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Abstract 

Derived from the depths of rich, green Canadian forests; the discovery of cellulose nanocrystals (CNCs) 

has pushed the research and industrial community to find strategic alternatives to replace existing non-

renewable building blocks. With the commissioning of world’s largest CNC demonstration plant in 

Quebec, Canada, the utilization of cellulose nanocrystals is feasible, and has opened a myriad of 

applications in recent years, such as energy, sensors, water treatment, biometrics, photonics etc.  

This dissertation describes the modification of fundamentally inactive CNCs, and converting them into 

colloidally-active cosmetic systems. In the first approach, the high surface area, and equatorial -OH 

groups of CNCs were utilized for the nucleation of polyhydroxylated C60 fullerene, as a new 

antioxidant. The reaction kinetics were quantified and fitted to a pseudo first-order model, and a 2–

stage biomolecular reaction mechanism was proposed. This work directly addresses the issue of 

insolubility that has previously hindered the biological application of the carbon nanocage (C60/C70), 

and has direct implications for understanding the underlying mechanism of the reaction-kinetics.  

At the nanoscale, the surface properties become more dominant than in the bulk-phase due to the 

relatively higher proportion of atoms at the particle surface. Here, in the second approach a nitrogen-

rich porous CNC template enabled the confined growth of semiconductor ZnO, providing a 

proportionally higher curvature to enhance the active catalytic sites on the metal oxide. The hybrid 

system was evaluated for in-vitro sun protection factor (SPF) and photocatalytic activity under UV and 

solar stimulation, and interpreted through the solid-band theory. The reaction kinetics were fit to the 

Langmuir-Hinshelwood model displaying a 4-fold increase in the photocatalytic activity of the hybrid 

nanostructure, compared to pure ZnO. Our work suggests that an increase in photocatalysis can be 

engineered without the introduction of structural defects or tailoring the band gap of ZnO.  

To the best of our knowledge, this thesis represents one of the first pioneering studies that reports on 

the development of optimized personal care systems derived from fCNCs. Our studies showed that the 

translation of this renewable nanomaterial into scalable cosmetic systems is suggestively viable.  
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1.1 Background overview and research motivation 

 

Sustainability is critical for the maintenance of the earth, and together with 

nanotechnology, it could provide solutions to many of the challenges that we face as a result 

of globalization. The increasing awareness and discussion on this subject provides impending 

evidence for finding solutions that are sustainable and innovative, and ones that meet the needs 

of the present, without compromising the resources of the future. With this single-minded 

motivation, the objective of this research is two-fold (i) provide solutions to new and upcoming 

challenges (ii) produce functional nanomaterials that create a platform for advanced 

technologies promoting sustainability.  

The personal care industry is a lucrative field where nanotechnology plays an important 

role in many of the new innovations. The personal care products (PCP) in Canada alone is a 

$9.14 billion industry, often described as fast-paced and where product innovation is the key 

to success (Bowman & Calster 2008). There is an ever-growing demand for products that 

possess enhanced aesthetic and functional qualities. In the recent decade, there has been a 

dramatic shift and focus on antiaging technologies, where, skin care products, such as lotion 

and emollients are necessities, while others are discretionary (Bowman & Calster 2008; Kumar 

et al. 2006). As a result of these demands, there is growing interest by the industry to implement 

nanotechnologies within personal care formulations, and an assortment of engineered 

nanomaterials ranging from C60 fullerenes, quantum dots, liposomes, metal oxides, polymers 

and nanospheres have entered the markets (Earth 2006).  But with the introduction of 

nanomaterials in the market, there is also an on-going debate over the potential risks associated 
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with these compounds, and the key deciding factor is product efficacy. Due to their nano-scale 

dimensions, some of these materials still pose a limit in terms of transparency and water 

solubility (Bowman & Calster 2008). For example, current zinc oxide and titanium dioxide 

commercially used in sunscreens offer broad spectrum UV protection, however, due to the 

high surface energy, these metal oxides require coatings with inert toxic chemicals that can 

compromise, both, the aesthetic and functional appeal. Such materials also precipitate out in 

aqueous solutions as a result of increased agglomeration, and to address these challenges, 

expensive surfactants and tedious polymeric coatings have been introduced into the process to 

stabilize the nanoparticles. Thus, stability becomes an important issue since with increased 

stacking and agglomeration, there are less active surface sites available, which has a negative 

impact on the performance and the overall efficiency. Much of this phenomena will be 

specifically discussed in the experimental studies described in this thesis. 

New and safe strategies to engineer nano-materials, inspired by nature and 

appropriately optimized can offer a range of innovative development, and improvement to the 

existing systems. An inspiration derived from nature itself, a new class of nanomaterials known 

as cellulose nanocrystals (CNCs) have generated interest in both industry and academia. The 

200 x 50 nm crystalline domains derived from pulp fiber possess mechanical strength 

comparable to Kevlar, aspect ratio and surface area, low weight, surface functional groups, and 

pronounced stable dispersions in water (Habibi et al. 2010; Peng et al. 2011). Most importantly, 

this renewable biomass offers physiognomies that compensate and synergize the negative 

properties that hinder the performance of existing personal care systems.  
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With Canada leading the world’s largest production scale of these nanocrystalline rods, 

there is an opportunity to shape the way in which nanotechnology develops in sectors such as 

waste water treatment, energy, biosensors, food, and even agriculture (Habibi et al. 2010; Peng 

et al. 2011; Zoppe et al. 2009; Kalia et al. 2011).  Most prominent research involving CNC has 

highlighted its capacity as a reinforcing agent in polymeric matrix, dye adsorbent, emulsion 

stabilizer at the oil-water interface, viscosity modifier, bio-imaging probe, insulating template 

for conductive ink and other nascent fields. And because these biocompatible nanorods are 

new and pervasive, there is significant opportunity for other important discoveries. Opening 

up the list of potential applications, is the autonomous developmental progression of well-

designed CNC in personal care formulations. So far, very limited research has been devoted to 

this field, suggesting the enormous potentials of this nature-inspired nanocrystal for use as a 

surface active, and optimally functional element in personal care. As an enabling technology, 

the synthesized CNC nanocomposites developed and outlined in this thesis are a pragmatic 

tool to understand the mechanisms at the molecular level, and to demonstrate the capacity of 

the modified CNCs as antioxidants, UV blockers, and surface-active photocatalytic aqueous 

compositions.   
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1.2 Research scope and methodology  

 

The research outlined in this thesis focuses on the development of functional CNCs for 

cosmetic and personal care applications. The nano-fabricated CNC designs were established 

with the concept of green nanotechnology, amenable to sustainability and a systematic 

approach that offers a comprehensive solution to challenges facing the personal care industry. 

Each of the systems were built with an environmentally consciousness and simple green 

chemistry, with nature as the source of inspiration. A summary of the methodology, approach 

and the framework for the experimental design is presented below: 

 

I. Fabrication of polyhydroxylated C60 fullerene on the surface of CNC rods 

 Highly active fullerol C60(OH)30 nanoparticles were synthesized through an organic-

aqueous phase transfer, and subjected to nucleation on the excited surface of pristine 

CNC.  TGA analysis revealed a grafting degree of 20% of fullerols and the antioxidant 

activity was measured via the DPPH radical assay. At the molecular level, a proposed 

mechanism on the interaction of the radicals with the CNC-based antioxidant system was 

described by a two-stage bio-molecular reaction kinetics.  

II. Optimization and growth of semiconductor ZnO on polymerized MFCNC 

composites 

A nitrogen rich precursor of melamine-formaldehyde resin (MF) was first polymerized 

and condensed on the surface of CNC. The mesoporous N-rich matrix provided for a 

chelating template for the confined growth of ZnO NPs. With the high surface energy of 
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ZnO NPs controlled, a systematic study describing the effect of hydroxide ratio on the 

Sun Protection Factor (SPF) revealed an optimal ratio of 1[Zn2+]:3[OH-] for the highest 

SPF value. The optimized system was evaluated for the photocatalytic performance that 

was elucidated through the rationales of solid-band gap theory. 

 

1.3 Thesis outline 

 

This thesis consists of six chapters. Chapter 1 provides an overview of the research, 

scope and motivation. Chapter 2 summarizes the literature that describes the fundamentals 

behind the design of the research. Chapter 3 discusses the development of water-soluble C60 

system conjugated to the surface of CNC, for antioxidant capacities, along with a detailed 

characterization of the system. Chapter 4 describes the principles of fabrication of CNC with 

surface active ZnO nanoparticles, and the system’s two-dimensional functionality. Chapter 5 

addresses the significance and conclusions of the development of functional CNC in personal 

care systems, and Chapter 6 highlights the recommendations and future directions for the work 

presented in this thesis. Following chapter 6 is an alphabetical list of references used 

throughout the document. 
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Chapter 2 

Literature Review 
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2.1 First principles of C60 fullerene and its derivatives 

 

First discovered in the veil of cosmic dust in 1985 by Richard Smalley, Harry Kroto 

and Robert Curl at Rice University and University of Sussex, C60 fullerene has since found 

applications in optoelectronics, antioxidants, fluorescence, and gas permeability (Wang et al. 

1999). The inherent features of the geodesic domes of this carbon allotrope offers unique 

characteristics. Found in rocks dating Precambrian era, the 0.7 ± 0.007nm (Djordjevic & 

Bogdanovic 2008) C60 cage is said to possibly have provided for the early nucleated growth of 

life on earth. With the exciting breakthrough of this nanomaterial, there is no doubt fullerenes 

have a landmark of their own in nanotechnology and engineering. However, since its 

discovery, many of the practical applications have been largely hindered, especially in 

biochemistry and medicine, due to the rigid hydrophobic core arising from π-π stacking 

between the covalently bonded carbon double bonds (Deguchi et al. 2001).  

The black crystals of C60 can easily dissolve in aromatic hydrocarbon solvents, such as 

toluene and carbon disulfide, revealing a beautiful purple colour as a result of electron 

delocalization (Djordjevic & Bogdanovic 2008). But the pristine structure of this carbon 

allotrope proves to be extremely insoluble in water. The relation of the electrokinetic properties 

of fullerene, and the inherent stability is largely dependent on the valence and concentration of 

the electrolytes in solution (Chen & Elimelech 2009). With the pioneering work reported in 

Nature in early 1990s, Atwood et al. attempted to solubilize C60 through complexation in 

toluene using para-Bu’-calix[8]arene which forms a ‘ball and socket’ encapsulation around the 

fullerene molecule in the cavity of the macrocycle (Figure 2.1) (Atwood et al. 1994). The 
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ordered cyclic arrays with phenolic hydroxyl groups are bonded through hydrogen bonds and 

directed towards the center of the ring. The array structure allows for flexibility and 

accommodation of the fullerene and facilitates the interaction as a ‘ball and socket’ 

nanostructure (Atwood et al. 1994).  

 

Figure 2.1: a. Molecular structure of p-R-calix[8]arene in tolouene solution (R = Bu’). b. 

‘Ball and socket’ nanostructure of fullerene inside the cavity of the calixarene (Atwood et al. 

1994).  

Other techniques involving the development of water-soluble complexes of fullerenes 

since the macrocycle complexations include covalent functionalization, conjugation of 

amphiphilic polymers and host guest interactions, namely with cyclodextrins. The fundamental 

logic of such host-guest systems is the occupation of the fullerene molecule inside the 

hydrophobic cavity of cyclodextrins; the cyclic oligosaccharides composed of ά(1,4) glucosyl 

residues (Andersson et al. 1992). The formation of C60-γ-cyclodextrin complex first reported 

by Yoshida et al. showed an existence of charge transfer between C60 and γ-cyclodextrin, with 

ether oxygen of tetrahydrofuran (THF) and alcoholic oxygen of water (H2O) being the electron 

donors, and high electron affinity (2.7 eV) of fullerene to accept these electrons (Deguchi et 
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al. 2001). Another such example is the encapsulation of C60 in β-cyclodextrin through the 

aqueous and organic phase transfer to encapsulate the cohesive C60 molecules inside the 

hydrophobic cavity as shown in Figure 2.2. The β-CD system was also shown to have superior 

radical scavenging capacity as measured and elucidated by DPPH assay, and  resulted in a 

patent disclosure for the technology (Yao & Tam 2014).  

 

Figure 2.2: Illustration of the mechanism of synthesis of β-CD/C60 complex through 

aqueous-organic bilayer transfer (Yao & Tam 2014).  

 

A large amount of effort has also been devoted to exploit the development of 

“polyfullerenes”, with grafting of polymeric chains through photopolymerization, pressure 

induced polymerization, charge-transfer polymerization mediated by metals, or electron beam-

induced polymerization for the construction of fullerene based architectures for application in 

gas permeability, fluorescence, and superconductivity (Giacalone & Martin 2006). A summary 

of some of the representation of the architectural structures based on fullerene-polymeric 

systems is presented in Figure 2.3b. Typical polymerization process involves 

electrophilic/nucleophilic substitution, or [2+2] cycloaddition reaction pathway between two 

C-C double bonds of adjacent C60 molecules, where a new cyclobutane ring forms to connect 

the fullerene cages, as shown in Figure 2.3a (Giacalone & Martin 2006; Bosi et al. 2003). 

Investigations of photopolymerized C60 molecules and its electronic and bulk properties 
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showed a dramatic shift in the electronic and non-linear absorption properties compared to 

pristine fullerene. C60 cages grafted with polymer solution resulted in a much weaker 

fluorescence, scarcely detectable triplet-state absorption, and marginal optical limiting 

response (Giacalone & Martin 2006). Fabrication of membranes for gas separation, blending 

and miscibility studies with styrenic polymers showed remarkable effort for the grafting of C60 

onto saturated ethylene-propylene polymer, poly(2,6-dimethyl-1,4-phen-ylenoxide) (PPO). 

The synthesis involves partial bromination of methyl groups and substitution of azido groups, 

where controlling the initial bromine amount could fine-tune the polymer grafting on the C60 

cage. Gas permeability experiments carried out on the C60-grafted PPO system and pure PPO 

samples shows that such a conjugated complex could significantly increase the permeability 

rate, in some cases by up to 80% (Giacalone & Martin 2006). 
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Figure 2.3: a. 2+2 cycloaddition reaction mechanism of C60 fullerene. b. Polymer grafted-

fullerene systems comprising various architectural representations (Giacalone & Martin 

2006).  

Another class of ellipsoidal carbon allotrope, known as carbon nanotube (CNT) has 

attracted much attention in recent years due to the remarkable conductivity and electronic 

properties. Bourlinos et al. recently reported the decoration of the nanotube walls with water-

soluble derivative of C60, known as fullerols. This class of polyhydroxylated fullerenes operate 

on the principle of surface modification of the cage with –OH groups, making them effectively 

soluble in water. Much of the discussions on such surface modifications of C60 spheres will 

also be discussed in chapter 3. Here the group reported the oxidation of CNTs and subsequent 

wet-impregnation of fullerol on the multi-walled tubes and solid-state heating to promote 
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interfacial bonding, as shown in Figure 2.4a (Bourlinos et al. 2012). The well dispersed 

aqueous solution arising from polyanion fullerol clusters with an average height ranging from 

0.8-1.1 nm (Figure 2.4b) attached to the MWNT provide static repulsions in solutions, making 

them an attractive filler for medical, or nanopharmaceutic applications(Bourlinos et al. 2012).  

The summary of the principles of fullerene, their derivative and applications have been 

presented in this section. Significant efforts have produced polymer based, covalent 

functionalized, agent coupled or host-guest complex solutions of C60 fullerene for 

characterized performances in electrical, fluorescence, gas chromatography and presupposed 

medical endeavors. A combination of the research should provide the basis for the 

development of enhanced and elementally novel systems. 

 

 

Figure 2.4: a. Schematic representation of the wet-impregnation of oxidized CNT (multi-

wall) with fullerol nanoparticles at 200 ֯ C. b. AFM images illustrating cross sectional 

analysis of the CNT-fullerol clusters deposited on Si-wafer (Bourlinos et al. 2012). 
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2.2 Advances and processing of semiconductor metal oxides 

 

Semiconductors with wide-band-gaps have been studied for many decades due to their 

unique electronic and optical properties. In recent years, the idea for technological applications 

was realized and an upsurge of research activity in academia has been witnessed. Some metal 

oxides, and compounds such as GaN or ZnSe with short wavelength of band-to-band 

transitions allow the emission in the UV or visible region composed of green, blue spectrum. 

Fabrication of ZnSe materials with dopants (p-type) have led to the application of short-

wavelength light emitting devises for colour display or optical storage (Dietl 2010). For GaN, 

new refined growth procedures for producing doped materials have resulted in blue-light 

emitting laser diodes, and the advances in growth techniques for bulk as well as epitaxial 

material have made the commercial production of high-temperature and high-frequency 

optoelectronic devices possible. With the favorable mechanical and thermal properties, the 

discoveries reflect an exciting progress made in the field of semiconductors.  

Shifting the focus to metal oxides reveals major players in this field; specifically zinc 

oxide (ZnO) and titanium dioxide (TiO2) with potentials as catalyst, piezoelectronic, 

photoluminescence and other applications (Kołodziejczak-Radzimska & Jesionowski 2014). 

Their low dimensional nanostructures offer the possibility of further optimization, fabrication, 

and improving lasing conditions due to quantum confinement effects (Yin et al. 2004). A recent 

report in 2012 by Etacheri et al. discussed the incorporation and substitution of Zn2+ by Mg2+ 

in the wurtzite structure of ZnO lattice. The doping effect shown in Figure 2.5, was synthesized 
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through an oxalate co-precipitation method which was shown to improve the Zn-O bond in 

Mg-Doped samples. A blue shift in the photoluminescence intensity revealed a band gap 

widening, suggesting an efficient electron−hole separation. In addition, improved textural 

properties as a result of calcination at high temperatures increased the crystallinity of the doped 

crystal leading  to enhanced sunlight-driven photocatalytic activities for self-cleaning devices 

(Etacheri et al. 2012). 

 

 

Figure 2.5: a. Configurative model and SEM images of Mg doped ZnO lattice structures and 

substitution of Zn2+ by Mg2+. b. Photoluminescence spectra exhibiting blue shift in ZMO 

samples; a. ZnO, b. 0.10-MgZnO, c. 0.20-MgZnO calcined at 600 ֯ C (Etacheri et al. 2012). 

 

Actual growth and synthesis of metal oxides can occur through a number of ways 

including, vapor deposition, mechanochemical, chemical, sol-gel and hydrothermal mediated 

synthesis that enables the production of particles of different size and shapes (Kołodziejczak-
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Radzimska & Jesionowski 2014).  A summary of some of the synthesis conditions for growing 

ZnO particles through the wide-used sol-gel method is shown in Table 2.1. Normally a 

precursor solutions such as zinc acetate dehydrate or zinc chloride are added to a hydrolyzing 

agent, such as tetramethylammonium hydroxide (TMAH) and washed with organic solvents 

resulting in an increased solubility of metal oxides in higher hydrocarbon solvents(Becheri et 

al. 2008; Joo et al. 2011; Kołodziejczak-Radzimska & Jesionowski 2014).  High pH bases are 

usually employed during the synthesis, so that the metal oxides are not contaminated with the 

cation from the base, which may have an effect on the ohmic conductance of the oxide material. 

TEM analysis indicated the growth of ZnO particles with sizes of the order of 20–50 nm 

(Kołodziejczak-Radzimska & Jesionowski 2014).  

 

Table 2.1: Summary of the method of synthesis and conditions applied for the growth of 

ZnO NPs via sol-gel route (Kołodziejczak-Radzimska & Jesionowski 2014).  

 

 

For matters of quantification, it is important to characterize the physical, chemical as 

well as quantitative aspects of the system. An approach to determine the size of nanoparticles 
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i.e. quantum dots can be derived mathematically based on modeling the excited electronic 

states of semiconductor crystallites (Brus 1984). For sufficiently small particles and metal 

oxides with electronic properties largely different than the bulk, a sophisticated approach for 

calculating the size of the particle can be applied through the correlation of absorption data of 

the colloidal solution and approximation of band-gap (eV) with the effective mass model (Brus 

1984) equation (2.1): 

𝐸𝑔 = 𝐸𝑔
∗ (

ℎ2𝜋2

2𝑟2 (
1

𝑚𝑒𝑚𝑒
+

1

𝑚ℎ𝑚ℎ
)) −

1.8𝑒2

4𝜋𝜀𝜀0𝑟
                                                                  (2.1) 

 

where, Eg is the band gap of nanoparticles, 𝐸𝑔
∗ is the bulk band-gap energy, h is Planck’s 

constant, r is the radius of the particle in nm, me is the mass of the electron, mh = mass of hole, 

e is the elementary charge on the electron, Ɛ is relative permittivity and Ɛ0 is the permittivity 

of free space. As such based on the optical and photoluminescence (PL) data of metal oxide 

semiconductors, band-gap (eV) values can be approximated and the size of the particle in nm 

can be determined (Brus 1984; Goh et al. 2014; Singla et al. 2009) 

A class of colloidal semiconductors are quantum dots (QD) with luminescent properties 

that have received much attention in recent years as QD-conjugates in biological application, 

biomolecular imaging probes and energy harvesting mechanisms (Hildebrandt et al. 2016) . 

The original QD material prepared by CdS core-shell (Chen et al. 2016), or core-multishell 

configurations from binary, tertiary, or alloyed are presented in colloidal form as opposed to 

epitaxial QDs (Hildebrandt et al. 2016). Though silicon and germanium (group IV) 

nanocrystals display interesting quantum confinement effects and size-dependent emission 
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properties, they are but difficult to control during synthesis. The ability of these QDs to engage 

in energy transfer or  biosensing forms directly depend on several inter-related material 

properties including the type/quality of QD used, the photophysical properties, and most 

important the method employed to stabilize the colloidal QDs in aqueous solution (Hildebrandt 

et al. 2016). Several approaches summarized in Figure 2.6 show the methods of fabrication to 

render the QDs biocompatible that improves both the fluorescence and photochemical stability 

of QDs for practical use. Primary categorization of making hydrophobic semiconductor QDs 

stable in water include three different approaches: (i) ligand exchange, (ii) encapsulation and 

(iii) silica coating (Hildebrandt et al. 2016). Through the ligand exchange the original 

hydrophobic surface ligands on the QD surface are replaced with hydrophilic ligands, where 

colloidal stability of QDs coated with these ligands relies solely on deprotonation of the 

functional groups i.e, carboxyl groups. Another example are single thiol ligands modified with 

poly(ethylene glycol) (PEG) for hydrophilic modification of QDs (Figure 2.6 (ii)). 

Encapsulation is a method in which extraneous amphiphilic ligands are coated on the QDS via 

hydrophobic interactions. The hydrophobic chains of the amphiphilic ligands are interdigitated 

in the hydrophobic region, while the hydrophilic chains surrounded the QD peripheral surface 

for colloidal stability. Another approach is silica coating chemistry with the same function to 

render the surface of QD more hydrophilic through the chemical modification with thiol groups 

(Hildebrandt et al. 2016; Chen et al. 2016).  
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Figure 2.6: Schematic illustration of Quantum Dots (QD) stabilized in aqueous solutions by 

(i) ligand exchange, (ii) encapsulation, and (iii) silica coating chemistries (Hildebrandt et al. 

2016). 

Another investigation showed the ultrafast dynamics of charge carriers in type II ZnSe/CdS 

hetero-structures with barbell like configuration of ZnSe around the CdS nanorods, as 

illustrated in Figure 2.7a. The barbell structures were fabricated via colloidal routes where first 

CdS rods were grown via seeded-approach in hexane, followed by introduction of ZnS at the 

tips of the nanorods (Hewa-Kasakarage et al. 2010). The results indicated an ulta fast transfer 

of excited electron of ZnSe tips into CdS domains (<0.35 ps). With variation of the e-/h+ 

dynamics, potential photocatalytic applications due to fast separation of carriers along the main 

axis of ZnSe/CdS barbells was demonstrated (Hewa-Kasakarage et al. 2010). For the control 

of renewable energy, advanced materials that are electrocatalytic are central in these 

applications. Li et al. reported on the development of MoS2 nanoparticles reduced on graphene 

sheets (RGO) via selective solvothermal synthesis in suspended dimethysulfide (DMF) 
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solution as shown in Figure 2.7b (Li et al. 2011). The resulting MoS2/RGO hybrid possessed 

nanoscopic MoS2 features exposed at the edges of stacked graphene, providing excellent 

electrical coupling to the underlying graphene sheets and the smallest slope of the Tafel plot 

ever reported for MoS2 catalyst (Li et al. 2011). Leaching into this similar area, a study by 

Xiang et al. showed growth of TiO2 nanocrystals in the presence of layered MoS2/graphene 

hybrid as a high-performance photocatalyst for H2 evolution of 165.3 μmol h-1 (Xiang et al. 

2012). The composite was prepared without metal cocatalyst and a two-step hydrothermal 

process using sodium molybdate, thiourea, and graphene oxide as precursors of the 

MoS2/graphene hybrid. A positive synergetic effect between the MoS2 and graphene cocatalyst 

serve as an electron collector and a source of active adsorption sites, respectively(Xiang et al. 

2012). The charge transfer in TiO2/MG composites is shown in Figure 2.7c, where the 

enhanced electron transfer in the hybrid system under irradiation is presumably attributed to 

the transfer of photoexcited electrons from the conduction band(CB) of TiO2 to the MoS2 

nanosheets and carbon atoms of graphene(Xiang et al. 2012). A summary of the above 

mentioned systems is presented in Figure 2.7.  
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Figure 2.7: Summary of the report of various semiconductor nanosytstems. a. Structural 

analysis of type II heterostructured ZnSe/CdS nanobarbells (Hewa-Kasakarage et al. 2010). 

b. Growth of MoS2 nanoparticles on graphene sheets for electrocatalytic activity in hydrogen 

evolution reaction (HER) (Li et al. 2011). c. TEM image and schematic illustration of 

TiO2/MG composite (Xiang et al. 2012).  

 

In conclusion, an-depth review of the academic progress and advances of semiconductors 

crystals is presented in this section with contributions from recognized work on different 

material systems, and the theoretical, experimental and application-oriented aspects of this 

topic. 

2.3 Cellulose nanocrystals (CNCs) 

With its existence dating the beginning of the Earth, cellulose is notably the most 

abundant terrestrial biomass available today. In 1883, Payen discovered this naturally 
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occurring long-chain polymer composed of β-1,4 glucopyranose units in the plant cell wall 

(Payen 1883). Almost a century later, the birth of microfibrillated cellulose (MFC), the 

elongated bundles of polymer chains associated with hydrogen bonds, paved the way for the 

onset of a new nano wonder material, cellulose nanocrystals (CNC). These highly ordered 

crystalline domains of cellulose confer a very high elastic modulus, of 134 GPa (Tingaut et al. 

2012). The simple process of obtaining CNCs involves an acid hydrolysis of the biomass using 

concentrated sulfuric acid H2SO4. The treatment removes  the disordered amorphous or para-

crystalline regions of cellulose and leaves crystalline regions intact (Tingaut et al. 2012; Peng 

et al. 2011). The result of this treatment produces rod-shaped cellulose nanofibers 5-20 nm 

wide and 200-400 nm long, bearing anionic sulfate ester groups on the surface, as shown in 

Figure 2.8. Actual geometric dimension varies depending on the source of cellulose. Here, the 

presence of the negatively charged 𝑆𝑂3
− groups maintains the suspended CNCs in polar 

solvents, such as water, due to electrostatic repulsions and stabilization effect (Habibi et al. 

2010; Peng et al. 2011; Tingaut et al. 2012).  

At the molecular level, cellulose nanocrystals possess a chain of 6-membered pyranose 

glucose units linked by hydrogen and –OH group (illustrated in Figure 2.8A). This linkage 

produces two disaccharide molecules called cellobiose, the repeating unit of cellulose (Kalia 

et al. 2011). The individual pyranose units are joined by single oxygen atoms through acetal 

linkages between C-1 of one pyranose ring and the C-4 of the next ring (Kalia et al. 2011). The 

spatial arrangement or stereochemistry of these acetal linkages is very important. At the 

periphery of the equatorial position in cellulose, the C-1 oxygen is on the opposite side of C-6 

giving the β configuration with all the functional groups in equatorial positions. This 
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configuration creates a linear molecular chain of cellulose making it a strong fiber-forming 

polymer (Kalia et al. 2011). The –OH groups at the equatorial position protrude laterally and 

are available for hydrogen bonding. Here the chains are arranged in a highly ordered fashion 

in the crystalline domains through interchain hydrogen bonding (Figure 2.8B), imparting good 

strength and rigidity (Kalia et al. 2011).  

 

Figure 2.8: A. Process of extraction of CNC from wood pulp and the schematic 

representation of the multicomponent cellulose fiber and microfibril organization containing 

shorter organized crystalline phases with cellobiose repeating units (Adopted from Sam 

Adam-Day 2016; Siqueira et al. 2010). B. AFM and TEM images of CNC;  and diagram 

indicative of the removal of amorphous regions after acid treatment (Peng et al. 2011; Moon 

et al. 2011).  
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At the molecular level, cellulose nanocrystals have a chain of 6-membered pyranose glucose 

units linked by hydrogen and –OH group (illustrated in figure 2.9A). This linkage produces 

two disaccharide molecules called cellobiose, the repeating unit of cellulose (Kalia et al. 2011). 

The individual pyranose units are joined by single oxygen atoms through acetal linkages 

between C-1 of one pyranose ring and the C-4 of the next ring (Kalia et al. 2011). The spatial 

arrangement or stereochemistries of these acetal linkages is very important. At the periphery 

of the equatorial position in cellulose, the C-1 oxygen is on the opposite side of C-6 giving the 

β configuration with all the functional groups in equatorial positions. This configuration creates 

a linear molecular chain of cellulose making it a strong fiber-forming polymer (Kalia et al. 

2011). The –OH groups at the equatorial position protrude laterally and are available for 

hydrogen bonding. Here the chains are arranged in a highly ordered fashion in the crystalline 

domains through interchain hydrogen bonding (figure 2.9B), imparting good strength and 

rigidity (Kalia et al. 2011).  

 

Figure 2.9: A. Repeating cellobiose units of cellulose with β-1,4 linkage at C1 and C4, and 

intrachain H-bond (represented by dotted line) (Moon et al. 2011). B. Schematic model of 
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hydrogen bonding network with intramolecular H-bond (thin lines) and intermolecular 

bonding (dotted lines) where attractive van der Waal forces act as a cohesion force between 

cellulose chains (Nishiyama et al. 2008).  

 

2.3.1 Surface chemical modification of CNCs 

 

For the design of optimally controlled and chemically modified CNCs, it is important to 

understand the surface chemistry. Cellulose reactions are predominately controlled by steric 

factors, and the inherent reactivity for surface modifications is due to the abundant hydroxyl 

groups; specifically -OH groups at carbon 2, 3, and 6 are the most active sites for chemical 

modifications and polymer grafting, with the –OH group at position 6 being the most reactive 

(Habibi et al. 2006; Kalia et al. 2011) (Figure 2.9). Though the cellulosic chains have many 

hydroxyl groups, it has been reported that the groups most external to the molecule chains are 

the most efficient in controlling the reaction conditions during functionalization (Habibi et al. 

2006; Habibi et al. 2010). Chemical functionalization begins with the introduction of an 

initiator or monomer that is directed by surface -OH groups as the driving force for reaction 

conditions. With variation and control over time and temperature, a wide range of polymers 

have been grafted on the surface of CNC through the “grating to” or “grafting from” approach; 

a summary of such modifications is presented in Figure 2.10 (Lin, Huang, et al. 2012).  
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Figure 2.10: Summary of a range of chemically grafted polymers on the surface of CNC 

through ATRP mechanisms, grafting “to” and grafting “from” approach. (Lin, Huang, et al. 

2012). 

At the outset, CNCs act as the reinforcing matrix for the growth of polymer chains 

leading to the formation of macroscopic fibers, thereby, increasing the strength and stiffness 

of the materials (Peng et al. 2011; Liu et al. 2015; Lin, Huang, et al. 2012). These polymer 

grafted-CNCs systems found many interesting applications including bio-inspired 

mechanically adaptive nanomaterials, where the introduction of three-dimensional percolating 
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networks of cellulose nanocrystals in polymeric matrices, such as ethyleneoxide–

epichlorohydrin copolymer (EO–EPI), poly(vinyl acetate) (PVAc) and poly- 

(butylmethacrylate) (PBMA) demonstrate behaviour of biomimetic mechanically adaptive 

nanomaterials (Zhou et al. 2011). The tensile modulus of the first generation CNC/EO-EPI 

nanomaterial was shown to increase by two-orders of magnitude in the rubbery dry phase, and 

upon exposure to water, exhibited a 40-fold reversible reduction in the modulus (Zhou et al. 

2011; Bica et al. 2001). Theoretical models predicting this behavior indicated the role of CNCs 

in controlling the selectivity and reversibility of the mechanically adaptive systems, with the 

formation and decoupling of a 3D network of individualized rigid nanocrystals. Through the 

formation of strong hydrogen bonds between the percolating CNCs, there is maximized stress 

transfer and induction that reinforces the nano- materials (Zhou et al. 2011). In contrast, 

external stimulus to the system such as changes in temperature or exposure to water, disrupts 

the association of the percolating rigid networks of CNC and weakens the hydrogen bonding 

interactions among nanocrystals (Zhou et al. 2011; Bica et al. 2001). The mechanically 

adaptive behaviour, and role of CNC as reinforcers in polymeric matrix suggests the influence 

it could have to compatibilize some of the common polymers used in personal care or product 

packaging, such as polylactic acid (PLA) or polycaprolactone (PCL), where Habibi et al. 

reported on the grafting of the polymer using stannous octoate (SnOct2) to initiate the 

polymerization on the surface of CNC (Habibi et al. 2008). 

The inherent rigidity and high aspect ratio of CNC impart another interesting 

characteristic together with the chiral nematic behavior where the rods align and self-assemble 

under certain concentration conditions (Shopsowitz et al. 2010; Kelly et al. 2014). Here the 
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crystal suspensions control the helical twist along the main axis to organize the nanoparticles 

into a chiral nematic phase. These self-assembled CNCs display iridescent colours under 

certain wavelengths making them feasible for photonic and optically responsive cosmetic 

palettes. The structural diagram of the nematic self-assembly and formation of photonic films 

is shown in Figure 2.11 (Shopsowitz et al. 2010; Kelly et al. 2014). 

 

 

 

Figure 2.11: Chiral nematic behaviour of self-assembled CNC rigid rods displaying 

iridescent colours under specific wavelengths (Kelly et al. 2014; Shopsowitz et al, 2010). 

As a biobased reinforcing nanofiller, cellulose based materials have generated 

significant interest for the design of crosslinked beads and sponges, defined as dispersions of 

air-in-solid matrix for the construction of diverse biomaterials in drug delivery, tissue 
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engineering and personal care products. Systems such as TEMPO-mediated oxidized cellulose 

nanocrystals (OCN), crosslinked with alginate and divalent calcium ions (Ca2+) crosslinking 

process have shown enhanced mechanical strength, improved porosity, and water 

absorption/retention capacity as measured as a function of structural stability as shown in 

Figure 2.12C, of oxidized CNCs and microfibrillated CNCs.  

 

 

Figure 2.12: a. Molecular structure and b. schematic representation of TEMPO-mediated 

oxidation egg-box junction zones of cellulose/alginate/calcium system coordinated by Ca2+ 

cavity of guluronate sequences along alginate chains. c. reusable properties of the different 

alginate/CNC crosslinked sponges. d. SEM images of the cross-section morphology of 

SA/MFCNC-50 crosslinked sponge (Lin, Bruzzese, et al. 2012). 
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Here the rigid framework of oxidized cellulose nanocrystals serves as the coupling 

points for alginate-based sponges, whereas oxidized microfibrillated cellulose enact structural 

construction and form the semi-interpenetrating polymer network for the sponges (Figure 

2.12D), having potential applications as kinetic energy absorbers, and acoustic insulating 

materials (Lin, Bruzzese, et al. 2012). The structural stability was evaluated from the reuse 

effects of the sponges, as shown in Figure 2.12C, and configurative compatibility of cellulose 

and alginate could stabilize the air-and-solid interface (Lin, Bruzzese, et al. 2012).  In addition 

to being a reinforcing mediator, CNC can be readily functionalized to yield chemically 

crosslinked hydrogel networks from chitosan-CNC (Wang & Roman 2011), surfactant 

modified CTAB-CNC, or cyclodextrin (CD) grafted CNCs; for therapeutic delivery of 

encapsulated water soluble hydrophilic or hydrophobic anti-tumorigenic drugs (Jackson et al. 

2011). 

 

Figure 2.13: Exponential trend of the number of publications, and distribution of patent 

disclosures reported in relation to nanocellulose technologies in the past decade (source: Lux 

Research Inc. and USPTO/DII). 
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A narrow summary of the recent reports on nanocellulose and related materials have 

been discussed in this section. An exponential trend of CNC related publications and number 

of patent distributions in North America and worldwide shown in figure suggests the rapid 

growth of discoveries of this intrinsically dynamic material (Figure 2.13). With the scope of 

new findings and other applications still being explored, CNC notably has great potential for 

new discoveries and applications, which form the basis of this thesis research. A detailed 

design and discussion on the uncharted potential will be documented in the subsequent chapters 

of this thesis.  

 
  



 

 32 

Chapter 3 

Enhanced radical scavenging activity of polyhydroxylated C60 

functionalized cellulose nanocrystals 
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3.1 Introduction 

 

C60 fullerene, which is commonly classified as a “radical sponge”, has remarkable 

reactivity towards free radicals, making it a very attractive antioxidant. However, the potential 

use in personal care or biomedical applications is limited due to its inherent hydrophobic 

character and poor dispersibility in water.  Numerous methods have been reported for the 

production of water-soluble fullerene systems with pioneering research in early 1990s, which 

included molecular complexation of C60 in host-guest interactions with water soluble 

macrocylces of cyclodextrins (CD) and calixarenes (Andersson et al. 1992; Atwood et al. 1994; 

Williams. & Verhoeven 1994). However, steric repulsion between the host-compounds 

reduces the stability of the dispersion of C60 in aqueous solution (Matsubayashi et al. 2008; 

Kato et al. 2009) Recent research methodologies to address the poor solubility of fullerene is 

through derivatization or surface modification of C60 with polar hydroxyl groups (-OH) 

(Chiang et al. 1993; Kokubo et al. 2011). These hydroxylated water-soluble fullerenes are 

commonly known as C60(OH)x, fullerols, where x represents the number of –OH groups 

attached to the C60 cage (Chiang et al. 1993). Simple  method of synthesis, presence of carbon 

double bonds, high electron affinity, and polarity of the molecule makes this class of fullerenes 

a suitable candidate for radical-quenching in biological systems (Kokubo et al. 2011; Chiang 

et al. 1995). As reported previously, fullerols and their derivatives have been examined for 

antioxidant capacity and measured by DMPO-spin trap/ESR method, and by the beta-carotene 

and DPPH assay (Kato et al. 2009; Chiang et al. 1995). However, the kinetics and radical 

scavenging mechanism of these systems is still not properly understood. The chemically 
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modified fullerols have been reported to form well-dispersed supramolecular solutions due to 

the reduced contact between the hydrophobic cores (Brant et al. 2007). Nevertheless, cluster 

formation via hydrogen bonds between loosely-associated C60 aggregates is still unavoidable 

and can interfere with free radical accessibility, thereby diminishing its antioxidant 

performance (Brant et al. 2007). Nucleation of amorphous C60(OH)30 clusters onto a suitable 

template is an approach to maximize the efficiency of radical quenching in an aqueous solution, 

in addition to gaining a greater understanding of the reaction kinetics. 

This chapter contains a report for the first time of a facile and scalable methodology 

involving the functionalization of polyhydroxylated fullerene (C60(OH)30) on the surface of 

cellulose nanocrystals (CNCs). It entails improved free radical scavenging as a result of 

enhanced colloidal stability and immobilization of C60(OH)30 nanoparticles. The 

immobilization appears to be due to the covalent interaction between the –OH groups on the 

CNC and π-conjugation of the fullerol. An analysis of the scavenging rate and kinetics provides 

insights into the physical mechanism and role of the molecular structure of C60(OH)30. 

Cellulose nanocrystals were the choice of template on the merit of high surface area of the 

biocompatible and biorenewable rod-like crystal derived from cellulose fiber (via acid 

hydrolysis). In recent years, CNC has opened up a myriad of applications ranging from water 

treatment to supercapacitors due to its attractive intrinsic structural and physical properties 

(Peng et al. 2011; Habibi et al. 2010; Khan et al. 2012).  The naturally occurring polysaccharide 

crystal of 100-200 nm in length and 5-20 nm in diameter has a high aspect ratio, high tensile 

modulus, nanoscale dimensions and hydrophilicity. It is an ideal substrate for immobilization 

of C60(OH)30 nanoparticles. The abundance of functional hydroxyl groups (-OH) on CNC 
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allows for easy surface functionalization of polyhydroxylated fullerenes, with further colloidal 

stability imparted by the negatively charged sulfate ester groups (SO3-) present on the CNC 

rods. A new and novel generation of aqueous based, precise nucleation of C60(OH)30 

nanoparticles on CNC, which synergistically improves the antioxidant performance in 

comparison to C60(OH)30 clusters is demonstrated. A proposed radical-scavenging mechanism 

along with detailed characterization of the system using TGA, FTIR, TEM, zeta potential 

measurements and UV-Vis spectroscopy will be discussed. 

 

3.2 Experimental procedures 

3.2.1 Materials  

Cellulose nanocrystals with length of 100-200 nm, 5-20 nm in diameter and a specific 

surface area of 500 m2 g-1 were supplied by Celluforce Inc. All of the analytical grade 

chemicals including C60 fullerene, hydrogen peroxide (H2O2) (30 wt% in H2O), tetra-n-

butylammonium hydroxide (TBAH) (40% in H2O), ammonium persulfate (APS), toluene and 

stable free radical 1,1-diphenyl-2-picryl hydrazyl (DPPH) were obtained from Sigma-Aldrich.  

3.2.2 Methods of preparation 

3.2.2.1 Synthesis of C60(OH)30-CNC 

Polyhydroxylated fullerene C60(OH)30 nanoparticles were synthesized following a 

previously reported method by Kokubo et al. Preparation of C60(OH)30-CNC was conducted 

through in-situ chemical synthesis involving a two-step process. In the first step, the -OH 

groups on CNC (0.2 wt% aqueous solution) were converted to free radicals following a radical 
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coupling reaction with ammonium persulfate (APS) for two hours, at 45 oC. The second step 

involved the addition of 5 ml of previously synthesized C60(OH)30 through the drop-wise 

addition under constant magnetic stirring for a total of 24 hours at 65 oC, to allow for as much 

of the converted O. radical on CNC to be captured by the electron on the C=C of fullerol to 

form the C60(OH)30-CNC complex. The reaction was purged with N2 for the entire 24 hour 

period to minimize the generation of singlet O2 that might interfere with the excited surface of 

CNC. 

 

Figure 3.1: Schematic illustrating the conjugation of fullerols onto CNC. 
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3.2.2.2 Measurements of DPPH radical scavenging activity 

 

All of the antioxidant tests were done using UV-vis spectroscopy. 1,1-diphenyl-picryl-

hydrazyl (DPPH) was chosen as the stable free radical that displays a peak absorbance at 

517nm due to its odd electron. The scavenging properties and kinetics were monitored by 

measuring the reduction in the absorbance at 517 nm as a function of time. A solution of DPPH 

in ethanol (1.3 x 10-4 M) was prepared and its UV-vis spectrum was recorded. Afterwards, 1.5 

ml of this DPPH solution (1.3 x10-4 M) was mixed with 1.5 ml of C60(OH)30-CNC antioxidant 

complex in a quartz cuvette, and its absorption spectra was recorded over various time 

intervals, with the solution under continuous stirring. A similar procedure was used for the 

measurements with C60(OH)30 only. Blank experiments of DPPH in ethanol and ethanol-water 

mixture were also performed. No reduction in the absorbance was evident after several hours 

confirming that there was no effect between solvent and the free radicals. Since DPPH can 

degrade under light, all of the reacted solutions were protected from visible light using 

aluminum foil wrapped around the cuvettes. 

 

3.3 Physical and chemical characterizations 

 

Radical scavenging reactions were monitored using an ultraviolet-visible (UV-Vis) 

spectrophotometer (Cary Bio 100). Transmission electron microscopic (TEM) characterization 

was performed using a Philips CM10 electron microscope. The samples were prepared by 

depositing one drop of aqueous solution (0.001 wt %) onto a carbon coated copper mesh-grid 
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and air-dried for several hours at room temperature. Thermogravimetric analysis (TGA) was 

performed using TGA Q600 of TA Instruments (New Castle, Delaware). All of the 

experiments were conducted at a heating speed of 10 oC/min under a constant nitrogen flow 

rate of 10 mL min-1, from 25 to 690 oC. Fourier Transform Infrared Spectra (FTIR) spectra 

were recorded using a PerkinElmer 1720 FTIR spectrophotometer on dried samples mixed 

with KBr to form pellets, which was set at a resolution of 4 cm−1 and analyzed using OPUS 

software. The zeta-potentials of the solutions were made as a function of pH from 4.0-8.0. This 

range was tested to check the stability of the system especially under acidic conditions using a 

Zetasizer Malvern Nano ZS90.   

 

3.3.1 Thermogravimetric analysis and quantification of surface hydroxyl groups on C60 

 

The thermogram data was analyzed to determine the amounts of C60(OH)30 conjugated 

to the CNC surface. Based on weight losses determined from the three TGA curves (illustrated 

in Figure 3.2), the residual amounts at 690 oC of C60(OH)30, C60(OH)30-CNC and CNC was 

45%, 26% and 21%, respectively. The content of the C60(OH)30 on cellulose nanocrystals was 

determined to be 20.8% based on equation (3.1). 

Wcnc +WFullerol =1

Wcnc + 0.45WFullerol = 0.26
                                                                                               (3.1) 

where Wcnc is weight percentage of CNC at 690 oC, and WFullerol is the weight percentage of 

fullerol at 690 oC. The data was further analyzed to quantify the number of hydroxyl groups 

conjugated to the fullerene cage after polyhydroxylation using a well-developed method 
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published by (Goswami et al. 2004). This approach is based on the assumption that the weight 

loss observed in the C60(OH)30 profile between 150 oC and 580 oC is due to the sublimation of 

the –OH group from the fullerene cage, which = 22.06%, and the weight loss after 580 oC is 

due to structural degradation of C60, calculated to be 30.54%. We can then estimate the -OH 

groups on each fullerene molecule (x) from Eq. (3). As such, the estimated amount of -OH 

adhered to each polyhydroxylated C60 cage from equation (3.2) was determined to be 30. 

 

x =
(𝑪𝟔𝟎)𝒎𝒐𝒍 𝒘𝒕.

(𝑪𝟔𝟎)𝒎𝒂𝒔𝒔
 𝒙 

(𝑶𝑯)𝒙 𝒎𝒂𝒔𝒔

(𝑶𝑯)𝒎𝒐𝒍 𝒘𝒕.
                                                                                      (3.2) 

=  
𝟕𝟐𝟎.𝟔𝟒 

𝟑𝟎.𝟓𝟒
 𝒙 

𝟐𝟐.𝟎𝟔

𝟏𝟕.𝟎𝟏
= 30 ± 1      

 

Figure 3.2: TGA thermograms of C60(OH)30, C60(OH)30-CNC and pristine CNC at a heating 

rate of 10 oC/min under N2 atm. 
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3.3.2 Chemical verifications by fourier infrared spectroscopy 

 

The FTIR spectra of C60(OH)30, C60(OH)30-CNC and pristine CNC is shown in Figure 

3.3. The spectra of fullerol (Curve a) is dominated by a broad stretching O-H band around 3400 

cm-1, and three characteristic bands at 1626.41 cm-1 (vC=C), 1383.99 cm-1 (δC-O-H) and 

1103.61cm-1 (vC-O); which has previously been reported as the diagnostic absorptions 

belonging to fullerols (Chiang et al. 1993; Kokubo et al. 2011; Li et al. 1993). A minor peak 

visible at 1723.93 cm-1 indicates a carbonyl group formed by the tautomerization of 

hemiacetals or known pinacol rearrangements of  vicinal O-H groups, or through the formation 

of a carboxylic group formed by further oxidation of the O-H group associated with C-C 

cleavage of fullerene (Chiang et al. 1993). The shoulder peak at 1462 cm-1 and 2875.59-

2963.04 cm-1 is attributed to residual TBAH as reported by Kokubo et al.(Kokubo et al. 2011). 

The IR spectrum of C60(OH)30-CNC (Curve b) is similar to that of pristine CNC (Curve c), 

with an absorption in the finger print region at 1034.91 cm-1 and 1060.31cm-1 due to C-O 

stretching at the C3 position of CNC (Akhlaghi et al. 2013; Kumar et al. 2014). A shift in the 

band observed in the C60(OH)30-CNC curve at 1112.33 cm-1 compared to that of CNC at 

1111.47 cm-1, and 1162.50 cm-1 in comparison to 1160.97 cm-1 indicates a C-O-C ester 

stretching motion which could be attributed to the formation of a covalent bond between CNC 

and C60(OH)30. Furthermore, the presence of a characteristic C60(OH)30 C-O-H peak at 1384.87 

cm-1 and a strong band at 1637.90 cm-1 related to C=C of the fullerol nucleus in the C60(OH)30-

CNC spectrum (Curve b), validates the interaction of C60(OH)30 with CNC. 
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Figure 3.3: FTIR spectra of (a) C60(OH)30, (b) C60(OH)30-CNC, and (c) pristine CNC. 
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3.3.3 TEM micrographs of the CNC supported antioxidant hybrid structure 

 

Measurements by TEM elucidated the shape and morphology of the C60(OH)30 clusters, 

and C60(OH)30-CNC.  The images of C60(OH)30 revealed relatively large spherical 

nanoparticles packed into clusters of size ranging from 20-400 nm, as illustrated in Figures 3C 

and 3D. This is due to the characteristics of polyhydroxylated fullerol nanoparticles in water, 

where they tend to form loosely associated aggregated clusters (Brant et al. 2007). The large 

aggregates were almost eliminated once the fullerols were grafted onto the surface of CNC 

rods, as shown in Figure 3.4B (tiny black dots). This phenomenon is caused by the increased 

probability of nucleation on the high specific surface of CNC where single fullerol 

nanoparticles can be conjugated to the excited CNC surface. Figure 3.4A shows the TEM 

image of pristine CNC rods with no C60(OH)30 growth in comparison to the hybrid system.  
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Figure 3.4: TEM images of a) pristine CNC b) C60(OH)30-CNC, c) and d) are both pure 

C60(OH)30 clusters of different sizes. The inset in figure 3b details the structure of the 

nanohybrid with fine sized C60(OH)30 nanoparticles on the surface of cellulose nanocrystals. 
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3.3.4 Zeta potential measurements of colloidal stability 

 

The zeta potential (ZP) indicated the colloidal stability of the suspension by measuring 

the surface charge of the nanoparticles. All zeta potentials were measured as a function of pH 

ranging from 4.0 - 8.0. The results are summarized in Table 3.1. The ZP for the pristine CNC 

remained stable with a value of -31mV, which corresponds to the highly charged character of 

the nanocrystals. Strong pH dependency was observed for the fullerol nanoparticles due to the 

high degree of hydroxylation of the molecules, as reported in the literature (Brant et al. 2007; 

Assemi et al. 2010). The fullerols displayed weak negative charge (-12.2 mV to -23.9 mV), 

and were found to be unstable in acidic medium at pH < 6, and became more stable in alkaline 

pH due to deprotonation of -OH groups and the presence of partially ionized COO- groups 

(Assemi et al. 2010). In comparison, the C60(OH)30-CNC aqueous dispersion yielded an overall 

high negative surface charge ranging from -39.9 mV to -42.3 mV indicating enhanced colloidal 

stability and reduced tendency to flocculate  at all pH values especially in the acidic conditions. 

This is a prime factor in determining the suitability of this antioxidant system in a given 

practical application for cosmetics, where the natural skin surface pH is acidic (Lambers et al. 

2006). 
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Table 3.1: Zeta Potentials measurements and reported standard error (S.E) of C60(OH)30-

CNC, C60(OH)30 and CNC at different pH values. 

 

Sample 

pH 

4.0 5.0 6.0 7.0 8.0 

C60(OH)30-CNC -42.3 ±1.47 -42.4 ±2.06 -35.0 ±2.01  -41.0 ±0.30 -39.8 ±3.50 

C60(OH)30 -12.2 ±0.92 -18.4 ±1.02  -23.9 ±3.27 -31.2 ±1.25 -48.3 ±1.71 

CNC -32.2 ±2.27 -36.3 ±1.95 -31.5 ±1.35 -40.5 ±3.82 -46.8 ±1.96 

 

3.3.5 UV-Vis spectroscopy  

 

The free radical scavenging properties by C60(OH)30-CNC were assessed by UV-Vis 

spectroscopy. The stoichiometry between free radical consumption and colour change (purple 

to orange) was monitored over time at 517 nm, as illustrated in Figure 3.5. There was an 

appreciable reduction in the absorbance in the UV spectrum through the reaction of DPPH 

with C60(OH)30-CNC; the absorbance decreased from 0.9 (at 1 min), to an absorbance of 0.56 

after 4 hours. At infinite time (after 6 days), the characteristic peak for DPPH at 517 nm in the 

presence of C60(OH)30-CNC disappeared, due to complete quenching of the radical by 

C60(OH)30-CNC. 
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Figure 3.5: The change in UV-Vis spectra over time caused by the radical scavenging of the 

stable free radical DPPH with C60(OH)30-CNC, monitored at 517 nm. The images at the top 

of the figure shows the bleaching of the coloured radical from purple to orange.  

3.4 Results and discussion  

3.4.1 Kinetic analysis and pseudo first-order modelling of the antioxidant activity  

 

To further understand and quantify the rate of antioxidant activity, the kinetics of the 

reaction between DPPH and C60(OH)30-CNC and DPPH and C60(OH)30 was modelled by 2-

stage pseudo-first order kinetics using Equation (3.4).  

𝑙𝑛
(𝐴∞−𝐴𝑡)

(𝐴∞−𝐴0)
= −𝑘𝑡                                                                                                           (3.4) 
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where t is time and A ͚ ,At, A0 are absorbance at infinite time (6 days after the experiment), at 

time t, and zero, respectively. Here, the reaction follows pseudo-first order kinetics. In the 

initial stages of the reaction, there are several active sites available on C60(OH)30 grafted onto 

CNC. Each C60 molecule is capable of reacting with multiple DPPH radicals, hence in terms 

of molar equivalents, the concentration of C60 is higher than DPPH (Geckeler & Samal 2001). 

The concentration of DPPH decreased steadily over time, while the concentration of 

C60(OH)30-CNC remained constant. The plot of the term ln[(A ͚ - At )/(A ͚  - A0)] vs time is 

shown in Figure 3.6. The rate of the radical scavenging and analysis of the standard curve 

displayed two stage kinetics (Figure 3.6a) consisting of a very rapid initial step from 0-10 

minutes defined by the rate constant k1= 6.7 x10-3 min-1, followed by a slower reaction with 

the rate constant k2 = 2.0x10-3 min-1; both stages display satisfactory R2 values of 0.9707 and 

0.9868, respectively. Modelling of the kinetic behaviour of C60(OH)30 alone displayed a similar 

two-stage trend but with lower rate constants (see Figure 3.6b). The results are in agreement 

with the hypothesis, where the nanohybrid structure demonstrates a higher antioxidant activity 

because there is an exact nucleation of single C60(OH)30 nanoparticles due to the high specific 

area and excited surface of cellulose nanocrystals (CNC) substrate. Whereas, the fullerol 

C60(OH)30 particles on their own tend to form loosely bound clusters of spherical particles in 

aqueous solution, as shown in the TEM micrographs in Figure 3c and d. From a geometric 

standpoint these relatively large clusters make it difficult for the radical to react fast enough in 

comparison to the single nucleated particles on the surface of CNC. As a result, the hybrid 

structure not only demonstrates antioxidant capabilities, but this performance is also enhanced 

in the CNC-C60(OH)30 structure. 
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Figure 3.6: The changes in the kinetics of the DPPH scavenging reaction with a) C60(OH)30-

CNC b) C60(OH)30 and c) pristine fullerene C60.The insets in each figure represent visual 

images of the dispersions a) C60(OH)30-CNC in aqueous solution b) C60(OH)30 in aqueous 

solution and c) C60 in toluene solution.  

 

3.4.2 Proposed Reaction mechanism of DPPH scavenging of C60(OH)30-CNC 

 

An understanding of the interaction mechanism, and the experimentally derived 

pseudo-first order reaction kinetics of the two systems was developed based on the molecular 

structure of fullerol C60(OH)30. A proposed mechanism to explain the two stages is shown in 
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Figure 3.7. It is proposed that the first-stage of the kinetics can be attributed to rapid hydrogen 

atom abstraction from the -OH groups of the highly hydroxylated fullerol, resulting in the 

formation of the epoxy bonds (Figure 3.7, stage 1) which are energetically more favourable to 

reduce the strain on the hydroxylated fullerol cage through the conversion of sp3 carbons to 

sp2 hybridization. It is suggested that hydroxylation of fullerene renders a large stress on the 

C60 cage due to the sp3 carbons inability to exist in an energetically favorable tetrahedral 

orientation (Ueno et al. 2014). As such, in order to relieve this strain from the cage the radical 

has to react with the -OH group first (defined by rate constant 1, Figure 3.6a), followed by the 

second stage (rate constant 2, Figure 3.6a) where it reacts with the π-conjugated double bond 

with subsequent electron transfer from the C=C bond to the DPPH radical (Figure 3.7, stage 

2). In addition, unlike C60 with its intact π-conjugated system, it is difficult for the radical to 

freely interact with the C=C bond due to steric hindrance from -OH groups on the surface of 

the cage, and the less accessible reaction sites (Ueno et al. 2014). Therefore, the DPPH radical 

is likely to first react with the labile H atom of -OH, followed by radical addition to the 

remaining C=C bond of the fullerol nucleus in order to release the constrained energy (Brand-

Willliams et al. 1995; Ueno et al. 2014).  In further support of the proposed mechanism for the 

two stages, a control experiment between pristine fullerene and DPPH was conducted. The 

reaction kinetics of the fullerene in the absence of hydroxyl modification yielded only a one 

single-stage kinetic process defined by the equation y = -7.0x10-4x -2.6544  with a linear 

correlation of 0.9952, as illustrated in Figure 3.6c. The results confirmed that the DPPH free 

radicals only react with electrons on the π- conjugated C=C surface of the unmodified fullerene 

molecule, leading to the observed one-stage kinetic trend.  
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Figure 3.7: Proposed reaction mechanism for the scavenging of the DPPH radical by 

C60(OH)30 through the very fast first stage of H-atom donation followed by a slower second 

stage via addition to C=C. 
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3.4.3 Active comparison of the antioxidant capacity of C60(OH)30-CNC and C60(OH)30 

 

To demonstrate the efficacy of the system, a concentration dependent antioxidant study 

was conducted for C60(OH)30-CNC and C60(OH)30 at different concentrations (0.1mg ml-1, 0.05 

mg ml-1 and 0.025mg ml-1). To ensure a realistic comparison, each of the concentrations 

corresponds to the active (C60(OH)30) compound present in each system.  Figure 3.8 shows that 

the rate constants decrease with decreasing concentrations for the two systems. Rate constants 

for reaction of DPPH with C60(OH)30-CNC displayed much higher and faster k1 and k2 values 

compared to C60(OH)30 alone. Improved antioxidant performance of the C60(OH)30-CNC 

system is a result of the templating effect of CNC. Grafting C60(OH)30 on the high surface area 

of CNC minimizes the tendency for unwanted growth and cluster formation of fullerol, thereby 

making the active material (C60(OH)30) more accessible to the DPPH radicals.

 

Figure 3.8: Concentration dependent comparison of the two rate constants (Figure 7a, k1) & 

(Figure 7b, k2) observed for C60(OH)30-CNC and C60(OH)30, respectively. Concentrations on 

the x-axis are representative of the active material (C60(OH)30) in each system. 
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Chapter 4 

Surface modified cellulose nanocrystal/semiconductor hybrids for 

systematic control of photocatalytic activity and ultraviolet protection 
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4.1 Introduction  

Recent advances in the epitaxy of semiconductor materials have made it possible to 

fabricate metal oxide structures in which confined electrons(e-) and holes(h+) have the potential 

to fine-tune the redox functionalities (Cao et al. 2009; Dietl 2010). For solid-state systems, 

ZnO semiconductors with a wide band gap energy of 3.37 eV, and with inherent UV absorbing 

properties have been considered a promising candidate over other inorganic nanomaterials. 

This is attributed to the high quantum efficiency, that finds applications in optical devices, 

sensors, transparent electrodes, solar cells, photocatalysis, antibacterial activity and cosmetics 

(Kołodziejczak-Radzimska & Jesionowski 2014; Cheng et al. 2014; Fu et al. 2015). For these 

applications, the structural defects, morphology, size, surface area, and crystallinity are prime 

factors that determine the efficacy of the metal oxide. The majority of the research in this field 

has focused on strategies to address these ensuing properties mainly through the introduction 

of oxygen vacancies, structural defects on the surface of the crystal and widening the band gap 

of the metal oxide to limit the fast recombination of photogenerated charge carriers (Cheng et 

al. 2014). Doping with a variety of materials including, both, metal ions (Dao et al. 2016; Sun 

et al. 2011; Jimenez-Gonzaez, A.E, Urueta, J, A. and Suarez-Parra 1998) and metal oxides 

(Etacheri et al. 2012; Cheng et al. 2014; Liao et al. 2008; Sun et al. 2014) have shown that such 

bandgap tailoring is possible and the scope is promising for functional optoelectronic devices. 

But in an area where the formulation is in the solution phase, colloidal ZnO nanocrystals still 

pose a challenge because of their tendency to aggregate due to Ostwald ripening resulting from 

the high surface energy (Kołodziejczak-Radzimska & Jesionowski 2014). As a result, these 

nanoparticles (NPs) are unstable during storage and compromise their surface reactivity in 
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applications, such as waste water treatment, photocatalysis, personal care or biological 

systems. The possibility of using hybrid nanocomposites to fabricate functional cosmetic 

systems in aqueous system suggests the feasibility of transferring this technique to large scale 

application, an achievement that would offer many attractive advantages including, product 

efficacy, solution stability, sustainability, and aesthetic appeal. A novel synthetic strategy that 

has the flexibility to meet these demands is a cellulose based nanorod derived from wood pulp 

known as cellulose nanocrystals (CNCs). The biocompatible 100 x 20 nm dimensional 

crystalline domains extracted from wood fiber, are excellent substrates for the growth of 

semiconductor ZnO NPs. The well-controlled nanocrystal derived from nature offers high 

specific surface area, long term stability in water, confined dimensions and mechanical 

strength over other biomass derivatives (Habibi et al., 2014). 

Here, the prospect of employing CNC in personal care and cosmetic applications is an 

uncharted and increasingly exciting field. With this objective, the scope of the present study is 

to investigate how an experimental edifice can be constructed to exploit the unique physical 

and chemical properties of cellulose nanocrystal, and render it an active semiconductor for 

multifunctional cosmetic application. By combining the semiconductor ZnO with 

biocompatible CNC template, we can synergize their properties for nanostructure fabrication 

that could lead to a breakthrough in cosmetic nanotechnology. The present study focuses on 

the design of an optimal ratio for the synthesis of a highly porous nanohybrid system for the 

application as a UV filter and photocatalytic agent for the degradation of organic pollutants. 

This structure was developed on a melamine formaldehyde (MF) coated CNC template that 

provides a mesoporous and nitrogen-rich substrate for the growth of ZnO nanoparticles in 



 

 55 

aqueous solution, without high temperature calcination. First, the UV-absorbing property of 

the nanohybrid was applied for the in-vitro evaluation of the sun protection factor (SPF) 

through spectrophotometric analysis, where the role of the template revealed the importance 

for the size control of ZnO NPs displaying enhanced SPF values. Second, the photocatalytic 

degradation of an organic dye methylene blue, under UV and solar radiation was evaluated by 

fitting the reaction to a pseudo-first order Langmuir-Hinshelwood model, and elucidated by 

solid band theory. There was a 4-fold increase in the photocatalytic performance of 

ZnO@MFCNC hybrid resulting from (1) an increased surface area of the MFCNC matrix, (2) 

confined surface energy and growth of the ZnO NPs, and (3) a fast promotion of interfacial 

charge-transfer to the surface of the catalyst. This is in part due to the mesoporous core-shell 

structure of the MFCNC that traps the photo-induced charge carriers and prevents e-/h+ 

recombination without the additional band gap tailoring or structural defects on the surface. A 

complete analysis and characterization of the system through, FTIR, TGA, XRD, zeta potential 

measurements, UV-Vis and TEM is presented to validate the scope of the material.  
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Figure 4.1: Schematic illustration of the synthesis of semiconductor ZnO on the surface of 

Melamine-formaldehyde (MF) coated CNC rods. 
 

4.2 Experimental Section 

4.2.1 Materials 

 

Cellulose nanocrystals with dimensions 100-200 nm in length and 5-20 nm wide were 

supplied by Celluforce Inc. Quebec, Canada. All of the analytical grade chemicals were 

purchased from Sigma-Aldrich, and used as received.  
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4.2.2 Method Preparations  

4.2.2.1 Synthesis of semiconductor ZnO on the surface of CNC 

 

Step 1. Melamine formaldehyde coated CNCs were prepared through the poly-

condensation of MF precursor on the CNC rod as described previously (Wu et al. 2015).  

Step 2. The reaction of the optimal hybrid ratio involved dispersing 142.9 mg of 

MFCNC in 15 ml of water. After which 164.6 mg of zinc acetate dehydrate was dissolved in 

another 15 ml of water and added dropwise to the MFCNC solution and stirred at 50 oC for 1 

hour. This allowed for seed layer deposition of positively charged zinc ions that chelated 

through the nitrogen base of the MFCNC rods.  

Step 3. From here, 0.0225mol/30 ml solution of NaOH was introduced dropwise for 

the hydrolysis of the Zn2+@MFCNC solution, and allowed to stir at room temperature for 2 

hours. 

 Step 4. The samples were exposed to hydrothermal treatment at 100 oC for 1 hour, and 

subsequently purified through dialysis. Preparation of pure ZnO followed the same process but 

without the additional template of MFCNC. The procedure involved 164.6 mg of zinc acetate 

dihydrate (Zn2+) pre-dissolved in 15 ml of water and reacted with 0.00225mol/30ml of NaOH 

at room temperature for 2 hours, followed by hydrothermal treatment and purification as 

described above. A schematic for the synthesis route is illustrated in Figure 4.1. 
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4.2.2.2 In-vitro measurements of the Sun Protection Factor (SPF) 

 

The absorption characteristics of the sunscreen agents were determined based on 

spectrophotometric analysis of dilute aqueous solutions for ZNO@MFCNC and pure ZnO 

based on 5% active ingredient. Samples were diluted in water at a final concentration of 2 μl/ml 

and analyzed by UV spectrophotometry from 290 to 800 nm, at every 5 nm intervals using 1 

cm quartz cell, according to Mansur's method (Mansur, Breder, Mansur, Azulay 1986) . Water 

was used as a blank sample for the baseline correction. All of the tested materials were 

synthesized and reproduced three times to obtain a good reproducibility and the standard error 

for the SPF measurements. 

4.2.2.3 Photocatalytic evaluation  

 

UV: 50 mg of ZnO@MFCNC powder was reacted with 50 ml of 0.02mg/ml methylene 

blue (MB) solution. The reaction was sonicated and vortexed to allow for a uniform dispersion 

of the hybrid powder and stirred in the dark for 1 hour to reach equilibrium absorption-

desorption. Next, the solution was exposed to high intensity UV irradiation using a 100 Watts 

lamp where 3 ml aliquots were withdrawn at 20 min intervals, diluted to 1:10 ratio, and 

centrifuged for 10 min at 7000 rpm. The absorbance was recorded subsequently using an 

ultraviolet-visible (UV-Vis) spectrophotometer (Cary Bio 100) measured from 200-800 nm at 

every 1 nm intervals. The reaction was carried out to 240 min at which point the hybrid material 

degraded to completion. A parallel study for comparison of the photocatalytic performance of 

pure ZnO accompanied using the exact same process and carried out to 360 min at which point 
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complete degradation of the unmodified ZnO was observed. All of the experiments were 

repeated three times to ensure accuracy of the analysis. 

Sunlight: Identical reaction conditions were setup for the evaluation on the effect of 

sunlight on the photocatalytic performance of the hybrid and pure ZnO.  3 ml aliquots were 

withdrawn every 10 min for complete analysis of the reaction. The experiments were 

performed outdoor from 12:00 – 4:00 pm in late July and early August, with an average UV 

index of 8. The temperature of the reaction was monitored with a temperature probe, and the 

solutions were sealed to avoid evaporation. 

 

4.3 Material Characterization  

 

Optical, SPF and photocatalytic measurements were monitored using an ultraviolet-

visible (UV-Vis) spectrophotometer (Cary Bio 100). Thermogravimetric analysis (TGA) was 

performed using TGA Q600 of TA Instruments (New Castle, Delaware). The experiments 

were conducted at a heating speed of 20 oC/min under air, from 25 to 800 oC. Morphology of 

the uranyl stained CNCs was obtained through JEM-2100 high resolution TEM (HRTEM). 

MFCNC, ZnO@MFCNC and unmodified ZnO particles were characterized using Philips 

CM10 Transmission electron (TEM). X-ray diffraction (XRD) patterns of the samples were 

performed with a Rigaku D/MAX-RB diffractometer using filtered Cu Kά radiation. Fourier 

Transform Infrared Spectra (FTIR) spectra were recorded using a PerkinElmer 1720 

spectrophotometer of freeze dried samples mixed with KBr, at a resolution of 4 cm−1, and 

analyzed using OPUS software. The zeta-potentials of the solutions were carried out as a 
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function of pH from 3.0-5.0, every 0.5 unit. This range was tested to check the stability of the 

system by measuring the surface charge of the nanoparticles using a Zetasizer Malvern Nano 

ZS90. A Blak-Ray B-100AP-R High Intensity (100 Watts) 365 nm 2.5 Amps, 115V-60 Hz 

Lamp was used for UV irradiation of all samples.  

4.4 Results and discussion 

4.4.1 X-ray diffraction patterns of the growth of crystalline ZnO 

 

Typical diffraction peaks in the MFCNC spectra observed at 2θ = 18.5o, and the ones 

marked with (*) come from cellulose 1, of the CNC structure.  XRD data confirmed that all of 

the samples produced (without any additional calcination) were crystalline and had phase 

transformations corresponding to bulk ZnO matching the reported literature values 

(Meulenkamp 1998; Mumalo-Djokic et al. 2008; P.B. Taunk, R. Das, D.P. Bisen 2015). The 

highest intensity peak of the (101) plane observed along with other smaller intensity peaks at 

100, 002, 101, 102, 110,103 112 and 004 were indexed to the hexagonal wurtzite ZnO 

structure, as shown in Figure 4.2. These diffraction patterns were then analyzed using the 

Debye-Scherrer formula (Equation (4.1)) to determine the crystalline size of the ZnO-NP 

present on the nano-hybrid: 

Dℎ𝑘𝑙 =
𝑘ʎ

𝛽(
𝜋

180
)𝑐𝑜𝑠𝜃

                                                                                                         (4.1) 

where, Dhkl is the crystallite size in (nm) perpendicular to the crystal (hkl) plane, k is a constant 

equal to 0.94, ʎ is the wavelength of the incident X-ray radiation [CuKά (0.154 nm)], β is the 
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full width at half maximum (FWHM) in radiations, (π/180) is the correction factor to convert 

β into radians, and θ is the scattering angle for the (hkl) plane. The size calculated for the pure 

ZnO crystal was found to be 39.903 ± (1 nm), whereas the crystalline size of the ZnO on the 

ZnO@MFCNC hybrid was 15.19 ± (1 nm). The estimated crystallite sizes of the two samples 

agreed with the X-ray diffraction patterns shown in Figure 4.2, since larger crystal size linked 

to pure ZnO were characteristically associated with more pronounced sharp intensity peaks, 

whereas the smaller and more broad peaks (belonging to ZnO@MFCNC spectra), were 

subjected to smaller crystal size. (Mumalo-Djokic et al. 2008; Taunk, Das, Bisen 2015). 

Additionally, the presence of these crystal planes and intensity peaks confirmed the successful 

formation of ZnO-NPs on the surface of MFCNC. 

 

Figure 4.2: X-ray diffraction (XRD) patterns of MFCNC, as synthesized ZnO and 

ZnO@MFCNC nanocomposite. 
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4.4.2 FTIR spectroscopy  

   

The FTIR spectra shown in Figure 4.3 confirmed the chemical characteristics of 

ZnO@MFCNC nanocomposite, as well as MFCNC and pure ZnO. The IR spectra of pure ZnO 

is normally recognized by the characteristic vibrational assignment at 430–500 cm-1 due to the 

Zn-O stretching vibration, and broad peaks in the range of 3800-3900 cm-1 attributed to 

adsorbed H20 molecules present on the lattice as shown in Figure 4.3 (Jimenez-Gonzaez,  

Urueta, and Suarez-Parra 1998). For comparative analysis, the IR Spectra for the MFCNC-

ZnO (Figure 4.3) hybrid were analyzed. The presence of the distinct absorption at 428 cm -1 

(Figure 4.3, curve b) ascribed to the stretching vibration of Zn-O bond validated the formation 

of the crystal on the nanocomposite. Another noticeable peak at 813 cm-1 arises from the 1,3,5-

triazine ring of melamine which confirmed the chemical constituents of both, MFCNC and 

ZnO in the hybrid (Wu, Li, Qin 2013). Comparing the FTIR spectra with those of MFCNC 

(Figure 4.3, curve c) that shows typical peaks at 814 cm-1 and 1565 cm-1 arising from the 1,3,5- 

triazine ring in the melamine structure, C-H bending vibration of the methylene group at 1330 

cm-1, and characteristic bands at 1020 cm-1 assigned to the -CH2-OH ether linkage of the 

melamine-formaldehyde resin (Wu, Li, Qin 2013).  The absence of the ZnO stretching 

vibration at 430 cm-1 from the pure MFCNC curve indicated the formation of the ZnO crystal 

in curve b, Figure 4.3.   
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Figure 4.3: A. FTIR spectra of ZnO, ZNO@MFCNC and MFCNC measured between 4000-

400 cm-1. 

 

4.4.3 Mass loading of ZnO determined from TGA analysis  

 

Further support of the mass loading of active ZnO on the surface of MFCNC was 

determined from the thermogram. Based on the weight loss profiles of the three TGA curves 

(illustrated in Figure 4.4), the residual amounts of ZnO, ZnO@MFCNC and MFCNC 

determined at 700 oC were 96.42, 86.73 and 9.54%, respectively. From the analysis, the content 

of ZnO was calculated to be 88.85%, according to Equation (4.2). 
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CMFCNC + CZnO = 1                                                                                                           (4.2) 

0.0954MFCNC + 0.9642ZnO = 0.8673  

where CMFCNC and CZnO mass ratio of MFCNC and ZnO, respectively. The degradation rate at 

350 oC in the hybrid and MFCNC curve is mainly due to the size and surface area of the 

melamine-formaldehyde (MF) coated on CNCs (Wu et al. 2016)  No net weight loss was 

observed in the TGA curve of pure ZnO, confirming the thermal stability of ZnO (Yu et al. 

2015). 

 

Figure 4.4: TGA measurements of ZnO, ZnO@MFCNC and MFCNC obtained at a heating 

rate of 20 oC/min under air. 
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4.4.4 Zeta potential measurements of hybrid ZnO@MFCNC 

 

Furthermore, the stability of the nanoparticles was determined from the zeta potential 

measurements of ZnO@MFCNC complex and the metal oxide aqueous solution as a function 

of pH. This method is ideal to evaluate the colloidal stability of the suspension, measured 

through the surface charge of the nanoparticles. Especially for the targeted sunscreen 

application, it is important to have a solution that is demonstrably stable, and appropriate for 

the acidic surface of the skin (pH below 5) (Lambers et al. 2006). Research studies indicate 

that a pH of less than 5 is a desirable condition to maintain the biophysical parameters and 

resident skin microflora on the epidermal surface (Lambers et al. 2006). Upon evaluation of 

the curves, a strong pH dependency was observed for both systems. It is interesting to note that 

the ZnO@MFCNC hybrid yields a strong positive charge (+35mV) in acidic conditions due to 

protonation of the secondary amine group present on the melamine structure that exposes a 

positive charge detectable from the nitrogen atom, and identifies the stability of the colloids in 

solution. Similar positive surface charge was detected in the pure MFCNC solution, which 

further supports this explanation. The plot of the black line in Figure 4.5, is indicative of ZnO 

NPs displaying surface charge behavior typically attributed to the neutral hydroxyl groups 

attached to the surface of the metal oxide.  At low pH, a weak positive charge (below +15mV) 

was detected due to transfer of some protons (H+) from the environment to the surface of 

Zn(OH)2 (Rasmussen et al. 2010). 
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Figure 4.5: Zeta potential measurements of the three systems in aqueous solutions as a 

function of pH in acidic conditions. 

 

4.4.5 Optical and UV absorbance  

 

The formation of the ZnO crystal on the surface of MFCNC was validated through the 

presence of the characteristic UV absorption at 350nm from ZnO, in addition to the peak at 

209 nm due to the triazine ring of melamine formaldehyde (Bône et al. 2011). The excited 

electronic states of semiconductor zinc oxide nanoparticles with a direct band gap energy of 

3.31 eV differ to a great degree from the bulk ZnO, resulting in a quantum confinement effect 

of ZnO nanoparticles (Goh et al. 2014; Brus 1984). With the widening of the band gap energy, 
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there is a decrease in the nanoparticle size which is evidenced by an overall blue shift in the 

spectrum (Brus 1984). From the optical measurements of the ZnO@MFCNC hybrid structure 

there was a visible blue shift detected in the wavelength from the bulk ZnO at 365 nm to 

ZnO@MFCNC at 350 nm, as illustrated in the inset of Figure 4.6. The blue shift is a good 

indication of the relative decrease in the particle size in comparison to pure ZnO, suggesting 

the importance of a chelating template provided by the porous MFCNC in controlling the 

nanoparticle formation in aqueous solution.  

 

Figure 4.6: UV-Vis absorbance profile of ZnO@MFCNC nanocomposite and unmodified 

pure ZnO. 
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4.4.6 Transmission electron microscopy (TEM) analysis  

 

The morphology of the hybrid system and formation of the ZnO nanoparticles was 

characterized through TEM. Figure 4.7A, and 4.7B show the contrast of an increase in the 

diameter and slight darkening of CNCs confirming the coating of melamine-formaldehyde on 

the rods, as observed previously (Wu et al. 2015; Wu et al. 2016). The morphology of the 

hybrid structure of ZnO@MFCNC displayed interesting structural arrangement, where the 

ZnO nanoparticles anchored on the surface of MFCNC showed a novel leaf-like growth on the 

rods in a branching fashion, as shown in the inset of Figure 4.7C. While the size of the 

MFCNCs remained intact, the average diameter of ZnO NPs on the surface ranged from 40-

60 nm. In contrast, the ZnO particles synthesized without the additional template provided by 

MFCNC possessed micron sized clusters of particles > 200 nm, primarily due to the high 

interface energy of nanoparticles that lead to formation of aggregates in solution (Huang et al. 

2013). 
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Figure 4.7: TEM micrographs of A. pristine CNCs; B. Melamine Formaldehyde (MF) coated 

CNCs; C. leaf-like growth of ZnO NPs on the surface of MFCNCs; and D. Pure ZnO 

particles > 100 nm. 
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4.4.7 SPF measurements  

 

The efficacy of a sunscreen is a quantitative measurement of the Sun protection Factor 

(SPF) which is defined as a numerical rating system to indicate the degree of protection 

provided by a sunscreen product. This is based on the ratio of the least amount of UV energy 

(UVB) required to produce minimal erythema on sunscreen-protected skin over the amount of 

energy required to produce the same erythema on unprotected skin (Dutra et al. 2004; Dlugos 

2011). At closer look, we know that the solar spectrum is composed of UVA (320-400nm) and 

UVB (290-320nm) radiation, where UVA is primarily involved in penetrating the epidermal 

and dermal layers of the skin that damage the keratinocytes, known to cause skin cancer. 

Although the effects of UVA sound dramatic, the risk of UVB exposure is approximately 

1000x more erythemogenic compared to UVA, which could cause severe photo damage and 

sunburns due to the shorter UVB wavelength (Dutra et al. 2004).  As such the SPF is primarily 

a measure of protection against UVB. Here the photo-protection of the hybrid structure and 

pure ZnO aqueous solutions was determined based on an in-vitro spectroscopic method for 

calculating the Sun Protection Factor values based on the well-developed Mansur 

mathematical Equation (4.3) (Mansur, Breder, Mansur, Azulay 1986): 

𝑆𝑃𝐹 =  𝐶𝐹𝑥 ∑ 𝐸𝐸(ʎ)𝑥𝐼(ʎ)𝑥𝐴𝑏𝑠(ʎ)320 𝑛𝑚
290 𝑛𝑚                                                                    (4.3) 

  

where CF is the correction factor (10), EE (λ) is erythemogenic effect and solar radiation 

intensity at wavelength (ʎ) I, and Abs (λ) is UV spectrophotometric absorbance values at 
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wavelength λ determined at every 5 nm increments. The values of EE x I are normalized 

constants determined by Sayre et al.(Sayre et al. 1979) as shown in Table 4.1. 

Table 4.1: Normalized EExI values corresponding to wavelength (nm) for calculating the 

SPF factor (Sayre et al. 1979). 

 

Wavelength (nm) EE x I  

290 0.0105 

295 0.0817 

300 0.2874 

305 0.3278 

310 0.1864 

315 0.0839 

320 0.0180 

 

Figure 4.8: Solar and erythema spectra of the standardized function EE(ʎ) and I(ʎ) (Adopted 

from Springsteen et al. 1999).  
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4.4.8 Effect of hydroxide concentration on SPF 

 

By systematically varying the ratio of MFCNC-Zn2+ to hydroxide, an optimal 

composition of 1[Zn2+]:[OH-]3 was achieved. It is suggested that this optimal ratio for the 

measurement of SPF is directly related to the particle size and morphology, where the reduction 

in particle size, from micro to nano, directly affects the sun protection factor. From our 

observations, it clear that with increasing hydroxide ratio from 3 to 10, the reaction between 

the zinc ion and hydroxide proceeded very fast resulting in fast growth of the ZnO particles. 

This affects the solution stability due to increased particle size (micrometers) and a loss in the 

specific active surface area, in contrast to the optimal ratio of 1:3. By further increasing the 

hydroxide ratio greater than 10, it was found that there was no ZnO crystal formed as confirmed 

by an absence of the characteristic exciton energy peak of ZnO at 350 nm wavelength, in 

addition to a loss of cloudy precipitate due to a decrease in the zinc concentration (Conde et 

al. 2011). The result shows that significant changes in the alkaline ratio controlled the ZnO 

particle formation after the initial nucleation on the MFCNC substrate.  

4.4.8.1 Comparison profile of ZnO@MFCNC and micro ZnO 

 

Figure 4.9 shows the comparative SPF values of the as synthesized ZnO@MFCNC 

hybrid solutions and pure ZnO solutions of varying hydroxide ratios. The results from the 

experimental studies showed the deposition of ZnO on the surface of MFCNC susbtrate that 

outperfromed the pure ZnO solutions in almost all of the [OH] ratios tested, with the maximum 

SPF value of 14 (std. 0.35) obtained at a ratio of  (MFCNC): 1[Zn2+]: 3[OH]. The role of the 
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porous MFCNC matrix becomes obvious from these results as it provides; (i) increased surface 

area due to the sponge-like porous matrix,  (ii) offers chelation of the zinc ion (Zn2+) with 

enhanced affinity through the rich nitrogen groups of the MF resin (Baraka, A.; Hall, P. J.; 

Heslop 2007; Filik 1997), (iii) from here the confined growth of the metal oxide in the 

mesopores of the MF resin leads to controlled nanoparticle size which offers better UV 

absorption in comparison to pure micro ZnO. 

 

Figure 4.9: Bar graph illustrating the comparative SPF values of aqueous ZnO@MFCNC 

and pure ZnO solutions, with increasing [OH] ratios.  
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Figure 4.10: A. ZnO bulk formation on pristine CNC. B. MF coated CNC with controlled 

leaf-life growth of ZnO NPs on the surface of the rods. 

 

The effect of the nitrogen functionality provided by the MF coating on CNC for the controlled 

growth of ZnO NPs is shown in Figure 4.10. Without the additional mesoporous N-rich surface 

of MF, the ZnO formed large agglomerates, which inevitably affects the cosmetic performance.  

 

4.4.9 Evaluation of photocatalysis of surface-active CNC 

4.4.9.1 Langmuir-Hinshelwood model  

 

The rate of degradation of methylene blue (MB) can be easily computed through 

colorimetric measurements (Figure 4.11A and 4.11B) that provides a means to assess the 
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photocatalytic performance of the CNC based system, both qualitatively and quantitatively. 

Our study revealed profound results and differentiation of the ZnO@MFCNC system, in 

contrast to bulk ZnO. The pseudo-first order linear kinetic rate plot shown in Figure 4.11C was 

derived from the Langmuir-Hinshelwood model (4.4) 

− 𝑙𝑛 (
𝐶𝑡

𝐶𝑜
) = 𝑘𝑡                                                                                                   (4.4) 

where Ct is the concentration at irradiation time (t), Co is the initial concentration at irradiation 

time 0, and k is the first order rate constant. Liner regressions of the data presented in Figure 

4.11C revealed a 4-fold increase in the kinetic rate of the ZnO@MFCNC system (0.0117 min-

1) in comparison to ZnO (0.00314 min-1), and an even faster rate of 0.0387 min-1 was observed 

for the study under sunlight of the CNC supported hybrid. The hybrid structure showed 

complete degradation after 60 mins under solar stimulation, and 96.49% degradation after 200 

mins under artificial UV light, as illustrated in Figure 4.11D, whereas, bulk ZnO showed only 

half the degradation (51.14%) at 200 mins, with complete degradation observed after 6 hours. 

The kinetics under sunlight for the CNC supported hybrid system indicated a 2-stage reaction, 

with a slow first stage of 0.0248 min-1 followed by a faster rate of 0.0593 min-1, and complete 

degradation observed after 60 mins, as shown in Figure 4.12. The faster kinetics and the two 

stages can be primarily attributed to the source of sunlight, with both the UV and visible 

incorporated activation of the CNC supported catalyst. The different speed of the kinetics of 

the two stages can be defined by the UV+Visible (sunlight intensity) over the 60 min interval, 

where in the first stage the light hits and slowly activates the surface of the catalyst, followed 

by deeper and faster penetration of the porous CNC network and ZnO catalyst. The results 

point to evidence for the hybrid system to actively utilize both the UV, as well as the visible 
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region for photocatalytic degradation, making it advantageous for practical outdoor 

applications. These results can be further described through the molecular activity at the atomic 

level, followed by series of photocatalytic redox reactions at the surface of the semiconductor 

ZnO@MFCNC, as discussed in the following section. 

 

Figure 4.11: A. UV-vis attenuation profile and absorption spectra of methylene blue (MB) 

photocatalytic degradation by ZnO@MFCNC; B. Absorption spectra of the photocatalytic 

degradation of MB by pristine ZnO; C. Pseudo-first order kinetic rate plot of ZnO and 

ZnO@MFCNC under UV; D. Photocatalytic % degradation of ZnO and ZnO@MFCNC 

under UV as a function of the irradiation time (min). 
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Figure 4.12: Sunlight induced photocatalytic degradation of hybrid ZnO@MFCNC. A. 2-

stage linear regressions of ZnO@MFCNC under sunlight. B. Degradation profile of 

ZnO@MFCNC hybrid under sunlight as function of time (min). 

 

4.4.9.2 Solid band-gap theory of semiconductor metal oxides 

The emphasis of the optical absorption in colloidal semiconductors is interestingly 

dissimilar from bulk materials (Nogueira & Jardim 1993; Sun et al. 2014). The electronic 

conduction in a solid can be explained through the Molecular Orbital (MO) theory where the 

molecular orbitals are treated as energy bands instead of discrete levels due to the small 

difference in energy (Nogueira & Jardim 1993; Brus 1984). As in the case of the solid 

semiconductor ZnO@MFCNC, electrons occupy the energy bands according to their energy. 

Upon UV excitation, the electrons in the highest occupied orbital of the valence band (VB) are 

promoted to the unoccupied orbital of the conduction band (CB) above it; leaving behind hole 
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(positive charge) in the valence band (Nogueira & Jardim 1993). The space between these 

energy bands is the band gap which acts as a barrier to electronic mobility. The systematic e-

/h+ formation dictates the photocatalytic mechanism when e-/h+ pairs migrate to the 

semiconductor surface and participate in a redox reaction with the adsorbed organic 

compounds (i.e. methylene blue) (Dao et al. 2016; Guo et al. 2011; Sun et al. 2011; Etacheri 

et al. 2012). This migration rate increases when there is a widening of the band gap with a 

reduction in the particle size, which allows e− or h+ to react with surface-adsorbed species 

before recombination, thus, improving the catalytic efficiency (Huang et al. 2013; Sanna et al. 

2016). Here, the role of the templated effect of the mesoporous MFCNC becomes important, 

as it confines the growth of the ZnO NPs which (1) controls the NP growth, (2) increases the 

specific surface area of the semiconductor ZnO, (3) effectively prevents e-/h+ recombination 

and promotes photo-induced charge carriers to the surface of the catalyst which has major 

implications for the photocatalytic performance of the structure. A schematic illustration of the 

mechanism, with explanation of the redox reactions is described in Figure 4.13.  
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Figure 4.13: Schematic representation of semiconductor ZnO grown on the surface of 

MFCNC.  

Upon UV excitation with energy exceeding the band gap, electrons (e-) are promoted 

from ground state to the conduction band, resulting in vacancy (h+) in the valence band. The 

systematic e-/h+ formation dictates the photocatalytic activity of the semiconductor hybrid. The 

photogenerated h+ oxidize H2O molecules adsorbed on the surface of ZnO to OH. radicals. In 

the upper band, the excited e- of CB react with pre-adsorbed O2 molecules to form reactive 

oxygen species (ROS) (i.e. superoxide anion radical .𝑂2
− (Huang et al. 2015). Given the high 

quantum yield of photogenerated holes, the actual degradation of the dye can arise from direct 
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transfer of photogenerated carriers or through the formation of ROS (Guo et al. 2011), which 

complete the reaction by degrading any organic pollutants in primary contact.  

To briefly conclude this chapter, an optimized nitrogen-enriched polymer coated CNC 

network provided for leaf-like growth of semiconductor ZnO. The hybrid structure showed 

high in-vitro SPF values and a large increase in the photocatalytic performance as result of 

reduced crystallite size of the ZnO catalyst, and confined surface energy in aqueous system. 

Much of the significance and detailed conclusions from this research will be discussed in the 

subsequent chapter.  
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Chapter 5 

Engineering significance and arterial contributions 
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5.1 Significance and conclusions for the work presented in chapter 3 

 

A comparison of the antioxidant performance defined by stage 1 (k1) rate constant and 

stage 2 (k2) rate constant for other C60 derivatives described in literature, suggests the 

comparable results and scope of the CNC-based antioxidant system. Our work on the 

C60(OH)30-CNC system utilizing the high surface area of cellulose nanocrystals for the 

nucleation of C60(OH)30 displayed superior antioxidant performance with k1 = 6.7x10-3 min-1, 

k2 = 2.0x10-3 min-1, which is much higher than the stages of other previously reported studies. 

The high activity of C60(OH)30-CNC is largely attributed to the monodispersed fine-sized 

C60(OH)30 nanoparticles that are uniformly deposited on the surface of cellulose nanocrystals. 

The synthesis of C60(OH)30 NPs on CNCs is advantageous in the following ways; (i) the high 

surface area and hydrophilicity of the cellulose nanocrystals leads to the development of an 

aqueous based, biocompatible nanohybrid, (ii) it is advantageous over unmodified fullerenes 

that are hydrophobic and rigid, thus hindering their usage in an aqueous biological system, (iii) 

the excited surface of CNC substrate captures the electron on the C=C of C60(OH)30 that 

enhances the immobilization of C60(OH)30 NPs and controls the particle growth, (iv) the 

presence of high negative surface charge of the sulfate ester groups on CNCs imparts additional 

colloidal stability to the conjugated fullerol nanoparticles. 
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Table 5.1: Comparison of the antioxidant performance of various C60 solubilized systems 

with DPPH as the model radical. 

C60 

Solibilization/Derivatives 

Model 

Radical 

Rate Constant k1 

(min-1) 

Rate Constant 

k2 

(min-1) 

Reference 

PDMA-C60 DPPH 5.2x10-3 1.1x10-3 (Tam et al. 2013) 

NCC-BCD-C60 DPPH 1.7x10-3 Not determined (Yao & Tam 2014) 

PEO-b-PAA-C60 DPPH 0.9x10-3 0.5x10-3 (Yao & Tam 2014) 

Lactose-C60 complex DPPH 1.0x10-3 Not determined (Bhoi et al. 2012) 

Surface modified CNC-

C60(OH)30 

DPPH 6.7x10-3 2.0x10-3 Present Work 

 

Decorating polyhydroxylated C60 on the surface of CNC yields well-distributed and 

colloidally stable C60(OH)30 nanoparticles with excellent anti-oxidant characteristics. TGA and 

FTIR analysis showed characteristic C60(OH)30 peaks in the fullerol-CNC spectra, which 

provided evidence for the successful conjugation of fullerols on CNC. The large negative 

charge on the surface of CNC enables a stable dispersion of fullerol nanoparticles in aqueous 

solution. As a result of the reduced tendency to form clusters and the greater accessibility to 

the free radicals DPPH, C60(OH)30-CNC demonstrated faster and improved antioxidant 

performance. The observed 2-stage pseudo-first order kinetics suggested that at the molecular 

level, the radical scavenging behaviour involves the interaction of DPPH with the H-atom from 

the surface –OH groups on C60, followed by the reaction with the π-conjugated nucleus. The 

findings from this study summarize the development of biocompatible scavenging system for 
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the therapeutic suppression of free radicals, paving way for the design of an optimal system 

for antioxidant personal care applications.  

 

5.2 Significance of the work presented in chapter 4 

 

An effective demonstration of a sustainable novel strategy for the growth of 

semiconductor ZnO on surface modified porous cellulose nanocrystals in aqueous solution was 

developed. The study encompassed the evaluation and characterization of the surface active 

ZnO@MFCNC nanohybrid as an ultraviolet filter and photocatalytic agent. The material 

demonstrated a high UV absorption profile with an SPF value of 14 based on 5% active 

ingredient, and a 4-fold increase in photocatalysis under UV and solar radiation, suggesting 

the possibility for scale up.  

Table 5.2 shows a comparison of the kinetics for the photocatalytic performance of 

other ZnO based systems for the degradation of organic pollutants. Our synthesized hybrid 

material demonstrates comparable rate constants for irradiation under UV and ameliorated 

values for the solar radiated samples. This suggests the viability and capacity of the system to 

efficiently degrade organic pollutants, due to a chelating porous template such as MFCNC for 

semiconductor fabrication. 
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Table 5.2: Comparison of the Photocatalytic Performance of ZnO based system for 

degradation of organic pollutants.  

ZnO based 

Photocatalytic Systems 

Model 

Pollutant 

Rate Constant 

(min-1) UV 

Rate Constant (min-1) 

Sunlight 

Reference 

Fe3
+ doped ZnO calcined 

@400 oC 

2-CP not studied 0.0263 (Ba-Abbad et al. 

2013) 

Mn3O4- doped ZnO 4-CP not studied 0.0133 (Qamar et al. 

2016) 

TiO2/ZnOchitosan 

complex 

MO not studied 0.0256 (Zhu et al. 2012) 

Au-ZnO hetrostructures MB 0.021 0.0350 (Adhikari et al. 

2016) 

ZnO chelated on 

mesoporous MFCNC 

matrix 

MB 0.0117 0.0593K2/0.0248K1 present work 

 

Investigation of the ZnO@MFCNC hybrid system shows that structural defects and 

band gap tailoring are not the only means to enhance the photocatalytic activity of ZnO, but 

can also be engineered through the control of size, geometry and orientation of the 

semiconductor by means of a porous template that; (1) confines the surface energy and growth 

of ZnO NPs, (2) promotes interfacial e- charge transfer to the surface of the catalyst through 

entrapment of the photo-induced charge carriers in the pores of the MFCNC rod and preventing 

e-/h+ recombination. By synergizing the functionality of the N-rich mesoporous MFCNC with 

semiconductor ZnO, a platform for nanostructure fabrication has been developed, which may 

find large scale application as multifunctional cosmetics. 
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5.3 Contributions to the development of functionalized CNC in cosmetic 

systems 

The enclosed work presented in this thesis, describes the development of nature derived, 

functional cosmetic systems. The work generated from a preparatory building block, such as 

cellulose nanocrystals (CNC) has been shown to lay the foundation for the development and 

enhancement of cosmetic systems. A schematic summary of the work is summarized in Figure 

5.1.  

 In the first application, a new approach to solubilize the rigid and hydrophobic C60 

fullerene molecules was established using CNC as a template, and stabilizer. The 

functional system rendered advanced antioxidant properties that offer an advantage 

over currently commercialized C60 fullerene developed by Bio Research Corporation, 

in Japan, which has is shown to form aggregates in aqueous solution (Benn et al., 2013). 

By rendering completely water soluble C60(OH)30 molecules conjugated to the surface 

of CNC, we eliminate the formation of aggregates; an imperative factor for water 

dispersibility, anti-oxidant activity and the understanding of radical scavenging 

mechanism at the molecular level. Geometrically speaking, these well-distributed 

C60(OH)30 on CNC offer optimized functionality for antioxidant performance, in 

addition to  making the hybrid structure safe, biocompatible and a nontoxic candidate 

for practical application. 
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 Next, a systematic method for preparing surface-active ZnO deposited on CNC was 

established, and evaluated for its UV protection, and photocatalytic performance under 

natural and UV light. This work offers an aqueous based multifunctional cosmetic 

system that can eliminate the need for toxic chemical coatings and additional 

processing steps to create emulsions for commercial ZnO nanoparticles. The system 

operates in a unique two-dimensional capacity, where it can effectively block UV rays, 

and simultaneously convert the solar energy to break down environmental pollution 

coming in contact with the skin. From a more fundamental approach, this study satisfies 

a significant criteria to achieve highly active semiconductor ZnO with good 

photocatalytic properties, but without the atypical band gap tailoring mediated by 

dopants on the surface of the crystal. 

 

Figure 5.1: Summary of the development of surface modified CNCs for optimized personal 

care systems.  
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Chapter 6 

Recommendations 
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The work reported in this thesis describes the development, characterization and 

application of CNC based cosmetic systems, which can be translated into innovative 

commercial enterprises. To provide for a path towards such an avenue, the following 

recommendations for future possibilities are disclosed herein. 

 

6.1 Recommendations for the work presented in chapter 3 

  

The fundamental system consisting of polyhydroxylated C60 fullerene nucleated on the 

surface of CNC, presented in chapter 3, can be formulated as a light-weight cream or spray for 

anti-aging products with active antioxidant capacity. Further in-vitro studies for dermal 

penetration on skin models is recommended to demonstrate the systems practical usage in skin 

care products. The nanohybrid C60(OH)30-CNC can also be extended to applications in 

biomedical fields, where, fullerols C60(OH)x have been shown to be applicable particularly for 

cancer chemotherapy (Chaudhuri et al. 2009). With the advantage of a fully functional, and 

controlled fullerol nanoparticle on CNC, the size-tuning properties can be central to higher 

drug-loading transfer to tumor sites. Such a hybrid system can also be applied in an anti-HIV 

system by penetrating the hydrophobic cavity of HIV proteases, inhibiting the access of 

substrates to the catalytic site of the enzyme. In addition, electron transfer from excited state 

of fullerene and DNA bases, can be used for DNA cleavage and other genome engineering 

disciplines.  
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6.2 Recommendations for the work presented in chapter 4 

 

The strategy for synthesizing ZnO@MFCNC hybrid structure can be implemented in 

a range of commercial avenues that ascribe to a sustainable process that reduces the carbon 

footprint of toxic chemicals.  The highly porous CNC hybrid can be added to a cosmetic or 

therapeutic composition for external use to reduce and prevent the onset of premature aging of 

skin, and fatigued skin caused by oxidative stress from environmental pollutants and UV rays. 

These surface-active cellulose nanocrystals offer an easy synthetic and scalable process that 

meets the demand of homogeneous production on a large scale for commercial application.  

The platform created in chapter 4 can be strategically extended to deposit and grow 

other metal oxides, such as TiO2, CeO2 on the mesoporous substrate. Since CNCs offer 

consistent physiochemical and mechanical properties, they can be directed as a model to study 

and compare various metal oxide systems and its effect on band-gap and semiconductor 

properties. The function of the photocatalytic capacitance, and sun protection efficacy comes 

from surface reactivity of the semiconductor crystals, and the morphology of the nanoparticles, 

respectively. It will be necessary to study the impact of such theoretical oxide systems 

operating on the CNC supported carrier, for applications in waste water treatment, 

optoelectronics or biomedical capacities. 
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