite when stuck at a separation distance of about 3.4

Å.

On the other hand, rather intense studies of ion channeling through carbon

nanotubes have been underway over the past several years. The main contribu-

tion of this thesis is in setting the stage for calculating both the stopping forces

on ions channeling through nanotubes and the image forces which steer those ions

towards the nanotube walls, in a manner which will be consistent with the models

currently used for describing the repulsive interactions with the carbon atoms on

the nanotube walls. For example, the recent results by Borka et al. [Phys. Rev.

A, submitted] on proton channeling through short carbon nanotubes, where the

image force was calculated by means of a 2D hydrodynamic model and the repul-

sive potential of carbon atoms by the Molière model, revealed a strong rainbow

effect in the angular distributions of channeled protons. Since the ion trajectories

are very sensitive to details of the interaction potentials, it will be important to

reconsider this work by using the image force based on a dynamical polarization of

the 3D electron density obtained from the Molière model. This project is already

underway. It is expected that the results achieved will be used in promoting the

rainbow effect in ion channeling through carbon nanotubes as a sensitive experi-

mental technique for measuring the electron density in carbon nanotubes and other

carbon nanostructures.



Appendix A

Inverse Dielectric Function

Here we derive Kitagawa’s inverse dielectric function (4.29) from the 3-D fluid

equations for an electron gas. When an ion moves through the electron gas, it

perturbes the equilibrium electron density. We assume the flow of electrons in the

perturbed state is irrotational, with velocity field

vf (r, t) = −~∇ψ(r, t), (A.1)

where ψ(r, t) is the potential function of the velocity field vf (r, t). The electrostatic

potential of the ion moving through the electron gas is given by

φext(r, t) =

∫

dr′ Vc(r− r′)ρext(r
′, t), (A.2)

where Vc(r− r′) = 1/|r− r′| is the Coulomb interaction and ρext(r
′, t) is the charge

density for the moving ion.

We then have that the total energy (Hamiltonian) of our electron gas is given

by

H [n(r, t), ψ(r, t)] = G [n(r, t)] +
1

2

∫

dr n(r, t)|~∇ψ(r, t)|2 +
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1

2

∫

dr

∫

dr′ Vc(r− r′)n(r, t)n(r′, t)−
∫

dr n(r, t)V+(r)−
∫

dr n(r, t)φext(r, t), (A.3)

where n(r, t) is the perturbed electron density, V+(r) is the electrostatic potential

produced by the positive ion cores, and G [n(r, t)] is

G [n(r, t)] =

∫

dr






CFn

5/3(r) + CvW

[

~∇n(r)
]2

n(r)
− Cxn

4/3(r)






. (A.4)

As in section 2.1, the first two terms in (A.4) are the Thomas-Fermi kinetic energy

functional and its von Weizsäcker correction, respectively. The third term is the

Dirac exchange energy. The coefficients CF , CvW , and Cx are as given in section

2.1.

Treating n and ψ as conjugate variables, with Lagrangian

L =

∫

dr n(r, t)
∂ψ(r, t)

∂t
− H [n(r, t), ψ(r, t)] , (A.5)

we use the variational principle and set

δ

∫ t2

t1

dt L = 0. (A.6)

Using (A.6) together with a normalization condition

∫

dr n(r, t) = N, (A.7)

we get two equations:
∂n

∂t
= ~∇ ·

(

n~∇ψ
)

(A.8)

and
∂ψ

∂t
+ γψ + µ =

1

2
|~∇ψ|2 +

δG

δn
− Φ(r, t). (A.9)
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The first equation is the continuity equation and the second equation gives an equa-

tion of motion for the electron fluid. The term γψ is introduced to give friction. The

term µ in (A.9) is a Lagrange multiplier arising from our normalization constraint

(A.7). The total electrostatic potential Φ(r, t) is a solution to Poisson’s equation

∇2Φ(r, t) = −4π [ρext(r, t) + n+(r)− n(r)] . (A.10)

Now we use perturbation theory assuming, ρext(r, t) ≡ λρext(r, t), and expand

quantities we will use in terms of a parameter λ:1

n(r, t) = n0(r) + λn1(r, t) + · · · (A.11)

ψ(r, t) = 0 + λψ1(r, t) + · · · (A.12)

Φ(r, t) = Φ0(r) + λΦ1(r, t) + · · · (A.13)

δG

δn
=

(

δG

δn

)

0

+ λ

(

δG

δn

)

1

+ · · · . (A.14)

Using (A.11)-(A.14) together with (A.8)-(A.10) we may collect zeroth order terms

and obtain our zeroth order equations:

∂n0

∂t
= 0 (A.15)

µ =

(

δG

δn

)

0

− Φ0(r) (A.16)

∇2Φ0(r) = −4π [n+(r)− n0(r)] . (A.17)

1For now we assume that λ is a small parameter, but we will later set it equal to 1, since it is
only a bookkeeping parameter.
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Notice that if we take only the TF term in our expression (A.4) for G [n(r, t)], then

(

δG

δn

)

0

=
5

3
CFn

2/3
0 (r), (A.18)

and (A.16) is equivalent to (2.7).2 Also, (A.17) is equivalent to (2.10), so we see

that the zeroth order equations (A.15)-(A.17) correspond exactly to the ground-

state electron density problem solved in section 2.2.

To study the electron density perturbed by the moving ion, we again use (A.11)-

(A.14) together with (A.8)-(A.10) and we collect first order terms to obtain our first

order equations:

∂n1

∂t
= ~∇ ·

(

n0
~∇ψ1

)

=
(

~∇n0 · ~∇+ n0∇2
)

ψ1 (A.19)

∂ψ1

∂t
+ γψ1 = −Φ1 (A.20)

∇2Φ1 = −4π (ρext − n1) . (A.21)

For sake of simplicity we have dropped (δG/δn)1 in (A.20). 3

Defining the Fourier transform with respect to time,

n1(r, t) =

∫ ∞

−∞

dω

2π
e−iωtñ1(r, ω) (A.22)

and

ψ1(r, t) =

∫ ∞

−∞

dω

2π
e−iωtψ̃1(r, ω), (A.23)

we obtain
∂n1

∂t
=

∫ ∞

−∞

dω

2π
e−iωt [−iωñ1(r, ω)] (A.24)

2The constant µ in (A.16), which is called the chemical potential, is zero in TF and TFD
theory [20].

3By making this assumption we later recover Kitagawa’s result in (A.42).
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and
∂ψ1

∂t
=

∫ ∞

−∞

dω

2π
e−iωt

[

−iωψ̃1(r, ω)
]

. (A.25)

Using (A.24) and (A.25), and taking the Fourier transform of our first order equa-

tions (A.19)-(A.21) we get

−iωñ1 =
(

~∇n0 · ~∇+ n0∇2
)

ψ̃1 (A.26)

(−iω + γ) ψ̃1 = −Φ̃1 (A.27)

∇2Φ̃1 = −4π (ρ̃ext − ñ1) . (A.28)

Multiplying (A.26) by (−iω + γ) and using (A.27) we get

−iω(−iω + γ)ñ1 =
(

~∇n0 · ~∇+ n0∇2
)(

−Φ̃1

)

= −~∇n0 · ~∇Φ̃1 − n0∇2Φ̃1

= −~∇n0 · ~∇Φ̃1 + 4πn0 (ρ̃ext − ñ1) , (A.29)

where in the last step we have used (A.28). We now write (A.29) as

−ω(ω + iγ)ñ1 = −~∇n0 · ~∇Φ̃1 + ω2
p(r) (ρ̃ext − ñ1) , (A.30)

where ω2
p(r) = 4πn0. From (A.28) we also have

Φ̃1(r, ω) =

∫

dr′ Vc(r− r′) [ρ̃ext(r
′, ω)− ñ1(r

′, ω)] . (A.31)

Using (A.30) and (A.31) we get the integral equation for ñ1(r, ω):

[

ω2
p(r)− ω(ω + iγ)

]

ñ1(r, ω) = ω2
p(r)ρ̃ext(r, ω)
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−~∇rn0(r) · ~∇r

∫

dr′ Vc(r− r′) [ρ̃ext(r
′, ω)− ñ1(r

′, ω)] . (A.32)

We assume ~∇rn0(r) in (A.32) is small. We then solve for ñ1(r, ω) and expand

in small ~∇rn0(r) to get4

ñ1(r, ω) =
ω2

p(r)ρ̃ext(r, ω)

ω2
p(r)− ω(ω + iγ)

−λ
~∇rn0(r)

ω2
p(r)− ω(ω + iγ)

· ~∇r

∫

dr′ Vc(r− r′) [ρ̃ext(r
′, ω)− ñ1(r

′, ω)] . (A.33)

We know that an expansion of ñ1(r, ω) in small λ has the form

ñ1(r, ω) = ñ
(0)
1 (r, ω) + λñ

(1)
1 (r, ω) + λ2ñ

(2)
1 (r, ω) + · · · , (A.34)

so by solving iteratively (A.33) we get

ñ
(0)
1 (r, ω) =

ω2
p(r)ρ̃ext(r, ω)

ω2
p(r)− ω(ω + iγ)

(A.35)

and

ñ
(1)
1 (r, ω) = −

~∇rn0(r)
[

ω2
p(r)− ω(ω + iγ)

] · ~∇r

∫

dr′ Vc(r− r′)
[

ρ̃ext(r
′, ω)− ñ

(0)
1 (r′, ω)

]

.

(A.36)

Substituting (A.35) in the right hand side of (A.36) we have

ñ
(1)
1 (r, ω) =

−
~∇rn0(r)

[

ω2
p(r)− ω(ω + iγ)

] · ~∇r

∫

dr′ Vc(r− r′)ρ̃ext(r
′, ω)

[

1−
ω2

p(r
′)

ω2
p(r

′)− ω(ω + iγ)

]

.

4Here we again assume that λ is a small parameter, but we will later set it equal to 1, since it
is only a bookkeeping parameter.
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= −
~∇rn0(r)

[

ω2
p(r)− ω(ω + iγ)

] · ~∇r

∫

dr′ Vc(r− r′)
ω(ω + iγ)ρ̃ext(r

′, ω)
[

ω(ω + iγ)− ω2
p(r

′)
] . (A.37)

We now set λ = 1 in (A.34) and to first order we have

ñ1(r, ω) ≈ ñ
(0)
1 (r, ω) + ñ

(1)
1 (r, ω). (A.38)

Using (A.35) and (A.37), this gives

ñ1(r, ω) = −
ω2

p(r)ρ̃ext(r, ω)

ω(ω + iγ)− ω2
p(r)

+
~∇rn0(r)

[

ω(ω + iγ)− ω2
p(r)

] · ~∇r

∫

dr′ Vc(r− r′)
ω(ω + iγ)ρ̃ext(r

′, ω)
[

ω(ω + iγ)− ω2
p(r

′)
] . (A.39)

By A.31, the total electrostatic potential due to ρext and n1 is given by

Φ̃1(r, ω) ≡
∫

dr′ Vc(r− r′) [ρ̃ext(r
′, ω)− ñ1(r

′, ω)]

=

∫

dr′
∫

dr′′ Vc(r− r′)

{

δ(r′ − r′′)

[

1 +
ω2

p(r
′)

ω(ω + iγ)− ω2
p(r

′)

]

−
~∇r′n0(r

′)

ω(ω + iγ)− ω2
p(r

′)
· ~∇r′Vc(r

′ − r′′)
ω(ω + iγ)

ω(ω + iγ)− ω2
p(r

′′)

}

ρ̃ext(r
′′, ω). (A.40)

Using (4.3) and (4.4) we also know that the total electrostatic potential may be

expressed, by definition, as

Φ̃1(r, ω) ≡
∫

dr′
∫

dr′′ Vc(r− r′)ε−1(r′, r′′, ω)ρ̃ext(r
′′, ω). (A.41)

Be comparing (A.40) and (A.41) we see that

ε−1(r′, r′′, ω) ∼=
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ω(ω + iγ)

ω(ω + iγ)− ω2
p(r

′)

[

δ(r′ − r′′)− 1

ω(ω + iγ)− ω2
p(r

′′)

(r′′ − r′)

|r′′ − r′′|3 ·
~∇r′n(r′)

]

,

(A.42)

which is precisely (4.29) when we let ω2 −→ ω(ω + iγ).



Appendix B

2D-Fluid Model

In chapters 5 and 7 we calculated the stopping and image forces acting on ions

moving parallel to a graphene sheet. We compared calculations done using three-

dimensional approximations to the electron density for graphene, with calculations

done using a 2D-Fluid model. Here we show what this 2D-Fluid model is.

We model the electron density of a graphene sheet by a compressible charged

fluid that is constrained to move in 2D on the neutralizing positively charged sheet.

As given in equation (99) of [21] we have that for such a model, when we consider

a particle moving parallel to a graphene sheet, the induced electrostatic potential

at the particle’s position is given by

φind(R, z, t) ≡
∫

dK

(2π)2

∫

dω

2π
ei(K·R−ωt)φ̃ind(K, z, ω)

= −Z1

2π

∫

dK

K
eiK·(R−Vt)e−K(|z|+|b|) 2πKσ

Ω2(K)−K ·V(K ·V + iγ)
, (B.1)

where Ω2(K) = 2πσK + αK2, α = πσ, Z1 is the particle’s charge, σ is the surface

charge density of the neutralizing positively charged sheet, and b is the particle’s
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distance from the sheet.1 We had from (4.2) that the stopping force is given by

FS(t) = Z1
v(t)

v(t)
· ~∇φind(r, t)

∣

∣

∣

∣

R=Vt, z=b

. (B.2)

As given in equation (103) of [21], we may use (B.1) together with (B.2) and write

the stopping force as

FS = −Z
2
1

2

√

1− α/v2 κ2
min(v)e−κmin(v)|b|

[

K0(κmin(v)|b|) +K1(κmin(v)|b|)
]

, (B.3)

where κmin ≡ 2πσ/(v2− α2) and v2 > α. When the particle’s speed is high enough

and we have v2 >> α, we let α→ 0 in (B.3), and we get

FS =
Z2

1

Λ2
e−|b|/Λ

[

K0

( |b|
Λ

)

+K1

( |b|
Λ

)]

, (B.4)

where Λ = v2/(2πσ). This expression is what we call the 2D-Fluid model for the

stopping force.

Now we are interested in calculating the image force. We had from (6.1) that

the image force is

F⊥ = −Z1
∂φind

∂z









z=b, R=Vt

. (B.5)

We may use (B.1) together with (B.5) to write the image force as [21]

F⊥ = −Z1sign(b)

∫ κmax(v)

0

dK Ke−2K|b|2πσK

Ω(K)

1
√

Ω2(K)−K2v2
, (B.6)

1Notice we are using the same notation we have defined earlier and used throughout this work,
where a particle’s position is given by r = (R, z), a particle’s velocity is given by v = (V, vz), and
the Fourier coordinates of position are described by k = (K, kz). The magnitude of k is given by
k, the magnitude of K is given by K, and so forth.
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with

κmax(v) =







∞, 0 < v <
√
α

2πσ
v2−α

, v >
√
α

. (B.7)

When the particle’s speed is high enough and we have v2 >> α, we let α → 0 in

(B.6), so that Ω2 → 2πσK and κmax → 2πσ/v2, and we get

F⊥ =
Z2

1

Λ2

√
π

2
sign(b)

∂

∂ξ

[

e−2ξ

√
2ξ

erfi(
√

2ξ)

]

ξ=|b|/Λ

, (B.8)

where Λ = v2/(2πσ), and

erfi(x) =
2

π

∫ x

0

dt et2 . (B.9)

Equation (B.8) is what we call the 2D-Fluid model for the image force.





Bibliography

[1] H. Kroto, J. Heath, S. O’Brien, R. Curl, and R. Smalley, “C60: Buckminister-

fullerene”, Nature 318, 162 (1985).

[2] S. Iijima, “Helical microtubules of graphitic carbon”, Nature 354, 354 (1991).
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