
 

 Water Detection Framework for Industrial Electric Arc Furnaces 

 

 

 

 

by 

 

 

 

 

 

Hamzah Alshawarghi 

 

 

 

 

 

 

A thesis  

presented to the University of Waterloo  

in fulfillment of the  

thesis requirement for the degree of  

Doctor of Philosophy  

in  

Chemical Engineering 

 

 

 

 

 

 

 

 

 

Waterloo, Ontario, Canada, 2016  

© Hamzah Alshawarghi 2016



ii 

 

Author’s Declaration 

 

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, 

including any required final revisions, as accepted by my examiners. 

 

I understand that my thesis may be made electronically available to the public. 

 

 

 

 

 

 

 

 

 

 

 



iii 

 

Abstract 

 

 This thesis develops a framework for water detection in an industrial electric arc 

furnace.  The objective of the framework is to prevent water leak furnace explosions.  

This framework consists of a hybrid algorithm and a fault detection method.   The hybrid 

algorithm consists of a mechanistic model and an empirical model.  The hybrid algorithm 

and the fault detection method developed in this work are implemented on two industrial 

AC electric arc furnaces. The names of the plants and details of the operations were 

withheld for confidentiality reasons.   

The first problem treated in this work was collecting the required data.  The data 

required for this work included EAF operational data and off-gas composition.  Both 

melt-shops did not have off-gas analysis systems and hence an off-gas analyzer with an 

HMI/SCADA data collection system was installed for each furnace.  EAF operational 

data was sent to the data HMI/SCADA collection system installed at each melt-shop.   

The off-gas compositions measured in both melt-shops were CO, CO2, O2, H2, N2, and 

H2O.  Once all required data was collected then the framework to detect water was 

developed.   In order to test the water detection framework developed in this work, 

industrial trials were completed where water was intentionally added into the furnace by 

increasing the electrode spray water flow rate. 

The mechanistic model is completed by performing a mass balance on the 

furnace.  The model provides a boundary with upper and lower limits in real-time of the 

expected EAF off-gas water vapor leaving the furnace.   The mechanistic model of the 

hybrid algorithm has shown in both industrial EAFs that it provides a valuable on-line 

monitoring tool to the operator on what boundary to expect for the off-gas water vapor.     

There are many input variables and historical heats in an EAF operation; hence 

before building the empirical predictive component of the hybrid algorithm, heats 

selection model and input variables selection model are constructed based on latent 

variable methods.  The outcome of the heats selection model is heats with normal 



iv 

 

operation.  The outcome of the input variables selection model is variables that are highly 

correlated with the off-gas water vapor.   Once the heats and the input variables are 

selected, then the empirical predictive models are developed. 

 Empirical predictive models investigated in this work are: statistical 

fingerprinting, artificial neural network, and multiway projection to latent structures.   

Robustness issues with each method are discussed and a performance comparison 

between the methods is presented.    The last section of this thesis proposes a novel 

approach to detecting water leaks in the furnace.    
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Chapter 1 

 

Introduction 

 

Electric Arc Furnaces (EAFs) are used in the steel industry to produce liquid steel.  

Approximately 26 percent of the global steel produced today is produced by the EAF 

process (worldsteel.org).  EAFs are used to convert different iron materials such as 

recycled scrap or direct reduced iron (DRI) to liquid steel.  The feed iron material is 

melted using electrical and chemical energy in the furnace, and the molten steel 

chemistry is adjusted to obtain the desired grade specifications.  The electric arc furnace 

is a batch process producing batches of liquid steel known as heats.  The electrical energy 

is added to the furnace through electrodes in the form of electric arc, and the chemical 

energy is added using a fuel source such as methane, oxygen, and carbon.  Typical heats 

in electric arc furnaces vary greatly because of the different operating conditions, but 

modern operations aim for a heat cycle less than one hour with electric energy 

consumption in the range of 380-400 kWh/ton (Jones et al., 2005).  

 

During the last decade there have been significant advances in the EAF 

technology that focused on increasing productivity leading to lower cost steel production. 

However, recently, due to the severe consequences of furnace explosions caused by water 

leaks inside the furnace there has been a growing demand for safety. EAF side walls and 

roof are typically water cooled due to the high temperature inside the furnace, and water 

leaks typically occur from those panels.  Water leaks have historically posed serious 

safety concerns for every steel plant. Hence, there is an industrial need for an effective 

water leak detection methodology.    
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1.1 EAF Process Description 

 

The electric arc furnace heat sequence consists of the following steps: grade 

selection, bucket preparation, furnace charging, melting, refining, de-slagging, tapping, 

and furnace turn-around.   The heat steps are discussed in more details by Fruehan (1998) 

and Jones et al. (2005). The primary raw material used for EAF steelmaking is scrap.  

Scrap is a valuable commodity, and it comes from three different sources: obsolete scrap 

such as demolished buildings, industrial scrap, and scrap produced during the 

steelmaking process.   Scrap varies in chemical composition and it can contain 

contaminants that are undesirable for steelmaking such as copper.   Steelmaking facilities 

that produce higher quality products typically use cleaner iron raw material such as DRI, 

which contains low contaminants.     

 

The first step in a heat is to select the steel grade to be produced; next the scrap 

quality in the bucket is prepared based on the chosen steel grade to ensure that the grade 

specifications are met at the end of the heat.   The second step is to prepare the scrap 

bucket.  The operator layers the scrap in the bucket according to the size and density of 

the scrap so that the molten steel is formed faster in the furnace. Moreover, lime and 

carbon can be added to the bucket with the scrap, or they can be injected into the furnace 

during the heat. 

 

The third step is charging the buckets into the furnace, where the roof and the 

electrode are raised and moved to the sides to allow the crane to charge the scrap bucket 

into the furnace.  Once the operator finishes charging the scrap, the roof and the 

electrodes swing back and are lowered to start the electrical arc.  If the steelmaking 

facility uses DRI as iron raw material, then typically DRI is continuously fed through the 

roof of the furnace during the heat.  Modern scrap furnaces aim to operate with two or 

three charge buckets of scrap, because charging is a dead-time where the furnace is not 

melting, and also there are radiation losses every time the roof opens.   
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The fourth step is melting which is the core in EAF operations; modern EAF 

designs maximize the melting efficiency of the furnace.    Melting is accomplished by 

supplying electrical energy and chemical energy to the furnace. The electrodes are used 

in the furnace to supply the electrical energy, where in the beginning of the heat, an 

intermediate voltage tap is used to allow the electrodes to bore into the scrap.   Once 

enough liquid is formed, then a high voltage tap (Long arc) is selected.   A long arc 

allows more energy to be transferred to the scrap through the radiation of the arc than a 

short arc.  Moreover, at the start of melting the arc is unstable.  However, once a molten 

bath forms, the arc becomes stable and the energy input to the steel bath increases.  

Chemical energy during the melting period of the heat is supplied by different sources 

such as conventional burners and oxygen lances.  A conventional burner burns fuel such 

as methane using oxygen to generate chemical energy to melt the scrap near the burners, 

where oxygen lances inject oxygen directly into the bath. This injected oxygen reacts 

with components in the steel bath such as aluminum, silicon, carbon, and iron. These 

oxidation reactions are exothermic, and hence they supply additional chemical energy to 

heat the steel bath. The metallic oxides formed are removed from the steel bath into the 

slag layer.  The charging process is repeated once enough scrap has been melted to 

accommodate the subsequent bucket.  Once the final scrap bucket is charged and melted, 

the formation of a foamy slag is critical to bury the arc and protect the furnace sidewalls.  

The foamy slag is formed by injecting carbon and oxygen which forms CO bubbles in the 

slag.   Moreover, once all scrap is melted and flat bath conditions are reached, a shorter 

electrical arc is used to minimize exposing the furnace sidewalls to the arc radiations.     

 

The refining phase of the heat starts when flat bath conditions are reached.  The 

operator’s first objective is to inject oxygen to lower bath carbon, aluminum, silicon, and 

manganese contents to the desired level for tapping, where oxygen reacts with these 

elements to form metallic oxides that float out of the steel bath and into the slag layer.  

The operator’s second objective during refining is to increase bath temperature using 

electrical energy to the desired tapping temperature. The de-slagging phase is then carried 

out to remove the slag that accumulated in the furnace during refining. Once the desired 

steel grade composition and temperature are achieved in the furnace, tapping is carried 
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out which is to discharge the steel into a ladle to be transferred to the next operation.   

The last step of the heat is the furnace turn-around which is the period that follows 

tapping during which the operator inspects the furnace interior for any refractory 

damages or water leaks from the panels.    

 

Table 1.1 shows a typical heat balance for a modern EAF with data taken from 

Jones (2014).    The total theoretical energy required for the steel bath to reach tapping 

temperature (e.g. 1600 degree Celsius) is approximately 370 kWh/ton.  However, modern 

EAF is only on average 60% efficient, hence 616 kWh/ton total energy must be supplied 

to the furnace.  Table 1.1 shows that electrical energy supplies 65% and chemical energy 

provides the remaining 35% of the energy input to the heat.    Energy losses to the 

furnace water cooled panels are typically 10%, approximately 20% to the off-gas, and 7% 

to the slag layer.  Miscellaneous losses include energy losses that occur when the 

operator opens the slag door to de-slag.      

 

Table 1.1: Modern EAF Energy Balance (Jones, 2014) 

Input Electrical Energy 65 % 

Burners (i.e. Fuel and Oxygen Combustion 

Reaction) 

5 % 

Chemical Reactions (i.e. Oxidation Reactions) 30 % 

Total  100 % 

Output Steel Bath 60 % 

Slag Layer 7 % 

Panels and Roof Cooling Water Losses 10 % 

Off-gas Losses 20 % 

Miscellaneous Losses 3 % 

Total 100 % 

 

There are two components to the energy losses through the off-gas: sensible 

energy losses; and the chemical energy losses. The sensible energy loss to the off-gas is a 

function of the off-gas temperature and the heat capacity of the constituents of the off-

gas.  The off-gas consists primarily of oxygen (O2), carbon dioxide (CO2), carbon 

monoxide (CO), hydrogen (H2), nitrogen (N2), and water vapor (H2O). Chemical energy 

losses are calculated as the potential energy that would have been recovered if carbon 

monoxide (CO) and hydrogen (H2) are combusted in the furnace.   Furthermore, because 
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in many EAF melt-shops this chemical energy is combusted after the off-gases leave the 

furnace in the off-gas extraction system, this operating practice is inefficient; because this 

energy is not used within the furnace to melt the scrap and heat the steel to the desired 

temperature.  Alshawarghi et al. (2015) shows an example of the economic benefits 

achieved when the chemical energy is recovered in the furnace at an EAF melt-shop at 

Kanto Steel in Japan.  

 

The electric arc furnace structure consists primarily of a hearth, roof, and the 

shell.   The hearth consists of the refractory that lines the lower bowl, which is not water 

cooled because the refractory material can withstand high melting temperature (above 

1600 degree Celsius). The roof supports the furnace delta in the center, where one or 

more of the graphite electrodes enter the furnace and the roof which is typically water 

cooled, and the shell which consists of water cooled side walls and lower steel bowl.  

Typically, water leaks into the furnace can occur from the panels or the roof. In addition, 

the off-gas generated in the furnace during the heat is handled by the direct-furnace shell 

-evacuation system that provides an off-gas extraction.  This off-gas extraction system 

provides adequate pollution control and minimizes dust build-up in the melt-shop.  Figure 

1.1 shows a basic schematic of an electric arc furnace:    

  

                           

Figure 1.1: EAF Schematic (Fruehan, 1998). 
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1.2 Motivation and Goals   

 

In modern EAFs, the cooling water system is an essential part of the furnace used 

to cool the roof and the sidewall panels.  The water flows at a continuous rate of 

approximately 165-185 liters/min/m
2
 of cooled area.  The total cooling water flowrate 

requirement for a typical EAF ranges between 16,650 and 23,850 liters/min (Quiroga, 

2013).    Due to the high flowrate of water in the furnace panels, a leak in any one of the 

water cooled panels can quickly result in significant amounts of water in the furnace. 

Furthermore, if this water leaks into the EAF and comes in contact with molten steel, 

there is the potential for a severe explosion.  There are two methods of explosions: one is 

a steam explosion from the mixing of water with molten steel where water trapped 

underneath molten material evaporates and violently expels hot material from the 

furnace; the other method is the dissociation of water into hydrogen gas resulting in the 

formation of an explosive mixture of gases that could ignite in the presence of oxygen 

(Zuliani et al., 2014). Regardless of the mechanism, water leaks in the EAF presents a 

serious and dangerous situation. Personnel safety, damaged equipment, and production 

losses are possible effects of water leaks in the furnace.    

 

An example of an EAF water leak accident was the explosion that happened in 

ArcellorMittal Coatesville, Pennsylvania on May 26, 2007, where three operators were 

hospitalized and one of them died the following day.  The furnace was down for days to 

complete the furnace repair and the accident investigation (OSHA.com).  Another 

example of a recent EAF water leak accident was the explosion at Carbide Industries in 

Louisville, Kentucky on March 21, 2011, that killed two workers and injured two others, 

and the furnace was down for days to repair the furnace and complete the investigation 

(OSHA.com).  These water leak explosions typically result in fatalities.  The frequency of 

water leak accidents may vary from once every few months to once every few years.  

Reasons for the frequency difference include safety standards implemented in the melt-

shop and technologies such as flow meters installed on the water cooled panels.  The 

benefits for accurately detecting water leaks can minimize the risk of such furnace 

explosions.    Most furnaces today rely on water flow meter system in the panels to 
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indicate to the operator if there is a water leak from the panels into the furnace; however, 

the measurement noise limits its effectiveness to larger water leaks in the range of 90-180 

liters/min (Zuliani et al., 2014).   

 

The main focus of this work involves the application of mathematical modeling 

techniques to develop a framework to detect water leaks in an industrial EAF.   The water 

detection framework can be divided into two main sections, with the second section 

building on the development of the first section.   The objective of the first section is to 

develop a model that can calculate expected off-gas water vapor leaving the furnace; the 

objective of the second section is to develop a fault detection algorithm to indicate if 

there is a water leak into the furnace.   The nature of the model developed in the first 

section is hybrid in nature, hence it is a combination of mechanistic and empirical 

models.  The first section can be divided into three main sub-sections: construct an EAF 

expected off-gas water vapor boundary limits; develop an EAF input variables and heats 

selection models; and evaluate different empirical methods to predict EAF off-gas water 

vapor.  The outcome of the mechanistic component of the hybrid model is the boundary 

limit.  The mechanistic component is a simplified mass balance that takes into account 

the process inputs contributing to the formation of the off-gas water vapor inside the 

furnace and provides the operator with boundary limits of the expected water vapor 

leaving the furnace.  The empirical component of the hybrid model consists of a variables 

and heats selection models that are based on latent variable methods and a water vapor 

predictive model used to predict water vapor leaving the furnace.  Therefore, the outcome 

of the first section is a boundary and a prediction for the expected off-gas water vapor.     

 

A critical input required by the water leak detection method developed in this 

work is the EAF off-gas analysis. Hence, part of this work is to install an off-gas analyzer 

in each of the two melt-shops to measure the off-gas composition.  The calculated EAF 

water vapor by the hybrid model along with the off-gas water vapor measured by the 

analyzer are used in the fault detection algorithm developed in this work to provide an 

alarm to the operator if there is a potential water leak situation in the furnace.  The water 

detection method developed in this work must be sufficiently detailed so it can detect 
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small water leaks.  A minimum significant water leak in the furnace is normally 30 liters 

per minute, and the objective of this work is to develop a method capable of detecting 

such leaks and hence prevent water leak explosions.   The water detection framework 

developed in this work is implemented on two industrial EAFs.  

 

1.3 Main Contributions   

 

The complexity of the electric arc furnace process has hindered the development 

of practical models that can be used to improve the overall furnace operation.  There were 

few attempts in the past (e.g. Logar et al., 2012; and Macrosty and Swartz, 2005) to 

develop mechanistic models that can be used for EAF control and optimization.  

However, the modeling approach followed in this work is different because it is hybrid in 

nature and because the objective here is to calculate the off-gas water vapor which is not 

addressed in most of the previous developed EAF models.     Figure 1.2 summarizes the 

flow chart of the water detection framework developed in this work: 

 

 

Figure 1.2: Water Detection Framework Developed in this Work. 

 

      The work presented in this thesis attempts to address the issue of water leaks in 

the furnace by providing a framework for a hybrid model to predict off-gas water vapor 

leaving the furnace and then to develop a fault detection method that can be used with the 

hybrid model.  Different empirical methods are going to be compared in this work to 
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determine the one with the best performance for the two industrial EAFs.  Some of the 

key features of this work are the following: 

 

 Mechanistic model to accurately calculate the boundaries of the expected water 

measurement.  This step is required as a check for the calculated off-gas water 

leaving the furnace.   

 Input variable selection model that is capable of selecting the variables that are 

highly correlated with the furnace off-gas water vapor measurement.  In a typical 

EAF operation there are normally more than 50 input variables, and hence it is 

essential to build a variables selection model. Moreover, a heat selection model is 

also developed in this work that is capable of selecting normal operating heats and 

excluding outlier heats.     

 Three empirical models (Statistical Fingerprinting, Artificial Neural Network, and 

Multiway Projection to Latent Structures) are developed to predict the expected 

off-gas water vapor.  These prediction methods capabilities are compared in order 

to choose the method with optimum performance for this application. 

 A novel detection method is developed based on a comparison between measured 

and predicted off-gas water vapor.   

 This approach is implemented on two different industrial electric arc furnaces.  

The first one is a 100% scrap furnace, and the second furnace is mostly a DRI 

furnace.   The reason that these two EAF melt-shops are selected for this work is 

because they represent the two common operation modes. 

 

1.4 Thesis Overview   

 

Chapter 2 - Review of EAF Modeling and Detection Methods 

This chapter covers previous and current work related to the modeling of 

the electric arc furnace, and different fault detection approaches are reviewed.   

This chapter discusses the strengths and weaknesses of each approach and the 

advantages of the hybrid approach in the electric arc furnace modeling.   
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Chapter 3 – Industrial Experiments and Data Collection 

This chapter discusses the two industrial EAFs that are used in this work 

in detail, as well as the equipment that is used to measure the off-gas composition, 

then a description of the experiments that are performed in each of the two melt-

shops. 

 

Chapter 4 – Boundary Formulation Model, Heats Selection Models, and 

Input Variables Selection Models 

The boundary formulation model to estimate the boundaries of the 

expected water vapor leaving the furnace is developed in the first part of the 

chapter, and then the heat and input variables selection models are developed in 

the second part of the chapter.  The heats and inputs selection models are 

developed based on latent variable methods (MPCA and MPLS).  

 

Chapter 5 - Predictive Models and Fault Detection Methodology 

Three different empirical methods are explored: statistical fingerprinting, 

multiway projection to latent structures (linear method), and artificial neural 

network (non-linear method). The robustness of the methods is compared in this 

chapter. Finally, this chapter discusses the novel fault detection approach 

developed to detect minimum significant water leaks in the furnace.  The 

approach is tested on the two industrial furnaces. 

 

Chapter 6 - Conclusions and Recommendations 

A summary of this work is presented in this chapter with highlights on the 

main results.  Recommendations for future work are also discussed in this chapter. 
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Chapter 2 

 

Review of EAF Modeling and 

Detection Methods 
 

Developing an accurate and comprehensive mechanistic EAF model that 

characterize all the mass and energy balances is difficult due to the lack of online sensors 

for measuring some of the primary variables (e.g. scrap composition or DRI composition 

in real-time) required for the models and the presence of nonlinearities due to the batch 

nature of the process.  Moreover, to the author’s knowledge there has not been a 

published EAF method capable of accurately detecting water leaks in the furnace because 

primarily most of these models do not address EAF off-gas water vapor.   

 

Currently, EAF operators use the flow of water inside the EAF water cooled 

panels to provide an indication if there is water leak from the panels inside the furnace.  

However, this method is prone to high signal noise and poor response time (Zuliani et al. 

2014).  In addition, there are off-gas systems suppliers (e.g. Grieshaber, K. and F. 

Martinez, 2015) that have developed systems to measure the off-gas water vapor, and 

they use the changes due to unexpected additional water sources to detect for leaks.    

However, due to the high variability in the EAF process, it may be insufficient to use 

only the measured off-gas water vapor and compare it against a static set-point 

determined from historical heats to detect water leaks.  Variability in the EAF process 

include charging wet scrap or scrap that contains high hydrocarbons (e.g. turnings), or 

variation in humidity from air ingress entering from a slag door into the furnace because 

operators in different shifts tend to open the slag door at different times in a heat.   The 

solution proposed in this work includes a reliable measurement of off-gas composition 
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and a dynamic calculation of water vapor based on process variables in real-time to 

accurately detect potential water leaks and minimize false alarm rates.   

 

There have been efforts to develop mechanistic models for the electric arc 

furnaces (e.g. Logar et al. (2012), MacRosty and Swartz (2005), and Bekker et al. (1999)) 

to be used for different applications such as simulations, control, and optimization.    

 

2.1 EAF Modeling Approaches 

 

Logar et al. (2012) presented an approach to the mathematical modeling of an AC 

electric arc furnace.   The objective of the EAF model was to be used for control, 

optimization of the energy consumption, and to develop a simulator to train operators. 

The authors considered the furnace as a combination of electrical, hydraulic, chemical, 

thermal, and mass sub-processes.  Each sub-process was modeled and all the models 

together made-up the EAF model.  The electrical model was described as a 3-phase, non-

linear electric circuit. The electric arcs were the non-linearity in the electrical model.  The 

EAF electric-circuit model was represented as a three-phase, star AC circuit.  The authors 

used a form of randomness to the mathematical equations in the electrical model to 

minimize the difference between the measured and the simulated data.    

 

The second sub-process model developed was the electrode control (hydraulic 

sub-process).  The purpose of the electrode control system was to control the resistance 

and the power of each arc, where the power of the arc was related to the arc length. The 

input to the electrode control model developed by the authors was the controller outputs 

in %, and the outputs of the model were the arc resistance, the scrap height, and the arc 

length.    The third sub-process modeled was the heat and mass processes in the EAF.    

The author divided the EAF into different zones, where the components of each zone 

possessed equal thermal, chemical, and physical properties.  This assumption was clearly 

inaccurate because the properties of the components vary within the zone, but the authors 

had to make this assumption to simplify the calculation.  The EAF zones considered by 

the authors were solid scrap zone, liquid scrap zone, solid slag zone, liquid slag zone, gas 
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zone, roof zone, and wall zone.   The authors considered all modes of heat transfer (i.e. 

conduction, convention, and radiation) in the thermal model.  A consequence of the heat-

balance equations was the temperature calculation in each EAF zone.  Also, the mass 

balance equations for each of the EAF zones were constructed to track materials in each 

zone.   Finally, the fourth sub-process modelled by Logar et al. (2012) was the chemical 

processes in the EAF.  This model included common chemical reactions that occur during 

a heat, such as the oxidation and reduction of iron, carbon, silicon, manganese, 

chromium, and phosphorous.  The model included electrodes oxidation, the oxidation of 

combustible materials, the oxygen burners, and the slag foaming processes.    The 

chemical model assumed that all the chemical reactions, except CO post-combustion and 

CH4 oxidation, occurred in the liquid metal and slag zones.  The off-gas zone 

compositions considered in the EAF model were N2, O2, CO, CO2, and CH4.  H2O was 

ignored.  Therefore, this model was incapable of detecting water leaks in the furnace.  

The EAF model developed was based on the 80 MVA AC furnace installed in Slovenia. 

 

MacRosty and Swartz (2005) developed a detailed model of the EAF based on 

first principles.   The objective of the model was to use it within an optimization 

framework.  The EAF was modelled as a system of four equilibrium zones: solid scrap 

zone, molten metal zone, slag metal interaction zone, and gas zone.   The solid scrap zone 

was modelled as a mass of scrap melting according to the heat transferred from the 

molten steel, off-gas, and the electrical arc.  The molten metal zone was modelled as 

scrap in the solid scrap zone melted, they entered this zone and then they would leave to 

enter the slag metal zone.   The slag metal zone included the slag constituents (i.e. 

metallic oxides except CO).  The species included in the gas zone were: CO, CO2, O2, 

CH4, H2, H2O, N2, and C9H20.  The EAF model developed also included a heat model that 

considered the radiation and convective heat transfer between different EAF zones, the 

furnace components, and the electrical arc.   Since radiation was an important mechanism 

of heat transfer in the EAF, it was important to predict the contribution of radiation in the 

furnace.  The objective of this component in the heat model was to find the radiation 

between the different surfaces in the furnace based on their surface temperature, 

emissivity, and surface area.  In the heat model, the authors assumed that an initial cone-
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frustum shaped void was melted into the scrap by the electrodes.  A consequence of the 

heat model was the temperature calculation in each EAF zone.  Also, the mass balance 

equations for each of the EAF zones were constructed to track materials in each zone.     

Although this work included H2 and H2O in the gas model, MacRosty and Swartz (2005) 

made a few assumptions in order to develop the model that might have affected the 

overall accuracy of the model such as: each zone consisted of a unique composition and 

conditions; injected carbon went into the solution; and no reactions in the molten metal 

zone because of the absence of O2 in the molten-metal zone.  Furthermore, not addressing 

issues on the radiative and conductive heat transfer between the steel, the slag and the gas 

zones, and the CO post combustion might affect the overall accuracy of the model.     

 

Modigell et al. (2001) developed an EAF model.  The objective of the model was 

to be used as a simulation tool. The model included four reaction zones that were 

assumed to be in a state of chemical equilibrium.  The flow of material between reaction 

zones was directed by concentration gradients and mass transfer coefficients. However, 

the authors did not disclose enough details about the model.  

 

Bekker et al. (1999) developed an EAF model from first principles of thermo-

chemistry for the purpose of control system design.  Due to the complex nature of the 

EAF process, the authors used empirical relationships and assumptions to simplify EAF 

mechanisms that were not measured.   The authors assumed that the radiative energy 

from the arc and the energy from exothermic reactions were only added to the liquid 

phase of the heat, and then that the liquid phase transferred that energy to the solid phase 

by conduction.    The authors also assumed equivalent temperature between the liquid 

metal, molten slag, and gas phases of the heat.     Liquid steel temperature increased by 

the chemical and electrical energy.  The energy available to melt the steel was assumed to 

be equivalent to the ratio of scrap temperature to the molten temperature, and the 

remaining energy was used to heat the solid scrap.    Reactions considered by Bekker et 

al. (1999) in his model were oxidations of Fe, C, and Si and reduction of FeO.    

Moreover, the authors assumed that the oxygen injected into the furnace reacts with Fe, 

C, and Si.  The only gas-phase elements were CO, CO2 and N2. All O2 react on entry, and 
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H2O was ignored.  Therefore, the EAF model developed by Bekker et al. (1999) was 

incapable of detecting water leaks in the furnace.    

   

Matson et al. (1999) developed a model that approximated the furnace as three 

separate phases: bath, slag, and gas reactors. The authors assumed chemical equilibrium 

in the individual phases and transport limitations between each phase to compute the rate 

of reaction. A dynamic elemental balance was used in each phase to track the flow of the 

components. Gibbs free energy minimization was implemented in the equilibrium 

algorithm. The chemical equilibrium problem was solved via a subroutine. Mass transfer 

between the phases was modeled as diffusion across a concentration gradient. The 

authors modeled the scrap as a group of spheres.   The temperature profile of the spheres 

was determined from the sensible heating of the spheres as a function of its radius. The 

surface temperature of the scrap was monitored at each time step in the algorithm.   In 

order to reach an acceptable accuracy with this method, small discretization steps were 

required.   

 

Cameron et al. (1998) developed an EAF model to be used as a dynamic 

simulation tool that could be used to optimize EAF operating practices. The model 

included four phases: metal phase, slag phase, organic solid phase, and gas phase.  The 

model also included six interfaces between the metal, slag, gas, and carbon material.  

Moreover, the authors assumed chemical equilibrium at each interface. Mass transfer 

between the phases and interfaces was driven by a concentration gradient, with the 

chemical equilibrium at the interface computed by minimizing the Gibbs free energy. 

EAF off-gas chemistry data was used to test the model.  

 

Due to the complex nature of the EAF process and the lack of online sensors for 

measuring some of the primary variables (e.g. scrap composition or DRI composition in 

real-time) required to develop an accurate EAF model based on first principles, most of 

the authors had to make assumptions to be able to develop mechanistic models, and most 

of the models developed did not calculate the water vapor leaving the furnace, and hence 

these models were incapable of detecting water leaks in the furnace.   This work proposes 
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a hybrid modelling approach to overcome the limitations of the mechanistic approach to 

build a water detection algorithm, where a simplified mass balance model is used to 

provide upper and lower limits of the off-gas water vapor and an empirical model to 

calculate the water vapor leaving the furnace.  The mechanistic model calculates a 

boundary from first principles around the water vapor prediction determined by the 

empirical model.  This model is powerful because it provides the operator with a tool to 

monitor the quality of the prediction where, if there is a shift in the EAF process 

operation, then the empirical model should be retrained with a new heats dataset.       

 

2.2 Fault Detection Approaches 

 

Fault detection methods can be classified as model-based methods or data-driven 

methods.  Model-based methods rely on fundamental understanding of the process where 

data-driven models rely on historical data.  Model-based fault detection methods have 

been around for many years but their contribution to the industrial practice is limited to 

the cost and time required to develop accurate models for complex industrial processes.  

The data-driven approach requires less time and lower cost to develop.  Empirical 

methods commonly used for data-driven fault detection approaches include artificial 

neural network (Chetouani, 2007), multiway principal component analysis (Nomikos and 

MacGregor (1994)), and Bayesian approach (Yu, 2012).  Furthermore, Freeman et al. 

(2013) compared both approaches to a small unmanned aerial vehicles (UAV) platform. 

 

Nomikos and MacGregor (1994) developed a multivariate statistical method for 

monitoring batch processes where the only information required were good historical 

batches.   The empirical method used was a multiway principal component analysis 

(MPCA).  MPCA was used to extract the information from the multivariate dimensions 

and projected them onto lower-dimensional space defined by principal components.  The 

method used by the authors to calculate the principal component was the NIPALS 

algorithm.   Moreover, due to the three dimensional array (batches, measurements, and 

time) nature of the batch data, the authors unfolded the three-dimensional array to a two-

dimensional array, and then they built the MPCA model.   The authors determined that 
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three principal components were necessary to describe adequately the normal operation 

of a batch.  Monitoring plots generated by the MPCA method were the score plots and 

loading plots for the latent variables of the MPCA model. These plots included control 

limits corresponding to 95% and 99% confidence regions, calculated based on the 

reference heats. The MPCA monitoring plots were used online to monitor the progress of 

a new batch in real-time.  The MPCA method was based on the concept that future 

behavior of a process was monitored by comparing it against the past when the process 

was performing well.   Two fundamental assumptions were necessary for the MPCA 

method to work: the first assumption was that the reference database was representative 

of the process operation, and hence if something changes in the process, then a new 

MPCA model must be built on the new batches.   The second assumption was that the 

fault event must be observable from the measurements collected in order for the MPCA 

model to detect it. 

 

Yahya Chetouani (2007) developed an artificial neural network (ANN) approach 

for real-time detection of faults.    This approach combined ANN and CUSUM statistical 

test for fault detection.   The ANN model developed was a one layer perceptron network, 

and the process used in this work was a reactor-exchanger setup.  The training algorithm 

used to develop the ANN model was the back-propagation training function for feed-

forward networks using momentum and adaptive learning technique.   The author used 

the CUSUM statistical test for fault detection, where this test was performed as a 

cumulative sum test, and where jumps in the mean occur at unknown time instants.   The 

reactor-exchanger used to test this method was a glass-jacketed reactor with a tangential 

input for heat transfer fluid.   

 

Sheibat-Othman et al. (2014) proposed a hybrid data/model-based approach for 

fault detection for chemical reactions.  Two stirred tank jacketed chemical reactors were 

used.  The reactor was equipped with temperature probes and the feed mixture was put on 

a balance to calculate the feed flowrate.  Temperature sensor faults and actuator faults 

(capacity for heating and cooling) were used to investigate the proposed hybrid 

methodology.  The process model developed for the system was a heat balance of a semi-
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continuous stirred tank reactor and its jacket.  The authors used two class support vectors 

machine (SVM) for the data driven model.  Furthermore, it was found that it would 

require a great number of data to train the SVM model because the reactions in the 

reactor were highly nonlinear reactions. Therefore, a simplified process model was used 

as a starting point to develop an observer for fault isolation, and information from the 

SVM model was used to correct the simplified process model when no faults were 

detected.  It was also found that the SVM model alone was sufficient to detect faults if 

the process dynamics were linear.   

 

Freeman et al. (2013) designed and applied a model-based residual generation and 

data driven fault detection approaches to a small unmanned aerial vehicles (UAV) 

platform.   The electric powered airplane had a 1.3 meters wingspan and a weight of 1.3 

kg.   The model based fault detection strategy used linear filtering methods to reject 

faults.   Raw flight data was used to develop the data driven algorithm without knowledge 

of system dynamics.   An H∞ filter was constructed to detect aileron faults.  A data 

driven detector was developed by processing the control error signals logged from the 

flight data and consequently to create an error score related to the probability of a fault.   

Both approaches successfully detected different aileron faults during maneuvers and in 

the presence of environmental disturbances.    However, the performance of the data 

driven detector suffered in the linear simulations with high model uncertainty and did not 

always detect faults.   The system knowledge built in the model-based design allowed for 

better performance.         

 

The next chapter gives an overview of the two industrial furnaces selected to 

develop and test the water detection framework developed in this work.   In addition, the 

chapter also discusses the off-gas analyzer equipment installed at both melt-shops to 

measure EAF off-gas composition which was required to build the water detection 

framework.      
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Chapter 3 

 

Industrial Experiments and Data 

Collection 
 

An important measurement required for this work was the furnace off-gas 

composition (i.e. CO, CO2, H2, O2, N2, and H2O); therefore, proprietary off-gas analyzer 

was installed for each furnace as a part of this work.     

 

3.1 Industrial EAFs Description 

 

The water detection method developed in this work was implemented on two 

different AC industrial electric arc furnaces.  The first EAF was a scrap charging furnace, 

and the second one was mostly a DRI furnace.   Table (3.1) shows the overview of the 

two industrial furnaces: 

Table 3.1: Overview of the Two Industrial Electric Arc Furnaces (2014) 

Parameter EAF 1  EAF 2 

Annual EAF Production  800,000 Tons 600,000 Tons 

Total Metallic Charge Weight  190 Tons/heat 90 Tons/heat 

Total Tapped Liquid Weight 170 Tons/heat 82 Tons/heat 

Feed Material  Scrap Mostly DRI 

Number of Buckets per Heat 3 or 4 0  and sometimes 1 scrap 

bucket with DRI 

EAF Injectors 4 coherent burners (Natural gas 

and Oxygen), 2 Carbon 

Injectors, and 1 Lime Injector.  

Use of charged carbon (Coal).  

3 coherent burners (Natural 

gas and Oxygen), 3 Carbon 

Injectors, and 1 Lime 

Injector.   

Heat tap to tap time 95 min 45 min 

Power on time 70 min 37 min 
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EAF 1 produced approximately 800,000 tons of raw steel in 2014. The plant 

delivered a wide range of products for construction, aircraft and aerospace, energy, and 

heavy equipment.   The scrap charge weight was 190 tons per heat, and the furnace 

tapped 170 tons per heat.  This furnace had four coherent burners, two carbon powder 

injectors, and one lime injector.  Carbon powder was also charged with the scrap.  The 

heat total cycle was 95 minutes, and the power on time was 70 minutes.   EAF 2 

produced, in 2014, approximately 600,000 tons of tubes and delivered a wide range of 

products for the energy market and the automotive sector.   The DRI total weight was 90 

tons per heat, and the furnace tapped 82 tons per heat.  This furnace had three coherent 

burners, three carbon powder injectors, and one lime injector.  The heat total cycle was 

45 minutes, and the power on time was 37 minutes.    The names of the plants and details 

of the operations were withheld for confidentiality reasons.   

 

The coherent burners in both furnaces were wall-mounted injectors with a nozzle 

that delivered oxygen at supersonic velocity into the steel bath.  The coherent burners had 

ports for main oxygen, secondary oxygen, and natural gas.  The main oxygen port was 

used for the oxygen jet.  The injector nozzle kept the jet of oxygen coherent.  The jet of 

oxygen was kept coherent by forming a shroud flame (envelope) around it through the 

combustion of the secondary oxygen with natural gas. The injector delivered a specific 

amount of oxygen to the steel bath with minimal splash. When the coherent jet of oxygen 

produced by the nozzle impinged on the steel bath, the concentrated momentum of the 

oxygen jet dissipated in the steel as fine bubbles, providing deep penetration and slag-

metal mixing.  The nozzle also operated as a conventional sidewall burner during the first 

few minutes after scrap was charged to melt scrap faster which improved furnace 

productivity and decreased electrical power consumption.   The carbon and lime injectors 

were wall-mounted pipes.  The flow rate set-points for the coherent burners, carbon 

injector, and lime injector were predetermined based on an optimized chemical profile. 
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3.2 EAF Off-gas Analyzer System 

 

The proprietary analyzer measures and analyzes real-time off-gas chemistry from 

the forth-hole of the Electric Arc Furnace (EAF).  Figure 3.1 below gives a basic 

overview of the off-gas system:  

 

 

Figure 3.1: Schematics of the Proprietary Continuous EAF Off-gas System 

(Alshawarghi et al. (2015)). 

 

The off-gas system extracts the off-gas sample, analyzes the sample, and sends 

the off-gas values to the HMI/SCADA computer in the control room.  The HMI/SCADA 

also collects data from the plant PLC.  The water detection model set-points are then sent 

from the HMI/SCADA computer to the Plant PLC.   Figure 3.1 and 3.2 show the major 

components of the proprietary off-gas system installed at both melt-shops.  The major 

components of the system are a patented water cooled probe, a heated sample line, a 

multi-gas analyzer with a conditioning cabinet, the HMI/SCADA computer, analyzer 

control system, and the analyzer room.  The EAF off-gas sample is collected from the 

water cooled off-gas sample probe mounted in the water cooled D1-duct on the furnace 

elbow.    The sample gasses are drawn under vacuum through the water cooled probe and 

into the filter inside the probe where the off-gas is filtered from dust and then through the 

heated sample line to the conditioning sub-system inside the analyzer cabinet.  The 
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reason that the gases are transported through a heated line is to maintain sample integrity 

until it reaches the analyzer cabinet.  The conditioning and analysis sub-systems are 

installed inside the analyzer cabinet which is located in an analyzer room built 

specifically for this project.  The analyzer room is built approximately 20 meters away 

from the furnace in a clean and safe area.   The reason the room is kept in close proximity 

to the furnace is to minimize delays in sample extraction and analysis.  The sample delay 

at both installations is kept below 20 seconds from the time the sample is drawn from the 

furnace to the time the analysis is displayed on the HMI in the control room.   

 

 

Figure 3.2: EAF Off-Gas Analyzer System. 

 

3.3 EAF Off-gas Sample Conditioning  

 

The sample conditioning sub-system draws the off-gas sample from the process 

through the patented water-cooled probe via a vacuum pump located in the conditioning 

sub-system.  The pump draws the off-gas sample continuously under a vacuum pressure.  

The sample then goes under positive pressure once it passes through the head of the 

vacuum pump. The conditioning sub-system then removes the dust before passing a small 

portion of the off-gas sample to the water vapor measurement detection sub-system.  The 

moisture in the off-gas sample is then removed, and a small portion of the off-gas sample 
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is sent to the analysis sub-system.  The sample conditioning sub-system generates by-

products from its operation that are discharged from the analyzer drain and off-gas vent 

ports.  Harmful gases are vented and drained from the analyzer, and these gases are to be 

transported to a safe location outside of the analyzer room.   During the normal course of 

operation, the probe plugs as dust accumulates on the inside walls of the probe. In order 

to ensure continuous analysis, the probe, the heated sample line, and the filters inside the 

conditioning cabinet are purged during the periods of time when off-gas analysis is not 

required, such as when the furnace is being charged with scrap or during tapping.  

 

3.4 EAF Off-gas Sample Analysis and Data Collection 

 

The off-gas analysis sub-system analyzes the dirt and moisture free off-gas 

sample supplied by the conditioning sub-system. The measurement accuracy of the 

analyzer is maintained through regular calibration.  Hydrogen is detected by thermal-

conductivity cell.  The oxygen detector is an electrochemical cell.  The two gas species 

are measured in a dual microprocessor controlled non-dispersive infra-red cell.  The off-

gas water vapor is measured in a laser spectrometer system.     The multi-gas analyzer 

measures levels of O2, CO, CO2, H2, and H2O in molar %, and then the analyzer PLC 

sends the data to the off-gas HMI/SCADA computer.  The off-gas HMI/SCADA 

computer is interfaced with the plant’s network to receive and log off-gas analysis from 

the analyzer PLC and receive plant process data from the plant PLC.    Figure 3.3 shows 

the configuration of the off-gas analyzer HMI/SCADA and the analyzer PLC computer 

on the plant’s network.  
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 Figure 3.3: Configuration of the Off-gas HMI/SCADA Computer and Off-

gas Analyzer PLC on the Plant’s Network (Nikkanen et al. (2012)). 

 

The HMI/SCADA platform installed in both facilities is GE iFix.  HMI and 

SCADA refer to industrial control systems.  HMI is a component of SCADA.  SCADA is 

the supervisory control and data acquisition, and it allows for a direct control and 

communication with PLCs, data storage systems, and process control systems.  HMI 

stands for Human Machine Interface, and it allows for interactions between the operators 

and industrial equipment such as the furnace and the analyzer.  The PLC is the control 

system, and it stands for programmable logic controllers. The analyzer PLC controls all 

the functions of the analyzer.  All operational functions of the analyzer are controlled and 

monitored by the analyzer PLC.   The analyzer PLC installed at both melt-shops is a 

Siemens PLC.  The HMI/SCADA computer interacts with the plant PLC and with the 

analyzer PLC via an OPC server.   

 

Off-gas systems potential damages include: probe plugging, air leakage in the 

sample line, general mechanicals damage, PLC-HMI communication loss, power 

blackout. The above mentioned possible damages have been monitored using the 

historical data stored in the HMI/SCADA database since the beginning of the project, and 

it was observed that none of these events occurred over a period of one year.  In addition, 

some general rules have been developed for a fast check of sample reliability such as:  
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oxygen should be less than 25%; the sample line negative pressure should be within 

standard limits; passing the chemistry algorithm in the HMI/SCADA system that detects 

for air in-leakage, low chemistry concentration, chemistry errors, and calibration errors.  

All of these conditions have to be simultaneously satisfied in order to consider the sample 

as good chemistry.  The off-gas analyzers have worked reliably in both installations for a 

period over one year giving good off-gas chemistry measurements. 

 

3.4.1 EAF 1 Off-gas Chemistry 

 

Figure 3.4 shows an example of a typical heat off-gas chemistry measured by the 

proprietary off-gas system at EAF 1:    

 

 

Figure 3.4: Typical Heat Off-gas Analysis for EAF 1. 

 

The three stages of the EAF operation (i.e. Charge 1 Melting, Charge 2 Melting, 

Charge 3 Melting and Refining) are indicated in Figure 3.4.  The probe purge is initiated 

during scrap charging and tapping at the end of the heat when the off-gas analysis is not 

required.  The off-gas chemistry measured by the off-gas analyzer system indicates that 

the furnace freeboard operates under slightly reducing condition.  This slightly reducing 
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condition is indicated by the medium concentration of carbon monoxide (CO – red) and 

hydrogen (H2 – yellow) in this heat.  The medium concentration of CO and H2 at any 

point in the heat is typically 5-25%.  During the first few minutes of scrap melting in all 

three charges, the off-gas analysis shows an increase in the amount of CO and H2.  The 

sources for off-gas CO in the melting phase are the combustion of natural gas with 

oxygen,   the burning of the hydrocarbons that come with the scrap, and the burning of 

carbon powder charged with the scrap bucket.   Sources for H2 and H2O are combustion 

of natural gas and oxygen, burning of the hydrocarbons that come with the scrap, 

electrode spray water, and humidity in the air drafted into the furnace from the slag door.  

The refining phase of the process shows an increase in CO. The evolution of CO during 

refining represents the de-carburization process of the steel bath where lance oxygen 

from the coherent burners is used to remove carbon from the steel bath.  The off-gas 

water vapor (light blue) generally shows an increase in the beginning of each charge 

melting, and then it slightly decreases.  This increase is due to the higher usage of natural 

gas in the beginning of the charge when there is a significant amount of scrap in the 

furnace.   Natural gas produces a significant amount of water vapor in the furnace.  

Furthermore, towards the end of refining, water vapor increased because two of the three 

coherent burners were switched from the oxygen lancing mode to the burner mode 

because carbon in the bath was decreasing rapidly.    Off-gas O2 (gray) is typically zero 

during melting and refining because off-gas oxygen cannot co-exist with CO and H2 at 

the high off-gas temperature.  The source of CO2 (purple) is the combustion of CO with 

O2.     

 

3.4.2 EAF 2 Off-gas Chemistry 

 

 Figure 3.5 shows an example of a typical heat off-gas chemistry measured by the 

proprietary off-gas system at EAF 2: 
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Figure 3.5: Typical Heat Off-gas Analysis for EAF 2. 

 

   DRI is fed continuously to EAF 2 during the heat.  The probe purge is initiated 

during tapping at the end of the heat cycle.  The off-gas chemistry measured by the off-

gas analyzer indicates that the furnace freeboard operates under slightly reducing 

condition.  This slightly reducing condition is indicated by the low-medium concentration 

of carbon monoxide (CO – red) and hydrogen (H2 – yellow).  Low-medium concentration 

at any point in the heat is typically 0-20%. During continuous DRI feed, the off-gas 

shows a medium concentration of CO due to the carbon content that comes with the DRI.   

The refining phase of the process shows a higher presence of CO and a dynamic behavior 

of CO compared to the CO during the refining period in a scrap furnace (Figure 3.4).   

The reason that CO has a dynamic behavior is due to the dynamics of DRI melting.   

 

The off-gas H2O (light blue) follows a less nonlinear behavior which is different 

from the off-gas H2O behavior in EAF 1.  The main reason for the different behavior is 

that in a continuous DRI EAF process, the coherent burners are only used in the oxygen 

lance mode because the steel bath is mostly in flat bath conditions, where in a scrap 

furnace the coherent burners are used as a conventional burners during scrap melting; and 

when enough scrap has melted, the coherent burner operates as an oxygen lance, hence 
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the amount of natural gas used in both modes varies, also wet scrap or scrap with 

hydrocarbons contribute to the off-gas water vapor where in a DRI furnace, the water 

vapor behavior is less nonlinear because the main source of water vapor is the natural 

gas, electrode spray water, and humidity from the air being drafted into the furnace 

through the slag door and hence most of these variables are consistent throughout the 

heat.   The off-gas water vapor is higher in EAF 2 than EAF 1, and this is due to the 

higher natural gas consumption because the coherent burners in EAF 2 have higher firing 

rates; also the electrode spray water in EAF 2 has higher water flow rates. The off-gas 

water vapor slightly decreases towards the end of refining in Figure 3.5 because the 

operator stopped one of the oxygen lances because the amount of carbon in the bath was 

decreasing rapidly.  Off-gas O2 (gray) increased towards the end of the heat because the 

operator stopped all oxygen lances and opened the slag door to take the steel bath carbon 

and temperature sample.  The source of CO2 (purple) is the combustion of CO with O2.     

   

Controlled trials of injecting additional water into the two furnaces were 

conducted after installing the off-gas analyzer system.  The purpose of these trials was to 

test whether the water detection framework developed in this work can detect the injected 

water.  The method used to inject additional water into the EAF was by increasing the 

electrode spray water.   The next step of this work is to develop the expected upper and 

lower boundaries of the expected water leaving the furnace and the heats and input 

variables selection models.      
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Chapter 4  

 

Boundary Formulation Model, 

Heats Selection Models, and 

Input Variables Selection Models 
 

 The first part of this chapter discusses the simplified mass balance approach 

followed in this work to develop the upper and lower boundaries of the expected off-gas 

water vapor leaving the furnace.  This simplified approach is implemented on the two 

industrial furnaces and results are presented.   The second part of this chapter discusses 

the heats and variables selection models which are critical in building empirical models. 

 

4.1 Introduction 

 

There are four main zones in an electric arc furnace: off-gas freeboard zone, slag 

zone, steel bath zone, and solid scrap zone.  For the purpose of this work, the freeboard 

zone is the only zone considered.  The chemical reactions that are considered in this work 

are the reactions that influence the amount of water vapor in the off-gas.  Equations 4.1-

4.4 summarize the main reactions related to water vapor in the furnace freeboard zone: 

 

                                 Fuel Combustion CH4 + 2O2  CO2 + 2H2O                                 (4.1) 

                                     Water Vaporization H2O (l)  H2O (v)                                              (4.2) 

                                   Water Dissociation 2H2O  2H2 + O2                                    (4.3) 

                              Water Shift Reaction H2O + CO  H2 + CO2                                           (4.4) 
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Small quantities of water in the EAF off-gas are typical and can result from a 

variety of sources such as methane combustion with oxygen from the oxy-fuel burners 

(Eq. 4.1), water vaporization from the water used to cool the electrodes and the 

electrodes’ delta (Eq. 4.2).  Dissociation of water vapor into hydrogen and oxygen (Eq. 

4.3) is also possible at high temperatures in the electric arc furnace.  In addition, water 

reacting with carbon monoxide at low temperatures in the electric arc furnace producing 

hydrogen and oxygen (Eq. 4.4) is also possible.   Other reactions that can contribute to 

smaller amounts of off-gas water vapor include combustion of hydrocarbons on oily 

scrap, water vapor from humid air drawn into the furnace, and lime which can hydrate 

and be a source of water vapor.  All of these reactions are possible to occur in the EAF; 

however, the extent of the reaction is determined by the EAF conditions (i.e. reducing vs. 

oxidizing off-gas and temperatures).  Figures 3.4 and 3.5 in Chapter 3 have shown that 

off-gas chemistry in a typical normal heat contains off-gas water vapor and hydrogen.    

 

A serious source of water entering the furnace results from leaks that develop in 

the sidewalls and roof of the EAF. When water leaks into the EAF during high 

temperature conditions, a portion of the water can exist as vapor (H2O), and a portion can 

chemically dissociate or react to form H2 and CO2.  Figure 4.1 shows the input and the 

output from the freeboard zone: 
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 Figure 4.1: EAF Off-gas Freeboard Zone. 

 

The next section in this chapter provides a simplified approach for calculating the 

boundary for the expected water vapor leaving the furnace based on normal operation.   

The purpose of the boundary is to provide the operator with upper and lower limits of the 

expected water vapor leaving the furnace.     

   

4.2 Water Vapor Boundary Formulation 

 

4.2.1 Method 

 

The approach followed in this section to develop a boundary for the expected 

water vapor leaving the furnace is a steady state mass balance approach.   Hence, this 

model is mechanistic in nature.  The objective of this model is twofold: first to provide 

the operator with the upper and lower limits of the expected water vapor leaving the 

furnace, and then to serve as a check for the water vapor prediction which is empirical in 

nature.  The approach developed to calculate the boundary is simplified because a 

rigorous approach is not required for the objective of this step.   An assumption that has 

been made to carry out this work is that there exists a homogenous freeboard zone, both 
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in temperature and composition.   The total carbon molar flow rate (ṅcarbon) is obtained 

with Eq. (4.5): 

 

                          ṅcarbon = ṅCH4 + ṅCC + (Ɛ × ṅIC)                                        (4.5)          

                                        ṅx = 
ṁ𝑥

𝑀𝑥
                                                            (4.6)          

                                                 ṅ𝑐𝑐 =
𝑇𝑜𝑡𝑎𝑙 𝐶ℎ𝑎𝑟𝑔𝑒𝑑 𝐶𝑎𝑟𝑏𝑜𝑛 (𝑚𝑜𝑙)

𝑃𝑜𝑤𝑒𝑟 𝑜𝑛 𝑇𝑖𝑚𝑒 (𝑠)
                                     (4.7) 

 

The plant measures mass flow rates in real-time for injected carbon and methane.  

The molar flow rate is calculated using the mass flow rate (ṁx) and the molecular mass 

(Mx) (Eq. 4.6).  ṅCH4 is the total methane molar flow rate (moles/s).   ṅCC is the average 

charged carbon molar flow rate.   EAF 1 adds charged carbon in the middle of every 

bucket, and hence the carbon stays longer in the melting period of the heat.  The model 

assumes that all the charged carbon is oxidized during the heat, where the flow rate is 

calculated as the ratio between the total moles of charged carbon and the time in seconds 

when electrical power is on (Eq. 4.7).  EAF 2 feeds DRI into the furnace after charging 

one bucket and does not use charged carbon.  DRI at EAF 2 typically contains 2.5 % 

carbon content and hence the model replaces the charged carbon with DRI carbon.   ṅIC is 

the total injected carbon molar flow rate, and Ɛ is the carbon injection efficiency factor.  

The efficiency factor is the fraction of injected carbon that enters the furnace freeboard 

and does not leave as dust.  Factors that affect the efficiency of carbon injection include 

carbon injectors design and time of injection in the heat.  This efficiency factor can vary 

between 0 and 1, and for this work based on experience with the carbon injectors used at 

both melt-shops is assumed to be 0.5.  The model assumes that there are no other sources 

of carbon. This assumption, while clearly not accurate, because there is in fact carbon due 

to electrode consumption and from the scrap material, is still valid for the purpose of 

calculating a boundary for the expected water vapor leaving the furnace, as it is shown 

later, the upper boundary is conservatively higher than the real off-gas flow and the lower 

boundary is conservatively lower than the real off-gas flow. 
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The EAF off-gas analyzer installed at both facilities removes the water vapor after 

measuring the water vapor content in the off-gas.  Hence, the off-gas compositions (i.e. 

CO, CO2, H2, N2, and O2) are measured on a dry basis.  The off-gas dry molar flow rate 

(ṅdry) leaving the furnace is obtained with Eq. (4.8):         

                                           

                                                         ṅdry =
ṅ𝐶𝑎𝑟𝑏𝑜𝑛

y𝐶𝑂2
𝑑𝑟𝑦

+ y𝐶𝑂
𝑑𝑟𝑦                                (4.8) 

                                          

y𝐶𝑂2
𝑑𝑟𝑦

 is the dry off-gas carbon dioxide molar percent measured by the off-gas analyzer, 

and y𝐶𝑂
𝑑𝑟𝑦

 is the dry off-gas carbon monoxide molar percent measured by the off-gas 

analyzer.  The dry off-gas hydrogen, oxygen, and nitrogen molar flow rates are obtained 

with Eq. (4.9-4.11): 

 

                                                     ṅ𝐻2
𝑑𝑟𝑦

= ṅ𝑑𝑟𝑦 ×y𝐻2
𝑑𝑟𝑦

                                                    (4.9) 

                                                       ṅ𝑂2
𝑑𝑟𝑦

= ṅ𝑑𝑟𝑦 ×y𝑂2
𝑑𝑟𝑦

                                                  (4.10) 

                      ṅ𝑁2
𝑑𝑟𝑦

= ṅ𝑑𝑟𝑦 ×  (100 −  y𝐻2
𝑑𝑟𝑦

−  y𝑂2
𝑑𝑟𝑦

− y𝐶𝑂2
𝑑𝑟𝑦

−  y𝐶𝑂
𝑑𝑟𝑦

)                          (4.11) 

 

Where ṅ𝐻2
𝑑𝑟𝑦

, ṅ𝑂2
𝑑𝑟𝑦

, ṅ𝑁2
𝑑𝑟𝑦

  are the molar flows (moles/sec) of hydrogen, oxygen, and 

nitrogen leaving the EAF, respectively.  y𝐻2
𝑑𝑟𝑦

 is the dry off-gas hydrogen molar percent, 

y𝑂2
𝑑𝑟𝑦

 is the dry off-gas oxygen molar percent.  The molar flow of the total hydrogen (H2 

and H2O) expected to leave the EAF (ṅ𝑇𝑜𝑡𝑎𝑙𝐻2) is obtained with Eq. 4.12  

   

                    ṅ𝑇𝑜𝑡𝑎𝑙𝐻2 = 2 ×  ṅ𝐶𝐻4  + ṅ𝐻2𝑂𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒  +  ṅ𝐻2𝑂𝐼𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛                (4.12) 

 

Eq. 4.12 includes the hydrogen from the methane, the hydrogen from the 

electrode water cooling, and the hydrogen due to a water injection into the furnace.  

ṅ𝐻2𝑂𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒   is the molar flow of water for electrode cooling, ṅ𝐻2𝑂𝐼𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛   is the 

molar flow of water from a water injection.   The model does not include humidity from 

air drafted into the furnace.   However, the assumption is valid for the purpose of 

calculating a boundary for the expected water vapor leaving the furnace.  For the 
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calculation presented in this work, the injection is varied from 0 liters per minute (i.e. 

minimum boundary) to 60 liters per minute (i.e. upper boundary) to calculate the lower 

and upper boundaries for the expected water vapor leaving the furnace. The molar flow 

rate of the expected water vapor is obtained with Eq. (4.13):    

 

                                                      ṅ𝐻2𝑂 = ṅ𝑇𝑜𝑡𝑎𝑙𝐻2  − ṅ𝐻2        (4.13) 

                                                                                         

Moreover, the wet off-gas molar flow (ṅ𝑊𝑒𝑡 ) and molar percent of the expected 

water vapor (𝑦𝐻2𝑂 )  are obtained with Eq. 4.14 and Eq. 4.15, respectively: 

 

                                                        ṅ𝑊𝑒𝑡 = ṅ𝐻2𝑂  + ṅ𝐷𝑟𝑦        (4.14) 

                      𝑦𝐻2𝑂  =
ṅ𝐻2𝑂  

 ṅ𝑊𝑒𝑡
 × 100 %                             (4.15) 

 

4.2.2 EAF 1 Boundary Model Results 

 

Figure 4.2 shows the comparison between the calculated water vapor upper and 

lower boundaries and the measured water leaving EAF 1 during a heat with 3 charges and 

a refining period.  

 

Figure 4.2: Comparison between Measured Off-gas Water Vapor and the 

Calculated Boundary for a Normal Heat for EAF 1. 
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This heat is a normal heat where there is no leak in the furnace.  The boundaries 

are calculated based on equations 4.5-4.15.   As shown in Figure 4.2, the calculated 

boundaries follow a similar trend as the measured water vapor.  Typically in the 

beginning of the charge melting, the water vapor increases due to oxy-fuel burners (i.e. 

natural gas combustion), and then it decreases gradually because less natural gas is used.  

The sharp spikes seen in the upper and lower limits are due to spikes in some of the 

algebraic model input variables such as off-gas CO.   However, the difference between 

measured and calculated ranges between 1% and 6% during the heat.   This difference is 

due to the assumptions in the simplified algebraic mass balance approach.  Figure 4.3 

shows the comparison between the calculated water vapor upper and lower boundaries 

and the measured water vapor leaving EAF 1 in the off-gas during a trial heat with 4 

charges and a refining period.    

 

 

Figure 4.3: Comparison between Measured Off-gas Water Vapor and the 

Calculated Boundary for a Trial Heat for EAF 1. 

 

In this trial heat an additional 60 liters per minute was injected into the furnace 

from the electrode spray water from the beginning until the end of the heat to test if less 

difference can be observed between measured water vapor and the calculated upper 
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boundary. The measured water showed an increase of roughly 2% going from a range of 

4-6% in the previous normal heat to 6-8 % due to the additional of water added to the 

furnace.    Figure 4.3 shows that the calculated boundaries follow a similar trend as the 

measured water vapor.   However, since the algebraic model does not account for any 

additional water being injected into the furnace, the measured water vapor is shifted 

towards the upper limit due to the additional increase in water.  The calculated 

boundaries are conservative due to the assumptions made in the algebraic mass balance 

model; hence, the measured water vapor does not go above the upper limit, albeit water 

was injected into the furnace.       

 

4.2.3 EAF 2 Boundary Model Results 

 

Figure 4.4 shows the comparison between the calculated water vapor boundaries 

and the measured water leaving EAF 2 in the off-gas during a heat with DRI feeding and 

refining.    

 

 

Figure 4.4: Comparison between Measured Off-gas Water Vapor and the 

Calculated Boundary for a Normal Heat for EAF 2. 
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This is a normal heat where there is no additional water injected into the furnace.  

As shown in Figure 4.4, the calculated boundaries follow a similar trend as the measured 

water vapor.  Typically, oxy-fuel burners are used less often in DRI operations compared 

to scrap operations because the steel bath is near flat bath condition.  The reason that 

water vapor in this furnace is higher than EAF 1 is due to higher coherent burners firing 

rates, hence more natural gas is used and the electrode spray water flow rate is higher.  

The sharp spikes seen in the upper and lower limits are due to spikes in some of the 

algebraic model input variables such as off-gas CO.   However, the difference between 

measured and calculated ranges between 4-7%.   This difference is because of the 

assumptions in the simplified algebraic mass balance approach.   

 

 

Figure 4.5: Comparison between Measured Off-gas Water Vapor and the 

Calculated Boundary for a Trial Heat for EAF 2. 

 

Figure 4.5 shows the comparison between the calculated water boundaries and the 

measured off-gas water vapor leaving EAF 2 during a trial heat.   In this heat an 

additional 60 liters per minute was injected from the electrode spray water in the middle 

of the heat for approximately 8 minutes to test if less difference can be observed between 

measured water vapor and the calculated upper boundary.    The measured water showed 
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an increase of roughly 3%.  Figure 4.5 shows the calculated boundaries follow a similar 

trend as the measured water vapor.   However, the measured water vapor is shifted 

towards the upper limit due to the additional increase in water.  The calculated 

boundaries are conservative due to the assumptions made in the algebraic mass balance 

model where the measured water vapor does not go above the upper limit even though 

the injected water into the furnace was large.      

 

In both industrial cases, the boundary formulation model illustrates that an upper 

and lower limits for expected water vapor are developed from furnace process 

information and off-gas analysis to provide a useful tool to the operator.  The next step in 

developing the hybrid model proposed in this work is to develop the empirical model.   

The first step in developing the empirical model is to determine the set of normal heats 

and important variables that are used to build the predictive model.      

 

4.3 Heats and Variables Selection Models 
 

4.3.1 Introduction 
 

In a typical EAF heat in both melt-shops, there are more than 30 variables that are 

being measured in real-time throughout the heat.  This condition presents a highly 

dimensional problem with noisy and collinear variables because some of these variables 

are correlated with each other and some of them have low signal to noise ratio.  The 

correlation between the measured EAF variables and the off-gas water vapor varies, 

where some of these variables are more correlated with the off-gas water vapor than other 

variables.   Moreover, there is a cause and effect relationship between some of the 

variables and off-gas water vapor, such as electrode spray water and EAF fuel flowrate, 

where if electrodes spray water increases, the off-gas water vapor would also increase.    

 

The data in this work is collected in matrices X and Y.  Figure 4.6 shows the three 

dimensional nature of the heat data blocks (X and Y). The three dimensional X array 

consists of N historical heat rows with K variables columns measured in real time at J 
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time samples.  Each heat has a different heat duration (i.e. power on time in minutes) 

because of the different scrap and DRI qualities.  Smaller scrap pieces require less energy 

to melt and hence require less heat time than larger pieces, and scrap with more 

impurities requires more heat time in order to reach final liquid steel composition; 

therefore, the J time samples are different from heat to heat.   Moreover, the output 

variable (EAF off-gas water vapor) is measured by the off-gas analyzer from the 

beginning until the end of the heat. 

 

 

Figure 4.6: EAF Heat Data Structure.  

 

The number of historical heats included in this analysis is 24 heats for EAF 1 and 

51 heats for EAF 2.  The historical heats for both electric arc furnaces are selected to span 

different operating practices that are considered typical operations.   Table 4.1 shows the 

historical heats input variables and the output variable for EAF 1 and 2.  Input variables 

that do not have variability in them are ignored when building a data driven model.  

Therefore, total shroud oxygen flow rate and electrode flow rate were ignored in the input 

variables for EAF 1 because their values were constant throughout the heat.   
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Table 4.1: Heats Data Set for EAF 1 and EAF 2 

EAF  Number of 

Heats 

Input Variables Output Variable 

EAF 1  

 

24 

 

 

Total Main Oxygen Flow rate,  Total Fuel Flow 

rate, Total Carbon Flow rate, Off-gas CO2, Off-

gas CO, Off-gas O2, EAF Pressure, EAF Fume 

System Damper Position,  EAF Current Phase 

1, EAF Current Phase 2, EAF Current Phase 3, 

EAF Active Power, Last Charge Indicator, EAF 

Transformer Position 

EAF off-gas H2O 

EAF 2  

 

51 

 

 

Total DRI Flow rate, Total Shroud Oxygen 

Flow rate, Total Main Oxygen Flow rate,  Total 

Fuel Flow rate, Total Carbon Flow rate, 

Electrode Flow rate, Off-gas CO2, Off-gas CO, 

Off-gas Analyzer Purge H2O, EAF Current 

Phase 1, EAF Current Phase 2, EAF Current 

Phase 3, EAF Transformer Position 

EAF off-gas H2O 

 

High dimensional problems have received significant attention where it has been 

studied extensively in literature (Lin et al. (2011)).  Latent variable methods such as 

MPCA (Multiway Principal Component Analysis) and MPLS (Multiway Projection to 

Latent Structures) are well-known techniques in dealing with high dimensional batch data 

with many, noisy, and collinear variables (Wold et al., 1987).  MPCA first unfolds the 

three dimensions batch data into two dimensions and then it is used on the unfolded heat 

to capture the correlation structure on the measured variables (i.e. X Array) and projects 

this into a lower dimensional latent structure (Wold et al., 1987; Nomikos and 

MacGregor, 1994).  MPLS extends the MPCA method to incorporate the output Y 

dataset.  Similarly, MPLS first unfolds the three dimensions batch data into two 

dimensions, and then it is used on the unfolded batch dataset to model the relationship 

between the two matrices, unfolded X and Y, and project them into a lower dimensional 

latent structure (Wold et al., 1987; Nomikos and MacGregor, 1995).   MPCA is used in 

this work to analyze the historical heats and then to select the normal heats dataset for 

EAF 1 and EAF 2.  Consequently, MPLS is used in this chapter to select the important 

input variables in correlation with the output off-gas water vapor.  The normal heats and 

the input variables selected in this chapter are used in the following chapter by the MPLS 
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model and the ANN model to predict off-gas water vapor for both furnaces.   Particular 

problems discussed in this chapter are: 

 

1. Data preprocessing, including alignment, unfolding method, centering, and scaling; 

2. Latent Variable Methods (MPCA and MPLS) descriptions; 

3. Classification of a heat as normal on the basis of its process data using MPCA; 

4. Identify important input variables related to the normal Heats using MPLS; 

 

4.3.2 Heats Data Preprocessing 

 

The objective of aligning the heat trajectories is to ensure that the variables at any 

time during one heat correspond to those at the same time in other heats (Wold et al. 

(2009)).   The approach followed in this work to align the heats is linear warping against 

heat time (Rodrigues et al. (2006)).  After aligning the heats for both furnaces, the dataset 

(X and Y) in the heats are unfolded from a three dimensional array to a two dimensional 

matrix, and then the heat data is mean-centered and scaled.  Mean-centering removes 

arbitrary bias from the measurements by moving the data into the center of the coordinate 

system, and scaling removes the different units from the measurements by making them 

unitless.  

 

4.3.2.1 EAF 1 Heat Data Preprocessing 

 

The indicator used in the linear warping alignment for EAF 1 heats is the centered 

and scaled specific electrical consumption (kWh/ton).  The first step followed to align the 

heats is to choose a reference heat that represents a normal heat with a typical melting 

practice.  The reference heat is divided into three phases because there are three buckets.  

Figure 4.7 shows the three phases in the reference heat.   The centered and scaled specific 

electrical consumption for the first bucket is 0 to 0.25, for the second bucket is 0 to 0.55, 

and for the third bucket and refining is 0 to 1.  In this plant, three buckets heats are the 

common practice.   However, any four or two buckets heats are excluded from this 

analysis.  
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Figure 4.7: Different Phases for the Specific Electrical Consumption (kWh/ton) in 

the Reference Heat for EAF 1. 

 

Figure 4.8 shows the before alignment plot and Figure 4.9 shows the after 

alignment plot for all the EAF 1 historical heats for a centered and scaled EAF fuel 

flowrate.   The bold black curve in both plots is the reference heat.  Figure 4.8 shows how 

historical heats before alignment have different heat times because the EAF fuel flow rate 

ends at different points in the three phases, and after alignment all historical heats end at 

the time in each phase as the reference heat.   Furthermore, all input variables in the X 

array are aligned in the same approach.  The heat time is normalized from seconds to %.    

 

 

Figure 4.8: Pre Alignment Plot for all Heats for EAF 1 Fuel Flowrate.   
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Figure 4.9: Post Alignment Plot for all Heats for EAF 1 Fuel Flowrate.   

 

Figure 4.10 shows the before alignment plot and Figure 4.11 shows the after 

alignment plot for all the EAF 1 historical heats for the EAF off gas water vapor.  The 

bold black curve in both plots is the reference heat.  Figure 4.10 shows how historical 

heats before alignment have different heat times because the EAF off-gas water vapor 

ends at different points in the three phases, and after alignment all historical heats end at 

the same time as the reference heat.  The heat time is normalized from seconds to %. 

 

 

Figure 4.10: Pre Alignment Plot for all Heats for EAF 1 Off-gas H2O.  
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Figure 4.11: Post Alignment Plot for all Heats for EAF 1 Off-gas H2O.  

 

4.3.2.2 EAF 2 Heat Data Preprocessing 

 

The indicator used in the linear warping alignment for EAF 2 heats is the % DRI 

fed to the furnace which normally ranges from 0 to 100%.  However, the end point can 

range from 90 to 110% based on the DRI composition fed into the furnace.  The first step 

followed to align the heats is to choose a reference heat that represents a normal heat with 

% DRI fed ranges from 0 to 100% and with a typical heat practice.  Figure 4.12 shows 

the five phases in the reference heat.  Each phase represents a DRI feed rate mode.  In 

this plant, this % DRI mode is the common practice; hence other heats with different 

practices are excluded from this analysis.   

    

 

Figure 4.12: Different Phases for the DRI Feeding Flowrate in the Reference Heat 

for EAF 2. 
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Figure 4.13 shows the before alignment plot and Figure 4.14 shows the after 

alignment plot for all the EAF 2 historical heats for a centered and scaled EAF fuel flow 

rate.   The bold black curve in both plots is the reference heat.  Figure 4.13 shows how 

historical heats before alignment have different heat times because the EAF fuel flow rate 

ends at different points in the five phases, and after alignment all historical heats end at 

the time in each phase as the reference heat.  The heat time is normalized from seconds to 

%.   Furthermore, all EAF 2 input variables in the X array are aligned in the same 

approach. 

 

 

Figure 4.13: Pre Alignment Plot for all Heats for EAF 2 Fuel Flowrate. 

 

 

Figure 4.14: Post Alignment Plot for all Heats for EAF 2 Fuel Flowrate. 

 

Figure 4.15 shows the before alignment plot and Figure 4.16 shows the after 

alignment plot for all the EAF 2 historical heats for off -gas water vapor.  The bold black 
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curve in both plots is the reference heat.  Figure 4.15 shows how historical heats before 

alignment have different heat times because the EAF off-gas water vapor ends at 

different points in the five phases, and after alignment all historical heats end at the time 

as the reference heat.  The heat time is normalized from seconds to %.    

 

 

Figure 4.15: Pre Alignment Plot for all Heats for EAF 2 Off-gas Water Vapor. 

 

 

Figure 4.16: Post Alignment Plot for all Heats for EAF 2 Off-gas Water Vapor. 

 

The subsequent step after alignment of the variables is to unfold the three 

dimensional X and Y arrays into two dimensions.  The approach followed in this work to 

unfold the arrays is heat-wise unfolding, which is, to unfold the array such that all the 

information for each heat is contained in one row as shown in Figure 4.17.  This 

unfolding method allows variability analysis between heats and captures non-linearity 

which is present in batch processes (Nomikos and MacGregor (1994)). The Y array is 

unfolded following the same approach described in Figure 4.17.  The Y variable in this 
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process is measured continuously from the beginning of the heat until the end.  Hence, in 

every heat N at every time sample J there is Y variable.    

 

 

Figure 4.17: Unfolding Approach of the X Array (Nomikos and MacGregor (1994)). 

 

Each column is then mean centered and scaled. The mean trajectory of each 

variable in the unfolded matrix is removed via centering, and the variation remaining is 

the variation of all the variables about their mean trajectories.  It is important to center 

and scale the data properly before building the MPCA and the MPLS models because 

centering brings the data to the origin and scaling removes the variable variance 

contribution due to units of measurements.   In this work, centering and scaling are 

calculated by the following equations: 

 

 Centering:                 𝑥𝑘,𝑐𝑒𝑛𝑡𝑒𝑟 =𝑥𝑘,𝑟𝑎𝑤– 𝑚𝑒𝑎𝑛 (𝑥𝑘,𝑟𝑎𝑤)                          (4.16) 

           Scaling:                     𝑥𝑘 = 
𝑥𝑘,𝑐𝑒𝑛𝑡𝑒𝑟

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝑥𝑘,𝑐𝑒𝑛𝑡𝑒𝑟)
                                     (4.17) 

 

Thereafter, MPCA and MPLS models are built on the unfolded, centered, and 

scaled arrays summarizing the major sources of variation among the different heats, and 

such analysis allows efficient heat to heat comparison (Wold et al., 1987).    

 

4.3.3 Multiway Principal Component Analysis (MPCA) 

 

Multiway principal component analysis (MPCA) is a multivariate statistical 

method (Mardia et al., 1989; Jackson, 1991), which has the objective of best explaining  
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the variance in the input variables (X).   MPCA reduces the dimensions of the X matrix 

(K×N), where there are K input variables and N observations in the X matrix, into a lower 

dimension latent vector space.  The latent vector space represents a new coordination 

system determined by projecting the original noisy and collinear data into a reduced 

space which contains most of the relevant information about the process (Wold et al. 

2001).     MPCA provides a simpler description of the data variability than the original 

data.  Figure 4.18 shows the breakdown of the MPCA structure: 

 

 

Figure 4.18: MPCA Structure Diagram (Dunn, 2014). 

 

The MPCA latent vectors in this work are calculated using a nonlinear iterative 

partial least squares (NIPALS) algorithm (Geladi and Kowalski, 1986; Wold et. al., 

1987a).  This algorithm is used because it handles missing data and because the principal 

components are calculated sequentially. The number of latent vectors required to explain 

the variability in the data is determined by cross validation (Wold, 1978; Eastment and 

Krzanowski, 1982).  Each latent vector is described by loading vectors (P) and score 

vectors (T).  The loading vectors are orthogonal, and they are in the direction of 

maximum variability;  the scores are the coordinates for the observations in the reduced 

space.  The latent vectors measure the latent structure in the original data.     

 

Geometrically, the latent vectors are oriented in the direction of greatest 

variability in X, and they are orthogonal to each other.  Hence the objective is to find the 

direction that minimizes the residual distance from each observation to the model plane.  

The direction of the latent vector is defined by the loadings P, and they are constrained to 
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a unit length. Each observation is projected onto the loading vectors, and the distance 

from the origin to the projected point on the latent vector in the X space is the t score.  

The perpendicular distance from each observation to the latent vector is the residual for 

that observation (Dunn, 2014).  Figure 4.19 shows a simple illustration of a two 

component MPCA model plane in a 3 dimensions data space (X1, X2, and X3).  The first 

component vector passes through the origin and is oriented in the direction that best 

explains the observation points in the three dimension space.   The second component 

passes through the origin, orthogonal to the first component, and oriented in the direction 

that best explains the observation points in the 3 dimension space.  Both components are 

constrained to a unit length. Now, the two loading vectors define a PCA model plan with 

two components.    

 

 

Figure 4.19: Geometric Representation of the Steps in the MPCA Model (Dunn, 

2014). 

 

The MPCA model breaks the raw heats data into a latent variable model (loadings 

p, and scores t) and the residual error.  Mathematically, the scores (T), loadings (P), and 

the residuals (E) for the X matrix are written as follows: 

 

                                                 𝑇 =𝑋𝑃                                                           (4.18) 

                                              (N × A) = (N × K) (K × A) 
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                                            𝑋 =𝑇𝑃′  + 𝐸                                                          (4.19) 

                                                       

The best prediction of the original unfolded X array (Xpred) and the residual error 

vector of the i
th

 observation (ei) are calculated using the following equations:  

 

                                              𝑋𝑝𝑟𝑒𝑑 =𝑇𝑃′                                                           (4.20) 

                                      (N × K) = (N × A) (A × K) 

                                                       𝑒𝑖  =𝑥𝑖 − 𝑥𝑖𝑝𝑟𝑒𝑑                                        (4.21) 

 

Important parameters used to analyze MPCA models are the residuals (R
2
), 

squared prediction error (SPE), and Hotelling’s T
2
 (Nomikos and MacGregor, (1994)).   

SPE is the distance from the MPCA model’s plane and is the square root of the sum of 

squares for each residual.  Hence, when an observation has a large SPE value that 

indicates the observation has a large residual and that is inconsistent with the correlation 

structure of the MPCA model. Hotelling’s T
2
 is the directed distance from the origin to 

where the point is projected on the MPCA model’s plane.    Hence, when an observation 

has a large Hotelling’s T
2
 value that indicates the observation is consistent with the 

correlation structure of the MPCA model; however, the score values are larger than the 

normal observations score values. Hotelling’s T
2
 summarizes all the score values for a 

given observation (i).  These three parameters are calculated using the following 

equations: 

 

                                                     𝑆𝑃𝐸𝑖 = √𝑒𝑖
′𝑒𝑖                                                           (4.22) 

                              𝑇𝑖
2 =  ∑ (

𝑡𝑖,𝑎

𝑠𝑎
)

2
𝑎=𝐴
𝑎=1                                                     (4.23) 

                             𝑠𝑎
2

  = variance of each component a 

                                                  𝑅2 = 1 − 
𝑉𝑎𝑟(𝑋−𝑋𝑝)

𝑉𝑎𝑟(𝑋)
                                                   (4.24) 
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Hotelling’s T
2 

has an F-distribution (Nomikos and MacGregor, (1994)), and in 

this work, the 95% and the 99% confidence limits are calculated and shown on the 

Hotelling’s T
2
 chart for all the MPCA models developed for the heats selection work for 

EAF 1 and EAF 2.  Eq. 4.25 shows the general equation used to calculate the confidence 

limits: 

 

                                      𝑇𝐴,𝛼
2 =  

(𝑁−1)(𝑁+1)𝐴

𝑁(𝑁−1)
 ×  𝐹𝛼(𝐴, 𝑁 − 𝐴)                                     (4.25) 

Where A is components, N is observations, and 100(1-α) % is the confidence limit.  

Scores
 
are assumed to be normally distributed since the historical heats dataset is large, 

and in this work, the 95% and the 99% confidence limits are calculated and shown on the 

scores plot for all the MPCA models developed for the heats selection work for EAF 1 

and EAF 2.  Eq. 4.26 shows the general equation used to calculate the confidence limits: 

 

𝑡𝑎 ~ 𝑁 (0, 𝑠𝑎) 

                                   100 × (1 −  𝛼)% 𝑙𝑖𝑚𝑖𝑡 =  ± ( 𝑡𝛼

2
,𝑑𝑓) 𝑠𝑎                                (4.26)                                  

𝑑𝑓 = 𝑁 − 1 

Where sa is the standard deviation of score column a, df is the degree of freedom. SPE
 
has 

Chi-squared distribution (Nomikos and MacGregor, (1994)), and in this work, the 95% 

and the 99% confidence limits are calculated and shown on the SPE chart for all the 

MPCA models developed for the heats selection work for EAF 1 and EAF 2.  Eq. 4.27 

shows the general equation used to calculate the confidence limits: 

 

𝑆𝑃𝐸𝑖 ~ 𝑔𝜒2(ℎ) 

𝑔 =  
𝑣

2𝑚
 

                                                                ℎ =  
2𝑚2

𝑣
                                                      (4.27) 

                                                                 𝑚 =  𝑚𝑒𝑎𝑛(𝑆𝑃𝐸) 

                                                                  𝑣 =  𝑣𝑎𝑟 (𝑆𝑃𝐸) 
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A useful diagnosing tool used in this work to compare an outlier heat to the 

normal set of heats is the Contribution Plot (Nomikos and MacGregor, (1994)). In other 

words, this plot shows which input variables contributed for the outlier heat to be 

different than the rest of the heats set.   Eq. 4.28 shows the equation used to calculate the 

contributions: 

 

           𝑐𝑜𝑛𝑡𝑟𝑖𝑏 (𝑥𝑘) = (𝑥𝑖,𝑘
(𝑡𝑜)

−  𝑥𝑖,𝑘
(𝑓𝑟𝑜𝑚)

 ) ×  √∑ (𝑝𝑘,𝑎 ×  
𝑡𝑖,𝑎

(𝑡𝑜)
− 𝑡

𝑖,𝑎
(𝑓𝑟𝑜𝑚)

 

𝑠𝑎
)2

𝑎                 (4.28) 

 

4.3.4 Multiway Projection to Latent Structures (MPLS) 

 

Multiway projection to latent structure (MPLS) is an extension to the MPCA by 

incorporating the output (Y) array (EAF off-gas H2O).  MPLS is an established 

multivariate statistical method (S. Wold et al., 1984; Geladi and Kowalski, 1986) which 

has the objective of best explaining the variance in the input variables (X), the variance in 

the output variables (Y), and the covariance between X and Y.  MPLS reduces the 

dimensions of the X matrix (K×N) and the Y matrix (M×N), where there are K input 

variables and N observations in the X matrix and M output variables and N observations 

in the Y matrix, into a lower dimension latent vector space.  The latent vector space 

represents a new coordination system determined by projecting the original noisy and 

collinear data into a reduced space which contains most of the relevant information about 

the process (Wold et al. 2001).  Figure 4.20 shows the breakdown of the MPLS structure: 
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Figure 4.20: MPLS Structure Diagram (Dunn, 2014). 

 

As in the MPCA model, the MPLS latent vectors space in this work is also 

calculated using nonlinear iterative partial least squares (NIPALS) algorithm, and the 

number of latent vectors required to explain the variability in the data is also determined 

by cross validation.  Each latent vector is described by loading vectors (W and C) and 

score vectors (T and U).  The loading vectors are orthogonal, and they are in the direction 

of maximum variability; the scores are the coordinates for the observations in the reduced 

space.   

 

Geometrically, the latent vectors are oriented in the direction of greatest 

variability in X and Y and best correlation between X and Y.  The direction of the latent 

space is defined by the loadings (W in X and C in Y), and they are constrained to a unit 

length. Each observation is projected onto the loading vectors, and the distance from the 

origin to the projected point on the latent vector in the X space is the t score, and the 

distance from the origin to the projected point on the latent vector in the Y space is the u 

score.  The scores (T and U) summarizes both spaces (X and Y).  The perpendicular 

distance from each observation to the latent vector is the residual for that observation 

(Dunn, 2014).  Figure 4.21 shows a simple geometrical illustration of a two component 

MPLS model plane in a 3 dimensions data space (X1, X2, X3, and Y1, Y2, Y3).  The first 

component vector passes through the origin and is oriented in the direction that best 

explain the covariance between X and Y.   The second component passes through the 

origin, orthogonal to the first component, and oriented in the direction that best explain 

the covariance between X and Y.  The latent vectors are constrained to a unit length.  
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Figure 4.21: Geometric Representation of the Steps in the MPLS Model (Dunn, 

2014). 

 

Mathematically, the objective for MPLS is to determine the scores (T in X and U 

in Y) that have maximum covariance.   The covariance is calculated as: 

 

                            Cov(ta,ua) = Correlation (ta,ua) × √𝑡′𝑎𝑡𝑎   ×  √𝑢′𝑎𝑢𝑎                     (4.29) 

 

Hence maximizing the covariance between ta and ua is maximizing the variance in 

the X space (𝑡′𝑎𝑡𝑎), the variance in the Y space (𝑢′𝑎𝑢𝑎), and the relationship between X 

and Y spaces (Correlation (ta, ua)), simultaneously.  The MPLS model breaks the raw 

heats data into a latent variable model (loadings W and C, and scores T and U) and the 

residual error.  Mathematically, the scores (T) and loadings (W) for the X matrix are 

calculated as follows (Wold et al., 1987): 

 

                          𝑇 = 𝑋𝑊∗
                                     (4.30) 

                                             (N × A) = (N × K) (K × A) 

                        𝑊∗ = 𝑊(𝑃′𝑊)−1      (4.31) 

 

Mathematically, the scores (U) and loadings (C) for the Y matrix are calculated as 

follows (Wold et al., 1987): 
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                                    𝑈 = 𝑌𝐶                                         (4.32) 

                                           (N × A) = (N × M) (M × A) 

 

However, since they have maximal covariance, interpreting one of them is 

sufficient.  The T scores are always available in the model building stage, and when the 

model is used on a new dataset, whereas the U scores are only available in the model 

building step, hence the T scores are used in this work.   Important plots that are used in 

this work to analyze relationships between the unfolded X and Y arrays are the score plot, 

which shows the relationship between the scores T and U, and the weight and loading 

plot (W*C) which shows the relationship between the loadings W and C.  As with the 

MPCA model, important parameters used to analyze MPLS models are the residuals (R
2
), 

squared prediction error (SPE), and Hotelling’s T
2
.    A tool that is used to analyze which 

input variable is important in correlation with the off-gas water vapor is the variables 

importance to prediction (VIP) plot.  Importance of variable k using A components in 

MPLS is calculated using Eq. 4.33: 

   

                                         𝑉𝐼𝑃𝐴,𝑘
2 =

𝐾

𝑆𝑆𝑋0−𝑆𝑆𝑋𝐴
×  ∑ (𝑆𝑆𝑋𝑎−1 −  𝑆𝑆𝑋𝐴)𝑊𝑎,𝑘

2𝐴
𝑎=1                       (4.33) 

 

Where SSXa is the sum of squares in the X matrix after a components. 

 

 In Chapter 5, the MPLS model built in this chapter will be used to predict off-gas 

H2O on new testing heats to validate the accuracy of the off-line model.  The following 

steps summarize the methodology followed in Chapter 5 to predict off-gas water vapor 

on testing heats: 

  

1) Build the MPLS model off-line using historical good heats (Chapter 4) 

2) Center and Scale xnew,raw using the same mean and standard deviation of the 

training heats set to get xnew 

3) Calculate t scores: tnew = xnewW* 
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4) Calculate projected x : xnew,p = tnewP’ 

5) Calculate Residual enew = xnew - xnew,p 

6) Calculate SPE from enew and check with the limits from the offline model.  If the 

SPE is lower than 99% confidence limit then continue to step 7.   

7) Calculate Hotelling’s T
2
 from tnew and check with the limits from the offline 

model.  If the Hotelling’s T
2
 is lower than 99% confidence limit then continue to 

step 8. 

8) Calculate the prediction:   ynew,p = tnew C’ 

9) Uncenter and Unscale ynew,p back to the off-gas water vapor units (%)   

 

4.3.5 Heats Selection Using MPCA  

 

MPCA is used in this section to perform an analysis on the historical heats to 

discriminate between normal heats and abnormal heats.   This analysis is critical because 

abnormal heats are removed from the training set and because major source of heat to 

heat variations are studied.    

 

4.3.5.1 EAF 1 Heat Selection Model 

 

MPCA model is built on the processed EAF 1 input variables data.  The numbers 

of principal components obtained are 7 components using cross validation.  The 

calculated model R
2
 is 82%.  Figure 4.22 shows the score plot for the first two 

components that explains approximately 61% of the variability in the 24 heats data.     

The remaining 5 components in the MPCA model explain approximately 21% of the 

variability in the historical heats data and hence showing the first two components is 

sufficient.  The score plot shows that all heats are distributed evenly in the four 

quadrants, and hence there is no clustering in a certain region on the plot.  Moreover, heat 

14 was above the 99% limit.   Figure 4.22 shows the 95% and 99% confidence interval of 

the model for the first two principal components (T1 and T2): 
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Figure 4.22: MPCA Model Score Plot for the First Two Components (T1 and T2) 

for all EAF 1 Historical Heats. 

 

The contribution plot shown in Figure 4.23 shows the difference of the trajectory 

between heat 14 and the average of the rest of the historical heats from the beginning of 

the heat until the end using bar plot for each variable.  The contribution plot shows a 

significant number of bars in the EAF fuel flow and main oxygen flow in the last segment 

of the heat, which is towards refining that caused more CO to be generated, which caused 

the fume system to react to this event.  Figure 4.24 shows the EAF main oxygen 

trajectory between heat 14 and the average of the rest of the heats.  The figure clearly 

shows a difference during refining between heat 14 and the rest of the heats.  The heat 

time is normalized from seconds to %. 
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               Figure 4.23: MPCA Model 1 EAF 1 Heat 14 Contributions Plot.  

 

 

Figure 4.24: MPCA Model 1 Heat 14 Main Oxygen Flow rate Trajectory vs. 

Average Heats Trajectory for EAF 1. 
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Figure 4.25 shows the Hotelling’s T
2
 plot for the MPCA model.  The plot shows 

that all the heats are below the 95% confidence interval.  Figure 4.26 shows the SPE plot 

for the MPCA model.  The plot also shows that all the heats are below the 95% 

confidence interval.   Since Heat 14 is below the 99% in both charts, then it is an 

indication that the heat is not an outlier, albeit there is a difference during refining in the 

EAF fuel and main oxygen practice.  Therefore, heat 14 is kept in the data set. 

 

 

Figure 4.25: MPCA Model Hotelling’s T
2
 Plot for EAF 1 Historical Heats. 

 

 

Heat  

5 10 15 20 25 

H
o

te
ll

in
g

’s
 T

2
  

0 

10 

20 

30 

40 

99 % 

95 %   Heat 14 



60 

 

 

      Figure 4.26: MPCA Model SPE Plot for EAF 1 Historical Heats. 

 

The MPCA model built in this section for EAF 1 heats attempts to explain the 

predictable variation in dataset.   The scores plot, Hotelling’s T
2
 plot, and SPE plot show 

that the MPCA model describes sufficiently the normal EAF 1 heats dataset, where these 

historical heats exhibit normal statistical properties.  The next step for EAF 1 dataset is to 

select the most important variables in correlation with the off-gas water vapor that are 

going to be used in the next chapter to build the MPLS model and the ANN model to 

predict the off-gas water vapor.     

 

4.3.5.2 EAF 2 Heat Selection Model 

 

MPCA model is built on the processed EAF 2 heat data, and the number of 

components obtained is 8 using cross validation.  The R
2
 obtained is 71%.  Figure 4.27 

shows the score plot for the first two components that explain the approximately 50% of 

the variability in the 51 historical heats data.    The remaining 6 components in the MPLS 

model explain approximately 21 % of the variability in the historical heats data, and 

hence showing the first two components is sufficient.   
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Figure 4.27: MPCA Model 1 Score Plot for the First Two Components (T1 and T2) 

for all EAF 2 Historical Heats. 

  

The dotted elliptic shows the 95% confidence interval and the solid elliptic shows 

the 99% confidence interval.  The score plot shows that all heats are distributed evenly in 

the four quadrants, and hence there is no clustering in a certain region on the plot.  

Moreover, none of the heats are above the 99% limit in the first two components score 

plot.    The scatter feature in the scores plot indicates that these heats belong to the same 

normal population. 

 

Figure 4.28 shows the Hotelling’s T
2
 plot for the MPCA model for EAF 2.  The 

dotted line is the 95% confidence interval, and the solid line is the 99% confidence 

interval line.  This plot also shows that all the heats are below the 99% confidence 

interval.    
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Figure 4.28: MPCA Model 1 Hotelling’s T
2
 Plot for EAF 2 Historical Heats. 

 

Figure 4.29 shows the SPE plot for the MPCA model 1 for EAF 2.  The dotted 

line is the 95% confidence interval and the solid line is the 99% confidence interval line.  

This plot shows that Heat 74 is above the 99% confidence limit. 

 

 

Figure 4.29: MPCA Model 1 SPE Plot for EAF 2 Historical Heats. 
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Figure 4.30 explains the contributions of the all input variables that caused heat 

74 to have a SPE value above 99% confidence limit.  The contribution plot shows the 

difference of the trajectory between heat 74 and the average of the rest of the historical 

heats from the beginning of the heat until the end using bar plot for each variable.  The 

contribution plot shows a significant number of bars in the EAF shroud oxygen.   Figure 

4.31 shows both trajecotories on a heat time basis (Heat 74 and the average of the MPCA 

model) indicating that there is a difference in the EAF shroud oxygen practice between 

heat 74 and the rest of the heats.  The heat time is normalized from seconds to %. 

 

 

 

Figure 4.30: MPCA Model 1 EAF 2 Heat 74 Contributions Plot. 
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Figure 4.31: MPCA Model 1 Heat 74 EAF Shroud Oxygen Flow rate Trajectory vs. 

Average Heats Trajectory for EAF 2. 

 

The SPE chart indicates how far the heat is above the model plane, and since heat 

74 is above the 99% confidence limit, heats 74 is removed from the data set.   The MPCA 

model is rebuilt on the remaining 50 heats, and the number of components obtained is 8 

components explaining 72% of the variability.   The first principal component explains 

approximately 35% of the variability, and the second component explains an additional 

10%.  Figure 4.32 shows the score plot for the first two components that explain 

approximately 47% of the variability in the historical 50 heats data set.  The score plot 

shows that all 50 heats are distributed evenly in the four quadrants, and hence there is no 

clustering in a certain region on the plot.  Figure 4.33 shows the Hotelling’s T
2
 plot for 

the MPCA model 2 for EAF 2.  This plot also shows that all the heats are below the 99% 

confidence interval.  Figure 4.34 shows the SPE plot for the MPCA model 2 for EAF 2.  

This plot also shows that all the heats are below the 99% confidence interval.    
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Figure 4.32: MPCA Model 2 Score Plot for the First Two Components (T1 and T2) 

for all EAF 2 Historical Heats. 

 

 

Figure 4.33: MPCA Model 2 Hotelling’s T
2
 Plot for EAF 2 Historical Heats. 
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Figure 4.34: MPCA Model 2 SPE Plot for EAF 2 Historical Heats. 

 

The scores plot, Hotelling’s T
2
 plot, and SPE plot show that the MPCA model 2 

describes sufficiently the normal EAF 2 heats dataset, where these historical heats exhibit 

normal statistical properties.  The next step for EAF 2 dataset is to select the most 

important variables in correlation with the off-gas water vapor that are going to be used 

in the next chapter to build the MPLS model and the ANN model to predict the off-gas 

water vapor. 

 

4.3.6 Variable Selection Using MPLS 

 

MPLS is used in this section to perform an analysis on the correlation between the 

different input variables and EAF off-gas water vapour.   This analysis is critical in 

building an empirical predictive model because in a typical EAF operation there are 

many variables with varying correlations with the off-gas water vapour.   The objective in 

this section is to select the most important variables in correlation with the off-gas water 

vapour for EAF 1 and EAF 2.   
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4.3.6.1 EAF 1 Variable Selection Model 

 

MPLS model is built on the processed EAF 1 input variables data and the 24 

selected heats from the heat selection model developed in the previous section.  The 

number of principal components obtained is 7 components using cross validation.  The 

calculated model R
2
 is 82%.  The first two components explain approximately 61% of the 

variability in the 24 heats.     The remaining 5 components in the MPLS model explain 

approximately 21% of the variability in the dataset.   

 

            Figure 4.35 shows the correlation structure throughout the heat between each of 

the input variables and the off-gas water vapor on the first component.  The chart is 

divided into sections.  Each variable section starts from “t0” which is the beginning of the 

heat and ends at “t100” which is the end of the heat.   Each section shows the correlations 

of the variable compared with the other variables.   The bars in each section move up and 

down based on the correlation with the other variables.  If the bars in the two variables 

sections are in the same direction, then they are positively correlated; if they are in 

opposite directions, then they are negatively correlated; and if there are no bars, then 

there is no correlation.   Figure 4.35 shows that the correlation between the different input 

variables and the off-gas water variable varies through the heat.  Figure 4.35 also shows 

that a variable such as a transformer tap position has a weaker correlation with the off-gas 

H2O because the values are almost zero in the transformer tap position section from t0 to 

t100.   
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Figure 4.35: MPLS Model First Principal Component Loading Plot for EAF 1. 

 

Figure 4.36 shows the MPLS model variable importance plot in correction with 

the off-gas water vapor for EAF 1.  The plot shows that variables such as EAF pressure, 

main O2 Flow, and EAF fuel flow have stronger correlation with the off-gas water vapor 

than last charge indicator or transformer tap position.   EAF pressure is measured at the 

furnace elbow, and it is a measurement of the pressure in the furnace freeboard.  Hence, 

there is a physical correlation between the measured pressure in the freeboard and the 

amount of water vapor in the freeboard.  Main oxygen and natural gas flow injected into 

the furnace directly influence the amount of off-gas water vapor generated in the furnace 

as shown in the mechanistic mass balance model developed in chapter 4; hence there is a 

cause and effect relationship.   Furthermore, variables such as last charge indicator and 

transformer tap position have a weaker correlation with the off-gas water vapor.  

 

 

 

F
ue

l 
F

lo
w

_t
10

0 

M
ai

n 
O

2 
F

lo
w

_t
10

0 

O
ff

ga
s 

C
O

_t
10

0 

O
ff

ga
s 

C
O

2_
t1

00
 

A
ct

iv
e 

P
ow

er
_t

10
0 

T
ra

ns
fo

rm
er

 T
ap

_t
10

0 

L
as

t 
C

hg
 I

nd
ic

at
or

_t
10

0 

O
ff

ga
s 

O
2_

t1
00

 

In
j 

C
ar

bo
n 

F
lo

w
_t

10
0 

C
ur

re
nt

 P
ha

se
 1

_t
10

0 

C
ur

re
nt

 P
ha

se
 2

_t
10

0 

C
ur

re
nt

 P
ha

se
 3

_t
10

0 

F
um

e 
D

am
pe

r_
t1

00
 

E
A

F
 P

re
ss

ur
e_

t1
00

 

Range 

O
ff

ga
s 

H
2O

_t
10

0 

-0.05 

0.05 

0 

W
*[

1]
, c

[1
] 

 

0.1 

Y X 



69 

 

 

                   Figure 4.36: MPLS Model VIP Plot for EAF 1.  

 

               Based on the above MPLS model VIP plot, the following variables are removed 

when building an empirical predictive model because there is a weaker correlation with 

the off-gas water as shown in the above VIP plot: Current phase 1, 2, 3, last charge 

indictor, EAF Active Power, and EAF transformer position.   EAF carbon is kept because 

from a process point of view, carbon powder may contain some humidity, so it is kept as 

an input to the predictive model. 

 

4.3.6.2 EAF 2 Variable Selection Model 

 

MPLS model is built on the processed EAF 2 input variables data and on the 50 

selected heats from the heat selection model developed in the previous section.  The 

number of principal components obtained is 7 components using cross validation.  The 

calculated model R
2
 is 72%.  The first two components explain approximately 45% of the 

variability in the 50 heats.     The remaining 5 components in the MPLS model explained 

approximately 27 % of the variability in the dataset.   
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            Figure 4.37 shows the correlation structure throughout the heat between each of 

the input variables and the off-gas water vapor on the first component.  Similar to the 

MPLS model for EAF 1, the chart is divided into variable sections.  Figure 4.37 shows 

that the correlation between the different input variables and the off-gas water variable 

varies through the heat.  Figure 4.37 also shows that a variable such as s transformer tap 

position have a zero correlation from t0 to t50 and then a negative weak correlation from 

t50 to t100 with the off-gas water vapor.  Moreover, there is a strong positive correlation 

between the analyzer purge water vapor and the off-gas water vapor.    

 

 

 

Figure 4.37: MPLS Model First Principal Component Loading Plot for EAF 2.  

 

Figure 4.38 shows the MPLS model variable importance plot in correction with 

the off-gas water vapor for EAF 2.  The plot shows that variables such as electrode water 

flow and EAF fuel flow have stronger correlation with the off-gas water vapor then 

transformer tap position.   Electrode water flow contributes to the water vapor in the off-

gas.  The electrode water flow varies in this furnace, and hence it is included in the 
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MPLS model, where in EAF 1, this variable was constant throughout the heat; hence the 

MPLS model ignored it.    Furthermore, variables such as off-gas CO and CO2 are 

correlated with the off-gas water vapor, as shown in the mechanistic model in Chapter 4. 

However, variables such as transformer tap position have a weaker correlation with the 

off-gas water vapor, as shown in Figure 4.38.  

 

 

                 Figure 4.38: MPLS Model VIP Plot for EAF 2.  

 

            Based on the above PLS model VIP plot, the following variables are removed 

when building an empirical predictive model because there is weaker correlation with the 

off-gas water vapor as shown in the above VIP plot: Current phase 1, 2, 3, and  EAF 

transformer position.    
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Chapter 5  

 

Predictive Models and Fault 

Detection Methodology 
 

5.1 Introduction 

 

Chapter 5 presents three different empirical methods to predict the off-gas water 

vapor leaving the electric arc furnace.  These methods are statistical fingerprinting, 

artificial neural network (ANN), and multiway projection to latent structures (MPLS).  

Statistical fingerprinting uses the off-gas water vapor measurement in its algorithm, while 

ANN and MPLS use the input variables and heats selected in Chapter 4 to develop the 

predictive models.  The heats are divided into training heats and testing heats.  The 

training heats are used to build the models, and the testing heats are used to validate the 

models.  The testing set includes heats where water is intentionally injected in the furnace 

as artificial water leaks to validate if the leak can be detected by the model.   These three 

empirical methods are implemented on both industrial EAFs.  Afterwards, the prediction 

capability of ANN and MPLS are compared.  This chapter also discusses fault detection 

methods developed to alarm the operator if there is a potential water leak event in the 

furnace.       
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5.2 Statistical Fingerprinting 

 

5.2.1 Method 

 

There are few EAF operations where the process is well controlled, and hence 

there is a minimal variability in the process.  In these operations, scrap quality does not 

vary significantly, the operator uses the same chemical program, and there is limited 

weather variation.  These conditions allow for the off-gas water vapor to behave similarly 

from heat to heat.  Consequently, in these EAF operations, the off-gas measurement of 

water vapor can provide adequate indication and metrics to distinguish between normal 

and abnormal levels of water vapor in the EAF. Although the off-gas water vapor 

concentration varies throughout the melting and refining phases of the heat, the statistical 

fingerprinting method has been developed to characterize the off-gas water vapor over a 

number of heats with similar operating conditions such as number of charges, scrap 

recipe, and chemical program (Zuliani et al., 2014). For example, Figure 5.1 shows the 

typical off-gas water vapor trend for the first charge melting on a kWh basis for several 

heats with similar operating conditions. Figure 5.1 also shows a baseline average curve 

for the off-gas water vapor.   The heat time shown in Figure 5.1 is kWh which is a typical 

energy clock used by melt-shops to pace the heat.   

 

 

Figure 5.1: Typical Off-gas Water Vapor Trend of a First Charge on a kWh Basis 

for Several Heats with Similar Operating Conditions.  
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The first step in this method is to start with a set of heats with similar operating 

conditions.  This set is used as a training set to calculate the fingerprints thresholds, 

which is then used on future heats to detect for potential water leaks.  In this work, the 

training heats selected in chapter 4 from the MPCA model are used to calculate the 

fingerprints thresholds. The second step in this method is to manually divide the charge 

time into bins of similar dynamics.  This step enables the off-gas water vapor to be 

characterized across multiple heats in a single bin. The third step is to compute a 

fingerprint threshold value in each bin that represents an upper limit.  The statistic used in 

the fingerprinting method is the median and median absolute deviation (MAD).  The 

median is a measure of sample location, and is computed by sorting the data and taking 

the middle value. The median is a robust estimator of the sample location and MAD is a 

robust measure of variation (Dunn, 2014).   However, the median and the MAD become 

unbounded if half of the data is replaced with outliers.  MAD is computed by Equation 

5.1: 

 

                MAD (xi) = c × median (abs (xi – median (xi)))                                (5.1)                                                   

                                                 c = 1.4826  

 

The constant c makes the MAD consistent with the standard deviation when the 

observations xi are normally distributed.  The fingerprint threshold is calculated using Eq 

5.2: 

                

                      Fingerprint Upper Limit = Median + 2 x MAD                                 (5.2)    

 

Figure 5.2 shows an example of fingerprint threshold values for the data from 

Figure 5.1: 
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Figure 5.2: Fingerprint Threshold Values for the Data from Figure 5.1. 

 

The fingerprint thresholds provide the basis to detect abnormal water vapor by 

comparing the measured water vapor of the current heat to the fingerprint threshold value 

in each bin. Specifically, if the value of the measured water vapor of the current heat is 

higher than the fingerprint threshold value, then there is a statistical condition that there is 

abnormal water vapor in the EAF. Figure 5.3 shows an example for a heat (red) with 

water vapor significantly above the fingerprint and also for an extended time. 

 

 

Figure 5.3: Heat with Abnormal Water Vapor Compared to the Fingerprint 

Threshold Limits Computed for Normal Operation. 
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5.2.2 EAF 1 Statistical Fingerprinting Results 

 

 Figures 5.4 and 5.5 show the off-gas water vapor for charge 1 and charge 2 for EAF 

1, respectively.  The maximum range of variability for the off-gas water vapor is 4% for 

both charges.  Such variability range is typically not wide, and therefore the 

fingerprinting method can be tested on this furnace.    The set of heats for EAF 1 that are 

used to compute the threshold limits and validate the model are determined in Chapter 4.  

Moreover, the testing heats that are used to validate the model are two trial heats where 

water is intentionally injected into the furnace.  Figure 5.4 shows the off-gas water vapor, 

the bins, and the threshold limits for charge 1.  The two bins shown in Figure 5.4 are 

determined manually, where in each bin the water vapor dynamic is similar between the 

heats.  The fingerprint threshold value for each bin is computed using Equations 5.1 and 

5.2.  In Figure 5.4, trial 1 heat (red) shows a heat where water is intentionally injected 

into the furnace by increasing the flow of electrode spray water by approximately 60 

liters per minute from the beginning of the charge 1 melting until the end.  The red curve 

in Figure 5.4 is above the fingerprint threshold during the entire charge, and hence in this 

case this method is capable of detecting the additional injected water.  Trial 2 heat 

(purple) shows the off-gas water vapor for a heat where water is intentionally injected by 

increasing the electrode spray water by approximately 30 liters per minute from the 

beginning of the charge 1 melting until the end.  The purple curve in Figure 5.4 passes 

the threshold limit slightly, and then it drops back below the limit hence this method is 

not capable of detecting trial 2 for the entire charge melting.  The heat time shown in 

Figures 5.4-5.5 is kWh/Charged ton which is the energy clock used by EAF 1 to pace the 

heat.   
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Figure 5.4: Fingerprinting Method during Charge 1 for EAF 1. 

 

 

Similarly, Figure 5.5 shows 7 bins that are determined manually, where in each 

bin the dynamic of the water vapor measurement is similar between the heats, and the 

threshold value for each bin represents the upper limit to differentiate normal and 

abnormal operation. Equations 5.1 and 5.2 are used to calculate the threshold limits.  

Trial 1 heat (red) in Figure 5.5 shows the off-gas water vapor for a heat where water is 

intentionally injected into the furnace by increasing the electrode spray water by 

approximately 60 liters per minute throughout charge 2 melting. The red curve passes 

through the fingerprint threshold from the beginning of the melting and drops twice 

below the threshold limit; hence the fingerprinting method is capable of detecting the 

additional injection in this case.    
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Figure 5.5: Fingerprinting Method during Charge 2 for EAF 1. 

  

 The off-gas concentration measurement of water vapor provided adequate 

information for EAF 1 to distinguish between normal heats and heats where significant 

additional water is injected into the furnace.  The fingerprinting method is capable of 

detecting trial 1 heat where 60 liters per minute is injected, but the method is incapable of 

detecting the 30 liters per minute trial. 

5.2.3 EAF 2 Statistical Fingerprinting Results 

 

Figure 5.6 shows the off-gas water vapor for the training heats for EAF 2.  The 

maximum range of variability for the off-gas water vapor is 4% for the entire heat.  Such 

variability range is typically not wide, and therefore fingerprinting method can be tested 

on this furnace.    Similar to EAF 1, the set of heats for EAF 2 that are used to compute 

the threshold limits and validate the model are determined in Chapter 4.  Moreover, the 

testing heats that are used to validate the model are two trial heats where water is 

intentionally injected into the furnace.  Figure 5.6 shows the off-gas water vapor, the 

bins, and the threshold limits.  The eight bins shown in Figure 5.6 are determined 

manually, where in each bin the dynamic of the water vapor measurement is similar 

between the heats, and the bin value is calculated using Equations 5.1 and 5.2.  The heat 
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time shown in Figures 5.6-5.7 is DRI Fed (%) which is the energy clock used by EAF 2 

to pace the heat.   

 

 

Figure 5.6: Fingerprinting Method (Normal Heats) for EAF 2. 

 

In this furnace, water is injected for few minutes by increasing the electrode spray 

water flow rate.  In Figure 5.7, trial 1 heat (red) shows a heat where the electrode spray 

water is increased by 30 liters per minute for 6 minutes.  The red curve in Figure 5.7 

increases and passes the fingerprint threshold in the beginning, but it drops towards the 

end of the trial period, and hence in this case this method is incapable of detecting the 

additional injected water for the entire trial period.  Trial 2 heat (purple) shows the off-

gas water vapor for a heat where the electrode spray water is increased by 60 liters per 

minute for also 10 minutes.  The purple curve in Figure 5.7 passes through the fingerprint 

threshold from the beginning of the trial period until end, but it drops once below the 

threshold limit hence the fingerprinting method is capable of detecting the additional 

water increase in trial 2.     
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Figure 5.7: Fingerprinting Method (Trial Heats) for EAF 2. 

 

 

 Similar to EAF 1, the off-gas water vapor in EAF 2 provides adequate information 

to distinguish between normal heats and heats where water is intentionally injected.  It is 

evident from both industrial furnaces that the fingerprinting method worked well with 

larger injection of water flow rates (i.e. 60 liters per minute) but the method did not detect 

the smaller leaks (i.e. 30 liters per minute) for the entire trial period.    

  The fingerprinting method is simplistic in nature; however, there are 

disadvantages with this method: it is incapable of detecting smaller leaks (e.g. 30 liters 

per minute), and it only works if the process is well controlled where in most electric arc 

furnaces is not the case.   Therefore, the next section investigates machine learning 

methods to overcome the problems with the fingerprinting method.   Machine learning 

methods explored in this work are artificial neural network and multiway projection to 

latent structures which use process variables to calculate expected off-gas water vapor 

leaving the electric arc furnace. 
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5.3 Artificial Neural Network (ANN) 

 

5.3.1 Introduction 

 

Artificial neural network (ANN) is a machine learning method that is used widely 

for classification and regression.   ANN is used for classification if the learning technique 

used is unsupervised and it is used for regression if the learning technique is supervised.  

In this work, supervised learning is used to build the ANN model to predict EAF off-gas 

water vapor based on different process variables.  The steps followed to build the ANN 

model to predict the EAF off-gas water vapor are: collect and preprocess the data, create 

the network, configure the network, train the network, and validate the network.   The set 

of process variables and heats used to build and validate the ANN model are determined 

in Chapter 4.   The selected set of heats is divided into training and testing heats.  The 

training heats are used to train the ANN model, and the testing heats are used to validate 

the ANN model, and they include heats where water is intentionally injected into the 

furnace to test if the ANN model can recognize the water addition.   

  

5.3.2 Data Preprocessing and Artificial Neural Network Configuration 

 

The first step is to collect and preprocess the network inputs and outputs.  Such a 

step allows the inputs and outputs to fall into a normalized range.  The preprocessing 

functions performed in this work normalize the inputs and the output to fall in the range 

of [-1, 1], and remove inputs and outputs that are constants.  The next steps completed are 

to create and then configure the network.  The network created for this work is a multi-

layer feed forward networks.  Typically, the first layer is the input layer; then one or more 

hidden layers are constructed, and finally an output layer is used. Different types of 

transfer functions can be used in the hidden and output layers.  In this work, nonlinear 

transfer functions are used in the hidden layers because they allow the network to learn 

nonlinear relationships between the input and the output vectors, and linear transfer 



82 

 

functions are used in the output layer because they are often used for function fitting 

problems (Nielsen, 2015). 

 

5.3.3 Artificial Neural Network Training 

 

Artificial neural networks are organized in layers.  Layers consist of 

interconnected neurons, and the connections have weights.  The first layer in the network 

has the input neurons which communicate with the hidden layers where the processing 

occurs by tuning the connections weights, and then the hidden layers communicate with 

the output layers.    Neural networks weights (wij) are modified so that a specific set of 

inputs xi lead to an output f(x).   The networks used in this work are feedforward neural 

networks where the output from one layer is used as an input to the next layer; hence 

there are no network loops.  Figure 5.8 shows a general architecture of ANN in this work: 

 

 

    Figure 5.8: General Architecture of ANN Constructed in this Work.  

 

Each layer in the neural network has a weight matrix (w
l
) and a bias vector (b

l
).  

The weights in the weight matrix are weights connecting to the l
th 

layer of neurons and 

each neuron in the l
th 

layer has one bias. Equation 5.3 defines the activation vector a
l
 , 

where σ is the activation function and z
 l 

is the weighted input to the neurons in layer l: 

 

                                      𝑎𝑙 = 𝜎(𝑤𝑙  𝑎𝑙−1 +  𝑏𝑙 ) =  𝜎(𝑧𝑙 )                                          (5.3) 

 



83 

 

ANN finds the model parameters (i.e. weights and biases) using a learning 

algorithm.  The learning algorithm used in this work is the feed forward back propagation 

algorithm.   The feed forward back propagation network is an algorithm where errors 

propagate backward from the output layer during training.  Back propagation is a gradient 

method to minimize the total squared error of the output computed by the neural network 

(Nielsen, 2015). Training a network by back propagation involves three stages: the feed 

forward of the input training pattern, the backward propagation of the associated error, 

and the adjustment of weights (Nielsen, 2015). The output errors determine measures of 

hidden layer output errors.  The  process  of  adjusting  the  set  of  weights  between  the  

layers  and  recalculating  the  output  continues  until    the  overall  error  falls  below  a  

given  limit.  Once training is completed, the ANN can be used to compute off-gas water 

vapor for new input variables.  

 

Equations 5.4-5.8 summarize the back propagation algorithm (Nielsen, 2015).  

Mathematically, the objective of the algorithm is to find the network weights (w) and 

biases (b) to minimize the quadratic cost function C (w,b).    

 

                                            𝐶(𝑤, 𝑏) =
1

2𝑛
 ∑ ‖𝑓(𝑥) − 𝑎‖2

𝑥                                           (5.4) 

 

In order to minimize the cost function, the back propagation algorithm calculates 

the partial derivatives ∂C/∂w and ∂C/∂b of the cost function with respect to any weight w 

or bias b in the artificial neural network (Nielsen, 2015).  But to compute the partial 

derivatives, the algorithm introduces an intermediate error variable  𝛿𝐿 which is the error 

associated with layer L.  The algorithm provides a way to compute the 𝛿𝐿 for every layer, 

and then it relates the errors to the partial derivatives ∂C/∂w and ∂C/∂b.  Equation 5.5 

computes the error in the output layer. The first term in Equation 5.5 (𝛻𝑎𝐶) computes the 

derivative of the cost function C with respect to the output activations (a). The second 

term (𝜎′(𝑧𝐿)) calculates the rate of change of the activation function (𝜎) with respect to 

𝑧𝐿 : 

 

                                                   𝛿𝐿 = ∇𝑎𝐶 ⨀ 𝜎′(𝑧𝐿)                                                    (5.5) 
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Equation 5.6 calculates the error  𝛿𝐿 in terms of the error in the next layer 𝛿𝐿+1.  

(𝑤𝑙+1)𝑇 is the transpose of the weight matrix for the (l + 1) layer and multiplies it by the 

error in the (l + 1) layer and then taking the Hadamard product ⨀ 𝜎′(𝑧𝑙).  This equation 

allows for the error to move backward through the neural network and hence for a mean 

for the error at the output of the l
th

 layer to be computed (Nielsen, 2015).    

 

                                            𝛿𝑙 = ((𝑤𝑙+1)𝑇𝛿𝑙+1) ⨀ 𝜎′(𝑧𝑙)                                           (5.6) 

  

Equation 5.7 calculates how fast the quadratic cost function (C) is changing with 

respect to any bias (b) in the network, where the error variable 𝛿 and the bias b are 

evaluated at the same neuron in the network.   

 

                                                             
𝜕𝐶

𝜕𝑏
=  𝛿                                                               (5.7) 

 

Equation 5.8 calculates how fast the quadratic cost function (C) is changing with 

respect to any weight (w) in the neural network, where 𝑎𝑖𝑛 is the activation of the neuron 

input to the weight w, and 𝛿𝑜𝑢𝑡 is the neuron output from the weight w in the network.   

 

                                                         
𝜕𝐶

𝜕𝑤
= 𝑎𝑖𝑛𝛿𝑜𝑢𝑡                                                         (5.8) 

 

In this work, Equations 5.4-5.8 are used to train the neural network and to find the 

optimum weights and biases.   During training of the EAF neural network, the parameters 

that are monitored are the magnitude of the gradient of performance and the number of 

validation checks. The magnitude of the gradient and the number of validation checks are 

used to terminate the training. The gradient becomes very small as the training reaches a 

minimum of the performance.  The training of the model is stopped if the magnitude of 

the gradient is less than 1e-5.  The number of validation checks is the number successive 

iterations that the validation performance fails to decrease, and for this work the number 

of validation checks used is 6.  The number of epochs used to develop the models is 
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1000.   The network is used to calculate the expected water in the off-gas after the 

network is trained and validated.   

 

There is uncertainty in the neural network predictions due to inaccuracies in the 

training data and limitation of the neural network model.  There is noise in the training 

set because noise is inherent in all industrial real data.   Therefore, a reliable measure of 

confidence interval is crucial in this work.   The method used to construct the confidence 

intervals for the neural network predictions is the bootstrap method (Nielsen, 2015).  This 

method involves creating many bootstrap samples by resampling randomly.  The 

bootstrap estimate of the standard error is giving by (Efron & Tibshirani 1993).  For this 

work, 10 resamples are created to estimate the standard error and then to calculate the 

95% confidence interval.   

 

5.3.4 EAF 1 Artificial Neural Network (ANN) Results 

 

The input and output variables for EAF 1 are preprocessed prior to building the 

ANN model.  The preprocessing function used in this work normalizes the input and 

output variables to fall in the range of [-1, 1]; then the ANN model is constructed.  The 

ANN model built for EAF 1 is a three layer feed forward network consisting of an input 

layer, a hidden layer, and an output layer.  The output layer has a single node because the 

model is used to predict one output variable (off-gas water vapor) from multiple inputs. 

All nodes in the input layer are connected to all nodes in the hidden layer.  Similarly, all 

nodes in the hidden layer are connected to the node in the output layer.  The input 

variables used to train the ANN model for EAF 1 are determined based on the MPLS 

model developed in Chapter 4.  The MPLS model predicts that the input variables that are 

highly correlated with the off-gas water vapor are EAF total fuel flow, EAF total main 

oxygen Flow, EAF total injected carbon flow, off-gas CO, off-gas CO2, off-gas O2, EAF 

fume system damper position, and EAF pressure.   Electrode water flow is excluded from 

the ANN model because the electrode flow is constant from the beginning of the heat 

until the end.    Eight nodes used in each of the input layer and hidden layer.  More nodes 

were tried in the hidden layer but no improvement was observed in the results.  A log-



86 

 

sigmoid transfer function is used in the hidden layer to capture the nonlinearity of the 

water vapor behavior, and a linear transfer function is used in the output layer.    The 

heats used to train and test the ANN model for EAF 1 are determined by the MPCA 

model developed in Chapter 4.  The number of training heats is 15 heats, and the number 

of testing heats is 9 heats.  The testing heats include 7 normal heats and 2 trial heats, 

where additional water is injected into the furnace from the beginning of the heat until the 

end.  The R
2
 of the ANN model built with the training heats is 90%. 

 

Figure 5.9 shows two figures.  The top figure shows the ANN prediction drawn in 

solid line and the confidence interval in dashed line with 95% confidence level for a 

normal heat with three charges and a refining period.  The top figure shows that the ANN 

model provides a narrow prediction range as a consequence of the multiple layer and 

nodes network constructed for this model.    The bottom figure shows a comparison 

between the measured EAF off-gas water vapor drawn in solid line and the off-gas water 

vapor predicted by the ANN model drawn in dashed line for a normal testing heat. There 

are dips in off-gas water vapor because whenever the operator charges the furnace with a 

new scrap bucket, the off-gas analyzer stops sampling and starts purging the probe and 

the sample line.  The bottom figure clearly shows that the predicted water vapor closely 

follows the measured water vapor throughout the heat.    
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Figure 5.9:  Top Figure – ANN Model Prediction (solid line) and the 95% 

Confidence Interval (dashed lines).   Bottom Figure - Comparison between 

Measured EAF Off-gas H2O (solid line) and ANN Prediction (dashed line).   Both 

Figures are for the Same Normal Testing Heat for EAF 1.   

 

 

Figure 5.10 shows two figures. The top figure shows the error (%) which is 

calculated by subtracting the calculated EAF off-gas water vapor from the measured 

water vapor.   The figure clearly shows that the error is below the 1% threshold for most 

of the heat, which indicates that the predicted water vapor closely followed the measured 

water vapor.  The bottom figure shows the errors are roughly normally distributed and 

approximately centered at 0.  
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Figure 5.10: Top Figure – Error (%) Between Measured and the Calculated EAF 

Off-gas H2O.  Bottom Figure – Normal Distribution of the Error (%).  Both Figures 

are for the Same Normal Testing Heat for EAF 1.   

 

   Figure 5.11 shows the ANN prediction drawn in solid line and the 95% in dashed 

line for a trial testing heat with four charges and a refining period.  The figure shows that 

the ANN model provides a narrow prediction range as a consequence of the multiple 

layers and nodes network constructed for this model.     
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Figure 5.11: ANN Predictions (solid line) and the 95% Confidence Interval (dashed 

line) for Trial 1 Testing Heat for EAF 1.   

 

Figure 5.12 shows two figures for trial 1 testing heat. The top figure shows a 

comparison between the EAF off-gas water vapor measured by the off-gas analyzer and 

the off-gas water vapor calculated by the ANN model.    Trial 1 was conducted by 

increasing the electrode spray water by a total of 60 liters per minute from the beginning 

of the heat until the end.  The top figure clearly shows that the measured water vapor is 

higher than the calculated water vapor.   The bottom figure shows the error (%) between 

the measured and the calculated EAF off-gas water vapor.   The measured water vapor is 

constantly higher than the calculated water vapor because the ANN model does not 

include water leaks as an input to the model.  In this trial, water is intentionally added 

into the furnace to observe if a difference can be observed between the measured and the 

calculated water vapor.   The bottom figure shows a continuous difference of greater than 

1% between measured and predicted from the beginning of the heat until tapping.   The 

error threshold is a tuning parameter, where in this case 1% is selected because it captures 

the water leak for both EAF 1 trial heats. 
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Figure 5.12: Top Figure - Comparison between Measured EAF Off-gas H2O (solid 

line) and ANN Prediction (dashed line).  Bottom Figure – Error (%) Between 

Measured and the Calculated EAF Off-gas H2O.  Both Figures are for Trial 1 

Testing Heat for EAF 1.   

 

Figure 5.13 shows the ANN prediction drawn in solid line and the 95% 

confidence interval level for a charge 1 of trial 2 testing heat, where water is intentionally 

injected only in the first charge.   Similar to trial 1 testing heat, the figure shows that the 

ANN model provides a narrow prediction range as a consequence of the multiple layers 

and nodes network constructed for this model.     
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Figure 5.13: ANN Predictions (solid line) and the 95 % Confidence Interval (dashed 

line) for Trial 2 Testing Heat for EAF 1.   

 

Figure 5.14 shows two figures for trial 2 testing heat. The top figure shows a 

comparison between the measured EAF off-gas water vapor and the off-gas water vapor 

(%) calculated by the ANN model.    Trial 2 testing heat is conducted by increasing the 

electrode spray water by a total of 30 liters per minute during the entire first charge.  The 

top figure clearly shows that the measured water vapor is higher than the calculated water 

vapor.   The bottom figure shows the error between the measured and the calculated EAF 

off-gas water vapor.  The error is above the 1% for most of the charge 1 melting.  

However, it drops below the 1% threshold several times.  Similar to trial 1 heat, the 

reason that the measured water vapor is constantly higher than the calculated is because 

the ANN model does not include water leaks as an input to the model.   
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Figure 5.14: Top Figure - Comparison between Measured EAF Off-gas H2O (solid 

line) and ANN Prediction (dashed line).  Bottom Figure – Error (%) Between 

Measured and the Calculated EAF Off-gas H2O.  Both Figures are for Trial 2 

Testing Heat for EAF 1.   

 

Figure 5.15 shows the residuals from the ANN model for the normal testing heats 

for EAF 1.  This error histogram excludes the trial testing heats. The residuals shown in 

Figure 5.15 are estimates of the experimental error determined by subtracting the 

measured off-gas water vapor from the predicted off-gas water vapor.   Residuals are 

variability unexplained by the ANN model.    Figure 5.15 shows an error distribution that 

is roughly normal and is centered at approximately 0 with a standard deviation of about 

0.47.     The significant of the residuals normal distribution being centered at 0 indicates 

that the model error is random. 
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Figure 5.15: Residuals Histogram from the ANN Model for all the Normal Testing 

Heats for EAF 1. 

  

5.3.5 EAF 2 Artificial Neural Network (ANN) Results 

 

The steps followed to preprocess the input and output variables for EAF 2 and 

then build the ANN model are similar to EAF 1.  The input variables used to train the 

ANN model for EAF 2 are determined from the MPLS model developed in Chapter 4.  

The MPLS model predicted the input variables that are highly correlated with the off-gas 

H2O are EAF total fuel flow, EAF total main oxygen flow, EAF total shroud oxygen 

flow, DRI flow,  EAF total injected carbon flow, off-gas CO, off-gas CO2, electrode 

water flow, and EAF analyzer purge H2O.   The number of nodes used in the input layer 

and hidden layer are 9 nodes each. More nodes were tried in the hidden layer, but no 

improvement was observed in the performance of the model.   The transfer function used 

in the hidden layer is a log-sigmoid to capture the nonlinearity of the water vapor 

behavior, and a linear transfer function is used in the output layer.    The heats used to 

train and test the ANN for EAF 2 are determined from the MPCA model developed in 

Chapter 4.  The number of training heats is 35 heats, and the number of testing heats is 15 

heats.  The testing heats include 13 normal heats and 2 trial heats, where additional water 

is injected into the furnace.  The R
2
 of the ANN model built with the training heats is 

91%. 
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Figure 5.16 shows two figures.  The top figure shows the ANN prediction drawn 

in solid line and the 95% confidence interval for a normal heat with DRI feeding and a 

refining period.  The figure shows that the neural network model provides a narrow 

prediction range as a consequence of the multiple layers and nodes network constructed 

for this model.   The bottom figure shows a comparison between the EAF off-gas water 

vapor measured by the analyzer drawn in solid line and the neural network off-gas water 

vapor prediction drawn in dashed line for a normal heat for EAF 2.  Figure 5.16 shows 

that the predicted water vapor closely follows the measured water vapor throughout the 

heat.    

  

 

Figure 5.16: Top Figure - ANN Predictions (solid line) and the 95% Confidence 

Interval (dashed line).  Bottom Figure - Comparison between Measured EAF Off-

gas H2O (solid line) and ANN Prediction (dashed line).   Both Figures are for the 

Same Normal Testing Heat for EAF 2.   
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Figure 5.17 shows two figures. The top figure shows the error calculated by 

subtracting the calculated EAF off-gas water vapor from the measured water vapor.   The 

figure clearly shows that the error is below the 1% threshold for most of the heat, a 

finding which indicates that the predicted water vapor closely followed the measured 

water vapor.  The bottom figure shows the errors are roughly normally distributed and 

centered at approximately 0.  

 

           

  

Figure 5.17: Top Figure – Error (%) Between Measured and the Calculated EAF 

Off-gas H2O. Bottom Figure – Normal Distribution of the Error (%).  Both Figures 

are for the Same Normal Testing Heat for EAF 2.   
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Figure 5.18 shows the ANN model prediction drawn in solid line and the 95% 

confidence interval for trial 1 heat with DRI feeding and a refining period.  The figure 

shows that the ANN model provides a narrow prediction range as a consequence of the 

multiple layers and nodes network constructed for this model.   

 

 

Figure 5.18: ANN Predictions (solid line) and the 95% Confidence Interval (dashed 

line) for Trial 1 Testing Heat for EAF 2.  

 

Figure 5.19 shows two figures for trial 1 heat for EAF 2. The top figure between 

the measured EAF off-gas water vapor (%) and the off-gas water vapor (%) calculated by 

the ANN model.    Trial 1 heat is conducted by increasing the electrode spray water by a 

total of 30 liters per minute for approximately 6 minutes.  The top figure clearly shows 

that the measured water vapor is higher than the calculated water vapor by more than 1-

3% during the trial test.   The bottom figure shows the error between the measured and 

the calculated EAF off-gas water vapor.   As in trials heat from EAF 1, the reason that the 

measured water vapor is higher than the calculated is because the ANN model does not 

include water leaks as an input to the model.   
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Figure 5.19: Top Figure - Comparison Between Measured EAF Off-gas H2O (solid 

line) and ANN Prediction (dashed line).  Bottom Figure – Error Between Measured 

and the Calculated EAF Off-gas H2O.  Both Figures are for Trial 1 Testing Heat for 

EAF 2. 

 

Figure 5.20 shows the ANN prediction drawn in solid line and the 95% 

confidence interval in dashed line for trial 2 testing heat with DRI feeding and a refining 

period.  The figure shows that the ANN model provides a narrow prediction range as a 

consequence of the multiple layers and nodes network constructed for this model.   
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Figure 5.20: ANN Predictions (solid line) and the 95% Confidence Interval (dashed 

line) for Trial 2 Testing Heat for EAF 2. 

 

Figure 5.21 shows two figures for trial 2 testing heat for EAF 2. The top figure 

shows a comparison between the measured EAF off-gas water vapor (%) and the off-gas 

water vapor (%) calculated by the ANN model.    Trial 2 heat is conducted by increasing 

the electrode spray water by a total of 60 liters per minute for approximately 10 minutes.  

The top figure clearly shows that the measured water vapor is higher than the calculated 

water vapor by more than 1-4% during the trial test.   The bottom figure shows the error 

between the measured and the calculated EAF off-gas water vapor.   As in Trials Heat 

from EAF 1, the reason that the measured water vapor is higher than the calculated is 

because the ANN model does not include water leaks as an input to the model.   

 



99 

 

  

 

Figure 5.21: Top Figure - Comparison Between Measured EAF Off-gas H2O (solid 

line) and ANN Prediction (dashed line).  Bottom Figure – Error (%) Between 

Measured and the Calculated EAF Off-gas H2O. Both Figures are for Trial 2 

Testing Heat for EAF 2. 

 

 

Figure 5.22 shows the residuals from the ANN model for the normal testing heats 

for EAF 2.  This error histogram excludes the trial testing heats. The residuals shown in 

Figure 5.22 are estimates of the experimental error determined by subtracting the 

measured off-gas water vapor from the predicted off-gas water vapor.   Figure 5.22 shows 

an error distribution that is roughly normal and is centered at approximately 0 with a 

standard deviation of approximately 0.44.  The significance of the residuals normal 

distribution being centered at 0 indicates that the model error is random. 
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Figure 5.22: Residuals Histogram from the ANN Model for all the Normal Testing 

Heats for EAF 2. 

 

5.4 Multiway Projection to Latent Structures (MPLS) 
 

5.4.1 Method 
 

The second machine learning method used to predict water vapor leaving the 

furnace is multiway projection to latent structures (MPLS).   The algorithm of the method 

is described in details in Chapter 4.  As in artificial neural network, confidence intervals 

are necessary due to the noise inherent in the industrial data; hence the bootstrap method 

is used to construct the 95% confidence intervals (Dunn, 2014).  For this work, 10 

resamples are created to estimate the standard error and then to calculate the 95% 

confidence interval.   

        

5.4.2 EAF 1 MPLS Results 

 

The input variables used to train the MPLS model for EAF 1 are determined in 

the variables selection model in Chapter 4: EAF total fuel flow, EAF total main oxygen 

Flow, EAF total injected carbon flow, off-gas CO, off-gas CO2, off-gas O2, EAF fume 

system damper position, and EAF pressure.  The number of training heats is 15 heats, and 
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the number of testing heats is 9 heats.  The testing heats include 7 normal heats and 2 trial 

heats where additional water is injected into the furnace from the beginning of the heat 

until the end. The numbers of principal components obtained are 7 components using 

cross validation.  The calculated model R
2
 is 78%.  The first two components explain 

approximately 61% of the variability in the 15 heats. The remaining 5 components in the 

MPLS model explain approximately 17 % of the variability in the dataset.   

 

Figure 5.23 shows two figures.  The top figure shows the MPLS prediction drawn 

in solid line and the confidence interval in dashed line with 95% confidence level for a 

normal heat with three charges and a refining period.  The figure shows that the MPLS 

model provides a narrow prediction range.  The bottom figure shows a comparison 

between the EAF off-gas water vapor measured by the analyzer drawn in solid line and 

the MPLS off-gas water vapor prediction drawn in dashed line for a normal heat for EAF 

1.  The bottom figure shows that the predicted water vapor follows the measured water 

vapor trend throughout the heat. The heat time is normalized from seconds to %.        
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Figure 5.23: Top Figure - MPLS Predictions (solid line) and the 95% Confidence 

Interval (dashed line).   Bottom Figure - Comparison Between Measured EAF off-

gas H2O (solid line) and MPLS Prediction (dashed line). Both Plots are for the same 

Normal Testing Heat for EAF 1. 

 

Figure 5.24 shows two figures. The top figure shows the error (%) which is 

calculated by subtracting the calculated EAF off-gas water vapor from the measured 

water vapor.   The figure clearly shows that the error is below the 1% threshold for most 

of the heat, a finding which indicates that the predicted water vapor closely followed the 

measured water vapor.  However, there are two periods in the heat where the error is 

more than the 1% threshold where the ANN predictions did not have such periods.  The 

bottom figure shows the errors are normally distributed and centered at 0.  

 



103 

 

 

 

Figure 5.24: Top Figure – Error (%) between Measured and the Calculated EAF 

Off-gas H2O. Bottom Figure – Normal Distribution of the Error (%).  Both Figures 

are for the Same Normal Testing Heat for EAF 1. 

 

Figure 5.25 shows the MPLS prediction drawn in solid line and the 95% 

confidence interval in dashed line for trial 1 heat with four charges and a refining period.  

The figure shows that the MPLS model provides a narrow prediction range.   
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Figure 5.25: MPLS Predictions (solid line) and the 95% Confidence Interval 

(dashed line) for Trial 1 Testing Heat for EAF 1.   

 

Figure 5.26 shows two figures for trial 1 heat for EAF 1. The top figure shows a 

comparison between the measured EAF off-gas water vapor (%) and the off-gas water 

vapor (%) calculated by MPLS.    Trial 1 heat is conducted by increasing the electrode 

spray water by a total of 60 liters per minute throughout the heat.  The top figure shows 

that the measured water vapor is higher than the calculated water vapor for most of the 

heat.   The bottom figure shows the error between the measured and the calculated EAF 

off-gas water vapor.  The error is more than 1 % except in a period in the second charge 

where it drops below 1%. 
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Figure 5.26: Top Figure - Comparison between Measured EAF Off-gas H2O (solid 

line) and MPLS Prediction (dashed line).  Bottom Figure – Error (%) between 

Measured and the Calculated EAF Off-gas H2O.  Both Figures are for Trial 1 

Testing Heat for EAF 1. 

 

 

Figure 5.27 shows the MPLS prediction drawn in solid line and the confidence 

interval in dashed line with 95% confidence level for trial 2 heat.  The figure shows that 

the MPLS model provides a narrow prediction range.    
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Figure 5.27: MPLS Predictions (solid line) and the 95% Confidence Interval 

(dashed line) for Trial 2 Testing Heat for EAF 1.  

 

Figure 5.28 shows two figures for trial 2 heat for EAF 1. The top figure shows a 

comparison between the measured EAF off-gas water vapor (%) and the off-gas water 

vapor (%) calculated by MPLS.  Trial 2 heat is conducted by increasing the electrode 

spray water by a total of 30 liters per minute for the first charge.  The top figure clearly 

shows that the measured water vapor is higher than the calculated water vapor.   The 

bottom figure shows the error (%) between the measured and the calculated EAF off-gas 

water vapor.   As in trial 1 Heat, the reason that the measured water vapor is constantly 

higher than the calculated is because the MPLS model does not include water leaks or 

abnormal sources of water as an input to the model.   
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Figure 5.28: Top Figure - Comparison between Measured EAF off-gas H2O (solid 

line) and MPLS prediction (dashed line).  Bottom Figure – Error (%) between 

Measured and the Calculated EAF Off-gas H2O.  Both Figures are for Trial 2 

Testing Heat for EAF 1.  

 

Figure 5.29 shows the residuals from the MPLS model for the normal testing 

heats for EAF 1.  This error histogram excludes the trial testing heats. The residuals 

shown in Figure 5.29 are estimates of the experimental error determined by subtracting 

the measured off-gas water vapor from the predicted off-gas water vapor.   Figure 5.29 

shows an error distribution that is roughly normal and is centered at approximately 0 with 

a standard deviation of about 0.52.   The significance of the residuals normal distribution 

being centered at 0 indicates that the model error is random. 
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Figure 5.29: Residuals Histogram from the MPLS Model for all the Normal Testing 

Heats for EAF 1. 

 

5.4.3 EAF 2 MPLS Results 

 

The input variables used to train the MPLS model for EAF 2 are determined in 

the variables selection model in Chapter 4: EAF total fuel flow, EAF total main oxygen 

flow, EAF total shroud oxygen flow, DRI flow,  EAF total injected carbon flow, off-gas 

CO, off-gas CO2, electrode water Flow, and EAF analyzer purge H2O.  The number of 

training heats is 35 heats, and the number of testing heats is 15 heats.  The testing heats 

include 13 normal heats and 2 trial heats where additional water is injected into the 

furnace.  The number of principal components obtained is 7 components using cross 

validation.  The calculated model R
2
 is 80%.  The first two components explain 

approximately 50% of the variability in the 50 heats data.  The remaining 5 components 

in the MPLS model explained approximately 30 % of the variability in the dataset.   

 

Figure 5.30 shows two figures.  The top figure shows the MPLS prediction drawn 

in solid line and the 95% confidence interval in dashed line for a normal heat with DRI 

feeding and a refining period.  The top figure shows that the MPLS model provides a 

narrow prediction range.  The bottom figure shows a comparison between the EAF off-

gas water vapor measured by the analyzer drawn in solid line and the MPLS off-gas 

water vapor prediction drawn in dashed line for a normal heat for EAF 2.  The bottom 
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figure also shows that the predicted water vapor closely follows the measured water 

vapor throughout the heat.    

 

 

 

Figure 5.30: Top Figure - MPLS Predictions (solid line) and the 95% Confidence 

Interval (dashed line).   Bottom Figure - Comparison between Measured EAF Off-

gas H2O (solid line) and MPLS Prediction (dashed line).    Both Figures are for the 

Same Normal Testing Heat for EAF 2. 

 

Figure 5.31 shows two figures. The top figure shows the error which is calculated 

by subtracting the calculated EAF off-gas water vapor from the measured water vapor.   

The figure clearly shows that the error is below the 1% threshold for most of the heat, a 

finding which indicates that the predicted water vapor closely followed the measured 

water vapor.  The bottom figure shows the errors are normally distributed and centered at 

0.  
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Figure 5.31: Top Figure – Error (%) between Measured and the Calculated EAF 

Off-gas H2O for Normal Heat for EAF 2.  Bottom Figure – Normal Distribution of 

the Error (%). 

 

Figure 5.32 shows the MPLS prediction drawn in solid line and the 95% 

confidence interval in dashed line for trial 1 heat with DRI feeding and a refining period.  

The figure shows that the MPLS model provides a narrow prediction range. 
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Figure 5.32: MPLS Predictions (solid line) and the 95 % Confidence Interval 

(dashed line) for Trial 1 Testing Heat for EAF 2.   

 

Figure 5.33 shows two figures for trial 1 heat for EAF 2. The top figure shows a 

comparison between the measured EAF off-gas water vapor (%) and the off-gas water 

vapor (%) calculated by MPLS.    Trial 1 heat is conducted by increasing the electrode 

spray water by a total of 30 liters per minute for approximately 6 minutes.  The top figure 

clearly shows that the measured water vapor is higher than the calculated water vapor by 

more than 1% during the trial test.   The bottom figure shows the error (%) between the 

measured and the calculated EAF off-gas water vapor.   As in trial heats from EAF 1, the 

reason that the measured water vapor is higher than the calculated is because the MPLS 

model does not include water leaks as an input to the model.   

 



112 

 

 

 

Figure 5.33: Top Figure - Comparison between Measured EAF Off-gas H2O (solid 

line) and MPLS Prediction (dashed line).  Bottom Figure – Error (%) between 

Measured and the Calculated EAF Off-gas H2O.   Both Figures are for Trial 1 

Testing Heat for EAF 2. 

 

Figure 5.34 shows the MPLS prediction drawn in solid line and the 95% 

confidence interval in dashed line for trial 2 testing heat with DRI feeding and a refining 

period.  The figure shows that the MPLS model provides a narrow prediction range. 
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Figure 5.34: MPLS Predictions (solid line) and the 95% Confidence Interval 

(dashed line) for Trial 2 Testing Heat for EAF 2.   

 

Figure 5.35 shows two figures for trial 2 heat for EAF 2. The top figure shows a 

comparison between the measured EAF off-gas water vapor (%) and the off-gas water 

vapor (%) calculated by MPLS.    Trial 2 heat is conducted by increasing the electrode 

spray water by a total of 60 liters per minute approximately 10 minutes.  The bottom 

figure clearly shows that the measured water vapor is higher than the calculated water 

vapor by more than 1% during the trial test.   The bottom figure shows the error (%) 

between the measured and the calculated EAF off-gas water vapor.   As in trial Heats 

from EAF 1, the reason that the measured water vapor is higher than the calculated is 

because the MPLS model does not include water leaks or abnormal sources of water as 

an input to the model.   
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Figure 5.35: Top Figure - Comparison between Measured EAF Off-gas H2O (solid 

line) and MPLS prediction (dashed line).  Bottom Figure – Error (%) between 

Measured and the Calculated EAF Off-gas H2O.  Both Figures are for Trial 2 

Testing Heat for EAF 2. 

 

Figure 5.36 shows the residuals from the MPLS model for the normal testing 

heats for EAF 2.  This error histogram excludes the trial testing heats. The residuals 

shown in Figure 5.36 are estimates of the experimental error determined by subtracting 

the measured off-gas water vapor from the predicted off-gas water vapor.   Figure 5.36 

shows an error distribution that is roughly normal and is centered at approximately 0.     

The significance of the residuals normal distribution being centered at 0 indicates that the 

model error is random. 
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Figure 5.36: Residuals Histogram from the MPLS Model for all the Normal Testing 

Heats for EAF 2. 

 

5.5 ANN and MPLS Performance Comparison  

  

Two machine learning techniques, multiway projection to latent structures and the 

artificial neural network have been used in this chapter to predict the off-gas water vapor 

at EAF 1 and EAF 2.     Table 5.1 summarizes the results for the EAF water vapor 

prediction performance of ANN and MPLS: 

 

Table 5.1: Prediction Performance Comparison between ANN and MPLS 

 

Method 
Training 

Heats 
Testing Heats R

2
 RMSEP 

Trial Heat 1 

Detection  

Trial Heat 2 

Detection  

EAF 1 

MPLS 15 
9 (7 Normal and 2 

Trial Heats) 
78 0.52 

Partially 

Successful 
Successful 

ANN 15 
9 (7 Normal and 2 

Trial Heats) 
90 0.47 Successful Successful 

EAF 2 

MPLS 35 
15 (13 Heats and 

2 Trial Heats) 
80 0.45 Successful Successful 

ANN 35 
15 (13 Heats and 

2 Trial Heats) 
91 0.44 Successful Successful 

 

 The roots mean squared prediction error (RMSEP) measures the square root of the 

expected squared distance between what the model predicts (𝑦𝑡
𝑝) for the water vapor and 

what the off-gas analyzer measures (𝑦𝑡) during the heat time (t = 1 to n).   RMSEP gives 
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the standard deviation of the model prediction error and hence is an indication of the 

quality of prediction. The unit for RMSEP is the same unit as the off-gas water vapor.  

Equation 5.9 shows how RMSEP is calculated: 

 

                                             𝑅𝑀𝑆𝐸𝑃 (%) =  √∑ (𝑦𝑡
𝑝

− 𝑦𝑡) 𝑛
𝑡=1

2

𝑛
                                       (5.9) 

 

  EAF 1 training set R
2 

for the ANN model is 90% and for the MPLS model 78%.  

The ANN RMSEP for EAF 1 testing set is 0.47%, whereas MPLS RMSEP is 0.52%; 

hence ANN model outperformed MPLS model for EAF 1.   Moreover, MPLS did not 

completely detect the additional injected water into the furnace during trial 1.  EAF 2 

training set R
2 

for the ANN model is 91% and for the MPLS model 80%.  The ANN 

RMSEP for EAF 21 testing set is 0.44%, whereas MPLS RMSEP is 0.45%; hence ANN 

model also outperformed MPLS model for EAF 2 by a small margin.   Both models 

detected successfully the trials heats, and the performances are similar for EAF 2.   ANN 

model performed significantly better in EAF 1 where the behavior of the off-gas water 

vapor was non-linear, and it performed slightly better in EAF 2 where the behavior of the 

off-gas water vapor was less non-linear.     

 

 ANN is useful in the case of non-linear systems such as the EAF off-gas water 

vapor because it has the capability of capturing nonlinear and complex underlying 

characteristics of physical non-linear process.  The method works well for large data sets, 

and it is a non-parametric method; thus this eliminates the error in parameter estimation.  

Disadvantages of the ANN method include the method being a black box model where it 

is difficult to extract knowledge of the weights computed and where the method is 

incapable of extrapolating the results.   Another disadvantage of ANN is overfitting 

which occurs when the neural network memorizes the training heats but is incapable of 

generalizing to new heats.  The approach used in this work to avoid overfitting is to 

collect more data and increase the size of the training set.    Although the ANN model 

outperformed the MPLS model, the MPLS has attractive features that the ANN lacks.  

MPLS model is easier to interpret and extract knowledge of the model loadings and 
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scores.  Moreover, due to the nature of the MPLS model, it is capable of extrapolating the 

results. MPLS effectively handles collinearity between variables and missing data in the 

training and testing heats; hence the method can predict even when some of the inputs are 

missing, making it an appealing model for real-time predictions.  However, ANN 

outperformed the MPLS in EAF off-gas water vapor predictions because the behavior of 

the off-gas water vapor is nonlinear in both furnaces.     

 

5.6 Fault Detection Methodology 

 

As discussed earlier, there is always a normal level of water vapor in the 

freeboard off-gas inside the EAF. However, it is important to note that the absolute level 

of normal water vapor in the off-gas is varying throughout the heat and from heat-to-heat 

depending on the quality of the scrap, on burner firing rates, on post combustion at any 

point during the heat, on the level of the electrode sprays, and on the level of fume 

system suction. To be effective, a water detection system must be able to quickly and 

correctly distinguish between abnormal water vapor levels due to a water leak into the 

EAF and a normal level of water vapor due to operating practice.  Two fault detection 

algorithms are proposed in this work.  Fault Detection Method 1 is based on the 

fingerprinting method and Fault Detection Method 2 is based on using the difference 

between the measured and the predicted off-gas water vapor. 

   

Fault Detection Method 1 is implemented when statistical fingerprinting is used.  

This method compares the measured off-gas water vapor against the baseline water 

vapor.  The baseline values are calculated based on the algorithm described earlier in 

section 5.1.    Hence, this method distinguishes between “normal” and “abnormal” water 

vapor conditions in the EAF freeboard and then provides the operators with alerts that 

clearly indicate when water vapor levels exceed normal levels.   Figure 5.37 

schematically illustrates Fault Detection Method 1 for triggering “Operator Alerts”. 

While the method is not a failsafe method, it does provide operators with valuable real-

time alerts indicating the statistical probability of excessive high amounts of off-gas 

water vapor in the EAF. Specific threshold limits are calculated according to the 
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fingerprinting method described in section 5.1.  When the off-gas water vapor is equal to 

or less than the normal fingerprint threshold is green.  This indicates the statistical 

probability of excessive amounts of water in the EAF is low. When the indicators exceed 

the upper threshold limit for 5 seconds, a “Red Alert” is issued indicative that the off-gas 

chemistry is significantly out of the statistically normal range and there is a high 

probability of excess water in the EAF.  Red Alerts require immediate protective action 

by EAF operating staff. 

 

 

              Figure 5.37:  Operator Alerts Based on Fault Detection Method 1.  

  

Fault Detection Method 2 is used when MPLS or ANN is used to predict off-gas 

water vapor. Figure 5.38 schematically illustrates Fault Detection Method 2.  This 

method proposes to use the difference between the measured and the calculated off-gas 

water vapor in the furnace.  The reason for this is that the calculated water vapor model 

includes all potential sources of water except a water leak and the off-gas analyzer 

measures the EAF off-gas in real time; therefore, this work proposes to use the difference 

as an indicator for a water leak.    The analysis from this work indicates using a 1% as an 

alarm threshold.  The analysis is based on minimizing the false alarm rate and capturing 

the artificial leak.  However, this is a tuning parameter, where in other electric arc 

furnaces, this value may change.  When the calculated difference exceeds 1% for 5 

seconds, a “Red Alert” is issued to indicate that there is excessive water in the furnace 

not included in the empirical model.  The 5 seconds timer is also a tuning parameter to 

minimize false alarm rate and capture the artificial leak.   
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Figure 5.38: Operator Alerts Based on Fault Detection Method 2. 
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Chapter 6  

 

Conclusions and 

Recommendations 
 

6.1 Summary and Conclusions 

 

In this thesis a framework for water detection in an industrial electric arc furnace 

is developed. The objective of the framework is to prevent water leak furnace explosions.  

The framework is based on a simplified mechanistic mass balance model and empirical 

models because the electric arc furnace is too complex to be modeled solely by first 

principles.    The framework developed in this work is implemented on two industrial AC 

electric arc furnaces.  The first EAF is a scrap charging furnace, and the second one is 

mostly a DRI furnace.     Figure 6.1 shows the framework developed in this work for the 

water leak detection in an industrial electric arc furnace: 

 

 

Figure 6.1: Water Detection Framework Developed in this Work.  
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The mechanistic model (Model 2) is completed by performing a mass balance on 

the furnace and it provides a boundary with upper and lower limits in real-time of 

expected EAF off-gas water vapor leaving the furnace.   The mechanistic model has 

shown in both industrial EAFs that it provides a valuable on-line monitoring tool to the 

operator on what boundary to expect for the off-gas water vapor.     

 

There are many input variables and historical heats in an EAF operation; hence 

before building the empirical component of the hybrid algorithm, a heat selection model 

and input variables selection model (Model 1) are constructed based on latent variable 

methods.  The outcome of the heats selection model is heats with normal operation, 

where some of those heats are used to build the predictive models and the remaining are 

used to test the models.  The outcome of the variable selection model is variables that 

have the highest correlation with the off-gas water vapor.  

 

The empirical component of the algorithm is investigated by exploring three 

different methods: statistical fingerprinting, artificial neural network, and multiway 

projection to latent structures.   Statistical fingerprinting method is simplistic in nature; 

however, there are few disadvantages with this method: it cannot detect smaller leaks (30 

liters per minute), and it only works if the process is well controlled where in most 

electric arc furnaces this is not common.   ANN and MPLS performed better, and they are 

capable of detecting all of the trials; trial 1,however, had a partial success in detection 

when MPLS was used in EAF 1.   ANN outperformed the MPLS in EAF off-gas water 

vapor predictions because the behavior of the off-gas water vapor is nonlinear in both 

furnaces.   

 

The last section of this thesis proposes two approaches to detect for a potential 

water leak in the furnace.  Fault Detection Method 1 is implemented when statistical 

fingerprinting is used.  This method compares the measured off-gas water vapor against 

the baseline water vapor. Fault Detection Method 2 is used when MPLS or ANN is used 

to predict off-gas water vapor.  This method proposes to use the difference between the 
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measured and the calculated off-gas water vapor in the furnace.  The reason behind this 

method is that the calculated water vapor model includes all potential sources of water 

except a water leak and the off-gas analyzer measures the EAF off-gas in real time, 

therefore, this work proposes to use the difference as an indicator for a water leak.         

 

6.2 Future Work 

 

Opportunities for future work include increasing the quantity of available 

measurements that would improve the performance of the off-gas water vapor predictive 

models.  For example, measuring scrap and DRI composition and off-gas temperature can 

improve the accuracy of the empirical predictive models.   Another interesting problem 

would be to develop a water detection method based on off-gas hydrogen.  It was shown 

in Chapter 3 (Figure 3.4 for EAF 1 and Figure 3.5 for EAF 2), that off-gas hydrogen is 

present in the furnace freeboard.  It was also shown in Chapter 4 that off-gas hydrogen 

can be produced from different sources such as natural gas combustion with oxygen and 

the water shift reaction.   The water shift reaction produces less off-gas hydrogen as the 

temperature rises in the furnace but the reaction can produce hydrogen at low 

temperatures in the furnace. The objective of looking at this problem is to see if off-gas 

hydrogen contains water leak information that can improve the performance of the water 

detection framework to detect smaller leaks (i.e. below 30 liters/min leaks) in the furnace.   

 

Another interesting problem is multi-model fusion.  Multi-model fusion is the 

process of integrating information from various empirical models and combining them 

into one prediction.  Botwey et al. (2014) implemented multi-model fusion to improve an 

early warning system for hypo-/hyperglycemic events and thus to improve patent’s 

safety.  Data fusion techniques used by the authors were based on Dempster-Shafer 

Evidential theory, genetic algorithm, and genetic programming, which were used to 

merge the complimentary performance of the prediction models.  The authors had shown 

that the fusion schemes significantly improved the prediction performance with lower 

root mean square errors, lower time lags, and higher correlation.  The methodology 

followed in this work is to predict off-gas water vapor with three empirical models and 
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then to compare the performance of the predictions between the different empirical 

models and to select the optimum model for the EAF operation.  Hence an interesting 

problem is to investigate if multi-model fusion can be used to improve the prediction 

performance of the off-gas water vapor.    
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