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Abstract   

 

Traditionally, traffic engineers have designed roadway networks and operational strategies to 

manage congestion and minimize delays during the peak demand period for some “average” or 

“typical” day.  However, increasingly, there is concern about not only the average traffic conditions 

along a route (during some period of the day), but also about the variability of the required time to 

traverse the route.  Travel times vary as a function of the departure time according to relatively 

predictable changes in the traffic demands (i.e. travel times are longer during the peak commuting 

periods than during off peak periods). However, the time to complete the same trip at the same 

departure time also varies from day to day. The variability of travel time, and the associated additional 

costs, has introduced another performance measure in transportation engineering called travel time 

reliability (TTR). Travel time reliability has gained significant attention among the transportation 

researchers and practitioners recently. In this research, we aimed to implement traffic microsimulation 

models in order to model travel time reliability and finally to incorporate it into the alternative 

comparison. The contribution areas of this research are explained briefly in the following paragraphs.   

Previous work that has examined the impact of weather on the characteristics of the speed-flow-

density relationship has defined the weather conditions a priori and then attempted to determine the 

macroscopic traffic stream characteristics for these categories. However, for the purposes of modeling 

travel time reliability, it is necessary to only capture those weather conditions for which the associated 

macroscopic characteristics are statistically different. In this research we develop a technique to 

distinguish distinct weather categories through an innovative method.  

Also, the process of determining macroscopic traffic stream characteristics requires the calibration 

of a macroscopic speed-flow-density model to field data.  In employing this approach, we observed 

that the errors associated with the estimated parameters are impacted by the number and distribution 

of the observation points that used to calibrate the model. Therefore, we developed models to estimate 

the corresponding errors of the estimated traffic parameters and found that for most practical 

applications, the estimation of the jam density is most sensitive to the distribution of the calibration 
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data. As a result, we suggested some specific conditions for which the jam density value should be 

assumed a priori rather than calibrated on the basis of the available field data.  

We additionally wanted to be able to model specific weather categories. We knew the traffic flow 

parameters of those weather conditions from the field data and we wanted the same traffic 

characteristics to be simulated in the traffic microsimulation model. Therefore, we proposed and 

evaluated a method to map the traffic flow characteristics to the TMM input parameters. The model 

developed in this research is not only applicable to simulate different weather categories, but also can 

be used to simulate any traffic condition -within the acceptable range of the model- when the traffic 

flow parameters are known. 

Furthermore, we aimed to monetize travel time (un)reliability. To do this we have adopted the 

unreliability cost in terms of the costs of arriving early or arriving late.  This approach has been widely 

used to quantify the costs of unreliability of public transport system; however, for road transport, this 

construct requires that we know the scheduled travel time which, from the user’s perspective is the 

anticipated travel. We carried out a stated preference survey to estimate the anticipated travel time 

based on the travel time distribution. On the basis of the survey responses, we proposed two models in 

which travelers ignore unusually long travel times when determining their anticipated travel time. 

Finally, we incorporated all of these findings to create an approach to quantify the cost of travel 

time (un)reliability using traffic microsimulation tools. We demonstrate this approach to evaluate two 

road improvement alternatives. We used the traffic simulation model VISSIM to compare these two 

alternatives based on the travel time cost and travel time reliability cost together.  
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Chapter 1  

 

Introduction 

 

1.1. Background 

Traditionally, traffic engineers have designed roadway networks and operational strategies to 

manage congestion and minimize delays during the peak demand period for some “average” or 

“typical” day.  However, increasingly, there is concern about not only the average traffic conditions 

along a route (during some period of the day), but also about the variability of the required time to 

traverse the route.  Travel times vary as a function of the departure time according to relatively 

predictable changes in the traffic demands (i.e. travel times are longer during the peak commuting 

periods than during off peak periods). However, the time to complete a trip along a particular route 

between a specific origin and destination when the trip starts at a certain departure time (e.g. between 

5 and 5:15 pm) also varies from day to day.  

The variability of travel time is caused by various factors including: demand variation; insufficient 

road capacity; weather impacts; special events; road works; traffic management policies; and road 

incidents. Sources of variability have been categorized in Figure 1-1. In this figure the sources of travel 

time variation have been divided in two main groups: demand related and supply related sources.  
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Figure 1-1-Sources of travel time variation 

The importance of arriving at the destination at a specific time is known to vary by trip type (e.g. 

much more important for a trip to the airport to catch a flight than a trip to the mall for shopping).  

Nevertheless, if the traveler has a desired arrival time, and is uncertain about the time required to travel 

to the destination (e.g. because of variations in travel time) then the traveler typically budgets extra 

time in order to be more certain of arriving on time, which increases the total travel cost considering 

the value of travel time (VOT) for different road users. Not only does this additional cost impact 

commuters, but it also impacts businesses for which punctuality is important (e.g. freight companies).  

The variability of travel time, and the associated additional costs, has introduced another 

performance measure in transportation engineering called travel time reliability (TTR). Generally 

speaking, travel time is more reliable when it is less variable; meaning that the TTR is inversely 

proportional to travel time variability. Travel time reliability has several definitions in the literature; 

one of them being “the consistency or dependability in travel times, as measured from day to day and/or 

within different times of day” (U.S. Federal Highway Administration (FHWA), 2009).  

Reliability of travel time is valuable.  Casello et al.(2009) developed models that included the cost 

of  )un(reliability as a part of the generalized cost of the transit mode while they assumed the difference 

between the necessary arrival time and the actual arrival time as the measure of reliability. They 

•Traffic mix, drivers’ behaviour

•Seasonal effects: time, day, week, month

•Demand on parallel road

•Spillback of connecting road

•Traffic information

•Special events

Demand-Related 
Factors
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•Road geometry and capacity

•Road regulations

•Collisions

•Traffic management and control

•Planned road closures

Supply-Related 
Factors
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suggested that developed models would improve the estimation of modal split in the models used for 

transportation forecasting. 

Empirical research projects verify that the value of reliability (VOR) is larger than the value of 

travel time (VOT) for business trips (Warffemius, 2013). Other studies confirm that improvements 

made in travel time reliability are worth more than improvements of the average travel time. For 

instance, one study found that the cost a driver considers for mean travel time is $2.60 to $8 per hour 

while it is $10 to $15 per hour for standard deviation of travel time, where standard deviation is a 

measure of TTR (Small, 1999). The reason is that the travel time unreliability brings “scheduling cost”- 

the extra time the traveler budgets for the uncertainty of a route travel time - and makes the travel more 

expensive (Chen et al., 2003). 

Travel time reliability was not the focus area in transportation engineering until the beginning of 

this millennium. For years, when authorities aimed to improve the performance of a road, the main 

objective was to increase the capacity and thereby to improve (reduce) the average travel time. 

Although the average travel time is still considered as the traditional road performance measure, travel 

time reliability has started to be used by practitioners as an additional measure of performance. There 

are several reasons for the increasing importance of travel time reliability. The most significant factor 

is that decision makers now consider a wider range of potential treatments for improving roadway 

performance. Road improvement options are no longer limited to capacity expansion through the 

addition of lanes.  In fact, roadway expansion is becoming increasingly expensive and consequently 

impractical, particularly within developed urban centers.  There are varieties of alternative 

improvement options. One example is the use of technologies to provide real-time information to 

travelers so that they are able to make optimal travel decisions (e.g. departure time, mode, route, etc.). 

Also, among the alternatives is the use of advanced traffic management strategies that are able to pro-

actively control roadway corridors. The challenge with many of these alternative treatments is that 

although they may have significant benefits in terms of improving travel time reliability, they may 

have only a small impact on mean travel time. Consequently, when one is applying traditional cost-

benefit evaluation methods, which rely on computing benefits only in terms of improvements in the 

mean travel time, the associated benefits may be substantially underestimated for such alternatives.  
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Thus, ignoring the value of improving travel time reliability may bias the economic evaluation of some 

types of treatments which leads to the inefficient allocation of roadway improvement budgets. 

Furthermore, these types of treatments may also be undervalued when compared to other types of 

public sector investments.  

There are a number of travel time reliability measures in the literature, all defined based on the 

characteristics of the travel time distribution. If the objective is to quantify the reliability of an existing 

corridor, then the travel time distribution can be determined by obtaining travel times from all (or a 

sample) of the vehicles travelling along that corridor over a period of many days.  The common practice 

is to obtain field data for a period of at least one year.   

However, if the objective is to evaluate the impact that one or more proposed roadway 

improvements or changes in policy (i.e. alternatives) will have on travel time reliability, then it is 

necessary to use models to estimate the travel time reliability for each potential future alternative.  

Analytical models and traffic micro-simulation models (TMM) are two different tools that can be 

used to estimate the travel time reliability.  

One of the earliest attempt to develop an analytical model to explain travel time variation was 

suggested by Herman and Lam (1974). They suggested the relationship between the mean (𝜏̅) and the 

standard deviation (𝜎) of travel time could be explained with the following empirical regression: 

 ba )( 
 

(1-1) 

 

in which 𝑎 and 𝑏 are estimated regression parameters.  Other researchers including Richardson and 

Taylor (1978) and Eliasson (2007) developed analytical models to relate the mean and the standard 

deviation of travel times. Some other researchers including Park et al (2010), and Tu et al (2008) 

studied the relationship between travel time variation and road incidents, while other researchers such 

as Kwon (2011) investigated the weather-related impacts on the travel time variation. Some of these 

models consider the TTR metrics as the dependent variable, and the factors that impact TTR as 

independent variables. Other analytical models estimate travel times for different situations (e.g. 
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roadway geometry, traffic demands, weather, etc.) and calculate the distribution of travel times based 

on the probability of those situations (Cambridge Systematics, 2013).  

1.2. Problem Statement 

Analytical models offer the following advantages: 

 They are typically easy to apply and require relatively little field data for input.  

 The relationships between the independent variables (e.g. sources of variation) and the 

dependent variable (e.g. TTR) are explicitly defined by the analytical model and therefore are 

easier to understand.  

However, analytical models typically suffer from the following limitations:  

 They require an extensive set of field data, including a wide range of locations, on which to 

calibrate the model;  

 The model may not be transferable to locations that were not included in the original calibration 

data set;  

 They cannot be used to evaluate the impacts of new designs, technologies, or policies for which 

no field data are available; and 

 They typically only estimate a single characteristic of the travel time distribution (e.g. Standard 

deviation) rather than the distribution itself.  

In contrast, traffic micro-simulation models could be used to estimate the impact of roadway 

improvements or policy changes on travel time reliability.  The conceptual approach is to use the TMM 

to simulate a large number of “days”.  TMM inputs would be varied so that each “day” would reflect 

different demand and supply factors which impact the travel time distribution.  Essentially this is a 

Monte Carlo simulation approach (Bindel and Goodman, 2009) for estimating distributions given a 

model (in this case the TMM) and distributions for a number of model input parameters (in this case 

parameters to reflect the demand and supply factors that impact travel time reliability). Monte Carlo 

simulation consists of running the model multiple times (trials); each time randomly selecting the 

values from the input parameter distributions. As the number of runs increases, the estimation of the 
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distribution of the output measure of performance begins to more closely approximate the true 

distribution. Consequently, the use of TMM offer the following advantages:  

 Field data are required only from the site being investigated;  

 TMM permit the incorporation of as many factors as desired into the analysis process by 

designing different scenarios;  

 TMM permit estimation of the entire travel time distribution (for each O-D, each route, each 

link, etc.); and  

 TMM are already commonly being used to perform evaluations of the impacts (e.g. average 

travel time; emissions, etc.) of potential roadway improvements and therefore extracting 

measures that capture the impact on TTR might be done with very little additional effort.  

However, the use of traffic micro-simulation models presents the following challenges:  

 Input factors (e.g. weather) required to be characterized clearly; however, it is not clear how 

they should be characterized. For instance, it is not clear how many distinct weather categories 

are really available to be simulated in TMM.  

 Most TMM do not define input parameters that map directly to factors that cause travel time 

variability in the real world (e.g. weather).  Consequently, there is a need to map variations in 

these factors to model input parameters. 

Finally, even when the travel time distribution can be estimated (whether by TMM or some 

analytical model), there is a question of how this distribution can be used to make decisions about the 

relative preference of one alternative versus another.   

This thesis addresses these challenges.  Figure 1-2 illustrates the conceptual process of performing 

an evaluation of alternatives using TMM.  The following provides a brief introduction of each stage in 

this process and identifies the areas in which this thesis makes novel contributions to the state of art. 

Field Data 

The study area in which the travel time reliability is computed is introduced to the traffic 

microsimulation models through the field data. The field data required for the travel time reliability is 
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usually the archived data of at least one year or more. The data should be cleaned and prepared for the 

further steps.  

Scenario Generation 

To incorporate the impact of the travel time variability factors, TMM scenarios should be generated. 

In this research, we considered the demand variation as the demand-side traffic variation factor as well 

as weather variation and vehicle collisions as the two supply-side variability factors. 

  

 

Figure 1-2- Conceptual stages from data preparation to alternative analysis 

One of the significant areas of contribution of this research is the development of methods for 

incorporating the effects of weather within the TMM. There are three contributions in this area, namely 

(1) a method was developed to determine the preferred approach for calibrating a macroscopic speed-

flow-density model on the basis of field data reflecting a specific weather/road surface condition; (2) 

a method was developed to determine statistically distinct weather/road surface condition categories; 

and (3) models were developed to permit the estimation of TMM input parameter values that represent 

a traffic stream with a set of desired characteristics (i.e. a traffic stream with characteristics reflecting 

a specific weather/road surface condition). 
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Traffic Microsimulation Model 

Within this research, we have chosen to use the VISSIM TMM.  However, the proposed methods 

are applicable to any TMM.  

Travel Time Distribution 

The travel time values obtained from simulation runs are captured to compute the travel time 

distribution. Within this thesis, we propose methods for compiling and aggregating these data to be 

computational and data storage efficient.  

Travel Time Reliability Cost 

One of the challenges is translating the estimated travel time distribution into a cost value to be used 

within cost-benefit analyses.  We propose a new method to compute the travel time reliability cost 

which determines cost as a function of the difference between the actual travel time and the anticipated 

travel time. In most previous work, anticipated travel time is considered to be the mean travel time; 

however, one of the contributions of this research is the use of stated preference survey data to 

determine a model which estimates the anticipated travel time on the basis of the travel time 

distribution.   

Alternative Analysis 

We demonstrate the proposed approach through a sample application. We compared two traffic 

improvement alternatives based on their travel time cost and travel time reliability cost.  

Figure 1-3 shows how different modules of this research are implemented to enable us to perform 

alternative analysis. The contributions of this research as associated with the modules shown in green. 

1.3. Thesis Outline 

This dissertation is organized into seven chapters as follows: 

1. Introduction 

2. Determining the preferred approach for calibrating a macroscopic speed-flow-density model 

on the basis of empirical data  
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3. Determining road surface and weather conditions which have a significant impact on traffic 

stream characteristics 

4. Identifying parameters to model traffic during inclement weather using microsimulation  

5. Incorporate drivers’ anticipated travel time in estimating travel time reliability cost 

6. Demonstrating the methodology: alternative analysis 

7. Conclusions and recommendations 

Note that a review of the relevant literature is provided within each chapter rather than extracted 

into a single separate chapter.   

 

Figure 1-3-Incorporation of research findings in the alternative analysis 
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Chapter 2  

 

Calibrating a macroscopic speed-flow-density relationship using field data 

 

 

 

2.1. Introduction 

In order to incorporate different weather conditions within a microscopic traffic simulation model, 

it is necessary to (i) characterize the weather conditions; (ii) determine the effect that this weather 

condition has on driver behavior; and (iii) select appropriate values for the simulation input parameters 

so that the model reflects the desired behavior. This chapter addresses step (ii) from the above list.   

It is (currently) impractical to make observations regarding the behavior of individual drivers under 

different weather conditions.  However, most large urban centers have deployed systems and sensors 

(e.g. induction loop detectors) to collect data regarding the characteristics of the traffic stream such as 

average speed and flow rate.  When these data are combined with meteorological weather and/or road 

surface condition data, it is possible to determine the traffic stream characteristics associated with 

specific weather conditions. 

The relationship between traffic stream speed, density and flow has been under investigation since 

the early 20th century. In 1935, Greenshields proposed a linear relationship between speed and density 

for the whole range of the density in which the parameters of the model were free-flow speed and jam 

density (Greenshields et al., 1935). During the following years, other researchers such as Greenberg 

(1959), Underwood (1961), Edie (1961), etc. suggested that speed-density relationship is nonlinear 

(i.e. exponential, logarithmic, or both). Some researchers (including Edie) suggested piecewise models 

for different ranges of the traffic density.  
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More recently, Van Aerde and Rakha (1995) suggested a four-parameter nonlinear model which 

provides a continuous relationship between the speed and the density. The parameters of Van Aerde’s 

model are free-flow speed (uf), speed-at-capacity (uc), jam density (kj), and capacity (qc). Figure 2-1 

consists of two-dimensional projections of the calibrated Van Aerde’s model in terms of the 

relationships between: (a) speed as a function of flow; (b) speed as a function of density; and (c) flow 

as a function of density. The blue dots represent the observed traffic data aggregated at 5-minute 

intervals. The red curve is the calibrated Van Aerde’s traffic flow relationship. 
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(a)Speed and Flow 

 

(b) Speed and Density 

 

(c) Flow and Density 

Figure 2-1-Illustration of Van Aerde’s macroscopic speed-density-flow model 

In this thesis, we use Van Aerde’s model to characterize the traffic stream because the model is 

continuous and permits all four traffic stream characteristics to be specified as parameters to the model.  

We point out here that from a conceptual perspective, any other continuous macroscopic traffic model 

could have been used.  However, using a model with fewer degrees of freedom, such as Greenshields’ 

model, restricts the ability to reflect differences in traffic stream behavior under different weather 

conditions, and therefore is less desirable.   
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Thus, given a set of observed traffic data, we can calibrate Van Aerde’s model and find the 

associated values for the four model parameters (i.e. uf, uc, kj, and qc).  Ultimately, our goal is to 

determine the set of weather conditions which cause statistically significant differences in these traffic 

stream parameters. Consequently, we want to ensure that the model parameter estimates are reliable.   

We hypothesize that there are two characteristics of the calibration field data set that impact the 

reliability of the estimated traffic stream parameters, namely: (i) the number of observations; and (ii) 

the distribution of the observations across density. We further hypothesize that the jam density 

parameter is most sensitive to these two factors and that under some conditions, it is best to fix the 

value of jam density rather than try to calibrate the value from the field data.   

To test these hypotheses, we study the impact of the distribution of the field data over the range of 

the density on the error of the whole model calibration process as well as the error of each traffic 

parameters (i.e. free-flow speed (uf), speed-at-capacity (uc), jam density (kj), and capacity (qc)).  

2.1.1. Calibrating Van Aerde’s Model  

In this research, we are required to estimate the traffic flow parameters in several occasions. Here 

we explain how we estimate these parameters. Rakha and Arafeh (2007) showed that the functional 

form of the Van Aerde’s traffic flow model can be shown as: 

 ℎ𝑛 = 𝑐1 + 𝑐3𝑢𝑛 +
𝑐2

𝑢𝑓 − 𝑢𝑛

 
(2-1) 

where: 

ℎ𝑛 : distance headway (km) between two consecutive vehicles (i.e. n-1 and n) travelling in the same 

lane 

𝑢𝑛: speed of vehicle n (km/h) 

𝑢𝑓: free-flow speed (km/h) 

𝑐1, 𝑐2, 𝑐3: constants 

Then as per Rakha and Arafeh (2007), Van Aerde’s model can be calibrated by solving the 

following optimization problem: 
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 𝑀𝑖𝑛   𝐸 = ∑ {[
𝑢𝑖 − 𝑢̂𝑖

𝑢̃
]

2

+ [
𝑞𝑖 − 𝑞̂𝑖

𝑞̃
]

2

+ [
𝑘𝑖 − 𝑘̂𝑖

𝑘̃
]

2

}

𝑖

 (2-2) 

S.T. 

𝑘̂𝑖 =
1

𝑐1 +
𝑐2

𝑢𝑓 − 𝑢̂𝑖
+ 𝑐3𝑢̂𝑖

  , ∀𝑖 

𝑞̂𝑖 = 𝑘̂𝑖 × 𝑢̂𝑖  , ∀𝑖 

𝑞̂𝑖, 𝑘̂𝑖 , 𝑢̂𝑖  ≥ 0  , ∀𝑖 

𝑢̂𝑖 < 𝑢𝑓   , ∀𝑖 

0.5𝑢𝑓 ≤ 𝑢𝑐 ≤ 𝑢𝑓  

𝑞𝑐 ≤
𝑘𝑗𝑢𝑓𝑢𝑐

2𝑢𝑓 − 𝑢𝑐

 

𝑐1 =
𝑢𝑓

𝑘𝑗𝑢𝑐
2

(2𝑢𝑐 − 𝑢𝑓);    𝑐2 =
𝑢𝑓

𝑘𝑗𝑢𝑐
2

(𝑢𝑓 − 𝑢𝑐)
2

;   𝑐3 =
1

𝑞𝑐

−
𝑢𝑓

𝑘𝑗𝑢𝑐
2

       

𝑢𝑓
𝑚𝑖𝑛 ≤ 𝑢𝑓 ≤ 𝑢𝑓

𝑚𝑎𝑥; 𝑢𝑐
𝑚𝑖𝑛 ≤ 𝑢𝑐 ≤ 𝑢𝑐

𝑚𝑎𝑥; 𝑘𝑗
𝑚𝑖𝑛 ≤ 𝑘𝑗 ≤ 𝑘𝑗

𝑚𝑎𝑥;  𝑞𝑐
𝑚𝑖𝑛 ≤ 𝑞𝑐 ≤ 𝑞𝑐

𝑚𝑎𝑥  

where 𝑢𝑖, 𝑘𝑖 and 𝑞𝑖 are space-mean speed, flow, and density from the field, variables with hat (^) 

are estimations, and variables with tilde (~) are the maximum observations. Other variables were 

defined earlier. We use this formulation whenever we calibrate Van Aerde’s model in this research. 

Moreover, to reduce the computational cost, Rakha and Arafeh (2007) suggested to aggregate the 

observation points at user-defined density bins. We set the size of this density bins throughout this 

research at 0.25 vpkpl. We also used the built-in MultiStart algorithm in Matlab software to find the 

global minima of the above optimization problem in this research.  

2.2. Problem Formulation 

Consider that B is the set of traffic observations obtained from a traffic sensor at a location on a 

freeway. Observations (speed, density, flow) are aggregated and obtained over discrete time intervals 

(e.g. 5 minutes). B consists of observations from n time intervals such that we obtain speed (𝑢𝑖
𝑜), density 
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(𝑘𝑖
𝑜), and flow rate (𝑞𝑖

𝑜) where i = 1, n. In practice, the traffic sensors typically measure speed and flow, 

and then density is computed.  

We calibrate Van Aerde’s traffic model using the observations in set B. The fitted curve is a line in 

three-dimensional space.  For each observed point (𝑢𝑖
𝑜, 𝑘𝑖

𝑜, 𝑞𝑖
𝑜) we can identify the nearest point on the 

fitted curve (𝑢𝑖
𝑐 , 𝑘𝑖

𝑐 , 𝑞𝑖
𝑐), and the normalized Euclidean distance between these two points is designated 

as ‖𝑑𝑖‖ and computed as follows (H. A. Rakha and Arafeh, 2007): 

 ‖𝑑𝑖‖ = √(
𝑢𝑖

𝑜 − 𝑢𝑖
𝑐

𝑢̃
)

2

+ (
𝑘𝑖

𝑜 − 𝑘𝑖
𝑐

𝑘̃
)

2

+ (
𝑞𝑖

𝑜 − 𝑞𝑖
𝑐

𝑞̃
)

2

 (2-3) 

In which the parameters with tilde (~) are the maximum field observation values.  

 The model calibration error (εc) is computed as  

 𝜀𝑐 =
∑ ‖𝑑𝑖‖

𝑛
𝑖=1

𝑛
 

(2-4) 
 

where n is the number of observation points.  

To test our hypothesis, we wish to determine the following relationship: 

 𝜀𝑐 = 𝑓(𝐵𝐷 , 𝑛) (2-5)  

In which 𝐵𝐷 is some measure of the distribution of the traffic observations (i.e. set B) across density, 

n is the number of observations and f is a function that relates the calibration error to the distribution.  

2.3. Data Generation 

2.3.1. Generation of traffic data for calibrating the macroscopic speed-flow-density 

relationship 

Applying the above equations to field data is challenging because: (i) the true value for the traffic 

stream parameters is unknown; and (ii) only a limited range of traffic conditions can be observed.  

Consequently, the set of traffic observations was generated from the VISSIM traffic microsimulation 

software. A hypothetical freeway section was coded in VISSIM (shown in Figure 2-2) and demands 

were varied to simulate the entire spectrum of traffic states (i.e. uncongested, capacity, and congested). 

The network consisted of two one-way roads: (1) and (2). The road (1) consisted of two sections. The 
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upstream section had three lanes and the downstream section had two lanes. The measurement point 

(i.e. location at which a traffic sensor was modelled) was located at the latter section. The road (2) had 

two lanes and both roads merged. The following techniques were used to create a wide range of traffic 

states: 

1- Free flow: we defined a range of traffic demands during a number of time intervals in a way 

that the flow was always less than the capacity along all road sections.  

2- Flow at Capacity: to experience the capacity state at the measurement point, we modelled a 

lane-drop upstream of the measurement point. By increasing the traffic demand entering 

roadway 1 to above the capacity of the two-lane section, a queue formed at the lane drop and 

the flow at the measurement point was equal to the capacity. 

3- Traffic Congestion: we modelled a merging section downstream of the measurement point. By 

increasing the demand on roadway 2, it was possible to create a queue at the merging link, 

which would grow upstream until it spilled over the measurement point.  

 

Figure 2-2-Simulated freeway section 

The simulation time was 3.5 hours divided into 42 five-minute intervals. The simulation resolution 

was set to 5 time steps in each simulation second and the VISSIM default parameters were used. The 

first five-minute time interval was considered as warm-up period to load the network. We captured the 

aggregated five-minute speed, flow, and density measurements for all of the other 41 time intervals. 

The traffic demand values at each time interval are shown in Table 2-1. 
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Table 2-1-Time Variant Demand in Simulated Network 

# 
Time 

Interval (s) 

Traffic Demand (vph) 
# 

Time  

Interval (s) 

Traffic Demand (vph) 

Road (1) Road (2) Road (1) Road (2) 

1 300-600 500 0 22 6600-6900 5200 200 

2 600-900 750 0 23 6900-7200 5200 400 

3 900-1200 1000 0 24 7200-7500 5000 600 

4 1200-1500 1250 0 25 7500-7800 1500 800 

5 1500-1800 1500 0 26 7800-8100 1500 1000 

6 1800-2100 1750 0 27 8100-8400 1500 1200 

7 2100-2400 2000 0 28 8400-8700 1500 1400 

8 2400-2700 2250 0 29 8700-9000 1500 1600 

9 2700-3000 2500 0 30 9000-9300 1500 1800 

10 3000-3300 2750 0 31 9300-9600 1500 2000 

11 3300-3600 3000 0 32 9600-9900 1400 2200 

12 3600-3900 3250 0 33 9900-10200 1300 2000 

13 3900-4200 3500 0 34 10200-10500 1200 1800 

14 4200-4500 3750 0 35 10500-10800 1100 1600 

15 4500-4800 4000 0 36 10800-11100 1000 1400 

16 4800-5100 4250 0 37 11100-11400 900 1200 

17 5100-5400 4500 0 38 11400-11700 800 0 

18 5400-5700 4750 0 39 11700-12000 600 0 

19 5700-6000 5000 0 40 12000-12300 400 0 

20 6000-6300 5200 0 41 12300-12600 200 0 

21 6300-6600 5200 0 
 

 

The simulation was run 570 times (each with a different random number seed) and therefore 

41×570=23,370 data points were captured. This dataset formed our “population”. Figure 2-3 shows 

the speed-flow and speed-density plots of the population data points. 
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Figure 2-3- Fundamental diagrams of the traffic flow in the simulated network 

Then we calibrated Van Aerde’s traffic stream model using the technique introduced by Rakha 

(2010). The estimated traffic flow parameters were uf=126.9 (kph), uc=76.3 (kph), kj=106.9 (vpkpl), 

and qc=1969 (vph).  

2.3.2. Characterizing the distribution of calibration data across the density space 

To investigate the impact of the distribution of the calibration data on the estimation error we 

considered five bins on the density axis:  

bin1: (0,20) vpkpl 

bin2: (20,40) vpkpl 

bin3: (40,60) vpkpl 

bin4: (60,80) vpkpl 

bin5: (80, max) vpkpl 

The actual distribution of the entire population of calibration data across the five bins is provided 

in Table 2-2. 
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Table 2-2-distribution of calibration data across the density bins 

Bin # Density Range 

(vpkpl) 

# of points in  

the bin 

Proportion of the  

population in the bin 

1 (0,20) 9256 40% 

2 (20,40) 4313 18% 

3 (40,60) 1018 4% 

4 (60,80) 5487 23% 

5 (80, 125.3) 3296 14% 

 

We took samples from our “population” by specifying the proportion of the sampled points taken 

from each density bin (pi, i = 1, 5) and where the proportions were restricted to one of six values (𝑝𝑖 ∈  

{0%, 20%, 40%, 60%, 80%, and 100%}). Naturally, the sum of the proportions across the five bins 

must equal 100%.  For instance, one sampling schemes could be 20%, 20%, 0%, 0%, 60% in bin1 to 

bin5 respectively. If the sample size was 200 in one iteration, then the number of samples in bin1 to 

bin 5 would be 40, 40, 0, 0 and 120 respectively. The total number of individual sampling schemes is 

obtained from ((𝑚−1)+(𝑛𝑝−1)

𝑚−1
) where m is the number of bins (i.e. m = 5) and np is the number of possible 

levels of proportion of samples in each bin (i.e. np = 6). Therefore, 126 different sampling schemes are 

possible. 

Also, we investigate the impact of the number of observations in our sample. We consider 24 

different sample sizes (i.e. 𝑛 ∈  {5, 10, 15, 20, 25, 30, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 

550, 600, 650, 700, 750, 800, 850, and 900}) from the population. To account for randomness, we 

repeated each sample scheme 50 times for each sample size. The sampling from the population within 

each bin was performed completely randomly at each repetition. In total, 126×24×50=151,200 samples 

were taken and for each sample j, Van Aerde’s macroscopic model was calibrated following the 

method explained earlier to obtain the values ufj, ucj, kjj, and qcj.  
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2.4. Investigating Sensitivity 

2.4.1. Investigating the impact of the distribution of calibration data on the calibration 

accuracy 

For each sample j the model calibration error 𝜀𝑗
𝑐 was computed using Equation (2-4). We then 

computed the arithmetic average calibration error across the 50 repetitions to obtain a single average 

value (𝜀𝑑̅,𝑒
𝑐 ) for each combination of sample scheme (d = 1, 126) and number of observations in the 

sample (e = 1, 24).  

Further, we define binary variables db1 to db5 (where dbi is 0 when pi = 0 and 1 otherwise). In order 

to investigating the impact of the distribution of the points regardless the sample size impact, we 

initially aggregate the results over all sample sizes based on the values of db1 to db5. Thirty-one 

sampling scheme groups (g1 to g31) were formed which are shown in Table 2-3. Each group has a 

representative 𝜀 𝑐̅ which is the average of 𝜀𝑐 values of the samples that fall in that group.  
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Table 2-3-Average calibration error as a function of the distribution of the calibration data across 

density(Calibration error averaged across all sample sizes and groups sorted in ascending order of average 

calibration error) 

Group  db1 db2 db3 db4 db5 Average Error 

g16 1 1 1 1 1 0.02 

g3 1 0 1 0 0 0.03 

g4 1 0 0 1 0 0.03 

g5 1 0 0 0 1 0.03 

g6 1 1 1 0 0 0.03 

g7 1 1 0 1 0 0.03 

g8 1 1 0 0 1 0.03 

g9 1 0 1 1 0 0.03 

g10 1 0 1 0 1 0.03 

g11 1 0 0 1 1 0.03 

g12 1 1 1 1 0 0.03 

g13 1 1 1 0 1 0.03 

g14 1 1 0 1 1 0.03 

g15 1 0 1 1 1 0.03 

g21 0 1 1 1 0 0.06 

g22 0 1 1 0 1 0.07 

g24 0 1 1 1 1 0.07 

g19 0 1 0 1 0 0.08 

g2 1 1 0 0 0 0.09 

g18 0 1 1 0 0 0.10 

g23 0 1 0 1 1 0.10 

g17 0 1 0 0 0 0.14 

g1 1 0 0 0 0 0.16 

g20 0 1 0 0 1 0.20 

g26 0 0 1 1 0 0.28 

g25 0 0 1 0 0 0.39 

g27 0 0 1 0 1 0.43 

g28 0 0 1 1 1 0.45 

g30 0 0 0 1 1 0.53 

g29 0 0 0 1 0 0.54 

g31 0 0 0 0 1 0.54 

 

  

An examination of the data in Table 2-3 reveals that most of the groups with very low average 

calibration errors are those which have observations in bin 1 and at least one of the bins 3 to 5 (i.e. data 

representing both the uncongested and the congested traffic regimes). On the other hand, groups with 

the largest calibration errors have no observations in bins 1 and 2. 
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It is also instructive to examine the relative magnitude of the average calibration errors (Figure 2-4).  

The first set of 14 groups has very low calibration errors and the differences in the calibration errors 

between different groups are small. However, the last 7 groups have calibration errors as much as 25 

times the calibration errors in the first set of groups.  These results indicate that the distribution of the 

calibration data across the density has a substantial impact on the accuracy of the calibration of the 

macroscopic flow-speed-density model (i.e. Van Aerde’s model). 

 

Figure 2-4- Average calibration error as a function of calibration data group number 

We further aggregate the data by considering just three categories for the distribution of the 

calibration data: 

1. Data from both the Uncongested and Congested traffic regimes, 

2. Data from only the Uncongested traffic regime, and  

3. Data from only the Congested traffic regime. 

From the calibration of Van Aerde’s model to the population of data we have uc=76.3 (kph) and 

qc=1969 (vph) and therefore the density at capacity (kc) = 25.8 (vpkpl). Density less than kc are 

considered in the uncongested traffic regime and density greater than kc are considered in the congested 

traffic regime. Therefore, we can classify the groups from Table 2-3 into one of the three categories 

identified above. Data in bin1 have density < 20 vpkpl and therefore are entirely in the uncongested 

regime.  Data in bins 3 – 5 have density ≥ 40 vpkpl and therefore are entirely in the congested regime.  
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However, data in bin 2 span both the uncongested and congested regimes and consequently Group 17 

from Table 2-3 cannot be classified.  Descriptive statistics related to the calibration errors for the 30 

classified groups are provided in Table 2-4. To calculate the statistics, we use the data from individual 

simulation runs performed in data generation section. 

Table 2-4 Calibration error as a function of the distribution of the calibration data across traffic regimes 

Distribution of Data 

Average 

Error 

Number 

of Groups 

Number of  

samples 

Standard 

Deviation 

Lower Bound  

at 95% CL 

Upper Bound  

at 95% CL 

Congested and Uncongested 

Regimes 
0.0512 21 118800 0.073 0.0508 0.0516 

Uncongested Regime only 0.1040 2 6000 0.053 0.1027 0.1053 

Congested Regime only 0.4346 7 25200 0.160 0.4326 0.4366 

 

As is evident from Table 2-4, on average the lowest calibration errors are obtained when the 

calibration data represent both the uncongested and congested regimes.  When the calibration data 

represent only the uncongested traffic regime then average calibration errors are almost double the 

previous category, and when the calibration data represent only the congested traffic regime, then the 

average calibration error is much greater. The confidence intervals of each of these categories at 95% 

confidence level confirms that the average errors of these categories are significantly different from 

each other. 

2.4.2. Investigating the impact of the sample size on the calibration accuracy 

To understand the impact of the sample size on the estimation error,  Figure 2-5 shows the 

calibration error as a function of sample size for three different sampling distributions, one for each of 

the three distributions specified at the first column of Table 2-4: group 16 as an ideal instance that have 

both congested and uncongested regimes; group 2 as an instance of only uncongested regimes; and 

group 30 as an instance of only congested regimes. We observe from Figure 2-5: 

1- Sample size does not have a large impact on the calibration error when sample size exceeds 

100. 

2- When calibration data are from (i) uncongested and congested regimes or (ii) from the 

uncongested regime only, then calibration error decreases as the sample size increases.   
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However, when calibration data are from just the congested regime, calibration error 

appears to slightly increase as the sample size increases.  We also note that in practice, it is 

very unlikely to have only data from the congested regime.  It is much more likely to have 

too little (or no) data from the congested regime.  

 

Figure 2-5-Model calibration error as a function of sample size in instances of uncongested-only (g2), 

congested-only (g30), and both congested-uncongested regime (g16) 

Figure 2-6 shows the estimation error of 𝜀𝑢𝑓, 𝜀𝑢𝑐, 𝜀𝑘𝑗, and 𝜀𝑞𝑐 (shown as Euf, etc.) in the same 

groups as Figure 2-5 (i.e. groups 16, 2, and 30). It should be noted that the parameter estimation error 

which is shown in Figure 2-6 is different from the errors in Table 2-3 which are the averages of the 

model calibration error. To compute the estimation error of traffic parameters, assume that the “true” 

value of each traffic stream parameter X (uf, uc, kj, qc) is 𝑋̂ and their estimated value is 𝑋̇, then the error 

in the value of the traffic stream parameter is computed as: 

 𝜀𝑋 =
|𝑋̂ − 𝑋̇|

𝑋̇
 (2-6)  
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As shown in Table 2-3, the group 16 has the lowest calibration error; therefore, we assume that the 

“true” values of traffic parameters (i.e. 𝑋̂) pertains to a sampling with the same distribution of the group 

16. The group 16 is made by sampling equally from all density bins (i.e. bin1 to bin5). As shown in 

Table 2-2, bin3 has the lowest number of observations with slightly over 1000 data points; therefore, 

to create a base sampling we sample 1000 data points without replacement from each density bin1 to 

bin5 shown in Table 2-2. Then we calibrate the Van Aerde’s model on this five-thousand-point base 

sample to estimate the “true” parameter values. The values are: uf=126.9; uc=76.2; kj=103.4; qc=1996. 
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(b) 

 

(c) 

Figure 2-6- Traffic parameter estimation error as a function of sample size in group 16 (a), group 2 (b), 

and group 30 (c) 
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We observe from Figure 2-6 that: 

1- The estimation error of all traffic parameters generally decreases when the sample size 

increases for the categories that include both congested and uncongested regimes and for the 

categories that include uncongested-only regimes; however, the rate of the decrease of the 

estimation error is greater when samples sizes are relatively small (up to approximately 100 

observations). For larger sample sizes, adding more observations has less impact on the 

estimation error. 

2- When (i) the calibration data are from both the uncongested and congested regimes; and (ii) 

when the calibration data are from the uncongested regime only; the estimation errors for kj 

are much larger than the estimation errors for the other three parameters.   

3- When the calibration data are only from the congested regime, then the estimation errors 

associated with the free speed are largest.   

2.4.3. Investigating the impact of the sample size and the distribution of calibration data 

on the accuracy of parameter estimates 

Having demonstrated that calibration accuracy is highly influenced by the sample size and the 

distribution of the calibration data across density, we now investigate the influence that the sample size 

and the distribution of the calibration data across the density regime have on the accuracy of the 

parameter estimates.   

As we observed from Figure 2-6, the estimation error (i.e. absolute relative error) for the jam density 

(kj) parameter is higher than for the other three traffic flow parameters in groups that include data 

points from: (i) both congested and uncongested regimes (ii) uncongested-only regime. From these 

observations, and the expectation that in practice we most often have data from either (i) both the 

congested and uncongested regimes; or (ii) just the uncongested regime; it appears that the estimation 

errors associated with kj are most problematic. Table 2-5 shows the mean, the standard deviation, and 

the coefficient of variation of the four traffic parameters estimated for: (i) two groups that only include 

data points from uncongested regime (i.e. groups 1, 2) (ii) two groups which have data from both 

congested and uncongested regimes (i.e. groups 3, 6) at the sample size of 900. The values are 
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calculated using the data of 50 replications in data generation procedure. As shown in Table 2-5, the 

coefficient of variation for kj parameter is significantly higher than three other parameters. 

Table 2-5-Characteristics of The Estimated Traffic Flow Parameters in the Sampling Instances from 

Uncongested-only Regime (g1 & g2) and Both Congested-Uncongested Regimes (g3 & g6) 

Group 
uf uc 

mean std cov εuf mean std cov εuc 

g1 127.99 0.33 0.0026 0.0086 81.96 7.97 0.0972 0.1169 

g2 127.84 0.48 0.0037 0.0075 77.62 0.66 0.0085 0.0188 

g3 128.13 0.35 0.0027 0.0097 74.48 0.51 0.0068 0.0226 

g6 127.53 0.44 0.0034 0.0052 75.49 0.65 0.0086 0.0107  
kj qc  

mean std cov εkj mean std cov εqc 

g1 70.21 48.95 0.6972 0.5295 1951 69.70 0.0357 0.0366 

g2 83.20 7.93 0.0953 0.1958 2009 15.95 0.0079 0.0085 

g3 98.15 1.73 0.0176 0.0508 2031 12.02 0.0059 0.0174 

g6 102.24 2.44 0.0239 0.0210 2010 12.98 0.0065 0.0078 

  

As shown in Table 2-5, the coefficient of variation and also the estimation error of the parameter kj 

is larger than of three other parameters which suggest that the estimated kj values tend to differ 

significantly from the true value.  

To observe an instance of poorly estimated kj value, Figure 2-7 (a) shows an example of Van 

Aerde’s model calibrated to a set of traffic data corresponding to Group 2 with 50 observations in the 

sample. Figure 2-7 (b) illustrates Van Aerde’s model calibrated on a sample of observation points of 

the group 16 (i.e. the group in which points are equally distributed over all five bins) when the sample 

size is 900. 

For both graphs, the blue circles are observed speed-density points aggregated at the density bins 

of 0.25 vpkpl. The red line shows the calibrated Van Aerde’s model. The y-intercept of the calibrated 

model is the estimated free-flow speed and the x-intercept is the estimated jam density. As indicated 

in Figure 2-7 (a), the estimated jam density is 63 vpkpl which is significantly lower than the jam density 

of the comparison group (i.e. 100.7 vpkpl). This large error in estimating jam density results in large 

calibration error. We wish to avoid large errors in the estimates of the traffic stream characteristics 
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because these errors will undermine the credibility of the next step in the process, namely the 

identification of significant weather categorizations on the basis of differences between their associated 

traffic stream parameters values.   

 

 

 

(a) 

 

(b) 

Figure 2-7- Van Aerde’s model calibrated to uncongested data (a) and the equally distributed data (b) 

2.4.4. Improving the robustness of calibrating kj 

We hypothesize that we can make the calibration of Van Aerde’s model more robust by constraining 

the value that kj can assume and thereby reducing the calibration error (i.e. 𝜀𝑐) as well as the parameter 

estimation errors. To examine this hypothesis, we propose a modified calibration technique compared 

to what has been suggested by Rakha et al. (2010), namely that the jam density is fixed at some value 

and the three other traffic stream parameters (i.e. uf, uc and qc) are calibrated. The jam density for a 

typical freeway traffic stream is approximately 100 vpkpl (Dervisoglu et al., 2009) and therefore within 

the context of this study, we have fixed the jam density at 100 vpkpl. Then we repeated the method 

explained above by sampling from the same population as the one used above (the population with 

23,370 data points). Since Figure 2-6 showed that the parameter estimation errors were less sensitive 
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to sample sizes when the sample size was larger than 100, this time we sampled at only 17 different 

sample size levels (i.e. 5, 10, 15, 20, 25, 30, 50, 100, 150, 200, 300, 400, 500, 600, 700, 800, 900) to 

reduce computational cost. Again, to maintain the randomness in the procedure, we carried out 

repetitions for each sample size; however, to reduce computational cost we carried out 25 repetitions 

rather than 50 repetitions. For each replication, we calibrated Van Aerde’s model and estimated free-

flow speed, speed-at-capacity, and capacity. Also, we calculated the calibration error (𝜀𝑐), and absolute 

relative error (𝜀𝑢𝑓, 𝜀𝑢𝑐, and 𝜀𝑞𝑐). To distinguish these two methods, we refer to the first method in 

which all four parameters are calibrated as “free kj” and the second method, in which the value of kj is 

fixed and only the other three parameters are calibrated as “fixed kj”. 

Figure 2-8 compares the calibration errors from the free kj and fixed kj methods for the cases for 

which all the calibration data reflects uncongested traffic conditions (i.e. group 2).  

 

 

Figure 2-8- Calibration error for two calibration approaches: Freekj and Fixkj  

(calibration data from uncongested traffic regime only) 

As shown in Figure 2-8 the calibration error when the kj is fixed is much lower than when it is free 

and this is true for all sample sizes examined. This confirms our initial hypothesis that calibration errors 
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are reduced when kj is fixed when calibrating Van Aerde’s model to traffic data which does not contain 

observations from the congested regime.  

 

Table 2-6 can be used to investigate the impact of fixing kj. This table shows the difference of the 

calibration error (c) for the two Fixkj and Freekj Van Aerde’s model calibration approaches. The 

rows are the sample sizes and represent the number of observation points someone has in hand. The 

columns are the label of the groups introduced previously in Table 2-3. The pink cells identify the 

conditions in which the Fixkj has smaller calibration error and green cells show the conditions in which 

Freekj method results in smaller error. 

Table 2-6- Comparing the Calibration Error for Freekj and Fixkj approaches  

(pink cells: less error for fixkj, Green cells: less error for freekj) 

Groups: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

S
am

p
le

 S
iz

es
 

5                                                               
10                                                               
15                                                               
20                                                               
25                                                               
30                                                               
50                                                               
100                                                               
150                                                               
200                                                               
300                                                               
400                                                               
500                                                               
600                                                               
700                                                               
800                                                               
900                                                               

  

 

Table 2-6 helps the practitioners to choose between the two methods for calibration of the Van 

Aerde’s model (i.e. fixkj or freekj) based on the number of observations and the distribution of the 

observations points along the density axis. 
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2.5. Model Generation 

2.5.1. Develop models to predict the calibration error for Freekj and Fixkj calibration 

approaches 

Though Table 2-6 can provide useful guidance for practitioners, its use is limited to the defined 

sample sizes and groups. To address this limitation, we develop a regression model to establish a 

relationship between the parameters shown in Table 2-7 (i.e. predictors) and the target variable (i.e. 

the calibration error).  

Table 2-7- Model Input Parameters 

Name Description 
N Sample size 

n1 to n5 Number of samples in bins 1 to 5 

db1 to db5 Binary variable: (0 when there are no observation points in bin i, 1 otherwise) 

  

The input parameters are highly correlated which results in redundancy and collinearity and avoids 

us using some techniques such as neural network to establish the relationship between the predictors 

and the target variables. Therefore, we apply a technique that includes the combination of Principal 

Component Analysis (PCA) and the Relevance Vector Machine (RVM) which is a nonlinear data-

driven based regression technique. Using the PCA technique captures the maximum variability of the 

input variables. It transforms some highly correlated data points or observations to principal 

components which are some variables that are linearly uncorrelated. The number of principal 

components might be less than or equal to the initial variables; however, these newly generated 

variables are uncorrelated (Jolliffe, 2002).   The RVM method was developed by Tipping (2001) as an 

improvement to the well-known Support Vector Machine (SVM) method. The important feature of 

RVM is that over-fitting is less of an issue.  

In the modeling process we performed a cross-validation, so that 75% of the data points are used 

for training and the rest (25% of observations) employed for testing. The model calibration was carried 

out in R (script code is shown in Appendix 1).  
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To illustrate the use of the models, consider Table 2-8 which shows the observed calibration error 

and the calibration error estimated from the Fixkj and Freekj models for five sampling scenarios. 

Table 2-8- Observed and Estimated Calibration Errors of both FixKj and Freekj Approaches for Some 

Sampling Instances 

N n1 n2 n3 n4 n5 db1 db2 db3 db4 db5 
Fixkj error Freekj error 

Obs. Est. Obs. Est. 
25 0 5 0 15 5 0 1 0 1 1 0.1032 0.1028 0.1259 0.1285 

50 10 20 0 0 20 1 1 0 0 1 0.0236 0.0233 0.0244 0.0247 

100 0 20 20 20 40 0 1 1 1 1 0.0568 0.0562 0.0648 0.0700 

500 0 0 200 300 0 0 0 1 1 0 0.4956 0.4747 0.2341 0.2097 

900 180 540 180 0 0 1 1 1 0 0 0.0247 0.0381 0.0274 0.0354 

  

In terms of the agreement between observed and predicted target variable for the testing dataset, 

some performance criteria, including Root Mean Square Error (RMSE), and R2 are employed to 

evaluate the goodness of fit of the RVM model. Table 2-9 shows the values of these parameters for the 

both Freekj and Fixkj models. The results show excellent goodness of fit of the PCA + RVM model. 

Table 2-9- Performance Measures for Developed Models 

Performance measure Freekj Fixkj 

RMSE 0.03 0.03 

R2 0.97 0.96 

 

Figure 2-9 and Figure 2-10 illustrate the observed vs estimated calibration error for the tested data 

points for freekj and fixkj approaches respectively.  
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Figure 2-9- Observed vs. estimated calibration error for testing data (Freekj model) 

 

 

 

Figure 2-10- Observed vs. estimated calibration error for testing data (Fixkj model) 
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2.6. Conclusions 

The distribution of the observations across density have an influence on the accuracy of the 

parameter value estimates; however, the number of observations –when exceeding a minimum of 100 

observed points- does not have a considerable impact on the accuracy of parameter value estimates.  It 

is common in practice that the congested regime is under-represented in the calibration data set. For 

these conditions, the estimation error for the jam density can be particularly large.  For these cases, it 

is often beneficial to fix the jam density to some rational value in order to improve estimation accuracy.  

In this chapter, we have demonstrated the influence that both the sample size and distribution have 

on the overall calibration error and on the parameter value estimation errors.  We also developed 

models to estimate the calibration error as a function of the sample scheme and used these models to 

provide guidance on when to fix the jam density and when to calibrate a value for jam density.  
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Chapter 3  

 

 

Determining Road Surface and Weather Conditions Which Have a Significant 

Impact on Traffic Stream Characteristics1 

  

 

3.1. Introduction and Background 

Microscopic simulation models are commonly used to evaluate the expected performance of 

candidate traffic improvement strategies.  There is increasingly a desire to be able to use these models 

to capture travel time reliability as a component of the performance evaluation.  Previous research has 

shown (FHWA, 2015) that weather conditions (e.g. rain, snow, wind, fog, etc.) and road surface 

conditions (e.g. wet, dry, icy, snow covered, etc.) are responsible for 15% of the non-recurrent 

congestion and therefore it is necessary to be able to reflect these different weather categorizations2 

within the simulation model. However, to do this we need to know which conditions to model, how to 

categorize them, and how these categories impact the traffic stream characteristics3.  And given that 

the computation cost associated with microscopic traffic simulation modeling is relatively high, it is 

desirable to model the fewest categories necessary to still capture the required variations in the traffic 

stream characteristics. 

                                                   

 

1 The contents of this chapter have been incorporated within an article published by Golshan & Hellinga in 

Transportation Research Board 95th Annual Meeting on Jan 12, 2016, available online: 

https://trid.trb.org/view.aspx?id=1394167 . R. Golshan., & B. Hellinga, “Determining Road Surface and Weather 

Conditions Which Have a Significant Impact on Traffic Stream Characteristics”  
2 We use the term “weather categorizations” to refer to a set of categories that includes both road surface 

conditions and weather conditions. 
3 Traffic stream characteristics are free speed, speed at capacity, jam density, and capacity flow rate.  

https://trid.trb.org/view.aspx?id=1394167
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The existing literature indicates that one of the characteristics of previous research efforts to study 

the impact of weather-related factors on traffic stream characteristics have established the weather 

categorizations a priori. Then, given these categorizations, an attempt is made to investigate the 

influence of these weather categories on the traffic stream characteristics of interest.   

In this chapter, we are interested in identifying the set of weather categorizations which best 

describe the different weather regimes that have a statistically significant influence on the traffic stream 

characteristics.  For example, instead of trying to determine the free speed associated with the condition 

of rain during the day and with the condition of rain during the night, we are interested in determining 

if we actually need to distinguish between these two categories.  If there is no statistically significant 

difference between these two categories, we should aggregate them so that we have a model to estimate 

the free speed under rain, regardless of time of day (i.e. day or night).  

3.2. Literature Review 

A number of previous studies have confirmed the generally held perception that inclement weather 

impacts traffic stream operations. 

A recent study by the 2nd Strategic Highway Research Program (SHRP2 L03) quantified the impact 

of weather (along with other factors) on travel time reliability (Cambridge Systematics, 2013). In this 

study, weather was categorized in terms of number of hours in the year with precipitation amounts 

greater or equal to 0.01, 0.05, 0.10, 0.25, and 0.5 inches, number of hours with measurable snow in the 

year, number of hours with frozen precipitation in the year, and number of hours of fog in the year. 

Regression models were developed to estimate different percentiles of the distribution of the travel 

time index (TTI). TTI is defined as the ratio of the actual travel time to the free-flow travel time (60 

mph in the L03 project). For example, the model calibrated for the 80th percentile of the TTI in the 

peak period is: 

 )05013.0011.0139.0(
_80

HrsRainILHLdcth criteTTIpercentile



 

(3-1)  

where, 
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𝑑𝑐𝑐𝑟𝑖𝑡: largest demand-to-capacity ratio for all links in the section 

𝐼𝐿𝐻𝐿: annual lane hours lost because of road incidents within the peak period 

𝑅𝑎𝑖𝑛05𝐻𝑟𝑠: annual hours within peak period during which rainfall is ≥ 0.05 inches. 

In the L03 project, after examining all possible interactions, no weather parameters were found to 

be significant except Rain05Hrs. 

Most studies conducted to examine the impact of weather on traffic operations have quantified the 

impact on one or more of the traffic stream characteristics (i.e. speed, capacity, speed at capacity, or 

jam density). Ibrahim and Hall (1994) and Kyte et al. (2001) studied the impact of precipitation on 

speed-flow relationship and free flow speed respectively. Also, Kyte et al. (2001) and Brilon and 

Ponzlet (1996) showed the impact of diurnality (daylight and darkness) on the speed and capacity.  

Stern et al. (2003) studied the impact of road surface condition (RSC) and weather conditions on 

delay. Data from both directions of 33 road segments in Washington D.C. were used to calibrate 66 

linear regression models which predicted travel time as a function of RSC, precipitation, wind speed, 

and visibility. The results showed that RSC was statistically significant for most of the models, while 

precipitation was significant in many models and the wind speed and visibility were only significant 

for a few of the models.  

Rakha et al. (2007) examined the impact of precipitation type (rain and snow), intensity (cm/h of 

liquid equivalent precipitation accumulation), and visibility (km) on traffic stream characteristics.  

Rainfall and snowfall intensities were divided into 3 categories each and visibility was divided into 4 

categories. They characterized the traffic stream in terms of the four parameters that define Van 

Aerde’s macroscopic speed-flow-density relationship (i.e. free-flow speed uf, speed-at-capacity uc, 

capacity qc, and jam density kj).  They used 5-minute aggregated loop detector and weather data - 

including the combination of the precipitation and the visibility - from three different areas: Seattle, 

WA; Baltimore, MD; and Minneapolis-St. Paul, MN. They calibrated Van Aerde’s model for each of 

the 24 precipitation-visibility combinations (plus the no precipitation - maximum visibility condition 

as the base condition) to find the associated four traffic stream parameters (uf, uc, kj, qc). Considering 

clear weather (no precipitation) as the base condition, the ratio of traffic stream parameters in each 
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category to the base category was computed. The T-test was used to identify whether or not the 

difference between each weather category and the base category is statistically significant.  For each 

city, a regression model was developed for each traffic stream parameter separately for rain and snow. 

The general form of the regression model is:  

ivcvcvciciccWAF ba 6

2

54

2

321, 
 

(3-2)  

where, 

i: precipitation intensity (cm/h) 

v: visibility (km) 

𝑐𝑖: model coefficient 

𝑊𝐴𝐹𝑎,𝑏: weather adjustment factor of traffic parameter a for the city b. 

Rakha et al. found that weather conditions had a statistically significant impact on free speed, speed 

at capacity, and capacity, but did not find a statistically significant impact on jam density.  

One of the characteristics of the study by Rakha et al, and the other previous studies is that the 

weather categorizations are done a priori. No studies were found in the literature that attempt to 

identify the optimal set of categories in terms of their impact on the traffic stream characteristics.  

The next section formulizes this problem and describes the methodology. Then the methodology is 

applied using field data.   

3.3. Problem Formulation and Proposed Methodology 

The problem formulation and proposed methodology is divided into the following three steps: 

1. Create feasible schemes of categorization 

2. Aggregate categories which are not statistically different 

3. Select the preferred scheme 

Each of these steps is described in the following subsections. 
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3.3.1. Categorization Schemes 

Consider a set of environmental factors (F1,…, Fn) such as type of precipitation, wind speed, road 

surface condition, air temperature, etc. Each factor Fi is quantified in terms of mi discrete levels (Li,j; j 

= 1,mi).  Each unique environmental category is specified by the vector C having dimensions of 1 × n. 

The number of possible categories is the product of the number of levels for each factor (Equation 

(3-3)). 

𝑇𝑜𝑡𝑎𝑙 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠 = ∏ 𝑚𝑖

𝑛

𝑖=1

 (3-3)  

We define a categorization scheme as the ordered sequence of the environmental factors in vector 

C.  To illustrate, consider three environmental factors, F1, F2, and F3. The number of levels is m1 = 2; 

m2 = 3; m3 = 4. Thus, there are 2 × 3 ×4 = 24 unique categories.  There are six categorization schemes, 

as follows: 

 

C1 = {F1, F2, F3} 

C2 = {F1, F3, F2} 

C3 = {F2, F1, F3} 

C4 = {F2, F3, F2} 

C5 = {F3, F1, F2} 

C6 = {F3, F2, F1} 

 

(3-4)  

These categorization schemes are illustrated in Figure 3-1. Note that each categorization scheme 

contains the same number of unique categories.  The only differences are in the order in which the 

environmental factors appear. 
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Figure 3-1- Illustration of categorization schemes. 

Following the method adopted by Rakha et al (2007), we parse a set of field data (consisting of 

traffic stream measurements and environmental measurements for the same location and aggregation 

time period) so that the entire set of field data is divided into the associated environmental categories.  

We then calibrate Van Aerde’s macroscopic speed-flow-density relationship to the dataset associated 

with each category.  The calibration procedure is selected using the methodology presented in the 

previous chapter. For different categories, we choose the method of calibration (i.e. Freekj vs Fixkj) 

based on the number of observation points in the category as well as the distribution of those points 

along the density axis.  

3.3.2. Aggregate Categories 

Rakha et al (2007) fit a linear regression to the results obtained from the calibration of Van Aerde’s 

macroscopic model from all the categories.  Thus, if they have 24 categories, as in the example above, 
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they had 24 observations for the linear regression calibration. And though their analysis determined 

whether or not the environmental factors were statistically significant, it does not provide evidence 

about which of the 24 categorizations provide statistically different parameter values.  

In this work, our objective is to determine which categories can be aggregated.  The calibration 

process results in a single estimate of the four parameters defining Van Aerde’s model for each 

category. To compare two categories A and B, we assume that if the value estimated for one or more 

of the parameters associated with A is statistically different from the value estimated for category B, 

then those two categories are different from each other and should not be aggregated. To carry out this 

test, it is necessary to have an estimate of the variance of the estimated parameter values.  

We propose to use the bootstrapping technique to obtain the standard error of the parameter values.  

Bootstrapping is a technique in which a large number of samples, K, are taken from the field data – 

with replacement. Each sample contains the same number of observations as in the original set of field 

data. For each sample, Van Aerde’s model is calibrated -using the technique explained in Chapter 2- 

to obtain an estimate of the values of the four traffic stream parameters. As explained in Chapter 2, 

depending on the distribution of the calibration data and the number of observations in the calibration 

data set, we may use either the Fixkj or Freekj calibration approaches.  When using the Fixkj approach, 

we estimate values for uf, uc, and qc.  When using the Freekj approach, we estimate the values of all 

four parameters (uf, uc, qc, and kj). In the application in this chapter, we find that the Fixkj approach is 

appropriate. The final estimate of each of the remaining three parameters is the mean of the estimated 

parameter values from the K samples and the standard error of the parameter is the standard deviation 

of the K estimated parameter values.  

The next step is to compare the estimated parameters of different weather categories.  Here, we 

follow the approach of using statistical methods. On the basis of the parameter estimates and the 

standard errors, categories can be compared using the analysis of variance (ANOVA) followed by 

Tukey’s test (as post-hoc). This combination of these statistical tests enable us to determine:  

1. Whether or not all categories are similar, and  

2. If they are not all similar, how different each pair of the categories are from each other.  
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If the Tukey’s test shows that all three estimated traffic flow parameters (i.e. uf, uc, and qc) for the 

examined group of categories are not statistically different, then these categories are aggregated and 

the traffic stream parameters are estimated for the newly formed category.  

Note that: 

1. The aggregations can only occur for levels within the last environmental factor in the 

categorization vector C (i.e. factor in the right-most position in vector C) and it is for this 

reason that different categorization schemes must be considered.  

2. After aggregation of the last environmental factor level, new categories may be generated.  

3. These newly generated categories will be checked to see if they can be aggregated with 

other categories at the second last environmental factor.  

4. If no new categories can be generated by aggregating the categories in all vectors Ci, 

remaining categories in each vector can be checked to see if they can be aggregated with 

remaining categories in other vectors.   

This process continues until no more aggregations are warranted. 

3.3.3. Select Preferred Categorization Scheme 

The quality of the categorization scheme is quantified on the basis of the root mean squared error 

(RMSE) from all of the final categories: 
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where,  

rRMSE : root mean square error of scheme r 

u, q, k: speed (kph), flow (vphpl), and density (vpkpl) respectively 

Xobs: observed value of traffic variable X 

Xest: estimated value of traffic variable X (the closest point on Van Aerde’s macroscopic speed-flow-

density relationship) 
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Xmax: maximum observed value of traffic variable X 

mr: number of categories in scheme r 

nj: number of observations in category j 

N: number of observations in all categories 

In this section, to have a consistent base to calculate the RMSE for all categories, we consider a 

constant value for Xmax: 150 kph as 
j

umax , 150 vpkpl as 
j

kmax , and 2500 vph as 
j

qmax . 

Finally, the scheme with the lowest RMSE is selected as the preferred categorization scheme. 

3.4. Application to Field Data 

We applied the proposed methodology to field data of the whole year 2014 obtained from the 

Minneapolis-St. Paul (Twin Cities) in Minnesota, U.S. This area is located in northern U.S. so more 

extreme weather conditions including snowfall, icy road, etc. are experienced. Moreover, traffic data, 

road surface data, and weather data were available publicly in this area. Traffic data was obtained 

through a database which included the traffic data retrieved from induction loop detector throughout 

the Twin Cities. This database was accessible to the public via Minnesota Department of 

Transportation (MnDOT) website (Minnesota department of transportation (MnDOT).). The RSC and 

weather data were obtained through the Road Weather Information System (RWIS) database accessible 

from the same website. Traffic data were available at a temporal resolution of one observation every 

30 seconds while RSC and weather data were available at a resolution of 5 minutes.  

The study section is the westbound direction of I-694 between Rice Street and Victoria N Street 

(Figure 3-2). This section is a basic freeway section (i.e. not impacted by weaving or on or off ramps) 

consisting of 2 lanes and it experiences recurrent congestion during both the morning and afternoon 

peak hour. The posted speed is 60 mph (96 kph). Traffic data were aggregated across lanes at 5-minute 

resolution.  Figure 3-3 shows the station five-minute-aggregated speed values as a function of time of 

day for two randomly selected weekdays in 2014. The figure shows that the study section experiences 

a wide range of traffic conditions (i.e. both congested and uncongested traffic states), which is 

advantageous for calibrating Van Aerde’s macroscopic speed-flow-density model. 
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Figure 3-2-Study area (source: HERE Map, Microsoft Corporation, 2016) 

 

Figure 3-3- Five-minute-aggregated station speed data for two randomly selected weekdays. 
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Examination of the field traffic data revealed anomalies under very low flow conditions and 

therefore data from 11 pm to 5 am were excluded from the analysis. After synchronization of traffic 

and weather data 61,012 observation points (each associated with a 5-minute interval between 5 am 

and 11 pm) were used for the analysis.  

As a starting point to illustrate the methodology three environmental factors were considered in the 

analysis.   

1. Road surface condition (3 levels: dry, wet, ice); 

2. Type of precipitation (4 levels: no precipitation, rain, frozen, snow); and  

3. Diurnality (2 levels: day (sunrise to sunset), night (after sunset and before sunrise; excluding 

11 pm to 5 am)).  

The proposed method can be applied with a larger number of factors and larger number of levels 

for each factor.  

Road surface conditions are defined as below:  

Wet = of moisture on the pavement sensor with a surface temperature above freezing (0°C).   

Ice = ice and water mixture at or below freezing (0°C) with insufficient chemical to keep the 

mixture from freezing.  
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We note that road surface conditions are impacted by numerous factors including winter road 

maintenance activities, weather conditions, traffic volumes, local topography, etc.  However, our 

analysis does not make assumptions about the relative frequency with which categorizations will be 

observed in the future and therefore changes to, for example, winter road maintenance standards or 

practices, are not detrimental to the application of our model.   

The number of categories resulting from the interaction of these factors is 24 (3×4×2). As per the 

proposed methodology described in the previous section, the data set was parsed into 24 sub-sets – one 

for each categorization.  The number of observations in each of the 24 categories is shown in Table 

3-1.  

We can observe that for some of the categories there are no observations (e.g. Rain, Ice, Day) and 

therefore for these categories it is not possible to calibrate Van Aerde’s model.  Also, it is not possible 

to calibrate Van Aerde’s model when there are less than 5 observation points available since four 

parameters are being estimated. Therefore, a minimum of 5 observations are required to calibrate Van 

Aerde’s model.  This results in 17 categories for which Van Aerde’s model can be calibrated. It should 

be noted that some categories happen rarely and have a very low frequency. For instance, the 

combination of a dry surface condition and the raining weather only happens when a very light rain 

starts during the time interval but the film of the water on the surface is not enough to be detected by 

the road surface sensors. 

Table 3-1- Possible Categories 

ID Precipitation Surface Day/Night 
No. of 

Points 
ID Precipitation Surface Day/Night 

No. of 

Points 

1 NoPrecip Dry Day 34531 13 Snow Dry Day 95 

2 NoPrecip Dry Night 9811 14 Snow Dry Night 58 

3 NoPrecip Wet Day 7157 15 Snow Wet Day 558 

4 NoPrecip Wet Night 5210 16 Snow Wet Night 291 

5 NoPrecip Ice Day 651 17 Snow Ice Day 17 

6 NoPrecip Ice Night 393 18 Snow Ice Night 0 

7 Rain Dry Day 161 19 Frozen Dry Day 2 

8 Rain Dry Night 35 20 Frozen Dry Night 0 

9 Rain Wet Day 1007 21 Frozen Wet Day 669 

10 Rain Wet Night 142 22 Frozen Wet Night 220 

11 Rain Ice Day 0 23 Frozen Ice Day 4 

12 Rain Ice Night 0 24 Frozen Ice Night 0 
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As per the findings from Chapter 2, we investigated the distribution of the points over the five 

density bins. Then, we used the models we developed in the previous chapter to estimate the calibration 

error of each category for the freekj and the fixkj approaches. The one with the lower error was selected 

as the preferred calibration approach for that category. The distribution of the observation points and 

the estimated error for both calibration approaches are listed in Table 3-2.  

The first column is the ID of the category which is consistent with Table 3-1. Column 2 is the 

number of observation points in each category. Columns 3 to 7 contain the number of observation 

points in each of the five density bins. Columns 8 to 12 are the corresponding values of the binary 

variables db1 to db5 (these were defined in Chapter 2). Columns 13 and 14 are estimated calibration 

errors obtained from the PCA+RVM models developed in Chapter 2 for the Freekj and Fixedkj models 

respectively. Column 15 is the difference of the calibration error of Freekj and Fixkj. Positive value in 

any rows of column 15 mean that the Freekj approach results in the higher calibration error compared 

to the Fixkj approach for that category. 
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Table 3-2-Selected Calibration Approach 

ID N n1 n2 n3 n4 n5 db1 db2 db3 db4 db5 
Freekj 

Error 

Fixkj 

Error 

Error 

Difference 

Selected  

Approach 

1 34531 28313 6076 141 1 0 1 1 1 1 0 0.0000 0.0000 0.0000 Fixkj 

2 9811 9581 221 9 0 0 1 1 1 0 0 0.0000 0.0000 0.0000 Fixkj 

3 7157 5573 1564 20 0 0 1 1 1 0 0 0.0000 0.0000 0.0000 Fixkj 

4 5210 4850 354 6 0 0 1 1 1 0 0 0.0000 0.0000 0.0000 Fixkj 

5 651 550 101 0 0 0 1 1 0 0 0 0.0803 0.0088 0.0715 Fixkj 

6 393 356 37 0 0 0 1 1 0 0 0 0.0879 0.0049 0.0830 Fixkj 

7 161 147 12 2 0 0 1 1 1 0 0 0.0336 0.0120 0.0215 Fixkj 

8 35 33 1 1 0 0 1 1 1 0 0 0.0480 0.0199 0.0280 Fixkj 

9 1007 740 267 0 0 0 1 1 0 0 0 0.0250 0.0233 0.0018 Fixkj 

10 142 133 9 0 0 0 1 1 0 0 0 0.1307 0.0506 0.0801 Fixkj 

13 95 78 17 0 0 0 1 1 0 0 0 0.1187 0.0444 0.0743 Fixkj 

14 58 58 0 0 0 0 1 0 0 0 0 0.1297 0.0368 0.0930 Fixkj 

15 558 375 182 1 0 0 1 1 1 0 0 0.0251 0.0140 0.0111 Fixkj 

16 291 251 40 0 0 0 1 1 0 0 0 0.1196 0.0353 0.0842 Fixkj 

17 17 9 7 1 0 0 1 1 1 0 0 0.0622 0.0294 0.0328 Fixkj 

21 669 528 140 1 0 0 1 1 1 0 0 0.0202 0.0197 0.0005 Fixkj 

22 220 219 1 0 0 0 1 1 0 0 0 0.1418 0.0546 0.0872 Fixkj 

 

As shown in Table 3-2, the difference of the calibration error is zero for the categories 1 to 4; 

therefore, we arbitrarily elected to use the Fixkj model for calibrating Van Aerde’s model. For all other 

categories, the Fixkj model is preferred as it is estimated to provide lower calibration errors. 

Then we implemented the bootstrapping technique to obtain the standard error of each estimated 

parameter.  The number of replications in the bootstrapping procedure was set at 100, meaning that 

Van Aerde’s model was calibrated to find values of uf, uc, and qc 100 times for each of the 17 categories. 

Six categorization schemes were possible as shown in Table 3-3. 
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Table 3-3- Possible Categorization Schemes 

Scheme 1  Scheme 2 

Precipitation Road Surface Diurnality  Road Surface Precipitation Diurnality 

NoPrecip Dry Day  Dry Frozen Day 
NoPrecip Dry Night  Dry Frozen Night 
NoPrecip Wet Day  Dry NoPrecip Day 
NoPrecip Wet Night  Dry NoPrecip Night 
NoPrecip Ice Day  Dry Rain Day 
NoPrecip Ice Night  Dry Rain Night 
Rain Dry Day  Dry Snow Day 
Rain Dry Night  Dry Snow Night 
Rain Wet Day  Ice Frozen Day 
Rain Wet Night  Ice Frozen Night 
Rain Ice Day  Ice NoPrecip Day 

Rain Ice Night  Ice NoPrecip Night 
Snow Dry Day  Ice Rain Day 
Snow Dry Night  Ice Rain Night 
Snow Wet Day  Ice Snow Day 
Snow Wet Night  Ice Snow Night 
Snow Ice Day  Wet Frozen Day 
Snow Ice Night  Wet Frozen Night 
Frozen Dry Day  Wet NoPrecip Day 
Frozen Dry Night  Wet NoPrecip Night 
Frozen Wet Day  Wet Rain Day 
Frozen Wet Night  Wet Rain Night 
Frozen Ice Day  Wet Snow Day 
Frozen Ice Night  Wet Snow Night 

Scheme 3  Scheme 4 

Road Surface Diurnality Precipitation  Precipitation Diurnality Road Surface 

Dry Day NoPrecip  Day Dry Frozen 
Dry Day Rain  Day Dry NoPrecip 
Dry Day Snow  Day Dry Rain 
Dry Day Frozen  Day Dry Snow 
Dry Night NoPrecip  Day Ice Frozen 
Dry Night Rain  Day Ice NoPrecip 
Dry Night Snow  Day Ice Rain 
Dry Night Frozen  Day Ice Snow 
Ice Day NoPrecip  Day Wet Frozen 
Ice Day Rain  Day Wet NoPrecip 
Ice Day Snow  Day Wet Rain 
Ice Day Frozen  Day Wet Snow 
Ice Night NoPrecip  Night Dry Frozen 
Ice Night Rain  Night Dry NoPrecip 
Ice Night Snow  Night Dry Rain 
Ice Night Frozen  Night Dry Snow 
Wet Day NoPrecip  Night Ice Frozen 
Wet Day Rain  Night Ice NoPrecip 
Wet Day Snow  Night Ice Rain 
Wet Day Frozen  Night Ice Snow 
Wet Night NoPrecip  Night Wet Frozen 
Wet Night Rain  Night Wet NoPrecip 
Wet Night Snow  Night Wet Rain 
Wet Night Frozen  Night Wet Snow 
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Scheme 5  Scheme 6 

Precipitation Diurnality Road Surface  Diurnality Precipitation Road Surface 

NoPrecip Day Dry  Day NoPrecip Dry 
NoPrecip Day Wet  Day NoPrecip Wet 
NoPrecip Day Ice  Day NoPrecip Ice 
NoPrecip Night Dry  Day Rain Dry 
NoPrecip Night Wet  Day Rain Wet 
NoPrecip Night Ice  Day Rain Ice 
Rain Day Dry  Day Snow Dry 
Rain Day Wet  Day Snow Wet 
Rain Day Ice  Day Snow Ice 
Rain Night Dry  Day Frozen Dry 
Rain Night Wet  Day Frozen Wet 
Rain Night Ice  Day Frozen Ice 
Snow Day Dry  Night NoPrecip Dry 
Snow Day Wet  Night NoPrecip Wet 

Snow Day Ice  Night NoPrecip Ice 
Snow Night Dry  Night Rain Dry 
Snow Night Wet  Night Rain Wet 
Snow Night Ice  Night Rain Ice 
Frozen Day Dry  Night Snow Dry 
Frozen Day Wet  Night Snow Wet 
Frozen Day Ice  Night Snow Ice 
Frozen Night Dry  Night Frozen Dry 
Frozen Night Wet  Night Frozen Wet 
Frozen Night Ice  Night Frozen Ice 

 

The first iteration of the category aggregation process is illustrated in Figure 3-4 for Scheme 4. Grey 

cells are associated with the categories that were excluded from the analysis because of insufficient 

observations. Traffic flow parameter values resulting from the calibration of Van Aerde’s model are 

shown for each category. ANOVA has been conducted separately for each parameter (i.e. uf, uc and qc) 

in each category. The null hypothesis is that all categories have the same population (are similar) while 

the alternative analysis is that at least one category is different. The significance level is set to 5% and 

any P-value smaller than 0.05 results in rejecting the null hypothesis and confirming that at least one 

category is significantly different from others.  
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There are two possible outcomes from the ANOVA analysis: 

1. If the P-values for all four traffic flow parameters are larger than 0.05, it can be concluded 

that there is no difference between the traffic parameters from each category and therefore 

there is no need to consider them as separate categories. Consequently, these categories 

can be aggregated into a single category.  

2. If the P-value for at least one of the four traffic flow parameters is less than or equal 0.05, 

it can be concluded that there is a difference between the traffic parameters from the 

examined categories and therefore there is a need to consider them as separate categories. 

When there are only two categories being compared, then no addition analysis is required.  

However, when three or more categories are examined, then additional analysis is needed 

to determine if the parameter values are different across all the categories or only a subset 

of the categories. We use Tukey’s test to carry out this evaluation. 

To illustrate, consider the ANOVA results for the impact of weather (i.e. precipitation) during the 

day when the road surface is dry (i.e. comparison of the Day/Dry/NoPrecip, Day/Dry/Rain, and 

Day/Dry/Snow categories at top of Figure 3-4). The P-values indicate there is insufficient evidence to 

conclude that the weather impacts speed-at-capacity (P-value is greater than 0.05).  However, there is 

evidence to conclude that weather impacts free flow speed and capacity (P-value ≤ 0.05).  
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In this case there are more than two categories so Tukey’s test is conducted to provide pairwise 

category comparisons between the three categories. The results of the three pairwise comparisons 

indicate that the value of the free flow speed is not statistically different between the Day/Dry/NoPrecip 

and the Day/Dry/Rain conditions and is statistically different between Day/Dry/NoPrecip and 

Day/Dry/Snow and between Day/Dry/Rain and Day/Dry/Snow. This suggests that we are concerned 

only with free speed then the Day/Dry/NoPrecip and Day/Dry/Rain categories can be combined.  

However, we are also interested in the other traffic stream parameters, namely speed at capacity and 

capacity.  Examining the results from these parameters we observe that (i) the speed at capacity is 

statistically different for each of three categories and (ii) the capacity flow is different between 

Dry/Day/NoPrecip and Dry/Day/Snow and between Dry/Day/Rain and Dry/Day/Snow condition; 

suggesting that the Day/Dry/NoPrecip and Day/Dry/Rain categories should not be combined.  

This process is continued for each of the initial categories.  As indicated in Figure 3-4 by the solid 

blue arrows, the analysis suggests that some of the initial categories should be combined.  
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Figure 3-4- Category aggregation for scheme 4 - first iteration 
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The next step is to examine if the categories newly formed in iteration 1 are significantly different 

from their neighbors (if any) in the same group. For instance, all three initial categories in Night/Dry/* 

group were aggregated and reduced to only one larger category; therefore, no category remained at 

that group other than the newly formed category of Night/Dry/(NoPrecip+Rain+Snow). But, in the 

group of Night/Wet/*, the four initial categories were decreased to three categories. It is necessary to 

examine if the remaining three categories in this group are significantly different. Table 3-4 illustrates 

the P-values obtained from performing ANOVA on these three categories. The results show that the 

newly formed category Night/Wet/(NoPrecip+Rain) is significantly different from its neighboring 

categories Night/Wet/Snow and Night/Wet/Frozen and therefore they should not be aggregated. 

Table 3-4- Instance of Examining the Differences between Newly Formed Categories (Iteration 1 for 

Scheme 4) 

ID Compared Categories uf (kph) uc(kph) qc(vph) Pairwise 

Tukey’s Test 

P-uf P-uc P-qc 

C26 Night Wet NoPrecip+Rain 109.6 97.4 1769 C26/C16 0.00 0.00 0.00 

C16 Night Wet Snow 86.5 62.2 1206 C26/C22 0.17 0.06 0.00 

C22 Night Wet Frozen 104.4 82.4 785 - - - - 

 ANOVA P-value 0.00 0.00 0.00     

  

This process is applied to other newly formed categories to complete iteration 1 for Scheme 4. As 

shown at the right hand side of  

Figure 3-4, iteration 1 has resulted in a reduction in the number of categories from 17 to 13 for 

Scheme 4. Iterations are continued until no more changes to the categorizations are warranted. The 

same method was applied to the other categorization schemes. The final categories for schemes 1 to 6 

are shown in Table 3-5.  
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Table 3-5- Final categories in each categorization scheme 

Scheme 1 & 2       

 Road Surface Dry Wet Ice 

 Diurnality Day Night Day Night Day Night 

P
re

ci
p

it
at

io
n
 

NoPrecip X X X X X X 

Rain X X     

Snow X X X X   

Frozen     X X     

Scheme 3 & 4       

 Road Surface Dry Wet Ice 

 Diurnality Day Night Day Night Day Night 
P

re
ci

p
it

at
io

n
 

NoPrecip X 

X 
X X 

X X 

Rain X     

Snow X X X X   

Frozen     X X     

Scheme 5 & 6       

 Road Surface Day Night 

 Diurnality Dry Wet Ice Dry Wet Ice 

P
re

ci
p

it
at

io
n
 

NoPrecip X X X X X X 

Rain X X   X   

Snow X X X X X   

Frozen   X     X   

 

As shown in Table 3-5 the schemes with the same highest-level factor (i.e. Fm in the vector of C= 

{Fm, Fn, Fk}), have the same set of final categories (i.e. schemes 1 and 2, 3 and 4, 5 and 6).  The final 

categories as well as estimated traffic parameters for all schemes are provided in Table 3-6.  
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Table 3-6- Traffic Parameters of Final Categories in All Schemes 

 
Diurnality Road Surface Precipitation 

uf 

(kph) 

uc 

(kph) 

kj 

(vphpl) 

qc 

(vph) 
S

ch
em

es
 1

 &
 2

 

Day Dry No Precip 115.7 101.1 100 1847 

Night Dry No Precip 113.1 97.3 100 1784 

(Day+Night) Dry Rain 112.8 102.6 100 1687 

(Day+Night) Dry Snow 107.5 93.5 100 1743 

Day Ice No Precip 118.0 74.1 100 1674 

Night Ice No Precip 107.6 96.1 100 1737 

Day Ice Snow 111.6 102.3 100 1338 

Day Wet Frozen 103.8 97.5 100 1689 

Night Wet Frozen 104.4 82.4 100 785 

Day Wet No Precip 109.3 96.9 100 1732 

Night Wet No Precip 109.7 95.4 100 1775 

(Day+Night) Wet Rain 111.1 90.7 100 1658 

Day Wet Snow 94.5 89.9 100 1303 

Night Wet Snow 86.5 62.2 100 1206 

S
ch

em
es

 3
 &

 4
 

Day Dry No Precip 115.7 101.1 100 1847 

Day Dry Rain 112.3 102.2 100 1688 

Day Dry Snow 107.6 97.6 100 1759 

Day Wet (NoPrecip+Rain) 111.6 98.7 100 1730 

Day Wet Snow 94.5 89.9 100 1303 

Day Wet Frozen 103.8 97.5 100 1689 

Day Ice NoPrecip 118.0 74.1 100 1674 

Day Ice Snow 111.6 102.3 100 1338 

Night Dry All 112.9 97.9 100 1789 

Night Wet (NoPrecip+Rain) 109.6 97.4 100 1769 

Night Wet Snow 86.5 62.2 100 1206 

Night Wet Frozen 104.4 82.4 100 785 

Night Ice NoPrecip 107.6 96.1 100 1737 

S
ch

em
es

 5
 &

 6
 

Day Dry No Precip 115.7 101.1 100 1847 

Day Wet No Precip 109.3 96.9 100 1732 

Day Ice No Precip 118.0 74.1 100 1674 

Day Dry Rain 112.3 102.2 100 1688 

Day Wet Rain 110.2 92.0 100 1668 

Day Dry Snow 107.6 97.6 100 1759 

Day Wet Snow 94.5 89.9 100 1303 

Day Ice Snow 111.6 102.3 100 1338 

Day Wet Frozen 103.8 97.5 100 1689 

Night Dry No Precip 113.1 97.3 100 1784 

Night Wet No Precip 109.7 95.4 100 1775 

Night Ice No Precip 107.6 96.1 100 1737 

Night (Dry+Wet) Rain 110.2 94.8 100 1658 

Night Dry Snow 111.2 61.3 100 2198 

Night Wet Snow 86.5 62.2 100 1206 

Night Wet Frozen 104.4 82.4 100 785 

 

The RMSE values were computed for all schemes (Table 3-7) and it is observed that Schemes 5 

and 6 have the lowest RMSE values and therefore are preferred over the other categorization schemes. 
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Table 3-7- Specifications and RMSE of the Categorization Schemes 

Schemes Factor Order Number of final categories RMSE 

Scheme 1 Precipitation---->Road Surface---> Diurnality 14 0.0464 

Scheme 2 Road Surface--->Precipitation---->Diurnality 14 0.0464 

Scheme 3 Road Surface--->Diurnality---> Precipitation 13 0.0463 

Scheme 4 Diurnality--->Road Surface---> Precipitation 13 0.0463 

Scheme 5 Precipitation--->Diurnality---> Road Surface 16 0.0456 

Scheme 6 Diurnality--->Precipitation---> Road Surface 16 0.0456 

 

3.5. Conclusions 

This chapter has proposed a method to objectively determine the optimal weather and road surface 

condition categorizations in terms of their impact on traffic stream characteristics.  The method was 

illustrated through the application to a set of traffic, weather, and road surface condition data from 

Minnesota. The results demonstrate that: 

1. The proposed method can be practically applied using field data to determine the optimal 

categorization of weather, road surface, and environmental conditions and the associated traffic 

stream characteristics.     

2. It is not necessary to represent all possible combinations of the weather, road surface condition, 

or environmental factors in the categorization because some of these combinations are 

associated with traffic stream characteristics that are not statistically different from the 

characteristics associated with one or more other categories.  

3. The aggregation of categories is a function of the order in which the weather, road surface 

condition, and environmental factors are considered within the categorization scheme.  

Consequently, it is necessary to consider all possible schemes and to have an objective means 

of selecting the optimal scheme.  

4. In the example application, the number of categories is reduced from 17 to 16 as a result of 

aggregation of categories which are not statistically different.  
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Chapter 4  

 

 

Identifying Parameters to Model Traffic During Inclement Weather using 

Microsimulation4 

 

 

 

4.1. Introduction 

Traffic microsimulation models are widely used to evaluate the impact of transportation 

improvement alternatives. Recently, there is increased interest in evaluating the impact that different 

improvement alternatives have on travel time reliability. Travel time reliability considers the day-to-

day variations of travel times that result from variations in demand and variations in capacity.  The 

inclusion of demand variation in traffic microsimulation models is straightforward because demand is 

a direct input parameter to the model. However, variations in capacity result from a variety of sources 

including incidents, construction, and weather and these are typically not captured directly as inputs to 

the model.  

The focus of this chapter is on developing a method by which microsimulation model uses can 

determine appropriate model input parameter values that reflect the influence of inclement weather on 

traffic stream characteristics. 

                                                   

 

4 The contents of this chapter have been incorporated within a paper that has been submitted for publication.  R. 

Golshan; B. Hellinga and A. Zarinbal, “Modeling Weather Conditions Using Microsimulation” Submitted to the 

Journal of Transportation Research Record.  Submission date Aug. 1, 2016. 
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4.2. Literature Review 

The existing body of literature can be divided into two categories as follows:  

(1) The first category consists of studies that have examined the influence of weather conditions 

on one or more traffic stream characteristics. Edward (1999) studied the impact of three 

weather categories (i.e. dry, rainy, and foggy) on traffic flow characteristics such as mean 

speed. Caro et al. (2007) and Boer et al. (2007) studied the impact that fog has on vehicle time 

headways. Broughton et al. (2007) studied the impact of three visibility levels on car-following 

characteristics using the car-following model developed by Van Winsum (1999).  Rakha et al. 

(2007) used weather data and loop detector data to quantify the impact of precipitation type 

and intensity and visibility on traffic stream characteristics. They also developed “weather 

adjustment factors” which could be used to estimate traffic stream characteristics under adverse 

weather conditions as a function of the type and intensity of precipitation and visibility level. 

(2) The second category consists of studies that have examined methods for selecting 

microsimulation input parameter values that correspond to specific weather conditions. Rakha 

et al. (2008) derived analytically the relationship between two parameters of the VISSIM 

Wiedemann 99 car-following model (CC0 and CC1) and traffic flow parameters. Rakha et al. 

(2009) incorporated weather adjustment factors into microscopic traffic simulation models 

including VISSIM. For example, using field data they determined the maximum deceleration 

as a function of rainfall intensity and then suggested that this could be used as a means of 

specifying the value for the VISSIM input parameter “maximum deceleration”.  They also 

proposed weather adjustment factors for several other model input parameters including safety 

distance, visibility distance, front gap, and rear gap. 

There are two main challenges associated with modelling the impacts of weather: 

The first is that the same adverse weather condition can have very different impacts depending on 

the geographic location.  For example, the impact of a snow storm event on traffic stream 

characteristics in a location for which snow storms are common will be very different from the same 

weather event in a location that rarely experiences snow.  As a result, we are left with a choice of 

defining parameters which capture the average impact across a range of geographical areas or defining 
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a set of model input parameter for each geographical area separately.  Rakha et al (2007) developed 

weather adjustment factors using traffic and weather data from three sites in USA. Thus their method 

reflects some average of the impact across these three sites as well as each individual geographic area. 

However, it is not clear that this will adequately capture the impact of a given weather condition at 

some other location.  

The second challenge relates to which microsimulation input parameters should be adjusted for 

adverse weather. Most of the commonly used microsimulation models have a very large number of 

input parameter values and it is not clear which ones are important for capturing the impacts of adverse 

weather.  

In this chapter we propose an approach that addresses both of the above two challenges. More 

specifically, we propose a method which (1) can be used to determine the weather impacts for a given 

local geographical area; and (2) systematically identifies the set of microsimulation model input 

parameters (in this chapter we have used the VISSIM model) that are most important for capturing 

these weather impacts.  

Users specify the desired macroscopic traffic stream parameters associated with the weather 

category of interest and the proposed model provides recommended VISSIM model input parameter 

values.  

4.3. Problem Formulation  

Consider the road environmental categories w1,…, wn. Each environmental category is defined in 

terms of a set of characteristics which can include precipitation (type and intensity), road surface 

condition, wind speed and direction, visibility, etc. If the environmental category is defined on the 

basis of only weather characteristics, then this is a weather category.  For simplicity, throughout the 

remainder of this chapter we use the term environmental category and weather category 

interchangeably.  

We are interested in simulating the traffic flow under a given weather category using traffic 

microsimulation models. For that, we are looking for a specific set of model input parameters such that 
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when we use those input parameters, the simulation produces traffic stream characteristics which are 

consistent with those that are observed in the field under those weather conditions. 

As described in previous chapters, the characteristics of the traffic stream can be defined in terms 

of four macroscopic parameters, namely free-flow speed (uf), speed-at-capacity (uc), jam density (kj) 

and capacity (qc).  We define 𝑋̂ as the set of observed (or desired) traffic flow parameters) and 𝑋̃ as the 

set of simulated traffic flow parameters.  

The observed (or desired) traffic flow parameters are influenced by the weather category and 

therefore 𝑋̂𝑖 = 𝑓(𝑤𝑖). 

The traffic flow parameters associated with the simulated traffic stream are impacted by the model 

input parameter values and therefore 𝑋̃𝑖 = 𝑓(𝑝𝑖) where 𝑝𝑖 is the set of model input parameters of the 

traffic microsimulation model which corresponds to the weather category 𝑤𝑖. 

In this chapter we propose a method to map 𝑤𝑖 to the microsimulation model input parameters and 

generate 𝑝𝑖 to satisfy 𝑋̂ = 𝑋̃𝑖. 

4.4. Methodology 

The development of the proposed model consists of the following four steps: 

1- Identify the microsimulation model input parameters which have the greatest impact on the 

output of the traffic microsimulation model. 

2- Generate a large sample from the input parameter distributions. 

3- Find the corresponding traffic flow parameters for each sample of input parameters. 

4- Develop a relationship between traffic flow parameters and input parameters. 

We note that in this chapter we elected to use the VISSIM microsimulation software as the 

simulation tool; however, the proposed method is applicable for all other traffic microsimulation 

models.  

4.4.1. Selecting Input Parameters 

Each traffic microsimulation model typically has a large number of input parameters. To know 

which parameters should be considered in the analysis, we follow the following steps: 
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1- Make a short list of input parameters 

2- Perform sensitivity analysis 

4.4.1.1. Shortlisted Parameters 

Many previous studies have examined the calibration and validation of traffic microsimulation 

models. Several of these studies have examined the relative importance of the model input parameters.  

In creating a shortlist of candidate input parameters, we make use of the findings from these previous 

studies to determine good candidates to be placed in the list of viable input parameters. Also, common 

sense and applicability are other considerations when choosing candidate parameters. For instance, if 

the study network is part of a freeway, then the parameters related to riding a bicycle would not be part 

of the shortlisted parameters.  

There are more than 190 parameters in the VISSIM software (Ge and Menendez, 2012), many of 

which are related to driver behavior. The input parameters and their range were investigated in previous 

research (Gomes et al., 2004; B. Park and Qi, 2006; Lownes and Machemehl, 2006; Ge and Menendez, 

2012). The parameters listed in Table 4-1 are those which were identified most frequently in these 

previous studies as having an important influence on the traffic stream behavior.  
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Table 4-1-Important VISSIM Input Parameters Specified in Previous Research 

Parameter  

code 
Parameter Name Description 

p1 MaxDecelOwn Maximum deceleration (own) 
p2 MaxDecelTrail Maximum deceleration (trailing vehicle) 
p3 AccDecelOwn Accepted deceleration (own) 
p4 AccDecelTrail Accepted deceleration (trailing vehicle) 
p5 DecelRedDistOwn Deceleration reduction distance (own) 
p6 DecelRedDistTrail Deceleration reduction distance (trailing vehicle) 
p7 CoopDecel Maximum cooperative deceleration 
p8 SafDistFactLnChg Safety distance reduction factor 
p9 LookAheadDistMax Look ahead distance (maximum) 
p10 W99cc0 Standstill distance 
p11 W99cc1 Headway time 
p12 W99cc2 'Following' variation  
p13 W99cc3 Threshold for entering 'Following' 
p14 W99cc4 Negative 'Following' threshold 
p15 W99cc5 Positive 'Following' threshold 
p16 W99cc6 Speed dependency of oscillation 
p17 W99cc7 Oscillation acceleration 
p18 W99cc8 Standstill acceleration 
p19 W99cc9 Acceleration at 80 km/h 
p20 LnChgDist Lane change distance 
p21 EmergStopDist Emergency stop distance 

4.4.1.2. Sensitivity Analysis 

Having established an initial set of 21 candidate input parameters, a sensitivity analysis was 

conducted to determine the relative importance of these parameters. We used the Elementary Effect 

technique with the Trajectory Sampling approach developed by Morris (1991) and implemented by Ge 

and Menendez (2012) to quantify the sensitivity of the model output to the input parameters. Equation 

(4-1) computes the Elementary Effect for each parameter: 

 𝐸𝐸𝑖 =
𝑌(𝑋1, … , 𝑋𝑖−1, 𝑋𝑖 + ∆, 𝑋𝑖+1, … , 𝑋𝑘) − 𝑌(𝑋1, … , 𝑋𝑖−1, 𝑋𝑖, 𝑋𝑖+1, … , 𝑋𝑘)

∆
 (4-1)  

where, 

EEi: “Elementary Effect” of parameter i, 

Xi: input parameter i, 
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Y(X): the model output 

Δ: the amount of change in input parameters 

The magnitude and acceptable range for the input parameters are usually very different. For 

instance, one parameter may change between 0.1 and 0.5 while the other may change from 50 to 100. 

Consequently, rather than using the same value of Δ for all parameters, we define Δ for each parameter 

as: 

 ∆𝑖= 𝑑 ∙ 𝑟𝑖 (4-2)  

where,  

∆𝑖: the change step value of parameter i  

d: constant multiplier for all parameters 

𝑟𝑖: range of parameter i  

Consequently, the elementary effect is calculated as: 

 𝐸𝐸𝑖 =
𝑌(𝑋1, … , 𝑋𝑖−1, 𝑋𝑖 + ∆𝑖, 𝑋𝑖+1, … , 𝑋𝑘) − 𝑌(𝑋1, … , 𝑋𝑖−1, 𝑋𝑖 , 𝑋𝑖+1, … , 𝑋𝑘)

∆𝑖

 
(4-3) 

 

 

The use of Trajectory Sampling lets us evaluate the elementary effect of each input parameter n 

times where n is the number of trajectories. Each trajectory consists of 𝑝 + 1 nodes (p is the number 

of parameters), and the model output (i.e. Y(X)) is calculated at each node. Every node of Pi consists 

of a set of input parameters X1,…,Xk, and the value of only one parameter changes by Δi from Pi-1 to Pi 

and only “one” other parameter changes by Δi+1 from node Pi to Pi+1. Therefore, the EE of each 

parameter is calculated according to Equation (4-4): 
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 𝐸𝐸1 =
𝑌(𝑋1

0 + ∆1, 𝑋2
0) − 𝑌(𝑋1

0, 𝑋2
0)

∆1

 

(4-4)    

 𝐸𝐸2 =
𝑌(𝑋1

0 + ∆1, 𝑋2
0 + ∆2) − 𝑌(𝑋1

0 + ∆1, 𝑋2
0)

∆2

 

 

Figure 4-1 illustrates a sampling trajectory for a two-parameter model (n=1, p=2). In Figure 4-1, 

the two input parameters are X1 and X2, and the nodes are P0, P1, and P2 (the trajectory is P0-P1-P2). 

 

Figure 4-1- One trajectory for a two-parameter model  

In most cases, several trajectories are used to enable several evaluations of the Elementary Effect of 

each parameter. The literature advises that the number of trajectories be between 10 and 50 

(Campolongo et al., 2007).  When there is more than one trajectory, it is suggested that the trajectories 

be located at the maximum Euclidian distance from each other (Ge and Menendez, 2012). Therefore, 

choosing the starting point of the trajectory (P0) is important. We suggest the use of Latin Hypercube 

Sampling (LHS) to choose the trajectory starting points in order to maintain the furthest distance 

between the starting points (P0).  

The procedure to choose the microsimulation input parameters is illustrated in Figure 4-2. 
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The model outputs considered here are free-flow speed (uf), speed-at-capacity (uc) and capacity (qc). 

The jam density (kj) was considered constraint. For each node Pi in each trajectory, these model outputs 

are estimated, and eventually, the average EE of each parameter is calculated for each model output.  

To estimate the model outputs, we calibrate Van Aerde’s single regime macroscopic speed-flow-

density relationship (Van Aerde and Rakha, 1995) to the simulation output. We used the calibration 

method described by Rakha and Arefeh (2010) and discussed in previous chapters of this thesis. 

We set the constant multiplier for all parameters (i.e. d) to be 0.1. Therefore, for input parameters 

X1,…,X21, the parameter change steps Δ1, …, Δ21 were computed by multiplying each parameter range 

(ri) by the constant multiplier d. We decided to have 50 sampling trajectories (n = 50) and used Latin 

Hypercube Sampling technique to generate the starting points (i.e. 𝑃𝑖
0) for each of the n trajectories. 

Since we had 21 shortlisted parameters (p = 21) listed in Table 4-1, we had 50 × (21 + 1) = 1100 nodes. 

Each node has a set of model input parameters. 

Number of 

Trajectories (n) 

Number of shortlisted 

parameters (p) and 

their range 

Constant multiplier 

parameter change (d) 

Sample Trajectory Start 

nodes (𝑃1
0, … , 𝑃𝑛

0) 

Generate Trajectory j 

Compute the model 

outputs (uf, uc, and qc) 

at each node 

Compute EE of input 

parameters at Trajectory 

j 

Compute the average 

EE of each parameter 

over n trajectories 

Rank the parameters for 

model outputs 

Select the parameters 

with the highest ranks 

j ≤ n j=j

+1 

j=1 

Yes 

No 

Figure 4-2-Sensitivity Analysis Procedure 
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A hypothetical section of freeway was used as the test network (Figure 4-3). Each freeway link 

consisted of two lanes except the first 1150 m of the horizontal link which has three lanes. A lane drop 

from three to two was located at the horizontal lane before the measurement point.  A temporally 

varying traffic demand pattern was used to generate both uncongested and congested traffic conditions 

at the measurement point.  Each simulation run consisted of 3900 seconds; the first 300 seconds of 

which were used for warm-up and data were not collected. Traffic flow and speed was captured during 

the remaining 3600 seconds and aggregated at five-minute intervals. Therefore, each simulation run 

produced 12 aggregated five-minute speed-flow observations.  We repeated each simulation run 10 

times with different random seeds to obtain 120 observations. Then we calibrated Van Aerde’s model 

to these 120 observations to obtain an estimate of uf, uc and qc.  

 

 

Figure 4-3- Simulation Network Used for Sensitivity Analysis 

 

The final ranking of the parameters based on their impact on each model output is listed in Table 

4-2. These rankings are based on the Elementary Effect of each parameter averaged over 50 trajectories. 

In other word, the elementary effect was estimated 50 times and the reported elementary effect is the 

average over the 50 trajectories. 
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Table 4-2- Rankings of VISSIM input parameters (impact on each model output) 

Rank uf uc qc 

1 p17 p19 p11 

2 p14 p14 p19 

3 p8 p17 p15 

4 p15 p15 p14 

5 p19 p8 p8 

6 p10 p10 p10 

7 p11 p3 p17 

8 p3 p4 p3 

9 p21 p11 p21 

10 p4 p7 p4 

11 p1 p21 p7 

12 p7 p1 p1 

13 p2 p2 p2 

14 p18 p18 p12 

15 p12 p12 p18 

16 p16 p16 p5 

17 p13 p13 p16 

18 p5 p5 p13 

19 p9 p9 p9 

20 p20 p20 p6 

21 p6 p6 p20 

 

The change of the elementary effect values for each model output (i.e. uf, uc and qc) is shown in 

Figure 4-4.  The horizontal axis consists of parameters based on their rank in Table 4-2. The vertical 

axis is the value of the elementary effect of each parameter regarding the model output.  
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Figure 4-4- Elementary Effect of Parameters 
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To determine the global rank of each parameter we normalized the computed elementary effects 

with the maximum computed EE for each uf, uc, and qc. Then we took an average of normalized uf, uc, 

and qc elementary effect of each parameter.  The global ranking of the parameters is provided in Table 

4-3 and illustrated in Figure 4-5 . 

Table 4-3- Global ranking of VISSIM input parameters 

Rank Parameter 
Average 

Normalized EE 

1 p19 0.79 

2 p17 0.67 

3 p14 0.65 

4 p15 0.64 

5 p8 0.63 

6 p11 0.53 

7 p10 0.51 

8 p3 0.38 

9 p21 0.31 

10 p4 0.31 

11 p1 0.17 

12 p7 0.17 

13 p2 0.15 

14 p18 0.10 

15 p12 0.07 

16 p16 0.03 

17 p13 0.03 

18 p5 0.02 

19 p9 0.01 

20 p20 0.01 

21 p6 0.00 
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Figure 4-5- Average Normalized Elementary Effect of VISSIM Parameters 

The following step in the approach requires the generation of simulation runs to cover the range of 

values for each of the considered VISSIM parameters.  Consequently, we desire to minimize the 

number of parameters considered while at the same time including those parameters which have a 

substantive impact on the simulation outputs.  Considering the average normalized elementary effect 

values, we selected the first ten parameters with the highest ranks as the ones that we consider in next 

steps. We note that parameter ranked 9th (p21) is the “Emergency Stop Distance” which is the distance 

before a lane drop or merging section at which a vehicle will stop and wait for a gap to merge. Since 

this parameter is specific to the networks with lane drops or merging sections, we removed it from the 

set of selected parameters and considered the remaining nine parameters in the next step. We also 

considered two additional model inputs: 

1. The fraction of heavy vehicles in the traffic stream  

2. The desired speed distribution.  

The final parameters are listed in Table 4-4. 
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Table 4-4- Final input parameters 

# Parameter 

code 

Parameter Name  

1 p3 AccDecelOwn  

2 p4 AccDecelTrail  

3 p8 SafDistFactLnChg  

4 p10 W99cc0  

5 p11 W99cc1  

6 p14 W99cc4  

7 p15 W99cc5  

8 p17 W99cc7  

9 p19 W99cc9  

10  RelFlow  

11  DesSpeedDistr  

 

4.4.2. Generate the Samples 

Now that we have established the microsimulation model input parameters to consider, it is 

necessary to develop a relationship between these input parameters and the traffic stream 

characteristics. To do this we carry out simulation runs using different combinations of values for the 

input parameters. To generate these combinations, we must: 

- Define the feasible range of values for each parameter; and 

- Select a method for determining the combination of parameter values to simulation (i.e. a 

sampling method) 

We determined the range of the input parameters listed in Table 4-4 by considering the upper and 

lower bounds of those parameters in VISSIM, taking into account the ranges mentioned in other 

studies, and by using engineering judgment. Parameters 1 to 10 were considered continuous while 

parameter 11 (i.e. Desired Speed Distribution) was considered categorical. We assumed desired speed 

distribution to vary from 80 kph to 130 kph. The range of the parameters is shown in Table 4-5. 
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Table 4-5- VISSIM input parameter range 

# Parameter Name 
Lower 

bound 

Upper 

bound 

Unit 

1 AccDecelOwn -3 -0.5 m/s2 

2 AccDecelTrail -3 -0.5 m/s2 

3 SafDistFactLnChg 0 1 - 

4 W99cc0 1 5 m 

5 W99cc1 0.5 3 s 

6 W99cc4 -1 0 - 

7 W99cc5 0 1 - 

8 W99cc7 0 1 m/s2 

9 W99cc9 0.5 3 m/s2 

10 RelFlow 0.01 0.2 - 

11 DesSpeedDistr 80 130 km/h 

 

We select Latin Hypercube Sampling (LHS) for sampling from the distributions of the input 

parameter distributions. Using LHS avoids over sampling or under sampling from different parts of 

the distribution by taking equal number of samples from the same-probability sections of the 

distribution. For instance, if 100 samples are to be taken, LHS divides the distribution to same 

probability zones (e.g. 20 zones with 5% probability of occurrence each) and takes 5 samples randomly 

within each zone.  

4.4.3. Generating Desired Speed Distributions 

VISSIM microsimulation software samples from a user specified Desired Speed Distribution (DSD) 

to assign speeds to vehicles in the network when there is no other speed limitation such as reduced 

speed zones, etc. This impacts road capacity and also the maximum speed in the network (B. Park and 

Schneeberger, 2003).   

There are two challenges to determining DSDs from field data.  One is obtaining speed data from 

individual vehicles.  The second is determining if the measured speed represents the desired speed or 

a constrained speed.  We addressed these two challenges as follows.  

We used 20-second resolution loop detector data obtained from three dual-loop stations on the QEW 

highway (posted speed limit of 100 kph) located in Ontario, Canada. We identified individual vehicle 

speeds by extracting the measured speeds from only those 20-second intervals for which only a single 
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vehicle passed the detector.  We attempted to avoid including constrained speeds by using only 

observations between 12 am (midnight) and 5 am; when traffic demands and densities are very low. 

Data was taken from all three lanes and speeds less than 60 kph and greater than 170 kph were 

excluded. The distribution of the remaining speed observations show that the DSD follows a normal 

distribution (Figure 4-6). 

 

Figure 4-6- Normal Probability Plot of QEW DSD Speed Data Points 

The mean value of the observed speed data was 119 kph and the standard deviation was 13 kph 

which results in a coefficient of variation of 0.109.  

We require the ability to specify additional DSDs having higher and lower mean speeds.  We 

assumed that all DSDs (for passenger cars) follow the Normal distribution with the same coefficient 

of variation as the QEW dataset (i.e. COV =0.109). 

We defined 26 DSDs starting from 80 kph and ending in 130 kph (i.e. 80kph, 82 kph, 84 kph, …, 

130 kph). The DSD label denotes the mean of the distribution.  

4.4.4. Heavy Vehicle Desired Speed Distributions 

Heavy vehicles have operational characteristics that are different from passenger cars. These 

differences arise from different acceleration and deceleration rates as well as regulations (e.g. there 
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may be a different speed limit for heavy vehicles).  Consequently, it is also necessary to have different 

DSDs for heavy vehicles.  

Only a few studies have investigated the characteristics of free speed distributions for heavy 

vehicles. Hoogendorn (2005) reported that the coefficient of variation of trucks in unconstrained traffic 

flow on a freeway with a posted speed limit of 100 kph is 0.077.  

In many jurisdictions in North America, speed limiters are mandatory on large trucks and a common 

maximum speed is 105 kph (65 mph).  Thus we generated the heavy vehicle DSDs using the same 

method used for passenger car DSDs, except COV = 0.077 and all generated speed values higher than 

105 kph, were reduced to 105 kph. As an example, the desired speed distribution of 94 kph is illustrated 

in Figure 4-7.  

Heavy vehicle DSDs of 80 kph, 82 kph, …,104 kph, 105 kph were generated (14 DSDs in total). 

For each simulation, the passenger car DSD was selected through Latin Hypercube sampling and the 

heavy vehicle DSD was determined as a function of the passenger car DSD using Equation (4-5).  

 𝐷𝑆𝐷̅̅ ̅̅ ̅̅
𝑖
ℎ𝑣 = {

𝐷𝑆𝐷̅̅ ̅̅ ̅̅
𝑖
𝑝𝑐

             , 𝑖𝑓 𝐷𝑆𝐷̅̅ ̅̅ ̅̅
𝑖
𝑝𝑐

< 105 𝑘𝑝ℎ 

105 𝑘𝑝ℎ          , 𝑖𝑓 𝐷𝑆𝐷̅̅ ̅̅ ̅̅
𝑖
𝑝𝑐

> 105 𝑘𝑝ℎ
 

(4-5) 
 

where, 

𝐷𝑆𝐷̅̅ ̅̅ ̅̅
𝑖
ℎ𝑣: mean of the desired speed distribution for heavy vehicles in simulation i 

𝐷𝑆𝐷̅̅ ̅̅ ̅̅
𝑖
𝑝𝑐

: mean of the desired speed distribution for passenger cars in simulation i 
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Figure 4-7- Heavy Vehicle Desired Speed Distribution (DSDhv of 94 kph) 

4.4.5. Taking Samples from Input Distributions 

Having determined which VISSIM input parameters and their respective ranges of values to 

consider, we took 300,000 samples using Latin Hypercube Sampling (LHS).  Each sample consisted 

of values for the 11 parameters listed in Table 4-4.  

4.4.6. Microsimulation Modeling 

A hypothetical freeway network (Figure 4-8) was coded in VISSIM. The lane width is 3.5 m 

throughout the network. The network was designed to enable the generation of congested and 

uncongested traffic conditions.  The first 660 m from Entry point 1 consists of 3 lanes. The remainder 

of the network consists of 2 lanes. Flow and speed measurements are extracted from VISSIM at an 

aggregation interval of 5 minutes.  Density was estimated as flow/speed. 
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Figure 4-8- Simulation Network Coded in VISSIM  

The time-varying traffic demands entering the network at origins 1 and 2 are provided in Table 4-6: 

Table 4-6- Traffic demand at origins 1 and 2 

Origin 1  Origin 2 

Time 

Interval 

Flow 

Rate (vph) 

 Time 

Interval 

Flow 

Rate (vph) 

0-300 500 0-300 0 

300-600 500  300-600 0 

600-900 1500  600-900 0 

900-1200 2500  900-1200 0 

1200-1500 3500  1200-1500 0 

1500-1800 5000  1500-1800 0 

1800-2100 6000  1800-2100 0 

2100-2400 6000  2100-2400 0 

2400-2700 5000  2400-2700 250 

2700-3000 4000  2700-3000 2000 

3000-3300 3000  3000-3300 2000 

3300-3600 2000  3300-3600 1000 

3600-3900 1000  3600-3900 500 

 

The interval 0-300 seconds was used for warm-up. No output was captured during the warm-up 

interval. From 300 to 1500 seconds, the uncongested traffic condition was simulated. From 1500 to 

2400 seconds we simulated capacity flow at the measurement point and from 2400 to 3600 seconds 

we simulated traffic congestion, ranging from moderate to severe congestion. From 3600 to 3900 

seconds we let the network discharge any queued vehicles. 
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In each simulation run 12 speed-flow-density points were generated and for each sample of input 

parameters values, we run the simulation 10 times with 10 different random seeds to obtain 120 speed-

flow-density points. 

4.4.7. Estimating Traffic Flow Characteristics 

For each set of input parameter values we determine the resulting traffic flow characteristics (i.e. 

free-flow speed (uf), speed-at-capacity (uc), jam density (kj), and the capacity (qc)) by fitting Van 

Aerde’s traffic flow model to the 120 simulation data points.  

A custom fitting algorithm was developed within Matlab software to calibrate Van Aerde’s model. 

This code calibrates Van Aerde’s model in a three-dimension (speed-density-flow) space. As per the 

method used by Rakha and Arafeh (2010) the 120 observations were parsed and then aggregated over 

density range into a number of bins to reduce the computational cost. All observations within each 

density bin were aggregated to create a single representative point. The speed, density and flow of this 

single point was computed as the mean of speed, density, and flow values of all points in that bin. To 

solve the optimization problem when fitting Van Aerde’s curve, we used the Matlab multi-start 

algorithm which applies fmincon (i.e. a function in Matlab that finds the minimum of constrained 

nonlinear multi-variable functions) from several uniformly distributed starting points. Since fmincon 

is a gradient –based technique, it may fall in local optimums; therefore, the use of multi-start algorithm 

reduces the chance of a false global optimum. (Mathworks Inc., 2016) 

After estimating traffic flow characteristics for all samples, we had a set of traffic parameters Yi (i.e. 

uf,i, uc,i, kj,i, and qc,i) for each sample of input parameters Xi (i.e. 𝑋𝑖
1, … , 𝑋𝑖

11).  

4.4.8. Develop Relationship Between Traffic Flow Parameters and Microsimulation Input 

Parameters 

The final step in our approach is specifying and calibrating a model to reflect the relationship 

between traffic flow parameters and microsimulation input parameters.   

Given the highly non-linear nature of the relationship, we elected to use a neural network to 

establish the relationship. A neural network is a complex system in which a number of simple 

processing elements –called neurons- are working parallel to each other. This complex system attains 
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the knowledge from the experience, and stores the knowledge as the strength or weight in its inter-

neuron connections (Haykin, 1999). A neural network has three layers: input layer, output layer, and 

hidden layer. The number of neurons in the hidden layer impacts the flexibility of the neural network 

to develop the relationship between input and output layers. More neurons in the hidden layer result in 

a more flexible neural network; however, the increase in the number of neurons in the hidden layer is 

constrained by the computational cost which increases by adding more neurons.  

Heaton (2008) suggests that the number of neurons be between the size of the input and output 

layers and recommends that the number of hidden neurons be less than twice the size of the input layer. 

In this research we considered five parameters at the input layer and ten parameters at the output layer 

(shown in Figure 4-9). Therefore, we built the neural network with eight neurons in the hidden layer.  

We used Matlab to train the neural network. We used 75% of the whole data set (225,000 samples 

randomly chosen) for training, and 15% (45,000 samples) for validation. We also used 10% (30,000 

samples) for testing the network performance by Matlab software. 

 

Figure 4-9- Neural Network Diagram 

There are different training algorithms that can be implemented when a neural network is built. 

Matlab software recommends Bayesian Regularization algorithm for large networks. We also tested 

Levenberg-Marquardt algorithm; however, the result of the Bayesian Regularization algorithm was 
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more promising. The characteristics of the built neural network, in terms of the mean squared error 

(MSE) and R2 are shown in Table 4-7. 

Table 4-7-Neural Network Characteristics 

 MSE R2 

Training 0.54 0.98 

Testing 0.53 0.98 

 

The neural network provides a function that if the traffic flow characteristics are given as an input, 

then the neural network outputs the values that are to be used for the VISSIM input parameters: 

 𝑌 = 𝑁𝑁(𝑋) (4-6)  

 

Where: Y is the traffic microsimulation input parameters; X is the traffic flow parameters shown in 

Figure 4-9 at output and input layers respectively; and NN is the built neural network. 

It should be noted that there might be more than one unique set of microsimulation input parameters 

that can simulate a traffic flow with some specific characteristics, but the developed NN model gives 

only one set of input parameters. The users should be aware this notion when they implement the NN 

model developed in this work for some works like safety analysis where the value of some 

microsimulation input parameters have a considerable impact on the safety surrogates.  

4.5. Model Validation 

Validation of the developed model is carried out by selecting a set of desired traffic stream 

parameters; providing these as inputs to the developed neural network model which estimates the 

values to be used for the VISSIM model input parameters.  These parameters are used within the 

simulation model to simulate a variety of traffic conditions.  Then Van Aerde’s macroscopic speed-

flow-density relationship is calibrated to the simulated data to determine the associated traffic stream 

parameters.  Finally, these traffic flow parameters are compared back to the original set of desired 

traffic stream parameters.  We repeat this process for a large sample of desired traffic stream 

parameters. This entire procedure is shown in Figure 4-10. 
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Figure 4-10- Validation Process 

To generate random samples of traffic flow parameters, first we checked whether or not these 

parameters are correlated. We calculated the coefficient of correlation between the traffic flow 

parameters obtained from fitting Van Aerde’s model on the 300,000 samples used in building the 

neural network.  We noticed that the free-flow speed and speed-at-capacity values were correlated; 

however, significant correlations between other parameters were not found. The coefficients of 

correlation values are shown in Table 4-8.  

Table 4-8-Coefficient of Correlation of Traffic Flow Parameters 

 uf uc kj qc hv% 

uf 1.00 0.51 -0.02 0.04 -0.01 

uc 0.51 1.00 -0.01 0.20 -0.16 

kj -0.02 -0.01 1.00 -0.06 -0.18 

qc 0.04 0.20 -0.06 1.00 -0.10 

hv% -0.01 -0.16 -0.18 -0.10 1.00 
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Therefore, 5000 random samples were generated for uf, kj, qc, and the ratio of heavy vehicles (hv%) 

based on their range in the outputs of 300,000 simulation runs. We used LHS technique to generate 

random samples. Given the correlations that exists, the values for uc were computed as a function of 

uf. We calibrated the linear regression model shown in Equation (4-7) using the outputs of the 300,000 

simulation runs.  

 𝑢𝑐 = 38.2 + 0.31𝑢𝑓 (4-7)  

 

We applied 5,000 samples of the desired traffic flow parameters (uf, uc, kj, qc) as input into our 

neural network. The output of the neural network was the microsimulation input parameters as well as 

the desired speed distributions of passenger cars.  

The heavy vehicle DSD’s were computed based on Equation (4-5). We performed the simulation 

runs using the following input parameters for each of the 5000 random samples: 

1- VISSIM input parameters (outputs of the neural network) 

2- Passenger car DSD’s (output of the neural network) 

3- Heavy vehicle DSD’s (computed using Equation (4-5)) 

4- Heavy vehicle ratio (hv%) (sampled randomly along with 5000 samples of uf, uc, kj, and qc) 

Van Aerde’s model was calibrated to the 5-minute aggregated speed-flow-density points obtained 

from the simulations to obtain the output traffic flow parameters (uf, uc, kj, qc)’. We call this set of 

traffic stream parameters the “simulated” values. To assess the quality of the proposed neural network 

model we calibrated a linear regression model as  

 𝑋𝑠𝑖𝑚 = 𝐴 ∙ 𝑋𝑑𝑒𝑠 + 𝐵 (4-8)  

 

where Xdes is the desired value of parameter X , and Xsim is its simulated value. The A and B values 

as well as R-square and root-mean-square errors (RMSE) of the fitted curve are shown in Table 4-9 

for all four traffic flow parameters.  
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Table 4-9- Regression Model Specifications of Input and Output Traffic Flow Parameters 

Traffic Flow 

 Parameter 
A B R2 RMSE 

uf (kph) 0.93 6.74 0.98 2.13 

uc (kph) 1.08 -5.88 0.66 3.91 

kj (veh/lane-km) 0.77 28.05 0.89 6.84 

qc (vphpl) 0.88 199.1 0.94 113.40 

 

Also, the fitted curves are shown in Figure 4-11(a) to Figure 4-11(d). The results shown in Table 

4-9 and Figure 4-11 confirm that the neural network performs well for free flow speed and speed-at-

capacity, but performs less well for higher values of the jam density and the capacity. As a result, we 

decided to consider upper bounds for the jam density and capacity parameters. Based on Figure 4-11(c) 

and Figure 4-11(d) the upper bound of the jam density was considered to be 150 vehicles/lane-km and 

the upper bound of the capacity was set to 2400 vphpl. Consequently, the model would not be valid 

beyond these upper bounds. Applying these limits resulted in removing 2,088 points out of the 5,000 

samples that we generated for the validation process. We again developed the relationship between 

desired and simulated values of traffic flow parameters using the Equation (4-8). The characteristics 

of the newly calibrated regression models (shown in Table 4-10) confirm the improvements in 

estimating all traffic flow parameters. 

Table 4-10- Regression Model Specifications of Input and Output Traffic flow Parameters (Bounded 

Model) 

Traffic Flow 

 Parameter 
A B R2 RMSE 

uf (kph) 0.93 6.56 0.98 2.07 

uc (kph) 1.04 -3.61 0.69 3.51 

kj (veh/lane-km) 0.90 12.91 0.94 4.04 

qc (vphpl) 1.01 -4.51 0.97 65.42 
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(a) 

 

(b) 

   

(c) 

 

 

(d) 

Figure 4-11-Desired vs. Simulated values of traffic flow parameters 

The bounded model shows significant improvements in some parameters. The slope of the fitted 

line for jam density changed from 0.77 to 0.90, R-squared increased from 0.89 to 0.94, and the root-

mean-square error decreased by 40%.  The fitted line of the capacity also shows significant 

improvements. The slope changed from 0.88 to 1.01, the intercept changed from 199.10 to -4.5, and 

the root-mean-square error decreased by 42%. The bounded model also shows some improvement for 

the free-flow speed and the speed-at-capacity; however, these improvements are not very significant.  
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Figure 4-12 (a) to (d) illustrates the fitted curve of the regression model for the bounded model in 

which we limited the upper bound of the jam density and capacity to 150 vehicles/lane-km and 2400 

vph respectively. 

(a) 

 

(b) 

   

(c) 

 

 

(d) 

Figure 4-12- Desired vs. Simulated values of traffic flow parameters (bounded model) 

To make the result of this research more applicable for practitioners, a web-based software has been 

developed for implementation of the models described in this chapter. The traffic flow parameters (uf, 

uc, kj, qc) are the inputs to the software program. The program estimates the VISSIM parameter values 
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using the neural network model developed in this work. These VISSIM parameters can be used to 

simulate a traffic stream having the characteristics defined by the traffic flow parameters which were 

the input to this program. The software will be accessible at http://VISSIM.waterlootraffic.com. 

4.6. Application 

We obtained loop detector and weather data from the Minnesota Department of Transportation 

(Minnesota department of transportation (MnDOT).) for the year 2014 for a section of I-694 in 

Twin Cities, Minnesota (detector station located between Rice street and Victoria St. N.) 

We selected three weather categories (listed in Table 4-11) and assuming the jam density is 100 

vpkpl we calibrated Van Aerde’s model to estimate the three remaining traffic flow parameters 

(i.e. uf, uc, and qc). The estimated traffic flow parameters are shown in Table 4-11. 

Table 4-11-Selected Weather Categories and Estimating Traffic Stream Characteristics (Field data) 

ID Road 

Surface 

Precipitation 

Type 
Diurnality 

uf  

(kph) 

uc  

(kph) 

qc  

(vphpl) 
1 Ice None Day 118 74.1 1674 

2 Dry Snow Night 111.2 61.3 2198 

3 Wet Snow Night 86.5 62.2 1206 

 

Then, we used the neural network model developed in this chapter to estimate the values for the 

input parameters of the VISSIM microsimulation model. We assumed 10% heavy vehicles in the 

traffic stream. The estimated values of the VISSIM input parameters are shown in Table 4-12. 

These are the parameters that should be used to simulate each of the three weather categories for 

the two-lane freeway section. The parameters P1 to P9 were introduced in Table 4-4.  

Table 4-12-VISSIM Input Parameters Estimated by the Neural Network 

ID P1 P2 P3 P4 P5 P6 P7 P8 P9 
DSD 

(pc) 

DSD 

(hv) 

1 -1.752 -1.746 0.503 4.366 1.406 -0.51 0.47 0.47 1.74 PC126 HV105 

2 -1.748 -1.737 0.774 3.905 0.693 -0.49 0.53 0.60 1.71 PC112 HV105 

3 -1.748 -1.751 0.513 4.639 2.345 -0.50 0.47 0.47 1.75 PC92 Hv92 

 

To check if our neural network model has provided appropriate values for the VISSIM input 

parameters, we simulated the study area under each of the three weather conditions in the VISSIM 

software using the input parameters shown in Table 4-12.  

Finally, we calibrated Van Aerde’s model to the output obtained from each simulated weather 

category (Table 4-13). We have also shown the absolute relative error (ARE) of the simulated 

traffic parameters in the same table. These results show that the differences between the traffic 

http://vissim.waterlootraffic.com/
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stream characteristics estimated from the field data and from the simulation are very small and 

confirms that the developed neural network model performs well.  

Table 4-13-Simulated Traffic Parameters and Their Absolute Relative error (%) 

Road 

Surface 

Precipitation 

Type 
Diurnality 

uf  

(kph) 

uc  

(kph) 

qc  

(vphpl) 

Est. ARE (%) Est. ARE (%) Est. ARE (%) 

Icy None Day 115.9 1.8% 72.3 2.4% 1688 0.8% 

Dry Snow Night 107.6 3.2% 65.3 6.5% 2055 6.5% 

Wet Snow Night 82.3 4.9% 61.3 1.4% 1198 0.7% 

 

4.7. Conclusions 

This chapter presents a method by which VISSIM input parameter values can be determined to 

achieve a freeway traffic stream with any (realistic) characteristics.  This ability has many applications 

for microsimulation model applications, including the modeling of inclement weather.  Using local 

meteorological and traffic data, it is possible to determine the traffic stream characteristics associated 

with specific weather conditions.  Then the model proposed in this chapter can be used to determine 

the VISSIM input parameters that are best able to produce a traffic stream with the characteristics 

associated with weather category.  

The model was validated using 5000 randomly generated samples. Those samples were different 

from the ones used for training the neural network. In validation process we noticed our model did 

perform well in most of the range of parameters but not in very high jam density and capacity values. 

Considering that those high values are not usually achievable in reality, we revised the upper 

boundaries for the capacity and jam density range of the developed model (essentially restricting the 

model to realistic traffic stream characteristics). The finalized model is shown to perform well for the 

range of realistic traffic flow parameters of freeways with two lanes at each directions and is simple to 

use.  
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Chapter 5  

 

Estimating the Cost of Travel Time (Un)Reliability  

 

 

 

 

5.1. Introduction 

 

Traditionally, most evaluations of road improvements quantify benefits on the basis of the changes 

in the average travel time (on some “average” day) and the value of time. However, increasingly, there 

is interest not only in the change in the average travel time, but also about the day-to-day variability of 

the route travel time. This interest stems from the belief that there is a cost associated with unreliability 

(i.e. the experienced travel time differs from the anticipated travel time) that is an addition to the actual 

travel time cost (i.e. travel time multiplied by the value of time) (Warffemius, 2013). This cost is 

associated with either the wasted time when people arrive earlier than desired or possible penalties 

when they are late.  

In the context of public transit systems, the cost of travel time (un)reliability is generally determined 

as a function of the deviation between the experienced travel time and the scheduled travel time 

(Kittelson & Associates et al., 2013). In this context, the transit schedule informs travelers and 

determines the time that they should expect the trip to take. For personal auto modes, a relatively large 

body of work has appeared in the literature over the past few years focused on travel time reliability in 

which the travel time reliability has been quantified as the deviation between the experienced travel 

time and some expected travel time.  In this work, the expected travel time is typically determined as 

some measure of central tendency of the travel time distribution. In this thesis, we use the analogy to 
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the public transit, and we hypothesize that the travel time reliability cost for auto users is a function of 

the deviation of the experienced travel time and the anticipated travel time.  We use the term 

anticipated rather than expected because in mathematical terms, expected is equivalent to the average 

or mean of the distribution.  We do not wish to restrict the value of the anticipated travel time to be 

equal to the mean of the distribution.There is a lack of knowledge about how travelers determine their 

anticipated travel time and there remains a lack of consensus about how to define the anticipated travel 

time for determining the monetary impact of unreliability. 

This research examines these two issues.  In particular, we are interested in (1) determining if/how 

the anticipated travel time is related to the distribution of travel times experienced during previous 

days; and (2) the extent to which unusually long travel times influence anticipated travel times.  

5.2. Literature Review 

Mahmassani and Chang (1985) investigated the process by which travelers’ form their “anticipated” 

travel time using a simulation approach.  They modeled home-to-work trips on a nine-mile hypothetical 

four-lane highway (two lanes at each direction) and asked 100 participants with a restricted work 

starting time to submit their preferred arrival time once at the beginning of the survey, and then their 

preferred departure time every “day” during the survey. These departure times were the input to a 

simulation model in which every participant was assumed to represent 20 drivers in the simulated 

traffic stream. With the variation of the departure times, the traffic flow was different at a specific time 

from “day” to “day” during the simulation and thereby, the simulated travel time by each traveler was 

different. As an output of the simulation model, the participants’ arrival time (considered as actual 

arrival times) were reported to the attendees at the end of each day. Then participants were asked to 

submit the departure time of day i+1 given they were aware of the actual arrival time of day i. This 

process continued for 24 days. 

The study showed that the reported departure time of each respondent did not change except during 

the first few days suggesting that drivers require only a small sample of experience to form their 

anticipation for future trips. However, the study did not show how the anticipated travel time is related 

to the distribution of experienced travel time. Furthermore, the day-to-day variations in travel time 

were relatively small so the impact of unusually long travel times was not examined.  
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In another study, Fujii and Kitamura (2000) investigated the impact of information and actual travel 

time of real drivers and real trips on the anticipated travel time using stated preference survey during 

a freeway closure event in Osaka, Japan in which participants submitted their anticipated travel time 

for the next day after they performed their travel each day. The route was new to travelers since they 

previously used to take the closed freeway to reach to their destination. Contrary to the work by 

Mahmassani and Chang (1985) which assumed that the travelers were exposed to no source of 

information except their driving experience, Fujii and Kitamura considered different media as the 

sources of information including mass media, word of mouth, traffic information systems based on 

telephone, and the actual experienced travel times by the travelers. Similar to the work of Mahmassani 

and Chang (1985), Fujii and Kitamura computed the anticipated travel time based on the departure 

time and anticipated arrival time of the respondents. Their study focused on examining the influence 

that sources of travel time information have on anticipated travel times, particularly for drivers who 

were unfamiliar with the route (i.e. limited experience from previous trips). The sample size of this 

study was relatively small (complete data were available from 41 respondents) and similar to like the 

previous study the relationship between the anticipated travel time and experienced travel time 

distribution was not discussed. 

Avineri and Prashker (2006) studied the impact of travel time information on route choice. They 

investigated whether or not the existence of travel time information results in better route choice 

decisions by drivers. They concluded that contrary to common believe, the availability of travel time 

information does not result in better route choices.  They did not study the relationship between the 

anticipated travel time and the distribution of the experienced travel times. 

Do and Kobayashi (2000) statistically examined the Rational Expectations (RE) hypothesis 

proposed by Muth (1961). The RE hypothesis states that the subjective probability distribution of 

events coincides with the objective probability distribution as a consequence of people’s long-term 

learning behavior. Do and Kobayashi tested whether the travelers’ long-term expected travel time 

coincides with the mathematical expected value of the ‘true’ travel times. They performed an in-house 

experiment with sixty participants who provided anticipated travel time and route choice for the next 

day over a period of 30 consecutive days.  They concluded that the RE hypothesis cannot be rejected 
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suggesting that anticipated travel times are equivalent to the mean of the travel times experienced on 

previous trips.  

There has been very little work conducted to understand the relationship between the distribution 

of experienced travel times and anticipated travel time for a future trip and the work that has been done 

suggests that anticipated travel times are equivalent to the mean of the experienced travel times.   

The limitation of this former work is that the influence of unusually long travel times was not 

explicitly studied.  Unusually long travel times may occur as a result of inclement weather, special 

events, incidents, or temporary lane closures. The mean is highly sensitive to these extreme values.  

We hypothesize that drivers discount the impact of unusually long travel time with respect to 

determining their anticipated travel time and therefore do not form their anticipated travel time as the 

mean of all previously experienced travel times.  This distinction is important when attempting to 

quantify the impact of travel time reliability (e.g. the cost of unreliability).  It is generally accepted that 

travel time reliability is quantified in terms of the distribution of travel times (or some point estimates 

from this distribution). If the cost of travel time is related to the difference between the experienced 

travel time and the anticipated travel time, then the manner in which the anticipated travel time is 

determined is important.  Furthermore, if the anticipated travel time is considered to be equivalent to 

the mean of the experienced travel times, then unusually long travel times have the potential to 

dramatically increase the cost associated with unreliability.   

Thus this research attempts to determine:  

1. The relationship between the distribution of experienced travel times and anticipated travel 

time for a future trip; and  

2. The influence that unusually long travel times have on the anticipated travel time.  

5.3. Problem Formulation 

Assume that a commuter i drives from origin o to destination d using route r. Then 𝑡𝑜,𝑑,𝑟,𝑘,𝑗,𝑖 is the 

travel time experienced on day j when departing the origin during time interval k. We define τodr as the 

distribution of travel times experienced by a number of drivers across different days making trips 

between origin o and destination d using route r and departing in the same time interval. We define the 
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“anticipated” travel time as the time a traveler forecasts for their next trip (i.e. for the next day) and 

assume that this anticipation is based on travel times that have been experienced in the past for the 

same trip (i.e. same origin, destination, route, and departure time). Then  𝜏̃𝑜𝑑𝑟 is the average of the 

anticipated travel times from a number of drivers (for the same trip origin, destination, route and 

departure time).  

We make two hypotheses: 

1. 𝜏̃𝑜𝑑𝑟is some function of the distribution of experienced travel times (i.e. 𝜏̃𝑜𝑑𝑟 = 𝑓1(𝜏𝑜𝑑𝑟)) 

2. Unusually long travel times may occur as a result of unscheduled or unexpected events (e.g. 

adverse weather, collisions, etc.).  It is hypothesized that travelers discount the influence of 

these travel times when forming their anticipated travel times because they believe that these 

travel times are unusual (e.g. rare). We define 𝜏̂𝑜𝑑𝑟 as a travel time threshold. Experienced 

travel times greater than 𝜏̂𝑜𝑑𝑟 are discounted (or ignored) in terms of their influence on the 

anticipated travel time.  

Table 5-1 illustrates 𝜏̃𝑜𝑑𝑟and 𝜏̂𝑜𝑑𝑟on a hypothetical travel time distribution. The objective of this 

research is to determine if there is evidence to support these hypotheses and if so, to calibrate values 

for 𝜏̃𝑜𝑑𝑟 and 𝜏̂𝑜𝑑𝑟.  

 

Figure 5-1- Illustrative 𝝉̃𝒐𝒅𝒓 and 𝝉̂𝒐𝒅𝒓 on a travel time distribution 
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5.4. Methodology 

A web-based stated preference survey was constructed to address the formulated problem.  

Generally, travelers obtain their information of the travel time from different sources including 

media and previous driving experience. The precision, penetration rate, and the level of access to the 

traffic information likely varies widely across different media types and different travelers. To avoid 

the heterogeneity caused by drivers with access to different traveler information, we assume the travel 

time information is solely available from previous experience travelling the same trip.  

We divide the methodology into two parts. First we characterize the relationship between the 

anticipated travel time and travel time distribution when we assume that drivers consider all 

experienced travel times (i.e. we do not assume that they discount the impact of unusually long travel 

time). Then we describe the method we followed to explore the influence that unusually long travel 

times have on the anticipated travel time. The survey was distributed through Canadian Institute of 

Transportation Engineers (CITE) mailing list and also through another mailing list of people with post-

secondary education. The survey was distributed to approximately 3000 people and obtained a 

response rate of just over 10%. Most of the respondents had more than 5 years of driving experience 

as illustrated in Figure 5-2. 

 

Figure 5-2 - Respondents' driving experience 
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5.4.1. Model 1: Anticipated Travel Time 

The first portion of the survey consisted of a hypothetical scenario in which respondents were 

presented with a set of trip travel times experienced over the past 6 weeks and then the respondent was 

asked to forecast the travel time for the same trip in the future.  

There were a number of issues that we attempted to avoid when we designed the survey. 

The first is the bias of personality. Construal-level theory suggests that when there is a temporal, 

social, spatial, and/or hypothetical distance between people and the object or event they are thinking 

about, then the thinking becomes less concrete and more abstract (Trope and Liberman, 2010). In our 

survey there was a probability that if we framed our question in a context and asked respondents about 

a decision about themselves in that context, they would answer the question considering other contexts 

arising from their personal experiences, emotions, constraints, etc. (i.e. influences external to the 

scenario presented in the survey question).  Therefore, to avoid this bias, we asked the respondents to 

make a decision which would impact a third person, not themselves. 

The second is Gambler’s fallacy. There is a misconception when people try to decide between some 

independent events. They believe that when an event occurs, the chance of the same event occurring 

in the future decreases even though the events are independent (Hahn, 2014). To avoid this problem, 

instead of asking survey respondents to indicate their anticipated travel time multiple times (e.g. after 

each simulated day) we elected to present the respondents with a set of historical (experienced) travel 

times and then ask them to provide a single anticipated travel time.  

The part of the survey that aims to find the relationship between the anticipated travel time and the 

experienced travel time distribution consisted of two sections: 

1. First, the respondents were presented with a hypothetical scenario  

2. Then, they were asked to answer a question based on the story that was just narrated 

The scenario, which was the same for all respondents, described a 50km home-to-work commuter 

trip (traversing mainly a freeway) and introduced a hypothetical distribution of experienced travel 

times. We generated the individual travel times from a Beta distribution (Weifeng et al., 2013) and 



96 

 

assumed a minimum travel time of 30 minutes. The parameters of the hypothetical travel time 

distribution are shown in Table 5-1. 

Table 5-1-Travel Time Distribution Parameters 

Parameter Value 

𝜶𝟏 1.3 

𝜶𝟐 4.95 

𝒂 30 

𝒃 89 

 

The frequency diagram of the distribution (10,000 samples) is illustrated in Figure 5-3. 

 

Figure 5-3- Underlying travel time distribution 

Then we sampled from the distribution using Latin Hypercube Sampling to obtain travel times for 

30 trips (corresponding to 6 weeks of weekday commuting home to work trips) from the generated 

distribution. The travel times are shown in Figure 5-4. The scenario narrative presented in the survey 

is as follows: 

“Six weeks ago you and your partner moved to a large city to start new jobs. 

Each weekday you have to drop your partner off at their place of work at 8:00 AM 

and then drive to your work.  The distance from your partner's place of work to your 

place of work is 50 km.  There is only one practical route to take and it is mostly on a 
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freeway.  If there are no delays, then the fastest you can make the trip is 30 

minutes.  However, travel times can be longer because of traffic congestion, 

construction, severe weather, special events, or collisions.   

 One of your work colleagues has just moved into a house near your partner's 

work and will be driving the same route that you take and will also be departing at 

8:00 AM.  They have asked you how long they should plan for the drive to take given 

that they don't want to be too early or too late at work.”  

After reading this narrative, the survey respondent was presented with each week of travel times on 

a separate (sequential) webpage. There was no restriction on how long respondents could view each 

graph and respondents could move to previous or following pages in the survey at will. The mean 

travel time of the samples was 42.53 with the 95% confidence limits of ±3.37 minutes. The minimum 

and maximum travel time were 30 minutes and 71 minutes respectively.  

Then, we proposed the following question to the respondents:  

“Now that you have had a chance to review the travel times you experienced 

driving to work over the past 6 weeks, let me remind you of the question. 

One of your work colleagues has just moved into a house near your partner's 

work and will be driving the same route that you take and will also be starting their 

trip at the same time of day as you do. They have asked you how long they should plan 

for the drive to take (in minutes) given that they don't want to be too early or too late 

at work.  

Based on your experience over these past 6 weeks of driving this route, what 

is your estimate of the trip travel time (in minutes)?” 

The respondents could choose an integer value between 30 and 71 minutes for their response from 

a dropdown menu.  
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Figure 5-4- Weekday hypothetical travel times  

5.4.2. Responses 

The survey was distributed to more than three thousand potential respondents – most of them with 

post-secondary degrees, driving experience, and associated with the transportation engineering 

profession. 303 responses were received, cleared, and analyzed.  

33
40

37

59

39

0

10

20

30

40

50

60

70

80

Monday Tuesday Wednesday Thursday Friday

T
ra

v
el

 T
im

e 
(m

)

Day of Week

Week 1

55

38

56

36

48

0

10

20

30

40

50

60

70

80

Monday Tuesday Wednesday Thursday Friday

T
ra

v
el

 T
im

e 
(m

)

Day of Week

Week 2

31

45 43
39 37

0

10

20

30

40

50

60

70

80

Monday Tuesday Wednesday Thursday Friday

T
ra

v
el

 T
im

e 
(m

)

Day of Week

Week 3

32

42

71

34

48

0

10

20

30

40

50

60

70

80

Monday Tuesday Wednesday Thursday Friday

T
ra

v
el

 T
im

e 
(m

)

Day of Week

Week 4

51

35
42

30
36

0

10

20

30

40

50

60

70

80

Monday Tuesday Wednesday Thursday Friday

T
ra

v
el

 T
im

e 
(m

)

Day of Week

Week 5

40

52

34

47 46

0

10

20

30

40

50

60

70

80

Monday Tuesday Wednesday Thursday Friday

T
ra

v
el

 T
im

e 
(m

)

Day of Week

Week 6



99 

 

The average anticipated travel time was 46.2 minutes and the standard deviation was 5.6 minutes. 

Also, the confidence interval of the anticipated travel time was (45.6, 46.8) at the 95% confidence 

level. 

As a first step, we examined whether or not the anticipated travel time corresponds to the mean of 

the distribution of experienced travel times (i.e. supports the Rational Expectations hypothesis).  A 

statistical comparison (T-test) between the mean of the 30 experienced travel times and the mean 

anticipated travel time at the 95% of confidence level shows that the p-value of the means difference 

is 0.02 which is smaller than 0.05; therefore, the difference between the means is significant at the 95% 

confidence level. This suggests that the respondent’s anticipated travel time is not equal to the average 

experienced travel time and therefore does not support the Rational Expectations hypothesis.  

We then explored if the anticipated travel time corresponds to some percentile of the distribution of 

experienced travel times. Figure 5-5 shows the CDF of the population of the trip travel times and the 

CDF of the sample of 30 trip travel times provided to the survey respondents.  The solid black vertical 

line is the average anticipated travel time obtained from the 303 respondents.  The dashed black vertical 

lines represent the 95% confidence interval for the mean anticipated travel time.  From this figure, we 

can observe that the mean anticipated travel time corresponds to the 70th percentile of the experienced 

travel times.  Furthermore, using the 95 percent confidence limits of the anticipated travel time we can 

observe that the corresponding 95 percent confidence limits of the percentile of the experienced travel 

time distribution ranges from 67th to 72nd percentile which corresponds to 45.8 minutes and 47.3 

minutes respectively.  Therefore:  

𝜏̃𝑜𝑑𝑟 = 70𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 𝑜𝑓 (𝜏𝑜𝑑𝑟) (5-1) 
 

where, 𝜏̃𝑜𝑑𝑟 and 𝜏𝑜𝑑𝑟 were defined earlier. 
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Figure 5-5- Cumulative probability distribution of experienced travel times 

5.4.3. Model 2: Anticipated Travel Time considering an Extreme Travel Time Threshold 

The second objective was to discover whether or not travelers discount the impact of unusually long 

travel times. Again we used the stated preference survey method and combined the questions for this 

part of the survey with the questionnaire that we used in the anticipated travel time survey. 

Unusually long trips are considered as an indicator of unreliability of travel. Therefore, the related 

body of the literature can be found in the research associated with measures of travel time reliability.  

Several metrics have been proposed to measure travel time reliability (TTR).  NCHRP project 3-68 

“Guide to freeway performance measurement” introduced four measures of TTR including: buffer 

index, planning time index, percent of trips with space mean speed ≤ 50 mph and percent of trips with 

space mean speed ≤ 30 mph (Margiotta et al., 2006). 

Van Lint et al. categorized TTR metrics in 5 groups: 1) statistical range methods; 2) buffer time 

methods; 3) tardy trip measures; 4) probabilistic measures; and 5) skew-width methods (Van Lint et 

al., 2008). 
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SHRP2 L08 project “Incorporating travel time reliability into the highway capacity manual” has 

categorized TTR indices into two groups: 1) core measures; and 2) supplemental measures. Core 

measures include planning time index, 80th percentile travel time index, semi-standard deviation, and 

failure/on-time measures while standard deviation and misery index are categorized as supplemental 

measures (Kittelson and Associates, 2012). 

The SHRP2 L03 project recommends several reliability metrics as well. Comparing to SHRP2 L08, 

it confirms using planning time index, 80th percentile travel time index, failure/on-time measures and 

misery index. It excludes standard deviation and semi-standard deviation while including buffer time 

index and skew statistics (Cambridge Systematics, 2013). 

Jin and McLeod (2013) recommend using 90th percentile travel time index and using 40 mph as 

threshold for on-time arrival measure. Table 5-2 indicates a list of TTR metrics with their definitions. 

Table 5-2- Travel Time Reliability Metrics (Jin and McLeod, 2013) 

Reliability Performance 

Metrics 

Definition Units 

Buffer Index (BI) The difference between the 95th percentile travel time 

and the average travel time, normalized by the 

average travel time 

Percent 

Failure/on-time measures Percent of trips with travel times <: 

(1.1 × 𝑀𝑒𝑑𝑖𝑎𝑛 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒); and 

(1.25 × 𝑀𝑒𝑑𝑖𝑎𝑛 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒) 

Percent of trips with space mean speed <: 

(50 mph, 45 mph, 40 mph, 30 mph) 

Percent 

Planning time index 95th percentile travel time  None 

80th percentile travel time 

index 

Self-explanatory None 

90th percentile travel time 

index 

Self-explanatory None 

Skew statistics The ratio of (90th percentile travel time minus the 

median) divided by (the median minus the 10th 

percentile) 

None 

Misery index The average of the highest five percent of travel times 

divided by the free-flow travel time 

None 

Semi standard deviation  The standard deviation of travel time pegged to the 

free flow rather than the mean travel time  

None 
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Based on the measures suggested for the travel time reliability in the literature, we considered two 

methods for mapping 𝜏̂𝑜𝑑𝑟 to the travel time distribution: 

a) Threshold as a multiple of free flow travel time 

b) Threshold as a percentile of the travel time distribution 

Therefore, we proposed two questions each of which was associated with one of these two methods.  

5.4.4. Threshold as a multiple of free flow travel time 

This survey question was: 

“In the previous question you were asked to tell your work colleague how long 

they should expect the drive to work to take based on your experience driving that 

same route.  

As you observed in the previous question, trip travel times can vary from one day 

to the next as a result of collisions, construction, temporary road or lane closures, 

special events, severe weather, etc.  

When determining the time that the trip should be expected to take, some people 

might ignore some of the longest travel times that were experienced because those 

long travel times were caused by unusual events. 

Assume that you identify unusually long travel times as some multiplier of the 

fastest travel time. For example, if the fastest travel time is 30 minutes, and you 

identify the multiplier as 1.4, then any travel time greater than 30 × 1.4 = 42 minutes 

would be considered unusually long and you would ignore this trip experience when 

making your estimate of how long your colleague should plan for the trip to take. 

Select from the list below the multiplier that best represents the travel times 

which you would consider as unusually long and would ignore when estimating the 

travel time for a future trip.  For each multiplier, the travel time listed in parentheses 

is relative to a fastest travel time of 30 minutes.” 
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Respondents had a variety of choices ranging from 1.4 to 3.0 (with the steps of 0.2). We collected 

302 responses to this question. The response mean was 1.83±0.03 at the confidence level of 95%. Also, 

the standard deviation was 0.30. 

5.4.5. Threshold as a percentile of the travel time distribution 

Through some pilot survey question testing, we determined that asking the respondent to identify a 

specific percentile of the experienced travel time was not well understood. Instead we asked the 

respondents to report the number of longest experienced trips they would ignore when they plan their 

day-to-day trips. Following, is the question from the survey:  

“In the previous question, you identified unusually long travel times (i.e. those 

that you ignored when estimating the expected travel time for a next trip) as those 

which exceeded some multiple of the fastest travel time. For example, you may have 

indicated that you ignore the trips that take at least 1.8 times longer than the fastest 

trip. 

Another approach is to simply ignore some number of the longest travel times 

experienced.  Using this approach, and assuming 20 work days in the month, select 

from the list below the number of the longest travel times you would ignore when 

estimating the amount of time your colleague should plan for the trip to take.” 

Respondents could select one of the choices listed in the second column of Table 5-3. Each choice 

corresponds to a specific percentile of the travel time distribution shown in the third column  

Table 5-3- Choices in Question Regarding Extreme TT Threshold Based on DTT Percentile 

Choice# Description DTT Percentile 

1 I would consider all of the travel times that I experienced 100% 

2 I would ignore the one longest trip out of the past 20 trips 95% 

3 I would ignore the two longest trips out of the past 20 trips 

I would ignore the three longest trips out of the past 20 trips 

90% 

4 85% 

5 I would ignore the four longest trips out of the past 20 trips 80% 

6 I would ignore the five longest trips out of the past 20 trips 75% 

7 I would ignore the six longest trips out of the past 20 trips 70% 

8 I would ignore the seven longest trips out of the past 20 trips 65% 

9 I would ignore the eight longest trips out of the past 20 trips 60% 
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We received 292 answers to this question. The average response was 2.73±0.17 at the 95% 

confidence level and the standard deviation of the responses was 1.50. 

5.4.6. Choosing the Extreme Travel Time Threshold 

The responses to these two methods (a and b) were examined against the sample of 6 weeks of trip 

travel times provided to the survey respondents in the first part of the questionnaire. From method a 

we multiple 1.83 (the average obtained from the survey) by the free flow travel time of 30 minutes to 

obtain a travel time threshold of 54.9 minutes. From method b respondents indicated they ignored 2.7 

of their 20 longest experienced travel times when they plan their future trips. This corresponds to the 

87th percentile of the travel time distribution which corresponds to 52.7 minutes in the considered 

distribution. Though the two models use different approaches to define unusually long travel times, 

when applied to the sample distribution of travel times, they provide essentially the same results (Table 

5-4). 

Table 5-4-Comparison of the Methods a and b 

 Average Response 
Percentile of the  

given DTT 

Extreme Travel 

Time Threshold 

(minute) 

Difference 

Method 

a 

1.83  

(multiplier to the free 

speed) 

89.5% 54.9 

4% 

Method 

b 

2.7  

(ignored longest trips) 
87% 52.7 

 

We were also interested in whether or not respondents had a preference for the way in which they 

considered unusually long travel times.  Consequently, a final survey question, as follows, was 

included in the survey.  

“The previous two questions considered different ways of defining "unusually" 

long trip travel times (i.e. those past trips which you ignore when considering how 

long the same trip would take in the future): 

Question a identified these unusually long trips as ones for which the travel time 

exceeded some multiple of the fastest travel time. 
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Question b identified these unusually long trips as a number of the longest trips 

in the past month.  

 

Which question (a or b) best describes the way that you consider the impact that 

unusually long trip travel times have on your estimate of how long the same trip will 

take in the future?” 

298 respondents answered to this question. The results indicate that a small majority (56%) of 

respondents prefer to define unusually long travel times in terms of some multiple of the free speed 

travel time (choice a) and 44% prefer to define unusually long travel times in terms a percentile of the 

experienced travel time distribution (choice b).  

These results suggest that drivers ignore unusually long travel times when computing the anticipated 

travel time.  Consequently, we propose a two stage model for estimating the anticipated travel time.  

The first stage consists of eliminating unusually long travel times using either model a or model b to 

produce a truncated distribution of experienced travel time. The second stage consists of selecting the 

anticipated travel time as a percentile of the truncated experience travel time distribution.  

We calibrate the percentile in the same manner as was done for Model 1, but in this case using the 

truncated distribution.  This is shown in Figure 5-6. We can observe that the mean anticipated travel 

time reported by the survey respondents corresponds to the 80th percentile of the truncated distribution 

of experienced travel times. 
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Figure 5-6- Cumulative probability distribution of truncated experienced travel times 

5.5. Cost of Travel Time (Un)Reliability  

To apply the findings of this chapter to compute the associate cost of travel time (un)reliability, we 

follow the following steps: 

1- We use the above findings to compute: i) the anticipated travel time, and ii) extreme travel time 

threshold, based on the travel time distribution.  

2- Most of the cost functions developed in the literature to monetize the schedule delay costs, use 

the concept of “preferred arrival time”. Travelers reaching the destination before this time are 

considered early and travelers reaching their destination after this time would be considered 

late.  In this work, to map the travel time distribution –which defines the aggregate 

characteristics of trip time of a group of travelers - to the existing cost functions, we assume 

the preferred arrival time in the existing cost functions as the anticipated travel time in our 

research, and we label the travel time values: 

a. smaller than the anticipated travel time as “early”. 
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b. between the anticipated travel time and the extreme value threshold as “late”. 

c. Larger than the extreme value threshold as “extremely late”. 

3- Compute the schedule cost of early trips (i.e. schedule delay early) and late trips (i.e. schedule 

delay late) using the existing cost functions. VSDE is the value of the schedule delay early and 

VSDL is the value of schedule delay late. Several research works such as Lam and Small 

(2001) and Tseng et al.(2005) has estimated values for VSDE and VSDL. The sum of schedule 

cost of early and late trips is considered as cost of travel time reliability.  

4- Note that based on the work done by Tseng et al. (2008) which is supported by the outcomes 

of the survey performed in this research, we assume that the cost of schedule delay has a 

maximum value which is equivalent to the schedule delay cost of the extreme threshold travel 

time. In other words, the schedule delay cost increases while the travel time increases up to 

the point that the travel time reaches to the extreme travel time threshold. After that the 

schedule delay cost will not increase anymore. Therefore, the schedule delay cost of the trips 

which are labeled as “extremely late” will be constant and equivalent to the schedule delay 

cost at the extreme threshold travel time.  

The travel time reliability cost is computed using the following equation: 

 𝑇𝑇𝑅𝑐𝑜𝑠𝑡 = [𝑛1 ∙ ∫ |𝜏 − 𝜏̃| ∙ 𝑐(𝜏) ∙ 𝑃(𝜏)𝑑𝜏
𝜏̂

𝜏𝑓

] + [𝑛2 ∙ ∫ (𝜏̂ − 𝜏̃) ∙ 𝑉𝑆𝐷𝐿 ∙ 𝑃(𝜏)𝑑𝜏
𝜏𝑚𝑎𝑥

𝜏̂

] (5-2)  

where: n1 is the number of vehicles which travel times are shorter than the extreme travel time 

threshold and n2 is the number of vehicles which travel times are longer than the extreme travel time 

threshold P is the probability density of travel time, and 𝑐(𝜏) is the cost function defined below. Other 

parameters were defined previously.  

 𝑐(𝜏) = {
𝑉𝑆𝐷𝐸 , 𝜏 < 𝜏̃𝑜𝑑𝑟

𝑉𝑆𝐷𝐿, 𝜏̃𝑜𝑑𝑟 < 𝜏
 (5-3)  

 

5.6. Conclusion 

In this chapter we have proposed and calibrated two models for estimating the anticipated travel 

time.  
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Model 1 assumes that drivers consider all previous trip travel times and suggests that the anticipated 

travel time is equal to the 70th percentile of the travel time distribution. 

Model 2 reflects the hypothesis that drivers ignore unusually long travel times when determining 

their anticipated travel time.  The survey results support this hypothesis. It was found that on average, 

respondents defined the extreme value threshold as (a) 1.83 times the free speed or (b) the 87th 

percentile of the travel time distribution.  A small majority of the respondents indicated that they found 

method a more intuitive. However, when applied to the 6 weeks of travel time data, both methods 

provide essentially the same travel time threshold.  

We then found that the anticipated travel time corresponds to the 80th percentile of the truncated 

travel time distribution.  

The proposed model is attractive as it is consistent with intuition and the model is less susceptible 

to extreme values than the Rational Expectation model.  It is also as simple to apply as the Rational 

Expectation model. 

The proposed model has been calibrated using stated preference data.  Using the existing data set it 

is not possible to validate the proposed model by confirming that the model also holds true for other 

distributions of experienced travel times.  Consequently, additional validation of this model is needed. 

One method is that an additional stated preference survey be conducted to ask respondents to indicate 

their anticipated travel time but to provide the respondents with a set of travel times which reflect a 

distribution which is different from the one used in this work, but still realistic.   

The model can be used along with any existing cost functions to compute the cost of travel time 

reliability which is an input to the alternative analysis project. As a recommendation for further 

research we suggest that research be done specifically to investigate the schedule delay costs associated 

with travel times that exceed the extreme value threshold.  
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Chapter 6  

 

 

Demonstrating the methodology: Alternative Analysis 

 

 

 

6.1. Introduction 

To demonstrate the application of the methods proposed in this research we applied them to a 

hypothetical problem in which two road improvement alternatives are being compared. The goal is to 

compute the travel time reliability cost of both alternatives. This cost is an essential part of choosing 

the preferred alternative. In common practice, the preferred alternative is usually selected taking into 

account all benefits and costs of a project including the infrastructure cost, environmental cost, user 

cost, etc. Travel time reliability cost is categorized under the user cost; therefore, it is necessary to 

evaluate it and to include it within the evaluation of the competing alternatives.  

For the purposes of illustrating the methods proposed in this thesis, the alternative analysis in this 

chapter is done solely on the basis of the travel time and travel time reliability costs; other benefits and 

costs are not considered in choosing the preferred alternative. Moreover, although the study area is 

modelled after an actual freeway interchange within the real world, the problem and the alternatives 

being evaluated are hypothetical.  

The evaluation of the two alternatives is conducted carrying out the steps shown in Figure 6-1. 
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Figure 6-1- Steps within the analysis of the alternatives 

6.2. Study Area 

The study area is an existing freeway interchange on I-694 in Twin Cities (Minneapolis-St. Paul) 

region in Minnesota, U.S. The interchange connects the freeway to a two-way two-lane urban roadway 

Victoria Street North. The freeway is a divided four-lane (two lanes at each direction) oriented in an 

east-west direction. The study area is shown in Figure 6-2. Also, the interchange geometry is shown in 

Figure 6-3. 
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Figure 6-2-Study area and the surrounding road network (Google Maps, 2016) 

 

Figure 6-3-Existing interchange geometry (Google Maps, 2016) 
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Loop detector data obtained from this section of freeway indicates that roadway experiences 

recurrent congestion during the morning and afternoon peak hours. A sample of loop detector data for 

this freeway section was shown in Figure 3-2 in Chapter 3.  

6.3. Code the network and preparing field data 

All the field data are for the year 2014. The traffic data and weather data came from the Minnesota 

department of Transportation (MnDot) as described in Chapter 3. Collision data and annual crash facts 

were obtained from the Office of traffic safety in the Minnesota Department of Public Safety.(MnDPS, 

2015) 

In our hypothetical problem, we assume that the traffic demand will increase in the near future and 

there are concerns about the adequacy of the existing interchange design.  Two alternative roadway 

improvements are being considered.  

Alternative 1 consists of maintaining the existing interchange geometry, but adding one lane in each 

direction to Victoria Street. The intersections of Victoria Street and the on/off ramps to/from I-694 

would be controlled by traffic signals.  

Alternative 2 consists of replacing the existing interchange with a full cloverleaf interchange while 

keeping the lane increase suggested in the Alternative 1. With the full cloverleaf interchange design, 

there is no need for traffic signals at the intersections between the on/off ramps and Victoria Street.  

We used the VISSIM model as the traffic microsimulation software to code the alternatives. The 

coded network for Alternative 1 and Alternative 2 are shown in Figure 6-4 and Figure 6-5 respectively. 
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Figure 6-4- Geometry for Alternative 1 

 

Figure 6-5- Geometry for Alternative 2 
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6.4. Determine distinct weather categories and their traffic stream parameters 

We used the output categories from Chapter 3 of this thesis since we used the same facility and 

same geographical area as used in the case study in chapter 3. There were 16 distinct weather categories 

at the end of chapter 3. The traffic flow parameters of the weather categories were also estimated using 

the technique introduced in chapter 2.  The finalized weather categories are listed below in Table 6-1 

along with their traffic flow parameter values. 

Table 6-1- Weather Categories with Their Traffic Flow Parameter Values 

No 
Road 

Surface 
Precipitation Diurnality uf uc kj qc 

1 Dry NoPrecip Day 115.7 101.1 100 1847 

2 Wet NoPrecip Day 109.3 96.9 100 1732 

3 Ice NoPrecip Day 118.0 74.1 100 1674 

4 Dry Rain Day 112.3 102.2 100 1688 

5 Wet Rain Day 110.2 92.0 100 1668 

6 Dry Snow Day 107.6 97.6 100 1759 

7 Wet Snow Day 94.5 89.9 100 1303 

8 Ice Snow Day 111.6 102.3 100 1338 

9 Wet Frozen Day 103.8 97.5 100 1689 

10 Dry NoPrecip Night 113.1 97.3 100 1784 

11 Wet NoPrecip Night 109.7 95.4 100 1775 

12 Ice NoPrecip Night 107.6 96.1 100 1737 

13 (Dry+Wet) Rain Night 110.2 94.8 100 1658 

14 Dry Snow Night 111.2 61.3 100 2198 

15 Wet Snow Night 86.5 62.2 100 1206 

16 Wet Frozen Night 104.4 82.4 100 785 

 

6.5. Estimate VISSIM input parameters 

The next step is to estimate the VISSIM input parameters required to model each of these 16 weather 

categories. We applied the model developed in Chapter 4 to estimate the VISSIM input parameters for 

each of the 16 categories. For each weather category, we provided as input to the neural network model 

the associated traffic flow parameters from Table 6-1 as well as the heavy vehicle ratio (which we 

assumed to be 10%). For each weather category, the neural network model provided the recommended 

value to be used for the 11 VISSIM input parameters. The estimated VISSIM input parameters are 
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listed in Table 6-2. The last two columns are the desired speed distributions for passenger cars and 

heavy vehicles respectively. 

6.6. Prepare input demand 

The eastbound and westbound traffic demand in the freeway was obtained from the induction loop 

detectors. The northbound and southbound traffic flow at the arterial road was assumed as a fraction 

(i.e. 60%) of the eastbound and westbound freeway flow respectively. We decided to perform the 

simulation from 6:00 AM to 10:00 PM. We started the simulation from 5:55 AM to let the network 

load the demand for five minutes. The interval of 5:55 AM to 6:00 AM was considered as the warm-

up period and no results were captured during that time. To determine the traffic assignment ratios, we 

selected the static traffic assignment technique that assigns fixed proportions of traffic flow at each 

approach to the diverging roadways. The assignment ratios are shown in Table 6-3. Also, the route 

numbers are shown in Table 6-4. 

The loop detectors data was aggregated at five-minute intervals and the year of data was 2014 (the 

whole year). To generate demand scenarios, we only considered weekday traffic data. Also, to include 

day-to-day demand variation: first we investigated the traffic volume distribution of the field detector 

data, and then we defined some demand levels. The average coefficient of variation (COV) of the 

whole five-minute intervals from 6:00 Am to 10:00 PM was 0.15.  
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Table 6-2- Estimated VISSIM Input parameters 

No 
AccDecel 

Own 
AccDecel 

Trail 
SafDistFact 

LnChg 
W99cc0 W99cc1 W99cc4 W99cc5 W99cc7 W99cc9 

PC 
DSD 

HV 
DSD 

1 -1.765 -1.753 0.171 5.102 1.239 -0.519 0.385 0.332 1.801 PC128 PC105 

2 -1.755 -1.754 0.177 5.037 1.375 -0.519 0.391 0.320 1.789 PC122 PC105 

3 -1.752 -1.746 0.502 4.367 1.405 -0.507 0.473 0.469 1.743 PC126 PC105 

4 -1.758 -1.750 0.178 5.114 1.474 -0.523 0.391 0.320 1.788 PC124 PC105 

5 -1.756 -1.757 0.200 4.938 1.437 -0.517 0.397 0.337 1.791 PC122 PC105 

6 -1.752 -1.752 0.183 5.051 1.353 -0.520 0.393 0.317 1.784 PC120 PC105 

7 -1.733 -1.739 0.293 5.019 2.132 -0.528 0.433 0.321 1.736 PC108 PC105 

8 -1.754 -1.744 0.217 5.167 2.064 -0.531 0.407 0.321 1.773 PC124 PC105 

9 -1.746 -1.747 0.212 5.039 1.471 -0.522 0.404 0.315 1.768 PC118 PC105 

10 -1.760 -1.756 0.175 5.034 1.296 -0.518 0.388 0.329 1.797 PC124 PC105 

11 -1.756 -1.756 0.179 5.010 1.304 -0.517 0.390 0.325 1.792 PC122 PC105 

12 -1.753 -1.754 0.183 5.024 1.368 -0.519 0.393 0.320 1.786 PC120 PC105 

13 -1.756 -1.756 0.183 4.999 1.466 -0.519 0.393 0.326 1.791 PC122 PC105 

14 -1.748 -1.737 0.774 3.904 0.693 -0.492 0.532 0.595 1.706 PC112 PC105 

15 -1.748 -1.751 0.513 4.639 2.345 -0.505 0.470 0.472 1.748 PC92 PC92 

16 -1.749 -1.755 0.330 5.417 3.318 -0.490 0.402 0.383 1.777 PC116 PC105 

 

Table 6-3-Traffic assignment ratios 

O/D E W N S 

E - 0.80 0.08 0.12 

W 0.80 - 0.08 0.12 

N 0.20 0.20 - 0.60 

S 0.50 0.40 0.10 - 

 

Table 6-4-Route Numbers 

O/D E W N S 

E - 2 1 3 

W 5 - 4 6 

N 7 9 - 8 

S 10 12 11 - 

 

We assume that the distribution of day-to-day traffic demands (for the same time of day) follow a 

normal distribution.  We define five demand levels: 1) lowest; 2) low; 3) average; 4) high; and 5) 

highest and assigned a probability to each demand level. These levels were generated by multiplying 

the base demand by the values of -2 COV, -1 COV, 1, +1 COV, and +2 COV. The reason is that we 
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considered that each demand level included 1 standard deviation of the probability density function. 

An instance of the probability density function for the base demand of 1000 vph divided into 5 levels 

is illustrated in Figure 6-6. As shown, the probability of the demand levels 1 to 5 are 6%, 25%, 38%, 

25%, and 6% respectively. These probabilities are used when we take multiple samples from demand 

distributions for simulation. Samples are taken proportionate to their probability.  

 

Figure 6-6-Demand probability density function 

6.7. Collision Scenarios 

Another important source of travel time variation is the occurrence of incidents.  We incorporate 

the impact of collisions on travel times by modelling a representative sample of collisions. For each 

collision, we must define the location, duration, time of occurrence, and severity (i.e. capacity 

reduction). We assumed that the collisions were independent from the weather.  Also, we assumed that 

all collisions occur only on the freeway and not on the crossing arterial (i.e. Victoria Street) and that 

at most a single collision event occurs on a single day.  
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The frequency of collisions during the year 2014 was estimated from the annual vehicle collision 

report of the department of public safety of the state of Minnesota. We estimated that 52 collisions 

happened during that year in the study area.  

The duration of collisions was assumed to follow a Weibull distribution according to Nam and 

Mannering (2000). Also, a study on the collision duration on freeways by Smith and Smith (2002) 

provided empirical distributions for collision duration using an extensive field data. We decided to not 

model collisions with very short durations (i.e. 10 minutes and shorter) within our simulation. 

Therefore, we estimated the parameters of the Weibull distribution as (α=1.17, β=32.36, and γ=5).  

We assumed that the duration of the collision is correlated with the collision severity (i.e. the 

magnitude of the capacity reduction associated with the collision). Since, the freeway section in our 

simulation network has two lanes at each direction, we assumed that collisions will block either one or 

two lanes. Furthermore, more arbitrarily, we assumed that 2 out of 52 collisions blocked both freeway 

lanes while other collisions just blocked one lane. 

The location and the start time of the collisions were assumed to be purely random in the network 

and simulation period respectively. Also, the dominant weather category was assigned to each collision 

randomly but proportionate to the category frequency. We also assigned the demand level to each 

collision randomly. The resulting set of collisions was applied to evaluate both Alternative 1 and 

Alternative 2. Table 6-5 identifies the characteristics of all 52 simulated collisions. 
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Table 6-5-Characteristics of the Collision Scenarios 

Scenario  

# 

Severity Time Longitudinal Position Latitudinal Position   

No of 

Blocked 

Lanes 

Duration 
(s) 

Start 
Time 

End Time Direction 

Location 

from start 

(m) 

Lane 

(Shoulder=1, 

Median=2) 

Demand 
Level 

Weather 
category 

1 1 6120 10:54 AM 12:36 PM EW 2872 1 4 1 
2 1 5880 2:29 PM 4:07 PM EW 601 2 5 1 

3 1 5400 1:17 PM 2:47 PM EW 587 1 4 4 

4 1 5100 5:20 PM 6:45 PM WE 2684 2 2 1 
5 2 4500 1:55 PM 3:10 PM WE 1582 1,2 3 1 

6 1 3900 7:08 AM 8:13 AM WE 2387 1 3 1 

7 1 3780 4:00 PM 5:03 PM WE 390 1 3 1 
8 1 3660 10:59 AM 12:00 PM WE 378 2 3 1 

9 1 3600 12:36 PM 1:36 PM WE 583 2 3 1 

10 1 3420 8:38 PM 9:35 PM WE 70 1 3 1 
11 2 3300 8:37 AM 9:32 AM EW 830 1,2 3 2 

12 1 3240 7:04 AM 7:58 AM EW 1643 1 3 2 

13 1 3240 8:26 AM 9:20 AM WE 1583 2 3 4 
14 1 3000 9:54 AM 10:44 AM WE 2363 1 3 3 

15 1 2940 11:19 AM 12:08 PM EW 2513 1 2 2 

16 1 2700 7:19 PM 8:04 PM EW 982 1 2 1 
17 1 2520 6:25 PM 7:07 PM EW 1584 2 3 4 

18 1 2520 8:30 PM 9:12 PM WE 1614 1 3 2 

19 1 2400 6:58 AM 7:38 AM WE 451 2 2 13 
20 1 2400 2:17 PM 2:57 PM EW 872 2 2 1 

21 1 2280 12:45 PM 1:23 PM EW 2026 1 1 3 
22 1 2100 3:30 PM 4:05 PM WE 2100 1 3 3 

23 1 2100 4:12 PM 4:47 PM WE 1960 2 4 1 

24 1 2040 11:41 AM 12:15 PM EW 289 2 5 1 
25 1 1920 9:50 AM 10:22 AM EW 1941 1 2 1 

26 1 1860 7:21 PM 7:52 PM EW 2456 2 4 1 

27 1 1800 12:39 PM 1:09 PM EW 401 1 4 1 
28 1 1560 12:54 PM 1:20 PM WE 113 1 3 1 

29 1 1500 12:33 PM 12:58 PM WE 882 1 4 1 

30 1 1440 9:43 AM 10:07 AM EW 2166 2 5 1 
31 1 1320 3:44 PM 4:06 PM WE 1625 2 4 2 

32 1 1320 6:15 PM 6:37 PM EW 2687 1 1 1 

33 1 1260 8:30 PM 8:51 PM EW 897 1 3 1 
34 1 1260 6:20 PM 6:41 PM WE 2756 1 4 1 

35 1 1260 5:24 PM 5:45 PM EW 2376 1 2 1 

36 1 1260 3:35 PM 3:56 PM WE 2417 1 3 3 
37 1 1140 8:44 AM 9:03 AM EW 2081 1 4 5 

38 1 1140 6:45 PM 7:04 PM WE 2656 2 4 6 

39 1 1080 1:45 PM 2:03 PM WE 73 2 3 2 
40 1 1080 6:26 AM 6:44 AM EW 1184 1 1 2 

41 1 1020 9:04 PM 9:21 PM EW 68 2 4 1 

42 1 1020 6:30 PM 6:47 PM EW 411 1 3 1 
43 1 1020 3:08 PM 3:25 PM EW 1228 2 2 2 

44 1 900 1:17 PM 1:32 PM WE 1655 2 4 1 

45 1 840 12:00 PM 12:14 PM WE 2163 2 3 4 
46 1 840 7:38 PM 7:52 PM EW 158 1 3 17 

47 1 780 6:54 AM 7:07 AM EW 1847 1 2 3 

48 1 780 2:47 PM 3:00 PM WE 307 1 2 1 
49 1 720 9:07 PM 9:19 PM WE 1078 2 2 9 

50 1 660 4:15 PM 4:26 PM WE 380 2 4 1 

51 1 660 1:08 PM 1:19 PM EW 1635 2 2 3 
52 1 660 8:09 PM 8:20 PM EW 97 2 2 1 

 

6.8. Simulating Collision and No-Collision scenarios in TMM 

Having defined the collision scenarios as described in the previous section, it is necessary to 

determine how many collision and non-collision simulations to conduct 
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For the no-collision scenarios, each weather category was replicated five times (with different 

random seeds) at each demand level to impart randomness to simulation procedure. Considering the 

16 weather categories and five demand levels, 400 simulation runs were done in total.  Also, we 

replicated each collision scenario five times with different random seeds at the assigned demand level 

and weather category which resulted in 260 simulation runs in total. We used the default values for all 

VISSIM input parameters except the 11 parameters listed in Table 6-2.  

Measurement points were located at each origin and destination node in the network to capture 

individual vehicle O-D travel times.  These travel times, along with the origin, destination, and 

departure time were recorded to a database for subsequent processing.  

We encountered an issue with the simulation of collision scenarios that required specific data post 

processing.  Depending on the characteristics of the collision being modelled, it was possible for 

congestion to form and the ensuring queue spilled back to one or more of the network origins.  When 

this occurred, vehicles that were scheduled to enter the network could not do so.  In some cases, when 

the collision was very severe (i.e. complete blockage of the roadway), no vehicles were recorded as 

entering the network at that origin during a given 30-minute interval and consequently no travel times 

for that time period were obtained.  This absence of travel time data would distort the travel time 

distribution.  

Figure 6-7 shows a shockwave diagram for a freeway section on which a collision occurs at time 

𝑡1reducing the capacity of the freeway to zero. According to the shockwave theory, it takes until 𝑡2 

that the queue backs up and reaches to the measurement point at the origin. The collision clears at 

𝑡3and again it requires some time (until 𝑡4) for the queue to clear and traffic starts to move again at the 

measurement point. No vehicles pass the measurement point between times 𝑡2 and 𝑡4 and, as it is shown 

in the lower diagram (travel time diagram), no travel time data is captured during that period of time 

even though a very high travel time should be reported. 
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Figure 6-7-Shockwave and travel time diagram of the full blockage collisions 

In an effort to mitigate the impact of this absence of data, we identified the time intervals from the 

simulation travel time data base in which this problem occurred and then we changed the traffic volume 

in those intervals from 0 vehicles to 1 vehicle and approximated the travel time for the interval as a 

very large value. There were 32 thirty-minute departure intervals in one-day (from 6 AM to 10 PM) 

simulation for each route. Considering the 12 routes in the simulation network, 52 collision scenarios 

and 5 replications, we have 99,840 thirty-minute intervals in the simulated collision scenarios for each 

alternative; however, we encountered the abovementioned issue in a very small number of intervals: 

32 intervals in the Alternative 1 and 37 intervals in the Alternative 2. 
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6.9. Compute travel time distribution 

The evaluation of the cost of travel time (un) reliability is based on the distribution of travel times.  

This distribution reflects the day to day variation in the travel times experienced by vehicles departing 

a given origin during a specific time period and en-route to a given destination.  In this network, there 

are 12 O-D pairs and we chose to discretize the departure time to 30-minute time intervals.  Given that 

we simulate from 6:00 AM to 10:00 PM, there are 32 departure time intervals for which travel time 

distributions are required for each O-D pair.  

It is not appropriate to simply combine all the individual vehicle travel time data obtained from the 

660 simulation runs which were performed because the number of simulation runs associated with 

each condition (e.g. weather category, collision vs no-collision, etc.) is not proportional to the 

probability of that condition occurring in the real world.  Consequently, we generate the travel time 

distributions by sampling from the simulation runs according to the probability of occurrence.  

Our weather categories include diurnality (i.e. day versus night).  The number of hours of daylight 

changes throughout the year and therefore we computed the probability of being day and night for each 

30-minute time interval between 6 AM and 10 PM. For example, the time interval of 6:30 AM to 7:00 

AM is night during 126 days of the year (126/365 = 35%) and is day during the rest of the year (65%). 

Therefore, when generating the travel time distribution for this time interval we wish to have 35% of 

the samples taken from simulation runs reflecting night weather conditions (i.e. from the 7 night 

categories in Table 6-1) and 65% from day weather conditions (i.e. from the 9 day categories in Table 

6-1).  

We use the same approach for sampling from the collision versus no-collision simulation runs.  We 

took 52/365 = 14% of the samples from the collision simulation runs and 86% from the no collision 

runs.   

This sampling approach to generate the final travel time distribution for the time interval of 6:30 

AM to 7:00 AM is shown in Figure 6-8. 
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Figure 6-8-Sampling from simulation results to generate TT distribution at the time interval of 6:30 AM 

to 7:00 AM 

The travel time distribution of the vehicles in route 1 departing the origin between 6:30 AM and 

7:00 AM is shown in Figure 6-9 along with the distribution of travel times at the same route between 

10:30 AM and 11:00 AM. 
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Figure 6-9- Distribution of Travel Time of the route 1 for interval 6:30 - 7:00 AM (left) and 10:30 -

11:00AM (right) 

6.10. Compute travel time reliability cost 

The travel time reliability cost is computed for each of the 12 O-D pairs and each of the 32 departure 

time intervals using Equation (5-2) in Chapter 5, which is reproduced below.   

 𝑇𝑇𝑅𝑐𝑜𝑠𝑡 = [𝑛1 ∙ ∫ |𝜏 − 𝜏̃| ∙ 𝑐(𝜏) ∙ 𝑃(𝜏)𝑑𝜏
𝜏̂

𝜏𝑓

] + [𝑛2 ∙ ∫ (𝜏̂ − 𝜏̃) ∙ 𝑉𝑆𝐷𝐿 ∙ 𝑃(𝜏)𝑑𝜏
𝜏𝑚𝑎𝑥

𝜏̂

] (6-1)  

where 𝜏𝑓 is free-flow travel time, 𝜏̃ is the anticipated travel time, n1 is the number of vehicles which 

travel times are shorter than the extreme travel time threshold (i.e. 𝜏̂) and n2 is the number of vehicles 

which travel times are longer than the extreme travel time threshold P is the probability density of 

travel time, and 𝑐(𝜏) is the cost function. 

For each alternative, we compute 𝜏̃ and 𝜏̂ for each time interval/O-D pair using the method presented 

in Chapter 5. Table A in Appendix 2 shows these values.  For each 30-minute interval, the free-flow 

travel time was considered as the 15th travel time percentile, and the extreme travel time threshold was 

1.83 times of the free-flow travel time.  To compute the anticipated travel time, we truncated the travel 

time distribution at the extreme travel time threshold, and computed the 80% percentile of the truncated 

distribution as the anticipated travel time. 

We use the values of schedule delay early and late (i.e. VSDE and VSDL) estimated by Tseng et 

al. (2005). Since the values reported by Tseng were in 2004 Euros, we converted those values to the 
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equivalent in 2014 US dollars. To calculate that we first found the conversion rate of Euro to US$ in 

2004 (OANDA, 2016), and then used the consumer price index (CPI-U) last updated on September 16, 

2016 by the U.S. Department of Labor Bureau of Labor Statistics to compute the cumulative rate of 

inflation to calculate the equivalent of one US$ of 2004 in the year 2014. The average CPI-U is 188.9 

and 236.7 in 2004 and 2014 respectively (Bureau of Labor Statistics, 2016). Therefore, the cumulative 

inflation rate of 2004 to 2014 is calculated accordingly: 

𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑖𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =
236.7 − 188.9

188.9
= 0.253 

Therefore, $1 in 2004 is equivalent to $1.253 in 2014. The values reported by Tseng and the 

associated estimated values for the year 2014 are listed in Table 6-6. 

Table 6-6-Values of VOT, VSDE and VSDL 

 

Euro 2004 

€/hour/person 

USD2004 

$/hour/person 

USD2014 

$/hour/person 

Value of Time (VOT)  8.47 10.31 12.89 

Value of Schedule Delay – Early (VSDE) 12.07 14.70 18.37 

Value of Schedule Delay – Late (VSDL) 14.88 18.12 22.65 

 

Table 6-7 illustrates the computation of the (un)reliability cost for the route 1 in three departure time 

intervals during the morning time for Alternative 1 in a single day simulation run. We disaggregate the 

travel time distribution into 100 one-percent sections and compute the costs at each disaggregated 

section. For instance, to compute the travel time reliability cost of the 1st percentile at route 1 and time 

interval of 7:00 AM- 7:30 AM we compute the difference of the average travel time at that percentile 

(91.8 s) and the anticipated travel time at that interval (124.6 s). Then, since it is an “early” travel time 

(because 91.8s is shorter than 𝜏̃ at that interval (i.e. 124.6 s)) we multiply this difference (i.e. 124.6-

91.8=32.8 s=0.0091 h) by the value of schedule delay early (i.e. $18.37) which results in $0.17/person. 

In the absence of vehicle occupancy data, we assume that each vehicle is occupied by only by one 

person; therefore, the unit can be changed to $/vehicle. This cost will be experienced by 1% of the 

traffic volume of this interval. Therefore, to compute the total unreliability cost at this interval, 

Equation (6-2) is used: 
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𝑇𝑇𝑅𝑐𝑜𝑠𝑡

𝑡 = ∑ (𝑇𝑇𝑅𝑢_𝑐𝑜𝑠𝑡
𝑡,𝑝

×
𝑞𝑡

100
)

100

𝑝=1

=
𝑞𝑡

100
× ∑(𝑇𝑇𝑅𝑢_𝑐𝑜𝑠𝑡

𝑡,𝑝
)

100

𝑝=1

 

 

(6-2)  

where: 

𝑇𝑇𝑅𝑐𝑜𝑠𝑡
𝑡 : cost of the travel time reliability at the time interval t ($) 

𝑇𝑇𝑅𝑢_𝑐𝑜𝑠𝑡
𝑡,𝑝

: unit cost of the travel time reliability at the pth travel time distribution percentile of the 

time interval t ($/veh) 

𝑞𝑡: traffic volume at the time interval t during the computation period (veh)   

We are computing the travel time reliability cost for one of the single day simulation runs for 

illustration purposes; therefore, we use the value of traffic volume (𝑞𝑡) reported by VISSIM software 

in that simulation instance.  Then, the travel time reliability cost at the 1st time interval of the Table 6-7 

for a single day simulation instance is computed accordingly: 

(0.17 + 0.16 + ⋯ + 0.37 + 0.37) ×
128

100
= $11.23 

This value shows it is expected that each vehicle should expect 11.23/128=$0.088 of unreliability 

cost in average when traversing route 1 between 7 AM and 7:30 AM. It should be noted that it is a very 

short route and the anticipated travel time to traverse it is small; therefore, having small values of travel 

time reliability cost is not surprising.     

Table 6-7- Illustration of TTR Cost/day Computation of Three Time Intervals of Alternative 1 

R
o
u
te

 Time 

Interva

l V
o
lu

m
e
 

τf  

(s) 

𝜏̃ 
(s) 

𝜏̂ 
(s) 

Travel time of percentiles (s) 
Cost of percentiles ($/veh) 

 

Total 

unreliability 

cost  

of interval  

($) 
1st  2nd  … 99th  100th  1 2 … 99 100 

1 
7:00-

7:30 
128 100.5 124.6 184.0 91.8 93.5  197.0 426.0 0.17 0.16  0.37 0.37 

 $11.23  

1 
7:30-

8:00 
121 98.8 122.8 180.7 91.2 92.8  184.4 441.4 0.16 0.15  0.36 0.36 

 $ 10.13  

1 
8:00-

8:30 
122 96.7 120.8 177.0 89.5 91.3  168.4 245.2 0.16 0.15  0.30 0.35 

 $9.75  
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Once the reliability cost was computed for all intervals at each route, we summed them up to 

compute the travel time reliability cost of that route. Then, the travel time reliability cost of all routes 

was summed up to obtain the travel time reliability cost of the alternative. Table 6-7 computes the 

travel time reliability cost in three time intervals using the traffic volume of one day. To compute the 

travel time reliability cost over the whole year we need to use the traffic volume of each interval during 

the year. To obtain the annual traffic volume at each interval we sampled 365 traffic volume values 

from the simulated scenarios proportionate to their probability of occurrence and summed them up.  

Figure 6-10 illustrates the cost of travel time reliability in different routes for both alternatives at 

the time intervals (a) 7:30-8:00 AM and (b) 10:00 -10:30 AM.  We observe from Figure 6-10 that TTR 

cost varies substantially across different routes (for the same time of day).  This is expected as different 

routes have different volumes, and experience different levels of unreliability. 

The TTR cost ($/year) of different routes/time intervals is listed in Table A in Appendix 2.  
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(a) 

 

(b) 

Figure 6-10- Annual cost of travel time (un)reliability at time intervals 7:30-8:00 AM (a), and 10:00:10:30 

AM (b) 

To compare the alternatives, we also need to compute the travel time cost at each O-D/time interval. 

Equation (6-3) is used to compute the travel time cost. 

 𝑇𝑇𝑐𝑜𝑠𝑡 = [𝑛1 ∙ 𝑉𝑂𝑇 ∙ ∫ 𝜏 ∙ 𝑃(𝜏) ∙ 𝑑𝜏
𝜏̂

𝜏𝑓

] + [𝑛2 ∙ 𝜏̂ ∙ 𝑉𝑆𝐷𝐿 ∫ 𝑃(𝜏)𝑑𝜏
𝜏𝑚𝑎𝑥

𝜏̂

] (6-3)  
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where all parameters were defined earlier.  

The user cost is computed by summing up the travel time cost and travel time reliability cost. Figure 

6-11 shows the annual users’ cost for two time intervals 7:30-8:00 AM and 10:00-10:30 AM. 

The annual users’ cost is computed and illustrated for all time intervals/routes in Table A in 

Appendix 2. Table 6-8 shows the summary of the alternative analysis. Alternative 2 results in lower 

total user costs than Alternative 1. This is not unexpected given that the full cloverleaf interchange 

design from Alterative 2 provides greater capacity and therefore provides improvements (reductions) 

in the average travel times and improvements in the travel time reliability. 

Table 6-8- Summary of Alternative Analysis Results 

 Alternative 1 Alternative 2 

TTR Cost $      1,714,385 $   1,032,186 

TT Cost $      8,282,449 $   7,442,994 

Sum $      9,996,834 $   8,475,180 

 

6.11. Mean travel time cost 

As mentioned earlier, the common practice in alternative analysis is to compare average travel time 

costs of different alternatives under ideal conditions. To have a better understanding about the relative 

size of the cost values in each approach (i.e. the common practice and the method presented in this 

research), we simulated both alternatives for no-collision no-precipitation dry surface condition and 

computed the average travel time at each interval and multiplied it by the number of vehicles at that 

interval × the value of time (VOT) obtained from Table 6-6. We aggregated all time intervals/O-D 

costs. The result is shown in Table 6-9. 

Table 6-9- Alternative Analysis Results (values for 16 hour simulated time in one year) 

Alternatives 

Mean Travel  

Time Cost (common 

practice) 

TT Cost +TTR Cost 

(Method presented at this 

research) 

Alternative 1 $ 7,546,703 $ 9,996,834 

Alternative 2 $ 6,551,631 $ 8,475,180 
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(a) 

 

(b) 

Figure 6-11- Annual users' cost at time intervals 7:30-8:00 AM (a), and 10:00:10:30 AM (b) 

It should be noted that the values of TT cost in Table 6-8 are different from the mean travel time 

cost (common practice) shown in Table 6-9 for several reasons: 

5- The traffic volume used in common practice is computed based on the single/multiple 

simulation runs representing “ideal” conditions (i.e. no-collision no-precipitation scenario).  

However, in the proposed method, the traffic volume considers the variations in traffic 
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demands that occur throughout the year.  Therefore, the traffic volumes used at each of the 

above methods are different. Considering all routes and time intervals, the total volume used 

in common practice method is 1% higher than our method; however, the magnitude of the 

difference of volumes varies between different routes / time intervals and the standard 

deviation of the difference is 7%.  

6- The travel time used in common practice is the average travel time of no-collision no-

precipitation scenario; however, we use the travel time distribution to compute the travel time 

cost using Equation (6-3). Therefore, the travel time values are also different in the above 

methods. 

 

6.12. Conclusion 

In this chapter, we illustrated how the research modules that were presented in previous chapters 

can be combined to carry out an evaluation of two alternatives considering the travel time reliability. 

We used the method presented in Chapter 3 to determine the distinct weather categories available in 

the study area. Then we used the method presented in Chapter 4 to estimate the VISSIM 

microsimulation model input parameters required to simulate the study area under different prevailing 

weather conditions. Then we used the methods presented in Chapter 5 to calculate the anticipated travel 

time at each departure time interval and thereby to compute and monetize the cost of travel time 

(un)reliability.  

It should be noted that although the network that we used in this demonstration was a small one, 

the method explained here is transferrable and applicable to any network size. 
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Chapter 7  

 

 

Conclusions and Recommendations 

 

 

 

7.1. Introduction 

Travel time reliability has gained significant attention among the transportation researchers and 

practitioners recently. In this research, we aimed to implement traffic microsimulation models in order 

to model travel time reliability. To reach to this goal we found that several questions should be 

answered: 

1- What factors contribute to the day-to-day variation of travel time? 

2- How should these factors be modeled in traffic microsimulation models? 

3- Adverse weather conditions can be an important contributor to travel time variability but how 

can we determine the distinct weather conditions that need to be captured in the simulation 

model? 

4- How can we find the microsimulation input parameter values needed to reflect each of these 

weather conditions within the simulation model? 

5- How should we quantify the variability of travel time based on the simulation results? 

6- How do travelers determine their anticipated travel time and how can this information be used 

to determine the cost of travel time (un)reliability? 

7.2. Research Contributions 

In this thesis, we have answered the above questions.  In some cases, we have made use of existing 

practices and solutions in the literature, and in other we have created novel solutions. The contributions 

of this research can be listed as the following: 
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Developed a technique to distinguish road weather categories that have a significant impact on 

traffic behavior 

Previous work has examined the impact of weather on the characteristics of the speed-flow-density 

relationship has defined the weather conditions a priori and then attempted to determine the 

macroscopic traffic stream characteristics for these categories. However, for the purposes of modeling 

travel time reliability, it is necessary to only capture those weather conditions for which the associated 

macroscopic characteristics are statistically different.  To determine these distinct weather categories, 

we proposed an innovative method. We first suggested to incorporate different environmental factors 

when the initial “weather” categories are determined. Then we considered different arrangements for 

grouping the initial categories. We then applied the bootstrapping technique to create the confidence 

interval around the estimated traffic parameters of each weather category combined with statistical 

tests to determine if the difference between the traffic flow parameters of two or more weather 

categories was statistically significant. Finally, we suggested some measures to select the best 

arrangement and thereby the preferred set of distinct weather categories.  

Evaluated the impact of observation point dispersion on the accuracy of estimated traffic flow 

parameters and developed a tool to select the preferred van Aerde’s model calibration approach in 

terms of the parameter estimation error 

The process of determining macroscopic traffic stream characteristics requires the calibration of a 

macroscopic speed-flow-density model to field data.  In employing this approach, we observed that the 

errors associated with the estimated parameters are impacted by the number and distribution of the 

observation points that used to calibrate the model. Therefore, we developed models to estimate the 

corresponding errors of the estimated traffic parameters and found that for most practical applications, 

the estimation of the jam density is most sensitive to the distribution of the calibration data. As a result, 

we suggested some specific conditions for which the jam density value should be assumed a priori 

rather than calibrated on the basis of the available field data.  Doing this improves the calibration 

accuracy and results in more reliable parameter estimates.  

 



134 

 

Developed a Model to Estimate VISSIM Input Parameters Based on the Known Traffic Flow 

Parameters 

Practitioners sometimes need to simulate the overall drivers’ behavior in a roadway so that some 

specific traffic flow parameters would be obtained. One of the instances of this need appeared in this 

research. We wanted to be able to model specific weather categories. We knew the traffic flow 

parameters of those weather conditions from the field data and we wanted the same traffic 

characteristics to be simulated in the traffic microsimulation model. Therefore, we proposed and 

evaluated a method to map the traffic flow characteristics to the TMM input parameters using a neural 

network model. The model developed in this research is not only applicable to simulate different 

weather categories, but also can be used to simulate any traffic condition -within the acceptable range 

of the model- when the traffic flow parameters are known. 

Developed a Model to Determine Travelers’ Anticipated Travel Time  

Most of the existing research considers some characteristics of the travel time distribution to 

quantify the travel time reliability. In contrast, we have approached this problem with the goal of 

monetizing travel time (un)reliability.  To do this we have adopted the unreliability cost in terms of the 

costs of arriving early or arriving late.  This approach has been widely used to quantify the costs of 

unreliability of public transport system.  Of course, this construct requires that we know the scheduled 

travel time which, from the user’s perspective is the anticipated travel time. For public transport 

problems this is known as it is a function of the published schedule.  However, for road transport the 

anticipated travel time is not defined by a schedule. Road users consider a route as variable/unreliable 

when they frequently experience travel times different from their anticipation. So, the main question 

is: “what is the anticipated travel time?”. We carried out a stated preference survey to estimate the 

anticipated travel time based on the travel time distribution. On the basis of the survey responses we 

proposed two models in which travelers ignore unusually long travel times when determining their 

anticipated travel time.  

Created a framework method for estimating cost of travel time unreliability using micro-simulation 

models 
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Finally, we incorporated all of these findings to create an approach for quantify the cost of travel 

time (un)reliability using traffic microsimulation tools. We demonstrate this approach to evaluate two 

road improvement alternatives. We used the traffic simulation model VISSIM to compare these two 

alternatives based on the travel time cost and travel time reliability cost together.  

 

7.3. Recommendations 

Below are the recommendations for further studies: 

1- The neural network model developed to estimate the VISSIM input parameter values needed 

to model a specific traffic stream was calibrated on the basis of data for a freeway with two 

lanes at each direction. It is recommended that the impact of the number of lanes be 

investigated to determine if the existing model is transferable to freeway sections with more 

than two lanes in each direction. Also, this neural network model was calibrated just for 

freeways. We recommend that the model also be calibrated for other facility types (e.g. urban 

streets).   

2- The model developed to compute the cost of travel time reliability -which is an input to the 

alternative analysis project- can be used along with any existing cost functions. As a 

recommendation for further research we suggest that research be done specifically to 

investigate the schedule delay costs associated with travel times that exceed the extreme 

value threshold.   

3- We recommend the anticipated travel time model developed in this research be validated.   
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Appendices 

Appendix 1 

Computing codes of the PCA+RVM model in R programming language is shown below: 

 

# Start of the Code 

# -------------------------------------------- 

# Load necessary libraries 

library(dplyr) 

library(plyr) 

library(base64) 

library(qmap) 

library(hydroGOF) 

library(kernlab) 

library(e1071) 

library(xlsx) 

library(rJava) 

library(psych) 

rm(list=ls(all=TRUE)) 

# Import dataset: 

setwd("C:/Users/Reza/Dropbox/paper/FinalPapers/3-CongestedData/modelsR") 

data<-read.csv ("freekj1.csv",header=TRUE, sep=",") 

err = subset(data, select = colnames(data) == "Error") 

 

## Extracting Principal components using PCA 

fit <- princomp(data[,-1], cor=TRUE) 

plot(fit,type="lines") 

pca<- fit$scores[,1:5] 
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data<- cbind(err, pca) 

 

# Using K-Fold-Cross-validation method in selecting training and testing 

subsets; 

splitdf <- function(dataframe, seed=NULL) { 

  if (!is.null(seed)) set.seed(seed) 

  index <- 1:nrow(dataframe) 

  trainindex <- sample(index, trunc(length(index)*.75)) 

  train <- dataframe[trainindex, ] 

  test <- dataframe[-trainindex, ] 

  list(train=train,test=test) 

} 

split <- splitdf(data, seed=44) 

trainset <- split$train 

testset <- split$test 

length(trainset[,1]) 

length(testset[,1]) 

srange <- sigest(Error~.,data = trainset) 

srange 

s <- srange[2] 

s 

# Developing an RVM model: 

modelPcp <- rvm(Error~., data = trainset, type="regression", 

kernel="rbfdot", kpar="automatic",   alpha=ncol(as.matrix(trainset)), 

var=0.1, var.fix=FALSE, iterations=100, verbosity=0, tol=.Machine$double.eps, 

minmaxdiff=1e-3, cross=0, fit=FALSE) 

 

#Model characteristics: 

summary(modelPcp) 
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# Training Plot: 

modelPcp 

prediction <- predict(modelPcp, trainset[,-1]) 

sim1<-prediction[,] 

obs1<-trainset[,1] 

plot1<- ggof(sim=sim1, obs=obs1, ftype="dm", FUN=mean) 

 

# Plot for testing subset: 

prediction2 <- predict(modelPcp, testset[,-1])  

sim2<-prediction2[,]  

obs2<-testset[,1] 

plot2<- ggof(sim=sim2, obs=obs2, ftype="dm", FUN=mean) 

performance<- gof(sim=sim2, obs=obs2, ftype="dm", FUN=mean) 

modelPcp 

 

# Getting Predicted and Observed data on validation data: 

write.table (sim2, "sim2.csv", sep=",") 

write.table (obs2, "obs2.csv", sep=",") 

 

# Project the Target variable (Error in this case) based on new 

observations 

# import the new dataset: 

new <-read.csv ("New-Data.csv",header=TRUE, sep=",") 

fit2<- predict(fit, new[,-1]) 

pca2<- fit2[,1:5] 

prediction3 <- predict(modelPcp, pca2)  

sim3<-prediction3[,]  

obs3<-new [,1] 

write.table (sim3, "sim3.csv", sep=",") 



144 

 

write.table (obs3, "obs3.csv", sep=",") 

plot3<- ggof(sim=sim3, obs=obs3, ftype="dm", FUN=mean) 

performance<- gof(sim=sim3, obs=obs3, ftype="dm", FUN=mean) 

# -------------------------------------------- 

# End of the Code 
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Appendix 2 

Table A-Travel time and travel time reliability cost for each Route/time interval for Alternatives 1 and 2 

R
o

u
te

 

Time 

Interval 

Alternative 1 Alternative 2 

𝝉𝒇 (s) 𝝉̃(s) 𝝉̂(s) TTR Cost TT Cost 𝝉𝒇 (s) 𝝉̃(s) 𝝉̂(s) TTR Cost TT Cost 

1 6:00-6:30 96.1 113.2 175.9 $1,288  $9,435  96.1 113.2 175.9 $996  $8,208  

1 6:30-7:00 100.6 126.5 184.1 $1,993  $9,987  100.6 126.5 184.1 $1,198  $9,768  

1 7:00-7:30 100.5 124.6 184 $1,905  $9,298  100.5 124.6 184 $1,209  $9,728  

1 7:30-8:00 98.8 122.8 180.7 $1,808  $9,044  98.8 122.8 180.7 $1,171  $9,421  

1 8:00-8:30 96.7 120.8 177 $1,817  $8,400  96.7 120.8 177 $1,217  $8,998  

1 8:30-9:00 95.7 119.7 175.1 $1,653  $10,140  95.7 119.7 175.1 $1,212  $8,810  

1 9:00-9:30 94.9 119.2 173.7 $1,781  $9,402  94.9 119.2 173.7 $1,171  $8,080  

1 9:30-10:00 93.5 113.1 171.1 $1,399  $8,330  93.5 113.1 171.1 $973  $7,212  

1 10:00-10:30 91.7 105.1 167.9 $810  $5,606  91.7 105.1 167.9 $758  $6,066  

1 10:30-11:00 92.8 106.5 169.9 $784  $7,202  92.8 106.5 169.9 $713  $4,729  

1 11:00-11:30 92.3 105.1 169 $760  $7,139  92.3 105.1 169 $738  $6,265  

1 11:30-12:00 92.4 106.3 169.1 $877  $7,709  92.4 106.3 169.1 $764  $6,773  

1 12:00-12:30 93.2 105.6 170.5 $754  $7,585  93.2 105.6 170.5 $711  $6,655  

1 12:30-13:00 94.1 106.4 172.1 $816  $8,404  94.1 106.4 172.1 $756  $5,711  

1 13:00-13:30 93.8 107.8 171.7 $921  $8,228  93.8 107.8 171.7 $776  $8,725  

1 13:30-14:00 95.2 109.9 174.1 $1,065  $7,355  95.2 109.9 174.1 $904  $8,989  

1 14:00-14:30 95.8 113.9 175.3 $1,356  $10,194  95.8 113.9 175.3 $998  $8,239  

1 14:30-15:00 97.6 121.3 178.6 $1,938  $11,821  97.6 121.3 178.6 $1,176  $9,430  

1 15:00-15:30 98.1 120 179.4 $1,665  $10,914  98.1 120 179.4 $1,139  $8,022  

1 15:30-16:00 96.9 123.7 177.3 $2,188  $9,666  96.9 123.7 177.3 $1,241  $9,551  

1 16:00-16:30 96.8 119.7 177.1 $1,716  $10,248  96.8 119.7 177.1 $1,201  $6,776  

1 16:30-17:00 96.4 119.9 176.4 $1,667  $8,431  96.4 119.9 176.4 $1,236  $9,087  

1 17:00-17:30 96.8 118.4 177.2 $1,588  $8,356  96.8 118.4 177.2 $1,197  $9,082  

1 17:30-18:00 96.7 120.4 176.9 $1,724  $8,197  96.7 120.4 176.9 $1,187  $6,829  

1 18:00-18:30 95.5 117.3 174.8 $1,514  $9,388  95.5 117.3 174.8 $1,144  $8,119  

1 18:30-19:00 93.9 111.6 171.8 $1,249  $8,277  93.9 111.6 171.8 $1,037  $5,631  

1 19:00-19:30 92.3 105.8 169 $788  $6,583  92.3 105.8 169 $766  $5,781  

1 19:30-20:00 91 104.6 166.5 $650  $5,622  91 104.6 166.5 $625  $4,957  

1 20:00-20:30 90.8 102.9 166.1 $573  $5,284  90.8 102.9 166.1 $590  $4,682  

1 20:30-21:00 90.8 103 166.1 $513  $5,055  90.8 103 166.1 $557  $4,480  

1 21:00-21:30 90.8 103.3 166.1 $498  $4,923  90.8 103.3 166.1 $523  $4,352  

1 21:30-22:00 90.1 101.9 164.8 $417  $4,222  90.1 101.9 164.8 $451  $3,760  
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2 6:00-6:30 94.9 110.2 173.7 $10,646  $73,778  94.9 110.2 173.7 $9,995  $72,038  

2 6:30-7:00 100.4 120.7 183.7 $13,997  $97,509  100.4 120.7 183.7 $12,785  $96,472  

2 7:00-7:30 98.7 120 180.6 $13,809  $90,623  98.7 120 180.6 $12,553  $98,219  

2 7:30-8:00 97.8 119.8 179 $14,552  $87,624  97.8 119.8 179 $13,511  $98,638  

2 8:00-8:30 96.3 118.4 176.2 $14,841  $80,530  96.3 118.4 176.2 $13,985  $79,805  

2 8:30-9:00 94.8 117.4 173.5 $14,540  $98,774  94.8 117.4 173.5 $14,137  $98,439  

2 9:00-9:30 92.3 116.1 168.9 $14,680  $89,162  92.3 116.1 168.9 $14,273  $88,744  

2 9:30-10:00 91.4 108.6 167.3 $11,350  $65,902  91.4 108.6 167.3 $11,636  $64,755  

2 10:00-10:30 89.8 100.4 164.3 $6,662  $53,168  89.8 100.4 164.3 $6,736  $53,375  

2 10:30-11:00 91.5 102.8 167.4 $6,898  $55,420  91.5 102.8 167.4 $6,856  $55,325  

2 11:00-11:30 90.6 101.7 165.9 $7,086  $59,831  90.6 101.7 165.9 $6,906  $58,870  

2 11:30-12:00 90.9 103.2 166.3 $7,677  $64,088  90.9 103.2 166.3 $7,529  $63,448  

2 12:00-12:30 91.7 102.8 167.9 $6,768  $63,878  91.7 102.8 167.9 $6,619  $63,299  

2 12:30-13:00 92.9 103.5 170 $7,027  $65,146  92.9 103.5 170 $6,995  $65,148  

2 13:00-13:30 92.8 104.5 169.8 $7,764  $64,836  92.8 104.5 169.8 $7,611  $76,753  

2 13:30-14:00 94.4 107.6 172.8 $9,263  $70,285  94.4 107.6 172.8 $8,996  $95,072  

2 14:00-14:30 94.7 109.2 173.3 $11,010  $93,247  94.7 109.2 173.3 $11,064  $92,521  

2 14:30-15:00 96.7 116 177 $14,380  $106,953  96.7 116 177 $13,826  $87,946  

2 15:00-15:30 97.2 118 177.8 $15,233  $108,130  97.2 118 177.8 $13,703  $90,007  

2 15:30-16:00 96.2 118.2 176.1 $14,582  $84,041  96.2 118.2 176.1 $13,614  $82,580  

2 16:00-16:30 95.9 117.5 175.5 $14,178  $82,184  95.9 117.5 175.5 $13,711  $81,304  

2 16:30-17:00 95.3 117 174.3 $14,335  $78,548  95.3 117 174.3 $13,410  $78,049  

2 17:00-17:30 96 116.4 175.7 $14,199  $81,373  96 116.4 175.7 $13,504  $80,702  

2 17:30-18:00 95.9 117.8 175.6 $14,682  $80,131  95.9 117.8 175.6 $13,977  $79,408  

2 18:00-18:30 94.4 115.6 172.7 $14,184  $73,306  94.4 115.6 172.7 $13,771  $72,429  

2 18:30-19:00 92.3 107.3 168.9 $10,797  $64,055  92.3 107.3 168.9 $11,020  $64,331  

2 19:00-19:30 90.6 101.1 165.8 $6,451  $50,905  90.6 101.1 165.8 $6,594  $51,474  

2 19:30-20:00 89.3 99.6 163.3 $5,398  $43,770  89.3 99.6 163.3 $5,040  $45,194  

2 20:00-20:30 88.7 98 162.4 $4,576  $39,727  88.7 98 162.4 $4,749  $40,265  

2 20:30-21:00 88.9 97.8 162.8 $3,902  $37,219  88.9 97.8 162.8 $4,111  $37,529  

2 21:00-21:30 89.4 98.4 163.7 $3,830  $37,712  89.4 98.4 163.7 $3,866  $37,114  

2 21:30-22:00 88.2 97.1 161.4 $3,244  $31,532  88.2 97.1 161.4 $3,013  $31,382  

3 6:00-6:30 143.4 178.9 262.5 $3,252  $17,742  143.4 178.9 262.5 $1,693  $13,507  

3 6:30-7:00 151 192.8 276.4 $4,633  $22,361  151 192.8 276.4 $2,014  $16,683  

3 7:00-7:30 151.8 190.7 277.7 $4,550  $21,901  151.8 190.7 277.7 $2,136  $19,712  

3 7:30-8:00 146.3 190.5 267.8 $4,475  $19,782  146.3 190.5 267.8 $2,039  $16,409  

3 8:00-8:30 145.7 185.5 266.6 $4,029  $18,708  145.7 185.5 266.6 $2,049  $16,937  

3 8:30-9:00 144.5 181.7 264.5 $3,611  $21,462  144.5 181.7 264.5 $2,097  $16,972  
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3 9:00-9:30 141.3 179.8 258.5 $3,684  $20,058  141.3 179.8 258.5 $2,155  $15,712  

3 9:30-10:00 138.7 175.2 253.8 $3,353  $17,700  138.7 175.2 253.8 $1,751  $13,893  

3 10:00-10:30 136.6 170.3 250 $2,521  $12,878  136.6 170.3 250 $1,402  $11,800  

3 10:30-11:00 138.4 170 253.3 $2,412  $15,814  138.4 170 253.3 $1,290  $12,501  

3 11:00-11:30 137.7 169.1 252.1 $2,327  $13,262  137.7 169.1 252.1 $1,348  $10,418  

3 11:30-12:00 137.8 168.7 252.2 $2,600  $14,385  137.8 168.7 252.2 $1,424  $11,240  

3 12:00-12:30 137.3 169.5 251.2 $2,448  $16,006  137.3 169.5 251.2 $1,221  $12,664  

3 12:30-13:00 139.6 169.1 255.5 $2,577  $15,253  139.6 169.1 255.5 $1,279  $11,590  

3 13:00-13:30 140.4 174.8 257 $2,849  $17,591  140.4 174.8 257 $1,400  $11,853  

3 13:30-14:00 142.5 174.1 260.7 $2,925  $19,123  142.5 174.1 260.7 $1,526  $16,152  

3 14:00-14:30 142.7 176.9 261.1 $3,353  $21,008  142.7 176.9 261.1 $1,793  $15,659  

3 14:30-15:00 145.4 185.9 266 $4,423  $24,416  145.4 185.9 266 $2,091  $17,995  

3 15:00-15:30 147.9 183.1 270.6 $3,749  $22,877  147.9 183.1 270.6 $2,092  $16,159  

3 15:30-16:00 146.2 189.4 267.5 $4,619  $20,649  146.2 189.4 267.5 $2,036  $14,740  

3 16:00-16:30 145.6 182.9 266.4 $3,641  $18,361  145.6 182.9 266.4 $1,988  $13,706  

3 16:30-17:00 146 182.1 267.1 $3,811  $19,069  146 182.1 267.1 $2,106  $14,215  

3 17:00-17:30 143.7 181.2 263 $3,614  $18,324  143.7 181.2 263 $1,976  $13,750  

3 17:30-18:00 144.5 185 264.4 $3,876  $18,674  144.5 185 264.4 $2,062  $14,096  

3 18:00-18:30 142.7 179.2 261.2 $3,286  $19,694  142.7 179.2 261.2 $1,982  $12,653  

3 18:30-19:00 139.7 173.5 255.6 $2,916  $14,748  139.7 173.5 255.6 $1,761  $11,306  

3 19:00-19:30 136.4 170.1 249.5 $2,374  $13,906  136.4 170.1 249.5 $1,318  $9,891  

3 19:30-20:00 133.6 167.2 244.5 $1,948  $11,837  133.6 167.2 244.5 $1,119  $9,422  

3 20:00-20:30 133.6 167.5 244.4 $1,917  $9,775  133.6 167.5 244.4 $1,068  $9,146  

3 20:30-21:00 132.3 164 242.1 $1,630  $10,469  132.3 164 242.1 $936  $8,394  

3 21:00-21:30 133.7 165 244.7 $1,640  $10,600  133.7 165 244.7 $999  $8,488  

3 21:30-22:00 131.6 165.2 240.8 $1,457  $8,620  131.6 165.2 240.8 $779  $6,933  

4 6:00-6:30 111.1 156.9 203.4 $3,222  $10,753  111.1 156.9 203.4 $992  $8,207  

4 6:30-7:00 125.7 191.9 230.1 $4,753  $14,032  125.7 191.9 230.1 $1,133  $9,308  

4 7:00-7:30 129.9 205.7 237.7 $4,956  $15,074  129.9 205.7 237.7 $1,044  $9,314  

4 7:30-8:00 129.3 201.1 236.6 $4,846  $15,311  129.3 201.1 236.6 $1,048  $9,666  

4 8:00-8:30 123.8 190.5 226.5 $4,871  $16,332  123.8 190.5 226.5 $1,066  $7,756  

4 8:30-9:00 126.6 197.4 231.6 $4,831  $14,340  126.6 197.4 231.6 $1,034  $7,152  

4 9:00-9:30 122.3 195 223.7 $4,657  $14,816  122.3 195 223.7 $1,067  $9,012  

4 9:30-10:00 121.3 195.3 221.9 $4,733  $14,573  121.3 195.3 221.9 $1,201  $6,706  

4 10:00-10:30 110.4 162.6 202 $3,652  $12,603  110.4 162.6 202 $1,170  $7,585  

4 10:30-11:00 109.8 153.9 201 $3,330  $12,472  109.8 153.9 201 $1,135  $6,200  

4 11:00-11:30 109.4 153.8 200.2 $3,343  $12,404  109.4 153.8 200.2 $1,127  $5,968  

4 11:30-12:00 111.2 154.9 203.5 $3,257  $10,568  111.2 154.9 203.5 $1,127  $7,813  
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4 12:00-12:30 107.7 156.3 197 $3,471  $12,568  107.7 156.3 197 $1,130  $7,960  

4 12:30-13:00 111 159.4 203.2 $3,505  $12,036  111 159.4 203.2 $1,131  $8,593  

4 13:00-13:30 110.7 157.7 202.5 $3,528  $11,099  110.7 157.7 202.5 $1,086  $7,952  

4 13:30-14:00 117.6 171 215.3 $4,278  $16,459  117.6 171 215.3 $1,179  $10,380  

4 14:00-14:30 119.1 175.2 218 $4,325  $16,463  119.1 175.2 218 $1,173  $10,576  

4 14:30-15:00 127.9 201.4 234.1 $5,045  $17,866  127.9 201.4 234.1 $1,105  $9,563  

4 15:00-15:30 131.3 208 240.2 $5,147  $17,938  131.3 208 240.2 $1,084  $9,789  

4 15:30-16:00 136.7 219.7 250.2 $5,236  $18,800  136.7 219.7 250.2 $1,107  $10,675  

4 16:00-16:30 132.3 211.4 242 $5,045  $16,931  132.3 211.4 242 $1,093  $10,402  

4 16:30-17:00 130.4 200.7 238.7 $5,072  $17,726  130.4 200.7 238.7 $1,138  $9,810  

4 17:00-17:30 126.6 194.7 231.6 $4,838  $16,802  126.6 194.7 231.6 $1,059  $9,550  

4 17:30-18:00 127.9 202.4 234.1 $5,109  $14,945  127.9 202.4 234.1 $1,069  $7,586  

4 18:00-18:30 124.1 184.4 227.1 $4,818  $16,544  124.1 184.4 227.1 $1,073  $9,443  

4 18:30-19:00 119.6 183.9 218.8 $4,474  $15,809  119.6 183.9 218.8 $1,104  $9,194  

4 19:00-19:30 115.6 179 211.6 $4,107  $14,643  115.6 179 211.6 $1,067  $8,602  

4 19:30-20:00 109.5 167.2 200.4 $3,638  $13,069  109.5 167.2 200.4 $1,124  $7,553  

4 20:00-20:30 100.9 147.2 184.7 $2,454  $9,297  100.9 147.2 184.7 $990  $6,008  

4 20:30-21:00 102 146.7 186.6 $2,416  $9,087  102 146.7 186.6 $972  $5,945  

4 21:00-21:30 101.8 144.9 186.3 $2,381  $9,085  101.8 144.9 186.3 $988  $5,976  

4 21:30-22:00 99.6 144.9 182.3 $2,079  $7,712  99.6 144.9 182.3 $875  $5,125  

5 6:00-6:30 96.3 114.2 176.2 $14,662  $78,791  96.3 114.2 176.2 $11,710  $77,520  

5 6:30-7:00 101.8 130.9 186.2 $23,225  $99,826  101.8 130.9 186.2 $13,323  $93,847  

5 7:00-7:30 102.7 145.9 187.9 $30,726  $107,946  102.7 145.9 187.9 $12,176  $98,117  

5 7:30-8:00 103.1 135.6 188.7 $24,290  $108,016  103.1 135.6 188.7 $12,750  $100,958  

5 8:00-8:30 100.6 130.5 184.1 $22,233  $101,888  100.6 130.5 184.1 $12,042  $95,739  

5 8:30-9:00 100 139.5 183 $27,390  $104,772  100 139.5 183 $11,740  $95,418  

5 9:00-9:30 96.8 145.4 177.2 $30,457  $98,785  96.8 145.4 177.2 $11,735  $87,426  

5 9:30-10:00 96.7 141.5 176.9 $28,854  $94,564  96.7 141.5 176.9 $13,451  $84,664  

5 10:00-10:30 92.6 125.1 169.4 $22,051  $82,145  92.6 125.1 169.4 $14,494  $76,219  

5 10:30-11:00 93.8 121.5 171.7 $21,126  $80,416  93.8 121.5 171.7 $13,704  $77,137  

5 11:00-11:30 94.6 119.4 173 $18,484  $78,727  94.6 119.4 173 $14,231  $76,133  

5 11:30-12:00 95.1 119.7 174 $19,167  $78,388  95.1 119.7 174 $13,498  $75,644  

5 12:00-12:30 95.1 120.4 174 $19,406  $81,385  95.1 120.4 174 $14,151  $78,384  

5 12:30-13:00 95.1 120.6 174.1 $20,142  $89,598  95.1 120.6 174.1 $13,981  $81,166  

5 13:00-13:30 95.4 122.3 174.6 $21,492  $85,132  95.4 122.3 174.6 $13,438  $84,869  

5 13:30-14:00 96.7 126.2 177 $24,148  $121,346  96.7 126.2 177 $14,811  $116,845  

5 14:00-14:30 98 130.4 179.4 $24,788  $130,256  98 130.4 179.4 $13,597  $125,205  

5 14:30-15:00 102.4 144.6 187.4 $31,331  $124,872  102.4 144.6 187.4 $13,611  $115,156  
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5 15:00-15:30 104.4 138.7 191 $25,539  $103,763  104.4 138.7 191 $12,693  $117,299  

5 15:30-16:00 107 149.2 195.8 $30,514  $112,892  107 149.2 195.8 $13,455  $102,119  

5 16:00-16:30 102.9 143.4 188.3 $28,317  $108,887  102.9 143.4 188.3 $13,158  $100,251  

5 16:30-17:00 101.7 139.4 186.1 $28,069  $105,917  101.7 139.4 186.1 $12,436  $99,579  

5 17:00-17:30 101.6 137.6 185.9 $26,609  $105,437  101.6 137.6 185.9 $12,846  $96,831  

5 17:30-18:00 102 140 186.7 $27,092  $106,504  102 140 186.7 $11,739  $98,461  

5 18:00-18:30 100.6 140.8 184 $28,481  $104,651  100.6 140.8 184 $11,962  $97,184  

5 18:30-19:00 97.4 136.2 178.3 $25,759  $98,731  97.4 136.2 178.3 $12,263  $91,538  

5 19:00-19:30 94.2 132.2 172.5 $23,771  $88,665  94.2 132.2 172.5 $11,672  $82,903  

5 19:30-20:00 92 134.4 168.3 $24,170  $77,310  92 134.4 168.3 $13,008  $69,918  

5 20:00-20:30 90.2 119.1 165 $16,863  $58,727  90.2 119.1 165 $12,632  $56,374  

5 20:30-21:00 90.6 119.1 165.9 $16,932  $57,924  90.6 119.1 165.9 $13,183  $57,494  

5 21:00-21:30 90.4 118.6 165.5 $16,434  $56,551  90.4 118.6 165.5 $12,932  $54,810  

5 21:30-22:00 89.4 118.3 163.6 $14,411  $49,851  89.4 118.3 163.6 $11,631  $48,329  

6 6:00-6:30 92.2 130.3 168.6 $4,235  $13,749  92.2 130.3 168.6 $1,358  $11,720  

6 6:30-7:00 102.4 155.9 187.4 $6,125  $18,354  102.4 155.9 187.4 $1,628  $9,953  

6 7:00-7:30 106.8 166.8 195.4 $6,512  $20,871  106.8 166.8 195.4 $1,629  $10,884  

6 7:30-8:00 108.2 176.5 197.9 $6,466  $20,146  108.2 176.5 197.9 $1,575  $10,742  

6 8:00-8:30 103.1 156.3 188.7 $5,931  $18,021  103.1 156.3 188.7 $1,458  $9,957  

6 8:30-9:00 101.9 159 186.6 $6,136  $19,448  101.9 159 186.6 $1,544  $10,120  

6 9:00-9:30 97.9 151.9 179.1 $5,891  $19,545  97.9 151.9 179.1 $1,547  $9,705  

6 9:30-10:00 97.1 149.3 177.8 $5,928  $19,202  97.1 149.3 177.8 $1,662  $9,309  

6 10:00-10:30 89.7 128.7 164.1 $4,763  $17,440  89.7 128.7 164.1 $1,636  $8,395  

6 10:30-11:00 89.2 124.1 163.3 $4,275  $14,202  89.2 124.1 163.3 $1,600  $8,403  

6 11:00-11:30 89.6 123.3 164 $3,979  $12,862  89.6 123.3 164 $1,497  $10,845  

6 11:30-12:00 90.8 127.3 166.1 $4,247  $13,796  90.8 127.3 166.1 $1,586  $8,355  

6 12:00-12:30 89 124.1 162.8 $4,294  $13,573  89 124.1 162.8 $1,566  $8,293  

6 12:30-13:00 91.8 129.7 168 $4,499  $15,938  91.8 129.7 168 $1,548  $12,412  

6 13:00-13:30 91.8 124.4 168 $4,575  $14,963  91.8 124.4 168 $1,585  $10,922  

6 13:30-14:00 97 139.1 177.5 $5,412  $21,454  97 139.1 177.5 $1,641  $12,730  

6 14:00-14:30 99 148.3 181.2 $5,480  $21,661  99 148.3 181.2 $1,641  $14,475  

6 14:30-15:00 107.2 169 196.2 $6,508  $23,767  107.2 169 196.2 $1,590  $13,535  

6 15:00-15:30 109.5 176.2 200.3 $6,485  $23,616  109.5 176.2 200.3 $1,538  $13,690  

6 15:30-16:00 115.4 187 211.2 $6,577  $21,674  115.4 187 211.2 $1,468  $12,923  

6 16:00-16:30 109.3 176.1 199.9 $6,248  $20,108  109.3 176.1 199.9 $1,553  $14,296  

6 16:30-17:00 109.4 172.8 200.3 $6,558  $20,172  109.4 172.8 200.3 $1,556  $12,191  

6 17:00-17:30 108.2 168.5 198 $6,307  $22,230  108.2 168.5 198 $1,433  $9,890  

6 17:30-18:00 104.9 162.8 192.1 $6,215  $19,523  104.9 162.8 192.1 $1,537  $10,259  
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6 18:00-18:30 103.2 153.3 188.9 $6,053  $18,854  103.2 153.3 188.9 $1,498  $9,886  

6 18:30-19:00 97.1 148.5 177.8 $5,401  $17,390  97.1 148.5 177.8 $1,507  $9,719  

6 19:00-19:30 92 143.6 168.4 $4,931  $16,510  92 143.6 168.4 $1,475  $9,135  

6 19:30-20:00 87.8 133.3 160.7 $4,499  $17,423  87.8 133.3 160.7 $1,539  $7,845  

6 20:00-20:30 81.6 115.7 149.4 $3,102  $10,034  81.6 115.7 149.4 $1,339  $8,631  

6 20:30-21:00 82.4 110.6 150.7 $3,003  $9,951  82.4 110.6 150.7 $1,340  $8,713  

6 21:00-21:30 82.7 111.5 151.3 $2,783  $11,359  82.7 111.5 151.3 $1,306  $5,933  

6 21:30-22:00 80.6 109.9 147.4 $2,500  $7,939  80.6 109.9 147.4 $1,108  $5,121  

7 6:00-6:30 96.9 123 177.4 $755  $4,668  96.9 123 177.4 $535  $4,588  

7 6:30-7:00 101.5 125.2 185.8 $948  $6,451  101.5 125.2 185.8 $736  $6,297  

7 7:00-7:30 101.7 125.2 186.1 $890  $5,959  101.7 125.2 186.1 $665  $5,838  

7 7:30-8:00 101 125.1 184.8 $840  $5,500  101 125.1 184.8 $597  $5,367  

7 8:00-8:30 98.9 123.1 181 $795  $5,296  98.9 123.1 181 $501  $5,190  

7 8:30-9:00 99.2 123.2 181.5 $760  $5,212  99.2 123.2 181.5 $566  $5,074  

7 9:00-9:30 95.8 121.2 175.3 $652  $4,117  95.8 121.2 175.3 $439  $4,060  

7 9:30-10:00 96.8 119.9 177.2 $604  $4,098  96.8 119.9 177.2 $462  $4,012  

7 10:00-10:30 92.8 118.9 169.9 $526  $3,141  92.8 118.9 169.9 $378  $3,058  

7 10:30-11:00 94.4 120.5 172.8 $631  $3,921  94.4 120.5 172.8 $453  $3,814  

7 11:00-11:30 95.1 120.1 174 $610  $3,772  95.1 120.1 174 $437  $3,696  

7 11:30-12:00 95.5 119.4 174.7 $626  $4,007  95.5 119.4 174.7 $459  $3,916  

7 12:00-12:30 96.1 119.6 175.9 $572  $3,825  96.1 119.6 175.9 $412  $3,744  

7 12:30-13:00 96.4 121 176.4 $697  $4,416  96.4 121 176.4 $535  $4,298  

7 13:00-13:30 96.5 122.3 176.6 $679  $4,252  96.5 122.3 176.6 $481  $4,161  

7 13:30-14:00 97.9 122.5 179.2 $763  $5,586  97.9 122.5 179.2 $589  $5,444  

7 14:00-14:30 99.5 122.7 182.1 $742  $5,751  99.5 122.7 182.1 $569  $5,576  

7 14:30-15:00 100.1 125.1 183.2 $916  $6,092  100.1 125.1 183.2 $706  $5,901  

7 15:00-15:30 99.5 125.7 182.1 $1,001  $6,207  99.5 125.7 182.1 $676  $6,098  

7 15:30-16:00 102.8 126.4 188.2 $900  $6,082  102.8 126.4 188.2 $706  $5,914  

7 16:00-16:30 100.9 125.4 184.6 $887  $5,929  100.9 125.4 184.6 $662  $5,822  

7 16:30-17:00 99.6 123.3 182.3 $789  $5,278  99.6 123.3 182.3 $602  $5,232  

7 17:00-17:30 100.5 123.8 183.8 $764  $5,281  100.5 123.8 183.8 $588  $5,182  

7 17:30-18:00 99 124.1 181.1 $789  $5,084  99 124.1 181.1 $596  $4,965  

7 18:00-18:30 98.3 122.7 179.9 $710  $4,723  98.3 122.7 179.9 $510  $4,670  

7 18:30-19:00 96.8 120.6 177.1 $635  $4,146  96.8 120.6 177.1 $473  $4,097  

7 19:00-19:30 93.8 120.4 171.7 $533  $3,167  93.8 120.4 171.7 $358  $3,111  

7 19:30-20:00 92.4 119.8 169.1 $539  $3,127  92.4 119.8 169.1 $386  $3,048  

7 20:00-20:30 91.4 117.7 167.2 $431  $2,546  91.4 117.7 167.2 $328  $2,489  

7 20:30-21:00 91 115.4 166.6 $414  $2,513  91 115.4 166.6 $328  $2,480  
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7 21:00-21:30 91.1 117.9 166.8 $490  $2,809  91.1 117.9 166.8 $363  $2,734  

7 21:30-22:00 90.4 118.9 165.4 $407  $2,262  90.4 118.9 165.4 $307  $2,209  

8 6:00-6:30 69 85.6 126.2 $1,475  $7,701  69 85.6 126.2 $697  $6,123  

8 6:30-7:00 70.4 85.9 128.9 $1,792  $10,183  70.4 85.9 128.9 $754  $11,708  

8 7:00-7:30 70.4 86.5 128.8 $1,813  $10,162  70.4 86.5 128.8 $791  $7,926  

8 7:30-8:00 69.3 85.7 126.8 $1,700  $9,169  69.3 85.7 126.8 $699  $7,174  

8 8:00-8:30 68.9 85.5 126.2 $1,735  $9,260  68.9 85.5 126.2 $710  $7,266  

8 8:30-9:00 68.7 86.2 125.8 $1,706  $8,870  68.7 86.2 125.8 $698  $6,937  

8 9:00-9:30 66.9 83.9 122.4 $1,294  $6,741  66.9 83.9 122.4 $569  $5,334  

8 9:30-10:00 67.3 83.8 123.2 $1,339  $6,960  67.3 83.8 123.2 $566  $5,524  

8 10:00-10:30 65.3 83.5 119.5 $1,131  $5,397  65.3 83.5 119.5 $512  $6,385  

8 10:30-11:00 66.7 83.7 122.1 $1,263  $6,327  66.7 83.7 122.1 $551  $7,406  

8 11:00-11:30 66.5 82.9 121.7 $1,253  $6,391  66.5 82.9 121.7 $573  $5,101  

8 11:30-12:00 66.6 83.7 122 $1,302  $6,518  66.6 83.7 122 $600  $7,654  

8 12:00-12:30 66.3 83.6 121.4 $1,283  $6,355  66.3 83.6 121.4 $594  $7,482  

8 12:30-13:00 67.8 84.6 124.1 $1,384  $7,008  67.8 84.6 124.1 $562  $5,545  

8 13:00-13:30 67.3 84.2 123.2 $1,365  $9,600  67.3 84.2 123.2 $573  $5,563  

8 13:30-14:00 68.7 85.5 125.7 $1,517  $7,898  68.7 85.5 125.7 $680  $6,235  

8 14:00-14:30 67.9 84.2 124.2 $1,543  $8,369  67.9 84.2 124.2 $685  $6,630  

8 14:30-15:00 70.3 86.1 128.7 $1,725  $12,312  70.3 86.1 128.7 $813  $10,072  

8 15:00-15:30 69.8 87.5 127.8 $2,053  $14,057  69.8 87.5 127.8 $795  $11,761  

8 15:30-16:00 69.1 86.6 126.5 $1,871  $10,057  69.1 86.6 126.5 $832  $7,680  

8 16:00-16:30 68.9 85.2 126.1 $1,751  $9,439  68.9 85.2 126.1 $795  $7,406  

8 16:30-17:00 69.1 84.4 126.5 $1,549  $8,880  69.1 84.4 126.5 $658  $6,950  

8 17:00-17:30 69.4 85.4 126.9 $1,622  $8,792  69.4 85.4 126.9 $623  $6,936  

8 17:30-18:00 69 86.2 126.2 $1,657  $8,470  69 86.2 126.2 $693  $6,600  

8 18:00-18:30 67.9 84.4 124.3 $1,517  $8,001  67.9 84.4 124.3 $671  $6,370  

8 18:30-19:00 67.5 84.5 123.5 $1,384  $7,102  67.5 84.5 123.5 $613  $5,626  

8 19:00-19:30 66.7 84.9 122.1 $1,148  $5,550  66.7 84.9 122.1 $521  $4,425  

8 19:30-20:00 66.2 85.1 121.1 $1,158  $5,338  66.2 85.1 121.1 $536  $6,224  

8 20:00-20:30 64.7 84.8 118.4 $980  $6,003  64.7 84.8 118.4 $445  $5,166  

8 20:30-21:00 64.2 83.4 117.4 $945  $6,013  64.2 83.4 117.4 $481  $5,226  

8 21:00-21:30 66 84.6 120.7 $1,021  $6,526  66 84.6 120.7 $488  $5,588  

8 21:30-22:00 65.1 84.1 119.1 $863  $4,083  65.1 84.1 119.1 $440  $4,855  

9 6:00-6:30 69.3 89.6 126.9 $627  $3,866  69.3 89.6 126.9 $315  $2,951  

9 6:30-7:00 72.5 92.1 132.6 $778  $5,001  72.5 92.1 132.6 $370  $3,765  

9 7:00-7:30 72.1 91.9 132 $726  $4,707  72.1 91.9 132 $352  $3,539  

9 7:30-8:00 71.4 92.2 130.6 $683  $4,231  71.4 92.2 130.6 $333  $3,170  
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9 8:00-8:30 70.9 90.8 129.7 $675  $4,282  70.9 90.8 129.7 $299  $3,217  

9 8:30-9:00 68.9 89.2 126.2 $659  $4,127  68.9 89.2 126.2 $305  $3,142  

9 9:00-9:30 68.3 87.4 125 $511  $3,247  68.3 87.4 125 $258  $2,481  

9 9:30-10:00 67.1 87.7 122.8 $554  $3,258  67.1 87.7 122.8 $263  $2,493  

9 10:00-10:30 65.9 85.6 120.7 $447  $2,706  65.9 85.6 120.7 $220  $2,075  

9 10:30-11:00 66.8 86.6 122.2 $488  $2,955  66.8 86.6 122.2 $237  $2,259  

9 11:00-11:30 66.6 85.9 121.8 $518  $3,169  66.6 85.9 121.8 $258  $2,422  

9 11:30-12:00 68.3 86.1 125 $476  $3,123  68.3 86.1 125 $264  $2,387  

9 12:00-12:30 67.4 87.3 123.3 $520  $3,197  67.4 87.3 123.3 $255  $2,442  

9 12:30-13:00 69.2 88.8 126.6 $557  $3,428  69.2 88.8 126.6 $271  $2,600  

9 13:00-13:30 68.1 87.8 124.7 $545  $3,476  68.1 87.8 124.7 $296  $2,656  

9 13:30-14:00 70 88.8 128.1 $563  $3,713  70 88.8 128.1 $284  $2,829  

9 14:00-14:30 69.8 90.6 127.8 $682  $4,015  69.8 90.6 127.8 $288  $3,015  

9 14:30-15:00 71.6 92 131 $733  $4,586  71.6 92 131 $369  $3,431  

9 15:00-15:30 71.5 91.9 130.8 $731  $4,771  71.5 91.9 130.8 $353  $3,561  

9 15:30-16:00 71.6 91.3 131 $731  $4,719  71.6 91.3 131 $383  $3,537  

9 16:00-16:30 71.5 90.8 130.9 $675  $4,398  71.5 90.8 130.9 $326  $3,306  

9 16:30-17:00 71.4 90.2 130.7 $645  $4,188  71.4 90.2 130.7 $314  $3,162  

9 17:00-17:30 71.2 89.9 130.4 $629  $4,178  71.2 89.9 130.4 $320  $3,154  

9 17:30-18:00 70.5 90.1 128.9 $609  $3,932  70.5 90.1 128.9 $323  $2,967  

9 18:00-18:30 69.3 90 126.8 $610  $3,700  69.3 90 126.8 $284  $2,798  

9 18:30-19:00 68.1 87.6 124.6 $522  $3,297  68.1 87.6 124.6 $265  $2,523  

9 19:00-19:30 66.3 86.1 121.3 $420  $2,559  66.3 86.1 121.3 $202  $1,966  

9 19:30-20:00 65.7 85.6 120.2 $401  $2,358  65.7 85.6 120.2 $200  $1,815  

9 20:00-20:30 64.5 85.7 118 $353  $1,980  64.5 85.7 118 $172  $1,534  

9 20:30-21:00 64.8 85 118.7 $338  $1,971  64.8 85 118.7 $174  $1,531  

9 21:00-21:30 65.1 86.6 119.2 $390  $2,199  65.1 86.6 119.2 $198  $1,693  

9 21:30-22:00 64.9 85.1 118.7 $328  $1,867  64.9 85.1 118.7 $171  $1,457  

10 6:00-6:30 93.2 107.5 170.6 $1,275  $9,734  93.2 107.5 170.6 $1,531  $9,862  

10 6:30-7:00 95.9 109.6 175.5 $1,377  $11,305  95.9 109.6 175.5 $1,947  $12,658  

10 7:00-7:30 95.8 109.8 175.2 $1,486  $12,305  95.8 109.8 175.2 $1,985  $12,271  

10 7:30-8:00 94.7 109 173.2 $1,544  $12,698  94.7 109 173.2 $2,026  $12,420  

10 8:00-8:30 94.7 107.7 173.3 $1,300  $13,850  94.7 107.7 173.3 $1,760  $11,254  

10 8:30-9:00 94.6 107.8 173.1 $1,319  $10,794  94.6 107.8 173.1 $1,791  $10,887  

10 9:00-9:30 92.3 106.6 168.9 $1,182  $9,475  92.3 106.6 168.9 $1,595  $9,672  

10 9:30-10:00 92.5 106.2 169.2 $1,145  $9,712  92.5 106.2 169.2 $1,399  $11,992  

10 10:00-10:30 89.3 104.7 163.4 $1,100  $8,100  89.3 104.7 163.4 $1,165  $8,046  

10 10:30-11:00 92 106 168.4 $1,105  $9,031  92 106 168.4 $1,401  $8,911  
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10 11:00-11:30 91.2 105.5 166.9 $1,093  $10,940  91.2 105.5 166.9 $1,230  $8,364  

10 11:30-12:00 91.2 104.4 167 $1,036  $8,668  91.2 104.4 167 $1,363  $8,657  

10 12:00-12:30 91.9 105.2 168.3 $1,126  $9,479  91.9 105.2 168.3 $1,458  $9,386  

10 12:30-13:00 91.9 105.9 168.2 $1,155  $9,003  91.9 105.9 168.2 $1,531  $9,089  

10 13:00-13:30 91.8 107.2 167.9 $1,282  $9,609  91.8 107.2 167.9 $1,411  $9,537  

10 13:30-14:00 93.2 107.1 170.6 $1,219  $14,272  93.2 107.1 170.6 $1,757  $14,605  

10 14:00-14:30 93.8 108.5 171.7 $1,417  $15,466  93.8 108.5 171.7 $1,812  $15,715  

10 14:30-15:00 94.1 108.3 172.2 $1,464  $15,160  94.1 108.3 172.2 $2,094  $15,465  

10 15:00-15:30 95.2 109.7 174.2 $1,507  $14,647  95.2 109.7 174.2 $1,942  $14,564  

10 15:30-16:00 97 112.2 177.6 $1,733  $13,414  97 112.2 177.6 $2,611  $13,759  

10 16:00-16:30 96.3 111 176.3 $1,632  $13,467  96.3 111 176.3 $2,319  $13,339  

10 16:30-17:00 95 108 173.8 $1,417  $12,844  95 108 173.8 $2,312  $12,785  

10 17:00-17:30 95 108.6 173.9 $1,457  $11,859  95 108.6 173.9 $1,920  $11,950  

10 17:30-18:00 95.7 109.5 175.1 $1,448  $11,974  95.7 109.5 175.1 $1,988  $13,487  

10 18:00-18:30 94.6 108.6 173.2 $1,352  $13,948  94.6 108.6 173.2 $1,795  $12,305  

10 18:30-19:00 93.8 107 171.6 $1,192  $10,134  93.8 107 171.6 $1,525  $10,274  

10 19:00-19:30 91.4 105.3 167.3 $929 $7,338  91.4 105.3 167.3 $1,162  $9,203  

10 19:30-20:00 90.3 104.3 165.2 $809  $7,867  90.3 104.3 165.2 $976  $7,746  

10 20:00-20:30 88.2 103.8 161.3 $768  $6,753  88.2 103.8 161.3 $767  $6,641  

10 20:30-21:00 87.9 102.3 160.8 $694  $6,339  87.9 102.3 160.8 $759  $6,248  

10 21:00-21:30 88.1 103.7 161.2 $732  $6,247  88.1 103.7 161.2 $769  $6,108  

10 21:30-22:00 89.3 104.7 163.5 $697  $6,212  89.3 104.7 163.5 $750  $6,030  

11 6:00-6:30 72.4 109.9 132.5 $546  $2,206  72.4 109.9 132.5 $203  $1,607  

11 6:30-7:00 75.7 109.9 138.6 $605  $2,614  75.7 109.9 138.6 $215  $1,885  

11 7:00-7:30 73.7 108.9 134.9 $654  $2,829  73.7 108.9 134.9 $227  $2,041  

11 7:30-8:00 73.8 109.2 135.1 $678  $2,790  73.8 109.2 135.1 $215  $2,007  

11 8:00-8:30 73.2 111.8 133.9 $635  $2,575  73.2 111.8 133.9 $238  $1,851  

11 8:30-9:00 75.6 108.9 138.4 $630  $2,738  75.6 108.9 138.4 $235  $1,992  

11 9:00-9:30 72.7 110.2 133.1 $601  $2,422  72.7 110.2 133.1 $232  $1,780  

11 9:30-10:00 72.4 109.9 132.6 $594  $2,425  72.4 109.9 132.6 $209  $1,761  

11 10:00-10:30 71.9 107.5 131.6 $513  $2,079  71.9 107.5 131.6 $184  $1,502  

11 10:30-11:00 72.5 110.6 132.7 $595  $2,308  72.5 110.6 132.7 $228  $1,685  

11 11:00-11:30 71 107.1 129.9 $535  $2,166  71 107.1 129.9 $202  $1,591  

11 11:30-12:00 70.3 106.3 128.6 $530  $2,327  70.3 106.3 128.6 $212  $1,692  

11 12:00-12:30 75.1 112.3 137.4 $632  $2,511  75.1 112.3 137.4 $213  $1,795  

11 12:30-13:00 74.6 110.4 136.4 $587  $2,405  74.6 110.4 136.4 $216  $1,725  

11 13:00-13:30 74 109.6 135.4 $606  $2,554  74 109.6 135.4 $245  $1,854  

11 13:30-14:00 73.1 107.8 133.8 $611  $2,557  73.1 107.8 133.8 $210  $1,864  
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11 14:00-14:30 75 109 137.2 $608  $2,679  75 109 137.2 $213  $2,112  

11 14:30-15:00 73.8 111 135.1 $724  $2,994  73.8 111 135.1 $239  $2,232  

11 15:00-15:30 76.7 114 140.4 $732  $2,838  76.7 114 140.4 $247  $2,037  

11 15:30-16:00 75.4 110.8 137.9 $696  $3,024  75.4 110.8 137.9 $270  $2,185  

11 16:00-16:30 76 110 139.1 $752  $3,159  76 110 139.1 $279  $2,292  

11 16:30-17:00 73.9 108.4 135.2 $672  $2,868  73.9 108.4 135.2 $250  $2,072  

11 17:00-17:30 74.1 111.6 135.5 $690  $2,835  74.1 111.6 135.5 $235  $2,037  

11 17:30-18:00 76.5 112 140 $703  $2,904  76.5 112 140 $229  $2,084  

11 18:00-18:30 73.5 110.1 134.4 $651  $2,697  73.5 110.1 134.4 $236  $1,960  

11 18:30-19:00 72.1 108.1 131.9 $582  $2,405  72.1 108.1 131.9 $208  $1,755  

11 19:00-19:30 71.3 109.4 130.5 $441  $1,766  71.3 109.4 130.5 $159  $1,281  

11 19:30-20:00 70.6 108.8 129.1 $391  $1,529  70.6 108.8 129.1 $156  $1,117  

11 20:00-20:30 69.9 107.4 128 $319  $1,458  69.9 107.4 128 $134  $978  

11 20:30-21:00 68.9 105 126.1 $289  $1,500  68.9 105 126.1 $137  $907  

11 21:00-21:30 68 105.4 124.4 $269  $1,396  68 105.4 124.4 $112  $1,093  

11 21:30-22:00 68.1 107.3 124.5 $303  $1,494  68.1 107.3 124.5 $129  $1,176  

12 6:00-6:30 92.5 113.5 169.4 $1,350  $9,810  92.5 113.5 169.4 $927  $6,853  

12 6:30-7:00 96.4 116.3 176.5 $1,509  $9,317  96.4 116.3 176.5 $1,001  $8,196  

12 7:00-7:30 95.6 116.2 174.9 $1,593  $11,913  95.6 116.2 174.9 $973  $8,361  

12 7:30-8:00 95.3 114.7 174.4 $1,573  $12,087  95.3 114.7 174.4 $1,053  $8,412  

12 8:00-8:30 94.6 113.4 173.1 $1,430  $8,938  94.6 113.4 173.1 $924  $7,846  

12 8:30-9:00 93.4 113.8 170.8 $1,512  $11,285  93.4 113.8 170.8 $1,015  $8,074  

12 9:00-9:30 91.2 111.5 167 $1,298  $9,727  91.2 111.5 167 $847  $6,819  

12 9:30-10:00 90.4 111.5 165.5 $1,346  $7,629  90.4 111.5 165.5 $861  $6,739  

12 10:00-10:30 88.7 109.8 162.4 $1,134  $8,020  88.7 109.8 162.4 $785  $5,570  

12 10:30-11:00 91.2 112.3 166.9 $1,288  $7,573  91.2 112.3 166.9 $828  $8,475  

12 11:00-11:30 88.7 109.5 162.3 $1,254  $8,823  88.7 109.5 162.3 $810  $6,502  

12 11:30-12:00 90.3 110 165.2 $1,237  $7,657  90.3 110 165.2 $857  $6,791  

12 12:00-12:30 91.1 110.3 166.7 $1,286  $9,779  91.1 110.3 166.7 $855  $7,145  

12 12:30-13:00 91.4 109.9 167.3 $1,208  $8,252  91.4 109.9 167.3 $861  $8,662  

12 13:00-13:30 91.8 110.8 167.9 $1,323  $7,987  91.8 110.8 167.9 $922  $7,037  

12 13:30-14:00 92.2 113.3 168.7 $1,418  $8,280  92.2 113.3 168.7 $926  $9,571  

12 14:00-14:30 93.4 113.4 170.9 $1,470  $11,672  93.4 113.4 170.9 $1,002  $11,235  

12 14:30-15:00 95.2 115.1 174.3 $1,655  $12,535  95.2 115.1 174.3 $1,091  $11,655  

12 15:00-15:30 95.2 115.3 174.2 $1,580  $11,964  95.2 115.3 174.2 $1,041  $10,821  

12 15:30-16:00 97.2 116.3 177.8 $1,637  $10,368  97.2 116.3 177.8 $1,120  $9,245  

12 16:00-16:30 96.8 115.9 177.2 $1,664  $10,416  96.8 115.9 177.2 $1,085  $9,042  

12 16:30-17:00 94.3 114.9 172.5 $1,666  $9,663  94.3 114.9 172.5 $1,071  $11,068  
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12 17:00-17:30 94.8 114.3 173.4 $1,552  $9,529  94.8 114.3 173.4 $1,051  $8,425  

12 17:30-18:00 95.7 114.9 175.1 $1,571  $9,975  95.7 114.9 175.1 $1,074  $9,368  

12 18:00-18:30 94 114 172 $1,487  $9,212  94 114 172 $1,012  $10,341  

12 18:30-19:00 91.3 112.1 167.1 $1,354  $7,755  91.3 112.1 167.1 $885  $8,920  

12 19:00-19:30 89.1 110.6 163 $1,067  $6,150  89.1 110.6 163 $745  $6,903  

12 19:30-20:00 86.8 109.5 158.9 $979  $6,431  86.8 109.5 158.9 $657  $5,908  

12 20:00-20:30 86 109.1 157.4 $880  $5,620  86 109.1 157.4 $594  $5,202  

12 20:30-21:00 85.3 108.6 156 $783  $5,063  85.3 108.6 156 $546  $4,672  

12 21:00-21:30 86.1 110.5 157.6 $820  $5,052  86.1 110.5 157.6 $543  $4,617  

12 21:30-22:00 85.3 109.8 156 $762  $4,841  85.3 109.8 156 $527  $4,459  

Sum $1,714,385 $8,282,449  Sum $1,032,186  $7,442,994  

 

 


