

Industry Foundation Processes (IFP):

Theoretical and Practical Foundations

for the Construction Industry

by

Behrooz Golzarpoor

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Civil Engineering

Waterloo, Ontario, Canada, 2017

©Behrooz Golzarpoor 2017

 ii

AUTHOR’S DECLARATION

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including

any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

 iii

ABSTRACT

Industry foundation processes are formulated to improve capital project process conformance and

interoperability. These processes are used to implement key elements of practices. Several research

studies confirm that the implementation of best practices drives better engineering and

construction project performance. Best practices are defined by the Construction Industry Institute

(CII) as processes or methods that when executed effectively, lead to enhanced project

performance. Particular organizations, such as the CII, the Construction Owners Association of

Alberta (COAA), and the Project Management Institute (PMI), develop and promote best practices

pertaining to various aspects of capital project delivery. However, the systematic and consistent

implementation of such practices throughout the lifecycle of a construction project and from

project to project remains a challenge.

Research findings also reveal that improved adoption of best practices, through conformance with

their processes, and improved interoperability, are correlated with substantial capital project

performance improvements in terms of cost, schedule, and productivity. In many industry sectors,

such as health care, manufacturing, and banking, process conformance has been radically

improved through the automation of processes via workflow engines, and several efforts are being

made to regulate standards to facilitate process interoperability. However, process conformance

and interoperability in the construction industry are lagging behind. In the construction industry, a

promising solution for facilitating effective and consistent conformance with best practices lies in

the employment of workflow processes and workflow engines.

The concept of Industry Foundation Processes (IFP) and the theory and framework for IFP

development and implementation are established in this research. The objective is to integrate

construction industry best practices into Electronic Product and Process Management (EPPM)

systems, and improve process interoperability and conformance. EPPM systems, which are

increasingly being used for managing mega capital projects, can be described as the meta-

managers of other systems, such as document management systems (DMS), building information

modeling (BIM), workflow management systems (WfMS), and advanced project management

systems. Integration of best practices into EPPM systems facilitates more consistent and scalable

 iv

adoption of best practices in large-scale construction projects, resulting improved project

performance.

IFPs are defined as standard workflows based on known best practices in the construction industry

with certain features and characteristics to improves process conformance and facilitates process

interoperability. The research methodology is comprised of four main phases: (1) developing

methods and mechanisms that can be used to transform best practices into structured workflow

process in such a way as to retain the essence of the best practices, (2) defining the IFP concept

and establishing a framework and an ontology for inheritance and customization of IFPs for

specific corporate and project circumstances, (3) customizing and implementing particular IFPs in

an EPPM system, based on available records for specific construction projects, and investigating

the applicability and effectiveness of the IFP concept, and (4) analyzing and validating the value

of the IFP system through functional demonstration of the benefits, including process conformance

and interoperability.

The scope of the thesis is the theoretical development of IFP system, in addition to implementation

studies for a limited number of IFP processes within the domain of industrial sector construction

projects. The development and application of the IFP system is anticipated to result in more

effective adoption of best practices and enhanced process conformance and interoperability, with

the end-result of improved capital project performance.

 v

ACKNOWLEDGEMENTS

First and foremost, I am extremely grateful to my advisor, Professor Carl T. Haas, for his valuable

guidance, encouragement, and support during my PhD program. He is an exceptional supervisor

and a wonderful mentor, from whom I have learned invaluable lessens – directly and indirectly. I

have no doubt that his impact in my life transcends the duration of my PhD program.

I was also privileged to have the support, constructive feedback, and helpful advice of Professor

Keith Hipel, Professor Frank Safayeni, and Professor Tarek Hegazi as members of my PhD

examination committee. Their insightful comments significantly improved my thesis. I would also

like to thank Professor Vineet Kamat, the external committee member of my PhD defense, for his

valuable comments and suggestions.

This research was not possible without the interdisciplinary collaboration and contribution of

several people. I am sincerely grateful to Professor Derek Rayside, from the Electrical and

Computer Engineering department, for the effective collaboration we had, and for his

indispensable expertise required in this research. I would also like to express my gratitude to the

co-op students Matthew Weston, Tao Lue, and Ming Zhou for their contributions in the progress

of this research study, and particularly for their programming skills.

The support of Coreworx Inc. is truly appreciated. I am grateful to Ray Simonson, Peter Walker,

Paul Harapiak, Kelly Maloney, and particularly Joel Gray for providing me technical resources,

expert feedback, and helpful advice. I would also like to acknowledge the financial support of

Natural Sciences and Engineering Research Council of Canada, Coreworx Inc., and the Ontario

Graduate Scholarship.

Last, but not least, my special thanks go to all of my family members, and especially to my loving

wife Samaneh Shadmehr, for her unconditional love and continued support.

 vi

DEDICATION

To my parents,

and my wife, Samaneh

 vii

TABLE OF CONTENTS

Declaration .. ii	

Abstract .. iii	

Acknowledgements ... v	

Dedication .. vi	

Table of Contents .. vii	

List of Figures ... x	

List of Tables .. xii	

Chapter 1 Introduction .. 1	

1.1 Background .. 1	

1.2 Motivation .. 2	

1.3 Problem Statement and Research Need ... 4	

1.4 Research Objectives ... 6	

1.5 Research Scope .. 7	

1.6 Research Methodology .. 7	

1.7 Thesis Structure .. 9	

Chapter 2 Literature Review ... 11	

2.1 Introduction .. 11	

2.2 Construction Industry Best Practices ... 12	

2.2.1 Best Practices as a Form of Knowledge .. 14	

2.3 Process Management .. 15	

2.3.1 Process – Definition and Levels .. 16	

2.3.2 Process Modeling .. 17	

2.3.3 Process Modeling Tools and Standards .. 19	

2.3.4 Process Specialization ... 20	

2.3.5 Process vs. Practice ... 21	

2.3.6 Workflow vs. Process .. 22	

2.4 Information Management Systems .. 23	

2.4.1 Workflow Management Systems (WfMS) .. 23	

2.4.2 EPPM System .. 24	

 viii

2.5 Interoperability – Definition and Levels .. 25	

2.6 Interoperability in AEC/FM Domain ... 27	

2.7 The Knowledge Gap .. 28	

Chapter 3 Industry Foundation Processes (IFP) ... 29	

3.1 IFP Modeling System and IFP Processes .. 29	

3.2 Approaches of Developing IFP Processes ... 30	

3.3 Extracting the Common Core of Implemented Processes ... 31	

3.4 Defining IFPs Based on Well-Known Best Practices .. 38	

3.4.1 Abstract Framework .. 39	

3.4.2 Pragmatic Framework ... 40	

3.5 Discussion .. 44	

Chapter 4 Proposed IFP Ontology .. 46	

4.1 IFP Ontology .. 46	

4.2 Version and Scope ... 47	

4.3 Core Structure .. 47	

4.4 Abstraction Level ... 49	

4.5 Data Structures ... 50	

4.6 Recommended Practice .. 51	

4.7 Inheritance .. 51	

4.8 Conformance .. 54	

4.9 Interoperability ... 56	

Chapter 5 IFP System Validation ... 57	

5.1 Validation Methodologies .. 57	

5.2 IFP System Deployment .. 58	

5.2.1 Deciding on the Deployment Platform .. 59	

5.2.2 Workflow Foundation (WF) Technology ... 60	

5.2.3 Implementation of RFI Workflow Process ... 61	

5.3 Discrete Event Simulation (DES) .. 63	

5.3.1 Simulation of RFI Workflow Process ... 64	

5.3.2 Modeling and Simulation using SIMUL8 ... 67	

5.3.3 Simulation Analysis .. 69	

 ix

5.4 Discussion .. 70	

Chapter 6 Improving Process Conformance with IFP .. 72	

6.1 Process Conformance ... 72	

6.2 Workflow Conformance Checking .. 73	

6.3 Conformance Checking Algorithm .. 73	

6.4 The Alloy Language and Its Advantages ... 76	

6.5 Workflow Conformance Checking using Alloy .. 78	

6.6 Validation Case Study .. 81	

6.7 Automated Workflow Conformance Checking Tool ... 83	

Chapter 7 Improving Process Interoperability with IFP ... 85	

7.1 Process Interoperability .. 85	

7.2 Process Interoperability Approaches ... 86	

7.3 Process Interoperability in AEC/FM Domain .. 87	

7.4 IFP Interoperability Model ... 88	

7.5 Implementation Using Workflow Foundation (WF) Technology ... 91	

7.6 Discussion .. 95	

Chapter 8 Conclusions and Future work ... 97	

8.1 Summary and Conclusions ... 97	

8.2 Contributions .. 98	

8.3 Limitations ... 99	

8.4 Recommendations for Future Work ... 100	

References ... 102	

APPENDIX A Glossary of Terms ... 112	

APPENDIX B Samples of Core WF Code for Deployment of RFI Process 114	

APPENDIX C Work Completed Under My Supervision to Support Validation of Conformance

Checking (Tao Lue Wu, 2015) ... 130	

APPENDIX D Alloy Code for RFI Workflow Conformance Checking 147	

APPENDIX E Translator.java Documentation ... 151	

APPENDIX F Translator.java Code .. 154	

APPENDIX G Automator.java Documentation .. 166	

APPENDIX H Automator.java Code .. 167	

 x

LIST OF FIGURES

Figure 1-1: Mechanical Construction Productivity vs. High and Low Level of Best Practices

Implementation (Shan et al., 2011) .. 3	

Figure 1-2: Productivity Comparison by Trades for High and Low Levels of Construction IT

Integration (Zhai et al., 2009) .. 3	

Figure 1-3: Various Approached for Adoption of Best Practices .. 4	

Figure 1-4: IFP Research Rational ... 6	

Figure 1-5: Research Objectives .. 7	

Figure 1-6: Research Methodology ... 8	

Figure 2-1: Knowledge Hierarchy and Its Association with Tacit & Explicit Knowledge, and with

Practice and Process ... 15	

Figure 2-2: Classification of Business Processes (Weske, 2012) .. 17	

Figure 2-3: Typical Users and Tools for Each Process Level ... 18	

Figure 2-4: Three Levels of Interoperability (Lewis, 2013) .. 25	

Figure 3-1: Approaches of Developing IFP Processes .. 31	

Figure 3-2: Different Implemented Versions of the RFI Process in Skelta Software Format 33	

Figure 3-3 (a): High-Level Representation of the RFI Workflow Process in Project A 34	

Figure 3-3 (b): RFI High-Level Representation of the RFI Workflow Process in Project B 35	

Figure 3-3 (c): High-Level Representation of the RFI Workflow Process in Project C 36	

Figure 3-4: The Common Core Structure of the RFI Workflow Process .. 37	

Figure 3-5: Transforming a Practice into a Structured Process ... 41	

Figure 3-6: CII Change Management Principles, Each Offered as an Organizational Process 42	

Figure 3-7: Main Steps of a Change Request (CR) Workflow Process ... 43	

Figure 3-8: A Change Request (CR) Process in BPMN Notation ... 44	

Figure 4-1: Proposed IFP Ontology ... 46	

Figure 4-2: The Core Structure of an IFP for the RFI Process .. 48	

Figure 4-3: Examples of Accepted and Prohibited Transformations ... 54	

Figure 4-4: Conformant and Non-Conformant Versions of the RFI Process 55	

Figure 5-1: Example of Programming Inheritance for Respond Activity ... 59	

Figure 5-2: Implementation of the RFI-IFP Workflow as a State Machine Model 61	

Figure 5-3: The Coordinator View .. 62	

 xi

Figure 5-4: The Consolidator View ... 63	

Figure 5-5: An RFI Workflow Process Used in a Capital Mega Project ... 65	

Figure 5-6: A Snapshot of the Simulation Model in SIMUL8 .. 69	

Figure 6-1: Examples of Directed Graphs That Are Not Well-Formed .. 74	

Figure 6-2: Alloy Implementation of Workflow Process .. 78	

Figure 6-3: Alloy Implementation of Well-Formed Workflow Process .. 79	

Figure 6-4: Alloy Specification (Excerpt) of Workflow Conformance for Steps 4 and 5 of the

Algorithm ... 79	

Figure 6-5: Visualization of Conformance Checking for Workflow W9 of Figure 4-3 80	

Figure 6-6: Conformance Checking Analysis of a Non-Conformance RFI Workflow Process 82	

Figure 7-1: IFP Interoperability Model for Interaction of Two RFI Workflow Processes 89	

Figure 7-2: IFP Interoperability Model for Interaction of a CR and an RFI 90	

Figure 7-3: Modeling RFI Customized Workflows ... 92	

Figure 7-4: An Overall Exchange Record ... 93	

Figure 7-5: Examples of Data Objects of an Exchange Record .. 94	

Figure 7-6: A Snapshot of Message Exchange Between Activities of Two RFI Processes 95	

 xii

LIST OF TABLES

Table 2-1: Construction Industry Best Practices ... 12	

Table 2-2: CII Best Practices ... 13	

Table 2-3: COAA Best Practices ... 13	

Table 2-4: Summary of Knowledge Hierarchy .. 14	

Table 2-5: Process Modeling Tools ... 19	

Table 2-6: Process vs. Practice .. 22	

Table 2-7: Process vs. Workflow ... 23	

Table 2-8: Four Levels of Interoperability ... 26	

Table 3-1: Types of Knowledge in a Practice and their Association with Process Elements 40	

Table 3-2: Evaluate Change Process .. 42	

Table 4-1: Workflow Abstraction Levels .. 49	

Table 4-2: Minimal Set of Data Structure Fields for an RFI Process .. 51	

Table 4-3: Sample of a RACI Chart .. 52	

Table 4-4: Sample of Workflow Inheritance Rules ... 53	

Table 5-1: Versions of the RFI Workflow ... 64	

Table 5-2: Data Fields and Their Description .. 66	

Table 5-3: A Sample of Retrieved RFI Workflow Process Enactment Data 66	

Table 7-1: A Sample of Common Workflow Processes in Large Construction Projects 87	

 1

Chapter 1
Introduction

1.1 Background
Construction of large-scale capital projects are huge undertakings with inherent complexities.

Large numbers of project stakeholders, overlap of construction activities, variety of technologies

employed, several trades that are involved, and the uncertainty and risk in the design, procurement,

and construction of such projects, create technical, organizational, and social complexities. Severe

competition and increased demand for faster delivery, while maintaining high quality engineering

standards, further add to these complexities.

Traditional project management controls that are based on linear critical path method (CPM)

schedules and earned value analysis are no longer adequate for successful delivery of such projects.

To deal with such complexities, more dynamic Integrated Project Delivery (IPD) approaches that

employ technologies such as Interface Management (IM) and Building Information Modeling

(BIM) are required to integrate people, systems, business structures, and practices via employment

of workflow engines and workflow processes. These more recent approaches rely on highly

effective coordination and timely communication among many project stakeholders, real-time

tracking and measurement of the project’s progress and performance, early detection of risk, and

minimizing but rapidly adapting to imperative change.

Consequently, over the years, supporting information systems evolved from conventional data-

aware systems to modern process-aware systems. Data-aware information systems evolved around

centralized database management systems (Weske, 2012). Today’s process-aware information

systems facilitate interaction and collaboration of stakeholders via distributed systems (Wil M. P.

van der Aalst, 2014). Examples include advanced project management collaboration tools,

enterprise resource planning (ERP) systems (Chung, Skibniewski, & Kwak, 2009; Ghosh,

Negahban, Kwak, & Skibniewski, 2011; O’Connor & Dodd, 2000; Skibniewski & Ghosh, 2009),

workflow engines (Wil M. P. van der Aalst, 2004; Cardoso, Bostrom, & Sheth, 2004; Tang &

Akinci, 2012), electronic document management systems (Al Qady & Kandil, 2013; Caldas,

Soibelman, & Gasser, 2005), knowledge-based information systems (El-Gohary & El-Diraby,

 2

2010; Youngcheol Kang, O’Brien, & O’Connor, 2012), and more specifically electronic product

and process management (EPPM) systems (Shahi, Haas, West, & Akinci, 2014; Shokri et al.,

2012).

EPPM systems, which are increasingly being used in managing mega capital projects (Shahi et al.,

2014), are most simply characterized as meta-managers of other systems. They are process-based

and workflow-driven. They provide interfaces with building information modeling, enterprise

resource planning, and advanced project management systems for information exchange and

interoperability among those systems throughout the project lifecycle. Their core components

include a document management system, a collaboration management system, and a workflow

management system to support various construction workflow processes, such as change

management, procurement management, request for information, contract management, and

interface management. As a result of these unique characteristics, EPPM systems are the right

platform and technology to facilitate consistent integration of construction industry processes and

practices throughout the lifecycle of a construction project and from project to project, with the

end result of improved project performance.

1.2 Motivation
Several research studies (El-Mashaleh, O’Brien, & Minchin, 2006; Y. Kang et al., 2013; Y. Kang,

O’Brien, Thomas, & Chapman, 2008; S. Lee et al., 2005; Shan, Goodrum, Zhai, Haas, & Caldas,

2011; Thomas, Lee, Spencer, Tucker, & Chapman, 2004; Zhai, Goodrum, Haas, & Caldas, 2009)

confirm that identification and adoption of best practices and integration of information

technologies (IT) drive performance and productivity improvement. For example, Figure 1-1 and

Figure 1-2 demonstrate productivity comparison in projects with high and low levels of best

practice implementation, and in projects with high and low levels of IT integration, respectively.

Moreover, research studies emphasize that although productivity improvement in engineering and

construction can be pursued in a variety of ways, gaining faster and more sensible results is

probable through increased adoption of best practices in management of projects (Chanmeka,

Thomas, Caldas, & Mulva, 2012).

 3

Figure 1-1: Mechanical Construction

Productivity vs. High and Low Level of Best
Practices Implementation (Shan et al., 2011)

Figure 1-2: Productivity Comparison by Trades

for High and Low Levels of Construction IT
Integration (Zhai et al., 2009)

Identifying the value of best practices in project performance, well-known organizations, such as

the Construction Industry Institute (CII), the Construction Owners Association of Alberta

(COAA), and the Project Management Institute (PMI), are developing and promoting best

practices in connection with various aspects of capital project management and delivery.

According to CII, best practices are processes or methods that provide improved results when

implemented effectively, and thus, can lead to enhanced project performance.

However, the systematic and consistent implementation of such practices throughout the lifecycle

of construction projects and from project to project remain a significant challenge. Traditional

approaches of adopting best practices include socialization and face-to-face interactions, such as

meetings, workshops, and training, which are not easily scalable for implementation of best

practices in large-scale capital projects. An alternative solution is to transform best practices into

workflow processes and utilize business process models and workflow engines to facilitate

effective and consistent conformance to best practices. Figure 1-3 illustrates this viewpoint.

 4

Figure 1-3: Various Approached for Adoption of Best Practices

Increased use of process-based and workflow-driven systems, such as EPPM systems in managing

mega capital projects and fundamental improvements in communication and collaboration

technologies provide the required resources and the right infrastructure, to facilitate putting this

approach into practice. This is the motivation for this research, to facilitate integration of best

practices into EPPM systems, to enhance process conformance and interoperability, with the

ultimate objective of improving capital projects performance. Employment of workflow engines

and EPPM systems to facilitate conformance with best practices offers the advantages of

consistency, accuracy, and scalability, and can be considered a key methodology for adopting best

practices in mega capital projects.

1.3 Problem Statement and Research Need
Process conformance and interoperability are long sought after goals in capital facility engineering

and construction project management. Processes are defined within corporate operating standards

by the most sophisticated firms, but study after study confirms that they are not implemented

consistently from project to project (Chanmeka et al., 2012; Y. Kang et al., 2008). Process

conformance in many industry sectors such as health care, manufacturing, and banking has been

radically improved with automation and integration of processes via workflow engines.

While process automation through workflows promises to help substantially improve process

conformance, and thus capital project performance, it is being done to date in an ad hoc manner

 5

that is neither scalable nor easily and systematically adaptable to different organization and project

circumstances.

For instance, change management process in each organization is typically defined based on the

unique needs and existing settings of that organization, resulting very different implementations

in each organization. A process may even be implemented differently from project to project

within the same organization. Consequently, it is not unusual in large-scale capital projects that a

number of collaborating firms possess very different implementations of the same process – e.g.,

change management or risk management – implemented into their legacy systems. Since these

unique implementations do not comply with a common foundation for implementation of that

process, process conformance and interoperability among these systems would not be achievable.

The current approach to deal with this problem is to ignore each firm’s legacy systems and their

processes, and enforce the use of one software platform by all the firms involved in the project.

This enforcement is typically performed by the owner or the main EPC contractor, either by

imposing the use of a particular software platform through contract terms and conditions, or by

providing a cloud based software platform to be used by all parties involved in the project. This

approach, however, negatively effects the total time and cost of the project due to the extra training

required for employees who must use a new and unfamiliar software platform in each project.

The existing approach disregards the need for interoperability among existing systems and offers

a completely new system to be substituted for the legacy ones. A study by the U.S. National

Institute of Standards and Technology (NIST) in 2004 estimates the cost of inadequate

interoperability among computer-aided design (CAD), collaboration and information systems, and

other software systems in the American capital facilities industry to be more than $15 billion per

year (GCR, 2004).

What is needed is a standard implementation of common processes based on industry best

practices. Incorporation of processes that comply with a common core into EPPM systems,

facilitates process conformance, and supports process interoperability among different systems

used by all parties involved, within different phases of a project and among multiple projects.

 6

1.4 Research Objectives
This research and its objectives are based on the following three key premises summarized in

Figure 1-4:

1. Most known construction industry best practices are process-based or can be defined as

processes, and thus, can be the basis for developing Industry Foundation Processes (IFP).

2. IFP templates can be defined in such a way as to be customizable, and customized versions

of IFPs can be rigorously and methodically derived from the Foundation Processes for

specific project conditions, similar to IFC implementation.

3. IFP implementation through workflow management systems not only promotes

conformance to best practices throughout the project life-cycle, but also offers improved

interoperability within project phases and among different projects.

Figure 1-4: IFP Research Rational

Aligned with the premises, the objectives of the research are: (1) to develop a novel theory and

process modeling system, called Industry Foundation Processes (IFP), (2) to establish a framework

for their application and implementation in such a way as to facilitate integration of core processes

of known best practices in the construction industry into workflow management systems, and (3)

to improve inter- and intra-projects’ process conformance and interoperability. The ultimate result

should be capital project performance improvements. These objectives are illustrated in Figure 1-5.

 7

Figure 1-5: Research Objectives

IFPs1 are defined as workflow templates that can be customized for specific projects’

circumstances and conditions. A workflow engine is used to manage and execute processes

enclosed in workflows, and an EPPM system manages the interactions within the whole system.

The EPPM system not only supports best practices conformance and interoperability through IFP

model implementation, but it also provides automation and integration of other systems and

services, thus, facilitating improved project performance.

1.5 Research Scope
This research concentrates on the mechanisms and methods of developing Industry Foundation

Processes and establishing a framework and ontology for IFP theory and application. The scope

of this research, thus, is essentially the theory development for industry foundation processes, in

addition to the implementation of a limited number of IFPs for the domain of industrial sector

construction projects. Development and implementation studies of IFPs for several other known

best practices in the construction industry, as well as the application of the system of IFPs to other

sectors can be addressed in other future research initiatives.

1.6 Research Methodology
This research started with a comprehensive literature review including workflow management

systems, construction industry best practices, conformance and interoperability, data and process

1 In this research, the “IFP” acronym for Industry Foundation Processes is used to refer to the IFP modeling system
as well as to a single IFP process. The plural form “IFPs” refers to more than one IFP process.

 8

modeling standards, and process modeling and simulation tools. This review resulted in a more-

precise definition of methodology and identification of required tools and techniques, required for

performing the next research steps.

Figure 1-6: Research Methodology

Following and based on the literature review, this research was comprised of six distinct

phases: (1) defining the theory and introducing the concept of Industry Foundation Processes

(IFP); (2) developing a framework for transformation of industry best practices into structured

Problem Statement,
Scope Definition,

and Objectives
Literature Review

IFP Theory
Development

Formalize
Development
Approaches

Extracting the
Common Core of
Existing Processes

Transform Well-
Known Best

Practices

Define IFP
Ontology

Expert Feedback

Discrete Event
Simulation

IFP System
Applications

Improving
Interoperability

Improving
Conformance

Functional
Demonstration

Documentation and
Dissemination

IFP System
Validation

Automated WF
Conformance

Checking

Implementation of
RFI via WF
Technology

Deployment of the
IFP System

Workflow
Interoperability

Model

 9

processes; (3) establishing an ontology for the IFP system and defining the required

components; (4) validating the functionality of the IFP system by implementing a sample IFP

process in a workflow management system; (5) developing of an automated conformance checking

tool using a first-order-logic programming language to compare workflow processes and check

the conformance of a customized workflow process with an IFP; and (6) developing a process

interoperability model based on the IFP system to facilitate interoperability of IFP conformance

workflow processes. The steps of the research methodology are presented in Figure 1-6.

1.7 Thesis Structure
This thesis is organized in eight chapters. An overview of the research, which includes research

need and motivation, hypothesis and objectives, scope, and methodology, is provided in Chapter 1.

Chapter 2 provides the literature analysis and the background on several relevant topics such as

construction industry best practices, process management, process modeling, workflow

management systems, EPPM systems, process conformance, process interoperability, and the gaps

and limitations of current studies. Chapter 3 introduces the concepts of foundation-level processes

and industry foundation processes (IFP). This chapter defines the features and characteristics of

IFP and offers two approaches for IFP development. These approaches are discussed in more detail

with prototype examples of common processes used in large-scale capital projects.

A framework and ontology for IFP system is proposed in Chapter 4. The proposed ontology

includes eight components and provides the basis for IFP workflow inheritance. It introduces

workflow customization mechanisms and conformance metrics for IFP processes.

Validation approaches for the IFP system are discussed in Chapter 5, including expert feedback,

discrete event simulation, and functional demonstration. Deployment of the IFP system by

implementation of request for information (RFI) workflow via Microsoft Windows Workflow

Foundation (WF) technology is presented in this chapter as part of the functional demonstration

validation methodology.

Chapters 6 and 7 explore applications of the IFP system. In Chapter 6, a first-order-logic

programming language is used to develop an algorithm for comparing the structure of two

workflow process. Employing this algorithm, an automated workflow conformance checking tools

 10

is developed by which the conformance of any workflow process with an IFP process can

automatically be analyzed and visualized. Chapter 8 proposes an interoperability model to

facilitate exchange of information between workflow processes that conform to the IFP system.

Finally, the conclusions and future work is the subject of Chapter 8.

 11

Chapter 2
Literature Review

2.1 Introduction
Traditionally, information systems have played a vital role in managing a business, enterprise, or

project by supporting improved decision making. They have been widely used for creating,

organizing, storing, retrieving, manipulating, and distributing information, and have had a positive

impact on productivity and performance. Over the years, however, their applications and scope

have been expanded from conventional data-aware information systems, such as database

management systems, to process-aware information systems, such as business process

management (BPM) and workflow management systems (WfMS) (Wil M. P. van der Aalst, 2014;

Weske, 2012). Conventional data-centric information systems are still an important backbone of

modern information systems (Weske, 2012), but today’s information systems rely on efficient and

effective processes and best practices.

In the domain of the construction industry, several research studies (El-Mashaleh et al., 2006; Y.

Kang et al., 2013, 2008; S. Lee et al., 2005; Shan et al., 2011; Thomas et al., 2004; Zhai et al.,

2009) have confirmed that adoption of best practices and utilization of information technology

(IT) and more specifically project management information systems (PMIS) drive substantial

performance and productivity improvements. The more recent findings (Y. Kang et al., 2013;

Youngcheol Kang, O’Brien, & Mulva, 2013), however, revealed that improvements of automated

work processes via information systems is in fact the main driver of improved project performance,

and thus signified the importance of well-defined processes and best practices. Based on a

statistical analysis of 133 construction projects from the Construction Industry Institute

Benchmarking and Metrics database, they concluded that using information systems without

enough attention to practices has a limited benefit for project performance, but the combined

adoption of best practices and employment of information systems has a more significant impact

on project performance. Their study challenged the common belief of strong direct correlation

between employment of information systems and improved project performance, and suggested

 12

shifting focus to improvement of work processes to be more efficient or effective by adoption of

best practices.

This chapter is a synthesis of a literature review of construction industry best practices, process

management, and information systems to form the background for this research.

2.2 Construction Industry Best Practices
It is well established from statistical analysis of hundreds of projects that effective implementation

of best practices is correlated with substantial improvements in project performance in terms of

cost, schedule, and productivity. Research studies state that systematic implementation of best

practices is one of the most important contributing factors to mega projects’ success (Chanmeka

et al., 2012). A best practice might be a single procedure or method, but most usually it is a

combination of several policies, rules, procedures, and methods, in a particular domain.

Several organizations, such as the Construction Industry Institute (CII), the Construction Owners

Association of Alberta (COAA), and the Project Management Institute (PMI), develop and

promote industry best practices relevant to different aspects of capital project delivery. Best

practices are also identified with some other terms, such as Value Improving Practices,

Professional Practices, Recommended Practices, and Standards of Practice. Table 2-1 presents a

list of organizations that develop and promote such practices and includes their associated terms.

Table 2-1: Construction Industry Best Practices

ORGANIZATION GUIDELINES REFERRED AS
Construction Industry Institute (CII) Best Practices
Construction Owners Association of Alberta (COAA) Best Practices
Independent Project Analysis (IPA) Value Improving Practices (VIPs)
Project Management Institute (PMI) Foundational and Practice Standards
Construction Management Association of America (CMAA) Standards of Practice
The Association for the Advancement of Cost Engineering
(AACE) International

Professional Practice Guides (PPGs)

The American Institute of Architects (AIA) AIA Best Practices
The American Institute of Architects (AIA) AIA Contract Documents
Process Industry Practices Practices

 13

The Construction Industry Institute (CII) is one of the most well-known organizations that promote

best practices within the construction industry domain. CII defines a best practice as “a process or

method that, when executed effectively, leads to enhanced project performance”. CII criteria to

define a practice as a Best Practice are as follows (Benchmarking & Metrics Implementation

Toolkit, 2004): 1) there is a defined process and method with steps and activities, 2) comprehensive

research has proven the value of the practice, and 3) the industry has accepted and is using the

practice. Table 2-2 depicts a summary of CII best practices.

Table 2-2: CII Best Practices

1. Advanced Work Packaging
2. Alignment
3. Benchmarking & Metrics
4. Change Management
5. Constructability
6. Disputes Prevention & Resolution
7. Front-end Planning
8. Implementation of CII Research
9. Lessons Learned

10. Materials Management
11. Partnering
12. Planning for Modularization
13. Planning for Startup
14. Project Risk Assessment
15. Quality Management
16. Team Building
17. Zero Accidents Techniques

Constructions Owners Association of Alberta (COAA) is another renowned organization in

developing and promoting construction industry best practices. Table 2-3 presents the list of

COAA best practices. Construction performance best practice includes subcategories of

benchmarking, workface planning, advanced work packaging, rework reduction, project

productivity, and modularization.

Table 2-3: COAA Best Practices

1. Safety
2. Workforce Development
3. Contracts

4. Construction Performance
• Benchmarking
• WorkFace Planning
• Advanced Work Packaging
• Rework Reduction
• Project Productivity
• Modularization

Companies implementing best practices consistently report higher profits, increased customer

satisfaction, and improved safety and productivity. CII criteria for defining a practice as a best

practice implies that most known best practices in the construction industry are process based or

can be defined as processes. Defining the essence of a best practice as a process has several

 14

advantages for automation and integration of best practices into information systems. A promising

solution for facilitating more effective and consistent conformance with the best practices lies in

the employment of processes, process models, and workflow engines.

2.2.1 Best Practices as a Form of Knowledge

Although it is difficult to define knowledge, there are some widely accepted classifications for it.

Knowledge hierarchy or DIKW (Data, Information, Knowledge, Wisdom)s pyramid defines the

relationship between data, information, knowledge and wisdom. In this classification, information

is defined in terms of data, knowledge is defined in terms of information, and wisdom is defined

in terms of knowledge. Table 2-4 shows a summary of knowledge hierarchy classification, its

definitions and outcomes (Anand & Singh, 2011).

Table 2-4: Summary of Knowledge Hierarchy

LEVEL DEFINITION OUTCOME

Wisdom Applied knowledge Judgment
Knowledge Organized information Understanding
Information Meaningful and

useful data
Comprehension

Data Raw facts and figures Memorization

Another classification of knowledge relies on the difference between explicit and tacit knowledge.

Explicit or codified knowledge is the knowledge that is easy to identify, store, and retrieve

(Wellman 2009), such as that found in documents, texts, and databases. This is the type of

knowledge most easily handled by knowledge management systems. Tacit or non-codified

knowledge, on the other hand, is the knowledge that is largely intuitive, experienced-based and

hard to codify, such as the knowledge to skillfully ride a bike, or play a piano. Although shades of

these skills can be described in texts or documents, no one can learn them merely by reading those

documents. Tacit knowledge is associated with the knowledge embedded in people based on their

cultural beliefs, values, attitudes, mental models, etc. as well as their skills, capabilities and

expertise (Botha, Kourie, & Snyman, 2008).

In practices, knowledge is a mixture of tacit and explicit elements (Botha et al., 2008). Data are

more associated with explicit knowledge and as we go up through the knowledge hierarchy, there

exist a stronger association with tacit knowledge (Figure 2-1).

 15

Knowledge management is the process of capturing, sharing, and effectively using organizational

knowledge (Botha et al., 2008) and knowledge management systems are generally IT-based

systems that facilitate the best use of knowledge. Knowledge management systems might have

different approaches and methods to fulfil this objective; however, almost all of the recent versions

use semantic technology to more precisely categorize and describe the meaning, and define the

relationship among any piece of information.

Figure 2-1: Knowledge Hierarchy and Its Association with Tacit & Explicit Knowledge, and with

Practice and Process

2.3 Process Management
The required tools used in the context of information systems to capture, model, and analyze

different types of information have also evolved from data modeling to process modeling tools

and techniques. The main purpose of data models is to support the development of information

systems by providing the definition and format of data. Process models, on the other hand, are

functional models describing process activities, and their associated properties, sequences, and

execution constraints. Data and process models are used for proper communication between

business and technical people in the context of business process management.

Business process management and workflow engines have been used to provide automation,

integration, and interoperability for information systems in many sectors, particularly banking,

healthcare, and manufacturing. Automation – the utilization of electronic or computerized tools to

make a task more efficient – is inherent in utilization of IT tools. Integration – the ability of sharing

information from multiple sources between two or more systems – typically exists within software

 16

packages produced by a specific vendor. However, a vendor specific integrated system is generally

not able to share information with integrated systems from other vendors (Shen, 2010).

While integration enables two or more systems to seamlessly work together, interoperability meets

the same objective by following a standard protocol for the interaction of these systems. Therefore,

interoperability provides the additional advantage of allowing other systems to interact with these

systems by adopting a protocol.

Business process management is the holistic approach for managing business processes within an

organization ranging from the design, modeling, and execution stages to monitoring and

optimization. Business process management is based upon explicit representation of business

processes, their activities, and their execution constraints (Weske, 2012). A business process

management system is a software system for coordination and enactment of the activities involved

in business processes.

2.3.1 Process – Definition and Levels

A process is a series of well-defined inter-related steps, which delivers repeatable, predictable

results. Key features of a process include 1) predictable and definable inputs, 2) linear, logical

sequence, 3) clearly definable set of activities, and 4) predictable, desired outcome (L. L. Lee,

2005). A business process consists of a set of linked activities that are performed in coordination

to serve a business goal such as delivering a product or service to a customer. An activity is

typically considered as a major unit of work comprising more detailed steps called sub-activities.

Whenever an activity is considered as the smallest unit of work, it is usually called a task.

A business process can be performed manually or can be automated through an information

system. For an automated process, the inputs, outputs, and steps involved should be clearly

defined; and to implement a process in a workflow management system it should be defined in a

standard process modeling language. Typically, automated processes include both automated and

manual activities. Request for Information (RFI) and Contract Management (CM) processes are

examples of such processes. Processes in which all of their activities are automated are called fully

automated processes such as buying processes in Amazon or eBay.

 17

Business processes can be classified, from high level to more structured, into four levels: 1) goals

and strategies, 2) organizational business processes, 3) operational business processes, and 4)

implemented business processes, as illustrated in Figure 2-2. Informal modeling tools such as plain

text and generic diagrams are used for representing higher level processes such as goals and

strategies and organizational business processes. Formal modeling techniques and standards are

used for modeling processes of the operational level. Implemented processes are the executed

instances of operational processes which include execution and more technical details.

Figure 2-2: Classification of Business Processes (Weske, 2012)

A process in which the sequence of activities and their execution constraints are completely

defined is called as structured process. The lower level business processes – operational and

implemented levels – are typically defined as structured processes.

In any organization, business processes are part of the knowledge management system and are

intangible assets. Unlike tangible assets (resources) such as materials, machinery, and

infrastructure, intangible assets evolve over time and cannot easily be acquired. Business process

management facilitates identifying, analyzing, and improving business processes within

organizations.

2.3.2 Process Modeling

Process modeling is the representation of a process in an appropriate format in order to design,

analyze, and improve it. It is the main technical stage in the process design phase. Process

 18

modeling techniques are used as the means of communicating the structure and details of a process

among process stakeholders.

Typically, business processes have three distinct groups of stakeholders each with different

viewpoints: 1) managers and business administration people, 2) business analysts, and 3) software

developers (Figure 2-3). Business administration people typically use informal and semiformal

techniques such as diagrams and plain text to discuss about business processes. They deal with

organizational level business processes which are high-level business processes.

Transforming high-level description of business processes into a more structured and formal

definition is the responsibility of business analysts. They use formal business process modeling

tools such as standard business process models to represent processes in a structured format.

Software developers then use modeling and programming languages to implement business

processes in a software platform and link it to enterprise information systems.

Figure 2-3: Typical Users and Tools for Each Process Level

Since the background and interests of the stakeholders are different, they look at the same process

from different viewpoints and use different conceptual levels. Communication problems between

them, are thus, expected and normal. More recent process modeling tools, such as Business Process

Modeling and Notation (BPMN), are trying to bridge this communication gap.

Process modeling tools are used to transform informal descriptions of high-level organizational

processes into formal operational level process definitions using standard modeling notations. The

resulting model is called a process model or a functional model.

 19

2.3.3 Process Modeling Tools and Standards

Several process modeling tools have been developed for modeling business processes. Process

modeling can either be performed by representing a process using structured graphical notations

or by representing the semantics of the process using modeling languages. A process model is

typically defined as the graphical structured representation of a process, because using graphical

notations is more convenient for communicating, reengineering, and improving of processes.

Recent modeling tools such as XPDL and BPMN support both a graphical notation and a modeling

language. A classification of most popular modeling tools is presented in Table 2-5.

Table 2-5: Process Modeling Tools

CLASSICAL MORE FORMAL MOST RECENT

Flowchart 1920s
Functional Flow Block Diagram
(FFBD) 1950s
Data Flow Diagram (DFD) 1970s
ICAM DEFinition (IDEF0) 1970s

Petri nets 1960s
Workflow patterns
YAWL
Graph-Based Workflow
Language

UML 1997
XPDL 2002
BPEL 2004
BPMN 2004 (BPMN 2.0 2011)

Flowcharts are among the oldest process modeling graphical notations. They offer a simple

notation for process modeling which is the basis for developing many subsequent modeling

notations. Flowcharting techniques are still the preferred method of high level process modeling

for managers and business administration people.

Petri net is a mathematical modeling language with clear and well defined semantics. Petri net

offers a graphical notation and a precise mathematical definition. It has been used in several

academic publications for discussing process behaviors. While petri net is very useful in

expressing simple types of processes, more complex processes such as business processes, require

more advanced structures (Weske, 2012). Several other modeling languages such as Workflow

Patterns, Yet Another Workflow Language (YAWL), and Graph-based Workflow Languages are

enhancements over the traditional petri net, adding more concepts and features for modeling more

complex processes.

The rise of new software development paradigms and the need for standardization of modeling

tools for modeling more complex processes led to development of modern modeling tools, such

as Unified Modeling Language (UML), XML Process Development Language (XPDL), Business

 20

Process Execution Language (BPEL), and the currently emerging Business Process Modeling and

Notation (BPMN).

Unified Modeling Language (UML) is a general-purpose modeling language by Object

Management Group for object oriented software development. UML offers 14 types of diagraming

notations for different modeling purposes in which Activity Diagrams are specifically used for

process modeling. Business Process Execution Language (BPEL) is a standard executable

language by OASIS. Its focus is exclusively on the executable aspects of business processes and

does not offer any graphical notation. XML Process Definition Language (XPDL) is another

standard format for interchanging business process definitions between different products using

XML syntax, developed by the Workflow Management Coalition (WfMC). It is designed to

exchange both the graphics and the semantics of a process definition. In 2004 the WfMC endorsed

BPMN, and since then XPDL has been extended specifically with the goal to represent all of the

concepts present in a BPMN diagrams in XML format.

Business Process Modeling and Notation (BPMN) is the most promising process modeling

standard. It has been designed by Object Management Group (OMG) with the aim of identifying

best practices of existing modeling tools and combining them into a widely accepted, easy to use

language. BPMN aims at supporting all the process abstraction levels, from business

organizational level to implementation level, and thus, bridging the gap between process modeling

and implementation (Weske, 2012). The same process model in BPMN may encompass different

levels of details, each useful for a particular group of stakeholders, from business administration

people to business analysts and software developers. BPMN defines three levels of process

modeling conformance. Descriptive level, useful in high-level modeling, only includes visible

elements and attributes; analytic level includes descriptive and a minimal subset of supporting

process attributes; and common executable offers the elements required for execution of process

models. The current version is BPMN 2.0.2 introduced on January 2014.

2.3.4 Process Specialization

Object-oriented analysis and design methodologies that are originated from object-oriented

programming are now being used for design and implementation of systems such as information

systems. In the object-oriented design approach, a class represents a set of objects with a common

 21

structure and behavior. An object is an instance of a class with a set of attributes and methods. The

state of an object is determined by the value of attributes. Methods are operations on an object that

can change the stare of an object by changing the value of attributes.

Abstraction and inheritance are two important concepts in object-oriented design that facilitate

modularity and reuse of system components. Abstraction is the process of representing the right

amount of detail and hiding unnecessary implementation or background details. The inheritance

mechanism allows a subclass to inherit features of a superclass so that the subclass has the same

features as the superclass, but it typically includes some additional features (Basten & van der

Aalst, 2001).

Object-oriented concepts have been used to provide abstraction and inheritance functionalities for

process models. An example of such efforts is the MIT Process Handbook which is a repository

of more than 5000 organizational processes associated with various business models. This

repository is a classification of processes by two dimensions: parts and types. Any process can be

specialized either from its uses to its parts or from its general type to a more specialized activity.

The scope of processes in the MIT Process Handbook is general business processes and they have

been organized in such a way to be easily used in the design of new processes or for reengineering

of existing business processes.

2.3.5 Process vs. Practice

Distinguishing the difference between process and practice is important. A process, as discussed,

is a series of well-defined inter-related steps, which delivers repeatable, predictable results. A

process, thus, is typically used in routine circumstances in which repeatable, predictable results

are required. Each necessary step is codified in detail and there is no spontaneous decision making

involved. A practice, on the other hand, is a frequently repeated act, habit or custom that needs a

recognized level of skill to be performed. It is an un-codified knowledge that results from human

experience and improvisation (L. L. Lee, 2005).

While a practice is still a series of steps, the steps are roughly defined, and the details of how to

perform each step is left to the experts who perform them based on their knowledge, experience,

skill, and judgment. Practices, thus, are more suitable for dealing with uncertain situations with

 22

uncommon unique results (“IT Catalysts,” 2013). Table 2-6 summarizes key differentiators of

processes and practices.

Table 2-6: Process vs. Practice

PROCESS PRACTICE
Series of well-defined steps Series of steps, but loosely defined
Deliver repeatable, predictable results The specifics are left to the practitioners
Well-suited to mass production Well-suited to the creation unique results, dealing with

ambiguous situations, and especially in competitive arenas
Includes clear steps and details for tasks Not necessarily have a clear sequence and details for tasks

A best practice is a form of knowledge with the consensus on providing higher benefits, when used

properly. Well-known best practices are typically promoted by renowned organizations in a certain

field, and are grounded on the result of collective wisdom, experience, research, careful

investigations, and extensive industry use and validation.

2.3.6 Workflow vs. Process

Workflow and process are similar terms and, in certain situations, might be used interchangeably.

However, workflow implies a more specific concept than process. While any well-defined

interconnected steps with an expected result can be called a process, in a workflow the focus is on

the piece of work or information that is being passed through initiation to completion. Therefore,

a workflow associated with a particular process might not be involved with all the details that are

important for completion of the process, such as recording to a database or calling a web-service,

but is more dedicated to the flow of work through all steps. A workflow thus can be defined as an

outline or blueprint of a process.

Although a workflow is typically an organizational level process, it can include operational and

implementation details whenever required, and thus a workflow specification can be defined with

different abstraction levels. The abstraction level depends on the intended use of the workflow

specification. For instance, a workflow specification for a process might be defined in a higher

conceptual level required for understanding, evaluating, and redesigning the process. The same

process might be captured in another workflow specification with a lower level of abstraction, and

include the execution details necessary for workflow implementation (Georgakopoulos, Hornick,

& Sheth, 1995). A summary of process and workflow differences are presented in Table 2-7.

 23

Table 2-7: Process vs. Workflow

PROCESS WORKFLOW
A process is a series of well-defined inter-related
steps

A workflow can be considered an outline of a
process

A process is modeled using modeling tools and
implemented by coding the steps

The flow of work in a workflow can be updated
without changing underlying code

A process can be modeled with different
abstraction levels: organizational, operational,
and implementation levels

The focus is on organizational details, but can
include operational and implementation-level
details

The focus is on steps of work The focus is on the flow of work
A programmer typically implements a process An analyst typically can modify the steps and

update the flow of a workflow

2.4 Information Management Systems
Conventional data-aware information systems evolved around centralized database management

systems. Today’s process-aware information systems facilitate interaction and collaboration of

stakeholders via distributed systems. Examples include: electronic document management systems

(EDMS), workflow management systems (WfMS), content management systems (CMS),

enterprise resource planning (ERP), electronic product and process management systems

(EPPMS), and Business process management systems (EDMS). WfMS and EPPMS are discussed

in this study more than others.

2.4.1 Workflow Management Systems (WfMS)

Workflow management and workflow specification are concepts tightly related to business process

management and process modelling; their approach is rather different. Workflow management

involves the automation of processes which are comprised of human and machine-based activities

(Hollingsworth, 1995) and focuses on the flow of information or work among participants. A

workflow specification is an abstraction of a process that might not be concerned with all the

details of a task, but in any case it is concerned with the inter-relationship, the inputs and outputs,

and the externally visible behavior of tasks (Krishnakumar & Sheth, 1995).

Automation of business processes partly relies on the coding of software developers for embedding

business processes into information systems. Originally, any modification to the process logic, the

sequence of activities, and the execution constraints of a process was affecting the programming

code and required software developer’s attention. The introduction of object-oriented

 24

programming concepts facilitated the separation of process logic modifications form the

programming code, and led to the emergence of workflow driven systems.

In a workflow management system, features of an application, or tasks of a process, are defined as

steps in a workflow, and therefore, the behavior of the system can be modified through changing

the steps without any modification to the programming code. Workflow technology, thus, provides

separation of business process logic from IT operational support (Hollingsworth, 1995).

A workflow engine is responsible for managing and enacting tasks within workflow specifications

according to their execution constraints and organizational predefined rules. The execution

constraints of a process are typically defined as properties or attributes of tasks in the workflow

specification. The Workflow Reference Model (Hollingsworth, 1995), developed by the Workflow

Management Coalition (WfMC), defines the general specifications of a workflow management

system, and still is a key reference for developing workflow management systems and their

interfaces. Workflow management systems facilitate more convenient design and implementation

of processes with less involvement in programming details.

2.4.2 EPPM System

An Electronic Product and Process Management (EPPM) system is a workflow management

system specifically designed for managing large-scale construction projects. A workflow engine

at the heart of an EPPM system facilitates enactment of workflow processes; a document

management system supports several types of files and enables sharing and modifying various

types of documents; and a collaboration management system enables project delivery by

collaboration among several stakeholders. In addition, the kernel of an EPPM system typically

offers services, such as format management, version control, indexing, search, security, and

publishing. EPPM systems store and manage various types of information regarding the lifecycle

of a project from inception and planning to execution and startup. These systems not only facilitate

enactment of processes via workflow engines, but they also facilitate interaction of process

stakeholders and tracking and auditing of process steps. For example, change management,

deliverables management, or interface management processes typically involve the interaction of

several stakeholders, such as contractors, sub-contractors, suppliers, consulting firms, and the

 25

owner(s). An EPPM system provides the infrastructure for defining, modifying, enacting, and

auditing such processes.

2.5 Interoperability – Definition and Levels
The idea of interoperability started from a pure software problem in the middle of 90’s, and it is

taking on a broader meaning and wider application to cover the many knowledge areas, dimensions

and layers of single and collaborating enterprise (Chen, Vallespir, Daclin, & others, 2008). In the

context of this research, interoperability can be defined as the ability to effectively, accurately, and

consistently communicate and exchange information, within different information technology

systems (Gibbons et al., 2007). It provides a way for two or more systems to seamlessly work

together by automatic and timely exchange of information, and prevents the manual steps

otherwise needed to transform information from one system to the other. However, more generally,

the interoperability is still an imprecise concept with many definitions and connotations to different

people in different sectors and domains (Chen, Vallespir, et al., 2008).

Figure 2-4: Three Levels of Interoperability (Lewis, 2013)

A review of the literature and a survey across all industries by the Electronic Health Record (EHR)

Interoperability Work Group (Gibbons et al., 2007) identified 65 definitions for interoperability

from standards development organizations, health care organizations, professional societies, and

government agencies. In spite of substantial differences in the definitions, three principal levels of

interoperability were identified: technical, semantic, and process interoperability (Figure 2-4).

Technical interoperability enables data exchange among systems; semantic interoperability

enables exchange of meaningful data; and organizational or process interoperability enables

coordination of work processes through participation in multi-organizational business processes

 26

(Lewis, 2013). Process interoperability is also called workflow or social interoperability (Gibbons

et al., 2007).

Other variations of classification for interoperability levels have since emerged. For example, the

European Telecommunications Standards Institute (ETSI) has introduced a syntactic level between

the technical and semantic levels (Veer & Wiles, 2008). Based on the ETSI classification, Kubicek

and Cimander (Kubicek & Cimander, 2009) have summarized what each layer of interoperability

aims at, what is exchanged, by which standards, and the state of maturity of each layer (Table 2-8).

Technical interoperability is associated with communication protocols and the infrastructure –

hardware or software – needed for those protocols to operate. Syntactic interoperability is typically

associated with data formats (Veer & Wiles, 2008). Technical and syntactic interoperability rely

on established standards such as TCP/IP for data transfer and XML for data exchange. Technical

and syntactic interoperability facilitates the exchange of clearly defined classes of data, whereas

semantic interoperability enables recognition and interpretation of the data exchanged. The

concepts and methods for semantic interoperability are available, but are not standardized yet. For

organizational interoperability, however, there is no consensus on a framework of what should be

standardized (Kubicek & Cimander, 2009).

LAYER OF
INTEROPERABILITY

AIM OBJECTS SOLUTIONS STATE OF
KNOWLEDGE

TECHNICAL Technically
secure data
transfer

Signals Protocols of data
transfer

Fully developed

SYNTACTIC Processing of
received data

Data Standardized data
exchange formats,
e.g. XML

Fully developed

SEMANTIC Processing and
interpretation of
received data

Information Common
directories, data
keys, ontologies

Theoretically
developed, but
practical
implementation
problems

ORGANIZATIONAL Automatic linkage
of processes
among different
systems

Processes
(Workflows)

Architectural
models,
standardized
process elements
(e.g. SOA with
WSDL, BPML)

Conceptual clarity
still lacking,
vague concepts
with large scope
of interpretation

Table 2-8: Four Levels of Interoperability

 27

While the main focus of technical, syntactic, and semantic interoperability is data – e.g., data

transfer, exchange, and meaning – the focus of organizational interoperability is processes – e.g.,

process and workflow alignment – and how the work is being performed. Process interoperability

is a higher level of interoperability, and it should be regarded as indispensable once other layers

of interoperability have been achieved.

Process interoperability is associated with process/workflow management, and deals with the

successful integration of advice/alerts into data presentation and workflows, and/or the deployment

of workflow resources in conformance with a plan or protocol. Process interoperability is critical

in successful implementation of and the use of IT systems that extend over multiple organizations.

For instance, in healthcare, lack of process interoperability is cited as a likely reason that more

than fifty percent of health information technology implementations fail to meet expectations

(Gibbons et al., 2007).

2.6 Interoperability in AEC/FM Domain
Interoperability among construction industry IT systems, such as computer-aided design and

engineering (CAD/CAE) and building information modeling (BIM), has been one of the major

themes of research and development in the domain of architecture, engineering, construction, and

facilities management (AEC/FM) (Froese, 2003), and has had a commensurate impact on

facilitating collaboration and improving productivity of construction projects. However, in these

systems the focus has mainly been on data-oriented issues, with little or no primary emphasis on

process models.

Data models are used in these systems to facilitate representation of two primary types of

structured information: (1) geometric data and information relating to geometry of objects, and (2)

product data, associated properties and related information. Although these systems to some extent

can exchange non-geometric (e.g. information about the design process, construction process, cost

estimating and material take off, etc.), representation of the design artifact itself is still generally

limited to geometry. (Szykman, Fenves, Keirouz, & Shooter, 2001).

Interoperability can be viewed from two different perspectives: data interoperability and process

interoperability. Data interoperability is concerned with the accurate interpretation and

 28

understanding of the information exchanged. In the construction industry, data exchange

techniques and data interoperability standards have been on the focus and improved substantially

over the years through employment of data modeling techniques. The most well-known data

modelling and interoperability standards in the domain on AEC/FM are ISO 16739 and IDP 15926

data models. ISO 16739 or Industry Foundation Classes is the data model underlying the BIM

technology and ISO 15926 is the standard data model for integration, interoperability, and life-

cycle data exchange in process plants, including oil and gas production facilities.

Process interoperability, however, ensures seamless communication between different systems by

developing a shared understanding of their process constructs (Khan et al., 2013). Process

conformance and interoperability, within the construction industry, is an emerging need especially

with increased use of the new generation of workflow-driven software platforms such as EPPM

systems.

2.7 The Knowledge Gap
The process-oriented approach of managing projects and businesses is a well-established approach

which includes several innovative tools and techniques. Some research studies investigated the

differences between processes and practices and the reasons a practice cannot completely and

effectively be transformed into a process. Others described the core structure of a process and

offered a framework for process customization. However, the literature lacks a systematic

approach for transformation of a best practice into a process that methodically defines how and

which components of a best practice can be transformed into a process implementable into

workflow management systems.

In addition, there is a knowledge gap regarding improving process conformance and

interoperability by defining a unique core structure for common processes in the construction

industry, based on the best practices in this domain. Developing a methodical approach to integrate

best practices into workflow management systems in such a way as to provide conformance and

interoperability is the main objective of this research, in order to address these knowledge gaps,

and improve capital project performance.

 29

Chapter 3
Industry Foundation Processes (IFP)

3.1 IFP Modeling System and IFP Processes
Industry Foundation Processes (IFP) is a process modeling system that facilitates integration of

core processes of known best practices in the construction industry into workflow management

systems, and promises to improve projects’ process conformance and interoperability. IFP

processes are defined in this study as workflow templates with essential activities and minimal

features that can be customized for specific types of projects, and implemented based on projects

conditions and requirements. Through IFP model implementation, the EPPM system not only

supports best practices conformance and process interoperability, but it also provides automation

and integration of other systems processes and services, thus facilitating improved project

performance.

IFPs1 are defined as structured processes so that the sequence of activities and their execution

constraints are fully defined. They focus on the flow of information or work while abstracting from

execution constraints, such as data dependencies and resource constraints. They are defined in

their simplest form, containing all the essential steps, but with no extra or redundant activity. As

such, they are general enough to be extendable to many situations, yet simple and streamlined. The

idea of the IFP system is inspired by the concepts of abstraction, inheritance, and modularity in

object-oriented programming languages (OOP), and its name has a connotation with the Industry

Foundation Classes (IFC) data model.

IFPs are abstracted to operational-level details, with the focus of enactment through workflow

management systems. The workflow inheritance concept enables IFP workflow processes to be

customized to more specific and more complex processes in a controlled manner to conform to

particular types and characteristics of projects, while not losing their core structure. The IFP

modeling system may be defined for many common construction industry processes, such as

1 Throughout this thesis, the “IFP” acronym for Industry Foundation Processes refers to the IFP modeling system as
well as to a single IFP process. The plural form “IFPs” refers to more than one IFP process.

 30

change management, contract management, materials management, and deliverables management,

as simple structured processes that incorporate the essence of best practices.

Application of the IFP system offers several practical advantages. It promotes adoption of best

practices, provides a standard core structure for implementation of common processes, facilitates

more consistent implementation of workflow processes in different projects, and brings visibility

to the core structure of complex processes. It also improves process conformance and

interoperability. This system facilitates integration of best practices into workflow management

systems, and supports their consistent implementation throughout project lifecycle and from

project to project. It can be used to efficiently implement and manage systems of customized

interoperable processes that conform to the best practices, and thus support improved project

performance.

3.2 Approaches of Developing IFP Processes
The IFP system facilitates integration of core processes of known best practices in the construction

industry into workflow management systems, in order to provide a more consistent and scalable

method for adoption of construction industry best practices, throughout the lifecycle of each

project, and from project to project. Best practices are a form of knowledge that are based on the

lessons learned and the experience gained from previous projects. They facilitate reuse of

experience within the construction industry domain by suggesting an improved way of organizing

and performing construction management activities.

Best practices typically include one or more processes or can be defined as one or more high-level

processes that represent the main steps of performing the related work. However, such high-level

processes cannot be directly implemented as workflow processes into workflow management

systems. The steps offered in best practices does not necessarily include a well-defined sequence,

the execution constraints for performing the associated work are not explicitly defined, and the

role and the responsibilities of the actors might not be clearly defined.

Accordingly, two principal approaches are proposed for deriving foundation processes

(Figure 3-1): (1) a bottom-up approach in which the common core structure of different

implementations of a construction workflow process is identified and extracted, and is used as the

 31

basis for developing an IFP, and (2) a top-down approach in which foundation processes are

defined as structured processes in accordance with the existing best practices in the construction

industry. Although these two approaches are different in methodology and can be used separately,

using a combination of both approaches, if applicable, is recommended for the best outcome.

Figure 3-1: Approaches of Developing IFP Processes

The former approach is useful for workflow processes that have been used in different projects,

and their implemented versions are available. This approach requires employing business process

analysis tools and process modeling techniques to compare different implementations of a process

and extract the common core of those processes as a basis for deriving a foundation process. The

latter is used to define a new or distinct workflow process for performing a specific operation in

accordance with the established best practices. It involves exploring well-known construction

industry best practices, developing high-level organizational processes that include the main steps

for adopting those practices, transforming the organizational processes based on the roles and

responsibilities of actors into structural processes implementable into workflow management

systems, and defining IFPs based on the core structure of the structured processes. These

approaches are discussed in more detail in sections 3.3 and 3.4, respectively.

3.3 Extracting the Common Core of Implemented Processes
Sending or receiving engineering documents as transmittals or submittals, reviewing and

approving design documents, requesting further information, managing change orders, and

Project/Corporate
Implementations of

Processes

Industry
Foundation

Process

Foundation-
level Process

Known Best
Practices

 32

managing contractual obligations are examples of common activities that have been intrinsic

components of construction projects for years. In more recent years, these common activities have

been automated via workflow management systems and have been implemented as structured

workflow processes such as inbound and outbound transmittals (IT & OT), design review (DR),

request for information (RFI), change request (CR), and contract management (CM).

Common workflow processes are being implemented differently in each organization due to

several different factors, such as organizational culture, structure, governance, established

communication channels, and available resources which are largely categorized as enterprise

environmental factors. Workflow processes are implemented differently in each project depending

on the type, requirements, resources, geographical distribution, and other conditions of that

particular project. Such processes are part of organizational process assets. Organizational process

assets are defined by Project Management Institute (PMI) as “plans, processes, policies,

procedures, and knowledge bases specific to and used by the performing organization” and are

grouped into (1) corporate knowledge base, and (2) processes and procedures (Project

Management Institute, 2013).

Workflow processes that are used in capital construction projects are part of intangible assets of

the performing organization. Such processes are carefully crafted by experts for a specific purpose

and have typically been subject to several cycles of process improvement since their creation. Each

update refines the process in a certain way and creates an improved version with a particular

version number. Ultimately, the process possesses the most suitable activities, flow, and details

for performing that specific work, and represents a best method of doing that work in that

organization or project.

 33

Figure 3-2: Different Implemented Versions of the RFI Process in Skelta Software Format

For instance, Figure 3-2 demonstrates three implementations of the Request for Information (RFI)

workflow process in three different large-scale construction projects. The magnified portion

demonstrates some of core activities in one of them. RFI workflow is a method of requesting a

design clarification, field construction clarification, or to provide supplemental instructions from

either the project management team, or any company engaged in a construction project. Each of

the implementations in Figure 3-2 include different versions. For example, the figure in the center,

which is partly magnified and has been used in a recent mega-construction project in Canada,

RFI in
Project A

RFI in
Project C

RFI in Project B

 34

encompasses eight versions. Each version is slightly different and is the result of a process

improvement effort during the lifecycle of the project.

Although the implementation of a common process, such as the RFI, varies from organization to

organization, and is unique in each project, their common core structure is not very different, when

those implementations are compared in a higher abstraction level in which the implementation

level differences, such as technology and platform-specific relations, and execution details are

ignored. Process analysis tools and process modeling techniques can be used to analyze the

implemented versions of a process, and to compare their structure in a higher level of abstraction,

and to extract their common core structure.

Figure 3-3 (a): High-Level Representation of the RFI Workflow Process in Project A

 35

Figure 3-3 (a), (b), and (c) demonstrate a higher level process model representation of the same

RFI processes shown in Figure 3-2. In these process models several execution and implementation

level details, such as initializing variables, updating the status in each step, handling missing

coordinator, publishing the request to the document management system (DMS), initializing the

response list, publishing the attachments to the DMS, creating pdf files, etc. have been abstracted

from the model and only the key relevant activities have been shown. This higher level

representation enables more explicable analysis and comparison of these workflow processes.

Figure 3-3 (b): RFI High-Level Representation of the RFI Workflow Process in Project B

 36

Figure 3-3 (c): High-Level Representation of the RFI Workflow Process in Project C

Figure 3-4 represents the common core structure of the RFI workflow processes shown in

Figure 3-3 (a), (b), and (c). This common core structure is considered the high level structure of

the RFI process and is used as a basis for deriving the foundation level RFI process. As illustrated

in Figure 3-4, this workflow includes 18 steps which are performed by four different roles:

Initiator, Coordinator, Responders, and Consolidator. In addition, process Stakeholders which are

the people not actively involved of performing steps of the process, but receive communication

regarding the steps, milestones, and the final result can also be considered as a role.

 37

Figure 3-4: The Common Core Structure of the RFI Workflow Process

The RFI work process follows the order of activities described below:

1. Initiate – The Initiator completes the RFI electronic form and submits the detailed question

and associated data, impact statement and attachments to the system, and is responsible for

further clarification if requested from Coordinator or Responder(s).

The initiator can be anyone on the project team. This role can submit an RFI on behalf of

another party, such as a customer or contractor.

 38

2. Verify – The Coordinator triages all the requests by ensuring the details are complete,

reviewing and modifying the assigned list of participants as necessary, and confirming the

interval/milestone timing of the workflow. 	

3. Respond – The Responder reviews the RFI, requests clarification as necessary or composes

a response and sends it on for approval.

The Responder is typically a Lead Engineer or Construction Manager, or could be another

team member such as the Contract Administrator. The Responder composes and submits

the response to the Approver. The Responder(s) can request clarification of any details.

4. Consolidate and Approve – The Approver reviews the response, and if necessary,

consolidates  multiple responses. The Approver also authorizes clarification requests. If

the Approver deems the response insufficient, he/she returns it to the Responder. Or if the

response is sufficient, the Approver issues it to the Initiator.	

5. The Consolidator or Approver is the project team member responsible for consolidating,

authorizing and issuing the RFI response to the Initiator. The Consolidator also authorizes

clarification requests from the Responder prior to directing them to the Initiator.	

6. Close – The Initiator receives and acknowledges the response. The RFI is closed.

3.4 Defining IFPs Based on Well-Known Best Practices
Construction projects have several operations or management activities in common. Examples

include managing change, risks, contracts, procurement, and cost. Such common operations are

typically associated with suggestions, recommendations, and guidelines of how to perform them

more efficiently. These guidelines are generally known as best practices.

Automation of such common operations via employment of workflow processes and benefiting

from their associated best practices is an appropriate approach for project performance

improvement. However, due to essential differences between practices and processes adoption of

best practices into workflow processes is not always straightforward.

To define a particular management activity and its associated best practices as a workflow process

the following requirements should be satisfied: (1) the need for automation, such as the repetitive

 39

or iterative nature of the operation, and the potential to increase speed, accuracy, and quality via

automation, (2) process definition requirements, such as the sequence of activities, and repetitive

predictable results, and (3) workflow requirements, such as participants with specific roles, and

flow of work or information among the participants.

In sections 3.4.1 and 3.4.2, two frameworks are proposed for transformation of well-known best

practices associated with common construction operations into workflow processes which are

suitable for implementation via workflow management systems. The frameworks describe how

the components of a best practice can be associated with elements of a structured process.

Moreover, the frameworks explain how the inherent knowledge of best practices can be combined

with the key characteristics of structured processes, such as well-defined steps, sequence, and

execution constraints. The outcome is processes with the essence of best practices that can be

embedded into and automated through workflow management systems.

3.4.1 Abstract Framework

A practice as a form of knowledge includes different types of knowledge: explicit, tacit, and

implicit (Anand & Singh, 2011; Faust, 2007). Explicit knowledge is the category of knowledge

that can easily be identified, codified, stored, and retrieved. It can easily be articulated or written

down, such as rules and facts in an organization. Tacit knowledge is inherent with the skills and

experience of people, and is hard to capture and codify, such as the skills and experience of

employees of how to perform a task effectively. Part of the tacit knowledge that is difficult to

reveal, but still possible to capture by observation or training is called implicit knowledge.

Knowledge management models explain that the explicit knowledge can be transferred more

easily. Implicit knowledge needs careful observation and attention to details of how an expert is

doing the work to reveal the knowledge and make it explicit, before it can be transferred. The tacit

knowledge represents the mental model of the actor for performing the work, and it is transferred

to somebody else only by apprenticeship, training, and experience (Faust, 2007). Well-known best

practices are valuable for the explicit and implicit knowledge that they include, as well as

guidelines and recommendations for how to perform activities that require tacit knowledge, but

they cannot substitute the need for skillful experts that perform the work with their tacit knowledge.

 40

The key approaches of transferring the tacit knowledge of a best practice is face to face interaction,

such as meetings, workshops, coaching, and training.

Accordingly, to define a practice as a process, knowledge components of a best practice can be

associated with the elements of a process in the following classification. (1) The structure of the

process defines what is performed with clear steps, and it is associated with the explicit knowledge

presented by the practice. (2) The human-tasks of a process are the activities that require the expert

skills, experience, and judgement and cannot be automated. These tasks are associated with the

tacit knowledge of the best practice and might include suggestion or guidelines for how to perform

the task, but only an expert can perform the task efficiently. (3) The behavior of the process is

associated with the implicit knowledge of the practice. A well-defined and efficient process is the

result of implicit knowledge that is hard to capture, but can be captured by attention to details and

observing the behavior and improving the process over time. (Table 3-1) represents this

framework.

Table 3-1: Types of Knowledge in a Practice and their Association with Process Elements

PRACTICE COMPONENTS … ASSOCIATION WITH … PROCESS ELEMENTS
Explicit Knowledge
Tacit Knowledge
Implicit Knowledge

… What is done …
… Who accomplish …
… How is defined …

Structure of the Process
Human-tasks of the Process
Behavior of the Process

3.4.2 Pragmatic Framework

The knowledge inherent in best practices typically includes strategic guidelines of what to do, and

tactical suggestions of how to do an operation to achieve an improved or desired outcome. This

knowledge is more general and needs to be operationalized via workflow processes. A process

might support strategic, tactical, and operational decisions, yet the process implementation via

workflow management systems requires operational details. A process map can describe a process

in different levels of abstraction, with the appropriate amount of detail (IIBA, 2015): a higher level

abstraction of a process describing what is being performed and a lower level representation of

how it is done with operational details, such as roles and responsibilities of the actors, and

implementation details.

To define a process with the essence of its associated best practices, the following pragmatic

framework is proposed: (1) classify the main components of the practice and describe their logical

 41

relationship and define their order of execution as one or more high-level organizational processes,

(2) identify process stakeholders, define the roles and responsibilities of the actors, and add the

required implementation level details, to transform organizational processes into well-defined

structured processes implementable via workflow management systems, and (3) define foundation

processes by keeping only the core structure, the essential features, and required properties. These

steps are presented in Figure 3-5 and are discussed with examples in the following sections.

Figure 3-5: Transforming a Practice into a Structured Process

Exploring some of the well-known best practices in the domain of the construction industry, such

as change management, materials management, work packaging, modularization, and lessons

learned confirms that the guidelines suggested by the best practices either include some high-level

processes or they can be defined as high-level organizational processes. As an example, CII best

practice publication for change management offers five principles each of which has been defined

as an organizational process (Project Change Management - Special Publication 43-1, 1994).

Figure 3-6 illustrates the five principles for change management offered by CII change

management best practice.

An organizational process is a high level process that includes the conceptual steps of performing work,
but does not include all the details of the steps, and the execution constraints that are necessary for

implementation of the process. Organizational processes cannot directly be implemented into workflow
management systems. For instance,

• Best practices
typically include
several
components.
• Related

components can
be defined as
high-level
organizational
processes.

Practice

• High level
processes include
explicit, tacit,
and implicit
knowledge.
• Explicit

knowledge can
more easily be
transformed into
structured
processes.

Organizational
Process • Structured

processes can be
implemented
into workflow
management
systems.
• The roles and

responsibilities
play and
important role.

Structured
Process

• Streamlined,
inheritable,
Structured
process
• Includes only the

core structure
and essential
features

Foundation
Process

 42

Table 3-2 presents such a high-level process offered by CII change management best practice for

the “Evaluate Change” principle (Project Change Management - Special Publication 43-1, 1994).

As it is evident, this process cannot be implemented in a workflow management system in its

current form, and lacks the required structure and details. Organizational processes should be

transformed into operational structured processes for implementation through workflow

management systems.

Figure 3-6: CII Change Management Principles, Each Offered as an Organizational Process

Table 3-2: Evaluate Change Process

3.1 Determine the time frame for change decision.
3.1.1 Immediate or high priority decision required? If not, process through routine measures.
3.1.2 Determine funding source for handling interim approval of a high priority change decision.

3.2 Collect data needed.
3.2.1 Conduct a thorough analysis on cost, schedule, quality, safety, resources, and other items.
Evaluate on both direct and associated indirect costs.
3.2.2 Propose and evaluate alternate solutions and options.

3.3 Identify impacts.
3.3.1 Finalize impact on cost and schedule.
3.3.1.1 Primary impacts.
3.3.1.2 Secondary (indirect/ripple/cumulative) impacts.
3.3.2 Route to all involved disciplines/functions/organizations for impact.

3.4 Determine final funding source or “who pays” (cost reimbursable, design development, lump sum, and
others). If applicable, confirm the interim funding source decision.
3.5 Re-evaluate project feasibility with proposed change included.

3.5.1 If change makes project unfeasible, determine whether it is a required or an elective change.
3.6 Authorize change and send out notice to all affected organizations/disciplines.

 43

To define an organizational process as a structured workflow process two key characteristics of

such a process should be considered: (1) the flow of work or information among participants with

clearly defined roles and responsibilities, and (2) the structured definition of the process with the

required implementation level details.

A key characteristic of a workflow process is the flow of work or information among participants.

Therefore, the steps of the process should be defined as activities that are performed by the

participants while considering the flow of work or information. As such, the role and the

responsibility of the participants should be clarified in a workflow process. The Responsibility

Assignment Matrix (RACI chart) is the proper tool for this purpose. RACI is an acronym that

stands for Responsible, Accountable, Consulted, and Informed.

Moreover, the workflow should be defined as a structured process. A process in which the

sequence of activities and their execution constraints are completely defined is called a structured

process. For example, a change request (CR) workflow process is a formal process frequently used

for authorizing any change in the scope, cost, or schedule of a project. Figure 3-7 represents the

main steps of the CR workflow process and their sequence, but this is not a structured

representation of the CR process.

Figure 3-7: Main Steps of a Change Request (CR) Workflow Process

Formal process modeling tools and techniques, such as Unified Modeling Language (UML),

Business Process Execution Language (BPEL), or Business Process Modeling and Notation

(BPMN), are being used to map a structured process. Such standard notations are required for the

automation of structured processes via workflow management systems. Figure 3-8 presents the

change request workflow in BPMN notation.

Initiate CR
Review &
Analyze
Impacts

Consolidate &
ApproveVerify Details Inform

Stakeholders

 44

Figure 3-8: A Change Request (CR) Process in BPMN Notation

3.5 Discussion
In this chapter, the IFP modeling system was introduced and the development approaches for its

processes were discussed. Two frameworks – an abstract and a pragmatic – were proposed for

adoption of best practices through integration with structured processes implementable into

workflow management systems. The proposed frameworks suggest that specific elements of best

practices can more easily be transformed into structured processes. The end result would be a

structured process with the essence of best practices that can be implemented and automated via

workflow management systems.

Integration of best practices into workflow processes facilitates more consistent and more scalable

adoption of best practices; however, due to fundamental differences between practices and

processes there are limitations associated with the application of this approach:

1. Workflow processes facilitate the flow of work or information among participants, and

have a specific structure with particular components, such as automated and human-

performed activities, the sequence and logical relationship among activities, the flow of

work or information, and participants with specific roles and responsibilities. Therefore,

In
iti

at
or

In
iti

at
or

Co
or

di
na

to
r

Co
or

di
na

to
r

M
an

ag
er

M
an

ag
er

Pa
rti

ci
pa

nt
s

Pa
rti

ci
pa

nt
s

Initiate CR

Sufficient
Detail?

No

Clarify/
Rework

Verify Details

Yes

Consolidate &
Approve

Participants
Input

Need
Participant

Input?
Review

Yes

Approve/
Reject?No

YesNo

Inform
Stakeholders

 45

not every element or detail suggested by a best practice can be incorporated into a workflow

process. A workflow process that is defined based on best practices, thus might include an

essence of the best practices, but it would not be in any sense a complete replacement for

the practice.

2. Workflow processes that are based on best practices facilitate automation of particular

activities, based on the recommendations of best practices. Such workflow processes

include automated and human-performed activities. Human tasks should be performed by

experts who are well informed of their roles and responsibilities. In other words, the

workflow process would not be a replacement for the required skills, knowledge, and

experience of the actors who perform those activities.

The required features and the essential properties of IFP processes are discussed in the next chapter

as components of the IFP ontology.

 46

Chapter 4
Proposed IFP Ontology

4.1 IFP Ontology
Based on synthesis of the literature, examination of functional and operational requirements for

IFP system, and consultation with industry experts, this research proposes an ontology for the IFP

system with the following eight components (Figure 4-1): (1) a versioning system and an

applicable scope, (2) a core structure and functionality, (3) defined abstraction level to essential

details, (4) associated data structures, (5) suggested practices, (6) workflow inheritance property,

(7) process conformance, and (8) interoperability with other workflow processes.

Figure 4-1: Proposed IFP Ontology

This chapter is an overview of the ontology components and discusses each one in more detail.

The last two components – process conformance and interoperability – are among the direct

benefits of using the IFP system, and can be considered as outcomes rather than components.

However, process conformance and interoperability affect the definition of other components, such

as the core structure, data structures, and the abstraction level, and thus they should be considered

as components of the ontology while developing an IFP process.

IFP

(1)
Version &

Scope (2)
Core Structure

(3)
Abstraction

Level

(4)
Data Structures

(5)
Inheritance

(6)
Recommended

Practices

(7)
Conformance

(8)
Inter-

operability

 47

4.2 Version and Scope
In any organization, processes evolve over time and process improvements and updates are

supported by a process improvement framework and a versioning system. To allow future updates,

a versioning system should be considered during the development of the IFP processes. Version

numbers for each IFP process represent their improvements and updates.

The domain of this work, and thus the domain of the Industry Foundation Processes (IFP) system

is the Architecture, Engineering, Construction, and Facilities Management (AEC/FM) industry

which is also the domain of the Industry Foundation Classes (IFC). However, the concept of the

IFP system and the development methodology can be adopted by any other industry.

IFP processes are developed in their most generic form, either for the AEC/FM domain, or for

specific types of projects, and their scope is defined accordingly. For example, the scope of a more

general process like request for information (RFI) that is used similarly in every type of project is

defined as AEC/FM, and the scope of a more specific process like interface management (IM)

which is useful only in large industrial projects is defined as large-scale industrial projects. As

such, sets of IFP processes can be defined for a particular project types, such as oil and gas,

industrial, commercial, or infrastructure. Thus, a change management IFP process developed for

large-scale oil and gas projects might have a different scope comparing with a change management

IFP process defined for a smaller-scale commercial project. In addition to the project type, projects

delivery method and size can also affect the scope of IFP processes. Later, any IFP process can be

customized more to suit any specific project.

4.3 Core Structure
Any process has a core structure that includes essential activities and their relationships. Selecting

a complex process, and repeatedly substituting its activities and relationships with more abstract

ones, results in a set of activities and relationships that are elemental, but sufficient for representing

the purpose of that process (Malone, Crowston, & Herman, 2003). Additional activities and

relationships are typically added to the core structure to customize the process for specific purposes

or conditions, but if any of the essential activities and relationships removed, the meaning of the

process might not be preserved. Extracting the minimal yet essential elements of a complex

 48

process, developed based on the industry best practices and improved incrementally through the

process improvement cycle, results in the core structure required for defining an IFP process. For

example, as outlined previously, extracting the core structure of implementation-level RFI

processes, such as the process shown in Figure 3-4, results in the minimal yet essential activities

and relationships presented as a simple structured process in Figure 4-2.

Figure 4-2: The Core Structure of an IFP for the RFI Process

As such, the core structure of an RFI process includes the following steps. (1) A project team

member initiates a request. (2) A coordinator verifies the request for accuracy and completeness,

and assigns/confirms participants. (3) If any clarification is necessary, (4) the request is being sent

to the initiator for clarification; if not, (5) it is being sent to one or more participants, typically a

lead engineer or a construction manager, for composing a response. (6) The consolidator is then

responsible for consolidating responses, (7) and approving and issuing the response to initiator;

(8) and finally all process stakeholders are informed and the workflow is closed.

In
iti

at
or

Co
or

di
na

to
r

Re
sp

on
de

rs
Co

ns
ol

id
at

or

1
Initiate RFI

3
Sufficient
Detail?

No

4
Clarify

Yes

5
Respond

6
Consolidate &

Endorse

8
Response
Close Out

2
Verify Details

Yes

No

7
Approve?

 49

4.4 Abstraction Level
The abstraction level of a workflow process is important because it determines the amount of detail

that the process is represented with. A process can be characterized in a high-level abstraction level

that explains the process steps, or it can be defined as a structured process in which the sequence

of activities and their execution constraints are completely defined.

Furthermore, a process can be presented with operational details that include activities and their

relationships, or it can be defined with implementation details that contain information on

execution and technical details required for enactment of the process in a computerized system.

Table 4-1: Workflow Abstraction Levels

ABSTRACTION LEVEL DESCRIPTION
Meta-level Workflow A conceptual description of the process flow

Includes organizational-level details
Foundation-level Workflow A high-level structured definition with particular properties

Includes operational-level details
Workflow Template A customized workflow with the most common components

Includes operational-level details
Workflow Implementation An implemented workflow for a specific organization or project

Includes implementation-level details
Workflow Instance An executed instance of an implemented workflow

Includes implementation-level details

Based on an examination of industry practices, an analysis of the literature, and the required level

of details for the IFP system, workflow processes are classified into the following five abstraction

levels (Table 4-1): (1) meta-workflows, (2) foundation-level workflows, (3) workflow templates,

(4) workflow implementations, and (5) workflow instances. Moreover, the foundation-level is

proposed as the appropriate level of abstraction for IFP processes.

A meta-workflow is a conceptual definition of a workflow, either textual or in a flow-chart format.

It is not a structured definition of a workflow and its main purpose is to describe the workflow

behavior. A foundation-level workflow, associated with the concept of Industry Foundation

Processes, however, is a structured definition of a process, with some operational and

implementation level details that are required for its proper functioning. It is the highest abstraction

level implementable in a workflow engine enabled environment, such as Skelta or Microsoft

Workflow Foundation which are the environments used in this research.

 50

A workflow template is a customized workflow, based on an IFP, that contains the most common

activities and relationships for a particular type of project. It can be used as the starting point for

deriving more detailed implementation-level workflows suitable for a specific project. Workflow

implementations typically include all the required human-oriented tasks, as well as automated

tasks, such as writing to databases and sending notifications to participants, as required.

An executed version of an implementation-level workflow is called a workflow instance. For any

implementation level workflow, several workflow instances are typically created throughout the

lifecycle of the project. Some workflow instances might have a relatively short lifetime, and some

might be active for a longer period of time, before completing their execution and closing out.

Each workflow instance typically stores all the data associated with its execution steps. For

example, the execution details of an activity called "Verify Details", which is one step within the

RFI workflow, include details such as, instance identification code, accessed time and date,

completed time and date, name of responsible and responding party, current status of workflow,

and more. All workflow instance execution data are stored in databases for retrieval and analysis,

for auditing purposes, or to improve the definition of the workflow.

As an example, an IFP process for deliverables management with the domain of AEC/FM and the

scope of industrial projects, can be customized to a deliverables management workflow template

suited for oil and gas projects, and then customized and implemented for a specific project, with

several instances of the workflow running simultaneously on a workflow management system.

4.5 Data Structures
Processes rely on particular data structures for their proper functioning throughout the execution

steps. A process stores, manipulates, and passes information with the flow of work from one step

to another. For example, the execution of a request for information (RFI) process requires data

fields, such as RFI ID, Contract ID, Title, Description, Request Date, Response Date, etc. Some

data structure fields are being manipulated within the subsequent execution steps, such as

"Response Note", and some of them even determine the flow of work while executing the process.

For example, the flow of work might be redirected to a different person depending on the time or

cost impact of the request.

 51

Table 4-2: Minimal Set of Data Structure Fields for an RFI Process

RFI ID Title Request Reason
Contract ID Description Need Date
Project ID Unit Responder
Request Type Area Response Note
Requested By Discipline Response Date
Request Date System Coordinator
Cost Impact Status Approve Date
Schedule Impact Priority Final Response

An IFP is defined with a minimal set of data structures that are required for its proper

implementation. Table 4-2 presents a minimal data set that is associated with an RFI process. Some

of the data and metadata fields are automatically assigned by the workflow management system,

e.g. Process ID, Response Date, and Approve Date, and some of them are entered by process

participants in each step of the process. Additional fields can be added when required, but the

minimal set that is defined within an IFP is kept while customizing a process.

4.6 Recommended Practice
Recommended practices are guidelines for how to perform each of the human-tasks in an IFP

process. These guidelines are not comprehensive and cannot be a substitute for the knowledge,

skills, and the experience of the actor, but they are useful in identifying and performing the main

steps and requirements for performing those activities.

Several recommendations and guidelines that are available in best practices can be used as

guidelines for performing the human-tasks.

4.7 Inheritance
In computer science, inheritance is a key programming concept. Inheritance enables reuse of code

by keeping certain properties of an object called a super-class, while transforming it into a new

object called a sub-class. Sub-classes typically include extra or more detailed features, while

inheriting features from the super-class. Super-classes are also called parent-classes or base-

classes, which sub-classes are also called child-classes or derived-classes. The inheritance concept

can be applied to the IFP system whereby the core structure and particular properties of an IFP

workflow is inherited, and additional activities or properties are added to form a customized

 52

version of the workflow. The idea of using the inheritance concept for workflow processes is not

new; Van der Aalst explored the concept of workflow inheritance (W. M. van der Aalst, 2002;

Van Der Aalst, 2003; W.M.P van der Aalst & Basten, 2002) and developed four types of workflow

structural inheritance: protocol, projection, protocol/projection, and life-cycle inheritance. A

detailed description of these workflow inheritance notions is beyond the scope of this paper, and

the reader is referred to the cited references for more information.

This research offers three categories of inheritance for workflow processes to facilitate

conformance with regulatory requirements or institutional practices: (1) Structural,

(2) Organizational, and (3) Temporal, and defines sets of workflow inheritance rules for structural

and organizational inheritance to allow or restrict certain workflow transformations. These

inheritance rules control how more detailed implementation-level processes are derived from an

IFP, while maintaining conformance to the IFP. Structural inheritance rules restrict the flow of

work or information in subclasses of a workflow to the sequence and set of core activities defined

in a superclass IFP. This ensures that the core structure of an IFP process does not change when it

is customized to accommodate specific project requirements.

Organizational inheritance rules ensure that the level and sequence of authorization defined in an

organization or project is met with the execution of the workflow process. For example, if someone

is not available who would be the next responsible person to whom the work or information be

directed, or who could be assigned as a delegate for somebody who is not available for a period of

time. For this purpose, a responsibility assignment matrix, i.e. a RACI chart is used to define the

participation of various process stakeholders with their defined roles, responsibilities, and

deliverables in completing each step of the process. A sample of a RACI chart is presented in

Table 4-3.

Table 4-3: Sample of a RACI Chart

ACTIVITIES ROLE 1 ROLE 2 ROLE 3 ROLE 4 ROLE 5 START FINISH

Activity 1 I R A A I 10-Mar 18-Jul
Activity 2 R I A A I 11-Sep 15-Dec
Activity 3 I I R I C 14-Sep 16-Nov
Activity 4 A R I I A 12-Oct 03-Dec

 53

Temporal inheritance rules define allowable durations for each activity according to regulatory or

contractual obligations or industry best practices. For example, how much time is allowed for an

approval activity to be finalized according to regulatory, institutional, or contractual obligations.

Table 4-4 presents a set of structural inheritance rules to preserve the presence and the sequence

of core activities in a customized workflow process. In addition, it offers a sample of organizational

inheritance rules. These are a sample of rules that can be used to ensure conformance with

regulatory requirements or institutional practices. Organizational and temporal rules are defined

as properties associated with the core structure of an IFP process, and thus the structural inheritance

rules are the most important rules for conformance checking. In this research we focus on the

structural inheritance rules.

Table 4-4: Sample of Workflow Inheritance Rules

CATEGORY INHERITANCE RULES
Core Activities Core activities should not be removed, e.g. request, verify details, respond, and approve

in an RFI process.
The sequence of core activities should not be modified (W6).
A connection from an activity to any of its predecessor activities might be added (W1).
One core activity may be distributed into two or more activities (W2), e.g. double-stage
approval.

Additional
Activities

Additional activities might be added between core activities (W3).
Additional activities should not create a parallel path in the workflow (W7, W8).
But, additional activities might bring the flow to a predecessor activity (W4).
An additional activity can be in relationship to one activity (W5).

Roles &
Responsibilities

Extra roles might be added.
A lower-ranked role cannot approve the work of a higher-ranked role.
Responsibilities of a role might be delegated to another role.
Different roles might have the same responsibility level.

(a) Accepted Transformations (b) Prohibited Transformations

A

B

C

D

E

A

B

C

D

K

A

B

C

D

G

H

A

B1

C

D

B2

A

B

C

D

L

M

A

B

C

D

A

B

C

D

A

C

B

D

A

B

C

D

G

H

A

B

C

D

N

PF

A

B

C

D

E

A

B

C

D

K

A

B

C

D

G

H

A

B1

C

D

B2

A

B

C

D

L

M

A

B

C

D

A

B

C

D

A

C

B

D

A

B

C

D

G

H

A

B

C

D

N

PF

 54

Figure 4-3: Examples of Accepted and Prohibited Transformations

Figure 4-3 graphically presents accepted and prohibited transformations for a simple specification

workflow A → B → C → D in which the flow of work is only possible through A then B then C

and then D. As demonstrated in Figure 4-3(a), it is accepted for the super-class specification

workflow of A → B → C → D to be transformed into sub-class workflows presented as W1

through W5. In all of these transformations none of the core activities can be skipped or their

sequence be altered. W2 represents dividing an activity into two, in which part of the enactment

of task B is performed in task B1 by one person, and the rest is performed in B2 by someone else.

Figure 4-3(b) presents a set of transformations for the specification workflow A → B → C → D

that are prohibited according to the defined workflow inheritance rules. Sequence of activities

should not be changed (W6). Parallel paths are not allowed (W7, W8) by which the execution of

some core activities might be circumvented. While new blocks of activities might be added

between two adjacent existing activities, they should not be connected to any successor activities

(W9, W10). For instance, W3 is an accepted transformation, but W10 is not. The inheritance rules

ensure that all the core activities are present, and the sequence of their execution is not altered.

Workflow inheritance is a key feature of Industry Foundation Processes. It enables reusability and

customization of IFPs for different project circumstances, and is a basis for IFP conformance and

interoperability.

4.8 Conformance
Conformance of customized complex processes to their associated IFP process facilitates

transparency, and streamlines process improvement and reengineering. IFP inheritance as a key

property of the IFP system provides a method for systematic evolution of IFP processes into more

complex customized implementations for a specific project, while maintaining conformance to

requirements. Enforcing the inheritance rules at the workflow design stage ensures that sub-classes

of a particular workflow are in conformance with its associated IFP. This is called forward

conformance checking. Conversely, a workflow process can be designed with no structural

restrictions at the design stage. In this case the customized version of a workflow can then be

compared with its associated IFP according to the inheritance rules, to discover whether it is in

conformance or not. This is called backward conformance checking.

 55

(a

) A
n

R
FI

 P
ro

ce
ss

 in
 C

on
fo

rm
an

ce
 w

ith
 th

e
IF

P

(b
) A

n
R

FI
 P

ro
ce

ss
 N

ot
 in

 C
on

fo
rm

an
ce

 w
ith

 th
e

IF
P

Fi
gu

re
 4

-4
: C

on
fo

rm
an

t a
nd

 N
on

-C
on

fo
rm

an
t V

er
si

on
s o

f t
he

 R
FI

 P
ro

ce
ss

Initiator Coordinator Responders Consolidator

Initiator Coordinator Responders Consolidator

12
Ve

rif
y f

or

Cl
ar

ifi
ca

tio
n

W
ar

ni
ng

Ye
s

Ye
s

1
In

iti
at

e R
FI

4
Su

ffi
cie

nt

De
ta

il?

No5
Cl

ar
ify

Ye
s

17
Re

sp
on

se

Cl
os

e O
ut

3
Ve

rif
y D

eta
ils

9
Re

sp
on

d
W

ar
ni

ng

2
Se

lec
t

Co
or

di
na

to
r

6
Se

lec
t

Pa
rti

cip
an

ts

7
Ve

rif
y a

nd

Up
da

te
Pa

rti
cip

an
ts

14
Co

ns
ol

id
at

e &

En
do

rs
e

15
Co

ns
ol

id
at

e &

En
do

rs
e

W
ar

ni
ng

16
Ap

pr
ov

e?

No

11
Ve

rif
y f

or

Cl
ar

ifi
ca

tio
n

No

13
Cl

ar
ifi

ca
tio

n
Re

qu
ire

d?

Ye
s8

Re
sp

on
d

10
Cl

ar
ifi

ca
tio

n
Re

qu
ire

d?

No

No

12
Ve

rif
y f

or

Cl
ar

ifi
ca

tio
n

13
Ve

rif
y f

or

Cl
ar

ifi
ca

tio
n

W
ar

ni
ng

16
Co

ns
ol

id
at

e &

En
do

rs
e

W
ar

ni
ng

1
In

iti
at

e R
FI

9
Re

sp
on

d

11
Cl

ar
ifi

ca
tio

n
Re

qu
ire

d?

10
Re

sp
on

d
W

ar
ni

ng

Ye
s

8
Ve

rif
y a

nd

Up
da

te
Pa

rti
cip

an
ts

No

15
Co

ns
ol

id
at

e &

En
do

rs
e

14
Cl

ar
ifi

ca
tio

n
Re

qu
ire

d?

17
Ap

pr
ov

e?

Ye
s

5
Cl

ar
ify

18
Re

sp
on

se

Cl
os

e O
ut

3
Ve

rif
y D

eta
ils

2
Se

lec
t

Co
or

di
na

to
r

7
Se

lec
t

Pa
rti

cip
an

ts
No

4
Su

ffi
cie

nt

De
ta

il?

No Ye
s 6

Re
sp

on
d

Di
re

ctl
y?

No

Ye
s

Ye
s

 56

For example, Figure 4-4(a) demonstrates a customized version of the RFI process which is in

conformance with the RFI-IFP process presented in Figure 4-2. However, based on the defined

workflow inheritance rules the workflow demonstrated in Figure 4-4(b) is not in conformance with

the RFI-IFP process, because of the direct connection between Activity 6 and Activity 18 which

creates a parallel path. In Figure 4-4, all the core activities that are associated with the set of

activities available in the IFP process are outlined in gray. The additional activities are outlined in

white. The backward conformance checking is not an easy task for complex implemented versions

of processes, and thus cannot effectively be guaranteed. In this paper, we present a practical

solution for automated backward conformance checking of workflow processes using a first-order

logic language.

4.9 Interoperability
Process interoperability is the interaction and exchange of information between cross-

organizational workflow processes, and is a vital component of alignment between collaborating

organizations. Process interoperability is the highest level of interoperability. It is dependent upon

achieving lower levels of interoperability, such as technical, and information interoperability.

The IFP system facilitates interoperability between processes via an external view for each process

that is abstracted to the IFP core structure. Any workflow process that is in conformance with the

IFP includes all the core activities, and adhere to the core structure of the IFP. In IFP

interoperability model, the external or public view of processes that are in conformance with the

IFP is abstracted to the core structure of the IFP.

The common data structures of the IFP processes enable the essential data exchange between

processes; and the structural, organizational, and temporal inheritance rules facilitate the

communication of process and organizational details. The interoperability property of the IFP

system, thus, relies on several other properties to facilitate interaction between workflow

processes: the abstraction level, core structure, data structures, inheritance, and conformance.

 57

Chapter 5
IFP System Validation

5.1 Validation Methodologies
To validate the functionality and benefits of the IFP process modeling system it would be ideal to

use the IFP system for a set of IFP processes in one or more construction projects. However, such

full deployment of the IFP system to fulfill the requirements of a real construction project is a

complex task and beyond the scope of this research. In addition, application of such a system in

an existing project as a case study requires several types of permits and numerous resources, which

would not be feasible as part of this research.

Alternative validation methods were carefully investigated, and the following four methodologies

were proposed for this research: (1) expert feedback for the proof of concept, development

methodologies, and justification of the value and benefits; (2) functional demonstration of the

functionality and benefits of the IFP system; (3) discrete event simulation of existing and IFP

workflow processes and comparison and analysis of the results; and (4) conducting surveys from

industry experts within the construction and the information technology fields.

Expert feedback is one of the main validation methodologies in each stage of the research for

development, deployment, and demonstration of benefits, such as process conformance and

interoperability. Process analysts, software architects, IT specialist, computer science experts, and

construction management professionals have been involved in and provided expert feedback and

advice during different stages of the research.

Functional demonstrations is an essential validation approach for the IFP system and is performed

with the following purposes: (1) to illustrate the functionality of the IFP system through

implementation of the request for information IFP process into a workflow management system,

as well as deployment of a customized version of the same process, which is customized based on

the workflow inheritance rules defined in Chapter 4; and (2) to demonstrate the benefits of the IFP

system by developing an automated workflow conformance checking tool that uses the IFP system

workflow inheritance rules to automatically check the conformance of two workflows. The

 58

conformance checking, which will be discussed in Chapter 6, not only includes an algorithm

developed with a first-order logic language for analyzing and comparing the structure of workflow

processes, and a visualizer to graphically display the result of the analysis. Discrete event modeling

and simulation of workflow processes is also an investigated validation methodology and is

discussed in further detail in the next section of this chapter. Surveys were considered but not

conducted in this research. The reasons are explained in the discussion section of this chapter.

5.2 IFP System Deployment
Deployment of the IFP system includes implementation of IFP processes and customization of

them for particular projects. This section clarifies how workflow inheritance rules and program

inheritance rules are used to derive a customized workflow process from an IFP workflow process,

and examines implementation of an RFI process into a workflow management system.

Modification of a workflow process can be performed in three possible manners: (1) modifying

the functionality of existing activities; (2) adding new activities or removing existing ones; and (3)

changing the order of, or the relationship between, activities. To derive a more detailed customized

workflow from an IFP modifications should be performed in a controlled manner, and the

customization flexibility should be limited to preserve the conformance of the customized process

with the IFP. To accomplish this, the programming inheritance concept, which is part of

object-oriented programming languages, as well as the workflow inheritance methodology, which

is defined through the workflow inheritance rules, are required.

Using object oriented programming languages, each activity and each form (i.e. window/screen)

of a workflow process is defined as a class. A class is a tool used in programming to encapsulate

(i.e. combine) related fields and functionality. The methods associated with each class define the

functionality and behavior of its corresponding activity. In object-oriented programming

inheritance is a concept and tool that allows one class to ‘inherit’ certain fields and functionality

from an existing class; which fields and functionality are inherited is controlled by the developer.

This allows similar classes to re-use code and allows more complex or customized classes to

extend existing functionality. The existing class is a parent class or superclass, and the extended

class is a child class or subclass. The functionality of parent class can be overwritten by the child

class at the discretion of the parent class’ developer.

 59

In the customization process, the programming inheritance concept is used whenever the behavior

of an existing activity needs to be extended by adding new functionality or behavior for that

activity. The extended activity is a subclass of the existing activity, inheriting the functionality and

the behavior of the superclass and adding supplementary functionality. The customized workflow

process would be in conformance with the IFP process as long as overriding the superclass

methods is restricted to the workflow inheritance rules. For example, in Figure 4-4(a) the activity

9 is an automated notification to the activity 8. Therefore, this new functionality can be

implemented into the customized process by adding a notification method to the subclass of the

activity 8, using programming inheritance available in the programming language.

Figure 5-1: Example of Programming Inheritance for Respond Activity

However, in many cases the new functionality cannot be consolidated into its predecessor or

successor activity, e.g. when the new activity is performed by a different role, or when the nature

of work performed by the new activity is different. For example, activity 7 in Figure 4-4(a) cannot

be merged into activity 8, because they are being performed by different roles (people). In such

cases, the programming language inheritance is not sufficient; the workflow inheritance rules

govern the customization process.

5.2.1 Deciding on the Deployment Platform

Several open-source and commercial workflow management systems are available, such as:

Activiti, IBM BPM, SAP Business Workflow, Skelta BPM, Oracle BPM Suite, and Windows

Workflow Foundation. Although all of them include workflow engines to enact workflow

processes; their features, capabilities, and targeted domains are quite different. The focus might be

RespondActivity

+ attribute1:Request Reason
+ attribute1:Need Date
+ attribute1:Responder
+ attribute1:Response Note
+ attribute1:Response Date
...

+ method1: Respond(params)

UpdatedRespondActivity

+ attribute1:Request Reason
+ attribute1:Need Date
+ attribute1:Responder
+ attribute1:Response Note
+ attribute1:Response Date
...

+ method1: Respond(params)
+ method2: ResponseNotification(params)

 60

document management, collaboration management, content management, customer relationship

management, or enterprise integration.

Some workflow management systems, like Activiti, are full featured business process management

(BPM) suites that offer tools for the entire business process lifecycle, including design, modeling,

execution, monitoring, and optimization. Others, like Windows Workflow Foundation, focus on

the capabilities offered by the workflow engine as a framework for developers to expand on and

build applications on top of.

For this research Windows Workflow Foundation (WF) was selected as the deployment platform,

for its: flexibility, availability as part of the Visual Studio, and its suitability for modeling and

enactment of long-running workflow processes. Windows Workflow Foundation 4.5 also offered

improved functionality over previous versions.

5.2.2 Workflow Foundation (WF) Technology

WF technology is a component of the .NET Framework in Microsoft Visual Studio. WF offers a

declarative programming environment in which the code is separated into programming fragments

called activities; these activities are used to control the functionality at each stage of the workflow.

WF, in the .NET Framework 4.5, offers three control flow structures: sequence, flowchart, and

state-machine. The sequence workflow model defines the flow of program as a sequence of

activities. The flowchart contains flow control elements and is typically used to implement non-

sequential workflows. In the flowchart model, the flow of execution of activities is based on the

values of variables. State-machine provides an alternative approach to model the flow of events

that cannot be anticipated. This approach relies on states and transitions between states, and is

suitable for modeling workflows that involve human interactions (“State Machine Workflows,”

2015; White, 2013).

A state machine workflow model was chosen for this research; it allows the user to create visual,

graphical representations of the workflow using nodes and arrows and determines its next step

based on information submitted by the users. This model driven development is especially useful

for managing complex applications and large programs - to avoid losing the structure of the

program in the code details. Each state will commonly have an activity associated with it; these

 61

activities control the work performed at that state (Microsoft Developer Network, 2015b; White,

2013). The model is executed by a runtime engine. The runtime engine, or more specifically the

Common Language Runtime (CLR), not only manages the memory but also provides control for

asynchronous execution (execution of code in a separate thread of the CPU), and parallel execution

in a distributed system (Microsoft Developer Network, 2015a). Multiple threads are useful for

modeling workflow processes because they allow multiple processes or multiple instances of a

process to run concurrently.

5.2.3 Implementation of RFI Workflow Process

The C# programming language along with Microsoft Windows Workflow Foundation (WF) has

been used to implement three versions of the RFI workflow, an RFI-IFP workflow that is shown

in Figure 4-2, and two customized more detailed RFI workflows presented in Figure 4-4. One is

in conformance with the IFP workflow and one is not. For the implementation of workflows, the

state-machine model is used. A graphical representation of the model for the RFI-IFP prototype is

presented in Figure 5-2.

Figure 5-2: Implementation of the RFI-IFP Workflow as a State Machine Model

 62

Construction industry workflow processes, such as the RFI process, are typically initiated over

distributed systems. The flow of work or information is sent to different actors who are able to log

in and perform one or more steps of the workflow. Microsoft Windows Workflow Foundation

fully supports parallel and distributed computing and is a suitable platform for developing

distributed systems. In WF 4.5 the process logic is defined as a workflow which is executed by the

runtime engine.

A workflow process can be modeled using Workflow Foundation technology either as a web-client

distributed application or as a windows-client centralized application. Web-client applications,

which are used for distributed systems and accessed through a web-browser or webpage, are the

most representative form of implementation for the RFI process. However, the same classes,

structure and functionality that is used in a distributed system can be used in the desktop

application; and the desktop application also supports multiple processes and instances running

concurrently. Thus the desktop application’s validation testing is also valid for distributed systems.

To reduce the complexity of RFI deployment, a windows-client desktop application has been

developed using Microsoft WF and the C# programming language. The Consolidator and

Coordinator views of the application are shown in Figure 5-3 and Figure 5-4 respectively.

Figure 5-3: The Coordinator View

 63

Figure 5-4: The Consolidator View

While the application is running on the system, several instances of the RFI workflow process can

be enacted simultaneously. Different users can log in and complete their associated tasks. When

an instance is in the state of waiting for a response from an actor, such as the responder or

consolidator role, its associated information is unloaded from the computer memory to a database.

When the actor who owns the task resumes the instance, process information is loaded from the

database to the memory. This process is repeated in any idle time to reduce the burden on memory.

The process model is saved in a XAML file – a type of XML file developed by Microsoft. This

XAML file is used as an input to the automated workflow conformance checking tool, as described

next.

5.3 Discrete Event Simulation (DES)
Simulation is the imitation of real-world processes or systems on a smaller scale for examination,

testing, or training purposes; and is used when – due to limitations – the real system or process is

not practical to study directly. Several simulation methods are available, such as discrete-event

simulation, continuous simulation, system dynamics, Monte Carlo simulation, and qualitative

 64

simulation. Discrete-event simulation and system dynamics are among the most widely-used

simulation methodologies for analyzing business processes (Giaglis, 2001).

Workflow management systems document the execution details of every step in enactment of

workflow processes, and are a rich source of documented events. The analysis of the process events

can be performed by discrete event simulation with the focus on the behavior of completed

processes, evaluating running process instances, or predicting the behavior of future process

instances (Mühlen & Shapiro, 2010). Discrete event simulation is also used for process

improvement purposes by detecting bottlenecks, providing visibility, identifying rarely used paths,

and to offer an improved version by comparing the efficiency of the original and the updated

workflows.

5.3.1 Simulation of RFI Workflow Process

Since the application of the IFP system through implementation of IFP processes in real projects

is beyond the limitations and available resources of this research, discrete event simulation was

selected as the viable and suitable method for modeling and analyzing those processes and

comparing the behavior of the existing processes with the behavior of the IFP system processes.

Figure 5-5 shows an RFI process that has been used in an oil and gas project in Canada. The

process is comprised of nine versions that have been improved over the lifecycle of the project.

Each version includes several executed instances. Version numbers and the number of instances

associated with each version are summarized in Table 5-1 with the total record of 22 840 instances.

Table 5-1: Versions of the RFI Workflow

VERSION INSTANCES VERSION INSTANCES
Ver. 1 62 Ver. 6 2197
Ver. 2 323 Ver. 7 2326
Ver. 3 1403 Ver. 8 13233
Ver. 4 404 Ver. 9 2805
Ver. 5 87 TOTAL 22840

 65

Figure 5-5: An RFI Workflow Process Used in a Capital Mega Project

Enactment of each step of every workflow instance is performed by the workflow engine of the

workflow management system, and the execution details and the workflow instance data associate

with each step are saved in databases. Conducting a discrete event simulation of the RFI process

requires real data, such as: (1) inter-arrival time between initiated instances of the RFI process,

(2) temporal details linked to the flow of information in each step of the workflow instances, and

 66

(3) the processing time in each activity for every workflow instance. SQL queries were used to

access and extract the required data from the databases. The most meaningful extracted fields that

are used for the simulation are shown in Table 5-2. A sample of the records containing those fields,

imported into a spreadsheet file, is presented in Table 5-3.

Table 5-2: Data Fields and Their Description

DATABASE FIELD DESCRIPTION OF THE FIELD
WF_ID Workflow ID
ActivityDisplayName Task Name in the Workflow
CreatedDateTime Date and Time Task Created
CompletedDateTime Date and Time Task Completed
OwnershipDateTime Date and Time Task Accessed by the Responsible Person
ResponseBy Date and Time of the Response
CurrentStatus Current Status of the Request
Name Responder Name
Version Workflow Version

Table 5-3: A Sample of Retrieved RFI Workflow Process Enactment Data

WF
_ID

ACTIVITYDIS
PLAYNAME

CREATED
DATETIME

OWNERSHIP
DATETIME

COMPLETED
DATETIME

RESPO
NSEBY

CURREN
TSTATUS

VER
SION

55 Verify Details 3-10-11
1:04:24

3-10-11
14:06:43

3-10-11
14:07:25

NULL Send On 2

55 Verify
Participants

3-10-11
14:07:28

3-10-11
14:07:32

3-10-11
14:08:27

NULL Send On 2

75 Approve
(Approver)

3-16-11
17:03:02

3-16-11
18:58:25

3-16-11
21:31:21

3-28-11
23:00:00

Close 2

75 Approved
Close Out

3-16-11
21:31:26

3-17-11
19:17:02

3-17-11
19:18:22

NULL Send On 2

75 Approved
Notification

3-16-11
21:31:27

NULL NULL NULL Deleted 2

75 Approved
Notification

3-16-11
21:31:27

NULL NULL NULL Deleted 2

75 Approved
Notification

3-16-11
21:31:32

NULL NULL NULL Deleted 2

75 Respond
(Engineer)

3-11-11
17:49:00

3-14-11
15:10:03

3-16-11
17:02:57

3-16-11
23:00:00

Send for
Approval

2

75 Verify Details 3-10-11
15:17:18

3-11-11
17:45:08

NULL NULL Closed 2

75 Verify Details 3-10-11
22:17:18

3-11-11
17:45:08

3-11-11
17:45:34

NULL Send On 2

 67

WF
_ID

ACTIVITYDIS
PLAYNAME

CREATED
DATETIME

OWNERSHIP
DATETIME

COMPLETED
DATETIME

RESPO
NSEBY

CURREN
TSTATUS

VER
SION

75 Verify
Participants

3-11-11
17:45:38

3-11-11
17:46:18

3-11-11
17:49:00

NULL Send On 2

77 Approve
(Approver)

3-14-11
19:13:55

3-14-11
19:14:58

3-14-11
19:14:58

NULL Close 2

The details regarding every step of the enactment of every workflow instance have been stored in

the databases, as represented in Table 5-3. For example, row one displays a “Verify Details”

activity from a workflow instance of version 2 of the RFI process with workflow ID 55, and

includes the temporal details such as created date and time, ownership, and completed date and

time. The name of the actors has been omitted from the table for privacy, and the responsibility

field, which is typically according to the RACI chart, has not been accurately recorded. The

extracted data have been used in simulation of the RFI process using SIMUL8 software.

5.3.2 Modeling and Simulation using SIMUL8

Several simulation software packages are available for conducting discrete event simulations, such

as ExtendSim, AnyLogic, FlexSim, Process Simulator, Simio, GoldSim, Promodel, and SIMUL8.

SIMUL8 is one of the most popular simulation software packages with several features for

modeling and simulation of various types of processes or systems, including business processes.

In this section SIMUL8 is used to model and simulate the RFI workflow process depicted in

Figure 5-5.

As Table 5-1 presents, this RFI workflow process is comprised of nine versions, each slightly

different. Version 8 has been used more than the other versions, and offers the greatest number of

workflow instances. Among the total number of 22 840 workflow instances recorded in the

database, more than half of the instances (13 233) belongs to this version. Therefore, version 8 was

selected for the modeling and simulation.

The core structure of this workflow follows the general steps expressed in the common core

structure of RFI workflows in Figure 3-4 of Chapter 3. An RFI is initiated either by a draft request

within the RFI workflow or by a request submitted by an external workflow. A coordinator is then

assigned to the RFI to verify the details of the request, and to reject it if more details are necessary,

or to accept it if it is satisfactory. The coordinator then assigns one or more responders to the

 68

workflow process to respond to the request. If the response takes more than a predefined duration

of time, the participant receives a response warning from the system. The responded RFI then

should be approved by a consolidator, and is sent out and closed after approval. The approval

process is also time restricted and generates an approval warning if takes more than a specified

amount of time.

There is, however, one important distinction in regard to the request type; after the Verify Details

activity, according to the type of the request, the flow is directed to either the construction site

(Field) or the head office (Firm). The Field Request should be sent to the same company’s

construction site for more information or the construction site of another company; the Firm

Request has the same two options. The RFI requests to the external companies exit from the

workflow while counted, and the internal requests follow the next steps to be responded, approved,

and closed.

For simulation of version 8 of the specified RFI process a number of simplifications and

assumptions have been made:

• The workflow management system is always available and the automated activities such

as warnings, notifications, and status updates, are enacted by the workflow engine almost

instantaneously; therefore, only human-performed activities are modeled.

• All the RFI workflow instances have similar priorities, and therefore the work packages in

queues before each activity are executed in chronological order.

• RFI requests are initiated via two different initiation methods: some of the requests are

initiated within the workflow using the draft initiation task, several other requests are

initiated by external parties and are imported into the RFI workflow. Therefore, the first

activity in the workflow to receive all the requests is the Verify Details activity.

Consequently, for calculation of the arrival rate of the requests to the system, the arrival

rate of the requests to the Verify Details activity was used. In other words, the distribution

of the RFI requests arrival rate to the system is calculated according to the created date

and time for all the instances of the RFI workflow in the Verify Details activity.

 69

Processing time distributions for each activity of the workflow and their parameters were

calculated based on the data records of CreatedDateTime, CompletedDateTime, and

OwnershipDateTime. The arrival rate distribution, as discussed, was calculated based on the arrival

rate for the Verify Details activity. The simulation conducted for a trial of 250 runs in which the

duration of each run is defined as one year. A snapshot of the simulation model in SIMUL8 is

shown in Figure 5-6.

Figure 5-6: A Snapshot of the Simulation Model in SIMUL8

5.3.3 Simulation Analysis

Simulation of the RFI process with real data from a capital project provided insights about the

behavior of the RFI process. Some of the metrics that were used to analyze the behavior of the

process are: the number of RFI processes issued during a specific period of time, the number of

people that are assigned to each role to perform manual tasks of the workflow, the average amount

of time it takes for each role in the workflow to perform its tasks, and the average amount of time

for the whole system to complete an RFI process.

 70

Detailed analysis of the model revealed particular bottlenecks that led to a few process

improvement suggestions. For example, the Verify Details activity is a critical bottleneck in the

flow of the documents within the simulated model. At particular points in time, the documents are

accumulated in a queue before this node, and it takes a substantial amount of time for those

documents to be processed. Adding another actor to this role will decrease the processing time of

this activity and will make the whole system more efficient and ready to handle the workload. In

addition, based on the analysis, the route with the Attachments Not Saved task is redundant.

Handling missed attachments is performed within the Verify Details activity, which is why the

Attachments Not Saved automated task has never been used. Therefore, it can safely be eliminated

from the workflow.

Discrete event simulation (DES) is a valuable tool for analyzing the behavior of workflow

processes and providing suggestions for improvements. DES initially considered as a validation

tool to analyze the behavior of existing and the IFP processes. However, comparing the

performance and efficiency of existing and IFP processes requires real data from both processes.

Process performance measurements for comparing workflow processes focus on quantitative key

performance indicators, such as workflow capacity, average handling time, average wait time, and

rate of completion, that are not measurable without real data. Therefore, the simulation was not

used for IFP processes or as a validation tool for this research.

5.4 Discussion
As outlined at the beginning of this chapter, four approaches were selected for validating the results

of this research initiative. With the progress of the research, and taking into account the flexibilities

and limitations of each method, expert feedback and functional demonstration turned into the main

validation approaches of the research. Process analysts, computer science experts, IT specialists,

and construction management professionals have provided valuable feedback on each stage of the

research. In addition, functional demonstration of the deployment method of the IFP systems, and

the value and benefits of its application – conformance and interoperability – has been the other

main validation approach.

Discrete event simulation (DES) was the first validation method that was investigated and

examined. An RFI workflow process, which was used in a recent mega project in Canada, modeled

 71

in the SIMUL8 simulation software, and real data from a capital project were used to examine the

model and analyze the results. This effort, however, proved that the discrete event simulation is

not a suitable validation approach for this research with two justifications. (1) In the DES model,

the Key Performance Indicators (KPI) for measuring the performance of the model are defined for

human-performed tasks, but not for the automated activities of the workflow process. The

automated activities are enacted almost instantaneously, and do not have a significant impact on

the DES model. Since the DES should have been used for comparing the efficiency of an existing

process and an IFP, in which the structure of the processes and the automated tasks are the main

difference, the DES modeling was determined to not be an appropriate validation methodology.

(2) The real data for an existing process were available, but not for an IFP process. Therefore, a

valid comparison between the real process performance and the IFP process conformance could

not be performed using a DES approach.

Surveying of industry experts was considered as a validation methodology, but was ineffective

and was not pursued. The primary reason is the interdisciplinary nature of the research. Different

types of surveys should have been prepared in particular stages to address different aspects of the

research. For example, a wide range of potential responders: process analysts, computer science

and IT experts, and construction management professionals, should have been involved in the

surveys, each assessing partial benefits of the IFP system. This approach would have been non-

comprehensive, unreliable, and impractical, and was disregarded.

 72

Chapter 6
Improving Process Conformance with IFP

6.1 Process Conformance
Conformance is defined as compliance with practices, standards, rules, or established behavior.

Conformance has different aspects and can be specified with various considerations and on

different levels. Examples of levels include conformance with industry best practices, industry

regulatory, corporate, business unit, project, or contract. With the widespread use of process-aware

information systems, conformance of processes to industry best practices, corporate rules and

regulations, or service level agreements is becoming increasingly important.

In the literature, process conformance describes identification and examination of the differences

or discrepancies between a process model and the behavior of the executed version of the process

(Mannhardt, Leoni, Reijers, & Aalst, 2015). Process compliance refers to the relationship between

the specifications for executing a business process and the specifications regulating a business

(Governatori & Sadiq, 2009). Conformance or compliance checking techniques formally present

that business processes comply with relevant constraints such as regulations, laws, or guidelines

(Ly, Maggi, Montali, Rinderle-Ma, & van der Aalst, 2015). In this research, workflow

conformance checking is used more specifically to examine the conformity of customized

workflow processes with the IFP processes that are a representation of the accepted specifications

based on best practices.

With the widespread use of information systems, automated workflow processes are used for

implementation of practices, regulations, and contractual obligations, and thus to facilitate

conformance. Processes are customized in each organization based on their limitations and

requirements. For example, processes in a construction project are customized and implemented

in an EPPM system according to the organizational structure, and the unique project

characteristics, such as: size, delivery method, and execution plan. Therefore, practice

implementation through EPPM systems improves conformance through automation and

transparency, but the required customization generally works against best practice conformance.

 73

A potential solution is introduced based on the industry foundation processes (IFP) construct

presented in this research.

6.2 Workflow Conformance Checking
Conformance checking techniques typically focus on the control-flow of a process, analyzing the

order of the steps involved, to determine the conformance of the process with the expected

behavior (Mannhardt et al., 2015). There are two primary types of conformance checking:

(1) forward conformance, in which the restrictions are enforced in the process design stage to

prevent designing a non-conformant process; and (2) backward conformance, in which the steps

and flow of work in an implemented process are examined to discover non-conformant behavior

(Taghiabadi, Fahland, Dongen, & Aalst, 2013). 

This chapter establishes a foundation for workflow conformance checking by developing an

algorithm for analyzing the control-flow of workflow processes using a first-order logic

language – Alloy. In addition, a Java-based tool was developed to automate the conformance

checking process. The algorithm was applied to different examples of the conformant and non-

conformant workflow processes, and then, a real-world RFI process was modeled as a case study

to validate the accuracy of the algorithm and to demonstrate the functionality of the workflow

conformance checking tool. The case study is an example of the backward conformance checking

approach; to identify non-conformant behavior of an implemented workflow process. The same

workflow conformance checking mechanism can be used in a workflow design tool, as a forward

conformance checking methodology, to promptly notify the designer of any non-conformant

design of the workflow process.

6.3 Conformance Checking Algorithm
Conformance of a customized workflow process to a specification workflow process, such as an

IFP can be performed by analyzing and comparing the structure and the control-flow of the

customized workflow against the specification workflow, and considering conformance criteria

such as: the required presence of core activities, the required sequence of core activities, the

required level of authorization, the required sequence of authorization (hierarchy), and the required

completion time of activities.

 74

In this section, graph theory concepts are employed to formally define workflow processes in terms

of directed graphs, with nodes and edges of a directed graph representing the activities and their

relationships respectively, in a workflow process. The workflow inheritance rules outlined

in Chapter 4 are expressed in terms of computer science and graph theory concepts such as: graph

dominators, dominator tree, immediate dominator, and post-dominator. The dominators concept

applies to directed graphs with distinguished start and end nodes (Georgiadis, Tarjan, & Werneck,

2006; Lengauer & Tarjan, 1979; Prosser, 1959). A well-formed graph must be connected – every

node must be reachable from the start, and the end must be reachable from every node. In addition,

the start must not be reachable by any node, and the end cannot be reached by any node. These

conditions are true of well-formed computer control flow graphs and also of workflow processes

represented by directed graphs. Figure 6-1 shows examples of directed graphs that are not well-

formed (Tao Lue Wu, 2015).

Figure 6-1: Examples of Directed Graphs That Are Not Well-Formed

The left-most graph in Figure 6-1 is not well formed because node b is not reachable from the start,

and the center-left graph is not well formed because the end is not reachable from node c. The

center-right graph is not well formed because the end node reaches to node c, and the right-most

graph is not well formed because the start is reachable from node b.

In a directed graph, a node d dominates a node n if every path from the start node to node n must

go through node d. Similarly, a node p post-dominates node n if every path from n to the end node

must go through p (Georgiadis et al., 2006; Lengauer & Tarjan, 1979; Prosser, 1959). The

immediate dominator is the dominator closest to the node. Similarly, the immediate post-

a

c

b

a

c

b

a

c

b

a

c

b

Start

End

Start

End

Start

End

Start

End

 75

dominator is the post-dominator closest to the node. Graph dominators can be computed in

quadratic time (Lengauer & Tarjan, 1979).

The dominance concept includes particular properties that are used for developing an algorithm

for comparing the structure of a customized workflow with a specification workflow based on the

workflow inheritance rules. For example, the dominance relation is reflexive, anti-symmetric, and

transitive. This means that: (1) any node dominates itself, (2) if a dominates b and b dominates a

then a is equal to b, and (3) if a dominates b and b dominates c then a dominates c. For more

information about the theoretical principles of the developed conformance checking algorithm

please refer to Tao Lue Wu’s report which is partially presented in Appendix C (Tao Lue Wu,

2015).

A customized workflow is said to conform to a specification workflow if the following three

conditions are met (Golzarpoor, Haas, & Rayside, 2016):

1. The customized workflow contains all of the steps (nodes) in the specification workflow.

2. For every step X that exists in both the specification and customized workflows, X’s

immediate dominator in the specification workflow is one of its dominators in the

customized workflow.  

3. For every step Y that exists in both the specification and customized workflows, Y’s

immediate post-dominator in the specification workflow is one of its post-dominators in

the customized workflow.  

These conditions formalize the intuitions that steps in the specification workflow cannot be

skipped, and that new steps may be added. Using these conditions, an edge e from source node s

to target node t is classified as a skip edge if either the source node s fails to meet condition (2)

above, or the target node t fails to meet condition (3).

Accordingly, an algorithm to assess the conformance of a customized workflow with a

specification workflow is developed as follows (Golzarpoor et al., 2016):

1. Confirm that both the specification workflow and the customized workflow are well-

formed. If not, report malformed workflow and terminate.  

 76

2. Confirm that the customized workflow contains all of the steps in the specification

workflow (condition 1). If not, report non-conformance due to step deletion and terminate.

3. Compute dominators and post-dominators for every node, in both the specification

workflow and the customized workflow. 

4. For every node that exists in both specification and customized workflows, confirm that

the immediate dominator in the specification workflow is still a dominator in the

customized workflow (condition 2 above). If not, report edges that terminate at such nodes

as skip edges.  

5. For every node that exists in both specification and customized workflows, confirm that

the immediate post- dominator in the specification workflow is still a post-dominator in the

customized workflow (condition 3 above). If not, report edges that originate at such nodes

as skip edges.  

6. If no skip edges, then report conformance.  

7. Terminate.  

This algorithm has been implemented in the Alloy declarative specification language (Daniel

Jackson, 2011), so that specific pairs of workflows can be automatically checked for conformance

using the associated Alloy Analyzer tool. An alternative implementation could be written in a

conventional imperative programming language (e.g., Java, C, etc.) using one of the well-known

algorithms for graph dominators (e.g., Georgiadis et al., 2006; Lengauer & Tarjan, 1979).

6.4 The Alloy Language and Its Advantages
Alloy is a first-order logic programming language with sets, relations, and transitive closure. It is

typically used for writing specifications of rich, graph-like data structures, which are structurally

similar to workflows. The Alloy Analyzer translates the Alloy first-order logic to propositional

logic (i.e., Boolean formulas) by providing finite bounds for the quantifiers. If the finite bounds

used for translation are insufficient, then the resulting Boolean formula is an approximation of the

original first-order formula. For example, if the original formula quantifies over an infinite set,

such as the integers, then the bounds will be insufficient. Since workflows are always finite

 77

structures, and from a computational standpoint not particularly large, the bounds for the

translation will always be sufficient for workflows.

Alloy has three advantages over a conventional imperative language for workflow conformance

checking. First, the Alloy language is designed for working with rich graph-like structures,

whereas conventional imperative programming languages are not (Schwartz, Dewar, Schonberg,

& Dubinsky, 1986). Second, the Alloy Analyzer includes a visualizer for inspecting the inputs,

outputs, and state of the program. Third, in addition to running the program with specific inputs,

the Alloy Analyzer can also automatically generate test inputs for sub-procedures or the program

as a whole.

The computational complexity of computing dominator trees is quadratic (Lengauer & Tarjan,

1979), which is within the expressiveness of Boolean formulas (NP-complete (Cook, 1971)).

Therefore, the Boolean formula produced by the Alloy Analyzer is an accurate representation of

the problem of computing the conformance of two workflows. Modern Boolean Satisfiability

solvers routinely solve formulas with tens of thousands of variables and hundreds of thousands of

clauses. The Boolean formulas produced for workflow conformance checking typically have

several thousand variables and several thousand clauses, and solve in a few tenths of a second

using MiniSAT (Eén & Sörensson, 2004) on an old laptop (AMD A4-3300M processor running

at 1.9GHz; manufactured in 2011). Workflow conformance checking is well within the capabilities

of modern SAT solvers.

In software engineering, Alloy is used for analyzing software designs, including analyzing

imperative programs for conformance with their logical specifications (Dennis, 2009). The

workflow-specification conformance problem is similar to – but importantly different from – the

program-specification problem: most importantly, workflow conformance checking is only

concerned with the arrangement of the steps, and not with the outputs of the workflow.

Program-specification checking is concerned with the outputs computed by the program.

Workflows involve highly trained people exercising professional judgments in complex real-world

situations, rather than computers merely following instructions. The workflow-specification

conformance problem is similar to the subgraph isomorphism problem (Ullmann, 1976); are the

steps of the specification workflow embedded in the customized workflow in a way that preserves

 78

their ordering? The subgraph isomorphism problem is simplified here by fixing the node

correspondences based on the node labels. Order preservation is relaxed from the subgraph

isomorphism problem by permitting the insertion of nodes and the insertion and removal of edges.

Permissible order-preserving modifications are formalized in terms of dominators and post-

dominators.

6.5 Workflow Conformance Checking using Alloy
Alloy is a declarative programming language. In a declarative programming language, a model is

built upon a description of the behavior of the system, without defining the mechanisms for that

behavior. The more constrained the description of the system, the more limited are the behaviors.

This allows very concise models to be constructed and analyzed (D. Jackson, 2002).

open util/graph[Step]
abstract sig Step {
 -- edges in the Contractor's workflow
 v : set Step,
 -- dominator tree
 idom2 : one Step,
 ipostdom2 : one Step
}
abstract sig Foundation extends Step {
 -- edges in the IFP workflow
 w : set Foundation,
 -- dominator tree
 idom1 : one Step,
 ipostdom1 : one Step
}
-- distinguished Start and End nodes
one sig Start, End extends Foundation {}

Figure 6-2: Alloy Implementation of Workflow Process

Figure 6-2 shows the Alloy implementation of workflow process, and Figure 6-3 presents the Alloy

implementation of a well-formed workflow process. Step is used to denote the set of all nodes that

are involved in the model and v is used to denote the set of all edges that are incident with nodes

in Step. Two edges are called incident, if they share a node. Foundation and w are used to model

a workflow. Start and End are predefined as nodes in Foundation. Foundation is a subset of Step

and w is the set of all edges that are incident with nodes in Foundation. w and v are independent.

In the Alloy implementation, nodes denote the set of all nodes (i.e. a set of Step in Alloy) and e

 79

denotes the set of all edges in the workflow. In this case, the edges are represented by a binary

relation between two nodes (i.e. e : Step → Step) (Tao Lue Wu, 2015).

pred wellFormed[nodes : set Step, e : Step->Step] {
 -- nodes includes Start and End
 Start in nodes
 End in nodes
 -- all nodes are reachable from Start
 nodes in Start.*e
 -- Start has no incoming edges
 no e.Start
 -- End is reachable from all nodes
 nodes in *e.End
 -- End has no outgoing edges
 no End.e
}

Figure 6-3: Alloy Implementation of Well-Formed Workflow Process	

Figure 6-4 shows an excerpt of the Alloy code for workflow conformance checking that performs

the identification of skip edges based on the dominator analyses. An expression such as n.idom1

evaluates to the immediate dominator of node n in the specification workflow. An expression such

as n.ˆidom2 evaluates to the set of all dominators of n in the customized workflow. Here idom1 and

idom2 are functional binary relations that map nodes to their immediate dominator in the

specification or customized workflow, respectively. The caret (ˆ) operator computes the transitive

closure of a binary relation (i.e., finds the entire set of dominators). This code is more succinct in

Alloy than it would be in a conventional imperative programming language (Golzarpoor et al.,

2016).

fun skips[] : Step -> Step { { s,t : Step |
 -- source -> target is an edge in the customized workflow and
 s->t in v and (
 -- target's original immediate dominator is not in its new dominators
 t.idom1 not in (s + t.^idom2)
 or
 -- or source's original immediate post-dominator is not in its new post-dominators
 s.ipostdom1 not in (t + s.^ipostdom2)
) } }

Figure 6-4: Alloy Specification (Excerpt) of Workflow Conformance for Steps 4 and 5 of the Algorithm

The Alloy conformance checking algorithm has been applied to several different test cases. For

example, Figure 6-5 shows the Alloy visualization of the conformance check of example workflow

W9 from Figure 4-3. Figure 6-5(a) shows the specification workflow (A →	 B →	 C →	 D).

 80

Figure 6-5(b) shows the customized workflow (W9 in Figure 4-3). Figure 6-5(c) shows the

conformance analysis. The gray nodes are those that exist in both the specification and customized

workflows. The white nodes are new nodes in the customized workflow. Black edges are those

that exist in both workflows. Grey edges exist in the specification workflow, but have been deleted

in the customized workflow (B → C). Green edges are new legal forwards edges in the customized

workflow (B → N, N → P, and P → C).

(a) Specification

Workflow

(b) Customized Workflow

(W9)

(c) Conformance Checking

Analysis

Figure 6-5: Visualization of Conformance Checking for Workflow W9 of Figure 4-3

As discussed in Chapter 4, workflow W9 does not conform to the specification workflow. This is

illustrated in the analysis by the red skip edge (P → D). The dominator subset analysis reports that

edge P → D has a problem. Without edge P → D the D’s dominators in the specification workflow

B

C

D

A

End

Start

N

P

C

D

A

B

End

Start

B

C

deleted

N

skips

D

P

forward

forward

skips

A

End

Start

B

C

D

A

End

Start

N

P

C

D

A

B

End

Start

B

C

deleted

N

skips

D

P

forward

forward

skips

A

End

Start

B

C

D

A

End

Start

N

P

C

D

A

B

End

Start

B

C

deleted

N

skips

D

P

forward

forward

skips

A

End

Start

B

C

D

A

End

Start

N

P

C

D

A

B

End

Start

B

C

deleted

N

skips

D

P

forward

forward

skips

A

End

Start

B

C

D

A

End

Start

N

P

C

D

A

B

End

Start

B

C

deleted

N

skips

D

P

forward

forward

skips

A

End

Start

B

C

D

A

End

Start

N

P

C

D

A

B

End

Start

B

C

deleted

N

skips

D

P

forward

forward

skips

A

End

Start

B

C

D

A

End

Start

N

P

C

D

A

B

End

Start

B

C

deleted

N

skips

D

P

forward

forward

skips

A

End

Start

B

C

D

A

End

Start

N

P

C

D

A

B

End

Start

B

C

deleted

N

skips

D

P

forward

forward

skips

A

End

Start

B

C

D

A

End

Start

N

P

C

D

A

B

End

Start

B

C

deleted

N

skips

D

P

forward

forward

skips

A

End

Start

 81

are A, B and C, and in the customized workflow are A, B, N, P, and C; whereas with the P →	D

edge D’s dominators in the customized workflow are A, B, N, and P: it is acceptable to add N and

P, but not to remove C. The post-dominator subset analysis reports that edge P → D has a problem.

Without P → D edge the B’s post-dominators in the specification workflow are C and D, and in

the customized workflow are N, P, C, and D; whereas with the P →	D edge, B’s post-dominators

in the customized workflow are N, P, and D: it is acceptable to add N and P, but not to remove C.

As a consequence of the dominator and post-dominator analysis, the edge P → D is reported as a

skip edge.

6.6 Validation Case Study
The developed workflow conformance checking algorithm is demonstrated in this section to check

the conformance of the more detailed, customized RFI workflow processes presented in

Figure 4-4. The code listing for the RFI workflow conformance checking is presented in Appendix

D. The RFI workflow process shown in Figure 4-4(a) is in conformance with the IFP process

presented in Figure 4-2, and the Alloy implementation correctly identifies it as a conformant

workflow. The customized RFI workflow process in Figure 4-4(b) is a non-conformant workflow

process. The result of the conformance checking analysis for this workflow is shown in Figure 6-6.

The visual conventions in Figure 6-6 are similar to the conventions in Figure 6-5: gray nodes are

those in the specification workflow; white nodes are those added in the customization; black edges

exist in both workflows; gray edges are those that have been removed in the customization; green

edges are new forward edges; blue edges are new back edges; red edges are skips.

One of the purposes of this customization was to enable direct response of the Coordinator to the

request by adding the path from the “Respond Directly” activity to the “Response Close Out”

activity, bypassing the responders and the consolidator. Since bypassing steps is not permitted by

the inheritance rules, this customization is identified as non-conformant with the

specification (Figure 4-2). The Alloy implementation correctly identifies the edge from “Respond

Directly” to “Response Close Out” as the skip edge.

 82

Figure 6-6: Conformance Checking Analysis of a Non-Conformance RFI Workflow Process

Respond

Approve

Consolidate_and_Endorse

Respond_Warning Clarification_Required_Responders

Response_Close_Out

Consolidate_and_Endorse_Warning

Verify_for_Clarification

Verifiy_for_Clarification_Warning Clarification_Required_Consolidator

Initiate_RFI

Verify_Details

Select_Coordinator

End

Response_Notification_to_Stakeholders

Sufficient_Detail

Clarify

Respond_Directly

skips

Select_Participants

Verify_and_Update_Participants

Start

 83

6.7 Automated Workflow Conformance Checking Tool
The conformance checking algorithm developed with the Alloy language enables the analysis and

the conformance checking of any customized workflow process with a specification workflow;

however, the customized and the specification workflows should be modeled in Alloy syntax. It

would be very time-consuming and error-prone to manually convert customized and specification

workflows to Alloy accepted format. Therefore, two Java applications were developed to

streamline the conformance checking process.

Windows Workflow Foundation (WF), as a component of the Visual Studio, includes a Workflow

Designer. The Workflow Designer is used for developing WF workflow processes, which are

stored as XAML files – a declarative markup language. A Java application was developed to parse

the contents of the XAML files and translate them to the proper format accepted by the Alloy

Analyzer. This application automatically identifies whether the workflow is in FlowChart format

or StateMachine format (0, 5.2.2), and translates them into an Alloy file (.als). The documentation

for the Translator application is presented in Appendix E, and the code listing is revealed

in Appendix F.

In addition, an Automator application was developed which takes the .als files and visualization

theme files (.thm) of the specification and customized workflow processes, send them to the Alloy

Analyzer for conformance checking, and provide the final analysis result in a visualization file

(.dot). The visualization result can be viewed by the Graphviz application. Figure 6-6 is a sample

of the visualization that was generated automatically. The documentation for the Automator

application is presented in Appendix G and the code listing is displayed in Appendix H.

Figure 11: Three Components of the Developed Conformance Checking Tool

Workflow Designer Workflow Analyzer Visualizer

Design Specification
Workflow (i.e. IFP)

Design Customized
Workflow

Accept Inheritance
Rules

Analyze
Conformance

Accept Visualization
Theme

Visualize the
Analysis

 84

In summary, the automated workflow conformance checking tool is comprised of three

components: (1) Workflow Designer, (2) Workflow Analyzer, and (3) Visualizer, which work

together to streamline the process of workflow conformance checking. Specification and

customized workflows are designed in Visual Studio Workflow Designer and are stored as XAML

files. The Translator.java application converts XAML files (state-machine or flowchart) to Alloy

format. The Analyzer uses the developed Alloy algorithm to analyze and compare workflows using

inheritance rules and determine conformance or non-conformance of the customized workflows

compared to the specification workflow. The result of the analysis is then displayed via the

Visualizer.

 85

Chapter 7
Improving Process Interoperability with IFP

7.1 Process Interoperability
Process interoperability is the interaction and collaboration of workflow processes between

different organizations. Process interoperability facilitates cross-organizational cooperation and

exchange of information to achieve a common goal. Usually, it is required in client-supplier

relationships, or in partnership situations, where workflow processes from different organizations

connect and exchange information.

Process interoperability is closely related – but is distinct from – process integration. The focus of

process integration is intra-organizational, and the focus of process interoperability is

inter-organizational process interactions. Process integration or orchestration is the management

of workflow processes within one organization or business unit, and is typically controlled by a

single workflow engine. Process interoperability or choreography is the collaboration and

management of interactions among workflow processes from different organizations or business

units, and is the interaction of processes that are controlled by separate workflow engines.

Process interoperability is not limited to the connection of workflow processes and the flow of

information between different organizations. It requires communicating the purpose and the

structure of each workflow process to the other, and understanding how each collaborating

company operates. It is a consistent approach to defining and managing arrangements between

processes that expand over multiple organizations. Process interoperability typically focuses on

the common processes. Many components of the common processes are similar, and there are

equivalent components in other processes. Understanding this similarity enables the reuse of

process components, and facilitates improved collaboration between processes (“The Australian

government business process interoperability framework,” 2007).

Process interoperability facilitates interaction of workflow processes by providing: (1) alignment

between workflow processes via sharing the process structure, and updating the flow of activities

and the role of participants in each organization; (2) efficiency through the reuse of proven

 86

practices that are implemented as processes; (3) security and privacy by sharing only a high-level

public view of the processes, abstracting from the proprietary details; and (4) stability by sharing

the current status of the interacting workflow processes, so that any interruption in one process is

communicated to the other. These are what industry foundation processes offer, and are

demonstrated in this chapter for some of the common workflow processes in the construction

industry.

7.2 Process Interoperability Approaches
There are three different approaches for interoperation of workflow processes (Chen, Doumeingts,

& Vernadat, 2008; Chen, Vallespir, et al., 2008):

1. Federated approach, in which there is no common structure or standard format between the

components of the interoperating processes. In this approach, companies must start to

identify all the components that are required for interoperation, and accommodate

interoperation based on an agreement. This approach is costly, difficult, and

time-consuming.

2. Unified approach, in which a common model at a meta-level is available. The meta-level

model is not a structured model, but offers a method of mapping between the components

of processes, manually or by means of semantic equivalence.

3. Integrated approach, in which an accepted model with a common structure and specific

predefined components is available. This predefined structured model is not a standard but

is accepted by all process stakeholders. This model facilitates essential interoperability

between workflow processes, and is the starting point to expand and build on the additional

required components.

The IFP system offers a structured model and the required components for improving process

interoperability between workflow processes via an integrated approach. The IFP interoperability

model proposed in this chapter facilitate exchange of information between workflow processes by

defining essential interfaces. Additional identified components that are required for

interoperability, and are not part of the IFP, are added to the model through a combination of

unified and federated approach.

 87

7.3 Process Interoperability in AEC/FM Domain
The life-cycle of any large-scale construction project consists of distinctive phases from

requirements collection, and feasibility study; to preliminary design, detailed design, construction,

commissioning, and operation. A large amount of data collection and information exchange occurs

between the owner and the project consultant within the Front End Planning (FEP) stage, at the

beginning of the project within feasibility, concept, and detailed scope definition sub-phases. This

information is extensive in nature and is incorporated into project documents. Additional

Information is accumulated during the next phases of the project, and is transferred to several other

project stakeholders, such as consultants, general contractors, sub-contractors, vendors, and

suppliers, to be handed over at the end of the project to the operation team. Interoperability in the

AEC/FM domain facilitates the flow of this extensive amount of information and project

documents, among project collaborators and stakeholders, throughout the project life-cycle

(Construction Industry Institute, 2015).

Currently, management of large-scale construction projects is almost entirely process-based.

Different aspects of a project are governed by sets of workflow processes that are carefully crafted

for their specific purposes. Workflow processes employed in management of a construction project

are considered a key component of project success. They enable exchange of project documents

and information, and facilitate communication and collaboration among project stakeholders.

Table 7-1 presents a sample of common workflow processes in a large-scale construction projects.

As such, interoperability in AEC/FM domain needs to be facilitated through employment and

interaction of workflow processes.

Table 7-1: A Sample of Common Workflow Processes in Large Construction Projects

PROCESS PURPOSE
Change Management Integrated project change control for handling of change requests
Request for Information (RFI) Query for information and controlled response, review, and approval
Transmittal and Submittal Managing information exchange between project document control and

external parties such as clients, vendors, and contractors
Design Review and Approval Ensures a new set of documents go through a defined review and approval

process
Procurement Management Manages the procurement process document exchange and approvals
Materials Management Ensures that the materials and equipment are obtained at a reasonable cost,

and are available when needed

 88

Contract Management Pre-award & post-award contract administration
Risk Management Identifying and managing project risks
Interface Management Controlling interfaces and managing collaboration between scopes of

work
Deliverables Management Tracking progress of project deliverables

Process interoperability in the domain of the construction industry is the seamless exchange of

information between workflow processes, to facilitate exchange of project documents and

information between project stakeholders. The IFP interoperability model addresses

interoperability from the perspective of internal process standardization and conformance,

corporate process and practice assurance, and interface management between stakeholders.

7.4 IFP Interoperability Model
Process interoperability is a vital component of cross-organizational alignment and effective

collaboration through workflow processes. However, sharing the details of complex workflow

processes and usually proprietary specifications of organizational workflow processes to establish

a seamless linkage between workflow processes of organizations is difficult. Organizational

processes are part of the intangible assets of each organization. Organizations are not willing to

disclose the details and specifications of their organizational processes, but they can share a high-

level outline of their workflow processes to establish interaction with other organizations’

processes. This is the approach of the IFP interoperability model.

The IFP interoperability model offers a unique solution to facilitate process interoperability

between common and high volume construction industry workflow processes, such as design

review, change request, request for information, and inbound outbound transmittals. A complex

workflow process that is in conformance with an IFP includes all the core activities of the IFP and

conforms to the structure of the IFP. The IFP interoperability model facilitates process

interoperability by defining the high-level IFP structure of such processes as their public view, and

using this public view as the means for all the interactions and communications between processes.

An interface is defined for information exchange between processes according to the IFP ontology,

to facilitate exchange of different classes of data and information.

Figure 7-1 is an illustration of the IFP interoperability model for two RFI processes, and Figure 7-2

shows it for the interaction of a CR process and an RFI process.

 89

Figure 7-1: IFP Interoperability Model for Interaction of Two RFI Workflow Processes

Shared Services via API Connector
e.g. SharePoint or SAP

RFI Workflow Process
(Original Process)

RFI Workflow Process
(Subservient Process)

The External View of the Process is the RFI-IFP Process

The External View of the Process is the RFI-IFP Process

Shared Communication Services

Initiate RFI
by Initiator

Sufficient
Detail?NoClarify

by Initiator

Respond
by Responders

Consolidate &
Endorse by

Consolidator

Verify Details
 by

Coordinator

Yes

Approve to
Proceed? YesNo

Response
Close Out

Initiate CR
by Initiator

Sufficient
Detail?No

Clarify/
Rework

by Initiator

Review &
Analyze

Impacts by
Manager

Consolidate &
Approve by
Approver

Verify Details
 by

Coordinator

Yes

Approve/
Reject?

Response
Close Out

Approve?

Yes

No

RFI Process

CR Process

Initiate RFI
by Initiator

Sufficient
Detail?NoClarify

by Initiator

Respond
by Responders

Consolidate &
Endorse by

Consolidator

Verify Details
 by

Coordinator

Yes

Approve to
Proceed? YesNo

Response
Close Out

Initiate CR
by Initiator

Sufficient
Detail?No

Clarify/
Rework

by Initiator

Review &
Analyze

Impacts by
Manager

Consolidate &
Approve by
Approver

Verify Details
 by

Coordinator

Yes

Approve/
Reject?

Response
Close Out

Approve?

Yes

No

RFI Process

CR Process

 90

Figure 7-2: IFP Interoperability Model for Interaction of a CR and an RFI

The IFP interoperability model employs the IFP ontology components including the core structure,

the abstraction level, the data structures, and the three categories of workflow inheritance

– structural, organizational, and temporal – to facilitate interaction of workflow processes by:

• Sharing the high-level structure of the interacting workflow processes i.e. IFP as their

public view, which includes core activities and their relationships;

• Sharing the roles and the hierarchy of authorization associated with the high-level structure

of the interacting processes;

• Defining the time-bounds and the response due dates for interactions;

• Exchanging data sets that are important for understanding or accurate interpretation of the

context of communication, such as general project, process, and contract information, e.g.

Project ID, project phase, discipline, and contract ID; and

• Communicating any state change or status update between the high-level structure of the

interacting processes.

A workflow process in any step can initiate another workflow process, which is referred to as the

subservient process. The initiation is an important step in which the high-level structure of

Shared Services via API Connector
e.g. SharePoint or SAP

Initiate RFI
by Initiator

Sufficient
Detail?NoClarify

by Initiator

Respond
by Responders

Consolidate &
Endorse by

Consolidator

Verify Details
 by

Coordinator

Yes

Approve to
Proceed? YesNo

Response
Close Out

Initiate CR
by Initiator

Sufficient
Detail?No

Clarify/
Rework

by Initiator

Review &
Analyze

Impacts by
Manager

Consolidate &
Approve by
Approver

Verify Details
 by

Coordinator

Yes

Approve/
Reject?

Response
Close Out

Approve?

Yes

No

RFI Process

CR Process

The External View of the a Customized Change Request Process is the CR-IFP

The External View of a Customized RFI Process is the RFI-IFP

Initiate RFI
by Initiator

Sufficient
Detail?NoClarify

by Initiator

Respond
by Responders

Consolidate &
Endorse by

Consolidator

Verify Details
 by

Coordinator

Yes

Approve to
Proceed? YesNo

Response
Close Out

Initiate CR
by Initiator

Sufficient
Detail?No

Clarify/
Rework

by Initiator

Review &
Analyze

Impacts by
Manager

Consolidate &
Approve by
Approver

Verify Details
 by

Coordinator

Yes

Approve/
Reject?

Response
Close Out

Approve?

Yes

No

RFI Process

CR Process

Shared Communication Services

 91

workflow processes, the hierarchy of authorization, the time-bounds and due dates, and different

data sets are exchanged; first from the original process to the subservient process, and then from

the subservient process to the original one. The original and subservient processes continue

interaction and communication after the initiation until the subservient process is completed and

closed out. The subservient process can initiate another process, and this order can continue, but

the subservient process is closed out before the original process resumes.

The communication between workflow processes is performed completely through message flows.

The flow of messages is separate from the control-flow, which controls the execution order and

current state of the process. The control-flow between the steps of any workflow process is

controlled by a workflow engine, and the control-flow of one workflow process cannot be

transferred to another workflow which is managed by another workflow engine. BPMN 2.0

process modeling standard uses pools to represents all the processes internal to one organization

and the sequence control-flow between the activities, and defines the communication between

different organizations’ processes through message flow between the pools.

7.5 Implementation Using Workflow Foundation (WF) Technology
Microsoft Workflow Foundation (WF) technology, which was used in Chapter 5 to implement the

request for information (RFI) workflow process, is used in this section to demonstrate process

interoperability between two RFI workflow processes. The implementation is according to the

model presented in Figure 7-1.

The RFI workflow process is defined as a state-machine model, each activity is represented as a

state. A state class is used to define the RFI core activities, which are inherited by customized RFI

activities that add to or modify the functionality of core activities. The RFI-IFP class is defined

using the core activities. Customized RFI workflows inherit the functionality of the RFI-IFP class

and use customized RFI activities to enhance the functionality of the core processes by

implementing additional states or modifying existing ones. Figure 7-3 represents this model which

is used for the RFI implementation.

An ideal situation for demonstrating process interoperability is to implement the interacting

workflow processes in separate systems that are managed by different workflow engines. In real

 92

circumstances, the technologies of these systems might be different and the technical and

information interoperability might need to be dealt with first, before addressing process

interoperability. In this case study, however, an Integrated approach is used to reduce the

complexity. Two identical customized RFI workflow processes (Figure 7-1) are implemented

using workflow foundation technology and their interactions are modelled as closely as possible

to an interoperability situation.

Figure 7-3: Modeling RFI Customized Workflows

The goal of this implementation is to validate the interaction and communication of two

customized RFI workflow processes via their high-level public view as RFI-IFP processes, with

the following purposes:

• Initiating an RFI process by, and in the middle of the execution of, another RFI process,

• Establishing a connection and exchanging the high-level (IFP) outline of processes, and

other essential information,

• Maintain communication between processes through exchange of messages,

• Communicate state changes and status updates between activities,

• Closing the initiated activity after providing the requested information to the initiating

process, and

• Using the high-level IFP structure as the means for all the interactions.

To establish the connection between workflow processes and initiate communication, Windows

Communication Framework (WCF) has been used. WCF is the infrastructure for sending and

RFI- IFP Workflow Class

Customized State Class
(e.g. Customized Responder)

State Class (RFI Activities)
(e.g. Initiator, Responder, …)

Customized RFI Class
Customized Activities

Core Activities

 93

receiving messages between different parties. Messages are defined as general-purpose containers

of data. The WCF object model supports sending messages using different data transfer protocols

and enables technical and information interoperability. Adding messaging activities with message

classes to workflow processes enable them to send and receive WCF messages (“Messaging

Activities,” 2016).

The following messaging activities in WCF are used to establish interaction and communication

between RFI workflow processes (“Messaging Activities,” 2016; White, 2013):

• InitializeCorrelation: establishes a correlation between messages prior to sending or

receiving them. Usually, correlation is initialized when sending or receiving a message.

• Send: Sends a message to a service.

• SendReply: Sends a message to a service and anticipates receiving a response.

• Receive: Receives an incoming message.

• ReceiveReply: Receives an incoming message and send a reply back.

The information that is exchanged between workflow processes through messaging activities can

generally be categorized into data fields, metadata fields, and attached documents. The IFP

interoperability model facilitates the exchange of information between workflow processes via

massages to provide the right people with the required information at the right time.

Figure 7-4: An Overall Exchange Record

The information exchange is conducted via an exchange record, and is comprised of data fields,

metadata fields, and documents (Figure 7-4). Each component is defined as a data class, e.g.

Process Specification Data class, and Process Technical Data Class. Customized workflow

processes that inherit from, and are in conformance with, IFP processes can exchange information

Exchange Record

Data Fields

Include process
specification, process

technical, and project data

Meta-Data
Fields

Include process and
document meta-data

Attached Documents

Include primary and
markup files

 94

seamlessly because the data classes share common fields. Figure 7-5 presents an example of data

objects of an exchange record, and Figure 7-6 shows an example of message exchange between

two RFI workflow processes.

Abstract Class ProjetData
{
Project Name
Project ID
Project Phase
Discipline
Company
Department
Facility
Unit
}
Abstract Class ProcessSpecificationData
{
Process ID
Title
Description
Originating Company
Initiator
Requested by
Request date
Priority
Due Date
Recipient Company
Responder
Response date
Response
Response Comment
Remarks
Actions
Automated Transmittal Receipt
Return Code
External Approval Tracking
Visibility
}

Abstract Class ProcessTechnicalData
{
3rd Party Reference No.
Distribution Matrices
Responsibility Matrices
Check in and check out
Searching
Internal workflow
Audit Ability
To-do Lists
Checklists
Transmittal preparation
Document due-date tracking
Overdue document reports
Supplier document indexes
Previous transmittal response history
Relationships -- External linked data
}
Abstract Class Document Metadata
{
Document ID
Document Type
File format
Title
File Name
Issue Date
Issue Purpose
Revision ID
Document Size
Confidential?
Regulatory?
Allocated Doc. Number
Markup Date
Document Status
Document Update Date
Final Response
Approval Status
Approver
Approval Date
Page Count
Summary
}

Figure 7-5: Examples of Data Objects of an Exchange Record

 95

Figure 7-6: A Snapshot of Message Exchange Between Activities of Two RFI Processes

7.6 Discussion
To improve interoperability, the degree of interoperability among interoperable systems needs to

be evaluated. This requires interoperability to be measured, and particular metrics need to be

defined for this purpose. Although some research studies have been performed to deal with

interoperability measurement and to define particular criteria for evaluating the degree of

interoperability, the approaches mainly focus on development of different types of maturity models

to evaluate the degree of interoperability. Developing interoperability measurement metrics is

becoming an important challenge, due to the difficulty of identifying the attributes to characterize

effective interoperability (Chen, Vallespir, et al., 2008).

One approach for evaluating the degree of interoperability is to categorize interoperability

measures. Three types of interoperability measurement are identified: (1) interoperability

potentiality measure, which evaluates the key attributes of a system, and its conformance with

standard models and practices to assess the potential of the system to interoperate with any other

 96

system; (2) interoperability compatibility measure, which is performed in the design or

reengineering stage of a system, identifies barriers and evaluates the compatibility of two systems

to exchange information; and (3) interoperability performance measure, which is performed during

the test or operation phase of interoperable systems (Chen, Vallespir, et al., 2008).

To justify the role of the IFP system in improving process interoperability, this study presented the

benefits of the IFP system and IFP interoperability model, and functionally demonstrated a basic

implementation of interoperability for validation of the interoperability property of the IFP system.

The IFP interoperability implementation is aligned with the interoperability potentiality and

compatibility measures, but is not associated with the interoperability performance measure,

because full-scale implementation of IFP processes is beyond the scope of this research.

 97

Chapter 8
Conclusions and Future work

8.1 Summary and Conclusions
This study introduces the novel theory of Industry Foundation Processes (IFP) modeling system

and offers an ontology and framework for its development and application. The IFP processes are

defined as structured processes with the essence of industry best practices, possessing particular

features, such as core structure, abstraction level, and inheritance rules that enable them to

systematically be expanded to more complex processes tailored for specific types and conditions

of construction projects. Explicit workflow inheritance rules allow methodical customization of

IFP processes, and enable automated conformance checking of any workflow with its associated

IFP process.

This study discusses the workflow inheritance concept and compares it with the traditional

programming inheritance concept. It clarifies that they are different, and both are necessary for

implementation of the IFP system. A prototype example of an IFP for the Request for Information

(RFI) process – a commonly used process in the construction industry – was developed, using the

C# programming language and Microsoft Workflow Foundation technology, to demonstrate the

concept of an IFP system. The concept and methodology introduced, however, can be applied to

any other common process in the construction industry, such as risk management, contract

management, quality management, lessons learned, and processes in other domains.

In addition, automated conformance checking of any workflow with its associated IFP, based on

the workflow inheritance rules, has been addressed in detail by developing an algorithm in a first-

order logic language. Alloy, a structural modelling language based on first-order logic, is used to

compare a customized version of a workflow with its associated IFP. The XAML file of the

developed workflow in Visual Studio environment contains the structure of the workflow. This

structure is transformed into the format accepted by Alloy to automate the conformance checking

process directly from the workflow development environment.

 98

Moreover, the core structure offered by the IFP system for common workflow processes in the

construction industry, the workflow inheritance rules, and the conformance of customized

workflow processes with the IFP processes are the basis for the IFP process interoperability model.

The IFP interoperability model defines the external view of customized processes that are in

conformance with an IFP to be the IFP process, and thus the exchange of information can be

performed via interfaces that are defined between steps of the IFP process.

8.2 Contributions
The contributions of this study are summarized in seven main areas: (1) Developing theory of the

IFP modeling system, (2) formalizing development approaches, (3) defining an ontology for the

IFP processes, (4) validating the functionality of the system via implementation of the RFI process,

(5) developing a workflow conformance checking algorithm, (6) developing an automated

workflow conformance checking tool, and (7) proposing an IFP interoperability model. A brief

description of these contributions is discussed in this section:

1. IFP System Theory – proposes the concept of foundation processes containing the essence

of best practices, and how customized workflow implementations, for specific corporate

and project situations, can be derived from the foundation processes analogous to the way

that classes inherit properties from base classes.

2. Development Approaches – formalize the methods and mechanisms that can be used to

transform best practices into structured workflow process, in such a way that the essence

of the best practices is retained.

3. IFP Ontology – defines the required components of the IFP system, and establishes a

framework for inheritance and customization of IFPs for specific corporate and project

circumstances.

4. Deployment of the IFP system – investigates the applicability and usefulness of the IFP

concept by customizing and implementing an IFP process in a workflow management

system.

 99

5. Workflow conformance checking algorithm – offers a novel methodology for analyzing

and comparing the structure of two workflow processes. A first-order logic programing

language was used for implementation of the algorithm.

6. Automated workflow conformance checking tool – is a combination of two Java-based

applications to automate the process of workflow conformance checking from process

design to visualization of the conformance checking results.

7. IFP interoperability model – proposes an interoperability model based on the IFP system

to facilitate process interoperability between workflow processes that are in conformance

with the IFP system.

8.3 Limitations
Despite the potential benefits of the industry foundation processes for the modeling of construction

industry processes, the methodology proposed in this study has particular limitations:

• Although the theory and the application of the IFP modeling system has been validated by

deployment of IFP processes, and by functional demonstration of the potential value

through conformance and interoperability benefits in this study, a full scale validation via

implementation of the IFP system in one or a few real projects has not been performed yet.

Such a full scale implementation and validation would be a better examination and

evaluation for the practical benefits of the IFP system in the construction industry.

• In the construction industry, workflows are often executed in a distributed setting. The

prototype implementation presented in this study has been developed using Microsoft

Workflow Foundation technology that fully supports distributed systems, but it has been

implemented as a desktop application. Since Workflow Foundation facilitates separation

of process design and process enactment from the type of application, and because the same

classes that are typically used in distributed systems have been used in this desktop

application, the implemented system can be considered an impartial validation for

implementation of the RFI process. However, it is still a limitation of this study which can

be addressed in a future work by developing a web-based distributed system.

 100

• The IFP system and its ontology components have been defined based on careful

investigation and analysis of several process implementations, and consultation with

industry experts; however, having access to and analyzing process implementations in

more projects might lead to some updates on the definition of components or details.  

8.4 Recommendations for Future Work
Introducing the theory, application, and potential value of the IFP system is expected to open new

research initiatives to enhance process conformance and improve process interoperability in the

domain of the construction industry. The following recommendations for future research are

proposed based on this thesis:

• The inheritance rules that have been used for workflow conformance checking in this study

are strict rules that do not allow skipping any of the core activities or changing the sequence

of them. As a future work these rules can be relaxed to some extent, i.e. to allow change in

the sequence of particular core activities, or to allow skipping particular core activities in

certain situations, and investigating how these changes affect the conformance checking

algorithm.

• To validate the functionality and benefits of the IFP process modeling system it would be

ideal to use the IFP system for a set of IFP processes in one or more construction projects.

However, such full deployment of the IFP system to fulfill the requirements of a real

construction project is a complex task and beyond the scope of this research. In addition,

application of such a system in an existing project as a case study requires several types of

permits and numerous resources, which would not be feasible as part of this research.

• While industry partners and experts consulted in this research process highly value the

process modeling system offered by the IFP system, and its application and benefits have

been validated by functional demonstration, the effect of improved conformance and

interoperability has not been evaluated with any survey or metrics on the project

performance. Future research that would compare its deployment on a large set of mega-

projects with current workflow management and implementations protocols would be

worthwhile for also validating its impact on project performance.

 101

• The automated conformance checking algorithm and tool provides a backward

conformance checking approach, in which the structure of an implemented workflow

process is analyzed against the IFP, to discover non-conformant behavior. Integrating

inheritance rules and conformance checking algorithm into process design tools, to

facilitate forward conformance checking by notifying the developer of a non-conformance

behavior, in the process design stage, is also considered a future work.

 102

REFERENCES

Aalst, W. M. P. van der. (2004). Business Process Management Demystified: A Tutorial on

Models, Systems and Standards for Workflow Management. In J. Desel, W. Reisig, & G.

Rozenberg (Eds.), Lectures on Concurrency and Petri Nets (pp. 1–65). Springer Berlin

Heidelberg. Retrieved from

http://link.springer.com.proxy.lib.uwaterloo.ca/chapter/10.1007/978-3-540-27755-2_1

Al Qady, M., & Kandil, A. (2013). Document Discourse for Managing Construction Project

Documents. Journal of Computing in Civil Engineering, 27(5), 466–475.

https://doi.org/10.1061/(ASCE)CP.1943-5487.0000201

Anand, P., & Singh, M. D. (2011). Understanding the Knowledge Management. International

Journal of Engineering Science and Technology, 3(2), 926–939.

Basten, T., & van der Aalst, W. M. P. (2001). Inheritance of behavior. The Journal of Logic and

Algebraic Programming, 47(2), 47–145. https://doi.org/10.1016/S1567-8326(00)00004-7

Benchmarking & Metrics Implementation Toolkit. (2004). Construction Industry Institute.

Botha, A., Kourie, D., & Snyman, R. (2008). Coping with Continuous Change in the Business

Environment: Knowledge Management and Knowledge Management Technology (1

edition). Oxford, UK: Chandos Publishing.

Caldas, C., Soibelman, L., & Gasser, L. (2005). Methodology for the Integration of Project

Documents in Model-Based Information Systems. Journal of Computing in Civil

Engineering, 19(1), 25–33. https://doi.org/10.1061/(ASCE)0887-3801(2005)19:1(25)

Cardoso, J., Bostrom, R. P., & Sheth, A. (2004). Workflow Management Systems and ERP

Systems: Differences, Commonalities, and Applications. Information Technology and

Management, 5(3–4), 319–338. https://doi.org/10.1023/B:ITEM.0000031584.14039.99

 103

Chanmeka, A., Thomas, S. R., Caldas, C. H., & Mulva, S. P. (2012). Assessing key factors

impacting the performance and productivity of oil and gas projects in Alberta. Canadian

Journal of Civil Engineering, 39(3), 259–270. https://doi.org/10.1139/l11-128

Chen, D., Doumeingts, G., & Vernadat, F. (2008). Architectures for enterprise integration and

interoperability: Past, present and future. Computers in Industry, 59(7), 647–659.

https://doi.org/10.1016/j.compind.2007.12.016

Chen, D., Vallespir, B., Daclin, N., & others. (2008). An Approach for Enterprise

Interoperability Measurement. In MoDISE-EUS (pp. 1–12). Retrieved from http://ceur-

ws.org/Vol-341/paper1.pdf

Chung, B., Skibniewski, M., & Kwak, Y. (2009). Developing ERP Systems Success Model for

the Construction Industry. Journal of Construction Engineering and Management,

135(3), 207–216. https://doi.org/10.1061/(ASCE)0733-9364(2009)135:3(207)

Construction Industry Institute. (2015, August). 2015 CII Annual Conference. Boston,

Massachusetts. Retrieved from https://www.construction-institute.org/ac/2015/index.cfm

Cook, S. A. (1971). The Complexity of Theorem-proving Procedures. In Proceedings of the

Third Annual ACM Symposium on Theory of Computing (pp. 151–158). New York, NY,

USA: ACM. https://doi.org/10.1145/800157.805047

Dennis, G. D. (Gregory D. (2009). A relational framework for bounded program verification

(Thesis). Massachusetts Institute of Technology. Retrieved from

http://dspace.mit.edu/handle/1721.1/55097

Eén, N., & Sörensson, N. (2004). An Extensible SAT-solver. In E. Giunchiglia & A. Tacchella

(Eds.), Theory and Applications of Satisfiability Testing (pp. 502–518). Springer Berlin

 104

Heidelberg. Retrieved from http://link.springer.com/chapter/10.1007/978-3-540-24605-

3_37

El-Gohary, N., & El-Diraby, T. (2010). Dynamic Knowledge-Based Process Integration Portal

for Collaborative Construction. Journal of Construction Engineering and Management,

136(3), 316–328. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000147

El-Mashaleh, M., O’Brien, W., & Minchin, R. (2006). Firm Performance and Information

Technology Utilization in the Construction Industry. Journal of Construction

Engineering and Management, 132(5), 499–507. https://doi.org/10.1061/(ASCE)0733-

9364(2006)132:5(499)

Faust, B. (2007). Implementation of tacit knowledge preservation and transfer methods. In

International Conference on Knowledge Management in Nuclear Facilities. Retrieved

from http://www.fraserhealth.ca/media/Implementation-of-Tacit-Knowledge-

Presevation-and-Transfer-Methods.pdf

Froese, T. (2003). Future directions for IFC-based interoperability. Retrieved March 7, 2013,

from http://www.itcon.org/cgi-bin/works/Show?2003_17

GCR, N. (2004). Cost analysis of inadequate interoperability in the US capital facilities industry.

Retrieved from http://www.bentleyuser.dk/sites/default/files/nist_report.pdf

Georgakopoulos, D., Hornick, M., & Sheth, A. (1995). An overview of workflow management:

From process modeling to workflow automation infrastructure. Distributed and Parallel

Databases, 3(2), 119–153. https://doi.org/10.1007/BF01277643

Georgiadis, L., Tarjan, R. E., & Werneck, R. F. (2006). Finding Dominators in Practice. Journal

of Graph Algorithms and Applications, 10(1), 69–94. https://doi.org/10.7155/jgaa.00119

 105

Ghosh, S., Negahban, S., Kwak, Y. H., & Skibniewski, M. J. (2011). Impact of sustainability on

integration and interoperability between BIM and ERP - A governance framework. In

Technology Management Conference (ITMC), 2011 IEEE International (pp. 187–193).

https://doi.org/10.1109/ITMC.2011.5995975

Giaglis, G. M. (2001). A Taxonomy of Business Process Modeling and Information Systems

Modeling Techniques. International Journal of Flexible Manufacturing Systems, 13(2),

209–228. https://doi.org/10.1023/A:1011139719773

Gibbons, P., Arzt, N., Burke-Beebe, S., Chute, C., Dickinson, G., Flewelling, T., … others.

(2007). Coming to terms: Scoping interoperability for health care. Retrieved from

http://www.citeulike.org/group/15536/article/10705562

Golzarpoor, B., Haas, C. T., & Rayside, D. (2016). Improving process conformance with

Industry Foundation Processes (IFP). Advanced Engineering Informatics, 30(2), 143–

156. https://doi.org/10.1016/j.aei.2016.02.005

Governatori, G., & Sadiq, S. (2009). The journey to business process compliance. Handbook of

Research on BPM, 426–454.

Hollingsworth, D. (1995). Workflow Management Coalition - The Workflow Reference Model.

IIBA. (2015). A Guide to the Business Analysis Body of Knowledge (3rd ed. edition). Lightning

Source Inc.

IT Catalysts. (2013). Retrieved November 19, 2014, from http://www.itcatalysts.com

Jackson, D. (2002). Micromodels of software: lightweight modelling and analysis with Alloy.

ResearchGate. Retrieved from

https://www.researchgate.net/publication/239599105_Micromodels_of_software_lightwe

ight_modelling_and_analysis_with_Alloy

 106

Jackson, D. (2011). Software Abstractions: Logic, Language, and Analysis (revised edition

edition). Cambridge, Mass: The MIT Press.

Kang, Y., O’Brien, W., Dai, J., Mulva, S., Thomas, S., Chapman, R., & Butry, D. (2013).

Interaction Effects of Information Technologies and Best Practices on Construction

Project Performance. Journal of Construction Engineering and Management, 139(4),

361–371. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000627

Kang, Y., O’Brien, W. J., & Mulva, S. P. (2013). Value of IT: Indirect impact of IT on

construction project performance via Best Practices. Automation in Construction, 35,

383–396. https://doi.org/10.1016/j.autcon.2013.05.011

Kang, Y., O’Brien, W. J., & O’Connor, J. T. (2012). Analysis of information integration benefit

drivers and implementation hindrances. Automation in Construction, 22, 277–289.

https://doi.org/10.1016/j.autcon.2011.09.003

Kang, Y., O’Brien, W., Thomas, S., & Chapman, R. (2008). Impact of Information Technologies

on Performance: Cross Study Comparison. Journal of Construction Engineering and

Management, 134(11), 852–863. https://doi.org/10.1061/(ASCE)0733-

9364(2008)134:11(852)

Khan, W. A., Hussain, M., Latif, K., Afzal, M., Ahmad, F., & Lee, S. (2013). Process

interoperability in healthcare systems with dynamic semantic web services. Computing.

https://doi.org/10.1007/s00607-012-0239-3

Krishnakumar, N., & Sheth, A. (1995). Managing heterogeneous multi-system tasks to support

enterprise-wide operations. Distributed and Parallel Databases, 3(2), 155–186.

https://doi.org/10.1007/BF01277644

 107

Kubicek, H., & Cimander, R. (2009). Three dimensions of organizational interoperability.

European Journal of ePractice, 6. Retrieved from http://www.ifib-

consult.de/publikationsdateien/Kubicek_Cimander_ePractice_Journal_vol_6.pdf

Lee, L. L. (2005). Balancing business process with business practice for organizational

advantage. Journal of Knowledge Management, 9(1), 29–41.

https://doi.org/10.1108/13673270510582947

Lee, S., Thomas, S., Macken, C., Chapman, R., Tucker, R., & Kim, I. (2005). Economic Value

of Combined Best Practice Use. Journal of Management in Engineering, 21(3), 118–124.

https://doi.org/10.1061/(ASCE)0742-597X(2005)21:3(118)

Lengauer, T., & Tarjan, R. E. (1979). A Fast Algorithm for Finding Dominators in a Flowgraph.

ACM Trans. Program. Lang. Syst., 1(1), 121–141.

https://doi.org/10.1145/357062.357071

Lewis, G. A. (2013). Role of standards in cloud-computing interoperability. In System Sciences

(HICSS), 2013 46th Hawaii International Conference on (pp. 1652–1661). IEEE.

Retrieved from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6480040

Ly, L. T., Maggi, F. M., Montali, M., Rinderle-Ma, S., & van der Aalst, W. M. P. (2015).

Compliance monitoring in business processes: Functionalities, application, and tool-

support. Information Systems, 54, 209–234. https://doi.org/10.1016/j.is.2015.02.007

Malone, T. W., Crowston, K., & Herman, G. A. (2003). Organizing Business Knowledge: The

MIT Process Handbook. Cambridge, Mass: The MIT Press.

Mannhardt, F., Leoni, M. de, Reijers, H. A., & Aalst, W. M. P. van der. (2015). Balanced multi-

perspective checking of process conformance. Computing, 1–31.

https://doi.org/10.1007/s00607-015-0441-1

 108

Messaging Activities. (2016, April 21). Retrieved April 21, 2016, from

https://msdn.microsoft.com/en-us/library/ee358739(v=vs.110).aspx

Microsoft Developer Network. (2015a, April 21). A Developer’s Introduction to Windows

Workflow Foundation (WF) in .NET 4. Retrieved April 21, 2015, from

https://msdn.microsoft.com/en-us/library/ee342461.aspx

Microsoft Developer Network. (2015b, April 21). The Workflow Way: Understanding Windows

Workflow Foundation. Retrieved April 21, 2015, from https://msdn.microsoft.com/en-

us/library/dd851337.aspx

Mühlen, M. zur, & Shapiro, R. (2010). Business Process Analytics. In J. vom Brocke & M.

Rosemann (Eds.), Handbook on Business Process Management 2 (pp. 137–157).

Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-01982-1_7

O’Connor, J. T., & Dodd, S. C. (2000). Achieving integration on capital projects with enterprise

resource planning systems. Automation in Construction, 9(5–6), 515–524.

https://doi.org/10.1016/S0926-5805(00)00062-5

Project Change Management - Special Publication 43-1. (1994). Construction Industry Institute

(CII).

Project Management Institute. (2013). A Guide to the Project Management Body of Knowledge

(PMBOK® Guide)–Fifth Edition (5 edition). Newtown Square, Pennsylvania: Project

Management Institute.

Prosser, R. T. (1959). Applications of Boolean Matrices to the Analysis of Flow Diagrams. In

Papers Presented at the December 1-3, 1959, Eastern Joint IRE-AIEE-ACM Computer

Conference (pp. 133–138). New York, NY, USA: ACM.

https://doi.org/10.1145/1460299.1460314

 109

Schwartz, J. T., Dewar, R. B., Schonberg, E., & Dubinsky, E. (1986). Programming with Sets;

an Introduction to SETL. New York, NY, USA: Springer-Verlag New York, Inc.

Shahi, A., Haas, C., West, J., & Akinci, B. (2014). Workflow-Based Construction Research Data

Management and Dissemination. Journal of Computing in Civil Engineering, 28(2), 244–

252. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000251

Shan, Y., Goodrum, P. M., Zhai, D., Haas, C., & Caldas, C. H. (2011). The impact of

management practices on mechanical construction productivity. Construction

Management and Economics, 29(3), 305–316.

https://doi.org/10.1080/01446193.2010.538070

Shen, W. (2010). Systems integration and collaboration in architecture, engineering,

construction, and facilities management: A review. Advanced Engineering Informatics,

24(2), 196–207.

Shokri, S., Safa, M., Haas, C. T., Haas, R. C., Maloney, K., & MacGillivray, S. (2012). Interface

management model for mega capital projects. In Proc. of the 2012 Construction Research

Congress, Purdue University, IN, United States (pp. 447–456). Retrieved from

http://rebar.ecn.purdue.edu/crc2012/papers/pdfs/-242.pdf

Skibniewski, M., & Ghosh, S. (2009). Determination of Key Performance Indicators with

Enterprise Resource Planning Systems in Engineering Construction Firms. Journal of

Construction Engineering and Management, 135(10), 965–978.

https://doi.org/10.1061/(ASCE)0733-9364(2009)135:10(965)

State Machine Workflows. (2015, April 21). Retrieved April 21, 2015, from

https://msdn.microsoft.com/en-us/library/ee264171(v=vs.110).aspx

 110

Szykman, S., Fenves, S. J., Keirouz, W., & Shooter, S. B. (2001). A foundation for

interoperability in next-generation product development systems. Computer-Aided

Design, 33(7), 545–559. https://doi.org/10.1016/S0010-4485(01)00053-7

Taghiabadi, E. R., Fahland, D., Dongen, B. F. van, & Aalst, W. M. P. van der. (2013).

Diagnostic Information for Compliance Checking of Temporal Compliance

Requirements. In C. Salinesi, M. C. Norrie, & Ó. Pastor (Eds.), Advanced Information

Systems Engineering (pp. 304–320). Springer Berlin Heidelberg. Retrieved from

http://link.springer.com/chapter/10.1007/978-3-642-38709-8_20

Tang, P., & Akinci, B. (2012). Automatic execution of workflows on laser-scanned data for

extracting bridge surveying goals. Advanced Engineering Informatics, 26(4), 889–903.

https://doi.org/10.1016/j.aei.2012.07.004

Tao Lue Wu. (2015). Theoretical Foundation of Workflow Conformance (Undergraduate Student

Work Report). University of Waterloo.

The Australian government business process interoperability framework. (2007). Retrieved

November 7, 2016, from http://trove.nla.gov.au/version/42816666

Thomas, S., Lee, S., Spencer, J., Tucker, R., & Chapman, R. (2004). Impacts of

Design/Information Technology on Project Outcomes. Journal of Construction

Engineering and Management, 130(4), 586–597. https://doi.org/10.1061/(ASCE)0733-

9364(2004)130:4(586)

Ullmann, J. R. (1976). An Algorithm for Subgraph Isomorphism. J. ACM, 23(1), 31–42.

https://doi.org/10.1145/321921.321925

van der Aalst, W. M. (2002). Inheritance of dynamic behaviour in UML. MOCA, 2, 105–120.

 111

van der Aalst, W. M. ., & Basten, T. (2002). Inheritance of workflows: an approach to tackling

problems related to change. Theoretical Computer Science, 270(1–2), 125–203.

https://doi.org/10.1016/S0304-3975(00)00321-2

Van Der Aalst, W. M. P. (2003). Inheritance of business processes: A journey visiting four

notorious problems (Vol. 2472).

van der Aalst, W. M. P. (2014). Business process management as the “Killer App” for Petri nets.

Software & Systems Modeling. https://doi.org/10.1007/s10270-014-0424-2

Veer, H., & Wiles, A. (2008, April). Achieving Technical Interoperability - the ETSI Approach -

3rd edition. European Telecommunications Standards Institute (ETSI).

Weske, M. (2012). Business process management: concepts, languages, architectures. Berlin

[etc.]: Springer.

White, B. (2013). Pro WF 4.5. Berkeley, CA: Apress. Retrieved from

http://link.springer.com/10.1007/978-1-4302-4384-7

Zhai, D., Goodrum, P., Haas, C., & Caldas, C. (2009). Relationship between Automation and

Integration of Construction Information Systems and Labor Productivity. Journal of

Construction Engineering and Management, 135(8), 746–753.

https://doi.org/10.1061/(ASCE)CO.1943-7862.0000024

 112

Appendix A
Glossary of Terms

Automation – Utilization of electronic or computerized tools to make a task more efficient

Best Practice – A process or method that leads to superior results comparing to other means

BIM (Building Information Modeling) – The process of modeling buildings and infrastructures
for planning, design, construction, and/or management purposes

BPM (Business Process Management) – An approach for monitoring and optimizing business
processes within an organization

BPMN (Business Process Model and Notation) – A standard notation for modeling business
processes

CII (The Construction Industry Institute) – A consortium of multiple companies, in the
construction-related industries, working together to enhance business effectiveness and
sustainability within the industry

COAA (The Construction Owners Association of Alberta) – An association that provides
leadership to construction and industrial maintenance industries in Alberta

Conformance – The act of complying with a certain standards, guidelines, or specifications.

EPPM system – Electronic Product and Process Management System – A type of workflow
management system that is used specifically for managing mega capital projects

ERP (Enterprise Resource Planning) – A business management tool that allows a company to
manage its business activities

IFC (Industry Foundation Classes) – A neutral and open file format data model intended for
describing, exchanging, and sharing of data within the building and construction industry.

Inheritance – A mechanism in programming that allows a class to inherit features of another
class; it increases the reusability of system components

Integration – The ability of sharing information from multiple sources between two or more
systems.

Interoperability – The ability to communicate and exchange information, within different
information technology systems

IT (Information Technology) – The applications of computer-related systems used in the
processing and distribution of data

Mega-Project – Large scale capital projects with substantial impacts, typically involving
multiple stakeholders, and costing more than US1$ billion

 113

OOP (Object-Oriented Programming) - A programming language model that focuses on
manipulating data objects rather than the logic required to manipulate the data

Ontology – A formal description or specification of all aspects of a topic

PMI (The Project Management Institute) – A professional membership association for the
project, program, and portfolio management profession aimed to improve organizational
success

Workflow Engine – A software application that governs enactment of processes based on
predefined rules and specifications

Workflow Template – A predefined workflow that contains the most common activities and
relationships

Workflow Management System (WfMS) – A software system for managing, monitoring, and
executing workflow processes

 114

Appendix B
Samples of Core WF Code for Deployment of RFI Process

ActivityViews.cs file
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Activities;
using System.Windows.Forms;

namespace RFIProcessWorkflowActivities
{
 public class ResumeBookmarkObject
 {
 public string responder;
 public string consolidator;

 public ResumeBookmarkObject(string responder, string consolidator)
 {
 this.responder = responder;
 this.consolidator = consolidator;
 }
 };

 //starts the corresponding form
 public sealed class InvokeInitiatorView : CodeActivity {
 //get rfi id of the current workflow instance
 [RequiredArgument]
 public InArgument<int> RFI_id { get; set; }

 protected override void Execute(CodeActivityContext context)
 {
 //starts the initiator form
 Application.Run(new InitiatorView(RFI_id.Get(context)));
 }
 }

 public sealed class InvokeCoordinatorView : NativeActivity<string>
 {
 //get rfi id of the current workflow instance
 [RequiredArgument]
 public InArgument<int> RFI_id { get; set; }

 protected override void Execute(NativeActivityContext context)
 {
 CoordinatorView coordinatorView = new CoordinatorView(RFI_id.Get(context));
 coordinatorView.ShowDialog();
 Console.WriteLine("result coor = {0}\n", coordinatorView.result);
 this.Result.Set(context, coordinatorView.result);
 }
 }

 public sealed class InvokeInitiatorResponserView : NativeActivity<string>
 {
 //get rfi id of the current workflow instance
 [RequiredArgument]

 115

 public InArgument<int> RFI_id { get; set; }

 protected override void Execute(NativeActivityContext context)
 {
 InitiatorResponseView initiatorResponseView = new
InitiatorResponseView(RFI_id.Get(context));
 initiatorResponseView.ShowDialog();
 }
 }

 //starts the corresponding form
 public sealed class InvokeConsolidatorView : NativeActivity<string> {
 //get rfi id of the current workflow instance
 [RequiredArgument]
 public InArgument<int> RFI_id { get; set; }
 public InArgument<string> responder { get; set; }

 protected override void Execute(NativeActivityContext context)
 {
 ConsolidatorView consolidatorView = new ConsolidatorView(RFI_id.Get(context),
responder.Get(context));
 consolidatorView.ShowDialog();
 Console.WriteLine("result cons = {0}\n", consolidatorView.result);
 this.Result.Set(context, consolidatorView.result);
 }
 }

 //starts the corresponding form
 public sealed class InvokeResponderView : NativeActivity<string> {
 //get rfi id of the current workflow instance
 [RequiredArgument]
 public InArgument<int> RFI_id { get; set; }
 public InArgument<string> Responder { get; set; }

 protected override void Execute(NativeActivityContext context)
 {
 Console.WriteLine("Invoking responderview: {0}", Responder.Get(context));
 ResponderView responderView = new ResponderView(RFI_id.Get(context),
Responder.Get(context));
 responderView.ShowDialog();
 Console.WriteLine("result resp = {0}\n", responderView.result);
 this.Result.Set(context, responderView.result);
 }
 }

 public sealed class transitionView : NativeActivity
 {
 [RequiredArgument]
 public InArgument<string> BookmarkName { get; set; }

 public OutArgument<string> responder { get; set; }
 public OutArgument<string> consolidator { get; set; }

 protected override void Execute(NativeActivityContext context)
 {
 string name = BookmarkName.Get(context);
 Console.WriteLine("Creating Bookmark {0}", name);
 context.CreateBookmark(name, new BookmarkCallback(OnReadComplete));

 116

 }

 protected override bool CanInduceIdle
 {
 get { return true; }
 }

 void OnReadComplete(NativeActivityContext context, Bookmark bookmark, object state)
 {
 Console.WriteLine("OnReadComplete resp is = {0}",
((ResumeBookmarkObject)state).responder.ToString());
 Console.WriteLine("OnReadComplete cons is = {0}",
((ResumeBookmarkObject)state).consolidator.ToString());

 this.responder.Set(context, ((ResumeBookmarkObject)state).responder.ToString());
 this.consolidator.Set(context,
((ResumeBookmarkObject)state).consolidator.ToString());
 Console.WriteLine("Resuming bookmark");
 }
 }
}

InitiatorView.cs file
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;
using System.Data.SqlClient;

namespace RFIProcessWorkflowActivities
{
 public partial class InitiatorView : Form
 {
 private InitiatorViewObject initObj;
 private bool submitClicked = false;

 public InitiatorView(int rfi_id)
 {
 Console.WriteLine("in init view: {0}", rfi_id);
 // constructor will either load new rfi if rfi_id
 //does not exist in db, orwill load one from the db if one does
 initObj = new InitiatorViewObject(rfi_id);
 InitializeComponent();

 // these will always be there
 this.rfi_IDTextBox.Text = initObj.RFI_ID.ToString();
 this.createdDatePicker.Value = initObj.DateCreated;
 this.initiatorTextBox.Text = initObj.Initiator;
 this.statusTextBox.Text = initObj.Status;

 this.infoRequestedTextBox.Text = initObj.InfoRequested;
 this.reasonTextBox.Text = initObj.Reason;
 this.project_IDTextbox.Text = initObj.Project_ID;
 this.titleTextBox.Text = initObj.ProjectTitle;

 117

 if (initObj.RequiredByDate.HasValue) {
 this.requiredByDatePicker.Value = initObj.RequiredByDate.Value;
 }
 this.project_IDTextbox.Text = "Construction Project 3";
 }

 private void SubmitButton_Click(object sender, EventArgs e)
 {
 submitClicked = true;
 retrieveViewValues();
 if (initObj.IsIncomplete)
 {
 submitClicked = false;
 MessageBox.Show("Form is incomplete", "User Error");
 return;
 }
 else
 {
 if (recordExists()) {
 updateDB();
 }
 else {
 insertIntoDB();
 }
 this.Close();
 }
 }

 private void insertIntoDB()
 {
 // insert a RFI_ID one higher
 SqlConnection con = new
SqlConnection(RFIProcessWorkflowActivities.Properties.Settings.Default.RFI_INFO_DATABASEConnec
tionString);
 SqlCommand insertCommand = new SqlCommand("INSERT INTO
RFI_Submission_Table(RFI_ID, InfoRequested, Reason, DateCreated, Coordinator, Initiator,
ProjectTitle, Project_ID, Status, RequiredByDate) VALUES(@rf, @ir, @re, @dc, @co, @in, @pt,
@pi, @st, @rd)", con);
 con.Open();
 //@rf, @ir, @re, @dc, @co, @in, @pt, @pi, @st, @rd
 insertCommand.Parameters.AddWithValue("@rf", initObj.RFI_ID);
 insertCommand.Parameters.AddWithValue("@ir", initObj.InfoRequested);
 insertCommand.Parameters.AddWithValue("@re", initObj.Reason);
 insertCommand.Parameters.AddWithValue("@dc", initObj.DateCreated);
 insertCommand.Parameters.AddWithValue("@co", "Coordinator1");
 insertCommand.Parameters.AddWithValue("@in", initObj.Initiator);
 insertCommand.Parameters.AddWithValue("@pt", initObj.ProjectTitle);
 insertCommand.Parameters.AddWithValue("@pi", initObj.Project_ID);
 insertCommand.Parameters.AddWithValue("@st", "Awaiting Coordination");
 insertCommand.Parameters.AddWithValue("@rd", initObj.RequiredByDate);
 insertCommand.ExecuteNonQuery();
 con.Close();
 }

 private void updateDB()
 {
 SqlConnection con = new
SqlConnection(RFIProcessWorkflowActivities.Properties.Settings.Default.RFI_INFO_DATABASEConnec
tionString);

 118

 SqlCommand insertCommand = new SqlCommand("UPDATE RFI_Submission_Table SET
InfoRequested = @ir, Reason=@re, ProjectTitle=@pt, Project_ID=@pi, Status=@st,
RequiredByDate=@rd WHERE RFI_ID=@rf", con);

 //@rf, @ir, @re, @dc, @co, @in, @pt, @pi, @st, @rd
 insertCommand.Parameters.AddWithValue("@ir", initObj.InfoRequested);
 insertCommand.Parameters.AddWithValue("@re", initObj.Reason);
 insertCommand.Parameters.AddWithValue("@pt", initObj.ProjectTitle);
 insertCommand.Parameters.AddWithValue("@pi", initObj.Project_ID);
 insertCommand.Parameters.AddWithValue("@st", "Awaiting Coordination");
 insertCommand.Parameters.AddWithValue("@rd", initObj.RequiredByDate);
 insertCommand.Parameters.AddWithValue("@rf", initObj.RFI_ID);

 con.Open();
 insertCommand.ExecuteNonQuery();
 con.Close();
 }
 private void InitiatorView_FormClosing(object sender, FormClosingEventArgs e)
 {
 if (!submitClicked)
 {
 DialogResult dr = MessageBox.Show("You are about to close without submiting.
Are you sure you want to close?", "Cancelling", MessageBoxButtons.YesNo);
 if(dr == DialogResult.Yes)
 {
 submitClicked = false;
 removeRFIInstance();
 }
 else
 {
 e.Cancel = true;
 }
 }
 }

 private void retrieveViewValues()
 {
 initObj.Project_ID = this.project_IDTextbox.Text;
 initObj.ProjectTitle = this.titleTextBox.Text;
 initObj.InfoRequested = this.infoRequestedTextBox.Text;
 initObj.Reason = this.reasonTextBox.Text;
 initObj.RequiredByDate = this.requiredByDatePicker.Value;
 }
 private void removeRFIInstance()
 {
 SqlConnection con = new
SqlConnection(RFIProcessWorkflowActivities.Properties.Settings.Default.RFI_INFO_DATABASEConnec
tionString);
 SqlCommand deleteCommand1 = new SqlCommand("DELETE FROM RFI_Instance WHERE RFI_ID
= @r", con);
 SqlCommand deleteCommand2 = new SqlCommand("DELETE FROM RFI_Submission_Table WHERE
RFI_ID = @r", con);

 con.Open();
 deleteCommand1.Parameters.AddWithValue("@r", initObj.RFI_ID);
 deleteCommand2.Parameters.AddWithValue("@r", initObj.RFI_ID);

 deleteCommand1.ExecuteNonQuery();
 deleteCommand2.ExecuteNonQuery();

 119

 con.Close();
 }

 private bool recordExists()
 {
 bool ret;
 SqlConnection con = new
SqlConnection(RFIProcessWorkflowActivities.Properties.Settings.Default.RFI_INFO_DATABASEConnec
tionString);
 SqlCommand selectCommand = new SqlCommand("SELECT * FROM RFI_Submission_Table
WHERE RFI_ID = (" + this.initObj.RFI_ID + ")", con);
 con.Open();
 SqlDataReader d = selectCommand.ExecuteReader();
 d.Read();
 ret = d.HasRows;
 d.Close();
 con.Close();
 return ret;
 }
 }
}

CoordinatorView.cs file
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;
using System.Activities;
using System.Data.SqlClient;

namespace RFIProcessWorkflowActivities
{
 public partial class CoordinatorView : Form
 {
 private CoordinatorViewObject coorObj;
 public string result = "cancelled";

 public CoordinatorView(int rfi_id)
 {
 coorObj = new CoordinatorViewObject(rfi_id);
 InitializeComponent();

 // values that cannot be changed by the user
 this.rfi_IDTextBox.Text = coorObj.RFI_ID.ToString();
 this.statusTextBox.Text = coorObj.Status;
 this.createdDatePicker.Value = coorObj.DateCreated;
 this.initiatorTextBox.Text = coorObj.Initiator;

 // These values are from the Initiator
 this.project_IDTextBox.Text = coorObj.Project_ID;
 this.titleTextBox.Text = coorObj.ProjectTitle;
 this.inforRequestedTextBox.Text = coorObj.InfoRequested;
 this.reasonTextBox.Text = coorObj.Reason;

 120

 this.requiredByDatePicker.Value = (DateTime)coorObj.RequiredByDate; // nullable,
must cast
 }

 private void updateDB()
 {
 SqlConnection con = new
SqlConnection(RFIProcessWorkflowActivities.Properties.Settings.Default.RFI_INFO_DATABASEConnec
tionString);
 con.Open();
 // insert into Submission Table
 SqlCommand insertCommand;
 //get the highest RFI_ID
 SqlCommand selectCommand;
 // insert into Response Table
 SqlCommand insertCommand2;
 // insertinto responder Table
 SqlCommand insertCommand3;

 // update for responder
 if (result == "accepted") {
 // update submission table
 insertCommand = new SqlCommand("UPDATE RFI_Submission_Table SET Status =
'Awaiting Response' WHERE RFI_ID = (" + coorObj.RFI_ID + ")", con);
 insertCommand.ExecuteNonQuery();

 // get highest response_ID from table
 selectCommand = new SqlCommand("SELECT MAX(Response_ID) FROM
RFI_Response_Table", con);
 SqlDataReader d = selectCommand.ExecuteReader();
 d.Read();
 // to avoid confusion with RFI_ID the Response_ID will start at 100
 int response_ID = d[0] != DBNull.Value ? Convert.ToInt32(d[0])+1 : 101;
 d.Close();

 // update Response table with the response_ID
 insertCommand2 = new SqlCommand("INSERT INTO RFI_Response_Table(RFI_ID,
Response_ID) VALUES(@rf, @reid)", con);
 insertCommand2.Parameters.AddWithValue("@rf", coorObj.RFI_ID);
 insertCommand2.Parameters.AddWithValue("@reid", response_ID);
 insertCommand2.ExecuteNonQuery();

 // add each repsonder to the Responder Table
 // the responses at this state will be 'awaiting answer'
 insertCommand3 = new SqlCommand("INSERT INTO Responder_Table(Response_ID,
Responder, ResponseApproved) VALUES(@reid, @resp, @ra)", con);
 insertCommand3.Parameters.AddWithValue("@reid", response_ID);
 insertCommand3.Parameters.AddWithValue("@ra", "awaiting answer");

 foreach (string responder in responderListBox.SelectedItems)
 {
 Console.WriteLine("Foreach loop : {0}", responder);
 insertCommand3.Parameters.AddWithValue("@resp", responder);
 insertCommand3.ExecuteNonQuery();
 }
 }
 // update for initiator
 else if(result == "rejected") {

 121

 insertCommand = new SqlCommand("UPDATE RFI_Submission_Table SET Comment = '" +
coorObj.Comments + "', Status = 'Awaiting Initiation' WHERE RFI_ID = (" + coorObj.RFI_ID +
")", con);
 insertCommand.ExecuteNonQuery();
 }

 con.Close();
 }

 private void retrieveViewValues()
 {
 coorObj.Comments = this.commentsTextBox.Text;
 }

 public void acceptClick(object sender, EventArgs e) {
 result = "accepted";
 SqlConnection con = new
SqlConnection(RFIProcessWorkflowActivities.Properties.Settings.Default.RFI_INFO_DATABASEConnec
tionString);
 con.Open();
 // insert into Submission Table
 SqlCommand insertCommand;
 //get the highest RFI_ID
 SqlCommand selectCommand;
 // insert into Response Table
 SqlCommand insertCommand2;
 // insertinto responder Table
 SqlCommand insertCommand3;

 // update submission table
 insertCommand = new SqlCommand("UPDATE RFI_Submission_Table SET Status = 'Awaiting
Response' WHERE RFI_ID = (" + coorObj.RFI_ID + ")", con);
 insertCommand.ExecuteNonQuery();

 // get highest response_ID from table
 selectCommand = new SqlCommand("SELECT MAX(Response_ID) FROM RFI_Response_Table",
con);
 SqlDataReader d = selectCommand.ExecuteReader();
 d.Read();
 // to avoid confusion with RFI_ID the Response_ID will start at 100
 int response_ID = d[0] != DBNull.Value ? Convert.ToInt32(d[0]) + 1 : 101;
 d.Close();

 // update Response table with the response_ID
 insertCommand2 = new SqlCommand("INSERT INTO RFI_Response_Table(RFI_ID,
Response_ID) VALUES(@rf, @reid)", con);
 insertCommand2.Parameters.AddWithValue("@rf", coorObj.RFI_ID);
 insertCommand2.Parameters.AddWithValue("@reid", response_ID);
 insertCommand2.ExecuteNonQuery();

 foreach (string responder in responderListBox.SelectedItems)
 {
 Console.WriteLine("Foreach loop : {0}", responder);
 // add each repsonder to the Responder Table
 // the responses at this state will be 'awaiting answer'
 insertCommand3 = new SqlCommand("INSERT INTO Responder_Table(Response_ID,
Responder, ResponseApproved) VALUES(@reid, @resp, @ra)", con);
 insertCommand3.Parameters.AddWithValue("@reid", response_ID);
 insertCommand3.Parameters.AddWithValue("@ra", "awaiting answer");

 122

 insertCommand3.Parameters.AddWithValue("@resp", responder);
 insertCommand3.ExecuteNonQuery();
 }
 this.Close();
 }

 public void rejectClick(object sender, EventArgs e) {
 retrieveViewValues();
 if (coorObj.IsIncomplete) {
 MessageBox.Show("Form is incomplete", "User Error");
 return;
 }
 else {
 result = "rejected";

 SqlConnection con = new
SqlConnection(RFIProcessWorkflowActivities.Properties.Settings.Default.RFI_INFO_DATABASEConnec
tionString);
 con.Open();
 // insert into Submission Table
 SqlCommand insertCommand;
 //get the highest RFI_ID

 insertCommand = new SqlCommand("UPDATE RFI_Submission_Table SET Comment = '" +
coorObj.Comments + "', Status = 'Awaiting Initiation' WHERE RFI_ID = (" + coorObj.RFI_ID +
")", con);
 insertCommand.ExecuteNonQuery();

 con.Close();
 this.Close();
 }
 }

 private void CoordinatorView_FormClosing(object sender, FormClosingEventArgs e)
 {
 if (result == "cancelled")
 {
 DialogResult dr = MessageBox.Show("You are about to close without submiting.
Are you sure you want to close?", "Cancelling", MessageBoxButtons.YesNo);
 if(dr == DialogResult.Yes) {
 // just close
 }
 else {
 e.Cancel = true;
 }
 }
 }
 }
}

ObjectStructuresClass.cs file
using System;
using System.Data.SqlClient;
using System.Collections;

namespace RFIProcessWorkflowActivities
{
 class ResponseObject
 {

 123

 private string response;
 private int response_ID;
 private string responder;
 private string responseApproved;
 private string comments;
 private Nullable<DateTime> responseDate;

 public ResponseObject(
 string response,
 int response_ID,
 string responder,
 string responseApproved,
 string comments,
 DateTime responseDate
)
 {
 this.Response = response;
 this.response_ID = response_ID;
 this.responder = responder;
 this.ResponseApproved = responseApproved;
 this.Comments = comments;
 this.responseDate = responseDate;
 }

 public ResponseObject(int response_ID, string responder)
 {
 this.response_ID = response_ID;
 this.responder = responder;
 SqlConnection con = new
SqlConnection(RFIProcessWorkflowActivities.Properties.Settings.Default.RFI_INFO_DATABASEConnec
tionString);
 SqlCommand selectCommand = new SqlCommand("SELECT * FROM Responder_Table WHERE
Response_ID = (" + response_ID + ") AND Responder = '" + responder + "'", con);
 con.Open();
 SqlDataReader d = selectCommand.ExecuteReader();
 d.Read();
 this.ResponseApproved = d["ResponseApproved"].ToString();
 if (d["ResponseDate"] == DBNull.Value) {
 this.responseDate = DateTime.Now;
 }
 else {
 this.responseDate = Convert.ToDateTime(d["ResponseDate"].ToString());
 }

 this.Comments = d["Comments"].ToString();
 this.Response = d["Response"].ToString();
 d.Close();
 con.Close();
 }

 public bool IsIncomplete
 {
 get {
 return
 String.IsNullOrEmpty(Response) ||
 !ResponseDate.HasValue ||
 String.IsNullOrEmpty(ResponseApproved) ||
 String.IsNullOrEmpty(Responder);
 }

 124

 }

 public string Response
 {
 get { return response; }
 set { response=value; }
 }
 public int Response_ID {
 get { return response_ID; }
 }
 public string Responder {
 get { return responder; }
 }
 public string ResponseApproved {
 get { return responseApproved; }
 set { responseApproved = value; }
 }
 public string Comments {
 get { return comments; }
 set { comments = value; }
 }
 public Nullable<DateTime> ResponseDate {
 get { return responseDate; }
 }
 }

 /*
 The InitiatorViewObject class contains all of the basic information
 needed for an initiator view. The constructor retrieves information for
 the associated database using the RFI_ID. This class is the paent class
 (or base class) for the other view objects (Coordiator, Responder, etc.)
 Its fields, and the methods used o access the databse, can be reused by
 its child class (or derived classes)
 */
 class InitiatorViewObject
 {
 // core fields that are neccesary for RFI_ID
 private int rfi_id;
 private string project_id;
 private string projectTitle;
 private string status;
 private DateTime dateCreated;
 private Nullable<DateTime> requiredByDate = null;
 private string initiator;
 private string infoRequested;
 private string reason;

 // This constructor will either construct the object from the database
 // or - if the database is empty - it will create an empty object and
 // assign values to the required fields which the user cannot / should
 // not change

 // This constructor is reused by the child (derived) classes because
 // they share the inherited fields.
 public InitiatorViewObject(int rfi_id) {
 this.rfi_id = rfi_id;
 SqlConnection con = new
SqlConnection(RFIProcessWorkflowActivities.Properties.Settings.Default.RFI_INFO_DATABASEConnec
tionString);

 125

 SqlCommand selectCommand = new SqlCommand("SELECT * FROM RFI_Submission_Table
WHERE RFI_ID = (" + this.rfi_id + ")", con);
 con.Open();
 SqlDataReader d = selectCommand.ExecuteReader();
 d.Read();

 // If the RFI_ID that is passed in exists in the databse, then the
 // info from the database is assigned to the object fields.
 if (d.HasRows) {
 status = d["Status"].ToString();
 dateCreated = Convert.ToDateTime(d["DateCreated"].ToString());
 initiator = d["Initiator"].ToString();
 Project_ID = d["Project_ID"].ToString();
 ProjectTitle = d["ProjectTitle"].ToString();
 InfoRequested = d["InfoRequested"].ToString();
 Reason = d["Reason"].ToString();
 RequiredByDate = Convert.ToDateTime(d["RequiredByDate"].ToString());
 }
 // If the RFI_ID does not exists in the database than the fields are
 // assigned default values.
 else {
 dateCreated = DateTime.Now;
 status = "Awaiting Initiation";
 initiator = "Initiator1";
 }
 d.Close();
 con.Close();
 }

 public virtual bool IsIncomplete {
 get {
 return
 String.IsNullOrEmpty(project_id) ||
 String.IsNullOrEmpty(projectTitle) ||
 String.IsNullOrEmpty(status) ||
 String.IsNullOrEmpty(infoRequested) ||
 String.IsNullOrEmpty(reason) ||
 !requiredByDate.HasValue;
 }
 }

 public int RFI_ID {
 get { return rfi_id; }
 }
 public string Project_ID {
 get { return project_id; }
 set { project_id = value; }
 }
 public string ProjectTitle
 {
 set { projectTitle = value; }
 get { return projectTitle; }
 }
 public string Status
 {
 get { return status; }
 }
 public DateTime DateCreated
 {

 126

 get { return dateCreated; }
 }
 public Nullable<DateTime> RequiredByDate
 {
 get { return requiredByDate; }
 set { requiredByDate = value; }
 }
 public string Initiator
 {
 get { return initiator; }
 }
 public string InfoRequested
 {
 get { return infoRequested; }
 set { infoRequested = value; }
 }
 public string Reason
 {
 get { return reason; }
 set { reason = value; }
 }
 }

 /*
 The CoordinatorViewObject class is used to contain all of the fields
 that are relevant to the CoordiatorView. The class inherits from the
 InitiatorViewObject to utilize existing code.
 */
 class CoordinatorViewObject : InitiatorViewObject
 {
 // The comments field needed in the Coordinator View
 private string comments;

 // The constructor uses the base constrcutor to read from the
 // databse
 public CoordinatorViewObject(int rfi_id) : base(rfi_id) { }

 public override bool IsIncomplete {
 get {
 return base.IsIncomplete || String.IsNullOrEmpty(Comments);
 }
 }
 public string Comments
 {
 get { return comments; }
 set { comments = value; }
 }
 }

 /*
 The ResponderViewObject class is used to contain all of the fields that
 are relevant to the responder view. The class also inherits from the
 InitiatorViewObject to utilize existing code
 */
 class ResponderViewObject : InitiatorViewObject
 {
 // fileds unique to ResponderViewObject
 private ResponseObject responseObject;

 127

 // This constructor will call the base constructor to populate most of
 // the fields. It will then read from the database and assign its unque
 // fields values or, if the databse is empty, populate them with default
 // values
 public ResponderViewObject(int rfi_id, string responder) : base(rfi_id)
 {
 SqlConnection con = new
SqlConnection(RFIProcessWorkflowActivities.Properties.Settings.Default.RFI_INFO_DATABASEConnec
tionString);
 SqlCommand selectCommand = new SqlCommand("SELECT * FROM RFI_Response_Table WHERE
RFI_ID = (" + rfi_id + ")", con);
 con.Open();
 SqlDataReader d = selectCommand.ExecuteReader();
 d.Read();
 int response_ID = Convert.ToInt32(d["Response_ID"]);
 d.Close();
 con.Close();
 responseObject = new ResponseObject(response_ID, responder);
 }

 public override bool IsIncomplete {
 get {
 return base.IsIncomplete || responseObject.IsIncomplete;
 }
 }

 public ResponseObject ResponseObject
 {
 get { return responseObject; }
 set { responseObject = value; }
 }
 }

 /*
 The ConsolidatorViewObject is used to contain all of the fields relevant
 to the ConsoldiatorView. It inherits directly from the ResponderViewObject
 class, making it the child child class (or grandchild class) of the
 InitiatorViewObject.
 */
 class ConsolidatorViewObject : InitiatorViewObject
 {
 // fields unique to the consolidator view
 private ResponseObject responseObject;
 private string consolidatedResponse;
 Nullable<DateTime> approvalDate;

 public ConsolidatorViewObject(int rfi_id, string responder) : base(rfi_id)
 {
 SqlConnection con = new
SqlConnection(RFIProcessWorkflowActivities.Properties.Settings.Default.RFI_INFO_DATABASEConnec
tionString);
 SqlCommand selectCommand = new SqlCommand("SELECT * FROM RFI_Response_Table WHERE
RFI_ID = (" + rfi_id + ")", con);
 con.Open();
 SqlDataReader d = selectCommand.ExecuteReader();
 d.Read();
 int response_ID = Convert.ToInt32(d["Response_ID"]);
 if (d["ApprovalDate"] != DBNull.Value) {
 ApprovalDate = Convert.ToDateTime(d["ApprovalDate"].ToString());

 128

 }
 else {
 ApprovalDate = DateTime.Now;
 }
 this.ConsolidatedResponse = d["ConsolidatedResponse"].ToString();
 d.Close();

 selectCommand = new SqlCommand("SELECT * FROM Responder_Table WHERE Response_ID =
(" + response_ID + ") AND Responder = '" + responder + "'", con);
 d = selectCommand.ExecuteReader();
 while (d.Read())
 {
 Console.WriteLine(" While loop responder: {0}", d["Responder"].ToString());
 responseObject = new ResponseObject(d["Response"].ToString(),
 Convert.ToInt32(d["Response_ID"]),
 d["Responder"].ToString(),
 d["ResponseApproved"].ToString(),
 d["Comments"].ToString(),
 Convert.ToDateTime(d["ResponseDate"].ToString())
);
 }
 d.Close();
 con.Close();
 }

 public override bool IsIncomplete
 {
 get
 {
 return
 base.IsIncomplete ||
 !ApprovalDate.HasValue;
 }
 }

 public ResponseObject ResponseObject
 {
 get { return responseObject; }
 set { responseObject = value; }
 }

 public Nullable<DateTime> ApprovalDate
 {
 get { return approvalDate; }
 set { approvalDate = value; }
 }

 public string ConsolidatedResponse
 {
 get { return consolidatedResponse; }
 set { consolidatedResponse = value; }
 }
 }

 class InitiatorResponseViewObject : InitiatorViewObject
 {
 // The comments field needed in the Coordinator View
 private string comments;

 129

 // The constructor uses the base constrcutor to read from the
 // databse
 public InitiatorResponseViewObject(int rfi_id) : base(rfi_id)
 {
 SqlConnection con = new
SqlConnection(RFIProcessWorkflowActivities.Properties.Settings.Default.RFI_INFO_DATABASEConnec
tionString);
 SqlCommand selectCommand = new SqlCommand("SELECT * FROM RFI_Submission_Table
WHERE RFI_ID = (" + this.RFI_ID + ")", con);
 con.Open();
 SqlDataReader d = selectCommand.ExecuteReader();
 d.Read();

 // If the RFI_ID that is passed in exists in the databse, then the
 // info from the database is assigned to the object fields.
 if (d.HasRows)
 {
 comments = d["Comment"].ToString();
 }
 // If the RFI_ID does not exists in the database than the fields are
 // assigned default values.
 else
 {
 comments = "Error. No comments found";
 }
 d.Close();
 con.Close();
 }

 public override bool IsIncomplete
 {
 get
 {
 return base.IsIncomplete || String.IsNullOrEmpty(Comments);
 }
 }
 public string Comments
 {
 get { return comments; }
 }
 }
}

 130

Appendix C
Work Completed Under My Supervision to Support Validation of

Conformance Checking (Tao Lue Wu, 2015)

 131

 132

 133

 134

 135

 136

 137

 138

 139

 140

 141

 142

 143

 144

 145

 146

 147

Appendix D
Alloy Code for RFI Workflow Conformance Checking

open util/graph[Step]

abstract sig Step {
 -- edges in the Contractor's workflow
 v : set Step,
 -- dominator tree
 idom2 : one Step,
 ipostdom2 : one Step
}

abstract sig Foundation extends Step {
 -- edges in the IFP workflow
 w : set Foundation,
 -- dominator tree
 idom1 : one Step,
 ipostdom1 : one Step
}
-- distinguished Start and End nodes
one sig Start, End extends Foundation {}

abstract sig Concrete extends Step {}

-- all edges
fun edges[] : Step -> Step { w + v }

fact ConformanceLevel {
 // level1Conformance[]
 // level2Conformance[]
 // level3Conformance[]
 level4Conformance[]
}

-- compute dominator tree
-- e is all edges to consider
-- d is idom (immediate dominator) relation to be constrained
pred dominatorTree[n: set Step, e,d : Step->Step, begin,final : Step] {
 -- distinguished edge
 begin -> begin in d
 -- any node connected to Start is dominated by Start
 ~(begin <: e) in d
 -- idom can at most be the inverse of e
 // no d - (~e + begin->begin)
 -- every node can get back to start following immediate dominators
 n in (^d).begin
 -- nothing dominates Start (except itself)
 begin.d =begin
 -- End dominates nothing
 no d.final
 -- nothing is the idom of itself except Start
 all x : (n-begin) | x != x.d
 -- x's immediate dominator is a dominator
 all x : n | let id=x.d | dominates[x, id, n, e, begin]
 -- x's immediate dominator is the closest dominator:
 -- there is no other node y that dominates x between x and x.d

 148

 -- this property should apply to all nodes, including Start and End
 all x : n | let id=x.d | no y : n-id-x | dominates[x, y, n, e, begin] and dominates[y, id,
n, e, begin]
}
pred dominatorTree[n: set Step, e,d : Step->Step] {
 dominatorTree[n, e, d, Start, End]
}

-- true if x is dominated by y
-- y dominates x if all paths from start to x go through y
pred dominates[x, y : Step, n : set Step, e : Step->Step, begin: Step] {
 let e' = (e + (n <: iden) - (n->y + y->n)) | begin not in (^e').x
}
pred dominates[x, y : Step, n : set Step, e : Step->Step] {
 dominates[x, y, n, e, Start]
}

-- dominates_alt should does the same check as dominates
-- dominates_alt is used in assert DomIsReinforced and IDomIsReinforced
pred dominates_alt[x, y : Step, n : set Step, e : Step->Step, begin: Step] {
 let e' = (e + (n <: iden) - ((y <: e) + (e :> y) + (y->y))) | not reachable[x, begin,e']
}
pred dominates_alt[x, y : Step, n : set Step, e : Step->Step] {
 dominates_alt[x, y, n, e, Start]
}

-- x is reachable from y
pred reachable[x, y : Step, e : Step->Step]{
 x in y.(^e)
}

pred wellFormed[nodes : set Step, e : Step->Step] {
 -- nodes includes Start and End
 Start in nodes
 End in nodes
 -- all nodes are reachable from Start
 nodes in Start.*e
 -- Start has no incoming edges
 no e.Start
 -- End is reachable from all nodes
 nodes in *e.End
 -- End has no outgoing edges
 no End.e
}

pred level1Conformance {
 // Level 1
 -- IFP workflow is well-formed
 wellFormed[Foundation, w]
 -- Contractor's derived workflow is well-formed
 wellFormed[Step.v+v.Step, v]
 -- dominator tree of IFP workflow
 dominatorTree[Foundation, w, idom1]
 -- dominator tree of Contractor's derived workflow
 dominatorTree[Step.v+v.Step, v, idom2]
}

pred level2Conformance {
 // Level 2

 149

 -- IFP workflow is well-formed
 wellFormed[Foundation, w]
 -- Contractor's derived workflow is well-formed
 wellFormed[Step, v]
 -- dominator tree of IFP workflow
 dominatorTree[Foundation, w, idom1]
 -- dominator tree of Contractor's derived workflow
 dominatorTree[Step, v, idom2]
}

pred level3Conformance {
 // Level 3
 level1Conformance[]
 -- post-dominator tree of IFP workflow
 dominatorTree[Foundation, ~w, ipostdom1, End, Start]
 -- post-dominator tree of Contractor's derived workflow
 dominatorTree[Step.v+v.Step, ~v, ipostdom2, End, Start]
}

pred level4Conformance {
 // Level 4
 level2Conformance[]
 -- post-dominator tree of IFP workflow
 dominatorTree[Foundation, ~w, ipostdom1, End, Start]
 -- post-dominator tree of Contractor's derived workflow
 dominatorTree[Step, ~v, ipostdom2, End, Start]
}

one sig Response_Close_Out, Consolidate_and_Endorse, Verify_Details, Respond,
Sufficient_Details, Initial_RFI, Clarify, Approve extends Foundation {}

one sig Respond_Directly, Select_Coordinator, Select_Participants,
Clarification_Required_Responders, Verify_for_Clarification,
Response__Notification_To_Stakeholders, Verify_and_Update_Participants,
Clarification_Required_Consolidator extends Concrete {}

fact W1defn {
 w = {Start -> Initial_RFI + Initial_RFI -> Verify_Details + Verify_Details ->
Sufficient_Details + Sufficient_Details -> Respond + Sufficient_Details -> Clarify + Respond -
> Consolidate_and_Endorse + Consolidate_and_Endorse -> Approve + Approve -> Response_Close_Out
+ Response_Close_Out -> End + Clarify -> Verify_Details}
}

fact W2defn {
 v = {Start -> Initial_RFI + Initial_RFI -> Select_Coordinator + Select_Coordinator ->
Verify_Details + Verify_Details -> Sufficient_Details + Sufficient_Details -> Respond_Directly
+ Respond_Directly -> Response_Close_Out + Respond_Directly -> Select_Participants +
Response_Close_Out -> Response__Notification_To_Stakeholders + Select_Participants ->
Verify_and_Update_Participants + Response__Notification_To_Stakeholders -> End +
Verify_and_Update_Participants -> Respond + Respond -> Clarification_Required_Responders +
Clarification_Required_Responders -> Verify_for_Clarification + Verify_for_Clarification ->
Clarification_Required_Consolidator + Clarification_Required_Consolidator -> Clarify +
Clarification_Required_Consolidator -> Consolidate_and_Endorse + Consolidate_and_Endorse ->
Approve + Sufficient_Details -> Clarify + Clarification_Required_Responders ->
Consolidate_and_Endorse + Clarify -> Verify_Details + Approve -> Respond + Approve ->
Response_Close_Out}
}

// open workflow

 150

-- preserved edges
fun preserved[] : Step -> Step { w & v }

-- deleted edges
fun deleted[] : Step -> Step { w - v }

-- new legal forward edges
fun forward[] : Step -> Step { v - w - backw - backv - skips }

-- new skip edges
fun skips[] : Step -> Step { { s,t : Step |
 -- source -> target is an edge in the customized workflow and
 s->t in v and (
 -- target's original immediate dominator is not in its new dominators
 t.idom1 not in (s + t.^idom2)
 or
 -- or source's original immediate post-dominator is not in its new post-dominators
 s.ipostdom1 not in (t + s.^ipostdom2)
) } }

-- new back edges
fun backv[] : Step -> Step { { s,t : Step |
 -- it's a new edge
 s->t in (v-w) and
 -- target is a dominator of source
 t in s.^(idom1+idom2)} }

-- back edges in Foundation (might be deleted)
fun backw[] : Step -> Step { { s,t : Step |
 -- it's an old edge
 s->t in w and
 -- target is a dominator of source
 t in s.^idom1 }}

run {}

 151

Appendix E
Translator.java Documentation

Main
public static void main(String[] args)

The main method takes the file names of two xaml files (the original workflow and the derived workflow). It
then calls the translate method to get the edges of the two workflows in alloy format. At last, it prints a
complete als file to System.out (Standard Output of Translator.java) and the corresponding thm file to
System.err (Standard Error of Translator.java).

note:

§ als file is the file format used by alloy.
§ A thm file specifies the format of graphical representation used by an als file.
§ xaml is a special way to represent a workflow with xml format in Microsoft Windows Workflow

Foundation. Therefore, an xaml file can be parsed by an xml parser. In the translate method, xml
parser xPath is used to parse the xaml file.
(http://docs.oracle.com/javase/8/docs/api/javax/xml/xpath/package-summary.html,
http://www.w3schools.com/xsl/default.asp)

Parameters:

§ args[0] - the path to the xaml file that represents the original workflow
§ args[1] - the path to the xaml file that represents the derived workflow

Returns:
§ void

Side Effect:
§ Prints a complete als file to System.out (Standard Output of Translator.java)
§ Prints the corresponding thm file of the als file to System.err (Standard Error of Translator.java)

Translate
String translate(Document doc, HashSet<String> foundations, HashSet<String> concretes)
throws Exception

This method translates a workflow from a xaml file to edges in alloy format.
Whenever a new node is encountered in the current workflow, this method will check whether the node exists
in foundations. If not, the new node will be added to concretes.
This method automatically identifies whether the workflow in the xaml file is in FlowChart format or
StateMachine format, and then calls translateFlowChart or translateStateMachine corresponding.

note:

§ FlowChart and StateMachine are two different formats used by Microsoft Windows Workflow
Foundation to represent a workflow in xaml. (https://msdn.microsoft.com/en-
us/library/dd489437(v=vs.110).aspx)

 152

§ xaml is a special way to represent a workflow with xml format in Microsoft Windows Workflow
Foundation. Therefore, an xaml file can be parsed by an xml parser. In the translate method, xml
parser xPath is used to parse the xaml file.
(http://docs.oracle.com/javase/8/docs/api/javax/xml/xpath/package-summary.html,
http://www.w3schools.com/xsl/default.asp)

Parameters:

§ doc - the Document object that is used to represent the source xaml file
§ foundations - set of nodes that appears in the original workflow, use foundations = null if you are

translating the original workflow.
§ concretes - set of nodes that appears in the current workflows but are not contained by foundations.

Returns:
§ A String that represents all edges of the current workflow in alloy format

translateFlowChart
String translateFlowChart(Document doc, HashSet<String> foundations, HashSet<String> concretes)
throws Exception

This method translates a FlowChart workflow from an xaml file (parameter doc) to edges in alloy format.
Warning: The workflow within the xaml file (parameter doc) must be in FlowChart format. Behavior is
undefined if this method is called against an xaml file that contains other types of workflow.
Whenever a new node is encountered in the current workflow, this method will check whether the node exists
in foundations. If not, the new node will be added to concretes.

note:

§ FlowChart and StateMachine are two different formats used by Microsoft Windows Workflow
Foundation to represent a workflow in xaml. (https://msdn.microsoft.com/en-
us/library/dd489437(v=vs.110).aspx)

§ xaml is a special way to represent a workflow with xml format in Microsoft Windows Workflow
Foundation. Therefore, an xaml file can be parsed by an xml parser. In the translate method, xml
parser xPath is used to parse the xaml file.
(http://docs.oracle.com/javase/8/docs/api/javax/xml/xpath/package-summary.html,
http://www.w3schools.com/xsl/default.asp)

Parameters:

§ doc - the Document object that is used to represent the source xaml file
§ foundations - set of nodes that appears in the original workflow, use foundations = null if you are

translating the original workflow.
§ concretes - set of nodes that appears in the current workflows but are not contained by foundations.

Returns:
§ A String that represents all edges of the current workflow in alloy format

 153

translateStateMachine
String translateStateMachine(Document doc, HashSet<String> foundations, HashSet<String> concretes)
throws Exception

This method translates a StateMachine workflow from an xaml file (parameter doc) to edges in alloy format.
Warning: The workflow within the xaml file (parameter doc) must be in StateMachine format. Behavior is
undefined if this method is called against an xaml file that contains other types of workflow.
Whenever a new node is encountered in the current workflow, this method will check whether the node exists
in foundations. If not, the new node will be added to concretes.

note:

§ FlowChart and StateMachine are two different formats used by Microsoft Windows Workflow
Foundation to represent a workflow in xaml. (https://msdn.microsoft.com/en-
us/library/dd489437(v=vs.110).aspx)

§ xaml is a special way to represent a workflow with xml format in Microsoft Windows Workflow
Foundation. Therefore, an xaml file can be parsed by an xml parser. In the translate method, xml
parser xPath is used to parse the xaml file.
(http://docs.oracle.com/javase/8/docs/api/javax/xml/xpath/package-summary.html,
http://www.w3schools.com/xsl/default.asp)

Parameters:

§ doc - the Document object that is used to represent the source xaml file
§ foundations - set of nodes that appears in the original workflow, use foundations = null if you are

translating the original workflow.
§ concretes - set of nodes that appears in the current workflows but are not contained by foundations.

Returns:
§ A String that represents all edges of the current workflow in alloy format

produceThm
void produceThm(final PrintWriter pw, Collection<String> nodes)

This method writes a thm file to PrintWriter pw for a workflow with nodes in Collection nodes.

Parameters:

§ PrintWriter pw - the output source of the theme file
§ Collection<String> nodes - all nodes presented in the workflow

Return:
§ void

Side Effect:
§ writes a thm file to PrintWriter pw for a workflow with nodes in Collection nodes.

 154

Appendix F
Translator.java Code

import	javax.xml.parsers.*;	
import	javax.xml.xpath.*;	
	
import	org.w3c.dom.*;	
import	org.xml.sax.InputSource;	
	
import	java.lang.StringBuffer;	
import	java.util.AbstractMap;	
import	java.util.Queue;	
import	java.util.LinkedList;	
import	java.util.HashSet;	
import	java.util.HashMap;	
import	java.util.ArrayList;	
import	java.util.Scanner;	
import	java.util.Collection;	
import	java.util.LinkedList;	
import	java.util.AbstractMap.SimpleEntry;	
import	java.io.PrintStream;	
import	java.io.StringReader;	
import	java.io.File;	
import	java.io.PrintWriter;	
import	java.io.FileNotFoundException;	
	
public	class	Translator	{	
	
	 public	static	final	String	SAP_IDREF	=	"sap2010:WorkflowViewState.IdRef";	
	
	 //	public	static	void	produceThm(String	thmFileName,	Collection<String>	
	 //	nodes){	
	 public	static	void	produceThm(final	PrintWriter	pw,	Collection<String>	nodes)	{	
	 	 pw.println("<?xml	version=\"1.0\"?>");	
	 	 pw.println("<alloy>\n");	
	
	 	 pw.println("<view	nodetheme=\"Martha\"	hidePrivate=\"no\">\n");	
	 	 pw.println("<defaultnode/>\n");	
	 	 pw.println("<defaultedge/>\n");	
	
	 	 pw.println("<node>");	
	 	 pw.println("\t<type	name=\"Int\"/>");	
	 	 pw.println("\t<type	name=\"String\"/>");	
	 	 pw.println("\t<type	name=\"Univ\"/>");	
	 	 pw.println("\t<type	name=\"univ\"/>");	
	 	 pw.println("\t<type	name=\"seq/Int\"/>");	
	 	 pw.println("</node>\n");	
	
	 	 pw.println("<node	label=\"Step\">");	
	 	 pw.println("\t<type	name=\"Step\"/>");	
	 	 pw.println("</node>\n");	
	
	 	 pw.println("<node	color=\"Gray\"	label=\"Foundation\">");	
	 	 pw.println("\t<type	name=\"Foundation\"/>");	
	 	 pw.println("</node>\n");	

 155

	
	 	 pw.println("<node	color=\"White\"	label=\"Concrete\">");	
	 	 pw.println("\t<type	name=\"Concrete\"/>");	
	 	 pw.println("</node>\n");	
	
	 	 pw.println("<node	label=\"Start\">");	
	 	 pw.println("\t<type	name=\"Start\"/>");	
	 	 pw.println("</node>\n");	
	
	 	 pw.println("<node	label=\"End\">");	
	 	 pw.println("\t<type	name=\"End\"/>");	
	 	 pw.println("</node>\n");	
	 	 for	(String	node	:	nodes)	{	
	 	 	 pw.println("<node	label=\""	+	node	+	"\">");	
	 	 	 pw.println("\t<type	name=\""	+	node	+	"\"/>");	
	 	 	 pw.println("</node>\n");	
	 	 }	
	 	 pw.println("<edge	color=\"Black\"	label=\"\">");	
	 	 pw.println("\t<relation	name=\"$preserved\">	<type	name=\"Step\"/>	<type	name=\"Step\"/>	</relation>");	
	 	 pw.println("</edge>\n");	
	
	 	 pw.println("<edge	color=\"Blue\"	label=\"\">");	
	 	 pw.println("\t<relation	name=\"$backv\">	<type	name=\"Step\"/>	<type	name=\"Step\"/>	</relation>");	
	 	 pw.println("</edge>\n");	
	
	 	 pw.println("<edge	color=\"Gray\"	label=\"\">");	
	 	 pw.println("\t<relation	name=\"$deleted\">	<type	name=\"Step\"/>	<type	name=\"Step\"/>	</relation>");	
	 	 pw.println("</edge>\n");	
	
	 	 pw.println("<edge	color=\"Green\"	label=\"\">");	
	 	 pw.println("\t<relation	name=\"$forward\">	<type	name=\"Step\"/>	<type	name=\"Step\"/>	</relation>");	
	 	 pw.println("</edge>\n");	
	
	 	 pw.println("<edge	color=\"Red\"	label=\"skips\">");	
	 	 pw.println("\t<relation	name=\"$skips\">	<type	name=\"Step\"/>	<type	name=\"Step\"/>	</relation>");	
	 	 pw.println("</edge>\n");	
	
	 	 pw.println("<edge	visible=\"no\">");	
	 	 pw.println("\t<relation	name=\"$backw\">	<type	name=\"Step\"/>	<type	name=\"Step\"/>	</relation>");	
	 	 pw.println("\t<relation	name=\"$edges\">	<type	name=\"Step\"/>	<type	name=\"Step\"/>	</relation>");	
	 	 pw.println("\t<relation	name=\"v\">	<type	name=\"Step\"/>	<type	name=\"Step\"/>	</relation>");	
	 	 pw.println("\t<relation	name=\"w\">	<type	name=\"Foundation\"/>	<type	name=\"Foundation\"/>	
</relation>");	
	 	 pw.println("</edge>\n");	
	
	 	 pw.println("<edge	visible=\"no\"	attribute=\"yes\">");	
	 	 pw.println("\t<relation	name=\"idom1\">	<type	name=\"Foundation\"/>	<type	name=\"Step\"/>	</relation>");	
	 	 pw.println("\t<relation	name=\"idom2\">	<type	name=\"Step\"/>	<type	name=\"Step\"/>	</relation>");	
	 	 pw.println("\t<relation	name=\"ipostdom1\">	<type	name=\"Foundation\"/>	<type	name=\"Step\"/>	
</relation>");	
	 	 pw.println("\t<relation	name=\"ipostdom2\">	<type	name=\"Step\"/>	<type	name=\"Step\"/>	</relation>");	
	 	 pw.println("</edge>\n");	
	
	 	 pw.println("</view>\n");	
	
	 	 pw.println("</alloy>\n");	

 156

	 	 pw.close();	
	
	 }	
	
	 public	static	Node	getFirstChild(Node	node)	throws	Exception	{	
	 	 if	(node	==	null)	{	
	 	 	 return	null;	
	 	 }	
	
	 	 XPath	xpath	=	XPathFactory.newInstance().newXPath();	
	 	 NodeList	nodeList	=	(NodeList)	xpath.compile("./*").evaluate(node,	
	 	 	 	 XPathConstants.NODESET);	
	 	 Node	firstNode	=	null;	
	 	 if	(nodeList	!=	null	&&	nodeList.getLength()	>	0)	{	
	 	 	 firstNode	=	nodeList.item(0);	
	 	 }	
	 	 return	firstNode;	
	 }	
	
	 public	static	String	getDisplayName(Element	e)	throws	Exception	{	
	 	 String	displayName;	
	 	 if	(e.getTagName().equals("FlowStep"))	{	
	 	 	 e	=	(Element)	getFirstChild((Node)	e);	
	 	 }	
	 	 if	(e.hasAttribute("DisplayName"))	
	 	 	 displayName	=	e.getAttribute("DisplayName");	
	 	 else	{	
	 	 	 displayName	=	e.getAttribute(Translator.SAP_IDREF);	
	 	 }	
	 	 return	displayName.replace('	',	'_');	
	 }	
	
	 public	static	void	addEdge(String	currStep,	Element	nextStepElement,	
	 	 	 HashSet<String>	foundations,	HashSet<String>	concretes,	
	 	 	 HashMap<String,	String>	XNameToDisplayName,	StringBuffer	strBuffer)	
	 	 	 throws	Exception	{	
	
	 	 String	nextStep	=	getDisplayName(nextStepElement);	
	
	 	 XNameToDisplayName	
	 	 	 	 .put(nextStepElement.getAttribute("x:Name"),	nextStep);	
	 	 if	(foundations	==	null	||	!foundations.contains(nextStep))	{	
	 	 	 concretes.add(nextStep);	
	 	 }	
	 	 strBuffer.append(currStep);	
	 	 strBuffer.append("	->	");	
	 	 strBuffer.append(nextStep);	
	 	 strBuffer.append("	+	");	
	 }	
	
	 public	static	void	addEdge(String	currStep,	String	nextStep,	
	 	 	 StringBuffer	strBuffer)	{	
	 	 strBuffer.append(currStep);	
	 	 strBuffer.append("	->	");	
	 	 strBuffer.append(nextStep);	
	 	 strBuffer.append("	+	");	

 157

	 }	
	
	 public	static	String	getAlloyEdges(Document	doc,	HashSet<String>	foundations,	
	 	 	 HashSet<String>	concretes)	throws	Exception	{	
	
	 	 XPath	xpath	=	XPathFactory.newInstance().newXPath();	
	
	 	 Node	obj	=	(Node)	xpath.compile("/Activity/Flowchart").evaluate(doc,	
	 	 	 	 XPathConstants.NODE);	
	 	 if	(obj	!=	null)	{	
	 	 	 return	FlowChartToAlloyEdges(doc,	foundations,	concretes);	
	 	 }	
	 	 obj	=	(Node)	xpath.compile("/Activity/StateMachine").evaluate(doc,	
	 	 	 	 XPathConstants.NODE);	
	 	 if	(obj	!=	null)	{	
	 	 	 return	StateMachineToAlloyEdges(doc,	foundations,	concretes);	
	 	 }	
	 	 String	docURI	=	(doc.getDocumentURI()	==	null)	?	("	")	:	("	"	
	 	 	 	 +	doc.getDocumentURI()	+	"	");	
	 	 throw	new	Exception("file"	+	docURI	
	 	 	 	 +	"contains	neither	a	Flowchart	nor	StateMachine");	
	 }	
	
	 public	static	String	FlowChartToAlloyEdges(Document	doc,	
	 	 	 HashSet<String>	foundations,	HashSet<String>	concretes)	
	 	 	 throws	Exception	{	
	
	 	 StringBuffer	outputStrBuffer	=	new	StringBuffer();	
	
	 	 NodeList	neighbours;	
	 	 Node	startNode;	
	 	 Element	startElement;	
	 	 Node	node;	
	
	 	 XPath	xpath	=	XPathFactory.newInstance().newXPath();	
	 	 XPathExpression	xexpr	=	xpath	
	 	 	 	 .compile("/Activity/Flowchart/Flowchart.StartNode");	
	 	 startNode	=	(Node)	xexpr.evaluate(doc,	XPathConstants.NODE);	
	
	 	 Queue<Node>	Q	=	new	LinkedList<Node>();	
	 	 HashMap<String,	String>	XNameToDisplayName	=	new	HashMap<String,	String>();	
	 	 LinkedList<AbstractMap.SimpleEntry<String,	String>>	delayedEdges	=	new	
LinkedList<AbstractMap.SimpleEntry<String,	String>>();	
	
	 	 String	displayName;	
	 	 String	currStep	=	"Start",	nextStep;	
	
	 	 if	(startNode	!=	null)	{	
	 	 	 //	StartNode	found	as	tag	/Activity/Flowchart/Flowchart.StartNode	
	 	 	 neighbours	=	(NodeList)	xpath.compile("./FlowDecision|./FlowStep")	
	 	 	 	 	 .evaluate(startNode,	XPathConstants.NODESET);	
	 	 	 if	(neighbours	!=	null	&&	neighbours.getLength()	>	0)	{	
	 	 	 	 for	(int	i	=	0;	i	<	neighbours.getLength();	i++)	{	
	 	 	 	 	 Q.add(neighbours.item(i));	
	 	 	 	 	 addEdge(currStep,	(Element)	neighbours.item(i),	
	 	 	 	 	 	 	 foundations,	concretes,	XNameToDisplayName,	

 158

	 	 	 	 	 	 	 outputStrBuffer);	
	 	 	 	 }	
	 	 	 }	else	{	
	 	 	 	 addEdge(currStep,	"End",	outputStrBuffer);	
	 	 	 }	
	 	 }	else	{	
	 	 	 //	StartNode	not	found	as	a	tag	
	 	 	 //	get	StartNode	as	an	attribute	under	tag	/Activity/Flowchart	
	 	 	 neighbours	=	(NodeList)	xpath.compile(
	 	 	 	 	 "/Activity/Flowchart/@StartNode").evaluate(startNode,	
	 	 	 	 	 XPathConstants.NODESET);	
	 	 	 if	(neighbours	!=	null	&&	neighbours.getLength()	>	0)	{	
	 	 	 	 for	(int	i	=	0;	i	<	neighbours.getLength();	i++)	{	
	 	 	 	 	 String[]	strArry	=	neighbours.item(i).getTextContent().split("	");	
	 	 	 	 	 String	xName	=	strArry[1].substring(0,	
	 	 	 	 	 	 	 strArry[1].length()	-	1);	
	 	 	 	 	 delayedEdges.add(new	AbstractMap.SimpleEntry<String,	String>(currStep,		
	 	 	 	 	 	 	 xName));	
	 	 	 	 }	
	 	 	 	 /*for	(int	i	=	0;	i	<	neighbours.getLength();	i++)	{	
	 	 	 	 	 delayedEdges.add(new	AbstractMap.SimpleEntry<String,	String>(currStep,		
	 	 	 	 	 	 	 neighbours.item(i).getTextContent()));	
	 	 	 	 }*/	
	 	 	 	 neighbours	=	(NodeList)	xpath.compile(
	 	 	 	 	 	 "/Activity/Flowchart/FlowDecision|/Activity/Flowchart/FlowStep")	
	 	 	 	 	 	 .evaluate(startNode,	XPathConstants.NODESET);	
	 	 	 	 for	(int	i	=	0;	i	<	neighbours.getLength();	i++)	{	
	 	 	 	 	 Q.add(neighbours.item(i));	
	 	 	 	 }	
	 	 	 }	else	{	
	 	 	 	 addEdge(currStep,	"End",	outputStrBuffer);	
	 	 	 }	
	 	 }	
	
	 	 while	(!Q.isEmpty())	{	
	
	 	 	 startNode	=	Q.remove();	
	 	 	 startElement	=	(Element)	startNode;	
	 	 	 currStep	=	getDisplayName(startElement);	
	
	 	 	 //	get	edges	from	tags	
	 	 	 neighbours	=	(NodeList)	xpath.compile(
	 	 	 	 	 "./FlowDecision.False/*|./FlowDecision.True/*|./FlowStep.Next/*").	
	 	 	 	 	 evaluate(startNode,	XPathConstants.NODESET);	
	 	 	 boolean	hasEdges	=	false;	
	 	 	 if	(neighbours	!=	null	&&	neighbours.getLength()	>	0)	{	
	 	 	 	 for	(int	i	=	0;	i	<	neighbours.getLength();	i++)	{	
	
	 	 	 	 	 Element	neighbourElement	=	(Element)	neighbours.item(i);	
	 	 	 	 	 if	(neighbourElement.getTagName()	!=	null)	{	
	 	 	 	 	 	 if	(neighbourElement.getTagName().equals("FlowDecision")	
	 	 	 	 	 	 	 	 ||	neighbourElement.getTagName().equals("FlowStep"))	{	
	
	 	 	 	 	 	 	 hasEdges	=	true;	
	 	 	 	 	 	 	 Q.add(neighbours.item(i));	
	 	 	 	 	 	 	 addEdge(currStep,	neighbourElement,	foundations,	

 159

	 	 	 	 	 	 	 	 	 concretes,	XNameToDisplayName,	
	 	 	 	 	 	 	 	 	 outputStrBuffer);	
	
	 	 	 	 	 	 }	else	if	(neighbourElement.getTagName().equals("x:Reference"))	{	
	
	 	 	 	 	 	 	 hasEdges	=	true;	
	 	 	 	 	 	 	 delayedEdges.add(new	AbstractMap.SimpleEntry<String,	String>(
	 	 	 	 	 	 	 	 	 currStep,	
	 	 	 	 	 	 	 	 	 neighbours.item(i).getTextContent()));	
	
	 	 	 	 	 	 }	
	 	 	 	 	 }	
	
	 	 	 	 }	
	 	 	 }	
	 	 	 //	get	edges	from	attributes	
	 	 	 neighbours	=	null;	
	 	 	 if	(startElement.getTagName()	!=	null)	{	
	 	 	 	 if	(startElement.getTagName().equals("FlowDecision"))	{	
	
	 	 	 	 	 neighbours	=	(NodeList)	xpath.compile("./@True|./@False")	
	 	 	 	 	 	 	 .evaluate(startNode,	XPathConstants.NODESET);	
	
	 	 	 	 }	else	if	(startElement.getTagName().equals("FlowStep"))	{	
	
	 	 	 	 	 neighbours	=	(NodeList)	xpath.compile("./@Next")	
	 	 	 	 	 	 	 .evaluate(startNode,	XPathConstants.NODESET);	
	
	 	 	 	 }	
	 	 	 }	
	 	 	 if	(neighbours	!=	null	&&	neighbours.getLength()	>	0)	{	
	 	 	 	 hasEdges	=	true;	
	 	 	 	 for	(int	i	=	0;	i	<	neighbours.getLength();	i++)	{	
	 	 	 	 	 String[]	strArry	=	neighbours.item(i).getTextContent().split("	");	
	 	 	 	 	 String	xName	=	strArry[1].substring(0,	
	 	 	 	 	 	 	 strArry[1].length()	-	1);	
	 	 	 	 	 delayedEdges.add(new	AbstractMap.SimpleEntry<String,	String>(currStep,		
	 	 	 	 	 	 	 xName));	
	 	 	 	 }	
	 	 	 }		
	 	 	 if(!hasEdges){	
	 	 	 	 addEdge(currStep,	"End",	outputStrBuffer);	
	 	 	 }	
	 	 }	
	
	 	 //	print	back/cross	edges	that	has	not	yet	been	discovered	when	
	 	 //	first	seen	
	 	 for	(AbstractMap.SimpleEntry<String,	String>	edge	:	delayedEdges)	{	
	 	 	 outputStrBuffer.append(edge.getKey());	
	 	 	 outputStrBuffer.append("	->	");	
	 	 	 outputStrBuffer.append(XNameToDisplayName.get(edge.getValue()));	
	 	 	 outputStrBuffer.append("	+	");	
	 	 }	
	
	 	 //	remove	"	+	"	at	the	end	of	the	StringBuffer	
	 	 if	(outputStrBuffer.length()	>=	3	

 160

	 	 	 	 &&	outputStrBuffer.charAt(outputStrBuffer.length()	-	1)	==	'	'	
	 	 	 	 &&	outputStrBuffer.charAt(outputStrBuffer.length()	-	2)	==	'+'	
	 	 	 	 &&	outputStrBuffer.charAt(outputStrBuffer.length()	-	3)	==	'	')	{	
	
	 	 	 outputStrBuffer.setLength(outputStrBuffer.length()	-	3);	
	 	 }	
	
	 	 return	outputStrBuffer.toString();	
	 }	
	
	 public	static	String	StateMachineToAlloyEdges(Document	doc,	
	 	 	 HashSet<String>	foundations,	HashSet<String>	concretes)		
	 	 	 throws	Exception	{	
	
	 	 StringBuffer	outputStrBuffer	=	new	StringBuffer();	
	
	 	 Node	initialState;	
	 	 NodeList	initialNodes;	
	
	 	 Node	node;	
	 	 Element	e;	
	 	 NodeList	transitions;	
	
	 	 XPath	xpath	=	XPathFactory.newInstance().newXPath();	
	 	 XPathExpression	xexpr	=	xpath	
	 	 	 	 .compile("/Activity/StateMachine/StateMachine.InitialState/State");	
	 	 initialState	=	(Node)	xexpr.evaluate(doc,	XPathConstants.NODE);	
	
	 	 Queue<Node>	Q	=	new	LinkedList<Node>();	
	 	 HashMap<String,	String>	XNameToDisplayName	=	new	HashMap<String,	String>();	
	 	 HashMap<String,	String>	delayedEdges	=	new	HashMap<String,	String>();	
	
	 	 String	displayName;	
	 	 String	currState	=	"Start",	nextState;	
	 	 //	get	edges	from	the	"Start"	node	
	 	 //	i.e.	the	initial	state	
	 	 if	(initialState	==	null)	{	
	 	 	 //	initialState	is	not	defined	yet	
	 	 	 //	we	can	only	get	the	x:reference	of	the	initial	state	
	 	 	 xexpr	=	xpath.compile("/Activity/StateMachine");	
	 	 	 node	=	(Node)	xexpr.evaluate(doc,	XPathConstants.NODE);	
	 	 	 e	=	(Element)	node;	
	 	 	 String	attr	=	e.getAttribute("InitialState");	
	 	 	 if	(attr	!=	null	&&	!attr.isEmpty()	&&	attr.trim().length()	>	0)	{	
	 	 	 	 String[]	strArry	=	attr.split("	");	
	 	 	 	 String	xName	=	strArry[1].substring(0,	
	 	 	 	 	 	 strArry[1].length()	-	1);	
	
	 	 	 	 //	save	the	x:reference	of	the	initial	state	to	delayedEdges	
	 	 	 	 //	which	will	be	added	to	the	output	StringBuffer	at	the	end	
	 	 	 	 delayedEdges.put(xName,	currState);	
	 	 	 }	
	
	 	 	 //	get	states	that	are	defined	in	
	 	 	 initialNodes	=	(NodeList)	xpath.compile("./State").evaluate(
	 	 	 	 	 node,	XPathConstants.NODESET);	

 161

	
	 	 	 for	(int	i	=	0;	i	<	initialNodes.getLength();	i++)	{	
	 	 	 	 node	=	initialNodes.item(i);	
	 	 	 	 e	=	(Element)	node;	
	
	 	 	 	 Q.add(node);	
	 	 	 	 displayName	=	e.getAttribute("DisplayName").replace('	',	
	 	 	 	 	 	 '_');	
	 	 	 	 XNameToDisplayName.put(e.getAttribute("x:Name"),	
	 	 	 	 	 	 displayName);	
	 	 	 	 if	(foundations	==	null	
	 	 	 	 	 	 ||	!foundations.contains(displayName))	{	
	 	 	 	 	 concretes.add(displayName);	
	 	 	 	 }	
	 	 	 }	
	
	 	 }	else	{	
	 	 	 e	=	(Element)	initialState;	
	
	 	 	 Q.add(initialState);	
	 	 	 displayName	=	e.getAttribute("DisplayName").replace('	',	'_');	
	 	 	 XNameToDisplayName.put(e.getAttribute("x:Name"),	displayName);	
	 	 	 if	(foundations	==	null	||	!foundations.contains(displayName))	{	
	 	 	 	 concretes.add(displayName);	
	 	 	 }	
	 	 	 nextState	=	e.getAttribute("DisplayName").replace('	',	'_');	
	 	 	 outputStrBuffer.append(currState);	
	 	 	 outputStrBuffer.append("	->	");	
	 	 	 outputStrBuffer.append(nextState);	
	 	 	 outputStrBuffer.append("	+	");	
	 	 }	
	
	 	 while	(Q.peek()	!=	null)	{	
	 	 	 node	=	Q.remove();	
	 	 	 e	=	(Element)	node;	
	
	 	 	 currState	=	e.getAttribute("DisplayName").replace('	',	'_');	
	 	 	 transitions	=	(NodeList)	xpath.compile(
	 	 	 	 	 "./State.Transitions/Transition").evaluate(node,	
	 	 	 	 	 XPathConstants.NODESET);	
	
	 	 	 for	(int	i	=	0;	i	<	transitions.getLength();	i++)	{	
	
	 	 	 	 //	back/cross	edges	
	 	 	 	 //	attribute	"To"	exists	in	the	"Transition"	node	
	 	 	 	 e	=	(Element)	transitions.item(i);	
	 	 	 	 String	attr	=	e.getAttribute("To");	
	 	 	 	 if	(attr	!=	null	&&	!attr.isEmpty()	
	 	 	 	 	 	 &&	attr.trim().length()	>	0)	{	
	 	 	 	 	 String[]	strArry	=	attr.split("	");	
	 	 	 	 	 String	xName	=	strArry[1].substring(0,	
	 	 	 	 	 	 	 strArry[1].length()	-	1);	
	 	 	 	 	 nextState	=	XNameToDisplayName.get(xName);	
	 	 	 	 	 if	(nextState	!=	null)	{	
	 	 	 	 	 	 outputStrBuffer.append(currState);	
	 	 	 	 	 	 outputStrBuffer.append("	->	");	

 162

	 	 	 	 	 	 outputStrBuffer.append(nextState);	
	 	 	 	 	 	 outputStrBuffer.append("	+	");	
	 	 	 	 	 }	else	{	
	 	 	 	 	 	 //	edges	not	yet	discovered	
	 	 	 	 	 	 delayedEdges.put(xName,	currState);	
	 	 	 	 	 }	
	 	 	 	 	 continue;	
	 	 	 	 }	
	
	 	 	 	 //	tree	edges	
	 	 	 	 node	=	(Node)	xpath.compile("./Transition.To/State")	
	 	 	 	 	 	 .evaluate(transitions.item(i),	XPathConstants.NODE);	
	 	 	 	 if	(node	!=	null)	{	
	 	 	 	 	 e	=	(Element)	node;	
	
	 	 	 	 	 Q.add(node);	
	 	 	 	 	 displayName	=	e.getAttribute("DisplayName").replace(
	 	 	 	 	 	 	 '	',	'_');	
	 	 	 	 	 XNameToDisplayName.put(e.getAttribute("x:Name"),	
	 	 	 	 	 	 	 displayName);	
	 	 	 	 	 if	(foundations	==	null	
	 	 	 	 	 	 	 ||	!foundations.contains(displayName))	{	
	 	 	 	 	 	 concretes.add(displayName);	
	 	 	 	 	 }	
	
	 	 	 	 	 nextState	=	e.getAttribute("DisplayName").replace('	',	
	 	 	 	 	 	 	 '_');	
	 	 	 	 	 outputStrBuffer.append(currState);	
	 	 	 	 	 outputStrBuffer.append("	->	");	
	 	 	 	 	 outputStrBuffer.append(nextState);	
	 	 	 	 	 outputStrBuffer.append("	+	");	
	
	 	 	 	 	 //	if	nextState	is	a	final	state,	append	
	 	 	 	 	 //	nextState	+	"	->	End	+	"	
	 	 	 	 	 String	IsFinal	=	e.getAttribute("IsFinal");	
	 	 	 	 	 if	(IsFinal	!=	null	&&	IsFinal.equals("True"))	{	
	 	 	 	 	 	 outputStrBuffer.append(nextState);	
	 	 	 	 	 	 outputStrBuffer.append("	->	");	
	 	 	 	 	 	 outputStrBuffer.append("End");	
	 	 	 	 	 	 outputStrBuffer.append("	+	");	
	 	 	 	 	 }	
	
	 	 	 	 }	else	{	
	
	 	 	 	 	 //	back/cross	edges	
	 	 	 	 	 //	the	"Transition.To"	node	is	under	the	"Transition"	
	 	 	 	 	 //	node	
	 	 	 	 	 node	=	(Node)	xpath.compile("./Transition.To/*")	
	 	 	 	 	 	 	 .evaluate(transitions.item(i),	
	 	 	 	 	 	 	 	 	 XPathConstants.NODE);	
	 	 	 	 	 e	=	(Element)	node;	
	
	 	 	 	 	 if	(node	==	null)	{	
	
	 	 	 	 	 	 System.err.println("currState:	"	+	currState);	
	 	 	 	 	 	 System.err.println("node	is	null");	

 163

	 	 	 	 	 }	
	 	 	 	 	 nextState	=	XNameToDisplayName.get(e.getTextContent());	
	 	 	 	 	 if	(nextState	!=	null)	{	
	 	 	 	 	 	 outputStrBuffer.append(currState);	
	 	 	 	 	 	 outputStrBuffer.append("	->	");	
	 	 	 	 	 	 outputStrBuffer.append(nextState);	
	 	 	 	 	 	 outputStrBuffer.append("	+	");	
	 	 	 	 	 }	else	{	
	 	 	 	 	 	 //	edges	not	yet	discovered	
	 	 	 	 	 	 delayedEdges.put(e.getTextContent(),	currState);	
	 	 	 	 	 }	
	
	 	 	 	 }	
	
	 	 	 }	
	
	 	 }	
	
	 	 //	print	back/cross	edges	that	has	not	yet	been	discovered	when	
	 	 //	first	seen	
	 	 for	(String	key	:	delayedEdges.keySet())	{	
	 	 	 outputStrBuffer.append(delayedEdges.get(key));	
	 	 	 outputStrBuffer.append("	->	");	
	 	 	 outputStrBuffer.append(XNameToDisplayName.get(key));	
	 	 	 outputStrBuffer.append("	+	");	
	 	 }	
	
	 	 //	remove	"	+	"	at	the	end	of	the	StringBuffer	
	 	 if	(outputStrBuffer.length()	>=	3	
	 	 	 	 &&	outputStrBuffer.charAt(outputStrBuffer.length()	-	1)	==	'	'	
	 	 	 	 &&	outputStrBuffer.charAt(outputStrBuffer.length()	-	2)	==	'+'	
	 	 	 	 &&	outputStrBuffer.charAt(outputStrBuffer.length()	-	3)	==	'	')	{	
	
	 	 	 outputStrBuffer.setLength(outputStrBuffer.length()	-	3);	
	 	 }	
	
	 	 return	outputStrBuffer.toString();	
	
	 }	
	
	 public	static	void	main(String[]	args)	{	
	 	 try	{	
	 	 	 DocumentBuilderFactory	docBuilderFactory	=	DocumentBuilderFactory	
	 	 	 	 	 .newInstance();	
	 	 	 DocumentBuilder	docBuilder	=	docBuilderFactory.newDocumentBuilder();	
	
	 	 	 if	(args	==	null	||	args.length	<	2)	{	
	 	 	 	 System.err	
	 	 	 	 	 	 .println("Error:	need	the	pathnames	of	2	.xaml	file	as	arguments");	
	 	 	 	 return;	
	 	 	 }	
	
	 	 	 Document	doc1	=	docBuilder.parse(new	File(args[0]));	
	 	 	 Document	doc2	=	docBuilder.parse(new	File(args[1]));	
	
	 	 	 HashSet<String>	foundations	=	new	HashSet<String>();	

 164

	 	 	 HashSet<String>	concretes	=	new	HashSet<String>();	
	
	 	 	 String	w1	=	getAlloyEdges(doc1,	null,	foundations);	
	 	 	 String	w2	=	getAlloyEdges(doc2,	foundations,	concretes);	
	
	 	 	 //	produce	translator.thm	
	 	 	 Collection<String>	allNodes	=	new	LinkedList<String>();	
	 	 	 allNodes.addAll(foundations);	
	 	 	 allNodes.addAll(concretes);	
	 	 	 produceThm(new	PrintWriter(System.err),	allNodes);	
	 	 	 //	produceThm("translator.thm",	allNodes);	
	 	 	 //	System.err.println("test	to	stderr");	
	
	 	 	 System.out.println();	
	 	 	 if	(foundations.size()	>	0)	{	
	 	 	 	 System.out.print("one	sig	");	
	
	 	 	 	 boolean	isFirst	=	true;	
	 	 	 	 for	(String	DisplayName	:	foundations)	{	
	 	 	 	 	 if	(!isFirst)	{	
	 	 	 	 	 	 System.out.print(",	");	
	 	 	 	 	 }	else	{	
	 	 	 	 	 	 isFirst	=	false;	
	 	 	 	 	 }	
	 	 	 	 	 System.out.print(DisplayName);	
	 	 	 	 }	
	
	 	 	 	 System.out.println("	extends	Foundation	{}\n");	
	 	 	 }	
	 	 	 if	(concretes.size()	>	0)	{	
	 	 	 	 System.out.print("one	sig	");	
	
	 	 	 	 boolean	isFirst	=	true;	
	 	 	 	 for	(String	DisplayName	:	concretes)	{	
	 	 	 	 	 if	(!isFirst)	{	
	 	 	 	 	 	 System.out.print(",	");	
	 	 	 	 	 }	else	{	
	 	 	 	 	 	 isFirst	=	false;	
	 	 	 	 	 }	
	 	 	 	 	 System.out.print(DisplayName);	
	 	 	 	 }	
	
	 	 	 	 System.out.println("	extends	Concrete	{}\n");	
	 	 	 }	
	 	 	 System.out.println("fact	W1defn	{");	
	 	 	 System.out.print("\tw	=	{");	
	 	 	 System.out.print(w1);	
	 	 	 System.out.println("}");	
	 	 	 System.out.println("}");	
	 	 	 System.out.println();	
	 	 	 System.out.println("fact	W2defn	{");	
	 	 	 System.out.print("\tv	=	{");	
	 	 	 System.out.print(w2);	
	 	 	 System.out.println("}");	
	 	 	 System.out.println("}");	
	

 165

	 	 }	catch	(Exception	e)	{	
	 	 	 System.err.println("Error:	"	+	e.getMessage());	
	 	 	 e.printStackTrace(new	PrintStream(System.out));	
	 	 }	
	
	 }	
	

}

 166

Appendix G
Automator.java Documentation

main
public static void main(String[] args)
throws Err

The main method takes the file names of an als file (contains the original workflow and the derived
workflows) and a thm file. It then produces a dot file that contains the graphical representation of the
workflows within the als file in the format specifiers in the thm file.
The name of the produced dot file is based on the name of the als file.
For example, if the als file is called RFI-Conformance.als, the dot file will be named RFI-Conformance.dot.

note:

§ als file is the file format used by alloy.

§ A thm file specifies the format of graphical representation used by an als file.

Parameters:

§ args[0] - the path to the als file that contains the original workflow and the derived workflow.

§ args[1] - the path to the thm file that will be used by args[0].

Returns:
§ void

Side Effect:
§ produces a dot file that contains the graphical representation of the workflows within the als file in the

format specifiers in the thm file.

 167

Appendix H
Automator.java Code

/*	Alloy	Analyzer	4	--	Copyright	(c)	2006-2009,	Felix	Chang	
	*	
	*	Permission	is	hereby	granted,	free	of	charge,	to	any	person	obtaining	a	copy	of	this	software	and	associated	documentation	
files	
	*	(the	"Software"),	to	deal	in	the	Software	without	restriction,	including	without	limitation	the	rights	to	use,	copy,	modify,	
	*	merge,	publish,	distribute,	sublicense,	and/or	sell	copies	of	the	Software,	and	to	permit	persons	to	whom	the	Software	is	
	*	furnished	to	do	so,	subject	to	the	following	conditions:	
	*	
	*	The	above	copyright	notice	and	this	permission	notice	shall	be	included	in	all	copies	or	substantial	portions	of	the	Software.	
	*	
	*	THE	SOFTWARE	IS	PROVIDED	"AS	IS",	WITHOUT	WARRANTY	OF	ANY	KIND,	EXPRESS	OR	IMPLIED,	INCLUDING	BUT	NOT	
LIMITED	TO	THE	WARRANTIES	
	*	OF	MERCHANTABILITY,	FITNESS	FOR	A	PARTICULAR	PURPOSE	AND	NONINFRINGEMENT.	IN	NO	EVENT	SHALL	THE	AUTHORS	
OR	COPYRIGHT	HOLDERS	BE	
	*	LIABLE	FOR	ANY	CLAIM,	DAMAGES	OR	OTHER	LIABILITY,	WHETHER	IN	AN	ACTION	OF	CONTRACT,	TORT	OR	OTHERWISE,	
ARISING	FROM,	OUT	OF	
	*	OR	IN	CONNECTION	WITH	THE	SOFTWARE	OR	THE	USE	OR	OTHER	DEALINGS	IN	THE	SOFTWARE.	
	*/	
	
import	java.io.IOException;	
import	java.io.File;	
import	java.io.PrintWriter;	
	
import	edu.mit.csail.sdg.alloy4.A4Reporter;	
import	edu.mit.csail.sdg.alloy4.Err;	
import	edu.mit.csail.sdg.alloy4.ErrorWarning;	
import	edu.mit.csail.sdg.alloy4compiler.ast.Command;	
import	edu.mit.csail.sdg.alloy4compiler.ast.Module;	
import	edu.mit.csail.sdg.alloy4compiler.parser.CompUtil;	
import	edu.mit.csail.sdg.alloy4compiler.translator.A4Options;	
import	edu.mit.csail.sdg.alloy4compiler.translator.A4Solution;	
import	edu.mit.csail.sdg.alloy4compiler.translator.TranslateAlloyToKodkod;	
import	edu.mit.csail.sdg.alloy4viz.VizGUI;	
import	edu.mit.csail.sdg.alloy4viz.VizState;	
	
/**		
	*	Run	Alloy	commands	in	als	file,	then	visualize	and	apply	
	*	appropriately	named	thm	file,	saving	output	in	Graphviz/Dot	format.	*/	
	
public	class	Automator	{	
	
				/*	
					*	Execute	every	command	in	every	file.	
					*	
					*	This	method	parses	every	file,	then	execute	every	command.	
					*	
					*	If	there	are	syntax	or	type	errors,	it	may	throw	
					*	a	ErrorSyntax	or	ErrorType	or	ErrorAPI	or	ErrorFatal	exception.	
					*	You	should	catch	them	and	display	them,	

 168

					*	and	they	may	contain	filename/line/column	information.	
					*/	
				public	static	void	main(String[]	args)	throws	Err	{	
					 	
								//	The	visualizer	(We	will	initialize	it	to	nonnull	when	we	visualize	an	Alloy	solution)	
								VizGUI	viz	=	null;	
	
								//	Alloy4	sends	diagnostic	messages	and	progress	reports	to	the	A4Reporter.	
								//	By	default,	the	A4Reporter	ignores	all	these	events	(but	you	can	extend	the	A4Reporter	to	display	the	event	for	the	user)	
								A4Reporter	rep	=	new	A4Reporter()	{	
												//	For	example,	here	we	choose	to	display	each	"warning"	by	printing	it	to	System.out	
												@Override	public	void	warning(ErrorWarning	msg)	{	
																System.err.print("Relevance	Warning:\n"+(msg.toString().trim())+"\n\n");	
																System.err.flush();	
												}	
								};	
									
								
								if(args	==	null	||	args.length	<	1){	
									 System.exit(0);	
								}	
								//	loop	over	every	als	file	named	on	the	command	line	
								//for(final	String	filename:args)	{	
					
								String	filename	=	args[0];	
								//	Parse+typecheck	the	model	
								//	System.out.println("===========	Parsing+Typechecking	"+filename+"	=============");	
								Module	world	=	CompUtil.parseEverything_fromFile(rep,	null,	filename);	
	
								//	Choose	some	default	options	for	how	you	want	to	execute	the	commands	
								A4Options	options	=	new	A4Options();	
	
								options.solver	=	A4Options.SatSolver.SAT4J;	
	
								for	(Command	command:	world.getAllCommands())	{	
												//	Execute	the	command	
												//	System.out.println("============	Command	"+command+":	============");	
												A4Solution	ans	=	TranslateAlloyToKodkod.execute_command(rep,	world.getAllReachableSigs(),	command,	options);	
													
												//	Print	the	outcome	
												//	System.out.println(ans);	
													
												//	If	satisfiable...	
												if	(ans.satisfiable())	{	
																//	You	can	query	"ans"	to	find	out	the	values	of	each	set	or	type.	
																//	This	can	be	useful	for	debugging.	
																//	
																//	You	can	also	write	the	outcome	to	an	XML	file	
																ans.writeXML("alloy_example_output.xml",	world.getAllFunc());	
																//	
																//	You	can	then	visualize	the	XML	file	by	calling	this:	
																if	(viz==null)	{	
																				viz	=	new	VizGUI(false,	"alloy_example_output.xml",	null);	
																				//	System.out.println("new	viz");	
																}	else	{	
																				//	viz.loadXML("alloy_example_output.xml",	true);	

 169

																				//	System.out.println("old	viz");	
																}	
																VizState	vs	=	viz.getVizState();	
																final	String	tn;	
																if(args.length	>=	2){	
													 	 tn=	args[1];	
																}	else	{	
																	 tn	=	filename.replace(".als",	".thm");	
																}	
																try{	
																				final	File	f	=	new	File(tn);	
																				final	String	s	=	f.getCanonicalPath();	
																				vs.loadPaletteXML(s);	
																}	catch(IOException	e){	
																				System.err.println("Error:	cannot	find/read	"	+	tn);	
																				System.err.println(e.getMessage());	
																				System.err.println(e.getStackTrace());	
																				return;	
																}	
																viz.loadXML("alloy_example_output.xml",	true);	
	
																//	write	dot	output	
																final	String	dn;	
																if(args.length	>=	3){	
																	 dn	=	args[2];	
																}	else	{	
																	 dn	=	filename.replace(".als",	".dot");	
																}	
																try{	
																				final	PrintWriter	w	=	new	PrintWriter(new	File(dn));	
																				w.print(viz.getViewer().toString());	
																				w.close();	
																}	catch(IOException	e){	
																				System.err.println("Error:	cannot	find/read	"	+	tn);	
																				System.err.println(e.getMessage());	
																				System.err.println(e.getStackTrace());	
																				return;	
																}	
																	
																//	we	will	only	execute	the	first	command,	then	we	exit	
																System.exit(0);	
																//}	
												}	
								}	
				}	
}	

