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Abstract

Distribution systems have been going through significant changes in recent years, mov-
ing away from traditional systems with low-level control toward smart grids with high-
level control, with improved technologies in communications, monitoring, computation,
and real-time control. In the context of smart grids, Demand Response (DR) programs
have been introduced so that customers are able to control and alter their energy consump-
tion in consideration with distribution system operators, with benefits accruing to both
customers and Local Distribution Companies (LDCs).

This thesis focuses on the integration of DR with the intelligent operation of distribu-
tion system feeders. Thus, it proposes a mathematical model of an unbalanced three-phase
distribution system power flow, including different kinds of loads and other components
of distribution systems. In this context, an unbalanced three-phase Distribution Optimal
Power Flow (DOPF) model is proposed, which includes the models of lines, transformers,
voltage-based loads, smart loads, Load Tap Changers (LTCs), and Switched Capacitors
(SCs), together with their respective operating limits, to determine the optimal switch-
ing decisions for LTCs, SCs, and control signals for smart loads, in particular, Energy
Hub Management System loads and Peaksaver PLUSTM loads. Hence, Neural-Network-
based models of controllable smart loads, which are integrated into the DOPF model are
proposed, developed, and tested.

Since the DOPF model has different discrete variables such as LTCs and SCs, the
model is a Mixed-Integer Non-Linear Programming (MINLP) problem, which presents a
considerable computational challenge. In order to solve this MINLP problem without
approximations and ad-hoc heuristics, a Genetic Algorithm (GA) is used to determine
the optimal control decisions of controllable feeder elements and loads. Since the num-
ber of control variables in a realistic distribution system is large, solving the DOPF for
real-time applications using GA is computationally expensive. Hence, a decentralized sys-
tem with parallel computing nodes based on a Smart Grid Communication Middleware
(SGCM) system is proposed. Using a “MapReduce” model, the SGCM system executes
the DOPF model, communicates between the master and the worker computing nodes,
and sends/receives data amongst different parts of the parallel computing system. When
large number of nodes are involved, the SGCM system has a fast performance, is reliable,
and is able to handle different fault tolerance levels with the available computing resources.

The proposed approaches are tested and validated on a practical feeder with the ob-
jective of minimizing energy losses and/or energy drawn from the substation. The results
demonstrate the feasibility of the developed techniques for real-time distribution feeder
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control, highlighting the advantages of integration of smart loads in the operation of dis-
tribution systems by LDCs.
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Chapter 1

Introduction

1.1 Motivation

With the continued growth in global population, the world’s energy consumption is ex-
pected to increase significantly over time. A 56% increase in global energy consumption
between 2011 and 2035 is expected, with a 93% increase in electricity generation and 66%
increase of world electricity demand projected for the same period. Renewables and nu-
clear are expected to be the most important energy sources, which have been increasing
by 2.5% per year [1]. In Ontario, Canada, the peak load and energy demand are expected
to increase by 25% and 26%, respectively over the period of 2014-2033 [2], which requires
augmenting transmission lines and generation capacity of the system.

Climate change is the most important environmental issue associated with fossil-fuel-
based electricity generation. The world petroleum and other liquid fuels consumption is
estimated to increase from 176 to 243.1 quadrillion BTU, with an average annual increase
of 1.1% [3]. Hence, to reduce the impact of global warming by reducing Greenhouse Gas
(GHG) emissions from fossil-fuel-based generation and also meet the rapidly increasing
demand, there is a need for cleaner energy sources in the system. Energy conservation,
energy management, and renewable energy resources are among the different possible al-
ternatives. For example, Ontario is the first jurisdiction in North America to completely
remove all coal-fired electricity generation [4]. However, building new transmission lines
and generation is costly, and hence, finding effective and intelligent methods to manage
and reduce the peak load and energy demand are important.

The need to make the grid more reliable and efficient, driven by economic growth and
climate change concerns, has led to the development of smart grids, which incorporates
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1.1. MOTIVATION

technologies and advanced applications including Demand Side Management (DSM) and
Distributed Generation (DG) units. In smart grids, customers have the ability to use
electricity more efficiently through smart metering and intelligent controls, based on new
communication infrastructure, information management, and automated control technolo-
gies [5]. One of the basic components of these smart grids is the Advanced Metering
Infrastructure (AMI), which includes “smart meters” to provide two-way communication
between utilities and customers. As a result, controllable smart loads are being introduced
in distribution networks, which allow developing and implementing Energy Management
Systems (EMSs) for customers and distribution feeders, with smart meters having the
ability to measure energy consumption in real-time and also providing usage information.
With these capabilities, both utilities and customers can communicate, observe, and control
their specific needs [6]. In this context, advanced communication, control, and measure-
ment technologies at both customer and feeder levels facilitate and enhance DSM and
Demand Response (DR) programs, which allow customers’ involvement in the operation
and control of the distribution system [7].

DR programs have been and continue to be implemented in order to alter and con-
trol the demand shape through Local Distribution Company (LDC) requests, incentive
signals, and/or external signals such as price or weather signals. Among different con-
tributions to the realization of a smart grid in Ontario [8–11], the Energy Hub Manage-
ment System (EHMS) project was initiated in April 2008 with the purpose of developing
and implementing smart EMSs for commercial/institutional, agricultural, industrial, and
residential customers [12, 13], as well as for distribution feeders, and is geared towards
improved communications, control, and real-time information for customers and utilities.
From the customers’ point of view, the objective of EMSs is to reduce the cost of energy
consumption and/or carbon footprint, whereas utilities have additional concerns such as
load shifting, peak load reduction, and improvement in the quality of service. Based on
these different objectives, energy management of distribution feeders has been discussed at
two levels in the context of EHMS: the micro-hub level, which concentrates on customers
operation, optimization, and control, and the macro-hub level, which deals with utility
concerns, communicates with all groups of micro-hubs, and operates from the perspective
of LDCs [12,13].

In Ontario, Canada, a target to reduce the peak demand was set to 6,300 MW by 2025
through DSM, DR, and demand control programs [14]. In this context, a voluntary Peak-
saver PLUSTM (PS+) program was introduced by the Ontario Power Authority (OPA)1

to reduce Air Conditioner (AC) demand in the residential and small commercial sector,

1The OPA was merged into the Independent Electricity System Operator (IESO) on January 1, 2015.
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and hence reduce the system peak load during the summer by slightly increasing the AC
temperature setpoints of the smart thermostats.

The need to minimize energy consumption and reduce peak load in smart distribution
systems is the focus and motivation of this work, which proposes a Distribution Optimal
Power Flow (DOPF) model at the feeder level, consisting of an unbalanced three-phase
distribution system power flow, and including different kind of loads and other components
of distribution systems such as lines, transformers, voltage-based loads, Neural Network
(NN)-based smart loads, Load Tap Changers (LTCs), and Switched Capacitors (SCs), to-
gether with their respective operating limits, to determine the optimal switching decisions
for LTCs, SCs, peak demand caps for EHMS smart loads, and Programmable Communi-
cating Thermostat (PCT) ON/OFF signals for PS+ smart loads. With the presence of
controllable smart loads, DR is considered in the model in order to reduce the system peak
load and also study the effect of smart loads in the DOPF model, which is expected to be
beneficial from the perspective of both LDCs and customers.

1.2 Literature Review

This section reviews the state-of-the-art of the relevant techniques and technologies on
which the presented research is based. Thus, an overview is presented next of Distribution
Management System (DMS), Distribution System Automation (DSA), DSM, DR, and
distributed computing approach to DOPF.

1.2.1 Distribution Management Systems and Distribution Sys-
tem Automation

Reliability and power quality at the distribution level are the focus of DSA, which provides
options for computation, communication, and control of distribution systems in real time.
Since the 1970s, the concept of DSA appeared in the literature, together with improvements
in monitoring, control and communication technologies [15]. The evolution of DSA can be
categorized into three main stages, as follows [16]:

1. Positioning central processor controllers with distributed sensors in different areas to
collect data; Programmable Logic Controllers (PLCs) were the earliest devices.

2. Integration of PLCs in the network using a new communication architecture.
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3. Intelligent DSA, in which the intelligence is decentralized and embedded into software
components. The hardware system (i.e., the distributed computing system) should
be able to deal with the required computational burden.

Distribution systems have been changing in recent years, moving away from tradi-
tional systems with low-level control toward smart grids with high-level control, based on
improved technologies in communication, monitoring, computation, and real-time control.
EMSs and their application to distribution systems, referred to as DMSs, are essential to the
smart grid. EMSs in power grids have traditionally supervised and controlled high/medium
voltage transmission systems and power plants, whereas DMSs have dealt with medium/low
voltage distribution systems [17]. DMSs have the following objectives [18]:

• Maintain the system in good conditions under bus voltage and line or transformer
constraints.

• Try to achieve unity power factor at the feeders.

• Minimize power losses in lines and transformers.

• Minimize the injected active power, i.e., energy drawn and peak demand, at the
substation transformer.

• Manage reactive power to improve system voltage and minimize losses.

• Maximize revenue, i.e., maximize the difference between the cost of electricity pro-
duction from load DG units and energy sales to customers.

Voltage and reactive power control in distribution systems are two important aspects of
DSA and DMS, which have been traditionally carried out by LTCs, SCs, fixed capacitors,
and step-voltage regulators. LTCs and step-voltage regulators are voltage-control devices,
while SCs and fixed capacitors can regulate both voltage and reactive power. All these tra-
ditional Voltage/Var Control (VVC) devices operate locally with stand-alone controllers to
improve voltage profiles and reduce energy losses. These devices lack continuous monitor-
ing and automatic reconfiguration systems, hence optimal operation cannot be guaranteed
under all circumstances. To this effect, Mixed-Integer Non-Linear Programming (MINLP)
models have been proposed to determine the discrete settings of LTCs and SCs in an
optimal integrated VVC approach [19–24].

Overall, VVC problems can be divided into two main categories: rule-based and network-
model-based [18]. The rule-based methods, which use real-time measurements, have been
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applied to control discrete devices such as SCs and LTCs, wherein the key factors for deter-
mining the discrete settings are rules and operator experience [24–29]. In [25], a decoupled
VVC problem is presented, assuming a weak coupling between the voltage and reactive
power, which decouples the control problem into two independent sub-problems, in which
LTCs control the voltage, while SCs control the reactive power. In [24], the authors apply
the VVC approach to minimize active power mismatches between simulated and real results
from DR programs, proposing an MINLP problem to find the optimal size and location
of Static Synchronous Compensator (STATCOM) and/or optimal values of LTCs. In [26],
the authors propose a solution of the VVC problem for different levels of measurement and
communication infrastructure in the distribution system. In [27,28], by using Benders’ de-
composition, the MINLP VVC problem is solved with LTCs and SCs as integer variables,
while reactive power of DG units are considered as continuous variables. In [27], the authors
separate the discrete and continuous variables, decomposing the problem into a Non-Linear
Programming (NLP) sub-problem with fixed discrete variables and a Mixed-Integer Linear
Programming (MILP) master problem; the master problem is a relaxed MINLP problem,
and it updates the discrete variable iteratively until the bounds for continuous variables
are contained within a fixed tolerance. The authors suggest their method is close enough to
the optimal solution, which can be considered as a practical model in distribution systems;
however, there is no guarantee to arrive at the global optimal solution with this approach.
In [28], the general VVC problem is decomposed into two sub-problems: the “volt sub-
problem” which is a Mixed-Integer Programming (MIP)-based master problem, and the
“var sub-problem”, which is an MILP problem. The sub-problems are solved by Benders’
decomposition with the objective of minimizing the system real power losses. Compared
to [27], this method determines the optimal value of integer variables (i.e., the reactive
power from DG units), while [27] proposes a range for the reactive power from DG units.
Since rule-based methods are useful when wide-area measurements are not available (i.e.,
the solution is obtained based on off-line studies) and the VVC control is just based on
local measurements, the optimal solution for systems is not guaranteed; hence, frequent
changes in the settings of those controllers are proposed in [29] to account for seasonal load
variations and reconfiguration of the system.

Network-model-based VVC methods are based on different parameters such as the
topology of a distribution system, system configuration, measurements, and statistical
data. Typically, to obtain the optimal solution in these methods, the Distribution Load
Flow (DLF) and the DOPF models are used, where DLF equations are considered as
constraints in the DOPF model. To solve the network-model-based VVC problems for
larger systems and to reduce the computational costs, heuristic methods such as NN tech-
niques [20,30], computational cost reduction [29,31], and decoupling of the VVC problem
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into sub-problems [22, 23] have been proposed. In [20], NN and fuzzy dynamic program-
ming techniques are combined in order to speed up the VVC computations. Because of
the lack of sensors and accurate measurements in distribution systems, state estimators
are inadequate to assess distribution system variables such as active and reactive powers;
hence, the VVC real outputs are not close enough to the optimal values of DOPF problems.
In [30], an NN model is used to reduce this error and have a better estimation, which is
necessary for proper functioning of Advanced Distribution Automation (ADA) systems.

In [29], a fast DLF is proposed to reduce the computational costs, and in [31], a fast
gradient technique in combination with a heuristic method, which is compared with conven-
tional methods, is introduced, and the results show that the proposed technique increases
the run-time by about 30-35 times. However, approaches with enumerative techniques
are good enough to deal with smaller systems with limited number of LTCs and SCs.
In [32–35], the authors consider the DLF equations as constraints in the DOPF model,
and relax the MINLP problem into an NLP problem by rounding the discrete variables
to their closest integer values and applying the quadratic penalty approach. Reducing the
complexity of the DOPF model reduces the computational burden and makes it suitable
for real-time applications. The authors also consider the limits on the number of daily
switching operations of SCs and LTCs in the DOPF solution, because of the maintenance
costs of these controllers, but the drawback of rounding continuous variables into discrete
variables is that the solution may be sub-optimal, because of the discrete nature of those
variables. The same authors in [36] propose a Genetic Algorithm (GA) approach to de-
termine the optimal solution of VVC-based DOPF problem, and the results are compared
with a heuristic approach in terms of both optimality and computational burden as an
NLP problem, arguing that the GA-based DOPF solution yields superior solution in terms
of optimality but at larger computational costs; the heuristic method is shown to reduce
the run-time of the DOPF model, although with sub-optimal solutions.

Based on the above discussion, this thesis focuses on improving existing DOPF tech-
niques for real-time applications. Thus, since the DOPF model has different discrete vari-
ables such as LTCs and SCs that make it an MINLP problem, it presents a considerable
computational challenge, particularly for the practical application discussed here. In order
to solve this MINLP problem without approximations and ad-hoc heuristics, and also to
have a superior optimal solution, the Evolutionary Algorithm (EA) approach of GA is used
to solve the DOPF model. GA is preferred in this work, amongst other EA approaches, be-
cause it is possible to run the DLF for each individual GA chromosome independently, and
hence, it can be easily parallelized for the real-time applications considered in this study.
Thus, the distributed computing approach referred to as Smart Grid Communication Mid-
dleware (SGCM) is used here to reduce the computational burden of the DOPF model,
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which is particularly suitable for the proposed GA-based DOPF solution approaches.

1.2.2 Demand Side Management and Demand Response

Since the late 1970s, DSM has been used to refer to a set of end-user measurements, plans,
implementations, and methods that impact the attitude of customers and the shape of the
load curve [37]. The efficient use of energy and incentive tariffs such as Real-Time Pricing
(RTP) and Time of Use (TOU) tariffs are part of DSM. Peak clipping, valley filling, load
shifting, and flexible load shaping are among the DSM strategies. Generally, DSM can be
classified as follows [38]:

• Energy efficiency and conservation.

• Strategic load growth.

• DR.

Energy efficiency and conservation refers to programs that result in reduction in energy
consumption by specific end-use systems or devices, typically, without any impact on the
provided services. Energy consumption is reduced by substituting the existing system
with more energy-efficient technologies; designing buildings in an efficient way and efficient
lighting programs are two examples of this approach [39]. In contrast, strategic load growth
essentially refers to increasing the load levels through electrification in a strategic way.

DR programs have been introduced so that customers can control and alter their energy
consumption, with benefits accruing to both customers and LDCs [34]. Many DR programs
are based on the relation between electricity price and demand. A review since 1970 shows
the following realizations of DR programs [40]:

1. Frequency-based schemes : Load shedding has been proposed as a method to restore
the frequency of a system to a normal value. For example, in [41], a central DR
algorithm is used to minimize the number of load shedding operations for frequency
restoration, and in [42], some “responsive end-user devices” are introduced at the
residential level for the frequency control of the system.

2. Direct control of utility devices : Voltage reduction in order to conserve energy has
been proposed in the literature [43–46]. Protection relays such as fuses and reclosers
and remote controller relays are also considered for DSM in [47].
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3. Direct control of customers’ devices : Timer-based switches have limited applicability
in DR, but utilities have no control on these devices, and if a contingency occurs
in the system, the device cannot be isolated automatically. Remote systems based
on Power Line Carriers (PLCs), internet, and radio wave systems make end-users’
devices controllable within a distribution system.

4. Cost-based controls : Introduction of different tariffs encourage customers to consider
the way they use power. Through proper pricing mechanisms, end-users can be
encouraged to reduce their energy use and reduce their energy costs. TOU pric-
ing, Critical Peak Pricing (CPP), and RTP are among the incentive tariffs used to
indirectly control the user behaviour, as follows:

• TOU pricing: Constant rates are defined for periods of time, with lower prices at
off-peak periods and higher prices at peak-demand periods. In [48], the Ontario
TOU pricing is discussed, suggesting additional modifications to make the TOU
pricing appropriate for different seasons.

• CPP: These tariffs represent a transition from a static TOU tariff to a dynamic
tariff scheme, with a flexible pre-determined period of time during critical system
conditions (i.e., when the system is stressed). Different optimal strategies based
on interests of utilities and customers are suggested for CPP in [49].

• RTP: Changing utilities’ energy prices in real-time can motivate customers to
respond to pricing signals and hence reduce their costs. In [50], two important
requirements for the implementation of RTP are mentioned: a suitable infras-
tructure and well-informed end-users who respond to pricing signals. Some ex-
amples of suitable infrastructure are Home Automation Systems (HASs), Home
Energy Management (HEM), and Home Area Network (HAN), which allow en-
ergy consumption scheduling and ADA devices to assist in real-time monitoring,
scheduling, and control [51–53].

5. Market-based controls : Some organizations such as Regional Transmission Organi-
zations (RTOs), Independent System Operators (ISOs), and Transmission System
Operators (TSOs) encourage customers to take part in distribution systems control
by using DG sources. The main use of these sources has been in emergency condi-
tions; however, customers are now being paid to participate in DR actions. In this
context, DG sources can be considered as providers of energy and ancillary services
in distribution systems [54,55].

6. Model-based controls : Load response can be accomplished by using model-based pre-
dictive control algorithms. The architecture of such systems can be divided into
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centralized and decentralized schemes. Model Predictive Control (MPC) is based on
centralized methods. For example, in [12, 56, 57], the model schedules appliances for
residential customers; in [58], solar Photo-Voltaic (PV) power for electrical thermal
appliances is maximized; and in [59], an MPC algorithm with different kind of tar-
iffs is proposed to optimize distributed energy resources like PV in residential sites.
Given the increasing number of controller devices in smart grids, decentralized ap-
proaches based on multi-agent control systems are being researched. For example,
an automated DR technique is proposed in [60] based on a global coordinator (aggre-
gator) that addresses privacy and security concerns. The authors propose a uniform
interface for management of distributed energy resources in terms of their energy
capabilities that can be attributed to different markets and services; these resources
are then aggregated in order to deliver energy services to these markets.

In the present research, the impact and use of existing DSM and DR techniques for
distribution feeder management is studied. Thus, two different NN-based controllable
smart load models are developed for both EHMS micro-hubs and PS+ smart loads, to
integrate them into the DOPF model to optimally control LTCs and SCs, and send optimal
peak demand cap signals for EHMS loads and ON/OFF signals to PCTs for PS+ loads.
The impact and use of these controllable loads by LDCs to control the load profile at the
feeder level is analyzed in order to optimize energy consumption and reduce peak demand
over a desired horizon.

1.2.3 Distributed Computing Approach to DOPF

An increase in the number of controller devices in smart grids is a significant challenge in
the operation of distribution systems. In particular, with the presence of smart controller
loads, the need to quickly update the operation strategy of controllable devices is neces-
sary. In this context, real-time optimization applications such as the DOPF are required.
Therefore, distributed computing approaches to solve DOPF models have been proposed in
the literature. In [61–63], a central multi-processor server/computer unit is used to obtain
the DOPF solution without any decomposition of the model. In [61], probable scenarios
around the forecasted wind power are determined and the real-time DOPF for different sce-
narios runs in parallel. In [62], possible generation and size of DG units are obtained from
a Monte Carlo method, and then using a multi-core MATLABr program, each core is re-
sponsible to run the DLF of individual set of variables. In [63], a Jacobian-based sensitivity
approach is developed for the purpose of distribution energy management of distribution
systems; the authors proposed that by decreasing the time window, the computation time
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exponentially increases, and by using the multi-core processors with 5000 cores, the average
computation time considerably reduces. Although multi-core or multi-processor units can
reduce run-times, the program speed cannot be increased because of the limited number
of cores of the processor units. Furthermore, in case of computer failures, there is a need
to re-run the whole program.

Another category of a distributed computing approach consists on DOPF models being
decomposed into sub-problems, with each sub-problem being independently run on a com-
puting node of a distributed computing system [64–66]. Thus, in [64], the model, which is
in a tree structure is decomposed into sub-tree problems, with each sub-problem searching
for loss minimization independently. In [65], the distribution system is decomposed into
three different levels, namely, primary main feeders, single-phase laterals, and secondary
systems; an optimization model is then formulated for each sub-network, while the results
are coordinated to find the optimal solution of the network. In [66], the network is decom-
posed into two sub-areas, with the output of DG units being optimized independently in
each sub-area; a global power flow is then calculated based on the results of those sub-areas.
Although the distributed computing approach with decomposition models can reduce the
run-time, because of the decomposition, the DOPF solution may be sub-optimal.

In this work, in order to reduce the computational burden of the DOPF model with
GA-based solution and make it suitable for real-time applications, a distributed comput-
ing platform is proposed based on the SGCM system [67], since this system is designed
for smart grid applications including data acquisition, monitoring, and distributed com-
puting. As per [67], the system is built on top of a reconfigurable interconnection net-
work computing platform, and provides reliable, secure, and fast performance two-way
communication among nodes of utility servers, energy hubs, and smart sensors/controllers.
Similar to Hadoop [68–70], which is a distributed computing platform for MapReduce mod-
els [71], the SGCM uses proprietary protocols on top of the Transmission Control Protocol
(TCP)/Internet Protocol (IP) for inter-communication of computing components. How-
ever, unlike Hadoop, the SGCM uses programmable data paths to distribute/collect data
to/from computing nodes running distributed computers, while Hadoop uses a chained
pipe to distribute files to different data nodes in a cluster. Hence, the SGCM has the
same functionality for solving MapReduce problems as Hadoop does, but in a customized
approach. By using different servers/computers with different port specifications, inde-
pendent computing nodes, which can independently run the DOPF model, are defined.
Without using any approximation or decomposition in the DOPF model, the full model
can be run on different computing nodes, and in a master-slave structure, the optimal
results can be obtained. Furthermore, the reliability of the SGCM is higher than other
computing systems, because in case of computer failures, just the computers/ports which
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are faulty fail, while the system as whole continues solving the model, isolating the faulty
computing nodes.

1.3 Research Objectives

Based on the aforementioned literature review and associated discussions, the followings
are the main objectives and contribution of the research proposed in this thesis:

• Implement a power flow model of an unbalanced three-phase distribution system,
referred to as a DLF, including controllable smart loads and other components of
distribution systems. The DLF model needs to be a stand-alone executable program
that can be used on different platforms (i.e., the Windows, Linux, and Mac), for
its implementation in the proposed distributed computing approach. The proposed
DLF is solved in the OpenDSS simulator [72].

• Develop NN-based models of EHMS micro-hub and PS+ controllable loads, and
integrate them into the DLF model, to realize appropriate DOPF models with the
objectives of minimizing energy loss and peak demand over a desired horizon.

• Develop a GA-based solution approach for the DOPF model to find optimal switching
of control devices such as LTCs, SCs, peak demand caps on EHMS micro-hub loads,
and thermostat signals on PS+ loads, and develop a “MapReduce” model, using a
distributed computing approach on an SGCM system [73], to reduce the computa-
tional time of the GA-based model to make it suitable for real-time applications.

• Test the developed DOPF model on a practical test feeder in order to demonstrate
and validate the proposed method for practical applications.

1.4 Thesis Outline

The remainder of the thesis is organized as follows:

• Chapter 2 presents a review of the main background topics for this research. Thus, a
brief background on DSA, DMS, and centralized VVC problems is first presented, fol-
lowed by a discussion on load modeling and load management programs in the context
of DSM and DR. A detailed explanation of EHMS and PS+ loads is also presented,
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followed by a discussion on mathematical programming models and their solution
approaches. The distributed computing approach based on the SGCM system is
also introduced and explained. Finally, detailed mathematical models of distribution
system components for the DLF model are described.

• Chapter 3 discusses the algorithm for solving an unbalanced three-phase DLF model.
Two distribution feeders, namely, the IEEE 13-node test feeder and a practical test
feeder are employed to test and validate the model. Thereafter, the implementation
of GA-based DOPF model is explained, together with a discussion on the need to
decrease the run-time of the DLF using the OpenDSS simulator. The integration
into the DOPF of an NN-based EHMS micro-hub controllable smart loads is then
discussed. Finally, analyzing the results obtained from different realistic case studies
and scenarios in a practical distribution feeder are presented.

• Chapter 4 presents the modeling of controllable smart loads using an NN technique,
and demonstrates its application to existing controllable PS+ loads. The mathe-
matical NN model of PS+ loads and its integration into the DOPF model are also
discussed. Finally, the results of applying the proposed DOPF model to a practical
distribution feeder for different scenarios are discussed, and the effect of the optimal
management of PS+ loads is analyzed.

• Chapter 5 presents the main conclusions and contributions of this thesis, and identi-
fies some directions for the future work.
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Chapter 2

Background Review

2.1 Introduction

This chapter reviews the main background topics of this research. Thus, Section 2.2
presents a brief background on DSA, DMS, and centralized VVC problems. Section 2.3
discusses load modeling and load management programs in the context of DSM and DR,
followed by a discussion of the EHMS and PS+ loads. A brief descriptions of different
mathematical programming models and solution approaches are presented in Section 2.4.
In Section 2.5, the SGCM architecture and an application of the SGCM for distributed
computing approaches is introduced and explained. Finally, detailed models of distribution
system components for DLF studies are described in Section 2.6.

2.2 Distribution System Automation and Distribu-

tion Management System

DSA and DMS are defined and briefly reviewed in Section 1.2.1. In this section, details on
these topics that are particularly relevant to this work are presented and discussed.

2.2.1 Distribution System Automation

DSA can be categorized into two functions: monitoring and control. For monitoring, a
Supervisory Control and Data Acquisition (SCADA) system is used, and its main functions
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are to read meters at different locations in the system, record the condition of the system
at different places, and report any abnormalities (automated meter reading). The control
functions include switching operations, system protection, and more recently, remote load
control, and remote connection/disconnection [15].

DSA functions can be divided into two levels: customer and system. For customer-level
functions, communication devices are needed for remote monitoring and control of loads,
whereas system-level functions are mostly installed at main feeders and substations [74].
The main DSA functions are as follows [74,75]:

• Fault isolation, outage location, service restoration and overload detection.

• Feeder reconfiguration and transformer load balancing.

• Extension of transformer lifetime.

• Recloser/Breaker monitoring and control.

• Control of SCs for VVC.

• Voltage regulation through voltage regulators.

• Substation transformer LTC control.

• Distribution system monitoring and SCADA interfaces.

• Automation of circuit reconfiguration.

• Faster fault detection and fault isolation with enhanced monitoring and communica-
tion systems.

• Integration of AMI in DSA.

• Reconfiguration of the system to improve protection schemes.

• Integration of DG units in distribution systems.

• Hardware and software infrastructure improvements for DSA.

Based on above discussion, to fully implement DSA, the following are important goals [74]:

• Improve the operational efficiency of the distribution system with the following in-
stalled components:
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1. VVC devices to reduce loss along feeders.

2. Sensors to report equipment issues.

3. Standards development based on cost and loss reduction.

• Manage peak loads.

• Predict equipment failure.

• Restore the system after failure.

Rapid changes in distribution systems have introduced new challenges for DSA imple-
mentation [76,77], thus;

• DG units, which are connected to the grid, can affect the reliability of the distribution
system, specially in networks with high DG penetration.

• Implementation, administration, and integration of energy storage system have con-
siderable impact on DSA strategies.

• By introducing new infrastructure and technologies such as sensors and DG units,
modern distribution systems attain some characteristics of transmission systems such
as bi-directional power flow, and non-radial network topologies.

• Disasters such as earthquakes, tsunamis, and hurricanes should be considered in DSA
design to improve the reliability and reduce service interruptions.

• Due to different equipments, technologies, policies, standards, and resources, a glob-
ally uniform prescription for DSA implementation may not be possible.

2.2.2 Distribution Management System

Traditional VVC in conventional distribution systems is carried out by local controllers
with LTCs and SCs, as shown in Figure 2.1. Lack of two-way communication devices,
central controllers, and wide-area measurement facilities have been some of the limita-
tions of these systems [78]. However, recent improvements in communication, control, and
measurement technologies are transforming conventional distribution systems into what is
now called the smart grid. An important part of these smart grids are smart loads, which
include HAS and HEM systems [12, 79, 80]. Automatic and remote controller switches for
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Figure 2.1: A conventional distribution system with local controllers for LTCs and SCs [78].

lights, setpoints for thermostats, window covers, and various other electrical systems and
apparatus are among the features of these systems. Figure 2.2 presents a typical smart dis-
tribution system, depicting the improvements in communication and control infrastructure,
where a central controller collects load data internally from switches, thermostat setpoints,
sensors, measurement devices, and plug-in modules such as audio/video systems and secu-
rity systems, and collects external data such as weather and energy price forecasts, which
may be received fully or partially along with other measurements by the LDC through
the AMI. In the AMI, a number of neighbours communicate with the LDC through their
smart meters, in a so-called Neighbourhood Area Network (NAN), and send their data to
the utility’s Wide Area Network (WAN) [81].
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Figure 2.2: A typical distribution system with evolving communication and control infras-
tructure [18].

2.2.3 Centralized Volt/Var Control

As mentioned in Section 1.2.1, voltage and reactive power control in distribution systems
have traditionally been performed by LTCs, SCs, fixed capacitors, and step-voltage regu-
lators. LTCs and step-voltage regulators are voltage-control devices, while SCs and fixed
capacitors can regulate both voltage and reactive power [34]. Fixed capacitors are mostly
used to cover minimum reactive power requirements in distribution systems, while SCs are
added to the system to manage the load variations over the day.

The aforementioned local controllers have no significant effect on system loading. Since
peak loads can be up to 2-3 times the average load, and up to 10 times the minimum
load [18], to properly manage such load variations, centralized control techniques for VVC
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have been proposed in the literature [18,19,26–29,82–85]. VVC has mainly been designed
to maintain voltages within an acceptable range and to minimize energy losses. However,
other objectives may be used, such as maintaining unity power factor at the substation
node and minimizing the energy drawn from the substation [18]. In general, a centralized
VVC problem can be defined as follows [82,83]:

Minimize: F =
∑

f(I, V, tap, cap) (2.1a)

Subject to:

• Power flow equations:

P g
e − Pe =

NN∑
c=1

|Ve||Vc|[gec cos(φe − φc) + bec sin(φe − φc)] ∀e (2.1b)

Qg
e −Qe =

NN∑
c=1

|Ve||Vc|[gec sin(φe − φc)− bec cos(φe − φc)] ∀e (2.1c)

• Operating limits on voltages:

V ≤ |Ve| ≤ V ∀e (2.1d)

• Operating limits on branch currents:

|Il| ≤ I l ∀l (2.1e)

• Operating limits on LTC:

TAP e,fc ≤ tape,fc ≤ TAP e,fc ∀e, fc (2.1f)

• Operating limits on capacitors:

0 ≤ cape ≤ Cmax
e ∀e (2.1g)

where:

Ve = |Ve|]φe (2.2a)

Y sp
ec = gec + jbec (2.2b)
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All the indices, parameters, and variables in the equations above and throughout this thesis
defined in the Nomenclature Section at the beginning of this document.

The solution to the optimization model (2.1a)-(2.1g) yields the optimal tap and ca-
pacitor settings that minimize the objective function (2.1a), while meeting all feeder con-
straints. This mathematical model is the basis for the DOPF model proposed in this
thesis.

2.3 Load Modeling with DSM and DR

Monitoring and control of distribution systems through DMS are integral aspects of smart
grids, carried out based on various objectives at the feeder level such as VVC, DR, system
reconfiguration, and system restoration [18, 24]. Furthermore, at the customer end, real-
time monitoring and control, associated with EMSs at residential, industrial, commercial,
and/or agricultural sites, are also important features of smart grids [12, 35]. Controllable
loads are being integrated into DSA techniques and tools to affect load profiles, with
benefits for both customers and LDCs. While reducing energy consumption and costs are
of interest to customers, reducing peak load and reshaping load profiles, which increase
system sustainability, are mainly of interest to LDCs [12,86]. Hence, studying the behaviour
of controllable loads, their impact on the aggregated load profiles, and their integration in
optimal distribution system operation is relevant and timely.

2.3.1 Load Modeling

Load modeling plays an important role in power systems. Although there are various
measurement devices at the transmission side, unmetered customers on the distribution
side have been an issue for DSA. Static load models have been used for various studies in
distribution systems [87]. Traditionally, constant impedance or constant power load models
have been used [88], but constant impedance (Z), constant current (I), and constant power
(P) or ZIP load models have also been reported [89–94]. A ZIP load model considers the
variation of load with bus voltage, and its parameters can be fitted to accurately describe
the steady-state behaviour of different kinds of loads. Other static load representations
such as an exponential model has been reported in [89].

Because of the complexity of controllable loads and insufficient data, it is difficult to
use fundamental physical laws for modeling these loads. However, an accurate model of
the customer load profiles is necessary for integrating loads in distribution system EMS;
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for this purpose, black-box or empirical load models can be used. In such models, a rela-
tionship between the inputs and outputs is obtained and represented using mathematical
functions [95,96], or by EAs such as NN [86,97], Particle Swarm Optimization (PSO) [98],
or GAs [99]. In the present work, an NN is used to accurately model controllable loads,
considering the effect of external parameters such as temperature, TOU price, and LDC
control signals.

2.3.2 DSM

Load management is classified into two categories: Direct Load Control (DLC) and Inter-
ruptible Load Control (ILC). DLC usually deals with residential customers and it refers
to programs that can interrupt customer loads with utility’s direct control. On the other
hand, ILC usually deals with the commercial/institutional and industrial customer loads,
and it involves load interruption during peak demand based on an agreement between the
utility and the customers. Interruptions can be made directly by utility operators or by
customers, based on a utility’s request [100]. The objective of these programs are to modify
the load shape of the distribution system.

As mentioned in Section 1.2.2, DSM is classified into three major groups. The energy
efficiency and conservation category refers to programs that result in reducing energy
consumption or energy used by specific end-use systems or devices, typically, without any
impact on the provided services. On the other hand, strategic load growth refers to how the
programs increase the load levels through “strategic” electrification. Finally, DR programs
propose methods to control and alter the customers’ energy consumption with incentives
or lower-priced electricity [39,40], with benefits accruing to both customers and the LDC.
Thus, peak clipping, valley filling, load shifting, and flexible load shaping are four major
objectives of DR programs. These objectives may combine with strategies such as energy
efficiency and strategic load growth to make up a DSM program. Figure 2.3 depicts the
DSM objectives and strategies in distribution systems. The following is a brief description
of the objectives and strategies of DSM programs [101]:

• Peak clipping to decrease the usage during peak loads.

• Valley filling to encourage customers to use their equipment during off-peak load
hours. This can improve the overall load factor of the system.

• Load shifting to shift electricity usage from the peak load hours to off-peak hours.
The goal is not to reduce the energy consumption in the long term, but to reduce
the peak load in the short term, considering the comfort level of the customers.
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Figure 2.3: DSM objectives in distribution systems [39].

• Flexible load shaping to redistribute the electricity usage during different times.

• Energy efficiency and conservation to decrease electricity costs through equipment’s
modification or replacement (e.g., improving the residential heat insulation to reduce
electricity usage of Heating, Ventilation, and Air Conditioning (HVAC) systems).

• Strategic load growth to increase the load through electrification in a strategic way.

Different DSM techniques have been categorized in [102]; one of the important cate-
gories deals with end-use equipment control, which may include, for example:

• AC in residential and commercial package units: remote control cycling, local con-
trollers, thermostat controls, and remote ON/OFF controls.

• AC in commercial and industrial chillers: water column temperature controls, remote
control cycling, and capacity reduction.

• Water heater in residential and commercial: remote ON/OFF controls and timers.

• Pumps: timers and remote ON/OFF.
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The present research focuses on utility equipment controls, such as LTCs and SCs,
while considering of DSM and DR programs. Thus, models of controllable smart loads,
in particular EHMS micro-hubs and PS+ loads, as discussed later, are integrated into the
proposed DOPF model to minimize the energy drawn from the substation, reduce feeder
losses, reduce peak load, and reduce customer costs.

2.3.3 Energy Hub Management System

An “energy hub” can be considered as a node in the power system when the exchange
of energy and information with other sources of energy, loads, and external systems oc-
curs. Within an energy hub system, different kinds of energy such as electricity and heat
can be converted or conditioned using different combined heat and power technologies
such as transformers, turbines, compressors, inverters, and heat exchangers. Based on
the services that customers require, the output of the energy hub can be electricity and
heating/cooling [103,104].

In [104–108], the key roles of energy hubs in the future of smart grids are discussed.
Thus, the potential of energy hubs to efficiently manage a distribution system for day-
ahead operations is discussed in [104]. In [105], a combined optimization of coupled power
flows in the presence of different kinds of energy infrastructures such as electricity, gas,
and heating systems is proposed. In [106], a method to decompose a multi-carrier Optimal
Power Flow (OPF) into separate traditional OPF problems is analyzed. In [107], a model
is proposed to manage loads and generators to improve the reliability of energy hubs.
Finally, an optimal schedule of an extended energy hub, which includes drivers, renewable
DG units, DR, and electrical storages, is presented in [108].

In [12], energy hubs are classified into four major groups: residential, commercial, agri-
cultural, and industrial, based on the way they consume energy. The objectives differ from
the point of view of customers and the utility; for customers, one of the most important
objectives is to minimize cost. Hence, a two-tier control hierarchy is proposed, separat-
ing energy hubs into micro- and macro-hubs; the micro-hub represents a customer at the
lower level, and the macro-hub represents the utility at the higher level, with a group of
individual micro-hubs communicating with a macro-hub in a two-tier architecture. The
mathematical models of residential, commercial, and agricultural micro-hubs are discussed
in [13]. An optimal industrial load management model, which can be integrated into the
EHMS for real-time management of industrial demand and distribution feeder, is pro-
posed in [34]. The model includes comprehensive models of industrial processes, process
inter-dependencies, storage units, process operating constraints, and production require-
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ments, and is used for load control and voltage optimization considering the interactions
of industrial processes with the operation of distribution feeders.

In macro-hubs, which is the focus of the present research, modeling of the load and DG
units are important. In [109–111], some mathematical models are introduced for residential
loads. Models of other devices such as Plug-in Electric Vehicles (PEVs) are described
in [112]. In [113], the Smart Residential Load Simulator (SRLS), a MATLABr-based
toolbox developed to model and study electric and thermal loads and sources in residential
houses, is presented; models of smart thermostats, ACs, furnaces, stoves, washers and
dryers, refrigerators, wind turbines, solar PV, and batteries are included in the SRLS.
In [114], industrial loads are modeled considering users’ comfort levels, dynamic pricing,
and generation constraints.

It is noted in [34] that customers have the ability to receive real-time external infor-
mation from weather stations, market operators, and the LDC, so that micro-hub smart
loads internally optimize the load profile. This profile is collected by the LDC from the
micro-hub loads together with the system status of the distribution system. All this in-
formation is used by the LDC control center in real-time to solve the DOPF, and thus
determines the optimal controls for switches, LTCs, and SCs, and to send as well peak
demand constraints to micro-hubs to regulate its load accordingly. An overall schematic
of an EHMS for different types of energy hubs is presented in Figure 2.4, and Figure 2.5
depicts the micro-hub for different types of loads. Also, Figure 2.6 presents a schematic of
the EHMS-based optimal feeder and load control for real-time applications [34].

In this work, a mathematical model of EHMS macro-hubs to optimize the operation of
distribution systems is developed. Models of controllable smart loads comprising EHMS
micro-hub loads and PS+ loads are developed to study the effect of different types of
controllable loads on optimal distribution system operation.

2.3.4 Peaksaver PLUSTM Loads

Among controllable devices, monitoring, supervising, and controlling of HVAC systems
in various facilities have been discussed in the literature [116–119]. In particular, the
PS+ program in Ontario, Canada, is a voluntary program to reduce AC demand in the
residential and small commercial sector [120]. In this program, smart thermostats, referred
to as PCTs, are installed to slightly increase the AC temperature setpoints during summer.
PS+ loads are currently activated during the summer weekdays (i.e., June to September)
for a maximum of 4 hours at anytime, during a day. According to the PS+ rules, PCTs
can be activated on average five times per year, up to a maximum of 40 hours, excluding
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Figure 2.4: Overall schematic of an EHMS [13].

emergencies such as a blackout during summer. Since the AC loads account for about 50%
of summer peak residential loads in Ontario, it is estimated in [121] that direct control of
AC usage may conserve about 37% of the energy, resulting in savings of $688 million in
energy conservation over a 20 year period. Since the demand for electricity in summer is
the highest, by automatically adjusting the PS+ smart loads during peak time, the cooling
energy use can be reduced by 10% per year [122].

In this thesis, an NN algorithm is used to model EHMS micro-hubs and PS+ smart
loads. The NN model is a function approximation tool, which uses external data to estimate
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NN parameters. The system is considered as a black-box, which tries to find the best fitted
NN parameters that match the outputs with the targets; for this purpose, the NN should
be trained to capture the relationship between the input data and related target data.
With a feedback loop control, the output of the NN is compared with the target (i.e., the
desired output), and the weights and biases are adjusted between neurons to reduce the
error. Depending on the complexity of the system, the number of hidden and output layers
of the NN may vary.

Figure 2.7 shows the schematic of the overall proposed optimal feeder control with
different kinds of loads, including PS+ and EHMS micro-hub smart loads. The LDC will
then collect the smart loads profiles together with the status of the distribution feeder, and
solve the DOPF model to send optimal control signals to the LTCs, SCs, and smart loads,
using a closed-loop MPC approach.
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2.4 System Optimization

2.4.1 Mathematical Programming

Optimization problems seek to obtain the best solution in terms of finding the minimum or
maximum of a function subject to various constraints. The general form of an optimization
problem can be given as follows:

min . f(x) (2.3a)

s.t. : gk(x) = 0, ∀ k = 1, 2, . . . , p (2.3b)

hj(x) ≤ 0, ∀ j = 1, 2, . . . ,m (2.3c)

where x is an n-dimensional decision variable; f(x) is the objective function; gk(x) is a set
of p equality constraints in (2.3b); and hj(x) is a set of m inequality constraints in (2.3c).
The optimum solution of the mathematical program may include (2.3a)-(2.3c) can be found
using various methods [123].

Mathematical programming problems can be classified based on the nature of the equa-
tions involved in the objective function and the constraints. Accordingly, optimization
problems are categorized as linear, non-linear, geometric, and quadratic programming
problems. A brief introduction to linear and non-linear programming problems is pre-
sented next.

Linear Programming

These problems comprise a linear objective function with a set of linear equality and
inequality constraints. The general form of Linear Programming (LP) problems is as
follows:

min . f(x) = cTx (2.4a)

s.t. : Ax ≤ b (2.4b)

l ≤ x ≤ u (2.4c)

where x = [x1 x2 . . . xn]T ; l and u are the lower and upper bounds of x; A is an m × n
matrix; c is an n-dimensional column vector; and b is an m-dimensional column vector.
The Simplex method and the Interior Point algorithms are commonly used to solve LP
problems [123].
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Mixed-Integer Linear Programming

These problems are LP problems with some integer or binary variables. The general form
of an MILP problem is as follows:

min . f(x, y) = cTx+ dTy (2.5a)

s.t. : Ax+By ≤ b (2.5b)

x ≥ 0, x ∈ Z (2.5c)

y ≥ 0 (2.5d)

where x = [x1 x2 . . . xn]T , is an integer non-negative, n-dimensional vector; y is a non-
negative, s-dimensional vector with continuous variables; A and B are m × n and m × s
matrices, respectively; c and d are n- and s-dimensional vectors; and b is an m-dimensional
vector. The Cutting Plane and Branch-and-Bound methods are typically used to solve
MILP problems [123].

Non-Linear Programming

These problems have a non-linear objective function or at least one non-linear constraint
in (2.3a)-(2.3c). The most important solution methods are the Gradient methods, Newton-
based methods, Least Square methods, and Interior Point methods [123]. Gradient meth-
ods use the search direction based on the slope of the function in order to find the optimal
solution; although these methods are general and can solve any size of NLP problems, they
may only yield sub-optimal solutions and/or the solution may zigzag near the optimal
solution. Newton-based methods are second-order gradient methods that have faster con-
vergence, but are computationally more expensive, since a Hessian matrix and its inverse
are needed. Interior Point methods cross the interior of the feasible region and use “barrier
functions” to find the optimal solution; a barrier function is a continuous function whose
value at a point increases to infinity as the point approaches the boundary of the feasible
region.

Mixed-Integer Non-Linear Programming

These problems are NLP problems with at least one integer variable. The Cutting Plane
method, Branch-and-Bound method, Balas method, Generalized Penalty Function method,
Sequential Linear Integer (discrete) programming methods, and EAs, which are discussed
next, are used to solve MINLP problems. The non-linear nature of the DOPF model
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renders it an NLP problem, and since LTC or SC switchings are modeled using integer
variables, the NLP problem becomes an MINLP problem. In [29, 124–127], MINLP-based
models for VVC problems are proposed, heuristic approaches to solve other MINLP-based
VVC problems have been reported in [20,22,23,29,34].

2.4.2 Evolutionary Algorithms

In recent years, many papers have reported algorithms and applications of EAs to solve
NLP and MINLP problems. GAs, PSO, and evolution programming strategies are among
the different EA-based methods. GAs are based on search algorithms that imitate the pro-
cess of natural selection. Starting with a “pool of points”, referred as chromosomes, the
GA searches in a space, which is defined mostly in a binary representation, and compares
chromosomes in terms of their fitness/objective to generate a new generation of points.
The “cross-over” and “mutation” operators are applied to the parent chromosomes to gen-
erate new chromosomes. The cross-over operator selects two random chromosomes; mostly
one or two points along their common length are chosen randomly, and they exchange
their characteristics to generate two new chromosomes. The mutation operator switches a
position randomly within a chromosome to mutate new chromosomes.

It is important to note that GA-based algorithms, like other EA-based algorithms, do
not guarantee an optimal solution; however, multi-pass searches in parallel can reduce
the probability of falling into sub-optimal traps [128]. Figure 2.8 presents a general GA
flowchart. GA-based applications to power system problems have been reported in several
papers; thus, in [129–132], GA-based algorithms for the optimal capacitor planning problem
are proposed, and in [34,36,133], GA-based VVC problems are used. For example, in [34,
36], heuristic and GA-based solution methods to solve the DOPF problem are compared,
noting that although the GA-based method yields a better solution, the computational
burden is quite significant, making the model unsuitable for real-time applications.

In the present work, as discussed and justified in Section 1.2.1, a GA-based algorithm is
used to solve the proposed optimization problem as an MINLP problem, and as discussed
in Section 2.5, in order to make the model suitable for real-time applications, an SGCM
system is used for parallel computation.
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2.5 Smart Grid Communication Middleware System

2.5.1 SGCM System Architecture [67]

The SGCM provides a framework for MapReduce model based on distributed comput-
ing applications. The framework contains templates to build client, master, and worker
components by adding application specific data structures, data file information, “Map”
or “Reduce” processes, and work-flow logic. The client component runs on a console to
distribute, install, and configure master and worker components on available nodes; it dis-
tributes data files to the master-node (i.e., the node with master components installed),
and calls master functions to run. The master-node creates jobs in forms of files, sends
jobs to worker-nodes (i.e., nodes with worker components installed) for Map or Reduce pro-
cesses, and tracks jobs. Worker-nodes call Map or Reduce programs to process job files,
and send result files to the master-node or other worker-nodes according to the work-flow
logic. Since the SGCM framework allows to accommodate more complicated work-flow
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logic, it has been used in this work as a template to implement a recursive MapReduce
model for the GA-based DOPF solution proposed in this study. Furthermore, in order to
reduce the computational burden of the DOPF model with a GA-based solution and make
it suitable for real-time applications, the SGCM system is chosen as the preferred platform
for a recursive MapReduce model due to its fast performance when large number of nodes
are involved; it is light, reliable, and flexible, and is capable of running multiple smart grid
applications simultaneously.

The core components of the SGCM system are the nodes and the console. The node
is a client and a server program, which can be installed and run on commodity computers
and smart devices. As a client, the node is able to make TCP connections to other nodes,
and as a server, it waits for a TCP connection and provides services. The node is a virtual
router which can forward packets to other nodes. Also, the node is a service provider, on
which application modules can be installed. The node is a processor that executes groups
of node instructions, which consist of: net instructions for creating structured data path of
nodes; file instructions for file Input/Output (I/O) and file transfer; execution instructions
for remote function calls; bundle instructions for install/uninstall application modules;
and cluster instructions for node cluster discovery and management. The console is a
client program used to connect to a node and to launch network commands. The console
is a command line interface equipped with script language extended with the command
functions. Thus, application deployment, installation, execution, and management can be
done by running script console applications.

A typical smart grid application involves multiple computing components on differ-
ent devices that need to exchange data during the execution of the application. In the
SGCM system, computing components are installed as modules on the nodes. Inter-
communications of the computing components are realized by structured data paths, which
are computed and established by the reconfiguration of nodes. The communication pattern
can be one-to-one, one-to-many, many-to-one, or many-to-many. For a typical one-to-many
communication request, routing algorithms are used to find an optimal network topology
(i.e., a Steiner tree), and a structured data path of the topology is established through
reconfiguration of the nodes. The data transfer for the one-to-many communication re-
quest is through the data path with an identical net Identification (ID), which avoids data
paths interfering with each other when they overlap; thus, the SGCM system supports
simultaneous multiple applications. Also, the SGCM system has flexibility to set different
fault tolerance levels with available computing resources. For high level of fault tolerance,
the system can be configured to run the same job simultaneously on different groups of
nodes, and for low level of fault tolerance, the task tracker on the master-node monitors
the execution of Map or Reduce process on worker-nodes, and in case of failure, it assigns
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Figure 2.9: Multiple applications running simultaneously on an SGCM system [67].

the task to alternative nodes or re-run the task on the same node. Figure 2.9 illustrates
the architecture of SGCM with nodes, a console, and programmable data paths of appli-
cations. This architecture and its communication protocols are based on reconfigurable
interconnection network computing platform.
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2.5.2 SGCM for Distributed Computing

Complex smart grid applications involve a large number of smart computing devices in data
acquisition and processing, monitoring, control, and intelligent computing, and have high
requirements on performance, reliability, and security. Due to the constraints of cost and
distributed computing resources, a distributed approach is used in the SGCM system, which
provides a platform for solving distributed optimization problems, particularly, problems
formulated by a MapReduce model or more complicated work-flow model. MapReduce
usually deals with a large number of computers (i.e., nodes), usually referred to as a
“cluster” or a “grid”; if the nodes are in similar hardware, they are referred to as a cluster,
and if the hardware is shared, it is called a grid. As shown in Figure 2.10, the following
are the two main steps of the MapReduce model [71]:
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• Map: The master-node divides the input into smaller sub-problems and distributes
them between the nodes. The worker-nodes process the sub-problems and return the
solutions to the master-node. If the system has a tree structure, each worker-node
acts as a new master-node for its sub-branches.

• Reduce: The master-node hierarchically collects the results from the entire set of
worker-nodes, combines them in an output format, and releases the results.

Sometimes, there is a “Shuffle” step mid-stage between the Map and Reduce steps, wherein
the output of Map operation is sorted in parallel or exchanged between the nodes, in
order to prepare the data for a Reduce step. In the Map step, each node operation is
independent of the others; hence, the entire computing nodes can run in parallel, and the
distributed operation reduces the computational burden. Likewise, in the Reduce step, all
the nodes resulting from the map step are presented in one reducer node (i.e., a master-
node), simultaneously.

Compared to sequential algorithms, which are more efficient with smaller data-sets, the
MapReduce algorithm can handle larger ones. When Google developed the MapReduce
algorithm for the first time [134], the purpose was undoubtedly to develop an effective pro-
gram for significantly large data-sets. The parallelism, and its system-recovery reschedule
can reduce the risk of partial system failure.

In the distributed computing approach, there are different overheads, such as communi-
cation overhead time, fault overhead time, and bandwidth overhead. The communication
overhead time is the time taken to transfer data between the master-node and worker-nodes
or amongst worker-nodes; the larger the size of data needed to be transferred, the longer
the communication overhead time of the program. Also, when the number of worker-nodes
increases, the limit on the data transfer bandwidth should be considered. For example, if
a series of data from different worker-nodes arrives simultaneously at the communication
channel towards the master-node, a sequential data transfer, which requires longer run-
times, is configured in the SGCM system to satisfy the bandwidth constraint. In addition,
different faults may take place, such as failure of SGCM nodes, which are addressed by
assigning the task to the alternative nodes or re-running the task on the same nodes; this
improves the reliability of the system, but increases run-times.

The computational burden and associated run-times are very important for real-time
applications in distribution systems. In order to implement the proposed optimization
model for real-time applications, a MapReduce model on the SGCM system [73,91] is used
in the present work.
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2.6 Distribution System Component Models

Common distribution system components are series components such as conductors/cables,
transformers, switches, LTCs, and shunt components such as loads, fixed capacitors, SCs,
and DG units. In this section, the three-phase models of these components used in this
thesis are presented in detail in the context of distribution system power flows, based
on [88].

2.6.1 Series Components

These are modeled using ABCD parameters, relate the sending-end and receiving-end
voltages and currents, as follows:[

Vs,p,l
Is,p,l

]
=

[
Al Bl

Cl Dl

]
.

[
Vr,p,l
Ir,p,l

]
∀ l (2.6)

where Al, Bl, Cl, and Dl are 3×3 matrices. The following are the models of the main series
elements in distribution systems:

• Conductors/Cables : These elements are modeled as π-equivalent circuits, with the
following ABCD parameters:

Awr = Dwr = U +
1

2
Zwr Ywr ∀wr (2.7a)

Bwr = Zwr ∀wr (2.7b)

Cwr = Ywr +
1

4
Ywr Zwr Ywr ∀wr (2.7c)

where Zwr and Ywr are 3×3 matrices and U is a 3×3 identity matrix. The diag-
onal elements of these two matrices are the self impedance and shunt admittance
of each phase, respectively, and the off-diagonal elements are the mutual ones. If
the conductors/cables are single-phase or two-phase, the matrices have self and mu-
tual impedance and admittance corresponding only to the available phases, and the
elements corresponding to unused phases are zero.

36
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• Switches : These elements are modeled as zero-impedance components, as follows:

Asw = Dsw = U ∀ sw (2.8a)

Bsw = Csw = 0 ∀ sw (2.8b)

• Transformers : The ABCD parameters in this case depend on the type of connec-
tion (i.e., wye or delta). The following are the ABCD parameters for five common
transformer connections in distribution systems:

– Delta/wye-grounded step-down connection with 30◦ negative angular phase
shift:

Atr1 =
−N

3

0 2 1
1 0 2
2 1 0

 ∀ tr1 (2.9a)

Btr1 = Atr1Ztr ∀ tr1 (2.9b)

Ctr1 = 0 ∀ tr1 (2.9c)

Dtr1 =
1

N

 1 −1 0
0 1 −1
−1 0 1

 ∀ tr1 (2.9d)

where N is transformer turn ratio and Ztr is a 3×3 diagonal matrix in which
the diagonal elements are the impedance of each phase referred to the secondary
side.

– Wye-ungrounded/delta step-down connection with 30◦ negative angular dis-
placement:

Atr2 = N

 1 −1 0
0 1 −1
−1 0 1

 ∀ tr2 (2.10a)

Btr2 =
N

3
Ztr

 1 −1 0
1 2 0
−2 −1 0

 ∀ tr2 (2.10b)

Ctr2 = 0 ∀ tr2 (2.10c)
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Dtr2 =
1

3 N

 1 −1 0
1 2 0
−2 −1 0

 ∀ tr2 (2.10d)

– Wye-grounded/wye-grounded connection:

Atr3 = N U ∀ tr3 (2.11a)

Btr3 = N Ztr ∀ tr3 (2.11b)

Ctr3 = 0 ∀ tr3 (2.11c)

Dtr3 =
1

N
U ∀ tr3 (2.11d)

Single phase transformers are considered in this category, with the A, B, and
D matrices having only the element corresponding to the phase in which the
transformer is connected.

– Delta/delta connection:

Atr4 =
N

3

 2 −1 −1
−1 2 −1
−1 −1 2

 ∀ tr4 (2.12a)

Btr4 =
N

3

1

Ztrab + Ztrbc + Ztrca
× 2 Ztrab Ztrca + Ztrbc Ztrca −Ztrab Ztrbc + Ztrbc Ztrca 0

−Ztrab Ztrca + Ztrba Ztrca 2 Ztrab Ztrbc + Ztrbc Ztrca 0
−Ztrab Ztrca − 2 Ztrbc Ztrca −Ztrab Ztrbc − 2 Ztrbc Ztrca 0

∀ tr4 (2.12b)

Ctr4 = 0 ∀ tr4 (2.12c)

Dtr4 =
1

N
U ∀ tr4 (2.12d)

where Ztrab , Ztrbc , and Ztrca are the diagonal elements of Ztr.
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– Open-wye/open-delta connection:

Atr5 = N

1 −1 0
0 1 −1
0 0 0

 ∀ tr5 (2.13a)

Btr5 = N

Ztrab 0 0
0 0 −Ztrbc
0 0 0

 ∀ tr5 (2.13b)

Ctr5 = 0 ∀ tr5 (2.13c)

Dtr5 =
1

N

1 0 0
0 0 −1
0 0 0

 ∀ tr5 (2.13d)

• LTCs : The ABCD parameters in LTCs depend on the setting of tap positions as
follows:

Afc =

1 + ∆TfcTAPa,fc 0 0
0 1 + ∆TfcTAP b,fc 0
0 0 1 + ∆TfcTAP c,fc

∀ fc (2.14a)

Bfc = Cfc = 0 ∀ fc (2.14b)

Dfc = A−1
fc ∀ fc (2.14c)

where ∆Tfc is per-unit voltage change for each tap changer position; TAPa,fc, TAP b,fc,
and TAP c,fc represent fixed integer values in the range TAP p,fc to TAP p,fc. For
three-phase group-controlled tap changers, all taps are the same; thus:

TAPa,fc = TAP b,fc = TAP c,fc ∀ fc (2.15)

TAP is considered as a fixed integer parameter in the DLF model, and hence is
treated as an integer variable tap in the DOPF model.
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2.6.2 Shunt Components

These are loads, fixed capacitors, SCs, and DG units, and are modeled for each phase in
order to represent unbalanced three-phase loads. A polynomial ZIP load model is used
for loads, while capacitors are considered as constant impedance loads, and DG units are
treated as PQ models with constant active and reactive injected powers, since these are
sufficient for steady-state analysis. Loads can be divided into two main categories, wye-
connected and delta-connected, as follows [34,88]:

• Wye-connected loads and capacitors:

1. Constant power loads:

Vn,p I
∗
yp,n,p = Pyp,n,p + j Qyp,n,p ∀n, p (2.16)

2. Constant impedance loads:

Zyz,n,p =
V sp
n,p

2

Pyz,n,p − j Qyz,n,p

∀n, p (2.17a)

Vn,p = Zyz,n,p Iyz,n,p ∀n, p (2.17b)

3. Constant current loads:

|Ispyi,n,p| =
∣∣∣Pyi,n,p+j Qyi,n,p

V sp
n,p

∣∣∣ ∀n, p (2.18a)

θspyi,n,p = tan−1
(
Qyi,n,p

Pyi,n,p

)
∀n, p (2.18b)

|Iyi,n,p| ej (]Vn,p−]Iyi,n,p) = |Ispyi,n,p| ej θ
sp
yi,n,p ∀n, p (2.18c)

4. Fixed capacitors:

Xyc,n,p =
V sp
n,p

2

Qyc,n,p

∀n, p (2.19a)

Vn,p = j Xyc,n,p Iyc,n,p ∀n, p (2.19b)
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5. Capacitor banks with SCs:

Xycc,n,p =
V sp
n,p

2

CAPycc,n,p ∆Qycc,n,p

∀n, p (2.20a)

Vn,p = j Xycc,n,p Iycc,n,p ∀n, p (2.20b)

where the parameter CAPycc,n,p is a non-negative integer value, which is less
than Cmax and ∆Qycc,n,p represents the size of each capacitor block in capacitor
banks. Capacitor banks with SCs are considered as fixed capacitors here; how-
ever, for the DOPF model, the parameter CAP is treated as an integer variable
cap to find the optimal number of capacitor blocks switched on.

• Delta-connected loads and capacitors: To find phase-to-phase voltages and currents,
two transformation matrices from phase variables to phase-to-phase variables are
introduced as follows:Vn,abVn,bc

Vn,ca

 =

 1 −1 0
0 1 −1
−1 0 1

Vn,aVn,b
Vn,c

 ∀n (2.21a)

Idl,n,aIdl,n,b
Idl,n,c

 =

−1 1 0
0 −1 1
1 0 −1

Idl,n,caIdl,n,ab
Idl,n,bc

 ∀ dl, n (2.21b)

Then, similar to (2.16)-(2.20b), the delta-connected loads and capacitors can be
described, as follows:

1. Constant power loads:

Vn,pp I
∗
dp,n,pp = Pdp,n,pp + j Qdp,n,pp ∀n, pp (2.22)

2. Constant impedance loads:

Zdz,n,pp =
V sp
n,pp

2

Pdz,n,pp − j Qdz,n,pp

∀n, pp (2.23a)

Vn,pp = Zdz,n,pp Idz,n,pp ∀n, pp (2.23b)
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3. Constant current loads:

|Ispdi,n,pp| =
∣∣∣Pdi,n,pp+j Qdi,n,pp

V sp
n,pp

∣∣∣ ∀n, pp (2.24a)

θspdi,n,pp = tan−1
(
Qdi,n,pp

Pdi,n,pp

)
∀n, pp (2.24b)

|Idi,n,pp| ej (]Vn,pp−]Idi,n,pp) = |Ispdi,n,pp| e
j θspdi,n,pp ∀n, pp (2.24c)

4. Fixed capacitors:

Xdc,n,pp =
V sp
n,pp

2

Qdc,n,pp

∀n, pp (2.25a)

Vn,pp = j Xdc,n,pp Idc,n,pp ∀n, pp (2.25b)

5. Capacitor banks with SCs:

Xdcc,n,pp =
V sp
n,pp

2

CAPdcc,n,pp ∆Qdcc,n,pp

∀n, pp (2.26a)

Vn,pp = j Xdcc,n,pp Idcc,n,pp ∀n, pp (2.26b)

Like the wye-connected loads, delta capacitor banks with SCs are considered as
fixed capacitors in the DLF.

• Network equations: Kirchhoff’s Current Law (KCL) is applied to define the line
current balance at each node and phase, as follows:∑

lr

Ir,p,l =
∑
ls

Is,p,l +
∑
yl

Iyl,n,p +
∑
dl

Idl,n,p ∀n, p (2.27)

Similarly, the voltages across the elements connected at each node and phase are
considered to be equal, i.e.:

Vr,p,lr = Vs,p,ls = Vn,p ∀n, p, l (2.28)

2.7 Summary

This chapter reviewed the main background topics of this work. A brief review of DSA,
DMS, and centralized VVC problems was presented, and load modeling and load manage-
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ment programs in the context of DSM and DR were discussed. This was followed by a
discussion of the EHMS micro-hubs and PS+ loads, and a brief review of different mathe-
matical programming models and solution approaches was presented. The SGCM system
was also introduced, followed by an overview of the SGCM architecture and its application
to distributed computing approaches. Finally, mathematical models of distribution system
components used in the DLF model were presented.
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Chapter 3

Distributed Computing Architecture
for Optimal Control of Distribution
Feeders with EHMS Micro-Hub
Smart Loads

3.1 Introduction

In this chapter, the DOPF with an NN model of EHMS micro-hub smart loads and its
implementation using a distributed computing architecture are presented and discussed.
Thus, the algorithm for solving an unbalanced three-phase DLF model used in the DOPF
is first discussed in Section 3.2; two distribution feeders, namely, the IEEE 13-node test
feeder and a practical test feeder are employed to test and validate the DLF model. In
Section 3.3, the implementation of the GA-based approach to solve the DOPF model is
explained. This is followed by a discussion on solving the DLF problem using the OpenDSS
simulator in Section 3.4. Finally, Section 3.5 presents the unbalanced three-phase DOPF
model with EHMS micro-hub loads, and the results obtained from different realistic case
studies and scenarios are discussed.
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3.2. DISTRIBUTION LOAD FLOW

3.2 Distribution Load Flow

The DLF mathematical model discussed in Section 2.6 is solved using the fsolve routine,
which is based on the Levenberg-Marquardt Algorithm (LMA) [135] in MATLABr [136].
In order to achieve a faster convergence, the Jacobian matrix is pre-defined in fsolve. The
procedure is iterative and needs to be initialized, which is done with a flat start; thus, the
voltage magnitudes for all the nodes in each phase are set to 1.0 p.u. with default values
for voltage angles depending on the transformer connection (e.g., 0◦ or 30◦), and all line
currents are set to zero. The LTC taps are integer parameters with fixed values in the
DLF; similarly, the SCs are fixed capacitors with fixed values.

3.2.1 Distribution Load Flow Validation

To validate the DLF model, the results for the IEEE 13-node test feeder (Figure 3.1) are
found to closely match those provided in [34] and [137]. Table 3.1 shows a comparison of
the results obtained using the MATLABr platform with those reported in [34] obtained
using GAMS, and those reported in [137], with the LTC tap positions being fixed to 10, 8,
and 11 for phases a, b, and c, respectively, in all cases. Observe a maximum error of 0.3%
in phase a voltage angle at Node 634, showing that the results closely match those in [34]
and [137].

3.2.2 Practical Distribution Feeder

A real unbalanced distribution feeder from [138] is used for the studies presented in this
thesis. The system one-line diagram is shown in Figure 3.2. The feeder has 41 nodes,
one single-phase transformer, 3 three-phase transformers equipped with LTCs, and 16
load nodes, which are modeled as ZIP loads with 60% constant impedance loads, 30%
constant current loads, and 10% constant power loads. Table 3.2 shows the voltages at
the substation and at all load buses for the “nominal” load condition and the following
three-phase group-controlled LTC positions: 7 at line 15-16, 12 at line 7-8, and 3 at line
40-41; all the LTCs are 32-steps (i.e., -16 to 16).
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Substation

650

RG60

646 645

632

633 634

671

680

611 684

652

675692

Figure 3.1: IEEE 13-node test feeder [137].

3.3 GA-Based Solution of DOPF

3.3.1 Centralized Computing Approach

The output of the DOPF is an optimal set of LTC tap positions and number of capacitor
blocks switched on to supply the given loads. For this reason, TAP , which was a fixed
parameter in the DLF model, is considered to be an integer variable, called tap; and
CAP , which was a fixed parameter in the DLF model, is considered to be a non-negative
integer variable, called cap. The different elements of the GA implementation are the
following [128,139]:

• Objective function (F ): The following function, which is the feeder energy losses, is
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Table 3.1: Comparison of DLF results for IEEE 13-node test feeder

Node Phase
MATLAB platform GAMS platform [34] IEEE report [137]

Voltage [p.u.] Angle [deg] Voltage [p.u.] Angle [deg] Voltage [p.u.] Angle [deg]

650
a 1.0000 0.00 1.0000 0.00 1.0000 0.00
b 1.0000 -120.00 1.0000 -120.00 1.0000 -120.00
c 1.0000 120.00 1.0000 120.00 1.0000 120.00

RG60
a 1.0625 0.00 1.0625 0.00 1.0625 0.00
b 1.0500 -120.00 1.0500 -120.00 1.0500 -120.00
c 1.0687 120.00 1.0687 120.00 1.0687 120.00

632
a 1.0210 -2.49 1.0210 -2.49 1.0210 -2.49
b 1.0420 -121.72 1.0420 -121.72 1.0420 -121.72
c 1.0174 117.83 1.0174 117.83 1.0174 117.83

633
a 1.0179 -2.56 1.0179 -2.56 1.0180 -2.56
b 1.0401 -121.77 1.0401 -121.77 1.0401 -121.77
c 1.0148 117.82 1.0148 117.82 1.0148 117.82

634
a 0.9932 -3.24 0.9932 -3.24 0.9940 -3.23
b 1.0210 -122.22 1.0210 -122.22 1.0218 -122.22
c 0.9952 117.34 0.9952 117.34 0.9960 117.34

645
b 1.0328 -121.90 1.0328 -121.90 1.0329 -121.90
c 1.0154 117.85 1.0154 117.85 1.0155 117.86

646
b 1.0311 -121.98 1.0311 -121.98 1.0311 -121.98
c 1.0134 117.90 1.0134 117.90 1.0134 117.90

671
a 0.9899 -5.30 0.9899 -5.30 0.9900 -5.30
b 1.0529 -122.35 1.0529 -122.35 1.0529 -122.34
c 0.9778 116.02 0.9778 116.02 0.9778 116.02

680
a 0.9899 -5.30 0.9899 -5.30 0.9900 -5.30
b 1.0529 -122.35 1.0529 -122.35 1.0529 -122.34
c 0.9778 116.02 0.9778 116.02 0.9778 116.02

684
a 0.9880 -5.33 0.9879 -5.33 0.9881 -5.32
c 0.9758 115.92 0.9758 115.92 0.9758 115.92

611 c 0.9738 115.77 0.9738 115.77 0.9738 115.78
652 a 0.9824 -5.25 0.9824 -5.25 0.9825 -5.25

692
a 0.9899 -5.30 0.9899 -5.30 0.9900 -5.31
b 1.0529 -122.35 1.0529 -122.35 1.0529 -122.34
c 0.9778 116.02 0.9778 116.02 0.9777 116.02

675
a 0.9834 -5.55 0.9834 -5.55 0.9835 -5.56
b 1.0553 -122.52 1.0553 -122.52 1.0553 -122.52
c 0.9759 116.03 0.9759 116.03 0.9758 116.03
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Figure 3.2: Practical distribution feeder [138].

minimized in the DOPF model:

F = Eloss =
∑
h

∑
p

∑
n

Re(Vsn,p,hI
∗
sn,p,h − Vrn,p,hI

∗
rn,p,h) (3.1)

• Constraints: The following feeder operating constraints are considered, based on the
DLF model:

P g
n,p,h − Pn,p,h = Re{Vn,p,hI∗n,p,h} ∀n, p, h (3.2a)
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Table 3.2: DLF results for the practical distribution feeder

Node Phase Voltage [p.u.] Angle [deg] Node Phase Voltage [p.u.] Angle [deg]

1
a 1.0000 0.00

23
a 1.0712 -2.76

b 1.0000 -120.00 b 1.0646 -122.99
c 1.0000 120.00 c 1.0595 116.69

3
a 0.9681 -1.89

25
a

b 1.0529 -122.35 b 1.0615 -123.12
c 0.9778 116.02 c

4
a 0.9659 -2.03

27
a 1.0692 -2.86

b 0.9630 -122.14 b
c 0.9591 117.68 c

6
a 0.9645 -2.11

30
a

b 0.9616 -122.22 b
c 0.9575 117.59 c 1.0547 116.49

8
a 0.9523 -39.51

31
a 1.0691 -2.90

b 0.9729 -158.40 b 1.0616 -123.06
c 0.9361 78.82 c 1.0547 116.49

10
a 1.0359 -2.16

34
a

b 1.0326 -122.28 b
c 1.0281 117.53 c 1.0564 116.57

13
a 1.0347 -2.23

36
a

b 1.0313 -122.36 b 1.0625 -123.08
c 1.0267 117.44 c

14
a 1.0305 -2.50

37
a 1.0648 -3.03

b 1.0264 -122.65 b 1.0584 -123.26
c 1.0214 117.11 c 1.0521 116.40

22
a

41
a 1.0244 -37.59

b 1.0547 -124.09 b 1.0406 -157.36
c c 1.0234 81.84

Qg
n,p,h −Qn,p,h = Im{Vn,p,hI∗n,p,h} ∀n, p, h (3.2b)

V ≤ |Vn,p,h| ≤ V ∀n, p, h (3.2c)

|Ilf,p,h| ≤ I lf ∀ p, h (3.2d)

TAPp,fc ≤ tapp,fc,h ≤ TAPp,fc ∀ p, fc, h (3.2e)

0 ≤ capn,p,h ≤ Cmax
n,p ∀n, p, h (3.2f)
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while In,p,h in (3.2a) and (3.2b) is described as below:

In,p,h =

NN∑
c=1

Ync,p,hVc,p,h ∀n, p, h (3.3)

where (3.2a) and (3.2b) are the active and reactive power flow equations; (3.2c) rep-
resents the nodal voltage operating limits; (3.2d) are the feeder current operating
limits; (3.2e) represents the LTCs operating limits; and (3.2f) corresponds to the SCs
operating limits. Observe that, since the demand varies over the day, the LTCs and
SCs would switch frequently in order to maintain voltages within limits; however,
maintenance costs of LTCs and SCs would be considerable in this case, and thus,
limits on the number of switching operations per day (5 times) and limits on max-
imum step changing over consecutive hours (± 3 steps) for LTCs and SCs are also
considered. In order to satisfy all constraints, all solution sets that violate operating
limits are discarded in the DOPF model.

• Individual: Any solution set to which the objective function can be applied is referred
to as an individual. For example, a feasible set of LTC tap settings and SC switch-
ing decisions in each phase and in each hour is an individual for this optimization
problem.

• Population: An array of individuals is called a population.

• Generation (Gm): In each iteration, the GA executes the DLF model with the current
population to produce a successive population for a new generation. The GA stops
when the maximum number of generations (G) is reached.

• Chromosome: This is an array of binary numbers used to represent the integer vari-
ables (i.e., LTCs and SCs) in the DOPF model.

• Population size (PS ): This term refers to the size of the population. The diversity of
population should be sufficient for the PS to appropriately represent a large region
of the search space.

• Cross-over (CR) and mutation (MR) rates: These different rates are used to produce
the new generation of population. In this work, CR and MR are respectively equal
to 0.85 and 0.005, and the cross-over operator used is a one-point technique [139].

• Parent and off-spring (children): In the GA, the next generation, called off-spring, is
selected from the current population, called parent.
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• Stall generation limit (SV ): This criterion is used to stop the GA when the objective
value does not change for an SV number of generations.

• Termination time limit (TL): This stopping criterion stops the GA when the time
limit TL is reached.

• Elite off-spring selection (EN ): The individuals which result in the most desirable
values of F in the current population are chosen as elite off-spring for the next
population. EN is the number of those elite individuals.

Without loss of generality, the tap operations are assumed here to be the same for all
three phases. Likewise, for SCs, the number of capacitor blocks switched on are assumed
the same for all three phases.

Figure 3.3 shows the flowchart of the implementation of the DOPF solution using a
centralized GA-based approach. After defining the objective function F , the parameter
values G, PS , EN , SV , TL, CR, and MR are chosen. For a 24-hour timeframe, the
centralized approach runs the DLF model for all individuals that are determined by the
GA procedure. The results are ranked by their value of F ; based on this rank, a pool of
individuals is selected, and the cross-over and mutation operators are applied to generate
an off-spring; The first EN best PS fits among parents and off-springs are then selected
for the new generation. The stopping criteria of the GA algorithm are the following:

1. The run-time is longer than the time limit TL: This criterion is checked at the end
of each generation. In order to feed the system with the new optimized controllable
values in real-time applications, TL should be less than the time interval of the
application (e.g., 1 hour for the DOPF model).

2. The solution does not change over SV number of iterations : Here, SV = G in order
to continue the GA up to the last generation, but it has been found that SV = 10 is
enough for the DOPF to reach a solution.

3. Gm reaches G: If the first two stopping criteria are not satisfied before the G number
of generations, the solution for the last generation is used.

The output of this model provides the optimal 24-hour LTC tap positions and number of
capacitor blocks switched on.

By changing the GA parameters G, PS , EN , and SV , the values of F , i.e., energy
losses over a 24-hour timeframe, are obtained for the practical unbalanced distribution
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Figure 3.3: Flowchart for the implementation of the proposed DOPF model using a cen-
tralized GA-based approach.
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Table 3.3: Comparison of DOPF solution with different GA parameters and solution ap-
proaches

Case G PS EN SV
Solution time Objective function

Centralized Nd = 12 Nd = 24 (energy losses [MWh])
1 40 20 2 10 14h 24m 19s 1h 52m 28s 1h 24m 16s 6.937502
2 40 50 5 10 23h 8m 39s 2h 39m 35s 1h 57m 5s 6.938888
3 50 50 20 50 31h 54m 47s 3h 26m 12s 2h 35m 32s 6.937842
4 100 20 2 20 23h 53m 28s 3h 21m 35s 2h 31m 16s 6.936912
5 100 20 4 20 23h 7m 27s 3h 20m 37s 2h 38m 25s 6.938117
6 100 30 4 20 42h 15m 59s 5h 34m 59s 4h 12m 13s 6.930292
7 200 10 2 200 29h 6m 34s 5h 45m 32s ———– 6.948319

feeder of Figure 3.2. Table 3.3 presents the results of the centralized approach for different
GA parameters. The model is executed on two servers based on Windows 64-bit operating
systems, each with two E5-2650 v2 Intel Xeon 2.60 GHz processors and 48 GB RAM. The
closeness of objective function values with different GA parameters shows the robustness
of the model, but the solution time varies depending on the GA parameters and solution
approach used. In order to achieve better solutions, increasing the value of both generation
and population parameters is effective. However, comparison of Cases 2 and 3 shows that
increasing the value of SV and EN can also help to find a better solution. Since the DOPF
model is an MINLP problem, the computational burden for the centralized approach is
significant (the fastest solution time for a 24-hour timeframe is 14h 24m 19s for Case 1).

3.3.2 Proposed Distributed Computing Approach

The DLF model was also implemented using the distributed computing approach men-
tioned in Section 2.5. Figure 3.4 shows the flowchart for the implementation of the DOPF
model with a GA-based solution using the SGCM system. In the SGCM system, for a
24-hour timeframe, the individuals, which are determined by the GA procedure, are ap-
propriately distributed from the master-node among the Nd worker-nodes of the SGCM
system. Each worker-node runs the DLF model, and the master-node then combines the
results, and ranks them by their value of F . The rest of the procedure is similar to Fig-
ure 3.3. By distributing the individuals from the master-node to the worker-nodes, and
neglecting small overhead times, the computational time could be divided by the number
of worker-nodes, and hence the run-time will be significantly reduced.
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Figure 3.4: Flowchart for the implementation of the proposed DOPF model using a GA-
based solution in a distributed computing approach.
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The DLF model described in Section 3.2 is implemented in MATLABr, which allows to
generate an executable file that can run on any platform. Thus, there is no need to install
MATLABr on every computer working node, since the DOPF model is envisaged to be
executed across different computing nodes of the SGCM system, with the model being a
stand-alone executable file independent of any particular computing environment.

To test the DOPF model in the distributed computing approach, it is run on two
servers with 12 worker-nodes (i.e., each server has 6 worker-nodes) and with 24 worker-
nodes (i.e., each server has 12 worker-nodes). It should be mentioned that if the number
of worker-nodes is greater than the number of the population size PS , then there would
be idle worker-nodes; for instance, in Cases 1, 4, and 5 with Nd = 24 in Table 3.3, four
worker-nodes are idle. Also, in Case 7 with Nd = 12, two worker-nodes are idle; therefore,
it is not necessary to run Case 7 with 24 worker-nodes. It should be added that because of
the stall generation SV value, some cases were terminated before reaching the maximum
number of generations G; for instance, Case 3 was terminated in 25 generations, Case 4
was terminated in 73 generations, and Case 5 was terminated in 77 generations.

Comparing the solution times in Table 3.3, observe that with 12 worker-nodes in Case
3 takes 3h 26m 12s, against the 31h 54m 47s required in the centralized approach, which
means that it takes around 28 hours less to reach the same objective function value; the
solution time can be reduced further to 2h 35m 32s in Case 3 with 24 worker-nodes.
Case 1 with 24 worker-nodes gives the best solution time with a proper DOPF solution,
which shows the effectiveness of the proposed distributed computing approach to solve the
unbalanced three-phase DOPF.

Since the computation time for running the DLF model is large; independent of the
number of worker-nodes, in order to further reduce the run-time to make the DOPF model
suitable for real-time applications, the DLF was solved using a faster and more efficient
implementation as discussed next.

3.4 OpenDSS Simulator

In order to reduce the run-time of the DLF model and make it suitable for real-time
applications, the open source simulator OpenDSS [72] was used to solve the DLF problem.
OpenDSS is able to obtain a single-hour DLF solution for an unbalanced three-phase
distribution system within a second, while the time taken to solve the DLF with the
fsolve MATLABr solver is 90-120 seconds. Hence, by using OpenDSS together with
the distributed computing approach, it is possible to make the DOPF model suitable for
real-time applications.
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Yprim injI

Figure 3.5: Norton equivalent of power conversion elements.

In OpenDSS, generally elements are divided into two different categories: power delivery
and power conversion. Power delivery elements usually have two terminals with one or more
phases. The function of power delivery elements is to send energy from one terminal to
other terminals; examples of these elements are lines and transformers. These elements
are defined by their impedance and are represented by the Yprim matrices in OpenDSS
for each element, as follows:

Il,p = Yprim Vn,p (3.4)

Power conversion elements are the other category in the OpenDSS simulator, which
convert power from one form of energy to another. Reactors and capacitors are examples
of these elements, since they store energy temporarily and then return/absorb it to/from
the system as reactive power. Usually power conversion elements just have one terminal
and this terminal may include multiple phases. A black-box model is used in OpenDSS
to model these elements, which are represented as a simple admittance Yprim, or in more
complicated models, the injection current is obtained through differential equations. The
Norton equivalent of power conversion elements is shown in Figure 3.5. If the element has
non-linear characteristic (e.g., special loads and generators), the injection current compen-
sates the non-linear portion of the model. ZIP Loads, as a function of voltage, are modeled
as power conversion elements.

Overall, as shown in Figure 3.6, the Yprim matrices for power delivery and power con-
version elements are fed into the Ysyst matrix, which is sparse because of the nature of
distribution systems. The Ysyst matrix is constant and does not change through simula-
tions in OpenDSS; this efficiently reduces the computational time, especially for long runs.
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Figure 3.6: Obtaining system admittances and injection currents of power conversion ele-
ments in OpenDSS.

To obtain the injection current of power conversion elements, the run starts with an initial
guess, with zero load power flow (i.e., all shunt elements are disconnected and just series
power delivery elements are considered in the power flow). The obtained voltage and phase
angles are used to achieve the injection current for the next iteration of all power conver-
sion elements in the system, which are added into the Iinj matrix. When the difference of
the voltages in all nodes and all phases converges to typically 0.0001 pu, the iterations are
stopped. Since the Ysyst matrix is not rebuilt in each iteration, the process of obtaining
the results are very quick.

3.5 DOPF Model with EHMS Smart Loads

In the DOPF model so far, the decision variables from the LDC’s perspective have been
the optimal set of LTC tap positions and the number of capacitor blocks switched on;
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hence, in this section demand caps on EHMS micro-hub controllable loads are added to the
proposed model, with the objective of minimizing energy losses and/or energy drawn from
the substation. Since customers tend to maximize their comfort and convenience, which
may lead to high demand peaks, the proposed DOPF model should allow to consider and
limit the impact of these controllable customers. Hence, the proposed objective function
of the DOPF model for minimization is as follows:

Fk = Jk − αkR (3.5)

where the first term represents the feeder energy losses when k = 1 (J1), as described
in (3.1), or energy drawn from the substation for k = 2 (J2) as follows:

J1 = Eloss (3.6)

J2 = Edrawn =
∑
h

∑
p

Re(Vsf ,p,hI
∗
lf,p,h) (3.7)

and the second term:

R =
1

24

∑
h

∑
p

∑
n

γn,p,h (3.8)

corresponds to caps on the smart loads’ peak demand, which are maximized to maximize
the customers’ comfort. The parameter αk allows to control the relative weight of the two
conflicting terms in the objective function (3.5).

To study the impact of demand caps on controllable smart loads, the load profile Psn,p,h
for an EHMS micro-hub load, proposed, implemented, and deployed in [12,13], is estimated
using an NN with TOU tariff (σh), ambient temperature (θh), time (h), and peak demand
cap (γn,p,h) as inputs as follows [140]:

Psn,p,h = f(σh, θh, h, γn,p,h) (3.9)

Without loss of generality, γ is assumed to remain constant over a 24-hour timeframe,
hence in (3.8), R represents the sum of all peak demand caps for all controllable loads in
all phases and nodes. A fixed power factor is considered for all controllable loads, and the
load active power obtained from (3.9) is assumed to correspond to ZIP loads, in order to
better represent the various appliances accounted in smart loads. The estimated smart
load profile is integrated within the DOPF as a function of the LDCs peak demand cap
signal, while the other parameters in (3.9) are assumed known for the day ahead. Thus,
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the load profile of each smart load is controlled by the peak demand cap.

In order to obtain the best fitted NN, a NN comprised of a hidden layer with 11
neurons (NH), and an output layer with one neuron (NO) was developed in [140], based on
the LMA training algorithm, which is provided in the NN MATLABr toolbox. To obtain
the mathematical model for NN-based EHMS controllable loads, power Ps in (3.9), the
output from hidden layer neurons can be represented mathematically as follows:

Hu
n,p,h = tansig(ωu,1 h+ ωu,2 θh + ωu,3 σh + ωu,4 γn,p,h + δu) (3.10)

tansig(τ) =
2

1 + e−2τ
− 1 (3.11)

where the number of inputs NI for the EHMS load model are four, i.e., h, θh, σh, and γn,p,h.
The connection weights between input and hidden layer neurons, i.e., ωu,i for u = 1, ..., NH

and i = 1, ..., NI , are multiplied with the related inputs, and are then added up together
with the bias δu of each hidden layer neuron to obtain the output of hidden layer neurons
Hu
n,p,h in (3.10). The weights and biases for the EHMS loads in this research are those used

in [141] having the following values:

ωu,i =



29.2641 8.3822 −3.9618 0.3066
−57.5623 −0.0478 −42.5972 −0.1522
−55.4903 −0.0400 −40.8104 −0.1801
−29.9161 −6.4604 16.6258 −0.0846
−51.5263 −0.0658 −36.7626 −0.5472
17.6895 −0.8765 −12.2051 −9.5912
13.9847 0.4149 −9.2726 −8.8850
−167.3932 −0.2311 178.3856 0.0064

2.5992 0.4391 −17.9832 −10.1828
174.2312 −0.2591 −123.1924 0.0025
223.7785 −0.6084 −42.0790 0.0065


(3.12)

δu = [−25.3261 8.6441 8.4636 2.7859 7.7587 1.1264 − 0.9753 12.5286 − 7.2935

49.6930 − 114.8155]T

(3.13)
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The output of the NN, which is the residential load profile, can be obtained as follows:

Psn,p,h = purelin((

NH∑
u=1

Wo,uH
u
n,p,h) + Ωo) (3.14)

where the hidden output layer Hu
n,p,h with appropriate weights Wo,u (o = 1, ..., NO and

u = 1, ..., NH) are summed up in combination with the bias of the output layer neurons
Ωo, to obtain the output from output layer neurons using the purelin function, which is a
linear transfer function described in [142]. For the EHMS smart loads considered NO = 1,
Wo,u and Ωo are resulting in the following values used in [141]:

Wo,u = [−0.4365 − 6.2111 7.3630 0.4832 − 1.1307 0.1022 − .1027 0.4113 − 0.0362

0.8951 0.4963]

(3.15)

Ωo = −0.9612 (3.16)

In the architecture of the proposed feeder and load control presented in Figure 2.6,
customers have the ability to receive real-time information from weather stations and
market operators, so that their smart load controllers internally optimize their energy
consumption and a load profile is obtained. These load profiles are collected by the LDC
from the smart loads together with the distribution system status, and used by the LDC
control center in real-time to solve the DOPF model. The optimal controls including the
peak demand caps obtained from the DOPF solution are fed back to the EHMS micro-hub
smart loads to regulate their load, considering the operating feeder constraints (3.2a)-(3.2f)
and the following additional peak demand constraint:

γminn,p,h
≤ γn,p,h ≤ γmaxn,p,h

∀n, p, h (3.17)

which reflects the feeder’s capacity to deliver power to customers, as well as the customers’
minimum feasible consumption, i.e., γ cannot be zero.

OpenDSS, which is used to solve the DLF, and (3.9) are implemented in MATLABr,
which allows to generate an executable file that can be run on a multitude of commonly
available platforms. The output of the DOPF model provides the optimal 24-hour LTC tap
positions, number of capacitor blocks switched on, and peak demand caps for the EHMS
micro-hub loads represented by (3.9).
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3.5.1 Results

The real unbalanced distribution feeder with 41 nodes shown in Figure 3.2 is used to
test and demonstrate the proposed approach. It is assumed that a portion of the load is
controllable through a demand cap. Feeder current limits are not available for this system;
hence, (3.2d) is not included.

The proposed distributed computing approach to solve the DOPF model is executed
on three physical servers. Two of the servers are based on the Windows 64-bit operating
system with two E5-2650 v2 Intel Xeon 2.60 GHz processors and 48 GB RAM with 32
cores, and the third is based on Windows 64-bit operating system with two E5-2670 v3
Intel Xeon 2.30 GHz processors and 128 GB RAM with 48 cores. In all the three servers,
the download/upload speed is 95 Mbps.

In order to compare the GA results and solution times, a series of simulations are run,
and based on the results, the GA parameters PS = 24, EN = 4, SV = G = 100, CR = 0.85,
and MR = 0.005 for α1 = α2 = 30 are chosen for this case study. It should be mentioned
that the results are fairly close for different set of GA parameters, which demonstrates the
robustness and consistency of the DOPF model. The size of data, which is processed in
each worker-node, is about 2.46 MB, and the size of the results that should be transferred
to the master-node is 8 kB in text format. The size of data processed in the master-node
is about 2.56 MB, which is slightly larger than the processed files of each worker-node, and
the size of the new set of individuals, which should be transferred to each worker-node is
4 kB in text format. Note that changing the GA parameters such as PS affects the size
of the text files, but not significantly. For the DOPF problem with an MINLP model,
the size of data is reasonable, i.e., neither small nor too large; in this study, the DOPF
is a 24-hour problem with different control variables, including three LTCs (i.e., 3×24 =
72 control variables) and peak demand caps for 48 load nodes, for a total of 120 control
variables. On the other hand, the large number of state variables for the practical feeder
in Figure 3.2 are as follows:

• Voltage magnitudes: (32 nodes × 3 phases + 9 nodes × 1 phase) × 24 hours = 2,520

• Voltage angles: (32 nodes × 3 phases + 9 nodes × 1 phase) × 24 hours = 2,520

• Current magnitudes: (31 lines × 3 phases + 9 lines × 1 phase) × 24 hours = 2,448

• Current angles: (31 lines × 3 phases + 9 lines × 1 phase) × 24 hours = 2,448
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Table 3.4: Comparison of F1, J1, and R for different numbers of worker-nodes

Number of generations (G)
25 50 100

1
J1 [kWh] 7892.04 8071.10 7757.61
R [kWh] 1851.99 1956.57 2046.32
F1 [kWh] -47667.63 -50626.03 -53632.05

2
J1 [kWh] 8133.57 8054.96 7905.68
R [kWh] 1958.79 1971.66 2008.46
F1 [kWh] -50630.16 -51094.78 -52348.06

Number of
5

J1 [kWh] 8419.75 8011.12 8331.62
worker-nodes R [kWh] 1887.80 1990.12 2069.62

(Nd) F1 [kWh] -48214.25 -51692.36 -53757.04

10
J1 [kWh] 8172.41 7912.79 8017.24
R [kWh] 1890.12 1938.29 2069.41
F1 [kWh] -48531.19 -50235.79 -54065.09

20
J1 [kWh] 7882.74 8103.66 7881.85
R [kWh] 1915.08 1990.83 2029.93
F1 [kWh] -49569.72 -51621.09 -53015.99

Hence, the total number of state variables is 9,936. The discrete values of LTC taps can
vary between -16 to +16, and the peak demand cap varies between 2.55 and 7.331 kW,
with a resolution of 1 W in the GA implementation.

A comparison of the results with different number of worker-nodes and generations,
for k = 1 and k = 2, are presented in Tables 3.4 and 3.5. The closeness of Fk results for
different generations with different number of worker-nodes shows that 25 generations are
sufficient to arrive at an acceptable solution for the DOPF model. When the number of
worker-nodes is low (i.e., 1, 2, or 5), all the worker-nodes are installed and run on one server,
whereas for 10 worker-nodes, two servers are used (each server has five worker-nodes), and
for 20 worker-nodes three servers are used (two servers with five and one server with ten
worker-nodes). It is worth mentioning that there is no limit on the number of worker-
nodes on the servers. These servers are identified with their IP addresses, and since each
server can handle more than one worker-node, these nodes are identified based on their
port numbers; hence, each worker-node has identical node addresses (i.e., a mixture of an
IP address and a port number) in the SGCM system. There is access to five open ports on
two of the servers and ten unblocked ports on the other one. It is possible to administer
the machines in order to have more open ports, and therefore, more worker-nodes on one
machine. If there is more than one worker-node installed in a server, the multi-tasking
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Table 3.5: Comparison of F2, J2, and R for different numbers of worker-nodes

Number of generations (G)
25 50 100

1
J2 [MWh] 301.76 301.16 300.29
R [kWh] 1778.10 1771.74 1771.33
F2 [MWh] 248.42 248.00 247.15

2
J2 [MWh] 305.69 303.84 304.04
R [kWh] 1645.12 1676.95 1741.88
F2 [MWh] 256.34 253.53 251.79

Number of
5

J2 [MWh] 303.04 301.60 301.85
worker-nodes R [kWh] 1868.16 1858.93 1942.44

(Nd) F2 [MWh] 247.00 245.84 243.58

10
J2 [MWh] 304.17 302.55 302.49
R [kWh] 1684.36 1785.52 1862.03
F2 [MWh] 253.64 248.99 246.63

20
J2 [MWh] 302.65 301.00 301.26
R [kWh] 1657.41 1664.87 1790.17
F2 [MWh] 252.93 251.06 247.55

feature of the platforms (i.e., Windows, Linux, and Mac) is responsible for assigning the
cores and required physical memories to the worker-nodes in the SGCM system.

In the objective function (3.5), the component R varies between Rmin and Rmax, where:

Rmin =
1

24

∑
h

∑
p

∑
n

γminn,p,h
(3.18a)

Rmax =
1

24

∑
h

∑
p

∑
n

γmaxn,p,h
(3.18b)

When αk = 0, the objective is essentially to minimize energy loss (J1) or the energy drawn
from the substation (J2); in either case, the optimal solution yields a low value of γk,
and the R profile drifts towards Rmin. Figure 3.7 shows the GA convergence considering
energy loss minimization (k = 1) for different values of α1. Observe that for α1 = 0, the
value of R drifts towards Rmin (Figure 3.7(a)), while as α1 is increased, R increases, as
shown in Figure 3.7(b)-3.7(d), with the value of γn,p,h increasing, which means that the
peak demand caps for EHMS micro-hub loads increase. In Figure 3.8, note for α1 > 5, the
R profile is close to Rmax, which indicates a high peak demand cap for EHMS micro-hub
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Figure 3.7: GA convergence for minimization of F1 with: (a) α1 = 0; (b) α1 = 1; (c) α1 =
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Figure 3.8: Effect of α1 on R.

loads. On the other hand, in Figure 3.9, the effect of α1 on J1 is shown, demonstrating that
as α1 increases, J1 generally increases; the variations of J1 are due to the GA convergence
characteristics, which yield the changes in the J1 values observe in Figure 3.9.

Figure 3.10 shows the convergence of the GA considering the energy drawn from the
substation (k = 2) for different values of α2. Note that the R profile converges towards Rmin

for α2 = 0, while as α2 is increased, the peak demand cap increases, effectively allowing
more flexibility of the EHMS micro-hub loads. In Figure 3.11, observe that for α2 > 200,
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Figure 3.10: GA convergence for minimization of F2 with: (a) α2 = 0; (b) α2 = 10; (c) α2

= 200; and (d) α2 = 500.

the R profile is close to Rmax, and when α2 is increased beyond 200, the contribution of
R to F2 increases, while the one from J2 decreases, which leads to a general increase of J2
value (Figure 3.12).
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Figure 3.12: Effect of α2 on J2.

3.5.2 Impact of the Distributed Computing Platform on Solution
Time

Figures 3.13 and 3.14 present the impact of Nd on the solution times with different genera-
tion numbers for the GA. Observe that the distributed computing approach has a significant
impact on the reduction of solution time, taking about 15 minutes, whereas the central-
ized approach requires a much larger computation time. Furthermore, these studies also
reveal that increasing the number of parallel computers enhances the parallelization of the
computation process and decreases the run-time. However, increasing Nd cannot always
reduce the run-time; thus, Nd needs to be optimally determined for each case study, which
corresponds to a value of Nd = 10 for the present study.

The closeness of the objective function values F1 and F2 for different generation numbers
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Figure 3.13: Computation times for centralized versus proposed distributed computing
approach with F1, for different Nd values.

25 50 75 100

S
o

lu
ti

o
n

 t
im

e 
[m

in
]

0

50

100

150

200

250

300

m
G

Centralized Nd = 2 Nd = 5 Nd = 10 Nd = 20

Figure 3.14: Computation times for centralized versus proposed distributed computing
approach with F2, for different Nd values.

67



3.6. SUMMARY

demonstrates the robustness of the model, although the solution time varies. Short solution
times help with shorter feeder dispatch intervals, which is necessary with controllable loads.
In distribution systems, real-time intervals for the application being considered would be
about 15 min; hence, with the run-times shown for the proposed approach with Nd=10, as
well as appropriate number of GA generations, which is 25 for this case study, it should be
possible to yield reasonably optimal solutions of the DOPF model for real-time applications.

3.6 Summary

This chapter presented the algorithm for solving an unbalanced three-phase DLF model;
two distribution feeders, namely, the IEEE 13-node test feeder and a practical test feeder
were employed to test and validate the DLF model. The implementation of the DOPF
model with a GA-based solution in a centralized and decentralized approaches were also
explained; the results showed that distributing the individuals amongst worker-nodes re-
duces the computational burden in comparison with the run-time of the DOPF model in
the centralized approach. This was followed by a discussion on executing the DLF model
in the OpenDSS simulator, which can considerably reduce the run-time of the DLF model.

The unbalanced three-phase DOPF model in the presence of EHMS micro-hub loads
was presented, and the results obtained from different realistic case studies and scenarios
were discussed. The studies demonstrate that compared to the centralized approach, the
proposed distributed computing architecture yields significantly faster solutions by increas-
ing the number of SGCM worker-nodes, with realistic peak demand caps for controllable
smart loads, considering both the LDC’s and customers’ interests.
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Chapter 4

Optimal Demand Response for
Distribution Feeders with Existing
Smart Loads

4.1 Introduction

In this chapter, the integration of existing smart loads, particularly PS+ loads, into the
proposed distributed-computing-based DOPF is presented and discussed. Thus, the mod-
eling of controllable smart loads using an NN technique is discussed in Section 4.2, and its
application to existing controllable PS+ loads is demonstrated. The mathematical func-
tion of the proposed NN-based PS+ load model and its integration into a DOPF are also
discussed in this section, together with the GA and distributed computing approaches used
to solve it. In Section 4.3, the results of applying the proposed DOPF model to the practi-
cal distribution feeder used throughout the thesis are discussed for different scenarios, and
the effect of optimal management of PS+ loads is presented.

4.2 Mathematical Model of PS+ Smart Loads

In order to model the PS+ loads using an NN approaches as in the case of the EHMS
loads, a data-set of different load profiles, which include the effect of PCT ON/OFF signals
together with various range of temperatures and electricity prices, is needed. Based on the
characteristics of the PS+ program, PCTs are activated on average five times per year, up
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Figure 4.1: Schematic of modeling of controllable smart load and its integration into the
DOPF model.

to a maximum of 40 hours. However, because of these limited hours of activation, adequate
realistic field data was not available, and hence it is not possible to obtain an adequate
NN model of the PS+ loads from the amount of data available. Therefore, in order to
generate adequate and realistic data for residential loads, a data-set of energy usage of
different appliances and devices of multitude of houses in the EHMS project for all days
of July 2013 was simulated using the SRLS [113], and then the effect of PS+ signals were
studied by changing the variables like ambient temperature, AC setpoints, and hours of
PS+ signal activations.

In general, the load profiles generated by the SRLS may vary widely by a location,
customer preferences, and time of usage across households; hence, it is not possible to
obtain adequate NN models of each household. Therefore, aggregated load profiles, which
are smoother and have less variations, were used to model the load at the feeder level. Based
on the the focus of this study at the feeder level, an average profile of the aggregated load
profiles of PS+ loads was used. The general procedure followed to obtain the PS+ load
NN models for integration into the DOPF model is depicted in Figure 4.1.

For existing PS+ controllable loads, the following residential load profile (Psln,p,h) can
be estimated from measurements or simulations, as previously mentioned, as a function of
time (h), TOU tariff (σh), ambient temperature (θh), and binary ON/OFF signals (µn,p,h)
for PCT setpoints of ACs:

Psln,p,h = f(h, σh, θh, µn,p,h) (4.1)

where, if the PCT setpoint signal is ON (µ = 1), the PCT setpoints are increased by 2◦C
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for a limited time within a day, which decreases the run-cycle of ACs, thus, decreasing
the demand in all participating residential houses in the PS+ program and hence reducing
peak load at the feeder level. Function (4.1) is modeled here using an NN, as explained
next.

The average load profile was used for training purposes, obtaining the best fitted NN
with a hidden layer with 8 neurons (NH), and an output layer with one neuron (NO),
based on the Bayesian regularization back-propagation training algorithm provided in the
NN MATLABr toolbox. The maximum allowable number of epochs was set to 1000,
and the desired gradient to 10-7; 70% of the load data-set was used for training, 15% for
validation, and 15% for testing. The Mean Squared Error (MSE) function was used to
check the performance of the NN model, and the input data was randomly divided for
training, validation, and testing. The NN output yielded an overall R-squared value of
0.9206 and an MSE value of 0.2392 kW2.

To obtain the mathematical Psl model (4.1) for NN-based PS+ controllable loads, the
output from hidden layer neurons can be represented mathematically as follows:

Hu
n,p,h = tansig(ωu,1 h+ ωu,2 θh + ωu,3 σh + ωu,4 µn,p,h + δu) (4.2)

where the number of inputs (NI) for the PS+ load model are 4, i.e., h, θh, σh, and µn,p,h.
The connection weights between input and hidden layer neurons, i.e., ωu,i for u = 1, ..., NH

and i = 1, ..., NI , are multiplied with the related inputs, and then are added up together
with the bias (δu) of each hidden layer neuron to obtain the output of hidden layer neurons
(Hu

n,p,h) in (4.2), using a Tan-Sigmoid transfer function that is defined in (3.11). The
weights and biases obtained were:

ωu,i =



−0.2516 0.7686 0.3734 0.7471
−1.7367 0.2107 0.8732 0.2173
−1.5808 0.4423 −0.0448 0.0803
0.1089 −0.4816 −0.5954 −0.2575
−0.8702 −0.3230 −1.2442 −0.0854
3.0763 0.0394 0.0003 0.0358
3.0820 0.0662 −0.3579 −0.1338
−0.2406 −2.6781 0.2834 0.0853


(4.3)

δu =
[
−0.1383 1.5079 0.2666 0.3245 −0.1001 −0.7541 −1.4913 1.1365

]T (4.4)
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The output of the NN, which is the residential load profile, is obtained as follows:

Psln,p,h = purelin((

NH∑
u=1

Wo,uH
u
n,p,h) + Ωo) (4.5)

where the hidden output layer Hu
n,p,h with appropriate weights Wo,u (o = 1, ..., NO and

u = 1, ..., NH) are summed up in combination with the bias of the output layer neurons
Ωo to obtain the output from output layer neurons using the purelin function described
in [142]. For Psl , NO = 1, and hence, the Wo,u is a row vector, and Ωo is just a number
with the following values:

Wo,u =
[
−0.3176 1.4993 −1.3475 −1.5726 1.1348 −1.0531 1.6122 −0.8345

]
(4.6)

Ωo = 0.1959 (4.7)

Figure 4.2 presents a comparison of the developed NN output and target for the ag-
gregated loads in July 2013. The peak demand MSE is 0.1860 kW2, which shows the
effectiveness of the obtained NN model.

4.2.1 DOPF Model with PS+ Loads

From Chapter 3, the general form of a DOPF with controllable loads can be summarized
as follows:

min F = Objective function (4.8a)

s.t. Operational and system constraints (4.8b)

Smart load model and constraints (4.8c)

Various objective functions such as minimization of energy loss, minimization of energy
drawn from the substation, or minimization of energy cost can be adopted in (4.8a) as
discussed next. Operating constraints in (4.8b) include the power flow equations (3.2a)-
(3.2b), bus voltage limits (3.2c), feeder current limits (3.2d), and LTC (3.2e) and SC (3.2f)
operating limits. Depending on the purpose and model of controllable smart loads repre-
sented in (4.8c), the LDC can send signals such as peak demand constraints (e.g., in EHMS
micro-hub loads) or temperature setpoints (e.g., in PS+ loads) to these loads.

In order to study the effect of PS+ controllable loads, the average load model developed
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Figure 4.2: Comparison of NN output and target of aggregated PS+ loads for 30 days in
July 2013.

using NN for these loads can be integrated into the DOPF model. The DOPF model would
then determine the optimal decisions from the LDC’s perspective, such as the LTC tap
positions and number of capacitor blocks switched on, as well as the optimal ON/OFF
signals to PCTs of ACs to reduce the peak load at the feeder level under the PS+ program.
In this study, the DOPF is a 24-hour problem with various control variables, including three
LTCs and ON/OFF signals of PCTs for 48 load nodes, for a total of 1,224 control variables.
In this context, two different DOPF models are proposed here; the first objective function
F3 seeks to minimize the energy losses over the day, as follows:

min F3 = Eloss (4.9)

where Eloss is defined in (3.1), with the following constraints to limit the feeder peak load:
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Figure 4.3: ON/OFF decision making during peak load based on the value of Pcons.

max(Pfeederp,h) ≤ Plim ∀ p, h (4.10a)∑
h

µn,p,h ≤ Tmaxn,p ∀n, p (4.10b)

However, the hard constraint (4.10a) may yield infeasible results, as it forces the control
variables to reduce the demand below Plim, which might not be feasible depending on the
available controllable loads. Hence, a second objective function F4 can be defined that
seeks to keep the load profile close to a target demand Pcons as follows:

min F4 = Eloss + βS (4.11a)

s.t. S =
∑
h

∑
p

|Pfeederp,h − Pcons| (4.11b)∑
h

µn,p,h ≤ Tmaxn,p ∀n, p (4.11c)

As shown in Figure 4.3, when the feeder power exceeds Pcons, PS+ loads will be activated
by forcing µp,n,h = 1, thus, reducing peak demand during the hours when Pfeeder > Pcons.
Otherwise, µp,n,h = 0 when Pfeeder < Pcons.

The DOPF model is solved using a recursive GA-based model, which runs the DLF
of the feeder to obtain the best solution of the control variables, i.e., LTC tap positions,
number of capacitor blocks switched on, and ON/OFF signals of PCTs for PS+ loads.
As discussed in Section 3.5 for EHMS micro-hub loads, the DLF of the real feeder with
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unbalanced three-phase loads is also modeled here using OpenDSS [72]. PS+ controllable
loads are modeled with an NN, as previously discussed, and are integrated into OpenDSS
as a power demand variable defined by (4.1) as a function of the binary decision variable
µp,n,h.

The flowchart of the DOPF model with PS+ loads is similar to Figure 3.4, but the
output in this case also includes the optimal ON/OFF PS+ signals. Hence, the solution
of the DOPF model is the 24-hour optimal LTC tap positions, number of capacitor blocks
switched on, and ON/OFF signals for PS+ smart loads.

4.3 Results and Discussions

The aforementioned DOPF with an NN model of PS+ loads was applied to the optimal
dispatch of the practical unbalanced distribution feeder with 41 nodes, shown in Figure 3.2.
In the presented study, 10% of the loads are assumed to be PS+ controllable loads, while
the rest of the loads are modeled as ZIP loads. Furthermore and without loss of generality,
the maximum ON hours of PS+ loads are increased from a maximum of 4 hours to 13
hours, within a fixed window from 7:00 to 20:00 on weekdays to allow studying the effect
of more flexible controllable loads. Also, PS+ loads are assumed to be activated for longer
periods of time, since based on the PS+ rules, the average activation is five times per year,
up to a maximum of 40 hours, excluding emergencies such as a blackout during summer.

4.3.1 Case 1

The F3 objective is used in this case with nodal and phase-wise application of PS+ signals.
For the DOPF model (4.9)-(4.10b), based on different experiments, Plim was set to 14.5
MW, which is the minimum possible value that can be reached, since solutions with Plim
less than 14.5 MW were infeasible. Figure 4.4 shows the effect of PS+ signal on the
feeder load profile for three different days. Observe the impact on load profiles when PS+
loads are activated between hours 14:00 and 18:00, showing a reduction in demand during
these times, but resulting in moving the peak to later hours in some cases, which can be
attributed to HVAC operation.

For different maximum hours of PCT operation from hours 4 to 13, simulations were
performed with each phase of each node receiving unique µ signals, i.e., PS+ loads located
in different nodes and phases were assumed to have different µ values. The results ob-
tained show that by increasing Tmaxp,n , the energy usage gradually decreasing, as shown in
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Figure 4.4: Effect of PS+ signal on load profiles for hours 14:00 to 18:00 on three different
days in July, 2013.

Figure 4.5; for Tmaxp,n of 4, 10, and 13 hours, the energy savings are 1470.4, 1877.6, and
2048.9 kWh, respectively. Figure 4.6 depicts the µ signals sent to Node 8 for each phase
for Tmaxp,n of 4, 10, and 13 hours of PCT control; this node houses 70 PS+ customers in
phase a, 60 in phase b, and 80 in phase c. Although the energy consumption decreases by
increasing Tmaxp,n , the peak load reduction for different hours does not change considerably.

It is worth mentioning that the PCT signals do not work effectively during extreme
temperature conditions. Thus, in low temperatures, when the ACs are normally OFF, the
PCT signals have no impact on their energy usage. Similarly, during high temperatures,
ACs are normally ON, and increasing the setpoint by 2◦C does not turn the ACs off,
not affecting the energy usage of the system. Hence, this program is not effective during
extreme hot summer-days, unless an AC cycling approach is used [143,144].
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Figure 4.5: Load profiles at the feeder level for Tmaxp,n of (a) 4, (b) 10, and (c) 13 hours,
from hours 7:00 to 20:00.

4.3.2 Case 2

Since F3 seeks to minimize Eloss, increasing Tmaxp,n may reduce the energy usage, and con-
sequently reduce Eloss; however, peak load reduction may not take place, as shown in
Figure 4.5. Hence, the F4 objective function in (4.11a)-(4.11c) is used in this case to
reduce both Eloss and peak load, assuming that the same PCT signal is sent to all PS+
controllable loads; the effect of β in (4.11b) for Tmax = 4 h and Pcons = 11.5 MW is studied
here. Since in F4 the target is to keep the peak load close to Pcons, the value of Pcons is
chosen to be less than the Plim value of 14.5 MW in Case 1 in order to effectively reduce
the peak. Table 4.1 shows the effect of different values of β with uniform application of
PS+ signals; note that when β = 0, the peak load reduction achieved is 99.9 kW. Further-
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Figure 4.6: Smart load activation signals µ at Node 8 for Tmaxp,n of (a) 4, (b) 10, and (c) 13
hours, from hours 7:00 to 20:00.

more, when β is varied over a wide range, the peak load reduction remains more or less
at the same level (95 to 100 kW). Thus, the peak load reduction is almost independent of
β. However, note that increasing β increases the saving in energy usage from 1.62 to 2.38
MWh.
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Table 4.1: F4 objective with uniform application of PS+ signals with Tmax = 4 h and Pcons
= 11.5 MW

β
Energy usage [MWh] Peak load [kW]

Without With PS+
Difference

Without With PS+
Difference

PS+ signals signals PS+ signals signals
0 287.61 285.99 1.62 (0.56%) 14575.5 14475.6 99.9 (0.69%)

0.01 287.61 285.99 1.62 (0.56%) 14597.7 14501.7 96.0 (0.66%)
0.02 287.81 286.16 1.65 (0.74%) 14549.5 14449.7 99.8 (0.69%)
0.1 288.09 286.37 1.71 (0.59%) 14597.8 14501.6 96.2 (0.66%)
0.15 287.76 286.01 1.75 (0.61%) 14542.8 14446.5 96.3 (0.66%)

1 287.27 285.09 2.18 (0.76%) 14476.7 14378.2 98.5 (0.68%)
2 287.79 285.40 2.38 (0.83%) 14540.0 14445.4 94.6 (0.65%)

Table 4.2: F4 objective with uniform application of PS+ signals with β = 1 and Pcons =
11.5 MW

PS+ ON Energy usage [MWh] Peak load [kW]
signal Without With PS+

Difference
Without With PS+

Difference
hours [h] PS+ signals signals PS+ signals signals

4 286.67 285.09 1.58 (0.55%) 14476.7 14378.2 98.5 (0.68%)
5 287.36 284.81 2.55 (0.89%) 14506.7 14411.0 95.7 (0.66%)
6 288.13 285.64 2.49 (0.86%) 14509.7 14412.3 97.4 (0.67%)
7 286.31 283.55 2.76 (0.96%) 14440.6 14342.7 97.9 (0.68%)
8 287.19 284.52 2.67 (0.93%) 14476.7 14378.2 98.5 (0.68%)
9 288.07 285.66 2.42 (0.84%) 14448.3 14342.8 105.5 (0.73%)
10 288.29 286.15 2.15 (0.75%) 14476.7 14137.4 339.3 (2.34%)
11 287.94 284.61 3.34 (1.16%) 14509.7 14171.1 338.6 (2.33%)
12 286.92 283.55 3.37 (1.17%) 14476.7 14137.4 339.3 (2.34%)
13 287.08 284.05 3.03 (1.06%) 14509.7 14171.1 338.6 (2.33%)

The impact of hours of PS+ operation on the energy usage and the peak loads are
presented in Table 4.2 for β = 1 and Pcons = 11.5 MW, for Tmax = 4-13 hours of PCT
operation. Observe that for Tmax = 4-9 hours of PCT operation, the peak loads are not
considerably reduced, while for Tmax = 10-13 hours, peak loads are efficiently decreased
(up to 3.5 times further decrease in peak load). By increasing the maximum hours of ON
signals, the DOPF model tends to activate the PCT for more hours, and hence the chance
of reducing the peak load increases. The reduction of energy usage with Tmax = 4 h is
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Table 4.3: F4 objective with nodal and phase-wise application of PS+ signals with Tmax

= 4 h and Pcons = 11.5 MW

β
Energy usage [MWh] Peak load [kW]

Without With PS+
Difference

Without With PS+
Difference

PS+ signals signals PS+ signals signals
0 287.06 286.09 0.97 (0.34%) 14509.7 14404.8 104.9 (0.72%)

0.01 287.34 286.36 0.97 (0.34%) 14509.7 14374.6 135.1 (0.93%)
0.02 287.40 286.25 1.15 (0.40%) 14476.7 14340.0 136.7 (0.94%)
0.1 288.51 287.34 1.17 (0.41%) 14473.6 14326.6 147.0 (1.02%)
0.15 288.66 287.45 1.20 (0.42%) 14509.7 14352.6 157.1 (1.08%)

1 289.20 287.99 1.21 (0.42%) 14509.7 14309.5 200.2 (1.38%)
2 289.12 287.85 1.28 (0.44%) 14502.8 14301.3 201.5 (1.39%)

1.58 MWh, while this reduction is 3.03 MWh with Tmax = 13 h. Hence, offering further
incentives to customers to opt for a higher value of Tmax should be considered.

4.3.3 Case 3

In this case, the effect of sending different PCT signals to the PS+ controllable loads in
each phase and node of the distribution system, instead of sending the same PCT signal
to all controllable loads, is studied for the F4 objective function; the results are presented
in Table 4.3. Comparing this table to Table 4.1 shows that different signals yield more
reduction in peak load, but the energy usage increases. In this case, loads with higher
peak load in each phase are activated, and hence the overall peak load is reduced more
effectively than in the case of a uniform PS+ signal (Case 2); for instance, with β = 2 the
peak load reduction in Case 3 is almost double that in Case 2. However, different signals
reduces the savings in energy; for example, for β = 2, the saving in the energy usage is
2.38 MWh in Case 2, whereas this value is 1.28 MWh in the present case. Hence, based
on the need of the system and also the DR program, LDCs need to consider what method
is more suitable for them.

4.4 Summary

This chapter has proposed NN-based models of existing PS+ controllable loads demonstrat-
ing its application and integration into the DOPF, together with the GA and distributed
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computing approaches to solve it. Thereafter, based on a distributed computing approach,
a DOPF model using a GA-based solution technique was used to determine the optimal
setpoints for LTCs, SCs, and PS+ ON/OFF signals in a realistic distribution feeder.

The studies carried out on the practical feeder demonstrate that different scenarios
with single and multiple PCT ON/OFF signals for controllable loads can impact the load
profiles, reduce peak loads, and decrease the energy usage. Based on the presented results,
using a single ON/OFF signal for all controllable loads together with longer signal schedules
can effectively reduce both peak loads and energy consumption of a distribution system at
the feeder level, depending on the proportion of controllable loads in the system.
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Chapter 5

Conclusions

5.1 Summary

The research conducted in this thesis concentrates on the minimization of energy consump-
tion and peak load reduction in smart distribution systems, proposing a mathematical
model of an unbalanced three-phase DOPF model with a GA-based solution approach at
the feeder level, including different kinds of smart loads and other components of distri-
bution systems, and solved using a distributed computing approach. The motivations and
main research objectives for the research were identified based on a critical review of the
existing literature presented in Chapter 1.

In Chapter 2, the main background topics relevant to the research on optimal feeder
operation with smart loads were reviewed. A brief overview of DSA, DMS, and central-
ized VVC problems was presented. Load modeling and load management programs in the
context of DSM and DR were discussed, followed by a discussion of the EHMS micro-hubs
and PS+ smart loads. Furthermore, a brief review of different mathematical programming
models and solution approaches was made, and the SGCM system, which is a parallel
distributed system for real-time applications based on the MapReduce model, was intro-
duced; this was followed by an overview of the SGCM architecture and its application to
distributed computing approaches. Finally, mathematical models of distribution system
components were presented.

In Chapter 3, an unbalanced three-phase DOPF model with EHMS micro-hub smart
loads in centralized and distributed computing approaches was presented. Hence, an unbal-
anced three-phase DLF model was first discussed, using two distribution feeders, namely,
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the IEEE 13-node test feeder and a practical test feeder, to test and validate the DLF
model. The implementation of DOPF model based on the proposed DLF model, with
a GA-based solution using centralized and decentralized approaches, was then presented,
with the results showing that the parallel computing approach could reduce the run-time
of the DOPF model significantly in comparison with the centralized approach. This was
followed by a discussion on solving the DLF model using OpenDSS to considerably reduce
the run-time. Finally, the unbalanced three-phase DOPF model including of EHMS micro-
hub smart loads was presented, and the results obtained from different realistic case studies
and scenarios were discussed. The studies demonstrated that compared to the centralized
approach, the proposed distributed computing architecture yielded significantly faster so-
lutions by increasing the number of SGCM worker-nodes, with realistic peak demand caps
for controllable smart loads, considering both LDC’s and customers’ interests.

In Chapter 4, an NN model of existing PS+ smart loads was developed and integrated
into the DOPF model to optimally control tap changers and switched capacitors, as well
as sent signals to programmable thermostats of ACs in residential buildings, associated
with the PS+ program. Based on a distributed computing approach, a GA-based solution
technique was used to solve the DOPF model and hence determine the optimal setpoints
for LTCs, SCs, and PS+ ON/OFF signals. Different scenarios with single and multiple
PCT ON/OFF signals for controllable loads were studied, which showed the controllable
loads’ impact on the load profiles, reducing the peak load, and reducing the energy usage.
Based on the presented results, using a single ON/OFF signal for all controllable loads,
together with longer signal schedules, could effectively reduce both peak loads and energy
consumption of a distribution system at the feeder level, depending on the proportion of
controllable loads in the system.

5.2 Contributions

The main contributions of the research presented in this thesis are as follows:

• Implemented a power flow model of an unbalanced three-phase distribution system,
referred to as a DLF, including controllable smart loads modeled using NNs and
other components of distribution systems. The DLF model needs to be a stand-alone
executable program that can be used on different platforms (i.e., the Windows, Linux,
and Mac), for its implementation in the proposed distributed computing approach.

• Developed NN-based models of EHMS micro-hub and PS+ controllable loads, and
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integrated them into the DLF model, to realize appropriate DOPF models with the
objectives of minimizing energy loss and peak demand over a desired horizon.

• Developed a GA-based solution approach for the DOPF model to find optimal switch-
ing of control devices such as LTCs, SCs, peak demand caps on EHMS micro-hub
loads, and thermostat signals on PS+ loads, and developed a MapReduce model,
using a distributed computing approach in order to reduce the computational time
of the GA-based model to make it suitable for real-time applications.

• Tested the developed DOPF model on a practical test feeder to demonstrate and
validate the proposed method for practical applications.

The main contents and contributions of Chapter 3 have been published in the IEEE
Transactions on Smart Grid [91]. The main contents of Chapter 4 have been submitted
for possible publication in the IEEE Transactions on Smart Grid [145], and is currently
under review. Also, work is being carried out on another application of the SGCM system
for reducing the run-time of large-scale dynamic OPF problems.

5.3 Future Work

Based on the research presented in this thesis, the following are some possible directions
for future research:

• The proposed DOPF model used a recursive GA-based method to find the optimal
solution. Other EAs such as PSO and Ant Colony algorithms can be studied instead
of GA to find which EA is best fit for this MINLP DOPF model.

• The proposed SGCM system uses the multi-tasking feature of the computing plat-
forms for assigning the cores and required memory to the worker-nodes. The next
direction of development of the SGCM system is to fully parallelize the SGCM sys-
tem, which should be responsible for allocating the cores and memory to the worker-
nodes. This parallel feature can reduce the run-time and decrease the number of
errors/failures in parallel computing approaches.

• The impacts of DG sources and PEV customers on the control and operation of
distribution feeders need further research.
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[145] A. Mosaddegh, C. A. Cañizares, and K. Bhattacharya, “Optimal Demand Response
for Distribution Feeders with Existing Smart Loads,” Submitted to IEEE Trans.
Smart Grid, pp. 1 – 8, Sept. 2016.

99


	Title Page
	Declaration Page
	Abstract
	Acknowledgements
	Dedication
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	Nomenclature
	Introduction
	Motivation
	Literature Review
	Distribution Management Systems and Distribution System Automation
	Demand Side Management and Demand Response
	Distributed Computing Approach to Distribution Optimal Power Flow

	Research Objectives
	Thesis Outline

	Background Review
	Introduction
	Distribution System Automation and Distribution Management System
	Distribution System Automation
	Distribution Management System
	Centralized Volt/Var Control

	Load Modeling with Demand Side Management and Demand Response
	Load Modeling
	Demand Side Management
	Energy Hub Management System
	Peaksaver PLUS™ Loads

	System Optimization
	Mathematical Programming
	Evolutionary Algorithms

	Smart Grid Communication Middleware System
	Smart Grid Communication Middleware System Architecture
	Smart Grid Communication Middleware for Distributed Computing

	Distribution System Component Models
	Series Components
	Shunt Components

	Summary

	Distributed Computing Architecture for Optimal Control of Distribution Feeders with Energy Hub Management System Micro-Hub Smart Loads
	Introduction
	Distribution Load Flow
	Distribution Load Flow Validation
	Practical Distribution Feeder

	Genetic-Algorithm-Based Solution of Distribution Optimal Power Flow
	Centralized Computing Approach
	Proposed Distributed Computing Approach

	OpenDSS Simulator
	Distribution Optimal Power Flow Model with Energy Hub Management System Smart Loads
	Results
	Impact of the Distributed Computing Platform on Solution Time

	Summary

	Optimal Demand Response for Distribution Feeders with Existing Smart Loads
	Introduction
	Mathematical Model of Peaksaver PLUS™ Smart Loads
	Distribution Optimal Power Flow Model with Peaksaver PLUS™ Loads

	Results and Discussions
	Case 1
	Case 2
	Case 3

	Summary

	Conclusions
	Summary
	Contributions
	Future Work

	References

