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Abstract

Tandem mass spectrometry (MS/MS) is widely used in proteomics nowadays to identify
peptides and proteins from a sequence database. In a classic procedure of MS/MS protein
identification, proteins are digested into short peptides by enzymes. Then, a tandem mass
spectrometer is used to measure the tandem mass spectra for the peptides. Finally, the
spectra are interpreted by computer software to identify the sequences of peptides and
proteins. A traditional approach for protein identification is MS/MS search approach,
it directly searches MS/MS spectra in a sequence database to find the best matching.
However, regular methods become too slow when both the mass spectrometry data and
sequence database sizes are large. Therefore, a speed boost for the database search is
needed.

This thesis studies the possibility of using de novo tag search to improve traditional
database search methods and proposes novel software named ”Tagger”. As a tag-based
method, it utilizes the de novo sequencing results from Novor software as its input and
performs approximate sequence matches in the sequence database. During the search,
peptide tags are first matched with substrings of protein sequences in the database and
then a protein scoring function is used to get the final score of a protein from those
substrings. After the identified protein list is provided, other methods can treat it as a
new database for peptide identification.

According to the test results, the search speed is significantly increased by the ability
of indexing de novo sequence tags. Compared with X!Tandem, one of the fastest database
search tool for protein identification, Tagger is about 9 times faster. For protein identifi-
cation, the sensitivity of Tagger is also similar to that of X!Tandem. This is inconsistent
with the common belief that a tag based search is inferior in terms of sensitivity. The
combination of Tagger and X!Tandem provide the most accurate and sensitive protein i-
dentification result. In peptide identification tests, X!Tandem, as well as MSGFDB and
another tag-based method InsPecT, are used for comparison. Thanks to Tagger’s high
accuracy of protein identification, the size of identified protein list is much smaller than
the whole database so the search can be done significantly faster. On the other hand, the
number of identified peptides grows greatly after combining the results of Tagger and the
three programs.
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Chapter 1

Introduction

1.1 Motivation

In proteomics research, we often need to identify proteins and peptides from sequence
databases. In a typical bottom-up approach, proteins digested by enzymes are measured
with tandem mass spectrometry (MS/MS) to generate thousands to millions of MS/MS
spectra. These spectra are compared to the peptides in a protein sequence database to
find highly confident peptide-spectrum matches (PSM). Proteins are inferred from the
identified peptides. In today’s proteomics labs, this protein identification process is carried
out daily, and many database search software packages are available. Some of the commonly
used packages include Sequest [1], Mascot [2], PEAKS DB [3], Byonic [4], X!Tandem [5],
ProteinProspector [6], Andromeda [7], MSGFDB [8], and JUMP [9].

Given the imperfect quality of the data, false positive identifications are inevitable. This
promoted the development of the target-decoy method for result quality control [10]. In
this method, the decoy database is searched together with the target sequence database.
After the search is finished, the number of decoy matches are used as an estimation of
the number of false target matches. The false discovery rate (FDR) is then calculated
as the ratio between the estimated false target matches and the total number of target
matches. Because of the way that each decoy protein is introduced as a separate entity in
the database, the target-decoy method is robust for estimating the protein FDR. However,
for estimating the peptide FDR, the target-decoy method is incompatible with some of the
search engines [11]. However, many of the problems of target-decoy can be fixed by the
decoy fusion method [12] that is a slight modification of the target-decoy method.
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When a sequence database is unavailable, one will have to rely on the de novo sequencing
method to derive the peptide’s sequence from the MS/MS spectrum directly. De novo
sequencing tools include PEAKS [3], Novor [13], PepNovo [14], and pNovo [15]. A more
detailed review of de novo sequencing tools can be found in the review articles [16, 17].

A traditional way to perform database search is the MS/MS search approach, in which
MS/MS spectra are searched directly in a protein sequence database to find the best match.
In the past 20 years, many efforts have been made to improve the accuracy and sensitivity
of the database search software. This involves the use of sophisticated scoring functions
that can better separate the true and false matches; and the consideration of variable
post-translational modifications (PTM) and nonspecific enzyme cleavages. However, these
efforts of making database search more accurate and sensitive also make the search slower.
Meanwhile, the increase in both mass spectrometry data size and the sequence database
size make it urgent to consider new approaches that can greatly improve the database
search speed.

1.2 Research Objectives and Contributions

A promising approach to speed up database search is to use de novo sequence tags to
assist the database search. For example, PEAKS DB [12] uses de novo sequence tags to
select a shortlist of proteins from the database, and only carry out the database search on
this shortlist. However, as the de novo sequencing speed used to be slower than database
search, the speed benefit was bounded by the speed of de novo sequencing. For such a
reason, most tag-based search algorithms are intended to search for mutated or modified
peptides. These include FASTS [18], MS-Shotgun [19], MS-BLAST [20], SPIDER [21],
GutenTag [22], and InsPecT [23]. It is widely known that when many variable PTMs are
considered, database search becomes unacceptably slow and these approaches often require
higher quality MS/MS spectra to make a confident assignment. However, for database
search without an excessive numbers of PTMs, the benefit of employing a fully tag-based
approach has not been studied.

With the recent availability of the Novor software for de novo sequencing, de novo
sequencing becomes significantly faster than database search [13]. Therefore, the afore-
mentioned concern about the extra time spent on de novo sequencing has been removed.
However, there is a loss-of-sensitivity with the use of a tag-based approach for database
search without an excessive numbers of PTMs. It is very likely that a spectrum’s quality is
barely enough to identify the peptide from a database, but not good enough to produce a
long de novo sequence tag. If a long sequence tag is used to filter the database sequences,
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then such spectra would not be identified. Particularly for this concern, the JUMP soft-
ware [9] used tags of length 1 to filter the database sequences. The use of length 1 tags
helped JUMP to improve its database search accuracy. However, a sequence tag of length
1 does not provide a significant gain in speed over the standard database search approach.

The rise of proteogenomics creates the need to search the mass spectrometry data
against a DNA sequence database. In theory, one can translate the DNA database into a
protein database with the genetic code, and identify proteins from it. However, the size
of the protein database from such translation is significantly larger than a regular protein
database. For example, the database of human Expressed Sequence Tag (EST) in NCBI
GenBank contains 9× 106 sequences while only 5.4× 105 in the Uniprot database. This
trend of searching proteomics data in a genomic database made it necessary to develop a
general method to significantly speed up today’s database search tools.

This thesis studies the possibility of using de novo tag search to improve traditional
database searches and develops the Tagger software for this purpose. We take an approach
different from that of some of the earlier works. Tagger focuses on the tag search step
and leaves the de novo sequencing and peptide-spectrum matching steps to other existing
software tools. This makes it possible to use Tagger to improve any existing database search
tools. Given the wide adoption of a large number of different existing database search tools
in the proteomics community, this flexibility is critical. In return, this flexibility allows
Tagger to take advantage of the newest developments in de novo sequencing. In particular,
the availability of the rapid de novo sequencing software, Novor, is pivotal for making the
Tagger approach practical.

The novel contributions of the paper include: (1) a rigorous scoring function for e-
valuating tag-peptide matches, (2) an accurate scoring function to score proteins based
on tag-peptide matches, and (3) a general strategy to use Tagger to improve other exist-
ing database search tools without changing them. The Tagger software can be used also
independently of other database search tools for peptide and protein identification. Bench-
mark experiments were conducted to evaluate the Tagger approach by integrating Novor
and Tagger for tag generation and tag search, while peptide-spectrum matching was done
by X!Tandem, InsPecT, and MSGFDB, respectively. The results demonstrate that this
approach not only improves the X!Tandem tool alone, but also outperforms the InsPecT
and MSGFDB tools that integrate all the tag generation, tag search, and peptide-spectrum
matching steps in one program.
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1.3 Thesis Overview

Chapter 2 reviews the fundamental knowledge of protein and DNA, as well as the basics of
mass spectrometry and de novo sequencing. Related research on tag-based database search
are presented in Chapter 3. The detailed algorithms for searching peptides and proteins are
shown in Chapter 4. The experiments are presented in Chapter 5. Finally, the conclusion
and discussion are in Chapter 6. The Appendices provide some supply materials including
the tests we did for choosing parameters and the proof of a lemma.
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Chapter 2

Background

2.1 DNA and Protein

Deoxyribonucleic acid (DNA) exists in every nucleus of an organism, it contains the whole
genetic information of the creature. DNA is made up from 4 different bases (nucleotides),
adenine (A), thymine (T), guanine (G) and cytosine (C), which is true for all the creatures
on the earth that contains DNA. DNA has a double-stranded structure, the bases on one
strand of DNA form base pairs with a second strand of DNA to form the double helix. But
the base pairs that can be formed have limitations; adenine (A) can only form a base pair
with thymine (T) and guanine (G) can only form a base pair with cytosine (C). So when
we know the sequence of bases on 1 strand of DNA, we also know the sequence of bases
on the other strand of DNA [24].
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Figure 2.1: An example that shows the procedure from DNA to Protein [24].

A protein is made from amino acids, these form a strand. There are total 20 different
amino acids. A protein strand is derived from DNA after two steps: transcription and
translation, which is shown in Figure 2.1. During transcription, messenger RNA is made
from DNA. RNA, short for Ribonucleic Acid, is synthesized in the nucleus and is very
similar to DNA. The synthesis of RNA also involves the use of bases, but in RNA synthesis
uracil (U) is used instead of thymine (T). The sequence of RNA corresponds to the sequence
of DNA from which the RNA is synthesized. Then in translation step, proteins are made
from mRNAs. One amino acid is added to the protein strand for every three bases in the
RNA, which is called codons. Figure 2.2 shows the table of translation rules.
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Figure 2.2: The codon table that shows the rule of translation [24].

2.2 Basics of Mass Spectrometry (MS)

Tagger doesn’t actually deal with mass spectra while searching databases, they are taken
by Novor software during tag generation step. We only introduce the basic idea of MS in
this section.

2.2.1 Mass Spectrometry (MS)

Mass spectrometry (MS) is an analytical technique that ionizes chemical species and sorts
the ions by their mass to charge ratio. In other words, a mass spectrum measures the
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masses within a sample. Mass spectrometry is used in many different fields and is applied
to pure samples as well as complex mixtures. The mass is usually measured in Dalton
(Da), which is 1/12 of the mass of a carbon atom.

A mass spectrum is provided by a mass spectrometer, which is a plot of the ion signal
as a function of the mass-to-charge ratio. These spectra are used to determine the ele-
mental or isotopic signature of a sample, the masses of particles and of molecules, and to
explain the chemical structures of molecules, such as peptides, proteins, and other chemical
compounds. A simple sample of mass spectrum is shown in Figure 2.3

Figure 2.3: A sample of mass specturm.

In a typical MS procedure, a sample is ionized, for example by bombarding it with
electrons. The sample’s molecules may break charged fragments in this way. These ions
are then separated according to their mass-to-charge ratio, typically by accelerating them
and subjecting them to an electric or magnetic field because ions of the same mass-to-
charge ratio will undergo the same amount of deflection [25]. The ions are detected by a
mechanism capable of detecting charged particles, such as an electron amplifier. Results
are then displayed as spectra of the relative abundance of detected ions as a function of the
mass-to-charge ratio. The atoms or molecules in the sample can be identified by correlating
known masses to the identified masses or through a characteristic fragmentation pattern
[26]. Figure 2.4 shows a typical MS procedure.

There are many types of ionization methods used in mass spectrometry methods. Elec-
tron ionization (EI) is one of the most classic methods. It is done by volatilizing the sample
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Figure 2.4: A typical MS procedure [27].

directly in the source that is placed in a vacuum system and then the gas phase sample is
bombarded by an electron beam. This method was first proposed in 1918 by Sir Arthur J.
Dempster [28]. EI is a reproducible method that can provide structural information of the
sample. But the sample used by EI must be volatile and stable, and the molecular ions
are often missing.

Electrospray ionization (ESI) is now becoming the most popular ionization technique.
The sample is sprayed across a high potential difference from a needle into an orifice in
the interface. Heat and gas flows are used to desolvate the ions existing in the sample [29].
ESI is best for multiple-charged ions and compatible for MS/MS. But it is not good for
uncharged ions and the ion current is relatively low.

Matrix Assisted Laser Desorption Ionization (MALDI) is a technique of ionization in
which the sample is bombarded with a laser. The matrix chromophore absorbs and dis-
tributes the energy of a laser, thus produced a plasma, vaporates and ionize the sample
[30]. MALDI is a rapid method that works well for singly charged ions but is has difficulty
doing MS/MS [31].
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2.2.2 Tandem Mass Spectrometry (MS/MS)

Tandem mass spectrometry, also MS/MS, involves multiple steps of mass spectrometry
selection, with some form of fragmentation happening in between the stages. In a tandem
mass spectrometer, ions are formed in the ion source and separated by the mass-to-charge
ratio in the first stage of mass spectrometry (MS1). Ions of a particular mass-to-charge
ratio (precursor ions) are selected and fragment ions (product ions) are created by collision-
induced dissociation, ion-molecule reaction, photodissociation, or other processes. The
resulting ions are then separated and detected in the second stage of mass spectrometry
(MS2) [32]. Figure 2.5 shows the schematic of MS/MS. There are many different methods

Figure 2.5: Schematic of tandem mass spectrometry [32].

for molecule fragmentation. Collision-induced dissociation (CID) is a mass spectrometry
technique for molecular ions fragmentation in the gas phase [33]. The molecular ions are
usually accelerated to high kinetic energy by electrical potential, then they can collide
with neutral molecules. Some of the kinetic energy is converted into internal energy in the
collision, which will cause dissociation occurring at amide bonds and the fragmentation of
the molecular ion into smaller pieces. Then a tandem mass spectrometer can be used to
analyze the fragment ions. CID works better for small, low-charged peptides.

Electron-transfer dissociation (ETD) is a method of fragmenting multiply-charged gaseous
macromolecules in a mass spectrometer between the stages of tandem mass spectrometry
(MS/MS)[34]. ETD is used extensively with polymers and biological molecules such as pro-
teins and peptides for sequence analysis. It can transfer an electron and then cause peptide
backbone cleavage into c- and z-ions while leaving labile post-translational modifications
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(PTM) intact. The technique only works well for higher charged peptide or polymer ions
(z > 2). However, relative to CID, ETD is advantageous for the fragmentation of longer
peptides or even entire proteins, which makes it important for top-down proteomics.

Another alternative type of fragmentation method is the beam-type CID or high-energy
collision dissociation (HCD). Unlike the traditional ion trap CID, the fragmentation pattern
of HCD uses higher activation energy and shorter activation time [35]. HCD generates b-
and y-type fragment ions as well. HCD has no low mass cut-off limitation and is able
to provide high mass accuracy MS2 spectra. It has been successfully applied for de novo
peptide sequencing and providing more detailed ion series. Also, certain diagnostic ions
specific for HCD could be recognized for PTMs identification in PTMs studies [36].

2.3 De Novo Peptide Sequencing

De novo sequencing in proteomics means the process of deriving peptide sequences from
tandem mass spectra without the assistance of a sequence database [16]. De novo sequenc-
ing is frequently used in proteomics research to require new peptides from MS/MS data.
It is helpful to sequence an entire protein and assist database search analysis [12]. There
are many software packages available for de novo sequencing: PEAKS contains a full pack
of functions including de novo sequencing, database search, PTM identification, homology
search and quantification in data analysis [3]; CycloBranch is a tool for de novo sequencing
of non-ribosomal peptides (i.e. linear, cyclic, branched and branch-cyclic) [37]; NovoHMM
is another method of de novo sequencing which use hidden Markov model (HMM) in a
Bayesian framework as a new way to solve the problem [38]; PepNovo uses a probability
network which reflects the chemical and physical rules of the peptide fragmentation [14].
A more detailed introduction to de novo methods can be found in [16].
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Figure 2.6: A small portion of decision tree learned by Novor [13].

Although there are different kinds of de novo sequencing methods in the market, the
speed of de novo sequencing is not satisfying. In a typical proteomics progress, de novo
sequencing with today’s software usually takes longer than database search, which is not
acceptable as we want to use the result of de novo sequencing as a way to reduce running
time. Recently, a de novo sequencing named Novor is proposed, it is based on two decision
trees built with machine learning [13]. Figure 2.6 shows part of the decision tree learned
by the machine learning algorithm of Novor. Novor is able to improve de novo speed
greatly and retain similar accuracy as other tools. More than 300 MS/MS spectra can
be sequenced by Novor on a laptop computer per second, which opens the possibility to
develop a fast speed protein identification method using de novo results.
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Chapter 3

Related works

Although tag-based approach for database search doesn’t have a history as long as the
classic MS/MS approach. Many great pioneer works are already there and inspire us a lot.
We will review some of them in this section.

3.1 FASTS, MS-Shotgun and MS-BLAST

FASTS [18], MS-Shotgun [19], and MS-BLAST [20] are three tag search programs modi-
fied from the general purpose homology search programs: FASTA [39], Shotgun [40], and
BLAST [41]. Compare with their ”parent” programs, they make an adjustment of pa-
rameters and consider multiple tags at the same time to improve the accuracy of protein
identification. Figure 3.1 shows a workflow of FASTS. In the figure, there is another pro-
gram FASTF, it is designed by the same author as FASTS and searches the database with
mixed peptide sequences. Despite the development compared with their ”parents”, none
of the three methods can deal with de novo sequencing errors. These errors can happen
everywhere, which may affect scoring functions and result in wrong answers.
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Figure 3.1: The workflow of FASTS [18].

3.2 OpenSea

Opensea is a software package that can match error-containing sequence tags with a
database to locate the modified or homologous proteins [42]. Homologous mutations and
de novo sequencing errors are both considered during the search. Nevertheless, OpenSea
doesn’t allow sequencing errors and mutations to occur ar the same positions. And it
requires that the de novo sequencing errors have a minimum length of 3. Figure 3.2 shows
the mass-based alignment scheme of OpenSea. The matches are done using a simple greedy
algorithm so not all optimal matches can be found.
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Figure 3.2: The mass-based alignment scheme of OpenSea [42].

Also, in the research paper of OpenSea, the authors demonstrated that de novo ap-
proach can get better results than MS/MS search approach for protein identification, which
strengthen our faith in designing a tag-based software.

3.3 InsPecT

The InsPecT program [23] is another classic use of de novo tags. Different from the other
tag search programs, InsPecT’s goal is to perform unrestrictive PTM search on the exact
sequence database of the studied organism. Tag matching is only used as a filtration step
of the Inspect algorithm, while the scoring of the identified peptides is still based on the
original spectrum. Similar ideas are also employed in the PEAKS DB [12] and JUMP [9]
software. All of the three tools use their own algorithms to generate the de novo sequence
tags, and their own scoring functions to evaluate the peptide-spectrum matches. This
prevents the use of these tools to improve other traditional database search tools; as well,
these software tools cannot take advantage of the newly improved de novo sequencing
software made available by the research community.
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3.4 SPIDER

SPIDER is a sequence tag searching method which takes both de novo sequencing errors
and homology mutations into consideration [21]. Unlike OpenSea, it allows the errors
and mutations to appear at same positions of the sequences. Moreover, SPDIER can be
extended directly to identify proteins with PTMs. It also has the ability to ”guess” the
real sequence with most probability by combining the information given by the homolog
of the real sequence and the partially correct sequence.

SPIDER’s alignment model is among three sequences, the sequence tag, the real pep-
tide sequence, and the homology of the real sequence in a database. It uses a dynamic
programming algorithm to find the alignment and offers an efficient way to find the opti-
mal alignment. Although SPIDER works fine with normal-sized data, running time still
becomes a problem when dealing with huge data files.
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Chapter 4

Methodology

4.1 Method Overview

The overall procedure from tandem mass spectrum to identified peptides and proteins
includes the following five steps: tag generation, tag search, protein shortlisting, peptide-
spectrum matching, and result combination. Our Tagger software takes care of the tag
search, protein shortlisting, and result combination steps; whereas the tag generation and
peptide-spectrum matching steps are performed with other software tools. Tagger provides
the simple mechanism to support the changing of different software tools for tag generation
and peptide-spectrum matching. The functions of each step are summarized in the rest of
this section, with details provided in the next few sections.

Step 1. The tag generation step computes a de novo sequence for each tandem mass
spectrum in the data file. These de novo sequences are called tags and provided to Tagger
with a simple text file in the csv format.

Step 2. In the tag search step, Tagger searches a large protein sequence database to
find the best matching database peptide for each tag. A nontrivial index structure is built
to facilitate the efficient searching. A rigorous but efficient scoring function is proposed to
evaluate each peptide-tag match.

Step 3. In the protein shortlisting step, the proteins that contain at least one tag
matches are scored and sorted according to their scores. A short list of proteins are
selected and output as a FASTA file. The second and third steps only rely on the sequence
tags and do not need the original spectrum data. The first three steps are very efficient
and take minimum amount of time.
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Step 4. The peptide-spectrum matching is conducted by calling separate database
search software. The original spectrum data, as well as the short list of proteins in the
FASTA file computed in step 3, are provided to the database search software as input.
Since the FASTA file is usually significantly smaller than the original database, this step
is more efficient than searching the whole database with the same software.

Step 5. The result combination step combines the peptide and protein identification
results made in the third and fourth steps together. As the results are already provided in
former steps, no additional computation is needed, this step can be done in several seconds.

The fourth step is usually the most time-consuming step. If desired, the procedure can
stop at any of steps 3, 4, and 5. For example, if the process stops at the third step, the tag
matches and protein shortlists are used as the peptide and protein identification results.
However, the search quality increases if the last two steps are included.

4.2 Tag Generation

In theory, any de novo sequencing tool can be used to generate tags for Tagger. However,
the speed requirement of de novo sequencing makes the Novor software the only choice
at the time being. Novor was reported to be at least 10 times faster than other de novo
sequencing tool. With a speed of more than 300 spectra per second on a personal computer,
Novor makes the time complexity of this tag generation step negligible. Thus, in this work,
the free Novor software (Version 1.05, Rapid Novor Inc., Waterloo, ON, Canada) is used
for de novo sequencing. Novor reports only one de novo sequence for each spectrum in a
plain text file. This file is parsed to retrieve the spectrum scan number, de novo sequence,
as well as Novor’s percentage score on the sequence and on each individual amino acids,
respectively. The de novo sequences with score less than 10% are removed.

4.2.1 Tag Preprocessing

De novo sequencing often cannot disambiguate two possible amino acids (or modified amino
acids) that have the identical or similar mass values. Also, the output of Novor can’t be
taken by our method directly because it shows possible or fixed PTMs in sequences while
standard protein databases don’t have PTMs in them. Therefore, a simple preprocess step
is performed to unify the amino acids with very similar mass values. All amino acids with
similar mass are substituted with a representative amino acid. Table 4.1 shows the list of
substitutions Tagger makes.
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Table 4.1: Amino acids with similar mass are substituted with the bolded amino acid code.

Nominal mass Amino acids
113 L, I
128 Q, K
131 F, Oxidized M

4.3 Tag Search

After modifying the input, the next step is to match those tags with peptide sequences in
the database by assigning matching score to tag-peptide matches. As the database might
be very large, it will be way too slow to search every protein in the database to find the
match. So we only calculate matching score for substrings of protein sequences that are
similar to the de novo tag, which we called candidates. First, we use a seeding method
to find match candidates. The candidates are then divided into different blocks and the
matching scores are calculated based on the probabilities of the blocks.

A tag with its highest-scored peptide sequence is called a final match. There may exist
several final matches for a tag because the highest score can be shared by more than one
peptides and the same peptide may appear many times in the database.

4.3.1 Finding Candidates

A seeding strategy is used to help quickly identify the potential tag-peptide matches. A
match between a k-mer of a de novo tag and a k-mer of the sequence database is called a
hit. A hit suggests that there is a potential tag-peptide match nearby and will trigger a
more rigorous examination. Hits can be found very efficiently by utilizing a hash table.

The hash table is only dependent on the input tag list, so it can be built before the
search begins. The procedure of building the hash table is as following:
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Buliding the Hash Table

input: a list of tags L and an integer k
output: a hash table that contains the indexes of the k-mers

Set the hash table to an empty table H
For a tag in L

For a kmer in tag
If H doesn’t contain kmer Then

Traverse L to find all indexes of kmer
Add kmer and its indexes to H

End If
Next kmer

Next tag

As shown above, all the k-mers from the query tags are indexed in the hash table. Then
each k-mer in the sequence database is used to query the hash table to find hits. The use
of a hash table to find hits has been well studied in the homology searching area [43, 16].
The time complexity of finding all the hits is O(m + n + K), where m is the total length
of the query tags, n is the total length of the database sequences, and K is the number of
hits.

Once a hit is found, a hit extension procedure is triggered. Suppose a hit is found for
position i of a de novo tag T , and position j of a database sequence S. Tagger linearly
examines the amino acids immediately after position j, until it finds a substring S[j +
1, `] such that the total residue mass is approximately equal to the total residue mass of
T [i + 1, |T |]. Here |T | indicates the length of T . If such ` cannot be found, then the
hit is regarded as a random match and discarded. If successful, the same procedure is
repeated by growing the hit to its left. Figure 4.1 illustrates a successfully extended hit.
A successfully extended hit provides a tag-peptide matching candidate.

4.3.2 Improving Seeding Sensitivity

In our seeding strategy, we require the k-mer to be matched with exactly the same k-
mer. This helps reducing the searching space but has its own disadvantages. Due to the
imperfect spectrum quality, we can’t avoid errors in de novo sequencing results. In addition,
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Figure 4.1: Two simple examples of a hit and extended hit.

it is commonly found in de novo results that a block with certain mass is substituted or
permutated into another block because it is hard for MS/MS to distinguish blocks with
very similar mass values.

To address this problem, we need to provide better sensitivity for the search, which can
be done by decreasing the value of k in our seeding method. According to the definition,
if two sequences have a k-mer hit then they also have a hit for any k′ less than k. That
is because any subsequence of a shared sequence is also shared, which means the search
spaces of lesser k contain those of larger ones, so basically the search results using larger k
won’t be better than lesser ones.

On the other hand, we must consider the running time of the method. For example,
decrease k by 1 will make the search space 20 times larger because one less amino acid need
to be matched and there are total 20 kinds of amino acids. Considering both accuracy and
speed, we came out with the idea of ”neighbor table” to make a tradeoff.

The main idea of the neighbor table is using an approximate seeding strategy to com-
press the search space while not affecting the results much. More specifically, the matching
of a k-mer and a k′-mer are regarded as a hit if they have the same total residue mass, and
share at least j identical amino acids when aligned together. A neighbor table is used to
facilitate the efficient finding of the hits under this definition. By adjusting the values of
k, k′ and j, one can find the sweet point for balancing search speed and sensitivity.

This strategy is to tolerate the possible de novo sequencing errors in the de novo se-
quence tags. It’s common in de novo sequencing that some 2 or 3 mers are replaced by
other ones of the same mass. By the definition of the neighbor match, we can tolerate
those errors if they don’t show up too much. Figure 4.2 shows the updated workflow
for searching potential matches after applying neighbor tables. Instead of being searched
directly in the tags, every k′-mer in the database is searched against the neighbor table
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Figure 4.2: The workflow for finding potential matches using neighbor table.

to find their neighbors, then the neighbors are used as seeds to search the input tags for
potential matches.

We must commit that building a neighbor table is time-consuming because every k′-
mer is searched with all 20k k-mers. However, neighbor tables are independent of both the
input tags and protein sequence databases so we don’t have to build it repeatedly. Actually,
every neighbor table represents a search strategy, we store different neighbor tables in text
files and use them for different purposes. As a neighbor only need to be created once, we
can always do it in spare time so the running time won’t be a problem.

4.3.3 Tag-Peptide Matching Score

The candidate finding step will find many database peptide matches for each query de
novo tag. These candidate matches are scored to find the best matching peptide. For each
tag-peptide match, the probability that such a match can occur randomly in the sequence
database is first calculated with the procedure described in the following.

Suppose S = a1a2 . . . an is a peptide sequence. Let m(a) denote the mass of an amino
acid residue a. The total residue mass of S, denoted by m(S), is calculated by m(S) =∑n

i=1m(ai). The sequence consists of the k residues, a1a2 . . . ak, are called the length-k
prefix of S. In particular, the 0-th prefix is an empty sequence and the n-th prefix is the
complete sequence S. The total mass of the first k residues, mk(S) =

∑k
i=1m(ai), is called

the k-th prefix mass of S.

Suppose T = a1a2 . . . an is a de novo sequence tag computed from a spectrum, and
P = b1b2 . . . bn′ is the real peptide sequence for the same spectrum. Since most (if not
all) de novo sequencing software tools use the spectrum’s precursor mass as a constraint,
we require that |m(T )−m(P )| ≤ ∆. Here ∆ > 0 is a user-specified parameter that
corresponds to the mass spectrometry instrument’s precursor ion mass error tolerance.
Due to the imperfect data quality and errors in the de novo sequencing, T and P may not
match exactly. However, most of the errors, if not all, are the mass gap errors [16]. Each
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mass gap error replaces a block of adjacent amino acids bjbj+1 . . . bj′ on the peptide P by
a few other amino acids aiai+1 . . . ai′ that have approximately the same mass.

The tag T and peptide P can be aligned together according to their prefix masses to
find out the mass gap errors. The concept is fairly intuitive and Figure 4.3 illustrates such
alignment with an example. More precisely, two prefix masses mi(T ) and mj(P ) are called
matched, if (1) |mi(T )−mj(P )| ≤ δ, and (2) at least one of ai and ai+1 has amino acid
confidence score ≥ 5%. Here δ > 0 is a user-specified parameter that corresponds to the
instrument’s fragment ion mass error tolerance. The majority of today’s mass spectrometry
instruments have δ ≥ ∆. Suppose 0 = i1 < i2 < . . . < ik = n and 0 = j1 < j2 < . . . jk = n′

are the indices of all the matching prefix masses of T and P , respectively. Then the
alignment between T and P are divided into k−1 blocks by the k indices. If both sequences
T and P contribute one amino acid in a block and the two amino acids match, the block
is called an exact matching block. Otherwise, the block is called a mass gap block. The
number, types, and lengths of the blocks provide a quality assessment of the alignment.
Intuitively, the alignment in Figure 4.3(b) has a better quality than the alignment in
Figure 4.3(a). This intuition can be formalized as follows.

Figure 4.3: An example of tag-peptide matches and the blocks.

Consider a block consisting of two partial sequences t and p, from the tag T and a
random peptide P from the database, respectively. If the block is an exact matching block
consisting of a single amino acid x. The block is significant in the sense that a random
sequence provides the same amino acid x at this position. The probability that this event
happens is the amino acid frequency of x in the database, denoted by p(x).

If the block is a mass gap block, let m(t) denote the total residue mass of t. The block
is significant in the sense that the mass of a random sequence p matches m(t). Let x1x2 . . .
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be a randomly generated infinitely long amino acid sequence. Define

P (m) = Pr

(
there is i such that |m−

i∑
j=1

m(xj)| ≤ δ

)
.

The value of P (m) is calculated with the following recurrence relation:

P (m) =


0, if m < −δ,
1, if − δ ≤ m ≤ δ,∑

every amino acid x p(x)× P (m−m(x)), otherwise.
(4.1)

Notice that the calculation of P (m) only requires the frequency p(x) for each amino
acid x. This is easily computed for each protein sequence database. Therefore, Tagger
precomputes P (m) and store the values in memory for later use.

Therefore, given an alignment between T and P . The significance of an exact matching
block with a single amino acid x is defined as p(x), and the significance of a mass gap
block is defined by P (m(t)), where t is the portion of tag T in the block. Suppose the
significance of all blocks are p1, . . . , pk. Then the score of the peptide-tag match is defined
by

score(T, P ) = − log2

(
Πk

i=1pi
)

=
k∑

i=1

− log2 pi. (4.2)

We call this score as the bit score. It is the basic version of tag-peptide match score and
only needs some minor changes for the final use.

As the bit score is based on the alignment between T and P . We first need to ensure
the existence of mass gap blocks and exact residue matches in a match candidate before
we move on to find the alignment.

Lemma 1.

If two peptide sequences have the same mass, they can always be divided into n mass
gap blocks and m exact residue matches, where n+m > 0.

The proof of Lemma 1 can be found in AppendixC. From the hit extension proce-
dure, it is obvious that if a hit is successfully expanded, the tag and peptide must have
approximately the same mass. So for every tag-peptide match candidate, we designed an
algorithm to find mass gap blocks and exact residue matches, which is shown below in
pseudocode.
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Mass Gap Blocks and Exact Residue Matches

input: amino acid sequence tag and peptide
output: positions of mass gap blocks and exact residue matches

Set A1, A2 to the first amino acid of tag and peptide
While(A1 or A2 is not the end of the sequence){

If MA(A1) is equal to MA(A2) Then
If the amino acid before A1 is same as the one before A2 Then

an exact residue match is found
Else

a mass gap block is found
End If
Set A1 to the next amino acid of A1, if possible

Else If MA(A1) is less than MA(A2) Then
Set A1 to the next amino acid of A1, if possible

Else
Set A2 to the next amino acid of A2, if possible

End If
}

In the algorithm above, both sequences are traversed only once so the time complexity
is O(n + m), where n is the length of the tag and m is the length of the peptide. The
algorithm above doesn’t include the check of amino acid confidence scores, which can be
done simply by traversing the tag and merging the blocks if the requirement is not met.
Once the mass alignment is determined, the bit score can be calculated using 4.2.

In some cases, the bit scores of long low-quality matches will be larger than some short
but high-quality matches because longer tags tend to have more blocks when aligned. In
order to address this problem, we use the number of blocks to further evaluate the tag-
peptide match. We believe that exact matching block is better than mass gap block in
quality. As an exact matching block contains 1 amino acid, higher quality matches tend
to have more blocks. Denote the number of blocks between T and D as k, and the length
of T as l. The tag-peptide matching score is defined as following.

matchscore(T, P ) =
k

l
× score(T, P ). (4.3)

This is our formula for tag matching score. Here, score(T, P ) is the bit score defined
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in 4.2. By applying this, matches with more blocks will have more chances to get higher
score. In tag search procedure, for every tag, we calculate the score for every potential
match and the highest scored matches are used for protein scoring. However, not all of
them can be used in the next stage. According to our matching score function, matches
with lower score are more likely to be fake because of short lengths or lacking exact residue
matches. So we need a threshold to decide whether a match should be taken to protein
scoring. The simplest way to apply a threshold is the FDR, during this step, peptides
within 20%FDR are used in the next step.

4.4 Protein Shortlisting

Suppose a protein has n significant tag-peptide matches. Denote them by p1, p2, . . ., pn.
Assume their scores are s1, s2, . . ., sn. Because some of these peptides heavily overlap
each other (or even identical), a direct sum of these peptide scores did not perform well for
separating true and false proteins. Thus, the following strategy for redundancy removal is
used.

Without loss of generality, suppose their scores are such that s1 ≥ s2 ≥ . . . ≥ sn. Let
li be the length of peptide pi. Let l′i be the length of peptide pi that do not overlap with
any peptide pj for 1 ≤ j < i. The protein score is then calculated as

n∑
i=1

si ×
l′i
li
. (4.4)

Basically, every pi will update the score of the protein it belongs to. After going through
all of them, a list of proteins with their scores is provided. We use those proteins within
30%FDR to output a FASTA file. This serves as the short list of proteins for later steps
of the search.

4.5 Peptide-Spectrum Matching

In this step, Tagger will then call a third-party database search tool to search the original
spectrometry data in the FASTA file generated in the protein shortlisting step. Since all
mainstream database search tools support customized protein databases in FASTA file
format, this allows the flexibility to use Tagger to enhance different third-party database
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search tools. In our experiments, some of the most widely used free database search tools,
including X!Tandem [5], MS-GFDB [8], and Inspect [23], are used to demonstrate Tagger’s
performance.

4.6 Result Combination

Although the procedure can stop at the peptide-spectrum matching step, the peptide
identification result can be further improved by combining Tagger’s result with the third-
party database search tool’s result. Since both results have been computed already in
the previous steps, the combination step takes only minimum additional time. There have
been different strategies for combining multiple engines’ search results in the literature [44].
However, for the flexibility to use any third-party engines, we chose to make the method
as simple as possible. The main idea of the method is to union the two engines’ results
together. We use different strategies to combine the result of protein and peptide search
and the details are presented in the next chapter.
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Chapter 5

Results and Discussions

We choose three database search tools as benchmarks to test our method: (1) X!Tandem [5]
is a widely used free software for protein identification. It is among the best maintained
free software tools in proteomics. It is also well known for its relatively fast speed as a
conventional database search tool. That fits our speed comparison purpose well. In addi-
tion, X!tandem provides results of protein identification in detail, which makes it possible
for us to compare the protein search results; (2)InsPecT [5] is a tag-based database search
method, we include it in our test for the comparison of other tag-based methods; (3)MS-
GFDB [8] is the advanced version of InsPecT, it outperforms InsPecT in both searching
speed and accuracy. Unluckily, InsPecT and MSGFDB don’t provide scores for proteins
as they are designed for peptide search. As a result, we only use X!Tandem to compare
protein search results, when comparing peptide results, all three benchmarks are included.

5.1 Datasets and Databases

Three datasets are used to compare performance: (1) Proteomics Dynamic Range Stan-
dard (UPS2): This standard dataset is an enhancement of original Universal Proteomics
Standard (UPS1). A complex mixture of 49 human proteins has been formulated into
a dynamic range of concentrations, ranging from 500 amoles to 50 pmoles. This data
were generated by Vogel et.al to confirm purposes in their research of protein and mRNA
concentration [45]. The dataset is available in the MS/MS data repository at Marcotte’s
lab at the University of Texas, Austin (www.marcottelab.org/MSdata). We chose datafile
MSups 15ul.RAW.gz in dataset 13 for our test; (2) U2OS: This dataset is from the pro-
teomeXchange data repository (ID: PXD001220). It is produced by Kirkwood et.al in
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their study of human osteosarcoma (U2OS) cells [46]. We chose file PT1541S1F16.raw
for the test; (3) Tumor1: This dataset was downloaded from the proteomeXchange data
repository (ID: PXD001676). The data was produced by Sethi et.al in their research of
paired colorectal cancer and non-tumorigenic tissues [47]. One data file Tumor-1 raw.zip,
consisting of 10 raw files was used. Table 5.1 shows the size of the three datasets.

Table 5.1: Number of spectra in the three datasets, respectively.
Size

UPS2 9424
U2OS 36159
Tumor1 57743

The Uniprot database is used as the main sequence database for testing. This database
is downloaded from http://www.uniprot.org/uniprot/. The 115 common lab contaminant
proteins from the cRAP (Common Repository of Adventitious Proteins) database were
also appended to the Uniprot database [48]. There are about 5.5 × 105 proteins in the
database and they are manually reviewed. As a medium-sized sequence database with low
redundancy, the Uniprot database is used for both sensitivity and speed comparison.

Large query datasets can be tested on the Uniprot database, but one may also want to
know the performance of Tagger while searching large databases. So database NCBI-NR
database is used for further comparing the running time. This database is downloaded
from ftp://ftp.ncbi.nih.gov/blast/db/FASTA/nr.gz. The NCBI-NR database encompasses
sequences from both, non-curated and curated databases from many sources. It contains
more than 108 protein sequences and is about 60GB in size. This database is mainly used
to show Tagger’s capability of searching huge databases.

5.2 Test Procedure and Parameters

Tagger was implemented in Java without much code optimization. The versions and down-
load sites of other methods are shown in Table 5.2.

All tests were done on a PC with an AMD X8 FX-8320 (3.8GHZ, 8 cores) processor and
16GB memory. Tagger, Novor, X!Tandem, and MSGFDB are capable for multithreaded
tasks and all 8 cores were involved during the search. However, InsPecT cannot use multiple
cores so only 1 core was used.
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Table 5.2: Versions and websites of the softwares used.
Version Site

Novor 1.5.571 http://www.rapidnovor.com/free-academic/
X!Tandem VENGEANCE http://www.thegpm.org/
InsPecT 2012/01/09 http://proteomics.ucsd.edu/Software/Inspect/
MSGFDB 7780 http://proteomics.ucsd.edu/Software/MSGFDB/

As none of the methods can use raw format input, we converted files of datasets into
MGF format using RawConverter (version: 1.0.0.0) from The Scripps Research Institute.
The following parameters were used for all the four software: precursor error tolerance =
15 ppm (InsPecT only accepts Da as the parameter so we used 0.5 Da instead), fragment
ion error tolerance = 0.5 Da, fixed modification = carbamidomethyl of Cys, and variable
modification = oxidation of Met.

For Tagger, the parameter we want to discuss is the neighbor table. After optimization,
Tagger used 4-mer with at least 2 precise matches (k = 4, k′ = {3, 4, 5} and j = 2) as the
seed to generate hits. Details about the optimization of these parameters are provided in
AppendixB.

5.3 Main Results

In this section, we present the results in three aspects: (1)the running time required by
Tagger and other methods on the three datasets; (2) the protein shortlisting sensitivity;
(3) accelerating and enhancing peptide search.

5.3.1 Running Time Comparison

Table 5.3 shows the size of the shortlists provided by Tagger. Table 5.4 shows the running
time of Tagger and other methods searching the UniProt database, on the three datasets,
respectively. We divided Tagger’s running time by steps so it can be easier to understand.
And for illustration purpose, a breakdown of the time spent on each step of MSGFDB on
the U2OS data is given in Figure 5.1. During the tests, the protein search results of Tagger
within 30%FDR were used as the protein shortlist. The table shows that Tagger is much
faster than other methods when used alone, also, as the shortlists are much smaller than
the whole database, the running time was greatly reduced for X!Tandem, InsPecT, and
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MSGFDB as well. Step 5 of Tagger was omitted in the table because the result combination
only takes 3-5 seconds, which is negligible in comparison to other steps.

Table 5.3: Number of proteins in the shortlists of three datasets, respectively.
Shortlist size

UPS2 8231
U2OS 32753
Tumor1 50249

Table 5.4: The running time (seconds) required by Tagger and other three methods, on
the three datasets, respectively.

UPS2 U2OS Tumor1
Novor (Step 1 of Tagger) 44 128 217
Step 2 and 3 of Tagger 96 432 680
X!Tandem alone 957 3962 7405
X!Tandem on shortlist 78 450 819
InsPecT alone 17706 99244 more than 2 days
InsPecT on shortlist 766 11043 21250
MSGFDB alone 3409 7608 10081
MSGFDB on shortlist 258 1439 2309

We also used the four methods to search the NCBI-NR database to test their ability to
search huge databases. The results are shown in Table 5.5, it is surprising that Tagger was
the only method that can get the work done, other methods even failed on the smallest
dataset UPS2. As Tagger doesn’t need to read the whole database into memory, it actually
has no limitation on database size.

Table 5.5: Results on searching the UPS2 dataset on NCBI-NR database
UPS2

Tagger Search completed after 2 hours
X!Tandem Ran out of memory after 5 hours
InsPecT Searched less than 3% after 2 days
MSGFDB Java heap space error
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Figure 5.1: The time breakdown (seconds) for each step of the MSGFDB configuration
on the U2OS dataset.

5.3.2 Protein Shortlisting Sensitivity

The protein shortlisting step downsizes the protein database purely by the de novo sequence
tags. If a protein is not ranked high enough to be kept in the shortlist, then all its peptides
cannot be found in the later peptide-spectrum matching step. Thus, we need to watch the
number of confident proteins identified by Tagger at its step 3.

Suppose a database search engine, say, X!Tandem, can identify n proteins from the o-
riginal database at 1% FDR, without using Tagger. Then Tagger should identify a compar-
ative number (or more) proteins at 1% FDR at its step 3. Otherwise the search sensitivity
may be undermined by this protein shortlisting.

Figure 5.2 shows the Venn diagram of the proteins identified by X!Tandem and the first
three steps of Tagger, on the three datasets, respectively. The figure shows that Tagger
actually found slightly more proteins than X!Tandem. Figure 5.3 shows the FDR curves
of X!Tandem and Tagger on the three datasets. These figures justified the appropriateness
of this protein shortlisting step.
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Figure 5.2: The Venn Diagram of the identified proteins with 1% FDR by Tagger (left)
and X!Tandem (right), on the three datasets, respectively.

5.3.3 Protein Results Combination

As Tagger can find the same amount (or even more) proteins than X!Tandem, the results
of step 3 are already of enough quality for protein identification. However, if we already
have the results of X!Tandem searching the whole database, then the results of Tagger can
be used to quickly improve the results of X!Tandem.

After applying 1% FDR to the results of Tagger and X!Tandem, we first studied the
distribution of decoy protein by drawing a graph in which every point represented a decoy
protein that was identified by either Tagger or X!Tandem, the x-axis value is the score of
the protein given by Tagger and the y-axis value is the score of X!Tandem, as shown in
Figure 5.4.

As shown in the graphs, most of the points are on either x or y-axis, which means they
are only identified by one method. It inspired us to use the intersection of two result sets
as the new result. This strategy takes only the common proteins found by both Tagger and
X!Tandem. This gives a smaller list of proteins, but with much reduced FDR. One could
achieve the same effect by providing a more stringent filtration on X!Tandem alone. To
compare which approach gives a better sensitivity, we adjusted X!Tandem’s score threshold
to meet the actual FDR of the intersection strategy.
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Figure 5.3: The protein FDR curves of X!Tandem and Tagger, on the three datasets,
respectively.

And naturally, the union of two set was used, this strategy reports all proteins found
by any of Tagger and X!Tandem. This will increase the FDR. To offset the FDR increase,
we first set the FDR of Tagger and X!Tandem to be 0.5%. Then the union guarantees an
FDR to be no more than 1%.

Table 5.6: Size and FDR of different sets.
T0.5% ∪X0.5% X1% T1% T1% ∩X1% Xcompare

UPS2 853, 0.63% 807, 1% 826, 1% 762, 0% 657, 0%
U2OS 7958, 0.84% 7460, 1% 7445, 1% 6852, 0.055% 5552, 0.055%
Tumor1 12087, 0.98% 11209, 1% 11338, 1% 10352, 0.046% 9409, 0.046%

Table 5.6 shows the number of proteins identified with different strategies, as well as
the actual FDR of the results. The table shows that the combined use of the two software
could significantly improve the sensitivity of the search over X!Tandem, at the same level
or better FDR.
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Figure 5.4: The distribution of decoy proteins.

5.3.4 Peptide Identification Sensitivity

The main goal of Tagger is to enhance the other search engines identifying more peptides.
Table 5.7 shows the number of PSMs provided by different search engines at 1%FDR. The
table shows that unlike the protein identification results, Tagger only found less than half
of the proteins than MSGFDB when used alone. As a result, the peptide identification
results of step 2 and 3 can’t be used directly. Step 4 and 5 are necessary while doing
peptide identification.

Here we want to discuss the strategy of result combination in step 5. As Tagger can’t
provide as much PSMs as other methods, we give low confidence on the peptides identified
by Tagger. During the result combination, Tagger’s results at 0% FDR were unioned with
the result of other software at 1% FDR. This strategy only adds target peptides into the
results of other methods, thus, the FDR won’t be worse and the FDR curve will be moved
parallel through the x-axis compared with the original one.

A few different configurations of using Tagger with different search engines are compared
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Table 5.7: PSMs identified by the four softwares at 1% FDR.
UPS2 U2OS Tumor1

Tagger 1555 7912 11291
X!Tandem 3223 14848 24594
InsPecT 2109 6520 N/A
MSGFDB 3966 15279 28105

by using the number of PSMs at 1% FDR and the search speed. The following list explains
the different configurations:

• X!Tandem: X!Tandem is used to search the complete protein database. Tagger is
not used at all.

• X!Tandem (Tagger accelerated): X!Tandem is used to search the protein shortlist
computed by Tagger. Therefore the search speed is accelerated. This setting includes
the first 4 steps of Tagger workflow.

• X!Tandem (Tagger enhanced): On top of X!Tandem (Tagger accelerated), Tag-
ger’s peptide identification results are combined with X!Tandem’s results. Therefore
both the search speed and the search sensitivity are enhanced. This setting includes
all the steps of Tagger workflow.

• MS-GFDB, MS-GFDB (Tagger accelerated), MS-GFDB (Tagger enhanced):
These settings are similar to the X!Tandem settings, except that X!Tandem is re-
placed with MS-GFDB.

• Inspect, Inspect (Tagger accelerated), Inspect (Tagger enhanced): These
settings are similar to the X!Tandem settings, except that X!Tandem is replaced with
Inspect.

Table 5.8 shows the number of identified PSMs at 1% FDR, as well as the running
time, by using each of the configurations. Figure 5.5 shows the FDR curves of different
configurations using X!Tandem. The curves for other benchmark software have similar
shapes and are not included here. From both Table 5.8 and Figure 5.5, one can conclude
that Tagger can greatly enhance both the search sensitivity and search speed.
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Table 5.8: The number of PSMs identified with 1% FDR and the running time for different
configurations of using Tagger. The running time includes all steps from the raw data to
the output of the result.

UPS2 U2OS Tumor1
X!Tandem 3223 (15m57s) 14848 (1h6m) 24591 (2h3m)
X!Tandem (Tagger accelerated) 3794 (3m38s) 15381 (16m50s) 27343 (28m36s)
X!Tandem (Tagger enhanced) 4074 (3m40s) 16548 (16m53s) 29896 (28m40s)
MS-GFDB 3966 (56m49s) 15279 (2h7m) 28105 (2h48m)
MS-GFDB (Tagger accelerated) 4420 (6m38s) 16797 (33m19s) 31011 (53m26s)
MS-GFDB (Tagger enhanced) 5070 (6m41s) 19835 (33m24s) 35105 (53m32s)
Inspect 2109 (4h55m) 6520 (27h40m) N/A
Inspect (Tagger accelerated) 2666 (15m06s) 6842 (3h13m) N/A
Inspect (Tagger enhanced) 3178 (15m07s) 9953 (3h13m) N/A
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Figure 5.5: The peptide FDR curves of different configurations of using Tagger on the
U2OS dataset.
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Chapter 6

Conclusion and Discussion

In the past more than 20 years, the proteomics research community has developed a large
number of database search engines. Many of these engines have accumulated a large user
base. However, the rapid growth of mass spectrometry data size and the protein database
size has made the database search increasingly slow with these existing search engines. We
develop a general strategy and the Tagger software to improve the speed of any existing
database search software, without making changes to the existing software.

Tagger’s speed improvement is made possible due to the free availability of the rapid
de novo sequencing software Novor. Other existing de novo sequencing software is too slow
for the purpose. However, if other fast-speed de novo sequencing tools become available in
the future, they can be easily plugged into Tagger’s workflow to replace Novor.

Tagger’s acceleration of the search speed does not compromise the search quality. On
the contrary, for each of the search engines tested in this work, the search accuracy and
sensitivity were significantly increased as the same time of the speed improvement. This
is rather surprising as the protein shortlisting step creates the possibility to lose some
true positive proteins. The rigorous peptide-tag scoring function and the protein scoring
function proposed here are instrumental for keeping the true positives on the short list.
During the course of this work, several scoring functions have been implemented and tested.
The scoring functions used in this paper are both the best-performing and among the least
complicated.

The peptide-tag scoring function is very different from most scoring functions used in
today’s database search software. Therefore, Tagger’s own peptide identification results
complement the results of the other search engines. This further contributes to the search
quality in the final result combination step. The result combination step uses a very simple
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strategy to combine Tagger’s own results with that of the other search engine. The main
consideration here is to keep the integration simple. So one can easily plug another search
engine into Tagger’s workflow. However, once the database search software is decided,
one can start developing better ways to combine the results. It is likely that a more
sophisticated result combination step can lead to further improvement of search quality.
The Tagger software should be useful to any proteomics researchers who use database
search software to identify peptides from mass spectrometry.
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Appendix A

APPENDICES

A.1 AppendixA: Software and Hardware used

Software list

• Novor 1.5.571
−de novo sequencing.

• RawConverter 1.0.0.0
−converting RAW data to MGF file.

• X!Tandem VENGEANCE
−database search.

• InsPecT 2012/01/09
−database search.

• MSGFDB 7780
−database search.
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• Eclipse Luna 4.4.2
−implementation of Tagger in Java.

• Microsoft Office Excel 2013
−analysing results and drawing graphs.

Hardware list

• Personal Computer: AMD X8 FX-8320@3.8GHZ, 16GB RAM
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A.2 AppendixB: Parameters of the neighbor table

A neighbor table is a hash table, whose key is a k′-mer and the value is a list of k-mers.
Two sequences of the same mass should have at least j exact matches to be considered as
neighbors. So there are three parameters to be discussed: k′, k and j.

Parameter k’

Parameter k′ is the most flexible among the three parameters. We only have one minimum
constraint for k′: the value of k′ must contain k because neighbors are most likely to have
the same length.

We can add extra values to k′ as a feature for better results. After searching all
sequences of the same length k, it is reasonable to search the sequence of length k+ 1 and
k − 1. If two amino acids have the same mass, their lengths won’t differ a lot, especially
for short sequences. As the k-mers are subsequences of de novo tags, their lengths are
relatively short. Thus, we set k′ = {k − 1, k, k + 1}.

Paremeter k

Different k′-mers have different neighbors, but they all have the same length k. Parameter k
is the key parameter because those k-mers are used directly to search for potential matches.
So we designed some tests to help us choosing the proper value of k.

If we increase the value of k by 1, then the search space can be compressed to approx-
imately 1/20. We also want to know the quality of result after increasing k. In the classic
BLAST algorithm [41], a seed of length 3 was used to find matches. Inspired by that, we
first configured Tagger to use exact 3-mer match while seeking potential matches, then the
UniProt database was searched with UPS2 dataset by Tagger and X!Tandem separately.
Before we compare the results, we noticed that the running time of Tagger was almost the
same as X!Tandem, which is not acceptable because our research goal is to build a fast
speed method. According to the test, the search space of using 3-mer exact match is too
large and we have to increase the value of k.

Next, we check the effect on the results after increasing k. In order to do that, we
used a result file of searching the UniProt database with UPS2 dataset, which was done by
PEAKS DB (thanks to my supervisor Prof Ma for offering the result file). There were total
4300 PSMs in the database, then they were examined one by one to determine whether
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they can be matched as potential matches using seeds of different lengths. Table A.1 shows
the main results of the tests.

Table A.1: Number and percentage of potential matches.
Number Percentage

k=3 4066 95%
k=4 3832 89%
k=5 2357 55%
k=6 975 23%

Although there is no guarantee that PEAKS DB can match all spectra to the correct
protein, it reflects the inner structure within protein sequences and we think the result is
more convincing than using randomly generated data. According to the results, the match
rate starts to drop rapidly when k = 5. The score function is only performed on candidates
and low match rate will surely lead to bad search results. Finally, we chose k = 4 to build
the neighbor table. If needed, we can consider adding more features to the neighbor to
further increasing the sensitivity of the search if it won’t affect the running time greatly.

Paremeter j

As k is set to 4 and k′ set to {3, 4, 5}, we set j to 2 as it is the only reasonable choice. If
we set j to 3, then it has no meaning to include 3 in k′ because it is impossible for a 3-mer
to have 3 exact matches with a 4-mer. Moreover, if a 4-mer has 3 exact matches with
another 4-mer, then the 4th amino acid will also be matched as an exact match, which
means the two 4-mers are the same. It is also not wise to set j to 1 because it will allow
too many sequences into the neighbor list. We did a test in which we created a neighbour
table using k = 4, k′ = {4}, j = 1. After checking the table, we found every k′-me had
by average more than 60 neighbors! It means the search space is over 60 times larger than
using the exact 4-mer match. The search space of using exact 3-mer match is 20 times
larger than 4-mer and it is already too large for a fast speed method. The running time
will be completely intolerable if we set j to 1. As a result, j = 2 is the best choice.
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A.3 AppendixC: Proof of Lemma 1

The proof is quite simple, denote the length of one of the two sequences as l (it doesn’t
matter which one is chosen), then Lemma 1 can be rewritten as follows:

• For an amino acid sequence S of length l (l > 0) and a sequence S ′ that has the same
mass as S, they can always be divided into n mass gap blocks and m exact residue
matches, where n+m > 0.

According to the definition of mass gap blocks, if there is no exact residue matches or
minor blocks within S and S ′, then S and S ′ are matched as a mass gap block. Lemma
1 is true for this situation because S and S ′ can be considered as 1 mass gap block and
0 exact matches. We focus on the situation in which exact matches or minor mass gap
blocks occur between S and S ′.

Note one of the minor blocks or exact matches as g. Then S and S ′ can be divided
into three parts: the sequence on the left side of g, denoted as Sl and S ′

l, g itself, and the
sequence on the right side of g, denoted as Sr and S ′

r. As mentioned before, g is either
mass gap block or exact match, so Lemma 1 is true for g.

Obviously, Sl and S ′
l have the same mass, so do Sr and S ′

r. If we can prove that Lemma
1 is true for Sl and S ′

l as well as Sr and S ′
r, then Lemma 1 is also true for S and S ′. As

g can occur in any location of S, the length of Sl and Sr varies from 0 to l − 1. We only
discuss the length from 1 to l − 1 because empty sequence has no meaning. As a result,
if Lemma 1 is true for any l′ < l, then it is also true for l.

Now the problem is quite clear, we only need to prove that Lemma 1 is true for l = 1.
The proof is trival: denote the length of S ′ as l′, if l′ = 1 then S and S ′ are matched as an
exact match. If l′ > 1 than they are matched as a mass gap block. So Lemma 1 holds for
l = 1. And it is also true for any integer l > 1, Lemma 1 is proved.

50


	List of Tables
	List of Figures
	Introduction
	Motivation
	Research Objectives and Contributions
	Thesis Overview

	Background
	DNA and Protein
	Basics of Mass Spectrometry (MS)
	Mass Spectrometry (MS)
	Tandem Mass Spectrometry (MS/MS)

	De Novo Peptide Sequencing

	Related works
	FASTS, MS-Shotgun and MS-BLAST
	OpenSea
	InsPecT
	SPIDER

	Methodology
	Method Overview
	Tag Generation
	Tag Preprocessing

	Tag Search
	Finding Candidates
	Improving Seeding Sensitivity
	Tag-Peptide Matching Score

	Protein Shortlisting
	Peptide-Spectrum Matching
	Result Combination

	Results and Discussions
	Datasets and Databases
	Test Procedure and Parameters
	Main Results
	Running Time Comparison
	Protein Shortlisting Sensitivity
	Protein Results Combination
	Peptide Identification Sensitivity


	Conclusion and Discussion
	References
	APPENDICES
	AppendixA: Software and Hardware used
	AppendixB: Parameters of the neighbor table
	AppendixC: Proof of Lemma 1


