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Abstract 

    We study a single-item, multi-period, stochastic perishable inventory problem under both 

backlogging and lost-sales circumstances, with and without an order capacity constraint in each 

period.  

    We first model the problem as a dynamic program and then develop two heuristics namely, 

Dual-Balancing (DB) and Look-Ahead (LA) policies, to approximate the optimal inventory 

level at the beginning of each period. To characterize the holding and backlog cost functions 

under the proposed polices, we introduce a truncated marginal holding cost for the marginal 

cost accounting scheme. Our numerical examples demonstrate that both DB and LA policies 

have a possible worst-case performance guarantee of two in perishable inventory systems under 

different assumptions, and the LA policy significantly outperforms the DB policy in most 

situations. 

    We also analyze the target inventory level in each period (the inventory level at the 

beginning of each period) under different policies. We observe that the target inventory level 

under the LA policy is not larger than the optimal one in each period in systems without an 

order capacity constraint.   
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1 Introduction 

Perishable products are very common in the real life. The main difference between 

perishable and non-perishable products is that the former must be consumed within a relatively 

short period of time before they become outdated, while the latter one can be kept in inventory 

for a long time, until they are used to satisfied demand. For example, food products, such as 

fresh fruit and dairy product, usually have a short quality guarantee period. Besides, blood 

products are also perishable and need to be used in a short time. For example, blood platelets 

are very precious and must be used within six-days [1], and blood plasma also deteriorates with 

time [2]. If perishable products are not consumed in time, outdating can lead to a significant 

financial loss. For example, about 321,000 units of apheresis platelets outdated in US in 2011, 

accounting for 12.8% of the total processed/produced amount [3]. Another report indicates that 

the average outdating rate of perishable products for retailers and distributors was around 1.21% 

in 2007 [4]. On the other hand, approximately 50% of the causes of outdating across a value 

chain can be mitigated effectively through improved planning practices [4]. These facts indicate 

the importance of developing efficient inventory management policies for perishable products. 

In this study, we study a stochastic periodic-review inventory system over a finite planning 

horizon with a perishable product, which has a fixed lifetime. Intuitively, the lifetime that we 

consider needs to be no longer than the length of the planning horizon. Also, if the lifetime is 1 

period, there will be no excess inventory left at the end of each period, no matter whether all 

demand has been satisfied or not, and we can solve the problem for one period at a time, 

separately. Therefore, in our study, we assume that the lifetime of the products is longer than 1 

period. 

We assume that products in the inventory are used based on the first-ordered first-

consumed (FOFC) policy to simplify the modeling of the problem. This is a common 
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assumption in the vast majority of the literature that products in the inventory are used based 

on the FOFC policy [5], which is quite reasonable in practice. For example, grocery managers 

usually put the oldest products in the most convenient place on shelves for customers, in order 

to reduce the outdating rate. The FOFC policy is also the foundation of many algorithms and 

policies for perishable inventory problems. For example, it is a critical assumption for the 

marginal cost accounting scheme that matches the available products and demand in perishable 

systems [6], [7].  

In general, there are two different ways to treat unmet demand at the end of each period, 

either backlog them (systems with backlogs) or lose them (systems with lost-sales). In 

backlogging problems, unmet demand is backlogged and should be satisfied in the next period 

while in lost-sales problems, unmet demand is lost. This difference impacts the period state 

transition and the amount of demand at the beginning of each period, which is zero in lost-sales 

problems and the number of backlogs in backlogging problems. Order capacity is another 

feature in the inventory problems, which can limit the order quantity in each period and, thus, 

affect the ordering policy and the total cost of the system. In this research, we consider both 

backlogging and lost-sales problems, with and without an order capacity constraint in each 

period. 

The optimal inventory policy for the multi-period inventory systems with a perishable 

product can be characterized using a dynamic program. However, the dimension of the dynamic 

program depends on the length of the lifetime, and the optimal order quantity depends on both 

the age distribution of the on-hand inventory and the time of the current period. Therefore, the 

dynamic problem usually has a very large number of state variables, action spaces and outcome 

spaces [1], and the computation of the program is usually intractable due to the “curse-of-

dimensionality”. Thus, many efforts were put into developing and examining effective and 

efficient heuristics to approximate the optimal policy. For example, the Look-Ahead (LA) 
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policy has been proposed for systems without perishable products [8] and the Dual-Balancing 

(DB) policy has been applied to both problems with and without perishable products [6], [7]. 

In this study, we first propose algorithms based on both DB and LA policies for the inventory 

control of the perishable products with limited order capacity. Then, we investigate the 

performance of the proposed algorithms using numerical examples. 

The main contributions of this thesis are summarized as follows. 

Algorithms. We use the marginal cost accounting scheme and nested structure to extend 

DB and LA policies for perishable inventory problems with different modeling features. When 

there is no order capacity constraint, the marginal cost accounting was presented in the literature 

[7], [9], and a nested structure was used to model problems with perishable products [7]. We 

extend the marginal cost accounting scheme and nested structure to perishable problems with 

an order capacity constraint in each period. 

Worst-case Performance Based on Numerical Examples. For a perishable inventory 

system without an order capacity constraint, the DB policy was proved to have a worst-case 

performance guarantee of two in the literature [10]. In this study, based on our numerical 

examples, we observe that the expected total costs under the LA policy in perishable systems 

without an order capacity constraint, as well as both DB and LA policies in systems with an 

order capacity constraint, are less than twice the optimal expected total cost. 

Performance of LA and DB Policies. We compare performance of both DB and LA 

policies in perishable inventory systems under different assumptions. We observe that in 

perishable inventory systems without an order capacity constraint, the LA policy has much 

better performance, on average, than the DB policy, under both backlogging and lost-sales 

assumptions. In problems with an order capacity constraint, while the LA policy outperforms 

the DB policy under the backlogging assumption, it does not always outperform the DB policy 

under the lost-sales assumption. 
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Truncated marginal holding cost. We introduce a new truncated marginal holding cost 

for the marginal cost accounting scheme. We show that with the truncated marginal holding 

cost, we do not need to consider the impact of one decision on the holding cost in all following 

periods. We also examine the effectiveness of this truncated marginal holding cost. 

The rest of this thesis is organized as follows. In Chapter 2, we review the literature related 

to the stochastic periodic-review perishable inventory systems and the DB and LA policies. In 

Chapter 3, we model a perishable inventory problem with both backlogs and lost-sales, with 

and without an order capacity constraint. In Chapter 4, we provide some insights into the 

perishable inventory systems. In Chapter 5, we conclude our results and present some possible 

directions for the future study. 
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2 Literature Review 

Stochastic periodic-review perishable inventory systems have attracted many researchers 

since 1960’s. At early stages, the focus of the studies was on developing optimal policies using 

dynamic programs. The fundamental characterization of the optimal ordering policy with a two-

period lifetime is provided by Nahmias and Pierskalla [11]. Then, Nahmias [12] and Fries [13] 

independently study the optimal policy for the general lifetime problem, focusing on 

backlogging and lost-sales problems, respectively. Nahmias [12] uses a per-unit outdating cost, 

ordering cost, holding cost, and per-unit per-period shortage cost, which is a “standard” cost 

structure [14]. They show that, due to perishability, the structure of the optimal policy is quite 

complex. Also, the computation of the optimal policy using a dynamic problem is tractable only 

if the lifetime of the product is short. This complexity of the optimal policy is reinforced by 

Cohen [15], who derives an explicit closed-form solution for a two-period problem, and 

discusses procedures to obtain the solution for the m-period case. 

Many researchers put effort into developing heuristic policies for both backlogging and 

lost-sales models, which would be easier to define and implement while remaining close to the 

optimal policy [14]. Brodheim et al. [16] evaluate a class of inventory policies and obtain some 

measures for the inventory system, such as the probability of shortage, as well as the easily 

computable bounds for the policies. Nahmias [17] proposes three heuristics, including the 

critical number and linear approximations, and compares their performance using a simulation 

model. 

Nahmias [18] constructs a bound on the outdating cost which is only a function of the total 

on-hand inventory, and develops a myopic policy by substituting the outdating cost with the 

bound. Then, Nahmias [19] compares the two models developed by Nahmias [12] and Fries [13] 

with the myopic policy, and shows that when the remaining periods in the horizon is more than 
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the lifetime, the optimal policy in Fries [13] is the same as a discounted version of the one 

characterized in Nahmias [12]. Nahmias [20] uses a bounded expected outdating function and 

a refined transfer function to approximate the problem, focusing on a two-period problem, 

which yields to a one-dimensional state variable. For problems with lost-sales, Nandakumar 

and Morton [21] derive upper and lower bounds for the order quantity in each period, and 

examine Nahmias’ approximations with a weighted average of the upper and lower bounds. 

The results show that all heuristics have good performance. Cooper [22] considers a fixed-

critical number ordering policy and derives new families of bounds on the expected number of 

outdates per period. The performance of the critical-number policies is close to the optimal 

policy based on his numerical study. Recently, Chen et al. [23] propose two heuristic policies 

for joint inventory and pricing control problems with both continuous and discrete demand, and 

both backlogging and lost-sales cases. They indicate some monotonicity properties of the 

optimal policy and identify bounds for the optimal order-up-to inventory level. Li et al. [24] 

analyze the optimal solution-structure of a two-period lifetime problem and develop a base-

stock/list-price heuristic policy. 

In addition to the above literature focusing on periodic-review perishable inventory 

systems, many other aspects of perishable inventory problems were considered as well. We 

refer readers to Kempf et al. [14] for a comprehensive literature review. 

Recently, Levi et al. [6] utilize a marginal cost accounting scheme and cost balancing idea 

to develop an approximate policy for stochastic periodic-review inventory problems, and 

propose a Dual-Balancing as well as a randomized Dual-Balancing algorithms. They show that 

both the Dual-Balancing and randomized Dual-Balancing policies have a worst-case 

performance guarantee of two. Then, Levi et al. [25] apply the marginal cost accounting scheme 

and cost balancing idea to a stochastic inventory problem with an order capacity constraint. For 

lost-sales problems, Levi et al. [10] prove that both the Dual-Balancing policy and randomized 
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Dual-Balancing policy have a worst-case performance guarantee of two. They also consider a 

capacitated model using forced lost-sales cost and prove that the Dual-Balancing policy has a 

worst-case performance guarantee of two, even when there is a capacity constraint on ordering 

in each period. The marginal cost accounting scheme and Dual-Balancing policy have been also 

used in perishable inventory systems. Chao et al. [7] develop the first approximation algorithm 

for a periodic-review perishable inventory system with a perishable product for both 

backlogging and lost-sales models. They propose a proportional-balancing policy and a dual-

balancing policy with discounted marginal holding cost, and indicate that both policies have a 

computational complexity of O(mT), which is very efficient compared to the optimal policy. 

Zhang et al. [9] develop a marginal-cost Dual-Balancing policy for a periodic-review, fixed-

lifetime perishable inventory control problem, and prove that it has a worst-case performance 

guarantee of two. This result works for both backlogging and lost-sales problems due to a zero 

lead time. Then, they prove that a myopic policy under the marginal cost accounting scheme 

provides a lower bound on the optimal ordering quantity, based on a given on-hand inventory. 

Another approach related to our study is the Look-Ahead optimization approach. Truong 

[8] studies a single-item, multi-period stochastic inventory problem and shows that the Look-

Ahead policy has a worst-case performance guarantee of two. Also, the Look-Ahead policy, on 

average, performs well within 3.9% of the optimal policy, compared to 19.7% for the Dual-

Balancing policy, based on the numerical study. 

 

 

  



8 

 

3 Models and Methodologies 

3.1 Perishable Inventory Systems 

We consider a periodic-review stochastic perishable inventory problem, in a finite 

planning horizon with T periods, where each period is denoted by t, t=1,…, T. We distinguish 

a random variable and its realization by using capital letters and lower case letters, respectively. 

The demand in period t is denoted by Dt, t=1,…, T, which is a random variable. 

At the beginning of each period t, an information set ft can be observed, containing the 

information we can have at that time. The information set has two parts: realized demands d1,…, 

dt-1, and all other information w1,…, wt related to the problem in each period. Thus, the 

information set ft is one specific realization of the random vector Ft=(D1,…, Dt-1; W1,…, Wt). 

Furthermore, when ft is observed, the future demands will have a known conditional joint 

distribution, including the upcoming current demand Dt, which means E[ | ]s

tD f  is well-

defined and finite for each period s, s=t,…, T. When we consider different policies, the 

information set ft and the conditional joint distribution is independent of a specific policy [6]. 

Let lead time be 0, so the units ordered in one period can arrive and become available to 

meet demand in the same period before demand occurs. We apply the first-ordered first-

consumed (FOFC) policy to calculate the on-hand inventory at the end of each period. This is 

a common assumption in perishable problems, because units in perishable problem have a 

lifetime, and those having a shorter remaining lifetime are usually used to satisfy customer 

demand prior to those arriving later. The lifetime of the product is denoted by m, m=2,…, T. 

This means that after one unit enters the system, it can stay for at most m periods if it has not 

been used to meet customer demand by the end of the m-th periods. For example, suppose there 

is no on-hand inventory at the beginning of period t, and qt units are ordered. These qt units 
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arrive in the current period t and are used to meet the demand dt. Let m equal to 3 and assume 

that the inventory level at the beginning of period t is zero. Then, if qt>dt+dt+1+dt+2, there will 

be still some excess units of qt at the end of period t+2. But, they cannot be retained in the 

system because they have been staying for 3 periods, t, t+1 and t+2. As a result, the remaining 

qt-(dt+dt+1+dt+2) units will perish and leave the system at the end of period t+2. On the other 

hand, if qt<dt+dt+1+dt+2, all qt units have been used before they reach their lifetime and perish. 

Some new units may arrive in period t+1 and t+2, but they need to be kept in the system before 

all qt units arriving in period t have been consumed, due to the FOFC policy. 

At the beginning of period t, the on-hand inventory consists of m-1 types of units, whose 

remaining lifetime is from m-1 periods to 1 period. Let xt,i represent the number of units having 

a remaining lifetime of i periods, i=1,…, m-1, in the inventory at the beginning of period t. 

Then, the total inventory at the beginning of period t is 
1 ,

1

mt t i

i
X x




 . Let non-negative 

integer qt denote the number of units ordered in period t. Because lead time is 0, the qt units 

will arrive and become available in current period t before demand occurs, with a lifetime of m 

periods. So in period t, the total inventory used to meet demand is Yt=Xt+qt, which is the base-

stock level in period t. 

As we discussed in Section 1, two general features of inventory problems in the literature 

are whether excess demand is backlogged or lost, and whether there is a limit on the ordering 

level in each period. In problems without an ordering capacity constraint, the number of ordered 

units can be any non-negative integer, but in problems with an ordering capacity constraint u, 

the order quantity cannot surpass the capacity limit. 

In a periodic-review stochastic perishable inventory control problem, several types of cost 

are incurred. A per-unit ordering cost ˆtc  occurs when one unit is ordered in period t. A per-

unit holding cost is denoted by ˆth , which occurs at the end of period t for each excess unit that 
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is still in inventory, representing a cost of keeping this unit from period t to t+1. These excess 

units can be held in inventory for a long time if the demands in the following periods are not 

high enough to consume all available units. Also, because one unit can stay in the system for at 

most m periods, the holding cost incurred by one order occurs in at most m-1 following periods. 

If the demand in period t cannot be satisfied immediately, there will be a penalty, which is ˆtb  

per unit of unsatisfied demand. This cost has different meanings in the backlogging and lost-

sales problems. In a backlogging problem, the unsatisfied demand is backlogged in the system 

and can be eliminated by ordering more in the following period. Therefore, this penalty means 

the compensation to the unsatisfied demand and will exist in only one period, if there is no 

ordering capacity constraint. Systems with an ordering capacity constraint in each period will 

be discussed in more detail later. In a lost-sales problem, the unfulfilled demand will leave the 

system at the end of the period. Thus, the penalty is the loss of value caused by the unsatisfied 

demand and will occur once. For simplicity, the per-unit penalty in both types of problems are 

denoted by ˆtb . The fourth cost in a perishable problem is a per-unit outdating cost ˆ to . It occurs 

when a unit has been in the system for m periods and perishes, before been used to meet demand. 

3.1.1 System Evolution in Each Period 

4.1.2.1 Systems with Backlogs and No Ordering Capacity Constraint 

In this section, we discuss a complete process of a perishable inventory system with 

backlogs, integer demand and order quantity, and no ordering capacity constraint. 

1. At the beginning of period t, t=1,…, T, information set ft and on-hand inventory xt,i, i=1,…, 

m-1, are observed, where 

,

, 1 ,

,

0, 1

0, 0, {2, , }, means backlo

1,  

gs in period 1

{2, , }, means

, 1

1,  , 2

1, no backlogs in period 10  1, ,

t i

t m t i

t i

x i t

x x t T t

t

m

i m

i m T tx



  

  

 

  


   
   

. 

Therefore, the total inventory level is 
1 ,

1

mt t i

i
X x




 . The conditional joint distribution of 
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upcoming demand Dt is known based on the information set ft. 

2. The system orders qt units, and they arrive and become available, having a lifetime of m 

periods. In systems without an ordering capacity constraint, the feasible range of qt is 

{0, , } . The total cost of ordering is ˆt tc q . Also, the on-hand inventory level increases 

from Xt to Yt=Xt+qt. 

3. Demand dt occurs, and the on-hand inventory is used to meet this demand. The xt,1 units 

having only 1-period lifetime, are consumed first. If xt,1>dt, the remaining xt,1-dt units will 

perish and an outdating cost of 
,1ˆ ( )t t to x d  occurs. Otherwise, the xt,2 units having 2-

period lifetime are used to meet the excess dt-xt,1 units of demand, and so on, until all 

inventory is consumed. If dt>Yt, the demand cannot be satisfied completely by the current 

inventory. The remaining dt-Yt units of demand becomes backlogs that need to be met in 

period t+1, with a backlogging penalty of ˆ ( )t t tb d Y . If dt<Yt, the remaining Yt-dt units 

result in a holding cost of ˆ ( )t t th Y d . 

4. At the end of period t, the remaining lifetime of the excess units of the on-hand inventory 

decreases by 1 period. Note that if  1, ,

1

it i t t j

j
x d x





  , where max{ ,0}x x  , all xt,i 

units will be used to meet demand. Otherwise,  1, ,

1

it i t t j

j
x d x





   units remain for 

period t+1, becoming xt+1,i-1, i=2,…, m-1. In period t, the qt units have a lifetime of m periods, 

and they will meet the excess demand after all Xt have been used. Therefore, in a 

backlogging problem, if  1 ,

1

mt t t j

j
q d x





  , backlogs occur and the number of 

backlogs is  1 ,

1

mt t t j

j
q d x





  . These backlogs will retain in the system for period t+1 

as a negative inventory. So the new inventory level at the beginning of period t+1 can be 

calculated using (similar to Eq. (1) in [7]) 
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1, , 1 ,

1

1
1, 1 ,

1

, {1, , 2},

.

i
t i t i t t j

j

m
t m t t t j

j

x x d x i m

x q d x




 






 



  
      
   

 
   

 





    (1) 

Then, dt will be added into ft+1, which will be the given information for period t+1, as well 

as xt+1,i, i=1, …, m-1. 

4.1.2.2 Systems with Lost-Sales and No Ordering Capacity Constraint 

The process of a lost-sales problem without an order capacity constraint can be considered 

as follows. 

1. At the beginning of period t, t=1, …, T, information set ft and on-hand inventory xt,i are 

observed, where 

,

,

1,  , 1

1,  ,

0, 1

{2, , }0, 1

t i

t i

i m

i tx m

x t

T

  



  

 






. 

The total inventory level is 
1 ,

1

mt t i

i
X x




 . The conditional joint distribution of the 

upcoming demand Dt is known based on the information set ft. 

2. The system orders qt units, and they arrive and become available, having a lifetime of m 

periods. In systems without an order capacity constraint, the feasible range of qt is 

{0, , } . The total cost of ordering is ˆt tc q . Also, the on-hand inventory level increases 

from Xt to Yt=Xt+qt. 

3. Demand dt occurs, and the on-hand inventory is used to meet this demand. The xt,1 units 

having only 1-period lifetime are consumed first. If xt,1>dt, the remaining xt,1-dt units will 

perish and an outdating cost of 
,1ˆ ( )t t to x d  occurs. Otherwise, the xt,2 units having 2-

period lifetime are used to meet the excess dt-xt,1 units of demand, and so on, until all 

inventory is consumed. If dt>Yt, the demand cannot be satisfied completely by the current 

inventory. The remaining dt-Yt units of demand will be lost and leave the system, with a 
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lost-sales penalty of ˆ ( )t t tb d Y . If dt<Yt, the remaining Yt-dt units result in a holding cost 

of ˆ ( )t t th Y d . 

4. At the end of period t, the remaining lifetime of the excess units of the on-hand inventory 

decreases by 1 period. Note that if  1, ,

1

it i t t j

j
x d x





  , all xt,i units will be used to meet 

demand. Otherwise,  1, ,

1

it i t t j

j
x d x





   units remain for period t+1, becoming xt+1,i-1, 

i=2,…, m-1. In period t, the qt units have a lifetime of m periods, and they will meet the 

excess demand after all Xt have been used. Therefore, in a lost-sales problem, if 

 1 ,

1

mt t t j

j
q d x





  , the excess demand will leave the system. If  1 ,

1

mt t t j

j
q d x





  , 

the  1 ,

1

mt t t j

j
q d x





   remaining units will become xt+1,m-1. So the new inventory level 

at the beginning of period t+1 can be calculated using (similar to Eq. (18) in [7]) 

1, , 1 ,

1

1
1, 1 ,

1

, {1, , 2},

.

i
t i t i t t j

j

m
t m t t t j

j

x x d x i m

x q d x




 







 



  
      
   

  
    
   





    (2) 

4.1.2.3 Systems with Backlogs and an Ordering Capacity Constraint 

In a backlogging problem with an order capacity constraint, the order quantity is limited 

and the complete process in period t can be listed as follows. 

1. At the beginning of period t, t=1, …, T, information set ft and on-hand inventory xt,i, i=1, …, 

m-1, are observed, where 

,

, 1 ,

,

0, 1

0, 0, {2, , }, means backlo

1,  

gs in period 1

{2, , }, means

, 1

1,  , 2

1, no backlogs in period 10  1, ,

t i

t m t i

t i

x i t

x x t T t

t

m

i m

i m T tx



  

  

 

  


   
   

. 

The total inventory level is 
1 ,

1

mt t i

i
X x




 and the conditional joint distribution of 

upcoming demand Dt is known based on the information set ft. 

2. The system orders qt units, and they arrive and become available, having a lifetime of m 
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periods. In a system with an order capacity constraint u, the feasible range of qt is  

{0, , }tu . The total cost of ordering is ˆt tc q . Also, the on-hand inventory level increases 

from Xt to Yt=Xt+qt. 

3. Demand dt occurs, and the on-hand inventory is used to meet this demand. The xt,1 units 

having only 1-period lifetime are consumed first. If xt,1>dt, the remaining xt,1-dt units will 

perish and an outdating cost of 
,1ˆ ( )t t to x d  occurs. Otherwise, the xt,2 units having 2-

period lifetime are used to meet the excess dt-xt,1 units of demand, and so on, until all 

inventory is consumed. If dt>Yt, the demand cannot be satisfied completely using the 

current inventory. Therefore, the remaining dt-Yt units of demand becomes backlogs that 

need to be met in period t+1, and a backlogging penalty of ˆ ( )t t tb d Y  occurs. If dt<Yt, 

the remaining Yt-dt units result in a holding cost of ˆ ( )t t th Y d . 

4. At the end of period t, the remaining lifetime of the excess units of the on-hand inventory 

decreases by 1 period. Note that if  1, ,

1

it i t t j

j
x d x





  , all xt,i units will be used to meet 

demand. Otherwise,  1, ,

1

it i t t j

j
x d x





   units remain for period t+1, becoming xt+1,i-1, 

i=2, …, m-1. In period t, the qt units have a lifetime of m periods, and they will meet the 

excess demand after all Xt have been used. Therefore, in a backlogging problem, if 

 1 ,

1

mt t t j

j
q d x





  , backlogs occur and the number of backlogs is 

 1 ,

1

mt t t j

j
q d x





  . These backlogs will retain in the system for period t+1 as a 

negative inventory. So the new inventory level at the beginning of period t+1 can be 

calculated using (similar to Eq. (1)) 

1, , 1 ,

1

1
1, 1 ,

1

, {1, , 2},

.

i
t i t i t t j

j

m
t m t t t j

j

x x d x i m

x q d x




 






 



  
      
   

 
   

 




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4.1.2.4 Systems with Lost-Sales and an Ordering Capacity Constraint 

The process of a lost-sales problem with an order capacity constraint can be considered as 

follows. 

1. At the beginning of period t, t=1, …, T, information set ft and on-hand inventory xt,i are 

observed, where 

,

,

1,  , 1

1,  ,

0, 1

{2, , }0, 1

t i

t i

i m

i tx m

x t

T

  



  

 






. 

Then total inventory level is 
1 ,

1

mt t i

i
X x




  and the conditional joint distribution of the 

upcoming demand Dt is known based on the information set ft. 

2. The system orders qt units, and they arrive and become available, having a lifetime of m 

periods. In a system with an order capacity constraint u, the feasible range of qt is  

{0, , }tu . The total cost of ordering is ˆt tc q . Also, the on-hand inventory level increases 

from Xt to Yt=Xt+qt. 

3. Demand dt occurs, and the on-hand inventory is used to meet this demand. The xt,1 units 

having only 1-period lifetime are consumed first. If xt,1>dt, the remaining xt,1-dt units will 

perish and an outdating cost of 
,1ˆ ( )t t to x d  occurs. Otherwise, the xt,2 units having 2-

period lifetime are used to meet the excess dt-xt,1 units of demand, and so on, until all 

inventory is consumed. If dt>Yt, the demand cannot be satisfied completely using the 

current inventory. Therefore, the remaining dt-Yt units of demand will be lost and leave the 

system, with a lost-sales penalty of ˆ ( )t t tb d Y . If dt<Yt, the remaining Yt-dt units result in 

a holding cost of ˆ ( )t t th Y d . 

4. At the end of period t, the remaining lifetime of the excess units of the on-hand inventory 

decreases by 1 period. Note that if  1, ,

1

it i t t j

j
x d x





  , all xt,i units will be used to meet 

demand. Otherwise,  1, ,

1

it i t t j

j
x d x





   units remain for period t+1, becoming xt+1,i-1, 
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i=2, …, m-1. In period t, the qt units have a lifetime of m periods, and they will meet the 

excess demand after all Xt have been used. Therefore, in a lost-sales problem, if 

 1 ,

1

mt t t j

j
q d x





  , the excess demand will leave the system. If  1 ,

1

mt t t j

j
q d x





  , 

the  1 ,

1

mt t t j

j
q d x





   remaining units of qt will become xt+1,m-1. Therefore, the new 

inventory level at the beginning of period t+1 can be calculated using (similar to Eq. (2)) 

1, , 1 ,

1

1
1, 1 ,

1

, {1, , 2},

.

i
t i t i t t j

j

m
t m t t t j

j

x x d x i m

x q d x




 







 



  
      
   

  
    
   





 

3.1.2 Objective 

We consider a finite horizon problem with T periods. The total cost occurring in each 

period includes holding, backlogging/lost-sales penalty, and outdating costs. At the beginning 

of period t, the information set ft and on-hand inventory xt,i, i=1, …, m-1 are observed, and order 

quantity qt is determined, which causes an ordering cost of ˆt tc q . The holding cost occurs when 

there are some units left after fulfilling the demand, which means that Yt-dt>0. Therefore, the 

holding cost in period t is ˆ ( )t t th Y D  . If Yt-dt<0, not all demands are satisfied, and a 

backlogging/lost-sales penalty of ˆ ( )t t tb D Y   occurs. Also, in each period, perishable units 

cause an outdating cost of 
,1ˆ ( )t t to x D  . Let α, 0 1  , denote the discount factor. Then, 

because demand in each period is uncertain, the expected total cost in period t under policy P 

can be obtained using 

1 ,1ˆ ˆˆ ˆ(P) E ( ) ( ) ( ) |t t t t t t t t t t t t t

tS c q h Y D b D Y o x D f           
  , 

where 
1 ,

1

mt t i t

i
Y x q




  . 

At the end of T periods, some units may remain in the system, which can be sold in a 

salvage market. Let v̂  denote the per-unit salvage value. Then, the total salvage value at the 
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end of T periods is 
1 1,

1
ˆ

mT T i

i
v x

 

 . The objective is to find the optimal policy based on the 

information set ft and on-hand inventory xt,i, i=1, …, m-1, that minimizes the expected total cost 

over T periods (similar to Eq. (2) in [7]): 

 

1
1,

1 1

1
1 ,1 1,

1 1

(P)

ˆ= (P) E

ˆ ˆˆ ˆ ˆE ( ) ( ) ( ) .

T m
t T T i

t i

T m
t t t t t t t t t t t t T T i

t i

C

S v x

c q h Y D b D Y o x D v x



 




 


    

 

 
  

 

 
        

 

 

 

    (3) 

3.1.3 Cost Transformation 

Suppose that all per-unit costs are constant over the T periods and denote ĉ , ĥ , b̂  and 

ô  as the constant per-unit ordering cost, holding cost, backlogging/lost-sales penalty and 

outdating cost. Then, 

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ, , , , {1, , }t t t tc c h h b b o o t T     . 

A cost transformation can be carried out to make ordering cost c=0. Let salvage value v̂

be equal to ĉ , and set non-negative cost parameters to c=0, ˆ ˆ(1 )h h c   , ˆ ˆ(1 )b b c    

and ˆ ˆo o c  . Then, it has been proved that the expected total cost described in (3) can be 

rewritten as (see Proposition 1 in [7]) 

 1 ,1 1

1 1

ˆ(P) E ( ) ( ) ( ) E
T T

t t t t t t t t t

t t

C h Y D b D Y o x D c D     

 

 
          

 
  . 

Note that 1

1
ˆE

T t t

t
c D 


    is a constant and does not depend on the inventory policy. To 

simplify the notation, we let α=1 and only consider the expected cost per period and expected 

total cost as: 

 

 

,1

,1

1 1

(P) E ( ) ( ) ( ) | ,

(P) (P)=E ( ) ( ) ( ) | .

t t t t t t t

t

T T
t t t t t t t

t

t t

S h Y D b D Y o x D f

C S h Y D b D Y o x D f

  

  

 

      
 

 
      

 
 
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3.2 Dynamic Programming Approach 

Dynamic programming approach is usually used to describe a multi-period stochastic 

inventory control problem, which is defined recursively and determines the order quantity qt in 

period t to minimize the expected total cost over the time horizon. Note that the state at the 

beginning of period t consists of the information set ft and the on-hand inventory xt,i, i=1, …, 

m-1, and the expected cost in period t is 

 ,1(P) E ( ) ( ) ( ) |t t t t t t t

tS h Y D b D Y o x D f        
  . 

Let 
,1 , 1( , , , )t t m

t tV x x f
 denote the optimal expected cost over periods t to T, and suppose 

that 
,1 , 1( , , , )j j m

j jV x x f
, j=t+1,…, T, have been calculated. The Bellman formulation for 

calculating the optimal expected cost in period t for the perishable inventory problem without 

an order capacity constraint is 

 

,1 , 1

1,1 1, 1

1 1
{0, , }

,1

1,1 1, 1{0, , }
1 1

( , , , )

min E ( , , , ) |

E ( ) ( ) ( ) |
min ,

E ( , , , ) |

t

t

t t m

t t

t t t m

t t t
q

t t t t t t

t

t t mq
t t t

V x x f

S V x x F f

h Y D b D Y o x D f

V x x F f



  

 
 

  

   
 

    

        
  

    

 

and for the perishable inventory problem with an order capacity constraint is 

 

,1 , 1

1,1 1, 1

1 1
{0, , }

,1

1,1 1, 1{0, , }
1 1

( , , , )

min E ( , , , ) |

E ( ) ( ) ( ) |
min .

E ( , , , ) |

t t

t t

t t m

t t

t t t m

t t t
q u

t t t t t t

t

t t mq u
t t t

V x x f

S V x x F f

h Y D b D Y o x D f

V x x F f



  

 


  

  
 

    

        
  

    

 

Considering Eq. (1) and (2), the state transition equations for a problem with backlogs are 

1, , 1 ,

1

1
1, 1 ,

1

, {1, , 2},

,

i
t i t i t t j

j

m
t m t t t j

j

x x D x i m

x q D x




 






 



  
      
   

 
   

 





 

and for a problem with lost-sales are 
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1, , 1 ,

1

1
1, 1 ,

1

, {1, , 2},

.

i
t i t i t t j

j

m
t m t t t j

j

x x d x i m

x q d x




 







 



  
      
   

  
    
   





 

Due to the curse-of-dimensionality, solving the dynamic program discussed above to 

obtain the optimal order quantity in each period is not straightforward [6]. Therefore, in the 

next section, we propose two simple efficient policies based on the marginal cost accounting 

scheme to approximate the optimal inventory level at the beginning of each period. 

3.3 Heuristic Policies 

3.3.1 Marginal Cost Accounting 

In the marginal cost accounting scheme, the cost incurred by a decision is not considered 

periodically. Instead, the total cost incurred by one decision over all the periods from when the 

decision is made to the end of the planning horizon is calculated. There are three different types 

of costs caused by ordering qt units in period t, which are the holding, backlogging/lost-sales 

penalty, and outdating costs. When they occur, the number of periods they will last for depends 

on the specific model assumptions. Also, note that the cost occurring in one period may contain 

the marginal costs caused by decisions made in previous periods. In this section, we first 

characterize these marginal costs. 

Recall that the FOFC policy is applied here, meaning that units ordered earlier should be 

used to satisfy demand prior to those ordered later. One important feature about using the 

marginal cost accounting is that once one decision is made, the costs caused by it from the 

current period to the end of the planning horizon are only affected by the demand, but not the 

decisions in the subsequent periods. This feature ensures that the expected total costs associated 

to different decisions can be obtained before the decision is made, so we can compare the 
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different decisions and their corresponding expected total costs, and choose the best one. 

3.3.1.1 Systems with Backlogs and No Ordering Capacity Constraint 

a) Marginal holding cost accounting 

Holding cost occurs when some units have not been consumed at the end of one period. 

Let the order quantity in period t be qt. Because these qt units have a lifetime of m periods in a 

perishable problem when they become available, they can stay in the system for at most m 

periods, from period t to t+m-1, if they are not used to meet demand. Therefore, in the marginal 

holding cost accounting, the holding cost incurred by these qt units may occurs at most from 

period t to period t+m-1. In order to calculate the marginal holding cost incurred by these qt 

units, we need to know how many units of these qt units can retain in the system at the end of 

each period. 

Recall that at the beginning of period t, the on-hand available inventory is 
1 ,

1

mt t i

i
X x




 . 

These Xt units need to be consumed prior to qt due to the FOFC policy. Therefore, whether qt 

units will be used in period t depends on the sign of Dt-Xt. If Dt-Xt>0, the on-hand inventory is 

not enough to meet demand in period t, thus, some units of qt are needed. If Dt-Xt≤0, all qt units 

will be kept in the system for the next period. Therefore, the remaining units of qt at the end of 

period t is 

1
,

1

m
t t t i

i

q D x








  
      

 . 

In period t+1, after unused units of xt,1, if there are any, have perished, the number of unmet 

Dt is 
,1( )t tD x  , which will be met by 

1 ,

2

m t i

i
x



 . Then, Dt+1 occurs and this will also be met 

by 
1 ,

2

m t i

i
x



  before qt is used. Therefore, the remaining units of qt at the end of period t+1 is 

 
1

1 ,1 ,

2

m
t t t t t i

i

q D D x x











  
        

 . 

The number of remaining units of qt at the end of period t+2,…, t+m-1 can be calculated 
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similarly. For the simplicity of expression, a nested structure is used to describe these results 

(see e.g., [7]). Let ( , )t tB ix  denote the outstanding demand in period t+i-1 after the units 

having a lifetime of i periods or less have been depleted. Then, (similar to Eq. (5) in [7]) 

 1 ,

0 0
( , ) :

( , 1) {1, , 1}

t t

t i t t t i

i
B i

D B i x i m


 


 

    

x
x

.    (4) 

Therefore, the number of remaining units of qt at the end of period j, j=t,…, t+m-1, can be 

calculated, using 

 
1

,

1

,
m

t j t t t i

i j t

q D B j t x






  

  
     
   

x . 

Considering that there are T periods in the horizon, the total marginal holding cost over 

period t to t+m-1 incurred by ordering qt units in period t can be defined as (similar to Eq. (4) 

in [7]) 

( 1) 1
,

1

( ) : ( , )
t m T m

t t t j t t t i

j t i j t

H q h q D B j t x




   

   

  
      
   

 x , 

where min{ , }x y x y  . 

In practical situations, a truncated marginal holding cost can be calculated. Instead of 

adding all holding cost incurred by qt from period t to ( 1)t m T   , the truncated marginal 

holding cost considers the holding cost from period t to t+l-1, l=1, …, m. Let 
, ( )t l tH q , l=1, …, 

m, denote the truncated marginal holding cost , which represents the marginal holding cost 

incurred by qt over periods t to ( 1)t m T   . 

When l=1, only the marginal holding cost in period t is considered. Thus, the truncated 

marginal holding cost incurred by qt in period t with l=1 is 

1
,1 ,

1

( )
m

t t t t t i

i

H q h q D x








  
       

 . 

When l=2 and t<T, 
,2 ( )t tH q  can be obtained by adding the marginal holding cost in period t 
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and t+1, which is 

 

,2

( 1) 1
,

2

1 1
, 1 ,1 ,

1 2

( )

( , )

.

t t

t T m
t j t t t i

j t i

m m
t t t i t t t t t i

i i

H q

h q D B j t x

h q D x h q D D x x


  

 

 
 

 




 

  
         

      
                      

 

 

x  

If t=T, we only need to consider the marginal holding cost in period T, and it is easy to see that 

in period T, no matter what l is, the truncated marginal holding cost will be 

1
, ,

1

( )
m

T l T T T T i

i

H q h q D x








  
       

 . 

For l=3,…, m-1, the truncated marginal holding cost can be obtained using a similar method, 

and when l=m, the truncated marginal holding cost is exactly equal to the marginal holding cost. 

In general, the truncated marginal holding cost is 

( 1) 1
, ,

1

( ) : ( , ) , {1, , }
t l T m

t l t t j t t t i

j t i j t

H q h q D B j t x l m




   

   

  
       
   

 x . 

    An intuitive explanation for the truncated marginal holding cost is that because the 

ordering cost is constant, ordering more in one period for the future demand will cost more than 

ordering in future periods. Therefore, there is no motivation to order more in the current period 

for the future demand unless the variability of demand is high. Hereafter, we will use 
, ( )t l tH q , 

l=1,…, m, instead of ( )t tH q . 

b) Marginal backlogging penalty accounting 

The marginal backlogging penalty caused by ordering qt units only occurs in period t in a 

backlogging problem without an order capacity constraint. Before the demand is observed, the 

available on-hand inventory that can be used to meet the demand is 
1 ,

1

m t i t

i
x q




 . Therefore, 

the unsatisfied demand is 
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1
,

1

m
t t i t

i

D x q






 
  

 
 , 

and the marginal backlogging penalty is (similar to Eq. (7) in [7]) 

1
,

1

( ) :
m

t t t t i t

i

q b D x q






 
    

 
 .    (5) 

c) Marginal outdating cost accounting 

The marginal outdating cost incurred by ordering qt in period t occurs in period t+m-1 if 

these qt units have not been consumed completely by the end of period t+m-1. This outdating 

cost can only be incurred by orders placed from period t to T-m+1 due to the m-period lifetime. 

The units arriving in period T-m+2 to T will have not reached their lifetime of m periods by the 

end of period T, so the outdating cost for these orders is 0. 

For the qt units ordered in period t, t=1,…, T-m+1, they will be used to meet demand only 

when all 
1 ,

1

m t i

i
x



  have been used up. Note that xt,i units have a lifetime of i periods, so they 

will perish and leave the system at the end of period t+i-1 if they have not been used by then. 

Therefore, the nested structure in the marginal holding cost is also needed to calculate the 

outdating cost. With the same definition of ( , )t tB ix  given in the marginal holding cost, the 

marginal outdating cost can be obtained using (similar to eq. (6) in [7]) 

 1( ) : ( , 1) , {1, , 1}t t t t m t tO q o q D B m t T m


       x .    (6) 

3.3.1.2 Systems with Lost-Sales and No Ordering Capacity Constraint 

a) Marginal holding cost accounting 

The difference between systems with backlog and lost-sales is the way the excess demand 

is treated. However, holding cost only occurs when excess inventory exists. In period t, if the 

on-hand inventory 
1 ,

1

m t i t

i
x q




  is larger than dt, there will be no excess demand at the end 

of the period. Therefore, the truncated marginal holding cost in lost-sales problems without an 
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order capacity constraint is  

( 1) 1
, ,

1

( ) : ( , ) , {1, , }
t l T m

t l t t j t t t i

j t i j t

H q h q D B j t x l m




   

   

  
       
   

 x . 

b) Marginal lost-sales penalty accounting 

When the demand in period t is not satisfied completely, the excess part is lost at the end 

of period t and leads to a lost-sales penalty. This lost-sales penalty only occurs once at the end 

of period t. Although in a backlogging problem this excess demand retain in the system, the 

calculation of the amount of the excess demand is the same for both systems with backlogs and 

lost-sales, which is 

1
,

1

m
t t i t

i

D x q






 
  

 
 . 

Therefore, the marginal lost-sales penalty for ordering qt units in period t is (see Eq. (5)) 

1
,

1

( ) :
m

t t t t i t

i

q b D x q






 
    

 
 . 

c) Marginal outdating cost accounting 

The marginal outdating cost incurred by ordering qt in period t occurs in period t+m-1 if 

these qt units have not been consumed completely by the end of period t+m-1. If an outdating 

cost occurs, the calculation is the same as the one given in Section 3.3.1.1, which is (see Eq. 

(6)) 

 1( ) : ( , 1) , {1, , 1}t t t t m t tO q o q D B m t T m


       x . 

3.3.1.3 Systems with Backlogs and an Ordering Capacity Constraint 

a) Marginal holding cost accounting 

For any given order quantity at the beginning of period t, qt, the available inventory at the 

beginning of period t is 
1 ,

1

m t i t

i
x q




 . Therefore, the truncated marginal holding cost, which 

is based on the available inventory and observed demand, follows the discussion in Section 
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3.3.1.1 and can be obtained using 

( 1) 1
, ,

1

( ) : ( , ) , {1, , }
t l T m

t l t t j t t t i

j t i j t

H q h q D B j t x l m




   

   

  
       
   

 x . 

b) Marginal backlogging penalty accounting 

To obtain the marginal backlogging penalty in systems with an ordering capacity 

constraint, a forced shortage is introduced in [25]. Note that if the order capacity in period t, ut, 

is less than the order quantity 
t

Pq  under policy P in a problem without an ordering capacity 

constraint, the order capacity makes qt to be less than 
t

Pq . Therefore, the number of backlogs 

that should be considered to calculate the backlogging penalty is not  1 ,

1

mt t i t

i
D x q




  , 

because the order quantity qt cannot reach 
t

Pq  due to the capacity constraint. Also, the penalty 

of the unsatisfied demand beyond ut cannot be calculated as the backlogging penalty caused by 

the decision of ordering qt units. Let 
tq  denote the slack capacity in period t, where 

t t tq u q  , 0 t tq u  . In period t, we use a forced shortage, which is the number of units 

that could have been ordered more to avoid the backlogging penalty, to calculate the cost of the 

backlogs, instead of comparing the available inventory and demand directly. Let Wt,s denote the 

forced shortage, which occurs in period s, s=t,…, T, because of the ordering decision in period 

t. Then, when s=t, we get 

1
, ,

1

min ,
m

t t t t t i t

i

W q D x q






   
    

   
 .    (7) 

If all demand in period t is satisfied, or we order ut units in period t, Wt,t will be 0. 

If backlog occurs in period t, the capacity ut+1 should be considered to see whether the sum 

of the backlogs and new demand dt+1 in period t+1 can be satisfied by ordering qt+1 units under 

the order capacity ut+1. If so, no backlog will exist at the end of period t+1. If not, backlogs from 

period t should be satisfied with a higher priority due to the FOFC policy. After xt,1 units have 
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perished at the end of period t, the remaining demand is  ,1t tD x


 , and the inventory is 

1 ,

2

m t i t

i
x q




 . Suppose that ut+1 units are ordered in period t+1. Then, the available inventory 

increases to 
1 , 1

2

m t i t t

i
x q u

 


  . After demand Dt+1 is observed, the total demand in period 

t+1 increases to  1 ,1t t tD D x


   . Comparing the available inventory and demand, if 

 
11 ,1 , 1

2

mt t t t i t t

i
D D x x q u

  


     , ordering qt units in period t causes no backlogging 

penalty in period t+1. Otherwise, ordering qt units in period t is not enough to meet the 

cumulative demand [ , 1]t tD  , where 
[ , ] st s i

i t
D D


 , s=t,…, T, even though the units of the 

maximum feasible order quantity ut+1 are ordered in period t+1. Note that 

    11 ,1 , 1

2

mt t t t i t t

i
D D x x q u


  


      is the shortage of inventory in period t+1. Similar 

to period t, we compare this value with the slack capacity 
tq  to determine the forced shortage 

caused by ordering qt units, which is 

 
1

, 1 1 ,1 , 1

2

min ,
m

t t t t t t t i t t

i

W q D D x x q u





  



    
        

    
 . 

Because ut+1 is the maximum feasible order quantity in period t+1, the forced shortage Wt,t+1 

using ut+1 is not larger than that using other order quantities under the ordering capacity 

constraint in period t+1. 

    The analysis for the subsequent periods to period t+1 is similar. We define a new vector 

t
x , which consists of units that are already in the inventory in period t and that will come into 

the inventory, as 

 ,1 , 1 1: , , ; ; , ,t t t m t t Tx x q u u x , 

where t=1,…, T-1. If t=T, no ut units will be ordered by the end of T periods, so we have 

 ,1 , 1: , , ;T T T m Tx x qx . 

Note that 
t

x  consists of inventory xt,i, qt and order capacity uj, for j=t+1,...,T. Therefore, there 

are T-t+m components in total. The orders of qt and uj, j=t+1,...,T, units are placed from period 
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t to T, from when they will have a lifetime of m periods. We can consider the periods from t to 

the period when the qt and uj, j=t+1,...,T, units are ordered as an extra lifetime for these units. 

For example, consider period t and assume that ut+1 units will be ordered in period t+1. The one 

period from t to t+1 can be considered as an extra lifetime for the ut+1 units. Thus, in period t, 

we can think that the ut+1 units have a lifetime of m+1 periods. Therefore, generally, in period 

t, the 
,t Ix  units, I=1,…,T-t+m, have a lifetime from 1 period to T-t+m periods. But, when they 

come into the inventory and become available, they all have a lifetime of only m periods. Then, 

we modify the definition of ( , )t tB ix  in Eq. (4) to ( , )t tB Ix , using t
x  and I, as 

   1 ,

0 0
( , ) :

( , 1) 1, ,

t t

t I t t t I

I
B I

D B I x I T t m


 


 

     

x
x

. 

Note that ( , )t tB Ix  denotes the outstanding demand in period t+I-1 after the units having a 

lifetime of I periods or less have been depleted, similar to ( , )t tB ix . The difference between 

( , )t tB Ix  and ( , )t tB ix  is that the former considers order quantities placed in periods t+1,…, 

T. Therefore, a general expression for the forced shortage in period s, s=t,…, T, which is caused 

by ordering qt units in period t is 

, ,

1

min , ( , ) , { , , }
s t m

t s t s t t t I

I s t

W q D B s t x s t T


 

  

   
      

   
x , 

and the corresponding backlogging penalty in the problem with an order capacity constraint is 

,( ) :
T

t t t s

s t

q b W


   . 

c) Marginal outdating cost accounting 

In a backlogging problem with an order capacity constraint, the order capacity does not 

impact the calculation of the marginal outdating cost. If the order quantity is smaller than that 

in a problem without an order capacity constraint, the probability of outdating decreases. 

Therefore, the outdating cost can be calculated using (see Eq. (6)) 
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 1( ) : ( , 1) , {1, , 1}t t t t m t tO q o q D B m t T m


       x . 

3.3.1.4 Systems with Lost-Sales and an Ordering Capacity Constraint 

a) Marginal holding cost accounting 

The derivation of the truncated marginal holding cost is based on the available inventory 

at the beginning of a period and observed demand during that period. Therefore, following the 

discussion in Section 3.3.1.1, we get 

( 1) 1
, ,

1

( ) : ( , ) , {1, , }
t l T m

t l t t j t t t i

j t i j t

H q h q D B j t x l m




   

   

  
       
   

 x . 

b) Marginal lost-sales penalty accounting 

In a lost-sales problem with an order capacity constraint, similar to Section 3.3.1.3, the 

excess demand in period t cannot be used to calculate the lost-sales penalty incurred by ordering 

qt units in period t directly. This is because this excess demand may surpass the difference 

between qt and the order capacity ut. Therefore, the forced shortage is needed to obtain the 

marginal lost-sales penalty. Similar to the backlogging problem with an ordering capacity 

constraint, if we always order at the capacity level in period s, s=t+1,…, T, and unsatisfied 

demand occurs in a period, this lost-sales penalty is associated to the shortage in period t. 

In period t, the excess demand is  1 ,

1

mt t i t

i
D x q





  . We compare this excess demand 

with the slack capacity 
t t tq u q  , 0 t tq u  , to determine the exact lost-sales quantity that 

is caused by ordering qt units in period t, which is (see Eq. (7)) 

1
, ,

1

min ,
m

t t t t t i t

i

W q D x q






   
    

   
 . 

Because the excess demand will be lost in a lost-sales problem, so in period t+1 the only demand 

that needs to be met is Dt+1. Note that the unused units of xt,1 will perish at the end of period t, 

and should be deducted from the inventory. Therefore, at the end of period t, after xt,1 units have 

perished, the excess inventory is 
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 
1

, ,1

1

m
t i t t t t

i

x q D x D








 
    

 
 . 

Therefore, if we order ut+1 units in period t+1 before Dt+1 is observed, the inventory level 

increases to 

 
1

, ,1 1

1

m
t i t t t t t

i

x q D x D u









 
     

 
 , 

and the shortage in period t+1 is 

 
1

1 , ,1 1

1

m
t t i t t t t t

i

D x q D x D u







 



  
          
 . 

Similar to period t, the forced shortage in period t+1 caused by ordering qt units in period t is 

 
1

, 1 1 , ,1 1

1

min ,
m

t t t t t i t t t t t

i

W q D x q D x D u







  



    
              

 . 

In order to calculate the forced shortage in each period, we use a nested structure as well. 

Recall that the vector t
x  defined in Section 3.3.1.3 is 

 

 

,1 , 1 1

,1 , 1

, , ; ; , , {1, , 1}
:

, , ;

t t m t t T

t

T T m T

x x q u u t T

x x q t T

 



  
 



x . 

We define ( , )tG Ix  as 

    , 1

0 0

( , ) :
( , 1) 1, ,

t

t I t t I

I

G I
x G I D I T t m




 




 
      



x
x

. 

( , )tG Ix  is the remaining quantity of 
,t Ix  units after meeting demand Dt+I-1 and before they 

perish in period t+I-1. If ( , ) 0tG I x , the excess units will perish. If ( , ) 0tG I x , the excess 

demand will be met by 
, 1t Ix 

. Therefore, when we calculate ( , 1)tG I x , we need to deduct 

the part of 
, 1t Ix 

 units which have been used in period t+I first, and the remaining available 

part of 
, 1t Ix 

 used for satisfying Dt+I is   , 1 ( , )t I tx G I



   x . 

At the beginning of period t, we have a known vector 
t

x . Then, at the beginning of period 
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s, s=t,…, T, we define the available inventory AIt,s, before the units ordered at the beginning of 

the period arrive, as 

   

1
,

,
1

, 1 , 1 1 ( , ) { 1, , }

m
t i

t s
i

t s t s t m s t

x s t
AI

AI x D G s t s t T





 
    




 
      




x

. 

Note that  , 1 , 1 1t s t s t m sAI x D


       is the excess inventory after meeting the demand 

Ds-1. Then, we need to check whether all 
,t s tx 

 have been used. If so, ( , ) 0tG s t x  and the 

consumption of 
, 1t s tx  

 is captured by  , 1 , 1 1t s t s t m sAI x D


      . If not, ( , ) 0tG s t x  

and we deduct this part from the remaining inventory. 

    Therefore, the forced shortage occurs in period s, s=t,…, T, which results from ordering qt 

units in period t is 

  , , ,min , , { , , }t s t s t s t s t mW q D AI x s t T


     , 

and the total lost-sales penalty incurred by ordering qt units in period t is 

,( ) :
T

t t t s

s t

q b W


   . 

c) Marginal outdating cost accounting 

Similar to Eq. (6), the order capacity does not impact the calculation of the marginal 

outdating cost in a backlogging problem, which is 

 1( ) : ( , 1) , {1, , 1}t t t t m t tO q o q D B m t T m


       x . 

    In summary, the difference between problems with backlogs and lost-sales is the inventory 

state transition equations. In a backlogging problem, after the inventory is transferred from 

period t to t+1, xt+1,m-1 can be negative if backlog occurs, while in a lost-sales problem, xt+1,m-1 

is non-negative. Moreover, the difference between problems with and without a capacity 

constraint is the marginal backlogging/lost-sales penalty, and the number of periods that the 

marginal backlogging/lost-sales penalty will last for. 
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3.3.2 Dual-Balancing and Look-Ahead Approaches 

3.3.2.1 Dual-Balancing Approach 

The main idea behind the Dual-Balancing algorithm is that the different types of marginal 

costs caused by an ordering decision can be separated into two categories. In the first one, the 

cost increases when additional units are ordered, while in the second one, the cost decreases 

when ordering more units. The order quantity that makes the sum of costs in the first category 

equal to that in the second category is considered as the order quantity under the Dual-Balancing 

policy [6]. If the order quantity and demand are continuous, this selected amount can be 

obtained directly by balancing the two types of costs. We first discuss problems with continuous 

order quantity and demand, where 
tq R  and 0tq  , and then explain how the algorithm 

can be extended for the problems with integer-valued order quantity and demand. 

Recall that in a problem without an order capacity constraint, the definitions of the 

truncated marginal holding, backlogging/lost-sales penalty, and outdating costs are 

 

( 1) 1
, ,

1

1
,

1

1

( ) : ( , ) , {1, , },

( ) : ,

( ) : ( , 1) .

t l T m
t l t t j t t t i

j t i j t

m
t t t t i t

i

t t t t m t t

H q h q D B j t x l m

q b D x q

O q o q D B m




   

   







 

  
       
   

 
    

 

   

 



x

x

 

Note that in period t, when qt=0,    ,E 0 E 0 0t l tH O       , and both  ,t l tH q  and

 t tO q  increase in qt. Therefore,    ,E Et l t t tqH O q   
     is also an increasing function in 

qt, with    ,E 0 E 0 0t l tH O       . On the other hand,  E tt q 
 

 has a positive value 

when qt=0, and decreases to 0 as 
tq  goes to infinity. Therefore, we can find a well-defined 

,

t

DB lq  for each l letting 

     ,

, , , ,{1, , }E E E , , for 0t l t t t t t t

DB l DB l DB l DB ll mH q O q q q        
     

 . 

For problems with integer-valued order quantity and demand, a randomized Dual-
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Balancing policy was proposed [6]. First, we calculate 
t

DBq  that balances  E t t

DBq 
   and 

   ,E Et l t t t

DB DBH q O q   
    . If this t

DBq  it is not an integer, there are two consecutive 

integers, ,1t

DBq  and ,2 ,1 1t t

DB DBq q  , which satisfy ,1 ,2t t t

DB DB DBq q q  . Define λ, 0<λ<1, such that 

,1 ,2(1 )t t t

DB DB DBq q q     [6]. So, when we need to select an integer order quantity instead of 

t

DBq , we pick ,1t

DBq  with probability λ and ,2t

DBq  with probability 1-λ [6]. This randomized DB 

policy will be applied in this study to make order quantities integer. 

In a backlogging/lost-sales problem with an ordering capacity constraint, the definitions 

of the marginal holding and outdating costs are the same as those in a problem without an order 

capacity constraint. The backlogging/lost-sales penalty here is 
,( ) :

Tt t t s

s t
q b W


   , where 

, ,

1

min , ( , ) , { , , }
s t m

t s t s t t t I

I s t

W q D B s t x s t T


 

  

   
      

   
x  

in backlogging problems, and 

  , , ,min , , { , , }t s t s t s t s t mW q D AI x s t T


      

in lost-sales problems. Similar to  E tt q 
 

,  E tt q 
 

 has a positive value when qt=0, 

and decreases to 0 when qt=ut. Therefore, we can also find a well-defined ,

t

DB lq  for each l 

letting 

     ,

, , , ,E E E , , for 0{1, , }t l t t t t t t

DB l DB l DB l DB llH q O mq q q        
    


 . 

Furthermore, the randomized DB policy holds in backlogging/lost-sales problems with a 

capacity constraint as well. 

3.3.2.2 Look-Ahead Approach 

In Look-Ahead algorithm, the integer ordering amount 
,

t

LA lq  minimizing the total 

marginal costs in period t is desired where 

,

,

, , , ,
{0, , }

=arg min E ( ) ( ) ( ) | {, 1, , }
t
LA l

t t l t t t t t

LA l LA l LA l LA l t
q

q H q q O q f l m
 

    
,    (8) 
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in problems without an ordering capacity constraint, and 

,

,

, , , ,
{0, , }

=arg min E ( ) ,( ) ( ) | {1, , }
t t
LA l

t t l t t t t t

LA l LA l LA l LA l t
q u

q H q q O q f l m


    
,    (9) 

in problems with an ordering capacity constraint. 

Based on the definitions, 
, ( )t l tH q , ( )t tO q , ( )t tq  and ( )t tq  are all convex 

functions (see [7], [6], [25]). Therefore, the following two functions are both convex in 

problems with and without a capacity constraint, 

,

, , , , ,( ) ( ) ( ) ( ), {0, , } {1, , , }t t l t t t t t t

LA l LA l LA l LA l LA lA q H q q O q q l m       

and 

,

, , , , ,( ) ( ) ( ) ( ), {0, , } {1, }, ,t t l t t t t t t t

LA l LA l LA l LA l LA lA q H q q O q q u l m     . 

Besides, (0)A , (0)A  and ( )tA u  are all positive, and ( )tA q  goes to infinity as qt 

increases, so the ,

t

LA lq  satisfying (8) or (9) is well-defined . 

3.4 Algorithms 

3.4.1 Dynamic Programming Algorithm 

We apply a backward recursion algorithm to solve the dynamic program given in Section 

3.2.  

1. Calculate the range of the on-hand inventory xt,i, i=1, …, m-1, for each period t. One period 

state in period t is a combination of possible values of xt,i, i=1, …, m-1. 

2. Find the order quantity in period T that leads to the optimal expected period cost 
T

TS V  

for each period state. 

3. In period t, t=T-1, T-2, …, 1, for each period state, find the order quantity optimizing the 

expected total cost from current period t to the last period T, which is 1

t

t tV V S  . Then, 

we built the outcome and action spaces already. 

4. Consider the inventory problem forward from period 1 and calculate the optimal expected 
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total cost. 

3.4.2 Dual-Balancing Algorithm 

The DB policy is applied in each period from period 1. The algorithm of the DB policy 

used in our study is as follows. 

1. In period t, find two continuous integer ,1t

lq  and ,1t

lq  satisfying 

     

     

, ,1 ,1 ,1

, ,2 ,2 ,2

E E E

E E E

t l t t t t t

l l l

t l t t t t t

l l l

H q O q q

H q O q q

        
      


             

, 

for each l, l=1,…,m, respectively. Thus, the desired order quantity 
t

lq  under the DB policy 

is in the range of 
,1 ,2, ][ t t

l lq q . 

2. Let 
,1 ,1't t

l lq q , 
,11 ,2't t

l lq q . Divide the range of 
,1 ,11' , ][ 't t

l lq q  into 10 equal sections by 9 

numbers 
,2 ,10' , , 't t

l lq q  that satisfy 
, 1 ,' ' 0.1t i t i

l lq q   , i=1,…,10. Then, find two 

continuous 
,'t a

lq  and 
, 1't a

lq 
, a=1,…,10, satisfying 

     

     

, , , ,

, , 1 , 1 , 1

E ' E ' E '

E ' E ' E '

t l t a t t a t t a

l l l

t l t a t t a t t a

l l l

H q O q q

H q O q q  

        
      


             

, 

for each l, l=1,…,m, respectively. Thus, the desired order quantity 
t

lq  under the DB policy 

is in the range of 
, , 1' ,[ ' ]t a t a

l lq q 
. 

3. We assume that the two curves representing the backlogging/lost-sales penalty and the sum 

of holding and outdating costs are approximately linear on 
, , 1' ,[ ' ]t a t a

l lq q 
. Therefore, the 

intersection of these two curves can be easily obtained. This intersection is the order 

quantity 
t

lq  under the DB policy in period t. 

4. Consider the inventory problem forward from period 1 and calculate the expected total cost 

under the DB policy with 
t

lq  obtained through steps 1 to 3 in each period t. 
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3.4.3 Look-Ahead Algorithm 

The LA policy is applied in each period from period 1. The algorithm of the LA policy 

used in our study is as follows. 

1. In period t, the desired order quantity t

lq  under the LA policy can be found directly 

through calculating the expected total marginal cost with different order quantity and 

selecting the smallest one. 

2. Consider the inventory problem forward from period 1 and calculate the expected total cost 

under the LA policy with 
t

lq  obtained through step 1 in each period t.  
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4 Numerical Study 

    In the previous section, we discussed four periodic-review stochastic perishable inventory 

control problems based on whether unmet demand in each period is backlogged or lost, and 

whether there is a capacity constraint in each period or not. 

    The numerical study aims to evaluate the performance of the two heuristic policies in 

comparison with the optimal policy, and examine the impact of different parameters on the 

performance of the proposed policies for each problem. 

    We first consider a finite-horizon with 6 periods. In order to determine the target inventory 

level at the beginning of each period, we apply DP, DB and LA algorithms to find the order 

quantity qt in period t, t=1,…, 6, based on the on-hand inventory Xt. Then, the target inventory 

level in period t is set to Yt=Xt+qt. Second, we use this Yt to calculate the expected total cost 

over the 6 periods to compare the performance of DB and LA with the optimal policy. Let CDB, 

CLA and C* represent the expected total cost obtained under DB, LA and DP policies, 

respectively. Then, the relative gap between the total cost under the optimal policy and policy 

P is defined as  

 
P

P *
100%, P DB, LA

*

C C

C



   .

 

    In the numerical study, we focus on integer-valued demand and order quantity. Three 

different discrete distributions, including a discrete uniform distribution, a binomial distribution 

and a specific discrete distribution, are considered to capture the demand arrival in each period. 

The discrete uniform distribution and binomial distribution used in the numerical examples are 

 1,8U  and 
1

(8, )
2

B . The specific discrete distribution gets values  1,2,4,8  with 

corresponding probabilities 
1 2 3 2

, , ,
8 8 8 8

 
 
 

. In the following discussion, we use Uniform, 

Binomial and Distribution-3 to denote the above three distributions, respectively. 
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    In order to examine the relationship between cost parameters and the policy performance, 

we vary the cost parameters as given in Table 1. Note that we assume h≤b which means the cost 

of generating one unit of backlog or lost-sale is at least as high as keeping one unit of the 

product in stock for one period. 

Table 1. Per-Unit Cost Combinations 

Fixed cost Modified costs 

b=10 
h∈{0.1, 0.5, 1, 2, 5} 

o∈{1, 5, 10, 20} 

h=2 
o∈{1, 5, 10, 20} 

b∈{2, 5, 10, 20} 

o=10 
b∈{2, 5, 10, 20} 

h∈{0.1, 0.5, 1, 2, 5} 

    In the problems with the capacity constraint, we assume that 8, 4, 6, 5, 5}{ 8,u . 

Some other system parameters are specified as follows. The lifetime of the units is m=3, 

and we vary l from 1 to 3 in the truncated marginal holding cost. 

Then, we apply the DP, DB and LA algorithms for a perishable inventory system on a 

finite-horizon with 8 periods without an ordering capacity constraint using the cost parameters 

given in Table 1, to investigate the impact of T on the performance of the algorithms. Other 

parameters are the same as those in the problem on a 6-period planning horizon. In the following 

Sections 4.1 and 4.2, we analyze numerical results of the 6-period problem first, and then 

illustrate the results of the 8-period problem. 

All algorithms were programmed in Matlab and all experiments were done on a system 

with 3.4GHz CPU. 

4.1 Systems with Backlogs and No Ordering Capacity Constraint 

4.1.1 Performance of DB and LA Policies 

It has been proved that in a perishable inventory problem with backlogs and no ordering 
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capacity constraint, the DB policy has a worst-case performance guarantee of two when 

demands in different periods are independent and stochastically non-decreasing [7]. This means 

that for each instance of the problem, the expected total cost of the DB policy is at most twice 

the expected total cost of the DP policy. However, the performance of the LA policy has not 

been investigated in the literature for perishable inventory problems. In systems that units do 

not perish, Truong [8] shows that the LA policy outperforms the DB policy significantly.  

    In this research, we examine the performance of both DB and LA policies. Table 2 shows 

the mean and maximum of ρDB and ρLA for different values of l, with T=6. 

Table 2. ρLA and ρDB with Backlogs and No Capacity Constraint (%, T=6) 

Policy l 
Uniform Binomial Distribution-3 

Mean Max Mean Max Mean Max 

LA 

1 2.09 29.28 2.31 8.18 2.09 5.65 

2 3.31 22.40 2.77 17.96 3.01 10.86 

3 3.13 13.02 2.44 16.29 3.30 15.91 

DB 

1 22.33 71.96 15.52 48.50 28.63 76.39 

2 25.30 89.19 17.36 44.91 32.03 87.96 

3 25.87 87.68 18.86 60.25 32.40 89.43 

From Table 2, we observe that ρDB and ρLA are less than 100% in the columns indicating 

the maximum relative gap. This observation demonstrates that the expected total costs under 

both DB and LA policies are less than twice the optimal expected total cost. Therefore, based 

our numerical examples, the performance of the DB policy is consistent with the worst-case 

performance guarantee stated in previous studies, and for the average performance of all 

numerical examples that we checked, the LA policy, which is investigated in perishable 

inventory problems for the first time based on our best knowledge currently, is much better than 

the DB policy in the same circumstance. 

Moreover, we observe that the average of ρLA is much smaller than the average of ρDB. 

This shows that the expected total cost under the LA policy is much closer to the optimal 
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expected total cost than that under the DB policy. This result is similar to the one in inventory 

problems without perishable products considered in Truong [8]. Therefore, in inventory 

problems with backlogs and no ordering capacity constraint, the LA policy, on average, 

outperforms the DB policy significantly. 

Comparing the mean of ρLA and ρDB for different values of l, we observe that both ρLA and 

ρDB have the smallest average value when l=1. In a problem without a capacity constraint, the 

order quantity can be any non-negative integer. Therefore, intuitively, we do not need to 

consider the demand in the following periods a new order is placed. For l=1, the holding cost 

in the following periods incurred by the order in the current period does not need to be 

considered. Therefore, the most important goal is to ensure that the on-hand inventory is enough 

to meet the demand in the current period. Therefore, the target inventory level policy and the 

expected total cost are the closest to the optimal solution when l=1. In perishable inventory 

problems with backlog and no ordering capacity constraint, applying the truncated marginal 

holding cost with l=1 would obtain the best approximation for the optimal policy. 

Similar result can be obtained for 8-period problem, as listed in Table 3. 

Table 3. ρLA and ρDB with Backlogs and No Capacity Constraint (%, T=8) 

Policy l 
Uniform Binomial Distribution-3 

Mean Max Mean Max Mean Max 

LA 

1 3.19 16.27 3.58 14.42 3.18 20.09 

2 3.77 10.61 3.67 14.73 5.18 26.82 

3 4.14 13.23 5.51 19.58 6.47 22.95 

DB 

1 23.76 79.54 16.51 57.42 30.33 84.84 

2 25.76 87.83 17.49 46.24 33.90 95.16 

3 27.98 76.48 21.93 79.62 34.01 82.12 

We observe that all ρDB and ρLA are less than 100% in the columns indicating the maximum 

relative gap, which demonstrates that the expected total costs under both DB and LA policies 

are less than twice the optimal expected total cost. Second, the LA policy significantly 



40 

 

outperforms the DB policy for all three demand distributions. Third, both ρLA and ρDB have the 

smallest average value when l=1. 

Next, we examine how the cost parameters affect the performance of the DB policy. 

Figures 1 and 2 illustrate how h, b affect ρDB when the demand in each period follows Uniform 

and Binomial distributions, respectively (l=3, T=6). We observe that ρDB tends to be larger as 

the per-unit backlogging penalty b increases, while it tends to be smaller as the per-unit holding 

cost h increases.  

 

Figure 1. ρDB for Uniform Demand 

 

Figure 2. ρDB for Binomial Demand 

    Figure 3 and 4 show ρDB for different h and o, based on our numerical examples. We 

observe that ρDB is decreasing in both the per-unit holding cost h and the per-unit outdating cost 

o, except for h=0.1 and o=20. Intuitively, the number of units incurring outdating cost is much 

smaller than that incurring holding cost. Thus, the effect of the per-unit outdating cost o on the 

expected total cost and ρDB is smaller than that of the per-unit holding cost h. For example, in 
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Figure 5, when o is small, ρDB is decreasing in h. But when o=20 and h is small, the effect of o 

surpasses that of h. As a result, ρDB with o=20 and h=0.1 is smaller than that with o=20 and 

h=0.5. We also notice that the effect of h and o varies for different demand distributions, which 

have different variances. With a demand having a lower variance, such as the binomial 

distribution in this research, the range of ρDB is much smaller for both h and o. 

 

Figure 3. ρDB for Uniform Demand 

 

Figure 4. ρDB for Binomial Demand 

    In summary, based on our numerical examples, increasing h or decreasing b both lead to 

a smaller ρDB, which means that larger h and smaller b can improve the performance of the DB 

policy. Besides, the effect of o is not obvious when o is small. However, for large o, the DB 

policy performs well and results in a smaller ρDB. 

4.1.2 Optimal and Heuristic Policies 

Table 4 shows the average optimal target inventory level over 6 periods for Uniform 
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distribution and b=10.  

Table 4. Average Optimal Target Inventory Level (T=6) 

h o Optimal Yt 

0.1 
1, 2, 5, 10 8 

20 7.48 

0.2 2 8 

0.25 5 8 

0.4 2 8 

0.5 
1, 5, 10 8 

20 7.44 

1 

0.5, 1, 2, 2.5, 5 8 

10 7.44 

20 7.35 

2 1, 5, 10, 20 7 

2.5 5 7 

4 2, 10, 20, 40 6 

5 1, 5, 10, 20 6 

10 5, 20, 25, 50, 100 4 

It indicates that the average optimal target inventory level decreases in h and o, 

respectively. When the per-unit holding and outdating cost are significantly smaller than the 

per-unit backlogging penalty, keeping more inventory to avoid backlogs will cost less. 

Therefore, from our observation, when h≤1 and o≤10 (except h=1 and o=10), the average 

optimal target inventory level is equal to the maximum of demand, which can result in zero 

backlog. The motivation of holding high level of inventory reduces as the holding and outdating 

cost increase. We also observe that the effect of the per-unit outdating cost is much less than 

that of the holding cost, similar to Section 4.1.1. When the holding cost is small, like h=0.1, 0.5, 

the outdating cost needs to be 20 to reduce the target inventory level. The similar optimal 

inventory level results are obtained for Binomial and Distribution-3 distributions. They have 

the same monotone patterns for the target inventory level. 

Table 5 shows the average optimal target inventory level in 8-period problem for the 
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Uniform distribution. We observe the same trend observed for the average optimal target 

inventory level for h and o.  

Table 5. Average Optimal Target Inventory Level (T=8) 

h o Optimal Yt 

0.1 
1, 5, 10 8 

20 7.93 

0.5 
1, 5, 10 8 

20 7.41 

1 

1, 5 8 

10 7.39 

20 7.27 

2 1, 5, 10, 20 7 

5 1, 5, 10, 20 6 

Then, we examine the ordering policy for the optimal and LA policies in a problem with 

backlogs. In our numerical examples, we observe that Yt under the LA policy with l=3 is lower 

than the optimal Yt. Some examples for Uniform distribution are listed in Table 6. 

Table 6. Target Inventory Level under LA and Optimal Policies (T=6) 

Cost Combinations 
Policies 

Target Inventory Level in Each Period 

h b o 1 2 3 4 5 6 

0.1 10 20 
OPT 8 8 8 7.376 8 8 

LA 7 7.246 7.306 7.304 8 8 

1 10 20 
OPT 7 7 7.059 7.016 8 8 

LA 7 7 7 7 8 8 

2.5 10 5 
OPT 7 7 7 7 7 7 

LA 6 6 6.031 6.038 7 7 

5 10 1 
OPT 6 6 6 6 6 6 

LA 5 5 5.018 5.015 5.011 6 

The same result can be observed for the other cost parameters with Uniform, Binomial 

and Distribution-3 distributions as well. Furthermore, the total target inventory level over 6 

periods under the LA policy (l=3) is obviously less than the optimal total target inventory level. 

In 8-period problem, the target inventory level under the LA policy in each period is also 
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lower than the optimal target inventory level. Some numerical examples for the Uniform 

distribution are listed in Table 7, and the same result can be observed for other cost parameters 

with Uniform, Binomial and Distribution-3 distributions as well. 

Table 7. Target Inventory Level under LA and Optimal Policies (T=8) 

Cost Combinations 
Policies 

Target Inventory Level in Each Period 

h b o 1 2 3 4 5 6 7 8 

0.1 10 20 
OPT 8 8 8 8 8 7.411 8 8 

LA 7 7.250 7.318 7.288 7.298 7.350 8 8 

1 10 20 
OPT 7 7 7.051 7.037 7.057 7.014 8 8 

LA 7 7 7 7 7 7 8 8 

2 10 20 
OPT 7 7 7 7 7 7 7 7 

LA 6 6.123 6.123 6.151 6.137 6.123 7 7 

5 10 1 
OPT 6 6 6 6 6 6 6 6 

LA 5 5 5.019 5.012 5.010 5.008 5.011 6 

Next, we observe that there is no obvious consistent relationship between the target 

inventory level Yt under the LA and DB policies with l=3. As discussed in Section 4.3.2, the 

order quantity in one period under the DB policy is determined by balancing the backlogging 

penalty and the sum of the marginal holding cost and the outdating cost. In a problem with 

integer demand and order quantity, randomized dual-balancing policy is used. But because we 

choose two possible integer order quantities with a particular probability for each one, the 

average order quantity is still the quantity balancing the two sets of costs. On the other hand, 

for the LA policy, the feasible integer order quantity can be examined one by one to get the 

desired order quantity that minimizes the expected total cost in the current period. This order 

quantity under the LA policy can be either smaller or larger than the average order quantity 

under the DB policy, which is determined by the shapes of the two curves in the DB policy. For 

example, consider a system with the Uniform distribution, l=3 and two cost combinations h=10, 

b=10, o=5 and h=0.1, b=10, o=1, in the first period. Figure 5 and 6 illustrate the backlogging 

penalty Πt and the sum of the marginal holding and the outdating costs Ht+Ot with different 
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cost combinations. The abscissa of the intersection of the two curves is the desired q1 under the 

DB policy. 

 

Figure 5. Cost for h=10, o=5 

 

Figure 6. Cost for h=0.1, o=1 

Note that the values of b, h and o affect the decreasing or increasing rate of the curves. In 

Figure 5, h and o are larger than those in Figure 6, so the curve representing Ht+Ot increases 

much faster than that in Figure 6. The value of q1 under the DB policy varies simultaneously, 

which can be observed in Figures 5 and 6 as well. For the LA policy, when the curve 

representing Ht+Ot increases fast in Figure 5, ordering 4 units (smaller than that under the DB 

policy) results in a lower total cost, while in the Figure 6, 8 units need to be ordered (larger than 

that under the DB policy). Therefore, in situations having relatively large h and o, the target 

inventory level under the DB policy is usually larger than that under the LA policy.  
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4.2 Systems with Lost-Sales and No Ordering Capacity Constraint 

4.2.1 Performance of DB and LA Policies 

Table 8 shows ρDB and ρLA in a perishable inventory problem with lost-sales (T=6). We 

observe that the maximum of ρLA and ρDB are less than 100%, showing that both LA and DB 

policies lead to an expected total cost that is less than twice the optimal expected total cost. 

Table 8. ρLA and ρDB with Lost-Sales and No Capacity Constraint (%, T=6) 

Policy l 
Uniform Binomial Distribution-3 

Mean Max Mean Max Mean Max 

LA 

1 2.12 11.75 1.90 7.24 1.64 4.83 

2 3.33 15.39 2.44 14.60 3.10 11.22 

3 3.34 11.86 2.13 10.46 3.25 14.43 

DB 

1 23.67 85.03 15.04 45.01 28.63 80.06 

2 25.59 87.05 16.67 50.04 31.69 89.86 

3 26.89 87.66 15.87 49.19 32.57 93.80 

We also observe that the average of ρLA is much smaller than the average of ρDB. Therefore, 

in a perishable inventory problem with lost-sales and no limited order capacity, the LA policy, 

on average, outperforms the DB policy significantly. 

Considering different truncated marginal holding costs, we observe that, similar to a 

problem with backlogs, both ρLA and ρDB have the smallest average value when l=1. Therefore, 

LA and DB policies for l=1 is the best one to approximate the optimal policy in a lost-sales 

problem without an ordering capacity constraint in each period. 

Table 9 shows that ρDB and ρLA in the 8-period perishable inventory problem with lost-

sales, which illustrates a similar result with that in Table 8. We observe that all ρDB and ρLA are 

less than 100% in the columns indicating the maximum relative gap, which demonstrates that 

the expected total costs under both DB and LA policies are less than twice the optimal expected 

total cost. Second, the LA policy significantly outperforms the DB policy for all three demand 

distributions. Third, both ρLA and ρDB have the smallest average value when l=1. 
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Table 9. ρLA and ρDB with Lost-Sales and No Capacity Constraint (%, T=8) 

Policy l 
Uniform Binomial Distribution-3 

Mean Max Mean Max Mean Max 

LA 

1 2.37 10.42 1.86 7.92 2.63 14.01 

2 3.29 8.47 2.39 5.95 4.51 12.81 

3 4.42 15.74 2.86 11.89 5.15 17.00 

DB 

1 24.02 79.30 15.83 45.66 31.77 82.71 

2 24.70 87.38 16.63 39.43 34.82 83.86 

3 27.57 81.72 19.59 41.28 33.39 87.91 

Next, we examine the impact of the cost parameters on the performance of the DB policy. 

Figure 7 and 8 show ρDB for different h, b when the demand in each period follows Uniform 

and Binomial distributions, respectively (l=3, T=6). Similar to Section 4.1.1, ρDB tends to be 

larger as the per-unit backlogging penalty b increases, while tends to be smaller as the per-unit 

holding cost h increases.  

 

Figure 7. ρDB for Uniform Demand 

 

Figure 8. ρDB for Binomial Demand 
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Figure 9 and 10 show ρDB for different h and o. 

 

Figure 9. ρDB for Uniform Demand 

 

Figure 10. ρDB for Binomial Demand 

We observe that ρDB tends to be smaller as both the per-unit holding cost h and the per-

unit outdating cost o increase. Thus, increasing h or o leads to a better performance of the DB 

policy. 

4.2.2 Optimal and Heuristic Policies 

Table 10 shows the average optimal target inventory level over 6 periods for Uniform 

distribution and b=10 in a perishable inventory system with lost-sales and no capacity constraint. 

We observe that the average optimal target inventory level decreases in h and o, similar to the 

result in a problem with backlogs listed in Table 4. Because there is no order capacity in each 

period, the backlogs do not affect the system satisfying new demand. Thus, the problems with 

backlogs and lost-sales have a similar optimal target inventory level. The optimal target 
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inventory levels for Binomial and Distribution-3 distributions are also similar to those in a 

system with backlogs. 

Table 10. Average Optimal Target Inventory Level (T=6) 

h o Optimal Yt 

0.1 
1, 2, 5, 10 8 

20 7.90 

0.2 2 8 

0.25 5 8 

0.4 2 8 

0.5 
1, 5, 10 8 

20 7.45 

1 

0.5, 1, 2, 2.5, 5 8 

10 7.44 

20 7.35 

2 1, 5, 10, 20 7 

2.5 5 7 

4 2, 10, 20, 40 6 

5 1, 5, 10, 20 6 

10 5, 20, 25, 50, 100 4 

Table 11 shows the average optimal target inventory level in the 8-period problem for the 

Uniform distribution. We observe the same trend observed for the average optimal target 

inventory level for h and o.  

Table 11. Average Optimal Target Inventory Level (T=8) 

h o Optimal Yt 

0.1 
1, 5, 10 8 

20 7.92 

0.5 
1, 5, 10 8 

20 7.41 

1 

1, 5 8 

10 7.40 

20 7.27 

2 1, 5, 10, 20 7 

5 1, 5, 10, 20 6 

Then, we examine the ordering policy for LA and DB policies in a problem with lost-sales. 
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In our numerical examples, we observe that Yt under the LA policy with l=3 is lower than the 

optimal Yt. Some examples for Uniform distribution are listed in Table 12. The same result can 

be observed for the other cost parameters with Uniform, Binomial and Distribution-3 

distributions as well. Furthermore, the total target inventory level over 6 periods under the LA 

policy (l=3) is obviously less than the optimal total target inventory level. 

Table 12. Target Inventory Level under LA and Optimal Policies (T=6) 

Cost Combinations 
Policies 

Target Inventory Level in Each Period 

h b o 1 2 3 4 5 6 

0.1 10 20 
OPT 8 8 8 7.395 8 8 

LA 7 7.236 7.310 7.313 8 8 

1 10 20 
OPT 7 7 7.075 7.016 8 8 

LA 7 7 7 7 8 8 

2.5 10 5 
OPT 7 7 7 7 7 7 

LA 6 6 6.047 6.029 7 7 

5 10 1 
OPT 6 6 6 6 6 6 

LA 5 5 5.014 5.009 5.014 6 

In the 8-period problem, the target inventory level under the LA policy in each period is 

also lower than the optimal target inventory level. Some numerical examples for the Uniform 

distribution are listed in Table 13, and the same result can be observed for the other cost 

parameters with Uniform, Binomial and Distribution-3 distributions as well. 

Table 13. Target Inventory Level under LA and Optimal Policies (T=8) 

Cost Combinations 
Policies 

Target Inventory Level in Each Period 

h b o 1 2 3 4 5 6 7 8 

0.1 10 20 
OPT 8 8 8 8 8 7.386 8 8 

LA 7 7.263 7.295 7.276 7.268 7.302 8 8 

1 10 20 
OPT 7 7 7.046 7.051 7.040 7.023 8 8 

LA 7 7 7 7 7 7 8 8 

2 10 20 
OPT 7 7 7 7 7 7 7 7 

LA 6 6.133 6.133 6.131 6.140 6.110 7 7 

5 10 1 
OPT 6 6 6 6 6 6 6 6 

LA 5 5 5.019 5.011 5.015 5.014 5.011 6 
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The relationship between the target inventory level under LA and DB policies in a problem 

with lost-sales is the same as that in a problem with backlogs: the LA policy results in a larger 

Yt when h and o are small, while the DB policy results in a larger Yt when h and o are large. 

4.3 Systems with Backlogs and an Ordering Capacity Constraint 

4.3.1 Performance of DB and LA Policies 

Table 14 shows ρDB and ρLA in a problem with backlogs and an ordering capacity constraint 

in each period. The maximum of ρDB and ρLA are less than 100%, indicating that both LA and 

DB policies lead to an expected total cost that is less than twice the optimal expected total cost. 

We compare the average values of ρLA and ρDB, and observe that ρLA is smaller than ρDB 

for all distributions, illustrating that the LA policy, on average, outperforms the DB policy in a 

problem with backlogs and an ordering capacity constraint. Furthermore, comparing the ρLA 

and ρDB in a problem with backlogs and no order capacity (Table 2), ρDB for Binomial 

distribution and ρLA become larger, while ρDB for Uniform and Distribution-3 distributions 

become smaller. This indicates that in a problem with backlogs, adding an ordering capacity 

constraint has different effects on the performance of LA and DB policies for different 

distributions. 

Table 14. ρLA and ρDB with Backlogs and a Capacity Constraint (%) 

Policy l 
Uniform Binomial Distribution-3 

Mean Max Mean Max Mean Max 

LA 

1 7.74 37.33 6.42 20.99 13.19 49.98 

2 10.83 52.84 6.93 34.85 9.83 63.74 

3 12.56 53.63 4.72 21.38 10.14 56.22 

DB 

1 16.28 62.20 20.08 94.53 23.99 73.17 

2 19.79 58.85 16.47 50.65 30.12 95.89 

3 23.65 68.32 23.40 93.00 23.38 77.09 
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4.3.2 Optimal and heuristic Policies 

When a perishable inventory system has an order capacity constraint in each period, order 

quantity qt is limited, which may result in more backlogs. We examine target inventory level Yt 

in each period in a perishable inventory problem with backlogs and an ordering capacity 

constraint u. The cost parameters can be divided into three groups based on the optimal Yt in 

the first period, which are 8, 7 and 6, respectively. Table 15 shows the maximum and minimum 

of Yt in each period for each group and Uniform distribution.  

Table 15. Target Inventory Level under the Optimal Policy 

Cost Combinations 
Period t 1 2 3 4 5 6 

ut 8 4 6 5 8 5 

h<4 and any o 

h=4 and o=2, 10 

Max Yt 8 7.643 8.330 7.256 9.827 7.923 

Min Yt 8 6.230 6.263 5.267 6.638 5.446 

h=4 and o=20, 40 

h=5 and any o 

Max Yt 7 5.739 6.033 5.089 6.530 5.366 

Min Yt 7 5.253 5.283 4.780 5.683 5.025 

h=10 and any o 
Max Yt 6 4.327 4.343 3.857 4.710 3.577 

Min Yt 6 4.190 4.263 3.330 4.602 3.447 

We observe that, similar to a problem without a capacity constraint, when h and o are small, 

the system tends to order more units to avoid the backlogging penalty. We also observe that 

when the order capacity is relatively large, specifically, in the first, third and fifth periods, the 

corresponding Yt are larger than those in the other periods, based on our numerical examples. 

Therefore, generally, the system tends to order more units when the per-unit backlogging 

penalty b is larger than the per-unit holding cost h and the order capacity permits. These two 

characteristics can also be observed for both Binomial and Distribution-3 distributions. 

Then, we compare the optimal solutions for problems with and without an ordering 

capacity constraint in each period. Theoretically, in a dynamic program, adding a constraint 

may make the optimal solution worse. Based on our numerical examples, we observe that the 

optimal expected total cost in a problem with a capacity constraint in each period is always 
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larger than that in a problem with the same cost parameters and without the capacity constraint. 

Some numerical examples are given in Table 16. The same result can be observed for the other 

cost parameters. 

Table 16. Comparison of Optimal Expected Total Cost 

Demand 

Distributions 

Cost Combinations Optimal Expected Total Cost 

h b o No u u 

Uniform 

0.1 10 20 10.209 16.937 

1 10 20 26.492 35.369 

2.5 10 5 48.095 56.242 

5 10 1 78.854 89.470 

Binomial 

0.1 10 20 2.829 3.325 

1 10 20 14.858 16.195 

2.5 10 5 28.070 31.292 

5 10 1 45.964 48.711 

Distribution-3 

0.1 10 20 16.749 24.262 

1 10 20 36.275 40.937 

2.5 10 5 60.730 64.400 

5 10 1 84.948 101.370 

Table 17 shows the maximum and minimum of Yt in each period under the LA policy for 

l=3 and Uniform distribution. We observe that when h and o are small, the system tends to order 

more units. 

Table 17. Target Inventory Level under the LA Policy 

Cost Combinations 
Period t 1 2 3 4 5 6 

ut 8 4 6 5 8 5 

h≤5 and any o 
Max Yt 8 7.51 8.23 7.25 9.17 7.67 

Min Yt 8 6.19 6.21 5.09 5.66 5.01 

h=10 and o=5, 20, 

25, 50 

Max Yt 7 5.42 5.36 4.36 4.95 3.52 

Min Yt 7 4.97 5.02 4.22 4.79 3.40 

h=10 and o=100 
Max Yt 6 4.57 4.50 3.90 4.71 3.58 

Min Yt 6 4.57 4.50 3.90 4.71 3.58 

When there is a capacity constraint in each period, Yt under the LA policy is larger than 

the optimal Yt in most periods when the per-unit holding cost h is relatively large, for example, 
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h=5 and 10. On the other hand, when h is small, such as h≤2, based on our numerical examples, 

Yt under the LA policy is smaller than the optimal Yt in most periods. Some examples for 

Uniform distribution are given in Table 18. A similar relationship between Yt under the LA 

policy and the optimal Yt can be observed for Binomial and Distribution-3 distributions. 

Table 18. Target Inventory Level under LA and Optimal Policies 

Cost Combinations 
Policies 

Target Inventory Level in Each Period 

h b o 1 2 3 4 5 6 

0.1 10 20 
OPT 8 6.910 7.273 6.897 9.570 7.670 

LA 8 7.140 7.270 6.740 8.880 7.450 

1 10 20 
OPT 8 6.792 7.005 6.232 7.561 6.997 

LA 8 6.760 6.810 6.160 7.450 6.710 

2.5 10 5 
OPT 8 6.607 6.620 5.980 6.740 6.083 

LA 8 6.850 7.080 6.030 6.690 5.920 

5 10 5 
OPT 7 5.364 5.413 4.838 5.713 5.051 

LA 8 6.370 6.320 5.250 5.820 5.190 

Then, we examine the relationship between Yt under LA and DB policies. We observe that 

for Uniform distribution, Yt under the LA policy is larger than that under the DB policy in all 

periods with only two exceptions. Comparing to a problem with backlogs and without an 

ordering capacity constraint, the quantity of backlogs may increase, thus, the slope of the curve 

representing the backlogging penalty in Figure 1 and 2 increases. Therefore, Yt under the LA 

policy is larger than that under the DB policy in more periods. For example, Figure 11 shows 

the backlogging penalty Πt and the sum of the marginal holding cost and the outdating cost 

Ht+Ot for Uniform distribution, l=3 and cost combination h=10, b=10, o=5. Comparing to 

Figure 1, the slope of the curve representing the backlogging penalty Πt is much higher. 
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Figure 11. Cost for h=10, o=5 with an Order Capacity Constraint 

4.4 Systems with Lost-Sales and an Ordering Capacity Constraint 

4.4.1 Performance of DB and LA Policies 

Table 19 shows ρLA and ρDB for different values of l. The maximum of ρLA and ρDB for each 

distribution and l are less than 100%. This demonstrates that the expected total costs under both 

LA and DB policies are less than twice the optimal expected total cost in problems with lost-

sales and an ordering capacity constraint. 

Table 19. ρLA and ρDB with Lost-Sales and a Capacity Constraint (%) 

Policy l 
Uniform Binomial Distribution-3 

Mean Max Mean Max Mean Max 

LA 

1 7.35 33.08 34.20 55.62 8.61 25.66 

2 4.83 25.30 26.75 54.75 6.30 26.85 

3 6.03 26.22 25.98 57.58 5.82 24.30 

DB 

1 15.12 43.23 15.64 60.66 19.78 51.67 

2 15.55 42.44 12.78 31.81 21.45 68.73 

3 15.09 48.23 14.15 34.10 21.06 72.53 

Comparing the average values of ρLA and ρDB, we observe that ρLA outperforms ρDB for 

Uniform and Distribution-3 distributions. But ρLA is larger than ρDB for Binomial distribution. 

Therefore, in problems with lost-sales and an ordering capacity constraint in each period, LA 

and DB policies perform differently for different distributions. Also, comparing ρLA and ρDB in 
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a problem with lost-sales and no order capacity (Table 8), generally, when there is an order 

capacity constraint in each period, ρLA becomes larger, while ρDB becomes smaller. This 

indicates that in a problem with lost-sales, adding an ordering capacity constraint improves the 

performance of the DB policy, and deteriorates the performance of the LA policy. 

4.4.2 Optimal and Heuristic Policies 

We examine target inventory level Yt in a perishable inventory problem with lost-sales and 

a capacity constraint u. Similar to the result in Section 4.3.2, the cost parameters can be divided 

into four groups based on the optimal Yt in the first period, which are 8, 7, 6 and 4, respectively. 

Table 20 shows the maximum and minimum of the optimal Yt for different groups. Recall that 

in a problem with backlogs and an ordering capacity constraint, the optimal Yt tends to be 

smaller as h and o increase. We observe these characteristic in Table 20 as well. Similar result 

can be observed for Binomial and Distribution-3 distributions. 

Table 20. Target Inventory Level under the Optimal Policy 

Cost Combinations 
Period t 1 2 3 4 5 6 

ut 8 4 6 5 8 5 

h<2 and any o 

h=2 and o=1, 5 

Max Yt 8 7.560 8.542 7.588 10.067 8.202 

Min Yt 8 6.172 6.679 6.293 7 6.366 

h=2 and o=10, 20 

h=2.5 and o=5 

Max Yt 7 5.866 6.612 6.284 7 6.400 

Min Yt 7 5.843 6.590 6.240 7 6.322 

h=4 and any o  

h=5 and any o 

Max Yt 6 5.178 6 5.656 6 5.632 

Min Yt 6 5.109 6 5.606 6 5.606 

h=10 and any o 
Max Yt 4 4 4 4 4 4 

Min Yt 4 4 4 4 4 4 

Then, we compare the optimal solutions in problems with and without an ordering capacity 

constraint. Some results are given in Table 21. We observe that optimal expected total cost in a 

problem with a capacity constraint is always larger than that in a problem without the capacity 

constraint. 
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Table 21. Comparison of Optimal Expected Total Cost 

Demand 

Distributions 

Cost Combinations Optimal Expected Total Cost 

h b o No u u 

Uniform 

0.1 10 20 9.830 13.304 

1 10 20 26.433 31.427 

2.5 10 5 47.383 50.870 

5 10 1 78.855 80.082 

Binomial 

0.1 10 20 2.925 3.231 

1 10 20 14.816 15.512 

2.5 10 5 28.363 29.923 

5 10 1 46.203 47.028 

Distribution-3 

0.1 10 20 16.863 18.759 

1 10 20 36.309 38.100 

2.5 10 5 60.888 61.128 

5 10 1 86.063 86.869 

Then, we examine Yt under the LA policy for Uniform distribution, and observe that Yt 

tends to be smaller as h and o increase. Similar to the result in Section 4.3.2, we observe that Yt 

under the LA policy is larger than the optimal Yt in most periods with large h and o, and smaller 

than the optimal Yt in most periods with small h. The effect of o on the target inventory level 

under the LA policy is larger than that in a problem with backlogs. Some numerical examples 

are given in Table 22. 

Table 22. Target Inventory Level under LA and Optimal Policies 

Cost Combinations 
Policies 

Target Inventory Level in Each Period 

h b o 1 2 3 4 5 6 

0.1 10 20 
OPT 8 6.904 7.506 6.916 9.920 7.960 

LA 8 6.765 7.370 6.985 9.380 7.755 

1 10 20 
OPT 8 6.471 6.913 6.368 8 7.290 

LA 8 6.850 7.280 6.515 8.005 7.310 

2.5 10 5 
OPT 7 5.866 6.590 6.240 7 6.400 

LA 8 6.275 6.740 6.395 7.010 6.320 

5 10 5 
OPT 6 5.129 6 5.624 6 5.613 

LA 7 5.245 6.015 5.360 6 5.625 
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5 Conclusion 

We consider a single-item, periodic-review, stochastic perishable inventory problem under 

both backlogging and lost-sales assumptions, with and without an ordering capacity constraint 

in each period. To approximate the optimal inventory level at the beginning of each period, we 

extend the DB and LA policies under different assumptions by using marginal cost accounting 

scheme, and show numerically that both policies result in an expected total cost less than twice 

the optimal expected total cost for all the examples considered in this study. We also show that, 

on average, the LA policy significantly outperforms the DB policy in most situations. For order 

quantity, we observe that the target inventory level under the LA policy is not larger than the 

optimal periodic target inventory level in problems with both backlogs and lost-sales and 

without an ordering capacity constraint. We also analyze the relationship between periodic 

target inventory levels under LA and DB policies.  

    There are several possible directions for the future research. First, we study the problem 

for three independent and identically distributed (i.i.d.) demands, separately. Some other types 

of demands can be used to examine the policies in the future, such as ADI demands, 

autoregressive demands, MMFE demands and Markov modulated demands [7]. Furthermore, 

multiple classes of demands can also be considered. Also, this thesis assumes that the lead time 

is 0, ignoring the time interval between placing and receiving an order, which may not hold in 

practice. Thus, problems with a positive lead time can be studied in the future.  
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