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Abstract

Let A and B be finite sets with |A| = n and |B| = m. An (n, m,w)-perfect hash
family is a collection F of functions from A to B such that for any X C A with
|X| = w, there exists at least one f € F such that f is one-to-one when restricted
to X. Perfect hash families are basic combinatorial structures and they have played
important roles in Computer Science in areas such as database management, oper-
ating systems, and compiler constructions. Such hash families are used for memory
efficient storage and fast retrieval of items such as reserved words in programming
languages, command names in interactive systems, or commonly used words in
natural languages. More recently, perfect hash families have found numerous ap-
plications to cryptography, for example, to broadcast encryption schemes, secret
sharing, key distribution patterns, visual cryptography, cover-free families and se-
cure frameproof codes.

In this thesis, we survey constructions and applications of perfect hash families.
For constructions, we divided the results into three parts, depending on underly-
ing structure and properties of the constructions: combinatorial structures, linear
functionals, and algebraic structures. For applications, we focus on those related

to cryptography.
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Chapter 1

Introduction to Perfect Hash

Families

In this chapter, definitions and examples of perfect hash families are given, and
then we will discuss fundamental properties of perfect hash families such as the
bounds based on the results by Mehlhorn [22]. In addition, we will deal with the
reasons that perfect hash families are studied with a focus on history and direction.

Finally, we will introduce the organization of this thesis.

1.1 What is a Perfect Hash Family?

Let n, m and w be integers such that n > m > w > 2. Let A and B be finite
sets with |A| = n and |B| = m. Throughout the whole thesis, we will use these
notations. An (n,m) hash function is any function f : A — B. A hash function
with finite domain is also known as a compression function. An (n,m) hash family

is a collection F of functions such that each f € F is an (n,m) hash function.
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Definition 1.1 An (n,m,w)-perfect hash family F is a collection of functions such
that
f:A—B

for each f € F, where |A| = n, |B| = m, and for any X C A such that |X| = w,
there exists at least one f € F such that f|x is injective.

’ is used to denote the restriction to the

In the above definition, the notation ‘|x
set X. We say that a function f : A — B separates X C A if f is injective when
restricted to X. From now on, we will use the notation PHF(N;n,m,w) for an
(n,m,w)-perfect hash family with |F| = N. Also, we will let N(n,m,w) denote
the minimum value N such that a PHF(N;n,m,w) exists. If N = N(n,m,w),

then PHF(N;n,m,w) is called optimal.

Example 1.1 We have a PHF(4;9,3,3). Consider the matrix:

111222333

123123123
M=

123312231

123231312

Let A ={1,2,3,4,5,6,7,8,9} and B = {1,2,3}. Hence n =9, m = 3.

For any « = 1,2,3,4, Define f;(x) = the value of entry (¢, ) of M. Then we have a
(9,3, 3)-perfect hash family, F = {f; : 1 < < 4}, as shown in Figure 1.1. In order
to check that F is a PHF(4;9,3,3), for any subset X C A with |X| = 3, we have
to find at least one function of F which separates X. These verifications for all (g)
subsets of A of size 3 are shown in Table 1.1. As shown in Table 1.1, each 3-subset

is separated by a function of F. O
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[ @ J1]2]3]4]5]6]7]8]9]

Ay [1]t]1]2]2]2]3]3]3
R 123123123
B [12]33[1[2]2[3]1
A [1l2]3 2313 [1]2

FIGURE 1.1: A PHF(4;9,3,3)

Table 1.1: Verification that F is a PHF(4;9,3,3)

(X i [ X] @ [ X] @ [ X[ i [X] i [X] i |
123234124 3 [125] 4 [126] 2 [ 127] 4 [ 128] 3
120 2 134 4 135 2 136 3 |137| 3 | 138] 2
139 4 |145| 4 |146| 3 | 147|134 148| 1 | 149]| 1
156 | 2 157 1 | 158| 1 | 159|124 167| 1 || 168123
169 | 1 (178 3 179 4 [189| 2 | 234| 2 | 23| 3
236 | 4 ||237| 2 [238| 4 [239| 3 |245| 3 | 246| 4
247 | 1 ||248| 1 (249|123 256| 1 |[257| 1 | 258|134
259 | 1 ||267|124(268| 1 |269| 1 [278| 4 |279| 2
289 | 3 |I345| 2 [346| 4 | 347| 1 (348|124 349 1
356 | 3 ||357 (123358 2 359 1 [367| 1 |[368]| 1
369 [ 1,34 ||378| 2 (379 3 |389| 4 456|234 457 3
458 | 4 ||459 | 2 ||467| 4 ||468| 2 |l469| 3 |[478| 4
479 | 3 ||489| 2 ||s67| 2 ||s568| 3 [569| 4 |578| 3
579 2 ||589| 4 (678 2 [679| 4 |[689| 3 | 789234

Note: X is a 3-subset of A and ¢ represents a function f; € F. To save space, we
write a subset X in the form 123, instead of {1, 2, 3}.
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Let m be a partition of a set A. When the elements of X C A are in distinct parts
of m, we say that a set X is separated by a partition m. Naturally, perfect hash

families may also be thought of as sets of partitions with some special properties.

Proposition 1.1 Suppose that I1 is a set of partitions of a set A with |II| = N
and for all X C A with |X| = w, there exists at least one m € II that separates X.
Then there exists a PHF(N;n,m,w). Conversely, a PHF(N;n,m,w) gives rise to
such a set 11 of partitions of A.

Proof LetII = {m,m,...,mn} be aset of partitions of a set A. We can construct
a collection F of functions by labeling the parts of each partition m; with distinct
elements of B, and then defining f; to map each * € A to the label of the part
of m; containing x. Then resulting set of functions, say F = {f1, f2,..., fnv}, is an
(n, m,w)-perfect hash family.

Conversely, suppose that F = {f1,..., fn} is a PHF(N;n,m,w). We can con-
struct a set of partitions of A, say II = {m,...,7n}, by setting 7; to f; for all
= 1,2,...,N. And then for any m;, z,y € A in the same part of m; whenever
filz) = fi(y). Hence II is the desired set of partitions of A. O

Example 1.2 Let A = {1,2,3,4,5,6,7,8,9}. Applying the process described in
Proposition 1.1 to the PHF(4;9,3,3) constructed in Example 1.1, we get the fol-

lowing;

m = {{1,2,3},{4,5,6},{7.8,9}}, my = {{1,4,7},{2,5,8},{3,6,9}},
s = {{1,5,9},{2,6,7},{3,4,8}}, s = {{1,6,8},{2,4,9},{3,5,7}}.

Thus, II = {my, 72, 3, 4} is the desired set of partitions of A.

Conversely, we can construct, for ¢ = 1,2, 3,4, by regarding f,(x) as m; and for each
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x € A, labeling the part for each partition m; according to the given order in the
above and, mapping f;(x) to the value j for jth part of m;. Then F = {fi, fa, f3, fa}
is a (9,3, 3)-perfect hash family. O

Let M be an N x n array of m symbols. We say that the ith row of M separates
a subset X of columns of M if the ith rows of the columns in X are all distinct. A
relationship between a perfect hash family and a certain type of array is given in

the following proposition.

Proposition 1.2 Suppose that there exists « PHF(N;n,m,w). Then there exists
an array M, where size is N X n and which has entries in a set B of size m, such
that for any subset X of columns of M with |X| = w, there is at least one row of
M that separates the subset X of columns of M. Conversely, such an array gives
rise to o PHF(N;n,m,w).

Proof For given an (n, m,w)-perfect hash family F = {fi, f2,..., fn}, we can
produce an array M of size N X n with entries in B as follows: Index the columns
of M by the elements @ € A, and index the rows of M by the set {1,2,..., N},
i.e., each row of the array corresponds to one of the functions in the family F.
Setting the value of the entry (i,2) in M to be fi(x), the resulting array satisfies
the desired conditions.

In the reverse direction, suppose that M is an array of size N x n, having entries in
B. Fori=1,2,...,N and € A, we define f;(z) to be the value of the entry (7, x)
of M. Hence f;(z) = fi(y) for f; € F whenever the (7, 2)th and (7, y)th entries
of M are equal. Then we have a desired set F = {f; : 1 < ¢ < N}, which is a
PHF(N;n,m,w). O
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1.2 Classical Results for the Bounds on the Pa-
rameters of a Perfect Hash Family

There are some known bounds for the values N(n,m,w). We can consider the
behavior of (N;n,m,w) as a function of n when m and w are fixed. In particular,
to obtain the upper bound on the values N(n,m,w), it suffices to present some
constructions of PHF(N;n,m,w). And for the lower bound, we will use the non-
existence results for the PHF(N;n,m,w). Actually, there are two types of the
bounds; those bounds which are good when w is small compared with m and those
which are good when w is close to m. In this section, we will introduce the classical
results for them based on [22]. We will study further results in Chapter 3. Here

and in the sequel all logs are to the base 2 unless otherwise stated.

Theorem 1.1

Proof

1. Let F C {f : A — B} be an (n,m,w)-perfect hash family with |F| = N.
Note that there are (Z) subsets of A having size w. Suppose that f € F
separates X C A, |X| = w. Then |f~'(:) N X| < 1 for all : € B. Hence the

number of subsets X separated by f is

Z 1FH ) x o X | f 7 ()] where X = {41,..., 0}

XCA,|X|=w
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This expression is maximized when |f~!(;) Z for j = 1,...,w. So the

| =
maximal value of the sum is equal to (Z)(%)“’ Thus the number of distinct
hash functions must be at least (I)m*/(™)n®.

2. Let F ={f1,....fn} C{f: A— B, and |A| = n,|B|=m}. F induces the
following assignment of N dimensional m-ary vectors to the elements of A:
the value of the jth component of the vector v; is f;(¢). In fact, each vector
corresponds to a column of the N x n array M described in Proposition 1.2.

Observe that vy # v, for s # t since s is separated from ¢ by at least one

function in perfect hash family F. Thus, {v; : t € A} is a set of n distinct
logn -‘

log m

m-ary vectors, implying that N(n,m,w) > [

O
In the case w = 2, an N x n array M of m symbols is a PHF(N;n,m,2) if and only

if no two columns of M are identical. We can easily derive the following result:
Theorem 1.2 There exists a PHF(N;n,m,2) if and only if n < m™.

From this theorem, the fact that N > f&ﬁ gives the result that N is Q(logn) for

w = 2 and fixed m.

log ()

Th 1.3 N <
eorem (n7 m, U)) — log(mw) _ 10g(mw — w’(ﬁ))

Proof As mentioned above, we can represent F = {fi,..., fv} as an N x n
array, say M(F) = (fi(z))zea<i<n with m symbols, where each row of the array

N matrices of

corresponds the one of the functions in F. Naturally, there are m”
dimension N X n with m symbols.
We derive an upper bound on the number of non-perfect arrays. If F does not con-

tain a perfect hash function for X = {zy, 22,..., 2}, then the submatrix of M(F)
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given by columns zy, ..., z,, cannot have a row with w different values. So, there are
m* —m(m—1)---(m—w+1) possible rows of that submatrix, and hence the num-
ber of such submatrices is bounded above by [m* —m(m —1)--- (m — w4+ 1)]V.

Since there are (Z) subsets X, the number of non-perfect matrices is bounded above
by
w

<n> [mw —mim =) (m—w 1)} QY

There will be a perfect hash family F, |F| = N provided that

o (0 )
= ()]

— Nlogm" > log (Z) + N {log(m“’ — w! <m> )]

w

= N [mg m® — log(m® — w! (Z‘) )] > log (Z)

— N> log (,)
~ logm® — log(m® — w! (™))

w

N(n,m,w) is an integer, thus we must have

N(n,m,w) < { log (:‘l’) “ .

| log(m») — log(m» — w’(Zj))

O
From the above result, we have the following sufficient condition for the existence
of a PHF(N;n,m,w) provided that N > we®” /™ Inn, which says that N is O(logn)

for fixed w and m.
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Corollary 1.1 If N > we”’/™lnn, then there is an (n,m,w)-perfect hash family
F with |F| = N.

Proof From the above proof, we observe that there will be a perfect hash family

F, |F| = N, provided that

However

— NEIn(Z)/—lm[l—ﬁ(l—%)].

We can check the following:

()t

By elementary calculus, —In(1 —2) >« for 0 < = < 1, so

and
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Now, we have

By the above observation,

_m[

So,

As a result, we have,

w—1

Il
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= /Ow—%ln <1—%>dx

= —-m w—%ln <1 —%)dx

0

- f-2)-u(-2) 2]
< (B2 -

(3]

(V4
Il E|
=] —
TN
—
|
3 |~.
N

%
]
|
d

w—1

I

(- e

In (Z)/—m {1-1?[1 (1-%)] < we /™ Inn.

Due to our assumption, N > we

w?/m

In n, which completes the proof. O

From those classical results, we know that N(n,m,w) is ©(log n) for fixed m and w.
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However, these results are non-constructive. We will study further results related

to the bounds on the values N(n,m,w) in Chapter 3.

1.3 Why PHF? History and Direction

Perfect hash families are basic combinatorial structures and they have played impor-
tant roles in Computer Science, such as database management, operating systems,
and compiler constructions. Such hash families are used for memory efficient storage
and fast retrieval of items such as reserved words in programming languages, com-
mand names in interactive systems, or commonly used words in natural languages.
These hash functions should be easily computable and minimize the amount of
memory required. More recently, perfect hash families have found numerous ap-
plications to cryptography, for example, to broadcast encryption schemes, secret
sharing, key distribution patterns, visual cryptography, cover-free families and se-
cure frameproof codes.

We observed that there exists a PHF(N;n,m,w) for fixed m and w in which N is
O(logn), but this result is non-constructive. Since there are several applications of
hash families, much attention has been given to finding efficient methods to con-
struct perfect hash families. We will proceed to describe various constructions and

applications of perfect hash families.

1.4 Summary of Results

This thesis is divided into two separate parts on perfect hash families-constructions
and applications.

In Chapter 2, we will review results on combinatorial structures. First we present
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direct constructions using Design theory, Error-correcting codes, and other struc-
tures. Then we provide recursive methods to understand PHFs.

In Chapter 3, we will discuss further the bounds on the values N(n,m, w), including
the classic results we observed in Chapter 1. And then, by restricting the value m,
we will present constructions for linear perfect hash families and some examples.
Here we will consider the case when the value m is a large prime power, and greater
than the value w. Moreover, we present some other ways to construct PHFs which
are due to S. Blackburn.

In Chapter 4, we present theoretical constructions using function fields and al-
gebraic curves over a finite field. The resulting families are linear PHF and we
need some assumptions in order to explicitly construct such families. Under some
assumptions, we can obtain some examples of perfect hash families. From those
examples, we will analyze this method.

In the last Chapter, we consider the various applications of perfect hash families.
Especially, we will focus on the cryptographic applications. We will give exam-
ples for those applications using the perfect hash families which we constructed or

observed throughout the previous chapters.



Chapter 2

Constructions using

Combinatorial Structures

In Chapter 1, we observed that there is a close relation between a perfect hash
family and a certain combinatorial array. Besides this array, there are many other
objects which are closely related to a perfect hash family. In this chapter, we will
present further connections between perfect hash families and certain combinatorial
structures. As well, we will explain various methods to construct perfect hash

families using combinatorial structures.

2.1 Design Theory

In this section, we will introduce constructions using design theory such as, w-
separating resolvable block design. For any prime power ¢, there is a corresponding
resolvable block design. Fortunately, there is a connection between those two block
designs under certain conditions. This section is based on the paper [4]. We need

to introduce some concepts from design theory before we proceed further. Most

13
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basic concepts and fundamental properties of design theory are based on [12] and
[33].

Definition 2.1 A design or set system is a pair (X, A) such that the following

properties are satisfied.

1. X s a set of elements called points, and
2. A is a collection of subsets of X called blocks.

Definition 2.2 Let v, k, and A be positive integers such thatv > k > 2. A (v, k,A)-
balanced incomplete block design (which we abbreviate to (v,k,X\)-BIBD) is a set

system (X, A) such that the following properties are satisfied:
1. | X]| =,
2. each block contains exactly k points, and
3. every pair of distinct points is contained in exactly A blocks.

We give a few examples of BIBDs now. For simplicity, blocks will be written in the

form abe, rather than {a,b, c}.
Example 2.1

e A (7,3,1)-BIBD.

X = {1,2,3,4,5,6,7}, and

A = {124,136,157,235,267, 347, 456}.

e A (9,3,1)-BIBD.

X = {1,2,3,4,5,6,7,8,9}, and
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A = {123,456,789,147,258, 369,159,267, 348,168,249, 357}.

e A (10,4,2)-BIBD.

X = {0,1,2,3,4,5,6,7.8,9,}, and
A = {0123,0145,0246, 0378, 0579, 0689, 1278, 1369, 1479, 1568,
2350, 2489, 2567, 3458, 3467}

The following are basic necessary conditions for existence of a (v, k, A\)-BIBD.

Theorem 2.1

1. In a (v,k,X\)-BIBD, every point occurs in exactly r = Mv — 1)/(k—1) blocks.
2. A (v,k,\)-BIBD has ezactly b = vr/k = Mv? — v)/(k* — k) blocks.

3. (Fisher’s inequality) If a (v,k,X\)-BIBD exists, then b > v (or, equivalently,
r>korAv—1)>k —k).

The value r is often called the replication number of the BIBD. Suppose (X, .A) is a
(v,k, A)-BIBD. A parallel class or resolution in (X, A) is a subset of disjoint blocks
from A whose union is X. That is, it is a partition of the point set X. Obviously,
a parallel class contains v/k disjoint blocks, and a BIBD can have a parallel class
only if v = 0 mod k. A resolvable BIBD is a design whose blocks can be partitioned

into parallel classes. In this case, there is a partition of A into r parallel classes.
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Example 2.2 A resolvable (6,2,1)-BIBD is shown in Figure 2.1.
Let X = {0,1,2,3,4,5}, and r = 8== = 5. Hence there are 5 parallel classes, each

2—-1

consists 3 blocks. In Figure 2.1, each row represents a parallel class. O

{0,1} | {2,5} | {3,4}
{0,2} | {1,3} | {4,5}
{0,3} | {2,4} | {1,5}
{0,4} | {3,5} | {1,2}
{0,5} | {1,4} | {2,3}

FIGURE 2.1: A resolvable (6,2,1)-BIBD

Definition 2.3 [4] A w-separating resolvable block design is a pair (X,1II), where
the following properties are satisfied:

1. X s a finite set of elements which are called points.

2. II is a finite set of parallel classes, each of which is a partition of X (the

members of the parallel classes are called blocks).

3. For any subset Y of w points, there exists a parallel class m € 11 such that the

w points in Y occur in w different blocks in 7.

Let | X| =wv, Il =7r, b= cyl7|, and m = max{|7|: 7 € II}. Then we denote
such a design that satisfies the properties in Definition 2.3 as a w-SRBD (v, b, r, m).
PHF's are related to SRBD by the following theorem.

Theorem 2.2 [15] Suppose that there exists a PHF(N;n,m,w). Then there exists
a w-SRBD (n,b, N;m) for some b < Nm. Conversely, a w-SRBD (v,b,r,m) gives
rise to o PHF(r;v,m,w).
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Proof Let F ={fi: A —- B ,and 1 < i < N} be an (n,m,w)-perfect hash
family. We can construct the desired design (X, II) as follows: Let X = A. If we
let m; = {f;7'(j) : 7 € B}, then 7 is a partition of X. Hence Il = {m; : 1 < < N}
is a set of parallel classes and |7| < m for all 7 € II. We have |X| = n, |II| = N,
and b =) |7 < Nm, where m = maz{|r|: 7= € II}. By the definition of F,
for any subset Y of w points, there exists a parallel class m € II such that the w
points in Y occur in w different blocks in w. Thus we have a w-SRBD (n,b, N,m)
for some b < Nm.

Conversely, suppose that (X,II) is a w-SRBD (v,b,r,m). Let Il = {m; : 1 <7 <r}.
Define a family F as follows: For any 1 < < r, Give the index to the blocks in ;,
and then define f;(x) = j whenever « € A is in the jth block in ;. Clearly, j < m
and f; is an (n, m) hash function. Thus the resulting set F = {f;: 1 <i<r}lisa

PHF(r;v,m,w) since for any x,y € A, x and y are in the same block of m; if and

only if fi(x) = fi(y). d

Example 2.3 A PHF(3;5,3,3) is shown in Figure 2.2, which is from [5]. Each

row of the array corresponds to one of three functions. From this PHF(3;5, 3, 3),

1 2 3 3 3
1 1 2 3 3
1 11 2 3

FIGURE 2.2: A PHF(3;5,3,3)

we can find 3-SRBD(5,9,3,3) as follows: Let X = {1,2,3,4,5} be a set of points
and I = {m;, 72, 13} a set of parallel classes, where m; = {f;7'(j) : 1 < j < 3}. We
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have
o ={1}, ff@=1{2} f'3)=1{345}
fr=A{12}, f'2)={3} f'(3)={45}
) ={123}, f'2)={4}, f'(3)={5}
Thus,
™ = {{1}7{2}7{37475}}7
T2 = {{172}7{3}7{475}}7
7= {{1,2,3},{4}.{5}}.
Then the resulting (X, II) is a 3-SRBD(5,9, 3,3) by the above theorem. O

Proposition 2.1 A resolvable (v,b,r k,\)-BIBD is a w-SRBD (v,b,r,v/k) if
r > )\(g’)

Proof Let (X, A) be aresolvable (v,b,r, k, A)-BIBD and II a set of parallel classes.
To prove that (X, II) is a w-SRBD (v, b,r,v/k), it suffices to show that (X, .A) sat-
isfies the property of the Definition 2.3. i.e., for any subset Y of w points, there
exists a parallel class m € II such that the w points in Y occur in w different blocks
in m. We use a counting argument. Let Y be a set of w points of X. Suppose
that there exists no parallel class 7 € II separating Y. Then each parallel class
can not separate some pair of elements in Y. By the definition of a resolvable
(v,b,7,k, A)-BIBD, we note that any pair of points in X occurs in exactly A blocks.

Thus there are at most A parallel classes in II that do not separate a fixed pair of
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elements. Hence, there are at most )\(g’) parallel classes in II that do not separate
Y. By assumption, the number of classes in II that do not separate all the pairs

in Y is at most )\(;’) < r. Thus there exists at least one parallel class in II that
separates Y, and hence we have a w-SRBD (v, b, r,v/k). O

Corollary 2.1 Suppose that there exists a resolvable (v,b,r,k,\)-BIBD with r >
)\(w). Then there is a PHF(r;v,v/k,w).

2

Proof By Theorem 2.1, any resolvable (v,b,r, k, A\)-BIBD with r > )\(g’) is a
w-SRBD (v,b,r,v/k). Then, by Theorem 2.2, we have a PHF(r; v, v/k, w). O

Example 2.4 We presented a resolvable (6,15,5,2,1)-BIBD in Example 2.2. By
Proposition 2.1, there is a PHF(5;6,3,3) as shown in Figure 2.3.

e e
N W W N~
L W N — N
W N — DN W
N — DN W W
=N W W N

FIGURE 2.3: A PHF(5;6,3,3)

An affine plane of order n is an (n* n,1)-BIBD. By Theorem 2.1, an affine plane

of order n which is a resolvable BIBD has the replication number

r=Xv—-1)/(k-=1)=1n*-1)/(n—-1)=n+1
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and b blocks where

b=vuvr/k= nz(n +1)/n=n(n+1).

And it is well-known that, for any prime power ¢, there exists an affine plane of

order ¢, i.e., a (¢* ¢,1)-BIBD.

Example 2.5 Consider the case g = 3, i.e, an affine plane of order 3. We have this
(9,3,1)-BIBD represented in Example 2.1. The parallel classes {II;, II5, IT5, T4} of
a (9,3,1)-BIBD are as follows: O

I, || {1,2,3} | {4,5,6} | {7,8,9}
I, || {1,4,7} | {2,5,8} | {3,6,9}
IIs || {1,5,9} | {2,6,7} | {3,4,8}
I, || {1,6,8} | {2,4,9} | {3,5,7}

FIGURE 2.4: A (9,3,1)-BIBD

Theorem 2.3 (Bose’s Inequality) If (X, A) is a resolvable BIBD, then b > v+
r—1.

When b =r + v —1 (or, equivalently, r = k + X), the resolvable BIBD is called an

affine resolvable design. Clearly, an affine plane is an affine resolvable design.

Theorem 2.4 Any two blocks from different parallel classes of an affine resolvable
(v, k, \)-BIBD intersect in exactly k*/v points.

Corollary 2.2 Let w be an integer such that w > 2, and let ¢ be a prime power
such that ¢ + 1 > (g’), then there exists a PHF(q+ 1;¢*, ¢, w).
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Proof An affine plane of order ¢ is a resolvable (¢, ¢* + ¢, ¢+ 1,¢,1)-BIBD. In
this BIBD, r =¢g+1 > (1;’), and hence there exists a PHF(q + 1; ¢%, ¢, w). O
If we substitute ¢ = 3 and w = 3 to the above result, then using Example 2.5, we
have a PHF(4;9,3,3), which was shown in Figure 1.1. With the above construc-
tion, if we consider the relations between two values, say N(n,m,w) and n, then
N~ nz = 25logn,

From Chapter 1, we observed that N(n,m,w) is O(logn) for fixed m and w. For
any PHF(N;n, m,w) constructed using the design theory such as w-SRBD, resolv-
able BIBD and so on, N is Q(n). (Any resolvable (v,b,r, k, A\)-BIBD gives to an
(r;v, £, w)-perfect hash family provided that r > )\(;’) We know that b = vr/k

and b > v+ r — 1. Hence we have

—k
Uk—rzv—l—r—1<:> Uk—r—r2v—1<:> T(U J>v—1
(v—1)k v—1
<~ r>— = r > .
v—k -1

v

)
derived from a resolvable (v,b,r, k, \)-BIBD, we have that N > 2=L )

If we regard N,n, and m as r,v, and %, respectively, then, for a PHF(N;n,m,w)

The method described in this section gives a simple construction, but it is limited in
that it cannot be applied to obtain PHF with arbitrary m > w. (From the previous
observations that r > k + X, vr = bk, and b = Av(v — 1)/k(k — 1), we have that

—
2

£> w — v—1>w(w—1) n—1 >w(w—1)
A E—1 2 n/m—1 2

Thus, for n > m > w > 2, as n — oo, the left side of above last inequality goes to

m and the right side approaches to w?. So we cannot obtain PHF in which m is

O(w).)
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2.2 Error-Correcting Codes

Error-correcting codes are designed to correct errors in the transmission of data
over noisy communication channels. They are widely used in applications such as
transmitting pictures from deep space, design of registration numbers, and storage
of data on magnetic tape and CDs. In this section, we will present a construction
of perfect hash families from error-correcting codes. Then we can obtain other
results using some combinatorial structures, because those structures and an error-
correcting code are very closely related. Before stating our construction, we need

to introduce some concepts and notations for the error-correcting codes.
Definition 2.4

1. Letl, K,d and q be positive integers and let Q) be a set of size q. An (I, K, d, q)-
code is a set C C Q' such that |C| = K and the minimum distance of C 1is
d.

2. The elements of the g-ary code C are called codewords.

3. The (Hamming) distance between two codewords of C, say, ¥ = x1xy... 1y,
and y = y1ya ...y indicates the number of places where they differ. The
Hamming distance is denoted by d(x,y). The Hamming distance of C is d =

min{d(x,y): x,y € C,x # y}.
Example 2.6

1. We have an example of (5,4,3,2) code C; as follows: Let @ = {0,1} and

Ci = {51?1751?2751?3751?4}7 where

71 = 00000, x5 =01101, =z3=10110, z4= 11011.
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Then min {d(z;,z;):1 <i<j <4} =3.

2. ¢, = {000,120,301,321,012, 230,103, 111,023, 310, 132, 222, 031, 201,
213,333} is a (3,16,2,4) code.

Because most structures such as Mutually Orthogonal Latin Rectangles, Mutually
Orthogonal Latin Squares, Orthogonal Arrays, Transversal Designs we will intro-
duce at the sequential sections can be thought as the suitable error correcting codes,

we can derive many applications from the below theorem.

Theorem 2.5 [4] Let w > 2 be an integer and suppose d > (1 — 1/(1;’)) Suppose
that there exists an (I, K,d,q) code. Then there exists o PHF(l; K, q,w).

Proof Let C be the set of codewords of an (I, K, d, ¢) code. We write each code-
word of C as (¢, Ciz, ..., ¢k ) with ¢; € {1,2,...,¢}, where 1 <7 < K1 <5</
For each j, we define a function f; from {1,2,..., K} to {1,2,...,¢} by the rule,
fi(0) = ¢y, and, let F ={f1,..., fi}.

Now let X be a subset of {1,2,..., K'} with |X| = w. Since the minimum distance
of the code is d, it follows that given any pair of elements x and y of X, there are at
most [ — d functions from F such that the values of these [ — d functions evaluated
on x and y are the same. Since there are (;’) possible pairs of distinct elements
from X, it follows that there is at least one function f € F such that the values of
f on X are all distinct, provided that [ > (;’) (I — d). This shows that an (I, K, d, q)
code gives rise to a PHF(I; K, ¢, w) if d(;’) > ((;’) — 1). O

Example 2.7 To illustrate Theorem 2.5,
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1. If welet w=21in (5,4,3,2) code Cy, then 3 > 5(1— ﬁ) Thus we can obtain
a PHF(5:4,2,2) as shown in Figure 2.5.

OO O OO

0
1
1
0
1

SO = = O =
== O =

FIGURE 2.5: A PHF(5;4,2,2)

2. Similarly, if we let w = 2 and consider a (3,16, 4, 2) code described in Example
2.6, then we can obtain a PHF(3;16,4,2) as shown in Figure 2.6.

6 oo001232311231 23
6123 231000 3 1 2 2 3
62310001 2 3 2 31 2 3

FIGURE 2.6: A PHF(3;16,4,2)

Now we present a method to construct an error-correcting code using polynomials.
Let ¢ be a prime, [ < ¢, and k& < ¢. Let P(q,l, k) be the set of polynomials
a(x) € Zg[x] having degree at most & — 1. Define the set

Clq,l,k) ={(a(0),a(l),...,a(l = 1)) : a(z) € P(q,l,k)},

then C(q, !, k) is a g-ary code of length [ having distance d = [—k+1 and |C(q, 1, k)| =

¢~
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w

), q=p, and k = p,

Corollary 2.3 Suppose we take p to be prime, p > (
where 7 > 1. Then there exists a PHF(pj_l;pjpj_l,pj,w).

Proof Using the above construction, we have a (¢ — 1,q%, ¢ — k. ¢) code if we let
[ = q—1, for ¢ a prime and k < ¢ — 1, which is known as Reed-Solomon Code,

briefly, RS code. Now, if we take p, g, and k as given above, then

d J_ il =1y _ 1 i=l(p 1 1 1
d_v—p _p7p-Y pre-1)_ 1., 1
Iop-1 P -1 P p )

By Theorem 2.5, we can obtain the desired PHF. O

In the above result, if we consider the relation between two values, N(n,m,w) = N
and n, then N = Clogn where C = 1/(j log p).

For any PHF(N;n, m,w) constructed using the error-correction codes, N is O(n).
(We use the Plotkin Bound, which states that for any (I, K, d, ¢) code C for which
I < 2d, it holds that K < 2[-%-]. This implies that

2d—1
4 _Kg-1)
n~ (K —1)g
Combining this with our condition
d 1
—>1

we see that

k(g —1) 1

k-Dg ')
1 k—gq

= — >
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In the resulting PHF, we have

()<=

Now, as n — oo, the right side of this inequality approaches m. So, we cannot

construct PHF in which m is O(w), as with the construction using design theory.

2.3 Combinatorial Structures

As mentioned above, most combinatorial structures which we will introduce later
can be suitable error-correcting codes. Thus we can construct perfect hash families

using the construction with the error-correcting codes.

2.3.1 Latin Rectangle and Latin Squares

Definition 2.5 For m <mn, let B be a set of size n.

1. An m X n Latin rectangle is an m X n array M consisting of elements of B,
with the property that each row of the array is a permutation of B, and no
element of B occurs twice in any column of the array. If n = m, then such a

rectangle 1s a Latin square of order n.

2. Suppose that My and My are m X n Latin rectangles with entries from sets
B, and B,, respectively, of size n. We say that My and M, are orthogonal
provided that, for every x € By and for every y € By, there is at most one
cell (1,7) such that My(i,7) = @ and My(i,7) = y.

3. A set of t > 2 Latin rectangles is said to be mutually orthogonal if any two
of the t rectangles are orthogonal. We will abbreviate the term ‘Mutually
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Orthogonal Latin Rectangles” to ‘MOLR’, and ‘Mutually Orthogonal Latin
Squares’ to ‘MOLS".

Theorem 2.6 [37] Suppose there are t MOLR of size m X n. Then there is a

PHF(t + 2;mn,n,w) provided that t > (;’) — 1. For m = n, there are t MOLS
of order n, which implies that there exists a PHF(t 4+ 2;n% n,w) provided that

b (5 -1

Proof To use Theorem 2.5, it suffices to make an error-correcting code satisfying
suitable conditions from the given structure. Let My, Ms, ..., M; be t MOLR of size
m X n. Consider the set C = {(¢,7, Mi(1,7),...,M(¢,5)) : 1 << n,1 <i<m}.
Then |C| = mn, each element in C is of length ¢ + 2 and has components a n-set.

Moreover, by the definition of MOLR, the minimum distance is ¢t + 1. Thus C is a

(t 4+ 2,mn,t+ 1,n) code. By the given assumptions, we have that

By Theorem 2.5, we can obtain a PHF (¢ 4 2;mn, n,w). Obviously, in the special
case m = n, we can derive a PHF(¢ +2;n% n, w) from ¢t MOLS of order n, provided

that ¢ > (%) — 1. O

Example 2.8 The four MOLR of size 5 x 10 given by [29] are

0123456789
1234567890
2345678901
3456789012
4567890123

0123456789
3456789012
6789012345
9012345678
2345678901

0123456789
7890123456
4567890123
1234567890
8901234567

0123456789
9012345678
8901234567
7890123456
6789012345
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From this, we obtain a (6,50, 5,10) code C as follows:

110000 121111 132222 143333 154444
165555 176666 187777 198888 109999
211379 222480 233591 244602 255713
266824 277935 288046 299157 200268
312648 323759 334860 345971 356082
367193 378204 389315 390426 301537
413917 424028 435139 446240 457351
468462 479573 480684 491795 402806
514286 525397 536408 547519 558620
5369731 570842 581953 592064 503175

If we put w = 3, then t = 4 > (g) — 1 holds. From this code, we obtain a
PHF(6; 50, 10, 3). O

Let N(m,n) be the maximum integer ¢ such that there exists a set of ¢t MOLR of
size m X n. Shiue and Mullen [29] present the following construction of orthogonal

Latin rectangles:

For 1 <k <m, Let R(k) = (r;;) be an m X n Latin rectangle where
rij=ki+j (modn), 0<i<m, 0<j<n.

They obtain the following results and provide a list for the values N(m,n).
Theorem 2.7 [29] For2 < m <n,

1. N(2,n)=n—1 for all n.
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n—1 ifn is odd,
N(3,n) =

2—1 ifn is even.
3. If p is prime, N(p,n) = n — 1 if all prime divisors of n are at least p.
4. N(m,n)=n—142<m < p where p is the smallest prime divisor of n.

5. Ifn=p® -+ - p.° with p; distinct primes, then
N(n,n) = mim<i<,{p; — 1}.

6. If p s prime and a < b, N(pa7pb) — phetl
7. If n = pq with p and q prime, then N(q¢+ 1,pq) =p — 1.

Now, if we find values ¢ and w satisfying N(m,n) >t > (;’) —land 2 <w <nfor

given values m and n, then we can obtain a PHF (¢ + 2; mn, n, w) by Theorem 2.6.

Example 2.9 By the above theorem, N(3,9) = 8 since 3 is the smallest prime
divisor of 9. By assigning some suitable values for ¢ and w, we can construct a
PHF(t + 2;27,9,w). First, we can find a value w which satisfies 8 > ¢ > (1;’) — 1.
Since t < 8, we must have 2 < w < 4. If we take w = 4, then ¢t > (;1) — 1, i.e.,

t > 5. Thus, we have a PHF(5+42;3 % 9,9,4), i.e., we can obtain a PHF(7;27,9,4)
using 5 MOLR of order 3 x 9. O

Using similar processes as with the above example, we can obtain the following
Table 2.1 for m < n < 30 by referring to the results in [29]. Table 2.1 shows the
possible values w and t in order to obtain a PHF(t 4 2;mn, n,w) for fixed m and

n with m <n < 30.
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Table 2.1: Possible Values for a PHF(t 4 2; mn, n, w)

n N(m,n) w | t

3,4,5 2.3, 4 3| 2
6,7.8,9 5.6,7.8 4|3
10,11,12,13, 14 9,10,11,12,13 519
15,16,17,18, 19,20 14,15,16,17,18,19 | 6 | 14
91,22,93,24,25,26,27 | 20,21,22,23,24,25.26 | T | 20
28,29, 30 27,28,29 8 | 27

3 2 212
5,6,8,9,10 4,2,4,8, 4 3| 2
7.12,14,16,18,21,24,27,30 | 6,5.6,7.8,6.7.8.5 | 4 | 5
11,13, 20, 22, 26, 28 10,12,9,10,12,13 | 5| 9
15,17,19 14,16,18 6 | 14

23,95 22,94 71 20
3,....29 29 23 8 | 27
9 2 212
5.8,10,12, 15,18 4,3.4,3,4,3 3| 2
14,16,21,24, 27,30 6,7.6,7,8,5 4|5
11,13, 20, 22, 26, 28 10,12,9,10,12,13 | 5| 9
17,19 16,18 6 |14

23,95 22,94 71 20

9,12 2.9 2| 2

5,10, 15, 16, 18, 20, 24 4,4,4,3,3,4,4 3| 2

continued on next page
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continued from previous page
m n N(m,n) w | t
7.14,21,27,28, 30 6,6.6,8,6,5 415
11,13, 22 10,12, 10 519
17,19 16,18 6 |14
23,25 22,24 7120
6 9,12, 15,20, 30 2.2.2,2,2 2| 2
16,18, 24,25 3,3,4,4 3| 2
7.14,21,27,28 6,6,6,8,6 415
11,13, 22,26 10,12, 10,12 519
17,19 16,18 6 |14
23,25 22,24 7120
7 9,15, 18, 20, 24 2.2.2,2,2 2| 2
16,25 3,4 3| 2
7.14,21,28 6,6.6.6 415
11,13, 20,22, 26,28 10,12,9,10,12,13 | 5| 9
17,19 16,18 6 |14
23,25 22,24 7120
8 9,15,18,20,21, 24, 28 2.2.2,2,2.2,2 2| 2
16,25 3,4 3| 2
27 8 415
11,13, 22,26 10,12, 10,12 519
17,19 16,18 6 |14
8,... .23 23 22 7 | 20
9 9,15,18,20,21, 24, 28 2.2.2,2,2.2 2| 2
continued on next page
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continued from previous page
m n N(m,n) w | t
25 4 312
27 8 415
11,13, 22,26 10,12, 10,12 519
17,19 16,18 6 |14
10 15,20, 23,24, 27,28 2.2.2,2,2.2 2| 2
10,---,25 25 4 3| 2
27 8 415
11,13, 22,26 10,12, 10,12 519
17,19 16,18 6 |14
11 15,21,24,27,28 2.2.2,2 2| 2
11 11,13, 22,26 10,12, 10,12 519
17,19 16,18 6 |14
12 15,21,24,27,28 2.2.2,2,2 2| 2
13,22, 26 12,10,12 519
17,19 16,18 6 |14
13 15,21,27,28 2.2.2,2 2| 2
13,26 10,12,12 519
17,19 16,18 6 |14
14 15,21,27,28 2.2.2,2 2| 2
17,19 16,18 6 |14
15 15,21,27 2.2.9 2| 2
17,19 16,18 6 |14
continued on next page
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continued from previous page
m n N(m,n) w | t
16 21,27 2.9 2| 2
17,19 16,18 6 |14
17 21,27 2.9 2| 2
17,19 16,18 6 |14
23 22 7120
29 28 8 |27
18 21,27 2.9 2| 2
19 18 6 |14
19 21,27 2.9 2| 2
19 18 6 |14
20 21,27 2.9 2| 2
21 21,27 2.9 2| 2
29 21,27 2.9 2| 2
23,... .27 27 2 2| 2

Note : The case N(m,n) =1 is excluded from the results given in [29] since ¢t > 2.

It is well-known that 1 < N(n) < n — 1, where N(n) is the maximum number of
MOLS of order n. Specifically, if ¢ is a prime power, then N(¢q) = ¢ — 1. Thus, we
have a PHF (¢+1; ¢*, ¢, w) provided that a prime power ¢ with ¢ > (1;’) by Theorem
2.6.

Table 2.1 provides many explicit perfect hash families. For example, if we want to
find a PHF(N;n,m,w) for fixed N =4 and w = 3, then we can refer to the above
table to find suitable values n and m. Besides, we know that two MOLS of order m

w
2

exist for any integer m > 3, m # 6. Specifically, for t = 2, if w satisfies ¢ > ( ) -1,
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ie., if 2 < w < 3, then we have a PHF(4; m?, m, 3) for any integer m > 3, m # 6.

Example 2.10 Let us illustrate this with an example. Let m = 3. We have two
MOLS of order 3, say My, M,, as follows:

1 3 2 1 3 2
My=|2 1 3 M;y=|3 2 1
3 2 1 2 1 3

Then, we can construct a (4,9,3,3) code, say C, as described in Theorem 2.6:

C = {1111,1233, 1322, 2123, 2212, 2331, 3132, 3221, 3313}.

This gives rise to a PHF(4;9,3,3) as shown in Figure 2.7, which is isomorphic to

the one given in Figure 1.1. O
1112 2 2 3 3 3
12312 3 1 2 3
132 21 3 3 21
132 3 21 2 1 3

FIGURE 2.7: A PHF(4;9,3,3)-1I

Naturally, we have the following question: How about the case m = 67 Is there any
method to construct a perfect hash family from the Latin square of order 67 To
answer these questions, we need to introduce weaker concept for two Latin squares.
Two Latin squares on the same symbols are r-orthogonal if, when superimposed,
there are exactly r distinct ordered pairs. By the definition of MOLS, two MOLS

of order n yields n?-orthogonal Latin squares of order n.
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Theorem 2.8 Suppose there are r-orthogonal Latin squares of order n. Then there

is o PHF(4;r,n,3).

Proof Suppose that M = (mi;)i<ij<n and N = (n4)i1<ij<n are r-orthogonal
Latin squares of order n. Let T be a set of r ordered pairs (7, 7) such that r ordered

pairs (m;j,n;;) are all distinct. Then we can obtain a (4,r,3,n) code as in Theorem

2.6. Since 3 >4 (1 — (é—)>, there is a PHF(4;r,n,3). O

Theorem 2.9 [12] Forn a positive integer, two r-orthogonal Latin squares of order

n exist if and only if r € {n,n?} orn +2 <r < n?— 2, except when
I.n=2andr =4;
2. n=3andr € {5,6,7};
3. n =4 andr e {7,10,11,13,14};
4. n=>5andr € {8,9,20,22,23};

5. n=26 and r = 36;
and possibly when r = n? — 3, and

n € {6,7,8,10,11,13,14,16,17, 18,19, 20, 22, 23, 25, 26 }.

Although there do not exist two MOLS of order 6, By Theorem 2.9 we know there
are two r-orthogonal latin squares of order 6 for r = 6,8 < r < 34 and r # 33.
The following example shows the construction of a PHF with two Latin squares of

order 6 using Theorem 2.8.

Example 2.11 Here are two Latin squares of order 6, denoted My, M.
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1 2 3 4 5 6 1 2 3 4 5 6

2 1 4 3 6 5 2 1 4 5 6 3

3 4 5 6 1 2 3 4 1 6 2 5
M1 — M2 —

4 3 6 5 2 1 4 5 6 1 3 2

5 6 1 2 3 4 5 6 2 3 1 4

6 5 2 1 4 3 6 3 5 2 4 1

Even though they are not mutually orthogonal, there are exactly 13 distinct ordered

pairs, say T, as follows:

r = {(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),
(2,6),(3,3),(3,5),(3,6),(4,5),(5,5)}

that is, M; and M, yield a 13-orthogonal Latin squares of order 6. Hence, we obtain
a (4,13,5,6) code C,

C = {1111,1222,1333,1444, 1555, 1666, 2435, 2653,

3351,3512,3625,4523,5531}

Finally, A PHF(4;13,6,3) is shown in Figure 2.8. O

Tt W = N
= Ot W W
N = Ot W
TN O W
W N Ot W
— W Ut Ot

N DN DN
LW W W
SO SO -
Ot Ot Ot —
Yy O O
W Ut O N

1
1
1
1

FIGURE 2.8: A PHF(4;13,6,3)
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2.3.2 Orthogonal Arrays

Definition 2.6 An orthogonal array, denoted OA,(t,k,v), is a A' Xk array A on
a set of v symbols, such that within any t columns of A every possible t-tuple (not

necessarily distinct) of symbols occurs in exactly X rows of A. For any two rows ry

and ro of A, define

M(Tl,rz) = |{.] : A(rlv.j) = A(T27])}|
and define
p(A) = maz{p(ri,re) s r1 # T2}
When A =1 and ¢t = 2, we denote such an orthogonal array by OA(k,v).

Example 2.12 An OA(4,3) is shown in Figure 2.9. For this array A, the value of

((A) is 1 since no two rows are identical. O

W WWNoNNNE—~ B~
W N H W W~
DN — LW W W
=W N DN~ W W N

FIGURE 2.9: An OA(4,3)

Theorem 2.10 [37, Theorem 2.12] Suppose there is an OA\(t,k,v), say A. Then
there exists a PHF(k; An',v,w) provided k > p(A) (;’)
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Proof Let A be an OA\(¢,k,v). We can construct a v-ary code C of length k
having A\v' codewords by regarding each row of an array as a codeword of a code.
Then the minimum distance d is k — u(A). Moreover, the parameters of resulting
code satisfies the following:

k—M(A)<1 1

k Sy

k>/,L(A)<120> = ﬁ> (;l))

Thus, by Theorem 2.5, we have a PHF(k; o', v, w). O

provided that

Corollary 2.4 [37, Theorem 2.13] Suppose there exists an OA;(t, k,v). Then there
exists a PHF (k;v', v, w) provided k > (t — 1)(;’)

Proof It suffices to show pu(A) =¢—1if A = 1. Then, we can use above theorem.
If u(A) > t, i.e., there exist two distinct rows r; and ry such that they have more
than ¢ columns having the same values, then this contradicts that condition A = 1.
Thus p(A) = max{p(ry,r) 1 r #r} =t —1 O
Let ¢ be a prime power, and A = 1. An OA,(¢,q, q) gives rise to a PHF(¢; ¢', ¢, w)
provided ¢ > (¢t — 1)(;’) In fact, an OA\(t,q,q) is equivalent to Reed-Solomon

code.

Corollary 2.5 [37, Corollary 2.14] For any prime power q and for any integer t
such that 2 <t < q, there exists a PHF(q; ¢, q,w) provided that (t — 1)(1;’) <q.

Proof We observed that an OA;(t,q,q) gives rise to a PHF(q; ¢!, ¢, w) provided

qg > (t— 1)(1;’) We have that 1 < (;’) < %, since w > 2. Thus we have a
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PHF(q¢; ¢', q,w), for 2 <t < g, provided that (¢t — 1)(1;’) < q. O

Corollary 2.6 [37, Corollary 2.15] For any prime power ¢, let n, m, and t be
any positive integers satisfying n > m and 2 < t < ¢". Then there exists a
PHF(q"; ¢ g™ w) provided that (t — 1)(1;)) < q™.

Proof Suppose that (¢ — 1)(;’) < ¢™. We obtain a PHF(¢"; ¢™+t(t=1" ¢™ w)
using Theorem 2.10. Let v = ¢™ and let kK = ¢". Then we want to find the value A

satisfying the following equation:

)\qmt — qm—l—(t—l)n

Y

l.e.

—m(t—1)+(t—1)n _ _(n—m)(¢t—1)

A\ = qm—l—(t—l)n—mt = = )

Now it suffices to show that ¢" > u(A)(%). In [6], we have such an orthogonal

array A that satisfies p(A) < (¢ —1)¢" ™™, that is, % > %. Then, combining the

condition (¢t — 1)(1;’) < g™ gives (g’) <45 < #Zl) which completes the proof. [

2.3.3 Transversal Design

Definition 2.7 A transversal design T'Dy(k, m)is triple (X, G, A) such that follow-

ing properties are satisfied :

1. X s a set of km points,
2. G is a partition of X into k groups of size m,

3. A is a set of \m? blocks, each of size k,
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4. given any two points x,y from different groups, there exist A blocks containing

x and y.

A super-simple transversal design is one in which the intersection of any two blocks

has at most two elements.

Example 2.13 A TD,(4,3):

(X7g = {G1,G2,G3,G4},A = {A, 01 S 7 S 9}),

where

X = {a1,a9,a3,b1,b2,b3,¢1,¢2,¢3,d1,da,ds},

Gi = Hai,az,a3}, Gy ={b1,bs,bs},

Gs = {e, e}, Gy ={d1,ds,ds},

Ay = A{a,bi,e,di ), Ay ={az, by, c0,d}, Az = {as,bs, c3,d1 },
Ay = {ar,by,03,d2},  As ={az, b3, c1,dy},  As = {as, b1, c2,d2},
A; = {a1,b3,c0,d3}, As ={az,bi,c3,d3}, Ag = {as, by, c1,ds}.

Theorem 2.11 [37, Theorem 2.11] Suppose there exists a super-simple T Dy(k,m).
Then there exists a PHF(k; Am*, m,w) provided k > w(w —1).

Proof Let (X,G,A) be a super-simple transversal design, T Dy(k, m). We can
construct an m-ary code C of length k consisting of Am? codewords by regarding
each block in A as a codeword in C. And then, the minimum distance d of result-

ing code C 1s at most 2 since the intersection of any two blocks has at most two
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elements. Moreover, the condition, k& < w(w — 1) = 2(1;’) < d(g’) gives rise to a

PHF(k; Am?,m,w) by Theorem 2.5. O

Example 2.14 A T'D;(4,3) given in the above example is a super-simple transver-
sal design. From this, we can construct a PHF(4;9, 3,2) as follows: First, for sim-
plicity, we replace a;, b;, ¢;, d; with ¢ for i = 1,2,3. Then we obtain a (4,9,2,3) code
C as shown in Figure 2.10.

C = {1111, 2222, 3331, 1232, 2312, 3122, 1323, 2133, 3213}.

And then we obtain the desired a PHF(4;9,3,2) as follows: O
12 3 1 2 3 1 2 3
12 3 2 3 1 3 1 2
12 3 3 1 2 2 3 1
121 2 2 2 3 3 3

FIGURE 2.10: A PHF(4;9,3,2)

2.3.4 Difference Matrices

Definition 2.8 [12] Let (G, ®) be a group of ordern. An (n,k; A)-difference matrix
is @ k X nX\ matric D = (d;;) with entries from G, so that for each 1 <1 < j <k,
the multiset

{di®dy™" 11 <1< nA}

contains every element of G exactly A times. When G s abelian, typically additive

notation is used, so that differences dy — dj are employed.
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Example 2.15 [12]

1. A (3,6;2)-difference matrix is shown below:

000000
120201
102210
022011
220110
202101

2. A (15,5;1)- difference matrix is shown below:

o o0 0 0 0 o0 0o o0 0 0 0 0 0 00
1 2 3 4 5 6 7 14 13 12 11 10 9 8 O
2 5 7 9 12 4 1 13 10 8 6 3 11 14 0O
6 3 14 10 7 13 4 9 12 1 5 8 2 11 O
6 1 11 2 7 12 5 9 14 4 13 8 3 0

The following shows the necessary conditions for the existence of (n, k; A) difference

matrix.
Theorem 2.12 [12]
1. An (n,k; X) difference matriz does not exist if k > An.

2. An (n,k; X) difference matriz does not exist if n = 2 (mod 4) and X is odd.
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The following lemma provides a method to construct a difference matrix.

Lemma 2.1 Let ng and w be a positive integers. If ged(ng, (1;’)') = 1, then there

exists an (no, (1;’) + 1;1)-difference matriz.

Proof Define the matrix D = (d, ;) by
.. . . w
dij =1j (modno),()gzgno—l,()g]g<2>_

If there exist jy, j2 such that d; j —d; ;, = dpj, —dnj, (mod ng) for 0 <i < h < (1;’),
then

i1 —1ij2 = hji—hj (mod ny), i.e.,
(g1 —J2) = h(j —J2) (mod ng), i.e.,
(h=0)(j1—72) = 0 (mod ng).

Since h —1 € Z(w)! and ged(no, (1;’)') = 1, there exists an inverse of (h — ¢). Hence
J1 = Jj2. Thus D is an (no, (;’) + 1; 1)-difference matrix. O

Example 2.16 If we substitute ng = 5 and w = 3 in the above lemma, then

ged(5, (2)’) = 1. We obtain (5,4;1) difference matrix as shown in Figure 2.11. O

00000
012 3 4
02 41 3
0 3 1 4 2

FIGURE 2.11: A (5,4,1) difference matrix
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Theorem 2.13 [7, Theorem 2.2.2] Suppose there exists an (n,k;1)-difference ma-
triz D = (d; ;) where k > (;’) Then there exists a PHF(k;n?,n,w).

Proof Let A = Z, X Zy,, |A| = n? For 1 <i <k, each row (d;1,d;2,...,d; )
of D gives rise to a partition of A into n parts; (a,b) € A is in the jth part of the
partition if and only if d;, + b = ;.

Let F be any set of these partitions of order (;’) + 1 as described in Proposition
1.1. Let X C A be a set of w points. Now a partition m € F fails to separate X if
and only if 7 fails to separate some pair of elements in X.

Let (a1,b1) and (ag,by) be distinct elements in A. We prove that there is at most
one partition induced from D that does not separate {(ai,b1), (az,bs)}. For sup-
pose the ith and jth rows of D give rise to partitions of A that does not separate
{(a1,b1),(as,by)}. Then d; o + b1 = di g, + be and djq, + by = djq, + b1.

But then, d; oy —dja, = (digy +b2—b1) = (dja, +b2—b1) = dig, —dja, (mod n).
Since every element of Z,, occurs exactly once in the vector which is the difference of
rows ¢ and j of D, we have that a; = a;. But now the equality d; 4, + b1 = d; 4, + b2
implies that b; = by. This is a contradiction, since we are assuming that (ay,b)
and (az,by) are distinct. Hence, there are at most (;’) partitions in F that fail to
separate X. Since |F| = (1;’) + 1, there is a partition in F that separates X.
Hence, we have an (n?,n,w)-perfect hash family F such that F = (1;’) Thus, for

k> (1;’), there exists a PHF(k; n?, n, w). O

Example 2.17 Recalling Example 2.16, we can obtain a PHF(4; 25, 5, 3) as follows:
Let

A= {(00),(01),(02),(03), (04), (10), (11), (12), (13), (14),
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(20),(21), (22), (23), (24), (30), (31), (32), (33),
(34),(40), (41), (42), (43), (44)}.

Each row 7, 1 <1 <4, is corresponds the partition 7; as follows:

m o= { ,{(01), (11), (21), (31), (41)},

,1(03),(13),(23),(33), (43)},

,1(01),(10),(24), (33), (42)},
,1(03),(12),(21), (30), (44)},

T, = {

,1(01),(14),(22), (30), (43)},
,1(03),(11),(24), (32), (40)},

3 = {

,1(01),(13),(20), (32), (44)},
;1(03),(10),(22), (34), (41)},

T = {

-— =
—_ -

{

By Lemma 2.16 and Theorem 2.13, we have following result.

Corollary 2.7 Let ng and w be a positive integers. If ged(no, (g’)') =1, then there
exists a PHF(( ) + 1; no?, no, w).
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Example 2.18 If we substitute w = 3 in the above corollary, then there exists a
PHF(4;n% n,3) for all n such that ged(n,3!) = 1, namely, whenever n is odd and
n Z 0 (mod 3). Of course, we have a PHF(4;n% n,3) for n > 3 and n # 6, from
the existence of two MOLS of order n. 0

In summary, we consider the connections between the combinatorial structures,
Theorem 2.14 [12]

1. An OA\(k,n) is equivalent to a TDy(k,n).

2. t MOLS of order n is equivalent to an OA(t + 2,n).

3. An (n, k; X)-difference matriz over Z,, gives rise to a resolvable OAx(k,n) and

hence to an OAx(k 4+ 1,n) and a TDy\(k +1,m).

2.4 Recursive Constructions

2.4.1 Recursive Construction I

In this section, first we introduce the Product Theorem which can be used to
construct a new perfect hash family from smaller known families. Then we present

various results obtained from the Product Theorem.

Theorem 2.15 [7, Theorem 2.3.1] Suppose the following exist:
e o PHF(Ny;ng,ny,w),
e o PHF(Ny;ny,m,w).

Then there is a PHF(N;Ny;ng, m,w).
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Proof Let F; C {g: Ay — A} be a PHF(Ny;no,ny, w) and F, C {h: A, — B}
be a PHF(Ny;ny, m,w). Define a family of hash functions, say F C {f : Ay —
B} by f = hog, g € Fi,h € F,. We show that the resulting family is a
PHF (N1 Ng;ng, m, w).

Let X C Ay be a set of w points. Because F; is an (ng,ni,w) perfect hash
family, there exists at least one g € F such that g¢|x is injective. And hence,
Y = {g(x) : * € X} is a subset of A; with |Y| = w. Because F; is an (ny, m,w)
perfect hash family, there exists at least one h € JF; such that hly is injective. If
we let f = h o g, then f is an one-to-one when restricted to X.

Thus, for any X C Ay, |X| = w, there exists at least one f € F such that f|x is

injective, and we have a PHF(N;Ny;ng, m, w). O

Example 2.19 To illustrate the above theorem, let F; be a PHF(4,13,6,3) as
shown in Figure 2.8 and let F, be a PHF(3;6,3,3) as indicated in Figure 2.12

given in [3].
11 2 2 3 3
1 31 2 2 3
1 3 2 3 1 2

FIGURE 2.12: A PHF(3;6,3,3)

Then we obtain a PHF(12;13,3,3) by replacing the symbol ¢ of F; with the ith
column of F3, which is given in Figure 2.13. O

With Theorem 2.15 and the previous results from this chapter, we are able to obtain

many explicit examples of perfect hash families as follows:
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e e e e e e
L W W W W W =
N /NN =N =N =
NN WNDN WNDNRE =
=N W N W DN W
DN 0 W N WWN WWEHE —
DN WD = N W NN W W
DO QO W D WD W W W W
o N W NN N
LW R /= = = = N W~ b
N W WWHF N WWN—~ N
N — DN W W DN W W b
= o= N NN W N W

FIGURE 2.13: A PHF(12;13,3,3)

Theorem 2.16 Suppose there exists a PHF(No;ny, m,w),

1. Suppose there exists a w-SRBD(ng,b,r,ny) with r > )\(;’) Then there ex-
ists @ PHF(rNo;no,m,w). Moreover, suppose that there exists a resolvable

(no, b, r,no/n1,\)-BIBD, then there exists a PHF(rNo;ng, m,w).

2. Suppose there exist (;’) — 1 MOLR of size ng X ny. Then there exists a PHF
(((;’) + 1)No; nony, m,w). Indeed, it holds for the case ng = ny.

3. Suppose there exists an OAx(t, k,ng), where k > p(A) (;’) Then there exists
a PHF(kNo; A(ng)t, m,w).

4. Suppose there exists a super-simple T Dy(k,ng), where k > w(w —1). Then
there exists a PHF(kNgy; Ang?,m,w).

5. Suppose there is an (no, (;’)—I—l; 1)-difference matriz. Then there is a PHF(((?){—

1)N0; n027 m, w)'

6. Suppose ged(no, (;’)') = 1. Then there is a PHF(((?) + 1) No; no?, m, w).
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The following theorem shows the construction of infinite classes of PHF.

Theorem 2.17 [4] Suppose there exists a PHF(Ngy;ng, m,w), and suppose that
ged(no, (g’)') = 1. Then there is a PHF(((?) + 1)jN0;n02j,m,w) for any integer
J=>1

Proof By induction on j > 1. For j = 1, the result holds by Theorem 2.16.
Suppose the result is true for all 7 < k, 1.e., there exists a PHF(((%’)—I—l)kNO; nozk, m,w).
There exists a PHF((%’) + 1;n02k2,n02 ,w) since gcd(nozk, (;’)') = 1.
Thus, by the induction hypothesis and Theorem 2.15, there exists a PHF(((%’) +

k
1)k-|—1 No; n02

k

o, w). Therefore, there is a PHF(((%’) +1)7 N; no? ,m, w) for any
integer 53 > 1. 0
For some parameters in Theorem 2.17, if we let Ny = 3,w = 3,no = 5,m = 3 as
given in [4], then we obtain N & .556(log n)?. Generally speaking, for fixed values

m and w, we obtain the relationship

Ny 9
N= Togngz 8™

Corollary 2.8 There exists a PHF(27%3; 72" 7.3) for all j > 1.

Proof @ We have an affine plane of order 7, and if we let w = 3, then by
Corollary 2.2, we obtain a PHF(8;49,7,3). Moreover, gcd(49, (g)’) = 1 implies
a PHF(8 x 47; 497 7, 3) for all ;7 > 1 by the above theorem, that is, there exists a
PHF(2/43; 72" [ 7.3) for all j > 1. O

With the above parameters, we have

, 1 2
N = 2w+ 9 <1°g7;> ~ 253(log n)?.
og
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In [37], for any given m and w, infinite classes of perfect hash families are con-
structed in which N is O(C%9" (")), where C is a constant depending on the value

w as follows:

Theorem 2.18 [37, Theorem 3.6] Suppose there exists a PHF (No; ¢, m, w),
where ¢ is a prime power and ¢ > w? —w. Then for all h > 0, there exists a PHF
(NoPr; ", m,w), where Py = 1,

P, = qlh—lPh_l, and

oot

Example 2.20 The following shows the behavior of the parameters of perfect hash

for all h > 1.

families, PHF(N;n,m,w), produced by the above theorem. The results are ob-
tained using Maple.

1. Put Ng=2,¢=3,1p =1, and m = w = 2, since there exists a PHF(2;3,2,2)
by Theorem 1.2. Then
e When h = 1, there exists a PHF(6;27,2,2).

o When h = 2, there exists a
PHF(162,443426488243037769948249630619149892803, 2, 2).

e For h > 3, n is a very large integer.

2. Put No =4,¢=9,lp=1, and m = w = 3, since there exists a PHF (4,9, 3, 3)
by Example 1.1. Then

e When h = 1, there exists a PHF(36;729, 3, 3).
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e When h = 2, there exists a PHF(26244;n,3,3), where n is a very large

integer.

3. Put Ny = 2, g = 5, lp =1, m = 3, and w = 2, since there exists a
PHF(2;5,3,2) by Theorem 1.2. Then

e When h = 1, there exists a PHF(50; 3125, 3, 2).

e When h = 2, there exists a PHF(156250; n, 3,2), where n is a very large

integer.

2.4.2 Recursive Construction II

In this section, we first introduce the Kronecker-product type Theorem, and then

we apply it to other previous results.

Theorem 2.19 [7, Theorem 2.3.2] Suppose the following exist:
e o PHF(Ny;ngny, m,w),
e o PHF(Ny;ng,ny,w —1),
e o PHF(N3;nz,m,w).

Then there is a PHF(Ny Ny + N3;nong, m,w).

Proof Let 7y C {f : Ag x Ay — B} be a PHF(Ny;nony, m,w), let Fy C
{9 : Ay = A} be a PHF(Ny;ng,ny,w — 1), and let F5 C {h : Ay — B} be a



CHAPTER 2. COMBINATORIAL CONSTRUCTIONS 32

PHF(N3; ng, m, w).
For any (x,y) € Ag X Ay, define F ={¢: Ay x Ay — B} by

on(z,y): = hly) heF; and

vrg(r,y): = flz,9(y) feFi,g€F

Let X = {(z,y) : @ € Ao,y € Ay} be any subset of Ag x Ay, |X| = w. To prove
that F is a PHF (N1 Ny 4+ N3; ngng, m, w), we have to show that there exists at least
one ¢ € F such that ¢ is one-to-one when restricted to X. We consider two cases

for X.

e Case I: Suppose the y-coordinates of X are all different. Then there must
exist ¢ on X in which the w district values because of the fact that F3 is a

PHF(N3, ny, m, w).

e Case II: Suppose that the y-coordinates of X are chosen from at most w — 1
different values, say vy1,vys2,...,4y, v < w — 1. Using the fact that F, is a
PHF(Ng;ng,ni,w — 1), g(y1),9(y2), - .., g(y,) are distinct points of A;. Now
consider the function of F;. In Fi, the w points under consideration comprise
w distinct points of Agx A;. Using the fact that F; is a PHF(Ny; nony, m, w),

there must exist a function of F in which the w points have distinct values.

O

Example 2.21 To illustrate the above theorem, let F; be a PHF(3;6,3,3) as fol-

lows:



CHAPTER 2. COMBINATORIAL CONSTRUCTIONS

(L,1) (1,2) (L,3) (2,1) (2,2) (2,3)
Al o1 1 2 2 3 3
Al 1 3 1 2 2 3
i1 3 2 3 1 2

33

Let F, and F3 be a PHF(4;9,3,2) described in 2.10 and F3 a PHF(4;9,3,3) de-

scribed in 1.1, respectively. Then we have a PHF(16;18,3,3) as shown in Figure

2.14.

= = = = e e e e e e e e e ) e

LW WWWWWHE H~HFFNDNDND

NN DN RFE /== DN DN DN W W W

LW W WHFR WHF WRF FEFNRFE RFE DN WR DN

223 3 3 1 11 2 2
231 2 31 2 3 1 2
121 2 3 1 2 3 31
31 3 1 21 2 3 2 3
11112 2 3 3 2 3
21 2 112 3 3 3 3
111 212 3 3 3 2
11 2 2 2 2 3 2 3 3
311 3 1 2 2 3 2 2
11113 2 2 3 2 3
1 3 3 11 2 2 3 3 2
3 3111 2 2 2 2 2
3 21 3 2 3 1 2 31
21 2 1 3 3 1 2 1 2
12 3 21 3 1 2 2 3
3 3 2 2 2 3 13 11

oW NN DND DN WWWDNDN R DN WD

DO — DN W W W WWWND WRHE — W

DO DN QO — W W WWWWR NN W

DO QO DN WK DN WWDNDNWNWWW

FIGURE 2.14: A PHF(16;18,3,3)

O

Corollary 2.9 [4] Suppose there is a PHF (a;m?,m,3). Then, for any k > 2,
there is a PHF(oz(’;); m* . m,3).

Proof By induction on k. For k = 2, it is clearly true since a (a;m

given.

2

,m,3) is
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By Theorem 1.2, there exists a PHF(N;n,m,2) if and only if n < m™. If we
consider the case m = 3, then there exists a PHF(k — 1;3%71,3,2). Suppose that
there exists a PHF(oz(kgl); m*~1 m,3). Define the parameters to apply Theorem
2.19 as follows:

k—1
N1:4, szk—l, N3:Oé< 2 >,

k—1
Ng =M, ny =m, Ng =M .

Then, we have a PHF(2k? — 2k; 3% 3. 3), since

E—1
N1N2—|—N3 = Oé(k—]_)—|—0é< 9 )

= alk-1+ )

1
(2
= « :
2
Thus, there is a PHF (oz(’;); m* m,3), for all k > 2. O
If we substitute @ = 4 in the above theorem, then there exists a PHF(4;m? m, 3)
for m > 3, and m # 6 as observed before. Moreover, by Corollary 2.9, there exists
a PHF(4(§); m* m,3) for all k > 2. Thus we can obtain a PHF(2k% — 2k; m*, m, 3),
for m > 3,m # 6 and k > 2.
From Corollary 2.9, we have a PHF(N;n,m,3) with N = oz(k) and n = m* for

2

fixed m, i.e.,
a(k? — k) N a
2 "~ 2(log m)?

(logn)>.

Corollary 2.10 [4] Suppose there is a PHF(a;m?,m,3) and a PHF (3;m? m,4).
Then, for any k > 3, there is a PHF (ﬁ(a(g) + 1)) :m* m, 4).
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Proof By induction on k. For k = 3, clearly, there exists a PHF(a + 1;m?, m, 3).
By Theorem 2.9, i.e., there exists a PHF(oz(kgl); m* m,3), for k > 3. Suppose that
there exists a PHF(oz(kgl); m*~1 m,3). Thus we have following PHFs:

e a PHF(3; m? m,4),
L) PHF(oz(kgl); mk_l,m,3) ,

° 2 PHF(ﬁ(oz(kgl) + 1)) :mFlm. 4).

(5 ) et ) =0 () )

Thus, by Theorem 2.19, there exists a PHF(ﬁ(a(g) + 1)) :m* m,4). Therefore,
there is a PHF (ﬁ(a(g) + 1)) :m* m,4), for all k > 3. O

Then,

Example 2.22 To illustrate the above results, let p be a prime such that p > 17
and p = 11. And we substitute a = 4, § = 6, and m = p, respectively. Then we
have a PHF(6;p*, p,4) given in [8] and a PHF(4;p? p,3). Thus we can obtain a
PHF(4k(k — 1)(k — 2) + 6;p%, p,4) for all k > 3. With these parameters,

4
N =~ log n)>.
logpp 8™




Chapter 3

Linear Perfect Hash Families

This chapter is organized in three parts. First, we will study some more bounds
on the values N(n,m,w) which come from [15], [22], [21], and [10]. Secondly, we
will deal with the special classes of linear perfect hash families which S. Blackburn
and P. Wild introduced and studied in [10]. Finally, we will summarize some other

constructions based on the results by S. Blackburn.

3.1 Further Bounds on the Values N(n,m,w)

In Chapter 1, we studied bounds on the values N(n, m,w) based on the results by
Mehlhorn [22]. Theorem 1.1 gave a very rough bound on the value N(n,m,w).
For many years, improved bounds have been addressed, considering many sets of
parameters. Specifically, in this section, we discuss the various lower bounds which
give necessary conditions for the existence of PHF.

The following theorem is stated and proved by Fredman-Komlos in [15] by using

techniques from information theory and graph theory:

36
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(n_l)m“’_2 log(n — w + 2)

w—2

(m_l)n“’—z log(m — w + 2) '

w—2

Theorem 3.1 N(n,m,w) >

For brevity, we call this bound FK’s bound. Consider the following computation:

(Z:lz) m*~?log(n —w + 2)
(m:;)n“’—z log(m — w + 2)

w

nn—1)---(n—w+2) log(n —w+2)
m(m —1)---(m—w+2)log(m —w + 2)

mv! log n

Sm(m—1)---(m—w—|—2)10g(m—w—|—2)7

for fixed m > w > 2. The above observation says that FK’s bound is asymptotically

equal to

mw~! logn

m(m—1)(m —2)---(m—w+2)log(m —w + 2)’

as n — oo with w and m fixed. In [21], Korner and Martin improved FK’s bound

as follows:

Theorem 3.2

As n — oo with w and m fized, we have that N(n,m,w) is bounded below by a

function which is approxzimately

maz o<j<w—2 {Bjlogn},
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where

mit 1 .
B; = , 4 for 0<)<w-—2.
(= 1) (m = =1 jog (207

For simplicity, this bound is called KM’s bound. Note that FK’s bound is equal
to KM’s bound when 7 = w — 2. Both bounds, KM’s bound and FK’s bound, are
obtained using information-theoretic techniques. We observed the upper bound on

the values N(n,m,w) in Theorem 1.3,

log ()

N(n,m,w) > log(m®) — log(m® — w!(™))

S. Blackburn improved it using graph theory as follows:

Theorem 3.3 [8, Theroem 1] A PHF(N;n,q,w) exists whenever

log4 () — (",*)
N> log ¢ — log (q“’ — w!(Z))) '

More precisely, the above bound is better than the bound given in Theorem 1.3

whenever (Z) < é(n;w), because

st (1) (17 < 0)
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= 5{0)>«(

Example 3.1 To illustrate the application of the previous bounds, we will compute

the bounds on N(n,m,w) numerically, for 3 < n < 100 and for m = w = 3, as

follows:

n—w

w

Table 3.1: Comparison with the bounds on N(n,3,3)

n LIIT|IIT | IV | V | VI | Interval of N(n,3,3)

3 11111 6 1, 6]

4 ol2|2]2]6]12 12, 6]

5 312331015 3, 10]

6 31203 |3 [12]18 3, 12]

7 31204 |4[15]20 [4, 15]

8 3|24 |4 |17]21 [4, 17]

9 402 4] 4]18]23 [4, 18]

10 41315 | 52024 [5, 20]

11 4131 5 5 | 21|25 [5, 21]

12 4131 5 5 |22 26 [5, 22]

13 413 | 5 | 5 23|26 [5, 23]

14 403066 |24]27 [6, 24]

15 413 |6 | 6 |25 28 6, 25]

16 413 |6 | 6 |26 28 (6, 26]

17 4036|6262 6, 26]

18 4036|6272 6, 27]

19 41316 | 6 28|30 [6, 28]
continued on next page




60

= 5
_ <
o Q
- +>
S R B
ey o 9 90 a9 m o ¥ Y mnm n o o v nr ks | &
SN B e B e B e I T T T B B e B e e I e B B S
Clre < 1~ < < o~ 1~ I~ I~ I~ o o O O O B O B B B L O O .M
= e e e e e e e B - 00 0 0 0 0 O O O 0B B B D D
< )
5 =
o i S
€3
~ Hlo & & &N & & m om M o o a1 0 © O O b= = b= I~ W
= I - S -2 S-S -2 B S-S SRV S SN - SN o SV S - SRV S-S S-S -V Y- SV Y -
= e N = =R = S B oS B~ - S~ S R T R Yo S Ve S Yoo SN Yo SRS NN Y o SR 0’0 S o N o )
-
m ST - S T S S Y R e B B - I B B B I R B I I - - - )
w W I~ I~ D~ D~ D= D~ D~ D~ I~ I~ o0 o0 o0 o o 00 00 00 0o o o o O
—
M M|t~ I~ I~ I~ I~ I~ I~ I~ I~ I~ 0 0 0 0 0 W W W W W 0 D O
@)
o5 ClE|®™ ® » o o o o oo % S W W W W W
Fy 3
m W R T R R TR Yo S Vo S Vo SR Vo SRS Vo SRS Voo B Vo S Vo SRS Vo SR Vo SRS Vo S Vo SR Vo SR Vo S Vo SR Yo
=
A 3
=
-] 2
- b
I Q
W. 3 O I— o o
~ N sl == Q4 v T 0 - YD = MR A R T A S Yoo S Yo
SRS IR NN TN BN T~ TR AN - - S oS- o S-S - S T T
o T [ B~ o <
=
=
5 g
B~ 3
P (8]
(@)



CHAPTER 3. LINEAR PERFECT HASH FAMILIES

continued from previous page
n LIIT|IIT | IV | V | VI | Interval of N(n,3,3)
47 5049 9]30]3s [9, 38]
48 51411919 |39]38 [9, 38]
49.50 514119 |9 |40 38 [9, 38]
51,52 514119 |9 |40 39 [9, 39]
53.54.55 50419 9 |41]39 [9, 39]
56,57 514119 |9 |41]39 [9, 39]
53.59.60,61,62 | 5|4 | 9 | 9 |42]40 [9, 40]
63,64 514119 |9 |43 40 [9, 40]
65,66,67 51499 |43]41 [9, 41]
63,69 5149 |9 [44]41 [9, 41]
70,71,72,73 514010104441 (10, 41]
747576777879 | 5| 4 | 10 | 10 | 45 | 42 10, 42]
80,81,82 5041010 |46 42 10, 42]
83,84.85,86 515 |10 |10 |46 | 43 [10, 43]
87,88,89,90,91,92,93 || 5| 5 | 10 | 10 | 47 | 43 [10, 43]
94 55|10 |10 |47 | 44 (10, 44]
95.96,97.98.99.100 | 5|5 | 10 | 10 | 48 | 44 10, 44]

The bounds used are as follows:

e [: From Theorem 1.1-1,
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log n
log3 |’

e Il : From Theorem 1.1-2,

o III : From Theorem 3.1,

(575)3°*log(n =3 +2)| [3(71 —1)log(n — 1)}
(5op)n*2log(3 -3+2) | on :

e IV : From Theorem 3.2,
max{Ny(n,3,3), N1(n,3,3)} = Ni(n,3,3),

where,

N, = logn —1 N = 3(n —1)log(n —1) ‘
log3 —1 2n

e V : From Theorem 1.3,

log (3) [ log M=
log(3?) — log(33 — 3'@)) log % ’

e VI: From Theorem 3.3,

{ log4 ((5) — ("5")) w ~ Fog(6n2 — 30n +40)w
log 3 —log (3 —3!(3)) | log 37 '

The bounds I, II, III, and IV represent lower bounds on the values N(n,3,3); the
bounds V and VI are upper bounds. For m = w = 3 and 3 < n < 100, since
Ny < Ny, FK’s bound is the same as KM’s bound, as seen in the above table. Ac-
tually, KM’s bound is strictly better that FK’s bound only when w is small when
compared with m. And for the upper bounds V and VI, VI is better than V when
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3(7) <4("3%), ie., n >4l
Atici found the value N(n,3,3) for 4 <n <11 in [3], as shown in Table 3.2. O

Table 3.2: PHF(N;n,3,3) for 4 <n <11

n | N(n,3,3) | n | N(n,3,3)
4 2 5) 3
6 3 7 4
8 4 9 4
10 ) 11 6

In Chapter 1, elementary probabilistic and non-constructive arguments were used
to show that N(n,m,w) is O(log n) for fixed m and w. So far, we have focused on
the situation when the value m is close to the value w. Now we will consider the
case when the value m is a sufficiently large prime power, and w is small compared
with m. For these types of parameters, S. Blackburn and P. Wild introduced and
studied the lower bound on N(n,m,w) in [10]. We will present their results without
proof.

Theorem 3.4 [10] Let F be an (n,m,w)-perfect hash family. Let d be a positive

integer and let m be a prime power. Thus the following hold:
1 Ifw=2 and n > m?, then |F| > d.
2. Ifw>3 andn > (w—1)(m?—1), then |F| > (w — 1)d.

We note that the first part of the above theorem follows from the result discussed
earlier which states that a PHF(N;n,m,2) exists if and only if N > fgﬁ > d.

Example 3.2 We will compare the above result with the previous lower bounds

for the prime power m and fixed w = 3.
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1. m = 4. By Theorem 3.4, we have

e If n > 7, then N(n,4,3) > 3,
e If n > 30, then N(n,4,3) > 5,

o If n > 127, then N(n,4,3) > 7.

Table 3.3: Comparison on the lower bounds on N(n,4,3)

| [ T[]]I 1V |
7T 2(2]2]3

10
11
16
17
30
32
65
68
127
147

W W W W WWWwLW whoo e
W s e e O W WD NN NN
=] O O O Ot = b e W W N
=] =~ Ot Ot Ut O W W W W W w

The bounds used are:

oI — ’VS(n—l)(n—Z)-“

3n2

o IT: = [lgn],

2

o I := ’74(n—1)10g(n—1)-‘ ‘

3nlog3

e IV : From the previous observation.

For the case when m = 4 and w = 3, Atici [3] determined the exact value of

N(n,4,3) for 5 <n <10, as indicated in Table 3.4.
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Table 3.4: A PHF(N;n,4,3) for 5 <n <10

‘ n ‘ N(n,4,3) H n ‘ N(n,4,3) ‘

3 2 6 2
7 3 8 3
9 3 10 4

2. m = 5. By Theorem 3.4, we have

e If n > 9, then N(n,5,3) > 3,
e If n > 48, then N(n,5,3) > 5,

o If n > 249, then N(n,5,3) > 7.

Table 3.5: Comparison on the lower bounds on N(n,5, 3)

| [ T[]]I 1V |
9 [[2]2]2]3
13
26
33
48
75
90
126
249

W W W W NN
e s QW W N W N
Ct O O W = = W W
-] Ot Ot Ot Ut W W W

The bounds used are:

oI — ’725(n—1)(n—2)-“

12n2
logn
o 0= [fEz].
o III := ’75(n—1)log(n—1)-“

4n




CHAPTER 3. LINEAR PERFECT HASH FAMILIES 66

e IV : From the previous observation.

Recall we had the explicit examples from Table 1.1, such as a PHF(4;n,5, 3)
for n = 10,15, 20.

3. m =9. By Theorem 3.4, we have

e If n > 17, then N(n,9,3) > 3,
e If n > 161, then N(n,,3) > 5,

e If n > 1456, then N(n,9,3) > 7.

Table 3.6: Comparison on the lower bounds on N(n,9,3)

| [ T[]]I 1V |
17 [2]2] 213
45 112123 |3
82 (23] 3|3
161 /23| 3 |5

The bounds used are:

I — ’781(n—1)(n—2)-“

56n2
logn
I =[],
I0I := [S(n—l)log(n—l)-‘ ‘

8n

e IV : From the previous observation.

We had a PHF(4;27,9,3) from Table 1.1. Moreover, we are able to construct
a PHF(3,27,9,3), which we deal with in the next section.

As observed, the lower bound given by Blackburn and Wild is better when m is

large compared with the value w.
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In summary, if n is sufficiently large, as indicated in the above theorem, then the

cardinality of a perfect hash family is at least (w — 1)e 4 1:

Theorem 3.5 [8] Let e be an integer such that e > 2. Suppose o PHF(s;n,q,w)
exists with n > m(w — 1). Then s > (w —1)e 4 1.

3.2 Linear PHF

Let ¢ be a prime power and let n = ¢? for some positive integer d. Let F C {f :
A — B} be an (n,m, w)-perfect hash family. F is a linear perfect hash family if B
can be identified with a finite field F, and A can be identified with a d-dimensional
vector space over F,, and F is a set of linear functionals under this identification.
A linear (%, ¢, w)-perfect hash family is called optimal if |F| = d(w — 1).

In [8], Blackburn presents explicit examples of the linear PHF and the optimal
PHF, respectively, as follows:

Example 3.3 [8, Theorem 5] There exists a PHF(6; p*, p,4) for all primes p such
that p =11 or p > 17.

o Let p be a prime such that p =11 or p > 17.
o Let F =T, and let V = FZ.

o Define functions f; : V — F for all 1 <1 <6 by

fl((avb)) = a, f2((avb)) =,
f3((a, b)) =b—a, fa((a,b)) = b — 2a,
f5((a,b)) =b— 3a, fe((a,b)) = b — ba,

for all a,b € F,.
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Now we show that F = {f; : 1 < < 6} is a PHF(6;p* p,4). Suppose not, For
any 4-subset W = {1, x2, v3, 24}, where x; = (a;, b;), there are 6 possible pairs and
each pair cannot agree on more than two functions. Then each pair provides each
gradient, i.e., slope of {o0,0,1,2,3,5}. Here we consider the absolute value of each
slope modulo some primes p, i.e., p > 7. Especially, if we construct five gradients,
then the last one is uniquely determined. There are several cases to consider. Here

we look at two typical cases:

Case I:

o if the gradient g, = % from 1 and x5 is oo, then we obtain
a; = az (mod p).

o if the gradient gy = % from x; and w3 is 0, then we obtain
b3 = by (mod p).

o if the gradient ¢; = % from x; and x4 is 1, then we obtain

by — by = a4y —a; (mod p).
o if the gradient ¢ = % from x5 and w3 is 2, then we obtain

bs — by = 2(as — az) (mod p).
o if the gradient g3 = bi=bs from x4 and x4 is 3, then we obtain

a4—a2

by — by = 3(ay — az) (mod p).
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Then, by computing those equations:

ap = az (mod p),
by = bs (mod p),
by —b; = ay—a; (mod p),
bs —by = 2(az—az) (mod p),

by —by = 3(as —az) (mod p).
Then the equation results in as = a4. Thus in this case, for any prime p > 11,
x3 and x4 cannot make the gradient 5.
Case 1I:

o if the gradient g, = % from 1 and x5 is oo, then we obtain
a; = az (mod p).

o if the gradient gy = % from x3 and x4 is 0, then we obtain

by = by (mod p).

o if the gradient ¢; = % from x; and w3 is 1, then we obtain

by — by = a3 —a; (mod p).

o if the gradient ¢ = % from x5 and x4 is 2, then we obtain

by — by = 2(ay — az) (mod p).
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o if the gradient g3 = b“_—all from x; and x4 is 3, then we obtain

aq—

by — by = 3(ay —ay) (mod p).
Then, by computing those equations:

ar = az (mod p),

bs = by (mod p),
bs —b; = as—a; (mod p),
bi—by = 2(ay—az) (mod p),

by —b; = 3(as —ay) (mod p).

Then the equation results in % = % (mod p). Thus in this case, last

gradient from x; and x5 cannot be 5 if 2 # 5 (mod p), namely, p # 13.

By consideration of all possible cases, when p = 11 or p > 17, no set of four points
is associated with the set {00,0,1,2,3,5} of gradients.

Suppose that there exists a PHF(N; p?, p,4). Then by letting d = 1 and m = p, we
have N > 5 by Theorem 3.5. But there is no known PHF(5; p*, p,4). And we know
that there exists a PHF(7;7%,7,4) and a PHF(7;13%,13, 6) using the fact that there
exist 5 MOLS of order 7 and 13. But we cannot apply the above construction to
verify the existence of a PHF(6;13%,13,4). By finding the solution {(a;,b;) : 1 <

i < 4} of the following system:

ap = dy, b3 = b4,
bs — by = a3 — aq, 54—52:2(614—@2)7

b4 - bl = 3(64 - bl), 3(64 - bz) = 2(@3 - Clz),
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we can find the 4-set which fails to be separated by the family F defined above, for
example, {(1,10),(1,1),(3.3).(4.3)}. 0

Example 3.4 [8] There exists an optimal PHF(3;73 72 3) for all r > 2 as follows:
o Let r be a fixed integer such that r > 2.
o Let T be a set of size r.
e Let V=T%and F =T%

o Define functions fi, fo, f35: V — F by

fl((avbv c)) = (avb)v
f2((avbv c)) = (bv c)v
f3((avbv c)) = (avc)v

for all a,b,c e T.

We show that F = {fi, f2, f3} is a PHF(3;7°,72,3). Suppose not, i.e., the set of
functions constructed by the above is not a perfect hash family. For three distinct
elements of V, say W = {x; = (a;,b;,¢;) € V : ¢ = 1,2,3}, suppose that there
exists no function in F which separates W. Then for any two distinct points from
the 3-set W, there exists at least one function in F such that they have the same
value. Note that there are three possible pairs in W, namely {x, 22}, {21, 23},
and {z,,x3}. It is impossible for each pair to agree on more than two functions,
since ¥y # a2 # x3. Thus, without loss of generality, fi(x1) = fa(xz), folz1) =
falws), and fs(xz) = fs(a1). Then, by definition of f;, #1 = x2 = a3, which
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gives a contradiction. Thus {f1, f2, f3} is a PHF(3;r%,r%, 3).

We now verify its optimality: Note that a PHF(N;r? r? 3) has the property that
N > 3, provided that > 2, by previous results. There exists a PHF(2;n,4,3) only
if n <6, i.e., there exists no PHF(2;8,4,3). O

To attempt to find an optimal linear PHF, Blackburn and Wild introduce the
following result. Even though this theorem is non-constructive, it gives a tight
bound on the minimum cardinality of a linear (¢%, ¢, w) perfect hash family for a

sufficiently large prime power gq.

Theorem 3.6 [10, Theorem 4] Let d,w be integers such that d,w > 2 and let g
be a prime power. Set n = q?. Then there exists a linecar PHF(N;n,q,w) with
N > d(w —1). Specifically, if ¢ > (;’)d(w_l), then there exists a PHF(N; q%, ¢, w)
with N = d(w — 1), that is, there ewists an optimal linear PHF(N; q?, q,w).

To construct an optimal linear PHF by using the above theorem, they let V' be the
vector space with |[V| = n = ¢? which has dimension d over F, and let k = d(w —1).
And then by using the dual space V* of V| which consists of all linear functionals
¢ : V = F,, they attempt to construct a suitable sequence (¢y,...,é) € (V*)F,
say F = {&1,..., o}, that is a perfect hash family. If we consider the techniques
of the proof in [10], then we may construct explicit classes of optimal linear perfect

hash families in certain fields as follows:

Theorem 3.7 [10, Theorem 5] Let d,w be integers such that d,w > 2 and let q be

a prime power. Suppose that there exist finite fields

F0<F1<F2<“‘<Fd(w_2)
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such that |Fyw—2)| = q and [F; : Fi_1] > d for any i € {1,2,...,d(w — 2)}.
Define a sequence (a',a?, ..., o= of row vectors of length d as follows:
For all integers i such that 1 < i < d, define o' to be the ith standard basis vector.

For all integers ¢ such that d +1 <1 < d(w — 1), define
O/ = (6i176i27 tee 76id)7

where {B), 3%, ..., '} is any subset of F;_4 which is linearly independent over
Fo_q_q1. SetV = (Fd(w_z))d and define functionals ¢1, ¢, . .., Pagw—1) by

forallv € V. Then F = {¢1, b2, ..., ba@w-1)} is an optimal linear (¢, q,w) perfect
hash family.

Remark: It is not easy to construct an optimal linear PHF using the method
given in Theorem 3.7 because it is difficult to find a suitable sequence of finite

fields satisfying the condition stated in Theorem 3.7.

3.3 Other Constructions

In [9], S. Blackburn introduced the notation of ny .(¢), which is the largest integer
n such that there exists a PHF(N;n, ¢, w) for fixed N,q and w. He focuses on

n .
nvwl@) ovicts. Here we

the construction of new classes of PHF for which lim,_,
will present one way to construct perfect hash families given in [9]. Throughout
this section, perfect hash families are regarded as sets of partitions as mentioned in

Proposition 1.1.
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Theorem 3.8 [9] There erists a PHF(k;a*, a1 k) for a > 2.

Proof Let k> 2 and a > 2 be integers. Let A be a set of size a and let V = A*.
Define a set of partitions F = {my,...,m} as follows:

(a1, a9,...,a;) € Vand (b, by, ..., by) € V are in the same part of 7, if and only if
aj =b; for all j € {1,2,...,k}\ {z}. Then each partition m; has a*~! parts, each
of size a. Then for X C V with |X| = w, w < k, X can be separated by at least
E — (w — 1) of the partitions in F. If we prove this, then we naturally obtain that
there exists a PHF (k; a*, a*~1 k).

Suppose not, i.e., X = {z', 2%, ... 2} cannot be separated by w partitions. Define

a colored graph G = (V, E) by
o Let V := X be the vertex set and

o Define the edge set E as follows: for z,y € X, there exists an edge joining x
and y if and only if there exists j such that x and y are in the same part of

7T]‘.

e Give the color j to the edge joining x and y, where = and y are in the same

part of ;.

Now the graph G has w vertices and consists of edges of all w colors (if not, i.e., if

there is a missing color, say h, then 7, can separate X). Thus G contains a cycle.

Let C be the shortest cycle consisting of |C| distinct colors, say C = a'z?--.2°,

1

where ¢ = x'. 1 2

Let the edge between x' and z? be colored j, i.e., 2!; = 2?%; for
all 7 € {1,2,...,k} \ {j}. Moreover, since each color occurs once in the cycle for
all 7 € {2,3,...,c— 1}, we have that 2* and z'*! agree in their jth position. But
this implies that the jth position of z! differs from the jth position of z°. This
contradicts the fact that 2! = z°. O
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For k = 2, we already produced a PHF(2;a? a,2) in Theorem 1.2. For k = 3, we
presented a PHF(3; ¢, ?,3) in Example 3.4.

Example 3.5 To illustrate the method given in Theorem 3.8, we construct a

PHF(2;9,3,2) as follows: Let A = {(ab) : a,b € {1,2,3}} and B = {1,2,3}.

Then the class of partitions, F = {m, 72} is shown in Figure 3.1. O
L [ay[a2)[as) | [2)[23)]6D)](32) (33 ]

T 1 2 3 1 2 3 1 2 3
T 1 1 1 2 2 2 3 3 3

FIGURE 3.1: A PHF(2;9,3,2)

Blackburn shows the following method to construct some perfect hash families in

[9].
Theorem 3.9 [9] There exists a PHF(3;3a?,a* + 2a,4) for a > 2.

Proof We translate the diagram of a PHF(3;3a? a® 4 2a,4) given in [9] to the
following form:

Let A ={(h,i,7): 1 <h <3, 1<i,5<a}. Define the class of hash functions
F = {f17f27f3} by

A (14,5) | (2,4,5) | (3,4,5)
fol (Lig) | (20) | (3.9)
fa| 3.5) | (L) | (2,9)
s 2.0 | (3,7) | (1,4,7)
We will show that any 4-subset X of A can be separated by the functions of F. Note

that any two points with the distinct first position are separated by all functions in
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F. Moreover, any two points with the same first position are separated by at least

two functions in F. Then we can classify the 4-sets X, into four cases, as follows:
e all points have the same value on the first position.
e 3 points have the same value on the first position.

e 2 points have the same value; the other two points have the different values

on the first position, i.e., X have all 3 values on the first position.

e 2 points have the same value; 2 points have a different common value on the

first position.

For the first three cases, X can be separated by at least one function of F by the
previous observations. For the last case, without loss of generality, say X = {z; =
(Lyi1,71), 22 = (1,09, 52), ¢35 = (2,13, J3), ¥4 = (2,14, Ja)}. There exists a function in
F separating the set X, that is, if 11 = 75 and i3 = 14, then f5 separates the set X;
if 17 = 19 and i3 # 14, then f; separates the set X; if ¢y # 15 and i3 = 14, then f;
separates the set X;if 7y # i3 and i3 # 14, then f; separates the set X. O
Remark: (h,7,j) € A means the cell (7, ) of the hth square, and (h, k) represents

the kth position of the rectangle corresponding to the hth square of the diagram in
[9].

Example 3.6 To illustrate the above method, let « = 2. Then a PHF(3;12,8,4)

is shown in Figure 3.2. O

With a similar method, Blackburn also presents a construction of a PHF(5; 3a®, a®+

5a® + a,7) for a > 2 in [9)].
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(111) (112) (121) (122) (211) (212)
(221) (222) (311) (312) (321) (322)

h

(111) (112) (121) (122) (21) (21)
(22) (22) (31) (32) (31) (32

f2

(31) (32) (31) (32) (111) (112
(121) (122) (21) (21) (22) (22

fs

(21) (21)  (22) (22) (31) (32)
(31) (32) (111) (112) (121) (122)

FIGURE 3.2: A PHF(3;12,8,4)

7



Chapter 4

Constructions using Algebraic

Structures

In this chapter, we will present some methods to construct perfect hash families
using the algebraic structures like special global function fields and algebraic curves.
These results are based on [24] and [41].

We will introduce a theorem for the construction of a PHF based on a suitable
function field. We also discuss some basic concepts and properties which are needed
in these constructions. There is a 1-1 correspondence between function fields and
algebraic curves. That makes it possible to translate definitions and results from
algebraic function fields to algebraic curves (and vice versa). Then, we will give an
algorithm for the actual construction of a perfect hash family using these techniques.
Even though such a construction needs assumptions like those in Chapter 3, the
resulting family is a kind of a linear PHF. Moreover, the relation between algebraic
function fields and algebraic curves shows how to construct a PHF using an algebraic

curve. Finally, we will introduce some examples which apply the previous results.

78
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Throughout this chapter, we assume that ¢ is a prime power and F, is the finite

field of ¢ elements.

4.1 Preliminaries

In this section, we present the main theorem for our construction. Then, we deal

with relevant concepts and results. Let us consider the following theorem.

Theorem 4.1 [24] For the global function field F[F, with genus g, let Py,..., Py
be distinct rational places of F'. Let G be a divisor of F with deg(G) > 2g + 1
and supp(G) N {Py,...,Py} = 0. Then there exists a perfect hash family PHF
(N; g9 @D =29+ ¢ ) whenever 2 < w < q and N > (;’)deg(G).

First, we give a brief review of the necessary background for the above theorem.

Definition 4.1 An algebraic function field F/F, of one variable over F, is an
extension field F D T, that is a finite algebraic extension of Fy(x) for some element

x € F which is transcendental over F,.

Definition 4.2 A place P of F is the maxzimal ideal of some valuation ring of F.

A place of degree 1 is called rational. Let Pp denote the set of rational places of
F.

Let N(F') denote the number of rational places of a function field F. In Theorem
4.1, the cardinality of the perfect hash family depends on the values of ¢g(F') and
N(F). Unfortunately, we cannot always compute those values. Thus, for an explicit
construction, we must use a suitable function field F' such that g(F) and N(F) are

known. The following is one of known results on the value N(F').
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Theorem 4.2 (Hasse-Weil Bound) Let F/F, be an algebraic function field of
genus g. Then the number N(F) of rational places of F|F, satisfies

IN(F) = (¢ +1)] <29/
Definition 4.3 1. A divisor G is a formal sum

G = Z np- P with np € Z, where all but finitely many np = 0.

2. The support supp(G) of a divisor G is defined by
supp(G) :={P € Pr :np # 0}.

Definition 4.4 Let F be an algebraic function field. For a divisor G of F, we
define the Riemann-Roch space L(G) by

L(G)={x € F": div(x)+ G >0} U{0}.

Then L(G) is a finite-dimensional vector space over a finite field F, and we denote

its dimension by [(G).

The following is the most important theorem in the theory of algebraic function

fields.

Theorem 4.3 (Riemann-Roch Theorem) Let F be an algebraic function field

of genus g. Then for any divisor G of F' we have

UG) > deg(G) +1—g.
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and equality holds whenever deg(G) > 2g — 1.

Let F'/F, be an algebraic function field of genus ¢ with N(F) > 1 and let G be a
divisor of F. To each rational place P of F' with P ¢ supp(G) we associate the
map hp : L(G) — F, defined by

hp(f)= f(P) forall feL(G).

The map hp defined in the above will play an important role in the construction of
perfect hash families. Note that we will deal with a divisor G where deg(G) > 2g+1.

By the Riemann-Roch theorem, we can obtain the following lemma.

Lemma 4.1 [41] Let F = {hp : P € T} where T is a subset of all rational places
of F satisfying T N supp(G) = 0. If deg(G) > 2g + 1, then |F| = |T|.

Now, we discuss the connections between algebraic curves over finite fields and
global function fields. From an algebraic function field of one variable F/F,, there
exists a non-singular projective curve X' (unique up to isomorphism) whose function
field F,(X) is F. In [31], Stichtenoth presents the construction of such a curve X,

from a given function field F'/F, as follows:

e Choose z,y € F such that F' = F,(x,y); Choose a separating element x €
F/F,. Then, since F/F,(x) is a finite separable field extension, there is some
y € F satistying F' = F,(z,y).

e Let G(X,Y) € F,[X,Y] be an irreducible polynomial with G(z,y) = 0.

o Let W={P¢cA?:G(P)=0}and W C P2 i.e., W is the projective closure
of W, where A? is the 2-dimensional affine space and P? is the 2-dimensional

projective space.



CHAPTER 4. CONSTRUCTIONS USING ALGEBRAIC STRUCTURES 82

e Let X be the non-singular model of W,
e Then F' ~ F,(x,y).

More background including definitions can be found in other references such as [31]
and [39]. As mentioned before, there is a 1-1 correspondence between algebraic

curves and a function field, as follows:

Theorem 4.4 [24] The map § : X — F, (X) yields a natural correspondence be-
tween smooth projective curves over By and global function fields (of one variable),

up to isomorphism.

The map ¢ in the above theorem induces a correspondence between the points
P € X and the places of F/F,, and it preserves the genus, i.e., the curve X
and its function field F,(X) have the same genus. Thus the correspondence &
makes it possible to translate definitions and results from algebraic function fields
to algebraic curves (and vice versa) such as divisors G, degree of G, and Riemann-
Roch space L£(G). Those will play important factors in the explicit construction
of perfect hash families. Therefore, we can express Theorem 4.1 in terms of an

algebraic curves as follows:

Theorem 4.5 [41] For an algebraic curve X |F, with genus g, let T = {Py,..., Py}
be a subset of F,-rational points. Let G be a divisor of F with deg(G) > 2g + 1
and supp(G) N'T = 0. Then there exists a perfect hash family PHF (N;¢"%), ¢, w)
whenever 2 < w < g and N > (;’)deg(G).

In fact, the resulting family F is a kind of a linear perfect hash family, as defined
in Chapter 3. That is, F consists of linear functionals from the vector space L(G)

to the underlying finite field IF,.
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4.2 Constructions and Examples

In this section, we will present a construction for perfect hash families, which is

based on Theorem 4.1.

Algorithm 1 [Construction a PHF(N;n, ¢, w)]
Input: A prime power q.
Step 1. Choose a global function field F' over IF,.
Step 2. Compute the genus g(F) of F' and N(F).

Step 3. Choose positive integers t,w, and N satisfying the following condi-

tions:

e 2<w<yq

— — Y

o (“)t <N < N(F),

o t>2g+1.

Step 4. Choose distinct rational places Py, Py, ..., Py of F, and put T =
{P,P,,...,Pn}.

Step 5. Choose a divisor G of F with deg(G) =t and supp(G)NT = 0.

Step 6. For the vector space L(G), define the function hp : L(G) — F, by

hp(f)= f(P) forall PeT.

Step 7. Set n = qdeg(G)—ZQ(F){-l.

Output: F ={hp: P €T} is a PHF(N;n,q,w).
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Analysis

o In Step 1 and Step 2, we assume that, for the chosen function field F', the
computation of the values ¢g(F) and N(F) is easy and F has sufficiently
many rational places. Here the existence of an efficient algorithm for the

computation g(F) and N(F) is an important question.

e In Step 2, it is sufficient to find an upper bound g for ¢g(F'). Then we can
modify the algorithm, using the value g instead of g(F).

e For the value N(F'), in Step 2, it is not necessary to find the exact value,
but we have to know a lower bound N for N(F) and then apply N to the
algorithm instead of N(F').

e Because of our assumptions that F' has many rational places, Step 4 can be

carried out efficiently.

e Step 6 is based on the previous observation, i.e., the existence of hp on the
Riemann-Roch space £(G). Moreover,by Lemma 4.1, the cardinality of the
class {hp : P € T} is the same value N that is chosen in Step 3.

e By Theorem 4.1, the output F is an (n, ¢, w) perfect hash family with |F| =
N.

Example 4.1 Let g be a prime power, and let K =F,.

1. Let F be the rational function field over K. Then g(F) = 0 and N(F) = ¢g+1.
We can construct a PHF(N;¢'™, ¢, w), for suitable values N,¢, and w by
following the above algorithm. More precisely, there exists a PHF(t(g’) +
1;¢"t g w) for w > 2 and t > 1.



CHAPTER 4. CONSTRUCTIONS USING ALGEBRAIC STRUCTURES 85

2. Elliptic function fields F, i.e., g(F) = 1, are classified as follows:

o If ch(K) # 2, then there are z,y such that F = K(z,y) and y* = f(z) €

K[z] with a square free polynomial f(x) of degree 3.

o If ¢ch(K) = 2, then there are z,y € F such that F = K(x,y) and
y? 4+ y = f(z) € K[x] with degree 3 or y* +y = = + axl—l—b with a,b € K
and a # 0.

By Theorem 4.2, (/g — 1)> < N(F), i.e., N = [(y/g — 1)*]. Then by the
above algorithm, we have a PHF(N; ¢!, ¢, w) for [(\/g—1)’] > N > t(g’) +1
and ¢t > 3.

3. Suppose that there exists r such that ¢ = r%. Let F be the Hermitian function
field F,(x,y) defined by y" +y = 2"t'. Then g(F) =r(r —1)/2 and N(F) =
r3+1 are known. We can construct a PHF(N; gittrr=1 g w), where positive

integers ¢, w, and N satisfy the following:

t>29+1=r(r—1)4+1, 2<w<gq, and <g>t<N§r3—|—1.

Suppose that there exists a function field with genus ¢g. For w such that 2 < w < ¢,
if we let t = 2¢g + 1, then by Algorithm 1 and Theorem 4.2, we can obtain a
PHF((2g9 + 1)(;’) + 1;¢9%%, ¢, w) provided that ¢ — 2¢,/q > (29 + 1)(;’) If we
apply the parameters of the resulting PHF to Theorem 3.5, i.e., if there exists a
PHF(s; ¢?2, ¢, w) with ¢ > w, then s > (w—1)(g+1)+1 since ¢#? > ¢9t(w—1).
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With these parameters, we conclude that

w(w —1)

N =~
log ¢

log n.

Of course, it is another problem to construct explicitly a PHF((w — 1)(g + 1) +

1, ¢9%2, ¢, w).

Example 4.2 To illustrate the above observations, we can make a list of the pos-
sible pairs (g,¢) where we can construct a PHF((2¢g + 1)(;’) + 1;¢9%2, q,w) for
2 < w < 4. To do this, we refer to Table 4.1 which from [24].

Table 4.1: Bounds for N,(g)

lo\gf2] 3 | 4 | 5 | 8 | 9 [ 16 [ 27 |
1 5] 7 ] O | 10 | 14 | 16 | 2 | 27
> |6 s | 10 | 12 | 18 | 20 | 33 | 48
3 7] 10 | 14 | 16 | 24 | 28 | 38 | 56
4 |s| 12 | 15 | 18 [2527| 30 | 4546 | 64-66
5 | 91213 | 1718 | 2022 | 2032 | 3235 | 49-54 | 55-76

where N,(g) means the number of rational places of a function field with genus g
over [, .

e When w = 2, then there exists a PHF(2g+2; ¢?12, ¢, 2) for the following pairs

(9,9):

(9,9) forge{l,2}, q¢e€{2,3,4,538,9,16,27},
(9,q9) for g € {3,4}, ¢€{3,4,5,8,9,16,27},

(5,q) for q € {4,5,8,9,16,27}.

e When w = 3, then there exists a PHF(6g + 4; ¢?*2, ¢, 3) for the following pair
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(9. 9):
(1,q) for ¢ € {8,9,16,27},
(9,9) forg€{2,3}, q€{3,4,538,9,16,27},
(4,q)  for ¢ € {9,16,27},
(5,q) for ¢ € {16,27}.

e When w = 4, then there exists a PHF(12g + 7;¢9%2,¢,4) for the following

pairs (g,q):

(9.q) forge{1,2}, qe{16,27},

(9.q) for g€ {3,4}, qe{16,27}.

Example 4.3 [24] Consider the Garcia-Stichtenoth tower of global function fields
which is found in [31].

Let ¢ be a square prime power, i.e., ¢ = r?. Let K| C K, C --- be function fields
over F,, which are defined to be Ky = F,(«1) and K, = K,_4(x;) for ¢ > 2, with

T
Ti—1

T
= —— .
rio"l 41

Then N(K;) > (r — 1)r" and g(K;) < r' for all > 1. Then an infinite class of
examples of perfect hash families is obtained from the Garcia-Stichtenoth tower of

global function fields.

1. Let r > 4 be a prime power and let ¢ be a real number with 1 < ¢ < (r—2)/2.
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2. Let w = L(z—’”)l/zj. Then by the definition of ¢ and the observation below,

c+1
2r 1/2 2r 1/2 2r 1/2
— | — < <(=) .
7 “—\c+1 —\ 2

and the value w satisfies 2 < w < ¢*/* < q.

2< et 1<

[N R

3. For i > 1, let t; = |(c + 1)r*]. For the following observation, we can choose
N; satistying
ti=(c+1)r'] > |27 > 29(K;).

4. For i > 1, let t; = (r — 1)r'. We verify the condition (g’)t, < N; < N(Kj) as

follows:

14 /1 _ '
(t;)t < 4 (q2 )L(c+1)r’1
1/2 . 1/4
q q T\
< 29 gL
< L0y
(7“ o r1/2)ri+1
=
< (r—rl/z)ri
< (r—1)"

5. Choose distinct rational places Py, Py, ..., Py, of K;, say T; = { Py, P, ..., Py, }.
6. Choose a divisor G; of K; with deg(G;) =t; > 2g(K;)+1 and supp(G;)NT; =

(. Then

(G) = deg(Gi)—g(K)+1 = ti—g(K)+1

< g(K)+2 < 42
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< cqi/z.

Then there exists a PHF(N;; n;, ¢, w), where for all ¢ > 1,

N, = i/2 . QQ 1/4 B chi/2J
= (Vg —1)¢"", w = ] \ and n; = ¢ .

If we let » = 5 and ¢ = 1, then by above the construction, we have w = |10/y/2] = 2
and n; = 25125%) = 525° Thus there exists a PHF(4 - 5'; 52'5i,25,2). With these

parameters, we obtain the infinite class of perfect hash families satisfying

N =~

2
logn = .8621og n.
log 5

Theorem 4.6 [24, Corollary 7.3.7] For any integers m > w > 2, there exists a
sequence of perfect hash families PHF (N;;n;,m,w), i = 1,2,..., such that n, — oo
as 1 — oo and N; < Clogn; for all 1 > 1, for a constant C depending only on m

and w.

Now, we will deal with algebraic curves over a finite field. More precisely, we
will only consider smooth projective plane curves, which are closely related to the
algebraic function fields described before. We have an explicit formula for the genus

of such curves.

Theorem 4.7 For a smooth projective plane curve X over F, of degree d,

g=5(d—1)(d-2)
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From the connection between function fields and algebraic curves, we also present

the following algorithm and examples.
Algorithm 2 [Construct a PHF(N;n, ¢, w)]
Input: A prime power q.

Step 1. Choose a smooth projective plane curve X over F,, which has func-

tion field F(X).
Step 2. Compute the genus g(F) and N(F).

Step 3. Choose positive integers t,w, and N satisfying the following condi-

tions:

e 2<w<yq

— — Y

o (“)t <N < N(F),

o t>2g+1.

Step 4. Choose distinct F,-rational points Py, P, ..., Py of X, and put
T: {Pl,Pz,...,PN}.

Step 5. Choose a divisor G of F with deg(G) =t and supp(G)NT = 0.

Step 6. For the vector space L(G), define the function hp : L(G) — F, by

hp(f)= f(P) forall PeT.

Step 7. Set n = ¢9(@-29(F)+1

Output: F ={hp: P €T} is a PHF(N;n,q,w).
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Analysis: In step 1, we only consider smooth projective plane curves. So we
can compute the genus of the chosen curve X using Theorem 4.7. Moreover, we
already observed that there is a correspondence between rational places and rational
points in the case of smooth projective curves. Naturally, we can apply most of
the properties for the construction to those curves. Thus, by Theorem 4.5, we can

obtain a PHF(N;n, ¢, w) with this algorithm.
Example 4.4 Let ¢ be a prime power.

1. Let X/F, be the projective line. Then ¢g(X') = 0 and the number of F,-
rational points of X is ¢+ 1. Thus we can construct a PHF(N; ¢'t!, ¢, w), for
suitable values N, ¢, and w. Especially, if let N = ¢+1 and t = 1, then we can
obtain a PHF (q+ 1; ¢%, g, w) for suitable values w satisfying w(w—1) < ¢+ 1.
This result was already derived by using the affine resolvable design and g—1
MOLS of order ¢ in Chapter 2.

2. Suppose that ¢ = p*, p is a prime. There are elliptic curves with N, (1)

rational points, where

q+12/4] if p divides [2,/q] and u > 3,

q+2\/q] +1 otherwise.

Nq(l) =

Using such curves, we can construct a PHF(N;¢', ¢, w), for suitable values

N, t, and w as follows:

(a) Choose positive integers ¢,w, and N with 2 < w < ¢, t > 3, and
(5)t < NV < No(1).

(b) Choose distinct rational points Py, Py, ..., Py of FisayT = {P, P,,..., Pn}.
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(¢) Choose a divisor G of F with deg(G) =t > 2g+1 = 3 and supp(G)NT =
0.

3. Let ¢ = r? be a prime power. Use the Hermitian Curve X over I, defined by

This is the same as the construction using the Hermitian function field, as

observed in Example 4.1. Thus we have a PHF(q,/q+1; ¢ VA2 g )
ifg\/q+1> t(;’) using the above algorithm.

Example 4.5 Let ¢ = r? be a prime power. Using the Garcia-Stichtenoth curve,
we have a sequence of algebraic curves X; as follows: Let A be the projective line,

with the function field F,(X;) = F,(x;). Let A; be obtained by adjoining a new

equation,
T, 1T
i

T
= —— .
rio"l 41

for ¢+ > 2. Then we know that the number of [F,- rational points of &} is more than
(r—1)r', and genus of A; is less than r' for all i > 1. Applying the method given in

Example 4.3, for every positive integer 7, we can also obtain a perfect hash family

PHF ((r — 1)ty [, Kcirl)l/zJ) :

where r > 4 is a prime power and ¢ is a real number with 1 < ¢ < (r — 2)/2.

Theorem 4.8 [41, Theorem 3.3] For any integers m > w, there exist a construc-

tion of PHF(N;n,m,w) such that N = Clogn, where C is a constant independent
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of n, and n can go to oo.

Remark: Even though the results in this chapter are constructive, the preceding
construction is still theoretical, so it is difficult to illustrate even one simple example.
Moreover, there are several questions which must be answered in order to implement

the above algorithms:

1. What kinds of function fields or algebraic curves (explicitly) shall we choose

for the construction?

2. For given function field F or algebraic curve X', how can we compute N(F)

and g(F)?

3. How can we choose a set T' described in the above algorithms? Is this easy

to do, according to the choice of N in step 37

4. How can we choose a divisor G satisfying some appropriate conditions, as

shown in step 47



Chapter 5

Applications

So far, we have discussed various methods to construct perfect hash families. As
mentioned before, perfect hash families have many applications in computer science,
including language translation systems, hypertext, hypermedia, and file manage-
ment. Here we focus on cryptographic applications such as broadcast encryption,
secret sharing schemes, key distribution patterns, visual cryptography, cover-free
families, traceability schemes, and multicast re-keying schemes. In later sections,
we will deal with the concepts required for those applications and most of all, we

consider constructions using certain perfect hash families.

5.1 Secret Sharing Schemes

This section is based on [7]. In a secret sharing scheme, we need a trusted authority,
denoted TA. The TA has a secret value K € K, called a secret or a key, where K is
a specified finite set. The TA uses a share generation algorithm to split A into n
shares, denoted s1, s, ..., s,, where each share s; € §, and S is a specified finite set.

A share generation algorithm has to satisfy two properties: any authorized subset

94
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can compute A from the shares they jointly hold, but no unauthorized subset has
any information about K. There is a special type of secret sharing scheme called a

threshold scheme.

Definition 5.1 Let w,n be positive integers, w < n. A (w,n)-threshold scheme is
a method of sharing a key K among a set of w users, in such a way that any n

users can compute the value K, but no group of w — 1 users can do so.

The well-known Shamir threshold scheme invented in 1979 [28] is one way to obtain
a (w,n)-threshold scheme based on polynomial interpolation over Z,, where p >
n + 1 is prime. In the Shamir scheme, the TA constructs a random polynomial
a(x) € Zy[z] of degree at most w — 1 in which the constant term is the key, K.
Every participant P; obtains a point (x;,y;) on this polynomial. The following

explains the method to construct the scheme:

e The TA chooses n distinct, nonzero elements of Z,,, denoted z;, 1 <1 < n.
For 1 <1 < n, the TA gives the value z; to the participant P;, where the

value x; is public.

e Suppose the TA wants to share a secret key K € Z,, he secretly chooses

(independently at random) w — 1 elements of Z,, a1, ..., @y-1.

e For 1 <i <n, the TA computes the shares y; = a(x;), where
w—1

a(x) = K + Z aj:zjj (mod p).

J=1

o For 1 <1¢ < n, the TA gives the share y; to P;.

In [7], S. Blackburn presents a method of share expansion: Suppose there is a

sharing scheme for a key K and m users. Then we can expand the sharing for the
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same key K to n > m users, without changing the threshold w, using a certain

perfect hash family, instead of a new sharing algorithm as follows:

Theorem 5.1 Suppose there exists a PHF(N;n,m,w) and there are N indepen-
dent (w, m)-threshold schemes for sharing the given secret. Then we can construct
a (w,n)-threshold scheme, in which each participant receives N shares from (w,m)-

threshold schemes.

Proof
Let F = {fi,..., fnv} bean (n, m,w) perfect hash family and let § = {5, S%,..., SV}
be a collection of N (w, m)-threshold schemes, for sharing a given secret K, where
St = {s'1,...,8'm} for all 1 <7 < N. Then we generate a new secret sharing
scheme T = {t1,...,t,} as follows:
for any 1 <5 <n,

ti={s'n;:1<i<N}L

The resulting scheme is a (w,n) secret sharing scheme for the given secret K. Any
w — 1 users possess at most w — 1 shares from each of the (w, m) schemes and so
then can know nothing of the secret. Any w users possess w distinct shares from
at least one of the schemes by the construction based on the perfect hash family F
and hence these w participants are able to determine the secret. Furthermore, the
share expansion of the (w,n) secret sharing scheme is equal to N times the share
expansion of the (w, m) scheme. O
Blackburn [7] points out that it is desirable to find a perfect hash family whose size
is as small as possible, in order to find a secret sharing scheme having a small share

expansion.

Example 5.1 Let K = 10 be the secret key and suppose that we have constructed
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shares from four (3, 3) threshold schemes in Zs, say

.
-
o
-

{811 == 3,812 == 5,813 == 2},

{821 = 2,822 == 2,823 == 6},

{831 = 1,832 = 5,833 = 4},

{s' = 2,s% = 11,5% = 10}.

97

Then by using a PHF(4;9,3,3) described in Example 1.1, we construct a new

sharing 7 = {t4,..

th

s @)

511 (3)

s ()

s 11(6)

')

511 (®)

(
(
(
(
(s' 15)
(
(
(
(

S5 1) S (15 1)
5 52f2(2)7 S3/’3(2)7 S4/’4(2)
9 82f2(3)7 S3f3(3)7 S4f4(3)

2 3 4
;S f2(4)78 f3(4)78 f4(4)

2 3 4

1S f2(6)9 S f3(6)r S fa(6)
2 3 4

7S f2(T)9 S f3(T)0 S fa(7)
2 3 4

9 S fo (8)7 S fs (8)7 S fa (8)

511925 129018 12(9)0 S £a(9)

) =( )= (
) =( )= (
) =( )= (
) =( )= (
5% 158 ()5 1) = (521,827,517, 837) = (5,2,1,10
) =( )= (
) =( )= (
) =( )= (
) =( )= (

., tg} for 9 users, which is a (3,9) threshold scheme, as follows:
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5.2 Visual Cryptography

A Visual Cryptography Scheme(VCS) for a set P of n participants is a method
to encode a secret image (SI) into n shadow images called shares, where each
participant in P receives one share. Certain qualified subsets of participants can
visually recover the SI, but other, forbidden sets of participants have no information
on SI. A ‘visual recovery’ of the qualified set X means that they can see the SI by
xeroxing the shares given to the participants in X onto transparencies, and then
stacking them. Thus the participants in a qualified set X will be able to see the SI
without any knowledge of cryptography and without performing any cryptographic
computation. Specifically, we focus on the construction of (w,n)-threshold VCS
using perfect hash families. Before we introduce such a method, we will observe

some notions and properties on the VCS, which are based on the results in [2] and

23],

Definition 5.2 Let P = {1,2,...,n} be a set of elements called participants and
let 27 denote the collection of all subsets of P. Let Tg C 27 and T'r C 27, where
I'o N T'r =0. We call the members of U'g qualified sets ; and members of I'p
are called forbidden sets. The pair (Ug,l'r) is called the access structure of the
scheme.

Define T'y to consist of all minimal qualified sets:
Io={AeTg: A&y foral A" C A}
Example 5.2 Let P = {1,2,3,4}. Define the qualified sets to be

I = {{17 2}7 {27 3}7 {37 4}7 {17 2, 3}}
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Then any subset of 27 \ ['g can be a forbidden set I'y and the pair (I'g,['F) is an
access structure. Note that {1,2},{2,3} C {1,2,3}; {1,2},{2,3} € I'g, and hence,

we have

I‘0 — {{17 2}7 {27 3}7 {37 4}}

In the VCS, it is assumed that the message consists of a collection of black and
white pixels. Throughout this section, a boolean matrix S = (s;;) represents the

scheme as follows:
(s;j) =1 <= the jth subpixel in the ith share is black.

Definition 5.3 [2] Let (I'g,['r) be an access structures on a set of n partici-
pants. A (Dq,Tp,1)-VCS with the relative difference o(l) and set of thresholds
{(X,tx)}xer, is realized using the two n X I basis matrices S° and S* if the fol-

lowing two conditions hold.

1. Contrast condition: If X = {i1,ia,...,1p} € T'g, then the “or” V of rows
i1,09,...,1p of SO satisfies w(V) < tx —a(l)-1; whereas, for S it results that
w(V) Z tX.

2. Security condition: If X = {iy,i,...,ip} € 'y, then the two pxI matrices
obtained by restricting S° and S' to rows iy,19,...,ip are identical up to a

column permutation.

Example 5.3 By using a random column permutation, we can construct suitable
shares, which is used as basis matrices for VCS. For example, if we construct a (2, 2)-

scheme, then we can construct basis matrices by random column permutation from
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the following set of columns:

Actually, a VCS can be regarded as a visual variant of the w out of n secret sharing

problem. If we consider the scheme with the strong access structure having basis

I'o={BCP:|Bl=uw}

then, for n participants, any w (or more than w) participants of them can see
the secret image by stacking their transparency (by the contrast condition), but
any set of at most w — 1 of them gain no information about it (by the security
condition). Hence, we can obtain a (w,n)-threshold VCS. In the previous section,
we discussed a way to expand the secret sharing scheme using perfect hash families.
Here we will introduce a similar construction for a (w,n)-threshold VCS using a
PHF(N;n,m,w). To do this, we need two basis matrices S° and S* for a small
(w, m)-threshold VCS for m > w. Naor and Shamir first presented a method to
construct (w, m)-threshold VCS for w > m in [23]. We first deal with this base

constructions, and then we generalize it.

Algorithm 3 [Construction of (w,w)-threshold VCS] We construct two basis
matrices S° and S' for a (w, w)-threshold VCS with 2“~! subpixels as follows:

Step 1. Consider the ground set G = {g1, g2, - ., gu} of w elements.
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Step 2. Let E = {m,mq,...,myw-1} be the collection of all subsets of W
with even cardinality, and let O = {07, 09,...,090-1} be the collection of all

subsets of W with odd cardinality.

Step 3. For 1 <i < wand 1 < j < 2¥' define matrices S = (s;,°) and

St = (si;') as follows:

Sy = 1 «— gi € Ty,

Sy = 1 «— gi € 0;.

To illustrate the above algorithm, we provide an example.

Example 5.4 Let w =3. Then G = {1,2,3},

E

{0,{1,2},{1,3},{2,3}}, and
H{1h {23, {81, {1,2,3}

Then we have (3, 3)-threshold VCS with 4 subpixels, which has two basis matrices,
S0 and St as follows:

0110 100 1
=101 01 St=10101
0011 0011

Note that the “or” V of all rows of S? is (0111), i.e., w(V) = 3; and the “or” V
of all rows of St is (1111), i.e., w(V) = 4, which satisfies the contrast condition.
Moreover, all 2 x 3 submatrices obtained by restricting to any two rows of S° and

Sl are equal up to column permutation, which is the security condition. O
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Now, we describe the method to construct (w, m)-threshold VCS using an (m, w, w)

perfect hash family for w < m.

Algorithm 4 [Construction of (w,m)-threshold VCS using perfect hash
families]
We can construct two basis matrices T° and T for a (w,m)-threshold VCS as

follows:

Step 1. Construct matrices S° and S* for a (w, w)-threshold VCS using the

above algorithm.

Step 2. Construct an (m,w, w) perfect hash family, say F = {f1, fo,..., fs }-
Clearly, s > N(m,w,w).

Step 3. For 1 < i < s, define matrices B;” and B;', respectively, by

jth row of B;° = fi(j)th row of S°,

jth row of B;' = fi(j)th row of S',

for1 <j3<m.

Step 4. Define basis matrices 7% and T" for (w, m)-threshold VCS by

T° = (B)":B,Y:---:B)Y),

T = (B/':B':---:B}").
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Example 5.5 To illustrate the above algorithm, let w = 3 and m = 4. There are
two 3 X 4 matrices S° and S* for (3, 3)-threshold VCS given in Example 5.4. And
there is a PHF(2;4,3,3), given in [3], as follows:

1 2 3 4

filt 2 3 3
fHl1 1 2 3

Then
0110 0110
01 01 0110
B,° = B =
0 011 01 01
0 011 0 011
and
1 0 01 01 01
1 01 01 L 1 0 01
Bl — Bz —
0 011 01 01
0 011 0 011

Thus, we have (3, 4)-threshold VCS with 8 subpixels, which has two basis matrices,

as follows;
0110 0110
70 _ 0101 01 10 |
0011 01 01
0011 0 011
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and
1 001 01 01
T 0101 1 001
001 1:010°1
001 1:0011

Note that the “or” V of any 3 rows of T is (01110111), i.e., w(V) = 6 and the “or”
V of any 3 rows of T has Hamming weight w(V) = 7, which satisfies the contrast
condition. Moreover, all 3 x 8 submatrices, obtained by restricting to any three
rows of T and T, are equal up to a column permutation, which is the security

condition. O

Theorem 5.2 Suppose there exists a PHF(N;n,m,w). Then we can construct a

(w, n)-threshold VCS.

Proof It suffices to construct two basis matrices My and M; for (w,n)-threshold
VCS. Given a perfect hash family, we apply Algorithm 4 to construct a (w,n)-
threshold VCS replacing m with n. More precisely, if w = m, then the basis
matrices 7% and T in Algorithm 4 are the same as the basis matrices My and M,
for (w,n)-threshold VCS. If w < m, then we can use Algorithm 4 twice, that is,
after constructing two basis matrices T° and T' for a (w,m)-threshold VCS, we
replace T° and T' with Sy and S;. respectively, in Step 1 of Algorithm 4. And
then, in Step 3 s and m are regarded as N and n, respectively. Finally, we obtain
basis matrices My and M for (w,n)-threshold VCS. O
Remark: Given a PHF(N;n,m,w), we can choose the method to construct Sy
and Sy for (w,m)-threshold VCS, i.e., if w = m, then the size of Sy and Sy is

w X 2¥~1 otherwise, w X s+ 2*~! which is at least N(m,w,w)-2*"". And then by
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applying the similar method of step 3 of Algorithm 4 using a PHF(N;n,m,w) to
obtain basis matrices. From those blocks, we construct basis matrices for My and
M; for (w,n)-threshold VCS. The resulting basis matrices My and M; have the size
n X N -I', where I’ represents the number of columns of the initial basis matrices.
In the above process, for the value [, a number of subpixels of a (w,n)-threshold
VCS, depends on the value N and the number of subpixels I’ of a (w, m)-threshold
VCS.

Actually, Naor and Shamir provided a (w, n)-threshold VCS with [ = 20(wlogw).]og p
n [23]. Since it is attempted to find the scheme with [ as small as possible, it is
important to obtain a PHF(N;n,m,w) such that the value N as small as possi-
ble. More exactly, we have a (w,n)-threshold VCS with [ = N - 2! provided
that a PHF(N;n,w,w) exists. Generally, we have a (w,n)-threshold VCS with
[ = N-Ny-2¥"! provided that a PHF(N;n, w,w) and a PHF(Ng; m, w, w), namely,
[ = O(log n) for fixed w and m.

To illustrate the above theorem, we provide an example.

Example 5.6 We have a PHF(2;5,4,3) described in Figure 5.1. From Example

1 2 3 4
1 2 1

3
1 3

FIGURE 5.1: A PHF(2;5,4,3)

5.5, we have basis matrices S° and S* for a (3,4)-threshold VCS. Then we can
obtain a (3, 5)-threshold VCS with 16 pixels, having the basis matrices My and M,
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as follows:
01010110 : 01100110
01010110 : 01100110
My = | 00110101 : 01010110 |,
00110011 : 01100110
00110101 : 00110101
and

10010101 : 10010101
01011001 : 10010101
M, = | 00110101 : 01011001
00110011 : 10010101
00110101 : 00110101

A (w,n)-threshold VCS can be constructed with different basis matrices, using
different perfect hash families. For example, we can construct a (3,5)-threshold

VCS which is different with that given in Exmple 5.6 as follows:

Example 5.7 We have a (3, 5)-threshold VCS with 12 subpixels using a PHF(3; 5, 3, 3).
Form two basis matrix S° and S' of the (3, 3)-threshold VCS given in Example 5.4
and a PHF(3; 5,3, 3) given in Table 3.2. Then we can obtain a (3, 5)-threshold VCS

with 12 pixels having basis matrices My and M, as follows:
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0110 : 0110 : 0110
0101 : 0110 : 0110
0011 : 0101 : 0110 |,
0011 : 0011 : 0101
0011 : 0011 : 0011

Mo

and

1001 : 1001 : 1001
0101 : 1001 : 1001
M, =] 0011 : 0101 : 1001
0011 : 0011 : 0101
0011 : 0011 : 0011

5.3 Cover-free Families

There are many applications of (¢, w)-CFF to multicast security, including group key
predistribution and group session key distribution. Specifically, in the case t = 1,
(1,w)-CFF are used to construct some schemes such as blacklisting (broadcast ex-
clusion) and anti-jamming schemes, and to provide network source authentication.

This section is based on [30].

Definition 5.4 Let (X, A) be a set system with X = {x1,...,2,} and let A =
{A, CX:i=1,....n}. (X,A) is a a (t,w)-cover free family provided that, for
any two disjoint subsets of blocks P, F C A, where |P| =t and |F| = w, it holds
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that

N 4¢ 4

A;eP AjeF
Such a (¢, w)-cover-free family is denoted as a (¢, w)-CFF(v,n). In particular, we
denote the case t = 1 by w-CFF(v,n), instead of (1,w)-CFF, i.e., if for any A C A
with |A| < w, and for any B € A\ A, it holds that

BZ | Ao
AgeA
In other words, in a w-CFF(v,n), the union of any w blocks in A cannot cover any
other one.

Let us look at a method to use a perfect hash family to construct a cover-free family.

Theorem 5.3 Suppose there exists a PHF(N;n,m,w). Then there exists a (w—1)-
CFF(Nm,n).

Proof Let F C{f: A — B} be an (N;n, m,w) perfect hash family.
We define
X=FxB=A{(f,5): feF, jeB}

For each 1 < ¢ < n, we define a block A; of X by

and A={A4,:1<¢<n}. Then (X, A)is a (w—1)-CFF(Nm,n). Clearly, |X| =
Nm and |A| = n. For any w blocks A, , A ., A, since F is a PHF(N;n,m,w),

UREEEPRRN T )

there exists a function f € F such that f restricted on {iy,4,...,17,} is one-to-one.

It follows that f(u1),..., f(iw) are w distinct elements in B, which also implies that

(f, fi1), ..., (f, f(iw)) are w distinct elements in A , A, , respectively. So the

R T )
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union of any w — 1 blocks in A4 cannot cover the remaining one. O
Actually, we can define a suitable incidence matrix for a cover-free family using a
PHF(N;n,m,w). First, for 1 <i < N, we define an m X n matrix M;, in which each
column and row represents an element of A = {1,2,... ,n} and B={1,2,...,m},

respectively as follows:

1 if fi(j)=k

(0 otherwise.

M, = (M) 1<k<m, 1<j<n =

Now, we define an incidence matrix M of size Nm X n from N matrices M, as

follows:

M,
M| M
My

Then, in M, each row and column represents a point and a block of the CFF,

respectively.

Example 5.8 We can construct a 2-CFF(12,9) from a PHF(4;9,3,3) described
in Figure 1.1 as follows: First, we construct the incidence matrix M, as described

above. Then
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o o = © O = o ©
o o = —_ o o o
o O B O O R O ©o o ©
—
—
o
o o o ©o = o ©
o o = o o

Finally

X = {1,2,...,12}, and

A = {{1,4,7,10},{1,5,8,11},{1,6,9,12},{2,4,9,11},{2,5,7,12},
{2,6,8,10},{3,4,7,12},{3,5,8,10},{3,6,9,12}}
is a set system which is 2-CFF(12,9). O

A (w,n)-threshold VCS, which we considered in the previous section, can also be
used to construct (w — 1)-CFF(l,n), where [ = N - 2¥~! as follows ([2]): Let S°
and S' be basis matrices of a (w,n)-threshold VCS with [ subpixels on the set
P of n participants. Let G = {¢1,62,...,q1} be a ground set of [ elements. For
i =1,...,n, row i of S! represents the set A; = {g, : M(i,p) = 1}. Because of
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the contrast condition, for any set Y = {j1,72,...,Ju} C {1,2,...,n}, the matrix
MI[Y], for each row ¢ € {1,...,w}, has at least one column with a “1” in the ith
row and “0”s in the other rows. This implies that the sets 4;, A;

oo -5 Aj, are such

that the union of any w — 1 of them does not contain the remaining one. Hence,
any matrix M € C; represents a family A = {A;, Ay,..., A,} of subsets over the
ground set GG having the property that the union of any w — 1 of them does not
cover any of the remaining sets. Thus A is a (w — 1)-CFF(l,n).

Example 5.9 To illustrate the above observation, we have 2-CFF(16,9) from
(3,9)-threshold VCS with 16 subpixels which is constructed by a PHF(4;9, 3, 3).

1 23 4 5 6 7 8 9 10 11 12 13 14 15 16
A1 00110011 0 0 1 1 0 0 1
A1 0 01 01010 1 0 1 0 1 0 1
A; 10 01000110 0 1 1 0 0 1 1
Aqg0 17011 0010 0 1 1 0 1 0 1
As4y0 1.0 1.1 00210 0 1 0 0 1 1
As01.0 1.0 01210 1 0 1 1 0 0 1
A0 0 117100101 0 1 0 0 1 1
Asf0 0 1101010 0 1 1 1 0 0 1
A0 00110 01110 0 1 0 1 0 1

5.4 Broadcast Encryption

Broadcast encryption was first introduced by Fiat and Naor [14]. Let K be secret

information, which is to be broadcast. Let P be a privileged subset of the users ¥.
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Generally, a broadcast encryption scheme (BES) consists of the following phases:
1. Split A into shares sq, sg,..., s, using a (¢, v)-threshold scheme.
2. Encrypt every share s; with a key k; in such a way that

(a) every user U; € P can compute at least ¢ of the keys ky, ka, ..., k,, that

is, they can decrypt t shares of K, and then reconstruct K.

(b) any coalition F, such that FNP = and |F| < w, can compute at most
t — 1 of the keys, that is, they can decrypt at most ¢ — 1 shares of K,

and therefore they cannot obtain any information about K.

The keys k; are obtained from suitable key predistribution scheme(s). For example,
Fiat-Naor Key distribution patterns (KDPs) can be used to construct an efficient
BES. Here we consider a method to construct broadcast encryption scheme using

perfect hash families.

Algorithm 5 [Broadcast Encryption Scheme]
Let F = {f1, f2,..., fn} be a PFH(N; n.m.w).

Step 1. Construct an Nm X n incidence matrix M as described in the
previous section, where each row represents Nm schemes for key distribution
and each column is indexed by one of the n users. Give an index (¢, ), for
1<j<mand 1l << N torow of M, and k for 1 < k < n to column of
M.

Step 2. For M = (m(; ), we define

users(Fij) = {ur:mije =1} = £7H(5),  and

schemes(k) = {Fi; :mujne =1} ={Fipm:1 <1 < N}L
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Step 3. Construct an initial key for each user in U as follows:

e A key [, ; is given to every user in users(F; ;).

e For every user uj, € users(F; ), a key I"; ; is given to every user in the

set users(Fi ;) \{un}-

Step 4. Split the secret K € Z, into N shares, using the (N, N)-threshold

scheme. We denote these shares as sq,...,sy, and K = Efvzl s;i (mod p).

Step 5. Let P C U be a set of users which K is being broadcast. For all ¢, j,

construct the group keys k; ; for P N users(F; ;) as follows:

ki,j = lm‘ + Z lhz’,j

{up€users(F; ;)\P}

Step 6. Use k;; to encrypt s; for all ¢, 7, obtaining for 1 < ¢ < N and
1 < j < m, the ciphertext E, (s;).

Step 7. Broadcast the Nm encryption of the shares. If we let

bi = { Bk, (80), By (5i)s -y B (30},

then the broadcast information bp can be denoted Uf\il b;.
Step 8. Each user u; € P carries out the following process:

e For all F;; € schemes(k), up construct the group keys k;; for P N
users(F; ;).
o uy decrypt b; using the key £; ; and obtain share s; for all 1 <7 < N.

e 1, compute EN s; (mod p) to obtain the secret K.

=1 “?
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Let us illustrate this algorithm with an example.

Example 5.10 We can construct a broadcast encryption scheme using a PHF(4;9,3,3)
in Figure 1.1.

1. We use the incidence matrix M constructed in Example 5.8.

2. From the matrix M, we have

I
—_
<

=
<
b
<
w
—
<
"
)
<
w
iy
[\™]
I
—_
<
Ly
=
&
<
[e2)
-

3. A total of 12 keys will be given to each user as indicated below:
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Uy Uz us Uy Us Ue uz usg Ug

lia Lo | o | b | g | g | s | s | Lis
2 1 1 5 4 4 8 7 7
Poa |\ Un | Daa [ Prg [ g [ g | Bis [ s [T

)

3 3 2 6 6 5 9 9 8
ll,l lll lll l12 l12 l12 l13 l13 l13

;
log | lag | las | log | lag | las | Lo | L2 | los
142,1 152,2 162,3 112,1 122,2 132,3 112,1 122,2 132,3
172,1 182,2 192,3 172,1 182,2 192,3 142,1 152,2 162,3
I3q | I3 | Iss | lsg | Isq | Is2 | I31 | Is2 | I33
153,1 163,2 143,3 113,1 123,2 133,3 113,1 123,2 133,3
T30 | B | P53 | T30 | P32 | P35 | P51 163,2 *s3
lag | lag | las | lag | lag | lag | lag | lag | lag
PPgr [ an | Pag | Pag | Pas | 'an | Pas 114,1 P42

8 9 7 9 7 8 5 6 4
l41 l42 l43 l42 l23 l41 l43 l41 l42

)

4. TA sets up a (4,4) threshold scheme in Z,,. Let sy, s3, 83, s4 be the four shares
of the secret K = 31| s; (mod p).

5. Suppose that the TA wants to broadcast a message to the set P = {uy, ug, uz, uq}.

The following are the keys used in this scheme:
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(1,7) | users(Fi;) NP E; j

(171) {17273} ll,l

(1,2) {4} Lis+ 551,2 + 561,2
(1,3) L+ 1Ts+Bis+P3
(2,1) {1,4} lor+ 572,1
(2,2) {2} la2+ 552,2 + 582,2
(2,3) {3} lys+ 562,3 + 592,3
(3,1) {1} l31+ 553,1 + 573,1
(3,2) {2} l32+ 563,2 + 583,2
(3,3) {3,4} I35+ 593,3
(4,1) {1} ly1+ 564,1 + 584,1
(4,2) {2,4} laz+ 594,2
(4,3) {3} lys+ 554,3 + 574,3

6. The broadcast bp consists of the following values:

Ell,l (51)

E11,2+l51,2+l61,2 (51)

E11,3+l71,3+181,3+191,3 (51)

El2,1 +794 (52)
El2,2+l52,2+182,2 52
52

El2,3+l62,3+192,3

(s2)
(s2)
Elyy 4155, 4175, (53)
Ely 41055418, (53)

El3,3+193,3 (53)

116
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b4,1 = El471+l64,1 +1841 (84)
bip = Ep,40,,(54)
b4,3 = El4,3+l54,3+l74,3 (54)

7. Any user in P can compute the group key k;; and then obtain all shares
S1, 82, 83,54 and secret K. However, any coalition of size 3 cannot obtain
at least one share and hence they cannot reconstruct K. For example, if
F = {us, us, ur} is a coalition, then they can obtain s, s3, s4 from decrypting

by 2,031,043, but not s;. Thus they cannot obtain the secret K.

Theorem 5.4 If there exists a PHF(N;n,m,w), then there exists a broadcast en-

cryption scheme which is a secure against coalitions of size w.

Proof It suffices to show that the scheme described above is secure against
coalition of size w. Note that the group keys k; ; can be computed by all members
of users(F; ;)N P. and no individual user not in users(F; ;) can compute k; ;, but
a subset of two users in users(F; ;)\ P can compute k; ;. For any coalition F', where
FNP=0and |F| <w,say F = {up,,...,up,}, there exists a function f; € F
such that f;(h1), fi(h2),..., fi(hy) are distinct. Thus there exists ¢ such that no
subset of two users is in (users(F; ;)\P) N F for all 1 < j < m. Thus the users in
F cannot obtain k; ; for all 1 < 7 < m to decrypt b;. Thus they can obtain at most
N — 1 shares, and hence they cannot obtain any information about K. O
Remark: We can apply any w-CFF(v,n) to a broadcast encryption scheme for n

users and v schemes, which is a secure against coalitions of size w.
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5.5 A Multicast Re-Keying Scheme

In a multicast network, the group key is the initial shared key between all the users,
and it is used for encrypting the broadcasted information. Here we will consider
the situation when the users in the network change, i.e., a new session key for the
new group of users is needed.

In this section, a re-keying scheme is regarded as a group eviction problem. The
concepts and ideas are mostly based on [26]. That is, re-keying the multicast group
U\M involves evicting the users in M. A re-keying scheme is w-resilient if a
coalition of up to w users from M is unable to compute any keys in the set of new
session keys. Although there are many methods to solve the re-keying problem, we
will deal with two efficient schemes, the OR scheme and the AND scheme, based on
the existence of a perfect hash family. The OR scheme can be only used to remove
a small number of users; the AND scheme can be used to remove a large number
of users.

We need some assumptions and notations as follows:
e the group controller(GC) knows all the system keys.
e U{ : the set of users, say U = {uy,...,up}.

M : the set of evicted members.

E : a session key for users is U.

K : a set of auxiliary keys
e KC(u;) C K : the set of auxiliary keys of the user ;.

e M(F): an incidence matrix of size Nm x n based on a function family F.
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5.5.1 First Version of a Re-Keying Scheme

Assume that the users in ¢/ know an initial session key k. First, we consider the
case when GC is not a group member. A basic re-keying scheme consists of the

following three phases:

1. Key initialization: the GC generates K and then sends K(u;) to users u;, for

1 <1< n.

2. Broadcast: the GC broadcasts an encrypted (new) session key which is only
decryptable by a specified group.

3. Decryption: the authorized users are able to decrypt the encrypted session

key while unauthorized users are not.

Let F C{f: A — B} bea PHF(N;n,m,w+ 1).
First, we present the OR scheme using the perfect hash family, F. The scheme

works as follows.
1. Key initialization:

o GC generates K = {k(sm) : f € F,m € B} and then sends K(u;) =
{kp sy o f € F} to users uy, for 1 <4 <n.

2. Broadcast: Assume that M is the set of users to be removed and assume

M| < w,

e GC randomly chooses a new session key E4\M
e GC encrypts it with keys k& € L\K(M).

o GC broadcasts {Ep(K¥\M) . k € K,k ¢ K(M)}
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3. Decryption:

e Fach user u; in U\ M uses one of his auxiliary keys k& € KC(u;) to decrypt
Ei (") and obtain the key k4\M,

Theorem 5.5 If there exists a PHF(N;n,m,w+1), then there exists a w-resilient
re-keying scheme in which the number of auziliary keys for each user and the GC
are N and Nm, respectively, and the number of broadcast transmissions to remove

up to w users is less than N(m — 1).

Proof It suffices to show that the OR scheme described above is w-resilient. Each
encryption key is derived from K\K (M), and users in M who do not possess keys

E\M are unable to decrypt the broadcasted information.

that are used to encrypt
On the other hand, any user in A\ M has at least one key to decrypt. We assume
that M = {u;,,...,u; } and [ < w, and hence for any user u; ¢ M, there exists a
function f; € F which separates {71,...,1,}. It follows that Ky, 7)) is in K(u;) C
KA\K (M), and hence u; can decrypt the broadcasted information, obtaining a new
session key.

Moreover, the number of keys for each user in ¢ and the GC are |[K(u;)] = N and

|| = Nm, respectively. Since the number of the broadcast ciphertexts depends on

the number of encryption keys and |[(M)| > N, we have
IK\NK(M)| < Nm — N = N(m—-1),

and thus the number of the broadcast transmission is at most N(m — 1). O

Example 5.11 Recall a PHF(4;9,3,3) in F = {f1, f2, f3, fa}, described in Figure
1.1. We assume that U = {uq,...,ug}, and B = {1,2,3}.
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1. Key initialization:

o GC generates K as follows:

K(ur) | Kug) | Kus) | K(ua) | K(us) | Kue) | K(ur) | K(us) | K(ug)

Epa | kpa | kpa | ka2 | ko | kpe | kps | kps | kas

kp1 | kpe | kps | kpa | kpe | kps | kpr | kpe | Eps

ko1 | ke | ks | ks | k1 | Ko | k2 | ks | Epa

Epa | ke | kus | kpz | ks | kpa | ks | kpa | Epe
And then GC sends keys in K(u;) to each user u; for 1 < < 9.

Thus, the GC generates and stores 12 auxiliary keys, and then sends 4 aux-

iliary keys to each user.

2. Broadcast: Assume that M = {us,ug} is the set of users to be removed.

Then

e GC randomly chooses a new session key E4\M

e GC encrypts it with keys not belonging to (M), i.e.,
K':= IC\IC(M) = {kfhl? kfh?? kfl 4 kf2717 kf2,27 kf2,47 kf3,27 kf3,37 kf3,47 kf4,37 kf4747 }

e GC broadcasts {Ek/(ku\M) (K e K'}.
3. Decryption:

e Fach user u; in U \ M uses one of his auxiliary keys &' € K(u;) N K’ to
decrypt Ep(K\™M) and obtain a new session key k¥\M. For example,

user uy € U \ M has two keys, kf, 1 and kg, 3 in K’ and he can obtain

FHM,
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Next, we present the AND scheme using the perfect hash family, F. This scheme

works as follows.
1. Key initialization:
o The same as with the OR scheme.

2. Broadcast: Assume that M is the set of users to be removed and assume

U\ M| < w. Let U\ M = {u;1,...,u;} for I < w.

e For each u; j € U \ M, define

k(ui ;) = @ kfvf(“i,j)7

feF

where €@ is the exclusive-or (assuming all the auxiliary keys are strings

with the same length.)
e GC randomly chooses a new session key k#\M,

e GC encrypts it with k(u; ), ui; € U\ M.

e GC broadcasts {Ek(uiyj)(ku\M) tug; € UNMY.
3. Decryption:

e Fach user u;; in U \ M computes k(u, ;) and decrypts Ek(uiyj)(ku\M)
and obtain the key A#4\M,

Theorem 5.6 If there exists a PHF(N;n,m,w+1), then there exists a w-resilient

re-keying AND scheme. To remove | users fromU, n —w <1 <n —1, each user
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has to store N auziliary keys, and the GC has to store Nm auziliary keys, and the

number of the transmissions is n — |[M| < w.

Proof It suffices to show that the AND scheme described above is w-resilient.
Let U\ M ={u;i1,...,uiw}. Each user u; ; € U\ M knows the keys K f(u; ;) for all
f € F, and so can compute k(u; ;) and decrypt Ek(uiyj)(ku\M) to obtain K¥\M. By

the definition of F, there exists at least a function f such that kj y( is unknown

Ui j)
to the users in M and so they are unable to find k(w, ;), and hence they can not
decrypt the broadcasted information to obtain a new session key.

Moreover, the number of keys for each user in ¢/ and the GC are the same values,
Le |K(w;)| = N and |K| = Nm, respectively. The number of the broadcast trans-

missions is n — | M| since the number of the broadcast ciphertexts depends on the

encryption keys k(u; ;). O

Example 5.12 Let F = {f1, f2, f3, fa} be a PHF(4;9, 3, 3) described in Figure 1.1.
We assume that & = {uq,...,ug}, and B = {1,2,3}. Then the AND scheme works

as follows:
1. Key initialization:

o The same as with the OR scheme constructed in Example 5.11. Thus
the number of keys stored by the GC and each user is the same as with
Example 5.11.

2. Broadcast: Assume that M = {uy,...,us} is the set of users to be removed,

Le, U\ M| =2.
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e For each user u; € U\ M = {us, ug}, we have

k(US) = kf1,3 D kf2,2 D kf3,3 D kf4,17 and
k(u9) = kf1,3 D kf2,3 D kf3,1 D kf4,27

where €@ is the exclusive-or (assuming all the auxiliary keys are strings
with the same length.)

FHM,

GC randomly chooses a new session key

GC encrypts it with k(us) and k(ug).

GC broadcasts { By, JEOMY 2, € UM

J

GC broadcasts { Ej(u)(K*™), Ej(u) (KM}
3. Decryption:

e us and ug can compute k(us), k(ug) and decrypt Ek(US)(ku\M) and Ek(ug)(ku\M),
respectively. Hence users us and ug can obtain a new session key k4\M.
However, if F' = {us,us} is a coalition, then they don’t know ky, 5 for

E(us) and ky, » for k(ug). Thus they cannot obtain a new session key

FHM,

5.5.2 Second Version of a Re-Keying Scheme

From now on, we assume that the GC is dynamic, i.e., after the system initialization,
each user can establish a new subgroup and the user who wants first to do it

plays a role as the GC. In this situation, we need other component, a TA(trusted
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authority) who initializes the system and assigns auxiliary keys to the group. After
the initialization phase, the only means of communication among the group users is
through a multicast channel, on which users in the group may broadcast messages
that will be received by all users in the group.

There are three phases in a dynamic controller re-keying scheme.

1. Key initialization: the TA assigns auxiliary keys K(u;) to each user u; of the
group.
2. Broadcast : a user broadcasts an encrypted session key which is only decrypt-

able by a specified target group.

3. Decryption : the authorized users are able to decrypt the encrypted session

key while unauthorized users are not.

Let F ={f1,...,fn} be a PHF(N;n,m,w + 2).
First we present the OR re-keying scheme with dynamic controller using the perfect

hash family, F. This scheme works as follows.
1. Key initialization:

e TA generates a group key k.

e TA constructs N symmetric m X m matrices, say G! = (klu7v)15u71,5m,

for 1 <1 < N, each entry of which consists of a set of auxiliary keys K.

o For any 1 <1 < n, TA generates the set of auxiliary keys of the user u;
to be
K(ui)lv

=

K(u;) =

l

where K(u;)! is the fi(i)th row of matrix G' for all 1 <7 < N.

1
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o TA secretly sends K(u;) and k% to each u;, for 1 <1 < n.

2. Broadcast: Suppose that a user u; wants to establish a session key for a group
U\M, i.e., u; will play a role of as the GC. We assume that M is the set of

users to be removed and assume | M| < w,

e u; randomly chooses a new session key k#\M

o u,; encrypts it with all his auxiliary keys not belonging to M

e u; broadcasts { Ex(k¥\M) 1 k € K(u;), k ¢ K(M)}.
3. Decryption:

e Fach user u; in U\ M uses one of his auxiliary keys k € K(u;) to decrypt
Ep(E\M) and obtain the key k#\M,

Theorem 5.7 If there exists a PHF(N;n,m,w+2), then there exists a w-resilient
re-keying OR scheme with dynamic controller in which the number of auziliary

keys for each user is Nm, and the number of transmission to update a session key

EOM where |M| < w, is less than m(N — 1),

Proof It suffices to show that the OR scheme described above is w-resilient.
Suppose that u; wants to establish a session key for a group & \ M, where |M| < w.
The encryption key k is derived from K(u;)\(M), and users in M who do not
possess keys that are used to encrypt A4\M are unable to decrypt the broadcasted
information. On the other hand, any user u; in U\ M has at least one key to
decrypt one of the broadcasts ciphertexts and obtain k4\M.

We assume that M = {u;,...,u;,} and X = {i1,42,...,04,2,7}. Since F is a
PHF(N;n,m,w+2), there exists a function f, € F such that f, separates X, that
is, k%1, (). 5a0) € K(ui) \K(M). Moreover user u; has the keys of the fo(j)th row of
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the symmetric matrix G, and hence u; and u; share a common key which is not
in K(U\M) since k% (i) fa(5) = K fa(),fa()- Thus the common key k%, i), 7.¢;) can
be used by u; to decrypt the ciphertexts in the broadcast.

Moreover, the number of auxiliary keys for each user is Nm, since each auxiliary key
is from each row of N matrices. The number of broadcast ciphertexts depends on
the number of encryption keys. There exists at least one function which separates

the sets, whose size is at most w + 1. Thus, we have

Ku)\K(M)] < N —m = m(N 1),

i.e., the number of the broadcast transmissions is at most m(N — 1). O

Example 5.13 Recall the PHF(4;9,3,3), F = {f1, f2, f3, fa}, described in Figure
1.1. We assume that U = {uq,...,ug}, and B = {1,2,3}.

1. Key initialization:

e TA generates a group key k.

o TA constructs 4 symmetric 3 x 3 matrices as follows:

1 1 1 1 1 1
k 1,1 k 1,2 k 1,3 k 1,1 k 1,2 k 1,3

1 _ 1 1 1 — 1 1 1
G = k 2,1 k 2,2 k 2,3 - k 1,2 k 2,2 k 2,3

1 1 1 1 1 1
k 3,1 k 3,2 k 3,3 k 1,3 k 2,3 k 3,3

2 2 2 2 2 2
k 1,1 k 1,2 k 1,3 k 1,1 k 1,2 k 1,3

2 _ 2 2 2 — 2 2 2
G = k 2,1 k 2,2 k 2,3 - k 1,2 k 2,2 k 2,3

2 2 2 2 2 2
E°s1 k%39 K33 E13 k%3 E°s3
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k31,1 k31,2 k31,3 k31,1 k31,2 k31,3
G’ = k32,1 k32,2 k32,3 = k32,1 k32,2 k32,3
k33,1 k33,2 k33,3 k31,3 k32,3 k33,3
k41,1 k41,2 k41,3 k41,1 k41,2 k41,3
G* = k42,1 ks k42,3 = k42,1 k42,2 k42,3
k43,1 k3o k43,3 k41,3 k42,3 k43,3

e For each user u;,1 <1i <9, TA generates K(u;) as follows:

K(ur)

K (uz2)

K(us)

{k'y 1, kY0 kY 5}
{k?11, k%9, k% 5}
{k?11, k%19, k31 3}
{k* 11, kY 9 kY 5}

{k'y 1, kY0 kY 5}
{k?1 2, k%20, k% 5}
{k?12, k%29, K323}
{k* 2, kY20, kY 5}

{k' 1, kY 0 kY 5}
{k%13, k%23, k%3 3}
{K?13, k%23, k33 3}
{k*1 3, k3, k%3 3}

K(us)

K (us)

K(ue)

{k'1 2,k 20,k 25}
{k?11, k%9, k% 5}
{K?13, k%23, k%3 3}
{k* 2, kY0, kY 5}

{k'1 2,k 20,k 25}
{k?1 2, k%20, k% 5}
{k?11, k%19, k31 3}
{k* 3, k%3, k'3 5}

{k'12, k20, K 23}
{k%13, k%23, k%3 3}
{k?12, k%29, K23}
{k* 1, kY 0 kY )

K(ur)

K(us)

K(ug)

{k'31, k39, K 33}
{k?11, k%9, k% 5}
{k?12, k%29, K323}
{k* 3, k%3, k%3 5}

{k'1 3, k%23, k'3 5}
{k?1 2, k%20, k% 5}
{k?12, k%29, K323}
{k* 11, kY 9 kY 5}

{k'13, k23, k'3 3}
{k?11, k% 2, K% 5}
{K?11, k%12, K%1 3}
{k*12, k20, k% 5}

e TA sends keys in K(u;) and k¥ to each user u; for 1 <7 < 9.
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2. Broadcast: Assume that M = {ug} is the set of users to be removed, and the

user u; wants to establish a session key for a group U \ M.

e u; randomly chooses a new session key k#\M,

e uy encrypts it with keys in KC(uq) \ L(M);
/C(U1) \/C(M) = {kll,lak11,27k21,17k21,27k41,1}-
e uy broadcasts {Ep(E™™) : k € K(up)\K(M)}.

3. Decryption:

e Fach user u; in U\M = {usq, us, u4, us, us, w7, us} has the key for de-

crypting Ey(K4\M) as follows:

1 1 2 1 1

ug | k 1,1,k 1,2,k 1,2 || U3 k 1,1,k 1,2
1 2 2 1 2

uy | k 1,2,k 1,1,k 1,2 || Us k 1,2,k 1,2
1 4 2 2

Ue k 1,2,k 1,1 ur | k 1,1,k 1,2

2 4
usg k 1,2,k 1,1

Thus, ug cannot obtain a new session key k#4\M.

Next, we present the AND Scheme with dynamic controller using the perfect hash
family, F. This works as follows.

1. Key initialization:

o The same as with the OR scheme with dynamic controller.



CHAPTER 5. APPLICATIONS 130

2. Broadcast: Assume that M is the set of users to be removed and assume
U\ M| <w+ 1. Assume that a user u; wishes to establish a session key for
the group U\M = {uiq,...,u;iy} for | <w.

e For each u; e U\ M, 1 < j < w, define

Fui = wg) = €Dk fuiiy g

fa€F

where €@ is the exclusive-or (assuming all the auxiliary keys are strings

with the same length.)

e To update a session key for the group U \ M, user u; randomly chooses
a new session key k#4\M
e u; encrypts it with his keys k(u; — u; ) for all u; € U \ M.

e u; broadcasts {Ek(ui_mj)(k“\M) cuy; € U\MF.
3. Decryption:

e Fach user u; in Y\ M computes k(u; — u;) and decrypts Ek(ui_mj)(ku\M)
and obtain the key A#4\M,

Theorem 5.8 If there exists a PHF(N;n,m,w+2), then there exists a w-resilient
re-keying AND scheme with dynamic controller, such that the number of auziliary
keys for each user is Nm. To update a session key for group U \ M, the number

of transmissions is n — M| — 1 < w.

Proof It suffices to show that the AND scheme with dynamic controller described
above is w-resilient. Each user u; € U\ M knows the key k%, () 7. (i) since the matrix

G* is symmetric. Hence u; can compute k(u; — ;) and decrypt Ek(ui_mj)(ku\M)
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to obtain A4\, Assume that w users u,,,...,u;, from M collude to find E#\M,
They succeed only if they can calculate k(u; — u;) for some j. By definition of a
PHF(N;n,m,w + 2), there exists at least a function f, € F such that k%, s.0)
is unknown to the users in M and so they are unable to find k(u; — u;). So they
cannot decrypt the broadcast information to obtain a new session key.

Moreover, the number of auxiliary keys for each user is Nm, since each auxiliary
key is from a row of the N matrices. The number of the broadcast transmissions
isn—1—|M| < w, since the number of the broadcast ciphertexts depends on the

number of the encryption keys k(u; — u; ). O

Example 5.14 Recall the PHF(4;9,3,3), F = {f1, f2, f3, fa}, described in Figure
1.1. We assume that & = {uy,...,ug}, and B = {1,2,3}. Then the AND scheme

works as follows:
1. Key initialization:
o The same as with the OR scheme constructed in the Example 5.13.

2. Broadcast: Assume that M = {uy,...,ur} is the set of users to be re-

moved.i.e., |[M| = 7. Suppose that ug wants to establish the session key

for {us,ug}.

o Define

1 2 3 3
k(us = uo) = Ky () 1109 B Fro(3),1009) B Kry(9),1509) P K1), 1500)
= ké,:a D k:z,z D kg,:a b kg,u

where @ is the exclusive-or (assuming all the auxiliary keys are strings

with the same length.)
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e To update a session key for the group U \ M, user ug randomly chooses

a new session key k#4\M
e us encrypts it with his keys k(us — ug).

e ug broadcasts Ek(USAUQ)(k“\M).
3. Decryption:

e User ug in U\ M computes k(us — ug) since the matrix G*, o € {1,2,3,4}
is symmetric. And hence user ug can decrypt Ek(US_mg)(k“\M) and ob-

tain the key k#4\M.

Remark: From the above observation, we can compute the key storage and com-
munication complexity of the OR scheme and the AND scheme described above as
follows: Let U = {uy,...,u,} and M CU be the set of users to be evicted. Let w

be given an integer.

e For | M| < w, there exists a w-resilient OR re-keying scheme from a PHF(N; n, m, w+
1) such that the numbers of keys of each user and the GC are N and Nm,

respectively. Moreover, the number of transmissions is at most N(m — 1).

o There exists a w-resilient OR re-keying scheme with dynamic controller from
PHF(N;n,m,w + 2) in which the numbers of auxiliary keys for each user
Nm, and the number of transmissions to update a session key and exclude

up to w users from the group, is at most m(N — 1).

e For n —w < |[M] < n — 1, there exists a w-resilient AND scheme from

PHF(N;n.,m,w + 1) such that the number of keys of each user and the GC
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are N and Nm, respectively. And the number of transmissions is at most w.

e Forn —w —1 < |[M| < n —1, there exists a w-resilient AND scheme from
PHF(N;n,m,w + 2) in which the numbers of auxiliary keys for each user
Nm, and the number of transmissions to update a session key and exclude

more than n — w — 1 users from the group, is at most w.

In Chapter 1, we observed that a PHEF(N;n,m,w) with N is O(logn) exists for

fixed m and w.

5.6 The Traceability Scheme

Codes are used to protect copyrighted materials by providing some forms of trace-
ability for pirated data. In [11], Boneh and Shaw first introduced the methods for
assigning codewords for the purpose of fingerprinting digital data. Roughly speak-
ing, there are “strong” versions of traceability that allow at least one member of
a coalition that constructed a pirate decoder to be traced, and there are “weaker”
versions of this concept which ensure that no coalition can frame a disjoint user
or group of users. All these concepts can be formulated as codes having certain
properties. There have been many results on these schemes, such as codes with the
identifiable parent property (IPP), frameproof (FP) codes, and secure frameproof
(SEP) codes. We will focus on the relationships between various notions of trace-
ability and perfect hash families. We consider a code C of length [ on an alphabet
Q with |Q| = ¢, and we call it an (I, n, ¢)-code if |C| = n. Moreover, an (I, n)-code
denotes a binary code of length [ and size n. Before proceeding further, we need

some definitions which are used throughout this section.

Definition 5.5 Let C be an (I,n,q)-code and let w > 2 be an integer.
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1. For any subset of codewords Co C C, define the set of descendants of Cy,
denoted desc(Cy), by

desc(Co) ={r € Q' 1z, € {a;:a € C},1 <i <I}.
This set consist of the [-tuples that could be produced by a coalition holding
the codewords in the set Cy.
2. Let w be a positive integer. The w-descendant code of C, denoted desc,(C),

s defined as follows:

desc,(C) = U desc(Cy).

COQC,|C0|§w

This set consists of the [-tuples that could be produced by some coalition of

size at most w.

3. Suppose that x € desc,(C). We define the set of suspect coalition as follows:

susp,(z) ={Co CC: |Co] S w, x € desc(Cy)}.

Example 5.15 Let C = {(112),(232),(131)} be a code of length 3 and let w = 2.
Then we can find descy(Cy) for all C C C, |C| < 2 as indicated below:
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Co C C with |Cy| <2 descy(Co)
112} 112}
(232} (232}
{131} {131}
{(112), (232)} {(112), (232), (132), (212)}
{(112), (131)} {(111), (131), (112), (132)}
{(232), (131)} {(232), (131), (231), (132)}

And hence,

desc,(C) = {(112),(232), (131), (132), (212), (111), (231)}.

Let 2 = (232) € descy(C), then

susp, () = {{(232), (112)}., {(232). (131)}}.

Definition 5.6 [30] Let C be an (I,n,q)-code and let w > 2 be an integer. Let
CiCC,i=1,2,....t, be all the subsets of C such that |C;| < w, wheret = > (n)

=1\5/"

1. C is a w-frameproof code (w-FPC) provided that for all x € desc,(C),
x € desc(C;) NC implies x € C;.

2. C is a w-secure frameproof code (w-SFPC) provided that for all v € dese,(C),
x € desc(C;) N desc(Cj) implies that C; N Cj # 0, where 1 # j.

3. C has the w identifiable parent property (w-IPP) provided that for all « €
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desc,(C), it holds that
ﬂ Ci #0.

{i:xedesc(C;)}
The meaning of the above definition is as follows:

e A code is w-frameproof if no coalition of size at most w can frame another

user not in the coalition by producing the codeword held by that user.

e A code is w-secure frameproof if no coalition of size at most w can frame a
disjoint coalition of size at most w by producing an [-tuple that could have

been produced by the second coalition.

o A w-IPP code, given any fingerprint created by a coalition of size at most w,

at least one of the members of the coalition can be identified.

For simplicity, we will focus on the binary codes with frameproof and secure frame-
proof. Let C = {c',c%,...,c"} C {0,1} be a binary code where each ¢’ indicates a
codeword. We call a binary I-tuple z € {0,1}\C an unregistered word. For a given
code C, we define the incidence matrix M(C) to be an n x [ matrix, having entries
from {0,1}, in which the rows are the n codewords in I'. We consider a subset of
codewords of C, say Co = {c*™,... ¢4} CC. For i € {1,2,...,1}, a bit position ¢
is undetectable for C if

ul

wy :"':wiud.

Let U(Cp) be the set of undetectable bit positions for Cy. Then
F(Co) = {l’ € {0, 1}l . x|U(CO) = Cui|U(CO) fOI’ ELH Cui € Co}

is called the feasible set of Cy. This represents the set of all possible [-tuples that

could be produced by the coalition Cy by comparing the d codewords they jointly
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hold, which is clearly equivalent to desc(Cy).

5.6.1 Frameproof Code

Here we only focus on binary codes. In this case, if we use the notation F(C), the

relevant proof and illustration is more convenient. That is to say, in order to prove

that [ is w-FP, it suffices to show that F(C)NT C C for any C CT.

Example 5.16 1. For any integer k, if we consider the code C which is obtained

from a k X k identity matrix. Then this C is a &-FPC(k, k).

2. Let C = {100,010,001,111} and let w = 2. Then C is a 2-FPC(3,4) code,
since for any C; C C with |C;| < 2, we can verify that F(C;) NC = C; as

follows:

C; CC with |C;| <2 F(Cy) Fc)nc

{100} {100} {100}

{010} {010} {010}

{001} {001} {001}

{111} {111} {111}
{100,010} {100,010,110,000} | {100,010}
{100,001} {100,001,101,000} | {100,001}
{100,111} {100,111,101,110} | {100,111}
{010,001} {010,001,011,000} | {010,001}
{010,111} {010,111,110,011} | {010,111}
{001,111} {001,111,011,101} | {001,111}
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There is a method to enlarge a frameproof code, using a perfect hash family, as

follows:

Theorem 5.9 [36] Suppose that there exists o PHF(N;n,m,w+1) and there exists
a w-FPC(l,m). Then there exists a w-FPC(NI,n).

Proof Let C = {c',...,c"} be a w-FPC(l,m) and let F = {f1,..., fn} be an
(n, m,w+1) perfect hash family. We can construct a new code ¢’ = {z!,... 2"} C

{0, 1}Nl as follows:
w = (0|0 |ND)Y for 1< <.

Now we will show that C' is a w-FPC(Nl,n). Let W C C', W = {z",... 2"},
Assume that I'NF (W) # W. Then there exists a codeword z'»+1 € (C'NF(W))\W,
ie., x'+ € C'\W and

gl o) = :1;’5|U(W) for 1 <j <w.

7 ={i1,... 00, twt1}, then since F is a PHF(N;n,m,w+1), there existsan f € F
such that f|; is one-to-one. Thus we have w + 1 different codewords ¢/(45) € C, for
1 < j < w+ 1, such that ¢/0wt1) is in F(Cy), where Co = {c/0) 1 1 < j < w}.
Thus C N F(Cy) # Cy, which contradicts the fact that C is a w-frameproof code. O

Example 5.17 There exists a PHF(7;7,4,3) as shown in Figure 5.2. We have
2-FPC (3,4) code, C, from Example 5.16. We obtain a 2-FPC (21,7) code, C', as
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FIGURE 5.2: A PHF(7;7,4,3)

described in Theorem 5.9. The following matrix represents the new code, C':

100010001111 10001O00O0°O01
1 0001000111101 0100111
1000100011101 01000111
1 0001000111111 1001010
610001010001 1O0O01001T171
61011110001 0001111°0°0°71
10010001001 O000111T1O00O01

Corollary 5.1 [36] For any integer j > 1, there exists a 2-FPC(6 x 4j,52j).

Proof There exists a PHF(2;5,4,3), as shown in Figure 5.1. And since ged(5, (3) N =

2
1, by Theorem 2.17 and F described above, we have a PHF (2 x 47; 52j,4, 3) for any
integer 7 > 1. Then, by Example 5.16 and Theorem 5.9, we can obtain a 2-

FPC(6 x 47,5%). O
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Corollary 5.2 Suppose that there exists a w-FPC(v,q) C1, and an (N,n,d, q)-code

)

(*3")

Proof Let C; be a w-FPC (v,q) code and let C3 be a (N,n,d,q) code. If d >
N (1 — @), then, by Theorem 2.5, we have a PHF(N;n,q,w + 1) from the
given (N, n,d, q)-code Cy. Thus, by Theorem 5.9, there exists a w-FPC(vN,n). O

Cy. Then there exists a w-FPC(vN,n), provided that d > N (1 —

Similarly, D. Stinson and R. Wei presented and proved the following theorem:

Theorem 5.10 [36] If there exists a w-FPC(v,q) and an (N,n,d,q) code with

minimum Hamming distance d > N (1 — L), then there exists a w-FPC(vN,n).

w

5.6.2 Secure Frameproof Code

We also consider the case for the binary codes in this section. First we consider the

following example to illustrate a (binary) secure frameproof code as follows:

Example 5.18 Let C be the binary (3,4)-code described in Example 5.16. By
computing F(C;) for all C; such that |C;| = 2,we can verify that C is a 2-SFPC,

le.,

F({100,010}) N F({001,111}) =
F({100,010}) N F({010,111}) =

s = =

F({100,111}) N F({010,001}) =

Theorem 5.11 Any w-SFPC (I,n) is a w-FPC(l,n).
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Proof Let C be a w-SFPC(l,n). Suppose that C is not a w-FPC(I,n). Then
there exists a set C C C and a codeword ¢/ such that |C| < w and ¢ € F(C)\C.
Suppose we define C; = C and C; = {¢/}. Then, we have |Cy| < w, |Ca| < w,
CiNCy=0and F(C)N F(Cy) = {’} # 0. This contradicts the fact that C is a
w-SFPC(I,n). O
Now we present the method described in Theorem 5.9 to expand the w-SFPC using
a perfect hash family.

Theorem 5.12 [35] Suppose that there exists a w-SFPC(I,m) and there exists a
PHF(N;n,m,2w). Then there exists a w-SFPC(IN,n).

Proof Let C = {c*,...,c"} be a w-SFPC(I,m) and let F = {fi,..., fx} be
a PHF(N;n,m,2w). We will construct a new code ¢’ = {z!,... 2"} C {0,1}'V,

which consists of n codewords of length [N, as follows:
2= (cfl(j)||cf2(j)|| . ||ch(j)) for 1<j<n.

We will show that C’is a w-SFPC(IN, n). Let C;,Cy, CC', Cy = {a",... 2}, Cy =
{aiwtl w2} such that €y N Cy = . Assume that F(Cy) N F(Cy) # 0. Then
there exists a codeword 2! € F(Cy) N F(Cy), i.e., there is common undetectable
position for Cy and Cy. Since F is a PHF(N;n,m, 2w), there exists an f € F such
that f|; is one-to-one, where I = {iy,... 45, }. Thus W; = {/03) 11 < j < w} and
Wy = {cf) s w + 1 < j < 2w} are disjoint subset of C. But F(W,) N F(W,) # 0,

which contradicts the fact that C is a w-secure frameproof code. 0

Corollary 5.3 There exists a 2-SFPC(3 - 771, 7%Y for all j > 0.
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Proof We have a PHF(7;7,4,3), F, in Figure 5.2. And since ged(7, (2)’) =1, by
Theorem 2.17 and the perfect hash family F, we have a PHF(7 x 7/; 72j,4,4) for

any integer 7 > 1. And then by Example 5.18 and Theorem 5.9, we can obtain a
2-SFPC(3 - 7711, 7%). O

5.6.3 Identifiable Parent Property

An (I,n,q)-code is a w-IPP code if and only if

N C#9,
Co€susp,,(c)

for all ¢ € desc,(C). To illustrate this definition, we consider the following example.

Example 5.19 We present a (3,6, 3) code, C, and consider coalition of size at most
2:
C ={011,101,110,202,102,210}.

For x = (111) € desc,(C),
susp,(z) = {{011,101}, {011,110}, {101,110}, {011,102}, {101,210} }.

Then

N G=0

CoEsusp, ()

Thus this code C is not a 2-IPP code. O
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Example 5.20 We present a (3,7,5) 2-IPP code C as follows:

¢ = {000,011, 023, 103, 204, 330, 440}.

If ¢ = (xy2223) € desc,(C) and any coordinate of ¢ is non-zero then at least one

parent of ¢ can be identified as follows:

x| 1p. || x2 | 1.p. || 3 | 1.p.

11103 1 (011} 1 |O11

2 1204 2 (023 2 | 023
3 1330 (| 3 |330 | 3 | 103
4 1440 || 4 | 440 || 4 | 204

where i.p. means an identifiable parent. Finally, if ¢ = (0,0,0), then ¢; must be a

parent. 0

Now we discuss the relationships between 2-IPP codes and perfect hash families.

Theorem 5.13 [19] Let C be a (N,n, q) code which is 2-IPP. Let M(C) be an (0,1)-
array from a code C, where each codeword corresponds to one of columns. Then

M(C) is a PHF(N;n,q,3).

Proof Suppose that M(C) is not a PHF(N;n, ¢, 3), then there exist three columns
1,79, and rs of M(C) violate the PHF property. For any row ¢, let . be an element
that is repeated, i.e., it occurs in at least two of the three given columns in row c.
Then for © = (xy29---xn), we have {ri,ra}, {r1, 73}, {ra.r3} € suspy(x). Thus C
is not a 2-IPP code. O
For the general case, we have the following theorem, which can be proved with a

similar argument to the above theorem.
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Theorem 5.14 [30] Suppose that there exists a w-IPP(N,n,q) code. Then there
exists o PHF(N;n,q,w+ 1), provided that n > w + 1.

Instead of proving the above theorem, we illustrate with an example, as follows:

Example 5.21 From a (3,7,5) 2-IPP code C given in Example 5.20, we can con-

struct a PHF(3;7,5,3), as described in Figure 5.3 O
0 001 2 3 4
012 0 0 3 4
01 3 3 4 0 0

FIGURE 5.3: A PHF(3;7,5,3)

Now we observe a necessary condition on the existence of a w-IPP code as follows:

Theorem 5.15 [30] Suppose C is any (I,n,q) code, andn —1 > w > q. Then C is
not a w-IPP code.

At last, we will present the following theorem without proof.

Theorem 5.16 [30] Suppose that there exists « PHF(N;n,q, {(w-zz)?J ). Then there
exists a w-IPP (N,n,q) code.
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