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Abstract

Simulation modelling has become an important tool in social science research,

though such models are less commonly used in population health. Spatial mi-

crosimulation models provide a unique way to estimate health outcomes at the

small area level and forecast the local effects of potential health interventions.

Spatial microsimulation models combine geographically rich census data with in-

formation rich survey data to generate synthetic small area populations contain-

ing the wealth of information available in both types of data. Model outputs can

therefore be used to inform the local delivery of health promotion programs.

This research developed and validated the Type 2 dIabetes Spatial Microsimu-

lation (“TropISM”) model of chronic disease risk factors and outcomes for the 140

neighbourhoods of metropolitan Toronto. The model was developed using Cana-

dian census data from 2006 and the 2005 Canadian Community Health Survey.

The five-year incidence of diabetes was estimated using the Diabetes Population

Risk Tool (DPoRT 2.0), a population-level risk algorithm that forecasts disease in-

cidence using risk factor information routinely collected in population health sur-

veys, together with the synthetic TropISM population. By leveraging both mod-

els, it was possible to evaluate the effects of hypothetical weight loss interventions

on potential reductions in diabetes incidence at the neighbourhood level. Syn-

thetic, neighbourhood specific prevalence estimates of diabetes were also used

to estimate potential spatial accessibility to diabetes education programs within

metropolitan Toronto. Accessibility was estimated using a two-step floating catch-

ment area model, a type of spatial interaction model used to estimate area specific

provider-to-population ratios.

Results indicate that although the TropISM model accurately replicated de-

mographic characteristics of Toronto’s 140 neighbourhoods, it underestimated the

true prevalence of type 2 diabetes, hypertension, and heart disease among men.

In addition, TropISM captured broad spatial patterns in disease prevalence, but

was unable to capture the spatial variability in known prevalence assessed from

administrate health databases maintained by the Institute for Clinical Evaluative

Sciences. Irrespective of these limitations, when the DPoRT model used synthetic

TropISM population to forecast diabetes incidence, the overall five-year forecast
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incidence was comparable to the true incidence of disease (4.9% vs. 5.8%, respec-

tively; 95% uncertainty interval: 4.2%-5.9%).

At the neighbourhood level, the true incidence of diabetes fell within the range

of forecast uncertainty in 65 neighbourhoods, while forecast incidence was under-

estimated in 52 neighbourhoods, most of which were located in Scarborough and

Etobicoke. Again, broad spatial patterns in forecast incidence were captured by

TropISM even though forecasts did not capture the spatial variability in true inci-

dence rates.

When the synthetic TropISM population was used to assess the ex ante effects

of population-level weight loss programs on the future incidence of diabetes in sil-

ico, the entire population of high-risk, overweight individuals having a body mass

index ≥ 25 kg/m2 would have to lose 17% of its baseline body weight to produce a

reduction in diabetes incidence of just one percentage point across metropolitan

Toronto. Greater reductions in incidence were observed in neighbourhoods com-

prised of larger proportions of visible minorities and immigrants, even though the

baseline prevalence of overweight and obesity tended to be slightly lower in these

neighbourhoods compared to the metropolitan average (39% vs. 41.2%, respec-

tively).

Finally, the two-step floating catchment area model was used with synthetic,

neighbourhood-specific counts of type 2 diabetes to conduct an exploratory anal-

ysis of spatial accessibility to diabetes education programs located throughout

metropolitan Toronto. Results point to a potential mismatch between population

demand for services and potential spatial access. In particular, some neighbour-

hoods within Scarborough had relatively higher prevalence of type 2 diabetes but

lower access to diabetes education programs while neighbourhoods within cen-

tral Toronto tended to have greater spatial access and lower prevalence rates of

type 2 diabetes. Disparities in service provision suggest additional resources could

be devoted to diabetes management in high-prevalence, low service neighbour-

hoods.

In light of its short-comings, TropISM model results suggest how spatial mi-

crosimulation models can be improved to produce more accurate neighbourhood-

specific estimates of diabetes prevalence. Importantly, TropISM was able to cap-

ture broad spatial patterns in diabetes prevalence and incidence, providing insight
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into where weight loss programs may contribute to greater reductions in diabetes

incidence and identifying factors that might influence those reductions. This in-

formation can be used to customize health promotion interventions to the partic-

ular needs of specific communities.

In conclusion, the TropISM spatial microsimulation model was able to (a) pre-

dict the consequences of different weight loss programs on projected diabetes in-

cidence and (b) identify potential mismatches between existing demand for health

promotion programs and the geographic availability of those resources. This lo-

cally relevant information enables public health planners to better allocate scarce

resources to communities of greatest need. This research therefore illustrates how

spatial microsimulation modelling can be used as a spatial decision support tool

for local public health planning.
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Chapter

1
Introduction

1.1 The Role of Local Information in Decision Making

Evidence-based decision making is a cornerstone of medicine and has come to

play a critical role in public health practice. Evidence-based public health relies

on the best available scientific information to guide the implementation and de-

livery of interventions designed to improve population health (Brownson, Field-

ing, & Maylahn, 2009). Health policy makers rely on evidence to allocate scarce

resources. Health policy making is a rational decision making process where pol-

icy makers:

• identify the objectives of a health program or policy,

• identify the options available to meet those objectives,

• predict the consequences of each option, and

• evaluate the consequences (Kaati, Sjostrom, & Vester, 2004).

A unique feature of evidence-based public health is the local context in which

decisions are made. Often, public health practitioners and policy makers must

transfer evidence about the effectiveness of an intervention developed in one par-

ticular setting to a new locale. Doing so, however, changes the conditions under

which an intervention was originally delivered and may result in that intervention

being less effective. Thus, the local context is important for decision making and

public health decision makers should incorporate that information into the deci-

sion making process.
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The importance of local information in decision making might be best illus-

trated with an example of swarm behaviour. In The Smart Swarm, Miller (2010)

describes how a colony of ants can make seemingly intelligent decisions even

though an individual ant is by no means intelligent. When searching for a source

of food, the Argentine ant secretes pheromones that guide other ants to a food

source. When choosing between two different paths to a food source, a colony of

Argentine ants will usually choose the shorter path. The key to this intelligent “de-

cision” is the pheromone trail. As more ants use the shorter trail, it accumulates

a greater concentration of pheromones, inducing other ants to take the shorter

path. In this case, the ants are using local information to collectively make a deci-

sion about the shortest path to a source of food.

Likewise, local information is important for decision making in public health.

Congdon (2012) argues that geographically disaggregated forecasts of future dia-

betes prevalence are necessary for tailoring public health interventions to the lo-

cal context. People living in different areas may not respond in the same ways to

the same policy or program. Ballas and Clarke (2001); Ballas, Clarke, and Wiemers

(2006) and Ballas, Clarke, Dorling, and Rossiter (2007a) argue that it is important to

understand and forecast the local effects of national level policies. Understanding

how different localities vary in their responses to national policies allows policy

makers to better respond to the needs of their local communities. Moreover, pre-

dicting the local consequences of different policy options equips decision makers

with the necessary information needed to select one policy or program over an-

other. Predicting the consequences of health programs or policies is a crucial step

in the decision making process (Kaati et al., 2004).

1.2 Microsimulation Modelling in Public Health Research

Simulation modelling has become an important tool in social science research.

It is a valid way of conducting scientific research, following on the heels of de-

ductive and inductive methods (Axelrod, 1997; Garson, 2009). The goal of simula-

tion modelling is to understand the behaviour of complex systems using simpler

models. According to Harrison, Lin, Carroll, and Carley (2007), one of the goals

of simulation modelling is to predict how a system might respond to different sets
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of initial conditions or how a given set of initial conditions might result in differ-

ent outcomes if different processes are modelled. These types of simulations are

useful for predicting the possible effects of a policy, allowing researchers to “com-

press time” and experiment with the effects of different policies without having

to implement them in real-world settings (Turban & Aronson, 2001). Simulation

models therefore provide public health decision makers with useful ways to pre-

dict the consequences of health programs and policies.

Microsimulation models comprise one type of simulation modelling used in

public health research. These models simulate a population of individuals to pre-

dict the aggregate behaviour of a larger system (Spielauer, 2011). Each individual

possesses a set of traits that may change over time (Klevmarken, 2008). A set of

rules and relationships govern individual-level behaviour, specifying how individ-

uals change over time or how they respond to certain conditions. Using the sim-

ulated population of individuals, it is possible to predict the effects of a change in

policy on the entire population.

Microsimulation modelling has its roots in economics. First suggested by Or-

cutt in 1957, early microsimulation models were developed to model the effects

of different public policies on the American labour market (Birkin & Clarke, 2011;

Orcutt, Caldwell, & Wertheimer II, 1976). Orcutt’s original DYNASIM model used

a cross-sectional database of individuals to project demographic and economic

events over time, including marriage, fertility, education, employment, earned in-

come, retirement, and death (Ross, 1991). As illustrated by the DYNASIM model,

there are two key features common to all microsimulation models. The first is a

micro dataset of individual-level data; these data often come from sample sur-

veys of some target population. For example, Kopec et al. (2010a) used data from

the 2001 Canadian Community Health Survey, as well as physician diagnosed in-

cidence rates of osteoarthritis and statistical regression models, to forecast the

prevalence of osteoarthritis in the Canadian population.

The second component of a microsimulation is a model that specifies how in-

dividuals in the simulated population change over time (Zucchelli, Jones, & Rice,

2012). The Population Health Model is a continuous-time microsimulation of the

Canadian population that ages individuals and predicts the likelihood that each

individual experiences different life events, such as diabetes, hypertension, heart
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disease, or cancer (Nadeau et al., 2013). Regression models estimated from the

National Population Health Survey define several models used to predict these

events. Predicted events are averaged over the entire simulated population to fore-

cast the average prevalence of each event at some future time point.

Spatial microsimulation models form one unique subclass of models that sim-

ulate populations within specific geographic areas. Tanton and Edwards (2013)

state that spatial microsimulation models are primarily used for (a) small area

estimation, (b) small area projection, and (c) small area policy modelling. The

unique feature of spatial microsimulation is that it explicitly focuses on where sim-

ulated individuals live. Geographic location is important in these models because

it might affect how individuals behave and respond to public policies. Spatial mi-

crosimulation models therefore attempt to simulate realistic populations for spe-

cific small areas, such as census dissemination areas, in order to forecast the geo-

graphic effects of policies applied at regional or national levels (Ballas, Clarke, Dor-

ling, Rigby, & Wheeler, 2006; Ballas et al., 2007a; Ballas, Rossiter, Thomas, Clarke,

& Dorling, 2005a; van Leeuwen, 2010a). Spatial microsimulation models are use-

ful because detailed data are often unavailable at fine geographic levels and the

effects of public policies might vary over geographic space (Ballas et al., 2005a).

Collecting detailed data using survey methods is often too expensive given vary-

ing demands for detailed data and the limited resources available to collect such

data.

In summary, microsimulation models assess how individual-level changes gen-

erate aggregate regularities. In other words, microsimulation is a bottom-up ap-

proach to forecast population-level changes and plausible responses to public

policies (van Leeuwen, 2010a). Thus, microsimulation models can be used to as-

sess the effects of alternative policy options before they are implemented (Clarke,

1996). This is important for policies whose effects may not manifest for long peri-

ods of time following implementation.

1.3 Research Objectives

This research will demonstrate that spatial microsimulation is a useful tool for lo-

cal health planning. Using type 2 diabetes as an example, it will demonstrate how
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spatial microsimulation can inform the delivery of health promotion programs at

the local level. The specific objectives of this research are:

1. To develop the “Type 2 dIabetes Spatial Microsimulation” model (“TropISM”),

a spatial microsimulation of type 2 diabetes and its risk factors, for neigh-

bourhoods within metropolitan Toronto.

2. To assess the validity of the TropISM model by comparing small area esti-

mates generated by the model to known estimates obtained from external

data sources.

3. To use the simulated TropISM population in conjunction with the Diabetes

Population Risk Tool (Manuel, Rosella, Tuna, Bennett, & Stukel, 2013; Rosella,

Lebenbaum, Li, Wang, & Manuel, 2014; Rosella, Manuel, Burchill, & Stukel,

2011) to

a) forecast the five-year incidence of diabetes at the neighbourhood level,

b) project how weight loss in high-risk individuals affects the neighbour-

hood-level incidence of diabetes, and

c) assess the uncertainty of these projections using probabilistic sensitiv-

ity analysis.

4. To use TropISM model outputs with a spatial interaction model to

a) measure potential spatial access to diabetes education programs for

neighbourhoods within metropolitan Toronto,

b) measure potential spatial access to diabetes prevention programs, im-

plemented in community recreation centres, for neighbourhoods within

metropolitan Toronto, and

c) assess the uncertainty surrounding potential spatial access to health

promotion programs using probabilistic sensitivity analysis.

1.4 Unique Research Contributions

This research applies the current state of spatial microsimulation practice to the

field of public health program planning to demonstrate that this type of simu-

lation modeling can generate realistic small area populations composed of indi-

viduals having varying chronic disease risk factor profiles. Using these synthetic

populations, it is possible to forecast the future risk of chronic disease at the small
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area level. These forecasts can identify areas having the greatest need for chronic

disease prevention and management programs. Specifically, this research will

1. Develop and validate the TropISM spatial microsimulation model of type

2 diabetes and its risk factors. Model outputs will be used to forecast the

five-year incidence of diabetes at the neighbourhood level. By including a

diverse set of chronic disease risk factors, the TropISM model can be re-used

and adapted to forecast the incidence of other chronic diseases.

2. Examine how the forecast incidence of diabetes changes under different

weight loss scenarios. Subjecting the TropISM population to different in-

tervention scenarios provides insight into the intensity of intervention re-

quired to produce population-level reductions in risk. Since intervention

effects may vary over geographic space, it is also possible to assess potential

inequities in intervention effectiveness.

3. Assess the uncertainty around the projected risk of diabetes using proba-

bilistic sensitivity analysis. Formal sensitivity analysis of spatial microsimu-

lation outputs is relatively rare in the literature. Therefore, this research will

demonstrate that probabilistic sensitivity analysis should become a stan-

dard component of modelling policy scenarios using spatial microsimula-

tion models.

4. Combine TropISM model outputs with a spatial interaction model to esti-

mate how spatial accessibility to diabetes management and prevention pro-

grams varies over geographic space. By identifying areas of low accessibility

among high-risk populations, it is possible to allocate additional resources

to these areas in order to improve local health outcomes.

In summary, this research demonstrates that spatial microsimulation modelling

provides public health practitioners with a relevant spatial decision support tool

that can be used to inform the delivery of chronic disease prevention and man-

agement programs.

1.5 Thesis Organization

This thesis is divided among seven chapters. Chapter 2 reviews the epidemiology

of type 2 diabetes, from global to local perspectives. It outlines important risk
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factors that contribute to the risk of developing type 2 diabetes. This chapter also

examines the prevention of type 2 diabetes in high risk populations and discusses

the burden of type 2 diabetes in Ontario. Currently, little information is available

describing the burden of type 2 diabetes at the local level and how local resources

might address this burden.

In order to inform the development of the TropISM model, Chapter 3 reviews

the field of spatial microsimulation. It describes the evolution of spatial microsim-

ulation and key assumptions underlying the technique. New developments in the

field are discussed and important limitations are highlighted. Chapter 4 develops

the TropISM model for metropolitan Toronto using data from the 2006 Canadian

Census and the 2005 Canadian Community Health Survey. The model is validated

using population health outcome data obtained from the Institute for Clinical

Evaluative Sciences. Strengths and limitations of the model are discussed along

with implications for future research.

Chapter 5 uses the simulated TropISM population to forecast the five-year in-

cidence of diabetes at the neighbourhood level using the Diabetes Population Risk

Tool (DPoRT). It develops several scenarios that assess how forecast incidence

changes as a function of individual-level weight loss within neighbourhoods. A

baseline scenario is also modelled to forecast expected incidence assuming the

simulated TropISM population maintains its current body weight. The baseline

forecast incidence is compared against external incidence estimates obtained from

the Ontario Diabetes Database maintained by the Institute for Clinical Evaluative

Sciences. A formal probabilistic sensitivity analysis is conducted to assess fore-

cast uncertainty and to assess which components of the DPoRT model contribute

most to forecast uncertainty.

Chapter 6 uses simulated neighbourhood counts of type 2 diabetes and over-

weight (BMI≥ 25 kg/m2) to conduct an exploratory analysis of potential spatial ac-

cess to health promotion programs geared toward diabetes management and pre-

vention. Using the two-step floating catchment area model, a type of spatial inter-

action model, this chapter examines how potential access varies across Toronto’s

neighbourhoods and where disparities might exist between neighbourhood-level

prevalence and access. Probabilistic sensitivity analysis is then used to quantify

the uncertainty around estimated access. The implications of varying access are
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discussed in light of which neighbourhoods within Toronto have the greatest need

for additional diabetes management and prevention services. Strengths and limi-

tations of the results are discussed along with implications for the local delivery of

these health promotion programs.
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Chapter

2
The Epidemiology of Type 2

Diabetes

2.1 Background

Diabetes mellitus is a chronic metabolic disease characterized by high levels of cir-

culating blood glucose. There are three main types: type 1, type 2, and gestational.

Type 1 diabetes is an autoimmune disease in which the body’s immune system

destroys the β cells of the pancreas. Without these cells, the pancreas cannot pro-

duce insulin and the body’s cells cannot absorb glucose leading to hyperglycemia,

a state of chronic, elevated blood glucose (Cigolle, Blaum, & Halter, 2009; Pub-

lic Health Agency of Canada, 2011). In type 2 diabetes, the body’s cells become

increasingly resistant to the effects of insulin resulting in a relative insulin defi-

ciency. This also results in hyperglycemia. The third type, gestational diabetes,

may develop during pregnancy but typically resolves following pregnancy (Public

Health Agency of Canada, 2011).

Type 2 diabetes is the most prevalent type of diabetes, accounting for 90% to

95% of all cases (Caspersen, Thomas, Boseman, Beckles, & Albright, 2012; Millar &

Young, 2003; National Diabetes Information Clearinghouse (NDIC), 2011). Glob-

ally, 366 million people had type 2 diabetes in 2011 (Whiting, Guariguata, Weil,

& Shaw, 2011). Demographic projections that do not account for changing inci-
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dence rates forecast that 552 million people, or 9.9% of the world’s population,

will be living with 2 diabetes by 2030 (Whiting et al., 2011). Projected prevalence

rates vary by region, from a low of 5.9% among African nations to highs of 12.6% in

North America and 14.3% among Middle Eastern countries (Whiting et al., 2011).

Left unmanaged, diabetes is a risk factor for other chronic diseases. Hyper-

glycemia wreaks havoc on blood vessels, causing atherosclerosis, retinopathy, and

vision loss. It also causes long term kidney damage which can lead to end-stage

renal disease (Caspersen et al., 2012; Klein, Saaddine, & Klein, 2011; Public Health

Agency of Canada, 2011). Vascular damage reduces blood flow to the nervous sys-

tem, damaging nerve tissue and causing pain and numbness in the extremities,

foot ulceration, and bone damage (Boulten & Bowling, 2011; Public Health Agency

of Canada, 2011). To help prevent these complications, type 2 diabetes must be

managed effectively.

Management relies on maintaining blood glucose concentrations within nor-

mal ranges (fasting blood glucose concentrations of 4–7 mmol/L and postprandial

blood glucose concentrations of 5–10 mmol/L as recommended by the Canadian

Diabetes Association, 2008). Management strategies need to be tailored to the in-

dividual patient, but typically include dietary changes, increased physical activity,

weight loss, and smoking cessation (Ripsin, Kang, & Urban, 2009). These lifestyle

changes can delay the progression of type 2 diabetes and prevent long-term com-

plications (Shamseddeen, Getty, Hamdallah, & Ali, 2011).

Incorporating all of these changes into daily routines is a challenging task for

type 2 diabetics. To improve glycemic control, newly diagnosed diabetics need to

learn how to monitor their blood glucose, make appropriate dietary changes, plan

their meals, exercise more, and monitor any self-administered medications that

have been prescribed. Effectively managing type 2 diabetes is difficult and often

requires support from a multi-disciplinary team of health professionals, nutrition-

ists, and diabetes educators (Armour, Norris, Jack, Zhang, & Fisher, 2005).

2.2 Risk Factors

Globally, the number of people diagnosed with type 2 diabetes has more than dou-

bled since 1980 (Danaei et al., 2011). Much of this increase is attributable to de-
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mographic factors, such as population growth and aging. The prevalence of over-

weight and obesity also increased during this time period (Finucane et al., 2011).

This is cause for concern, since excess body fat is one of the strongest predictors of

type 2 diabetes (Shamseddeen et al., 2011). Although excess body fat is the result

of energy imbalance, where energy consumed from food exceeds that expended

through exercise and activities of daily living, the modern environment plays a

role. In particular, it has become too easy to consume energy-dense but nutrient

poor foods (Caballero, 2007; Seidell, 2000). Moreover, large segments of the popu-

lation are sedentary and fail to engage in regular physical activity. Thus, modern,

urban environments are thought to promote obesity through societal factors and

policies that encourage weight gain (Egger & Swinburn, 1997). In short, the risk

factors for type 2 diabetes are many and include modifiable risk factors such as

lifestyle choices and behaviours, non-modifiable risk factors, such as age, ethnic-

ity, and genetics. The risk of developing diabetes is further influenced by social

determinants of disease including income and education. Often, the most dis-

advantaged segments of society face the greatest risks of developing type 2 dia-

betes (Raphael et al., 2003).

2.2.1 Modifiable risk factors

One of the most important factors influencing the risk of developing type 2 dia-

betes is excess body fat (Shamseddeen et al., 2011): 65% to 80% of all cases of type

2 diabetes can be attributed to obesity (Costacou & Mayer-Davis, 2003; Paulweber

et al., 2010; Seidell, 2000). Overweight and obesity increase insulin secretion and

lead to insulin resistance (Burr, Shephard, & Riddell, 2012; Kahn, 2003; Srikanth &

Deedwania, 2011). Weight loss, on the other hand, reduces the risk of developing

diabetes. Diet and physical activity influence body weight by controlling energy

balance (Caballero, 2007; van Dam, 2003).

High fat diets, especially diets high in saturated fats, are associated with de-

creased insulin sensitivity, increased insulin secretion, glucose intolerance, and

hyperglycemia (Costacou & Mayer-Davis, 2003; Feskens et al., 1995; Hu, van Dam,

& Liu, 2001). The body’s physiologic response to certain foods also affects the risk

of diabetes. Some foods increase blood glucose concentrations more than others;
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such foods have a higher glycemic index. High glycemic index diets chronically in-

crease blood glucose concentrations which can lead to glucose intolerance (Bar-

clay et al., 2008; Costacou & Mayer-Davis, 2003). For example, white rice has an

especially high glycemic index. Hu, Pan, Malik, and Sun (2012) estimated that

each additional serving in daily rice consumption increased the risk of diabetes by

11%.

In a similar vein, sugar-sweetened beverages (e.g., soft drinks and energy drinks

such as “Red Bull”) have a high sugar content and almost no nutritional value. Not

only do these drinks have a high glycemic index, they readily contribute to weight

gain because of their high sugar content and their inability to generate satiety. As

a result, it is difficult for people to reduce their caloric intakes during subsequent

meals (Malik, Popkin, Bray, Després, & Hu, 2010). One study of more than 50,000

nurses found that nurses who increased their consumption of sweetened sugar

beverages over an eight year period gained, on average, 8 kg of additional body

weight (Schulze et al., 2004).

Physical activity plays an important role in preventing the onset of type 2 di-

abetes while a sedentary lifestyle increases the risk. Physical activity maintains

a balance between total energy intake and energy expenditure. A positive en-

ergy balance results in weight gain over time while a negative energy balance re-

sults in weight loss (van Dam, 2003). By preventing weight gain, physical activ-

ity (a) prevents the onset of diabetes and (b) slows its progression following diag-

nosis (Bassuk & Manson, 2005). Observational studies examining the relationship

between physical activity and incident type 2 diabetes have found significantly

lower risks of developing diabetes among physically active men and women. In

particular, moderately active women have 25% to 34% lower risk of developing

diabetes compared to sedentary women (Folsom, Kushi, & Hong, 2000; Hu et al.,

1999; Weinstein et al., 2004). Men who are moderately active for 40 minutes per

week are 56% less likely to develop diabetes compared to less active men (Lynch et

al., 1996). Conversely, sedentary lifestyles increase the risk of developing diabetes.

In a British study of government employees, women who engaged in less then 1.5

hours per week of moderate to vigorous physical activity had a 71% greater risk of

diabetes compared to more active women. In the same study, inactive men had

a 52% greater risk of diabetes compared to active men (Kumari, Head, & Marmot,
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2004).

Randomized controlled trials of physical activity interventions support these

findings, noting that prediabetic individuals randomized to a regular exercise in-

tervention program were significantly less likely to convert to diabetes compared

to individuals randomized to control groups (Knowler et al., 2002; Pan et al., 1997;

Tuomilehto et al., 2001). One study noted that the risk of diabetes in the interven-

tion group was significantly lower even in the absence of weight loss. Thus, popu-

lation interventions need to encourage high-risk adults to increase their levels of

physical activity in order to reduce the incidence of type 2 diabetes.

Although diet and physical activity are modifiable risk factors, these behaviours

are socially constructed and are influenced by culture and public policies. For

example, energy dense foods are readily accessible in many urban settings. Ur-

banization, along with modern technology and transportation, have increased the

number of people in society who are, by and large, sedentary (Caballero, 2007;

Seidell, 2000). Modern environments have become “obesogenic”, readily promot-

ing weight gain and chronic diseases caused by overweight and obesity. Obesity,

therefore, could be viewed as a normal physiologic response to an abnormal envi-

ronment (Egger & Swinburn, 1997).

This shift in thinking acknowledges the complex interplay of societal factors

and public policies that promote weight gain or encourage weight loss. On a popu-

lation level, preventing type 2 diabetes requires preventing obesity, which in turn,

requires structural changes to modern urban environments. Public policies must

not only encourage healthy lifestyles, but must also promote healthy environ-

ments that encourage active transportation (e.g., walking to work), discourage car

use, promote access to fresh foods, and discourage access to energy dense foods

(e.g., fast foods). Multi-sectoral cooperation is therefore essential to obesity pre-

vention at the population level and requires input from public health, urban plan-

ning, economics, and tax policy (Caballero, 2007; Egger & Swinburn, 1997; James,

1997).
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2.2.2 Non-modifiable risk factors

Of the different non-modifiable risk factors for type 2 diabetes, age is one of the

most important (Paulweber et al., 2010). The prevalence of type 2 diabetes in-

creases with age; in European countries, less than 10% of people younger than

60 have type 2 diabetes while more than 20% of people older than 80 have type

2 diabetes (Paulweber et al., 2010). Similar trends are seen in Canada, where the

prevalence of diabetes increases steadily with age. In 2008–2009, 2.6% of Cana-

dians aged 35–39 had diabetes compared to 16.6% of Canadians aged 60–64 and

25% of Canadians aged 70 and older (Public Health Agency of Canada, 2011).

The incidence of diabetes also increases with age. One Norwegian study fol-

lowed 26,168 people from 1995 to 2005 and documented increased incidence of

diabetes among older participants. While incident cases of diabetes were neg-

ligible among 25–29 year olds, incidence rates peaked among men aged 60–69

(7.5 cases/1000). Incidence peaked later in women. For each 10 year increment

in age, the risk of diabetes increased by 67% in men and 36% in women (Joseph,

Svartberg, Njølstad, & Schrimer, 2010). Similar increases in the incidence are seen

among Canadians. Incidence rates among Canadians younger than 35 in 2008–

2009 were ≤ 2.3/1000. Among 40–44 year olds, incidence rates were 5.1/1000;

among 70–74 year olds, incidence rates increased to 20.3/1000. In all age groups,

the incidence of diabetes is higher among Canadian men than it is among Cana-

dian women (Public Health Agency of Canada, 2011).

Ethnicity is another non-modifiable risk factor associated with type 2 diabetes,

although the role that it plays in the disease process remains unclear (Carulli et

al., 2005; Davis, 2008; Paulweber et al., 2010). What is clear is that some ethnic

groups have a greater risk of developing diabetes compared to others, likely due

to genetic differences between these groups (Paulweber et al., 2010; Public Health

Agency of Canada, 2011). Specifically, people of European descent are less likely

to develop diabetes compared to people of African, Asian, and Hispanic Ameri-

can descent. Moreover, modifiable risk factors tend to cluster among some eth-

nic groups, which may contribute to the increased risk of disease (Public Health

Agency of Canada, 2011).
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2.2.3 Social determinants of type 2 diabetes

Socioeconomic factors also influence the risk of developing type 2 diabetes. Dis-

advantaged populations, including the poor, under-educated, and certain ethnic

groups, are disproportionately affected by type 2 diabetes (Raphael et al., 2003).

Diabetes is more prevalent among people having lower household incomes (Hux

& Tang, 2003; James, Young, Mustard, & Blanchard, 1997; Wilkins, Berthelot, & Ng,

2002). Poverty and deprivation play an important role in the development of type

2 diabetes. These social determinants influence health behaviours by limiting

• educational opportunities which might affect one’s ability to make health

promoting decisions,

• access to healthy foods,

• opportunities to participate in leisure time physical activity, and

• access to health services, which might delay diagnosis (Agardh, Allebeck,

Hallqvist, Moradi, & Sidorchuk, 2011; Raphael et al., 2003).

One meta-analysis of 15 cohort and 8 case-control studies estimated the risk

of developing diabetes as a function of socioeconomic class, defined using edu-

cation, occupation, and income (Agardh et al., 2011). Overall, the least educated

groups had a 41% greater risk of developing diabetes. Low social class, measured

by occupation, was associated with a 31% increased risk of diabetes while low in-

come was associated with a 40% increased risk compared to the highest socioe-

conomic groups (Agardh et al., 2011). Likewise, disadvantaged groups face greater

difficulties managing their disease (Raphael et al., 2003). As a result, it is important

to address social inequalities to prevent diabetes among disadvantaged groups

and empower them to better manage their disease, preventing future complica-

tions.

2.3 Prevention of Type 2 Diabetes

2.3.1 Randomized controlled trials of diabetes prevention programs

Effective diabetes prevention programs encourage lifestyle changes that promote

weight loss. The goal of these programs is to prevent high-risk individuals from

developing type 2 diabetes. To promote weight loss, high-risk individuals must
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increase their levels of physical activity and reduce their intake of carbohydrates

and fats (Albright & Gregg, 2013; Ramachandran & Snehalatha, 2011).

Randomized controlled trials have demonstrated that type 2 diabetes can be

prevented in high-risk populations (Albright & Gregg, 2013), typically defined on

the basis of impaired glucose tolerance and the presence of one or more risk fac-

tors, such as overweight/obesity. Five randomized controlled trials conducted in

different populations (China, Japan, Finland, the United States, and India) have

demonstrated similar effects of intensive lifestyle modification on preventing type

2 diabetes (Knowler et al., 2002; Kosaka, Noda, & Kuzuya, 2005; Pan et al., 1997;

Ramachandran et al., 2006; Tuomilehto et al., 2001). Most of these trials enrolled

around 500 participants, with the exception of an American trial that enrolled 3234

participants (Knowler et al., 2002).

Each of these trials shared common features, from the individuals enrolled in

the trials to the lifestyle interventions they employed. First, these trials enrolled

high-risk individuals, defined as individuals who showed signs of impaired glu-

cose tolerance (blood glucose concentrations between 7.8–11.0 mmol/L). Four

of the five trials also used body mass index to either stratify individuals into risk

groups (Kosaka et al., 2005; Pan et al., 1997) or as an inclusion criterion, where only

overweight individuals having a BMI > 24 kg/m2 were included (Knowler et al.,

2002; Tuomilehto et al., 2001). All but one trial (Kosaka et al., 2005) included both

men and women while two trials enrolled participants from specific age groups.

Across all trials, the average participant was between 45 to 55 years old.1

In each trial, diet and/or exercise formed the basis of the lifestyle intervention.

Participants randomized to the control condition received advice about strategies

they could use to change their diets, lose weight, and increase their physical ac-

tivity in order to control their blood glucose. The lifestyle interventions shared

common features, including:

1. Reduced calorie diets where only 25–30% of daily energy came from dietary

fat (Knowler et al., 2002; Pan et al., 1997; Ramachandran et al., 2006; Tuomile-

hto et al., 2001),

1Tuomilehto et al. (2001) enrolled participants aged 40–65 while Ramachandran et al. (2006) en-
rolled participants aged 35–55.
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2. Increased exercise, defined as moderate levels of physical activity lasting for

at least 30 minutes per day (Knowler et al., 2002; Pan et al., 1997; Ramachan-

dran et al., 2006; Tuomilehto et al., 2001),

3. Weight loss, defined as a loss of 5–7% of baseline body weight (Knowler et

al., 2002; Tuomilehto et al., 2001) or a loss of 0.5–1.0 kg/month (Kosaka et

al., 2005), or

4. Intensive one-on-one counselling provided by physicians or other special-

ists (Knowler et al., 2002; Kosaka et al., 2005; Pan et al., 1997; Tuomilehto

et al., 2001). Counselling was designed to help participants achieve the in-

tervention goals of making dietary changes, increasing exercise, and los-

ing weight. Ramachandran et al. (2006) provided monthly telephone coun-

selling to ensure adherence to the lifestyle intervention.

In addition to these features, two of the trials included a pharmacological inter-

vention where metformin was used either alone (Knowler et al., 2002) or in com-

bination with lifestyle modification (Ramachandran et al., 2006). In both trials,

the metformin intervention was added to test whether it could prevent the onset

of type 2 diabetes in high-risk individuals.

In all of these trials, the development of type 2 diabetes was the primary out-

come measure, defined as having a blood glucose concentration ≥ 11.1 mmol/L

two hours after an oral glucose tolerance test on two successive occasions. The

follow-up period ranged from three to six years. Intervention adherence was as-

sessed and compared across intervention and control groups. In all trials, partic-

ipants in the intervention groups consumed fewer calories, lost more weight, and

exercised more than participants in the control group.

Each of these trials demonstrated that intensive lifestyle intervention signif-

icantly reduced the risk of type 2 diabetes in high-risk individuals: risk reduc-

tions ranged from 31–68%. Trials that included a lifestyle intervention and a met-

formin intervention found that metformin was not more effective than intensive

lifestyle modification, either alone or when it was combined with lifestyle inter-

vention (Knowler et al., 2002; Ramachandran et al., 2006). Risk reductions were

stable across different ethnic groups and weight loss was an important component

of intervention success (Davies, Tringham, Troughton, & Khunti, 2004). Hamman,

Wing, Edelstein, Lachin, and Delahanty (2006) demonstrated that every kilogram
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of body weight lost due to lifestyle modification produced a 16% reduction in dia-

betes incidence.

2.3.2 Community-based prevention initiatives

Although randomized controlled trials have demonstrated the efficacy of lifestyle

interventions in preventing type 2 diabetes among high risk individuals, such trials

are delivered under ideal experimental conditions. For example, the US Diabetes

Prevention Program used one-on-one counselling sessions to help participants

in the intervention condition achieve physical activity, nutrition, and weight loss

goals (Knowler et al., 2002). Such intensive interventions are difficult to deliver in

real-world settings (Ali, Echouffo-Tcheugui, & Williamson, 2012; Glasgow, Licht-

enstein, & Marcus, 2003). Moreover, participants in randomized controlled trials

may not be representative of the broader population of high-risk individuals. For

example, in the Diabetes Prevention Program (Knowler et al., 2002), a greater pro-

portion of participants in the lifestyle intervention were women, Caucasian, and

younger than the average high-risk individual. These limitations may prevent gen-

eralization of trial results. Therefore, it is important to study the effectiveness of

lifestyle interventions in community settings to ensure that results can be repli-

cated in real-world settings.

Studies that implemented lifestyle interventions in community settings have

achieved encouraging results. A meta-analysis of 28 translation trials implement-

ing interventions based on the Diabetes Prevention Program showed significant

weight loss among high-risk individuals after participating in the intervention for

at least one year (Ali et al., 2012). High-risk individuals included people with pre-

diabetes or people having a body mass index ≥ 25 kg/m2 and who had at least one

other risk factor. On average, high-risk individuals participating in these studies

lost four percent of their baseline body weight after 12 months (Ali et al., 2012).

Twelve of the 28 interventions were delivered in community settings, such as

community centres, recreation centres, and faith-based organizations. Another

eleven were conducted in health care facilities while four used electronic media

to deliver lifestyle training to participants. Consistent results were observed re-

gardless of the type of health professional delivering the program. Weight loss was
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slightly greater in studies using medical or other health professionals compared

to trials using lay community members to deliver the intervention, although the

difference was not statistically significant (Ali et al., 2012).

The number of intervention sessions included as part of the lifestyle modifi-

cation program was also important. On average, programs that delivered a greater

number of sessions produced greater weight loss. Although the prevention of di-

abetes was not studied as an outcome, Ali et al. (2012) argue that because weight

loss is the most important predictor of diabetes prevention, weight loss is a suit-

able outcome for studies examining the real-world effectiveness of diabetes pre-

vention programs.

That said, one of the studies included in this meta-analysis demonstrated sig-

nificant reductions in blood glucose concentrations. Katula et al. (2011) exam-

ined the effectiveness of volunteer community health workers delivering a weight

loss program based on the Diabetes Prevention Program. In this study, 301 high-

risk individuals2 were randomized to lifestyle intervention or usual care. Lifestyle

intervention consisted of group education sessions delivered on a weekly basis

for six months followed by monthly sessions for another six months. Usual care

consisted of two diet counselling sessions with a nutritionist followed by monthly

newsletters discussing healthy lifestyles. After 12 months, those in the lifestyle

intervention group lost an average of 5.7 pounds of body weight compared to par-

ticipants in the control condition. Fasting blood glucose concentrations were also

significantly lower in the intervention group compared to the control group, with

the intervention group showing a 0.21 mmol/L reduction. Based on these findings,

it appears that even in real-world settings it is possible for high-risk individuals to

lose a clinically meaningful amount of body weight that could prevent diabetes.

Community-based interventions typically cost less than the interventions de-

livered as part of a randomized controlled trial (Simmons, Unwin, & Griffin, 2010).

However, community-based trials often face difficulties when it comes to targeting

and enrolling the most vulnerable groups who face the highest risks of developing

diabetes. Of the 28 trials included in the meta-analysis conducted by Ali et al.

(2012), most participants were female and non-Hispanic white, whereas type 2 di-

2Defined as individuals having prediabetes and a body mass index between 25 and 40 kg/m2
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abetes tends to be more prevalent among men and minority ethnic groups (Public

Health Agency of Canada, 2011). Socially and economically disadvantaged indi-

viduals have a greater risk of developing type 2 diabetes and it may be more diffi-

cult to target these individuals.

In short, it is important to understand the factors that contribute to the success

of community-based intervention programs (Jackson, 2009). Translation studies

of the Diabetes Prevention Program that used local YMCAs to deliver lifestyle in-

tervention programs have demonstrated promising results (Ackermann, Finch,

Brizendine, Zhou, & Marrero, 2008; Ackermann & Marrero, 2007; Vojta, Koehler,

Longjohn, Lever, & Caputo, 2013). As Vojta et al. (2013) argue, YMCA centres across

the United States are promising avenues for delivery of diabetes prevention pro-

grams because almost 60% of the US population lives within 5 kilometres of a

YMCA. Programs delivered by YMCA staff would cost less than programs deliv-

ered by health care professionals (e.g., physicians, nurses, physiotherapists, or nu-

tritionists/dietitians). In addition, YMCAs typically have a high penetration rate

in many communities. These community centres also do not turn people away

because of an inability to pay for services (Ackermann & Marrero, 2007). This

is important for lifestyle modification programs that target chronic diseases be-

cause disadvantaged, low-income groups are often disproportionately affected by

chronic diseases (Ackermann & Marrero, 2007; Raphael et al., 2003).

Attendance is another factor that influences the effectiveness of community-

based prevention programs; low attendance limits their effectiveness (Ali et al.,

2012). Lifestyle change and weight loss are not possible if people do not actively

participate in the intervention. Another factor that influences adherence is how

well patients monitor their participation. Self-monitoring helps participants track

caloric intakes and the amount of physical activity they need to engage in to lose

weight.

In summary, community-based prevention programs can produce beneficial

results in high-risk populations. Although these programs may not achieve the

same results of the randomized controlled trials upon which they were based, ex-

tant evidence demonstrates that community-based diabetes prevention is possi-

ble if high-risk groups lose meaningful amounts of body weight.
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2.4 Burden of Disease

The prevalence of diabetes increased in many regions around the world since

1980 (Danaei et al., 2011). In 2011, 366 million people had diabetes, a number

that is expected to grow to 552 million by 2030 (Whiting et al., 2011). Diabetes is

most prevalent in Western Pacific, North American, and Mediterranean countries,

where 10.1%, 11.1%, and 12.5% of adults aged 20–79 had diabetes in 2011, respec-

tively. By 2030, prevalence in these regions is expected to increase to 11.6%, 12.6%,

and 14.3%, respectively (Whiting et al., 2011).

Canadian data reveal similar trends: since the late 1990s, prevalence increased

in all age groups. The largest increase occurred among adults aged 75–79, where

prevalence increased from 14.0% in 1998 to 25.5% in 2008 (Public Health Agency

of Canada, 2011). In 2011, 2.7 million adults, or 10.8% of the Canadian popula-

tion aged 20–79, were living with diabetes. This number is expected to increase to

3.7 million by 2030 (Whiting et al., 2011). Prevalence also varies regionally within

Canada. In 2008, some of the highest rates of disease3 were observed in New-

foundland & Labrador (6.5%), Nova Scotia (6.1%), and Ontario (6.0%), while Al-

berta (4.9%) and Nunavut (4.4%) experienced the lowest rates of disease (Public

Health Agency of Canada, 2011). However, these estimates need to be interpreted

cautiously, since 20% to 40% of all of cases of diabetes remain undiagnosed (Cana-

dian Diabetes Association, 2015; Hux & Tang, 2003; Public Health Agency of Canada,

2011; Rosella, Lebenbaum, Fitzpatrick, Zuk, & Booth, 2015).

Excess body fat, in particular overweight (BMI ≥ 25 kg/m2) and obesity (BMI

≥ 30 kg/m2), is one of the strongest predictors of type 2 diabetes, accounting for

as much as 80% of all cases (Costacou & Mayer-Davis, 2003; Paulweber et al., 2010;

Seidell, 2000). In Canada in 2010, diabetes was three times more prevalent among

overweight and obese individuals compared to normal weight individuals (Public

Health Agency of Canada, 2011). Like diabetes, average body weight has increased

on a global scale since 1980 (Finucane et al., 2011). Among high income coun-

tries, the United States experienced the largest increase in average body weight.

Among US men, average BMI increased from 25.5 kg/m2 in 1980 to 28.5 kg/m2

3Age-standardized estimates from the Canadian Chronic Disease Surveillance System, all age
groups.
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in 2008; in US women, average BMI increased from 25.0 kg/m2 in 1980 to 28.3

kg/m2 in 2008. A similar trend was observed in Canada: by 2008, average BMI was

27.5 kg/m2 among men and 26.7 kg/m2 among women. Significant weight gain

also occurred in Australasian, South American, North African, and Middle Eastern

countries (Finucane et al., 2011).

The global increase in average BMI suggests that obesity became more com-

mon during this time. The age-standardized prevalence of obesity almost doubled

globally from 1980 to 2008, increasing from 4.8% to 9.8% in men and from 7.9% to

13.8% in women (Finucane et al., 2011). Obesity was most prevalent among North

American men in 2008, where just under 30% of men were obese. Obesity was

least prevalent in south Asia (Finucane et al., 2011).

Because obesity accounts for a large proportion of all cases of type 2 diabetes,

it is reasonable to expect that the incidence of disease has increased over time.

Statistics from high income countries support this claim. In Denmark, the inci-

dence of diabetes increased by 5.3% per year from 1995 to 2004 (Carstensen, Kris-

tensen, Ottosen, & Borch-Johnsen, 2008). In the United Kingdom, incidence rates

increased from 1.7/1000 in 1991 to 4.5/1000 in 2002. By 2010, incidence had risen

to 5.2/1000 (Holden et al., 2013).

In the United States, the incidence of diabetes increased in all age groups from

1990 to 2010 (Centers for Disease Control and Prevention, 2007). The largest in-

creases were observed in people aged 45 and older, where incidence increased

from approximately 6 cases/1000 in 1990 to 13 cases/1000 in 2010 (Centers for Dis-

ease Control and Prevention, 2007). Incidence rates vary geographically as well:

from 2004–2009, incidence was highest in the American South (e.g., Louisiana,

Mississippi) and lowest in the American Midwest (e.g., Wisconsin, Iowa; Centers

for Disease Control and Prevnention, 2013). In Canada, however, diabetes inci-

dence remained relatively stable between 1998 and 2009, fluctuating between 5.6

cases/1000 and 6.1 cases/1000 (Public Health Agency of Canada, 2011). Small in-

creases were observed in Ontario, Saskatchewan, British Columbia, and the North-

west Territories.

Even in the absence of increasing incidence, type 2 diabetes places a large bur-

den on society in terms of health service utilization and health care spending.

Considering that treatment is costly (Lipscombe & Hux, 2007), that the popula-

22



2.5 The Local Burden of Diabetes in Ontario

tions of many nations around the world are aging, and that type 2 diabetes is more

prevalent among older age groups, it is reasonable to expect that health service

utilization for diabetes and health care costs will increase in the future. Indeed,

national spending on diabetes is a function of a country’s age structure: societies

that have a larger proportion of older people spend more on diabetes health care,

since costs tend to be higher among older people (Zhang et al., 2010).

In 2010, $376 billion to $672 billion (USD) were spent on diabetes, accounting

for 12% of the world’s health expenditures (Zhang et al., 2010). Eighty percent of

nations spend 5%–13% of their national health budgets on diabetes. High-income

countries spend proportionately more on diabetes related health care than low-

and middle-income countries, even though the latter group tends to have more

people living with diabetes. Per capita spending on diabetes is highest in the

United States and lowest in India.

A large part of diabetes related health care spending is attributable to the long-

term complications that develop from poorly managed diabetes. In Canada, 5500

deaths per year are directly attributable to diabetes; this number rises to 25,000

deaths per year when complications from diabetes are included (e.g., cardiovas-

cular disease, stroke, and end-stage renal disease; O’Brien, Patrick, & Caro, 2003).

In the year 2000, 21% of Canadian diabetics had heart disease while 25% of cardiac

surgeries were attributable to diabetes. Diabetes also accounted for one-third of

all new cases of end-stage renal disease and half of all non-traumatic cases of lower

extremity amputations (O’Brien et al., 2003). A sizable proportion of diabetes re-

lated costs are due to complications arising from the disease. This demonstrates

the importance of prevention, which includes better disease management for peo-

ple diagnosed with type 2 diabetes and, more importantly, preventing high-risk

individuals from developing type 2 diabetes in the first place.

2.5 The Local Burden of Diabetes in Ontario

Provincially, Ontario had the third highest prevalence of diabetes in Canada in

2008–2009 (Public Health Agency of Canada, 2011). From 1995–2005, the overall

age-sex adjusted prevalence of diabetes increased from 4.9% to 8.9%.4 The largest

4Standardized to the 2001 Ontario population.
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increase in prevalence occurred among men aged 50 and older, increasing by al-

most seven percentage points from 11.8% in 1995 to 19.2% in 2005. Prevalence

among women the same age increased from 9.6% to 15.4%. From 1997–2003, in-

cidence rates in this age group increased from 13.5/1000 to 15.9/1000 in men and

from 10.7/1000 to 12.7/1000 among women (Lipscombe & Hux, 2007).

Mortality from diabetes decreased during this period. Overall, age-sex ad-

justed mortality rates decreased from 17.6/1000 in 1995 to 13.3/1000 in 2005. De-

creases were seen in all age groups (Lipscombe & Hux, 2007). More recent data

spanning a 14-year period from 1996–2010 demonstrate similar declines in mor-

tality (Lind et al., 2013). Based on these data, it is reasonable to conclude that in-

creases in prevalence were due to increasing incidence and decreasing mortality

rates (Lipscombe & Hux, 2007). In other words, more people developed diabetes

during this time period and those diagnosed with diabetes seemed to live longer

with the disease. Lind et al. (2013) suggest that declines in mortality might be the

result of more aggressive treatment, improving overall survival rates. However,

they also note that in 2009 there were more diabetics living with the disease for a

shorter time period than in 1995 as a result of improved screening among high-

risk groups. Regardless, trend data clearly indicate that both the prevalence and

incidence of diabetes have increased since the 1990s.

Substantial regional variation in diabetes burden exists within Ontario. As

might be expected, areas containing a higher proportion of ethnic minorities have

higher diabetes prevalence rates. In 1999, diabetes prevalence was higher than

the provincial average of 6.2%5 in most regions of Northern Ontario, Toronto, Peel

Regional Municipality, and Essex, Brant, and Elgin Counties in Southwestern On-

tario (Hux & Tang, 2003). The high prevalence rates in the northern areas of On-

tario are cause for concern, especially because these regions tend to be more rural

and have less access to health services.

Geographic variation in diabetes burden is also apparent at the neighbour-

hood level. Using data from the Ontario Diabetes Database, the Institute for Clin-

ical Evaluative Sciences examined neighbourhood-level differences in the preva-

lence of diabetes across the City of Toronto (Booth, Creatore, Gozdyra, & Glazier,

5Age-sex adjusted.

24



2.5 The Local Burden of Diabetes in Ontario

2007). In this study, 140 neighbourhoods were defined using adjacent census tracts

having similar socioeconomic characteristics. Each neighbourhood was comprised

of 7000–20,000 residents and was contained by existing natural (e.g., rivers) and

man-made (e.g., streets) boundaries (City of Toronto, 2013a; Creatore, Gozdyra,

Booth, & Glazier, 2007a).

In 2001–2002, the overall age-sex adjusted prevalence of diabetes6 in Toronto

was 5.5% (Booth et al., 2007). Neighbourhoods in northwest Etobicoke and north-

east Scarborough had the highest prevalence of diabetes (> 6.6%) while neigh-

bourhoods in the central core along Yonge Street and in the southwest, between

Bloor Street and the Gardiner Expressway, had the lowest prevalence of disease (<
4.0%; Booth et al., 2007). These spatial trends have persisted over time. By 2012,

the city-wide average prevalence of diabetes may have reached 11.8%, varying

form a low of 6% in the central core along Yonge Street to more than 15% in north-

west Etobicoke and northeast Scarborough (Toronto Community Health Profiles

Partnership, 2015).

The social determinants of diabetes also varied across Toronto. For exam-

ple, unemployment rates were lowest in the central core and neighbourhoods in

this area had average annual household incomes of more than $100,000 (Creatore,

Gozdyra, Booth, Ross, & Glazier, 2007b). Proximity to parks and public and private

recreation centres showed significant spatial heterogeneity as did the number of

family physicians, diabetes specialists7, and diabetes education programs.

An additional analysis was conducted to examine how diabetes prevalence co-

varied with these social determinants. Using local indicators of spatial association,

Creatore et al. (2007b) demonstrated that neighbourhoods having high diabetes

prevalence tended to have low average annual household incomes, high unem-

ployment rates, and a high percentage of residents having less than a high school

education. On the other hand, neighbourhoods having low diabetes prevalence

rates tended to show the opposite relationship. These neighbourhoods had high

annual household incomes, low unemployment rates, and a high percentage of

residents having at least a secondary school education (Creatore et al., 2007b).

Less intuitive relationships were found between diabetes prevalence and prox-

6Type 1 and type 2 diabetes.
7Ophthalmologists, endocrinologists and optometrists
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imity to parks and recreation spaces. Neighbourhoods where diabetes was higher

than the city average had both a low and a high number of parks and recreation

centres per 10,000 population. Neighbourhoods west of Yonge Street had low di-

abetes prevalence and a high number of parks and recreation centres while areas

east of Yonge Street had low diabetes prevalence and a low number of parks and

recreation centres per 10,000. From a health planning perspective, these relation-

ships suggest that some neighbourhoods have less than optimal access to neigh-

bourhood resources that might promote physical activity (Creatore et al., 2007c).

Such neighbourhoods might be candidates for prevention programs designed to

promote physical activity.

Access to health services was significantly associated with diabetes prevalence.

Neighbourhoods having high prevalence tended to have (a) fewer family physi-

cians per 10,000 residents, (b) fewer diabetes education programs per 10,000 res-

idents, (c) longer travel times to the nearest family physician, either by private

car or public transit, and (d) longer travel times to the nearest diabetes education

program, either by private car or public transit (Glazier et al., 2007). These results

suggest that geographic access to health care resources important for managing

diabetes is poorest in areas where they are most needed.

2.6 The Ontario Diabetes Strategy

In 2008, the Ontario Ministry of Health and Long Term Care established the On-

tario Diabetes Strategy to improve access to health services for diabetics and to

help them better manage their disease. At this time, $741 million were earmarked

for the Strategy and an additional $152 million was committed to the Strategy in

2012 to extend the program until 2016 (Silversides, Doig, & Sullivan, 2013). Funds

were to be used to

1. educate high-risk groups about diabetes and ways to prevent it,

2. expand diabetics’ access to “Diabetes Education Teams” (consisting of a reg-

istered nurse and a dietitian) that would work with family physicians to help

patients better manage their disease, and

3. improve local and regional coordination of diabetes related health services

through Diabetes Regional Coordination Centres. These Centres were de-
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signed to identify and fill gaps in local service provision (Booth et al., 2012;

Cook, 2011; Ministry of Health and Long Term Care, 2012).

Although the Strategy has preventive components, the bulk of the Strategy fo-

cuses on service provision. Indeed, one of the Strategy’s objectives is to improve

local coordination of health services for diabetics, suggesting geographic dispari-

ties exist in access to services. However, the 2012 Ontario Auditor’s General report

suggests that the geographical allocation of diabetes education teams throughout

Ontario is inefficient. The Auditor’s report found geographic overlap in service

provision, overlap that resulted from duplication in service provision between Di-

abetes Education Teams, hospitals, and other health care providers. This led to

an under-utilization of 90% of diabetes education programs (Office of the Auditor

General of Ontario, 2012). The Auditor’s General report concludes that the Ontario

Diabetes Strategy has not lived up to expectations.

Furthermore, the Ministry of Health and Long-Term Care stipulates that each

Diabetes Education Team must maintain an active caseload of 1000 patients per

fiscal year. In 2008–2009, 90% of Diabetes Education Teams did not meet this

benchmark while 33% had fewer than 500 active patients (Office of the Auditor

General of Ontario, 2012). When asked why they could not meet the caseload,

many Diabetes Education Teams stated that programs were located too close in

proximity to other programs, leading to under-utilization and competition for pa-

tients. One under-utilized program was located in a rural area that had four other

diabetes education programs covering the same catchment area (Office of the Au-

ditor General of Ontario, 2012).

The Auditor’s report also noted that only 3% of the original funding, or $19

million, was allocated to prevention. When Diabetes Education Programs were

surveyed about prevention, two-thirds felt that more resources should be devoted

to educating high-risk individuals. Under the mandate of the current Strategy, this

type of preventive education is not possible because the funding for the strategy

is intended to assist Ontarians diagnosed with diabetes (Office of the Auditor Gen-

eral of Ontario, 2012). Based on these findings, it appears that diabetes education

services are less than optimally distributed at the local level in Ontario and that

insufficient resources have been devoted to prevention. As Barnett, Pearce, and

Howes (2006) note, problems of access to services for diabetics have largely been
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ignored by geographers.

From a health promotion standpoint, if prevention initiatives reduce the in-

cidence of type 2 diabetes in high-risk individuals, then it is important that such

programs be geographically accessible. Prevention initiatives delivered in a com-

munity setting should consider the level of risk in the target population and its ge-

ographic distribution. This information should inform service delivery decisions

so that prevention programs can be located in areas of greatest need. As Barnett

et al. (2006) note, many community-based diabetes education programs do not

reach high-risk populations. However, if prevention programs effectively reach

high-risk groups and produce their desired effects, then it is important to assess

how the geographic profile of risk might change at the small area level. This is an

area of research where spatial microsimulation modelling can inform the planning

and delivery of health promotion programs at local levels.
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Chapter

3
Spatial Microsimulation

Modelling

3.1 The Evolution of Spatial Microsimulation Modelling

As the field of microsimulation evolved, it spread from economics to other dis-

ciplines, including geography (Birkin & Clarke, 2011). The primary goal of ge-

ographic microsimulation is to simulate spatially disaggregated microdata that

resemble reliable external data sources, such as census data, as closely as possi-

ble (Ballas et al., 2007a, 2005a). Spatial microsimulation modelling is driven by

the need for geographically detailed microdata which can be used for ex ante pol-

icy evaluation (Ballas et al., 2007a; Ballas, Kingston, Stillwell, & Jin, 2007b; Ballas et

al., 2005a).

Early spatial microsimulation models used population reconstruction meth-

ods to build synthetic populations on a case-by-case basis (Birkin & Clarke, 1988;

Harland, Heppenstall, Smith, & Birkin, 2012; Williamson, 1996). Under this ap-

proach, synthetic microdata are simulated to match the known characteristics of

local geographic units, such as Canadian census dissemination areas. For any

given spatial unit, microdata are simulated using Monte Carlo sampling meth-

ods to randomly assign attributes to “individuals” in the synthetic population ac-

cording to known distributions. When these synthetic data are aggregated over
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the spatial units, the aggregate distributions resemble the published census dis-

tributions on simulated characteristics. Thus, if census data indicate that 15% of

the population in a given geographic area has a post-secondary education, then

a similar estimate should be obtained using the synthetic microdata. Although

early spatial microsimulation models relied on Monte Carlo population recon-

struction methods, the technique has been supplanted by “reweighting” methods.

Essentially, reweighting methods link sample survey data to census data. More-

over, these methods are generally more robust than population reconstruction

techniques (Harland et al., 2012; Huang & Williamson, 2001; Ryan, Maoh, & Ka-

naroglou, 2009).

3.2 Spatial Microsimulation via Reweighting

All reweighting methods have a common aim: to simulate spatially disaggregated

microdata by linking geographically poor but information rich survey data to ge-

ographically rich but information poor census data (Birkin & Clarke, 2011; Chin

et al., 2005). As such, reweighting methods can be thought of as a type of data

imputation strategy, where information from a sample survey is added to census

data (Haslett, Jones, Noble, & Ballas, 2010). This is done by calibrating the sam-

pling weights for observations from a survey dataset so that they represent the

small areas of interest instead of the original target population. Once the reweight-

ing procedure has been completed for one small area, the survey sample is reused

and calibrated to other small areas. The end result is a spatially disaggregated mi-

cro dataset containing the wealth of information available from the survey dataset

for all small areas. Policy simulations can then be conducted using this dataset

and results can be analyzed spatially (Tanton, Vidyattama, Nepal, & McNamara,

2011). Three types of reweighting methods are discussed in the next sections: it-

erative proportional fitting (IPF), generalized regression reweighting (GREGWT),

and simulated annealing, a probabilistic, combinatorial optimization algorithm.

3.2.1 Iterative proportional fitting

Iterative proportional fitting, also referred to as deterministic reweighting, is one

method used to generate synthetic, spatially disaggregated microdata. Iterative
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proportional fitting calibrates a set of sampling weights from a micro dataset so

that the sum of the new weights equals known totals over a set of demographic

variables, or constraints, within a given small area. For example, if 500 people live

in a small area and its age-sex distribution is known from census data, then itera-

tive proportional fitting iteratively scales the sampling weights from the survey mi-

crodata so that sum of the calibrated weights in each age-sex category equals the

census total in that same category. These adjusted weights can then be thought

of as the probability that a surveyed respondent “lives” in the small area being

fit (Ballas, 2004; Ballas et al., 2005a). The IPF method is deterministic in the sense

that it produces identical results each time the algorithm is run using the same

constraints (Ballas et al., 2007a; Haslett et al., 2010; Leyk, Buttenfield, & Nagle,

2013). Implicitly, iterative proportional fitting fits a log-linear statistical model in

order to adjust the cells of an n X m table according to a set of marginal totals

obtained from external data sources (Agresti, 1996; Norman, 1999; Speed, 1998).

Although variations of the method have been reported in the literature (see

Anderson, 2007; Ballas et al., 2005b, 2007a; Ballas, Kingston, & Stillwell, 2004a; Bal-

las et al., 2005a; Edwards & Clarke, 2009; Smith, Clarke, & Harland, 2009; Smith,

Pearce, & Harland, 2011), new weights (w∗
i ) are computed iteratively according to

w∗
k = wk ×

si j

mi j
(3.1)

where

w∗
k = the new weight for the k th observation

wk = the original sampling weight for the k th observation

si j = the population total for row i , column j of the census constraint table

mi j = the weighted total for row i , column j of the equivalent tabulation of

survey microdata.

The algorithm begins by adjusting the sampling weights to the first constraint ta-

ble and proceeds by calibrating the weights to all subsequent constraint tables.

The algorithm repeats until the sum of the sampling weights equals the known to-

tals defined by all constraint tables used in the reweighting process. Depending

on the number of constraint tables used to calibrate the sampling weights, up to
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20 iterations may be required until the adjusted weights converge to the constraint

totals for the small area (Anderson, 2007; Ballas et al., 2005a).

Smith et al. (2009) modified this algorithm slightly by scaling the new weights

in each iteration to the known small area population according to

aw∗
k = w∗

k × t c
o

t c
s

, (3.2)

where

aw∗
k = the adjusted new weight for the k th individual

w∗
k = the new weight for the k th individual

t c
o = the total population for constraint c in small area o

t c
s = the sum over all k observations for constraint c

from the survey microdata

Smith et al. (2009) argue that this adjustment is necessary because without it, the

new weights become progressively smaller with each iteration. In order to avoid

extremely small weights, the adjustment scales the new weights back to values

that are consistent with the size of the real-world population for each small area.

Once the algorithm converges, the final set of weights for all microdata records

will sum to the small area population totals defined in the constraint tables. For

any individual record, the final calibrated weights will often be decimal values in-

stead of integer values. Ballas et al. 2005b; 2007a; 2005a and Lovelace and Bal-

las (2013) developed several integerization methods to convert fractional weights

to whole numbers; however, there is no reason that the final calibrated weights

should strictly be integers (Anderson, 2007; Lymer, Brown, Harding, & Yap, 2009;

Tanton, Williamson, & Harding, 2007).

3.2.2 Generalized regression reweighting

Generalized regression reweighting (GREGWT) uses a regression model to cali-

brate a set of sampling weights to known benchmark totals (Singh & Mohl, 1996).

The procedure ensures that calibrated weights are greater than zero. The GREGWT

algorithm begins by scaling down the original microdata sampling weights to the

size of the small area population. The algorithm then uses the benchmark con-

straints to iteratively update the sampling weights so that the sum of the calibrated
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weights over the constraints for all microdata observations equals the sum of the

benchmark totals to within a specified tolerance criterion (Tanton et al., 2011).

When this criterion has been met or when the maximum number of iterations has

been exceeded, the algorithm stops. Based on their experience, Tanton et al. (2011,

2007) report that few improvements to the calibrated weights can be made after 30

iterations. Once the microdata sampling weights have been reweighted to fit the

small area benchmarks, the microdata are re-used to fit all other small areas.

Although the GREGWT algorithm has been shown to produce relatively ro-

bust small area estimates (Tanton et al., 2011, 2007), it has some limitations. First,

due to its iterative nature, the algorithm can become trapped at a local minimum

and therefore fails to find an optimal set of calibrated weights (Rahman, Harding,

Tanton, & Liu, 2010). Second, for some spatial units, the GREGWT algorithm fails

to converge. In other words, it is unable to find a set of calibrated weights that

minimize the difference between the benchmark totals and those estimated from

the synthetic data using the calibrated weights (Rahman et al., 2010; Tanton et al.,

2007). This situation often arises because non-converging spatial units are atypi-

cal from the majority of units where convergence is achieved (e.g., the small area is

largely an industrial area). Usually, non-converging units represent geographical

areas of low population; Tanton et al. (2007) contend that it is often less important

to obtain small area estimates for these atypical non-converging units. For exam-

ple, if the purpose of the spatial microsimulation is to obtain small area estimates

of low household income, then such estimates would be less important for non-

converging areas where there is a high proportion of industrial activity, primarily

because there would be very few people living in such areas (Tanton et al., 2007).

3.2.3 Simulated annealing

Although iterative proportional fitting and generalized regression reweighting are

deterministic algorithms, probabilistic methods are available. Simulated anneal-

ing, one such probabilistic method, randomly selects observations from a micro

dataset so that the final sample of selected records matches the actual population,

as closely as possible, on key characteristics. The distributions of these character-

istics, or constraints, are determined from univariate and/or multivariate tabula-
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tions of census data for the small area. Again, if a small area contains 500 people

having approximately similar proportions of men and women in all age groups,

then probabilistic re-selection routines will randomly sample 500 records from a

micro dataset so that the age-sex distribution of the final set of selected records

matches census estimates for that area.

Williamson, Birkin, and Rees (1998) viewed this re-selection procedure as a

combinatorial optimization problem. They argued that selection of an optimal

set of records from a micro dataset can be conducted using a stochastic, iterative

search algorithm that attempts to minimize the discrepancies between the aggre-

gate set of microdata records and the actual population for a set of constraint vari-

ables. The optimality of the final selection can be assessed using different mea-

sures (see Section 3.2.4). In practice, the fit of the final selection is assessed using

the Total Absolute Error (TAE), defined as the sum of absolute differences between

the observed and expected tabulations (Voas & Williamson, 2001; Williamson et

al., 1998). Specifically,

TAE =∑
i j

∣∣Oi j −Ei j
∣∣, (3.3)

where Oi j is the observed count for row i , column j of the tabulation of constraint

variables from the synthetic data and Ei j is the expected count for row i , column j

of the corresponding tabulation of constraint variables from the census data. The

TAE is calculated for each constraint table used in the re-selection procedure and

the overall TAE is the sum of all table specific errors.

The closer the selected sample comes to the known census distribution, the

lower the TAE and the better the fit of the selected records. A perfect match be-

tween selected records and the census data on the constraint variables implies

that TAE = 0 while the worst fit possible is a TAE twice the total table count. In gen-

eral, a TAE of 0 may not be possible to achieve but a TAE that approaches 0 indi-

cates better fit between selected observations and the true population (Williamson

et al., 1998).

Re-selection methods begin by randomly selecting a number of observations

from the micro dataset equal to the size of the population living in the area being

fit. To improve the fit between selected observations and small area census data, a

subset of observations can be randomly swapped with other records from the sur-
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vey microdata until a reasonable fit has been achieved (Williamson et al., 1998). As

a result, a given record may appear more than once in the selected sample, giving it

greater “weight” in the final sample. Williamson et al. (1998) originally tried three

different heuristic combinatorial optimization algorithms to select an optimal set

of microdata records: hill climbing, genetic algorithms, and simulated annealing.

Of these three methods, they found that simulated annealing was computationally

efficient, producing the best match (i.e., lowest TAE) between the synthetic micro-

data and census estimates of the constraint variables (Williamson et al., 1998).

Simulated annealing is an optimization algorithm designed to mimic the phys-

ical process of annealing in metallurgy, whereby a metal is heated to a liquid state

and then cooled to alter physical properties such as strength and hardness1. Dur-

ing the cooling process, the temperature of the metal is decreased so that the par-

ticles of the metal will eventually arrange themselves in a state of high density

and minimum energy (Ballas et al., 2004a; Rahman et al., 2010). The goal of the

simulated annealing algorithm is to find an optimal solution that minimizes the

total absolute error. Simulated annealing allows for small reductions in fit during

the iterative search such that the TAE may increase on the path to a global opti-

mal solution, preventing the algorithm from becoming trapped at a local optimal

solution. The choice of allowing a “worse” solution is governed by an equation de-

rived from the laws of thermodynamics describing the probability of an increase

in energy:

p(∆E) = exp(−∆E/T), (3.4)

where

E = energy

p(∆E) = the probability of an increase in energy

∆E = the change in energy due to selection of a poorer fitting combination

T = absolute temperature controlling the allowable degradation in fit.

For the purposes of spatial microsimulation, the total absolute error repre-

sents the energy E in Equation 3.4 while∆E represents the magnitude of the change

in TAE. Using the simulated annealing algorithm, new combinations of records

1See http://en.wikipedia.org/wiki/Annealing_(metallurgy).
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are chosen to represent the small area if they improve the fit between the syn-

thetic data and the census data. Worse combinations are selected only if p(∆E) is

equal or greater than a randomly generated number between 0 and 1. The random

swapping of records is controlled by the temperature T in Equation 3.4. Choosing

an initial value of T is arbitrary; Williamson et al. (1998) used values of 40 and

10 while Ballas et al. (2007b) used a value of half the number of households con-

tained in a small area. More recently, Williamson (2007) recommends using the

total number of cells from all constraint tables for the initial value of T.

During the swapping process, T randomly selected records from the possible

solution are replaced by new randomly selected records from the micro dataset.

The value of T is then reduced after a predefined number of successful swaps

(usually 10 ∗ T) have been made so that the likelihood of a worse combination

of records being selected decreases as the algorithm proceeds. In practice, it is

common to reduce the T by 5% after a set number of successful swaps have been

made (Williamson et al., 1998). As the error between the synthetic data and census

data decreases, the number of observations made per swap is reduced to one. The

algorithm continues until a maximum number of iterations has been reached or

the error falls below some specified tolerance criterion. The algorithm is depicted

graphically in Figure 3.1.

In an evaluation of the simulated annealing algorithm, Williamson et al. (1998)

found that it produced a better fit (smaller TAE) between synthetic microdata and

census data than either the hill-climbing or the genetic algorithms. Furthermore,

altering the temperature T affected performance of the simulated annealing al-

gorithm, such that smaller initial values of T caused the algorithm to accept fewer

degradations in fit on the road to finding an optimal selection of microdata records.

They also noted that simulated annealing produced good fitting synthetic data for

small areas that were relatively typical of the overall population. In other words, if

the distribution of a variable for a given small area is similar to the distribution of

that variable in the sample data being matched, then the fit of the synthetic data

will be relatively good. Conversely, overall fit degrades when an area is atypical

and deviates from the sample used for matching (Williamson et al., 1998).
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Set T = total # of cells in con-
straint tables; set total swaps S =
10 ∗ T

For area X of size N, randomly select
N records from micro dataset

Compute E for selected combination
using TAE or RSSZ

Randomly swap T records in solution
with new random selection

Re-compute E; calculate ∆E Accept new
combination

If ∆E < 0 or exp(−∆E/T) > random
number between 0 and 1

If T = stopping temperature or # of
iterations = maximum #

If # successful
swaps < S

Reject new
combination

Select combination as final set of
records used to represent area X

Accept last
combination

Reduce T by 5%

Evaluate fit of final set of records; fit
next small area

Yes

No

No Yes

NoYes

Figure 3.1. Graphical representation of the simulated annealing algorithm
used in spatial microsimulation studies. Adapted from Williamson et al., 1998;
Williamson, 2007; and Ballas et al., 2007b.
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3.2.4 Assessing the fit of synthetic microdata

The primary goal of spatial microsimulation is to create realistic synthetic data

that mimic population data as closely as possible. By fitting survey data to unique

geographic areas, it is possible to impute additional information from the survey

data, such as diabetes status or the presence of chronic disease risk factors, that

are not available from census data. However, it is important to remember that syn-

thetic microdata are not identical to actual records of households or individuals.

As a result, synthetic microdata may be highly realistic for some purposes and less

realistic for others.

In order to improve the fit between synthetic microdata and census data, it

is important to carefully choose which variables are used as constraints in the

reweighting process (Voas & Williamson, 2000). Ideally, it is important to choose

a broad range of constraint variables that can be represented in as few tables as

possible. Furthermore, since the goal of spatial microsimulation is to add infor-

mation to geographically rich census data, the “unconstrained” variables being

added must be highly correlated with constraint variables to produce valid small

area estimates of unconstrained variables (Voas & Williamson, 2000). The further

an area diverges from the average observation in the source micro dataset for a

given unconstrained variable, the less likely it is that the synthetic dataset will pro-

vide reliable estimates for that variable at the small area level. Similarly, if the syn-

thetic data cannot reproduce the distribution of constraint variables used in the

reweighting procedure, there is no reason to believe they will be able to generate

reliable estimates for unconstrained variables (Voas & Williamson, 2000). Thus,

suitable measures should be used to assess the fit of the final synthetic data.

Such measures of fit must produce uniformly satisfactory results across all ar-

eas included in the study. As mentioned, the simplest measure of fit is the total

absolute error across all tables used as constraint variables in the reweighting pro-

cedure. One limitation of the total absolute error, however, is that atypical areas

will have lower fit. This reduced fit will be hidden by a global measure of fit such as

total absolute error. Thus, different measures should be used to assess the overall

fit of synthetic microdata. Voas and Williamson (2001) outline different measures

of fit, noting that fit must be assessed during the data generation phase and for
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the final synthetic dataset. Summary measures of fit can be used to assess fit at

the cellular level (i.e., row i , column j of a constraint table) and at a tabular level.

Given the computing time required generate synthetic microdata, Voas and

Williamson (2001) posit that simple statistics are preferred because they offer a fast

way to evaluate successive samples. Simple measures include the total absolute

error mentioned above and the standardized absolute error (SAE) which divides

TAE by the expected table count N. SAE has some advantages over TAE in that

it is possible to compare fit across all constraint tables because SAE gives equal

weight to each table regardless of its size (Voas & Williamson, 2001). Some authors

suggest that if at least 90% of small areas have less than 10% error (SAE < 0.1),

then the synthetic data fit reasonably well (Riva & Smith, 2012; Smith et al., 2009;

Tomintz, Clarke, & Rigby, 2009). Others have suggested that if at least 80% of small

areas have less than 20% error (SAE < 0.2), then the synthetic data fit reasonably

well (Clarke & Madden, 2001).

At a cellular level, Z-scores can be used to examine the fit of individual cells.

Williamson et al. (1998) proposed the use of a modified Z-score to assess the fit of

individual cells.2 A unique feature of this measure is that the sum of the squared

Z-scores (SSZm) has aχ2 distribution with degrees of freedom equal to the number

of cells in the table. Huang and Williamson (2001) further proposed the use of a

relative sum of squared Z-scores (RSSZm), since the magnitude of the squared Z-

scores (SSZm) depends on the number of table cells and the degree of error. Thus,

SSZm increases with the size of the table. The RSSZm divides the SSZm value by the

table-specific 5% χ2 critical value, where the degrees of freedom is determined by

the number of cells in the table. RSSZm is a more informative measure than SSZm

because

1. it is a relative measure that can compare fit across several constraint tables,

2. RSSZm statistics can be aggregated across tables to provide a measure of

overall fit of the synthetic data, treating each table with equal importance,

3. the value of RSSZm is easy to interpret: RSSZm < 1 indicates that the data

fit the table and RSSZm = 0 indicates perfect fit (Ryan et al., 2009). Large

2 Z2
m = (Oi j −Ei j )2/[Ei j (1− (Ei j /N ))], where Oi j and Ei j are defined as in Equation 3.3 and N is

the expected table count.
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values of RSSZm indicate that the synthetic microdata are a poor fit to the

constraint tables.

In summary, to evaluate the fit of synthetic microdata, measures need to be

readily computed between iterations of the search algorithm. Both TAE and SAE

meet this requirement, although Voas and Williamson (2001) prefer SAE because

it gives equal weight to all constraint tables and can therefore be used to compare

fit across tables. Once a micro dataset with reasonable fit has been selected, it

is useful to compare the final observed and expected fit; Huang and Williamson

(2001) recommend using RSSZm .

3.2.5 Data requirements

Regardless of the algorithm chosen, reweighting methods are data intensive meth-

ods that require careful consideration of the input data needed to generate syn-

thetic small area microdata. The primary consideration is the selection of con-

straint variables. In order for a variable to be used as a constraint, it must be avail-

able in both the census dataset and the survey microdata (Smith et al., 2009). Each

data source must operationalize the constraint variables in the same way (Chin

et al., 2005; Smith et al., 2009; Tanton et al., 2011). Continuous variables can-

not be used as constraints; such variables must be reclassified into discrete cat-

egories (Tanton et al., 2011). A more subtle requirement is that the classes of cate-

gorical variables must be equivalent (Tanton et al., 2011). For example, terms such

as “unemployment” must use the same definition in both the census data and the

survey data. Similarly, if the time period during which data were collected differs

between data sources, then dollar amounts such as income should be adjusted for

inflation to be comparable.

In addition, government statistics agencies often mask tabulated census re-

sults, especially at small area levels, to maintain confidentiality. For example, a

census table of the number of people living in a given area by age and sex may

have cells rounded to increments of five. As a result, constraint tables may differ

slightly in the estimate of the total number of people living in that area. In order to

use these different tables as constraints in the reweighting procedure, it is neces-

sary to normalize the tables so that population totals across tables are equal (Chin
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& Harding, 2006; Edwards & Clarke, 2009; Smith et al., 2009). This involves ad-

justing the cells of each table to some “master” table that is considered the most

important constraint for the reweighting process. This adjustment may be com-

puted as

(ni /
∑

i
ni )× t (3.5)

where

ni = the number of observations in cell i for a given constraint table,∑
i n = the number of observations in each cell over all i categories, and

t = the total population from the "master" table.

A related consideration is how non-response values (e.g., “not stated” or “not

applicable”) should be handled in the census data if complete census microdata

are available. Chin and Harding (2006) and Tanton et al. (2011) recommend re-

distributing these values proportionately to the relative frequencies of the known

categories. In other words, if a categorical variable such as income has four known

categories and an unknown “not stated” category, the income category having the

highest frequency will be assigned the greatest share of the “not stated” observa-

tions.

Finally, in order for any variable to be used as a constraint in the reweighting

process, it must produce reliable estimates at the small area level (Tanton et al.,

2011, 2007). If a potential constraint variable cannot produce reliable estimates

of known quantities, then it is unreasonable to expect that it will provide useful

information necessary for estimating unconstrained outcomes. Similarly, there

must be a reasonable correlation between constraint variables and unconstrained

variables (Birkin & Clarke, 2012; Chin et al., 2005; Edwards & Clarke, 2009; Haslett

et al., 2010; Lymer et al., 2009; O’Donoghue et al., 2013; Procter, Clarke, & Ransley,

2008; Smith et al., 2009; Tanton et al., 2011). This is because the constraint vari-

ables are used to impute the unobserved values of the unconstrained variables for

all small areas (Haslett et al., 2010). The stronger the correlation, the more reason-

able the imputation (see Section 3.3).
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3.2.6 Comparison of spatial microsimulation methods

All of the spatial microsimulation methods reviewed here are computationally in-

tensive. Reweighting methods are designed to impute “missing” information at

a small area level by re-calibrating the sampling weights or re-selecting observa-

tions from a survey micro dataset. The ultimate goal of reweighting methods is

to create a final synthetic micro dataset that matches the actual population liv-

ing in a small area as closely as possible on a set of known constraint variables.

If a good fit is obtained between the true population, assessed from census data,

and the synthetic population and if there is a reasonable correlation between the

constraint variables and unconstrained outcomes, then reweighting methods can

provide valid small area estimates of unconstrained outcomes (see Section 3.4).

Each reweighting method has its own strengths and weaknesses so it is instruc-

tive to compare the performance of each method in terms of its ability to generate

reliable synthetic microdata.

Harland et al. (2012) compared the performance of simulated annealing against

iterative proportional fitting using data from the 2001 UK Census. They reweighted

the Sample of Anonymized Records3 for three different spatial units in the Leeds

Metropolitan Area: (a) Output Areas (OA), (b) Lower Layer Super Output Areas (LL-

SOA) and (c) Middle Layer Super Output Areas (MLSOA). In the UK, the Output

Area is the most disaggregated level of geography available from the UK Census.

Each level of census geography is nested within the next higher level. Six con-

straint variables were used for each algorithm: gender, ethnic group, age, marital

status, socioeconomic status, and highest level of education. To validate the re-

sults from each model, Harland et al. (2012) examined two-way interactions be-

tween constraint variables to determine how well each method could reproduce

the number of people in each category of the cross-tabulated constraints. The va-

lidity of the methods was also assessed by comparing aggregated estimates of un-

constrained variables, including (a) tenure, (b) limiting long-term illness, (c) gen-

der crossed with hours worked and (d) economic activity crossed with car owner-

ship. The final fit of synthetic data was assessed using the

3The Sample of Anonymized Records is a small, anonymized subset of individual level from the UK
Census.
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1. total absolute error (TAE),

2. classification error (CE), defined as the number of individuals misclassified

in a cell for a particular constraint and

3. % classification error (%CE): CE/N, where N is the population of the cell of

interest.

For all constraint variables, constraint interactions, and unconstrained vari-

ables, iterative proportional fitting produced greater classification error than sim-

ulated annealing (Harland et al., 2012). Classification error increased as the size

of the spatial unit decreased. In other words, OAs had the highest amount of clas-

sification error while MLSOAs had the least amount. With respect to recreating

observed interactions between constraint variables, iterative proportional fitting

performed worse than simulated annealing, although results improved at coarser

levels of census geography. This is because coarser spatial units contain larger

populations and thus have a greater likelihood of containing a more representative

sample of the population. In terms of unconstrained variables, there was no clear

indication as to which algorithm performed better. However, for unconstrained

variables that vary over geographic space (e.g., tenure), iterative proportional fit-

ting may perform better than simulated annealing because IPF can be tailored

to each spatial unit being fit by modifying the order of the constraint variables

used in the model fitting process (Harland et al., 2012; Smith et al., 2009). On bal-

ance, however, simulated annealing consistently produced more accurate results

for constraint variables while IPF tended to smooth results to the sample mean

rather than preserve the characteristics of each spatial unit. Harland et al. (2012)

also note that simulated annealing was better able to reproduce relationships (in-

teractions) between constraint variables.

Tanton et al. (2007) compared simulated annealing against GREGWT using the

2001 Australian census to reweight the 1998–1999 Household Expenditure Survey

to Statistical Local Areas (SLA) for two states: the Australian Capital Territory and

New South Wales. Both univariate and multivariate constraints were used in the

reweighting procedure. The objectives of this comparison were to:

1. assess which method produced better fitting synthetic data and

2. examine the validity of predictions made for unconstrained variables.
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Housing stress, defined as a household spending more than 30% of its gross in-

come on rent or a mortgage, was the primary unconstrained variable considered

for the analysis of model validity.

Two variants of the simulated annealing algorithm were used to generate the

synthetic data. The first used total absolute error (TAE) to select an optimal set

of microdata records to fit each SLA. The second variant used the relative sum of

squared Z scores (RSSZ). The fit of the final synthetic datasets was assessed for all

convergent SLAs under the GREGWT algorithm and all SLAs under each simulated

annealing variant. The final fit was assessed using TAE, SAE, and the overall RSSZ

(RSSZ summed across all constraint tables).

With respect to overall fit, both simulated annealing variants produced bet-

ter fitting synthetic data than GREGWT. In each case, the RSSZ variant produced

the best fitting synthetic data followed by the TAE variant. In terms of the validity

of the synthetic data, both simulated annealing and GREGWT overestimated the

total number of households experiencing housing stress. However, all methods

produced similar estimates of the percentage of households experiencing hous-

ing stress. When synthetic estimates were aggregated to the state level and com-

pared against official statistics, the estimates from the GREGWT algorithm were

very similar to official statistics, while those produced by the simulated anneal-

ing TAE variant slightly underestimated the percentage of households experienc-

ing housing stress (Tanton et al., 2007). However, when synthetic estimates were

compared against official estimates at the SLA level by regressing official statistics

on synthetic estimates, both simulated annealing variants were deemed slightly

better than the GREGWT estimates: R2 = 0.898 for simulated annealing RSSZ, R2

= 0.895 for simulated annealing TAE, and R2 = 0.865 for GREGWT (Tanton et al.,

2007).

The authors conclude that GREGWT produces good results which are com-

parable to simulated annealing. The fit of the synthetic data is slightly worse than

simulated annealing but measures of predictive accuracy appear to be similar. The

main limitation of GREGWT is that in some cases, the algorithm fails to converge;

this is one of the primary advantages simulated annealing has over GREGWT (Tan-

ton et al., 2007). Furthermore, the RSSZ variant of the simulated annealing algo-

rithm tends to (a) produce better fitting synthetic data, (b) result in lower error,
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and (c) produce reasonable estimates for unconstrained variables. Tanton et al.

(2007) also found that increasing the number of benchmark constraints was more

detrimental for GREGWT than for simulated annealing.

In summary, the results of these comparison studies suggest that simulated

annealing is perhaps the most robust algorithm currently available for spatial mi-

crosimulation modelling. Iterative proportional fitting may have some advantages

when the order of constraint variables is tailored to each spatial unit modelled. By

modifying the order of constraint variables in the reweighting process, it is possi-

ble to produce local spatial microsimulation models which may improve overall

fit (Smith et al., 2009).

3.2.7 Spatial microsimulation modelling software

Spatial microsimulation models have typically been developed using program-

ming languages that can handle large datasets, repeated sampling, and the itera-

tive nature of the model building process. Different research studies have used dif-

ferent languages to develop spatial microsimulation models, including Java, SAS,

Fortran, and R. Many models have been developed in Java, although few details

were provided to describe how they were developed (Ballas, Clarke, Dorling, et al.,

2006; Ballas et al., 2007a; Clark, Birkin, & Heppenstall, 2014; Hynes, Farrelly, Mur-

phy, & O’Donoghue, 2008; Hynes, Hanley, & O’Donoghue, 2010; Hynes, Morrissey,

O’Donoghue, & Clarke, 2009; Kavroudakis, Ballas, & Birkin, 2013a; Kosar & Tom-

intz, 2014; Ma, Heppenstall, Harland, & Mitchell, 2014; Smith et al., 2011). More-

over, the source code used to develop them is not openly available. As a result,

it is difficult to adapt the models to use different data sources or to replicate the

original results.

Some authors have made their code openly available for others to use and

adapt for their own purposes. Lovelace and Ballas (2013) developed a spatial mi-

crosimulation model of energy use for the City of Sheffield in the United King-

dom. Using survey data from the Understanding Society4 survey and UK census

data from 2001, they implemented the iterative proportional fitting algorithm in

R. Similarly, Campbell and Ballas (2013) developed their spatial microsimulation

4http://www.understandingsociety.org.uk/
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model, dubbed “SIMALBA”, using iterative proportional fitting in R. Two generic

packages — “ipfp” (Blocker, 2016) and “mipfp” (Barthelemy & Suesse, 2016) — can

also be used to develop spatial microsimulation models in R. On the other hand,

the “rakeR” package (Jones, Lovelace, & Dumont, 2016) was explicitly developed

for spatial microsimulation.

Kavroudakis (2013b, 2015) implemented the simulated annealing algorithm in

the “sms” package in R. This particular package seems to be in the early stages of

development, since only the “Total Absolute Error” measure of fit can be used to

select records for inclusion in the final model. Furthermore, it is not possible to

set the initial temperate T used to prevent the algorithm from becoming trapped

at a locally optimal solution.

Williamson (2007) implemented the simulated annealing algorithm in Fortran

95. Both the software, called “CO”5, and the source code are freely available6. The

CO package seems to provide the greatest amount of flexibility to the end user in

terms of parameters that can be set to develop a spatial microsimulation model.

Specifically, CO allows the user to specify

1. the initial temperature T used to prevent the algorithm from becoming stuck

at a locally optimal solution,

2. the rate of decrease in temperature T, and

3. the measure used to assess the fit of selected observations, including TAE or

RSSZ.

More options are available and described in greater detail in the CO user man-

ual (Williamson, 2007).

Finally, the GREGWT algorithm has been implemented in the SAS language.

The program was developed by the Australian Bureau of Statistics (Chin et al.,

2005); unfortunately, it is not publicly available. Despite its seemingly widespread

use in the literature, it should be noted that only researchers from Australia affili-

ated with the National Centre for Social and Economic Modelling at the University

of Canberra have actually developed spatial microsimulation models using this

algorithm and software (see, for example, Chin et al., 2005; Lymer, Brown, Yap, &

Harding, 2008; McNamara, Cassells, Wicks, & Vidyattama, 2010; Rahman, Hard-

5CO stands for combinatorial optimization.
6http://pcwww.liv.ac.uk/~william/microdata/
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ing, Tanton, & Liu, 2013; Tanton, Harding, & McNamara, 2010; Tanton et al., 2011).

Like early models developed using Java, it is difficult for other researchers to use

the GREGWT method without the software or to replicate existing results that ap-

pear in the literature.

3.3 Spatial Microsimulation Compared to Small Area Estimation

One of the strengths of spatial microsimulation modelling is its ability to forecast

the effects of public policies at local geographic levels. In this sense, spatial mi-

crosimulation can be thought of as a type of small area estimation. In statistics,

small area estimation models are a set of methods that attempt to produce reli-

able estimates for small geographic areas based on samples drawn from those ar-

eas (Pfeffermann, 2002). Typically, the sample sizes for each area are small and so

statistical small area estimation models must utilize external information in the

estimation process. Haslett et al. (2010) argue that spatial microsimulation and

statistical small area estimation methods are fundamentally similar.

The key feature of small area estimation methods is that they use auxiliary in-

formation to make survey estimates for small areas more reliable (Ghosh & Rao,

1994; Rao, 1999). The Elbers, Lanjouw, and Lanjouw or “ELL” model is one type

of small area estimation model (Elbers, Lanjouw, & Lanjouw, 2003). This model

combines detailed survey data with comprehensive census data. Similar to spatial

microsimulation, the ELL model assumes that some of the auxiliary information is

available from both the survey data and the census data. Specifically, all explana-

tory variables Xi must be available in both data sources while outcome variables

are only available in the survey data (Haslett et al., 2010).

The ELL model begins by estimating a mixed effects regression model from the

survey data. Typically, random effects are specified for cluster level effects, where

clusters are defined by the primary sampling units. Based on the fitted regression

model, the outcome variable is predicted for all small areas using the auxiliary cen-

sus information and the predicted regression parameters β̂. This produces a set of

predicted values for all census microdata records for each small area. These pre-

dicted values are then averaged within each small area. Standard errors for small

area estimates are then estimated via bootstrapping techniques. Note that the ELL
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method is valid only if the regression model estimated from the survey data is

valid for the entire population across all small areas being estimated (Haslett et

al., 2010).

Haslett et al. (2010) argue that small area estimation via ELL is similar to spatial

microsimulation. Each method relies on survey data and census data to produce a

pseudo-census. Both methods address the issue of incomplete census data. That

is, not all census data have been observed; each method attempts to estimate the

unobserved portion of the census. In other words, the complete census C can be

decomposed into observed Co and unobserved Cu portions so that C = Co +Cu.

In the ELL method, complete census data exist for covariates of interest but only

partial information exists for the outcome variable Y . Thus, the aim of the ELL

model is to replace the target

ϕ(C) =ϕ(Co +Cu) (3.6)

with an estimate of that target, defined as

ϕ(C∗) =ϕ(Co +C∗
u) (3.7)

where the missing data Cu are replaced by the surrogate C∗
u. In the ELL model,

this surrogate is informed by an explicit statistical model. In other words, C∗
u is the

expected value of Cu conditional on the observed data (Haslett et al., 2010):

ϕ(C∗) =ϕ(Co +E[Cu |Co]). (3.8)

In spatial microsimulation, survey data are used to replace census observa-

tions lacking complete data. Replacements are made based on how well they

match a set of constraint variables. This implies a model where the constraint vari-

ables are assumed to be important for predicting one or more unconstrained vari-

ables of interest. As a result, the quality of the estimates produced by a spatial mi-

crosimulation depends on the strength of the relationship (correlation) between

constrained and unconstrained variables. More formally, Haslett et al. (2010) ar-

gue that producing a full census using spatial microsimulation is a function of the

observed portion Co plus the unobserved portion conditional upon the observed

portion (Co +Cu |Co), i.e.,

ϕ(C∗) =ϕ(Co +Cu |Co). (3.9)
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Haslett et al. (2010) then posit that ELL and spatial microsimulation are equiv-

alent and demonstrate this using a statistical simulation study. Conducting eight

different simulation experiments7, Haslett et al. (2010) simulated a census and

then randomly selected observations from it using a cluster sampling design. A

set of covariates was generated using a multivariate normal distribution; these co-

variates were classified into categorical variables. An outcome variable was gener-

ated as a function of the categorical covariates. One hundred iterations were per-

formed for each experiment. In each iteration, an ELL model was estimated as well

as a spatial microsimulation model using iterative proportional fitting (Haslett et

al., 2010). Results for the 100 iterations were averaged and the mean square er-

ror (Burton, Altman, Royston, & Holder, 2006) was used to evaluate the accuracy

of each method. Results indicate that IPF is equivalent to the ELL model (Haslett

et al., 2010).

3.4 Validity of Spatial Microsimulation

Model validation is a crucial step in encouraging policy makers to accept microsim-

ulation results. Zucchelli et al. contend that the credibility of any microsimulation

is “based on its capacity to reproduce observed data” (2012, p. 11). Models that

cannot are less useful for forecasting the effects of public policies (Birkin & Clarke,

2011; Edwards & Tanton, 2013a; Hermes & Poulsen, 2012b). That said, validating

spatial microsimulation models is a difficult task; in many cases, small area data

do not exist which is the very reason for creating synthetic, spatially disaggregated

microdata. As a result, there is often no easy way to compare model outputs to

known estimates (Birkin & Clarke, 2011).

A variety of methods have been used in the spatial microsimulation literature

to validate model results. Internal validation methods compare synthetic esti-

mates of constraint variables against known values (Edwards, Clarke, Thomas, &

Forman, 2011; Edwards & Tanton, 2013a). External validation methods compare

synthetic estimates to external data sources, often for variables not used as con-

straints in the microsimulation model (Edwards et al., 2011; Edwards & Tanton,

2013a). External validation often involves aggregating small area estimates to less

7The eight simulation experiments were based on two census designs and four survey designs.
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granular levels of geography to compare synthetic estimates to known quantities.

Once there is evidence that the spatial microsimulation satisfactorily reconstructs

the population and outcomes of interest, then and only then is it reasonable to

use the synthetic microdata to conduct policy simulations.

3.4.1 Internal validation

Internal validation assesses the fit of synthetic microdata. It compares synthetic

estimates against known estimates of the constraints used to reweight microdata

to small areas. There are several ways to do this, but one common method involves

regressing population counts from census data on synthetic estimates for all small

areas included in the spatial microsimulation (Ballas et al., 2005b, 2005a; Edwards

et al., 2011; Edwards & Tanton, 2013a; Gong et al., 2012; Procter et al., 2008). In this

case, the objective is to determine how well synthetic estimates predict population

counts for each category of all constraint variables used to develop the model. The

R2 from the regression model can be used as a goodness of fit measure: the higher

the R2, the better the fit.

Another measure used to assess the internal validity of a spatial microsimula-

tion model is the Standard Error about Identity or SEI (Ballas et al., 2007a). This

measure is similar to R2, but instead of measuring the dispersion of observations

about a line of best fit, the SEI measures the dispersion about a line having an

intercept = 0 and slope = 1 (Edwards & Tanton, 2013a; Tanton et al., 2010, 2011).

In other words, if known population counts of census constraints were plotted

against synthetic estimates for all small areas, then a 45o line passing through 0

would indicate perfect fit between known population counts and synthetic esti-

mates (i.e., SEI = 1). The greater the dispersion about this line, the lower the SEI

and the poorer the fit (Ballas et al., 2007a; Miranti, McNamara, Tanton, & Harding,

2011; Tanton et al., 2010, 2011). SEI is computed as

SEI = 1−
∑

i (yei − yci )2∑
i (yci − yc )2 (3.10)
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where

yei = synthetic estimate for constraint y in area i

yci = known population count from census data for constraint y in area i

yc = average population count from census data for constraint y∑
i = the sum over all small areas.

More recently, Edwards and Tanton (2013a) suggest that it is possible to ex-

amine the residuals of a spatial microsimulation model to validate it. Similar to

statistical regression diagnostics, the residuals from a spatial microsimulation are

computed as the difference between the observed and simulated values of all con-

straint variables used to build the model. Scatter plots of these residuals provide

an indication of fit; if the residuals appear to be randomly distributed, this indi-

cates the model fits known census distributions reasonably well (Edwards & Tan-

ton, 2013a).

Finally, a few authors have used t-tests to examine whether the number of sim-

ulated individuals created by the microsimulation differs from known population

counts for each category of all constraint variables (Edwards & Clarke, 2013b, 2009;

Edwards et al., 2011). Edwards and Tanton (2013a) suggest that if the spatial mi-

crosimulation worked well, there should be no significant differences between the

simulated dataset and actual values for any of the constraint variables. This sug-

gestion, however, ignores the problem of multiple testing because many statistical

tests are performed to examine whether differences exist. Using statistical signifi-

cance tests alone could erroneously lead to the conclusion that the simulated data

differ from the actual data. Having said that, it might be possible to account for

multiple comparisons using corrections such as the Benjamini-Hochberg test to

control the false-discovery rate (Benjamini & Hochberg, 1995).

3.4.2 External validation

As mentioned, external validation involves comparing synthetic estimates to ex-

ternal data sources, usually by aggregating small area estimates to less granular

levels of geography (Chin & Harding, 2006; Edwards et al., 2011; Edwards & Tan-

ton, 2013a). If the goal of a spatial microsimulation is to forecast the effects of a
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policy or intervention on small area estimates of obesity, then it would be impor-

tant to ensure that the synthetic microdata are valid before conducting policy sim-

ulations. In this case, external validation would involve estimating obesity rates at

a regional level, such as Canadian health regions, based on the spatially disaggre-

gated synthetic data. These synthetic estimates could then be compared to known

estimates based on survey data, such as the Canadian Community Health Survey,

which produces statistically reliable estimates at the health region level (Béland,

2002). Small differences between the two sets of estimates provide an indication

that the spatial microsimulation produces valid estimates. Chin et al. (2005) sug-

gest that relative differences of ±10% between synthetic estimates and external es-

timates indicate good validity while relative differences of ±15% indicate accept-

able validity.

Riva and Smith (2012) suggest a slightly different approach to validity by con-

sidering construct validity and convergent validity. Construct validity is the ex-

tent to which an operationalized measure accurately measures what it intends to

measure. Convergent validity is the degree of similarity between measures which

should be theoretically related (Riva & Smith, 2012). Using iterative proportional

fitting, Riva and Smith (2012) calibrated data from the 2004 and 2006 Health Sur-

veys of England to Lower Super Output Areas (LSOA) in all of England using con-

straint variables from the 2001 Census. Constraints included age, sex, marital

status, economic activity, and occupational class. Psychological distress (having

signs of anxiety and/or depression) and heavy alcohol consumption (> 8 drinks

in a single day for men or > 6 drinks in a single day for women) were the uncon-

strained outcomes estimated at the small area level using the synthetic dataset.

To assess construct validity for each of these measures, an index of mental

health needs (the Mental Heath Needs Index or MINI) was constructed using the

census data for all LSOAs. Deciles of this index were then correlated against deciles

of the prevalence of psychological distress and heavy alcohol consumption using

the Spearman rank correlation (Riva & Smith, 2012). If psychological distress and

heavy alcohol consumption measure some underlying construct of mental health

needs, then there should be a good correlation between these measures and the

MINI.

A similar approach was used to assess convergent validity: psychological dis-
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tress and heavy alcohol consumption should be related to other indicators of poor

health at the small area level. Indicators of poor health included years of poten-

tial life lost; age-sex standardized rates of illness and disability; acute morbidity

(age-sex standardized rates of acute health problems, assessed from emergency

department admissions); and the proportion of adults younger than 60 suffering

from mood and anxiety disorders (Riva & Smith, 2012). As before, each of these

measures were grouped into deciles and the Spearman correlation was used to

assess whether these measures were correlated at the LSOA level.

Results indicate that there is a strong correlation between synthetic estimates

of psychological distress and mental health needs (as assessed by the MINI index)

at the LSOA level (ρ = 0.91, Riva & Smith, 2012). There was also moderate corre-

lation between estimates of heavy drinking and the MINI (ρ = 0.39, Riva & Smith,

2012). In other words, synthetic estimates of psychological distress seem to mea-

sure some underlying construct of mental health need at the small area level.

In addition, Riva and Smith (2012) demonstrate strong correlations between

synthetic estimates of psychological distress and other indicators of poor popu-

lation health. They report strong correlations between psychological distress and

years of potential life lost (ρ = 0.73) and age-sex standardized rates of illness and

disability (ρ = 0.81). These results suggest that areas having higher rates of psy-

chological distress tend to have a greater number of years of life lost as well as

higher rates of illness and disability. Heavy drinking shows weaker correlations

between measures of poor population health. Riva and Smith (2012) conclude

that synthetic estimates of psychological distress appear to demonstrate conver-

gent validity with other measures of poor population health.

In general, when examining the correlation between synthetic estimates of

an unconstrained outcome and survey based estimates of a related outcome, Ed-

wards and Tanton (2013a) advise that estimated correlations must be reasonably

strong (ρ > 0.5). Weaker correlations have little predictive value and may indicate

that the microsimulation suffers from poor validity.
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3.5 Reliability, Precision, and Uncertainty

Recent developments in the field of spatial microsimulation have explored the re-

liability and precision of these models. Reliability refers to the reproducibility of

results under similar conditions (Porta, 2008) while precision refers to the lack of

random error about a measurement. Confidence intervals are commonly used to

define the imprecision of an estimate; estimates that are less precise have wider

confidence intervals.

Hermes and Poulsen (2012b) examined the reliability of spatial microsimula-

tion by estimating the prevalence of smoking in London, UK, using two different

survey datasets to build separate models. They used simulated annealing to re-

select observations from (a) the 2000–01 and 2001–02 General Household Survey

(GHS) and (b) the 2001 British Household Panel Survey (BHPS). Observations from

these surveys were selected to match small area socioeconomic and demographic

constraint tables from the 2001 UK census, including age, sex, marital status, eth-

nicity, labour force status, occupation, and household characteristics.

Both models produced smoking prevalence estimates at the Output Area (OA)

level. A Getis-Ord Gi∗ hotspot analysis (Ord & Getis, 1995) was conducted using

these estimates to identify clusters of high (hotspot) and low (coldspot) smoking

prevalence across the city. Overall, both input data sources produced similar spa-

tial patterns of smoking prevalence, although some differences were identified.

In particular, 153 OAs were identified as hotspots using the GHS source data but

coldspots using the BPHS. Similarly, 211 OAs were identified as coldspots using the

GHS but hotspots using the BPHS (Hermes & Poulsen, 2012b). The primary reason

for the difference seems to result from the smaller sample size and less ethnic di-

versity of respondents contained in the BPHS compared to the GHS. These results

demonstrate that while the overall spatial pattern of results is consistent (i.e., reli-

able) using different input data sources, some differences may exist that will affect

conclusions drawn. Hermes and Poulsen (2012b) conclude that further research

is needed to improve the reliability of spatial microsimulation.

In a similar vein, Rahman (2011) and Rahman et al. (2013) developed a method

to estimate the precision of small area estimates produced by spatial microsimu-

lation. They proposed that the standard error of small area estimates produced by
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spatial microsimulation can be estimated as√√√√ p̂m
i j (1− p̂m

i j )∑
j ni j

(3.11)

where p̂m
i j = the estimated proportion of individuals (or households) in category m

(e.g., number of smokers) for the i th small area in a j th sub-category of interest8.

Note that ni j = the estimated size of the j th sub-category for the i th small area.

Approximate confidence intervals are then constructed using critical values of the

normal distribution, e.g., Z = 1.96 for a 95% confidence interval:

95% CI = 1.96±
√√√√ p̂m

i j (1− p̂m
i j )∑

j ni j
(3.12)

Initial results demonstrate that most small areas had narrow confidence inter-

vals, although there was considerable variability in the interval estimates across

all small areas studied (Rahman, 2011). However, this initial work is based on a

case study of one spatial microsimulation model and not a statistical simulation

study of the properties of the proposed confidence interval (Burton et al., 2006).

Therefore, the coverage, or the proportion of times the interval contains the esti-

mate of interest, of Equation 3.12 is unknown (Burton et al., 2006). Furthermore,

as Wolf (2001) argues, the precision of microsimulation models is difficult to eval-

uate, because factors over and above sampling error contribute to model uncer-

tainty. In the case of spatial microsimulation, which can be viewed as an impu-

tation strategy, observations from a sample survey are re-used between different

spatial units (Leyk et al., 2013). This is true of each of the algorithms discussed

above. In addition, the simulated annealing algorithm selects microdata records

more than once within a spatial unit. As a result, observations within the synthetic

dataset should not be viewed as independent and identically distributed; thus,

standard statistical methods for computing variance estimates and confidence in-

tervals do not apply.

As a result, methods for evaluating the uncertainty of spatial microsimulation

estimates need to be developed; possibilities include multiple imputation meth-

8Note that j can be ignored if there is no sub-category of interest (personal communication, A.
Rahman, November 2012). Sub-categories might include age groups or sex.

55



3 Spatial Microsimulation Modelling

ods and bootstrapping techniques, which have been suggested in the aspatial mi-

crosimulation literature (Cohen, 1991; Wolf, 2001). Whitworth, Carter, Ballas, and

Moon (2016) offer a unique solution. Prior to developing a spatial microsimula-

tion model using iterative proportional fitting, they identified relevant constraints

using a mixed effects logistic regression model, using small areas within Wales9 as

the random intercept in their model. The random effects variance estimate was

then used in conjunction with estimates of poor health, a binary unconstrained

outcome, to generate uncertainty about small area estimates. Assuming the ran-

dom error variance estimate was normally distributed with mean 0 and standard

deviation from the mixed effects regression model, Whitworth et al. (2016) drew

10,000 random samples from a normal distribution and added these random er-

rors to the log odds of each area-specific point estimate of poor health. These

10,000 samples of log odds were then back-transformed to the probability scale

and a 95% “credible interval” was defined using the 2.5th and 97.5th percentiles.

Whitworth et al. (2016) were able to compare the uncertainty in their estimates to

known estimates from census data. They found 96% of the 410 small areas used in

their analysis had true census values of poor health that fell within the bounds of

their 95% credible intervals.

Finally, sensitivity analysis has been used in the microsimulation literature to

provide a range of uncertainty around model outputs (Gilbert & Troitzsch, 2005;

Kopec et al., 2010b; O’Hagan, Stevenson, & Madan, 2007; Rutter, Zaslavsky, & Feuer,

2011; Sharif et al., 2012). Conducting a sensitivity analysis of spatial microsimula-

tion outputs is important when projecting the effects of public policies. Sensitivity

analysis allows the modeller to assess the effect of model assumptions and recog-

nizes that parameters used to project policy effects are themselves uncertain (Rut-

ter et al., 2011). Sensitivity analysis can be conducted in deterministic ways by

systematically varying one or more model inputs and assessing the resulting ef-

fects on model outcomes (Baio & Dawid, 2011; Claxton et al., 2005). Alternatively,

probabilistic sensitivity analysis assumes that model parameters follow a proba-

bility distribution. As a result, policy projections can be performed using several

realizations of model parameters given the selection of reasonable probability dis-

9Middle Layer Super Output Areas
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tributions for those parameters (Claxton et al., 2005). Monte Carlo methods are

then used to randomly select values for model input parameters (O’Hagan et al.,

2007) and model outputs can be summarized over all iterations to describe the

uncertainty around model outputs (Sharif et al., 2012). The downside of prob-

abilistic sensitivity analysis is the computational burden required to implement

Monte Carlo routines (Claxton et al., 2005; O’Hagan et al., 2007; Sharif et al., 2012).

However, stochastic methods can help prevent misleading conclusions (Bryant,

2005).

To date, few authors building spatial microsimulation models report any sort

of sensitivity analysis of projected policy effects. This dearth of information is un-

fortunate. Indeed, Kavroudakis et al. (2013a) only mention in passing that a sen-

sitivity analysis of spatial microsimulation model outputs was performed while

Lymer et al. (2008) indicate that future work will conduct a sensitivity analysis of

their model outputs. Campbell and Ballas (2013) conducted a limited sensitivity

analysis of the choice of the initial starting weight for the IPF algorithm, using val-

ues of one or the original survey weight. Differences were negligible but seemed

to favour an initial weight of one for all microdata records. Farrell, O’Donoghue,

and Morrissey (2010) examined the sensitivity of microsimulation outputs to the

choice of different subsets of the survey microdata used to generate simulated

populations.

Finally, using the simulated annealing algorithm, Ma et al. (2014) conducted

a sensitivity analysis of a spatial microsimulation model of small area commut-

ing behaviours in Beijing subdistricts. They found that 10 replicates of the model

developed using different random number seeds produced negligible variation in

small area estimates of the constraint variables across most subdistricts of Beijing.

However, four areas had relatively high variation in some education categories

used as constraining variables. In spite of this, they found relatively small variabil-

ity in their primary unconstrained outcomes (trip frequency and travel distance)

across all subdistricts. Given the simulated annealing algorithm is an optimization

algorithm that attempts to match simulated totals of constraint variables against

known census counts, these results are unsurprising.

In summary, little research has examined spatial microsimulation model un-

certainty. Just as spatial microsimulation results need to be validated to be useful

57



3 Spatial Microsimulation Modelling

for informing policy decisions, measures of uncertainty can help policy makers

better understand the range of effects that might be produced when using spatial

microsimulation models to forecast policy effects. Future research should con-

tinue to identify novel ways to assess model uncertainty.

3.6 Limitations of Spatial Microsimulation

Although reweighting methods can produce valid estimates of unconstrained vari-

ables at local geographic levels, these methods have their limitations. One of the

problems that occurs with spatial microsimulation is that estimates of variables

across spatial units may be too similar; in other words, estimates do not accu-

rately reflect the true geographic variability that exists across a region (Birkin &

Clarke, 2012). This homoscedasticity occurs because unconstrained variables are

not matched as well as constrained variables in the reweighting process. Instead,

the ability to replicate unconstrained variables depends on the strength of the cor-

relation between constrained and unconstrained variables (Birkin & Clarke, 2012;

Haslett et al., 2010). Second, certain segments of the population (e.g., visible mi-

norities) are often poorly represented in survey microdata (Birkin & Clarke, 2012;

Voas & Williamson, 2000; Williamson et al., 1998). This leads to poor represen-

tation of atypical observations in the synthetic micro dataset while more typical

observations are better represented. This produces overly smooth small area es-

timates. Finally, there may be geographic factors that explain why unconstrained

variables differ across space even though these areas may be very similar with re-

spect to the constraint variables used in the reweighting process (Birkin & Clarke,

2012).

Beyond these issues, the different reweighting methods are not equivalent.

While simulated annealing has been shown to be the most robust, iterative pro-

portional fitting can produce valid small area estimates provided the order of the

constraint variables used in the reweighting process is carefully considered. Be-

cause the reweighting process is conducted on a constraint-by-constraint basis,

the first constraint variable fit tends to the have the closest match to known bench-

marks (Harland et al., 2012; Smith et al., 2009). Several authors recommend that

constraint variables be fit in order from strongest to weakest correlation with the
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unconstrained outcome (Anderson, 2007, 2009, 2013; Harland et al., 2012; Smith

et al., 2009).

The GREGWT algorithm also tends to be affected by the order in which con-

straint variables are modelled. Simulated annealing, however, is unaffected by the

order of constraint variables fit during the reweighting process. This is because

simulated annealing selects a random subset of observations and compares the

selected sample on all constraint variables at the same time (Harland et al., 2012).

Having said this, Smith et al. (2009) suggest using the ordering problem for the IPF

algorithm advantageously by fitting local models of spatial microsimulation, us-

ing different orders of constraint variables for different spatial units in an attempt

to achieve better fit.

In addition, Tanton et al. (2010) explored whether (a) the number of constraints

used in the reweighting process and (b) univariate or multivariate constraints im-

proved the fit of spatial microsimulation. Using GREGWT and Australian data

from the 2001 census and the 2002–2003 and 2003–2004 Surveys of Income and

Housing, they found that increasing the number of constraints in the reweighting

process had little effect on the final fit and accuracy of synthetic estimates. They

posit that fit and accuracy did not improve because the additional constraints

added no extra information. In other words, the existing constraints provided

sufficient information needed to create a realistic synthetic population. When

the number of constraints was increased from 11 univariate or multivariate con-

straints to 14 univariate constraints only, the accuracy of the model did not im-

prove with respect to an unconstrained outcome variable, housing stress. Tanton

et al. (2010) hypothesize that the univariate constraints do not provide enough

information needed to reliably estimate unconstrained variables. They conclude

that multivariate benchmarks (e.g., age X sex) are better than univariate bench-

marks (e.g., age only) for creating accurate synthetic microdata. Similarly, van

Leeuwen (2010a) found, using iterative proportional fitting, that more constraints

produce better fitting models.

Using larger sample surveys, in terms of the total number of sampled respon-

dents, may also produce better fitting models. Several authors have explored this,

with conflicting results. van Leeuwen (2010a) and Hermes and Poulsen (2012b)

found that larger sample sizes produced better fitting models. However, results
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from Huang and Williamson (2001) and Tanton et al. (2010) suggest otherwise.

Specifically, Tanton et al. (2010) note that limiting observations from a sample sur-

vey to the area being fit produced somewhat better fitting models (in terms of the

standard error about identity) compared to models using the full sample. They

found that using the full sample from the Survey on Income and Housing when

fitting statistical local areas from Sydney resulted in a slightly worse fitting model

than when only observations from Sydney were used in the reweighting process.

This was true of other capital cities modelled, including Brisbane, Adelaide, and

Perth.

Huang and Williamson (2001) suggest the effects are more nuanced. They

found that limiting the survey sample to observations coming from the same re-

gion being fit works well for small areas that are typical in terms of the constraint

variables used. However, for atypical areas that deviate from the “average”, us-

ing the full sample results in better fit (Huang & Williamson, 2001). Hermes and

Poulsen (2012b) agree with this approach, noting in a reliability study of spatial

microsimulation that when the British Household Panel Survey (BPHS) was used

to fit the model, areas that were atypical with respect to ethnicity did not produce

reliable estimates compared to a model that used the General Household Survey

(GHS). They posit that the larger sample size available in the GHS resulted in a

greater number of ethnically diverse observations available for fitting atypical ar-

eas. It should be noted, however, that these conflicting results may also be a result

of the algorithm used to fit the models: Huang and Williamson (2001) and Hermes

and Poulsen (2012b) used simulated annealing while van Leeuwen (2010a) used

iterative proportional fitting and Tanton et al. (2010) used GREGWT.

Another limitation of spatial microsimulation is related to the prevalence of

unconstrained variables being estimated by the model. Ballas et al. (2007a) men-

tion that spatial microsimulation is unreliable for estimating rare outcomes. Ly-

mer et al. (2009, 2008) corroborate this sentiment, noting that a spatial microsim-

ulation of severe disability, a rare outcome, tended to over-estimate the true preva-

lence at the small area level. Further research is required to define how prevalent

an unconstrained outcome should be for spatial microsimulation to produce valid

small area estimates.

Finally, it is unclear how the modifiable areal unit problem (MAUP) affects
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the robustness of spatial microsimulation estimates. First described by Open-

shaw and Taylor (1979), the modifiable areal unit problem arises because there

are many, and typically arbitrary, ways to delineate geographic boundaries (Wong,

2009). For example, geographic space across an urban area may be arbitrarily di-

vided into different zones for the purpose of collecting census data. This same

area may be divided into zip codes or forward sortation areas for the purpose of

delivering mail. When information is grouped into different zones and analyzed

statistically, different spatial patterns may arise simply due to the arbitrary bound-

aries chosen for the spatial analysis.

The MAUP consists of two related problems: (a) the zoning problem and (b) the

scale problem. The zoning problem refers to the idea that arbitrary boundaries

may be used to sub-divide geographic space. If a given geographic region is sub-

divided into a fixed number of regions but the boundaries of those regions dif-

fer, then spatial analysis of these data will yield different results and potentially

different spatial patterns (Stafford, Duke-Williams, & Shelton, 2008; Wong, 2009).

The scale problem refers to the number of spatial units used to sub-divide a geo-

graphic region. If more spatial units are used to sub-divide an area, greater vari-

ation will be observed across geographic space (Stafford et al., 2008; Wong, 2009).

Typically, using highly aggregated spatial units produces stronger correlations be-

tween variables (Openshaw & Taylor, 1979; Wong, 2009). Although there is no

standard way of dealing with the MAUP, one possible solution that might be useful

for spatial microsimulation modelling is to conduct more than one analysis us-

ing different scales (i.e., less aggregated vs. more aggregated) or different zoning

systems (Wong, 2009). This type of sensitivity analysis might then provide clues

as to whether or not results are robust at different spatial scales or across differ-

ent zoning schemes. Indeed, some researchers in the spatial microsimulation do-

main recognize that the MAUP may affect results (Ballas et al., 2007a; Edwards et

al., 2011; Hynes et al., 2008, 2010; Morrissey, Hynes, Clarke, & O’Donoghue, 2010;

Procter et al., 2008; Tanton et al., 2010). To date, however, no one has tried to de-

lineate the extent of the problem nor have they offered potential solutions.
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3.7 Improving the Fit of Spatial Microsimulation Models

Recent developments in the field of spatial microsimulation have focused on im-

proving the fit and validity of these models. Although forecasts produced by spa-

tial microsimulation models have been shown to be robust and valid (Chin et

al., 2005; Hermes & Poulsen, 2012b; Riva & Smith, 2012), reweighting methods

may produce estimates that do not vary across geographic space as much as they

should (Birkin & Clarke, 2012). To better reflect spatial heterogeneity in model

forecasts, some authors used geodemographic methods to capture additional spa-

tial effects (Birkin & Clarke, 2012; Smith et al., 2009). Geodemographic methods

are a set of clustering techniques that classify spatial units according to a set of de-

mographic attributes common between the units (Birkin & Clarke, 2009). Cluster

analysis is the most common statistical technique used. Geodemographic cluster-

ing techniques capture variation in sociodemographic variables across geographic

space as well as variation caused by geography itself (Birkin & Clarke, 2012).

Using the UK Sample of Anonymized Records from the 2001 Census and the

2007 National Shoppers Survey (NSS) — a commercial survey of more than 420,000

shoppers — Birkin and Clarke (2011) assessed whether geodemographic methods

might improve the fit of spatial microsimulation models. Iterative proportional

fitting was used to reweight the NSS to the Output Area level for the city of Leeds.

Only those survey respondents arising from the same broad region containing the

city of Leeds were included in the reweighting process (n = 27,000). Furthermore,

each record from the NSS has a geodemographic classification code attached to

it. Output Areas within the UK are classified according to these codes, which in-

cludes seven broad groups: Blue Collar Communities, City Living, Countryside,

Prospering Suburbs, Constrained by Circumstances, Typical Traits, and Multicul-

tural Blend (Birkin & Clarke, 2012). It was therefore possible to limit the reweight-

ing process in each small area to those respondents possessing the same geode-

mographic code as the small area being fit. Doing so produced greater spatial

variation across Output Areas (Birkin & Clarke, 2012).

Smith et al. (2009) proposed a similar procedure to improve model fit. Using

data from the 2001 UK Census and the 2003-2004 Health Survey for England (HSE),

Smith et al. (2009) used k-means clustering to classify Output Areas having simi-
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lar sociodemographic characteristics — sex, age, ethnicity, and social class — into

non-geographic groupings of Output Areas. Five unique clusters of Output Areas

(OAs) were identified. Iterative proportional fitting was then used to reweight the

Health Survey for England to these non-geographic clusters according to differ-

ent models that altered (a) the number of constraint categories used to reweight

the HSE and (b) the order in which constraint variables were entered into the

modelling procedure. Their results indicate that increasing the number of con-

straint categories reduces the misclassification error in unconstrained outcome

variables.10 Furthermore, modifying the order in which constraints are fit affects

misclassification error. This is particularly true of the IPF algorithm, where the first

constraint fit should be the one most strongly correlated with the unconstrained

outcome (Harland et al., 2012; Smith et al., 2009). Finally, no single model consis-

tently produced the most accurate results in terms of misclassification error across

each of the five non-geographic clusters of OAs. This gives rise to the idea of local

microsimulation models, where different models are fit for different spatial units

in order to produce more accurate and spatially heterogeneous synthetic popula-

tions (Smith et al., 2009). This might be especially important in areas that diverge

from “average” areas which are more easily fit and tend to be more accurate (Birkin

& Clarke, 2012).

Other research recognizes the importance of maintaining spatial variability in

unconstrained outcomes, noting that spatial microsimulation models assume the

spatial heterogeneity of unconstrained outcomes is captured by the spatial vari-

ability of the constraints used to build the model (Morrissey & O’Donoghue, 2011;

Morrissey, O’Donoghue, & Farrell, 2014). This assumption is not always met, pro-

ducing a mismatch between synthetic estimates of unconstrained outcomes and

external estimates of those same outcomes at the small area level. As a result, Mor-

rissey and O’Donoghue (2011) and Morrissey et al. (2014) calibrated their spatial

microsimulation of the Irish local economy to known external targets of uncon-

strained outcomes (employment status and hospital admission). For a binary out-

come, a logistic regression model can be estimated, using external data, to identify

10Assessed using the overall percent error between the proportion of individuals within an Output
Area classified as married based on census data vs. the proportion classified as married based on
the synthetic data.
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important predictors of the outcome. The linear predictor from this model, along

with a randomly generated stochastic error term, is applied to the synthetic data

to estimate the predicted probability of each synthetic individual having the out-

come of interest as a function of each individual’s synthetic covariates. Within

each small area, the number of individuals having the highest predicted prob-

ability of the outcome are then classified as possessing that characteristic. The

number of individuals classified in this way is determined on the basis of known,

external counts of the outcome in that small area. Morrissey and O’Donoghue

(2011) and Morrissey et al. (2014) conclude that such calibration more faithfully

reproduces the spatial variability in unconstrained outcomes. However, such cali-

bration methods require that known, external estimates of the outcome are avail-

able. If they are, spatial microsimulation models may be calibrated in order to fur-

ther explore relationships between unconstrained outcomes and other simulated

characteristics that are not available from external data sources used to calibrate

the model (Morrissey et al., 2014).

Burden and Steel (2015) further explore the lack of spatial variability that arises

in spatial microsimulation models, noting the underlying spatial structure of the

population should be retained when developing these models. Using a within-

area homogeneity statistic (Steel & Tranmer, 2011),11 they demonstrate that selec-

tion of constraint variables highly correlated with unconstrained outcomes does

not necessarily replicate the spatial variation in the population. Selection of con-

straint variables also needs to consider whether spatial heterogeneity can be re-

tained across the study area. The within-area homogeneity statistic can be used to

identify constraints that vary meaningfully across small areas. By including these

variables as constraints in the reweighting procedure, it is possible to retain the

underlying spatial heterogeneity.

3.8 Summary

This chapter discussed the evolution of spatial microsimulation modelling. It re-

viewed the primary methods that are available to simulate small area microdata.

Each simulated population is constructed to replicate known characteristics of the

11Analogous to the intra-class correlation coefficient.
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true small area population. Once small area populations have been simulated and

validated, it is possible to subject them to hypothetical policy scenarios to better

understand how the effects of different policy options might vary over geographic

space. Indeed, this is one of the primary uses of spatial microsimulation (Tanton &

Edwards, 2013). In other words, different individuals living within a particular area

might respond differently to a given policy. The aggregate behaviour of all individ-

uals within that area describes the behaviour of the larger system. Projecting the

potential effects of different policy options over geographic space provides pol-

icy makers with local information that can inform decision making. The primary

objective of this research, then, is to demonstrate the utility of spatial microsim-

ulation modelling for planning public health programs at the local level, such as

neighbourhoods nested within larger urban areas or cities.
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Chapter

4
TropISM: A Spatial

Microsimulation Model of Type 2

Diabetes

4.1 Rationale

The overarching premise directing this research is that local geographic informa-

tion can inform the delivery of health promotion programs. Using spatial mi-

crosimulation, this research will demonstrate how the potential effects of health

promotion programs might vary over geographic space. Such forecasts provide

decision makers with information that will help them direct scarce resources to

areas of greatest need. To do this, it is necessary to demonstrate that a valid spatial

microsimulation model can be constructed from geographically rich census data

and information rich survey data.

As discussed in Chapter 1, spatial microsimulation is typically used for small

area estimation and to forecast the potential effects of public policies at the small

area level. Such local information allows decision makers to asses how policy ef-

fects might vary over geographic space. However, small area estimates and fore-

casts are only useful if they are valid. Therefore, if spatial microsimulation is used

to forecast the possible effects of public policies, then small area estimates of rel-
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evant outcomes must be validated prior to using them for policy simulations.

To date, a limited number of studies have used spatial microsimulation to es-

timate the prevalence of chronic diseases or their risk factors at the small area

level. Different studies have used spatial microsimulation to estimate the preva-

lence of obesity in England (Edwards et al., 2011; Edwards & Tanton, 2013a); Rio di

Janeiro (Cataife, 2014); New South Wales, Australia (Burden & Steel, 2015), and the

tri-county area surrounding Detroit (Koh, Gardy, & Vojnovic, 2015). Each of these

studies found significant variation in the prevalence of obesity at the small area

level although limited information was provided to support the validity of their

estimates. For example, Edwards and Tanton (2013a) and Cataife (2014) simply

mention that simulated estimates of obesity aggregated to higher levels of geog-

raphy were similar to official estimates of obesity for England and Rio de Janeiro,

respectively. Burden and Steel (2015) note that simulated counts of obesity under-

estimated prevalent cases of obesity in New South Wales by 19 percentage points

while Koh et al. (2015) found that spatial microsimulation estimates of obesity ag-

gregated to the county level slightly overestimated prevalence when compared to

official estimates from the US Centres for Disease Control and Prevention. Sim-

ulated estimates for Wayne and Macomb counties were only slightly higher than

official estimates (≤ 1.1 percentages points) while simulated estimates for Oak-

land county were 4.4 percentages points greater than official estimates (31.3% vs.

26.9%, respectively). Finally, Edwards et al. (2011) compared simulated estimates

of obesity to cancer rates estimated from external data sources. For cancers asso-

ciated with excess body weight, they found a strong correlation between the sim-

ulated number of cases of obesity and the actual number of cancer cases for seven

types of cancer, including colorectal, breast, kidney, esophageal, prostate, and en-

dometrial cancers at the ward level in northern England.

Other studies have used spatial microsimulation to examine the prevalence of

smoking at the small area level. Tomintz, Clarke, and Rigby (2008) and Tomintz

et al. (2009) estimated the prevalence of smoking at the output area level for the

City of Leeds in the United Kingdom. However, their main purpose was to use

the simulated data to optimally locate smoking cessation services. They briefly

mention that constraint variables used in the microsimulation model were reli-

ably reproduced at the small area level. However, they did not provide a detailed
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examination of the validity of their simulated estimates. Likewise, Kosar and Tom-

intz (2014) and Tomintz, Kosar, and Clarke (2016) used spatial microsimulation

to estimate the prevalence of smoking at the municipality level in Austria. They

noted broad regional variation in simulated smoking rates but failed to examine

the validity of their simulated estimates at the municipality level.

Smith et al. (2011), on the other hand, conducted a more detailed assessment

of the validity of simulated small area estimates of smoking prevalence. In 2006,

the New Zealand census included questions about smoking behaviours. As a re-

sult, known small area estimates of smoking prevalence were available for the en-

tire country at the Census Area Unit level. Smith et al. (2011) therefore built a spa-

tial microsimulation model of smoking prevalence, using data from the 2003 New

Zealand Health Survey. Simulated estimates were compared against known cen-

sus estimates. Almost all small areas had simulated estimates that differed by less

than 20% from census estimates while three-quarters had estimates that differed

by less than 10%1.

Finally, two recent studies used spatial microsimulation to estimate the small

area prevalence of type 2 diabetes. In Australia, Burden and Steel (2015) found

that simulated small area of diabetes aggregated to New South Wales underesti-

mated external counts by 24 percentage points. However, the main purpose of

their study was to better identify how constraint variables should be chosen when

developing spatial microsimulation models. Clark et al. (2014) developed a spa-

tial microsimulation model of morbidity for the elderly population of England at

the local authority level. When prevalence estimates of various chronic diseases

were aggregated to distinct groups of local authorities, they found that simulated

estimates typically differed by less than ±3 percentage points from survey-based

estimates. For diabetes, estimates outside of London were most accurate, differ-

ing by less that ±2.5 percentage points. In summary, extant research demonstrates

that spatial microsimulation models can produce valid small area estimates of

chronic disease risk factors. As all of the studies reported here developed their

simulation models under different circumstances (e.g,. different settings, different

constraint variables, and different reweighting methods), the direction and mag-

1Relative differences.
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nitude of the differences found between simulated estimates and external survey

estimates might, in part, be explained by such methodological choices.

4.1.1 Study objectives

This part of the research consists of two related objectives. First, this research de-

velops a spatial microsimulation model of type 2 diabetes and its risk factors for

the City of Toronto. The model, called “TropISM” will use census data from 2006

to reweight data from the 2005 Canadian Community Health Survey to neighbour-

hoods within Toronto. Following Booth et al. (2007), neighbourhoods are defined

as groups of census tracts having similar sociodemographic characteristics. The

unconstrained outcomes of interest include: (a) type 2 diabetes, (b) body mass in-

dex, (c) hypertension, (d) heart disease, and (e) smoking. These outcomes were se-

lected because they are used by the Diabetes Population Risk Tool (DPoRT) to fore-

cast the population risk of developing type 2 diabetes (Manuel et al., 2013; Rosella

et al., 2014, 2011). Using the simulated neighbourhood populations, DPoRT will be

used to assess the potential effects of different weight loss strategies on the spatial

distribution of diabetes risk across Toronto neighbourhoods.

Second, this research assesses the validity of the TropISM spatial microsimu-

lation model using three approaches. First, as recommended in Section 3.4, an

examination of the model’s internal validity will be conducted by comparing sim-

ulated estimates of the constraints used to reweight the survey data to known cen-

sus values of those constraints for all neighbourhoods. Then, model’s external

validity will be assessed by aggregating the simulated data to the health region

(city) level and comparing aggregate estimates against known estimates from the

2003, 2005, and 2007 Canadian Community Heath Surveys. If the microsimula-

tion model performs well, simulated estimates should be comparable to known

estimates from these data sources.

Next, simulated estimates will be compared to external estimates at the neigh-

bourhood level. Where possible, comparisons will be made using the same indica-

tor. For example, simulated estimates of type 2 diabetes will be compared to exter-

nal estimates of diabetes at the neighbourhood level. Otherwise, comparisons will

be made using similar indicators, or, following Edwards et al. (2011), measures as-
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sociated with the indicator of interest. For example, simulated obesity rates can be

compared to known cancer rates for cancers associated with obesity. Section 4.2.5

discusses the validation procedures in more detail.

4.2 Methods

4.2.1 Data sources

The City of Toronto, Canada’s largest city located in south central Ontario, com-

prised the study area for the TropISM model. Located on the northern shore of

Lake Ontario, Toronto is bounded by Highway 427 in the west, Steeles Avenue in

the north, and Rouge Park in the east (Figure 4.1). TropISM was developed using

publicly available data sources, including data delineating the geographic bound-

aries of Toronto’s neighbourhoods, 2006 Canadian Census data, and data from the

2005 Canadian Community Health Survey. Geographic data identifying Toronto’s

140 neighbourhoods were obtained from the City’s Open Data Initiative (Social

Development, Finance & Administration, City of Toronto, 2009). Each neighbour-

hood is comprised of two or more adjacent census tracts having similar sociode-

mographic characteristics. No neighbourhood is comprised of fewer than 7,000

residents; most neighbourhoods contain 15,000 to 20,000 residents (Creatore et

al., 2007a). Neighbourhood boundaries were designed to remain fixed over time

and to respect existing natural (e.g., rivers) and man-made (e.g., roads) bound-

aries (City of Toronto, 2013b).

Constraint data for the TropISM model came from the 2006 Canadian Census.

Summary datasets contained estimates of sociodemographic characteristics for

each census tract (Statistics Canada, 2006a, 2006b). Tract-specific counts were ag-

gregated to the neighbourhood level so that detailed constraint information was

available for all neighbourhoods. Sociodemographic constraints were selected on

the basis of their association with type 2 diabetes and its risk factors. Data from

the 2006 Canadian Census were used because the mandatory long form census

was replaced by a large voluntary survey in 2011. This survey has been shown to

contain non-negligible biases (Statistics Canada, 2013).

The 2005 Canadian Community Health Survey (CCHS) provided a rich source

of unconstrained outcomes for the TropISM model. The CCHS is a cross-sectional
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1 - Rouge Park
2 - Toronto Zoo
3 - Billy Bishop Toronto City Airport
4 - Exhibi on Place
5 - CN Tower
6 - Nathan Phillips Square
7 - Art Gallery of Ontario
8 - Queen's Park
9 - Montgomery's Inn
10 - Black Creek Pioneer Village
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N 
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LAKE ONTARIO

Figure 4.1. The metropolitan Toronto study area used to develop the TropISM
model, which includes the boroughs of Etobicoke, North York, York, Toronto, East
York, and Scarborough.

survey conducted on a biennial basis. It contains sufficient sample size to reli-

ably estimate health outcomes and risk factors at the health region level (Béland,

2002). The CCHS uses a stratified, multi-stage sampling design to randomly select

more than 120,000 respondents aged 12 and older from all Canadian provinces

and territories. Respondents are interviewed in person or via computer assisted

telephone interviewing methods (Thomas & Wannell, 2009).

The target population for the TropISM model included all residents of Toronto

aged 15 and older. In 2005, 41,766 respondents from Ontario were interviewed for

the CCHS. A subset of 38,330 Ontario respondents aged 15 and older was used to

develop TropISM. Observations were reweighted using constraint variables com-

mon to both datasets. Constraint variables used the same categorical levels (e.g.,

sex, immigrant status) or were reclassified in the CCHS to match the constraint
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categories from the census (e.g., age groups, income groups).

4.2.2 Unconstrained outcomes

Several unconstrained outcomes were simulated using these data sources, includ-

ing (a) type 2 diabetes, (b) body mass index, (c) hypertension, (d) heart disease,

and (e) current smoking status. These outcomes were selected because they are

used by the Diabetes Population Risk Tool to predict the future risk of type 2 di-

abetes at the population level (Manuel et al., 2013; Rosella et al., 2014, 2011). To

date, this tool has been used to project the future burden of type 2 diabetes (Rosella

et al., 2011) and the potential effects of various population level interventions de-

signed to reduce the risk of diabetes (Manuel et al., 2013). However, these studies

estimated risk and risk reductions at a provincial level. The current study esti-

mates risk reductions at the neighbourhood level for Toronto, an ethnically diverse

Canadian city (Topping, 2012). All of these outcomes were readily identified using

data routinely collected by the Canadian Community Health Survey (Rosella et al.,

2011).

Type 2 diabetes status was assessed using the Ng-Dasgupta-Johnson algorithm

which broadly targets all respondents who reported having diabetes in population

survey microdata (Ng, Dasgupta, & Johnson, 2008). Respondents who had gesta-

tional diabetes were classified as non-diabetic. Type 1 diabetics were screened out

on the basis of their age at diagnosis (younger than 30) and whether they started

using insulin within six months of their diagnosis. The remainder were classified

as type 2 diabetics as were respondents currently using oral anti-hyperglycemia

medications.

The remaining risk factors were assessed using simpler approaches. Body mass

index was computed as a continuous variable using self-reported weight (in kg)

and height (in m2) and then classified into six categories: (a) <23, (b) 23–24.99,

(c) 25–29.99, (d) 30–34.99, (e) ≥ 35, and (f) unknown.2 Hypertension and heart

disease were assessed using affirmative responses to the questions “Do you have

high blood pressure?” and “Do you have heart disease?”. Current smoking sta-

2Consistent with how BMI is used by the Diabetes Population Risk Tool.
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tus was assessed on the basis of whether or not respondents currently smoke on a

daily or occasional basis.

4.2.3 Selection of constraint variables

Constraint variables used to develop TropISM were selected because they

• were common to both the 2006 census dataset and the 2005 Canadian Com-

munity Health Survey,

• were used as risk factors in the Diabetes Population Risk Tool, and

• were reasonably correlated with the unconstrained outcomes.

Variables used as risk factors in the Diabetes Population Risk Tool were au-

tomatically included as constraints, including sex; age; ethnicity (white vs. non-

white); immigrant status (born in Canada vs. immigrant); education (< secondary,

secondary graduate/some post-secondary, and post-secondary graduate); and per-

sonal income (< $15,000, $15,000–$29,999, $30,000–$49,999, $50,000+). Although

the DPoRT model only uses three broad age groups to predict future diabetes risk

(< 45, 45–64, and ≥ 65), seven age groups were used to develop TropISM (15–24,

25–34, 35–44, 45–54, 55–64, 65–74, and ≥ 75).

Additional variables were considered as constraints if they were significantly

associated with the five unconstrained outcomes. Candidates included housing

tenure (does not own home vs. owns home) and marital status (married/common-

law, widowed/separated/divorced, and single/never married). In order to assess

the strength of the association between each constraint variable and the uncon-

strained outcomes, linear and logistic regression models were estimated using On-

tario respondents aged 15 and older from the 2005 CCHS. Each constraint variable

was added sequentially to the models and the increment in R2 or pseudo-R2 was

assessed as well as the change in the Bayesian Information Criterion.3 A sex-by-

age interaction term was also included in each model. Figure 4.2 illustrates how

the models were built and Figure 4.3 illustrates the improvement in model fit ob-

tained by adding additional constraint variables to the model. A linear regression

model was used to assess the amount of variation in body mass index explained

by each of the constraint variables while logistic regression was used for all other

3Smaller values indicate better fit to the data.
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Model 1: Y ∼ sex
Model 2: Y ∼ sex + age group
Model 3: Y ∼ sex + age group + sex ∗ age group
Model 4: Y ∼ sex + age group + sex ∗ age group + ethnicity
Model 5: Y ∼ sex + age group + sex ∗ age group + ethnicity + immigrant
Model 6: Y ∼ sex + age group + sex ∗ age group + ethnicity + immigrant +

education
Model 7: Y ∼ sex + age group + sex ∗ age group + ethnicity + immigrant +

education + income
Model 8: Y ∼ sex + age group + sex ∗ age group + ethnicity + immigrant +

education + income + tenure
Model 9: Y ∼ sex + age group + sex ∗ age group + ethnicity + immigrant +

education + income + tenure + marital status

Figure 4.2. Incremental model building strategy used to select constraint variables
for TropISM model development.

outcomes. Separate logistic regression models modelled the probability of (a) be-

ing a current smoker, (b) having high blood pressure, (c) having heart disease, and

(d) having type 2 diabetes.

Figure 4.3 displays the incremental fit for each model. What is immediately

clear is that sex and age alone explain a large amount of variation in each of the

outcomes. For the logistic regression of smoking status on the constraints, over-

all fit improved with each model. In other words, even when marital status was

added to the model (model 9), the fit improves noticeably. A similar, but smaller

effect was observed for the linear regression of body mass index on the constraints.

However, for the remaining three outcomes, very little additional variance was ex-

plained when housing tenure and marital status were added to the models. Based

on these results, a decision was made to develop the TropISM model using one

bivariate constraint — sex crossed with age group — and the following univariate

constraints: ethnicity, immigrant status, education, and personal income, yielding

a total of 25 constraint categories.

Although income was chosen as a constraint variable, it should be noted that
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(b) Current Smoker
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(c) Hypertension
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(d) Heart Disease
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(e) Type 2 Diabetes
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Figure 4.3. Selection of constraint variables to develop the TropISM model. Black lines depict
the proportion of variance explained by each model while red lines compare model fit.
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14% of respondents from the Ontario subset of the 2005 CCHS did not provide in-

come information. Following Chin and Harding (2006) and Tanton et al. (2011),

“not stated” responses were imputed. However, instead of redistributing those

responses proportionately to the relative frequencies of the known categories, a

regression procedure was used to impute the missing data.4 Missing values for

the other constraint variables were not imputed. Therefore, an initial microsim-

ulation model was developed using 38,330 respondents having complete (or im-

puted) data for sex, age, ethnicity, immigrant status, education, and personal in-

come.5 Although the CCHS data were collected in 2005 and the census data were

from 2006, given the short time period between data collections, reported incomes

in the survey data were not adjusted for inflation.

4.2.4 Reweighting methodology

The simulated annealing algorithm, implemented in the Fortran95 “CO” software

program (Williamson, 2007), was used to resample observations from the Ontario

subset of the 2005 CCHS. Observations were selected so that the final distribu-

tion of observations matched known distributions of the univariate and bivariate

constraints at the neighbourhood level. The 2006 Canadian census supplied con-

straint information at the census tract level. This information was aggregated to

the neighbourhood level for each of Toronto’s 140 neighbourhoods.

The simulated annealing algorithm was selected to develop the TropISM model

because it is not affected by the order in which constraint variables are fit during

the reweighting process, unlike iterative proportional fitting or GREGWT (Harland

et al., 2012). Furthermore, there is no need to normalize constraint tables so that

population totals across tables are equal (Harland et al., 2012; Williamson, 2007).

In addition, there is no need to convert the final weights to integer values, since

observations are resampled rather than reweighted. Moreover, existing literature

suggests that the simulated annealing algorithm is the most robust algorithm cur-

rently available for spatial microsimulation. Finally, the CO software program is

4Data were imputed using a multinomial regression model to predict income as a function of On-
tario health region, sex, age, ethnicity, immigrant status, and education. Imputation was con-
ducted in R using the “regressionImp” function from the “VIM” (Visualization and Imputation of
Missing Values) package (Templ, Alfons, Kowarik, & Prantner, 2015).

5Income was imputed for a total of 4,308 respondents.
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freely available and has been used successfully in other settings (e.g., Burden &

Steel, 2015; Hermes & Poulsen, 2012b, 2013).

Although the CO software program does not require normalization of con-

straint tables to ensure that small area population counts are consistent across

tables, Canadian census data are masked. In other words, small area population

counts have been rounded to the nearest 5 to preserve confidentiality. In addition,

population counts for different sociodemographic variables do not necessarily ap-

ply to the target population of residents age 15 and older. Often, census counts

apply to all age groups instead of the population age 15 and older. As a result, con-

straint tables were proportionately scaled to the total population age 15 and older

in each neighbourhood.

For example, if a neighbourhood contained 31,000 residents, 26,000 of whom

were 15 and older, and if population counts for a given constraint represented

the total population, then population counts within each constraint category were

scaled so that the total population for that constraint summed to 26,000 instead of

31,000. More concretely, if a constraint variable, such as ethnicity, was comprised

of two categories (e.g., visible minority and non-minority), and if there were 24,000

and 7,000 people in each category, respectively, then these counts were scaled to

the population age 15+ according to:

total in constraint category i

total population
∗ total population age 15+ (4.1)

Continuing with this example, the approximate number of visible minorities age

15+ in this neighbourhood equals

= 24,000/31,000∗26,000

= 20,129.

Following normalization of constraint tables, the CO software was used to re-

sample observations from the CCHS microdata to match census constraints within

each neighbourhood. Selection of observations was controlled by: (a) the initial

temperature T, (b) the number of random swaps R made to the initial set of se-

lected observations, and (c) the reduction in temperature T following R random

swaps. The initial temperate T defines the number of observations that will be
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randomly replaced in order to improve the fit between selected observations and

small area constraints. Following Williamson (2007), the initial temperature T was

set to the total number of cells from all constraint tables. The number of random

swaps R was set to 10 ∗ T and the temperature T was reduced by 5% following R

successful swaps. Thus,

• the initial temperature T was set to 25,

• the number of successful random swaps R that need to be made before the

temperature is reduced was set to 250, and

• following R successful swaps, the temperature was reduced by 5%. In other

words, the temperature reduction parameter was set to 0.95.

Improvement in model fit was assessed using the relative sum of squared Z-scores

during each step of the reweighting process, as suggested by Burden and Steel

(2015); Hermes and Poulsen (2012b); Ryan et al. (2009) and Williamson (2007).

An iterative process was used to develop the TropISM model and select a fi-

nal model that produced realistic estimates of unconstrained outcomes. An initial

model was developed using the full Ontario subset of the 2005 Canadian Com-

munity Health Survey. Model fit statistics (total absolute error and standardized

absolute error) were used to assess how well the simulated data fit the constrain-

ing tables. The simulated data were then aggregated over all 140 neighbourhoods.

Simulated estimates of unconstrained outcomes were compared to external esti-

mates of these same outcomes. Absolute and relative differences between sim-

ulated estimates and external estimates from the 2003, 2005, and 2007 Canadian

Community Health Surveys6 suggested this initial model was unable to produce

realistic estimates of unconstrained outcomes. Therefore, additional models were

developed using smaller subsets of the 2005 CCHS.

The next model was developed using a largely urban subset of the 2005 CCHS.

In this case, the source dataset for the CO algorithm was limited to observations

from Ontario health regions containing a census metropolitan area.7 This limited

the source microdata to 25,195 observations coming from 17 health regions.8 A

6Appropriately weighted.
7A census metropolitan area, or CMA, is an urban areas having a population ≥ 100,000, of which at

least 50,000 must live in the central core of that urban area
8Brant, Durham, Halton, Hamilton, Kingston-Frontenac-Lennox-Addington, Middlesex-London,

Niagara, Ottawa, Peel, Peterborough, Simcoe-Muskoka, Sudbury, Thunder Bay, Waterloo,
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third model used an even smaller subset of microdata observations by limiting

the source microdata to those observations sampled from health regions within

the Greater Toronto Area (n = 9,224).9 A final model was developed using only

those observations coming from the Toronto health region (n = 2,974). The fit

of each model was assessed and simulated estimates of unconstrained outcomes

were compared to known external estimates.

4.2.5 Model validation

4.2.5.1 Internal validation

Internal validation procedures assessed the fit of the simulated data against each

constraint table using (a) the total absolute error (TAE) and (b) the standardized

absolute error (SAE). SAE values > 0.2 for a given constraint indicate poor fit. This

means that the simulated population in a particular area does not reproduce the

characteristics of the known population for that constraint. Parallel coordinate

plots were used to visually compare SAE values across all constraining tables and

neighbourhoods.

In addition, scatterplots of known counts against simulated counts were pro-

duced for each constraint category for all model constraints (i.e., 25 constraint

classes representing the five constraint tables). The standard error about identify

was then used to assess how much simulated population counts deviated from

known census counts for each constraint category. An SEI of 1 indicates perfect fit

while values smaller than 1 indicate poorer fit.

4.2.5.2 External validation

City-level validation. The first external validation method compared simulated

estimates of unconstrained outcomes aggregated over metropolitan Toronto to

health region estimates from the Canadian Community Health Survey. Simulated

estimates were compared to CCHS estimates from 2003, 2005, and 2007 separately

by sex for (a) type 2 diabetes and (b) hypertension. Age-sex specific estimates were

also compared for body mass index while estimates of personal income, current

Wellington-Dufferin-Guelph, Windsor-Essex, York and Toronto.
9Halton, Peel, York, Durham, and Toronto
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smoking status, and heart disease were compared for men only. Absolute and rel-

ative differences between the simulated estimates and external data sources were

used to assess TropISM model validity. Following Chin et al. (2005), relative dif-

ferences of ±10% suggested good validity while relative differences of ±15% sug-

gested acceptable validity.

Neighbourhood-level validation. The second external validation method com-

pared simulated estimates of unconstrained outcomes against external estimates

of the same measures or measures associated with the outcomes. External esti-

mates were derived from administrative health data maintained by the Institute

for Clinical Evaluative Sciences (Table 4.1). For diabetes, hypertension, and heart

disease, simulated counts were compared against the actual number of cases in

each neighbourhood using the overall concordance correlation coefficient (ρc ) to

measure the precision and accuracy of simulated counts (Barnhart, Haber, & Song,

2002; Lin, 1989, 2000).10 Precision is defined by the Pearson correlation coefficient

(ρ) and measures how much simulated counts deviate from the line of best fit.

Accuracy is defined by a measure of bias (Cb) that assesses how much simulated

counts deviate from the line of concordance, or the 45o line. Accuracy decreases

as Cb approaches zero. Cb is comprised of two types of deviation from the 45o line:

a scale shift and a location shift. The scale shift measures the change in slope of

the line of best fit relative to the line of concordance while the location shift mea-

sures the change in height of the line of best fit. Negative values for the location

parameter indicate that simulated counts under-estimate known counts for each

of the disease outcomes.

For neighbourhood counts of diabetes, the simulated number of cases of type

2 diabetes were compared against known counts of diabetes ascertained from the

Ontario Diabetes Database. First, simulated counts were compared against known

counts. Second, simulated counts were corrected for undiagnosed cases of dia-

betes, assuming that 30% of cases are undiagnosed (Canadian Diabetes Associa-

tion, 2015; Hux & Tang, 2003; Public Health Agency of Canada, 2011; Rosella et al.,

2015). Known counts were corrected for the false positive rate in the algorithm

used to identify cases of diabetes in the Ontario Diabetes Database. For diabetes,

10Estimated in R using the “epiR” package (Stevenson et al., 2015).
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Table 4.1. Disease indicators and data sources used to externally validate un-
constrained outcomes from the TropISM spatial microsimulation model.

Indicator Years Sex Data Source

Diabetes 2005 (P) M, W Ontario Diabetes Database
2006-2010 (I) M, W

∗ Obesity related 2005 (I) M, W Ontario Cancer Registry
cancers: endometrial (W) +

post-menopausal +
breast (W) + kidney +
colorectal + bladder +
esophageal + pancreatic +
thyroid + gall bladder +
prostate (M)

Lung cancer 2005 (I) M Ontario Cancer Registry

Chronic obstructive 2005 (I) M Chronic Obstructive
pulmonary disease Pulmonary Disease

Hypertension 2005 (P) M, W Ontario Hypertension
Database

Heart disease 2005 (P) M Congestive Heart Failure,
atheroslcerosis, Ontario Myocardial
cornary artery disease, Infarction Database
myocardial infarction +
heart attack

Notes:
P = prevalent cases, I = incident cases, M = men age 20+, W = women age 20+
∗ All cancers combined, as appropriate, for men and women.
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the false positive rate is estimated to be 3% (Hux, Ivis, Flintoft, & Bica, 2002). In

addition, known counts were also corrected by assuming that 95% of all cases of

diabetes are type 2 diabetes (Caspersen et al., 2012; Millar & Young, 2003; National

Diabetes Information Clearinghouse (NDIC), 2011).

A similar procedure was used to compare simulated counts of hypertension

against known counts estimated from the Ontario Hypertension Database. Simu-

lated counts were compared by examining the concordance between simulated

counts and known counts and then by correcting simulated counts for under-

diagnosis (17% of Canadians with hypertension remain undiagnosed Campbell &

Ballas, 2013) and known counts for the false positive rate, estimated to be 5% (Tu,

Campbell, Chen, Cauch-Dudek, & McAlister, 2007). For heart disease, no correc-

tions were made since two different administrative data sources were used to as-

certain known counts of heart disease across Toronto’s neighbourhoods, and the

proportion of cases coming from each source was not identified.

In addition to the concordance correlation coefficient, the average difference

between simulated disease counts and known counts across all neighbourhoods

was estimated. Average differences were used to identify whether TropISM under-

or over-estimated known counts of these three outcomes at the neighbourhood

level. A relative error measure was also considered by estimating the proportion of

neighbourhoods having simulated counts lying within± 20% of the known counts.

Following Clarke and Madden (2001), if 80% of neighbourhoods had simulated

counts lying within a 20% difference of known counts, then synthetic counts of

diabetes, hypertension, and heart disease would be considered as reproducing

known counts with reasonable accuracy.

The validity of simulated counts was further examined by classifying neigh-

bourhoods into quintiles according to simulated and known counts of diabetes,

hypertension, and heart disease. The overall percent agreement and Cohen’s κ

were used to compare the similarity between each classification. Higher values

of each measure suggest that neighbourhoods were ranked into the same quintile,

suggesting a greater degree of similarity in the relative ranking of neighbourhoods.

The validity of all unconstrained outcomes was also assessed by comparing

simulated prevalence rates against known prevalence rates. For some outcomes,

small area prevalence rates were not available for metropolitan Toronto. In these
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cases, simulated estimates of overweight, obesity, and smoking were validated

by comparing the prevalence of these outcomes to disease indicators associated

with these outcomes. Similar to Edwards et al. (2011), cancers associated with

excess body weight were used to assess the validity of the synthetic body weight

data at the neighbourhood level. Relevant cancers included endometrial, post-

menopausal breast, kidney, colorectal, bladder, esophageal, pancreatic, thyroid,

gall bladder, and prostate cancer (Table 4.1). Likewise, to assess the validity of

simulated smoking prevalence at the neighbourhood level, the cumulative inci-

dence proportions of (a) lung cancer and (b) chronic obstructive pulmonary dis-

ease (COPD) were compared to simulated smoking prevalence rates. If TropISM

is valid, simulated prevalence estimates for each unconstrained outcome should

exhibit similar spatial patterns of (a) known prevalence rates for those outcomes

or (b) incidence rates of disease indicators associated with those outcomes.

For this analysis, the Pearson correlation was used to assess the similarity be-

tween simulated prevalence rates and known prevalence rates or incidence rates

of relevant disease indicators. Both raw and spatially smoothed rates11 were com-

pared to assess how well TropISM replicated disease prevalence at the neighbour-

hood level. Higher positive values of the Pearson correlation suggest that neigh-

bourhoods having higher simulated prevalence rates tend to have higher known

prevalence rates.

Neighbourhood-specific rates were also classified into quintiles to assess how

well TropISM could replicate broad spatial patterns of disease prevalence. Again,

11Non-parametric spatially smoothed rates were estimated in R using a “rook” contiguity matrix
to define contiguous neighbourhoods, following the advice of Griffith (1996) who recommends
using fewer neighbours to define the underlying spatial structure, since over-specification (more
neighbours) reduces statistical power. Spatially smoothed rates r were estimated as

r =
(e j +el ag j

)

(p j +pl ag j
)

(4.2)

where:

e j = the number of events in neighbourhood j ,
el ag j

= the average number of events in all neighbourhoods bordering neighbourhood j ,

p j = the total population in neighbourhood j ,
pl ag j

= the average population across all neighbourhoods bordering neighbourhood j

84



4.3 Results

raw and spatially smoothed rates were compared. The overall percent agreement

and Cohen’s κwere used to assess the degree of similarity between these two clas-

sification systems. Finally, the global bivariate Moran’s I statistic12 was used to

compare the spatial similarity of simulated and known rates. High positive values

of the bivariate Moran’s I statistic suggest that neighbourhoods having low or high

simulated prevalence rates are surrounded by neighbourhoods having similarly

low or high known disease rates. Bivariate LISA statistics were then computed in

GeoDa13 to identify groups of neighbourhoods having similarly high or low simu-

lated and known prevalence rates of diabetes.

4.3 Results

4.3.1 Model development and fit

Table 4.2 compares the subsets of the 2005 CCHS used to develop the TropISM

model against demographic characteristics of Toronto residents estimated from

the 2006 Canadian census. In this table, CCHS estimates are unweighted so they

represent the sample of respondents used to develop TropISM. Generally, the full

sample of Ontario respondents differed appreciably from the characteristics of

Toronto residents, especially with respect to ethnicity, birthplace, education, mar-

ital status, and housing tenure. Respondents from smaller subsets were more sim-

ilar to Toronto residents.

The Toronto subset of CCHS respondents showed more similarity to the char-

acteristics of Toronto residents compared to other subsets. Thirty-eight percent

of Toronto respondents from the CCHS were visible minorities compared to 46%

of Toronto residents. Similarly, 49% of respondents from Toronto were born out-

side Canada compared to 51% of residents. Marital status and housing tenure

were closely aligned to census estimates. Respondents from Toronto having a

post-secondary education were slightly over-represented compared to census es-

timates (59% vs. 53%, respectively), as were respondents having personal incomes

of more than $50,000 per year (27% vs 24%, respectively). In spite of some differ-

12Estimated using PySal version 1.10.0 (Rey & Anselin, 2010) using a “rook” contiguity spatial
weights matrix.

13P-values accounted for multiple testing using the false discovery rate adjustment in R.
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ences, the characteristics of CCHS respondents from Toronto were most similar

on factors associated with type 2 diabetes including ethnicity, birthplace, sex, and

age.

Table 4.3 compares the fit of TropISM models developed using each subset of

the CCHS. Computationally, models developed using the smallest subsets were

the fastest to fit.14 Models developed using larger subsets had smaller percentages

of selected observations coming from the Toronto health region. In the model

developed using the full Ontario subset, only 16% of selected observations were

from the Toronto health region compared to 36% of observations in the GTA sub-

set. This result is important because models developed using larger subsets were

less able to reproduce unconstrained outcomes compared to models developed

using smaller subsets (Appendix A).

Another interesting feature of the models fit using smaller subsets of micro-

data is that these models tended to produce larger weights. In the model devel-

oped from the full Ontario subset, 50% of observations were selected only once

in any given neighbourhood, while 25% of observations were selected two to 23

times. This means that one microdata record was sampled up to 23 times to en-

sure that the total number of selected observations matched the total number of

people in each constraint category for a given neighbourhood. In the model devel-

oped from the Toronto subset, 50% of observations were selected up to four times,

while 25% of observations were selected between seven and 79 times. This re-

sult is expected because fewer observations were available in this subset, meaning

more of the same observation had to be selected to ensure that the total number

of selected observations matched the total number of people in each constraint

category.

Table 4.3 summarizes the internal fit of each model. There were negligible

differences between models in the total and standardized absolute error. Given

that all models were developed using four univariate constraints and one bivari-

ate constraint and that constraint tables were normalized prior to model develop-

ment, this result is not surprising. It suggests there was sufficient variation in the

14Models were developed using the CO algorithm on a 64-bit Windows PC with an Intel Xeon 3.40
GHz CPU, 8 logical cores and 8 gigabytes of memory. Although the CO software was developed as
a 32-bit application, it is possible to run it in parallel on a multi-core system.
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Table 4.2. Demographic characteristics of the population of metropoli-
tan Toronto in 2006 compared to the sample of respondents from differ-
ent subsets of the 2005 Canadian Community Health Survey.

CCHS∗

Characteristic Census ON CMA GTA TOR

Sex
Men 47.5 45.3 45.5 46.3 45.6
Women 52.5 54.7 54.5 53.7 54.4

Age, men
20–44 51.5 44.8 48.6 52.9 52.9
45–64 32.2 33.4 31.7 29.7 27.9
65+ 16.3 21.8 19.7 17.4 19.1

Age, women
20–44 48.6 40.6 43.6 48.7 49.7
45–64 31.5 32.6 30.8 29.5 26.5
65+ 19.8 26.8 25.6 21.7 23.8

Ethnicity
Visible minority 46.4 12.4 16.3 28.3 37.7

Birthplace
Immigrant 50.9 20.6 26.6 40.1 49.1

Education
< Secondary 14.9 22.7 20.1 17.7 18.6
Secondary 32.5 25.3 25.3 24.8 22.0
Post-secondary 52.6 52.0 54.6 57.5 59.4

Personal income
< $15,000 35.8 30.4 29.2 29.5 31.5
$15,000–$29,999 24.6 23.3 21.9 18.7 21.3
$30,000–$49,999 16.0 22.6 22.7 22.2 20.1
≥$50,000 23.5 23.7 26.2 29.6 27.0

Marital status
Single 34.3 26.1 28.2 30.4 36.4
Married/common-law 50.2 53.9 52.8 53.4 46.5
Separated/widowed/divorced 15.5 20.0 18.9 16.1 17.1

Tenure
Home is owned 56.5 73.9 72.2 72.2 56.4

∗Subset of respondents from the 2005 CCHS: ON = Ontario, CMA = health regions
containing a census metropolitan area, GTA = health regions from the Greater Toronto
Area only, TOR = Toronto health region only.
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Table 4.3. Fit of the TropISM model developed using different subsets of
the 2005 Canadian Community Health Survey.

Health Regions Included

Ontario CMA GTA Toronto

Total sample n = 33,380 n = 25,195 n = 9,224 n = 2,974
CO execution time 1 hr 18 min 1 hr 42 min 19 min 7 min
Selected observations∗

Toronto 15.6 18.5 35.8 100
GTA 24.0 29.3 64.2 —
Other 60.4 52.3 — —

CO weights
Median 1 1 2 4
Third quartile 2 2 3 7
Maximum 23 26 38 79

Assessment of fit†

TAE‡

Median 5 5 5 5
IQR (3, 7) (3, 7) (3, 7) (3, 7)
Range (0, 16) (0, 16) (0, 16) (0, 16)

SAE§

Median (×10−4) 3.0 3.0 3.0 3.0
IQR (×10−4) (2.0, 6.0) (2.0, 6.0) (2.0, 5.0) (2.0, 5.0)
Range (×10−3) (0, 2.1) (0, 1.2) (0, 1.2) (0, 1.2)

∗ Percentage of selected microdata observations coming from different health regions.
† Summary of fit across all neighbourhoods.
‡ Total absolute error.
§ Standardized absolute error.
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constraint variables from each microdata subset for the CO algorithm to success-

fully replicate each neighbourhood population according to the constraints.

Figure 4.4 compares the standardized absolute error (SAE) for each constraint

variable for all neighbourhoods across all models using parallel coordinate plots.

There were only small differences between simulated data and census data for any

constraint, regardless of the microdata subset used to develop TropISM. Models

developed using the GTA and Toronto subsets seemed to fit slightly better, while

some neighbourhoods had slightly higher errors when the Ontario and CMA sub-

sets were used.

Across all subsets, the largest errors occurred in the sex by age constraint. Ed-

ucation and income showed fewer differences between simulated neighbourhood

populations and the 2006 census, while ethnicity and immigrant populations were

perfectly replicated across all models with the exception of the CMA subset. The

standardized absolute error ranged from 0 to 0.0016 across all neighbourhoods

for the sex by age constraint in the model developed using the full Ontario subset

of microdata. This translates into differences of less than 0.2% between the simu-

lated number of individuals in each sex-age group compared to the actual number

of people in each sex-age group according to census estimates.

Model fit was also evaluated by plotting census population estimates for each

neighbourhood against simulated estimates for all constraint categories. The stan-

dard error about identity (SEI) was estimated for each constraint category. Based

on the Toronto subset, the SEI for all constraint categories was greater than 0.99,

indicating nearly perfect fit between the simulated number of individuals in each

constraint category and census counts for all neighbourhoods. In summary, the

simulated annealing algorithm was able to accurately simulate the population of

each neighbourhood according to the five constraints used to develop TropISM,

regardless of which microdata subset was used.

4.3.2 Demographic characteristics of the simulated population

Table 4.4 summarizes the demographic characteristics of the simulated popula-

tion within each of metropolitan Toronto’s six boroughs. About 14% of the popu-

lation in Toronto is 65 years of age or older, a somewhat smaller percentage than in
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(a) Ontario subset (b) CMA subset

(c) GTA subset (d) Toronto subset
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Figure 4.4. Assessment of TropISM model fit using the standardized absolute
error to compare the difference between simulated neighbourhood populations
and census data. Four models were developed using different subsets of the
2005 CCHS. In all models, constraints were: sex-age group (“Sex-Age”), ethnicity
(“Eth”), immigrant status (“Immig”), education (“Educ”), and income (“Inc”).
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the other five boroughs. In Etobicoke, for example, almost 20% of the population

is 65 or older.

Toronto’s population is also better educated: 61% has a post-secondary educa-

tion compared to only 41% of the population in York. Likewise, personal incomes

tend to be higher in Toronto where 31% of residents have personal incomes greater

than $50,000 per year. This is almost double the percentage in Scarborough and

York. Unlike Toronto, Scarborough and North York are more ethnically diverse.

In Scarborough, two-thirds of the population is comprised of visible minorities as

is 52% of the population in North York. Immigrants make up more than half the

population in York and almost 60% of the population in Scarborough and North

York.

Table 4.4. Demographic characteristics of the simulated TropISM population by
borough.

North East
Characteristic Etobicoke York York Toronto York Scarborough

% Men age 65+ 8.3 8.2 6.6 5.9 6.4 7.2
% Women age 65+ 11.2 11.0 9.5 8.1 9.6 9.6
% Visible minority 37.7 51.9 42.5 30.3 37.9 67.3
% Immigrant 48.2 59.1 53.1 39.2 45.0 58.5
% Post-secondary∗ 49.9 53.0 40.6 60.9 54.2 46.3
% Income $50,000+† 25.0 21.7 17.2 30.7 24.8 17.3
∗ Percent having any post-secondary education.
† Percent having a personal income of $50,000 or more.

These borough level differences in population composition are reflected at the

neighbourhood level. Noticeable spatial heterogeneity exists in the demographic

profile of each neighbourhood (Appendix A, Figure A.1). More than 70% of resi-

dents in several of north Scarborough’s neighbourhoods are visible minorities. In

most of the remaining neighbourhoods, 50%–70% of residents are visible minori-

ties. In Etobicoke, a north-south divide exists in the visible minority population.

More than 31% of the residents in north Etobicoke are visible minorities while in

south Etobicoke, fewer than 31% of the residents are visible minorities. In Toronto,
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a similar divide is seen: waterfront neighbourhoods tend to have a sizeable per-

centage of visible minorities (31%–49%) while most of the remaining neighbour-

hoods are comprised of fewer than 31% visible minorities. Unsurprisingly, spatial

patterns in the immigrant population are similar to spatial patterns in the visible

minority population.

Two-thirds to three-quarters of residents living in central Toronto and central

North York have a post secondary education. Likewise, many neighbourhoods

in south Etobicoke have a well-educated citizenry where at least 45% of residents

have a post-secondary education. Spatial trends in personal income tend to mimic

the spatial patterns in post-secondary education. That is, neighbourhoods having

a higher percentage of residents with a post-secondary education tend to have

higher percentages of residents earning at least $50,000 per year.

Such differences in population composition are important to highlight from

a population health perspective. As mentioned in Chapter 2, socioeconomic fac-

tors are related to a higher risk of type 2 diabetes. Furthermore, ethnic minori-

ties have higher rates of type 2 diabetes. Thus, highlighting key differences in the

demographic structure of neighbourhoods helps contextualize why some neigh-

bourhoods have higher prevalence and forecast incidence of type 2 diabetes com-

pared to others. However, prior to forecasting the incidence of type 2 diabetes at

the neighbourhood level using the Diabetes Population Risk Tool (Chapter 5), it

is necessary to validate the unconstrained outcomes of interest in the simulated

TropISM population.

4.3.3 City-level validation of unconstrained outcomes

Although the CO algorithm accurately simulated neighbourhood populations ac-

cording to each of the five constraints, models developed using different subsets

of microdata varied in their ability to reproduce unconstrained outcomes at the

city (health region) level. Generally, models developed using larger subsets of data

were less able to accurately reproduce unconstrained outcomes. Appendix A com-

pares simulated estimates aggregated to metropolitan Toronto against external

estimates from the 2003, 2005, and 2007 Canadian Community Health Surveys,

stratified by sex.
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For men and women, the model developed using the Ontario subset of micro-

data showed larger differences in unconstrained outcomes between simulated es-

timates and CCHS estimates compared to the model developed using the Toronto

subset of microdata. Based on the Ontario subset, 6.6% of simulated men had

type 2 diabetes compared to an estimate of 4.9% from the 2003 CCHS (Table A.1).

This represents an absolute difference of 1.7 percentage points but a relative dif-

ference of 34%. As might be expected, the TropISM estimate is closer to the 2005

estimate of 5.7% (absolute difference: 0.9 percentage points; relative difference:

15.9%). Compared to the 2007 CCHS, TropISM underestimates the prevalence of

type 2 diabetes in men by 1.6 percentage points, or 19%.

Models developed using smaller subsets of microdata produced similar esti-

mates of type 2 diabetes among men. The CMA subset produced the closest match

in diabetes prevalence, where simulated prevalence was 6.4%. This represents an

absolute difference of 1.5, 0.7, and -1.8 percentages points between TropISM and

the 2003, 2005, and 2007 CCHS, respectively. For the model developed from the

Toronto subset, the simulated prevalence of type 2 diabetes was also 6.6%.

Among women, the TropISM estimate of type 2 diabetes prevalence was closer

to CCHS estimates. Based on the Ontario subset, the simulated prevalence of type

2 diabetes was 5.4%, compared to 5.2%, 4.3% and 3.6% when the CMA, GTA and

Toronto subsets were used, respectively. Compared to the 2005 CCHS, TropISM

overestimated the prevalence of type 2 diabetes among women, but tended to

underestimate prevalence compared to estimates from the 2003 and 2007 CCHS.

Based on the Toronto subset, TropISM underestimated the prevalence of type 2

diabetes by 1.3 and 3.1 percentage points, respectively. However, TropISM over-

estimated the prevalence of type 2 diabetes by 1.1 percentage points compared to

the 2005 CCHS (a relative difference of 43%).

Although the external validation for type 2 diabetes shows mixed results for

men and women, for other unconstrained outcomes, the model developed from

the Toronto subset tended to produce the greatest similarity between simulated

estimates and the CCHS. As might be expected, simulated estimates were most

similar to CCHS estimates from 2005. Among men, all but one simulated estimate

differed from known estimates by less than three percentage points in any given

year. For BMI in the oldest age group, the simulated estimate differed by 3.8 per-

93



4 TropISM: A Spatial Microsimulation Model

centage points.

In some cases, small absolute differences translated into large relative differ-

ences because the unconstrained outcomes occurred infrequently in the popu-

lation. For example, the simulated prevalence of heart disease was 6.0% in men,

which overestimated the known prevalence of heart disease in 2005 by 1.2 percent-

age points. Although this difference is small in absolute terms, in relative terms,

it means the simulated estimate is 31.6% larger than the known estimate. Similar

differences were seen for some of the BMI outcomes in both age groups. TropISM,

in particular, seemed unable to accurately replicate the percentage of men classi-

fied as having an unknown BMI. However, these differences are less serious, be-

cause the Diabetes Population Risk Tool that was used to forecast the incidence of

diabetes does not use unknown BMI status as a predictor of diabetes incidence in

men.

Regardless of the microdata subset used, TropISM was unable to accurately

replicate personal income when simulated estimates were compared against the

2003 CCHS. However, the 2003 CCHS used different cut-points to define income

quantiles compared to the 2005 and 2007 surveys, so an inability to replicate this

outcome is unsurprising.

Among women, the model developed from the Toronto microdata subset pro-

duced the most similar estimates of unconstrained outcomes at the metropolitan

level. Simulated estimates of BMI prevalence differed by less than ±3 percentage

points in the youngest age group, with the exception of the prevalence of under-

weight (BMI < 23) in 2005 (Table A.8). Among women aged 45–65, BMI prevalence

was reasonably well simulated compared to CCHS estimates from 2005. Com-

pared to 2003 estimates, TropISM overestimated the prevalence of underweight

women in this age group and underestimated the prevalence of overweight women

(25 ≤ BMI < 30). In the oldest age group, the largest differences between TropISM

and CCHS estimates were found in the prevalence of healthy weight (23 ≤ BMI <
25), obesity (30 ≤ BMI < 35), and unknown BMI.
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4.3.4 Neighbourhood-level validation of unconstrained outcomes

At the neighbourhood level, TropISM did not accurately predict the prevalence of

unconstrained outcomes. For diabetes, hypertension, and heart disease, it was

possible to compare simulated counts and prevalence rates to known counts and

prevalence rates ascertained from administrative health data. For diabetes and

hypertension, TropISM under-predicted the total number of prevalent cases as

well as prevalence rates (Tables 4.5 and 4.6, respectively). In any given neigh-

bourhoods, TropISM predicted 926 fewer cases of type 2 diabetes, on average,

compared to the known number of cases ascertained from the Ontario Diabetes

Database. The extent of under-prediction was greater for women than men, such

that TropISM predicted 548 fewer cases of type 2 diabetes among women com-

pared to 378 fewer cases among men. The magnitude of under-prediction was

greater for hypertension. For heart disease, however, TropISM predicted too many

cases among men.

Since the TropISM model was developed from survey data, it is possible that

some respondents who have diabetes or hypertension are unaware of their dis-

ease status. Therefore, crude corrections were made to the simulated prevalence

of diabetes and hypertension, assuming that 30% of diabetes cases are undiag-

nosed and 17% of hypertension cases are undiagnosed (Campbell, McAlister, &

Quan, 2013; Canadian Diabetes Association, 2015; Hux & Tang, 2003; Public Health

Agency of Canada, 2011; Rosella et al., 2015). Crude corrections were also applied

to the known number of cases of diabetes and hypertension, because the algo-

rithms used to classify patients as diabetic or hypertensive have false positive rates

of 3% and 5%, respectively (Hux et al., 2002; Tu et al., 2007). In addition, the On-

tario Diabetes Database does not distinguish between type 1 and type 2 diabetes,

so known rates were adjusted by an additional correction factor of 0.95 to reflect

that 95% of all cases of diabetes are type 2 diabetes (Caspersen et al., 2012; Millar

& Young, 2003; National Diabetes Information Clearinghouse (NDIC), 2011).

After these corrections were applied to simulated and known cases of diabetes

and hypertension, the similarity between them improved. However, TropISM still

predicted 591 fewer cases of diabetes and 1354 fewer cases of hypertension. In

spite of these adjustments, only 13% of neighbourhoods fell within the 20% rel-
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4.3 Results

ative error rate for diabetes and only 6% of neighbourhoods fell within the 20%

relative error rate for hypertension (Table 4.5).

The concordance correlation coefficient was then used to examine the accu-

racy and precision of simulated counts of unconstrained outcomes against known

counts. Generally speaking, simulated counts of diabetes, hypertension, and heart

disease were very precise, reflected in the high Pearson correlation between simu-

lated and known counts (all correlations > 0.87). These high positive correlations

indicate a strong increasing relationship between simulated counts and known

counts. In spite of this, the overall concordance correlation between simulated

and known counts was lower than the Pearson correlation, and the reason for this

difference is that TropISM under-predicts true prevalence. In other words, simu-

lated counts of diabetes and hypertension are downwardly biased. This downward

bias is reflected in the negative value of the location shift parameters for diabetes

and hypertension. Simulated counts of heart disease, on the other hand, are up-

wardly biased. Correcting simulated counts for undiagnosed cases and known

counts for the false-positive rate generally improves the accuracy of simulated

counts. This is especially true for simulated counts of diabetes among men, where

the overall accuracy improves from 0.543 to 0.847, increasing the value of the con-

cordance correlation from 0.515 to 0.804. Figure A.2 in Appendix A demonstrates

this improvement in accuracy after these crude adjustments were applied, using

prevalent cases of diabetes as an example. The left-hand column of Figure A.2

presents scatterplots of simulated counts against known counts of diabetes. The

solid black line represents the concordance line, or perfect agreement. The dashed

grey line represents the line of best fit between simulated and known counts while

the dotted red line is the line of best fit after correcting for undiagnosed cases in

the simulated counts and false positives in known counts. These plots demon-

strate TropISM’s high precision but low accuracy.

The right-hand column of Figure A.2 presents index plots of simulated and

known counts of diabetes for each neighbourhood, ranked from lowest to high-

est, after applying the crude corrections. The shaded red area identifies a relative

error of ±20% around known counts of diabetes and black dots represent simu-

lated counts of diabetes for each neighbourhood. These plots demonstrate some

important concepts. First, not only does TropISM under-predict the true num-
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4 TropISM: A Spatial Microsimulation Model

ber of prevalent cases within each neighbourhood, but the magnitude of under-

prediction is greater for women than for men. Second, the magnitude of under-

prediction increases such that neighbourhoods having a greater number of cases

tend to have larger differences between simulated and known counts compared

to neighbourhoods having fewer cases of diabetes. Smoothed trend lines for the

simulated number of cases also suggest that the simulated number of cases across

neighbourhoods tends to be too “flat”. In other words, TropISM seems unable to

replicate the variability in the prevalent number of cases of diabetes across neigh-

bourhoods.

When neighbourhoods were ranked into quintiles according to simulated and

known counts, a moderate amount of agreement was observed between the two

classifications. Overall, 67% of neighbourhoods were classified into the same quin-

tile using either simulated or known counts of diabetes (Table 4.5). For prevalent

cases of diabetes among women, 55% of neighbourhoods were classified into the

same quintile. Among men, 69% of neighbourhoods were classified into the same

quintile. The overall percent agreement was similar for cases of heart disease

among men: in that case, 66% of neighbourhoods were classified into the same

quintile. The greatest amount of agreement in the neighbourhood classification

was observed for total cases of hypertension. In that case, 74% of neighbourhoods

were classified into the same quintile using either simulated or known counts of

hypertension.

For each outcome, Cohen’s κ statistics likewise suggest low to moderate levels

of agreement in the neighbourhood classification of simulated and known counts

of disease prevalence. κ values were highest for total counts of hypertension and

for counts of diabetes among men (κ = 0.67 and 0.62, respectively) while the low-

est agreement was observed for counts of diabetes among women. Based on these

findings, neighbourhoods having low or high simulated counts of diabetes, hyper-

tension, and heart disease tended to have low or high known counts of these out-

comes (recognizing that TropISM incorrectly classifies some neighbourhoods).

Table 4.6 examines the similarity between simulated and known prevalence

rates of diabetes, hypertension, and heart disease. It also examines the relation-

ship between (a) simulated smoking prevalence and known incidence rates of lung

cancer and COPD and (b) excess body weight (overweight + obesity) and can-
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cers associated with obesity.15 Relatively strong Pearson correlations were ob-

served between simulated and known prevalence rates of diabetes (overall and

for men), hypertension (overall and for women) and heart disease (men only).

When prevalence rates were spatially smoothed, the strength of the Pearson cor-

relation increased, suggesting similarity in the broad spatial patterns of simulated

and known disease prevalence. The bivariate Moran’s I index, a global assessment

of spatial autocorrelation between simulated and known prevalence rates, also

points to moderate agreement between rates. The bivariate Moran’s I index was

highest for diabetes prevalence rates among men (Moran’s I = 0.62) and lowest for

diabetes prevalence among women (Moran’s I = 0.40). Not surprisingly, spatial

smoothing increased the strength of the bivariate Moran’s correlation coefficient,

likely because the smoothing of prevalence rates induces a spatial structure that

makes it easier to identify broad spatial patterns (Anselin, Lozano, & Kochinsky,

2006).

For smoking and body weight outcomes, there was no relationship between

simulated prevalence rates of smoking and excess body weight and the known in-

cidence rates of diseases that should be correlated with these risk factors (all Pear-

son correlations were below 0.26). These results are inconclusive: either TropISM

could not accurately simulate the prevalence of these risk factors across Toronto’s

neighbourhoods or there is little similarity between current prevalence rates of

these risk factors and current disease incidence. The latter possibility may be true

given the long latent period between these risk factors and disease onset. In other

words, in a given neighbourhood, the population affected by COPD and other can-

cers may differ substantially from the population that currently smokes or that is

overweight. Thus, the only conclusion that can be reached from the lack of agree-

ment between the simulated prevalence of risk factors and known disease inci-

dence rates is that it cannot be determined whether TropISM accurately simulates

spatial patterns of these risk factors across metropolitan Toronto.

When neighbourhoods were classified into quintiles based on simulated or

known prevalence rates, the extent of agreement between the two classifications

was somewhat lower than when prevalent counts were compared. Classification

15Kidney, colorectal, bladder, esophageal, pancreatic, and thyroid cancers, as well as endometrial
and post-menopausal breast cancer in women and prostate cancer in men.
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of spatial rates improved overall agreement somewhat, especially for the preva-

lence of diabetes among men, where 68% of neighbourhoods were classified into

the same quintile according to simulated or known prevalence rates (vs. 57%

agreement for overall diabetes prevalence and only 36% for prevalence among

women).

Figure A.3 in Appendix A compares the spatial patterns of overall diabetes

prevalence in more detail. Panels (a) and (b) present raw simulated and known

prevalence rates, respectively, while panels (c) and (d) present spatially smoothed

rates of simulated and known prevalence. Although the absolute value of simu-

lated prevalence in any given neighbourhood is lower than the true value, there is

greater similarity in the spatial patterns of diabetes prevalence, as demonstrated

in panel (e) of Figure A.3. Neighbourhoods shaded in grey are classified into the

same quintile according to either simulated or known prevalence (57% of neigh-

bourhoods). Neighbourhoods shaded in light blue were classified by TropISM

into a lower quintile compared to the known rate (20% of neighbourhoods) while

neighbourhoods shaded in light salmon were classified by TropISM into one higher

quintile (20% of neighbourhoods).

Panel (f) depicts bivariate LISA statistics16 identifying groups of neighbour-

hoods having similarly high or low simulated and known diabetes prevalence rates.

Based on this map, there are several neighbourhoods in north Etobicoke, west

North York, and Scarborough having high simulated and known prevalence. More

specifically, neighbourhoods in these boroughs having higher simulated preva-

lence rates were surrounded by neighbourhoods having higher known prevalence

rates. Conversely, some neighbourhoods in Toronto and south North York hav-

ing lower simulated prevalence rates were surrounded by neighbourhoods having

lower known prevalence rates. These results support the conclusion that TropISM

was able to replicate broad spatial patterns in diabetes prevalence across metropoli-

tan Toronto.

16Estimated using spatially smoothed rates.
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4.3.5 Model uncertainty

Since the TropISM model was developed using the probabilistic simulated anneal-

ing algorithm, different runs of the algorithm produce different results. In order

to assess aleatory uncertainty produced by different realizations of the model, 100

replicates of TropISM were developed using the CO software. Replicates were con-

structed from the Toronto subset of the 2005 CCHS, the run time parameters de-

scribed in Section 4.2.4, and 100 unique random number seeds. For each repli-

cate, the simulated prevalence of four chronic disease risk factors was estimated

for men and women.

Figures A.4a–A.5d (Appendix A) illustrate the range of uncertainty about sim-

ulated prevalence of type 2 diabetes, hypertension, overweight (25 ≤ BMI < 30)

and obesity (BMI ≥ 30). In each plot, black dots represent simulated prevalence

estimates from the initial TropISM model for each of the 140 neighbourhoods.17

Red dots represent the median prevalence estimate across all 100 replicates while

the shaded area represents the range of simulated prevalence spanning the 2.5th

and 97.5th percentiles (i.e., a 95% “uncertainty” interval). In each plot, neighbour-

hoods are ranked by the median simulated prevalence of each outcome.18

Based on these plots, it is clear that the range of uncertainty in simulated

prevalence varies across neighbourhoods. Some neighbourhoods show a smaller

range of simulated estimates than others. For example, among men, in half of the

neighbourhoods, 95% of simulated estimates of type 2 diabetes differ by 0.56–1.12

percentage points. In 25% of neighbourhoods, 95% of simulated estimates dif-

fer by as much as 1.33–2.07 percentage points (corresponding to the wider uncer-

tainty intervals depicted in Figure A.4a). In the neighbourhood having the widest

uncertainty interval, simulated estimates of type 2 diabetes range from 6.62%–

8.69%.

Among women, the simulated prevalence of type 2 diabetes shows a smaller

range of uncertainty. In half of the neighbourhoods, 95% of simulated estimates

differ by 0.46–0.71 percentage points. Even among three-quarters of all neigh-

17That is, one realization of 100 replicates of the TropISM model.
18In other words, the neighbourhood having the lowest simulated estimate for type 2 diabetes ap-

pears first in the plot. This also means that the neighbourhood appearing first in the diabetes plot
for men does not necessarily correspond to the same neighbourhood for women.
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bourhoods, 95% of simulated estimates differ by only 0.93 percentage points. In

the neighbourhood having the largest uncertainty interval, 95% of simulated preva-

lence estimates range from 2.52%–4.03% (1.51 percentage points).

For the other chronic disease risk factors, there is a slightly larger range in

the uncertainty of simulated prevalence. For hypertension, 95% of simulated es-

timates differ by 0.79–2.60 percentage points among men and women alike. In a

“typical” neighbourhood, the median simulated prevalence of hypertension across

100 replicates of the model is 14.9% (95% UI: 14.0%, 15.7%). In other words, in this

neighbourhood, 50% of simulated estimates are below 14.9% and 50% are above

14.9%. Ninety-five percent of simulated estimates lie between 14.0% and 15.7%.

With respect to body weight, the greatest degree of uncertainty in simulated

estimates was observed for overweight men. Figure A.5a demonstrates that the

median simulated prevalence of overweight ranged from a low of 30.5% to a high

of 41.1% across all neighbourhoods. In half of these neighbourhoods, 95% of sim-

ulated estimates differed by 1.25–2.27 percentage points. In another 25% of neigh-

bourhoods, 95% of simulated estimates differed by as much as 2.75 percentage

points. However, in the remaining neighbourhoods, 95% of simulated estimates

differed by as much as 4.1 percentage points. In the neighbourhood having the

widest uncertainty interval, 95% of simulated estimates ranged from 32.4%–36.5%

(median prevalence = 34.3%).

Even though the range of uncertainty in simulated prevalence varies across

neighbourhoods, it should be pointed out that in most cases, the range of uncer-

tainty is relatively narrow. Even the neighbourhood having the widest uncertainty

interval for the simulated prevalence of overweight, the half-width of the interval

is less than 2.2 percentage points. In survey-based research, statistical estimates

are typically accurate to ±3 percentage points, 19 times out of 20. Thus, simu-

lated estimates for TropISM show a smaller range of uncertainty than is typically

considered acceptable in other types of scientific research.

Another interesting result demonstrated by Figures A.4a–A.5d is that simulated

estimates extending beyond the 95% uncertainty interval were infrequently ob-

served. For type 2 diabetes among women (Figure A.4b), only ten neighbourhoods

had a simulated estimate from the initial TropISM model that was more extreme
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than 95% of all simulated estimates in those neighbourhoods.19 In most cases,

simulated estimates from any one realization of TropISM fall within the 95% un-

certainty interval.

What is also evident from these results is that simulated estimates might be

more or less similar to the “typical” or median estimate. For type 2 diabetes among

men, a single realization of TropISM (black dots) produced estimates that were

larger than the median estimate across 100 model replicates in 85 neighbourhoods

(Figure A.4a). Among women, the opposite trend was seen: only 48 neighbour-

hoods had simulated estimates larger than the median for one particular replicate.

For hypertension among women (Figure A.4d), estimates from a single realization

of TropISM tended to cluster around the median estimate across all replicates in

most neighbourhoods. In summary, a single realization of a spatial microsimula-

tion model developed using the simulated annealing algorithm may infrequently

produce extreme estimates of disease prevalence. Based on these results, however,

a single realization seems to produce relatively “typical” results.

4.4 Discussion

These results demonstrate that it was possible, but difficult, to develop a spatial

microsimulation model of several health outcomes at the neighbourhood level for

metropolitan Toronto. Using a minimal set of constraint variables common to the

2006 Canadian census and the 2005 Canadian Community Health Survey (CCHS),

the TropISM model simulated chronic disease risk factors (current smoking, body

mass index, and hypertension) and outcomes (type 2 diabetes and heart disease)

across Toronto’s 140 neighbourhoods. Four separate models were developed using

different subsets of the 2005 CCHS using the simulated annealing algorithm.

With respect to internal model validity or “model fit”, no one subset of micro-

data proved better than another. Overall error was similar across all models, as in-

dicated by the total absolute error. Standardized estimates of absolute error were

only negligibly smaller for models developed using smaller subsets of microdata.

Furthermore, estimates of the standard error about identity were very high for all

models (> 0.999 in almost all cases). Thus, regardless of which microdata subset

19Identified by the black dots extending beyond the shaded area of Figure A.4b.
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was used to develop TropISM, there was sufficient variation in the sample of ob-

servations present in each subset to replicate neighbourhood populations with a

high degree of accuracy, at least according to the constraints used for model de-

velopment.

This high degree of accuracy was likely produced by standardizing the con-

straint tables prior to model development. In other words, in all neighbourhoods,

constraint tables were standardized so the total population count across all con-

straint categories was the same. Constraints were standardized to limit the vari-

ability in population counts across constraint tables that arises from different age

groups used in the reporting of Canadian census data at the census tract level. In

other words, some variables were already based on the population aged 15 and

older (e.g., the sex by age constraint and the education constraint), while others

were based on the entire population (e.g., visible minority status). Standardiza-

tion to the total population aged 15+ reconciled these differences.

One advantage of developing the TropISM model with smaller subsets of mi-

crodata is that these models were computationally faster to fit, unsurprising given

the simulated annealing algorithm has fewer observations to resample when fit-

ting the model. Related to this is the finding that the maximum number of mi-

crodata data observations resampled for the simulated population increased dra-

matically from 23 in any one neighbourhood when the full Ontario subset of mi-

crodata was used to 79 when the Toronto subset was used. This observation is

consistent with earlier work demonstrating that larger microdata samples provide

a greater pool of diverse observations needed to fit small areas that differ from

the overall average or “typical” small area (Hermes & Poulsen, 2012a; Huang &

Williamson, 2001; van Leeuwen, 2010a). For the TropISM model, larger subsets of

microdata required a smaller number of the same observations to simulate neigh-

bourhood populations according to census estimates.

Indeed, for the model developed using the Toronto health region subset, neigh-

bourhoods having higher weights (n = 27) differed systematically from neighbour-

hoods having smaller weights (n = 113).20 Neighbourhoods having higher weights

20Neighbourhoods having high weights were defined as those neighbourhoods whose median
weight was > 10. This meant that 50% of microdata observations resampled by the CO algorithm
were selected at least 11 times to simulate the population in that neighbourhood.
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tended to have a greater concentration of ethnic minorities (63% vs 38%) and im-

migrants (60% vs 46%) than neighbourhoods having smaller weights. Neighbour-

hoods having higher weights also had a greater concentration of low income.21 In

other words, a greater number of the same microdata observations were required

to simulate the demographic structure of neighbourhoods having atypical pop-

ulations; in this case, a greater proportion of visible minorities, immigrants, and

low income residents.

Although previous spatial microsimulation research has found that larger sub-

sets of data tend to produce better fitting models with respect to constraint vari-

ables (e.g., Hermes & Poulsen, 2012a; Huang & Williamson, 2001; van Leeuwen,

2010a), Tanton et al. (2010) note that limiting microdata observations to the area

being fit may produce better fitting models. This idea is consistent with the ap-

proach used by Koh et al. (2015) who developed a spatial microsimulation model

of obesity in Detroit using the subset of respondents from the 2010 Behaviour Risk

Factor Surveillance System residing in the Detroit Tri-County Metropolitan Area.

Their results showed that simulated obesity estimates aggregated to the county

level differed by 4.4 percentage points or less.

The development of TropISM used a similar approach. Progressively smaller

subsets of CCHS microdata produced better fitting simulated estimates of chronic

disease risk factors and outcomes aggregated to the metropolitan level. Compared

to direct survey-based estimates, simulated estimates from the model developed

using the full Ontario subset of microdata differed from −7.1 percentage points

to +4.9 percentage points among men. A similar range was seen among women,

where simulated estimates of type 2 diabetes, hypertension, and body mass index

differed by −8.4 percentage points to +4.2 percentage points.

When TropISM was developed using the smaller Toronto subset of microdata,

the absolute magnitude of differences between simulated estimates and direct

survey-based estimates decreased. Among men aged 45 or older, simulated es-

timates of overweight (25 ≤ BMI < 30) underestimated the survey-based estimate

by 4.4 percentage points. In this same group, simulated estimates of underweight

(BMI < 23) overestimated the survey-based estimate by 3.8 percentage points.

21Personal incomes < $15,000/year.
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Slightly smaller differences were seen among women: simulated estimates of un-

derweight among women aged 20–44 underestimated the survey-based estimate

by 3.2 percentage points. Among women aged 45–64, the simulated estimate of

underweight overestimated the survey-based estimate by 2.9 percentage points.

This improvement in fit may be partially explained by the sample of microdata

observations selected for the simulated population. When the full Ontario sub-

set of microdata was used to develop TropISM, only 16% of the observations were

drawn from respondents residing in Toronto. The majority (60%) were drawn from

respondents residing outside Toronto and the Greater Toronto Area. As a result,

aggregate prevalence estimates of unconstrained health outcomes will be influ-

enced to a greater extent by the observations coming from areas outside Toronto.

The corollary of this is that when TropISM was developed using just the Toronto

subset of microdata, only those observations influence aggregate prevalence esti-

mates, producing estimates that are more similar to direct survey-based estimates.

Although there is no standard acceptable margin of error in survey-based re-

search and public opinion polls (Ferber, Sheatsley, Turner, & Waksberg, 1980), it is

common to hear poll results reported as accurate to within ±3 percentage points

19 times out of 20 (Mendelsohn & Brent, 2001). At the aggregate health region

level, most simulated estimates of health outcomes differed from direct survey-

based estimates by less than this margin of error. Indeed, this range of error is

similar to that found in previous spatial microsimulation studies of health out-

comes (Burden & Steel, 2015; Clark et al., 2014; Edwards et al., 2011; Koh et al.,

2015).

Although TropISM replicated unconstrained outcomes at an aggregate level,

at the neighbourhood level, TropISM was less accurate. Compared to adminis-

trative health data, TropISM under-predicted the true prevalence of diabetes and

hypertension at the neighbourhood level while it over-predicted the prevalence

of heart disease among men. These limitations are addressed in more detail be-

low. However, this study used the concordance correlation coefficient to assess the

similarity between simulated counts of disease outcomes and the known number

of cases. This is a novel approach, differing from previous studies using measures

of relative error (Smith et al., 2011), the coefficient of determination (R2) (Edwards

et al., 2011), and, more recently, Bland-Altman plots (Timmins & Edwards, 2016).
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First Smith et al. (2011) assessed the accuracy of their spatial microsimula-

tion model of smoking prevalence in New Zealand using a relative measure of

error. Specifically, they compared the simulated prevalence of smoking against

the known prevalence estimated from the census using simple relative differences.

They found that the simulated prevalence differed from known prevalence by 10%

or less in 75% of small areas.

Edwards et al. (2011) used a different approach, comparing the precision of

their spatial microsimulation model of obesity. Specifically, they correlated simu-

lated counts of obesity against known counts of cancers associated with obesity at

the small area level using linear regression. The coefficient of determination (R2)

from these models suggested their results were very precise, so that areas having

low simulated counts of obesity had low counts of cancers while areas having high

simulated counts had high known counts.

Finally, Timmins and Edwards (2016) proposed using Bland-Altman plots to

validate spatial microsimulation models. Bland-Altman plots are commonly used

in clinical studies to assess agreement, via mean differences, between two mea-

surements Bland and Altman (1999). When a new measurement is compared

against a “gold standard”, these plots help identify whether the new measurement

agrees with the gold standard or whether it may be systematically biased. With re-

spect to the validation of spatial microsimulation models, Timmins and Edwards

(2016) argue that Bland-Altman plots can identify small areas that were both more

and less accurately simulated.

Unlike those studies, this study used the concordance correlation coefficient

to assess the accuracy and precision of spatial microsimulation results. These re-

sults suggest that while simulated counts of diabetes, hypertension, and heart dis-

ease were precise (Pearson correlation > 0.87), simulated counts were less accu-

rate, such that the accuracy component of the concordance correlation often fell

below 0.6. Crude adjustments to simulated counts that accounted for the poten-

tial number of undiagnosed cases, as well as adjustments to known cases that ac-

counted for false positives that accrue in the administrative source data, improved

overall accuracy. When possible, the concordance correlation coefficient should

be used to validate unconstrained outcomes for future studies employing spatial

microsimulation methods.
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Finally, this research assessed aleatory uncertainty surrounding unconstrained

outcomes produced by the probabilistic simulated annealing algorithm. Few pre-

vious studies have attempted to quantify this uncertainty. Indeed, Williamson

(2007) argues that minor stochastic variation in simulated outcomes produced

by multiple runs of the CO software can be ignored. Echoing this thought, Her-

mes and Poulsen (2012b) and Ma et al. (2014) found only minor differences in

unconstrained outcomes between multiple runs of the CO software. The results

reported here contest those findings. First, the magnitude of aleatory uncertainty

surrounding simulated estimates of disease prevalence varies across neighbour-

hoods. In some neighbourhoods, 95% of simulated estimates differed by as little

as 0.46 percentage points. In other neighbourhoods, 95% of simulated estimates

differed by as much as 4.1 percentage points.

Second, the extent of aleatory uncertainty varies depending on the particu-

lar unconstrained outcome being estimated. Uncertainty intervals tended to be

narrower for simulated estimates of type 2 diabetes than they were for simulated

estimates of overweight.

Finally, a single run of the simulated annealing algorithm does not appear to

produce consistent simulated estimates across neighbourhoods. In some neigh-

bourhoods, a simulated estimate may lie below the median estimate from multi-

ple runs while in other neighbourhoods, a simulated estimate may lie above the

median. Thus, any one estimate from a single run of a probabilistic algorithm

may lie closer to or further from the true neighbourhood estimate. These dif-

ferences across neighbourhoods might potentially exaggerate spatial patterns ob-

served when simulated estimates are plotted cartographically.

Based on these observations, and echoing Clarke (1996), spatial microsim-

ulation models developed using any probabilistic reweighting algorithm should

present the range of aleatory uncertainty associated with unconstrained outcomes.

This acknowledges that simulated estimates of unconstrained outcomes are just

that, estimates that can not be known with certainty. Larger uncertainty intervals

in some small areas might result from how well constraint variables predict un-

constrained outcomes. If the predictive ability of the constraints is poorer in some

areas compared to others, it is possible that random selection of microdata obser-

vations lacks the sensitivity needed to select appropriate observations. This could
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produce greater differences in the simulated population across multiple runs of

the simulated annealing algorithm. Future research should identify the circum-

stances that produce greater uncertainty in simulated estimates of unconstrained

outcomes at the small area level.

4.4.1 Limitations

The TropISM model was developed using data from the 2006 Canadian Census.

Although these data are currently 10 years old, 2006 was the last official census

conducted using the mandatory long form. In 2011, the long form census was re-

placed with the National Household Survey (NHS), a large but voluntary probabil-

ity survey. The NHS has been shown to have non-neglibible biases, including non-

response bias. Overall, the NHS obtained a 68.6% response rate, comparable to

other probability based surveys (Statistics Canada, 2015). Non-respondents typi-

cally differ from respondents, and Statistics Canada has determined that statistical

estimates of visible minority groups, immigrants, and educational attainment will

be biased (Statistics Canada, 2015). Since these factors were used as constraint

variables to develop TropISM, population estimates from the NHS might have bi-

ased the simulated population. In particular, Statistics Canada determined that

the NHS might over-estimate the population having a post-secondary education

and the total number of south Asian visible minorities while under-estimating the

total immigrant population (Statistics Canada, 2015). Since each of these factors

influence the risk of type 2 diabetes, simulated small area estimates could be af-

fected by the non-negligible biases present in the 2011 NHS. Therefore, although

the dated 2006 Census was used to develop TropISM, a decision was made to use

the most reliable census data currently available.

Related to this is the use of the 2005 Canadian Community Health Survey as

the source of detailed microdata. In particular, there is a potential mismatch be-

tween incomes reported in the 2006 Census and the 2005 CCHS. In particular, the

Census asks about income for the year ending December 31, 2005, while the CCHS

asks about income in the last 12 months. Depending on when CCHS respondents

completed the survey, their reported incomes may be a better reflection of their

income in 2004. Although CCHS incomes could have been adjusted for inflation,
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given that incomes reported in the CCHS refer to the past 12 months rather than

the 2004 calendar year, and given that the publicly released microdata report in-

comes in broad categories, such adjustments were deemed impractical to imple-

ment. These adjustments may not have produced meaningful differences the final

simulated population.

Another caveat that might bias the simulated population and associated small

area estimates derived from it is that income had to be imputed for a large number

of microdata records (n = 4,308 in the full Ontario subset). Incomes were imputed

using a regression procedure prior to developing TropISM as a function of Ontario

health region, sex, age, ethnicity, immigrant status, and education. If these vari-

ables were poor predictors of income, then respondents whose incomes were im-

puted might systematically bias the final simulated population. However, these

variables should be reasonably correlated with income. For example, incomes

tend to increase with age and higher levels of education, whereas women tend

to have systematically lower incomes than men.

In addition, if the CO software sampled a large number of observations whose

incomes were imputed, and if the variables used to predict income had low predic-

tive ability, the final simulated population might be systematically biased. Overall,

10.8% of the simulated population was derived from observations whose incomes

were imputed. As might be expected, the percentage of simulated records whose

incomes were imputed varied across neighbourhoods, from a low of 8.1% to a high

of 12.4% (median = 10.7%, median absolute deviation = 4.9%).22 Given the vast

majority of simulated records were not drawn from respondents whose incomes

were imputed, any bias that might result from ineffective imputation should be

minimal.

Related to this, unconstrained outcomes are based on self-reported survey

data. For example, type 2 diabetes status in the CCHS microdata was classified us-

ing the Ng-Dasgupta-Johnson algorithm for population health surveys. Although

this algorithm may misclassify type 2 diabetes status, the extent of misclassifica-

tion is likely minor (Ng et al., 2008). In spite of this, any biases present in the

survey microdata could be corrected prior to developing spatial microsimulation

22For symmetric distributions, the interquartile range is approximately equal to the median ± the
median absolute deviation (Jones, 2002).
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models to improve the accuracy of simulated estimates. Given the Ng-Dasgupta-

Johnson algorithm does not correct for undiagnosed cases of diabetes, results from

the TropISM model demonstrate that simulated small area estimates of diabetes

may need to be calibrated to produce more accurate estimates that possess the

correct amount of geographic variability across all areas. The crude corrections

employed in this study reduced differences between simulated prevalence and

known prevalence of diabetes at the neighbourhood level.

Body mass index, used to define overweight and obesity in the CCHS micro-

data, is also based on self-reported information. Previous research has shown

that prevalence estimates of overweight and obesity based on self-reported height

and weight tend to be under-estimated. This is because height tends to be over-

reported while weight tends to be under-reported. Under-estimates of overweight

and obesity may also vary by gender, age, and ethnicity (Li et al., 2009): in one

study, underestimation was greatest among older women (age 60+) and Mexican

Americans, with slight underestimation in older men (age 60+) (Gillum & Sem-

pos, 2005). Given that self-reported data were used to develop TropISM, it is likely

that simulated rates of overweight and obesity reported here underestimate true

prevalence rates.

In addition, if self-reported weight and height produced biased estimates of

body mass index that varied by sex, age, and visible minority status, then it is pos-

sible the nature of that bias differs by neighbourhood. For example, if the propor-

tion of visible minorities varied importantly between two neighbourhoods, then

bias in simulated prevalence rates of overweight and obesity would also differ be-

tween these neighbourhoods. It is quite likely that bias in simulated prevalence

rates is greater in neighbourhoods containing larger proportions of older women

and visible minorities. Unfortunately, neighbourhood-specific prevalence rates of

overweight and obesity could not be validated in this study using incidence rates

of cancers associated with obesity. Therefore, based on these results, it cannot be

determined whether the simulated prevalence of overweight and obesity across

neighbourhoods were differentially biased.

At the neighbourhood level, validation of unconstrained outcomes showed

that TropISM (a) under-predicts the true prevalence of type 2 diabetes and hy-

pertension, (b) over-predicts the true prevalence of heart disease, and (c) fails to
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capture the variability in these outcomes across neighbourhoods. These results

demonstrate that is insufficient to rely solely on an aggregate-level validation of

spatial microsimulation results. The neighbourhood-level validation conducted

in this study provides insights into how simulated small area estimates differ from

known estimates derived from external administrative data sources. For example,

systematic differences were observed between neighbourhoods where the simu-

lated prevalence of diabetes was three or more percentage points lower than the

known estimate. Specifically, neighbourhoods whose simulated prevalence was

three or more percentage points lower tended to be comprised of greater percent-

ages of visible minorities (46% vs 31%, respectively) and immigrants (53% vs 41%,

respectively).

These results corroborate earlier research demonstrating that small area es-

timates of outcomes across spatial units do not accurately reflect the true geo-

graphic variability in these outcomes (Birkin & Clarke, 2012). Part of the reason

may be that the combinatorial optimization algorithm could not capture the vari-

ability in disease outcomes in some neighbourhoods because that variability may

have been absent in the source microdata. In other words, in atypical neighbour-

hoods comprised of higher proportions of visible minorities and immigrants, the

algorithm selected greater numbers of these types of observations to represent

those neighbourhood populations. If the selected observations were unaware of

their true disease status (e.g., undiagnosed diabetes or hypertension) then preva-

lence estimates of those outcomes will be downwardly biased in those neighbour-

hoods.

Burden and Steel (2015) emphasize that if the goal of spatial microsimulation

is to represent the geographic diversity in unconstrained outcomes, then it is im-

portant to retain the spatial structure of the population during model develop-

ment. Many authors recommend using a larger array of constraint variables to

develop these models while Smith et al. (2009) suggest developing local microsim-

ulation models that consider a different ordering of constraint variables for the

iterative proportional fitting method. Because TropISM was developed using the

combinatorial optimization algorithm and a limited number of constraints (sex

crossed with age group, ethnicity, immigrant status, education, and personal in-

come), it may not have been possible to replicate the spatial variability in uncon-
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strained outcomes. However, if additional constraints were used, especially those

involving visible minority status, it may have been possible to better capture the

spatial variability in unconstrained outcomes. In this case, additional constraints

might include visible minority status crossed with sex, age group, income, and ed-

ucation.

Another way of improving both the accuracy and geographic variability of spa-

tial microsimulation results is through calibration of unconstrained outcomes at

the small area level. Morrissey and O’Donoghue (2011) and Morrissey et al. (2014)

used logistic regression to calibrate their spatial microsimulation of the Irish local

economy to known external targets of unconstrained outcomes. This type of cal-

ibration faithfully reproduced the spatial variability in unconstrained outcomes.

In the current study, however, calibrating the full set of unconstrained outcomes

to known totals would be more difficult because it requires a complete breakdown

of the total population possessing each single outcome as well as the total popu-

lation possessing multiple outcomes. Alternatively, another approach that might

prevent under-estimation of unconstrained outcomes would involve adjusting the

source microdata prior to model development. Li et al. (2009) used this approach

prior to estimating a statistical small area estimation model of obesity across 398

communities in Massachusetts.

In spite of these shortcomings, there was some evidence that TropISM was

able to replicate broad spatial patterns in the prevalence of some unconstrained

outcomes (e.g., type 2 diabetes among men). TropISM seems to be able to cor-

rectly identify neighbourhoods having relatively higher or lower disease preva-

lence. Depending on how spatial microsimulation results are used, this might

be acceptable. In other words, if the goal is to produce accurate estimates of

chronic disease risk factors and outcomes, then TropISM in its current form pro-

duced unacceptable results. However, if the goal is to identify neighbourhoods

across metropolitan Toronto that have relatively low or high disease prevalence in

order to support public health planning decisions, such as targeting health pro-

motion programs to neighbourhoods having relatively higher disease prevalence,

then TropISM provides useful insights because it was able to identify broad spatial

patterns of type 2 diabetes at the neighbourhood level.

It is worth mentioning that the TropISM model simulated neighbourhood pop-
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ulations within metropolitan Toronto. Although more granular levels of census ge-

ography could have been used, the choice to model neighbourhood populations

was influenced by two factors. First, the neighbourhood classifications used for

this research were developed by the City of Toronto and are used by local gov-

ernment and community agencies for socioeconomic planning purposes. Since

neighbourhood boundaries remain fixed over time, it is possible to identify longi-

tudinal trends at a geographic level, thus permitting comparison of demographic,

socioeconomic, and health indicators over time.

Second, the City releases other indicators relevant for health promotion plan-

ning purposes at the neighbourhood level. Such measures include neighbour-

hood (a) walkability, (b) access to healthy food stores, and (c) green space (Social

Policy and Research, 2014). These measures, used in conjunction with simulated

prevalence estimates of overweight and obesity, could help identify neighbour-

hoods having higher than average rates of overweight and obesity but lower than

average measures of health promoting urban environments. Examining the spa-

tial coincidence of such outcomes permits additional health promotion planning

at the neighbourhood level beyond the realm of diabetes prevention.

One final limitation to consider is the modifiable areal unit problem. Differ-

ent spatial patterns may have been observed if different spatial units were used for

the microsimulation. Small area populations could have been simulated for differ-

ent spatial units to examine the robustness of spatial patterns in simulated preva-

lence estimates. Doing so, however, was deemed impractical for this research, as it

would have required validating model outputs to at least two spatial units. More-

over, neighbourhoods were designed by the City of Toronto to remain fixed over

time and are used for local planning purposes. Since the spatial unit of analysis has

legitimate uses external to TropISM, using neighbourhoods to simulate small area

populations for Toronto facilitates comparison with other policy relevant research

for the City. Thus, although the modifiable areal unit problem might produce dif-

ferent patterns of results, model results are directly relevant for community health

planning and policy development.

Before using the simulated TropISM population to forecast the incidence of di-

abetes or for conducting hypothetical “what if” policy simulations, it is important

to consider how systematic differences between the simulated population and
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the true population might affect such forecasts and experiments. At the neigh-

bourhood level, TropISM underestimates the prevalence of type 2 diabetes and

hypertension in men and women and overestimates the prevalence of heart dis-

ease in men. Such differences may influence forecasts of diabetes incidence us-

ing the Diabetes Population Risk Tool. Although neighbourhood-level prevalence

estimates of overweight and obesity could not be validated, aggregate estimates

across metropolitan Toronto appeared to underestimate true prevalence. Such

differences may influence forecasts of diabetes incidence. For example, if the

neighbourhood prevalence of obesity is underestimated, then forecasts of dia-

betes incidence may also be underestimated. Moreover, if the prevalence of risk

factors was differentially biased across neighbourhoods, this might produce more

accurate forecasts of diabetes incidence in some neighbourhoods compared to

others. These issues are further addressed in Chapter 5.

4.4.2 Considerations for future research

The field of spatial microsimulation research has grown over the last two decades

into a scientific discipline in its own right. Additional methodological studies will

improve understanding of the conditions under which spatial microsimulation

models can produce valid and reliable results. Since the primary purpose of spatial

microsimulation is to predict unknown outcomes at the small area level from a set

of known constraint distributions supplied by census data (Haslett et al., 2010), it is

important to understand how well those constraints predict unknown outcomes.

Another way to assess the potential predictive ability of constraint variables prior

to simulating small area populations would be to estimate prediction error associ-

ated with those constraints. In this context, cross-validation methods developed

in statistics might provide additional insights into the predictive ability of a set of

constraint variables.

Cross-validation is often used in predictive modelling studies, where the pri-

mary purpose of modelling is to predict new observations from a statistical model

developed using different data (Shmueli, 2010). Cross-validation methods typi-

cally randomly split a dataset into five or ten subsets of approximately equal size.23

23More generally known as k-fold cross-validation, where k represents the number of subsets used.
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Model fitting is conducted on each of the subsets, with one of the subsets held

aside for model testing. In other words, the parameter estimates for the model

are estimated using k−1 subsets and new observations are predicted from the es-

timated model using the subset that was held aside. The prediction process is

repeated for each subset so that each observation in the full dataset is used for

prediction once. Prediction error is then the average of the error across k sub-

sets (Sainani, 2014; Shmueli, 2010). In a spatial microsimulation setting, once a

set of constraint variables have been chosen to develop the model, if sufficient

data were available (e.g., a second external dataset), the predictive ability of the

chosen constraints could be assessed using cross-validation methods. Estimates

of prediction error, albeit at an aggregate level, might suggest how well constraint

variables predict unconstrained outcomes.

In addition, results from the TropISM model illustrate that it is difficult to

reproduce the geographic variability in unconstrained outcomes using a limited

set of constraint variables for model development. Future methodological stud-

ies need to investigate how this variability could be incorporated into spatial mi-

crosimulation models. In this study, model constraints were selected on the basis

of regression models and the proportion of variance explained in unconstrained

outcomes. Selected constraints were reasonably correlated with the unconstrained

outcomes of interest. However, constraint selection was based on the subset of

Ontario respondents from the 2005 Canadian Community Health Survey. At an

aggregate level, these constraints might predict outcomes reasonably well, but

at a small area level, prediction might be better in some areas than others. Al-

though broad spatial patterns seem to be replicated, there is no way to know for

certain whether the predictive ability of the constraint variables differed across

neighbourhoods within Toronto. If the predictive ability was worse in some ar-

eas compared to others this may have contributed to the insufficient geographic

heterogeneity observed in these results.

4.4.3 Summary

Although TropISM under-predicted the true prevalence of risk factors at the neigh-

bourhood level, as will be shown in the next chapter, the simulated TropISM pop-
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ulation was still useful in forecasting the five-year incidence of diabetes. In addi-

tion, although TropISM underestimates the true prevalence of type 2 diabetes and

does not capture the geographic variability in diabetes prevalence across neigh-

bourhoods, the model appeared to capture broad spatial patterns in the preva-

lence of risk factors throughout metropolitan Toronto. In other words, neighbour-

hoods having low known prevalence of type 2 diabetes tended to have low simu-

lated prevalence while neighbourhoods having high known prevalence tended to

have higher simulated prevalence. Thus, TropISM results can be used for identify-

ing relative inequalities in important disease outcomes, including type 2 diabetes,

hypertension, and heart disease in men. A better understanding of relative differ-

ences in disease outcomes at the neighbourhood level can help target health pro-

motion programs to neighbourhoods where these conditions are more prevalent.

However, the development of spatial microsimulation models in future studies

should aim to improve the accuracy of these models and develop ways of preserv-

ing the geographic variability in simulated outcomes, perhaps using local models

of spatial microsimulation (Smith et al., 2009) or by using a more detailed set of

constraints that preserves the geographic variability in simulated outcomes (Bur-

den & Steel, 2015).
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Chapter

5
Projecting The Local Effects of

Diabetes Prevention

5.1 Rationale

Randomized controlled trials of lifestyle modification programs demonstrate that

weight loss in high-risk individuals significantly reduces the risk of developing

type 2 diabetes (Knowler et al., 2002; Kosaka et al., 2005; Tuomilehto et al., 2001).

Tuomilehto et al. (2001) found that participants in a lifestyle intervention program

lost, on average, 4.2kg (±5.1kg) of their original body weight while forty-three per-

cent of intervention participants lost more than 5% of their original body weight.

Knowler et al. (2002) found that 50% of intervention participants lost at least 7%

of their original body weight by the end of the intervention. In many of these tri-

als, the intended weight loss for participants in the intervention conditions was

between 5–7% of their original body weight. A recent meta-analysis of translation

studies demonstrated that high-risk individuals were able to lose, on average, 4%

of their baseline body weight after participating in community-based interven-

tions for at least one year (Ali et al., 2012).

Although participants in randomized controlled trials can achieve clinically

meaningful reductions in body weight, in community settings, these reductions

are more difficult to attain. Moreover, adherence to interventions may be difficult
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to sustain over longer periods of time. Intuitively, greater attendance and compli-

ance with lifestyle intervention programs should result in greater weight loss. Ali

et al. (2012) back this up empirically in their meta-analysis of community-based

interventions. However, losing meaningful amounts of body-weight is challeng-

ing in community settings. Even in rigorous randomized studies, only a minority

of participants may lose sufficient weight to significantly lower their risk of devel-

oping type 2 diabetes (Tuomilehto et al., 2001).

Since diabetes and its risk factors are not evenly distributed over geographic

space (Booth et al., 2007; Creatore et al., 2007b), there is a need to project the local

effects of community-based interventions designed to promote weight loss and

lower the population risk of type 2 diabetes. Such projections may identify areas

that respond better to interventions and those areas that might need additional

attention or different approaches to diabetes prevention. For example, some ar-

eas may have populations comprised of greater proportions of seniors who might

need additional help in achieving meaningful weight loss. It is possible to obtain

such local projections by combining TropISM model outputs with the Diabetes

Population Risk Tool (DPoRT).

The Diabetes Population Risk Tool is a population-level risk algorithm that

predicts future incidence of diabetes as a function of risk factors that are routinely

assessed in population health surveys (Manuel et al., 2013; Rosella et al., 2014,

2011). This tool was developed by linking data from the 1996/1997 Ontario sub-

set of the National Population Health Survey to a provincial registry of physician-

diagnosed diabetes. Using a Weibull accelerated failure time model, the risk of

developing diabetes was estimated separately for men and women. Non-white

ethnicity, being an immigrant, older age, and higher body mass index reduced the

time to developing diabetes while having a post-secondary education delayed its

onset. Among men, heart disease also reduced the time to disease onset. In other

words, men and women who possess a number of risk factors tend to develop di-

abetes sooner than men and women who do not possess those same risk factors.

Rosella et al. (2011) validated the DPoRT model using Ontario data from the

2000/2001 Canadian Community Heath Survey and the Manitoba subset of the

1996/1997 National Population Health Survey. The incidence of diabetes in each
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sample was predicted using the mean-centred linear predictor η.1 In the Ontario

validation sample, the five-year predicted risk P5 was estimated while in the Man-

itoba validation sample, the nine-year predicted risk P9 was estimated, according

to

P = 1−exp(−expm) (5.1)

where:

m = log(d)−η
scale

(5.2)

and:

“d” is the duration of follow-up time in days, either five or nine-years,

η is the mean-centred linear predictor, and

“scale” is the scale parameter from the Weibull accelerated failure time model.

Predicted rates were compared to observed rates from 2005 in both Ontario and

Manitoba. Predicted rates differed from observed rates by 0.4 percentage points

or less. The authors concluded that population rates of diabetes incidence can

be accurately predicted using the DPoRT model combined with publicly available

survey data.

Manuel et al. (2013) then used this model to predict how incidence of diabetes

changes as a function of different prevention strategies among a cohort of Ontari-

ans aged 20 and older. They examined two strategies: (a) a population-level strat-

egy where body mass index was uniformly reduced in the entire population and

(b) a high-risk strategy where pharmacotherapy or lifestyle counselling was used

to treat high-risk individuals. Data from the Ontario subset of the 2003 CCHS were

used to develop risk projections. If the status quo were maintained, the five-year

risk of developing diabetes across the entire population was 4.7%. A 10% reduction

in future incidence could be obtained if BMI was 3.5% lower across the entire pop-

ulation, if lifestyle counselling was successfully delivered to 32% of the high-risk

1The DPoRT model uses a binary classification for all risk factors. Mean values for each covariate
are the proportion of respondents in the sample possessing each risk factor. If 10% of the sample
is non-white and 18% have hypertension, then the mean-centred covariate pattern for someone
who is white and has hypertension is (0 - 0.1) + (1 - 0.18) where 0 indicates white and 1 indicates
hypertension. These values are multiplied by the estimated regression coefficients for each risk
factor to obtain the mean-centred linear predictor.
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population, or if pharmacotherapy was successfully delivered to 65% of the high-

risk population (Manuel et al., 2013). They conclude that any of the approaches

by themselves would have minimal effect, given that modest weight reductions

are difficult to achieve on a population level and that lifestyle and pharmacother-

apy approaches would have to have a large proportion of the population adhere

to treatment. Combined approaches may be more feasible and realistic.

5.1.1 Study objectives

This study builds on the work by Manuel et al. (2013). It forecasts the five-year

risk of diabetes at the neighbourhood level in the City of Toronto using the DPoRT

model and the simulated TropISM population. Different intervention scenarios

are developed and applied to the high-risk population of overweight and obese

individuals (BMI ≥ 25 kg/m2). Intervention scenarios are informed by existing

research documenting the effectiveness of lifestyle interventions designed to pro-

mote weight loss (Sections 2.3.1 and 2.3.2), including:

1. A baseline risk scenario, where no changes to body weight, and therefore

BMI, are made,

2. A strategy where all high-risk individuals lose: (a) 4%, (b) 7%, (c) 10%, (d) 14%,

and (e) 17% of their baseline body weight (Ali et al., 2012; Barte et al., 2010;

Knowler et al., 2002)

3. A strategy where the population of high-risk individuals loses, on average,

4.2kg (±5.1kg) of baseline body weight (Tuomilehto et al., 2001), and

4. A strategy where different subsets of high risk individuals lose 10% of their

baseline body weight.

This last scenario is designed to mimic less than optimal reach of public health

programs. Limited evidence from the United States suggests that as few as 4–8% of

at-risk individuals might participate in weight loss programs (Almeida, Shetterly,

Smith-Rey, & Estabrooks, 2010; Littman, Boyko, McDonell, & Fihn, 2012). For this

last scenario, 10% of overweight individuals will be randomly selected to partic-

ipate in a weight loss program. Everyone who participates will lose 10% of their

baseline body weight. In more optimistic scenarios, 50% and 80% of individuals

will be randomly selected to participate in a weight loss program. Again, everyone

who participates will lose 10% of their baseline body weight.
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The simulated TropISM population was subjected to each of these scenarios.

The DPoRT model was used to forecast the five-year risk of developing diabetes at

the neighbourhood level. Differences between scenarios were examined to iden-

tify neighbourhoods where weight loss programs exerted greater reductions in

projected incidence.

5.2 Methods

5.2.1 Projecting neighbourhood incidence rates of diabetes

In order to implement the DPoRT model, the simulated TropISM population was

classified on the basis of diabetes status and body weight status. Simulated indi-

viduals classified as having type 1 or type 2 diabetes were excluded from all risk

scenarios (n = 98,361) as were men whose BMI was unknown (n = 7,615).2 The re-

maining population was used to forecast the incidence of diabetes (n = 1,826,569).

For each individual in the population at risk, the DPoRT model estimated the five-

year probability of developing diabetes based on his or her set of risk factors (Ta-

ble 5.1). This probability was estimated using the mean-centered linear predictor

and the average characteristics of the entire simulated population (see Manuel

et al., 2013; Rosella et al., 2014, 2011). The average characteristics of the entire

simulated population were used to compute the mean centred linear predictor to

ensure results could be compared across different neighbourhoods.

The probability of developing diabetes was estimated under each scenario. Es-

timates were averaged at the neighbourhood level to derive small area projections

of the five-year diabetes incidence rate. In the baseline scenario, no changes to

body weight were made in the simulated population. In Scenarios 2a through 2e,

all overweight individuals (BMI ≥ 25kg/m2) were subjected to a weight loss pro-

gram so that each individual lost 4%, 7%, 10%, 14%, or 17% of his or her base-

line body weight. The five-year risk of developing diabetes was re-estimated using

each individual’s new body weight.

In Scenarios 3 and 4, weight loss was randomly assigned. In Scenario 3, the

average weight lost in the population was assumed to be normally distributed so

2These simulated individuals were excluded because the DPoRT model does not use men with un-
known BMI to forecast diabetes incidence.
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Table 5.1. Risk factors and parameters used by the Diabetes Population Risk Tool
(DPoRT)∗ to forecast the five-year incidence of diabetes using the simulated TropISM
population.

Women Men

Risk Factor Coef.† (SE) Prev.† Risk Factor Coef.† (SE) Prev.†

Intercept 10.578 (0.080) — Intercept 10.306 (0.070) —
Non-white -0.453 (0.085) 0.453 Non-white -0.570 (0.063) 0.439
Immigrant -0.148 (0.056) 0.546 Post-secondary‡ 0.188 (0.045) 0.564
Post-secondary‡ 0.194 (0.048) 0.582 Highest income§ 0.117 (0.055) 0.178
Hypertension -0.410 (0.055) 0.160 Current smoker -0.059 (0.050) 0.280
Age < 45 Hypertension -0.363 (0.055) 0.125

BMI 23 to < 25 -0.743 (0.191) 0.078 Heart disease -0.348 (0.066) 0.043
BMI 25 to < 30 -1.152 (0.165) 0.090 Age < 45
BMI 30 to < 35 -1.848 (0.179) 0.029 BMI 23 to < 25 -0.552 (0.232) 0.130
BMI ≥ 35 -2.056 (0.187) 0.020 BMI 25 to < 30 -0.952 (0.207) 0.180
BMI Unknown -1.583 (0.213) 0.028 BMI 30 to < 35 -1.716 (0.206) 0.042

Age 45–65 BMI ≥ 35–25 -2.331 (0.226) 0.010
BMI <23 -0.710 (0.177) 0.126 Age ≥ 45
BMI 23 to < 25 -1.234 (0.185) 0.050 BMI < 23 -1.360 (0.210) 0.098
BMI 25 to < 30 -1.836 (0.167) 0.091 BMI 23 to < 25 -1.654 (0.205) 0.132
BMI 30 to < 35 -2.374 (0.173) 0.027 BMI 25 to < 30 -2.056 (0.198) 0.180
BMI ≥ 35 -2.663 (0.187) 0.014 BMI 30 to < 35 -2.551 (0.211) 0.033
BMI Unknown -2.199 (0.193) 0.011 BMI ≥ 35 -2.935 (0.234) 0.010

Age ≥ 65 Scale 0.799 (0.020) —
BMI <23 -1.596 (0.173) 0.062
BMI 23 to < 25 -1.614 (0.178) 0.040
BMI 25 to < 30 -1.983 (0.165) 0.058
BMI 30 to < 35 -2.215 (0.184) 0.012
BMI ≥ 35 -2.645 (0.243) 0.002
BMI Unknown -2.421 (0.265) 0.008

Scale 0.842 (0.021) —
∗ Model estimates and standard errors are from DPoRT 2.0 (personal
communication, Dr. L. Rosella, March 27, 2014 and Rosella et al. (2014).)
† Coef. = Coefficient; Prev. = Prevalence
‡ Post-secondary education
§ Highest income quintile
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that the population of overweight individuals lost, on average, 4.2kg of its baseline

body weight. To account for random variability, this Scenario was replicated 250

times and the 5-year risk of diabetes was re-estimated for each replicate. The av-

erage 5-year risk of diabetes was then computed across all replicates at the neigh-

bourhood level along with the median 5-year risk and the 2.5th and 97.5th per-

centiles.

A similar procedure was used in Scenario 4, where 10%, 50%, and 80% of over-

weight individuals were randomly assigned to receive a weight loss program, i.e.,

Yi ∼ B(1,π), where:

Yi =
0 if individual i is not assigned to a weight loss program,

1 if individual i is assigned to a weight loss program,

and π = 0.1, 0.5, or 0.8. Again, this Scenario was replicated 250 times and the

average 5-year risk of diabetes was computed across all replicates at the neigh-

bourhood level, along with the median risk and 2.5th and 97.5th percentiles. All

scenarios were developed using the R statistical software package 3. Results were

summarized tabularly and visualized cartographically.

5.2.2 Validating neighbourhood-level risk projections

Neighbourhood-level risk projections were validated using the number of newly

diagnosed cases of diabetes ascertained from the Ontario Diabetes Database from

2006 to 2010. First, the known number of incident cases was compared to the fore-

cast number using the concordance correlation coefficient. Forecast counts were

compared to the overall number of incident cases and to the adjusted number of

cases correcting for the 3% false-positive rate in the algorithm used by the Ontario

Diabetes Database to identify cases of diabetes (Hux et al., 2002).

Second, the average difference between forecast counts and known counts was

estimated across all neighbourhoods to assess whether the DPoRT model under-

or over-predicted incidence. A measure of relative error was again used to estimate

the proportion of neighbourhoods having forecast incident counts lying within

±20% of the known number of incident cases.

3Sample code used to predict the risk of diabetes is presented in Appendix D
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Next, neighbourhoods were classified into quintiles according to the forecast

and known number of incident cases within each neighbourhood. The level of

agreement between these two classification systems was assessed using the over-

all % agreement and Cohen’sκ. Higher values of these statistics suggest that neigh-

bourhoods were ranked into the same quintile using either classification and that

the DPoRT model could correctly identify neighbourhoods having high or low di-

abetes incidence.

The validity of the forecasts was further assessed by comparing known and

forecast incidence rates. The known incidence rate of diabetes was measured us-

ing the cumulative incidence proportion,4 estimated as

incidence % = i j

(popn j −p j )
∗100 (5.3)

where:

i j = the number of incident cases in neighbourhood j from 2006–2010,

popn j = the total population in neighbourhood j in 2006,

p j = the number of prevalent cases in neighbourhood j in 2005

The cumulative incidence proportion was then compared to the forecast propor-

tion across all neighbourhoods. Similar to the validation of diabetes prevalence

rates, incidence rates were compared using both raw and spatially smoothed rates.

The Pearson correlation was used to assess the similarity between known and fore-

cast incidence rates. Higher positive values of the Pearson correlation suggest

neighbourhoods having higher known incidence rates have higher forecast rates.

Neighbourhoods were then classified into quintiles on the basis of known and

forecast incidence rates, comparing both raw and spatially smoothed rates. The

overall % agreement and Cohen’s κwere used to assess the degree of similarity be-

tween these two classification systems. The global bivariate Moran’s I statistic was

also used to compare the spatial similarity between known and forecast incidence

rates. In all cases, higher values suggest a greater degree of similarity between

known and forecast incidence rates. Finally, bivariate LISA statistics were esti-

4Estimated for the population age 20+ using incident and prevalent cases corrected for the 3% false-
positive rate in the algorithm used by the Ontario Diabetes Database to identify cases of diabetes.
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mated using GeoDa (version1.6.6.1)5 to identify groups of neighbourhoods having

similarly high or low forecast and known incidence rates of diabetes.

5.2.3 Neighbourhood characteristics associated with projected incidence

In order to understand how projected incidence rates might vary across neigh-

bourhoods as a function of their demographic characteristics, an exploratory spa-

tial analysis was conducted. For this analysis, neighbourhoods were classified ac-

cording to the demographic composition of their population by dividing all neigh-

bourhoods in two groups using a median split. For example, neighbourhoods hav-

ing more than the median percentage of visible minorities (36%) were classified as

having a “high” percentage of visible minorities while neighbourhoods below the

median were classified as having a “low” percentage of visible minorities. Neigh-

bourhoods were classified according to body mass index, the male population

older than 45, the female population older than 65, visible minorities, immigrants,

post-secondary education, and income. Mean forecast incidence rates were esti-

mated by cross-classifying each demographic characteristic against a second. Dif-

ferences in projected incidence rates by these demographic groupings were tested

using a spatial simultaneous autoregressive error model, estimated in R using the

“spdep” package (Bivand, 2015). A “rook” contiguity matrix was used to define

which areas neighboured others, and thereby account for spatial dependence in

the regression model. Differences in average incidence rates by neighbourhood

characteristics were tested using a model containing the main effects of two sepa-

rate demographic factors and the interaction effect. Statistically significant differ-

ences were visualized using conditioned choropleth maps.

5.2.4 Uncertainty and sensitivity analysis

Even though DPoRT model outputs were validated, it is important to recognize

they are not known with certainty. Model outputs are only as reliable as the input

parameters used to generate them (Rausand, 2011; Thompson & Graham, 1996).

When several parameters are used to forecast outcomes, the uncertainty associ-

ated with all input parameters can be propagated through the model, resulting

5P-values were adjusted for multiple testing using the false discovery rate adjustment in R.
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in total model uncertainty that is greater than the sum of its parts (Sharif et al.,

2012). Quantifying model uncertainty is an essential step in the model develop-

ment process, a step that aids the interpretation of results (Sharif et al., 2012). If

model uncertainty is large, decision makers may choose to acquire additional ev-

idence to support a particular course of action rather than base their decisions on

uncertain outcomes (Briggs & Sculpher, 2006).

Uncertainty may be classified into two types: aleatory and epistemic. Aleatory

uncertainty deals with random variation while epistemic uncertainty deals with

incomplete information or knowledge. In order to assess the aleatory uncertainty

surrounding projected diabetes incidence rates, a probabilistic sensitivity analy-

sis was conducted. Quantitative uncertainty analysis assesses the imprecision of

predicted outcomes attributable to using uncertain input parameters in the mod-

elling process. It relies on Monte Carlo methods to randomly sample input values

from appropriate probability distributions (Hoare, Regan, & Wilson, 2008; Sharif

et al., 2012). For each iteration of the uncertainty analysis, the model outcomes

are predicted from the prediction model (i.e., the DPoRT model) and uncertainty

intervals can be defined using the 2.5th and 97.5th percentiles of the predicted

outcome across all iterations. An appropriate probability distribution used to de-

scribe the input parameters depends on the nature of those parameters, but the

normal distribution is usually a reasonable choice (Briggs & Sculpher, 2006).

Probabilistic sensitivity analysis extends uncertainty analysis by identifying

which model parameters exert the greatest influence on the uncertainty of pre-

dicted outcomes (Hoare et al., 2008; Saltelli, 2002). It quantifies how changes in

input parameters affect predicted outcomes using statistical methods (Hoare et

al., 2008). Two measures can be used to identify influential model parameters:

the partial rank correlation coefficient (PRCC) and the sensitivity index (Si ). The

partial rank correlation coefficient measures the strength of association between

a model parameter and the outcome after controlling for all other parameters in-

cluded in the model (Hoare et al., 2008; Marino, Hogue, Ray, & Kirschner, 2008).

The PRCC takes on values between −1 and 1. The sign of the PRCC indicates the

direction of change in the outcome that is associated with larger values of a given

model parameter. Model parameters having large values of the PRCC suggest they

contribute substantially to outcome uncertainty (Hoare et al., 2008).
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The sensitivity index measures the proportion of variation in the outcome vari-

able attributable to each model parameter (Hoare et al., 2008). It is estimated as

Si =
VXi (EX∼i (Y |Xi ))

V (Y )
(5.4)

where:

V (Y ) is the total variance in outcome Y ,

EX∼i (Y |Xi ) is the expected, or average, value of outcome Y over all input

parameters except Xi , conditional on Xi having a fixed value and

VXi (EX∼i (Y |Xi )) is the variance of that expectation (Hoare et al., 2008; Saltelli,

Tarantola, & Campolongo, 2000).

The sensitivity index takes on values between 0 and 1. Parameters that have larger

sensitivity indices exert greater influence on outcome uncertainty. Si is used to

determine which parameter, once fixed to its “true” value, produces the greatest

average reduction in the variance of outcome Y (Allaire & Willcox, 2012).

Hoare et al. (2008) developed the Sampling and Sensitivity Analysis Toolbox

(SaSAT) for conducting probabilistic sensitivity analysis of mathematical models.

Developed in Matlab, a standalone version of SaSAT is freely available. To conduct

the sensitivity analysis of projected diabetes incidence, model parameters from

DPoRT 2.0 (Rosella et al., 2014) were treated as random variables and assumed to

be normally distributed. To randomly sample parameter values for the sensitivity

analysis, DPoRT parameter estimates were used as the mean and standard errors

as the standard deviation (Table 5.1).

One thousand samples of parameter values were drawn using Latin Hypercube

Sampling, a type of stratified sampling that divides the probability density func-

tion into N equiprobable intervals.6 For each model parameter, a single value was

drawn from all N intervals (Hoare et al., 2008). The projected five-year incidence

of diabetes was re-estimated using these randomly selected parameters. Results

were aggregated to (a) the neighbourhood level and (b) metropolitan Toronto.

Since the DPoRT model differs for men and women, separate parameters were

randomly sampled for each model. Uncertainty intervals were computed for fore-

cast incidence using the 2.5th and 97.5th percentiles.

6Where N equals the number of samples, in this case, 1000.
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Using these projected results, partial rank correlations were estimated in SaSAT

between each DPoRT model parameter and the five-year incidence of diabetes.

The sensitivity index was also estimated to measure the proportion of variation in

forecast incidence attributable to each model parameter. The sensitivity index for

all DPoRT parameters was estimated for each neighbourhood within metropoli-

tan Toronto. This made it possible to ascertain whether uncertainty in forecast

incidence was attributable to different factors in different neighbourhoods.

5.3 Results

5.3.1 Baseline projections of diabetes incidence

In the baseline scenario, the TropISM population was used to forecast the five-year

incidence of diabetes in disease-free adults aged 20 and older using the Diabetes

Population Risk Tool. Uncertainty estimates were generated from 1000 random

samples of DPoRT model parameters. With no changes in the simulated popula-

tion’s risk profile, 4.9% of Toronto’s adults might develop diabetes over a five year

period (95% UI: 4.2–5.9%).

As might be expected, the projected incidence of diabetes increased with age

among men and women alike. With the exception of the youngest age group, it

is not possible to compare age-sex specific forecasts because the DPoRT model

uses different age profiles to forecast incidence for men and women. However,

men and women in the youngest age group (ages 20–44) tended to have similar

projected incidence rates (Table 5.2).

Table 5.2 also demonstrates that the projected incidence of diabetes varied

across the city, from a low of 4.2% in the borough of Toronto to a high of 5.4% in

Scarborough. Fewer differences in the five-year incidence rate were seen across

boroughs in the youngest age group while larger differences were seen among the

oldest men and women. In addition, there was a greater amount of uncertainty

around projected incidence rates for women aged 65 and older compared to other

subgroups.

Figure 5.1 presents raw and spatially smoothed forecast incidence of diabetes

across metropolitan Toronto. In general, neighbourhoods in Toronto and East

York had the lowest forecast rates, ranging from a low of 3.1% to a high of 5.1%.
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Figure 5.1. Five-year forecast incidence of diabetes across metropolitan Toronto:
(a) raw incidence rate and (b) spatially smoothed incidence rate.
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5.3 Results

Forecast incidence was noticeably higher in all of Scarborough’s neighbourhoods

while there was a strong north-south divide in forecast incidence in Etobicoke.

Forecast incidence was most variable in the boroughs of Toronto (range: 3.2–5.1%)

and North York (4.2–6.0%).

5.3.1.1 Validation of projected incidence rates

Unlike the validation of simulated diabetes prevalence, the forecast incidence of

diabetes was more similar to the true incidence of diabetes in Toronto from 2006

to 2010. Using cases of diabetes ascertained from the Ontario Diabetes Database,

the overall five-year incidence of diabetes was 5.95%. Incidence was slightly higher

among men (6.41%) than women (5.54%). After correcting for the false-positive

rate, cumulative incidence proportions fell within the range of forecast uncer-

tainty (Table 5.2). Across metropolitan Toronto, the overall corrected five-year

incidence of diabetes was 5.75% whereas forecast incidence was 4.87% (95% UI:

4.25, 5.88). Similar results were obtained for men and women: corrected inci-

dence among men was 6.20% while forecast incidence was 4.78% (95% UI: 3.88,

6.26). Corrected incidence among women was 5.35% while forecast incidence was

4.95% (95% UI: 4.05, 6.24). Thus, at an aggregate level, forecast incidence is slightly

lower than actual incidence although the extent of under-prediction is greater for

men than women.

On average, the DPoRT model predicted 99 fewer incident cases of diabetes

in any given neighbourhood compared to the true number (Table 5.3). When the

true number of incident cases was corrected for false-positives, the DPoRT model

predicted 77 fewer cases using the TropISM population. Forecasts were more ac-

curate for women than men. Overall, 62% of neighbourhoods had forecast counts

lying within ±20% of known counts.

An examination of the concordance correlation coefficient illustrates that com-

pared to the true number of incident cases, the forecast number of cases (Ta-

ble 5.3) was more precise and accurate than the simulated number of prevalent

cases (Table 4.5). Correcting for false positives in the true number of cases only

slightly improved forecast accuracy. Moreover, scale and location shifts were less

severe than they were for simulated prevalence. This is illustrated in Figure B.1 in
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5 Projecting The Local Effects of Diabetes Prevention

Table 5.3. Neighbourhood-level validation of the forecast incident
counts of diabetes compared to the known number of incident cases of
diabetes ascertained from the Ontario Diabetes Database (2006–2010).

Total Men Women

Measure Cnt Cor Cnt Cor Cnt Cor

Difference
Mean -99 -77 -82 -71 -17 -6
(± SD) (201) (189) (109) (103) (97) (92)

Relative Error
% ±0.2 59.3 62.1 47.1 53.6 54.3 55.0

Concordance
Overall ρc 0.851 0.867 0.785 0.810 0.888 0.898
Precision (ρ) 0.940 0.940 0.950 0.950 0.927 0.927
Accuracy 0.906 0.925 0.830 0.856 0.958 0.968
Scale shift 0.686 0.707 0.626 0.646 0.752 0.775
Location shift -0.254 -0.200 -0.433 -0.380 -0.083 -0.030

Agreement
Overall 64.0% 62.1% 65.0%
Cohen’s κ 0.554 0.527 0.562

Cnt: forecast counts compared to known counts.
Cor: known counts corrected for false positives.

Appendix B. Overall, the line of best fit comparing the forecast number of cases

to the actual number is closer to the line of concordance than it was for prevalent

cases in Figure A.2. In addition, index plots of incident cases in each neighbour-

hood demonstrate that the trend in forecast counts lies closer to the true number

of cases in most neighbourhoods.

A comparison of known and forecast incidence proportions reveals a slightly

different pattern of results. Although a strong correlation was found between the

true incidence proportion and forecast incidence (Table 5.4), the correlation was

weaker than it was for forecast counts (Table 5.3). Stronger correlations were found

between spatially smoothed incidence rates. When neighbourhoods were classi-

fied into quintiles according to known and forecast counts, the overall agreement

between classifications was greater for incident counts of diabetes among women
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5.3 Results

Table 5.4. Neighbourhood-level validation of the five-year forecast in-
cidence of diabetes (%) compared to the five-year cumulative incidence
proportion (%)∗ estimated from the Ontario Diabetes Database (2006–
2010).

Rate Classification‡ Rate Clustering

Correlation† Raw Spatial Moran’s I§

ρr ρsp Ao κ Ao κ Raw Spatial

Incidence
Total 0.797 0.909 48.6 0.357 66.4 0.580 0.641 0.844
Men 0.820 0.933 62.1 0.527 72.9 0.661 0.617 0.858
Women 0.730 0.864 42.9 0.286 47.1 0.339 0.390 0.624

∗ Cumulative incidence proportions used incident cases from the Ontario Diabetes

Database corrected for false positives.
†ρr = Pearson correlation between raw rates; ρsp = Pearson correlation between

spatially smoothed rates.
‡ Rate classification based on classifying neighbourhoods into quintiles according

to their raw and spatially smoothed incidence rates. Ao = overall % agreement,

κ = Cohen’s kappa.
§ Bivariate Moran’s I.

(65% among women vs. 62% among men). However, when comparing a quintile

classification of rates, the overall agreement between classifications was greater

for men (43% among women vs. 62% among men). This difference may be ex-

plained by the way in which known incidence proportions were estimated. Specif-

ically, the denominator of the incidence proportion subtracts the prevalent num-

ber of cases in each neighbourhood from the total population. Since there was a

greater discrepancy between prevalent counts of diabetes at the neighbourhood

level than incident counts, this discrepancy will differentially skew estimated inci-

dence proportions across neighbourhoods. In other words, some neighbourhoods

will have a greater proportion of prevalent cases removed than others, producing

known incidence rates that lie further from forecast rates than others.

Figure B.2 in Appendix B compares broad spatial patterns in overall forecast
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5 Projecting The Local Effects of Diabetes Prevention

incidence against known incidence7 in more detail. Panels (a) and (b) present raw

rates (forecast and known) while panels (c) and (d) present spatially smoothed

rates (forecast and known). Visual inspection of spatially smoothed rates gener-

ally reveals that areas having low forecast incidence tend to have low known in-

cidence. Similarly, areas having high forecast incidence tend to have high known

incidence. Overall, two-thirds of neighbourhoods were classified into the same

quintile using either forecast or known incidence rates. Another 18% of neigh-

bourhoods were classified into one lower quintile according to the forecast clas-

sification while 14% of neighbourhoods were classified into one higher quintile.

Bivariate LISA statistics computed from spatially smoothed rates indicate that al-

most all neighbourhoods within Scarborough having high forecast incidence rates

are surrounded by neighbourhoods having high known incidence rates. A simi-

lar cluster of neighbourhoods occurs in north Etobicoke and parts of west North

York. Most neighbourhoods in Toronto having low forecast incidence rates are sur-

rounded by neighbourhoods having low known incidence rates. Based on these

results, there is a strong spatial coincidence of neighbourhoods having similarly

low or high forecast and known incidence rates of diabetes.

Figure B.3 in Appendix B plots the known8 incidence proportion against fore-

cast incidence, ranked in ascending order of known incidence across all neigh-

bourhoods. Forecast incidence is plotted along with the 95% uncertainty interval

for each neighbourhood. Neighbourhoods having low known incidence tend to

have low forecast incidence. However, as known incidence increases at the neigh-

bourhood level, the separation between known and forecast incidence increases.

Based on these results, it appears that the DPoRT model is unable to forecast the

variability in known incidence across metropolitan Toronto. Thus, while aggre-

gate forecasts of diabetes incidence are similar to known incidence proportions,

forecast incidence in specific neighbourhoods may vary substantially from known

incidence.

Table B.1 explores the demographic characteristics of neighbourhoods where

known incidence fell outside the range of forecast uncertainty. Overall, known

incidence was lower than forecast incidence in 23 neighbourhoods, 16 of which

7Corrected for false positives.
8Corrected for false positives.
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were in Toronto. In these neighbourhoods, the median difference between known

and forecast incidence was -0.84 percentage points (Figure B.4). In 52 neighbour-

hoods, known incidence was greater than forecast incidence; 15 of these neigh-

bourhoods were in North York while 19 were in Scarborough. In this case, the

median difference between known and forecast incidence was 2.30 percentage

points.

Neighbourhoods where known incidence was above forecast uncertainty had,

on average, a greater percentage of visible minorities (54%) than neighbourhoods

whose known rates fell within or below forecast uncertainty (36% and 28%, respec-

tively). Neighbourhoods classified above forecast uncertainty also contained a sig-

nificantly greater percentage of immigrants (58%) compared to neighbourhoods

lying within or below forecast uncertainty (46% and 37%, respectively). How-

ever, neighbourhoods classified below forecast uncertainty had, on average, better

educated populations than neighbourhoods classified above forecast uncertainty

(66% vs 53%, respectively). Interestingly, population growth between 2006 and

2011 did not differ across the three groups.

These results suggest some possible explanations for the inability of the DPoRT

model to accurately forecast the variability in diabetes incidence using the sim-

ulated TropISM population. First, neighbourhoods where known incidence ex-

tended beyond forecast uncertainty differed on important demographic charac-

teristics used by the DPoRT model to forecast incidence. Although the model pre-

dicted incidence at an aggregate level reasonably well, in neighbourhoods whose

populations were atypical of the overall average population, forecast incidence

was less accurately predicted. Keeping in mind that the DPoRT model was cal-

ibrated to projecting incidence in the overall Ontario population (Rosella et al.,

2011), it is possible that model parameters used to forecast incidence may not be

calibrated for specific subgroups within the population.

Second, TropISM under-predicted the prevalence of risk factors used by the

DPoRT model to forecast incidence. In neighbourhoods where the simulated preva-

lence was too low, the true population at risk may not be reasonably represented,

leading to less accurate forecasts. In spite of these limitations, DPoRT forecasts

based on the simulated TropISM population are still useful because, in a relative

sense, forecasts still identify neighbourhoods within metropolitan Toronto hav-
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ing higher or lower incidence. Moreover, broad spatial patterns in incidence can

also be identified. As a result, forecasts can still be used to identify neighbour-

hoods within metropolitan Toronto that can be targeted for planning and deliver-

ing health promotion programs. The next section therefore examines the demo-

graphic characteristics of neighbourhoods having relatively high or low forecast

incidence rates.

5.3.1.2 Neighbourhood characteristics associated with projected incidence

Table 5.5 describes average projected incidence rates by demographic character-

istics of Toronto neighbourhoods. Forecast incidence rates did not vary signif-

icantly in neighbourhoods whose average population BMI was greater than the

metropolitan median BMI (24.9 kg/m2) compared to neighbourhoods whose aver-

age population BMI was lower than the median. This was true regardless of other

demographic factors considered. However, significant differences in forecast in-

cidence rates were observed when neighbourhoods were cross-classified by other

demographic characteristics. The largest differences in forecast incidence were

observed in neighbourhoods having higher than the median percentage of im-

migrant women aged 65 and older versus younger neighbourhoods having rela-

tively fewer immigrants (5.2% versus 4.4%, respectively). Figure 5.2 displays these

differences cartographically using a conditioned choropleth map. Each quadrant

of the figure displays neighbourhoods classified by their respective demographic

profiles (i.e., immigrant and older female population structures). The upper left

quadrant depicts neighbourhoods containing higher percentages of younger non-

immigrant women while the lower right quadrant depicts neighbourhoods con-

taining higher percentages of older immigrant women. Based on this plot, forecast

incidence was lower in neighbourhoods located within the borough of Toronto,

where there were higher percentages of younger non-immigrant women. Pro-

jected rates of diabetes were higher in Scarborough and North York, in neighbour-

hoods primarily composed of high percentages of immigrants.

Stronger spatial patterns were observed in forecast incidence rates when con-

sidering the visible minority and immigrant composition of neighbourhoods. The

average forecast incidence of diabetes was 4.6% in neighbourhoods having rela-
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5.3 Results

Table 5.5. Average five-year forecast incidence of diabetes by demographic
characteristics of metropolitan Toronto neighbourhoods.

Characteristic (median) LL∗ LH∗ HL∗ HH∗ LR† p

Body mass index (24.9 kg/m2)
% men ≥ 45 4.82 5.04 4.77 4.82 1.94 0.164
% women ≥ 65 4.81 5.09 4.57 4.94 0.77 0.381
% visible minority 4.58 5.02 4.70 5.05 0.29 0.593
% immigrant 4.63 4.97 4.68 5.21 1.86 0.173
% post-secondary education 5.02 4.74 5.02 4.63 0.83 0.362
% highest income quintile 4.99 4.60 5.20 4.64 1.48 0.223

% Men ≥ 45 (21.5%)
% women ≥ 65 4.71 5.01 4.76 4.98 0.47 0.494
% visible minority 4.53 4.98 4.74 5.13 0.30 0.583
% immigrant 4.48 4.97 4.72 5.16 0.17 0.678
% post-secondary education 5.02 4.57 5.06 4.78 2.30 0.130
% highest income quintile 5.02a 4.40b 5.11a 4.73c 5.02 0.025

% Women ≥ 65 (9.9%)
% visible minority 4.47 4.94 4.85 5.16 2.59 0.108
% immigrant 4.41a 4.95b 4.84b 5.16c 4.35 0.037
% post-secondary education 4.95a 4.51b 5.06a 4.91a 8.49 0.004
% highest income quintile 4.98ac 4.40b 5.15a 4.83c 7.80 0.005

% Visible minority (36.0%)
% immigrant 4.56a 5.01b 4.93b 5.06b 5.12 0.024
% post-secondary education 4.89 4.53 5.09 4.95 2.99 0.084
% highest income quintile 5.02a 4.53b 5.07a 4.93a 6.01 0.014

% Immigrant (50.0%)
% post-secondary education 4.89a 4.47b 5.09a 5.01a 6.27 0.012
% highest income quintile 5.04a 4.54b 5.04a 5.05a 8.33 0.004

% Post-secondary education (56.5%)
% highest income quintile (14.4%) 5.10 4.80 4.93 4.55 0.28 0.599

∗ Demographic cross-classification: LL = low-low, LH = low-high, HL = high-low,

HH = High-high. Groups having different letters are significantly different at p = 0.05,

using a Bonferroni adjustment.
† LR = likelihood ratio.
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tively few visible minorities and immigrants (i.e., less than 36% of the population

was from a visible minority group and less than 50% were immigrants, Figure 5.5).

Conversely, in neighbourhoods having a larger percentage of visible minorities

and immigrants, projected incidence was 5.1%. Figure 5.3 contrasts these differ-

ences, demonstrating a clear spatial pattern. Specifically, neighbourhoods com-

posed of largely non-immigrant, non-visible minority populations, and low pro-

jected incidence rates tended to cluster in Toronto and south Etobicoke. Neigh-

bourhoods having significantly higher projected incidence rates and large visi-

ble minority and immigrant populations tended to cluster in northern Etobicoke,

North York, and Scarborough.

Finally, the percentage of the population having a post-secondary education

influenced forecast incidence under some circumstances. Neighbourhoods com-

posed of younger, better educated populations had lower forecast incidence rates,

on average, compared to neighbourhoods composed of older, less educated popu-

lations (4.5% vs. 5.1%, respectively). Although the magnitude of the difference was

similar irrespective of the male and female age profiles, average forecast incidence

differed significantly only in neighbourhoods composed of higher percentages

of younger, better educated women compared to neighbourhoods composed of

higher percentages of older, less educated women (Table 5.5). Similar differences

were seen in neighbourhoods composed of lower percentages of immigrants and

higher percentages of the population having a post-secondary education.

In summary, these results indicate that the population composition of a given

neighbourhood influences the forecast incidence of diabetes using the Diabetes

Population Risk Tool. Based on the demographic characteristics of Toronto’s neigh-

bourhoods, significant differences in projected incidence were observed in neigh-

bourhoods having different age, sex, visible minority, education, and income pro-

files (Table 5.5). Although the DPoRT model uses other risk factors to project

the incidence of diabetes, these factors represent the constraints used to develop

TropISM. As such, these demographic profiles should closely resemble the ac-

tual population structure of these neighbourhoods because these variables were

closely replicated by the simulated annealing algorithm (see Table 4.3).

It is worth noting, however, that average forecast incidence rates presented in

Table 5.5 should be interpreted cautiously. While broad spatial patterns in forecast
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incidence are reasonably correct according to the validation analysis that was con-

ducted, the absolute magnitude of average forecast incidence rates in Table 5.5 will

not accurately reflect the true incidence in some areas. For example, in neighbour-

hoods having greater than the median percentage of visible minorities and immi-

grants (Figure 5.3, panel (d)), the mean forecast incidence across these neighbour-

hoods is estimated to be 5.1%. However, most of these neighbourhoods were the

ones in which the true incidence of diabetes was greater than forecast uncertainty.

Therefore, the absolute value of diabetes incidence in Figure 5.3, panel (d) will be

greater than 5.1%. In spite of this, the spatial characterization of these neighbour-

hoods will be approximately correct, because the DPoRT model replicated spa-

tial patterns in forecast incidence using the TropISM population reasonably well.

Therefore, the characterization of neighbourhoods presented in Table 5.5 should

be approximately correct.

5.3.2 Projected incidence under weight loss scenarios

5.3.2.1 Prevalence of overweight

Until this point, only the baseline TropISM population was used to project the in-

cidence of diabetes at the neighbourhood level. Since excess body weight is an

important risk factor for diabetes, several scenarios were developed to assess how

the neighbourhood incidence of diabetes might change if overweight individuals

lost different amounts of body weight. One set of scenarios assumed that all over-

weight individuals in the population would lose clinically meaningful amounts of

body weight. These scenarios also assumed that healthy weight and underweight

individuals maintained their current body weight. A second set of scenarios as-

sumed that different proportions of the overweight population would lose 10% of

its baseline body weight, in order to mimic sub-optimal reach and effectiveness of

weight loss programs.

The primary objective of these policy simulations was to assess how weight

loss programs might influence the future incidence of diabetes. Thus, it is impor-

tant to describe the effect of weight loss on the neighbourhood prevalence of over-

weight. Table 5.6 presents the simulated neighbourhood prevalence of overweight

(BMI ≥ 25 kg/m2) averaged across the six boroughs of metropolitan Toronto un-
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5 Projecting The Local Effects of Diabetes Prevention

der each weight loss scenario. In the baseline scenario, neighbourhoods from

York have, on average, the highest simulated prevalence of overweight (43%) while

neighbourhoods from Scarborough have the lowest simulated prevalence (39%).

Reductions in the prevalence of overweight are approximately similar across each

of the boroughs under scenarios. Compared to the baseline scenario, however,

neighbourhoods in York experienced the greatest reduction in overweight preva-

lence from baseline to the 17% weight loss scenario. In other words, if the pop-

ulation of overweight individuals in York neighbourhoods lost 17% of its base-

line body weight, the population prevalence of overweight could be expected to

drop by 32 percentage points. This contrasts to Scarborough neighbourhoods,

where the population prevalence of overweight might drop by only 29.5 percent-

age points.

The neighbourhood-level prevalence of overweight was higher among men

than women under the baseline scenario across all neighbourhoods. Once the

overweight population loses 10% of its baseline body weight, the prevalence of

overweight is approximately similar among both men and women across all neigh-

bourhoods. Under the 17% weight loss scenario, the prevalence of overweight is

slightly lower among men than women.

Figure 5.4 depicts the neighbourhood-level distribution of body mass index,

using kernel density estimates of the distribution under each weight loss scenario.9

In the baseline scenario, almost half of all neighbourhoods have an average pop-

ulation BMI of more than 25 kg/m2. As the population of overweight individuals

loses weight, two things happen. First, average BMI across all neighbourhoods de-

creases from 24.88 kg/m2 in the baseline scenario to 23.69 kg/m2 under the 10%

weight loss scenario and to 22.85 kg/m2 under the 17% weight loss scenario. Sec-

ond, neighbourhoods become more similar with respect to average BMI, as evi-

denced by the tighter range of density estimates under each scenario compared to

the baseline scenario. This result is expected because each of the weight loss sce-

narios assume that the entire population of overweight individuals loses weight

while body weight remains fixed in the population of under- and healthy-weight

individuals.

9The bandwidth parameter h for the kernel density estimates was set to 0.0853 and was selected
using the Sheather-Jones method.
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5.3 Results

Table 5.6. Average neighbourhood prevalence of overweight (BMI
≥ 25 kg/m2) across metropolitan Toronto and each of its boroughs∗

under different weight loss scenarios.

MT ET NY YO TO EY SC
Scenario (n = 140) (n = 20) (n = 33) (n = 10) (n = 44) (n = 8) (n = 25)

Overall
Baseline 41.2 42.2 40.2 42.7 42.2 42.0 39.0
4% loss 34.0 34.9 33.0 35.4 35.0 34.9 31.9
7% loss 28.1 28.8 27.2 29.2 28.9 28.8 26.5
10% loss 21.3 21.9 20.5 22.6 21.9 22.0 20.1
14% loss 13.8 14.2 13.0 14.5 14.3 14.5 13.0
17% loss 10.1 10.4 9.3 10.7 10.7 11.0 9.5

Men
Baseline 46.1 47.3 44.7 46.5 48.3 47.2 42.7
4% loss 37.6 38.5 36.3 37.7 39.7 38.9 34.4
7% loss 30.4 31.1 29.4 30.5 31.8 31.3 28.4
10% loss 22.0 22.6 21.0 22.8 22.9 22.9 20.7
14% loss 13.6 14.0 12.8 13.9 14.3 14.4 12.9
17% loss 9.5 9.6 8.6 9.6 10.0 10.4 9.2

Women
Baseline 36.6 37.5 36.2 39.3 36.5 37.4 35.6
4% loss 30.7 31.6 30.1 33.5 30.5 31.3 29.6
7% loss 25.9 26.7 25.3 28.2 26.0 26.6 24.7
10% loss 20.6 21.3 20.0 22.4 21.0 21.2 19.4
14% loss 13.9 14.3 13.2 15.0 14.4 14.6 13.0
17% loss 10.7 11.1 9.9 11.7 11.4 11.5 9.7

∗ MT = metropolitan Toronto, ET = Etobicoke, YO = York, TO = Toronto,

EY = East York, SC = Scarborough.
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Figure 5.4. Distribution of average neighbourhood-level body mass index across
metropolitan Toronto neighbourhoods under different weight loss scenarios.

5.3.2.2 Effect of population weight loss on projected diabetes incidence

Table 5.7 presents projected neighbourhood-level incidence rates averaged over

all neighbourhoods under each weight loss scenario. Reductions in the incidence

of diabetes are greatest when the entire population of overweight individuals loses

weight, compared to only part of the population. If all overweight individuals lost

4% of their baseline body weight, the five-year incidence of diabetes might be

reduced from 4.84% to 4.69%, on average, across metropolitan Toronto. Greater

losses in baseline body weight are expected to produce greater reductions in the

five-year incidence of diabetes. Significant changes in the neighbourhood dis-

tribution of projected incidence would not appear until the entire population of

overweight individuals lost at least 10% of its baseline body weight. In this case,

the average projected incidence might fall from 4.85% to 4.52% across metropoli-

tan Toronto. A non-parametric Kruskal-Wallis test suggests a significant shift in

the neighbourhood distribution of projected incidence would occur under this
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scenario. In order to achieve a one percentage point reduction in the five-year in-

cidence of diabetes, the entire overweight population would have to lose 17% of

its baseline body weight.

Table 5.7. Average forecast incidence of diabetes across metropolitan Toronto
neighbourhoods under different weight loss scenarios: (a) complete popula-
tion participation and (b) partial population participation.

Test†

Scenario Mean (SD) Median (MAD) KW Perm. 95% UI‡

(a) Entire population
Baseline 4.84 (0.63) 4.87 (0.46) — — 4.20 – 5.86
4% loss 4.69 (0.65) 4.73 (0.47) 4.08 – 5.68
7% loss 4.65 (0.65) 4.70 (0.49) 3.94 – 5.66
10% loss 4.52 (0.65) 4.56 (0.47) *** * 3.76 – 5.62
14% loss 4.15 (0.61) 4.19 (0.46) *** *** 3.45 – 5.22
17% loss 3.81 (0.56) 3.83 (0.42) *** *** 3.19 – 4.78

(b) Partial population participation§

Baseline 4.84 (0.63) 4.87 (0.46) — — 4.20 – 5.86
10% 4.80 (0.63) 4.83 (0.45) 4.17 – 5.80
50% 4.68 (0.63) 4.72 (0.46) 3.97 – 5.66
Mean 4.2kg loss 4.64 (0.63) 4.68 (0.46) * 3.97 – 5.66
80% 4.58 (0.64) 4.61 (0.46) ** 3.86 – 5.59
100% 4.52 (0.65) 4.56 (0.47) *** * 3.76 – 5.62

† Tests the difference between each scenario and the baseline scenario.

KW = Kruskal-Wallis test; Perm. = permutation test of density estimates.

‡ 95% uncertainty interval

* p < 0.05; ** p < 0.01; *** p < 0.001
§ 10% weight loss in all scenarios.

Figure 5.5 presents the expected shift in average incidence at the neighbour-

hood level for each weight loss scenario under complete population participation.

Each curve is a non-parametric kernel density estimate10 of the neighbourhood

distribution of projected incidence. Compared to the baseline scenario, signifi-

cant shifts in the neighbourhood distribution of projected incidence do not oc-

10Bandwidth parameter h = 0.2514
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Figure 5.5. Distribution of average forecast incidence of diabetes across
metropolitan Toronto neighbourhoods under different weight loss scenarios.

cur until the entire overweight population loses at least 10% of its baseline body

weight. Even under this scenario, the distribution of projected incidence does not

appear to deviate much from baseline. Only under the 14% and 17% weight loss

scenarios do the distributions appear to be significantly different from baseline.

Another way to examine differences between scenarios is to consider the un-

certainty around each set of estimates using probabilistic sensitivity analysis. The

uncertainty intervals presented in Table 5.7 are based on 1000 samples of DPoRT

model parameters selected using Latin hypercube sampling. They represent the

range of plausible incidence projections under each scenario. In most cases, the

average projected incidence lies within the uncertainty intervals for all other sce-

narios. The exception to this is the 17% weight loss scenario. In this case, the

average projected incidence of 3.81% lies outside the 95% uncertainty interval for

the baseline, 4%, and 7% weight loss scenarios. Based on these results, although

the future incidence of diabetes might be reduced by a 10% reduction in baseline
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Figure 5.6. Uncertainty about forecast diabetes incidence across metropolitan
Toronto neighbourhoods under the baseline (grey) and 17% weight loss (red) sce-
narios.

body weight, the range of uncertainty around these projections might still mean

that projected incidence is not different from the baseline scenario. Indeed, im-

portant reductions in the projected incidence of diabetes might not appear until

the entire population of overweight individuals loses at least 17% of its baseline

body weight.

Figure 5.6 contrasts the uncertainty about these scenarios visually by ranking

neighbourhoods in ascending order of forecast incidence. Baseline projections

are presented in grey while projections from the 17% weight loss scenario are pre-

sented in red. The shaded ribbons surrounding each set of projections represent

the 95% uncertainty interval. In almost all neighbourhoods, the projections from

the 17% weight loss scenario do not lie within the uncertainty interval from the

baseline scenario. This suggests there is some difference in projected incidence

between these scenarios. In spite of this, there remains some overlap in the uncer-

tainty around each scenario suggesting that a 17% weight loss might not produce

reductions in incidence that differ meaningfully from the baseline scenario.
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Table 5.7 also presents projected incidence averaged over all neighbourhoods

for the partial population participation scenarios. In these scenarios, simulated

individuals were randomly selected to lose 10% of their baseline body weight.

When only 10% of the overweight population loses 10% of its baseline body weight,

there is almost no perceptible shift in projected incidence. Slightly larger reduc-

tions in incidence are expected when at least 50% of the population loses 10% of its

baseline body weight. The distribution of projected incidence at the neighbour-

hood level might only begin to shift in a meaningfully way when at least 80% of the

overweight population loses at least 10% of its baseline body weight. Even then,

there is enough uncertainty surrounding these estimates to conclude that projec-

tions from the 80% participation scenario might lie within the range of uncertainty

surrounding the baseline scenario. In summary, small reductions in population

body weight at the neighbourhood level might not produce meaningful reductions

in the five-year incidence of diabetes.

Figure 5.7 summarizes projected neighbourhood-level incidence rates within

each of Toronto’s six boroughs. Under the baseline scenario, Scarborough neigh-

bourhoods had the highest projected incidence (median = 5.4%) while neighbour-

hoods in Toronto (median = 4.1%) and East York (median = 4.7%) had the lowest

projected incidence. Negligible reductions in projected incidence were produced

by the 4%, 7%, and 10% weight loss scenarios. Larger reductions in body weight

produced larger reductions in projected incidence across all neighbourhoods.

Figure 5.8 illustrates reductions in projected incidence between each scenario

and the baseline scenario. Reductions varied between scenarios: some neigh-

bourhoods experienced larger than average reductions in incidence (> 1 SD above

the mean) while other neighbourhoods experienced smaller than average reduc-

tions (> 1 SD below the mean). Comparing the baseline scenario against the 4%

weight loss scenario, most neighbourhoods in North York had lower than average

reductions in projected incidence. Few neigbourhoods had larger than average

reductions in projected incidence. Those that did tended to lie along Lake Ontario

in southern Toronto.

In the 7% weight loss scenario, five neighbourhoods in northeast Scarborough

experienced larger reductions in projected incidence compared to other neigh-

bourhoods, where reductions tended to lie within ±1 SD of the mean reduction. In
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under different population weight loss scenarios. BL = baseline scenario.
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the remaining scenarios, most of Scarborough’s neighbourhoods had larger than

average reductions in projected incidence. In Etobicoke, a north-south divide in

projected reductions became apparent once the population of overweight indid-

uals lost at least 14% of its baseline body weight. Conversely, neighbourhoods in

central Toronto tended to experience smaller than average reductions in projected

incidence under the 14% and 17% weight loss scenarios.

These findings suggest that the populations of different neighbourhoods might

not react in the same ways to health promotion programs and policies designed to

promote weight loss. It might be the case that the population structure of different

neighbourhoods produces such differences. For example, neighborhoods within

north Etobicoke and Scarborough are composed of larger proportions of visible

minorities compared to neighborhoods in Toronto. Moreover, these neighbour-

hoods had a lower baseline prevalence of overweight compared to the metropoli-

tan average. Thus, it is plausible that weight loss in visible minority populations

produces greater relative reductions in incidence, even though the overall pro-

jected incidence in these neighbourhoods remains above the city-wide average.

5.3.3 Probabilistic sensitivity analysis

Based on the simulated TropISM population, 4.9% of the population within any

of Toronto’s neighbourhoods might develop diabetes over a five-year period. An

initial analysis of the uncertainty around these projections suggests that the pro-

jected five-year incidence could range from 4.2% to 5.9% (Table 5.7). Figure 5.6

demonstrates that the uncertainty about projected incidence rates is not uniform

across neighbourhoods: some neighbourhoods appear to have a larger range in

the uncertainty about projected rates than others. Generally, neighbourhoods

having higher projected incidence seem to have larger uncertainty intervals. A

formal probabilistic sensitivity analysis was conducted to identify which model

parameters contributed most to uncertainty in forecast incidence.

This sensitivity analysis was conducted for each weight loss scenario in which

the entire population at risk participated in the “intervention” program. Since pro-

jected rates are based on different model parameters for men and women, sepa-

rate sensitivity analyses were conducted for men and women. As discussed in Sec-
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tion 5.2.4, Monte Carlo methods were used to randomly sample DPoRT model pa-

rameters from a normal distribution using the estimated DPoRT parameters as the

mean and their standard errors as the standard deviation (Table 5.1). One thou-

sand sets of model parameters were used to produce 1000 projections for each

neighbourhood. Results were aggregated over the entire TropISM population to

assess the overall effect of uncertain inputs on the variability about projected in-

cidence.

The partial rank correlation coefficient (PRCC) assesses the strength of the cor-

relation between each model parameter and the uncertainty about projected di-

abetes incidence. Correlations closer to +1 or -1 suggest that a model parameter

contributes more to forecast uncertainty than others after controlling for all other

model parameters. The sensitivity index was then used to assess the proportion of

variation in forecast incidence that is attributable to each model parameter.

5.3.3.1 Factors influencing forecast uncertainty

Uncertainty in projected diabetes incidence for men and women was strongly in-

fluenced by the “Intercept” and “Scale” parameters in the DPoRT model. Each

parameter exerted similar effects on forecast uncertainty. Tables 5.8 and 5.9 de-

pict the partial rank correlation coefficient (PRCC) for DPoRT model parameters

for men and women, respectively. For all scenarios, each DPoRT parameter is

ranked according to the absolute magnitude of the PRCC. Among men, the base-

line model showed a strong negative correlation between the intercept parameter

and forecast uncertainty (PRCC = -0.93) while the scale parameter had a strong

positive correlation (PRCC = 0.88). More specifically, as the intercept coefficient

increased in magnitude, the projected incidence of diabetes decreased. In other

words, larger values of the intercept parameter produced smaller projected in-

cidence rates. Given the DPoRT model is based on an accelerated failure time

model, these results are expected. That is, a positive value of the intercept param-

eter means that the time to “failure” (or onset of diabetes) increases. At a popula-

tion level, this reduces the projected incidence of diabetes.

On the other hand, larger values of the scale parameter increased the pro-

jected incidence of diabetes. Among men, the intercept and scale parameters ex-

154



5.3 Results

Ta
b

le
5.

8.
In

fl
u

en
ce

o
fD

P
o

R
T

m
o

d
el

p
ar

am
et

er
s

o
n

fo
re

ca
st

u
n

ce
rt

ai
n

ty
o

fm
al

e
d

ia
b

et
es

in
ci

d
en

ce
,a

s
m

ea
su

re
d

b
y

th
e

p
ar

ti
al

ra
n

k
co

rr
el

at
io

n
co

ef
fi

ci
en

t(
P

R
C

C
)

fo
r

ea
ch

m
o

d
el

li
n

g
sc

en
ar

io
.

B
as

el
in

e
4%

Lo
ss

7%
Lo

ss
10

%
Lo

ss
14

%
Lo

ss
17

%
Lo

ss
Pa

ra
m

et
er

s
P

R
C

C
(r

an
k)

P
R

C
C

(r
an

k)
P

R
C

C
(r

an
k)

P
R

C
C

(r
an

k)
P

R
C

C
(r

an
k)

P
R

C
C

(r
an

k)

In
te

rc
ep

t
-0

.9
33

(1
)

-0
.9

35
(1

)
-0

.9
25

(1
)

-0
.9

07
(1

)
-0

.9
10

(1
)

-0
.8

95
(1

)
Sc

al
e

0.
88

4
(2

)
0.

89
5

(2
)

0.
88

8
(2

)
0.

87
4

(2
)

0.
88

3
(2

)
0.

86
2

(2
)

≥
45

,2
5
≤

B
M

I
<

30
-0

.7
54

(3
)

-0
.7

03
(3

)
-0

.5
77

(5
)

-0
.2

35
(7

)
0.

17
0

(8
)

0.
43

2
(6

)
<

45
,2

5
≤

B
M

I
<

30
0.

56
6

(4
)

0.
57

8
(5

)
0.

58
9

(4
)

0.
59

7
(4

)
0.

61
2

(4
)

0.
64

3
(5

)
<

45
,2

3
≤

B
M

I
<

25
0.

56
2

(5
)

0.
49

8
(6

)
0.

38
8

(6
)

0.
27

2
(5

)
0.

23
6

(7
)

0.
26

4
(7

)
≥

45
,3

0
≤

B
M

I
<

35
-0

.4
71

(6
)

-0
.2

07
(9

)
-0

.1
13

(1
2)

-0
.1

90
(9

)
-0

.0
37

(1
5)

0.
01

4
(1

6)
H

yp
er

te
n

si
o

n
-0

.3
20

(7
)

-0
.2

61
(7

)
-0

.3
21

(7
)

-0
.2

70
(6

)
-0

.2
65

(6
)

-0
.2

27
(8

)
≥

45
,B

M
I
≥

35
-0

.2
57

(8
)

-0
.2

31
(8

)
-0

.1
80

(8
)

-0
.0

45
(1

6)
-0

.0
22

(1
7)

0.
03

4
(1

4)
≥

45
,2

3
≤

B
M

I
<

25
-0

.2
45

(9
)

-0
.6

02
(4

)
-0

.7
47

(3
)

-0
.8

04
(3

)
-0

.8
21

(3
)

-0
.7

97
(3

)
N

o
n

-w
h

it
e

-0
.1

66
(1

0)
-0

.1
09

(1
1)

-0
.1

39
(1

0)
-0

.1
13

(1
2)

-0
.1

29
(1

1)
-0

.1
40

(1
1)

<
45

,B
M

I
≥

35
-0

.1
65

(1
1)

-0
.0

75
(1

5)
-0

.0
47

(1
5)

-0
.0

48
(1

5)
0.

02
7

(1
6)

-0
.0

13
(1

7)
H

ea
rt

d
is

ea
se

-0
.1

30
(1

2)
-0

.1
49

(1
0)

-0
.1

16
(1

1)
-0

.0
77

(1
3)

-0
.1

39
(1

0)
-0

.1
15

(1
2)

P
o

st
-s

ec
o

n
d

ar
y

0.
12

2
(1

3)
0.

09
9

(1
3)

0.
15

1
(9

)
0.

15
2

(1
1)

0.
09

6
(1

2)
0.

14
8

(1
0)

<
45

,3
0
≤

B
M

I
<

35
-0

.1
02

(1
4)

-0
.0

28
(1

6)
0.

06
1

(1
4)

0.
18

2
(1

0)
0.

16
6

(9
)

0.
17

4
(9

)
Sm

o
ke

r
0.

03
9

(1
5)

0.
10

7
(1

2)
0.

01
4

(1
6)

0.
06

9
(1

4)
0.

04
3

(1
4)

0.
02

5
(1

5)
≥

45
,B

M
I
<

23
0.

03
0

(1
6)

-0
.0

10
(1

7)
-0

.0
12

(1
7)

-0
.1

96
(8

)
-0

.5
76

(5
)

-0
.7

22
(4

)
H

ig
h

es
ti

n
co

m
e

0.
01

1
(1

7)
0.

08
5

(1
4)

0.
10

6
(1

3)
0.

04
0

(1
7)

0.
07

4
(1

3)
0.

09
6

(1
3)

155



5 Projecting The Local Effects of Diabetes Prevention

Tab
le

5.9.
In

fl
u

en
ce

o
fD

Po
R

T
m

o
d

elp
aram

eters
o

n
fo

recast
u

n
certain

ty
o

ffem
ale

d
iab

etes
in

cid
en

ce,as
m

easu
red

b
y

th
e

p
artialran

k
co

rrelatio
n

co
effi

cien
t(P

R
C

C
)

fo
r

each
m

o
d

ellin
g

scen
ario.

B
aselin

e
4%

Lo
ss

7%
Lo

ss
10%

Lo
ss

14%
Lo

ss
17%

Lo
ss

Param
eters

P
R

C
C

(ran
k)

P
R

C
C

(ran
k)

P
R

C
C

(ran
k)

P
R

C
C

(ran
k)

P
R

C
C

(ran
k)

P
R

C
C

(ran
k)

In
tercep

t
-0.951

(1)
-0.935

(1)
-0.927

(1)
-0.911

(1)
-0.907

(1)
-0.908

(1)
Scale

0.873
(2)

0.840
(2)

0.806
(3)

0.779
(4)

0.758
(4)

0.759
(4)

≥
65,23≤

B
M

I<
25

-0.742
(3)

-0.811
(3)

-0.819
(2)

-0.849
(2)

-0.862
(2)

-0.874
(2)

≥
65,B

M
I<

23
-0.709

(4)
-0.757

(4)
-0.782

(4)
-0.813

(3)
-0.847

(3)
-0.853

(3)
H

yp
erten

sio
n

-0.379
(5)

-0.359
(6)

-0.286
(6)

-0.317
(6)

-0.368
(6)

-0.324
(7)

<
45,23≤

B
M

I<
25

0.303
(6)

0.244
(7)

0.158
(10)

0.159
(8)

0.101
(14)

0.165
(10)

45–64,B
M

I<
23

0.297
(7)

0.037
(20)

-0.086
(13)

-0.122
(12)

-0.151
(11)

-0.164
(11)

45–64,25≤
B

M
I<

30
-0.274

(8)
-0.200

(8)
0.008

(22)
0.088

(14)
0.172

(10)
0.283

(8)
45–64,30≤

B
M

I<
35

-0.273
(9)

-0.096
(15)

-0.045
(17)

-0.041
(18)

-0.009
(23)

0.101
(15)

≥
65,25≤

B
M

I<
30

-0.273
(10)

-0.192
(10)

-0.101
(12)

-0.028
(20)

0.127
(12)

0.133
(13)

≥
65,B

M
I

u
n

kn
ow

n
-0.226

(11)
-0.142

(13)
-0.150

(11)
-0.128

(11)
-0.176

(9)
-0.194

(9)
<

45,25≤
B

M
I<

30
0.194

(12)
0.192

(9)
0.245

(7)
0.264

(7)
0.299

(7)
0.342

(6)
45–64,23≤

B
M

I<
25

-0.186
(13)

-0.366
(5)

-0.491
(5)

-0.442
(5)

-0.462
(5)

-0.494
(5)

45–64,B
M

I≥
35

-0.177
(14)

-0.065
(16)

-0.066
(15)

-0.044
(17)

0.014
(22)

-0.023
(20)

P
o

st-seco
n

d
ary

0.165
(15)

0.174
(11)

0.175
(8)

0.133
(10)

0.209
(8)

0.148
(12)

Im
m

igran
t

-0.162
(16)

-0.174
(12)

-0.161
(9)

-0.113
(13)

-0.101
(15)

-0.127
(14)

≥
65,B

M
I≥

35
-0.152

(17)
-0.103

(14)
-0.049

(16)
0.008

(22)
0.058

(17)
0.022

(21)
45–64,B

M
I

u
n

kn
ow

n
-0.111

(18)
-0.058

(17)
-0.004

(23)
-0.141

(9)
-0.047

(19)
-0.035

(19)
N

o
n

-w
h

ite
-0.099

(19)
-0.053

(19)
-0.071

(14)
-0.020

(21)
0.072

(16)
-0.013

(22)
<

45,B
M

I≥
35

-0.077
(20)

-0.022
(22)

-0.025
(19)

-0.038
(19)

0.106
(13)

0.036
(18)

≥
65,30≤

B
M

I<
35

-0.055
(21)

-0.034
(21)

-0.043
(18)

0.004
(23)

-0.046
(20)

0.009
(23)

<
45,30≤

B
M

I<
35

-0.031
(22)

0.057
(18)

-0.013
(21)

0.044
(16)

0.037
(21)

0.059
(16)

<
45,B

M
I

u
n

kn
ow

n
0.012

(23)
-0.015

(23)
-0.018

(20)
0.058

(15)
0.054

(18)
-0.048

(17)

156



5.3 Results

erted the strongest influence on forecast uncertainty across all modelling scenar-

ios. In the baseline model, body mass index parameters also influenced forecast

uncertainty. Specifically, as the model coefficient for overweight among older men

(aged 45+) increased, projected incidence decreased. Although this might seem

counter-intuitive, it is important to remember that the average coefficient for this

parameter was -2.056 (Table 5.1). Since overweight and age are both risk factors

for diabetes, weaker coefficients (i.e., values that move towards zero) mean that

other model parameters are influencing projected incidence. In this case, weaker

values of the overweight coefficient for older men produced lower projected inci-

dence rates in the baseline model.

Opposite effects were observed for the overweight (25 ≤ BMI < 30) and healthy

weight (23 ≤ BMI < 25) parameters among men younger than 45. Across all mod-

elling scenarios, weaker values for these coefficients (values that move towards

zero) mean that these parameters exerted less influence on projected incidence

rates, allowing other parameters to exert more influence. This, in turn, increased

the forecast incidence of diabetes.

Under the different weight loss scenarios, most model parameters exerted a

similar influence on forecast uncertainty. In other words, the sign of the PRCC was

the same for a given parameter across scenarios. However, the magnitude of the

PRCC differed across scenarios, meaning that the same parameter had a stronger

effect on model uncertainty under some scenarios. For example, the overweight

parameter (25 ≤ BMI < 30) for older men was the third most influential parame-

ter in the baseline scenario, but the only sixth most influential parameter in the

17% weight loss scenario. These differences indicate that forecast uncertainty was

influenced by the weight loss scenarios.

Specifically, as the simulated population of high-risk individuals loses weight,

there is a greater number of healthy weight individuals in that population and

fewer overweight individuals. Model parameters associated with lower BMIs there-

fore exert greater influence on forecast uncertainty. For example, in the base-

line scenario, the healthy BMI parameter for older men was ranked ninth. In

the 10%, 14%, and 17% weight loss scenarios, this parameter was ranked third.

Holding other parameter values constant, as the value of the healthy BMI param-

eter for older men increases (towards zero), the projected incidence of diabetes
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decreases because (a) there are fewer overweight individuals in the population,

which would increase the population incidence of diabetes, and (b) there are more

healthy weight individuals in the population affected by the weaker healthy weight

parameter. Each of these factors combined means that the remaining model pa-

rameters exert more influence on projected diabetes incidence, especially the in-

tercept parameter. The overall effect, then, is to reduce the projected incidence of

diabetes at the population level.

Another consistent finding to note is that some model parameters had very

little influence on forecast uncertainty. Among men, the smoking status, income,

heart disease, and visible minority parameters only weakly influenced forecast un-

certainty. In most cases, the absolute value of the PRCC for these parameters did

not exceed 0.15.

Results of the probabilistic sensitivity analysis for women were slightly differ-

ent. Similar to the results for men, the intercept parameter exerted the greatest

influence on forecast uncertainty across all scenarios. In all cases, larger values

of the intercept coefficient were associated with lower projected incidence rates.

The scale parameter was also associated with higher projected incidence rates.

Unlike the results for men, the scale parameter was not consistently the second

most important parameter influencing forecast uncertainty. Instead, the BMI pa-

rameters for women aged 65+ tended to be more influential than the scale param-

eter. Across all weight loss scenarios, the PRCC for these parameters was negative.

Thus, larger values (i.e., values that move towards zero) produced lower projected

incidence rates. Again, this result seems counter-intuitive. However, as the ef-

fect for these parameters become weaker, there is less influence of older healthy

weight or underweight women in the model. This means that projected incidence

rates are influenced by the remaining parameters in the model. Since the DPoRT

model uses the youngest age group and lowest body weight group as the refer-

ence parameter (which is associated with the intercept parameter), the intercept

parameter indirectly gains more influence. This is why larger, less negative values

of the healthy weight and underweight parameters for older women reduce the

forecast incidence of diabetes in the weight loss scenarios.

Response surface plots illustrate how diabetes incidence changes as a func-

tion of using different randomly sampled values for DPoRT model parameters. A
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response surface plot is based on a linear regression of projected incidence rates

on the randomly sampled model coefficients. These plots illustrate how changes

in one parameter will affect projected incidence while holding a second param-

eter (and all other model parameters) constant. Figure 5.9 presents six response

surface plots of projected incidence under the baseline, 10% weight loss, and 17%

weight loss scenarios for men and women, respectively. In these plots, the effect

of the intercept parameter was plotted against the overweight parameter for the

oldest men (aged 45+) and women (aged 65+). Weaker (less negative) values of the

overweight parameter for older men produced lower projected incidence rates in

the baseline scenario. This would be expected because weaker values for this pa-

rameter remove its influence on projected incidence, while more negative values

would increase its influence on projected incidence. In the 10% weight loss sce-

nario, weaker values of the overweight parameter have little effect on projected

diabetes incidence. In the 17% weight loss scenario, weaker values for this pa-

rameter increase projected incidence. In this case, due to population weight loss,

there would be fewer individuals in this category and, as a result, more in lower

body weight categories. Increasing the value of this coefficient means that this pa-

rameter has less influence on projected incidence while the lower body weight pa-

rameter, if held constant, has more influence. The net effect is to increase diabetes

incidence. Similar, but weaker, effects were seen for the overweight parameter for

women aged 65+.

5.3.3.2 Factors explaining variability in forecast uncertainty

The sensitivity index is another metric used to identify which model parameters

contribute most to forecast uncertainty. As described in Section 5.2.4, the sensitiv-

ity index ranges from 0 to 1 and can be interpreted as the proportion of variation

in forecast incidence that is explained by each parameter in the DPoRT model. Ta-

bles 5.10 and 5.11 present the sensitivity index for each DPoRT parameter across

all modelling scenarios for men and women, respectively. For each scenario, the

five most influential parameters are ranked to easily identify which parameters

contribute most to forecast uncertainty. The sensitivity index was estimated in

SaSAT using regression models that regressed forecast incidence on each input
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parameter. The high coefficient of determination (R2) for each model suggests the

sensitivity index was reliably estimated (Hoare et al., 2008).

Overall, similar conclusions can be drawn from this analysis as from the partial

rank correlation analysis. For male- and female-specific forecasts, the intercept

parameter is the most important parameter influencing uncertainty, explaining

36% to 50% of the variation in forecast uncertainty in men and as much as 58%

of the variation in women. Moreover, the intercept parameter explained a greater

amount of variation in the baseline scenarios than in the 17% weight loss scenario.

Among men, the scale parameter was the second most influential parameter, ex-

plaining almost 30% of the variation in forecast uncertainty across all scenarios.

Among women, the scale parameter was less influential, explaining only 20% of

the variation in forecast uncertainty in the baseline scenario and only 11% of the

variation in forecast uncertainty in the 17% weight loss scenario.

Among men, the parameter for overweight men aged 45+ explained almost

10% of the variation in forecast uncertainty in the baseline model. This parameter

became less influential under greater weight loss scenarios. In the 17% weight loss

scenario, this parameter explained only 2% of the variation in forecast uncertainty

while the healthy weight parameter for men aged 45+ explained almost 16% of the

variation in forecast uncertainty. Among women, the parameters representing the

lowest BMI categories in the oldest women explained between 6% and 25% of the

variation in forecast uncertainty across all scenarios.

Based on either the partial rank correlation coefficient or the sensitivity index,

it is clear that the intercept and scale parameters from the DPoRT model exert the

greatest influence on forecast uncertainty. Even under different weight loss sce-

narios, these parameters explain a substantial amount of the variation in forecast

uncertainty. Having said that, certain model parameters representing different

body weight categories become more influential under the weight loss scenarios.

The combined results suggest that specific model parameters as well as the un-

derlying structure of the population at risk influence forecast uncertainty. What

is more, this analysis illustrates that a range of plausible changes in forecast in-

cidence might result from population level interventions designed to reduce the

five-year incidence of diabetes. Based on these results, substantial reductions in

population body weight would be required to meaningfully reduce the five-year
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incidence of diabetes. The range of uncertainty about projected incidence illus-

trates that small changes in body weight at the population level may only produce

small reductions in the future incidence of diabetes.

5.3.3.3 Geographic differences in forecast uncertainty

Results of the probabilistic sensitivity analysis presented thus far provide an over-

all picture of the factors that explain forecast uncertainty across the entire TropISM

population for metropolitan Toronto. However, Toronto’s population is heteroge-

neous and different neighbourhoods within the city have different demographic

profiles. As a result, it is reasonable to expect that uncertainty surrounding fore-

cast incidence might be influenced by different model parameters in different

neighbourhoods. Appendix B presents results of a probabilistic sensitivity anal-

ysis conducted at the neighbourhood level. For this analysis, the sensitivity index

was estimated for all DPoRT model parameters for each neighbourhood under the

baseline and 10% weight loss scenarios.11

Similar to the overall analysis, the intercept and scale parameters explained

the largest proportion of forecast uncertainty for both the baseline scenario and

the 10% weight loss scenario, irrespective of gender. However, the proportion of

forecast uncertainty explained by these model parameters varies across neigh-

bourhoods. In the baseline scenario among men (Appendix B, Figure B.5), the

intercept parameter accounts for as little as 40% of forecast uncertainty in some

areas of Toronto. However, it explains more than 50% of forecast uncertainty in

the waterfront neighbourhoods of Toronto as well as in some areas of Etobicoke

and Scarborough. Similar patterns were seen among women, where the intercept

parameter explained as much as 60% of forecast uncertainty (Figure B.6).

Figures B.5 (men) and B.6 (women) present neighbourhood-specific estimates

of the sensitivity index for the DPoRT model parameters that contribute most to

overall forecast uncertainty. These figures also present neighbourhood-specific

estimates of the sensitivity index for the visible minority parameter. Among men,

11Table B.2 in Appendix B presents the coefficient of determination from the regression models used
to estimate neighbourhood-specific sensitivity indices across Toronto’s boroughs. All models had
very high values for the coefficient of determination (> 0.98). Thus, neighbourhood-specific sen-
sitivity indices were reliably estimated.
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the overweight parameter for older men (age 45+) explains more than 10% of fore-

cast uncertainty in some neighbourhoods (Figure B.5c) although it accounts for

less 10% of forecast uncertainty in many neighbourhoods. The healthy weight pa-

rameter for younger men (Figure B.5d) explains only a small proportion of forecast

uncertainty across all neighbourhoods. Interestingly, in some neighbourhoods,

visible minority status explains at least as much of the uncertainty in forecast di-

abetes incidence as some of the body weight parameters among men (5%–10%)

and women (9%–15%) alike. However, in many neighbourhoods, visible minority

status exerts little influence on forecast uncertainty.

As in the overall analysis, the neighbourhood-specific sensitivity analysis il-

lustrates that different model parameters exert a greater influence on forecast un-

certainty in the weight loss scenarios compared to the baseline scenario. Among

men and women alike, in the 10% weight loss scenario, both the intercept and

scale parameters explain smaller amounts of forecast uncertainty than under the

baseline scenario. Among men, the overweight BMI parameter among older men

explains 3%–19% of forecast uncertainty across all neighbourhoods in the baseline

scenario (Figure B.5c) while the healthy weight BMI parameter among older men

explains 7%–24% of outcome uncertainty in the 10% weight loss scenario (Fig-

ure B.7c). This result might be expected, given that weight loss in this subgroup is

where most of the weight loss would occur.

Another interesting finding that applies to the gender-specific forecasts un-

der either scenario is that the visible minority parameter exerts a negligible effect

on forecast uncertainty in almost all of Toronto’s neighbourhoods except in some

areas of north Scarborough, where there is a sizable visible minority population

(Figure A.1 in Appendix A). Thus, although visible minority status may only ac-

count for 5% of forecast uncertainty among men and as much as 15% of forecast

uncertainty among women, this parameter exerts more influence on forecast un-

certainty in these neighbourhoods compared other areas of Toronto.

These results indicate that neighbourhood-specific population profiles influ-

ence DPoRT model uncertainty. Moreover, these differences are maintained un-

der different modelling scenarios. For example, visible minority status remains

an important contributor to forecast uncertainty in some areas of Scarborough,

even under the 10% weight loss scenario. This suggests that in spite of popula-
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tion weight loss, visible minority status still influences uncertainty, even if it only

accounts for a fraction of it (5%–15%). There are clearly areas within Toronto

where additional factors beyond weight loss should be considered when planning

population-level health promotion programs designed to encourage weight loss.

5.4 Discussion

5.4.1 Implications

Having developed the TropISM model of type 2 diabetes and its risk factors for

metropolitan Toronto, it was possible to forecast the five-year incidence of dia-

betes at the neighbourhood level using the Diabetes Population Risk Tool. An

initial scenario was developed assuming the baseline population of individuals

remained unchanged, retaining its initial risk factor profile. Under this scenario,

from 2006 to 2010, 4.9% of Toronto adults aged 20 and older were predicted to

develop diabetes. Previous studies of known and forecast incidence reported di-

abetes incidence rates of 4.1% (Lipscombe & Hux, 2007) and 4.7% (Manuel et al.,

2013), respectively, for the province of Ontario. These rates are broadly consistent

with the forecast incidence reported here using the simulated TropISM popula-

tion.

Using newly diagnosed cases of diabetes ascertained from the Ontario Dia-

betes Database from 2006 to 2010, the true incidence of diabetes, after removal

of false positive diagnoses, was estimated to be 5.8%. Although the DPoRT model

under-predicts diabetes incidence, the true incidence was within the range of fore-

cast uncertainty. Therefore, at an aggregate level, the DPoRT model was able to

forecast diabetes incidence reasonably well using the simulated TropISM popula-

tion. Sex-specific estimates of diabetes incidence also fell within the range of fore-

cast uncertainty, although the magnitude of under-prediction was greater among

men than women.

Forecast incidence varied across metropolitan Toronto; in the six boroughs,

incidence ranged from a low of 4.2% in Toronto to highs of 5.1% in North York

and 5.4% in Scarborough. This variation was also apparent at the neighbourhood

level, although forecasts for some neighbourhoods were more accurate than oth-

ers. Forecast incidence was lower than the true incidence of diabetes in several
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neighbourhoods within Scarborough and some neighbourhoods of north Etobi-

coke and west North York. In these neighbourhoods, DPoRT under-predicted true

incidence by 2.3 percentage points, on average. Conversely, DPoRT over-predicted

incidence in some parts of Toronto, although the magnitude of over-prediction

was much smaller (0.84 percentage points, on average).

In spite of these absolute differences between true and forecast incidence,

DPoRT seemed capable of capturing broad spatial patterns in diabetes incidence

at the neighbourhood level. Neighbourhoods having elevated forecast incidence

rates differed from those having lower rates. In particular, neighbourhoods whose

populations were comprised of larger percentages of (a) women age 65 or older,

(b) immigrants, (c) visible minorities, and (d) smaller percentages of high income

earners had higher forecast incidence rates in the baseline scenario. Conditioned

choropleth maps suggest that these neighbourhoods clustered in particular areas

of metropolitan Toronto. For instance, neighbourhoods whose population was

comprised of greater than the metropolitan median percentage of women aged

65+ and immigrants tended to have higher forecast incidence rates than other

neighbourhoods in Toronto. Most of these neighbourhoods were located in North

York and Scarborough. Thus, the demographic composition of neighbourhoods

clearly influences forecast incidence using the DPoRT model.

As discussed in Chapter 4, the TropISM model under-predicted the true preva-

lence of several risk factors used by the DPoRT model to forecast diabetes inci-

dence. In spite of this, the model was able to replicate broad spatial patterns in

diabetes incidence, even though forecasts in some neighbourhoods were less ac-

curate than in others. These results suggest that the spatial patterns of some risk

factors (e.g., body weight) may be approximately correct, since the DPoRT model

was able to replicate spatial patterns in diabetes incidence. In addition, simulated

neighbourhood populations were accurately replicated for several demographic

factors used by the DPoRT model, including sex, age, education, ethnicity, and

immigrant status. Because these factors were used as constraint variables to de-

velop TropISM, their accurate replication may have contributed to more accurate

forecasts of diabetes incidence.

Another factor which may have contributed to more accurate forecasts of dia-

betes incidence is the way in which the DPoRT model was developed. In particu-
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lar, this model linked respondents from the Ontario subsets of the 2001 and 2003

Canadian Community Health Surveys to the Ontario Diabetes Database (Rosella

et al., 2014). Respondents were followed to 2011 to determine whether they de-

veloped diabetes. Because survey data are subject to self-report biases, includ-

ing undiagnosed cases of important risk factors (e.g., hypertension), the regres-

sion model, upon which DPoRT is based, predicted diabetes status in 2011 using

survey responses subject to these biases. In other words, the DPoRT model was

calibrated to predict diabetes status from data containing inherent biases. Thus,

even though the simulated TropISM population under-predicts the prevalence of

important risk factors, the simulated data could still be used to forecast diabetes

incidence over a five-year time period.

Since forecast incidence was more accurately replicated at the neighbourhood

level than diabetes prevalence, it was possible to conduct policy simulations to

predict the potential impact of population weight loss on reductions in diabetes

incidence. It should be recognized, however, that if the spatial distribution of ex-

cess body weight (BMI ≥ 25 kg/m2) was not accurately replicated, this bias would

influence the conclusions drawn from these policy simulations. Given that DPoRT

was able to forecast the overall incidence of diabetes reasonably well, and given

that broad spatial patterns in forecast incidence appear to be replicated, there is

some reason to believe that broad spatial patterns of overweight and obesity were

replicated as well. Therefore, although the magnitude of forecast reductions in in-

cidence may not be accurate, the purpose of these policy simulations was to assess

how incidence differentially changes across neighbourhoods within metropolitan

Toronto as a function of population changes in body weight. These types of sce-

narios provide insight into how incidence rates might be reduced in different areas

of the city. Public health planners can use this information to allocate appropriate

health promotion programs to neighbourhoods expected to benefit most.

The weight loss scenarios developed in this research demonstrate that sub-

stantial reductions in body weight are required in the high-risk population (BMI ≥
25 kg/m2) before a noticeable reduction is observed in the five-year incidence of

diabetes. If the entire high-risk population lost 4.2kg of its baseline body weight,

on average, overall diabetes incidence in metropolitan Toronto might decrease by

just 0.2 percentage points, from 4.84% to 4.64%. If 80% of the high-risk popula-
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tion lost 10% of its baseline body weight, the five-year risk of diabetes might only

decline to 4.58%. Across metropolitan Toronto, a reduction in diabetes incidence

of one percentage point requires that all high-risk individuals lose 17% of their

baseline body weight.

These scenarios demonstrate the challenges faced by health promotion pro-

grams; not only is it difficult for individuals to lose excess body weight and main-

tain those losses (Wu, Gao, Chen, & van Dam, 2009), on a population level, weight

loss strategies in and of themselves may only produce small reductions in the fu-

ture incidence of diabetes. Findings from Manuel et al. (2013) corroborate this

conclusion. Those results suggest that if the entire population of adults in On-

tario had a 3.5% lower BMI, 38,500 new cases of diabetes could be prevented over

a five-year period. This translates into an absolute reduction in incidence of 0.47

percentage points, from 4.68% to 4.21%.

In spite of small projected reductions in incidence, it is necessary to contextu-

alize these findings. Even though large, sustained reductions in population body

weight are required to produce small reductions in diabetes incidence, body weight

in Canada has risen steadily since 1978, when an estimated 14% of Canadians were

obese (BMI ≥ 30 kg/m2). By 2008, the prevalence of obesity increased to 25%. Es-

timates based on self-reported data show similar increases in obesity prevalence:

in 1985, 6% of Canadians were obese according to the Canadian Health Promo-

tion Survey. This increased to 18% in 2009 (Public Health Agency of Canada and

the Canadian Institute for Health Information, 2011). Regardless of whether mea-

sured or self-reported BMI is used to define obesity, these estimates demonstrate

that over a 25–30 year period, the prevalence of obesity increased by at least 11

percentage points. This being the case, sustained weight loss on a population

level requires a long time horizon. Health promotion programs focusing on weight

loss alone seem insufficient to effectively reduce diabetes incidence. As Manuel et

al. (2013) point out, effective strategies require multiple health promotion inter-

ventions and societal changes, including changes to the built environment that

promote active transportation (i.e., walking or cycling to work), expanded access

to urban green space to promote physical activity, and policies that enable con-

sumers to make healthier food choices.

Although the scenarios developed here project the potential impact of weight
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loss on future diabetes incidence, their static nature assumes that weight loss is the

only factor that influences incidence. Although the DPoRT model uses several risk

factors to forecast incidence, these scenarios do not consider potential feedback

between weight loss and concomitant reductions in hypertension or heart disease

that might further influence the risk of developing diabetes. In other words, weight

loss might produce better control of blood pressure which may improve cardio-

vascular health. All of these improvements may act together to produce greater

reductions in forecast incidence than weight loss alone.

At the neighbourhood level, these scenarios demonstrate that weight loss dif-

ferentially influences diabetes incidence throughout metropolitan Toronto. Re-

ductions in incidence are expected to be larger in some neighbourhoods com-

pared to others. This appears to be the result of the population structure within

specific neighbourhoods. In other words, the initial distribution of body weight

in a particular neighbourhood influences the average reduction that occurs under

the different scenarios. Neighbourhoods composed of populations that are, on

average, heavier will lose greater amounts of body weight under the same weight

loss scenario than populations that are, on average, lighter. However, this does

not necessarily translate into greater reductions in diabetes incidence. The spatial

pattern of results suggests that other factors in conjunction with weight loss influ-

ence forecast incidence. Under almost every weight loss scenario, several neigh-

bourhoods within Scarborough were predicted to experience greater than average

reductions in incidence even though the baseline prevalence of overweight and

obesity is lower in these neighbourhoods. What is unique to these neighbour-

hoods is their demographic composition: many of them have large visible minor-

ity and immigrant populations.

This result is best highlighted by comparing forecast incidence under the base-

line and 17% weight loss scenarios. Compared to the baseline scenario, incidence

in some Scarborough neighbourhoods is expected to decline by as much as 1.3

percentage points under the 17% weight loss scenario. In some Toronto neigh-

bourhoods, however, incidence may only decline by one percentage point. This

is in spite of the higher mean prevalence of overweight in Toronto neighbour-

hoods compared to Scarborough neighbourhoods (42.2% vs. 39.0%, respectively).

However, Scarborough neighbourhoods have a greater proportion of visible mi-
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norities compared to Toronto neighbourhoods (67% vs 30%). Results from the

probabilistic sensitivity analysis support this conclusion. Although ethnicity gen-

erally exerted little influence on forecast uncertainty in most neighbourhoods, for

some neighbourhoods in Scarborough, ethnicity accounted for 5% to 15% of the

variation in forecast uncertainty. These findings support current clinical practice

guidelines that stress the importance of targeting culturally appropriate preven-

tion programs toward high-risk groups, including high-risk ethnic groups (Cheng,

2013).

One unique aspect of this research rarely seen in the spatial microsimulation

literature is the use of probabilistic sensitivity analysis (PSA) to assess uncertainty

surrounding microsimulation forecasts. Such an analysis underscores the idea

that forecast results can not be known with certainty and should be treated as

model-based projections. In other words, even though 4.9% of individuals living

in metropolitan Toronto might develop diabetes in a five-year period, the PSA sug-

gests five-year incidence might be as low as 4.2% or as high as 5.9%. This range of

results conveys the idea that the DPoRT model merely predicts what might happen

under a specific set of assumptions. In this case, it is reasonable to expect that if

the baseline population does not change, in terms of its underlying demographic

structure and health risk factor profile, then anywhere from 4.2% to 5.9% of the

population might develop diabetes over a five-year period.

The probabilistic sensitivity analysis also provides insight into which model

parameters exert the greatest influence on forecast incidence. With respect to the

Diabetes Population Risk Tool, overall results and neighbourhood specific results

point to the intercept and scale parameters as being the most influential. Since

these parameters are specific to the type of model used to develop the Diabetes

Population Risk Tool (i.e., an accelerated failure time regression model), it sug-

gests that the form of the model used to predict diabetes incidence influences the

uncertainty surrounding forecast rates. If a different model were used (e.g., a Cox

proportional hazards survival model), it is possible that different factors might ex-

ert more or less influence. Thus, even though a probabilistic sensitivity analysis

does not assess epistemic uncertainty, in this case, the results of the PSA suggest

the form of the model used to forecast diabetes incidence influences uncertainty.

Therefore, a more in-depth analysis could use different types of models to forecast
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risk to assess the robustness of forecast incidence under different model forms. If

different models yield similar forecasts, then decision makers can place greater

confidence in forecast incidence, aiding potential decisions. For example, if fore-

cast incidence was consistently high in specific neighbourhoods under different

modelling scenarios, then it might be reasonable to target health promotion ef-

forts toward those neighbourhoods.

Another strength of the PSA is that it allows identification of which model pa-

rameters exert greater influence on forecast uncertainty in specific locations. In

other words, some parameters influenced forecast uncertainty to a greater de-

gree in some neighbourhoods compared to others. This was demonstrated most

clearly with the visible minority parameter in the DPoRT model. With the excep-

tion of some neighbourhoods in Scarborough, this parameter had negligible influ-

ence on forecast uncertainty in almost all of Toronto’s neighbourhoods. In Scar-

borough, however, the visible minority parameter accounted for as much as 15%

of the variation in forecast uncertainty, suggesting that in these neighbourhoods,

visible minority status is an important factor influencing incidence. Thus, the

probabilistic sensitivity analysis helped identify areas within Toronto that might

require different approaches to diabetes prevention, especially in light of the find-

ing that projected reductions in incidence were greater in these areas even though

initial body weight at the population level tended to be lower compared to other

neighbourhoods.

5.4.2 Limitations

Although forecast incidence was accurate for metropolitan Toronto as a whole and

for some of its neighbourhoods, forecasts were less accurate in other neighbour-

hoods. In particular, neighbourhoods in North Etobicoke, west North York, and

Scarborough had true incidence rates greater than the upper limit of forecast un-

certainty. Using the simulated TropISM population, DPoRT failed to accurately

capture the geographic variability in forecast incidence, even though it captured

broad spatial patterns. In other words, forecasts in some neighbourhoods were

noticeably lower than the true incidence. This may be the result TropISM’s in-

ability to capture the geographic variability in important risk factors used by the
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DPoRT model to forecast incidence. That is, if some risk factors were less accu-

rately predicted in these neighbourhoods relative to neighbourhoods in York or

Toronto, then the DPoRT model may be missing crucial information needed to

accurately forecast incidence.

Another factor that could have influenced DPoRT’s inability to forecast the

geographic heterogeneity in diabetes incidence lies in the construction and cal-

ibration of the DPoRT model itself. This model was developed using population

survey data from the province of Ontario (Rosella et al., 2014), a population that

is demographically different from the more ethnically diverse neighbourhoods of

metropolitan Toronto. A different set of model parameters, calibrated to the de-

mographic diversity specific to metropolitan Toronto may have produced more

accurate forecasts of diabetes incidence in Toronto’s more ethnically diverse neigh-

bourhoods.

In summary, local spatial microsimulation models may have produced more

representative neighbourhood populations, with respect to health risk factor pro-

files, which may have enabled more accurate forecasts of incidence in some neigh-

bourhoods. In addition, DPoRT models using different parameter values for dif-

ferent communities may have permitted more accurate forecasts of diabetes in-

cidence in some neighbourhoods. One way such variation might be captured is

through the use of mixed-effects prediction models, that incorporate random in-

tercepts and/or slopes to capture differences between neighbourhoods in risk pre-

diction. Although conceptually attractive, such models might be more difficult to

estimate in practice, as they would require obtaining diagnostic information about

diabetes cases at more granular levels. Both of these solutions, however, should be

considered in future studies that attempt to forecast diabetes incidence at increas-

ingly refined levels of geography.

As noted in Section 4.4.1, the TropISM model was developed using data from

the 2006 Canadian census. Because it is a static microsimulation model, TropISM

does not account for temporal changes in population structure. As the proba-

bilistic sensitivity analysis demonstrates, population structure influences forecast

uncertainty. If the demographic structure of Toronto’s neighbourhoods changed

in important ways over the forecasting period, then projected diabetes incidence

could be systematically biased. For example, if a neighbourhood’s composition
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changed due to gentrification, demographically, that neighbourhood’s popula-

tion might be younger and wealthier at the end of the forecast period compared

to the beginning. This might result in artificially high forecast incidence in that

neighbourhood as older people who are more likely to develop diabetes may have

moved out of the neighbourhood.

However, population growth did not seem to influence whether incidence was

more or less accurately forecast across neighbourhoods. On average, population

growth across neighbourhoods did not differ according to whether or not true

neighbourhood incidence fell below, within, or above forecast uncertainty (Ta-

ble B.1).

Given DPoRT produced less accurate forecasts in some neighbourhoods un-

der the baseline scenario, it is necessary to consider how such underestimation

may influence predicted reductions in incidence under the different weight loss

scenarios. If body mass index were underestimated at the neighbourhood level,

then the weight loss scenarios developed for this research may also have down-

wardly biased reductions in diabetes incidence that might occur as a result of

weight loss. Although this may be the case, part of the utility in examining dif-

ferent weight loss scenarios is to understand (a) how incidence is influenced by

weight loss and (b) how changes in incidence vary over geographic space. Thus,

even though population body weight may not have been accurately replicated in

the baseline TropISM population, it would still be possible to assess the effect that

weight loss has on changes in incidence and how those changes vary across neigh-

bourhoods.

A more difficult problem to address is differential bias in baseline body weight.

That is, if the prevalence of overweight and obesity were more accurately repro-

duced in some neighbourhoods compared to others, it becomes more difficult

to assess how forecast incidence might change over geographic space. Unfortu-

nately, the baseline prevalence of body weight could not be validated using the

incidence of cancers associated with obesity. Therefore, potential geographic dif-

ferences in forecast reductions need to be interpreted cautiously. However, fore-

cast reductions under the 14% and 17% weight loss scenarios revealed that reduc-

tions were largest in the neighbourhoods of north Etobicoke, west North York, and

Scarborough. Although forecast incidence was less accurate in these neighbour-
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hoods, it is important to note that the populations of these neighbourhoods are

comprised of larger proportions of visible minorities. Previous research suggests

that weight gain in ethnic groups may be associated with greater risk of developing

diabetes (Shai et al., 2006). Thus, it may also be the case that weight reductions in

ethnic groups produce greater reductions in risk, consistent with the forecast re-

ductions in these neighbourhoods. This finding is also consistent with the results

of the probabilistic sensitivity analysis that suggest the ethnicity parameter from

the DPoRT model was responsible for as much as 15% of the variation in forecast

uncertainty in some of Scarborough’s neighbourhoods. Therefore, although dia-

betes incidence was not accurately forecast in these neighbourhoods, the spatial

patterns of forecast reductions in incidence as a function of weight loss observed

in this study may still be valid (Figure 5.8).

Results from the probabilistic sensitivity analysis may also shed some light on

whether inaccuracies in the baseline prevalence of risk factors biased forecast di-

abetes incidence. For example, neighbourhoods having higher values of the sen-

sitivity index for some of the body weight parameters (Appendix B) represent lo-

cations where those parameters exerted greater influence on forecast uncertainty.

If forecast incidence in these areas is less accurate (compared to known incidence

rates), then forecast rates should be treated with greater caution. This type of as-

sessment helps contextualize the results and the may suggest which model pa-

rameters might produce biased forecasts.

Another limitation that should be considered is the inability of the DPoRT

model to produce stratified forecasts of diabetes incidence by comparable age-

sex groups. Although the DPoRT model produces separate forecasts of diabetes

risk by sex, the age groups used by the model differ for men and women. As a re-

sult, while it is possible to obtain detailed population estimates of diabetes risk for

women aged 65 and older, the same is not true for men. This is because the DPoRT

model uses separate body mass index parameters for two age groups in men (20–

44 and 45+) but three age groups in women (20–44, 45–65 and 65+). As a result,

forecasts for men 65 and older are calibrated by the BMI parameters specific to a

larger age group than they are for women. Thus, risk estimates for men age 65+

are downwardly biased. Future versions of the DPoRT model may consider us-

ing the same age groups for both men and women in order to obtain comparable
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estimates of diabetes in all age groups.

At a neighbourhood level, this difference may have contributed to some of the

results observed here. Specifically, forecast incidence was found to be higher in

neighbourhoods whose populations had higher than the median percentage of

women aged 65 and older. This finding is counter-intuitive given that older men

face a greater risk of developing diabetes. However, because the DPoRT model

pools all men aged 45 and older to estimate population level risk, this counter-

intuitive finding is, in all likelihood, a function of the DPoRT model. This result

also underscores that model form contributes to epistemic uncertainty. Different

model forms (i.e., a different parametrization of the DPoRT model) may produce

different, and possibly conflicting, results. Results from the validation of forecast

incidence support this conclusion. Specifically, forecast counts of diabetes were

closer to true counts among women across all neighbourhoods than they were

among men. This greater degree of accuracy might result from the sex-specific

parameterization of the Diabetes Population Risk Tool.

5.4.3 Summary

In summary, this research provides preliminary evidence that it is possible to fore-

cast the five-year incidence of diabetes at the neighbourhood level using the Di-

abetes Population Risk Tool. Even though incidence was not accurately forecast

in all neighbourhoods of metropolitan Toronto, at an aggregate level, the true in-

cidence of diabetes fell within the range of forecast uncertainty. Moreover, the

DPoRT model captured broad spatial patterns in diabetes incidence using the sim-

ulated TropISM population. Future research should identify ways to more accu-

rately forecast incidence at the neighbourhood level, which may involve produc-

ing more accurate simulated populations that better reflect the true health risk

factor profile across all small area populations. It may also involve using different

forms of the forecasting model in populations that differ substantially from the

overall population. For example, it may be possible to estimate different forms

of the DPoRT model using demographically unique populations. Different model

forms could then be used for diverse communities to improve forecast accuracy.

In addition, future research may consider more dynamic ways to forecast inci-
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dence that allow greater flexibility in predicting how incidence might change as a

function of changes in the population at risk. For example, a more dynamic model

may consider feedback between weight loss and concomitant improvements in

blood pressure and reduced risk of heart disease. All of these factors combined

may result in a better ability to predict how incidence might change as a function

of health promotion programs. Such refinements can improve the utility of spatial

microsimulation models and risk prediction models for public health planners,

allowing them to better incorporate model results into practical decisions of plan-

ning and delivering health promotion programs to neighbourhoods where they

are needed most.
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Chapter

6
Spatial Accessibility to Health

Promotion Programs

6.1 Rationale

In order to minimize the population burden of type 2 diabetes, there needs to be

a sufficient supply of resources dedicated to (a) preventing the disease in high-

risk groups and (b) effectively managing it among diabetics. In high-risk groups,

weight loss can significantly reduce the risk of developing type 2 diabetes. Ap-

plied to the TropISM model, the Diabetes Population Risk Tool demonstrates how

the incidence of diabetes might change at the neighbourhood level under differ-

ent risk reduction strategies. Given that risk factors and disease incidence are not

evenly distributed over geographic space, spatial accessibility to disease preven-

tion and management programs is an important consideration when planning

their delivery.

Accessibility to health services is a multi-factorial concept that encompasses

not only geographic accessibility but also availability, affordability, accommoda-

tion (e.g., wait times), and acceptability (e.g., patient perceptions of service provi-

sion, see Cromley & McLafferty, 2012; Schuurman, Bérubé, & Crooks, 2010). Geo-

graphic accessibility is concerned with the relative difficulty by which health ser-

vices can be reached from different locations. It incorporates spatial proximity to
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health services, where proximity is influenced by distance, travel time, and travel

costs. Two main types of geographic access to health services can be defined: re-

vealed access and potential access. Revealed access is concerned with the actual

utilization of health services while potential access is concerned with probable ac-

cess to services. Potential access depends on (a) the supply of physicians, practi-

tioners, and/or services, (b) the population demand for those services, and (c) the

proximity between supply and demand (Luo & Qi, 2009; Wan, Zhan, Zou, & Chow,

2012). Potential accessibility further depends on the supply of similar services

in neighbouring communities. Thus, potential accessibility considers proximity

to multiple service providers, all of whom are distributed throughout geographic

space. Empirical studies of revealed accessibility demonstrate that an inverse re-

lationship exists between proximity to health services and utilization of those ser-

vices (Cromley & McLafferty, 2012). This frictional effect of distance, known as

“distance decay,” varies for different types of services. What is more, distance

decay tends to be regionally and temporally specific (Wang, 2006). Sociodemo-

graphic factors, such as language or income, may exacerbate the effect of distance

on utilization of health services (Cromley & McLafferty, 2012).

Different methods exist to measure geographic accessibility to health services.

One of the simplest involves estimation of provider-to-population ratios within

specific geographic regions (Luo & Wang, 2003). Although these ratios are easy to

interpret, a crucial limitation is that they only measure the supply of health ser-

vices within one specific region. They cannot incorporate cross-border accessibil-

ity, where some segments of the population might travel outside their immediate

neighbourhood to access services (Joseph & Phillips, 1984; Luo & Wang, 2003; Mc-

Grail & Humphreys, 2009). Spatial interaction models have been used to overcome

this limitation (Wan et al., 2012). These models measure the movement of people

or products between geographic locations (Rodrigue, Comtois, & Slack, 2006).

Previous studies combined spatial interaction models with spatial microsimu-

lation estimates of disease prevalence to estimate geographic accessibility to physi-

cians (Morrissey, Ballas, Clarke, Hynes, & O’Donoghue, 2013b; Morrissey, Clarke,

Ballas, Hynes, & O’Donoghue, 2008; Morrissey, Clarke, & O’Donoghue, 2013a).

Small area counts of disease prevalence are used to estimate the demand for health

care while the locations and number of health care providers estimate the supply
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of services across geographic space. The models used by Morrissey et al. (2013b,

2008, 2013a) produce indices of spatial accessibility but lack an intuitive inter-

pretation. Other types of spatial interaction models suffer this same shortcom-

ing (e.g., Joseph & Bantock, 1982; Joseph & Phillips, 1984). In response, Luo and

Wang (2003) developed the two-step floating catchment area model that measures

geographic accessibility in terms of provider-to-population ratios.

As its name suggests, the two-step floating catchment area model estimates

geographic accessibility in two steps. Given a set of j health service locations and

k population locations, where k might represent the population weighted centroid

of small area k, the provider-to-population ratio R j for site j is estimated as:

R j =
S j∑

k∈dk j≤d0
Pk

(6.1)

where:

S j is the total supply of physicians or health care providers at location j ,

Pk is the total population at location k, and

dk j ≤ d0 represents all locations where the distance between health service

location j and population location k is less than a predefined threshold dis-

tance d0.

The second step sums R j for all health service locations lying within the thresh-

old distance d0 for small area i (i.e., di j ≤ d0). In other words, the accessibility

index Ai for small area i is estimated as

Ai =
∑

j∈{di j≤d0}
R j . (6.2)

Larger values of Ai indicate greater accessibility. Measuring spatial accessibility

this way assumes that all service locations beyond the threshold distance d0 are

inaccessible to the population residing in small area i . Conversely, all service lo-

cations lying within the threshold distance d0 are equally accessible to the popu-

lation residing in small area i .

The threshold distance d0 is commonly computed in terms of travel time. Val-

ues of d0 should be chosen according to the type of service modelled (Cromley
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& McLafferty, 2012); larger values produce greater spatial smoothing of region-

specific accessibility scores (Wang, 2006). Lee (1991) suggests a value of 30 min-

utes for measuring physician accessibility, although larger values should be used

if the study region contains both urban and rural areas (Delamater, 2013). Thresh-

old values lying between 30–60 minutes are commonly used in studies measuring

spatial accessibility to health care providers (see Luo & Qi, 2009; Luo & Wang, 2003;

McGrail & Humphreys, 2009; Wan et al., 2012; Wang & Luo, 2005).

Although the 2SFCA model has an intuitive interpretation and is easy to imple-

ment in standard GIS software packages (Luo & Wang, 2003), it has been criticized

for its inability to meaningfully incorporate distance decay because service loca-

tions are treated as either accessible or inaccessible. Those that are accessible are

given equal weight, regardless of whether they are five or thirty minutes from pop-

ulation location i . A more general two step model is defined by

Ai =
n∑

j=1

[
S j f (di j )(∑m

k=1 Pk f (dk j )
)]

(6.3)

where f (d) is a generic distance decay function used to compute distance decay

weights that differentially weight accessibility scores for any given location ac-

cording to the distance between service locations and population centroids (Wang,

2012). The distance decay function may be modelled using a Gaussian function,

f (di j ) = exp−d 2
i j /β, where di j represents the distance between locations.1 Note

this function allows for a continuous decay rate so that populations located farther

from health service locations are less likely to visit those locations. Further note

that β is an empirically derived parameter that controls distance decay (Kwan,

1998; Luo & Qi, 2009). In the case of accessibility to health services, β would be

estimated from the trips patients make to health service providers (Kwan, 1998;

Luo & Qi, 2009; Rodrigue et al., 2006; Wang, 2006). Since this information is rarely

available (Schuurman et al., 2010), Kwan (1998) suggests using values of β that

approach zero at distances beyond which few people would travel to that service.

Regardless of the exact form of the 2SFCA model used to estimate spatial ac-

cessibility, any such model depends on assumptions which may or may not be rea-

1Other possibilities include an inverse power function and an exponential function. The Gaussian
function is often preferred over the others because the rate of decay is less pronounced for locations
that are closer together (Kwan, 1998).
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sonable under different circumstances. Thus, as McGrail and Humphreys (2009)

note, the results of these models need to be interpreted cautiously. However, as an

exploratory tool, these models can provide insights into identifying areas where

there may be an insufficient supply of diabetes management and prevention ser-

vices. Combined with other sources of evidence (e.g., prevalence of chronic dis-

ease risk factors in the same locations), these methods provide program planners

with additional information that can be used to enhance health service access and

delivery.

6.1.1 Study objectives

This study demonstrates how disease and risk factor prevalence estimates from

TropISM can be combined with a two-step floating catchment area model to con-

duct an exploratory analysis of spatial accessibility to diabetes management and

prevention programs. The potential demand for these services is estimated from

simulated counts of the number of cases of (a) type 2 diabetes and (b) overweight

and obesity for each of Toronto’s 140 neighbourhoods. Spatial accessibility to dia-

betes management programs will be assessed by determining the locations of di-

abetes education programs. Similarly, locations of community recreation centres

(including YMCAs) will be used to measure potential access to diabetes prevention

programs. This analysis assumes that diabetes prevention programs can be deliv-

ered by recreation centre staff. These assumptions are reasonable given that Ali et

al. (2012) found that lay community members are just as effective in motivating

weight loss in high-risk individuals as medical and allied health professionals.

The results of this exploratory analysis can be used to identify areas within

Toronto that have relatively poor access to diabetes management and preven-

tion programs. In this case, the overall level of accessibility in any one neigh-

bourhood is less important than relative differences in access between neighbour-

hoods. Neighbourhoods having poor access to programs and a high burden of

disease likely require additional health promotion resources.
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6.2 Methods

6.2.1 Data sources

Several data sources were used to measure spatial accessibility to diabetes man-

agement and prevention programs. TropISM model outputs were used to esti-

mate the demand for management and prevention services in each of Toronto’s

140 neighbourhoods. The simulated number of type 2 diabetics living in each

neighbourhood defined the population requiring access to diabetes management

programs; in other words, the denominator of Equation 6.3. Similarly, the simu-

lated number of overweight people (BMI ≥ 25 kg/m2) within each neighbourhood

defined the demand for prevention services. The supply of services was defined by

the number of diabetes education programs within Toronto; this supply was used

in the numerator of Equation 6.3. Likewise, to estimate accessibility to preven-

tion services, the 2SFCA model used the number of community recreation cen-

tres within Toronto. Locations of each type of service were ascertained from pub-

licly available data sources. In the case of diabetes education programs, data from

the Government of Ontario were used to determine the location of each program

within Toronto (http://www.ontario.ca/locations/health/). Location data for all

recreation centres and YMCAs within the city were extracted from parks and recre-

ation datasets available from the City of Toronto’s Open Data Initiative (City of

Toronto, 2013c). To estimate accessibility to prevention programs, it was assumed

that facilities already providing community based fitness programs served as prox-

ies for the types of facilities that could deliver diabetes prevention programs. All

recreation centres within Toronto offering adult fitness programs, including car-

diovascular and/or conditioning programs, were classified as potential sites for

the delivery of diabetes prevention programs. In addition, potential sites had to

contain at least one multi-purpose room, where group-based diabetes prevention

and lifestyle modification classes could be delivered (Ackermann & Marrero, 2007;

Ali et al., 2012).

All location data were geocoded using street network data for Toronto; these

data were also obtained from the City’s Open Data Initiative. The QGIS software

package (Version 2.6) was used to geocode address data to geographic coordi-

nates using the “MMQGIS” plugin (QGIS Development Team, 2009). Population
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weighted centroids for each neighbourhood were computed using shapefiles de-

lineating census tracts within Toronto, obtained from the University of Water-

loo’s Geospatial Data Centre. Population weighted centroids for each neighbour-

hood were computed using the population in each census tract along with its ge-

ographic centroid. Thus, if neighbourhood j contained n j census tracts, the pop-

ulation weighted centroid for that neighbourhood was computed as:

x j =
∑n j

i=1 pi xi∑n j

i=1 pi

, y j =
∑n j

i=1 pi yi∑n j

i=1 pi

where:

x j and y j represent the x and y coordinates of the weighted neighbourhood

centroid,

xi and yi represent the x and y coordinates of the i th census tract compris-

ing neighbourhood j , and

pi represents the population of the i th census tract (Luo & Wang, 2003).

6.2.2 Model parameters

Table 6.1 summarizes the parameters used to model spatial accessibility to di-

abetes management and prevention programs. A Gaussian decay function was

used to estimate accessibility to each type of service. Following Lee (1991) and Luo

and Wang (2003), a threshold distance of 30 minutes was used to define whether

diabetes education programs were accessible to the population of diabetics living

in each of neighbourhood. A gradual decay function was used (β = 440) under

the assumption that most people would be willing to travel up to 30 minutes for

diabetes management services. Stronger decay effects were used to model spatial

accessibility to diabetes prevention programs, under the assumption that people

would be less willing to travel greater distances to access prevention programs,

such as cardiovascular fitness programs. Therefore, a threshold distance of 20

minutes was used along with a steeper distance decay function (β= 195).

185



6 Spatial Accessibility to Health Promotion Programs

Table 6.1 also lists the total supply of services within Toronto. Overall, 64 dia-

betes education programs were identified; of these, 48 were determined to be gen-

erally available to type 2 diabetics (i.e., “unrestricted” programs not limited to hos-

pital inpatients or patients belonging to a particular physician practice). Of these

48 programs, 30 were restricted to patients living within defined communities of

Toronto (e.g., areas bounded by specific streets or entire boroughs). However, to

simplify accessibility modelling, these restrictions were ignored.

Similarly, 148 community recreation centres (including five YMCAs) were iden-

tified within Toronto. Of these, 70 offered some type of cardiovascular fitness

program and housed a multi-purpose room which could be used for classroom

sessions. These 70 recreation facilities were selected as possible locations where

diabetes prevention programs could be delivered in community settings. Spatial

accessibility for each type of service was estimated using both sets of values as

supply parameters in the 2SFCA model.

One limitation of the 2SFCA model is that spatial accessibility estimates are

potentially downward biased near the borders of the study area (Luo & Wang, 2003;

Wan et al., 2012). This bias is the result of “edge effects” wherein boundary neigh-

bourhoods can only access services located within the City of Toronto. Although

this might be a realistic assumption in some cases, it is possible that residents of

these boundary neighbourhoods travel outside City limits to services located in

Mississauga, Brampton, Vaughan, Markham, or Pickering. As a result, lower levels

of spatial accessibility to services in boundary neighbourhoods need to be inter-

preted cautiously.

6.2.3 Data analysis

Wang and Luo (2005) describe how the 2SFCA model can be implemented in a

geographic information system (GIS). Although they implemented the entire rou-

tine in ArcGIS, they note that a GIS is only needed to compute travel times be-

tween supply and demand locations. Once a matrix of travel times is computed,

the remainder of the calculations can be performed using standard statistical soft-

ware packages. Travel times between supply and demand locations were calcu-

lated using a local server version of the Open Source Routing Machine (Luxen,
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Firebaugh, & Niklaus, 2014; Sabas, 2014) and a local copy of OpenStreetMap data

for the City of Toronto (OpenStreetMap Wiki, 2014). OSRM uses “contraction hi-

erarchies” to find the shortest path between two locations (Batz, Geisberger, &

Sanders, 2008; Fairhurst, 2014; Sanders, Schultes, & Delling, 2008). Having com-

puted travel times between all service locations and population weighted cen-

troids, the 2SFCA model was estimated using R (see Appendix D). Estimates of spa-

tial accessibility to diabetes education centres and community recreation facilities

were summarized for neighbourhoods within each of Toronto’s six boroughs while

neighbourhood-specific estimates were displayed cartographically. Note that the

accessibility index for diabetes education programs was reported as the number of

programs per 1000 diabetics; for community recreation centres, the accessibility

index was reported as the number of programs per 10,000 people at risk.

In addition, a relative “spatial access ratio” (SPAR) was reported (Wan et al.,

2012). This ratio was computed by dividing neighbourhood-specific accessibility

indices by the average accessibility index for the entire city. A ratio < 1 indicates

that a given neighbourhood has relatively lower access to programs compared to

the citywide average while a ratio > 1 indicates a neighbourhood has relatively

higher access. A ratio equal to 1 means that access in a particular neighbourhood

is the same as the overall average.

Validation of spatial accessibility. In order to validate the spatial patterns of ac-

cessibility to diabetes education programs, the known number of diabetes cases,

ascertained from the Ontario Diabetes Database, was used as the demand param-

eter for the 2SFCA model. Again, the number of cases was corrected for false pos-

itives and removal of type 1 diabetes cases. Following model estimation, neigh-

bourhoods were classified into quintiles based on the simulated and known de-

mand for diabetes education programs. The overall % agreement and Cohen’s κ

were used to assess the similarity in the broad spatial classification of accessibility

estimated using simulated and known demand. Choropleth maps of accessibil-

ity were also compared to ascertain the degree of similarity between the two sets

of accessibility estimates. No validation could be conducted for accessibility to

recreation centres because the known number of cases of overweight and obesity

were unavailable.
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6.2.4 Neighbourhood characteristics associated with accessibility

Measures of spatial accessibility to health promotion programs provide an indica-

tion of which neighbourhoods may have relatively lower access to those programs

compared to others. This information can be used to direct additional resources to

those neighbourhoods requiring them. Given low access neighbourhoods might

be systematically different from high access neighbourhoods, it is useful to exam-

ine the demographic characteristics of neighbourhoods by relative spatial access.

Neighbourhoods were classified into three groups according to whether their

accessibility index was lower, similar to, or higher than the citywide average. Us-

ing results from the sensitivity analysis discussed in Section 6.2.5, neighbourhoods

whose 95% uncertainty bound contained the overall average were classified as

having “average” accessibility to health promotion programs. Neighbourhoods

whose upper 95% uncertainty interval was lower than the overall average were

classified as having “low” access while neighbourhoods whose 95% uncertainty

interval was greater than the overall average were classified as having “high” ac-

cess.

Linear spatial simultaneous autoregressive error models were then estimated

to test whether the average demographic characteristics of neighbourhoods dif-

fered by relative spatial access. Each demographic characteristic was regressed on

relative spatial access accounting for spatial autocorrelation between contiguous

neighbourhoods using a “rook” contiguity weight matrix. A likelihood ratio test

was used to test whether neighbourhood characteristics differed by spatial access

category. Spatial error models were estimated using the “spdep” package in R (Bi-

vand, 2015).

Local Moran statistics were also used to identify possible clusters of neigh-

bourhoods having relatively high or low simulated prevalence of type 2 diabetes

and overweight. In addition, local Moran statistics were used to identify clusters

of neighbourhoods having relatively high or low access to health promotion pro-

grams. Bivariate local Moran statistics were then used to examine the relationship

between simulated prevalence and spatial access to programs. Univariate and bi-

variate local Moran statistics were estimated in GeoDa (version 1.6.6.1). P-values

for local Moran statistics were computed in GeoDa to identify significant clusters
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using a permutation test (499 permutations) and then adjusted for multiple com-

parisons using the false discovery rate adjustment in R (Benjamini & Hochberg,

1995).

6.2.5 Uncertainty and sensitivity analysis

A probabilistic sensitivity analysis was also conducted for the 2SFCA model. For

this analysis, population demand (Pk ), travel time between population demand

and service locations (dk j ), the distance threshold (d0), and distance decay (β)

parameters were treated as uncertain inputs while the total number of services

remained fixed. Although β should be empirically derived (Kwan, 1998; Luo &

Qi, 2009), because this information is rarely available in practice (Schuurman et

al., 2010), the distributional properties of Pk , dk j and d0 are unknown. As a re-

sult, these uncertain parameters were sampled from a triangular distribution that

only requires minimum, maximum, and modal values (Table 6.1). Although there

are limitations of using a triangular distribution for probabilistic sensitivity anal-

ysis (Briggs & Sculpher, 2006), doing so permits random sampling of input pa-

rameters. Modal values for each input parameter were the same as those used to

conduct the main analysis while minimum and maximum values were selected

according to what might be considered reasonable values, defined below.

Population demand for services was derived from the simulated number of

prevalent cases of type 2 diabetes and the simulated number of overweight people

in the TropISM population.2 Using 100 replicates of the TropISM model, the differ-

ence between the 2.5th percentile and the median was used as the minimum value

for sampling from a triangular distribution. The difference between the 97.5th per-

centile and the median was used as the maximum value. A modal value of 0 was

selected for the peak of the distribution (Table 6.1).3 Randomly sampled values

were treated as differences to conduct the sensitivity analysis. In other words, if

one neighbourhood had 800 cases of type 2 diabetes and a second had 950, then

the values for Pk for the sensitivity analysis ranged from 704 to 886 in the first

neighbourhood and from 854 to 1036 in the second neighbourhood, with modal

values of ≈ 800 and 950, respectively.

2Neighbourhood-specific counts.
3These numbers were not neighbourhood-specific.
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Table 6.1. Model parameters used to estimate spatial accessibility to health
promotion programs within metropolitan Toronto using a two-step floating
catchment area model and a Gaussian distance decay function.

Diabetes Community
Parameter Education Programs Recreation Centres

Supply of services
Total supply 64 148
Total eligible 48 70

Population demand (total cases) Type 2 diabetes BMI ≥ 25
Mean 692 5576
IQR 409–887 3800–7062
Range 209–2254 1898–14,450

Threshold distance d 30 minutes 20 minutes
Distance decay (β) 440 195

Probabilistic Sensitivity Analysis
Probability distribution Triangular Triangular
Population demand (difference)

Minimum -96 -189
Maximum 86 190
Mode 0 0

Travel time (difference)
Minimum -0.025 -0.025
Maximum 0.25 0.25
Mode 0 0

Distance decay
Minimum 347 136
Maximum 782 266
Mode 440 195

Threshold distance (minutes)
Minimum 25 15
Maximum 40 25
Mode 30 20
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In a similar way, travel times were assumed to be 2.5% faster to 25% slower

while a modal time difference of 0 minutes was assumed. Thus, if the travel time

between two locations was 20 minutes, the modal travel time for the probabilis-

tic sensitivity analysis was approximately 20 minutes and would range from 19.5

minutes to 25 minutes. This assumes that the travel time between two locations

estimated by the Open Source Routing Machine is about the optimal travel time,

but might be about five minutes longer.

Finally, threshold distance parameters were sampled so that they ranged from

25 to 40 minutes for access to diabetes education programs while they ranged from

15 to 25 minutes for access to community recreation centres. Distance decay pa-

rameters were chosen so that they ranged from values of 347–782 to model access

to diabetes education programs (mode = 440) and 136–266 for access to commu-

nity recreation centres (mode = 195). These values assume that almost no one in

the population would travel longer than 40, 45 (mode), and 60 minutes to access

diabetes education programs. Likewise, no one would travel farther than 25, 30

(mode), and 35 minutes to access diabetes prevention programs offered through

community recreation centres.

Partial rank correlations were estimated between each input parameter and

spatial accessibility to health promotion programs using SaSAT (Hoare et al., 2008).

Correlation coefficients (PRCC) were used to identify which input parameters ex-

erted the greatest influence on outcome uncertainty. Since spatial accessibility

measures were specific to each of Toronto’s 140 neighbourhoods, a separate analy-

sis was conducted for each neighbourhood. Boxplots were used to summarize the

distribution of partial rank correlations across all neighbourhoods. In some cases,

the effect of model parameters on outcome uncertainty varied substantially across

neighbourhoods. Results were therefore stratified according to negative (PRCC <

-0.3), negligible (-0.3 ≤ PRCC ≤ 0.3), and positive (PRCC > 0.3) values for the model

parameter having the largest range of values.

SaSAT was also used to estimate the sensitivity index for each input parameter

of the 2SFCA model. The sensitivity index estimates the proportion of uncertainty

in spatial accessibility that is attributable to each input parameter. Neighbourhood-

specific sensitivity indices were estimated and the distribution of these indices

across all neighbourhoods was summarized using boxplots. The spatial distribu-
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tions of the most influential model parameters were mapped to identify whether

some model parameters exerted stronger effects on outcome uncertainty in some

neighbourhoods.

6.3 Results

6.3.1 Spatial accessibility to health promotion programs

An initial set of two-step floating catchment area models were estimated to assess

geographic accessibility to (a) diabetes education programs and (b) community

recreation centres. Four models were estimated for each service using the follow-

ing assumptions:

1. All programs,

2. Only programs meeting the inclusion criteria (Section 6.2.2),

3. A relatively “steep” distance decay parameter (βd = 440 and βr = 195)4,

4. A more gradual distance decay parameter (βd = 782 and βr = 266), and

5. A maximum distance threshold d0,d = 30 minutes and d0,r = 20 minutes.5

Estimates of spatial accessibility are described in Table 6.2 for diabetes education

programs and Table 6.3 for community recreation centres.

6.3.1.1 Spatial accessibility to diabetes education programs

As might be expected, the total number of diabetes education programs available

to diabetics influences spatial accessibility (Ai ) while the distance decay parame-

ter used to model Ai exerts less influence. Median accessibility considering all dia-

betes education programs located throughout Toronto (n = 64, β= 440) is 0.72 per

1000, where higher values indicate greater accessibility. This translates into one

program for every 1,391 diabetics living in Toronto. If accessibility is estimated

using only unrestricted access programs, median Ai is reduced to 0.54 per 1000

meaning these programs have to provide services to an additional 457 type 2 dia-

betics, on average, throughout the city.

4βd = decay parameter for diabetes education programs; βr = decay parameter for community
recreation centres.

5d0,d : distance threshold for diabetes education programs; d0,r : distance threshold for community
recreation centres.
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Using a distance decay parameter of 782 to estimate Ai has little effect on ac-

cessibility. In this case, the median Ai across all of Toronto’s neighbourhoods is

0.53 per 1000, or one program for every 1,876 type 2 diabetics (compared to one

program for every 1,848 diabetics if β = 440, Table 6.2). Similar reductions in ac-

cessibility are observed for neighbourhoods located within metropolitan Toronto’s

six boroughs.

Table 6.2. Neighbourhood accessibility to diabetes education programs
estimated using a two-step floating catchment area model under different
modelling assumptions.

All (n = 64) Subset (n = 48)
β= 440 β= 782 β= 440 β= 782

Borough Mdn (MAD) Mdn (MAD) Mdn (MAD) Mdn (MAD)

Access per 1000
Metro Toronto 0.72 (0.12) 0.72 (0.09) 0.54 (0.08) 0.53 (0.07)
Etobicoke 0.56 (0.08) 0.57 (0.06) 0.46 (0.06) 0.45 (0.04)
North York 0.72 (0.14) 0.74 (0.08) 0.54 (0.10) 0.55 (0.08)
York 0.80 (0.05) 0.80 (0.04) 0.62 (0.03) 0.61 (0.03)
Toronto 0.85 (0.04) 0.80 (0.05) 0.62 (0.03) 0.59 (0.04)
East York 0.73 (0.09) 0.71 (0.06) 0.52 (0.06) 0.52 (0.04)
Scarborough 0.52 (0.12) 0.55 (0.10) 0.38 (0.08) 0.40 (0.08)

Spatial access ratio
Metro Toronto not applicable
Etobicoke 0.81 (0.12) 0.84 (0.09) 0.88 (0.12) 0.88 (0.08)
North York 1.04 (0.20) 1.08 (0.12) 1.04 (0.19) 1.08 (0.15)
York 1.16 (0.07) 1.16 (0.06) 1.19 (0.06) 1.18 (0.06)
Toronto 1.22 (0.06) 1.17 (0.07) 1.19 (0.06) 1.14 (0.08)
East York 1.05 (0.12) 1.03 (0.09) 1.00 (0.11) 1.00 (0.09)
Scarborough 0.75 (0.17) 0.81 (0.15) 0.73 (0.16) 0.77 (0.15)

Mdn: median neighbourhood accessibility within boroughs

MAD: median absolute deviation (constant = 1); median ± 1 MAD ≈ interquartile range

Neighbourhood accessibility to diabetes education programs was highest in

York and Toronto and lowest in Etobicoke and Scarborough. The pattern of re-

sults varied slightly depending on the number of programs considered and the
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distance decay parameter used to model Ai . Across all models, neighbourhoods

in Scarborough had the lowest access to diabetes education programs followed by

neighbourhoods in Etobicoke. When all programs were used to model accessi-

bility, neighbourhoods in Toronto had the highest accessibility, irrespective of the

distance decay parameter. However, when a subset of programs was used (n = 48),

neighbourhoods in York had the highest accessibility (Table 6.2).

The spatial access ratio (SPAR), a relative measure of spatial accessibility that

divides the neighbourhood specific Ai by the average Ai for metropolitan Toronto,

makes it easier to identify neighbourhoods having lower access to health promo-

tion programs and those having greater access. Using this metric, neighbourhoods

in York and Toronto have the highest levels of access, irrespective of the number

of programs and choice of distance decay parameter used. Access in North York

and East York neighbourhoods is similar to the metropolitan average; in these bor-

oughs, the spatial access ratio ranges from 1.00 to 1.08 across all models.

Neighbourhoods within Etobicoke and Scarborough have the lowest levels of

relative access throughout metropolitan Toronto. In Scarborough, the SPAR ranges

from 0.75 to 0.81; relative access is somewhat higher in Etobicoke, where it ranges

from 0.81 to 0.88. A cartographic presentation of these results suggests why these

neighbourhoods might have lower access: compared to neighbourhoods within

Toronto, there is a relative paucity of programs in these boroughs (Figures 6.1a

and 6.1b). Furthermore, programs within these boroughs are spread over larger

distances than those in Toronto. Thus, diabetics living in these neighbourhoods

have to travel greater distances to reach these programs. Another aspect influ-

encing accessibility is the distance threshold (d0). In particular, neighbourhoods

in Etobicoke and Scarborough typically lie beyond the maximum travel distance

of 30 minutes, meaning that many programs accessible within Toronto are not

accessible to diabetics living in Etobicoke or Scarborough. Put another way, dia-

betics living in Toronto have more options because more programs lie within the

30-minute threshold. This, in turn, increases overall accessibility for these neigh-

bourhoods.
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6.3.1.2 Spatial accessibility to community recreation centres

A different pattern of results emerges when considering accessibility to commu-

nity recreation centres for the population of overweight individuals (BMI ≥ 25

kg/m2). If access is estimated using all recreation centres (n = 148), neighbour-

hoods in York and Etobicoke have the greatest access (Ai York = 2.35 per 10,000 and

Ai Etobicoke = 2.20 per 10,000) while neighbourhoods in Scarborough have the poor-

est access. This is true irrespective of the distance decay parameter used to model

Ai . However, results are sensitive to both the number and location of available

services. When programs are restricted to those that currently offer cardiovascu-

lar fitness classes, accessibility is dramatically reduced across all neighbourhoods.

Under this scenario, neighbourhoods within Etobicoke have the lowest accessi-

bility to community recreation centres (Table 6.3). Instead, neighbourhoods in

North York have the highest access to community recreation centres, followed by

neighbourhoods in Scarborough and York.

Figures 6.1c and 6.1d demonstrate how accessibility changes as a function of

the number and location of programs used to model Ai . What is most noticeable is

the change in the geographic distribution of programs throughout the city and the

neighbourhoods having the greatest access to community recreation centres. In

the first scenario (Figure 6.1c), there is a high concentration of community recre-

ation centres within Etobicoke, producing greater accessibility. However, when

Ai is modelled using only those centres currently offering cardiovascular fitness

classes, the number of available programs is reduced throughout metropolitan

Toronto (Figure 6.1d). The reduction in Etobicoke is greater than in any other

borough (78% reduction from 32 centres to seven). Although the number of cen-

tres within York is reduced by 50% (from six to three), neighbourhoods within this

borough still have relatively better access to these services (SPAR = 1.05), likely be-

cause services within other boroughs lie within the 20 minute distance threshold

(d0) used to model accessibility.

Another factor that influences accessibility to community recreation centres

is the overall demand for these services. Since the prevalence of overweight (BMI

≥ 25 kg/m2) is relatively high throughout the city (mean simulated prevalence =

40.3%), the potential demand for health promotion programs designed to encour-
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Table 6.3. Neighbourhood accessibility to community recreation centres
estimated using a 2SFCA model with Gaussian distance decay weights and
different modelling assumptions.

All (n = 148) Subset (n = 70)
β= 195 β= 266 β= 195 β= 266

Borough Mdn (MAD) Mdn (MAD) Mdn (MAD) Mdn (MAD)

Access per 10,000
Metro Toronto 1.94 (0.21) 1.95 (0.23) 0.89 (0.11) 0.89 (0.11)
Etobicoke 2.20 (0.39) 2.11 (0.41) 0.69 (0.25) 0.69 (0.22)
North York 1.94 (0.33) 1.95 (0.32) 1.06 (0.15) 1.05 (0.17)
York 2.35 (0.44) 2.37 (0.39) 0.93 (0.11) 0.94 (0.08)
Old Toronto 1.96 (0.23) 2.00 (0.27) 0.84 (0.08) 0.84 (0.09)
East York 1.78 (0.22) 1.72 (0.23) 0.85 (0.12) 0.85 (0.10)
Scarborough 1.65 (0.33) 1.64 (0.35) 0.96 (0.24) 0.94 (0.19)

Spatial access ratio
Metro Toronto not applicable
Etobicoke 1.14 (0.20) 1.10 (0.21) 0.78 (0.28) 0.78 (0.25)
North York 1.01 (0.17) 1.01 (0.16) 1.18 (0.17) 1.17 (0.19)
York 1.22 (0.23) 1.23 (0.20) 1.05 (0.13) 1.05 (0.09)
Old Toronto 1.02 (0.12) 1.04 (0.14) 0.94 (0.09) 0.94 (0.10)
East York 0.92 (0.11) 0.89 (0.12) 0.95 (0.14) 0.95 (0.11)
Scarborough 0.86 (0.17) 0.85 (0.18) 1.08 (0.27) 1.06 (0.22)

Mdn: median neighbourhood accessibility within boroughs

MAD: median absolute deviation (constant = 1); median ± 1 MAD ≈ interquartile range

age weight loss is greater than the potential demand for diabetes education pro-

grams. This means that limiting the number of available services redistributes

total demand over fewer services. This drastically reduces accessibility across all

neighbourhoods. Expressing Ai as its reciprocal demonstrates this phenomenon:

when all 148 recreation centres are used to model Ai , each centre within metropoli-

tan Toronto must provide services for ≈ 5,100 overweight individuals. When Ai

is modelled using only those centres offering cardiovascular fitness classes, each

centre must provide services for more than twice as many high-risk individuals

(≈ 11,200 overweight individuals). Clearly, if the goal of diabetes prevention pro-
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grams is to target the population at risk, then the total number and geographic

distribution of these programs must be considered to ensure that they are readily

accessible to the greatest number of people across each of Toronto’s neighbour-

hoods.

Validation of spatial access to diabetes education programs Since the known

number of cases of diabetes occurring in 2005 could be ascertained from the On-

tario Diabetes Database, it was possible to re-run the 2SFCA model using known

demand. Accessibility results were compared to those estimated using the simu-

lated number of type 2 diabetes cases as the demand parameter. After neighbour-

hoods were classified into quintiles using both sets of results, it was found that

all neighbourhoods were ranked into the same quintile using either set. That is,

there was 100% agreement in the relative ranking of neighbourhoods. However,

the absolute value of accessibility across all neighbourhoods was about two times

greater when accessibility was estimated using simulated demand (Figure C.1).

This is because the TropISM model tended to under-estimate the total number

of type 2 diabetes cases across metropolitan Toronto. These lower demand es-

timates, in turn, lead to higher estimates of accessibility. In summary, although

the absolute value of accessibility differs substantially using simulated demand,

the relative spatial pattern of results is largely unaffected. Therefore, even though

simulated demand over-estimates accessibility to diabetes education programs,

model results can still be used to identify areas of metropolitan Toronto that have

relatively lower access to diabetes education programs.

6.3.2 Uncertainty surrounding spatial accessibility

A probabilistic sensitivity analysis was conducted to assess the magnitude of un-

certainty surrounding neighbourhood accessibility to health promotion programs.

For this analysis, demand for services, travel time, distance decay, and the thresh-

old distance parameters in the 2SFCA model were treated as uncertain (Table 6.1).

Figure 6.2 plots the range of uncertainty about Ai for both diabetes education

programs and community recreation centres. Each plot depicts average Ai for

each neighbourhood, from neighbourhoods having the highest accessibility to
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the lowest. Accessibility estimates for diabetes education programs presented in

Figure 6.2a correspond to estimates presented in Figure 6.1b while estimates for

recreation centres presented in Figure 6.2b correspond to estimates presented in

Figure 6.1d.

These figures illustrate that uncertainty surrounding modelled accessibility

varies across neighbourhoods. Neighbourhoods having greater access to diabetes

education programs tend to have a wider range of uncertainty compared to neigh-

bourhoods having lower access. For example, in neighbourhoods where Ai > 0.60

per 1000 (n = 47), the 95% uncertainty interval ranges from 0.56 to 0.73 per 1000.

In neighbourhoods where Ai < 0.40 per 1000 (n = 18), the 95% uncertainty interval

ranges from 0.27 to 0.37 per 1000.

A much different pattern of results is observed for neighbourhood access to

community recreation centres. In some neighbourhoods, the range of uncertainty

is much greater than it is in others. This is true even in neighbourhoods hav-

ing similar Ai values. For example, Ai = 0.98 per 10,000 in both the Thistletown-

Beaumond Heights neighbourhood northern Etobicoke and the Clairlea-Birch-

mount neighbourhood of southwest Scarborough. However, the uncertainty sur-

rounding Ai for Thistletown-Beaumond Heights (95% UI: 0.91–1.26) is greater than

it is for Clairlea-Birchmount (95% UI:0.89-0.99). What is more, uncertainty ap-

pears to be attributable to different model parameters in different neighbourhoods

throughout the city. In these neighbourhoods, the distance threshold parameter

d0 accounts for 68% and 76% of outcome uncertainty, respectively. However, in

Thistletown-Beaumond Heights, the travel time parameter accounts for another

28% of outcome uncertainty, while in the Clairlea-Birchmount neighbourhood,

the distance decay parameter accounts for 19% of the outcome uncertainty.

These findings indicate that neighbourhood accessibility is not only influenced

by the number and geographic location of available services, but also by a particu-

lar neighbourhood’s location in relation to those services. Since neighbourhoods

lying beyond the maximum distance threshold to service locations cannot, by def-

inition, access those services according to the 2SFCA model, it makes sense that

the distance threshold parameter strongly influences outcome uncertainty. How-

ever, this conclusion does not appear to generalize to different types of services.

In the case of diabetes education programs, accessibility is strongly influenced by
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(a) Diabetes education programs (n = 48, β= 440)
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Figure 6.2. Estimated accessibility to health promotion programs and 95% uncer-
tainty intervals.
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the demand for services. For example, in almost 90% of neighbourhoods, demand

for services accounts for 50% of more of the uncertainty in neighbourhood acces-

sibility. Thus, the nature of the services offered, the population requiring access to

those services, and the location of that population in relation to service locations

should all be considered as important factors influencing neighbourhood accessi-

bility. Given these results, the planning and delivery of health promotion services

on a small area scale needs to consider both the location of services and the geo-

graphic distribution of service demand in order to optimally allocate programs.

6.3.3 Neighbourhood characteristics associated with accessibility

Results of the accessibility modelling conducted thus far indicate which neigh-

bourhoods have higher or lower access to health promotion programs. From a

health planning standpoint, this information may help direct additional resources

to those neighbourhoods requiring them. Given low access neighbourhoods might

be systematically different from high access neighbourhoods, it is beneficial to ex-

amine the demographic characteristics of neighbourhoods by relative spatial ac-

cess. An additional analysis was conducted to examine whether neighbourhoods

having relatively lower access to diabetes education programs and community

recreation centres differed from neighbourhoods having greater access.

Neighbourhoods were classified into three groups according to whether their

accessibility index was lower, similar to, or higher than the metropolitan average

(see Section 6.2.4). Linear spatial error models were estimated to test whether

the average demographic characteristics of neighbourhoods differed by relative

spatial access. After accounting for spatial autocorrelation between contiguous

neighbourhoods, no differences were seen in the demographic composition of

low, average, or high access neighbourhoods. This was true for access to both

types of health promotion program. Although neighbourhoods having low ac-

cess to diabetes education programs seemed to have a somewhat higher preva-

lence of type 2 diabetes (5.1% in low vs. 4.9% in average and high access neigh-

bourhoods), the difference was not statistically significant. Low access neigh-

bourhoods also had a somewhat higher percentage of visible minorities (45.5%)

than average (38.4%), or high access (41.2%) neighbourhoods. Again, these dif-
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ferences were not statistically significant after accounting for spatial autocorre-

lation. A global Moran test points to strong spatial autocorrelation in estimated

accessibility to both diabetes education programs (Moran’s I = 0.87, p < 0.001) and

community recreation centres (Moran’s I = 0.71, p < 0.001). The presence of strong

spatial dependence is unsurprising given that the 2SFCA model incorporates dis-

tance decay effects to estimate neighbourhood accessibility.

Table 6.4. Demographic characteristics of neighbourhoods having low, average,
and high spatial access to diabetes education programs and community recre-
ation centres.

Relative Spatial Access Test

Characteristic Low Average High LR∗ p-value

Diabetes education programs† (n = 38) (n = 49) (n = 53)
% men 45+ 24.52 23.65 21.92 11.67 0.003
% women 65+ 10.94 10.94 10.27 0.91 0.634
% visible minority 45.50 38.43 41.25 2.97 0.226
% immigrant 51.80 47.89 50.76 2.88 0.237
% post-secondary education 55.30 57.38 54.60 2.82 0.245
% highest income quintile 13.93 15.53 14.04 3.01 0.222
% type 2 diabetes 5.10 4.89 4.86 0.91 0.633
% overweight 40.58 41.10 40.55 1.82 0.403
% obese 11.08 11.18 10.96 0.89 0.641

Community recreation centres† (n = 56) (n = 34) (n = 50)
% men 45+ 23.60 23.50 22.44 3.68 0.159
% women 65+ 10.93 10.72 10.36 0.53 0.766
% visible minority 38.40 42.84 45.41 2.81 0.245
% immigrant 48.57 50.93 51.93 1.53 0.464
% post-secondary education 57.34 53.34 54.10 5.48 0.065
% highest income quintile 15.57 13.84 13.44 3.53 0.171
% type 2 diabetes 4.89 5.03 4.96 0.73 0.693
% overweight 41.07 40.76 40.29 2.11 0.348
% obese 11.13 11.06 10.97 0.38 0.828

∗ LR = likelihood ratio.
† Number of neighbourhoods falling in each spatial access category.
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Given the presence of strong spatial dependence in estimated accessibility

across neighbourhoods, an additional exploratory analysis was conducted to as-

sess whether clusters of neighbourhoods having low access to programs but high

prevalences of type 2 diabetes and overweight might be identified. Figure 6.3

presents the results of univariate and bivariate local Moran’s I for the (a) preva-

lence of type 2 diabetes and spatial access to diabetes education programs and

(b) prevalence of overweight and spatial access to community recreation centres.

This analysis was conducted in GeoDa using a permutation test (499 replicates);

p-values were adjusted for for multiple comparisons using the false discovery rate

adjustment in R.

Univariate local Moran statistics suggest the presence of (a) two clusters of

high diabetes prevalence among neighbourhoods in west North York and Scarbor-

ough and (b) a single cluster of low diabetes prevalence among neighbourhoods

in Toronto (Figure 6.3, panels a, b & c). Conversely, local Moran statistics suggest

the presence of a cluster of neighbourhoods in Scarborough having low access to

diabetes education programs and a second cluster located in Toronto having high

access to diabetes education programs. Bivariate local Moran statistics suggest

some spatial coincidence between the two. In other words, neighbourhoods in

Scarborough having a high prevalence of type 2 diabetes tend to be surrounded by

neighbourhoods having low access to diabetes education programs (global bivari-

ate Moran’s I = -0.454). Conversely, there appears to be a significant cluster of low

prevalence neighbourhoods in Toronto that have high access to diabetes educa-

tion programs. Thus, there appears to be a mismatch between the neighbourhood

prevalence of type 2 diabetes and access to diabetes education programs in some

areas of metropolitan Toronto.

A similar analysis was conducted to assess the spatial coincidence of the preva-

lence of overweight and access to community recreation centres (Figure 6.3, pan-

els d, e & f). In this case, univariate local Moran statistics point to a cluster of

neighbourhoods in north Scarborough having a low prevalence of overweight while

some neighbourhoods in south Etobicoke have a relatively high prevalence of over-

weight. Some of these same neighbourhoods in Etobicoke have relatively low

access to community recreation centres. Bivariate local Moran statistics suggest

there is some mismatch between the prevalence of overweight and access to recre-
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ation centres, particularly in south Etobicoke, where some neighbourhoods hav-

ing a higher prevalence of overweight are surrounded by neighbourhoods having

low access. Conversely, the opposite effect is seen within some neighbourhoods of

North York and Scarborough (lower prevalence and higher access). Finally, there

appears to be a cluster of neighbourhoods in west North York having higher preva-

lence of overweight and higher access to community recreation centres. Thus,

there appears to be a mismatch between potential demand for recreation pro-

grams and supply of those programs in some neighbourhoods of metropolitan

Toronto. However, there may be a reasonable match may between demand for

and supply of these programs in other areas (e.g., North York).

6.3.4 Probabilistic sensitivity analysis of estimated accessibility

Results from the probabilistic sensitivity analysis indicate that different model pa-

rameters contribute to the uncertainty surrounding modelled accessibility. Un-

like the sensitivity analysis of forecast diabetes incidence, results for accessibility

to health promotion programs have a simpler interpretation because they do not

represent parameters from a statistical model but instead represent the direct ef-

fects of each model parameter on accessibility. Thus, the sign of the partial rank

correlation coefficient can be interpreted in a straight-forward fashion.

Figure 6.4 demonstrates that model parameters exert similar effects on ac-

cessibility to both types of health promotion programs. This figure presents the

partial rank correlation coefficient (PRCC) from a probabilistic sensitivity analysis

of accessibility for all of Toronto’s neighbourhoods. Since the range of the PRCC

for the travel time parameter was large, neighbourhoods were stratified by val-

ues of the travel time PRCC to illustrate the relationship between each parameter

and accessibility. Thus, neighbourhoods were split into three groups according to

whether the PRCC for the travel time parameter took on negative (PRCC < -0.3),

negligible (-0.3 ≤ PRCC ≤ 0.3), or positive (PRCC > 0.3) values.

Based on this analysis, simulated demand for health promotion programs ex-

erts a similar effect on accessibility. Moreover, the value of the PRCC for the de-

mand parameter for diabetes education programs was similar across all neigh-

bourhoods (median PRCC = -0.9729, IQR: -0.9576 to -0.9802). There was greater
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Figure 6.3. Univariate LISA statistics depicting spatial clustering of neighbour-
hoods by (a) simulated prevalence of type 2 diabetes, (b) access to diabetes edu-
cation programs, (d) simulated prevalence of overweight and (e) access to com-
munity recreation programs. Bivariate LISA statistics in (c) represent the rela-
tionship between simulated diabetes prevalence and access to diabetes education
programs. Bivariate LISA statistics in (f) represent the relationship between the
simulated prevalence of overweight and access to community recreation centres.
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(a) Diabetes education programs
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Figure 6.4. Partial rank correlation (PRCC) between parameters of the two-step floating catch-
ment area model and estimated accessibility to (a) diabetes education programs and (b) community
recreation centres.
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variation in the PRCC for access to community recreation centres (median PRCC =

-0.5816,IQR: -0.5142 to -0.6694). The negative sign on the coefficient indicates that

as simulated demand increases, accessibility to either type of program decreases.

Different relationships were observed between the distance decay and dis-

tance threshold (d0) parameters and modelled accessibility. Neighbourhoods hav-

ing positive partial rank correlations for the travel time parameter had negative

partial rank correlations for the distance decay and distance threshold parame-

ters. Conversely, neighbourhoods having negative PRCC values for the travel time

parameter had positive values for the distance decay and distance threshold pa-

rameters. These results suggest that the effect of parameter uncertainty on acces-

sibility varies by geographic location.

In some neighbourhoods, as the value of the travel time parameter increases

(i.e., longer commute times between neighbourhoods and health promotion pro-

grams), accessibility decreases. In these same neighbourhoods, as the distance

threshold parameter increases, accessibility increases. In other words, when the

number of programs that lie within the threshold increases, there is a concomitant

increase in the total population that can access those programs. Finally, larger val-

ues of the distance decay parameter increase accessibility because larger values

translate into greater values of the distance decay weights used to differentially

weight accessibility scores (Equation 6.3). This, in turn, results in a greater num-

ber of services that can be accessed by the population demanding those services.

Thus far, the relationships between model parameters and estimated acces-

sibility make intuitive sense. However, counter-intuitive results are observed in

neighbourhoods having positive values of the PRCC for the travel time parameter.

In these neighbourhoods, as travel time increases, accessibility increases. Fur-

thermore, as the distance threshold and distance decay increase, accessibility de-

creases. Although these findings seem counter-intuitive, it must be kept in mind

that the total number of services available remains constant throughout the city.

Thus, if accessibility increases in some neighbourhoods, it must decrease in other

neighbourhoods. As proof, consider that the sum of the population weighted,

neighbourhood-specific accessibility scores must equal the total number of ser-

vices available within the study area (Luo & Wang, 2003).6

6Put another way, the weighted mean of accessibility is equal to the provider-population ratio for
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To further illustrate this point, Figure 6.5 demonstrates the effect d0 exerts on

accessibility, ignoring distance decay effects. It depicts the locations of two differ-

ent health promotion programs (S1 and S2) along with five different population

centres (P1 to P5). Two distance thresholds buffer each program location; the first

depicts a 15-minute travel time threshold while the second depicts a 30-minute

threshold. Population centre P1 lies within the 15-minute threshold for program

S1 while population centre P2 lies within the 30-minute threshold for programs S1

and S2. If d0 = 15 minutes, then the program-population ratio R1 for S1 = S1
P1 . Ac-

cessibility for P1 is the sum of all R j for all programs located within 15 minutes of

P1, in this case, R1. However, if d0 is increased to 30 minutes, then R1 = S1
P1+P2 . In

other words, there is greater population demand for program S1 meaning that R1

decreases. However, accessibility for P1 remains the sum of all R j for all programs

within 30 minutes of P1. Since only program S1 lies within 30 minutes of P1, ac-

cessibility for P1 also decreases. On the other hand, accessibility for P2 increases,

because it lies within 30 minutes of both program S1 and program S2. In sum-

mary, although the results of the probabilistic sensitivity analysis seem counter-

intuitive, given that the total supply of programs is fixed, if accessibility increases

in some neighbourhoods, it must decrease in others due to the properties of the

2SFCA model.

Figure 6.6 further illustrates the spatial variation in the partial rank correlation

for the travel time parameter. For access to diabetes education programs, most

neighbourhoods in Scarborough and a few in North York have negative values of

the PRCC. For access to community recreation centres, several neighbourhoods

in south Etobicoke, York, Toronto, and East York have negative values of the PRCC.

In these areas, access to health promotion programs decreases as travel time to

these programs increases. What is interesting about the pattern of results, how-

ever, is that there seems to be a lower concentration of programs in these neigh-

bourhoods, while there seems to be a higher concentration of programs in neigh-

bourhoods having positive values of the PRCC. This suggests that where the supply

of health promotion programs is limited, travel time is an important parameter in-

fluencing access to these programs.

Although the partial rank correlation coefficient can be used to identify model

the entire study area.
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Figure 6.5. Effect of distance threshold parameter, d0, on spatial accessibility.

parameters that exert the greatest influence on outcome uncertainty, due to the

large variation in PRCC across neighbourhoods, the sensitivity index (Si ) was used

instead. Regression models were used to estimate the sensitivity index across all

neighbourhoods. For diabetes education programs, the coefficient of determina-

tion from these models was high (median R2 = 0.959, IQR: 0.939–0.970), suggest-

ing that the sensitivity index was reliably estimated. However, the probabilistic

sensitivity analysis of access to community recreation centres was less reliable; in

this case, the median R2 was 0.705 (IQR: 0.569–0.849). In 40 neighbourhoods, R2

was less than 0.6, suggesting Si was not reliably estimated. As a result, the sen-

sitivity index was examined separately for neighbourhoods where it was reliably

estimated (R2 ≥ 0.6) or less reliably estimated (R2 < 0.6).

For access to diabetes education programs, the demand parameter exerted
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(a) Diabetes education programs
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(b) Community recreation centres

[-0.898,-0.689)
[-0.689,-0.405)
[-0.405,-0.055)
[-0.055, 0.574)
[ 0.574, 0.925)

Figure 6.6. Effect of travel time on access to (a) diabetes education programs and
(b) community recreation centres as measured by the partial rank correlation co-
efficient. Neighbourhoods shaded red have negative values of the PRCC indicating
that as travel times to program locations increase, accessibility decreases.
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the greatest influence on outcome uncertainty, accounting for 77% or more of

the variation in accessibility uncertainty for three-quarters of all neighbourhoods

(median Si = 0.844, IQR = 0.773–0.925). The remaining model parameters ac-

counted for only small amounts of the variability in accessibility uncertainty (Fig-

ure 6.7a).

A different picture emerges for access to community recreation centres (Fig-

ure 6.7b). There was much greater variation in the sensitivity index across neigh-

bourhoods for all model parameters. In neighbourhoods where Si was reliably

estimated (model R2 ≥ 0.6), the distance threshold and the travel time parameters

had the most influence on outcome uncertainty. The demand and distance decay

parameters were less influential. In neighbourhoods where the sensitivity index

was less reliably estimated, the demand parameter might have had more influ-

ence on the uncertainty surrounding accessibility. However, the effect of this pa-

rameter varied considerably across neighbourhoods. Ultimately, the probabilistic

sensitivity analysis of accessibility to community recreation centres was equivo-

cal, in that no model parameter consistently influenced outcome uncertainty. It is

possible that in this case, values used to model accessibility along with the range

of values generated to conduct the probabilistic sensitivity analysis were less than

optimal.

Figure 6.8 illustrates geographic differences in the sensitivity index for the de-

mand and distance threshold parameters for accessibility to diabetes education

programs. Across most neighbourhoods, the demand for diabetes education pro-

grams accounts for 53% or more of the variability in estimated accessibility. One

exception occurs in neighbourhoods located in east Scarborough. Here, the dis-

tance threshold (d0) accounts for a larger share of outcome uncertainty. Moreover,

a global Moran test indicates that values of the sensitivity index for these param-

eters are spatially dependent, so that neighbourhoods within close proximity of

one another have similar values of the sensitivity index.

Based on these results, it is clear that the simulated population demand for

diabetes education programs explains most of the variability in accessibility un-

certainty. However, in many Scarborough neighbourhoods, uncertainty is more

strongly influenced by the distance threshold parameter. Given there are fewer di-

abetes education programs within Scarborough compared to the rest of the city,
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(a) Diabetes education programs
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Figure 6.7. Proportion of uncertainty (sensitivity index) in spatial accessibility ex-
plained by two-step floating catchment area model parameters for (a) diabetes
education programs and (b) community recreation centres.
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(a) Demand parameter (Moran’s I = 0.780)
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Figure 6.8. Probabilistic sensitivity analysis of accessibility to diabetes education
programs: geographic variation in the sensitivity index for the (a) demand and (b)
distance threshold parameters.
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(a) Travel time parameter (Moran’s I = 0.356)
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Figure 6.9. Probabilistic sensitivity analysis of accessibility to community recre-
ation centres: geographic variation in the sensitivity index for the (a) travel time
and (b) distance threshold parameters.
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this result suggests that a greater number of programs might be needed in Scarbor-

ough, especially considering the simulated prevalence of type 2 diabetes is higher

in these neighbourhoods (see panel (a) of Figure A.3). However, since edge effects

influence the results of the 2SFCA model, this conclusion needs to be interpreted

cautiously. Indeed, edge effects are likely present for these neighbourhoods be-

cause the distance threshold parameter accounts for a greater proportion of out-

come uncertainty. In other words, neighbourhoods that border east Scarborough

only have access to programs to the west. As a result, increasing the distance

threshold means that these populations within these neighbourhoods will be able

to access programs (according to the model) when they previously could not.

With respect to community recreation centres, no clear geographic patterns

result from a cartographic visualization of the sensitivity index (Figure 6.9). In-

deed, neighbourhoods having similar values of the sensitivity index for the travel

time and distance threshold parameters are more geographically dispersed. A

global Moran test supports this idea: for the travel time parameter, Moran’s I =

0.356 (p < 0.01). For the distance threshold parameter, Moran’s I = 0.251 (p < 0.01).

Thus, there appears to be less similarity in the values of the sensitivity index for

neighbourhoods within close geographic proximity of one another.

6.4 Discussion

6.4.1 Implications

Using simulated, neighbourhood-specific counts of the number of cases of type

2 diabetes and overweight, this exploratory analysis of geographic accessibility

to health promotion programs suggests potential access to diabetes management

and prevention programs may be limited. On average, there may only be 0.54 dia-

betes education programs available in Toronto for every 1000 type 2 diabetics and

even fewer community recreation centres (0.89 per 10,000 overweight residents).

Although it is difficult to know whether estimates of spatial access are suffi-

cient to meet demand, the Ontario Ministry of Health and Long-Term Care stip-

ulates that each Diabetes Education Team have an active caseload of 1000 pa-

tients per year. If diabetes education programs were meeting this target, then the

citywide average spatial access should be similar to the required caseload, or 1
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program for every 1000 diabetics. Given the citywide average is only 0.54 pro-

grams/1000 type 2 diabetics, this suggests that if all diabetics in the city were us-

ing these programs, then programs might be operating above capacity (i.e., there

is an insufficient number of programs to serve all diabetics within metropolitan

Toronto). However, this conclusion assumes that all diabetics (type 1 and type 2)

are actively using diabetes education programs, an unlikely scenario, especially

given the 2012 Ontario Auditor’s General report concluded that 90% of Diabetes

Education Teams are under-utilized (Office of the Auditor General of Ontario, 2012).

If programs are under-utilized, it is possible that diabetics either are not aware of

these services or they are not inclined to use them.

Potential access is also affected by the service capacity of each program. Acces-

sibility measures reported here assume that the number of staff in each program is

constant across all programs. In other words, accessibility measures reflect access

to programs and not total services that could be provided by each program. If the

number of staff differed by program location, then estimated accessibility would

change. However, all diabetes education programs are staffed by a diabetes nurse

educator and a registered dietitian (Ministry of Health and Long Term Care, 2012).

Therefore, the base level of service provision should be the same across all pro-

grams within Toronto. Likewise, the base level of service provision for recreation

centres would be the same if each centre delivered the same number of diabetes

prevention programs throughout the year (e.g., one prevention program offered

biannually). Under these assumptions, it is possible to use the accessibility mea-

sures reported here to identify relative differences between neighbourhoods and

where potential access may be higher or lower compared to the citywide average.

In other words, the results of this exploratory analysis should be interpreted as

relative measures of spatial access.

Access to diabetes education programs was highest in central Toronto. Neigh-

bourhoods located in the boroughs of Toronto and York had relatively higher ac-

cess compared to the metropolitan average, while neighbourhoods in Etobicoke

and Scarborough had the lowest access. These findings are unsurprising given

there is a greater concentration of programs in Toronto compared to other areas

of the city. These general patterns held regardless of the number of programs used

to model accessibility.
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Different spatial patterns emerged for potential access to community recre-

ation centres. Considering only recreation centres capable of delivering diabetes

prevention programs (n = 70), neighbourhoods in North York had the greatest ac-

cess (1.1 programs per 10,000 overweight population) while neighbourhoods in

Etobicoke had the lowest access (0.7 programs per 10,000 overweight population).

Neighbourhoods in Scarborough (0.96 programs per 10,000) and York (0.93 pro-

grams per 10,000) also had relatively higher access to community recreation cen-

tres compared to the metropolitan average (0.89 programs per 10,000).

A markedly different spatial pattern emerged when all 148 community recre-

ation centres were used to model spatial accessibility. Under this scenario, neigh-

bourhoods in Etobicoke had the highest access while neighbourhoods in Scar-

borough had the lowest access. This dramatic shift in accessibility is attributable

to the both the number of recreation centres used in modelling accessibility and

the location of centres capable7 of delivering diabetes prevention programs. This

finding is important for public health planning purposes. If diabetes prevention

programs were delivered more locally throughout the city, then the choice of suit-

able locations needs to consider where programs could be located and the types of

facilities in which they should be delivered. Both of these considerations influence

the size of the high-risk population that could attend such programs. Geographic

location-allocation models could be used as a next step in optimizing program

locations and thereby the size of the target population that would attend these

programs throughout the city.

This conclusion is also relevant for resource allocation decisions related to the

provision of diabetes education programs. As depicted in Figures 6.1a and 6.1b,

there appears to be a greater concentration of diabetes education programs in

downtown Toronto. Given that diabetes education programs are often located

in physician practices (Ministry of Health and Long Term Care, 2012), it may be

difficult to redistribute programs in an optimal manner to ensure more equitable

access throughout Toronto. However, it might be the case that additional public

health resources could be directed to those areas of the city having lower access

to diabetes education programs. Such efforts may help type 2 diabetics living in

7Defined for this analysis as a centre that already offers fitness programs and contains a multi-
purpose room where nutrition classes could be provided.
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lower access neighbourhoods better manage their diabetes.

The results reported here also demonstrate that a mismatch may exist between

population demand for services and potential access. Univariate and bivariate

local Moran statistics suggest that some areas of Toronto have a higher preva-

lence of type 2 diabetes or overweight but lower spatial access to health promotion

programs (Figure 6.3). Regarding access to diabetes education programs, there

are several neighbourhoods in Scarborough that have relatively higher prevalence

rates of type 2 diabetes but relatively lower spatial access to diabetes education

programs. Conversely, there are areas of downtown Toronto that have relatively

lower prevalence rates of type 2 diabetes but greater spatial access to diabetes ed-

ucation programs. These findings are consistent with those reported by Glazier et

al. (2007) who found higher rates of diabetes in Scarborough but low concentra-

tions of diabetes education programs. However, the pattern of results reported for

downtown Toronto differed. Generally, they found lower prevalence rates of dia-

betes (consistent with these findings) and lower concentrations of diabetes educa-

tion programs (inconsistent with these findings). Differences might be explained

by the different analytic methods used; specifically, Glazier et al. (2007) only used

provider-population ratios as a measure of service provision. As mentioned in

Section 6.1, these ratios do not consider availability of services in neighbouring

areas.

Such disparities in service provision suggest that additional resources could

be devoted to diabetes management in neighbourhoods having higher prevalence

rates of diabetes but relatively poor spatial access to health promotion programs.

Additional information should gathered in these areas to identify the types of re-

sources that would help diabetics living there better manage their disease. For ex-

ample, given that some neighbourhoods within Scarborough seem to have poor

spatial access to diabetes education programs, additional data could be gathered

to identify:

• how well diabetics are currently managing their disease,

• whether they are aware of local services to help them manage their disease,

and

• whether and under what conditions they would use these types of services

to help them manage their disease.
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Given the complications and concomitant medical costs associated with poorly

managed diabetes, preventing such complications is an important health promo-

tion objective.

Another issue to consider is how to address excess supply of diabetes edu-

cation programs in areas having lower prevalence rates of diabetes but relatively

greater spatial access. First, the finding that some areas of Toronto have relatively

high spatial access to diabetes education programs but relatively low prevalence

rates supports the idea that some programs may be under-utilized (Office of the

Auditor General of Ontario, 2012). Additional data should be gathered to identify

whether diabetes education programs in these areas are operating at near- or full-

capacity. If this is not the case for programs in low-prevalence, high spatial access

areas, additional information might identify whether patients are drawn from a

limited catchment area or could come from other areas of the city. If services are

limited to diabetics residing in specific catchment areas, it might be useful to as-

sess whether diabetics from low access neighbourhoods could attend programs

in higher access neighbourhoods. In summary, the findings from this research

should be used to inform future program evaluation studies that address the dis-

ease management needs of diabetics who are unable to access diabetes education

programs.

Turning to diabetes prevention programs, univariate and bivariate local Moran

statistics suggest that some metropolitan Toronto neighbourhoods have relatively

poor access to community recreation centres in spite of having higher relative

prevalence rates of overweight. A group of neighbourhoods in south Etobicoke fall

under this classification. It is interesting that these neighbourhoods are the same

neighbourhoods whose accessibility index was dramatically reduced if the acces-

sibility modelling was conducted using the restricted set of recreation centres in-

stead of the full set. This suggests that community recreation centres in south

Etobicoke might not be suitable for delivering diabetes prevention programs, ei-

ther because they do not currently offer cardiovascular fitness programs or be-

cause they lack a multi-purpose room suitable for classroom instruction. In this

case, additional resources might be devoted to providing additional capabilities

for these recreation centres, such as providing additional staff (or volunteers) to

teach cardiovascular fitness classes. If recreation centres lack suitable rooms for
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delivering classroom style instruction on diabetes prevention and nutrition, then

alternate locations for the delivery of prevention programs should be considered.

From a methodological standpoint, the probabilistic sensitivity analysis of spa-

tial accessibility is a relatively new and unused technique in accessibility mod-

elling, especially with respect to the 2SFCA model. As presented here, the proba-

bilistic sensitivity analysis demonstrates that input parameters in the 2SFCA model

influence uncertainty about potential access in similar ways. First, negative val-

ues of the partial correlation coefficient for the demand parameter indicate an

inverse association between demand and spatial accessibility. That is, as demand

for health promotion programs increases, accessibility decreases. Although this

might be intuitive, the empirical evidence presented here suggests it may be a

general feature of these models. In spite of that, the strength of that association

may vary for different types of services modelled. Based on these results, demand

for diabetes education programs exerted a similar effect on spatial accessibility

across almost all neighbourhoods. Moreover, there was little variation in the ef-

fect of demand on estimated accessibility. However, greater variation in spatial

accessibility was produced by the demand parameter when modelling access to

community recreation centres (Figure 6.4).

Less consistent effects were seen for the other parameters used to model spa-

tial accessibility as there was a wide range in neighbourhood-specific PRCC val-

ues. However, stratifying partial rank correlations by the value of the correlation

for the travel time parameter reveals some interesting points. First, in some neigh-

bourhoods, there is a positive association between the travel time parameter and

spatial accessibility, meaning that as travel time increases, access increases. In

other neighbourhoods, as travel time increases, access decreases. Although the

former seems counter-intuitive, the result is attributable to the idea that the total

supply of health promotion services remains constant for accessibility modelling.

Second, high values of the partial rank correlation for the travel time parame-

ter are associated with low PRCC values for the distance decay and distance thresh-

old parameters. Conversely, low values of PRCC for the travel time parameter are

associated with high values of PRCC for the distance decay and distance threshold

parameters. This pattern of results suggests these parameters work together to in-

fluence estimates of spatial accessibility. In other words, in some neighbourhoods,
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faster travel times to service locations and larger values of the distance decay and

distance threshold parameters all increase spatial accessibility to health promo-

tion programs. Given, however, that the total supply of services remains constant,

this also means that in other neighbourhoods, the opposite phenomenon is ob-

served. Finally, there are some neighbourhoods where these parameters exert

negligible or weak effects on spatial accessibility to health promotion programs,

as suggested by partial rank correlations lying between -0.3–0.3 for the travel time

parameter.

The sensitivity index provides a way to quantify the amount of uncertainty in

spatial accessibility explained by each of the 2SFCA model parameters. For access

to diabetes education programs, neighbourhood-specific estimates of the sensi-

tivity index unequivocally demonstrate that the demand parameter accounts for

the majority of uncertainty in accessibility. Specifically, in 75% of all neighbour-

hoods, the demand parameter explains almost 80% of the uncertainty in accessi-

bility. Cartographic presentation of these results further demonstrates this point.

However, in several east Scarborough neighbourhoods, the distance threshold pa-

rameter d0 explains a greater proportion of uncertainty in modelled accessibility

than the demand parameter.

Results are less consistent with respect to spatial access to community recre-

ation centres. First, the sensitivity index may not have been reliably estimated in

40 neighbourhoods. However, the distance threshold and travel time parameters

account for 46% and 38% of the variability in spatial accessibility, respectively, in

50 of the 100 neighbourhoods where the sensitivity index was reliably estimated.

Thus, uncertainty in spatial accessibility may result from the type of service that is

modelled and from the specific values of parameters used to model accessibility.

For access to diabetes education programs, the distance threshold and dis-

tance decay parameters were selected on the basis of prior research modelling

spatial accessibility to health care providers (Luo & Qi, 2009; Luo & Wang, 2003;

McGrail & Humphreys, 2009; Wan et al., 2012; Wang & Luo, 2005). Since diabetes

education programs are staffed by health care providers (nurses and registered

dietitians), on a population level, decisions to attend these programs may be in-

fluenced by similar factors as those that influence the choice to attend particular

physician practices or health care providers more generally.
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Less empirical evidence was available to inform the choice of parameters used

to model accessibility to community recreation centres. Given the nature of the

demand for these services, it was assumed that the population of overweight in-

dividuals might be less inclined to travel longer distances to attend diabetes pre-

vention programs. Thus, values for the distance decay and distance threshold pa-

rameters were chosen assuming the population at risk would not travel further

than 20 minutes from their homes to attend these programs. The choice of these

parameters may have made it more difficult to reliably model spatial accessibility

to community recreation centres. Future research should study travel patterns to

fitness programs in order to better estimate appropriate thresholds for maximum

travel distance and average distance decay effects.

In summary, the results of the probabilistic sensitivity analysis demonstrate

how randomly varying 2SFCA model parameters influences estimated accessibil-

ity. However, the methods used to conduct the probabilistic sensitivity analysis

might have influenced the results observed. Specifically, model parameters were

randomly sampled from a triangular distribution. As Briggs and Sculpher (2006)

point out, a triangular probability distribution may have limited utility for con-

ducting a probabilistic sensitivity analysis. In particular, the mode may not be

the central point of the distribution (i.e., mode 6= mean) and using minimum and

maximum values suggests that more extreme values cannot occur. Different prob-

ability distributions, such as the normal distribution, permit the rare sampling of

extreme values.

Thus, it might have been more appropriate to use a normal distribution to

randomly sample parameter values for the sensitivity analysis. In this case, ap-

propriate estimates of the mean effect of each parameter, along with its standard

deviation, would be needed to randomly sample parameter values. Since such es-

timates were unavailable (in particular, the standard deviation), selecting a trian-

gular distribution to sample from made it possible to conduct a probabilistic sen-

sitivity analysis to quantify the uncertainty in spatial accessibility associated with

2SFCA model parameters. Therefore, in spite of its limitations, the probabilistic

sensitivity analysis provides useful insights into how model parameters influence

accessibility to health promotion programs.
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6.4.2 Limitations

In this chapter, potential spatial accessibility to health promotion programs was

modelled using the two-step floating catchment area model in conjunction with

simulated, neighbourhood-specific counts of the demand for those services. Sim-

ulated counts of the number of prevalent cases of type 2 diabetes served as the de-

mand parameter for modelling accessibility to diabetes education programs while

simulated counts of overweight were used as the demand parameter for modelling

accessibility to community recreation centres. If these simulated counts are dif-

ferentially biased by geographic location, then spatial patterns in accessibility will

also be biased. However, when the known number of cases of diabetes, ascer-

tained from the Ontario Diabetes Database, was used as the demand parameter,

spatial patterns of accessibility matched those using simulated demand. It must

be recognized, however, that accessibility is overestimated using simulated de-

mand by a factor of two. Thus, if accurate estimates of accessibility are required

then measures of demand must not be biased. In this case, the simulated num-

ber of diabetes cases underestimates true demand producing accessibility esti-

mates that are too optimistic. Given this research used the 2SFCA model in an ex-

ploratory way to examine relative differences in accessibility to health promotion

programs, the spatial patterns in access to diabetes education programs reported

here hold irrespective of whether accessibility is estimated using the simulated or

true number of diabetes cases.

The spatial patterns of access to community recreation centres need to be in-

terpreted more cautiously. This is because it was not possible to validate spatial

patterns in the prevalence of overweight and obesity using the incidence of can-

cers associated with obesity. In spite of this, broad spatial patterns in forecast di-

abetes incidence were reasonably similar to the true incidence of diabetes at the

neighbourhood level. Since incidence was forecast from a model that relies on

the prevalence of overweight and obesity, there is some reason to believe that the

simulated counts of overweight and obesity at the neighbourhood level may have

been captured to some degree of accuracy. Thus, spatial patterns of accessibility

to community recreation centres may be also be broadly accurate. Therefore, it

should still be possible to identify neighbourhoods having relatively poor access
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to community recreation centres using the results reported here. Future research

should explore these patterns in more detail using accurate demand estimates.

It must also be recognized that accessibility estimates along the borders of

metropolitan Toronto are likely downward biased due to the presence of edge ef-

fects. That is, the 2SFCA model assumes that people living in neighbourhoods ly-

ing along city borders can only access programs within the city. For modelling pur-

poses, this means that the westernmost neighbourhoods of Etobicoke and east-

ernmost neighbourhoods of Scarborough can only access programs to the east or

west, respectively. However, neighbourhoods in central Toronto can access pro-

grams in all directions. The pattern of results depicted in Figure 6.1b and Fig-

ure 6.1d is consistent with the presence of edge effects.

Such edge effects are usually mitigated by including additional small areas

outside the main study area when modelling accessibility. In this case, neigh-

bourhoods in Mississauga, Vaughan, Markham, and Pickering could have been

included. This would have meant (a) devising comparable ways of defining neigh-

bourhoods in these cities and (b) developing the TropISM spatial microsimulation

for these additional neighbourhoods. Since comparable definitions of neighbour-

hoods for these cities do not currently exist, it was deemed impractical to develop

such definitions for the current study.

In spite of the presence of edge effects, if spatial accessibility to health promo-

tion programs is lower in Etobicoke and Scarborough, this information could still

be used for public health planning purposes. In particular, Toronto Public Health

is responsible for delivering public health services to all city residents, even if some

residents in Etobicoke and Scarborough might be more inclined to use programs

outside metropolitan Toronto. Therefore, indicators of low accessibility to health

promotion programs in these neighbourhoods warrant additional investigation.

Further study should assess whether residents (a) lack sufficient access to health

promotion health programs, (b) want access to these programs, and (c) would

use these programs. In other words, this preliminary study of potential access to

health promotion programs should be followed up by more detailed evaluation of

revealed access to these programs.

Furthermore, current urban development trends in Toronto favour mixed-use

development (Kane, 2014). Mixed-use development makes it possible for people
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to work, eat, and play in their local neighbourhoods by providing access to com-

mercial and civic opportunities within walking distances of their homes (Grant,

2002). Although there are different types of mixed-use development, these urban

forms have the potential to improve population health (Barton, 2009). Thus, even

if estimates of accessibility to health promotion programs are artificially lower

in Etobicoke and Scarborough, mixed-use development encourages provision of

these resources in low access neighbourhoods.

Another methodological limitation to consider is that distances between neigh-

bourhoods and program locations were measured from population weighted neigh-

bourhood centroids. As such, travel distances between neighbourhoods and pro-

gram locations represent an average or typical measure of distance. In a neigh-

bourhood covering a small area of land, the population weighted centroid might

be a reasonable estimate of distance between any location within the neighbour-

hood to program locations. However, in a neighbourhood covering a large area of

land, the population weighted centroid might not be a reasonable estimate of dis-

tance for any specific location within that neighbourhood. Thus, estimated spatial

accessibility in these types of neighbourhoods might be less representative of av-

erage accessibility than in neighbourhoods covering smaller land areas.

It is also important to note that the travel distances used in the model repre-

sent car travel times and not other modes of transportation, such as public tran-

sit or walking. Estimates of spatial accessibility using public transit travel times

would be more relevant for population subgroups, such as the elderly and im-

migrant populations, because these groups may not own their own vehicles. In

this case, accessibility modelling would need to consider estimates of demand in

these population subgroups, but also estimates of public transit travel times along

a more restricted street network. Depending on the availability of public transit in

specific neighbourhoods, the spatial patterns of neighbourhood accessibility may

differ greatly from those presented here. For example, downtown areas of Toronto

would have considerably better access to public transit than outlying areas of the

city, due to greater availability of bus, subway, and streetcar transit modes, com-

pared to outlying neighbourhoods that may only have access to buses.

Other modelling decisions may have influenced the results. First, little pre-

vious research was available to inform the choice of the distance threshold and
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6 Spatial Accessibility to Health Promotion Programs

distance decay parameters used by the 2SFCA model. The choice for modelling

accessibility to diabetes education programs was influenced by early research us-

ing a 30-minute threshold for modelling accessibility to physicians in the United

States (Lee, 1991; Luo & Wang, 2003) along with a relatively gradual distance decay

function. Parameters for modelling accessibility to community recreation cen-

tres were chosen under the assumption that people would not be willing to travel

greater distances to access prevention programs such as cardiovascular fitness

programs. To better model urban accessibility to health promotion programs, fu-

ture research should conduct more detailed travel surveys to estimate how willing

residents wanting to use these types of programs are willing to travel. Future re-

search should also try to empirically estimate appropriate distance thresholds and

distance decay functions.

In addition, there was a temporal mismatch between simulated demand for

health promotion programs the the locations of diabetes education programs and

community recreation centres. Program locations were based on more recent data

(2014) compared to simulated demand estimates (2005). If the number of loca-

tions increased dramatically, or differentially throughout metropolitan Toronto,

the relative spatial patterns in access presented here may be biased.

Finally, accessibility to diabetes education programs ignored the existing catch-

ment areas of these programs. That is, some programs throughout Toronto are

restricted to people living within a predefined area, typically bounded by spe-

cific streets within the city. Ignoring these catchment areas simplified accessibility

modelling. However, it also means that accessibility estimates assume the popu-

lation of any neighbourhood could access any program within the 30-minute dis-

tance threshold specified by the model. Accounting for such restrictions would

alter neighbourhood-specific estimates of accessibility, especially if diabetes ed-

ucation programs in certain ares of Toronto were limited to specific catchment

areas while others were not. Future accessibility modelling should consider ways

to incorporate existing catchment areas into the modelling process.
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6.4 Discussion

6.4.3 Summary

This exploratory assessment of potential spatial accessibility to diabetes health

promotion programs in Toronto demonstrates disparities in access may exist for

some neighbourhoods throughout the city. Some communities with higher preva-

lence of type 2 diabetes have lower spatial access to diabetes education programs.

Different comminutes with higher prevalence of overweight (BMI ≥ 25 kg/m2)

have lower access to community recreation centres. These results focus on specific

types of diabetes prevention that might help high-risk groups better manage their

disease or prevent the onset of type 2 diabetes. However, the total urban environ-

ment should be considered as well. Other community resources provide oppor-

tunities for engaging in physical activity, including community parks, recreation

trails, and walkable urban neighbourhoods. Furthermore, healthy food choices

can be made easier on a population level by ensuring sufficient local access to

grocery stores. Future research should consider whether access to total opportu-

nities for diabetes prevention differs at the small area level. This moves diabetes

prevention from the realm of public health into the sphere of urban planning. In

other words, there needs to be a movement away from obesogenic environments

that promote weight gain increasing the risk of type 2 diabetes towards support-

ive urban environments and the totality of resources within them, resources that

support healthy food choices and promote physical activity and active living. Fu-

ture studies should therefore assess whether total access to all health promoting

resources at the neighbourhood level is associated with lower prevalence of over-

weight and type 2 diabetes.
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Chapter

7
Conclusions

The key premise undergirding this research is that locally relevant information is

needed for effective decision making in public health practice. Program planners

must decide which health promotion programs and polices will best improve the

health of local populations and how the effects of those programs and policies

might vary over geographic space. At the community level, differential program

effects might be driven by different sociodemographic and health risk profiles of

specific communities. Such differences should inform resource allocation deci-

sions. Predicting the possible consequences of different policy options provides

public health decision makers with a practical way to choose one course of action

over another.

Maglio, Sepulveda, and Mabry (2014) argue that although simulation models

are currently underutilized in population health, these models should comple-

ment traditional quantitative methods to better understand how different deci-

sions influence population health outcomes. The value of simulation models is

derived from their ability to examine the effects of different scenarios, thereby

forecasting a range of plausible outcomes that may result from a particular course

of action. Simulation models provide insight into which factors are most respon-

sible for producing a particular outcome. Model outputs should not be viewed as

exact solutions, but rather as additional evidence that informs the decision mak-

ing process (Alper & Geller, 2016; Maglio et al., 2014).
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In spite of its limitations, the Type 2 dIabetes Spatial Microsimulation model,

or TropISM, developed in this research meets these goals. As a model of local

population health in metropolitan Toronto, it demonstrates how the prevalence

of type 2 diabetes and its risk factors varies across the 140 neighbourhoods of

metropolitan Toronto. Although TropISM underestimates the true prevalence of

type 2 diabetes and hypertension and overestimates the prevalence of heart dis-

ease among men, the neighbourhood level validation demonstrates that spatial

patterns of these outcomes are predicted reasonably well. Neighbourhoods hav-

ing low or high simulated prevalence tend to have low or high true prevalence.

These synthetic small area estimates can be used to identify neighbourhoods ex-

periencing a greater burden of disease.

Based on these findings, neighbourhoods within north Etobicoke, west North

York, and most of Scarborough face a higher burden of type 2 diabetes compared

to other neighbourhoods within metropolitan Toronto. Relative to lower risk neigh-

bourhoods, these higher risk communities are comprised of sizeable visible mi-

nority populations. These findings point to an unequal burden of type 2 diabetes

across metropolitan Toronto, suggesting that diabetes prevention and manage-

ment programs should be customized to suit the particular needs of specific com-

munities.

Although TropISM underestimates the prevalence of type 2 diabetes and its

risk factors, when model outputs were used to forecast diabetes incidence using

the Diabetes Population Risk Tool, TropISM produces reasonably accurate projec-

tions. Although forecast incidence was less accurate in neighbourhoods within

north Etobicoke, west North York, and Scarborough, both forecast incidence and

the true incidence of diabetes were higher in these communities than those from

the boroughs of south Etobicoke, York, Toronto, and East York. Different weight

loss scenarios suggest that when the population of high risk individuals having

a body mass index greater than 25 kg/m2 loses 10% or more of its body weight,

neighbourhoods in north Etobicoke and Scarborough will experience greater re-

ductions in diabetes incidence compared to other neighbourhoods. Forecast re-

ductions were larger in neighbourhoods comprised of greater percentages of vis-

ible minorities and immigrants. These findings support the idea that a particular

health promotion program will produce different effects in different communi-
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ties. They also point to the necessity of tailoring health promotion activities to the

specific needs of the communities in which they are delivered.

The evaluation of spatial accessibility to health promotion programs was an-

other way in which TropISM was able to identify potential policy options. In par-

ticular, when the simulated prevalence of type 2 diabetes and overweight (BMI ≥
25 kg/m2) were used as the “demand” for health promotion programs, it was pos-

sible to identify neighbourhoods within metropolitan Toronto having relatively

higher disease or risk factor prevalence but lower spatial access to health promo-

tion resources. The potential mismatch between disease burden and accessibil-

ity to health promotion resources further highlights how spatial microsimulation

models can inform the delivery of health promotion programs to local communi-

ties. In this case, one possible course of action would be to redistribute programs

from low disease burden neighbourhoods having relatively high access to lower

access neighbourhoods having greater disease burden.

Based on these findings, the TropISM spatial microsimulation model was able

to (a) predict the consequences of different courses of action and (b) identify po-

tential mismatches between existing demand for health promotion programs and

the geographic availability of those resources. This locally relevant information

enables public health planners to better allocate scarce resources to areas of great-

est need. In summary, this research illustrates the utility of spatial microsimula-

tion modelling as a spatial decision support tool for local public health practice.

One unique output from this research is the use of probabilistic sensitivity

analysis to ascertain the magnitude of uncertainty surrounding model results. Un-

like other types of sensitivity analysis, probabilistic sensitivity analysis assumes

that model parameters follow a defined probability distribution. Randomly vary-

ing model parameters according to that distribution makes it possible to assess

which parameters exert more influence on the uncertainty about model results. A

probabilistic sensitivity analysis of forecast diabetes incidence suggests that fore-

cast uncertainty was strongly influenced by (a) the specific parametrization of the

Diabetes Population Risk Tool and (b) the underlying demographic and health risk

factor profile of neighbourhood populations. In addition, some parameters, such

as visible minority status, exerted greater influence on forecast incidence in some

neighbourhoods compared to others. A probabilistic sensitivity analysis of spatial
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7 Conclusions

access to health promotion programs suggests that the overall prevalence, or “de-

mand”, for these programs is the most important factor influencing uncertainty.

Accessibility tends to decrease as demand increases.

These findings illustrate that it is possible to quantify the uncertainty surround-

ing small area policy modeling scenarios developed using spatial microsimulation

outputs. Clarke (1996) and Whitworth et al. (2016) underscore the necessity of

quantifying this uncertainty and this research offers a unique way to do so us-

ing probabilistic sensitivity analysis. Quantification of uncertainty allows public

health planners to assess which factors exert greater influence on the possible out-

comes of prevention programs in specific neighbourhoods. This additional infor-

mation suggests how programs may need to be tailored to specific communities.

For example, in some neighbourhoods it might be more important to focus on vis-

ible minority groups to achieve greater reductions in diabetes incidence. In other

neighbourhoods, it might be more important to focus on excess body weight in

older people. Thus, quantification of model uncertainty provides public health

planners with additional information guiding resource allocation decisions.

These results also suggest how public health modellers might develop better

spatial microsimulation models in future research studies. First, it is necessary to

ensure that the geographic heterogeneity in unconstrained outcomes is captured

by these models. Burden and Steel (2015) suggest using the within-area homo-

geneity statistic (Steel & Tranmer, 2011) to identify variables eliciting sufficient

spatial correlation with unconstrained outcomes. Doing so should help capture

sufficient spatial variation in unconstrained outcomes. Additional bivariate con-

straints should also be used during model development to better replicate the ge-

ographic heterogeneity in unconstrained outcomes. Given that TropISM under-

predicted both diabetes prevalence and diabetes incidence in specific neighbour-

hoods, using additional bivariate constraints for model development may have

been useful. For example, bivariate constraints crossing visible minority status

with sex, age group, and education may have produced prevalence estimates that

were more reflective of the true geographic variation in diabetes prevalence across

metropolitan Toronto.

Related to constraint selection is the availability of suitable variables in the

census data used to develop spatial microsimulation models. Currently, the Cana-
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dian long-form census does not contain any information about self-rated health.

Inclusion of a simple measure such as this would be useful for health planning

in general, but also for development of future spatial microsimulation models us-

ing Canadian data. Given that self-rated health is correlated with both subjec-

tive health outcomes and objective health status (Goldberg, Guegen, Schmaus,

Nakache, & Goldberg, 2001; Latham & Peek, 2013; Wu et al., 2013), including this

measure in future censuses may ensure spatial microsimulation models better

capture the geographic heterogeneity in important health outcomes at small area

levels.

Finally, there needs to be greater communication between developers of spa-

tial microsimulation models and public health practitioners who will ultimately

use model outputs to inform local health promotion planning decisions. Mod-

ellers often have difficulty communicating results to decision makers (Alper &

Geller, 2016; Maglio et al., 2014). Developers of spatial microsimulation models

in particular need to collaborate with public health practitioners to better under-

stand their needs for relevant small area information and how that information

informs the decision making process. Additional research into all these aspects

of spatial microsimulation modelling will enhance the utility of these models for

public health practice. In so doing, spatial microsimulation models can provide

public health practitioners with relevant spatial decision support tools that can be

used to inform the delivery of chronic disease health promotion programs.
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A TropISM: Model Validation and Uncertainty

A.1 Model Validation

Table A.1. Simulated prevalence of unconstrained outcomes among men compared to the
Canadian Community Health Survey for the TropISM model developed using the Ontario
subset of the CCHS.

2003 2005 2007

TropISM CCHS Abs Rel CCHS Abs Rel CCHS Abs Rel

Men, ages 20+
Type 2 diabetes 6.6 4.9 1.7 34.8 5.7 0.9 15.9 8.2 -1.6 -19.2
Income (80th %ile) 18.5 36.5 -18.0 -49.4 17.7 0.8 4.4 14.3 4.2 29.4
Current smoker 26.4 25.5 1.0 3.8 24.8 1.7 6.7 25.7 0.7 2.8
Hypertension 17.8 17.0 0.7 4.4 13.1 4.7 35.6 15.0 2.8 18.3
Heart disease 6.5 5.3 1.3 24.0 4.8 1.7 35.0 5.9 0.6 10.9

Men, ages 20–44
BMI < 23 25.5 33.1 -7.6 -23 32.6 -7.1 -21.8 27.9 -2.4 -8.5
23 ≤ BMI < 25 22.6 24.8 -2.2 -8.8 21.2 1.4 6.5 26.5 -3.9 -14.8
25 ≤ BMI < 30 36.8 32.6 4.1 12.6 34.4 2.4 6.9 32.9 3.8 11.7
30 ≤ BMI < 35 10.9 6.6 4.3 64.5 7.7 3.2 42.2 6.3 4.6 73.1
BMI ≥ 35 3.4 1.3 2.1 162.8 2.1 1.2 57.2 4.3 -1.0 -22.3
BMI unknown 0.8 1.5 -0.7 -45.1 1.9 -1.1 -56.8 2.1 -1.2 -59.3

Men, ages 45+
BMI < 23 18.1 21.3 -3.2 -15.0 17.4 0.7 4.2 20.8 -2.7 -12.8
23 ≤ BMI < 25 21.3 23.4 -2.2 -9.3 26.8 -5.5 -20.5 20.1 1.2 5.7
25 ≤ BMI < 30 42.1 39.6 2.5 6.3 43.3 -1.2 -2.8 40.6 1.4 3.5
30 ≤ BMI < 35 13.6 11.8 1.8 14.9 8.6 4.9 57.0 12.7 0.9 7.2
BMI ≥ 35 4.1 3.2 1.0 30.4 2.6 1.6 60.8 2.2 1.9 86.4
BMI unknown 0.9 0.7 0.1 19.3 1.4 -0.5 -37.4 3.6 -2.7 -76.1

Abs: Absolute difference in percentage points. Rel: Relative percent difference.
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A.1 Model Validation

Table A.2. Simulated prevalence of unconstrained outcomes among men compared to the
Canadian Community Health Survey for the TropISM model developed using the CMA sub-
set of the CCHS.

2003 2005 2007

TropISM CCHS Abs Rel CCHS Abs Rel CCHS Abs Rel

Men, ages 20+
Type 2 diabetes 6.4 4.9 1.5 30.3 5.7 0.7 12.0 8.2 -1.8 -21.9
Income (80th %ile) 17.5 36.5 -19.1 -52.2 17.7 -0.2 -1.4 14.3 3.2 22.2
Current smoker 25.9 25.5 0.4 1.7 24.8 1.1 4.6 25.7 0.2 0.8
Hypertension 17.7 17.0 0.6 3.7 13.1 4.6 34.7 15.0 2.6 17.6
Heart disease 6.2 5.3 0.9 17.7 4.8 1.4 28.2 5.9 0.3 5.3

Men, ages 20–44
BMI < 23 26.1 33.2 -7.1 -21.5 33.1 -7.0 -21.2 28.0 -1.9 -6.9
23 ≤ BMI < 25 22.8 25.6 -2.8 -10.8 20.7 2.1 10.1 26.4 -3.5 -13.3
25 ≤ BMI < 30 36.8 31.7 5.1 16.0 34.4 2.4 6.9 32.9 3.9 11.7
30 ≤ BMI < 35 10.4 6.6 3.8 58.4 7.7 2.7 34.9 6.3 4.1 65.2
BMI ≥ 35 3.0 1.4 1.6 119.7 2.1 0.9 42.3 4.3 -1.3 -31.1
BMI unknown 0.9 1.5 -0.6 -42.5 1.9 -1.0 -54.7 2.1 -1.2 -57.4

Men, ages 45+
BMI < 23 18.3 21.3 -3.0 -14.2 17.5 0.8 4.2 20.9 -2.7 -12.7
23 ≤ BMI < 25 22.0 23.6 -1.6 -6.8 26.6 -4.6 -17.3 20.0 2.0 10.2
25 ≤ BMI < 30 41.6 39.6 2.0 5.0 43.3 -1.7 -3.8 40.6 1.0 2.5
30 ≤ BMI < 35 13.2 11.6 1.7 14.4 8.6 4.6 53.1 12.9 0.3 2.5
BMI ≥ 35 3.9 3.2 0.8 24.9 2.6 1.3 54.0 2.0 2.0 101.1
BMI unknown 0.9 0.7 0.2 26.5 1.4 -0.5 -33.6 3.6 -2.7 -74.7

Abs: Absolute difference in percentage points. Rel: Relative percent difference.
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A TropISM: Model Validation and Uncertainty

Table A.3. Simulated prevalence of unconstrained outcomes among men compared to the
Canadian Community Health Survey for the TropISM model developed using the GTA sub-
set of the CCHS.

2003 2005 2007

TropISM CCHS Abs Rel CCHS Abs Rel CCHS Abs Rel

Men, ages 20+
Type 2 diabetes 6.7 4.9 1.8 36.3 5.7 1.0 17.2 8.2 -1.5 -18.3
Income (80th %ile) 17.5 36.5 -19.1 -52.2 17.7 -0.2 -1.4 14.3 3.2 22.2
Current smoker 24.9 25.5 -0.6 -2.2 24.8 0.1 0.5 25.7 -0.8 -3.1
Hypertension 17.7 17.0 0.7 4.0 13.1 4.6 35.1 15.0 2.7 17.9
Heart disease 6.5 5.3 1.2 23.7 4.8 1.7 34.7 5.9 0.6 10.6

Men, ages 20–44
BMI < 23 27.6 33.1 -5.5 -16.6 32.6 -5.0 -15.3 27.9 -0.3 -0.9
23 ≤ BMI < 25 22.3 24.8 -2.4 -9.8 21.2 1.1 5.4 26.5 -4.2 -15.7
25 ≤ BMI < 30 36.5 32.6 3.9 11.9 34.4 2.1 6.2 32.9 3.6 11.0
30 ≤ BMI < 35 9.8 6.6 3.2 47.9 7.7 2.1 27.9 6.3 3.5 55.6
BMI ≥ 35 2.9 1.3 1.6 124.7 2.1 0.8 34.4 4.3 -1.4 -33.5
BMI unknown 0.8 1.5 -0.7 -49.2 1.9 -1.1 -60.0 2.1 -1.3 -62.4

Men, ages 45+
BMI < 23 20.7 21.3 -0.6 -3.0 17.4 3.3 18.9 20.8 -0.1 -0.6
23 ≤ BMI < 25 23.7 23.4 0.3 1.3 26.8 -3.1 -11.3 20.1 3.6 18.0
25 ≤ BMI < 30 40.4 39.6 0.9 2.2 43.3 -2.9 -6.6 40.6 -0.2 -0.5
30 ≤ BMI < 35 10.6 11.8 -1.2 -10.4 8.6 2.0 22.5 12.7 -2.1 -16.4
BMI ≥ 35 3.7 3.2 0.5 16.7 2.6 1.1 43.9 2.2 1.5 66.7
BMI unknown 0.9 0.7 0.2 24.4 1.4 -0.5 -34.7 3.6 -2.7 -75.1

Abs: Absolute difference in percentage points. Rel: Relative percent difference.
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A.1 Model Validation

Table A.4. Simulated prevalence of unconstrained outcomes among men compared to the
Canadian Community Health Survey for the TropISM model developed using the Toronto
health region subset of CCHS.

2003 2005 2007

TropISM CCHS Abs Rel CCHS Abs Rel CCHS Abs Rel

Men, ages 20+
Type 2 diabetes 6.6 4.9 1.7 33.9 5.7 0.9 15.1 8.2 -1.6 -19.8
Income (80th %ile) 16.8 36.5 -19.7 -54.1 17.7 -0.9 -5.3 14.3 2.5 17.4
Current smoker 26.8 25.5 1.3 5.1 24.8 2.0 8.0 25.7 1.1 4.1
Hypertension 14.6 17.0 -2.4 -13.9 13.1 1.5 11.8 15.0 -0.4 -2.5
Heart disease 6.0 5.3 0.7 13.7 4.8 1.2 23.9 5.9 0.1 1.8

Men, ages 20–44
BMI < 23 33.3 33.1 0.2 0.4 32.6 0.7 1.9 27.9 5.4 19.3
23 ≤ BMI < 25 23.4 24.8 -1.4 -5.6 21.2 2.2 10.3 26.5 -3.1 -11.8
25 ≤ BMI < 30 32.4 32.6 -0.2 -0.6 34.4 -2.0 -5.7 32.9 -0.5 -1.4
30 ≤ BMI < 35 7.8 6.6 1.2 18.0 7.7 0.1 2.0 6.3 1.5 24.1
BMI ≥ 35 1.8 1.3 0.5 37.9 2.1 -0.3 -17.6 4.3 -2.5 -59.2
BMI unknown 1.3 1.5 -0.2 -13.1 1.9 -0.6 -31.6 2.1 -0.8 -35.7

Men, ages 45+
BMI < 23 21.2 21.3 -0.1 -0.5 17.4 3.8 21.9 20.8 0.4 2.0
23 ≤ BMI < 25 28.1 23.4 4.7 20.0 26.8 1.3 5.1 20.1 8.0 39.8
25 ≤ BMI < 30 38.9 39.6 -0.7 -1.7 43.3 -4.4 -10.2 40.6 -1.7 -4.3
30 ≤ BMI < 35 8.4 11.8 -3.4 -28.9 8.6 -0.2 -2.9 12.7 -4.3 -33.7
BMI ≥ 35 2.9 3.2 -0.3 -7.9 2.6 0.3 13.6 2.2 0.7 31.6
BMI unknown 0.5 0.7 -0.2 -31.7 1.4 -0.9 -64.1 3.6 -3.1 -86.3

Abs: Absolute difference in percentage points. Rel: Relative percent difference.
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Table A.5. Simulated prevalence of unconstrained outcomes among women compared to
the Canadian Community Health Survey for the TropISM model developed using the On-
tario subset of the CCHS.

2003 2005 2007

TropISM CCHS Abs Rel CCHS Abs Rel CCHS Abs Rel

Women, ages 20+
Type 2 diabetes 5.4 5.2 0.2 5.2 2.5 2.9 116.0 6.7 -1.2 -18.3
Hypertension 19.7 16.6 3.1 18.9 15.5 4.2 26.9 18.5 1.1 6.4

Women, ages 20–44
BMI < 23 45.5 51.6 -6.1 -11.8 54.0 -8.4 -15.6 52.5 -6.9 -13.2
23 ≤ BMI < 25 15.6 15.0 0.6 3.5 14.3 1.3 8.8 14.9 0.7 4.6
25 ≤ BMI < 30 19.8 19.2 0.6 3.4 17.4 2.5 14.1 18.1 1.7 9.8
30 ≤ BMI < 35 7.3 6.1 1.2 19.8 5.6 1.7 30.4 4.6 2.6 56.4
BMI ≥ 35 4.4 2.9 1.5 50.1 2.4 1.9 80.1 2.9 1.5 51.7
BMI unknown 7.4 5.2 2.2 43.3 6.4 1.1 17.1 7.1 0.3 5.4

Women, ages 45–64
BMI < 23 29.7 29.8 -0.04 -0.1 35.7 -5.9 -16.6 32.3 -2.6 -7.9
23 ≤ BMI < 25 18.4 17.3 1.1 6.6 17.3 1.1 6.6 18.7 -0.3 -1.4
25 ≤ BMI < 30 29.9 32.7 -2.8 -8.7 28.6 1.2 4.4 30.4 -0.5 -1.6
30 ≤ BMI < 35 11.8 10.4 1.4 13.2 8.5 3.2 37.6 8.2 3.6 43.3
BMI ≥ 35 6.6 5.7 0.9 16.6 4.8 1.9 39.5 6.2 0.4 7.3
BMI unknown 3.6 4.2 -0.6 -14.1 5.1 -1.6 -30.3 4.3 -0.7 -16.1

Women, ages 65+
BMI < 23 30.2 27.6 2.6 9.6 30.9 -0.7 -2.1 27.7 2.5 9.0
23 ≤ BMI < 25 18.6 22.7 -4.1 -18.3 21.3 -2.8 -12.9 17.0 1.6 9.1
25 ≤ BMI < 30 33.0 29.7 3.3 11.2 32.1 0.9 2.7 29.4 3.6 12.3
30 ≤ BMI < 35 11.4 10.5 0.9 9.3 7.7 3.7 48.8 12.4 -1.0 -8.0
BMI ≥ 35 3.2 4.3 -1.1 -25.4 3.0 0.3 9.5 3.6 -0.4 -9.9
BMI unknown 3.5 5.2 -1.7 -32.4 5.0 -1.5 -29.7 9.8 -6.3 -64.3

Abs: Absolute difference in percentage points. Rel: Relative percent difference.
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Table A.6. Simulated prevalence of unconstrained outcomes among women compared to
the Canadian Community Health Survey for the TropISM model developed using the CMA
subset of the CCHS.

2003 2005 2007

TropISM CCHS Abs Rel CCHS Abs Rel CCHS Abs Rel

Women, ages 20+
Type 2 diabetes 5.2 5.2 -0.01 -0.1 2.5 2.6 105.0 6.7 -1.5 -22.4
Hypertension 19.3 16.6 2.7 16.4 15.5 3.8 24.2 18.5 0.8 4.2

Women, ages 20–44
BMI < 23 46.5 52.1 -5.6 -10.7 54.4 -7.9 -14.6 53.2 -6.7 -12.6
23 ≤ BMI < 25 15.3 14.4 0.9 6 13.8 1.4 10.4 14.2 1.1 7.8
25 ≤ BMI < 30 20.0 19.4 0.6 3 17.4 2.6 14.9 18.1 1.9 10.6
30 ≤ BMI < 35 7.0 6.0 1.0 15.3 5.6 1.4 24.7 4.6 2.3 49.6
BMI ≥ 35 4.1 2.9 1.2 42.1 2.4 1.7 70.5 2.9 1.2 43.6
BMI unknown 7.2 5.2 2.0 38.4 6.4 0.8 13.1 7.1 0.1 1.7

Women, ages 45–64
BMI < 23 31.2 29.4 1.8 6.3 36.1 -4.9 -13.7 33.0 -1.8 -5.5
23 ≤ BMI < 25 17.7 17.4 0.3 2.0 17.0 0.7 4.3 18.0 -0.3 -1.3
25 ≤ BMI < 30 29.7 31.2 -1.5 -4.9 28.4 1.2 4.4 30.4 -0.7 -2.2
30 ≤ BMI < 35 11.7 12.2 -0.5 -3.9 8.5 3.1 36.9 8.2 3.5 42.5
BMI ≥ 35 6.1 5.7 0.4 7.4 4.8 1.4 28.5 6.2 -0.1 -1.2
BMI unknown 3.6 4.2 -0.6 -13.8 5.1 -1.5 -30.1 4.3 -0.7 -15.9

Women, ages 65+
BMI < 23 31.9 29.5 2.4 8.1 31.7 0.2 0.6 28.3 3.6 12.6
23 ≤ BMI < 25 17.1 21.1 -4.0 -18.9 20.7 -3.5 -17.1 16.5 0.6 3.9
25 ≤ BMI < 30 33.0 29.3 3.7 12.6 32.0 0.9 2.9 29.4 3.6 12.2
30 ≤ BMI < 35 11.3 10.6 0.7 6.4 7.7 3.6 47.3 12.4 -1.1 -9.0
BMI ≥ 35 3.3 4.3 -1.0 -23.5 3.0 0.4 12.4 3.6 -0.3 -7.5
BMI unknown 3.4 5.2 -1.8 -34.2 5.0 -1.6 -31.6 9.8 -6.4 -65.2

Abs: Absolute difference in percentage points. Rel: Relative percent difference.
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Table A.7. Simulated prevalence of unconstrained outcomes among women compared to
the Canadian Community Health Survey for the TropISM model developed using the GTA
subset of the CCHS.

2003 2005 2007

TropISM CCHS Abs Rel CCHS Abs Rel CCHS Abs Rel

Women, ages 20+
Type 2 diabetes 4.3 5.2 -0.9 -17.6 2.5 1.8 69.1 6.7 -2.4 -36.0
Hypertension 18.4 16.6 1.8 11.1 15.5 2.9 18.6 18.5 -0.1 -0.5

Women, ages 20–44
BMI < 23 49.3 51.6 -2.3 -4.4 54 -4.6 -8.6 52.5 -3.2 -6.0
23 ≤ BMI < 25 15.2 15.0 0.2 1.1 14.3 0.9 6.3 14.9 0.3 2.1
25 ≤ BMI < 30 19.0 19.2 -0.2 -0.8 17.4 1.6 9.5 18.1 0.9 5.4
30 ≤ BMI < 35 6.1 6.1 0.05 0.8 5.6 0.5 9.7 4.6 1.5 31.6
BMI ≥ 35 3.3 2.9 0.4 14.8 2.4 0.9 37.8 2.9 0.4 16.0
BMI unknown 7.0 5.2 1.8 34.5 6.4 0.6 9.9 7.1 -0.1 -1.1

Women, ages 45–64
BMI < 23 34.1 29.8 4.3 14.3 35.7 -1.6 -4.5 32.3 1.8 5.4
23 ≤ BMI < 25 17.0 17.3 -0.3 -1.8 17.3 -0.3 -1.9 18.7 -1.7 -9.2
25 ≤ BMI < 30 29.7 32.7 -3.0 -9.1 28.6 1.1 3.9 30.4 -0.7 -2.1
30 ≤ BMI < 35 10.5 10.4 0.1 0.7 8.5 2.0 22.4 8.2 2.3 27.4
BMI ≥ 35 5.1 5.7 -0.6 -10.1 4.8 0.3 7.5 6.2 -1.1 -17.3
BMI unknown 3.7 4.2 -0.5 -11.2 5.1 -1.4 -28.0 4.3 -0.6 -13.4

Women, ages 65+
BMI < 23 33.0 27.6 5.4 19.4 30.9 2.1 6.6 27.7 5.2 18.8
23 ≤ BMI < 25 18.8 22.7 -3.9 -17.4 21.3 -2.5 -12.0 17.0 1.8 10.3
25 ≤ BMI < 30 33.2 29.7 3.5 11.8 32.1 1.1 3.2 29.4 3.8 12.8
30 ≤ BMI < 35 9.8 10.5 -0.7 -5.8 7.7 2.1 28.3 12.4 -2.6 -20.7
BMI ≥ 35 2.4 4.3 -1.9 -44.1 3.0 -0.6 -17.9 3.6 -1.2 -32.4
BMI unknown 2.8 5.2 -2.4 -45.7 5.0 -2.2 -43.6 9.8 -7.0 -71.3

Abs: Absolute difference in percentage points. Rel: Relative percent difference.
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Table A.8. Simulated prevalence of unconstrained outcomes among women compared
to the Canadian Community Health Survey for the TropISM model developed using the
Toronto health region subset of the CCHS.

2003 2005 2007

TropISM CCHS Abs Rel CCHS Abs Rel CCHS Abs Rel

Women, ages 20+
Type 2 diabetes 3.6 5.2 -1.6 -30.5 2.5 1.1 42.7 6.7 -3.1 -46.0
Hypertension 17.4 16.6 0.8 5.0 15.5 1.9 12.1 18.5 -1.1 -6.0

Women, ages 20–44
BMI < 23 50.7 51.6 -0.9 -1.7 54 -3.2 -6.0 52.5 -1.7 -3.3
23 ≤ BMI < 25 15.8 15 0.7 4.7 14.3 1.5 10.0 14.9 0.9 5.8
25 ≤ BMI < 30 18.2 19.2 -1.0 -5.3 17.4 0.8 4.5 18.1 0.1 0.6
30 ≤ BMI < 35 5.8 6.1 -0.3 -5.1 5.6 0.8 3.2 4.6 1.1 23.9
BMI ≥ 35 4.0 2.9 1.1 36.1 2.4 1.6 63.3 2.9 1.1 37.6
BMI unknown 5.6 5.2 0.4 8.4 6.4 -0.8 -11.4 7.1 -1.4 -20.3

Women, ages 45–64
BMI < 23 38.5 29.8 8.7 29.4 35.7 2.9 8.0 32.3 6.2 19.3
23 ≤ BMI < 25 16.4 17.3 -0.9 -4.8 17.3 -0.9 -4.8 18.7 -2.2 -12.0
25 ≤ BMI < 30 27.9 32.7 -4.8 -14.7 28.6 -0.7 -2.5 30.4 -2.5 -8.1
30 ≤ BMI < 35 8.4 10.4 -2.0 -19.5 8.5 -0.1 -2.0 8.2 0.2 2.0
BMI ≥ 35 5.4 5.7 -0.3 -5.7 4.8 0.6 12.8 6.2 -0.8 -13.3
BMI unknown 3.4 4.2 -0.8 -18.6 5.1 -1.7 -34.0 4.3 -0.9 -20.6

Women, ages 65+
BMI < 23 30.9 27.6 3.3 11.9 30.9 -0.02 -0.1 27.7 3.1 11.3
23 ≤ BMI < 25 21.6 22.7 -1.1 -5.0 21.3 0.3 1.2 17.0 4.6 26.8
25 ≤ BMI < 30 32.1 29.7 2.4 8.1 32.1 -0.05 -0.2 29.4 2.7 9.1
30 ≤ BMI < 35 7.8 10.5 -2.7 -25.7 7.7 0.1 1.2 12.4 -4.7 -37.4
BMI ≥ 35 3.1 4.3 -1.2 -27.5 3.0 0.1 6.5 3.6 -0.4 -12.4
BMI unknown 4.5 5.2 -0.7 -12.7 5.0 -0.5 -9.3 9.8 -5.3 -53.9

Abs: Absolute difference in percentage points. Rel: Relative percent difference.
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Figure A.1. Demographic characteristics of the simulated TropISM population.
Neighbourhood distribution of the population of (a) men aged 65 and older, (b)
women aged 65 and older, (c) visible minorities, (d) immigrants, (e) educational
attainment (post-secondary), and (f) personal incomes greater than $50,000/year.
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Figure A.2. Neighbourhood-level validation of the simulated number of prevalent
cases of diabetes compared to the actual number of cases in 2005, ascertained
from the Ontario Diabetes Database (ODD). Panels (a), (c) & (e): accuracy and
precision of the simulated number of cases. Panels (b), (d) & (f): difference be-
tween actual cases and TropISM, ranked in ascending order by the actual number
of cases in each neighbourhood.
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Figure A.3. Simulated prevalence (%) of type 2 diabetes (corrected for undi-
agnosed cases) compared to prevalence estimates from the Ontario Diabetes
Database (ODD, corrected for false positives and removal of type 1 diabetes). (a)
TropISM, raw prevalence rate; (b) ODD, raw prevalence rate; (c) TropISM, spatially
smoothed prevalence rate; (d) ODD, spatially smoothed prevalence rate; (e) differ-
ence in the quintile rankings of spatially smoothed rates (TropISM vs. ODD); (f)
bivariate LISA map depicting areas having similarly high (or low) simulated and
known prevalence of type 2 diabetes.
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A.2 Model Uncertainty
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Figure A.4. TropISM model uncertainty in the simulated prevalence of type 2 dia-
betes and hypertension among men and women.
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Figure A.5. TropISM model uncertainty in the simulated prevalence of overweight
and obesity among men and women.
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B Validation and Probabilistic Sensitivity Analysis of Forecast Incidence

B.1 Validation
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Figure B.1. Neighbourhood-level validation of the forecast number of incident
cases of diabetes compared to the actual number of incident cases from 2006–
2010, ascertained from the Ontario Diabetes Database (ODD). Panels (a), (c) & (e):
accuracy and precision of the forecast number of cases. Panels (b), (d) & (f): differ-
ence between actual incident cases and the forecast number, ranked in ascending
order by the actual number of cases in each neighbourhood.
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Figure B.2. Forecast five-year incidence (%) of diabetes at the neighbourhood
level compared to the cumulative five-year incidence proportion (%) of diabetes
from 2006–2010 (ascertained from the Ontario Diabetes Database (ODD) with re-
moval of false positives). (a) Forecast incidence, raw (%); (b) ODD cumulative in-
cidence, raw (%); (c) forecast incidence, spatially smoothed (%); (d) ODD cumu-
lative incidence, spatially smoothed (%); (e) difference in the quintile rankings of
spatially smoothed rates (forecast vs. ODD); (f) bivariate LISA map depicting areas
having similarly high (or low) forecast and known incidence of diabetes.
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Figure B.3. Cumulative incidence proportion (%) of diabetes (2006–2010) ascer-
tained from the Ontario Diabetes Database (ODD) compared to the five-year fore-
cast incidence and uncertainty of diabetes across Toronto neighbourhoods.
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Table B.1. Demographic characteristics of neighbourhoods where the
known five-year incidence of diabetes fell below, within, or above the 95%
uncertainty interval of forecast five-year incidence.

Characteristic Below Within Above LR∗ p

Borough (n†, %)
Etobicoke 1 (5.0) 13 (65.0) 6 (30.0) —
North York 4 (12.1) 14 (42.4) 15 (45.5) —
York 1 (10.0) 2 (20.0) 7 (70.0) —
Toronto 16 (36.4) 25 (56.8) 3 (6.8) —
East York 1 (12.5) 5 (62.5) 2 (25.0) —
Scarborough 0 (0) 6 (24.0) 19 (76.0) —

Overall 23 (16.4) 65 (46.4) 52 (37.1) —

% men ≥ 45 21.98a 22.10a 20.10b 13.21 0.001
% women ≥ 65 9.67a,b 10.95b 9.20a 10.94 0.004
% visible minority 28.15a 35.51a 53.82b 42.39 < 0.001
% immigrant 37.37a 46.53b 57.56c 49.95 < 0.001
% post-secondary education 65.76a 57.02b 53.15c 31.11 < 0.001
% highest income quintile 22.79a 16.30b 11.24c 67.82 < 0.001
% population growth‡ 5.35 4.21 5.64 0.79 0.674
∗ Differences in average characteristics of neighbourhoods where the known cumulative

incidence proportion was below, within, or above the 95% uncertainty interval of forecast

incidence. Differences were tested using a linear spatial error regression model. Groups

having different letters are significantly different at p = 0.05 using a Bonferroni

adjustment. LR = likelihood ratio.
† Number of neighbourhoods within each borough.
‡ Average population growth between 2006 and 2011, in percentage points.
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B.2 Probabilistic Sensitivity Analysis

Table B.2. Coefficient of determination (R2) from regres-
sion models used to estimate neighbourhood-specific
sensitivity indices for a probabilistic sensitivity analysis
of DPoRT model parameters contributing to uncertainty
about forecast type 2 diabetes incidence under different
modelling scenarios.

Baseline 10% Loss

Borough Median (MAD) Median (MAD)

Men
Etobicoke 0.9831 (0.0004) 0.9738 (0.0004)
North York 0.9833 (0.0003) 0.9769 (0.0005)
York 0.9836 (0.0003) 0.9775 (0.0003)
Toronto 0.9831 (0.0004) 0.9778 (0.0003)
East York 0.9837 (0.0001) 0.9777 (0.0006)
Scarborough 0.9838 (0.0002) 0.9768 (0.0003)

Women
Etobicoke 0.9901 (0.0008) 0.9869 (0.0008)
North York 0.9906 (0.0005) 0.9880 (0.0010)
York 0.9911 (0.0003) 0.9886 (0.0003)
Old Toronto 0.9906 (0.0006) 0.9872 (0.0010)
East York 0.9906 (0.0004) 0.9872 (0.0004)
Scarborough 0.9914 (0.0002) 0.9889 (0.0008)
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Figure B.5. Geographic distribution of the sensitivity index associated with DPoRT
model parameters used to forecast diabetes incidence among men under the
baseline scenario: (a) intercept parameter, (b) scale parameter, (c) overweight
men aged 45+, (d) healthy weight men aged 20–44, (e) overweight men aged 20–
44, and (f) visible minorities.
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Figure B.6. Geographic distribution of the sensitivity index associated with DPoRT
model parameters used to forecast diabetes incidence among women under the
baseline scenario: (a) intercept parameter, (b) scale parameter, (c) normal weight
women aged 65+, (d) underweight women aged 65+, (e) hypertension, and (f)
visible minorities.
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Figure B.7. Geographic distribution of the sensitivity index associated with DPoRT
model parameters used to forecast diabetes incidence among men under the 10%
weight loss scenario: (a) intercept parameter, (b) scale parameter, (c) healthy
weight men aged 45+, (d) overweight men aged 20–44, (e) healthy weight men
aged 20–44, and (f) visible minorities.
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Figure B.8. Geographic distribution of the sensitivity index associated with DPoRT
model parameters used to forecast diabetes incidence among women under the
10% weight loss scenario: (a) intercept parameter, (b) healthy weight women aged
65+, (c) underweight women aged 65+, (d) scale parameter, (e) healthy weight
women aged 45–64, and (f) visible minorities.
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C Spatial Accessibility using Simulated vs. Known Demand
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Figure C.1. Comparison of accessibility to diabetes education programs using
simulated demand from TropISM vs. known demand ascertained from the Ontario
Diabetes Database (ODD) in 2005. (a) Total simulated cases of type 2 diabetes; (b)
known number of cases (ODD); (c) accessibility using simulated demand; and (d)
accessibility using known demand.
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Appendix

D
R Syntax

D.1 Forecasting Diabetes Incidence using DPoRT

Listing D.1. Functions to forecast diabetes incidence using the Diabetes Popula-

tion Risk Tool. Functions were packaged into a personal R library for convenient

loading.

## −−− Required l i b r a r i e s −−−−−−−−−
require ( dplyr )

## −−− Functions −−−−−−−−−−−−−−−−−−
dport . centredCovar <− function ( df , means , join . by )

{

## This function uses the data frame produced by dport . updateBMI as

## input to compute the mean centred versions of the covariates used

## to f o r e c a s t the future r i s k of type 2 diabetes using the DPoRT

## model .

. tmp <− l e f t _ join ( df , means, by = join . by )

return (

mutate (

. tmp, minority . c = MINORITY − minority ,

immigrant . c = IMMIGRANT − immigrant ,

postsecedu . c = POSTSECEDU − postsecedu ,

incomeq5 . c = INCOMEQ5 − incomeq5 , smoker . c = SMOKER − smoker ,

hypertension . c = HYPERTENSION − hypertension ,
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heartdisease . c = HEARTDISEASE − heartdisease ,

mbmi12. c = i f e l s e (MALE == 1 , MBMI12 − mbmi12, 0 ) ,

mbmi13. c = i f e l s e (MALE == 1 , MBMI13 − mbmi13, 0 ) ,

mbmi14. c = i f e l s e (MALE == 1 , MBMI14 − mbmi14, 0 ) ,

mbmi15. c = i f e l s e (MALE == 1 , MBMI15 − mbmi15, 0 ) ,

mbmi21. c = i f e l s e (MALE == 1 , MBMI21 − mbmi21, 0 ) ,

mbmi22. c = i f e l s e (MALE == 1 , MBMI22 − mbmi22, 0 ) ,

mbmi23. c = i f e l s e (MALE == 1 , MBMI23 − mbmi23, 0 ) ,

mbmi24. c = i f e l s e (MALE == 1 , MBMI24 − mbmi24, 0 ) ,

mbmi25. c = i f e l s e (MALE == 1 , MBMI25 − mbmi25, 0 ) ,

fbmi12 . c = i f e l s e (MALE == 0 , FBMI12 − fbmi12 , 0 ) ,

fbmi13 . c = i f e l s e (MALE == 0 , FBMI13 − fbmi13 , 0 ) ,

fbmi14 . c = i f e l s e (MALE == 0 , FBMI14 − fbmi14 , 0 ) ,

fbmi15 . c = i f e l s e (MALE == 0 , FBMI15 − fbmi15 , 0 ) ,

fbmi16 . c = i f e l s e (MALE == 0 , FBMI16 − fbmi16 , 0 ) ,

fbmi21 . c = i f e l s e (MALE == 0 , FBMI21 − fbmi21 , 0 ) ,

fbmi22 . c = i f e l s e (MALE == 0 , FBMI22 − fbmi22 , 0 ) ,

fbmi23 . c = i f e l s e (MALE == 0 , FBMI23 − fbmi23 , 0 ) ,

fbmi24 . c = i f e l s e (MALE == 0 , FBMI24 − fbmi24 , 0 ) ,

fbmi25 . c = i f e l s e (MALE == 0 , FBMI25 − fbmi25 , 0 ) ,

fbmi26 . c = i f e l s e (MALE == 0 , FBMI26 − fbmi26 , 0 ) ,

fbmi31 . c = i f e l s e (MALE == 0 , FBMI31 − fbmi31 , 0 ) ,

fbmi32 . c = i f e l s e (MALE == 0 , FBMI32 − fbmi32 , 0 ) ,

fbmi33 . c = i f e l s e (MALE == 0 , FBMI33 − fbmi33 , 0 ) ,

fbmi34 . c = i f e l s e (MALE == 0 , FBMI34 − fbmi34 , 0 ) ,

fbmi35 . c = i f e l s e (MALE == 0 , FBMI35 − fbmi35 , 0 ) ,

fbmi36 . c = i f e l s e (MALE == 0 , FBMI36 − fbmi36 , 0 ) ) )

}

dport . predictRisk <− function ( centredDf , dport . parm, horizon = 5)

{

## Forecast the r i s k of type 2 diabetes using the DPoRT 2.0 model .

. base <− s e l e c t ( centredDf , PID :MALE, AGEDPORTM, AGEDPORTF,

minority . c : fbmi36 . c )

.mp <− dport . parm$male

. fp <− dport . parm$female

return (

mutate (

. base , mu = i f e l s e (MALE == 1 , .mp$B0 +

.mp$HBP * hypertension . c + .mp$VISMIN * minority . c +
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.mp$CVD * heartdisease . c + .mp$SMOKER * smoker . c +

.mp$POSTSEC * postsecedu . c + .mp$INCOME * incomeq5 . c +

.mp$BMI12 * mbmi12. c + .mp$BMI13 * mbmi13. c +

.mp$BMI14 * mbmi14. c + .mp$BMI15 * mbmi15. c +

.mp$BMI21 * mbmi21. c + .mp$BMI22 * mbmi22. c +

.mp$BMI23 * mbmi23. c + .mp$BMI24 * mbmi24. c +

.mp$BMI25 * mbmi25. c ,

. fp$B0 + . fp$HBP * hypertension . c + . fp$VISMIN * minority . c +

. fp$IMMIGR * immigrant . c + . fp$POSTSEC * postsecedu . c +

. fp$BMI12 * fbmi12 . c + . fp$BMI13 * fbmi13 . c +

. fp$BMI14 * fbmi14 . c + . fp$BMI15 * fbmi15 . c +

. fp$BMI16 * fbmi16 . c + . fp$BMI21 * fbmi21 . c +

. fp$BMI22 * fbmi22 . c + . fp$BMI23 * fbmi23 . c +

. fp$BMI24 * fbmi24 . c + . fp$BMI25 * fbmi25 . c +

. fp$BMI26 * fbmi26 . c + . fp$BMI31 * fbmi31 . c +

. fp$BMI32 * fbmi32 . c + . fp$BMI33 * fbmi33 . c +

. fp$BMI34 * fbmi34 . c + . fp$BMI35 * fbmi35 . c +

. fp$BMI36 * fbmi36 . c ) ,

m = i f e l s e (MALE == 1 , ( log (365.242 * horizon ) − mu) /

.mp$SCALE, ( log (365.242 * horizon ) − mu) / . fp$SCALE) ,

p = 1 − exp(−exp (m) ) ) )

}

dport . wtloss <− function ( df , type , amount , stddev , subset = FALSE , subset . prop )

{

## This function i s used to develop weight l o s s scenarios f o r

## projec t ing the future r i s k of diabetes using the Diabetes

## Population Risk Tool (DPoRT ) . Risk i s projected at the

## neighbourhood l e v e l f o r metroplitan Toronto using a simulated

## population . The simulated population ( TropISM ) was developed using

## s p a t i a l microsimulation ( combinatorial optimization via simulated

## annealing ) .

i f ( ! type %in% c ( "prop" , "mean" ) ) {

stop ( "Only proportionate or average (mean) weight losses are allowed . " )

}

i f ( type == "prop" ) {

i f ( ! (amount > 0 & amount < 1 ) ) {

stop ( " Proportionate weight losses must l i e between 0 and 1" )

}
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i f ( ! subset ) {

LOSS <− 1

}

else {

. r iskn <− sum( group_ s i z e ( group_by ( df , BMICLS))[ −c ( 1 , 2 ) ] )

df$LOSS <− with ( df , i f e l s e ( !BMICLS %in% c ( "< 23" , "23 to < 25" ) ,

rbinom ( . riskn , 1 , subset . prop ) , 0 ) )

}

. tmp <− mutate (

df ,

BODYWT2 = i f e l s e ( !BMICLS %in% c ( "< 23" , "23 to < 25" ) ,

BODYWT − (BODYWT * amount * LOSS) , BODYWT) ,

BMI2 = BODYWT2/ (BODYHT^2) ,

BMICLS2 = i f e l s e (BMI2 >= 0 & BMI2 < 23 , 1 , 0 ) ,

BMICLS2 = i f e l s e (BMI2 >= 23 & BMI2 < 25 , 2 , BMICLS2) ,

BMICLS2 = i f e l s e (BMI2 >= 25 & BMI2 < 30 , 3 , BMICLS2) ,

BMICLS2 = i f e l s e (BMI2 >= 30 & BMI2 < 35 , 4 , BMICLS2) ,

BMICLS2 = i f e l s e (BMI2 >= 35 & BMI2 < 60 , 5 , BMICLS2) ,

BMICLS2 = i f e l s e ( i s . na(BMI2) , 6 , BMICLS2) ,

BMICLS2 = factor (BMICLS2, labels = l e v e l s (BMICLS ) ) )

return ( . tmp)

}

else {

. l o s s <− rnorm(

nrow( subset ( df , !BMICLS %in% c ( "< 23" , "23 to < 25" ) ) ) ,

mean = amount , sd = stddev )

. tmp <− mutate (

df ,

WTLOSS = i f e l s e ( !BMICLS %in% c ( "< 23" , "23 to < 25" ) , . loss , 0 ) ,

BODYWT2 = BODYWT − WTLOSS, BMI2 = BODYWT2/ (BODYHT^2) ,

BMICLS2 = i f e l s e (BMI2 >= 0 & BMI2 < 23 , 1 , 0 ) ,

BMICLS2 = i f e l s e (BMI2 >= 23 & BMI2 < 25 , 2 , BMICLS2) ,

BMICLS2 = i f e l s e (BMI2 >= 25 & BMI2 < 30 , 3 , BMICLS2) ,

BMICLS2 = i f e l s e (BMI2 >= 30 & BMI2 < 35 , 4 , BMICLS2) ,

BMICLS2 = i f e l s e (BMI2 >= 35 & BMI2 < 60 , 5 , BMICLS2) ,

BMICLS2 = i f e l s e ( i s . na(BMI2) , 6 , BMICLS2) ,

BMICLS2 = factor (BMICLS2, labels = l e v e l s (BMICLS ) ) )

return ( . tmp)

}

}
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dport . updateBMI <− function ( wtLossDf )

{

## Uses data frame output from ’ dport . wtloss ’ as input to define a

## s e r i e s of indicator variables that define age−sex s p e c i f i c BMI

## c a t e g o r i e s . The output from t h i s function i s required to compute

## mean centred covariates needed to f o r e c a s t r i s k of diabetes .

. tmp <− s e l e c t ( wtLossDf , PID :BODYHT, BODYWT = BODYWT2, BMI = BMI2,

BMICLS = BMICLS2, MINORITY: HEARTDISEASE)

. tmp <− mutate (

. tmp,

MBMI12 = i f e l s e (MALE == 1 & AGEDPORTM == "20−44" & BMICLS == "23 to < 25" , 1 , 0 ) ,

MBMI13 = i f e l s e (MALE == 1 & AGEDPORTM == "20−44" & BMICLS == "25 to < 30" , 1 , 0 ) ,

MBMI14 = i f e l s e (MALE == 1 & AGEDPORTM == "20−44" & BMICLS == "30 to < 35" , 1 , 0 ) ,

MBMI15 = i f e l s e (MALE == 1 & AGEDPORTM == "20−44" & BMICLS == ">= 35" , 1 , 0 ) ,

MBMI21 = i f e l s e (MALE == 1 & AGEDPORTM == "45+" & BMICLS == "< 23" , 1 , 0 ) ,

MBMI22 = i f e l s e (MALE == 1 & AGEDPORTM == "45+" & BMICLS == "23 to < 25" , 1 , 0 ) ,

MBMI23 = i f e l s e (MALE == 1 & AGEDPORTM == "45+" & BMICLS == "25 to < 30" , 1 , 0 ) ,

MBMI24 = i f e l s e (MALE == 1 & AGEDPORTM == "45+" & BMICLS == "30 to < 35" , 1 , 0 ) ,

MBMI25 = i f e l s e (MALE == 1 & AGEDPORTM == "45+" & BMICLS == ">= 35" , 1 , 0 ) ,

FBMI12 = i f e l s e (MALE == 0 & AGEDPORTF == "20−44" & BMICLS == "23 to < 25" , 1 , 0 ) ,

FBMI13 = i f e l s e (MALE == 0 & AGEDPORTF == "20−44" & BMICLS == "25 to < 30" , 1 , 0 ) ,

FBMI14 = i f e l s e (MALE == 0 & AGEDPORTF == "20−44" & BMICLS == "30 to < 35" , 1 , 0 ) ,

FBMI15 = i f e l s e (MALE == 0 & AGEDPORTF == "20−44" & BMICLS == ">= 35" , 1 , 0 ) ,

FBMI16 = i f e l s e (MALE == 0 & AGEDPORTF == "20−44" & BMICLS == "Unknown" , 1 , 0 ) ,

FBMI21 = i f e l s e (MALE == 0 & AGEDPORTF == "45−64" & BMICLS == "23 to < 25" , 1 , 0 ) ,

FBMI22 = i f e l s e (MALE == 0 & AGEDPORTF == "45−64" & BMICLS == "23 to < 25" , 1 , 0 ) ,

FBMI23 = i f e l s e (MALE == 0 & AGEDPORTF == "45−64" & BMICLS == "25 to < 30" , 1 , 0 ) ,

FBMI24 = i f e l s e (MALE == 0 & AGEDPORTF == "45−64" & BMICLS == "30 to < 35" , 1 , 0 ) ,

FBMI25 = i f e l s e (MALE == 0 & AGEDPORTF == "45−64" & BMICLS == ">= 35" , 1 , 0 ) ,

FBMI26 = i f e l s e (MALE == 0 & AGEDPORTF == "45−64" & BMICLS == "Unknown" , 1 , 0 ) ,

FBMI31 = i f e l s e (MALE == 0 & AGEDPORTF == "65+" & BMICLS == "23 to < 25" , 1 , 0 ) ,

FBMI32 = i f e l s e (MALE == 0 & AGEDPORTF == "65+" & BMICLS == "23 to < 25" , 1 , 0 ) ,

FBMI33 = i f e l s e (MALE == 0 & AGEDPORTF == "65+" & BMICLS == "25 to < 30" , 1 , 0 ) ,

FBMI34 = i f e l s e (MALE == 0 & AGEDPORTF == "65+" & BMICLS == "30 to < 35" , 1 , 0 ) ,

FBMI35 = i f e l s e (MALE == 0 & AGEDPORTF == "65+" & BMICLS == ">= 35" , 1 , 0 ) ,

FBMI36 = i f e l s e (MALE == 0 & AGEDPORTF == "65+" & BMICLS == "Unknown" , 1 , 0 ) )

return ( . tmp)

}
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dport .summary <− function ( forecastDf )

{

## Summarizes predicted r i s k s

. o <− s e l e c t ( summarize ( group_by ( forecastDf , HOODID) , mean(p) * 100) ,

HOODID, Overall = 2)

. s <− s e l e c t ( summarize ( group_by ( forecastDf , HOODID, MALE) ,

mean(p) * 100) , HOODID, MALE, f = 3)

. sa <− s e l e c t ( summarize ( group_by ( forecastDf , HOODID, MALE,

AGEDPORTF) , mean(p) * 100) , HOODID, MALE, AGEDPORTF,

f = 4)

.m <− s e l e c t ( summarize ( group_by ( forecastDf , HOODID, MALE,

AGEDPORTM) , mean(p) * 100) , HOODID, MALE, AGEDPORTM,

f = 4)

. tmp <− s e l e c t ( inner _ join ( . o , subset ( . s , MALE == 1 ) , by = "HOODID" ) ,

HOODID, Overall , Male = f )

. tmp <− s e l e c t ( inner _ join ( . tmp, subset ( . sa , MALE == 1 & AGEDPORTF == "20−44" ) ,

by = "HOODID" ) , HOODID: Male , Male.20 to44 = f )

. tmp <− s e l e c t ( inner _ join ( . tmp, subset ( . sa , MALE == 1 & AGEDPORTF == "45−64" ) ,

by = "HOODID" ) , HOODID: Male.20 to44 , Male.45 to64 = f )

. tmp <− s e l e c t ( inner _ join ( . tmp, subset ( . sa , MALE == 1 & AGEDPORTF == "65+" ) ,

by = "HOODID" ) , HOODID: Male.45 to64 , Male.65 plus = f )

. tmp <− s e l e c t ( inner _ join ( . tmp, subset ( .m, MALE == 1 & AGEDPORTM == "45+" ) ,

by = "HOODID" ) , HOODID: Male.65 plus , Male.45 plus = f )

. tmp <− s e l e c t ( inner _ join ( . tmp, subset ( . s , MALE == 0 ) , by = "HOODID" ) ,

HOODID: Male.45 plus , Female = f )

. tmp <− s e l e c t ( inner _ join ( . tmp, subset ( . sa , MALE == 0 & AGEDPORTF == "20−44" ) ,

by = "HOODID" ) , HOODID: Female , Female .20 to44 = f )

. tmp <− s e l e c t ( inner _ join ( . tmp, subset ( . sa , MALE == 0 & AGEDPORTF == "45−64" ) ,

by = "HOODID" ) , HOODID: Female .20 to44 , Female .45 to64 = f )

. tmp <− s e l e c t ( inner _ join ( . tmp, subset ( . sa , MALE == 0 & AGEDPORTF == "65+" ) ,

by = "HOODID" ) , HOODID: Female .45 to64 , Female .65 plus = f )

return ( as . data . frame ( . tmp) )

}

dport . uncertainty <− function ( x )

{

## Summarizies multiple runs of DPoRT model from a

## p r o b a b i l i s t i c s e n s i t i v i t y analysis

mu <− mean( x )

quants <− quantile ( x , c ( 0 . 0 2 5 , 0.25 , 0 . 5 , 0 .75 , 0 . 9 7 5 ) )
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r e s u l t <− data . frame (mu, rbind ( quants ) )

names( r e s u l t ) <− c ( "Mean" , "p2 . 5 " , "p25" , "p50" , "p75" , "p97 . 5 " )

return ( r e s u l t )

}

## Required data , packaged into DPoRT l i b r a r y

data ( riskpop ) ## baseline population at r i s k

data ( tropism . prevalence ) ## average prevalence of r i s k f a c t o r s by sex

data ( dport . parm) ## DPoRT 2.0 model parameters

data ( tropism . hoodpop) ## neighbourhood population counts , metropolitan Toronto
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Listing D.2. Sample code used to forecast diabetes incidence under the baseline

scenario (no weight loss) and the 10% weight loss scenario.

## −−− L i b r a r i e s −−−−−−−−−−−−−−−−−−
require ( dplyr )

require (DPoRT)

## −−− Data −−−−−−−−−−−−−−−−−−−−−−−
data ( riskpop )

data ( tropism . prevalence )

data ( dport . parm)

data ( tropism . hoodpop)

## −−− Scenarios −−−−−−−−−−−−−−−−−−
## Baseline

baseline <− riskpop

baseline . centred <− dport . centredCovar (

baseline , tropism . prevalence , join . by = "MALE" )

baseline . r i s k <− dport . predictRisk ( baseline . centred , dport . parm)

forecast . baseline <− dport .summary( baseline . r i s k )

## 10% weight l o s s

wtloss .10 pct <− riskpop

wtloss .10 pct <− dport . wtloss ( wtloss .10 pct , type = "prop" , amount = 0 . 1 )

wtloss .10 pct . bmi <− dport . updateBMI ( wtloss .10 pct )

wtloss .10 pct . centred <− dport . centredCovar (

wtloss .10 pct . bmi , tropism . prevalence , join . by = "MALE" )

wtloss .10 pct . r i s k <− dport . predictRisk ( wtloss .10 pct . centred , dport . parm)

forecast .10 pct <− dport .summary( wtloss .10 pct . r i s k )
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Listing D.3. R code used to conduct 1000 runs of the DPoRT model for a proba-

bilistic sensitivity analysis of the baseline forecast of diabetes incidence.

## −−− L i b r a r i e s −−−−−−−−−−−−−−−−−−
require ( data . table )

require ( dplyr )

require (DPoRT)

require ( foreach )

require ( doParal le l )

## −−− Data −−−−−−−−−−−−−−−−−−−−−−−
## simulated TropISM data

data ( riskpop )

data ( tropism . prevalence )

## data ( dport . parm)

## contains same info as dport . parm, only 1000 samples ( normally d i s t r i b u t e d )

## from DPoRT 2 . 0 , t r e a t i n g the arameter estimate as the mean and the StdErr

## as the StdDev f o r random sampling ( Latin Hypercube Sampling in SaSAT )

load ( " dport_ baseline _sa_samples_combined . rda" )

## setup f o r p a r a l l e l computing , 1000 r e p l i c a t e s in data frame

r e p l i c a t e s <− seq ( 1 : nrow( sab$male ) )

## S e n s i t i v i t y analysis , baseline scenario

baseline <− riskpop

baseline . centred <− dport . centredCovar (

baseline , tropism . prevalence , join . by = "MALE" )

## use 8 available cores on CPU

c l <− makeCluster ( 8 )

r e g i s t e r D o P a r a l l e l ( c l )

loop . s t a r t <− Sys . time ( )

forecast <− foreach ( i = re pl icates , . packages = c ( "DPoRT" ) ) %dopar% {

dport . parm <− lapply ( sab , function ( x ) x [ i , , drop = FALSE ] )

baseline . r i s k <− dport . predictRisk ( baseline . centred , dport . parm)

forecast <− dport .summary( baseline . r i s k )

}
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loop . end <− Sys . time ( )

print ( loop . end − loop . s t a r t )

stopCluster ( c l )

rm( c l )

baselinePSA <− data . table : : r b i n d l i s t ( forecast )

baselinePSA$ r e p l i c a t e <− sort ( rep ( seq ( 1 , 1000) , 140))

save ( baselinePSA , f i l e = "DPoRT−Projected−Risk−Baseline−PSA . rda" )

D.2 Spatial Accessibility to Health Promotion Programs

Listing D.4. Sample code used to estimate spatial accessibility to diabetes educa-

tion programs using a two-step floating catchment area model.

## −−− L i b r a r i e s −−−−−−−−−−−−−−−−−−
require ( dplyr )

## −−− Functions −−−−−−−−−−−−−−−−−−
gaussian . beta <− function ( distance )

{

# ‘ distance ‘ i s maximum distance beyond which few i n t e r a c t i o n

# between locat ions i and j occur

d <− distance * *2

b <− abs (d/ log ( 0 . 0 1 ) )

return (b)

}

gaussian . decay <− function ( distance , beta )

{

w <− exp(−distance^2 / beta )

return (w)

}

distance . decay <− function ( bounds , l imit , type = " gaussian " )

{

n . zones <− max(dim( bounds ) )

midpts <− bounds [ , 1] + ( bounds [ , 2] − bounds [ , 1 ] ) / 2
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i f ( type == " gaussian " ) {

b <− round ( gaussian . beta ( l i m i t ) )

w <− round ( gaussian . decay ( midpts , b ) , 3)

}

zones <− c ( c ( 1 : n . zones ) , 0)

w <− c (w, 0)

dcy <− data . frame ( zone = zones , decay = w)

return ( dcy )

}

g2sfca .summary <− function ( AIdx )

{

.mdn <− median( AIdx )

.mad <− mad( AIdx , constant = 1)

r e s u l t <− data . frame (Median = .mdn, MAD = .mad)

return ( r e s u l t )

}

## −−− Data −−−−−−−−−−−−−−−−−−−−−−−
data ( dep2sfca )

data ( tropism_hood_demand)

## r e s t r i c t analysis to subset of programs (n = 48)

programs <− subset ( dep2sfca$diabetes . programs , SubPopnOnly == 0 & PatientsOnly == 0)

distances <− subset ( dep2sfca$diabetes . distances , depid %in% programs$DEPID)

t2d .demand <− s e l e c t (demand [ [ "Type2Diabetes" ] ] , hoodid , demand = t2d )

se rv ice s <− data . frame ( depid = programs$DEPID, ser vi ce s = rep ( 1 , nrow( programs ) ) )

## −−− G2SFCA Model −−−−−−−−−−−−−−−
## subset of programs (n = 48) , beta = 440

gaussian . Rj <− s e l e c t ( distances , hoodid , depid , minutes ) %>%

mutate ( decay = round ( gaussian . decay ( distance = minutes , beta = 440) , 3 ) ) %>%

mutate ( decay = i f e l s e ( minutes > 30 , 0 , decay ) ) %>%

merge( t2d . demand, by = "hoodid" ) %>%

mutate ( scaled .demand = demand * decay ) %>%

group_by ( depid ) %>%

summarise (demand = sum( scaled .demand) ) %>%

l e f t _ join ( services , by = "depid" ) %>%

mutate (R = se rv ice s /demand)
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gaussian . Ai <− s e l e c t ( gaussian . Rj , depid , R) %>%

l e f t _ join ( distances , by = "depid" ) %>%

mutate ( decay = round ( gaussian . decay ( distance = minutes , beta = 440) , 3 ) ) %>%

s e l e c t ( hoodid , depid , minutes , decay , R) %>%

mutate ( decay = i f e l s e ( minutes > 30 , 0 , decay ) ) %>%

mutate ( scaled .R = R * decay ) %>%

group_by ( hoodid ) %>%

summarise (A = sum( scaled .R) ) %>%

mutate (SPAR = A/mean(A) , popPerPgm = 1 /A)

access . subset . g2sfca .440 <− data . frame ( gaussian . Ai ) %>% mutate ( A1000 = A * 1000)

## check

a <− data . frame ( gaussian . Ai )

sum( t2d .demand$demand * a$A)
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Listing D.5. R code used to conduct 1000 runs of the two-step floating catchment

area model for a probabilistic sensitivity analysis of spatial accessibility to diabetes

education programs.

## −−− L i b r a r i e s −−−−−−−−−−−−−−−−−−
require ( dplyr )

require ( foreach )

require ( doParal le l )

## −−− Functions −−−−−−−−−−−−−−−−−−
ai . lo <− function ( x ) { quantile ( x , probs = 0 . 0 2 5 ) }

ai . hi <− function ( x ) { quantile ( x , probs = 0 . 9 7 5 ) }

## −−− Data −−−−−−−−−−−−−−−−−−−−−−
data ( dep2sfca )

data ( tropism_hood_demand)

trop .demand <− demand [ [ 5 ] ]

rm(demand)

dtmp <− dep2sfca$diabetes . distances

ptmp <− dep2sfca$diabetes . programs

## l im i t programs to those broadly available

programs <− subset (ptmp, SubPopnOnly == 0 & PatientsOnly == 0)

distances <− subset (dtmp, depid %in% programs$DEPID)

se rv ice s <− data . frame ( depid = programs$DEPID, ser vi ce s = rep ( 1 , nrow( programs ) ) )

t2d .demand <− s e l e c t ( trop . demand, hoodid , demand = t2d )

saparm <− dep2sfca$diabetes . uncertainty

## −−− Uncertainty −−−−−−−−−−−−−−−
r e p l i c a t e s <− seq ( 1 , nrow( saparm ) )

c l <− makeCluster ( 8 )

## setup | | computing

r e g i s t e r D o P a r a l l e l ( c l )

loop . s t a r t <− Sys . time ( )

access <− foreach ( i = repl icates , . packages = c ( " dplyr " ) , . combine = rbind ) %dopar% {

sa <− saparm [ i , ]

. t rv l t ime <− sa$ t rv l t ime
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.demand <− sa$demand

. decay <− sa$decay

. d0 <− sa$d0

. distances <− s e l e c t ( distances , hoodid , depid , minutes ) %>%

mutate ( minutes = round ( minutes + ( . t rv l t ime * minutes ) , 2 ) )

. t2ddemand <− mutate ( t2d . demand, demand = demand + .demand)

Rj <− s e l e c t ( . distances , hoodid , depid , minutes ) %>%

mutate ( decay = round ( gaussian . decay ( distance = minutes , beta = . decay ) , 3 ) ) %>%

mutate ( decay = i f e l s e ( minutes > . d0 , 0 , decay ) ) %>%

merge ( . t2ddemand , by = "hoodid" ) %>%

mutate ( scaled .demand = demand * decay ) %>%

group_by ( depid ) %>%

summarise (demand = sum( scaled .demand) ) %>%

l e f t _ join ( services , by = "depid" ) %>%

mutate (R = se rv ice s /demand)

Ai <− s e l e c t ( Rj , depid , R) %>%

l e f t _ join ( . distances , by = "depid" ) %>%

mutate ( decay = round ( gaussian . decay ( distance = minutes , beta = . decay ) , 3 ) ) %>%

s e l e c t ( hoodid , depid , minutes , decay , R) %>%

mutate ( scaled .R = R * decay ) %>%

group_by ( hoodid ) %>%

summarise (A = sum( scaled .R) ) %>%

mutate (SPAR = A/mean(A) , popPerDep = 1 /A)

access <− Ai %>% mutate ( r e p l i c a t e = i )

}

loop . end <− Sys . time ( )

print ( loop . end − loop . s t a r t )

stopCluster ( c l )

rm( c l )

access <− data . frame ( access )

access . ui <− group_by ( access , hoodid ) %>%

summarise ( lo . Ai = ai . lo (A) ,

mdn. Ai = median(A) ,
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hi . Ai = ai . hi (A ) ) %>%

data . frame ( )

popPer . ui <− group_by ( access , hoodid ) %>%

summarise ( lo . popPer = ai . lo (popPerDep ) ,

mdn. popPer = median(popPerDep ) ,

hi . popPer = ai . hi (popPerDep ) ) %>%

data . frame ( )

## −−− Output −−−−−−−−−−−−−−−−−−−−
save ( access , f i l e = "deppsa . rda" )
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