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Abstract

This thesis contains the results of research projects broadly related to the pursuit of uni-
versal fault-tolerant quantum computation. We are interested in questions such as which
resources are required to achieve a quantum computational advantage, how to utilize such
resources in practice, and how to characterize and control noise throughout a computation.

In part 1, we cover results pertaining to magic state distillation, one of the leading
approaches to implementing universal fault-tolerant quantum computation. Early work in
this area focused on determining the region of distillable states for qubit protocols, yet
comparatively little is known about which states can be distilled and with what distillable
region for d > 2. In the first project, we focus on d = 3 and present new four-qutrit
distillation schemes that improve upon the known distillable region, and achieve distillation
tight to the boundary of undistillable states for some classes of states. As a consequence of
recent results, this implies that there is a family of quantum states that enable universality
if and only if they exhibit contextuality with respect to stabilizer measurements. We also
identify a new routine whose fixed point is a magic state with maximal sum-negativity i.e.,
it is maximally non-stabilizer in a specific sense. In the second project, we return to d = 2
and present a number of interesting new distillation routines based on small codes. Many
of these distill noisy states right up to the boundary of the known undististillable region,
while some distill toward non-stabilizer states that have not previously been considered.

In part 2, we address the issue of noise characterization. The characterization of noise
in a quantum system serves as a foundation towards meeting two important goals. Firstly,
we may wish to know about specific sources of noise in order to adapt or correct errors as
much as possible. Secondly, we would like a way to verify that noise is below some threshold
value in order to meet the criteria of threshold theorems. We consider the case where noise
is approximately known to coincide with the generalized damping channel (encompassing
the common intrinsic processes of amplitude damping and dephasing), but may contain
additional unknown noise sources. We provide methods to accurately obtain the noise
parameters, and compare with the results of a randomized benchmarking experiment.
Using this information, we show how to make meaningful statements about fault-tolerance
threshold theorems by considering the diamond distance.
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Chapter 1

Outline and Summary of Results

A major obstacle in the path to building a scalable and robust quantum computer is over-
coming the loss or corruption of quantum information due to unwanted interactions with
the environment. We will present methods for overcoming such obstacles and achieving
universal fault-tolerant quantum computation, as well as methods for characterizing the
potential threats. We begin by reviewing representations of quantum states and channels
(Chapter 2), as well as quantum error-correcting codes (Chapter 3).

In Chapter 4, we provide background information on one of the leading approaches
to achieving universal fault-tolerant quantum computation: magic state distillation. The
distillation protocol was first proposed by Knill [1] and Bravyi and Kitaev [2], where
it was shown that impure input states may be consumed in an iterative procedure to
produce a pure non-stabilizer state. Furthermore this non-stabilizer state can be used
to implement a gate outside the Clifford gate set, and therefore universal fault-tolerant
quantum computation is achieved using this scheme. Which types of quantum states are
suitable as input states to this procedure then becomes a question of foundational interest,
since any resource these states possess enables universality. For qubits, undistillability
of a state is implied by it being a stabilizer state by the Gottesman-Knill theorem [3].
Therefore, showing that any non-stabilizer state can be distilled via some magic state
distillation routine implies that this is the resource to promote quantum universality.

The idea of magic state distillation has since been extended to higher dimensional sys-
tems by Anwar, Campbell, and Browne [4, 5, 6]. Similar to qubits, there is a region of
states known to be undistillable. For prime dimensions, the region of possibly distillable
states was recently shown to coincide exactly with the region of states which exhibit state
dependent contextuality with respect to stabilizer measurements [7]. It has been conjec-
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tured that contextuality is the resource to enable universality in this regime [8]. However,
proving such a conjecture would require showing that any state outside the undistillable
region is indeed distillable by a magic state distillation routine.

In Chapter 5, we present our contribution towards this goal (based on [9], a collabo-
ration with Mark Howard). We present novel magic state distillation protocols which use
very few input states per round of distillation, and improve the region of suitable input
states. Furthermore the improved distillable region saturates a bound in that we achieve
distillation tight to the boundary of provably undistillable states for the first time in a
three-dimensional system. This implies that there is a family of quantum states that allow
universality if and only if they exhibit contextuality with respect to stabilizer measure-
ments. The tightness result is highlighted geometrically through a certain parameteriza-
tion of qutrit state space, which may be of independent interest. In addition to the main
result, we present a family of a magic state distillation protocols and corresponding fixed
points which can help fill out the landscape of known distillation procedures. Currently
very little is known about what makes a good magic state distillation routine, or given
some routine, which state will be distilled. Future work in this area can make use of the
vast library of routines and corresponding fixed points we have collected. Our distilled
states include a special fixed point of interest due to it being a maximally non-stabilizer
state, which was not previously known to be directly distillable. In Chapter 6, we further
increase the landscape of known distillation routines for qubit protocols (based on [10],
a collaboration with Mark Howard). While transversality of a non-Clifford gate within a
code often leads to efficient distillation routines, it appears to not be a necessary condition.
We have examined a number of small stabilizer codes and highlight a handful which display
interesting, albeit inefficient, distillation behaviour.

In the remaining chapters, we turn our attention to another fundamental component of
universal fault-tolerant quantum computation: noise characterization. In Chapter 7, we re-
view some of the most common noise processes associated with unwanted interactions with
the environment and how they are measured in practice. Amplitude damping describes
the thermal equilibration of ground and excited states, while phase damping describes the
loss of coherences. The rates of amplitude damping and phase damping are measured via
inversion recovery and Ramsey experiments respectively. We also introduce a generalized
notion of these channels, which combines both processes and allows for relaxation at a
finite temperature.

In Chapter 8 (based on a collaboration with Joel Wallman and Joseph Emerson), we
show how the parameters of this generalized model can be estimated, accounting for state
preparation and measurement errors, as well as small deviations from generalized damping.
We then show how the resulting estimates can be compared with the model-independent

2



quantities from randomized benchmarking to rigorously establish how close the noise is to a
generalized damping channel. Furthermore, relation to fault-tolerance threshold theorems
often requires knowledge of the diamond distance of the noise channel from the identity.
We derive bounds on the diamond distance for channels close to generalized damping in
terms of the experimental parameters, which will allow experimentalists to easily check if
threshold criteria are satisfied.
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Chapter 2

Quantum Information Processing

Processing quantum information involves:

i) encoding of information into quantum states, described by ρ, a positive linear opera-
tor existing on a complex Hilbert space

ii) manipulation of information achieved by applying gates, ideally described by a uni-
tary operator on the Hilbert space. We will often refer to the evolution of a state more
generally as a channel, to encompass the application of ideal gates as well as noise pro-
cesses. A quantum channel E(p) is said to be:

ii.a) completely positive (CP) if E ⊗ 1(ρ) is positive whenever ρ is positive,

ii.b) trace preserving (TP) if Tr(E(ρ)) = Tr(ρ) for all ρ,

and ii.c) unital if E(1/d) = 1/d.

In this chapter, we outline the formalism we use to describe these operations. Both states
and channels can be conveniently represented using the Pauli operators

D(x|z) = ω2−1xzXxZz, x, z ∈ Zd , (2.1)

for a d-dimensional system, where X and Z are defined by

X |j〉 = |j + 1〉 , Z |j〉 = ωj |j〉 (2.2)

4



Figure 2.1: Example of a circuit diagram. Reading from left to right, we see the state is
initially prepared as ρ1 ⊗ ρ2, undergoes a transformation by the single qubit gates U1, U2

followed by the 2-qubit gate U3, and is output in the state ρ′.

and ω = e2πi/d is the d-th root of unity. For qubits, this reduces to the standard

1 =

[
1 0
0 1

]
, X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
. (2.3)

Diagrammatically, we can describe a quantum computation by a circuit diagram as shown
in Fig. 2.1.

2.1 Representations of states

Here we present two useful ways to represent states which will be referenced throughout
this thesis.

2.1.1 The Bloch sphere

Any pure qubit state can be expressed as

|ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉 (2.4)

with respect to an orthonormal basis {|0〉 , |1〉} where θ ∈ [0, π] and φ ∈ [0, 2π), so that the
state is uniquely described by a point on the unit sphere. Mixed states, convex combina-
tions of pure states, are described by points within the interior of the sphere. Both pure
and mixed states can be described by a density matrix

ρ =
1

2
(1+ xX + yY + zZ) (2.5)

5



Figure 2.2: The Bloch sphere for qubits. The stabilizer octahedron is shown in blue.

where (x, y, z) are the Bloch coordinates and give the position of the state within the Bloch
sphere. The single qubit stabilizer states are the eigenstates of the Pauli operators, and
are usually denoted as {|0〉 , |1〉 , |+〉 , |−〉 , |+i〉 , |−i〉}. Any mixed state which is a convex
combination of stabilizer states lies within the stabilizer octahedron, as shown in Fig. 2.2.
When discussing qubits, we will often describe states using Bloch coordinates.

2.1.2 Discrete Wigner representation

The discrete Wigner representation [12, 13] of a single-qudit state ρ is a quasi-probability
distribution over a d× d grid. The elements of the grid are given by

Wρ(x, z) =
1

d
Tr(Ax,zρ) (2.6)

where Ax,z are the phase point operators

Ax,z =
1

d
D(x|z)

(∑

x′,z′

D(x′|z′)

)
D†(x|z). (2.7)
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Figure 2.3: Discrete Wigner representation of the state |ψ〉 = 1√
6
(− |0〉+ 2 |1〉 − |2〉).

For d > 2, the subset of quantum states that have nonnegative entries in all d2 positions
of the discrete Wigner function are known to be classically simulable [14]. Geometrically,
this subset of states is prescribed by the Wigner polytope

Wigner polytope := {ρ : Tr(ρAx,z) ≥ 0, x, z ∈ Zd}.

It should be noted that the stabilizer states form a strict subset of the Wigner polytope.
The sum-negativity [8] of a state,

sn(ρ) =
∑

x,z:Wρ(x,z)<0

|Wρ(x, z)|, (2.8)

is an operationally useful quantification of how far from the Wigner polytope a state
is. As an example, consider the qutrit state |ψ〉 = 1√

6
(− |0〉 + 2 |1〉 − |2〉). The Wigner

representation is shown in Fig. 2.3, from which we can see sn(|ψ〉) = 1
3
, and therefore this

state is not classically simulable. When discussing qudits of dimension greater than two,
we will often refer to the Wigner representation.

2.2 Representations of channels

Here we present channel representations which will be used to describe quantum processes
throughout this thesis. This discussion is based on [15, 16].

7



2.2.1 The Kraus-operator representation of quantum channels

The evolution of a quantum state may be described by the superoperator E(ρ) acting on
ρ for a given time. A CPTP map admits an operator-sum decomposition

E(ρ) =
∑

k

AkρA
†
k (2.9)

where {Ak} is the set of Kraus operators. The Kraus operators must satisfy

∑

k

A†kAk = 1 (2.10)

in order for E(ρ) to be trace-preserving. Additionally, if E(ρ) is unital, we have the extra
condition

∑

k

AkA
†
k = 1. (2.11)

The maximum number of Kraus operators needed to describe a CP map acting on d-
dimensional quantum states is d2.

2.2.2 The Pauli-Liouville representation of quantum channels

A matrix representation of a superoperator, also called the process matrix, Λ(E) is a d2×d2

matrix with elements

Λij(E) = Tr(B†i E(Bj)) (2.12)

where {Bi} is a trace-orthonormal basis. The action of the channel is then given by

|E(ρ)
)

= Λ|ρ
)

(2.13)

where |ρ
)

is the column vector representation of a state ρ with entries

|ρ
)
i

= Tr(B†i ρ). (2.14)

The Pauli-Liouville representation of a channel is the process matrix given by the choice
of basis

{Bi} = Pd/
√
d (2.15)
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which constrains all elements of Λ(E) to be real. For trace-preserving channels, we can
write Λ(E) in block diagonal form

Λ(E) =

[
1 0

Λn Λu

]
(2.16)

where we have fixed B1 = 1/
√
d. Λn and Λu are called the non-unital and unital parts of

Λ(E) respectively, and Λn = 0 for unital maps.

2.2.3 The Choi matrix

Another matrix representation of the channel E is given by the Choi matrix J(E)

J(E)ij = E(Bij) (2.17)

where each “element” J(E)ij is a d × d matrix, and {Bij} is the standard computational
basis, Bij = |i〉〈j|. More explicitly,

J(E) =

[
E(|0〉〈0|) E(|0〉〈1|)
E(|1〉〈0|) E(|1〉〈1|)

]
(2.18)

for E acting on a single qubit. The Choi matrix representation is unique and must be
positive semi-definite if E is a CP map. Furthermore we can diagonalize the Choi matrix
to find a minimal Kraus-operator representation

Ak =
√
λkVk (2.19)

where Vk are the eigenvectors of J(E) with associated eigenvalues λk.

2.2.4 Master equations

The previous sections describe discrete time representations of channels, however it will
sometimes be more convenient to give a continuous time description of evolution as gov-
erned by a master equation. The standard form of the evolution is given by

∂ρ

∂t
= −i[H, ρ] +

4∑

i,j=2

Ai,j(BiρB
†
j −

1

2
{B†jBi, ρ}) (2.20)

9



where

H =
1

2i
(F † − F ), F =

1

2

4∑

i=2

A1,iBi (2.21)

and {Bi} is a trace-orthonormal basis with the choice B1 = 1/
√
d. We can see that the

evolution is completely specified by providing the coefficient matrix A, which is Hermitian
and positive [16]. Since A is Hermitian, it may be diagonalized to give the Lindblad form
of the evolution

∂ρ

∂t
= −i[H, ρ] +D(ρ) (2.22)

where H describes the unitary evolution of ρ, and D(ρ) gives the dissipative term

D(ρ) =
d2∑

i=2

λi(ViρV
†
i −

1

2
{V †i Vi, ρ}), λi ≥ 0. (2.23)

2.3 Measures of noise

Finally, we need some way to measure the level of noise on a quantum system or the
amount of error in our desired operations. In fact there are several ways to define noise,
and we spend the remainder of this section describing the measures most relevant to our
results.

The difference between two quantum states, ρ and σ, may be characterized by the state
fidelity

F (ρ, σ) = Tr
(√√

ρσ
√
ρ
)2

. (2.24)

In a similar fashion, the fidelity between channels E1 and E2 is defined as

Fψ(E1, E2) = F (E1(ψ), E2(ψ)) (2.25)

which is dependent on the input state ψ. To obtain a state-independent measure of channel
distance, we average over all pure states using the Fubini-Study measure

F(E1, E2) =

∫
dµFS(ψ)F (E1(ψ), E2(ψ)). (2.26)
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In our discussions, we wish to characterize the difference between an unwanted noise process
E and the identity operation 1, F(E) := F(E , 1). Depending on the channel representation
of E , the computation of the average fidelity can take several forms. Given the Kraus
operators {Ak},

F(E) =

∑
k Tr(Ak)Tr(A†k) + d

d2 + d
. (2.27)

Equivalently, using the Pauli-Liouville representation,

F(E) =
Tr(Λ(E)) + d

d2 + d
. (2.28)

Finally when given a continuous time description of the evolution, it may be more conve-
nient to compute

F(E) =
1

N

N∑

i=1

〈ψi| E(ψi) |ψi〉 (2.29)

where |ψi〉 are the pure stabilizer states, using the fact that these states form a state
2-design.

While the average fidelity is a useful quantity, many threshold theorems actually depend
on the “worst-case error” as characterized by the diamond distance between E and the
identity operation, D(E)� = 1

2
||E − 1||� where

||∆||� = supψ||1⊗∆(ψ)||1. (2.30)

The diamond distance has the nice property that it is invariant under enlargement of the
Hilbert space, and therefore the supremum in the above may be taken over pure states.
The diamond norm may be computed using semi-definite programming techniques; for
more details see [21]. For an analytic expression in the case where E is a Pauli channel,
see [22].
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Chapter 3

Quantum Error Correction and Fault
Tolerance

In this section, we discuss the major themes that unify the two parts of this thesis: quan-
tum error correction and fault tolerance. The strange properties of quantum mechanics
that allow for an advantage over classical computation turn out to be a double-edged sword
when trying to account for errors. For one, errors take on an infinite range of possibilities
in contrast to the single bit-flip error in the classical setting. The detection and classifica-
tion of errors is also problematic due to decoherence caused by measurement. Quantum
error correction protocols tell us how to apply corrections given only certain information.
However, it is always possible that our correction operations will be faulty. Fault-tolerant
schemes implement error correction combined with other tools in such a way that errors
do not propagate badly. In combination with error correction, the fault-tolerance thresh-
old theorem [19, 20] ensures that meaningful quantum computation is achievable. Loosely
stated, the threshold theorem guarantees that a certain amount of noise can be corrected
or accounted for as long as we are promised that the noise is below some threshold value.
We begin this section by introducing the Clifford group, an important class of operations
in the context of fault tolerance. We then discuss the stabilizer formalism (adapted from
[17]) which we frequently use to describe error-correcting codes. More specifically, we use
code-word stabilized codes to describe the majority of the results presented in Part 1.

12



3.1 The Clifford group

The Clifford group [11] is the set of unitary operations that map Pauli operators to Pauli
operators under conjugation. The elements (for the single-qudit case) can be written as

C = D(x|z)UF (3.1)

UF =

{
1√
d

∑d−1
j,k=0 ω

2−1β−1(αk2−2jk+δj2) |j〉 〈k|, β 6= 0∑d−1
k=0 ω

2−1αγk2 |αk〉 〈k| , β = 0
(3.2)

where F =
(
α β
γ δ

)
is a symplectic matrix and all variables are elements of Zd = {0, 1, . . . , d−

1}. We denote the d-level Pauli and Clifford groups acting on n qudits as Pnd and Cnd
respectively. As we will see, the Clifford group plays an important role in the theory of
fault-tolerant quantum computation. The Gottesman-Knill theorem [3] states that Clifford
operations can be simulated efficiently using a classical computer. However the set of
Clifford operations do not form a dense set in U(dn) and therefore do not constitute a
set of universal operations. Part 1 of this thesis is dedicated to the study of magic state
distillation, one possible path to achieving a universal gate set.

3.2 The stabilizer formalism

The basic idea of quantum error correction is to encode information into a protected sub-
space of a larger Hilbert space. A quantum error-correcting code tells us how information
should be encoded as well as which operations can be performed safely while leaving the
subspace invariant. Within the stabilizer formalism, quantum error-correcting codes are
described by the stabilizer of the code. The stabilizer S is comprised of Pauli operators
which leave all codewords invariant (i.e. are +1 eigenstates). Given an Abelian group
S ⊆ Pnd with −1 /∈ S, the codespace is defined as

T (S) = {|ψ〉 : M |ψ〉 = |ψ〉 ∀M ∈ S}. (3.3)

Generally, a code will be described by its generators, a non-unique set of operators which
generate the stabilizer group. In the context of error correction, the generators are Pauli
measurements which are used to determine the error syndrome. As we will see in Chapter
4, the generators also play a functional role in the creation of magic states. The generators
can be written in binary symplectic notation so that G = (Xx1 ⊗Xx2 ⊗ . . .⊗Xxn)(Zz1 ⊗
Zz2 ⊗ . . . ⊗ Zzn) becomes the vector (x1, x2, . . . , xn|z1, z2, . . . , zn). The complete set of
generators can then be compactly described by the matrix (X|Z).

13



Given the generators, we can look at properties of the code such as the size, distance
and codespace projector. The size of a code k is the number of logical qudits, and is given
by k = n − r where r is the number of generators. The distance of a code tells us about
the error correction capability. A code of distance D = 2t + 1 is able to correct t local
errors. The distance is given by

D = min{weight M : M ∈ N (S)\S} (3.4)

where N (S) in the normalizer of S and global phase errors have been ignored (see [17]
for the proof and further discussion). In a short-hand notation, it is common to describe
a code as being an [[n, k,D]]d code. Finally, the codespace projector is an operator that
projects arbitrary states in the enlarged Hilbert space onto the codespace (representing
logical information). The projector onto the codespace of S in terms of generators {Gi} is

ΠS =
1

2r

r∏

i=1

(1+Gi) (3.5)

which will force states to be in the +1 eigenspace of all generators simultaneously. Conse-
quently, if we add the projection onto the +1 eigenspace of the logical Z operator, we will
arrive at the logical state |0L〉:

|0L〉〈0L| =
1

2
ΠS(1+ ZL). (3.6)

3.3 Code-word stabilized codes

We now describe an important class of stabilizer codes: code-word stabilized (CWS) codes
(see [18]). In this representation, the code is given by a graph state written as an adjacency
matrix, Γ ∈ Z

n×n
2 , as well as a classical codeword, w ∈ Z

n
2 . We review the construction

explicitly for qubits, which is the case we make use of throughout this thesis. An n-qubit
stabilizer code with n generators has k = 0 and consequently specifies a 1-dimensional
subspace of Hilbert space i.e, a stabilizer state. By applying local Cliffords, a generic
stabilizer state (X|Z) can be brought to the form (1n|Γ) where Γ is the adjacency matrix
of the corresponding graph. When stabilizer states take this particular form they are called
graph states, sometimes denoted |Γ〉. We may choose the logical basis state |0L〉 of our
code to be the state

|0L〉 = |Γ〉 =
∑

x∈Zn2

ix
TΓx |x〉 . (3.7)
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Subsequently the logical |1L〉 state is

|1L〉 = Zw |0L〉 =
∑

x∈Zn2

ix
TΓx+2wT x |x〉 , (3.8)

where w is the codeword and Zw denotes the product of Z operators

Zw = Zw1 ⊗ ...⊗ Zwn . (3.9)

The unitary encoding/decoding associated with these codes is quite straightforward as
illustrated in Fig. 3.1b – it involves controlled-Z rotations applied to qubits whose vertices
are connected by edges in the graph. A convenient way of visualizing CWS codes is to
display the graph and highlight the subset of vertices 1 ≤ i ≤ n such that wi = 1. For
example the highlighted graph shown in Fig. 3.2 corresponds to

Γ =




0 0 0 1
0 0 0 1
0 0 0 1
1 1 1 0


 , ω = (1, 1, 0, 0). (3.10)
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1 2 3

(a) Graph with labelled vertices

|+〉

|+〉

|+〉

|Γ〉 =

∑
a,b,c

(−1)ab+bc|a,b,c〉
2
√
2

(b) The graph state preparation circuit for the above graph

Figure 3.1: Creating the graph state associated with a given graph amounts to performing
controlled-Z rotations between qubits whose vertices are connected by an edge in the graph.

Figure 3.2: An example of a CWS code as described by a highlighted graph.
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Chapter 4

Magic State Distillation Background

In the first part of this thesis, we study magic state distillation as a path to universal
fault-tolerant quantum computation. We begin by reviewing the relevant background
information.

4.1 The need for magic states

One of the main challenges facing the implementation of a large scale quantum computer
is the ability to protect quantum information from decoherence, typically introduced by
unwanted interactions with the environment. Encoding information into quantum error-
correcting codes provides a partial answer [23, 24, 25]. However such encodings normally
only allow a limited set of transversal or manifestly fault-tolerant operations, usually the
stabilizer operations i.e., Clifford gates, preparation of stabilizer states and Pauli mea-
surements. Stabilizer operations alone do not enable universality [3], which is achieved by
adding access to any gate outside the Clifford group. A popular choice is the T -gate (or
π/8-gate) and much work has been done on the subject of T + Clifford circuit synthe-
sis [26, 27]. We define a magic state to be any state which can be used to implement a
non-Clifford gate to a desired precision. For example, an equatorial state of the form

|ψ〉 = |0〉+ eiθ |1〉 (4.1)

implements a rotation

R(θ) =

[
1 0
0 eiθ

]
(4.2)
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Figure 4.1: The equatorial state |H〉 = |0〉 + eiπ/4 |1〉 is consumed by the state injection
circuit to implement the π/8-gate on an arbitrary input.

via the state injection circuit shown in Fig. 4.1. Although alternatives exist [28, 29, 30],
magic state distillation remains a leading implementation of universal fault-tolerant quan-
tum computation. In the following sections we detail the distillation protocol, how to
gauge the success of a routine, and types of magic states.

4.2 The distillation protocol

Having established that access to a magic state will allow for universal quantum compu-
tation, we turn to the task of obtaining such a state. By definition, a magic state is not
a stabilizer state and therefore we cannot assume perfect preparation. Using only Clifford
operations, the distillation protocol (first introduced by Knill [1] and Bravyi and Kitaev
[2]) consumes noisy versions of the magic state to produce the final state of required purity.

Magic state distillation routines are described in terms of stabilizer error-correcting
codes, which in turn are described by a set of generators {Gi} consisting of Pauli operators
(as described in Chapter 3). The protocol consists of iteratively applying the following
steps:

1. Prepare n copies of the input state ρ⊗nin , where n is the size of the code

2. Perform Pauli measurements corresponding to each of the n− k generators Gi, and
postselect on the desired outcome

3. Decode the logical qudit of the code onto k physical qudits.

4. Optionally perform a Clifford transformation based on the measurement outcome.
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Figure 4.2: One round of distillation taking noisy versions of the magic state ρin to a higher
fidelity output state ρ′.

One round of the protocol is shown in Fig. 4.2. When successful, the output state(s) will
be purified in the direction of the target magic state. Typically k = 1 and consequently an
[[n, k = 1, D]] stabilizer code is used (see [31, 32, 33] for k ≥ 2 however).

It was shown in [34] that any protocol restricted to Clifford operations cannot produce
an output state of higher fidelity than a stabilizer reduction protocol. Therefore we lose
no generality by restricting our search to distillation routines based on stabilizer codes.
The success of any given routine can be measured in a number of ways, depending on the
desired application. In the following section we describe these measures.

4.3 Useful quantities

The magic state distillation protocol describes an iterative process in which an output state
is produced by consuming the output state at the previous step, when successful. When
post-selecting on the trivial measurement outcome, the output state is given by

ρ′ =
1

ps
Πcρ

⊗nΠc (4.3)

where Πc is the codespace projector, and ps is the success probability :

ps = Tr(Πcρ
⊗n). (4.4)
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For qubits, one can assume that input states suffer from depolarizing noise and take the
form

ρM = (1− p) |M〉〈M |+ p
12

2
, (4.5)

where |M〉 is the target magic state, and p is called the error rate. This is due to the
fact that twirling to the depolarizing axis is a Clifford operation, and therefore may be
implemented perfectly. We measure the efficiency of a routine based on the output error
rate of a state as a function of the input error rate pout = f(p). The error suppression of
a routine refers to the rate at which pout tends to zero (i.e. if pout = c1p +O(p2) then we
have linear error suppression).

The threshold of a routine refers to the maximum value of p for which distillation is
successful (i.e. pout < p), which we denote as p∗. For qubits, the relevant value of p∗ always
occurs along the depolarizing axis of the target magic state. For qudits, when a depolarizing
noise model cannot be assumed, we may report a range of threshold values containing the
depolarizing threshold (see [4]). The upper limit on any threshold is set by the boundary
of undistillable states. A state which is classically simulable cannot possibly be used to
achieve universal quantum computation, and therefore all classically simulable states are
undistillable. As discussed in section 2.1, this region contains the stabilzer octahedron for
qubits and the Wigner polytope for qudits. In both cases we denote the upper limit on
the threshold as ppoly.

The yield [6] of a magic state distillation routine is defined as

Y (p, pout) =
∏

k=1...N

p
(k)
s

n
(4.6)

where N is the total number of iterations needed to obtain pout starting at initial error
rate p, and p

(k)
s is the probability of success on the kth iteration. This quantity relates

to the efficiency/resource overhead of a magic state distillation routine. Alternatively, the
efficiency may sometimes be described by the cost of a routine, which is simply the inverse
of yield, and equal to the total number of consumed noisy states.

4.4 Types of magic states

As previously stated, we define any state enabling the application of a non-Clifford gate to
a desired precision to be a magic state. However there are several states that we consider
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Figure 4.3: The stabilizer octahedron inscribed within the Bloch sphere: Six Pauli eigen-
states form the vertices of an octahedron. States within the octahedron are provably
undistillable so the best one can hope for is to distill states up to the boundary. The two
pure non-stabilizer states singled out here, |H〉 and |T 〉, were shown to be distillable by
Bravyi and Kitaev [2].

to be special based on geometric considerations. In this section we review the common
types of magic states that we might hope to distill.

For qubits, there are two special types of magic state as defined in the original proposal
[2]. These are the “H-states” located outside the edges of the stabilizer polytope, and the
“T -states” located outside the polytope faces as shown in Fig. 4.3. In Bloch coordinate
representation, the magic states are given by

|H〉 = 1/
√

2{(±1,±1, 0), (±1, 0,±1), (0,±1,±1)} (4.7)

|T 〉 = 1/
√

3{(±1,±1,±1)}. (4.8)

Note that all states belonging to the same type of magic state are Clifford equivalent, mean-
ing that we may rotate amongst them using only Clifford operations. The H-type states
implement the π/8-gate (or Clifford equivalent gates), while the T -type states implement
a π/6-gate [2].

For qudits, we define the generalized H-states to be states which will implement the
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generalized π/8-gate [35]. There are d2(d2 − 1) such states, defined as

|H〉 = UG |fabc〉 a ∈ Z∗d b, c ∈ Zd (4.9)

where UG are the symplectic unitaries defined in 3.2 with

G =

{[
0 −1
1 0

]
,

[
1 0
0 1

]
,

[
1 1
0 1

]
, ...,

[
1 d− 1
0 1

]}
(4.10)

and

|fabc〉 =
1

d

∑

k

ωak
3+bk2+ck |k〉 . (4.11)

For the special case of qutrits, we need to modify the above as

|fabc〉 =
1

3
(|0〉+ ξ2a+6b+3c |1〉+ ξa+6b+6c |2〉) (4.12)

where ξ = e2πi/9 due to the irregular generalized π/8-gate in this dimension (see [35]).
The generalized T -states (sometimes called the strange states [8]) are defined to be the
states located the furtherest outside the Wigner polytope, in analogy to the geometrical
interpretation for qubits. There are d2 generalized T -states, corresponding to the facets of
the Wigner polytope. In discrete Wigner representation, these would be the d2 states with
maximal sum-negativity of sn = 1/d due to a single negative entry. For qutrits, we define
a second class of magic state with maximal sum-negativity due to two negative entries of
−1/6. There are 36 such states, defined in [8] as the Norrell states.
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Chapter 5

Tight Qutrit Magic State Distillation

In the previous chapter, we introduce magic state distillation as one of the leading pathways
to universal fault-tolerant quantum computation. Here, we present magic state distillation
as a tool for studying resource theory. This chapter is based on [9], a collaboration with
Mark Howard.

5.1 Motivation

A distillable state, that is a noisy state which can be brought to a magic state via distil-
lation, can be thought of as a resource enabling universality. Therefore by studying the
region of distillable states and their common properties, we can attempt to make state-
ments about which properties are universality enabling resources. For example, we have
seen that the stabilizer polytope represents the region of provably undistillable states in
the qubit setting. Finding magic state distillation routines with tight thresholds to this
polytope in both the H and T directions would imply that any non-stabilizer state enables
universality. Reichardt [36] showed that the distillable region was tight to the stabilizer
boundary along the octahedron edges in the H-direction (see Fig. 5.1), while Campbell
and Browne [37, 34] showed that (for stabilizer codes of fixed length) there exists a region
of undistillable non-stabilizer states outside the octahedron faces in the T -direction. We
can ask similar questions in the qudit setting, where the provably undistillabe region of
states is given by the Wigner polytope. Recently, the presence of negativity was shown
to exactly coincide with the possibility of exhibiting state-dependent contextuality with
respect to stabilizer measurements [7]. Therefore, it has been conjectured that contextu-
ality is the resource that promotes universality in these dimensions [8]. Actually proving
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|T 〉

|H〉

|0〉

|1〉

Figure 5.1: The qubit Bloch sphere and the stabilizer octahedron: The convex hull of
stabilizer eigenstates – the stabilizer polytope – carves out a solid octahedron. H-type
magic states lie outside the octahedron edges, and T -type magic states lie outside the
octahedron faces. The green volume outside one face represents the region in which ancillas
have not yet been shown to be distillable.

this conjecture requires showing that any state that is negatively represented is distillable
by some magic state distillation routine. While magic state distillation protocols for all
prime dimensions [4, 5, 6] have been found, no single protocol has been shown to distill
states tight to the undistillable boundary. Here we focus on d = 3 and present distillation
schemes that achieve tight distillation for some directions, as well as introduce a new class
of magic state with maximal sum-negativity for qutrits.

5.2 Subspace of interest

We describe magic state distillation protocols that iteratively distill towards pure states
within the +1-eigenspace of the A0,0 phase point operator (2.7). This eigenspace is degen-

24



erate and has eigenvectors of the form (a, b, b) ∈ C3. Before describing the protocols, we
give an overview of the geometrical interpretation of this eigenspace. We may parameterize
pure states living within the (a, b, b) subspace using a polar angle θ and an azimuthal angle
φ, via

|ψ〉 = (a, b, b) = (cos θ, eiφ sin θ/
√

2, eiφ sin θ/
√

2) (5.1)

where φ ∈ [0, 2π) and θ ∈ [0, π/2]. The set of pure states corresponds to the surface of a
sphere in analogy with the Bloch sphere for qubits. In our representation, points within
the body of the sphere correspond to depolarized versions of the nearest surface state as in
(4.5); states at distance (1−p) from the centre of the sphere are depolarized by an amount
p. In other words, a point in the interior of the sphere with spherical coordinates (r, θ, φ)
corresponds to the state

ρ = r |ψ(θ, φ)〉 〈ψ(θ, φ)|+ (1− r)113

d
(5.2)

where |ψ(θ, φ)〉 is given by (5.1) and r = 1−p. However unlike the qubit Bloch sphere, states
in the interior no longer correspond to convex combinations of surface states in general.
For example, in the qubit Bloch sphere picture, we expect an equal mixture of any two
diametrically opposite points to correspond to the maximally mixed state. However in our
representation, mixing the North pole |0〉 with the South pole |N〉 = (|1〉+ |2〉)/

√
2 gives

1

2
|0〉〈0|+ 1

2
|N〉〈N | = 1

4




2 0 0
0 1 1
0 1 1


 6= 113

3
. (5.3)

Despite the fact that our representation does not respect convexity, we feel it provides good
intuition for the relevant geometry and symmetries. Mixtures of stabilizer states as well as
states with positive Wigner function form a closed volume within the sphere (see Fig. 5.2).
A convex 2-dimensional slice through qutrit state space can be found in [7], which depicts
a similar hierarchy (i.e., the stabilizer polytope is a strict subset of the Wigner polytope).

In order to map the distillable region within the (a, b, b) subspace, it will suffice to
partition the space into Clifford-equivalent sections and find the distillable region for only
one such section. It is a well-known property of the Clifford group that A0,0 is invariant

under the symplectic part of the Clifford group i.e., A0,0 = UFA0,0U
†
F for all F ∈ SL(2,Zd).

Consequently qutrit states of the form (a, b, b) remain in the +1 eigenspace of A0,0 under
all |SL(2,Z3)| = 24 such transformations. Not only does the symplectic unitary U112 = 113

fix every qutrit vector but the symplectic unitary U−112 = A0,0 also fixes every vector of
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(a) (b)

Figure 5.2: Depolarized versions of qutrit states (cos θ, eiφ sin θ/
√

2, eiφ sin θ/
√

2): Points
on surface of the sphere represent pure states, while every point in the interior is a depo-
larized version of the nearest surface state (see (4.5)). Figure (a) depicts the set of states
that are non-negatively represented in the Wigner function and hence useless for MSD.
The volume roughly corresponds to a “curvy tetrahedron” which hereafter will be referred
to as the Wigner tetrahedron. Figure (b) depicts the set of states expressible as convex
combinations of stabilizer states. A regular tetrahedron is shown as a visual aid and the
pure states at its vertices are stabilizer states {|0〉 , (1, ωk, ωk)/

√
3, k ∈ Z3}.

the form (a, b, b). Consequently, the set of non-trivial symplectic transformations acting on
(a, b, b) states is SL(2,Z3)/±112 = PSL(2,Z3). This latter symmetry group is isomorphic to
the rotation group of the tetrahedron (i.e. the alternating group A4). Therefore we expect
the entire space to partition into 12 Clifford-equivalent regions. These regions correspond
to the 4 Wigner tetrahedron faces, further divided into 3 wedges each as shown in Fig. 5.3.
We will consider distillation confined to the region defined as being contained by the three
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(
1 0
0 1

) (
1 1
2 0

)

(
0 1
2 2

)

Figure 5.3: Clifford symmetries: The surface of the sphere lying outside one face of
the Wigner tetrahedron is outlined in black and divided into 3 Clifford-equivalent wedges.
Each wedge is labelled by the symplectic matrix F such that UF maps states in that region
back to the region of interest (highlighted).

lines

Arc 1. (x, y, z) = (sin 2θ, 0, cos 2θ) (5.4)

Arc 2. (x, y, z) =
(
(17 sin 2θ − 2

√
2 cos 2θ)/18, (5.5)

(sin 2θ + 2
√

2 cos 2θ)/2
√

3,

(−
√

2 sin 2θ + 5 cos 2θ)/9
)

Arc 3. (x, y, z) = (
1

2
sin 2θ,

√
3

2
sin 2θ, cos 2θ) (5.6)

5.3 MSD routines

In this section we present two classes of magic states within the (a, b, b) subspace, give
explicit distillation schemes for each, and sketch out the corresponding distillable region.
Magic states within the (a, b, b) subspace can be generally split into two types, those
lying outside the six Wigner tetrahedron edges, and those lying outside the four Wigner
tetrahedron faces. By numerically searching over a large set of stabilizer codes, we find
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that there exists many limiting states outside the Wigner tetrahedron edges, where limiting
state is taken to mean the end point of the iterative procedure based on a given stabilizer
code. In contrast, we find only one limiting state outside the Wigner tetrahedron faces, and
this is the state geometrically located the furthest outside the Wigner tetrahedron in the
middle of each face. These so-called Norrell states [8], which were not previously known to
be directly distillable, have maximal sum-negativity sn = 1

3
arising from a Wigner function

of −1
6

in two phase space points. The set of numerically identified limiting states is shown
in Fig. 5.4, and the corresponding stabilizer codes are listed in Appendix A. We note that
a nice feature of all our distillation protocols is that they do not require twirling (i.e.,
dephasing in a particular basis) between rounds of MSD or cycling [4].

We now demonstrate distillation schemes based on stabilizer codes for both types of
magic state. We begin with the edge states for which tight distillation thresholds were
achieved, and then present the Norrell state which improves the distillation region outside
the Wigner tetrahedron faces slightly. Out of the many edge-type magic state depicted in
Fig. 5.4, the state |E〉 whose code has the best overall distillable region will be presented.
The state

|E〉 =




0.774149
0.447601
0.447601


 , (5.7)

which lies on the x-z plane is distilled by a [[4, 1, 2]]3 code given by generators:

Edge, |E〉 :

G1 0 0 0 2 2 2 0 0
G2 1 1 0 1 1 1 2 2
G3 0 0 1 0 2 0 0 0
ZL 2 0 0 2 2 2 1 2
XL 0 0 0 0 1 2 0 0

(5.8)

in (x|z) notation where each element is taken to be a generalized Pauli operator. This magic
state |E〉 may be transformed into an equatorial state useful for state injection by first ap-
plying a symplectic unitary UF with F = ( 1 1

0 1 ) and then following the parity check and
equatorialization procedures as outlined in [4]. For all states |θ〉 := (cos θ, sin θ/

√
2, sin θ/

√
2)

along the Wigner tetrahedron edge, on the line (x, y, z) = (sin 2θ, 0, cos 2θ) with 0 ≤ θ ≤
arccos 1/

√
3, we find an error threshold given by

p∗ = 1− 4

1 + 3 cos 2θ + 3
√

2 sin 2θ
, (5.9)
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Figure 5.4: Cross section through the x-z plane showing limiting states of various MSD
routines: Different circles correspond to different choices of 4-qutrit stabilizer code and
every such code can distill all states in the hatched area. Two magic states of interest are
denoted by filled circles; the |E〉 state lies on the arc joining |0〉 and |+〉, while the south
pole |N〉 is Clifford equivalent to the Norrell state |N ′〉 that we discuss in the text. The
colored regions represent undistillable states inside the Wigner polytope (lighter, larger)
and mixtures of stabilizer states (darker, smaller) i.e., this shows a 2-d slice through Fig. 5.2.
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which corresponds to a state ρθ = (1− p∗) |θ〉 〈θ|+ p∗11/3 with Wigner function

Wρθ =




r s s
t 0 0
t 0 0




r = cos 2θ+
√

2 sin 2θ+3
9 cos 2θ+9

√
2 sin 2θ+3

≥ 0

s = 4 cos 2θ+
√

2 sin 2θ
9 cos 2θ+9

√
2 sin 2θ+3

≥ 0

t =
√

2
3 cot 2θ+csc 2θ+3

√
2
≥ 0

(5.10)

and therefore distillation is tight to the Wigner polytope boundary for all points along the
Wigner tetrahedron edges. The maximally robust edge state occurs at θ = 1

2
cos−1( 1√

3
)

and this corresponds to the +1 eigenstate of the qutrit Fourier transform. Using our edge
code, this state can tolerate depolarizing noise up to

p∗ = 1− 4

1 + 3
√

3
≈ 0.354438 , (5.11)

which is the best known depolarizing noise threshold for qutrits. The edge code distills
points along the depolarizing axis of the Norrell state |N ′〉 = (2,−1,−1)/

√
6 with a thresh-

old of

p∗ =
1

3

(
5− 1

q
− q
) (

q =
3

√
28− 3

√
87

)
(5.12)

≈ 0.304379. (5.13)

The entire distillable region of this [[4, 1, 2]]3 edge code confined to the Clifford-equivalent
wedge of interest is shown in Fig. 5.5. The situation is analogous to the qubit picture
wherein distillation is tight for all edges (H-type) and there is a pocket of undistillable
states outside the Wigner tetrahedron faces (T -type).

The distillation region may be improved slightly by a second stabilizer code which has
the Norrell state |N ′〉 = (2,−1,−1)/

√
6 as a limiting state. The Norrell state |N ′〉 is

Clifford equivalent to the south pole state |N〉 shown in Fig. 5.4. This [[4, 1, 2]]3 code has
generators:

Face, |N ′〉 :

G1 2 0 0 2 1 2 0 1
G2 2 1 0 1 1 0 1 0
G3 1 0 1 2 0 2 1 0
ZL 1 0 0 2 1 0 1 2
XL 0 0 0 0 1 2 1 2

(5.14)

We find that the Norrell state |N ′〉 is distilled up to a threshold noise rate of

p∗ ≈ 0.32989 , (5.15)
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(a) The wedge of interest. (b) The x-z plane.

(c) The y-z plane. (d) The x-y plane.

Figure 5.5: The remaining undistillable region highlighted in green, after using the edge
code (5.8). The small red dot in (a) corresponds to the threshold point for distilling |N ′〉
using the face code (5.14).
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which increases the distillable region as shown in Fig. 5.5. The equatorialization procedure
of [4] converts the Norrell state into something useful for state injection (two copies of |N ′〉
enable implementation of the non-Clifford unitary U = diag(1, 1,−1) [4]).

The success probabilities psucc = Tr(ρ⊗4
in ΠC) for both codes for points along the de-

polarizing axes of their respective limiting states begin at approximately psucc = 0.12 for
p = 0 and drop to approximately psucc = 0.07 for p = 0.3, assuming post-selection on the
trivial error syndrome. Similar to [4] error suppression appears to be linear, which means
that despite the appreciable success probability, both codes are outperformed in terms of
efficiency by a previously known qutrit code [5, 6]. Our focus was on maximizing the range
of applicability of MSD schemes rather than their efficiency. Nevertheless, exploring the
landscape of stabilizer codes with non-stabilizer limiting states may have practical conse-
quences if these codes can be adapted or used in conjunction with others (as in [31]) to
produce more efficient schemes.

5.4 Discussion

In summary, we have proven the existence of magic state distillation schemes with thresh-
olds tight to the Wigner polytope boundary for d = 3. This represents a first step towards
showing that all negatively represented states are distillable by some routine. Our result
for the distillable region presents an interesting analogy to the qubit Bloch sphere distill-
able region. From the magic state distillation point of view, our results help to map out
the set of codes which are useful for MSD and the set of limiting states for higher dimen-
sional systems. In particular, finding stabilizer codes with distillation properties besides
those known to be useful for magic state distillation by their transversality properties [2, 5]
is useful. We have shown that a certain class of state with maximal sum negativity for
qutrits, the Norrell state, is distillable by at least one stabilizer code. We have given a
convenient parameterization of the +1-eigenspace of the A0,0 phase space operator which
allows us to easily visualize the distillable region and understand the geometric significance
of the Norrell state. We identified a large set of limiting states within the (a, b, b) subspace,
all located along the Wigner tetrahedron edges. These edge states allow for universality
by following the parity check and equatorialization procedures outlined in [4] to produce
equatorial states useful for state injection. Why these states in particular are limiting
states, and what properties of the identified stabilizer codes make them useful for magic
state distillation are interesting open questions.
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Chapter 6

Small Codes for Qubit Magic State
Distillation

In the previous chapter, we present the main result of our study of magic state distillation,
namely the demonstration of tight thresholds for d > 2. In this chapter, we turn our
attention to qubit routines, which may be of more practical interest. This chapter is based
on [10], a collaboration with Mark Howard.

6.1 Motivation

Here we use small stabilizer codes, which means that the number of qubits, the number of
measurements and the number of nonlocal operations involved in each round of distillation
are all small. While these are attractive features, it seems that using a small code limits the
amount of purification that can occur per round of distillation. Efficient codes for magic
state distillation typically exhibit quadratic (p 7→ O(p2)) or cubic (p 7→ O(p3)) suppression
of the error parameter p. The codes listed here all exhibit linear error suppression and
consequently are not competitive with existing routines in terms of efficiency. Nevertheless
we feel that exploring the landscape of codes that achieve distillation is still worthwhile.
Reichardt [39] has previously summarized a handful of known distillation routines exhibit-
ing the best thresholds. A number of the codes presented here achieve tight distillation
right up to the boundary of the stabilizer octahedron. We also present codes that converge,
upon iteration, to states that are not those that are typically considered i.e., the H-type
and T -type magic states. None of our codes require twirling between rounds.
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6.2 Results

All stabilizer codes are local Clifford equivalent to some CWS stabilizer code. Consequently
CWS stabilizer codes form a subset of all stabilizer codes and so checking all combinations of
graphs, Γ, and codewords, w, may still miss stabilizer codes that are useful for distillation.
Nevertheless, for n ≤ 4 qubits we iterated over all graphs on n vertices and for n ∈ {5, 6}
qubits we iterated over non-isomporphic graphs on n vertices. We were primarily focused
on recording those CWS codes that achieve tight distillation but we also noted a number
of non-tight codes that distilled to target states other than |H〉.

With the exception of one code, the codes that we present will be depicted graphically.
This concise representation is possible because of the CWS formalism that we described
in section 3.3. All the codes that we present converge, upon repeated iteration, to a pure
state on the surface of the Bloch sphere. Codes that we describe below as being tight
obey the following property: all non-stabilizer states in the same quadrant as |M〉 are
distillable. For instance, if |M〉 has Bloch vector (x, 0, z) with x, z > 0 then all states ρ
satisfying Tr(Xρ) + Tr(Zρ) > 1 converge to |M〉 under repeated iteration. (We confirmed
this numerically by taking a random sample of 1000 points from the relevant region).

6.2.1 Codes achieving tight distillation

A 3-qubit code with generators

G1 Z I Z
G2 X Z X
ZL X X Y
XL I X Z

(6.1)

corresponding to the logical basis states

|0L〉 =
1

2




1
0
−i
0
0
1
0
i




, |1L〉 =
1

2




−i
0
1
0
0
−i
0
−1




(6.2)
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(a) This code converges to (x, y, z) =

(sin θ, 0, cos θ) where θ = arctan
√

(
√

5− 1)/2

(b) This code converges to (x, y, z) =
(0.66796, 0., 0.7442)

(c) This code converges to (x, y, z) =
(0.81281, 0, 0.58252)

(d) This code converges to (x, y, z) =
(0.64969, 0, 0.7602)

(e) This code converges to (x, y, z) = (1, 0, 1)/
√

2

Figure 6.1: Codeword stabilized quantum codes with tight distillation thresholds. The
classical codeword w associated with each graph is the binary vector with a “1” in lighter
pink positions and “0” in darker blue positions.

distills an equatorial state in the y-z plane with Bloch coordinates (0,−.83929,−.54369)
up to a tight error threshold of poct = .276921.

Other codes achieving tight distillation are given in pictorial form in Fig. 6.1 and
Fig. 6.2. It is a straightforward exercise to recover the generators and logical operators
if necessary. The 5-qubit code in Fig. 6.1(e) distills to the |H〉-type magic state but is
more efficient than the (also tight) 7-qubit Steane code. The efficiency of these codes is
compared in Fig. 6.3.

6.2.2 Codes not achieving tight distillation

Here we highlight a small number of codes that, even though they do not achieve tight
distillation, we still find to be noteworthy.
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The |T 〉-type states (depicted in Fig. 4.3) were shown to be distillable by Bravyi and
Kitaev [2] using the perfect [[5, 1, 3]] code. We are not aware of any additional routines for
|T 〉 states that have subsequently been developed. This is in marked contrast to |H〉-type
distillation for which a number of codes have been found. For this reason we note the
existence of a 4-qubit code in Fig. 6.4(b) that also converges to |T 〉-type states. A visual
comparison with the [[5, 1, 3]] code in Fig. 6.4(a) indicates that they are closely related.
Unfortunately, the threshold for the new code is worse than that of the [[5, 1, 3]] code.
Finding tight distillation routines for the |T 〉 direction was already known to be more
complex than the |H〉 case because of a no-go theorem in [37].

In Fig. 6.4(c) we depict a code that distills |π/3〉 = (|0〉+eiπ/3 |1〉)/
√

2. This is particu-
lary interesting as the associated gate U = diag(1, eiπ/3) is not transversal for any stabilizer
code [42] which prevents it from being distillable by the most commonly used distillation
techniques.

It is of interest to find distillation routines that distill |V 〉-type magic states, which
look like (x, y, z) = (3

5
, 0, 4

5
) in the Bloch sphere picture. Supplementing Cliffords with

such states leads to a set of gates – the V -basis – that is highly efficient for gate synthesis
[40]. We did not find such a code but in Fig. 6.4(d) we depict a code that converges to a
nearby state (x, y, z) = (0.60965, 0., 0.79267).

6.3 Discussion

We have presented a collection of qubit magic state distillation schemes using small stabi-
lizer codes, most of which achieve tight distillation up to the edge of the stabilizer octa-
hedron. Two codes that are not tight were still noted because they converge to |T 〉 and
|π/3〉 respectively. Our distillation routines converge to equatorial states, which means
that they can be used to implement rotations about a Pauli axis using standard half-
teleportation techniques [2]. We have noted that inefficiency of our routines relates to
linear error suppression and leave as an open question whether there is some way of boost-
ing their efficiency by combining them with other codes or techniques. Another possible
avenue is to use these codes to convert non-stabilizer states of one type to another, as was
done in e.g., [41]. For example, if we have access to almost pure |H〉 states (after using
the Reed-Muller code) then input these to the |π/3〉 routine, the output is an almost pure
state somewhere between |H〉 and |π/3〉. Further analysis of the relative merits of methods
such as this is left for future work.
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(a) This code converges to (x, y, z) =
(0.84893, 0., 0.52851)

(b) This code converges to (x, y, z) =
(0.63544, 0., 0.77215)

(c) This code converges to (x, y, z) =
(0.81281, 0., 0.58252)

(d) This code converges to (x, y, z) =
(0.84534, 0., 0.53423)

(e) This code converges to (x, y, z) =
(0.58252, 0., 0.81281)

Figure 6.2: Codeword stabilized quantum codes with tight distillation thresholds. The
classical codeword w associated with each graph is the binary vector with a “1” in lighter
pink positions and “0” in darker blue positions.
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10−79

0.05 0.10 0.15 0.20 0.25

p

Figure 6.3: Curves showing the yield (efficiency) of various tight distillation routines as
a function of input noise rate p. From bottom to top we have (i) the 7-qubit Steane code
as applied by Reichardt [36] (ii) the 5-qubit code in Fig. 6.1(e), (iii) 3-qubit code from
Fig. 6.1(a) and (iv) the 3-qubit code in Eq. (6.1).
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(a) This is the well-known 5-qubit code
in CWS form, which Bravyi and Kitaev
showed distilled |T 〉

(b) This code also distills to |T 〉 albeit less efficiently
and with a worse threshold than the above code. Note
that a trivial Z correction must be applied in between
rounds

(c) This code converges to a state Clifford-
equivalent to |π/3〉 = (|0〉 + eiπ/3 |1〉)/

√
2.

The limiting state has Bloch vector (x, y, z) =

( 1
2 , 0,

√
3
2 )

(d) This code converges to (x, y, z) =
(0.60965, 0., 0.79267)

Figure 6.4: Codeword stabilized quantum codes that do not achieve tight thresholds
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Chapter 7

Noise Characterization Background

In the second part of this thesis, we turn our attention to the task of noise characteri-
zation. We begin with an overview of common noise processes as well as experimental
characterization techniques.

7.1 Noise processes

7.1.1 Amplitude damping

Amplitude damping describes the relaxation of a quantum system from an excited state to
the ground state of the system Hamiltonian. For example, let the energy eigenstates of a
two-level system be {|0〉 , |1〉}. If we prepare the population in the |1〉 state, we expect some
of the population will relax to |0〉 to reach thermal equilibrium. Pure amplitude damping
describes amplitude damping at zero temperature, where the steady state of the system is
perfectly |0〉. In this section we describe the noise model for pure amplitude damping, and
delay finite temperature considerations for section 7.1.3.

The Kraus-operator representation of the amplitude damping channel is EAD(ρ) =∑
k AkρA

†
k where

A0 =

[
1 0
0
√

1− γ

]
, A1 =

[
0
√
γ

0 0

]
. (7.1)
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Figure 7.1: Bloch sphere before (black) and after (blue) application of the amplitude
damping channel.

In the Pauli-Liouville representation,

Λ(EAD) =




1 0 0 0
0
√

1− γ 0 0
0 0

√
1− γ 0

γ 0 0 1− γ


 . (7.2)

From either representation, we can work out the output state ρ′ for a general input ρ =[
ρ00 ρ01

ρ10 ρ11

]
to be

ρ′ =

[
ρ00 + γρ11

√
1− γρ01√

1− γρ10 (1− γ)ρ11

]
. (7.3)

The effect of amplitude damping is to increase the population of |0〉 while decreasing the
population of |1〉 for γ > 0 as expected. We also observe the attenuation of the coherence
terms, which is required to preserve positivity. Visually, we can understand the process of
amplitude damping by observing its effect on the Bloch sphere, shown in Fig. 7.1. Taking
a continuous time description, we can describe amplitude damping by the master equation

∂ρ

∂t
= Γ

[
σ+ρσ

†
+ −

1

2
{σ†+σ+, ρ}

]
(7.4)
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where γ = 1− e−Γ∆t, from which we obtain

ρ′ =

[
1− e−Γ∆tρ11 e−Γ∆t/2ρ01

e−Γ∆t/2ρ10 e−Γ∆tρ11

]
. (7.5)

The rate of equilibration is described by the characteristic time T1 = 1/Γ, while the
damping of off-diagonal terms is described by the time T ∗2 . In this case, T ∗2 takes its
maximal value of T ∗2 = 2/Γ induced by amplitude damping. In the following section we
see that T ∗2 can be decreased by the process of phase damping.

7.1.2 Phase damping

Phase damping describes the decay of coherence terms caused by weak coupling to a bath.
The Kraus operators are

A0 =

[
1 0
0
√

1− γ

]
, A1 =

[
0 0
0
√
γ

]
(7.6)

or alternatively,

Ã0 =
√
α1, Ã1 =

√
1− αZ (7.7)

where α = 1/2(1 + 1/γ), from which we can see that phase damping is a Pauli channel.
Consequently, the Pauli-Liouville representation is diagonal, with

Λ(EPD) =




1 0 0 0
0
√

1− γ 0 0
0 0

√
1− γ 0

0 0 0 1


 . (7.8)

The output state ρ′ for a general input ρ =

[
ρ00 ρ01

ρ10 ρ11

]
is

ρ′ =

[
ρ00

√
1− γρ01√

1− γρ10 ρ11

]
. (7.9)

For γ > 0, the off-diagonal terms are attenuated as expected. In contrast to amplitude
damping, there is no secondary effect. The effect of phase damping on the Bloch sphere
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Figure 7.2: Bloch sphere before (black) and after (blue) application of the phase damping
channel.

is shown in Fig. 7.2. Taking a continuous time description, phase damping is described by
the master equation

∂ρ

∂t
=

Γ

2

[
ZρZ − 1

2
{ZZ, ρ}

]
(7.10)

where γ = 1− e−2Γ∆t, from which we obtain

ρ′ =

[
ρ00 e−Γ∆tρ01

e−Γ∆tρ10 ρ11

]
. (7.11)

In this case, the damping is described by the characteristic time T ∗2 = 1/Γ. In the fol-
lowing section we describe how to combine amplitude damping with phase damping, while
considering finite temperature, to arrive at the generalized damping channel.

7.1.3 Generalized damping

Experimental systems are typically subject to both amplitude damping at finite temper-
ature and phase damping. These processes can be described by a generalized damping
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master equation

∂ρ

∂t
= λΓ1(σ+ρσ

†
+ −

1

2
{σ†+σ+, ρ}) + (1− λ)Γ1(σ−ρσ

†
− −

1

2
{σ†−σ−, ρ}) +

Γ2

2
(ZρZ − 1

2
{ZZ, ρ})
(7.12)

where σ± = (X ± iY )/2. Γ1 and Γ2 control the rate of amplitude and phase damping
respectively and λ is a temperature-dependent parameter that governs the relative popu-
lation of ground and excited states in equilibrium. The action of the generalized damping
channel for a generic input state is given by

ρ(t) =

[
e−Γ1t(1− ρ11 − λ) + λ ρ01e

−t(Γ1/2+Γ2)

ρ10e
−t(Γ1/2+Γ2) e−Γ1t(ρ11 + λ− 1)− λ+ 1

]
. (7.13)

In a discrete-time representation, the Kraus operators are

A0 =

√
1− γ1/2− x
a2 + b2

(a |0〉 〈0| − b |1〉 〈1|)

A1 =
√
λγ1 |0〉 〈1|

A2 =

√
1− γ1/2 + x

a2 + b2
(b |0〉 〈0|+ a |1〉 〈1|)

A3 =
√

(1− λ)γ1 |1〉 〈0| (7.14)

where γ1 = 1 − e−Γ1t, γ2 = 1 − e−2Γ2t, x = [(1 − γ1)(1 − γ2) − γ2
1λ(1 − λ) + 1/4γ2

1 ]1/2,
a = x + γ1/2 − γ1λ, and b =

√
(1− γ1)(1− γ2). These Kraus operators correspond to a

process matrix in Pauli-Liouville representation given by

Λ(EGD) =




1 0 0 0

0
√

(1− γ1)(1− γ2) 0 0

0 0
√

(1− γ1)(1− γ2) 0
γ1(2λ− 1) 0 0 1− γ1


 . (7.15)

The Pauli-Liouville matrix and master equation reduce to those given in the previous
sections when λ = 1 (zero temperature) and either γ2 = 0 (amplitude damping) or γ1 = 0
(phase damping). The Kraus operators will not, but the Kraus-operator representation
of a channel in not unique. The action of the generalized damping channel is shown in
Fig. 7.3.
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Figure 7.3: Bloch sphere before (black) and after (blue) application of the generalized
damping channel.

7.2 Measuring noise

7.2.1 Inversion recovery

In an inversion recovery experiment, the state is initially prepared in the excited state |1〉〈1|,
then allowed to evolve for a certain time before measuring the relative population levels
of |0〉〈0| vs. |1〉〈1|. The relevant experimentally measured quantity is Q(t) = Tr(−Zρ(t))
which can then be fit to extract T1. Under generalized damping, the expected ρ(t) and
Q(t) would be

ρ(t) =
1

2

[
λ(1− e−Γ1t) 0

0 1− λ(1− e−Γ1t)

]
(7.16)

Q(t) = 2λe−Γ1t − 2λ+ 1 (7.17)

where T1 = 1/Γ1.
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7.2.2 Ramsey experiments

In a Ramsey experiment, the state is initially prepared in the |+〉〈+| state, and then allowed
to precess freely around the z-axis for some time before being pulsed back to the z-axis
so that the “length” may be measured as Q(t) = Tr(ρ(t)Z). The resulting measure as a
function of time will be a decaying sinusoidal function, and the decay may be fit to give
T ∗2 . Under generalized damping, the expected ρ(t) and Q(t) would be

ρ(t) =
1

2

[
1 + e−t(Γ2+Γ1/2) (e−tΓ1 − 1)(2λ− 1)

(e−tΓ1 − 1)(2λ− 1) 1− e−t(Γ2+Γ1/2)

]
(7.18)

Q(t) = e−t(Γ2+Γ1/2) (7.19)

where T ∗2 = 1/(Γ2 +Γ1/2). Since Γ1 is already known from T1 estimation, accurate estima-
tion of T ∗2 becomes equivalent to accurate estimation of Γ2. Note that if Hahn-echo [54] or
CPMG [55, 56] pulse sequences have been applied to measure T2, the resulting form of Q(t)

is the same as (7.19) with the redefinition Γ2 → Γ
H/CPMG
2 where T2 = 1/(Γ

H/CPMG
2 +Γ1/2).

7.2.3 Randomized benchmarking

Inversion recovery and Ramsey experiments are designed to measure a specific type of
noise parameter when the noise model is known (or approximately known). When the
noise model is unknown, we need to use other techniques. Ideally, we could completely
characterize the noise process using quantum process tomography [43, 44]. However this
method is inefficient in the number of qubits, and fails to account for state preparation
and measurement (SPAM) errors [45]. Randomized benchmarking [47, 48, 22] provides
an alternative which circumvents both of these issues. In traditional randomized bench-
marking, we learn the average error rate over a group of operations which form a 2-design
(taken to be the Clifford group in this discussion). The protocol may be adapted to learn
the error rate on a particular gate [49], even for a gate outside the Clifford group [64]. In
this section we briefly summarize the traditional protocol.

The basic idea of the protocol is to apply random sequences of Clifford operations of
varying length. The sequence is followed by the inverse operation so that the output state
would ideally be left unchanged. By observing the decrease in fidelity (between output and
input states) as a function of sequence length, we learn the average error rate associated
with the Clifford group C. More explicitly, the protocol consists of:
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1. For a given sequence length m ∈ N, choose a sequence k = (k1, ..., km) uniformly
at random where ki ∈ {1, ..., |C|}.

2. Prepare an initial state ρ (usually ρ ≈ |0〉〈0|).

3. Apply the random sequence of Clifford operations Ckm ◦ ... ◦ Ck1 to ρ.

4. Apply the inverse operation Ck0 =
∏m

i=1C
†
ki

.

5. Perform a projective measurement {E, 1− E} (usually E ≈ ρ).

6. Repeat steps 1 − 5 enough times to estimate the survival probability to a desired
precision.

7. Repeat steps 1− 6 for varying m.

The survival probability is expected to fit an exponential decay in the sequence length

Pr(m) = Apm +B (7.20)

where SPAM errors have been absorbed into the coefficients A and B. Because the Clifford
group forms a 2-design, randomly sampling over sequences approximates the discrete twirl
over C which is equal to the full twirl over the Haar measure. The average error rate is
invariant under the twirl and therefore the twirled noise channel is equal to the completely
depolarizing channel with error rate

r =
(d− 1)(1− p)

d
. (7.21)

By fitting the survival probability to extract p, we learn the average error rate over the
Clifford group r.

In a variant on this protocol where the application of the inversion gate is omitted,
the decay parameter becomes the unitarity of the noise. The unitarity [63] provides a
quantification of the coherence of noise and, taking a Pauli-Liouville representation, is
defined as

U(E) =
1

d2 − 1
TrΛ†uΛu. (7.22)
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Together, the average error rate and unitarity give us insight into a noise process while
making no assumptions about the specific model. In the following chapter, we see how ran-
domized benchmarking may be combined with inversion recovery and Ramsey experiments
to provide more information on the generalized damping channel.
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Chapter 8

Characterization of the Generalized
Damping Process

This chapter is based on a collaboration with Joel Wallman and Joseph Emerson.

8.1 Motivation

In order to achieve practical quantum computation, quantum systems must be precisely
controlled despite being prone to intrinsic errors. Characterization of errors acting on a
system is of the utmost importance in the quest to increase control. Complete charac-
terization of a noise process is achievable via process tomography [43, 44], however this
method requires exponentially growing resources and is susceptible to state preparation
and measurement (SPAM) errors [45]. Consequently, there are two general approaches
to error characterization in practice. In the first approach, we assume a specific noise
model and estimate the corresponding parameters. For example, T1 and T ∗2 times are often
quoted figures of merit used to characterize amplitude damping and dephasing errors [46],
however their measurement may assume that they are the only noise processes present. In
the second approach, we do not assume any noise model and estimate summary statistics.
Randomized benchmarking [47, 48, 22] estimates the average error rate on a set of opera-
tions, however no information on the source of noise is gained. Lastly, we wish to connect
experimental noise parameters obtained via either method to threshold theorems [50, 51].
The diamond distance [20] of a noise channel from the identity gives information on the
worst case errors, which is often needed to make meaningful statements about threshold
theorems, however it is not directly accessible by experiment.
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Here we bridge the gap between these two methods and provide a link between T1 and T ∗2
estimation, randomized benchmarking, and the diamond distance. We consider cases where
noise is close to the generalized damping channel, which allows for both amplitude damping
and dephasing processes at finite temperature. The goal is to obtain accurate generalized
damping parameters, relate these to the expected error rate and unitarity values, and thus
validate the use of threshold theorems. Firstly, we consider how T1 and T ∗2 estimation can
be affected by additional unknown noise. We show that T1 estimation is mostly insensitive
to additional noise sources, while T ∗2 estimation can be affected greatly when measured via
a traditional Ramsey experiment. We propose an alternative fidelity measurement, derive
fit models, and provide a numerical comparison between the two methods. Secondly, we
show how T1 and T ∗2 parameters are related to the error rate and unitarity values obtained
from a randomized benchmarking experiment. Comparison of experimental measurements
to these goal values provides a benchmark to check whether noise is limited by T1 and T ∗2
processes. Finally, we derive upper bounds on the diamond distance of the generalized
damping channel to the identity. If the goal error rate and unitarity values are met,
the application of these bounds and comparison to fault-tolerance threshold theorems are
justified.

8.2 Perturbing the generalized damping model

Generalized damping is believed to account for the majority of the intrinsic noise in ex-
perimental systems, as shown by the prominence of T1 and T ∗2 values. However, it is likely
that there are other unknown noise sources, which can be viewed as perturbations from a
generalized damping process as follows. Referring to the general construction of a master
equation (2.20), the generalized damping channel is described by the coefficient matrix

A =




0 0 0 0
0 λΓ1 0 0
0 0 (1− λ)Γ1 0
0 0 0 Γ2


 (8.1)

in the basis {1/
√

2, σ+, σ−, Z/
√

2}. The Hamiltonian can be estimated separately [52, 53],
so we set H = 0 and so delete the first row and column of A. A general master equation
with coefficient matrix

A =




λΓ1 αr − iαi β∗

iαi + αr (1− λ)Γ1 δ∗

β δ Γ2


 (8.2)
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is then a perturbation about a generalized damping channel if the off-diagonal elements of
A are small compared to the diagonal elements. We can also assume all variables in A are
real without loss of generality by including any phase from β and δ into σ± respectively.

For a general state ρ = (I + r · σ)/2 where r is the Bloch vector and σ = (X, Y, Z),
substituting (8.2) into (2.20) gives

∂r

∂t
= Cr + λ (8.3)

where

C =




αr − Γ∗2 αi β
αi −αr − Γ∗2 0
β 0 −Γ1


 ,

λ =




2
√

2δ − 2β
0

Γ1(2λ− 1)


 , (8.4)

Γ∗2 = Γ1

2
+ Γ2, and we have redefined β+δ√

2
→ β. As C is Hermitian, it has an orthonormal

set of eigenvectors V = (v1, v2, v3) with associated eigenvalues η = (η1, η2, η3). Therefore,
under a generic master equation, an initial state ρ with Bloch vector r(0) =

∑
j cj(0)vj

evolves to the state with Bloch vector r(t) =
∑

j cj(t)vj at time t where

∂cj(t)

∂t
= ηjcj(t) + λj, (8.5)

which can be solved to give

cj(t) =
λj(e

ηjt − 1)

ηj
+ c(0)eηjt (8.6)

The three different eigenvalues result in three characteristic decay time scales.

For example, when αi = β = δ = 0 (more general than normally considered as αr can
be nonzero), V = 13 and so a state with Bloch vector r = (rx, ry, rz) evolves to a state
with Bloch vector components

rx(t) = rxe
t(αr−Γ∗2),

ry(t) = rye
t(−(Γ∗2+αr)),

rz(t) = rze
−Γ1t − (2λ− 1)

(
e−Γ1t − 1

)
. (8.7)
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Any non-zero value of αr splits the degeneracy of the first two eigenvalues so that there
is no longer a single T ∗2 lifetime. This is reflected in the sensitivity of T ∗2 experiments to
perturbations as discussed in section 8.4.

Any experiment to estimate the generalized damping parameters will include SPAM
errors. Throughout our analysis, we assume that SPAM errors result in the preparation
and measurement

ρ→ (1− k)ψ + kψ⊥

M → (1− n1)M + n2I (8.8)

instead of the ideal versions ψ and M respectively, where ψ⊥ is the state orthogonal to ψ
and k and n1 are small positive constants and n2 is a small constant. This assumption can
be made rigorous by performing a random operation that leaves ψ invariant immediately
after the state is prepared and a random operation that leaves M invariant immediately
before the measurement, where both of these random choices are made independently for
each experimental run.

8.3 T1 estimation

Under generalized damping, the output from an inversion recovery experiment (section
7.2.1) is

Q0(t) = 2λe−Γ1t − 2λ+ 1 (8.9)

by (8.7) with r = (0, 0, 1). Therefore T1 = 1/Γ1 and λ can be estimated by estimating Q(t)
for multiple values of t and fitting to (8.9). In the presence of SPAM errors as in (8.8),
(8.9) becomes

Q(t) = (1− n1)Q0(t)− n2, (8.10)

which can be used to obtain Γ1.

We now prove the robustness of the T1 estimate to perturbations about generalized
amplitude damping. For αi = 0, Cv = ηv where

v =




−
√

2β√
4β2 + g

(√
4β2 + g2 + g

) , 0,

√
g√

4β2+g2
+ 1

√
2


 ,

η =
1

2

(
g −

√
4β2 + g2

)
− Γ1, (8.11)
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Table 8.1: Numerical estimation of Γ1 obtained from simulation of a population inversion
experiment.

Q(t) measurement (8.10)
Γavg1 0.104657
Γvar1 3.670493E−5
R2
adj 0.999997

and g = αr + Γ1 − Γ∗2. For αi 6= 0,

Cv = ηv −
√

2βαie2√
4β2 + g

(√
4β2 + g2 + g

) (8.12)

where {ek} is the canonical basis of R3, so there exists an eigenvector u with eigenvalue κ
such that u− v ∈ O(αiβ) and η − κ ∈ O(αiβ).

The eigenvector v is the most relevant for T1 estimation because

c3(0) = e†3v =

√
g√

4β2+g2
+ 1

√
2

+O(αiβ)

≈ 1 (8.13)

where we have used g � β, which holds near a generalized damping channel. Therefore
the overlap with the other eigenvectors is negligible and so the decay rate of Q(t) will be
dominated by κ = −Γ1 +O(β2). Therefore fitting Q(t) to characterize a T1 time is robust
to perturbations around generalized damping channels. We demonstrate the robustness
numerically in the following section.

8.3.1 Numerical simulation

For these simulations, we have used Γ1 = 0.1, and all other noise components were chosen
uniformly at random with intervals αr, αi, β, δ ∈ [0,Γ1/2], Γ2 ∈ [0, 2Γ1], and λ ∈ [0.8, 1].
Measurements were taken over a time interval on the order of T1, using 100 data points.
Values of Γavg1 and R2

adj are averaged over 2000 noise matrices, while Γvar1 provides the
variance in the results. From the results of the numerical simulation (Tab. 8.1), we can see
that (8.10) provides a good fit to Q(t) under the noisy generalized damping channel, and
extracts the value of Γ1 accurately with a high probability. Fig. 8.1 shows a histogram of
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Figure 8.1: Histogram showing the estimated values of Γ1 (Γact1 = 0.1) for 2000 random
noise matrices.

the results. We find that the conclusions drawn from this simulation are unchanged when
the noise distribution is varied or when finite sampling effects are taken into consideration.

8.4 T ∗2 estimation

Under generalized damping, the expectedQ(t) obtained from a Ramsey experiment (section
7.2.2) is

Q(t) = e−t(Γ2+Γ1/2) (8.14)

where T ∗2 = 1/(Γ2 + Γ1/2).

We would like to check which additional components to the coefficient matrix (8.2) can
affect the experimentally measured quantity Q(t) = tr(ρ(t)Z). It was found that α enters
Q(t) to first order. Taking (8.2) with β, δ = 0, α 6= 0 we obtain

Q(t) =
1

2
e−t(Γ1/2+Γ2)[e−|α|t(1− αr/|α|) + e|α|t(1 + αr/|α|)]. (8.15)

Thus, the use of Q(t) to characterize a T ∗2 time via measurement of Γ2 is not very robust
to additional noise. We propose obtaining Γ2 using a fidelity measurement as follows.
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8.4.1 Fidelity measurement

In order to minimize the effect of additional noise on Γ2 estimation, we propose measuring
the fidelity quantity

F = 〈+| E(|+〉〈+|) |+〉+ 〈+i| E(|+ i〉〈+i|) |+i〉 (8.16)

where measurement is understood to be in the rotating frame. In essence, this is equivalent
to performing two Ramsey experiments with orthogonal preparations. To first order in the
additional noise parameters, F is expected to be

F = e−φ0t + 1 (8.17)

where φ0 = Γ2 + Γ1/2. Projective state preparation and measurement errors manifest
themselves through the leading coefficients only so that the fit model becomes

F = Ae−φ0t +B. (8.18)

In the case that Hahn-echo or CPMG pulse sequences have been applied, we need to
modify (8.16) as

F = 〈+|SE(|+〉〈+|)S |+〉+ 〈+i|SE(|+ i〉〈+i|)S |+i〉 (8.19)

where S is the additional pulse sequence that has been applied.

8.4.2 Numerical comparison

In this section we compare the results of Γ2 estimation from a Ramsey experiment with
our proposed fidelity measurement. To allow for projective SPAM errors in the Ramsey
experiment, we take a fit model of the form

Q(t) = Ae−tφ0 . (8.20)

The fidelity measurement is fit using the form of (8.18). In both cases we obtain the
estimate

Γ2 = φ0 − Γ1/2 (8.21)

from the fit parameter φ0 and previously estimated value of Γ1.
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Table 8.2: Numerical estimation of Γ2 obtained from simulation of a Ramsey experiment
compared to the proposed fidelity measurement.

Fidelity meas. (8.18) Ramsey exp. (8.20)
Γavg2 0.102939 0.118594
Γvar2 2.099973E−4 0.012631
R2
adj 0.999997 0.979670

(a) (b)

Figure 8.2: Histograms showing estimated values of Γ2 (Γact2 = 0.1) for 1600 random noise
matrices using a) fidelity measurement and b) a Ramsey experiment.

For these simulations we used Γ2 = 0.1, Γ1 was chosen uniformly at random in the
interval [0, 2Γ2] and λ was chosen uniformly at random in the interval [0.8, 1]. All other
noise components were chosen uniformly at random in the interval [0,Γ2/2]. Measurements
for both experiments were taken over a time interval on the order of T ∗2 , using 100 data
points. Values of Γavg2 and R2

adj are averaged over 1600 noise matrices, while Γvar2 provides
the variance in the results.

Based on the R2
adj values (Tab. 8.2), we can conclude that the fidelity measurement

provides a much better fit to the observed data. Furthermore the fidelity measurement
obtains a more accurate estimate of Γ2, and obtains that value with a high probability
based on the small variance. In contrast, the Ramsey experiment provides an inaccurate
estimate, and is less reliable based on the large variance. The results are illustrated in
Fig. 8.2.
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8.4.3 Non-Markovian dephasing

The previous analysis of a Ramsey experiment and fidelity measurement assume Markovian
noise, however we must also include the possibility of non-Markovian dephasing. To model
the dephasing process, consider the Hamiltonian

HSB = ~A(t)σz/2 (8.22)

describing the interaction between the system and the bath. Here A(t) is assumed to be a
Gaussian random variable with zero mean 〈A(t)〉 = 0 and covariance S(t−t′) = 〈A(t)A(t′)〉,
where 〈·〉 denotes averaging over the ensemble {A}. This Hamiltonian causes decay of the
off-diagonal elements of ρ(t) with corresponding Ramsey measurement

Q(t) = exp
[
−
∫ +∞

−∞

sin2(ωt/2)

ω2π
S̃(ω)dω

]
(8.23)

where S̃(ω) is the Fourier transform of the covariance S(t), also sometimes referred to as
the spectral density or power spectrum of the noise [57, 58]. In the Markovian case where
S̃(ω) can be approximated by a constant, we recover the exponential decay Q(t) = e−tφ0

where S̃(ω) = φ0 = 1/T ∗2 . However in the non-Markovian case where memory effects are
present, we obtain the Gaussian decay [58, 59]

Q(t) = Ae−(tφ0)2 (8.24)

which has been observed experimentally [60, 61, 62]. In the case that dephasing causes
a Gaussian decay of off-diagonal elements, the fidelity measurement (8.16) is expected to
take the form

F = Ae−(φ0t)2 +B. (8.25)

We numerically simulate this case and again compare the performance of the two methods
(Tab. 8.3).

As in the Markovian case, we see that the fidelity measurement produces a better fit
and provides a more accurate estimate of Γ2 which is obtained with a higher probability.
The results are illustrated in Fig. 8.3.

8.5 Linking T1 and T ∗2 estimations to RB

Following the analysis in the previous two sections, we now have accurate estimates for
the generalized damping parameters (Γ1,Γ2, λ). In this section we calculate the error rate
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Table 8.3: Numerical estimation of Γ2 obtained from simulation of a Ramsey experiment
compared to the proposed fidelity measurement in the presence of non-Markovian dephas-
ing.

Fidelity meas. (8.25) Ramsey exp. (8.24)
Γavg2 0.098827 0.108287
Γvar2 9.694169E−4 0.002107
R2
adj 0.999918 0.994462

(a) (b)

Figure 8.3: Histograms showing estimated values of Γ2 (Γact2 = 0.1) for 1600 random noise
matrices with non-Markovian dephasing using a) fidelity measurement and b) a Ramsey
experiment.
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and unitarity [63] expected in a randomized benchmarking experiment attributed to the
generalized damping channel, which serve as goal values in the case when noise is limited
by T1 and T ∗2 processes.

The error rate obtained from a randomized benchmarking experiment may be calculated
as r = 1−F , where F is the average fidelity. For the generalized damping channel,

rgoal =
1

2
− 1

6
e−Γ1∆t − 1

3
e−(Γ1/2+Γ2)∆t

=
1

3
+
γ1

6
− 1

3

√
(1− γ1)(1− γ2).

(8.26)

The error rate obtained from an RB experiment may be compared to rgoal where ∆t would
be the average duration needed to apply one gate. Additionally, we can obtain more
benchmark values if we perform the randomized benchmarking procedure with sequences
of random Pauli gates and an additional projection step, as in [64]. The error rate rσ

represents the value obtained with the projection 1
2
(1+σ) applied at the end of the sequence

where σ ∈ {X, Y, Z}:

rXgoal =
1

2
− 1

6

√
(1− γ1)(1− γ2) (8.27)

rYgoal =
1

2
− 1

6

√
(1− γ1)(1− γ2) (8.28)

rZgoal =
1

2
− 1

6
(1− γ1) (8.29)

Similarly, the goal unitarity is given by

Ugoal =
1

3
Tr(Λ†uΛu) =

1

3
(3− 4γ1 − 2γ2 + 2γ1γ2 + γ2

1). (8.30)

Together these values provide a benchmark to check whether noise is limited by T1 and T ∗2
processes.

8.6 The diamond distance

In the previous section, we provide a way to test whether noise is limited by the generalized
damping process. If that scenario holds, we would like some way to compare worst-case
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gate errors to the fault-tolerance threshold theorem. In this section we provide upper
bounds on the diamond distance between the generalized damping and identity channels,
which accomplishes this goal.

Using two derivation techniques (see Appendix A) we obtain two upper bounds for
DGD = 1

2
||1− ΛGD||�

DGD ≤
1

2

[
1−

√
(1− γ1)(1− γ2)− 1

2
γ1 + 2λγ1

]
(8.31)

DGD ≤ max

{
1−

√
(1− γ1)(1− γ2) + γ1(1− λ))

1− λ(1− γ1 − γ2)
. (8.32)

A lower bound may be obtained by evaluating DGD = 1
2
supρ||1 ⊗ (I − ΛGD)(ρ)||1 for a

given ρ. With ρ = |01〉〈01|, we obtain

DGD ≥ λγ1 (8.33)

which we find to be numerically close to the actual diamond distance in the parameter
regime of interest. Depending on the values of γ1, γ2 and λ, the minimum of (8.31) and
(8.32) provides the upper bound on the diamond distance, assuming the noise is described
by the generalized damping channel. In the more realistic case that the noise is not fully
described by the generalized damping channel, we now provide an extension to the bounds
(8.31 - 8.32) based on the actual measurements of the error rates rσ and unitarity U .
Writing the total channel as

Λ = ΛGD +

(
0 0
α E

)
(8.34)

we can bound the diamond norm of Λ from the identity as

||1− Λ||� ≤ 2UBGD +
∑

i

|αi|+
∑

i,j

|Ei,j| (8.35)

which is obtained by splitting Λ into ΛGD plus a sum of one element matrices and applying
the triangle inequality. The diamond norm of a matrix with a single non-zero entry in
either the unital block or non-unital vector is given by the absolute value of that element
as shown in Appendix B. Applying the Cauchy-Schwarz inequality

||1− Λ||� ≤ 2UBGD +

√∑

i

|αi|2 +

√∑

i,j

|Ei,j|2 (8.36)
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||1− Λ||� ≤ 2UBGD +
√

9r2/2− γ2
1(2λ− 1)2 +

√∑

i,j

|Ei,j|2 (8.37)

since
√∑

i |Λn
i |2 ≤ 3r/

√
2 by theorem 3 of [66], where Λn is the non-unital vector of Λ.

Finally we obtain
√∑

i,j |Ei,j|2 from the measured values of rσ and U compared to the goal

values:
∑

i,j

|Ei,j|2 = U − Ugoal − 12(1− γ1)(rZgoal − rZ)

− 12
√

(1− γ1)(1− γ2)(rXgoal − rX + rYgoal − rY ).

(8.38)

Also note that ||1− Λ||� can be bounded in terms of the measured r and U directly as in
[66]. A comparison of the bounds obtained from (8.37) and [66] is shown in Fig. 8.4. The
upper bound given by (8.37) is only beneficial when the actual channel is very close to the
generalized damping channel. Comparison of the bounds therefore provides another test
of whether the noise is well described by generalized damping.

8.7 Summary

In summary, we have provided an in depth analysis of how commonly measured experimen-
tal quantities should behave for a channel close to generalized damping. Comparison to
goal values provides a true benchmark for whether noise is limited by T1 and T ∗2 processes.
Bounds on the diamond distance of the generalized damping channel from the identity
provide a way to relate these noise parameters to fault-tolerance threshold theorems.
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Figure 8.4: The diamond distance (blue) from the identity for random channels close to
the generalized damping channel (Λ = (1 − p)ΛGD + pΛrand) as a function of p. Upper
bounds are given by (8.37) (green) and [66] (red), and the lower bound is given by [66]
(cyan). Each data point is averaged over 100 random channels.
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Chapter 9

Conclusion

To summarize the results of this thesis, we have provided progress in two major areas
related to fault-tolerant quantum computation. Firstly, we have studied magic state dis-
tillation as a method of achieving universality. One major goal is to distinguish a resource
which is responsible for the quantum advantage over classical computation. We take the
first step towards proving that contextuality is this resource for prime dimensional sys-
tems by demonstrating that tight distillation thresholds exist in at least some directions.
Finding tight thresholds in the remaining directions will likely not be possible by brute
force search, considering that the generalized T -state has not been shown to be distillable
at all by any of the codes we searched over. Finding codes which distill the generalized
T -state will likely require making use of transversality techniques, or generalizing qubit
codes which distill qubit T -states. Another future direction would be to generalize the
results of [37, 34], in an attempt to further limit the region of possibly distillable states.
Secondly, we have provided many new qubit distillation routines based on small stabilizer
codes. Although these exhibit linear error suppression, they may still be useful for some
applications. These routines use fewer measurements and local operations per round of
distillation, and therefore may be used in experimental systems where the size of the sys-
tem is limited. The majority of magic states we found were unusual equatorial states,
meaning they can implement rotations other than the usual π/4 rotation given by the
H-state. It would be interesting to combine these routines and attempt to distill other
equatorial states that are known to be useful, such as the V -state. Another interesting
result was finding a 5-qubit code that distills the H-state with a tight threshold, making
this the smallest known tight qubit code. Studying the properties of small codes exhibiting
tight thresholds may illuminate the path to finding tight thresholds in higher dimensions.
In the final part of this thesis, we study noise processes close to the generalized damping
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channel and provide a link between parameter estimation, randomized benchmarking, and
the diamond distance. Many experimentalists report T1 and T ∗2 times and can make use of
the analysis presented here to compare these values to randomized benchmarking metrics.
Such a comparison provides insight into how closely noise is limited by T1 and T ∗2 processes.
The final ingredient is to make use of randomized benchmarking metrics to bound the dia-
mond distance of the noise channel from the identity. By bounding the diamond distance,
experimentalists may safely relate their results to fault-tolerance threshold theorems.
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Appendix A

Stabilizer codes for edge-state
distillation

Each set of generators describe a stabilizer code in (x|z) notation which has edge state
|E〉 = (a, b, b) as its limiting state. All limiting states lie outside the Wigner tetrahedron
edge in the x-z plane as shown in Fig. 5.4.

a b x z Generators

0.835983 0.388029 0.917501 0.397734

G1 1 0 0 0 0 0 1 2
G2 0 1 0 0 0 0 2 1
G3 0 0 1 2 2 1 0 0
ZL 0 0 0 2 1 2 0 0
XL 0 0 0 0 0 0 1 1

0.941079 0.239134 0.636520 0.771260

G1 1 0 0 0 0 0 0 0 0 2
G2 0 0 0 0 2 1 1 1 1 0
G3 0 2 1 0 2 1 1 1 1 0
G4 0 2 0 1 2 1 1 1 1 0
ZL 0 2 0 0 2 1 1 1 1 1
XL 0 0 0 0 0 0 1 1 1 0

0.952265 0.215861 0.581402 0.813616

G1 0 0 0 0 2 1 1 1 1 0
G2 2 1 0 0 2 1 1 1 1 0
G3 2 0 1 0 2 1 1 1 1 0
G4 1 0 0 1 1 2 2 2 2 1
ZL 2 0 0 0 2 1 1 1 1 1
XL 0 0 0 0 0 1 1 1 2 0
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0.842186 0.381263 0.908192 0.418554

G1 0 0 0 0 2 1 2 1 0 0
G2 1 1 0 0 1 2 1 2 1 0
G3 0 0 1 0 0 0 0 0 0 2
G4 0 0 0 1 0 2 2 0 0 0
ZL 2 0 0 0 2 1 2 1 1 1
XL 0 0 0 0 0 1 2 0 0 0

0.881207 0.334271 0.833147 0.553052

G1 1 0 0 0 0 0 0 0 2 2
G2 0 0 0 0 2 1 1 1 0 0
G3 0 2 1 0 2 1 1 1 0 0
G4 0 0 0 1 0 2 2 2 0 0
ZL 0 2 0 0 2 1 1 1 1 1
XL 0 0 0 0 0 0 1 1 0 0

0.811769 0.412936 0.948113 0.317936

G1 0 0 0 0 2 1 1 2 0 0
G2 2 1 0 0 2 1 1 2 0 0
G3 0 0 1 0 0 0 0 0 2 1
G4 0 0 0 1 0 2 2 2 0 0
ZL 2 0 0 0 2 1 1 2 1 1
XL 0 0 0 0 0 1 1 0 0 0

0.964002 0.188015 0.512644 0.858601

G1 0 0 0 0 0 2 1 1 1 1 1 0
G2 2 1 0 0 0 2 1 1 1 1 1 0
G3 2 0 1 0 0 2 1 1 1 1 1 0
G4 2 0 0 1 0 2 1 1 1 1 1 0
G5 1 0 0 0 1 1 2 2 2 2 2 1
ZL 2 0 0 0 0 2 1 1 1 1 1 1
XL 0 0 0 0 0 0 1 1 1 1 2 0

0.921798 0.274124 0.714707 0.699424

G1 1 0 0 0 0 0 0 0 0 0 2 2
G2 0 0 0 0 0 2 1 1 1 1 0 0
G3 0 2 1 0 0 2 1 1 1 1 0 0
G4 0 2 0 1 0 2 1 1 1 1 0 0
G5 0 0 0 0 1 0 2 0 0 0 0 0
ZL 0 2 0 0 0 2 1 1 1 1 0 1
XL 0 0 0 0 0 0 0 1 1 1 0 0
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0.943399 0.274124 0.622954 0.781983

G1 0 0 0 0 0 2 1 1 1 1 0 0
G2 2 1 0 0 0 2 1 1 1 1 1 0
G3 2 0 1 0 0 2 1 1 1 1 1 0
G4 1 0 0 1 0 1 2 2 2 2 2 1
G5 0 0 0 0 1 0 2 0 0 0 0 0
ZL 2 0 0 0 0 2 1 1 1 1 1 1
XL 0 0 0 0 0 0 1 1 1 2 0 0

0.863728 0.356353 0.622954 0.781983

G1 1 0 0 0 0 0 0 0 0 0 2 0
G2 0 1 0 0 0 0 0 0 0 0 2 0
G3 0 0 1 0 0 0 0 0 0 0 0 2
G4 0 0 0 0 0 2 0 0 1 1 1 0
G5 0 0 0 1 1 1 2 2 2 2 2 1
ZL 0 0 0 2 0 2 0 0 1 1 1 1
XL 0 0 0 0 0 0 0 0 0 1 2 0

0.872073 0.346041 0.853543 0.521023

G1 0 0 0 0 0 2 1 2 1 1 0 0
G2 1 1 0 0 0 1 2 1 2 2 1 0
G3 0 0 1 0 0 0 0 0 0 0 0 2
G4 0 0 0 1 0 0 0 0 0 0 0 2
G5 0 0 0 0 1 0 2 2 0 0 0 0
ZL 2 0 0 0 0 2 1 2 1 1 1 1
XL 0 0 0 0 0 0 1 2 0 0 0 0

0.899161 0.309443 0.786979 0.616980

G1 0 0 0 0 0 2 1 0 1 1 0 0
G2 0 1 0 0 0 0 0 0 0 0 2 0
G3 0 0 1 0 0 0 0 0 0 0 0 2
G4 2 0 0 1 0 2 1 0 1 1 1 0
G5 0 0 0 0 1 0 2 2 0 0 0 0
ZL 2 0 0 0 0 2 1 0 1 1 1 1
XL 0 0 0 0 0 0 1 0 0 1 0 0

0.782757 0.440052 0.974262 0.225417

G1 1 0 0 0 0 0 0 0 0 0 2 0
G2 0 1 0 0 0 0 0 0 0 0 2 0
G3 0 0 0 0 0 2 0 0 1 1 1 0
G4 0 0 2 1 0 2 0 0 1 1 1 0
G5 0 0 1 0 1 1 2 2 2 2 2 1
ZL 0 0 2 0 0 2 0 0 1 1 1 1
XL 0 0 0 0 0 0 0 0 1 1 2 0
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0.925353 0.268068 0.701613 0.712558

G1 0 0 0 0 0 2 1 0 1 1 0 0
G2 2 1 0 0 0 2 1 0 1 1 0 1
G3 0 0 1 0 0 0 0 0 0 0 0 2
G4 1 0 0 1 0 1 2 0 2 2 2 1
G5 0 0 0 0 1 0 2 2 0 0 0 0
ZL 2 0 0 0 0 2 1 0 1 1 1 1
XL 0 0 0 0 0 0 1 1 0 2 0 0

0.945567 0.230113 0.615429 0.788192

G1 0 0 0 0 0 2 1 0 1 1 0 0
G2 2 1 0 0 0 2 1 0 1 1 0 1
G3 2 0 1 0 0 2 1 0 1 1 1 0
G4 1 0 0 1 0 1 2 0 2 2 2 1
G5 0 0 0 0 1 0 2 2 0 0 0 0
ZL 2 0 0 0 0 2 1 0 1 1 1 1
XL 0 0 0 0 0 0 1 1 1 2 0 0

0.931836 0.256594 0.676287 0.736638

G1 0 0 0 0 0 2 1 0 1 2 0 0
G2 2 1 0 0 0 2 1 0 1 2 0 1
G3 2 0 1 0 0 2 1 0 1 2 1 0
G4 1 0 0 1 0 1 2 0 2 1 2 0
G5 0 0 0 0 1 0 2 2 0 0 0 0
ZL 2 0 0 0 0 2 1 0 1 2 1 1
XL 0 0 0 0 0 0 1 1 1 2 0 0

0.919698 0.277629 0.722196 0.691689

G1 1 0 0 0 0 0 0 0 0 0 2 2
G2 0 1 0 0 0 0 0 0 0 0 2 2
G3 0 0 0 0 0 2 1 1 1 1 0 0
G4 0 0 1 1 0 1 2 2 2 2 0 1
G5 0 0 0 0 1 0 2 2 0 0 0 0
ZL 0 0 2 0 0 2 1 1 1 1 0 1
XL 0 0 0 0 0 0 0 0 1 2 0 0

0.934648 0.251429 0.664674 0.747134

G1 1 0 0 0 0 0 0 0 0 0 2 2
G2 0 0 0 0 0 2 1 1 1 1 0 0
G3 0 1 1 0 0 1 2 2 2 2 2 1
G4 0 1 0 1 0 1 2 2 2 2 2 1
G5 0 0 0 0 1 0 2 2 0 0 0 0
ZL 0 2 0 0 0 2 1 1 1 1 1 1
XL 0 0 0 0 0 0 0 1 2 2 0 0
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0.923498 0.271248 0.708513 0.705698

G1 1 0 0 0 0 0 0 0 0 0 2 2
G2 0 0 0 0 0 2 1 2 1 1 0 0
G3 0 1 1 0 0 1 2 1 2 2 2 0
G4 0 1 0 1 0 1 2 1 2 2 2 0
G5 0 0 0 0 1 0 2 2 0 0 0 0
ZL 0 2 0 0 0 2 1 2 1 1 1 2
XL 0 0 0 0 0 0 0 1 2 2 0 0

0.939523 0.242173 0.643544 0.765409

G1 0 0 0 0 0 2 1 2 1 1 0 0
G2 2 1 0 0 0 2 1 2 1 1 0 2
G3 2 0 1 0 0 2 1 2 1 1 1 0
G4 1 0 0 1 0 1 2 1 2 2 2 1
G5 0 0 0 0 1 0 2 2 0 0 0 0
ZL 2 0 0 0 0 2 1 2 1 1 1 1
XL 0 0 0 0 0 0 1 1 1 2 0 0
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Appendix B

Diamond distance bounds for the
generalized damping channel

In Pauli-Liouville representation, the generalized damping channel is given by

ΛGD =




1 0 0 0

0
√

(1− γ1)(1− γ2) 0 0

0 0
√

(1− γ1)(1− γ2) 0
γ1(2λ− 1) 0 0 1− γ1


 (B.1)

where γ1 = 1− e−Γ1∆t and γ2 = 1− e−2Γ2∆t. The diamond distance DGD = 1
2
||1− ΛGD||�

is defined as

DGD =
1

2
supρ||1⊗ (1− ΛGD)(ρ)||1. (B.2)

B.1 Method 1 - Triangle inequality

We may split 1− ΛGD into its diagonal and non-diagonal part 1− ΛGD = E1 + E2

E1 =




0 0 0 0

0 1−
√

(1− γ1)(1− γ2) 0 0

0 0 1−
√

(1− γ1)(1− γ2) 0
0 0 0 γ1


 E2 =




0 0 0 0
0 0 0 0
0 0 0 0

γ1(2λ− 1) 0 0 0




(B.3)
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and then apply the triangle inequality ||1 − ΛGD||� ≤ ||E1||� + ||E2||�. Since E1 is a Pauli
channel, the diamond norm is directly computable as ||E1||� = 1

2
Tr(E1),

||E1||� = 1−
√

(1− γ1)(1− γ2) +
1

2
γ1. (B.4)

Then ||E2||� = supρ ||1 ⊗ E2(ρ)||1 where ρ can be assumed to be a pure state, ρ = |ψ〉〈ψ|
and |ψ〉 = (a b c d)T . Working this out, we get:

1⊗ E2(ρ) =
γ1(2λ− 1)

2




|a|2 + |b|2 0 ac∗ + bd∗ 0
0 −(|a|2 + |b|2) 0 −(ac∗ + bd∗)

ca∗ + db∗ 0 |c|2 + |d|2 0
0 −(ca∗ + db∗) 0 −(|c|2 + |d|2)


 (B.5)

which has eigenvalues λ = ±γ1(2λ−1)
4

[1 ±
√

1− 4(ad− bc)(a∗d∗ − b∗c∗)] so that for any
a, b, c, d,

∑ |λk| = γ1(2λ − 1) and therefore ||E2||� = γ1(2λ − 1). Putting things together,
the upper bound is

||1− ΛGD||� ≤ 1−
√

(1− γ1)(1− γ2)− 1

2
γ1 + 2λγ1. (B.6)

B.2 Method 2 - Semidefinite programming

We use the semidefinite program defined in [67], which has the diamond distance as its
optimal value. The diamond distance DGD = 1

2
||1−ΛGD||� will be bounded by the solution

to the dual problem, ||TrB(Z)||∞ where Z is subject to the constraints Z ≥ J(1 − ΛGD)
and Z ≥ 0.

The Choi matrix of 1− ΛGD is given by

J(1− ΛGD) = γ1(λ− 1) |00〉〈00| − λγ1 |11〉〈11|+ γ1(1− λ) |01〉〈01|+ γ1λ |10〉〈10|
+ (
√

(1− γ1)(1− γ2)− 1)[|00〉〈11|+ |11〉〈00|].
(B.7)

We pick a dual feasible point Z as

Z = (1−
√

(1− γ1)(1− γ2)) |00〉〈00|+ γ1(1− λ) |01〉〈01|
+ γ1λ |10〉〈10|+ (1− λ(1− γ2)) |11〉〈11| .

(B.8)
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Z is positive semidefinite since each coefficient in the above is non-negative, and also
Z ≥ J(1− ΛGD) is satisfied since

Z − J(1− ΛGD) = (1−
√

(1− γ1)(1− γ2))[|00〉〈00|+ |00〉〈11|+ |11〉〈00|]
+ γ1(1− λ) |00〉〈00|+ (1− λ(1− γ1 − γ2)) |11〉〈11|

(B.9)

Z − J(1− ΛGD) = 2(1−
√

(1− γ1)(1− γ2)) |ψBell〉〈ψBell|+ γ1(1− λ) |00〉〈00|
+ (
√

(1− γ1)(1− γ2)− λ(1− γ1 − γ2)) |11〉〈11|
(B.10)

where |ψBell〉 = 1√
2
(|00〉 + |11〉). Note the |11〉〈11| coefficient is always positive since√

(1− γ1)(1− γ2) ≥ λ(1 − γ1 − γ2). Then we obtain an upper bound on the diamond
distance as 1

2
||1− ΛGD||� ≤ ||TrB(Z)||∞

||1− ΛGD||� ≤ max

{
2(1−

√
(1− γ1)(1− γ2) + γ1(1− λ)))
2(1− λ(1− γ1 − γ2))

. (B.11)
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Appendix C

The diamond norm of single element
matrices

Here we show that the diamond norm of a matrix M =

[
0 0
α E

]
with a single non-zero

element x in either the unital block E or non-unital vector α is equal to |x|. Due to the
invariance of the diamond norm under unitary conjugation, we need to show this for only
two cases: when x is some element of α, and when x is some element of E .

C.1 x is an element of α

Let α =




0
0
x


, E = 0, and ρ = |ψ〉〈ψ| where |ψ〉 = (a b c d)T . Then ||M ||� = supρ ||1 ⊗

M(ρ)||1.

1⊗M(ρ) =
x

2




|a|2 + |b|2 0 ac∗ + bd∗ 0
0 −(|a|2 + |b|2) 0 −(ac∗ + bd∗)

ca∗ + db∗ 0 |c|2 + |d|2 0
0 −(ca∗ + db∗) 0 −(|c|2 + |d|2)


 (C.1)

which has eigenvalues λ = ±x
4
[1 ±

√
1− 4(ad− bc)(a∗d∗ − b∗c∗)] so that for any a, b, c, d,∑ |λk| = |x| and therefore ||M ||� = |x|.
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C.2 x is an element of E

Let E =




0 0 0
0 0 0
0 0 x


 and α = 0.

1⊗M(ρ) =
x

2




|a|2 − |b|2 0 ac∗ − bd∗ 0
0 −|a|2 + |b|2 0 −ac∗ + bd∗

ca∗ − db∗ 0 |c|2 − |d|2 0
0 −ca∗ + db∗ 0 −|c|2 + |d|2


 (C.2)

which has eigenvalues λ = x
4
[±(|a|2 − |b|2 + |c|2 − |d|2)±

√
1− 4(ab∗ + cd∗)(a∗b+ c∗d)] so

that
∑ |λk| = |x||(|a|2−|b|2+|c|2−|d|2)| with maximal value |x|, and therefore ||M ||� = |x|.
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