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Abstract

Finding the maximum size of a matching in an undirected graph and �nding the maxi-

mum size of branching in a directed graph can be formulated as matrix rank problems.

The Tutte matrix, introduced by Tutte as a representation of an undirected graph, has

rank equal to the maximum number of vertices covered by a matching in the associated

graph. The branching matrix, a representation of a directed graph, has rank equal to

the maximum number of vertices covered by a branching in the associated graph. A

mixed graph has both undirected and directed edges, and the matching forest problem

for mixed graphs, introduced by Giles, is a generalization of the matching problem and

the branching problem. A mixed graph can be represented by the matching forest matrix,

and the rank of the matching forest matrix is related to the size of a matching forest in the

associated mixed graph. The Tutte matrix and the branching matrix have indeterminate

entries, and we describe algorithms that evaluate the indeterminates as rationals in such

a way that the rank of the evaluated matrix is equal to the rank of the indeterminate

matrix. Matroids in the context of graphs are discussed, and matroid formulations for

the matching, branching, and matching forest problems are given.
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Chapter 1

Introduction

The problem of �nding a matching or a related structure in a graph can be formulated

as a matrix problem. We focus on three formulations, each speci�c to a particular type

of graph.

The Tutte matrix was introduced by Tutte as a representation of a graph with undi-

rected edges. The number of vertices covered by a maximum matching in an undirected

graph is equal to the rank of the corresponding Tutte matrix. The branching matrix for

directed graphs has associations with Maxwell's rule in electrical engineering, and with

Cayley's formula for counting trees (R�enyi [27]). The rank of the branching matrix is

equal to the number of vertices covered by a maximum branching in the associated di-

rected graph. A mixed graph has both undirected and directed edges, and a matching

forest in a mixed graph was introduced by Giles [14] as a generalization of matchings and

branchings. The matching forest matrix is the sum of the Tutte matrix and the branching

matrix, and it has rank equal to the maximum number of vertices covered by a matching

forest in the associated mixed graph.

These three matrix representations and their relation to matching structures are de-

scribed in Chapter 3, after the necessary linear algebra tools are developed in Chapter 2.

1



CHAPTER 1. INTRODUCTION 2

The entries in the Tutte matrix and the branching matrix are indeterminates, and gen-

eral methods for evaluating indeterminates as rationals in such a way that an evaluated

matrix has the same rank as the corresponding matrix of indeterminates are shown in

Chapter 4. Speci�c algorithms for evaluations of the Tutte matrix, the branching matrix,

and the matching forest matrix are given in Chapter 5.

Determining if a graph has a matching of a particular weight, rather than �nding the

usual maximum or minimum weight matching, is an example of an exact problem. The

possibility of using matrix formulations to �nd solutions to exact matching and exact

branching problems is discussed in Chapter 6.

The �nal chapter, Chapter 7, gives matroid formulations of the matching, branching,

and matching forest problem in graphs.



Chapter 2

Matrix rank

The rank of a matrix can be de�ned in several ways. We use a de�nition which explicitly

states the equivalence between rank and linear independence of vectors: the rank of a

matrix A is the maximum number of linearly independent columns in A. Equivalently,

the rank of a matrix is the maximum number of linearly independent rows. A matrix is

nonsingular if it has both full row rank and full column rank, and therefore, determining

if a matrix is nonsingular when the rank is known is trivial, as is calculating the rank

of a nonsingular matrix. We show that the problems of calculating the rank of a matrix

and determining if a matrix is nonsingular are equivalent. That is, if the rank of a

matrix can be determined eÆciently, then so can nonsingularity, and if nonsingularity

can be eÆciently computed, then so can matrix rank. Properties of matrix rank needed

in Chapter 3 are proven in this chapter. These are standard properties that can be found

in most linear algebra texts.

3



CHAPTER 2. MATRIX RANK 4

2.1 Rank and nonsingularity

Let A = (aij) be a matrix with rows indexed by R and columns indexed by C. If X � R

and Y � C, then A[X ; Y ] denotes the submatrix of A which uses rows X and columns

Y . The complement of X , RnX is denoted X , and similarly, Y = CnY . The nonsingular

submatrix A[X ; Y ] is a maximal nonsingular submatrix if for all x 2 R and y 2 Y , the

larger submatrix A[X [ x; Y [ y] is singular. A maximal nonsingular submatrix in A can

be constructed as follows:

Choose X � R and Y � C such that A[X ; Y ] is nonsingular. For example, choose

X = Y = ;:While there exists x 2 X and y 2 Y such that A[X[x; Y [y] is nonsingular,

replace X with X [ fxg and replace Y with Y [ fyg.

Theorem 2.1. The size of a maximal nonsingular submatrix of A is equal to the rank

of A.

Proof. Let A[X ; Y ] be a maximal nonsingular submatrix of A. If X = R or Y = C then

the theorem is clearly true, so assume X � R and Y � C. Let x 2 X and y 2 Y . Since

A[X [ x; Y [ y] is singular, row x is in the row space of A[X ; Y [ y]. This is true for

all x 2 X, and so by taking suitable multiples of rows in X , all entries in A[X; Y [ y]

can be eliminated. If eA = (~aij) denotes the matrix A after the Gaussian elimination of

A[X; Y [ y], then since Gaussian elimination does not a�ect rank, rank eA = rank A:

Suppose there exists i 2 X and j 2 Y such that ~aij 6= 0. Then

det eA[X [ i; Y [ j] = �~aij detA[X ; Y ] 6= 0:

This implies that A[X [ i; Y [ j] is nonsingular, which is a contradiction, and therefore

~aij = 0 for every i 2 X; j 2 Y , and rank A = rank A[X ; Y ].
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2.2 Submodularity

The set of all subsets of the �nite set X is denoted 2X . A function f : 2X ! Z is

submodular if the inequality

f(A) + f(B) � f(A \B) + f(A [ B)

holds for all A;B � X .

Theorem 2.2. The rank function on the set of columns of a matrix is submodular.

Proof. Let M be a matrix with rows and columns indexed by X and Y respectively, and

assume A;B � Y . Let Z be a maximal set of independent columns in M [X ;A\B], and

extend Z to eZ , where eZ is a maximal set of independent columns in M [X ;A[B]. Then

rank (A [B) = j eZj
= j eZ \ Aj+ j eZ \Bj � j eZ \ (A \B)j
= j eZ \ Aj+ j eZ \Bj � jZj
= j eZ \ Aj+ j eZ \Bj � rank (A \B)

(2.1)

Both eZ \ A and eZ \B are independent, and therefore

jeZ \Aj+ j eZ \ Bj � rank A+ rank B: (2.2)

Submodularity follows from (2.1) and (2.2).

The set of all matrices over the �eld F is denoted by MF . A function f :MF !Zis

submodular if the inequality

f(A[X1; Y1]) + f(A[X2; Y2]) � f(A[X1 \X2; Y1 [ Y2]) + f(A[X1 [X2; Y1 \ Y2])
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holds for all A 2MF and all subsets of rows X1; X2 of A and all subsets of columns Y1; Y2

of A.

Theorem 2.3. The rank function is submodular.

Proof. Let A = (aij) 2 MF , where F is any �eld. Let X and Y index the rows and

columns respectively of A, and assume X1; X2 � X and Y1; Y2 � Y . Consider

B =

�
I
�� A

�
;

where I is the identity matrix, and X indexes the rows and columns of I . For anyX 0 � X

and Y 0 � Y , the following holds:

rank A[X 0; Y 0] = rank B[X ; Y 0 [X 0]� jX 0j:

In particular,

rank A[X1; Y1] = rank B[X ; Y1 [X1]� jX1j;

rank A[X2; Y2] = rank B[X ; Y2 [X2]� jX2j;

rank A[X1 \X2; Y1 [ Y2] = rank B[X ; (Y1 [ Y2)[ (X1 [X2)]� jX1 [X2j;

rank A[X1 [X2; Y1 \ Y2] = rank B[X ; (Y1 \ Y2)[ (X1 \X2)]� jX1 \X2j:

(2.3)

From Theorem 2.2, it follows that

rank B[X ; Y1 [X1] + rank B[X ; Y2 [X2] �

rank B[X ; (Y1[X1) [ (Y2 [X2)] + rank B[X ; (Y1 [X1) \ (Y2 [X2)]: (2.4)

Using that jX1j+ jX2j = jX1 \X2j+ jX1[X2j, and (Y1 \ Y2)[ (X1\X2) � (Y1 [X1)\

(Y2 [X2), the Theorem follows from (2.3) and (2.4).
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With Theorem 2.3 we can prove that a submatrix formed by the intersection of a

maximal set of independent rows with a maximal set of independent columns is nonsin-

gular.

Corollary 2.4. If X is a maximal set of independent rows in the matrix A, and Y is a

maximal set of independent columns in A, then A[X ; Y ] is nonsingular.

Proof. Let R be the index set for the rows of A, and let C be the index set for the

columns. By the submodularity of the rank function,

rank A[X ; Y ] + rank A � rank A[X ;C] + rank A[R; Y ]:

Since X and Y are maximal independent sets,

rank A[R; Y ] = rank A[X ;C] = rank A;

and therefore A[X ; Y ] has full rank.

2.3 Symmetric matrices

An n�n matrix A is symmetric if it is equal to its transpose: A = A>. A skew-symmetric

matrix is equal to the negative of its transpose: A = �A>. (Unless otherwise speci�ed,

we assume the �eld we are working over is the rationals.)

If A is a matrix with rows and columns indexed by V , and X � V , then A[X ;X ] is

a principal submatrix of A. The principal submatrix A[X ;X ] is denoted A[X ].

Theorem 2.5. If A is a symmetric or skew-symmetric matrix, and X indexes a maximal

set of independent rows of A, then A[X ] is nonsingular.
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Proof. By symmetry, X is also a maximal set of independent columns of A. The theorem

then follows from Corollary 2.4.

We note that Theorem 2.5 does not hold when A is not symmetric, as shown by the �rst

row in
�
0 1
0 2

�
.

Theorem 2.1 equated the rank of a matrix to the size of its largest nonsingular sub-

matrix. With a symmetric or skew-symmetric matrix, this can be strengthened to the

size of a largest nonsingular principal submatrix.

Corollary 2.6. The size of a largest nonsingular principal submatrix in a symmetric or

skew-symmetric matrix is equal to the rank of the matrix.

Proof. Let A be a symmetric or skew-symmetric matrix. The rank of A is an upper

bound on the size of a nonsingular principal submatrix, and, from Theorem 2.5, there is

a principal submatrix whose size is equal to the rank of A.

Two properties of the determinant function are that detA[X ] = detA[X ]> and

det(�A[X ]) = (�1)jX j detA[X ]:

Corollary 2.7. Skew symmetric matrices have even rank.

Proof. If A is skew-symmetric, then A[X ] = �A[X ]>: From the above properties of the

determinant function it follows that a nonsingular principal submatrix of A must have

even size. The result then follows from Corollary 2.6.

2.4 Nonsingularity of the sum of two matrices

Let A and B be n � n matrices. Suppose every column of A except for one is the same

as the corresponding column in B. Let C be the n � n matrix with columns equal to

those of A and B, and on the one column that A and B di�er, the corresponding column
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of C is equal to the sum of the column in A and the column in B. For example, if

A =
�
v1 v2 a3 v4

�
and B =

�
v1 v2 b3 v4

�
, then C =

�
v1 v2 a3+b3 v4

�
. The linearity of

the determinant function states that

detA+ detB = detC:

Repeated use of this linearity property yields an equation for the determinant of the sum

of two arbitrary matrices. The determinant of the empty matrix appears in the equation,

which by convention is 1. Assume the rows and columns of A and B are indexed by

V � Z, and for X = fx1; : : : ; xkg � V and Y = fy1; : : : ; ykg � V , de�ne sign(X; Y ) to

be (�1)
Pk

i=1(xi+yi). The following is then standard.

Theorem 2.8. If A = (aij) and B = (bij), where i; j 2 V , then

det(A+ B) =
X
X�V

X
Y�V
jY j=jXj

sign(X; Y ) detA[X ; Y ] detB[X; Y ]:

We prove a weaker version of the theorem, where sign(X; Y ) is replaced with �1.

Proof. For X � V , de�ne CX = (cij) to be the V � V matrix where

cij =

8>><
>>:
aij ; if i 2 X ;

bij ; if i 2 X.

That is, CX [X ;V ] = A[X ;V ], and CX [X;V ] = B[X;V ]. Repeated use of the linearity

of the determinant function on the rows of A+ B gives

det(A+ B) =
X
X�V

detCX (2.5)
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For X; Y � V , de�ne DX;Y = (dij) to be the V � V matrix where

dij =

8>>>>>><
>>>>>>:

aij ; if i 2 X and j 2 Y ;

bij ; if i 2 X and j 2 Y ;

0; otherwise.

Then DX;Y [X ; Y ] = A[X ; Y ] and DX;Y [X; Y ] = B[X; Y ]. All other entries of DX;Y are

zero, and therefore DX;Y is singular whenever jX j 6= jY j.

Repeated use of the linearity of the determinant function on the columns of CX gives

detCX =
X
Y�V
jXj=jY j

detDX;Y : (2.6)

When jX j = jY j, then

detDX;Y = � detA[X ; Y ] detB[X; Y ]: (2.7)

Combining equations 2.5 to 2.7, the theorem follows.

2.5 PfaÆans

Let X be a �nite set, and suppose the subsets X1; : : : ; Xk � X are disjoint and nonempty.

If X is the union of the sets Xi, then � = X1; : : : ; Xk is a partition of X . For X =

f1; : : : ; 2ng, let P(2n) be the set of partitions of X into pairs. For example,

P(4) =
�
f(1; 2); (3; 4)g; f(1; 3); (2; 4)g; f(1; 4); (2; 3)g

	
:
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For � = f(i1; j1); : : : ; (in; jn)g 2 P(2n), de�ne �� to be the following permutation:

�� =

0
B@ 1 2 � � � 2n� 1 2n

i1 j1 � � � in jn

1
CA

The sign of �� is denoted sign(�): The sign function is invariant on the order of the

pairs in � : permutations
�
1 2 3 4
i1 j1 i2 j2

�
and

�
1 2 3 4
i2 j2 i1 j1

�
have the same sign. Changing the

order within a pair, however, a�ects the sign function by a factor of �1: sign
�
1 2
i1 j1

�
=

�sign
�
1 2
j1 i1

�
.

Let A = (aij) be a 2n� 2n skew symmetric matrix, and let � 2 P(2n). De�ne

a� = sign(�)ai1j1 � � �ainjn :

The �1 factor that happens when the order within a pair (ik; jk) of� changes, is cancelled

with the �1 that comes from ajkik = �aikjk , and therefore a� is well de�ned. The PfaÆan

of A is de�ned as

pf A =
X

�2P(2n)

a�

For example,

pf

2
66666664

0 a12 a13 a14

�a12 0 a23 a24

�a13 �a23 0 a34

�a14 �a24 �a34 0

3
77777775
= a12a34 � a13a24 + a14a23:

If A is m � m and m is odd, then P(m) is empty and pf A is identically zero. The

following two theorems relate the PfaÆan of A to the determinant of A, and give a row
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expansion formula for computing the PfaÆan. For their proof, see Godsil [16].

Theorem 2.9 (Cayley). If A is a skew-symmetric matrix, then

detA = (pf A)2:

Theorem 2.10. If A = (aij) is a skew-symmetric matrix with rows and columns indexed

by X, then

pf A =

nX
i=2

(�1)1+ia1ipf A[Xn(1[ i)]:



Chapter 3

Matrix formulations

The adjacency matrix A = (aij), and the incidence matrix B = (bij), are two ways to

represent the graph G = (V;E) by a matrix. In the adjacency matrix, the rows and

columns are indexed by the vertices of G, with aij = 1 if vertex i is adjacent to vertex j,

and aij = 0 otherwise. The incidence matrix has rows indexed by V and columns by E,

and is de�ned by bij = 1 if vertex i is incident with edge j, and bij = 0 otherwise. Graph

theory problems can often be formulated in terms of an appropriate matrix representation

of the graph: the ijth entry of Ak is the number of walks of length k between vertex i and

vertex j; a set of edges in G does not contain a circuit if and only if the corresponding

columns of B are independent over F2.

Matrix representations for undirected graphs, directed graphs, and graphs with both

directed and undirected edges are given in this chapter. We explain how these represen-

tations determine the existence of speci�c structures, namely matchings, branchings, and

matching forests, in the associated graphs.

13
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3.1 The Tutte matrix

A matching in a graph G = (V;E) is a subset M of E such that every v 2 V is incident

with at most one edge in M . If M is a matching and v 2 V is incident to an edge in

M , then v is M -covered. A vertex which is not M -covered is M -exposed. A maximum

matching in G covers a maximum number of vertices, and the number of vertices missed

by a maximum matching is the de�ciency of G, denoted def(G). The number of vertices

covered by a maximum matching is then jV j � def(G). A matching that covers every

vertex is perfect.

Let G = (V;E) be a graph, and let fze : e 2 Eg be algebraically independent inde-

terminates. Form the skew-symmetric Tutte matrix T = (tij), with rows and columns

indexed by V , and

tij =

8>><
>>:
�zij ; if ij 2 E;

0; otherwise.

Suppose G has an odd number of vertices. Then G can not have a perfect matching, and

we know from Corollary 2.7 that the skew-symmetric matrix T is singular when n is odd.

When G has an even number of vertices, consider the PfaÆan of T :

pf T =
X

�2P(n)

b� :

Each � 2 P(n) partitions V into pairs, and b� 6= 0 if and only if there is a perfect

matching in G which corresponds to � . Furthermore, b�1
= �b�2

only when �1 = �2,

and hence there is no cancellation of nonzero terms in the PfaÆan. Therefore G has a

perfect matching if and only if the PfaÆan of T is nonzero. Using Theorem 2.9 to equate

the square of the PfaÆan with the determinant, the following theorem is immediate.



CHAPTER 3. MATRIX FORMULATIONS 15

Theorem 3.1 (Tutte). If G = (V;E) is a graph with Tutte matrix T , then G has a

perfect matching if and only if T is nonsingular.

Suppose A � E. The subgraph of G whose vertex set is the ends of A and whose

edge set is A is denoted G[A]. The subgraph G[EnA] can be denoted as GnA, and when

A = feg, we write Gna for Gnfag.

Similarly, if X � V , then G[X ] denotes the subgraph with vertex set X and edge set

all e 2 E such that both ends of e are in X . The subgraph G[V nX ] can be denoted as

GnX , and when X = fvg, we write Gnv for Gnfvg.

Corollary 3.2. If T is the Tutte matrix for the graph G = (V;E), and X � V , then

G[X ] has a perfect matching if and only if T [X ] is nonsingular.

Proof. This follows from Theorem 3.1.

Corollary 3.3. If T is the Tutte matrix for the graph G, then

rank T = jV j � def(G):

Proof. By Theorem 2.6, the rank of T is the maximum size of X � V such that T [X ]

is nonsingular. By Corollary 3.2, T [X ] is nonsingular if and only if G[X ] has a perfect

matching.

Let G = (V;E) be a bipartite graph with vertex partition V = (V1; V2). If T is the

Tutte matrix for G, and A = T [V1;V2], then

T =

0
B@

V1 V2

V1 0 A

V2 �A> 0

1
CA
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Therefore, in the bipartite case, the Tutte matrix T can be restricted to T [V1;V2]. We

refer to T [V1;V2] as the bipartite Tutte matrix for G.

Corollary 3.4. If G = (V;E) is a bipartite graph with bipartite Tutte matrix T , then the

rank of T is the number of edges in a maximum matching of G.

Proof. The rank of the bipartite Tutte matrix is half the rank of the corresponding

Tutte matrix. By Corollary 3.3, this is the same as half the number of vertices covered

by a maximum matching in G, which is equal to the number of edges in a maximum

matching.

3.2 The branching matrix

Let G = (V; ~E) be a directed graph. The directed edges ~E in G are called arcs, and if

an arc is directed from vertex v to u, then v is the tail of the arc, and u is the head. A

branching in G is a subset F � ~E where every vertex in V is the head of at most one arc

in F , and F contains no cycles. (See Figure 3.1.) A vertex which is not the head of any

arc in F is called a root of F , and if v 2 V is not a root of F , then F covers v.

e

a

b

c
d

Figure 3.1: A branching with root a.
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Let fxij : (i; j) 2 ~Eg be algebraically independent indeterminates. The branching

matrix B = (bij) for G has rows and columns indexed by V , and

bij =

8>>>>>><
>>>>>>:

�xij ; if i 6= j and (i; j) 2 ~E;

0; if i 6= j and (i; j) 62 ~E;

P
k 6=i bi;k if i = j.

The entries in any row of B sum to zero, and therefore the branching matrix is singular.

A branching with exactly one root, such as the one indicated in Figure 3.1, is an arbores-

cence. The matrix in 3:1 is the branching matrix for the graph in Figure 3.1. (Note that

xae 6= xea.)

0
BBBBBBBBBBBB@

a b c d e

a xea 0 0 0 �xea

b 0 xdb 0 �xdb 0

c �xac �xbc (xac + xbc) 0 0

d �xad 0 0 xad 0

e �xae 0 0 �xde (xde + xae)

1
CCCCCCCCCCCCA

(3.1)

Theorem 3.5 (Chaiken and Kleitman). If B is the branching matrix for the directed

graph G = (V; ~E), and v 2 V , then there is a one-to-one correspondence between arbores-

cences in G, rooted at v, and terms in the determinant of B[V nv].

Proof. Assume V nv = f1; : : : ; ng and for i 2 V nv, de�ne ~Ei to be all a 2 ~E such that

i is the head of a. Let � = f ~Eigi2V nv, and let �� be the transversals of �. That is,

�� consists of all arc sets a1; a2; : : : ; an such that ai 2 ~Ei. For all � 2 ��, de�ne B� to

be the branching matrix corresponding to G� = (V; �): Note that B� has one di�erent
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indeterminate per row. Using the linearity of the determinant function, we can write

detB[V nv] =
X
�2��

detB�: (3.2)

If � 2 �� is not a branching, then G�[U ] has a circuit, for some U 2 V nv. It follows that

B� decomposes into block diagonal B�[U ] and B�[V n(v[U)]. The columns of B�[U ] sum

to zero, and therefore B� is singular.

Suppose � 2 �� is a branching. Up to simultaneous row and column permutations,

B� is lower triangular. For example, if the order of the rows in B� corresponds to the

order of a depth �rst search in the branching �, then Bu will be lower triangular. Since

each diagonal entry of B� is nonzero, it follows that B� is nonsingular. Since simultaneous

row and column permutations do not a�ect the sign of the determinant and each diagonal

term in B� is positive, the determinant of B� is positive.

Only transversals � 2 �� that are branchings contribute to (3.2), and the matrices

corresponding to the � 2 �� that are branchings each have a unique set of indeterminates,

and therefore there is no cancellation among the branching terms.

Corollary 3.6. The arc set A is an arborescence rooted at v if and only if
Q

ij2A xji is

a term detB[V nv].

Corollary 3.7. If B is the branching matrix for the directed graph G = (V; ~E), and

v 2 V , then G has an arborescence rooted at v if and only if B[V nv] is nonsingular.

Theorem 3.5 can be generalized.

Theorem 3.8 (Chaiken and Kleitman). If B is the branching matrix for the directed

graph G = (V; ~E), and U � V , then there is a one-to-one correspondence between branch-

ings of G that cover U and terms in B[U ]. In particular, there is a branching that covers

U if and only if B[U ] is nonsingular.
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Theorem 3.8 can be proved by the same method as Theorem 3.5.

A maximum branching in a directed graph is a branching with a maximum number

of heads, or equivalently, a minimum number of roots. If B is the branching matrix for

G = (V; ~E), and B[U ] is nonsingular for some U � V , then by Theorem 3.8, there

is a branching in G with jU j heads. Since the rank of B is an upper bound on the

size of a nonsingular principal submatrix of B, the rank of B is also an upper bound

on the number of heads in a branching of G. This limit is attained; that is, G has a

branching with exactly rank B heads. To prove this we use an analogy to Theorem 2.5.

(If U � V is a maximal set of independent rows in a skew symmetric matrix A, then A[U ]

is nonsingular.) For the branching matrix, the assumption that the set of independent

rows is maximal is not needed.

Lemma 3.9. If B is the branching matrix for G = (V; ~E) and the rows U are independent

in B, then B[U ] is nonsingular.

Proof. The proof is by induction on jU j, and is clearly true when U is empty. Let U � V

be k independent rows in B, and assume B[Unu] is nonsingular for all u 2 U . Choose

a minimal set X where U � X � V and rank B[U ;X ] = rank B[U ;V ]. If X 6= U , then

choose x 2 XnU , and �nd u 2 U such that bu;x 6= 0. (Such a u exists since B[U ;V ] does

not have any zero columns.) Then buu 6= 0, and buu has an indeterminate z that occurs

exactly once in B[Unu]: If B[U ](z  0) denotes the matrix B[U ] with 0 substituted for

z, then by the linearity of the determinant function,

detB[U ] = �z detB[Unu] + detB[U ](z 0):

By the induction hypothesis, B[Unu] is nonsingular, and therefore B[U ] is nonsingular.
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It can now be shown that the rank of a branching matrix is equal to the maximum

number of heads in a branching of the associated graph.

Theorem 3.10 (Chaiken and Kleitman). If G = (V; ~E) is a directed graph with branch-

ing matrix B, then rank B is the maximum number of heads in a branching of G.

Proof. From Theorem 3.8, the rank of B is an upper bound on the number of vertices

covered by a branching. If U � V is a maximal set of independent rows in B, then by

Theorem 3.9 B[U ] is nonsingular, and by Theorem 3.8 there is a branching in G that

covers U .

3.3 The matching forest matrix

A mixed graph has both arcs and undirected edges. If G = (V;E; ~E) is a mixed graph,

then (V;E) is an undirected graph, and (V; ~E) is a directed graph. The underlying

undirected graph for G is the graph with all arcs in G replaced with undirected edges. In

a mixed graph, undirected edges have two heads: if e 2 E is incident to vertices u and v,

then both u and v are a head of e. The set F � E [ ~E is a matching forest (Giles [14])

in G if

� each v 2 V is the head of at most one element of F , and

� F contains no circuits in the underlying undirected graph for G.

So if F is a matching forest for G, then Fn ~E is a matching in (V;E),FnE is a branching in

(V; ~E), and F is a forest in the underlying undirected graph for G. A maximum matching

forest is a matching forest with a maximum number of heads. A vertex which is the head

of an arc or edge in a matching forest is said to be covered by the matching forest, and

a perfect matching forest covers all of V . Vertices not covered by a matching forest are
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roots of that matching forest and the de�ciency of G is the number of roots of a maximum

matching forest.

g

a
b

c

d

e

f

Figure 3.2: A perfect matching forest in a mixed graph

If T is the Tutte matrix for (V;E) and B is the branching matrix for (V; ~E), then

T +B is a formulation for �nding matching forests in (V;E; ~E).

Theorem 3.11. If G = (V;E; ~E) is a mixed graph with Tutte matrix T for (V;E) and

branching matrix B for (V; ~E), then G has a perfect matching forest if and only if T +B

is nonsingular.

Proof. Suppose det(T + B) 6= 0. From Theorem 2.8 there exist X; Y � V such that

T [X; Y ] is nonsingular and B[X; Y ] is nonsingular. Let Z � V be such that X [ Z is a

maximal set of independent rows in T . By Theorem 2.5, T [X [Z] is nonsingular, and by

Theorem 3.1 there is a perfect matching M of G[X [Z]. The rows X are independent in

B, and therefore so are X [ Z . By Lemma 3.9, B[X [ Z] is nonsingular, and by Theorem

3.5 there is a branching F of (V; ~E) with heads X [ Z. Letting J =M [F , J is a perfect

matching forest of G.

To prove the converse direction, suppose J is a perfect matching forest of G. Then

for some X � V , M = J \ E is a matching which covers X , and F = J \ ~E is a
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branching which covers X. By Theorems 3.1 and 3.5 respectively, both T [X ] and B[X]

are nonsingular, and therefore detT [X ] detB[X] 6= 0. If Y � V and Y 6= X , then any

term in the determinant of B[Y ] has a di�erent set of indeterminates than any term in the

determinant of B[X], and therefore detT [Y ] detB[Y ] 6= detT [X ] detB[X]. By Theorem

2.8, T +B is nonsingular.

If all edges in G are undirected, then the branching matrix for G is zero, and Theorem

3.11 reduces to Theorem 3.1. As with the corresponding theorems for undirected graphs

and directed graphs, Theorem 3.11 generalizes for a matching forest covering U � V .

The proof is similar to Theorem 3.11.

Theorem 3.12. If G = (V;E; ~E) is a mixed graph with Tutte matrix T for (V;E) and

branching matrix B for (V; ~E), and U � V , then B[U ] is nonsingular if and only if G[U ]

has a perfect matching forest.

It was previously shown that the rank of the Tutte matrix is the number of vertices

covered by a maximum matching in the associated undirected graph (Corollary 3.3), and

that the rank of the branching matrix is the number of heads in a maximum branching in

the associated directed graph (Theorem 3.10). Similarly, the rank of the matching forest

matrix is the number of heads in a maximum matching forest in the associated mixed

graph. We �rst prove that similar to the Tutte matrix and the branching matrix, the

matching forest matrix has a maximal nonsingular submatrix which is principal.

Lemma 3.13. Let G = (V;E; ~E) be a mixed graph with Tutte matrix T and branching

matrix B. If X is a maximal set of independent rows in T + B, then (T + B)[X ] is

nonsingular, and therefore there is a nonsingular principal submatrix in T +B with size

equal to the rank of T + B.

Proof. Let X � V be a maximal set of independent rows of T + B. Then there exists

Y � V such that (T+B)[X; Y ] is nonsingular, and from Theorem 2.8 for the determinant
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of the sum of two matrices,

X
R�X

X
C�Y
jCj=jRj

� detT [R;C] detB[XnR; Y nC] 6= 0:

Therefore there exists R � X and C � Y such that both T [R;C] and B[XnR; Y nC]

are nonsingular. Choose a maximal set of rows Z such that R � Z � V and T [Z;V ] is

nonsingular, and by Lemma 3.9, B[Xn(R[ Z)] is nonsingular. Therefore, again by the

formula in Theorem 2.8 for the sum of two matrices, (T +B)[X [Z] is nonsingular, and

since X is a maximal set of independent rows of T + B, Z � X .

Theorem 3.14. If T + B is the matching forest matrix for the graph G, then the rank

of T + B is the number of heads in a maximum matching forest of G.

Proof. From Theorem 3.12, the number of heads in a maximum matching forest in G

is equal to the size of the largest nonsingular principal submatrix of T + B, and from

Lemma 3.13, T +B has a nonsingular principal submatrix with size equal to the rank of

T +B.

When G is an undirected graph, Theorem 3.14 reduces to Corollary 3.3. When G is

directed, Theorem 3.14 reduces to Theorem 3.10.



Chapter 4

Optimal Evaluations

If the entries of an n � n matrix M are rational, then the determinant of M can be

computed in O(n3) arithmetic steps. WhenM has indeterminate entries, the determinant

of M has up to n! terms, and therefore cannot be computed in polynomial time.

Let fM be a matrix obtained by substituting rational values for the indeterminate

entries in M . We call fM an evaluation of M . If z is an indeterminate in M then ~z

denotes the value of z in fM , and fM(z  x) denotes the evaluation with x substituted

everywhere for z.

Suppose the determinant of M is zero. Then for every value of ~z, the determinant of

fM is also zero, and therefore an evaluation of a singular matrix is also singular. However,

if M is nonsingular, it is possible to choose a singular evaluation fM . For example,

M =
�
z1 z1
z3 z4

�
is nonsingular, but any evaluation with ~z3 = ~z4 is singular. If fM is an

evaluation of M and rank fM = rank M , then fM is optimal. The methods for �nding

optimal evaluations given in this chapter are used in the algorithms of Chapter 5.

24
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4.1 A Matrix Decomposition

A row or column in the matrix M = (mij) is avoidable if it can be removed from M

without changing the rank of M . Equivalently, an avoidable row is a linear combination

of other rows in M .

Suppose the rows and columns of M are indexed by X and Y respectively, where X

and Y are disjoint. If U � X and V � Y , then Mn(U [ V ) denotes the matrix M with

rows U removed, and columns V removed; that is, Mn(U [ V ) =M [XnU ; Y nV ]. When

U = fug, Mnu is used instead of Mnfug. (We note that in Chapter 5 where the results

of this chapter are applied, the row and column indices are not disjoint. However, for

convenience here we will use this notation, and the full form M [XnU ; Y nV ] will be used

only when necessary.) If y 2 U [ V and y is not avoidable, then y is unavoidable, and

rank Mny = rank M � 1. There are two possibilities with respect to the avoidable set

of Mny compared to the avoidable set of M : a row or column that was avoidable before

y was removed will still be avoidable after the removal of y, and hence the avoidable set

does not decrease, but a row or column that was unavoidable inM may become avoidable

in Mny.

The following decomposition of a matrix M is from Geelen [12]:

D(M) = fx 2 X [ Y : rank Mnx = rank Mg

A(M) = fx 2 X [ Y : D(Mnx) = D(M)g;

C(M) = (X [ Y )n(D(M)[A(M)):

The avoidable rows of M are denoted by DR(M), and DC(M) denotes the avoidable
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columns. Similarly,

AR(M) = A(M) \X; AC(M) = A(M) \ Y;

CR(M) = C(M) \X; CC(M) = C(M)\ Y:

When the context is clear, D;C; and A are used forD(M); C(M); and A(M) respectively.

The rank 3 matrix (4.1)

M =

0
BBBBBBBBB@

a b c d

e 0 0 1 1

f 0 0 �1 �1

g 0 0 2 3

h 1 5 0 �1

1
CCCCCCCCCA

(4.1)

has the following decomposition:

DR = fe; fg; CR = fgg; AR = fhg;

DC = fa; bg; CC = fc; dg; AC = ;:

When a row or column is removed from a matrix, the rank decreases by at most one.

Theorem 4.1. If W is a set of rows and columns in the matrix M , then

rank M � rank MnW + jW j:

We will prove that Theorem 4.1 is met with equality when W = A(M)[ CR(M).

Lemma 4.2. If x is unavoidable in M , then D(M) � D(Mnx). Speci�cally,
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(i) If x 2 A(M), then D(Mnx) = D(M).

(ii) If x 2 CR(M), then DR(M) = DR(Mnx), and DC(M) � DC(Mnx):

(iii) For each x 2 CR(M), there exists z 2 CC(M) such that z 2 DC(Mnx), and

x 2 DR(Mnz).

Proof.

(i) This is a restatement of the de�nition of A.

(ii) Let x 2 CR(M). Since x is unavoidable, removing x does not decrease the avoidable

set. Further, since x is not in A, the avoidable set must actually increase. Removing

an unavoidable row does not a�ect avoidable rows, so the new avoidable element

must be a column.

(iii) Let x 2 CR(M), and let z 2 DC(Mnx)nDC(M). (Such a z exists, by part (ii).) If

z 2 AC(M) then x would be unavoidable inMnz, and rank Mnfx; zg = rank M�2.

This is a contradiction, since z 2 D(Mnx) implies rank Mnfx; zg = rank Mnx =

rank M � 1, and therefore z 2 CC(M).

Parts (ii) and (iii) could equivalently have been expressed in terms of x 2 CC(M). Part

(i) describes the e�ect on the avoidable set when an element of A is removed from the

matrix; the e�ect on the sets A and C is given by the following theorem.

Theorem 4.3 (Geelen). If x 2 A(M) then

D(M) = D(Mnx);

C(M) = C(Mnx); and

A(M)nx = A(Mnx):
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Proof. Again, the avoidable set doesn't change by de�nition. Let x 2 A(M) and let

y 2 C(M). By Lemma 4.2(iii), there exists z 2 C(M) such that z 2 D(Mny), and hence

z 2 D(Mn(y [ x)). By Lemma 4.2(i), z 62 D(Mnx) and therefore the avoidable set of

Mnx does not equal the avoidable set of Mnfx; yg. Using 4.2(ii), y 2 C(Mnx), and

therefore, when x 2 A(M), C(M) � C(Mnx):

Suppose there exists u 2 A(M)nx such that u 62 A(Mnx). By Lemma 4.2 (i), u is

unavoidable in Mnx, and therefore u 2 C(Mnx), and

rank Mnfx; ug = rank Mnx� 1 = rank M � 2: (4.2)

By Lemma 4.2 (iii), u 2 C(Mnx) implies there exists v 2 C(Mnx) such that v is in the

avoidable set of Mnfx; yg: This gives

rank Mnfx; vg = rank Mnx� 1 = rank M � 2 (4.3)

rank Mnfx; v; ug= rank Mnfx; ug = rank M � 2 (4.4)

Further, v 2 C(Mnx) means v 62 D(M) and since D(Mnu) = D(M), it follows that

v 62 D(Mnu). Therefore

rank Mnfu; vg = rank Mnu� 1 = rank M � 2: (4.5)

Two of x; u; v must be both columns or both rows, but all choices for pairs to be in the

same row or in the same column lead to a contradiction. For example, suppose x and v

are both rows. From equation (4.5), v is unavoidable in Mnu, and from equation (4.4), v

is avoidable inMnfu; xg: This contradicts Lemma 4.2, and therefore A(M)nx � A(Mnx).

By de�nition, D(M) = D(Mnx) for all x 2 A(M). Therefore, if C(M) � C(Mnx)

and A(M)nx � A(Mnx), then C(M) = C(Mnx) and A(M)nx = A(Mnx).
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With Theorem 4.3, the decomposition of a matrix can be related to its rank.

Theorem 4.4 (Geelen). If M is a matrix with decomposition D;C;A, then

rank M = jAj+ jCRj+ rank M [DR;DC [ CC ]:

Proof. From Lemma 4.3, each time an element from A is removed fromM , the decompo-

sition stays the same. Hence when all elements from A are removed, the rank decreases

by the size of A:

rank M = jAj+ rank M [DR [ CR;DC [ CC ]: (4.6)

The sets C and D for M [DR [ CR;DC [ CC ] are the same as the C and D for M , and

the rank of M [DR [ CR;DC [ CC ] decreases by one each time an unavoidable row is

removed. By Lemma 4.2(ii), removing a row from C does not a�ect row dependencies,

and therefore

rank M [DR [ CR;DC [ CC ] = jCRj+ rank M [DR;DC [ CC ]: (4.7)

Combining equations (4.6) and (4.7) gives Theorem 4.4.

Corollary 4.5. Every row and column of M [DR;DC [ CC ] is avoidable.

Proof. Suppose M [DR;DC [ CC ] has an unavoidable column y. Since all columns from

A have been removed, y 2 C(M [DR;DC [ CC ]). From Lemma 4.2, there must also be a

row in C(M [DR;DC [CC ]). However, by Theorem 4.3, all the rows in M [DR;DC [CC ]

are avoidable, and thereforeM [DR;DC [CC ] does not have an unavoidable column.
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4.2 Series Classes

Two avoidable columns x and y of a matrix M are said to be in series, or codependent, if

rank Mnfx; yg = rank M�1. IfM is skew symmetric with row and column index V , and

x and y are avoidable, then x and y being in series is equivalent to rank M [V nfx; yg] =

rank M � 2. The following is standard.

Theorem 4.6. Codependence is transitive.

Proof. Let x; y and z be columns in a matrix M , and assume that x and y are codepen-

dent, and that x and z are codependent. Since y is avoidable,

rank Mny = rank M; (4.8)

and by the de�nition of codependent,

rank Mnfx; yg= rank Mnfy; zg = rank M � 1: (4.9)

Using the submodularity of the rank function,

rank Mnfx; yg+ rank Mnfy; zg � rank Mnfx; y; zg+ rank Mny: (4.10)

Substituting (4.8) and (4.9) into (4.10) gives

rank Mnx� 2 � rank Mnfx; y; zg: (4.11)

Since rank decreases by at most one each time a row or column is removed, the inequality

of (4.11) is met with equality. Therefore the rank of Mnfxg decreases by one when z is

removed, and rank Mnfx; zg = rank M �1. It follows that x and z are codependent.
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Using the transitivity of codependence, the avoidable columns ofM can be partitioned

into sets D1; : : : ;Dk for some integer k, such that two columns x and y are in the same

set Di, if and only if rank Mnfx; yg = rank M � 1. The sets D1; : : : ;Dk are called the

series classes of M . Series classes in the context of matroids are discussed in Chapter 7.

Series classes determine which columns become unavoidable once an avoidable column is

removed. If D is a series class of M , the rank of D refers to the rank of the submatrix of

M of the columns in D.

Theorem 4.7. If there are k series classes on the columns of M , and M has n columns,

then rank M � n� k.

Proof. When one column is removed from each series class, the remaining n� k columns

are unavoidable.

Corollary 4.8. If D is a series class on the columns of M , then the rank of D is at least

jDj � 1.

4.3 Improving Evaluations

One method for �nding an optimal evaluation is to use a random evaluation, where

the indeterminates are chosen from a large set. This is discussed in Section 6.4. The

algorithms in Chapter 5 use a di�erent approach: start with an arbitrary evaluation, and

change the value of an indeterminate if doing so improves the evaluation. If an evaluation

is not optimal, then a change which increases the rank is an improvement. Such a change

is not always possible. For example, the bipartite graph G in Figure 4.1 has a perfect

matching. (Edges af , be, ch, dg is one example.) From Corollary 3.4, the bipartite Tutte

matrix for G is nonsingular, but the evaluation in (4.12) is singular, and there is no single

change to an indeterminate evaluation which results in an optimal evaluation. A less
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a b c d

e f g

Figure 4.1: The bipartite graph G

restrictive de�nition for an improved evaluation than one with higher rank is needed.

T =

0
BBBBBBB@

zea zeb zec 0

zfa 0 0 zfd

zga 0 0 zgd

0 zhb zhc zhd

1
CCCCCCCA
; eT =

0
BBBBBBB@

1 �1 �1 0

2 0 0 1

2 0 0 1

0 1 1 1

1
CCCCCCCA

(4.12)

Improvement in an evaluation is denoted by �. If fM1 and fM2 are two evaluations of the

matrix M , then fM2 � fM1 means either:

(i) rank fM2 > rank fM1; or

(ii) rank fM2 = rank fM1 and D(fM2) � D(fM1); or

(iii) rank fM2 = rank fM1, D(fM2) = D(fM1), and C(fM2) � C(fM1).

Strict improvement is denoted by �. Conditions (ii) and (iii) can alternatively be stated

as:

(ii0) rank fM2 = rank fM1, and for any row or column x, rank fM2nx � rank fM1nx;

(iii0) rank fM2 = rank fM1, and for any row x there exists a column y such that rank fM2nfx; yg �

rank fM1nfx; yg:
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Let D;C;A be the decomposition of fM , where M is a matrix with indeterminate

entries. If an indeterminate occurs exactly once in M [DR;DC ], then the rank of fM can

be increased with a single change to the value of the indeterminate.

Theorem 4.9 (Cunningham and Geelen). If z occurs exactly once in M [DR;DC]

and m times in M , then for any S � Zwith jSj > m, there exists x 2 S such that

rank fM(z  x) > rank fM .

Proof. Assume that z occurs only once in M [DR;DC], in row i and column j, and that

z occurs m times in M . Let a1; : : : ; am be indeterminates, and let fMa be the evaluation

fM with the m entries of ~z replaced with ~z+a1; : : : ; ~z+am, such that ~z+a1 is in fMa[i; j].

Choose rows X and columns Y such that i 62 X , j 62 Y , and fM [X ; Y ] is a maximal

nonsingular submatrix of fM . Then

detfMa[X [ i; Y [ j] =

mX
k=1

ckak + p(a1; : : : ; am) + c; (4.13)

where c1; : : : ; cm and c are constants, and each term in the polynomial p(a1; : : : ; am) has

degree at least 2 and at most m.

If ~ak = 0 for k = 1; : : : ; m, then c = detfM [X [ i; Y [ j], and since fM [X [ i; Y [ j] is

singular, c = 0. If ~ak = 0 for k = 2; : : : ; m, then c1 = detfM [X ; Y ], and therefore c1 6= 0.

Let l 2 f2; : : : ; mg, and assume al is in row i0 and column j0 of fM . If i0 62 X [ i or

j 0 62 Y [ j, then al is not in fMa[X [ i; Y [ j], and hence cl = 0. Suppose i0 2 X [ i and

j 0 2 Y [ j. If ~ak = 0 for k 2 f2; : : : ; mgnl, then cl = � detfM [(X [ i)ni0; (Y [ j)nj0]: From

the assumption that z appears only once in M [DR;DC], either i0 or j0 is unavoidable,

hence fM [(X [ i)ni0; (Y [ j)nj 0] is singular. Therefore

cl = 0 for all l 2 f2; : : : ; mg: (4.14)
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Combining c = 0; c1 6= 0 and (4.14), equation (4.13) simpli�es to

det fMa[X [ i; Y [ j] = c1a1 + p(a1; : : : ; am): (4.15)

Since the linear term c1a1 is nonzero, it follows that fMa[X [ i; Y [ j] is nonsingular.

Let a be an indeterminate, and set ak = a � ~z for all k 2 f1; : : : ; mg, so that fMa

replaces each ~z in fM with a. The determinant of fM(z  a)[X [ i; Y [ j] is a non-zero

polynomial of degree at most m in a, and therefore has at most m integer roots. If S is

any set of more than m integers, then there exists x 2 S such that fM(z  x)[X[ i; Y [j]

is nonsingular, and rank fM(z  x) > rank fM .

When z does not occur exactly once in the avoidable set, an improvement can still be

guaranteed, but the required size of the set S may increase. Assume n is either the

number of columns in M or the number of rows in M , whichever is greater.

Lemma 4.10. If z occurs m times in M , and jSj = 2mn + k where S � Z, then there

exist at least k integers x 2 S such that fM(z  x) � fM .

Proof. Let D;C;A be the partition of fM , and assume S � Z, with jSj = 2mn + k. Let

i 2 DR(fM) and j 2 DC(fM), and letfM [X ; Y ] be a maximal nonsingular submatrix of fM
with i 62 X and j 62 Y . The determinant of fM [X ; Y ] is a polynomial of degree at most m

in ~z, and if x is not a root of the polynomial, then either rank fM(z  x) > rank fM , or

rank fM(z  x) = rank fM and i and j remain avoidable. There are at most n pairs i; j

to consider, and hence at most mn possible x for which either rank fM(z  x) < rank fM
or rank fM(z  x) = rank fM and D(fM(z  x)) 6� D(fM). Therefore, there exists

S0 � S such that jS 0j = mn + k, and for all x 2 S0, either rank fM(z  x) > rank fM , or

rank fM(z  x) = rank fM and D(fM(z  x)) � D(fM).

If x 2 S 0 is such that fM(z  x) 6� fM , then C(fM) is nonempty. Let i 2 CR(fM). From
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Lemma 4.2 (iii), there exists j 2 CC(fM) such that rank fMnfi; jg = rank fM � 1. Let

fM [X ; Y ] be a maximal nonsingular submatrix of fMnfi; jg. The determinant of fM [X ; Y ]

is a polynomial of degree at mostm in ~z, and therefore, at most m values of ~z can make i

or j unavoidable in fM(z  x). There are at most n sets of rows and columns to consider,

so there are at most mn possible such x. Since jS0j = mn + k, this leaves at least k

di�erent x 2 S0 such that fM(z  x) � fM .

Lemma 4.11. Suppose fM1 and fM2 are matrix evaluations, and D;C;A is the partition

of fM1. If fM2 � fM1 and rank fM2[D
R;DC[CC ] > rank fM1[D

R;DC[CC ], then fM2 � fM1.

Proof. Suppose rank fM2 = rank fM1. Since rank fM1 = jAj+jC
Rj+rank fM1[D

R;DC[CC ]

and rank fM2[D
R;DC[CC ] > rank fM1[D

R;DC[CC ], the partition ofM2 is di�erent than

the partition of M1. By assumption, D(fM2) � D, and if D(fM2) = D then C(fM2) � C.

It follows that either D(fM2) � D, or the avoidable sets of fM1 and fM2 are the same, and

C(fM2) � C.

Statements similar to Theorem 4.9 can be made about improvements when an inde-

terminate occurs once or twice in M [DR;DC [ CC ].

Theorem 4.12 (Geelen).

(i) If z occurs exactly once in M [DR;DC [ CC ] and m times in M , then there exists

x 2 f1; : : : ; 2mn+ 2g such that fM(z  x) � fM .

(ii) If z occurs exactly twice in M [DR;DC[CC ], m times in M , and is in two di�erent

series classes with respect to the columns of fM [DR;DC [ CC ], then there exists

x 2 f1; : : : ; 2mn+ 2g such that fM(z  x) � fM .

Proof.

(i) From Theorem 4.9, we can assume z occurs inM [DR;CC]. If S = f1; : : : ; 2mn+2g,

then from Lemma 4.10, there are at least 2 di�erent x 2 S such that fM(z  x) �
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fM . From Corollary 4.5, every row and column of fM [DR;DC [CC ] is avoidable, so

applying Theorem 4.9 to fM [DR;DC [ CC ], it follows that in any set with at least

2 integers, there is an integer x in the set such that

rank fM [DR;DC [ CC ](~z  x) > rank fM [DR;DC [ CC ]:

The theorem follows from Lemma 4.11.

(ii) Suppose mij = z and mhk = z, where columns j and k are in two di�erent

series classes of fM [DR;DC [ CC ]. Then there exist X 0 � DRnfig and Y 0 �

(DC [ CC)nfj; kg such that fM [X 0; Y 0] is a maximum nonsingular submatrix of

fM [DR;DC [ CC ]. The determinant of fM [X 0 [ fig; Y 0 [ fjg] is linear in ~z, and

therefore any change in ~z will increase the rank of fM [DR;DC [ CC ]. By Theo-

rem 4.4, either the rank of fM increases, or the decomposition changes. There are

at most mn values for ~z which make an avoidable row or column unavoidable, and

at most mn values for ~z which remove a row or column from C. If x is not one of

these 2mn values and x is not the present value of z, then fM(z  x) � fM .



Chapter 5

Rank completion algorithms

The formulations of chapter 3 involve calculating the rank of a matrix with indeterminate

entries. From the discussion in Section 6.4, the formulations are not directly useful

computationally. For example, when G is a bipartite graph with bipartite Tutte matrix

T , there are as many terms in the determinant of T as there are perfect matchings in G,

and therefore computing the determinant of T has the same order as counting all perfect

matchings. Counting the number of perfect matchings in general graphs, even in the

bipartite case, is NP-hard (Lov�asz and Plummer [22], pg. 307).

In the maximum branching problem for a directed graph, the substitution of any

positive rational for each indeterminate yields an optimal evaluation. This is because

such a substitution ensures each term in the determinate is positive, and therefore one

term in the permutation expansion cannot cancel another term. A similar approach is not

always possible for undirected and mixed graphs; there are Tutte matrices and matching

forest matrices for which every evaluation has both positive and negative terms in the

determinant.(See Chapter 6 for examples of such matrices.) Algorithms that use the

matrix decomposition to �nd an optimal evaluation of the bipartite Tutte matrix, the

Tutte matrix, and the matching forest matrix are given here. Each algorithm follows the

37
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same general method: given an evaluation fM ofM and a set of integers S, if there exists

an indeterminate z of M and a 2 S such that fM(z  a) � fM , then replace fM with

fM(z  a).

5.1 An optimal evaluation of the bipartite Tutte matrix

An arbitrary evaluation of the bipartite Tutte matrix of a graph is either optimal, or can

be improved by changing the value of a single indeterminate. A stronger version of the

following theorem is in Geelen [13].

Theorem 5.1. If T is the bipartite Tutte matrix for the bipartite graph G = (V;E),

and eT is an evaluation of T , then either eT is optimal, or there exists e 2 E and a 2

f1; : : : ; 2n+ 2g such that eT (ze  a) � eT .
Proof. Let D;C;A be the partition of eT . If z is in T [DR;DC], then since every indeter-

minate occurs only once in the bipartite Tutte matrix, it follows from Theorem 4.9 that

rank eT (~z  x) > rank eT for any x 6= ~z.

Similarly, if z is in T [DR;CC], then by Theorem 4.12(i), there exists an integer x in

f1; : : : ; 2n+ 2g such that eT (~z  x) � eT .
Both the rank and the size of the avoidable set are bounded, so improvements can be

made until the partition D;C;A of the evaluation eT is such that all entries in T [DR;DC[

CC ] are zero. For such an evaluation,

rank eT [DR;DC [ CC ] = rank T [DR;DC [ CC ] = 0: (5.1)

With (5.1) and Theorem 4.4, it follows that rank eT = jAj + jCRj. Theorem 4.1 states

that rank T � jAj+ jCRj, and since the rank of T is an upper bound on the rank of any

evaluation of T , eT is optimal.
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Geelen proves that when an evaluation eT is not optimal, there exist e 2 E and a 2

f1; : : : ; ng such that either rank eT (ze  a) > rank eT or D(eT(ze  a)) � D(eT ).

5.2 Matchings

Suppose G = (V;E) does not have a perfect matching, but for any v 2 V , the subgraph

G[V nv] has a perfect matching. Such a graph is called hypomatchable.

5.2.1 Hypomatchable graphs and odd components

Suppose the Tutte matrix T for G = (V;E) is such that every row and column of T is

avoidable, and rank T = jV j � 1. Then T [V nv] is nonsingular for any v 2 V , and by

Corollary 3.2, the subgraph G[V nv] has a perfect matching for every v 2 V . Thus the

graph G is hypomatchable. Clearly a hypomatchable graph must have an odd number

of vertices. Two examples of hypomatchable graphs are given in Figure 5.1. The Gallai-

Edmonds decomposition of a graph, discussed next, �nds hypomatchable components in

a graph.

Figure 5.1: Hypomatchable graphs

Assume G = (V;E) is a graph and let A � V . An odd component of G[V nA] is a
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maximal connected subgraph of G[V nA] with an odd number of vertices. The number of

odd components in G[V nA] is denoted by odd(GnA).

IfM is a matching of G, then unless M contains an edge uw where u 2 A and w 62 A,

then M cannot cover all of A. Consider the case that A is the single vertex v 2 V .

Suppose G[V nfvg] has two odd components. The vertex v cannot be used to cover

both odd components simultaneously, and therefore G does not have a perfect matching.

Similarly, if A � V is such that the number of odd components of G[V nA] is greater than

the size of A, then G can not be perfectly matched. Tutte's matching theorem relates

the existence of a perfect matching to the nonexistence of an odd component that can

not be perfectly matched.

Theorem 5.2 (Tutte). The graph G = (V;E) has a perfect matching if and only if

odd(GnA) � jAj for all A � V .

Closely related to this is the Tutte-Berge Formula, which relates the de�ciency of a

graph (number of vertices not covered in a maximum matching) to the maximum di�er-

ence between the number of odd components in GnA and the size of A. The de�ciency

of G is denoted by def(G).

Theorem 5.3 (Tutte-Berge Formula). For any graph G = (V;E),

def(G) = maxfodd(GnA)� jAj : A � V g:

5.2.2 The Gallai-Edmonds decomposition

Let G = (V;E) be a graph, and let D be the vertices not covered by at least one matching

in G. Let A � V nD be the vertices incident to a vertex in D, and let C = V n(D [ A).

Note that D;A and C are well de�ned.
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Theorem 5.4 (Gallai-Edmonds Structure Theorem). If G is a graph with D;A

and C de�ned as above, then the following hold:

(i) every odd component of GnA is in G[D], and every component of G[D] is hypo-

matchable;

(ii) G[C] has a perfect matching;

(iii) if M is a maximum matching of G, then M perfectly matches G[C], and every

vertex in A is matched in M to a distinct component in G[D];

(iv) the number of vertices covered by a maximum matching is jV j � (odd(GnA)� jAj).

It can be shown that (iv) implies (i), (ii), and (iii). For a proof of the Gallai-Edmonds

Structure Theorem, see Lov�asz and Plummer [22] pg. 93-98.

For an example of the Gallai-Edmonds structure for a graph, see Figure 5.2.

D = f1; 2; 3; 4; 5; 6; 7; 8; 9g

1

2 3

4

5

6

7

8

9

10 11

12

13

14

15

C = f12; 13; 14; 15g

A = f10; 11g

Figure 5.2: Example of a Gallai-Edmonds decomposition
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The polynomial time Edmonds' Matching Algorithm for the undirected graph G =

(V;E) takes as input any matching M of G, and either �nds a new matching M 0 where

jM 0j > jM j, or �nds A � V such that odd(GnA)� jAj > 0, and odd(GnA)� jAj is the

number of vertices not covered by M . From the Tutte-Berge Formula, M is a maximum

matching.

The partition D;C;A of an optimal evaluation of T is the same as the sets D;C;

and A from the Gallai-Edmonds decomposition of a graph: just as there are no non-zero

entries in T [DR;CC], there are no edges between vertices in D and C; the hypomatch-

able components in G[D] correspond to the blocks from the series classes of T [D]; the

submatrix T [C] has full rank and the subgraph G[C] is perfectly matchable; and �-

nally, the size of the maximum matching, jV j � (odd(GnA) � jAj can be rewritten as

jAj+ jCj+ jDj � (odd(G[D])� jAj), and this is equal to 2jAj+ jCj+ rank T [DR;DC ].

5.2.3 An optimal evaluation of the Tutte matrix

Similar to an evaluation of the bipartite Tutte matrix, an evaluation of the Tutte ma-

trix of a graph is either optimal, or can be improved by changing the value of a single

indeterminate. A stronger version of the following theorem is in Geelen [12].

Theorem 5.5. If T is the Tutte matrix for the graph G = (V;E), and eT is an evaluation

of T , then either eT is optimal, or there exists e 2 E and a 2 f1; : : : ; 4n+ 2g such that

eT (ze  a) � eT .
Proof. Assume eT is an evaluation with partition D;C;A. Since the Tutte matrix is

symmetric, the partition D;C;A of eT is symmetric, and in particular, DR = DC . Any

indeterminate in T [DR;CC] occurs exactly once in T [DR;CC], and therefore, from The-

orem 4.12(i), improvements in the evaluation can be made until all entries of T [DR;CC]

are zero.
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Consider the series classes on the columns of eT [D]. By de�nition, the columns x and

y belong to di�erent series classes if and only if rank eTnfx; yg = rank eT: Suppose that

the indeterminate z is in column i and j, and that i and j are in di�erent series classes.

By symmetry, z is also in row j, and row j can be removed without a�ecting column

dependencies. Therefore rank eT [V nj;V nfi; jg] = rank eT , and there exist X � V nj

and Y � V nfi; jg such that eT [X ; Y ] is a maximal nonsingular submatrix of eT . The

indeterminate z is not in T [X ; Y ], and although eT [X[j; Y [i] is singular, its determinant

is linear in ~z. Hence eT [X [ j; Y [ i](~z  x) is nonsingular for any x 6= ~z, and therefore

rank eT (~z  x) > rank eT .
Suppose an evaluation eT with partition D;C;A is such that every entry of T [DR;CC]

is zero, and each indeterminate pair z in T [D] occurs in the same series class on the

columns of eT [D]. By Theorem 4.4, it follows that rank eT = rank eT [D] + jAj + jCRj.

From Theorem 4.1, rank T � rank T [D] + jAj+ jCRj.

Let D1; : : : ;Dn be the series classes of eT [D], and consider the submatrix eT [D;Dk]

for an arbitrary series class Dk � D. Suppose z occurs in row i and column j of T [D],

where j 2 Dk . By the skew-symmetry of the Tutte matrix, z is also in row j and column

i. By the assumption that z occurs in two columns of Dk, i 2 Dk, and every entry of

eT [DnDk;Dk] is zero.
The submatrix eT [D] therefore consists of diagonal blocks eT [D1]; : : : ; eT [Dn], and

rank eT [D] =

nX
k=1

rank eT [Dk]:

Since all rows and columns of eT [D] are avoidable, all rows and columns of each blocks

eT [Dk] must be avoidable, for k 2 f1; : : : ; ng. This same block structure must occur in
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T [D], hence

rank T [D] =

nX
k=1

rank T [Dk]:

By Corollary 4.8, rank eT [Dk] � Dkj � 1 for all k 2 f1; : : : ; ng, and since each row and

column is avoidable, rank eT [Dk] = jDkj � 1.

Each block eT [Dk] is skew symmetric, so having rank one less than its size, means it

is an optimal evaluation of T [Di]. Hence rank eT [D] = rank T [D], and eT is an optimal

evaluation of T .

Geelen proves that if an evaluation eT is not optimal, then there exist e 2 E and a 2

f1; : : : ; ng such that either rank eT (ze  a) > rank eT , or D( eT (ze  a)) � D(eT).

5.3 Branchings

Any evaluation which substitutes positive integers for the indeterminates in the branching

matrix for a directed graph is optimal. This follows from Section 3.2.

Theorem 5.6 (Barahona and Pulleybank). If B is the branching matrix for the di-

rected graph G = (V; ~E), and eB is an evaluation of B with ~z > 0 for all indeterminates

z in B, then eB is optimal.

If all the indeterminates in the branching matrix are evaluated as +1, then the deter-

minant counts arborescences in G.

Theorem 5.7 (Barahona and Pulleybank). If B is the branching matrix for the di-

rected graph G = (V; ~E), and eB is an evaluation of B with ~x = 1 for all indeterminates

x in B, then det eB[V nv] is the number of arborescences in G with root v.
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Proof. Let A be the arc sets corresponding to arborescences of G with root v. From

Corollary 3.6,

detB =
X
A2A

Y
ij2A

xji:

Hence if ~xa = 1 for all a 2 ~E, then det eB = jAj.

We note that determining if a directed graph has an arborescence is easy.

Theorem 5.8. The directed graph G = (V; ~E) with r 2 V has an arborescence rooted at

r if and only if there is a directed path in G from r to v for all v 2 V .

In a strongly connected directed graph G = (V; ~E), there is a directed path from v to

u for each vertex pair v; u 2 V .

Corollary 5.9. A directed graph G = (V;E) has an arborescence rooted at every v 2 V

if and only if G is strongly connected.

5.4 Matching forests

Hypomatchable undirected graphs (Section 5.2.1) have the property that for any vertex v

in the graph, there is a matching that covers every vertex except v. We will call a mixed

graph G = (V;E; ~E) hypomatchable if G does not have a perfect matching forest, but for

every v 2 V , there is a matching forest in G that covers V nv.

A vertex v 2 V is a cut vertex in a graph G = (V;E) if the edge set can be partitioned

into nonempty subsets E1 and E2 such that G[E1] and G[E2] have only the vertex v in

common. A block in a graph G = (V;E) is a maximal subgraph G0 = (V 0; E0) such G0

does not have a cut-vertex.
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Figure 5.3: A hypomatchable tree

Lemma 5.10 (Giles). If each block in a mixed graph G is either a directed graph or an

undirected graph with an odd number of vertices, then G does not have a perfect matching

forest. Moreover, if G is hypomatchable, then each undirected block is hypomatchable,

and each directed block is strongly connected.

Lemma 5.10 can be proved by induction on the number of blocks.

If each block in a mixed graph G is either a hypomatchable undirected subgraph

of G, or a strongly connected directed subgraph, then we call G a hypomatchable tree.

(See Figure 5.3.) The algorithm presented in the following section �nds an optimal

evaluation of a matching forest matrix, and, in the process, �nds hypomatchable trees in

the corresponding mixed graph.

5.4.1 An optimal evaluation of the matching forest matrix

Similar to the algorithms for an optimal evaluation of the Tutte matrix and the bipartite

Tutte matrix, an optimal evaluation of the matching forest matrix is found by starting

with an arbitrary evaluation, and improving the evaluation by changing the value of an

indeterminate.
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Theorem 5.11. If T+B is the matching forest matrix for the mixed graph G = (V;E; ~E),

and eT + eB is an evaluation of T +B, then either eT + eB is optimal, or there exist e 2 E,

~e 2 ~E, and a; b 2 f1; : : : ; 4jEj+ 2g such that ( eT + eB)(ze  a; x~e  b) � eT + eB.
Let eT + eB be an evaluation of T +B, and let D;C;A be the partition of eT + eB. From

Theorems 4.9 and 4.12(i), a single perturbation can improve the evaluation if any of the

following three initial conditions are not satis�ed by eT + eB :

1. The indeterminates in (T + B)[DR;DC ] appear in pairs.

2. The indeterminates in (T + B)[DR;CC ] appear in pairs.

3. For any series class X on the columns of (eT + eB)[DR;DC [CC ], the indeterminates

in (eT + eB)[DR;X ] appear in pairs.

Assume the evaluation eT+ eB satis�es these three initial conditions, and let X � DC[CC

be a series class on the columns of (eT + eB)[DR;DC [ CC ]. Consider the submatrix

(eT + eB)[DR;X ]. If there is a nonzero entry in row i of (eT + eB)[DR;X ], then by condition

(3) and the structure of the matching forest matrix, column i 2 X . Therefore all entries

of (eT + eB)[DRnX ;X ] are zero and (eT + eB)[DR;DC [CC ] decomposes into blocks corre-

sponding to each of the series classes on its columns. Determining if eT + eB is optimal is

equivalent to determining if (eT + eB)[X ] is optimal for each series class X .

LetX � DC[CC be a series class. De�neM = (mij) and fM = ( ~mij) to be (T+B)[X ]

and ( eT + eB)[X ] respectively.

Lemma 5.12. Every row and column of fM is avoidable, and rank fM = jX j � 1.

Proof. From the previous observation that every entry in ( eT + eB)[DRnX ;X ] is zero,

rank fM = rank (eT + eB)[DRnX ;X ] � jX j � 1 (Corollary 4.8). Furthermore, since all

rows and columns of (eT + eB)[DRnX ;X ] are avoidable, every row and column of fM is

also avoidable and the rank must be strictly less than the number of columns.
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Lemma 5.13. If y is a vector in the nullspace of fM , and no change in the evaluation of

an indeterminate will make fM nonsingular, then yi = yj for all arcs ij in G[X ].

Proof. Suppose the vector y is in the nullspace of fM and let ij be an arc in G[X ]. Then

fM [X ;Xni]ynyi = �yifM [X ; i];

and in particular,

fM [Xni]ynyi = �yifM [Xni; i]: (5.2)

From Lemma 5.12, fM [Xni] is nonsingular, and since fM(z  a) does not have full rank

for any a 2Z,

detfM [Xni] = (�1)i+j detfM [Xni;Xnj]: (5.3)

The lemma follows from using Cramer's rule together with (5.3) to solve the system in

(5.2) for yj .

The next step is to combine some columns of fM and form a new matrix, denoted cM .

The columns are combined in such a way that there is a bijection between vectors in the

nullspace of fM and vectors in the nullspace cM . For every U � X such that the directed

component of G[U ] is a maximal connected subgraph of G[X ], combine the columns U

of fM into one column in cM , where the new column is equal to the sum of the individual

columns. An example of this operation is Figure 5.4, where x; y; z are indeterminates

from the Tutte matrix, and a; b; c; d; e are indeterminates from the branching matrix. All

the entries of cM come from the Tutte matrix, since the entries in a connected component

of the branching matrix sum to zero. Let bX index the columns of cM .
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M =

0
B@

a �a 0 0 0 0
�b b �x �y 0 0
0 x 0 �z 0 0
0 y z c 0 �c
0 0 0 �d d 0
0 0 0 0 �e e

1
CA fM =

0
B@

1 �1 2 0 0 0
�1 1 �5 3 0 0
0 5 0 �7 0 0
0 �3 7 6 0 �6
0 0 0 �4 4 0
0 0 0 0 3 �3

1
CA cM =

0
@ 0 2 0

0 �5 3
5 0 �7
�3 7 0
0 0 0
0 0 0

1
A

Figure 5.4: Constructing cM
Lemma 5.14. Every row and column of cM is avoidable, and rank cM = j bXj � 1.

Proof. The rows of fM are avoidable, and since combining columns in a linear way does

not a�ect row dependency, the rows of cM are also avoidable.

Suppose y is in the nullspace of fM , and assume column x in cM is the sum of columns

i1; : : : ; ij in fM . From Theorem 5.13, yi1 = yi2 = � � � = yij . If ŷ is the vector formed

by replacing the entries yi1 ; : : : ; yij from y with the single entry yi1 , for all entries whose

corresponding columns in fM have been combined into one column in cM , then cMŷ = 0.

Similarly, a vector ŷ in the nullspace of cM can be expanded into a vector in the nullspace

of fM , and therefore there is a bijection between the nullspace of fM and the nullspace of

cM . Since the nullspace of fM has dimension 1, so does the nullspace of cM , and therefore

the rank of cM is one less than the number of columns.

If a single change to the entries of cM can increase the rank of cM , then either the rank

of fM also increases, or the bijection between the two nullspaces no longer holds. If the

bijection does not hold, then the property described in Lemma 5.13 no longer holds, and

there exist i; j such that ij is an arc in G[X ], and det fM [Xni] 6= (�1)i+j det fM [Xni;Xnj].

A single change to the value of the entry corresponding to the arc ij will make fM have

full rank. Next we consider series classes on the rows of cM .

Lemma 5.15. If the rank of cM cannot be increased by a single change to any entry, and

Y is a nontrivial series class on the rows of cM , then cM [Y ; bX] has jY j nonzero columns.
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Proof. From Corollary 4.8, rank cM [Y ; bX] � jY j � 1, and since every column in fM [Y ; bX]

is avoidable, there must be at least jY j nonzero columns. From Theorem 4.9(ii), both

entries of an indeterminate pair occur in the same series class, and at most once in a single

row of the Tutte matrix. Therefore the number of nonzero columns cannot be more than

the number of nonzero rows, and hence cM [Y ; bX] has exactly jY j nonzero columns.

Lemma 5.15 implies some structure of G[X ].

Corollary 5.16. If the rank of cM can not be increased by a single change in any entry,

and Y is a series class on the columns of cM , then G[Y ] has only undirected edges.

Moreover, if G[X ] denotes the undirected components of G[X ], then G[Y ] is a maximal

hypomatchable component of G[X ].

Proof. If i; j 2 Y are such that ij 2 ~E, then by the construction of cM , columns i and j

would be added together. This contradicts Lemma 5.15, and therefore there are no arcs

in G[Y ].

Since cM [Y ; bX] has exactly jY j nonzero columns, there is a Tutte matrix eT [Y ] such
each nonzero column in cM [Y ; bX] corresponds to a column in eT [Y ]. Since cM [Y ny; bXnx]
has full row rank for any y 2 Y; x 2 bX, eT [Y ny] is nonsingular. Therefore, there is a

perfect matching in G[Y ] which covers Y ny for any y 2 Y , and G[Y ] is hypomatchable.

Any indeterminate in M [Y ; bX] occurs twice in M [Y ; bX], and therefore if ij 2 E and

i 2 Y , then j 2 Y . Hence G[Y ] is a maximal hypomatchable component of G[X ].

Further structure in G[X ] is obtained by considering more than one series class on the

rows of cM .

Lemma 5.17. If the rank of cM can not be increased by a single change to any entry,

and Y1; : : :Yk are nontrivial series classes on the rows of cM with jY1[� � �[Yk j = m, then

cM [Y1 [ � � � [ Yk ; bX] has at least m� k + 1 nonzero columns.



CHAPTER 5. RANK COMPLETION ALGORITHMS 51

Proof. From Theorem 4.7, rank cM [Y1 [ � � � [ Yk; bX] � m � k. Hence there are at least

m� k nonzero columns, and since each column is avoidable, there are at least m� k+ 1

nonzero columns.

Corollary 5.18. If the rank of cM can not be increased by a single change in any entry,

then each block of G[X ] has either only undirected edges, or only directed edges.

Proof. Suppose G[X ] has a block with both undirected and directed edges, and let B �

X be the vertices in the block. Consider the undirected components of G[B]. From

Corollary 5.16, the undirected blocks are hypomatchable subgraphs, each contained in

some G[Yi], where Yi is a series class on the rows of cM . Assume G[B] has k undirected

components, corresponding to k series classes Y1; : : :Yk . Also from Corollary 5.16, if a is

an arc in G[B] then the head of a is in a di�erent series class than the tail of a. Since

G[B] is a block, there must be at least k arcs connecting the k undirected components.

But then cM [Y1 [ � � � [ Yk; bX] has at most jY1 [ � � � [ Yk j � k columns, which contradicts

Lemma 5.17. Therefore, any block of G[X ] has either only undirected edges, or only

directed edges.

Corollary 5.19. If the rank of cM can not be increased by a single change in any entry,

then the undirected blocks of G[X ] are hypomatchable.

Proof. This follows from Corollary 5.18 together with Corollary 5.16.

We can now prove that the evaluation of M is optimal.

Theorem 5.20. If the rank of cM cannot be increased by a single change to any entry,

then the evaluation fM is optimal, and G[X ] is a hypomatchable tree.

Proof. From Corollary 5.19, if the rank of cM cannot be increased by a single change to

any entry, then the blocks of the corresponding subgraph G[X ] are either hypomatchable
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undirected blocks, or blocks with only directed edges. From Lemma 5.10, G[X ] does

not have a perfect matching matching forest. Since rank fM = jX j � 1, the evaluation

is optimal, and since every row and column is avoidable, there is a maximum matching

forest in G[X ] which misses any vertex in X , and G[X ] is a hypomatchable tree.

It follows from Theorem 5.20 that if an evaluation eT + eB satis�es the 3 initial conditions

regarding the location of indeterminate pairs in (eT + eB)[DR;DC [ CC ] and if for each

series class X � DC [ CC , the submatrix (eT + eB)[X ] is optimal, then eT + eB is optimal.

5.4.2 A minmax theorem

From the Tutte-Berge Formula (5.3) for undirected graphs, a matching in the undirected

graph G = (V;E) can not cover more than jV j � (odd(GnA)� jAj) vertices, where A is

any subset of V . Both the Gallai-Edmonds decomposition and an optimal Tutte matrix

evaluation �nd a set A for which this inequality is met with equality. An inequality similar

to the Tutte-Berge formula can be given for the size of a maximum matching forest in a

mixed graph (Giles [15]).

Let G = (V;E; ~E) be a mixed graph, and assume A � V is such that GnA has k

hypomatchable trees. Let D � V be all vertices in such a tree, and de�ne C to be

V n(A[D). Suppose that there are no arcs directed from A or C to D, and suppose also

that there are no edges incident to both a vertex in D and a vertex in C, as in Figure 5.5,

where k = 2.

If jAj < k, then at least jAj � k vertices can not be covered by a matching forest in

G, and if tree(GnA) is de�ned to be the number of hypomatchable trees in GnA, then

the following theorem is immediate.



CHAPTER 5. RANK COMPLETION ALGORITHMS 53
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Figure 5.5: Decomposition of a mixed graph

Theorem 5.21. If G = (V;E; ~E) is a mixed graph, then

def(G) � maxftree(GnA)� jAj : A � V g:

With an optimal evaluation of the matching forest matrix, Theorem 5.21 can be

strengthened to a minmax formula.

Lemma 5.22. If eT + eB is an optimal evaluation of the matching forest matrix for the

mixed graph G = (V;E; ~E), and D;C;A is the partition of eT + eB, then all entries in

(eT + eB)[DR;CC ] are zero, and there are no arcs in G directed from a vertex in AC to a

vertex in DR.

Proof. From Lemma 3.13, (T + B)[X ] is nonsingular whenever X is a maximal set of

independent rows in T + B. Let x be any avoidable row of T + B. Since there exists a

maximal set of independent rows which does not include x, there is a maximal nonsingular
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submatrix which does not include column x and therefore column x is also avoidable.

Since eT + eB is optimal, if i is an avoidable row in eT + eB, then it is also an avoidable

column, and DR � DC .

Suppose there is an entry in row i of (eT + eB)[DR;CC]. Since column i is in DC , the

indeterminate occurs only once in (T + B)[DR;CC ], and hence an improvement in the

evaluation can be made. This contradicts the assumption that eT + eB is optimal, and

therefore all entries of ( eT + eB)[DR;CC ] are zero.

Similarly, suppose there is an entry in row i of (eT + eB)[DR;AC ]. If the entry corre-

sponds to the head of an arc, then the indeterminate occurs only once in (T+B)[DR;DC ],

and an improvement in the evaluation can be made. This is a contradiction, and therefore

there are no arcs directed from AC to DR.

For an alternate version of the next theorem, see Giles [14].

Theorem 5.23. If G = (V;E; ~E) is a mixed graph, then

def(G) = maxftree(GnA)� jAj : A � V g:

Proof. Inequality was shown in Theorem 5.21. Let eT + eB be an optimal evaluation of the

matching forest matrix for G, and assume D;C;A is the partition of eT + eB. Then
jV j � def(G) = rank eT + eB = jAj+ jCRj+ rank (eT + eB)[DR;DC [ CC ]: (5.4)

Assume there are k series classes on the columns of (eT + eB)[DR;DC [ CC ]. From

Lemma 5.22 and the block structure of (eT + eB)[DR;DC [ CC ], it follows that

rank (eT + eB)[DR;DC [ CC ] = rank (eT + eB)[DR;DC ] = jDRj � k:
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Each series class in (eT+ eB)[D] corresponds to a hypomatchable tree in GnA, and therefore

(5.4) can be rewritten as

jV j � def(G) = jARj+ jCRj+ jDRj � (trees(GnAC)� jAC j)

= jV j � (trees(GnAC)� jAC j):

Thus the inequality in Theorem 5.21 is met with equality.

5.5 Finding a matching from an optimal evaluation

Once an optimal evaluation of the bipartite Tutte matrix, Tutte matrix, or matching

forest matrix is found, the size of a maximum matching or maximum matching forest can

be determined from the rank of the evaluation. An optimal evaluation can also be used

to explicitly �nd the maximum matching or maximum matching forest.

Suppose the Tutte matrix T for G = (V;E) has rank r, and let eT be an optimal

evaluation of T . By Corollary 2.6, there exists U � V such that jU j = r, and eT [U ] is
nonsingular. Then T [U ] is nonsingular, and there is a maximum matching of G which

covers U = fu1; : : :urg � V . Using the row expansion form of the PfaÆan (Theorem 2.10)

and the fact that the PfaÆan of eT [U ] is non-zero, there exists i 2 f2; : : : ; rg such that

~tu1;ui 6= 0 and eT [Unfu1; uig] is nonsingular. Therefore, there exists e = u1ui 2 E such

that G[Unfu1; uig] has a perfect matching M , and then M [feg is a maximum matching

of G. By repeatedly applying the process, a maximum matching can be found.Using the

ideas of Cheriyan [5], this method can be improved to obtain the matching in O(jV j3).

Similar arguments applied to an optimal evaluation of the matching forest matrix can

be used to explicitly �nd a matching forest in the corresponding mixed graph.



Chapter 6

Exact problems

Problems in graph theory often involve a maximum or a minimum, such as �nding a

matching with a maximum number of edges. If weights are assigned to each edge in

an undirected graph, then the maximum weight matching problem is to �nd a perfect

matching such that the total weight of all the edges in the matching is a maximum.

There exist eÆcient algorithms for �nding a maximum or minimum weight matching

in an undirected graph (Edmonds [7]). Once the maximum and minimum weight of a

perfect matching in a graph are known, the exact matching problem becomes interesting:

does there exist a perfect matching with a particular weight?

6.1 The weighted branching matrix

Given a directed graph G = (V; ~E) and weights wa for each a 2 ~E, the exact weighted

arborescence problem is to determine if G has an arborescence of a speci�c weight. The

56
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weighted branching matrix, C = (cij), is a formulation for this problem, where

cij =

8>>>>>><
>>>>>>:

�twij ; if i 6= j and (i; j) 2 ~E;

0; if i 6= j and (i; j) 62 ~E;

P
k 6=i ci;k; if i = j:

The weighted branching matrix solves the exact weighted arborescence problem.

Theorem 6.1 (Barahona and Pulleybank). If G = (V; ~E) is a directed graph with

weights wa for each a 2 ~E, C is the weighted branching matrix for G, and v 2 V , then

the number of arborescences in G with weight w and root v is equal to the coeÆcient of

tw in the determinant of C[V nv].

Proof. The weighted branching matrix is an evaluation of the branching matrix with

xa = twa for all a 2 ~E. From Corollary 3.6, for each arborescence of G with root v and

weight w, tw is a term in the determinant of C[V nv].

6.2 The weighted Tutte matrix

Suppose G = (V;E) is an undirected graph with weights we for each e 2 E. If fze : e 2 Eg

are algebraically independent indeterminates, then the skew-symmetric weighted Tutte

matrix A = (aij), with rows and columns indexed by V , is de�ned as follows:

aij =

8>><
>>:
�zijt

wij ; if ij 2 E;

0; otherwise.

The next theorem follows immediately from the one-to-one correspondence between per-

fect matchings of G and terms in the PfaÆan of T .
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Theorem 6.2 (Lov�asz). If G = (V;E) is a graph with weights we for each e 2 E, and

weighted Tutte matrix A, then G has a perfect matching of weight w if and only if the

coeÆcient of tw in the PfaÆan of A is non-zero.

If G = (V;E) is a weighted bipartite graph, with bipartition V1; V2, and A is the

weighted Tutte matrix for G, then the weighted bipartite Tutte matrix is A[V1;V2]. For

bipartite weighted graphs, Theorem 6.2 can be stated with respect to the determinant of

the bipartite Tutte matrix.

Theorem 6.3 (Lov�asz). If G = (V;E) is a bipartite graph with weights we for each

e 2 E, and A is the weighted bipartite Tutte matrix for G, then G has a perfect matching

of weight w if and only if the coeÆcient of tw in the determinant of A is non-zero.

The weighted Tutte matrix formulates a solution to the exact weight perfect match-

ing problem. In the given form, this formulation is not computationally useful, since it

requires computing the determinant of a matrix with indeterminate entries. If the inde-

terminates are evaluated as rationals, then, because of the sign factor in the determinant

function, two non-zero terms may cancel each other. The permanent of a matrix has a

similar permutation expansion to the determinant, except the sign function is absent: if

A is an n� n matrix, the permanent of A is de�ned as

per A =
X
�2Sn

a1;�(1) � � �an;�(n):

If A is the weighted bipartite Tutte matrix for the bipartite graph G, and each entry

aij is evaluated as twij , then the coeÆcient of tw in the permanent of eA is equal to the

number of perfect matchings in G with weight w. This is not a computationally feasible

solution to the exact matching problem, however, since calculating the permanent of a

matrix is NP-hard (L.Valiant (1979)).
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6.3 PfaÆan orientations

Another possible solution for the exact weight matching problem is to choose signs for

the entries in the weighted bipartite Tutte matrix, aij = �t
wij , such that

sign(�)a1;�(1) � � �an;�(n) � 0

for all permutations �. This problem was �rst posed by Polya in 1913. For example, in

the matrix (6.1), if a non-negative value is assigned to every + and a non-positive value

to every �, then every term in the determinant is non-negative. Such a matrix is called

sign-nonsingular.

2
66664
+ + �

0 + +

+ � +

3
77775 (6.1)

When the matrix is the Tutte matrix T for a general graph G, then giving a sign to

each indeterminate in T corresponds to assigning a direction, or orientation, to each edge

in G. A PfaÆan orientation of G is an orientation such that all the terms in the PfaÆan

of T have the same sign. A graph is PfaÆan if it has a PfaÆan orientation.

Suppose G is PfaÆan and bipartite. If each indeterminate aij in the bipartite weighted

Tutte matrixA is evaluated as�twij , according to the orientation ofG, then the coeÆcient

of tw in det eA is the number of perfect matchings in G with weight w.

Not all graphs are PfaÆan. For example, the 3�3 matrix that has a non-zero entry in

each term is not sign-nonsingular, and therefore the complete bipartite graph K3;3 does

not have a PfaÆan orientation.

Theorem 6.4 (Kasteleyn). Every planar graph is PfaÆan, and a PfaÆan orientation
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can be constructed in polynomial time.

Kasteleyn's Theorem does not classify all PfaÆan graphs, as there are non-planar

graphs that are PfaÆan. A theorem of Little [20] proves that a bipartite graph is PfaÆan

if and only if it does not \contain" a K3;3.

6.4 Complexity and random evaluations

The idea of a random evaluation is presented in Lov�asz [22]; if the entries of an evaluation

are chosen from a large enough set, then the probability that a matrix is nonsingular when

a random evaluation of it is singular can be made arbitrarily small. We �rst consider the

probability that a random integer vector is a root of a polynomial.

Theorem 6.5 (Zippel). If p(x1; : : : ; xm) is a nonzero polynomial, the degree of xi in

p is at most d for all i 2 f1; : : : ; mg, and ai are selected with uniform probability from

f1; : : : ;Mg, then the probability that p(a1; : : : ; am) = 0 is no more than dm
M
.

Proof. The proof is by induction on the number of variables in the polynomial.

If m = 1, then p = p(a1) is a polynomial of degree at most d, and therefore has at

most d roots. The probability of selecting a1 from f1; : : : ;Mg such that a1 is a root of p

is at most d
M
.

Suppose the probability that (a1; : : :am) is a root of a polynomial withm variables is at

most dm
M

when ai is selected with uniform probability from f1; : : : ;Mg for i 2 f1; : : : ; mg,

and the degree of any variable in the polynomial is at most d. Let p be a polynomial with

m+ 1 variables, each of degree at most d. Then p can be written as

p(x1; x2; : : : ; xm+1) = xd1yd + xd�11 yd�1 + : : :+ x1y1 + y0;

where yi is a polynomial with at most m indeterminates, and each indeterminate in yi
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has degree at most d, for i 2 f0; : : : ; dg.

Suppose p(a1; a2; : : : ; am+1) = 0. Either ~yi = 0 for all i 2 f0; : : : ; dg, or some ~yi 6= 0,

and a1 is a root of f(x) = xd~yd + xd�1~yd�1 + : : :+ x~y1 + ~y0: The probability that ~yi = 0

for all i is bounded above by the probability that ~yi = 0 for some i, which is at most dm
M

by the induction hypothesis. If ~yi 6= 0 for some 1 � i � d, then f(x) has at most d roots,

and the probability that a1 2 f1; : : : ;Mg is a root of f is at most d
M
. Combining the

two cases gives that the probability of selecting a root of p(x1; : : : ; xm1
) when each ai is

selected at random from f1; : : : ;Mg, is at most dm
M

+ d
M

=
d(m+1)

M
, and the theorem is

true by induction.

Theorem 6.5 can be applied to the determinant of a matrix with randomly selected integer

entries.

Corollary 6.6 (Lov�asz). If A = (aij) is a nonsingular matrix with m di�erent indeter-

minate entries, each occurring at most d times in A, and ~aij are selected with uniform

probability from f1; : : : ;Mg, then the probability that eA = (~aij) is singular is no more

than dm
M

.

Random evaluations provide a probabilistic solution to the exact matching problem

in bipartite graphs.

Corollary 6.7 (Lov�asz). Suppose A = (aijt
wij ) is the weighted bipartite Tutte matrix

for the bipartite graph G = (V;E), where G has a perfect matching of weight w. If each

~aij is selected with uniform probability from f1; : : : ;Mg, then the probability that the

coeÆcient of tw in the determinant of fM is zero is no more than
jV j
2M .

Proof. Since the coeÆcient of tw in detA is a polynomial with jV j
2

indeterminates, each

of degree 1, the corollary follows from Theorem 6.5.



Chapter 7

Matroids

In Chapter 2, the three concepts of matrix rank, matrix singularity, and linear indepen-

dence of vectors were shown to be equivalent, and in Chapters 3 and 5, these concepts were

used to prove the existence of certain structures in graphs. Matroids are an abstraction

of rank, singularity, and linear independence, and are discussed here.

7.1 De�nitions and examples

Matroid theory began in the 1930's with Whitney [32], and was expanded by Tutte [30]

and by Edmonds [9]. A matroid can be de�ned by a �nite set S and a set of axioms,

together with either subsets of S or a function de�ned on subsets of S. We give three

de�nitions for a matroid.

The Independence Axioms

Let S be a �nite set, and let I � 2S . The pair (S; I) is a matroid if it satis�es the

following independence axioms :

(I1) The null set is in I.

(I2) Every subset of a set in I is also in I.

62
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(I3) For any subset X of S, the maximal subsets of X that are in I have the same

cardinality.

The set S is called the ground set of the matroid. If X 2 I, then X is independent, oth-

erwise X is dependent. A circuit is a minimal dependent set, and a maximal independent

set is a base. From axiom (I2), only the bases are needed when listing the independent

elements of a matroid.

The Base Axioms

The base axioms restrict the matroid (S; I) to (S;B) where B = fX 2 I : X is a baseg.

The pair (S;B) is a matroid if the following hold:

(B1) B is nonempty.

(B2) If B1; B2 2 B and x 2 B1, then there exists y 2 B2 such that (B1nx) [ fyg 2 B.

Axiom (B2) is called the exchange axiom for matroids.

Both the independence and base axioms de�ne a matroid by giving restrictions on a

family of subsets of a �nite set S. Alternatively, a matroid can be given by the set S and

a function de�ned on 2S . One such function is the rank function r, where r : 2S !Z
+.

The Rank Axioms

If S is a �nite set and r : 2S ! Z
+, then (S; r) is a matroid if, for all X; Y � S, the

following rank axioms are satis�ed:

(R1) r(X) � jX j.

(R2) If X � Y , then r(X) � r(Y ).

(R3) Submodular inequality: r(X) + r(Y ) � r(X \ Y ) + r(X [ Y ).

The independence, base, and rank axioms are not an exhaustive set of matroid def-

initions. Other axioms use either di�erent subsets of S than those described here, or a
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di�erent function or operator on 2S . See Fujishige [11] or von Randow [31] for further

axiomatic de�nitions of matroids.

The di�erent axiom sets are equivalent; for every matroid (S; I) satisfying the inde-

pendence axioms, there are corresponding pairs (S;B) and (S; r) satisfying the base and

rank axioms respectively. For a proof of the equivalence of these axioms, together with

the span and circuit axioms, see von Randow [31].

The following examples are from Cook et al. [10], Fujishige [11], Recski [26], Truem-

per [28], and von Randow [31].

Partition Matroids

Let � = X1; :::; Xk be a partition of the �nite set S, and let d1; : : : ; dk be nonnegative

integers. Consider (S; I), where I = fI 2 S : jI \Xij � di for all i = 1; : : : ; kg. Clearly

(I1) is satis�ed, and if X � Y then (X \ Xi) � (Y \ Xi) and (I2) is satis�ed. Assume

X � S, and let Y 2 I be a maximal subset of X . Since jY j =
Pk

i=1 jY \Xij, and jY j is

maximal, jY \Xij = minfdi; jX\Xijg. Therefore the size of Y depends only onX;� , and

di, and (I3) is satis�ed. Thus (S; I) satis�es the independence axioms, and is a partition

matroid.

Forest Matroids

For a graph G = (V;E), de�ne I to be all edge sets of forests in G. That is,

I = fF � E : F does not contain a circuitg:

Then (E; I) satis�es the three independence axioms for a matroid, and is called the forest

matroid. Similarly, if G = (V;E) is connected and B is the set of spanning trees of G,

then (E;B) satis�es the base axioms.
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Linear Matroids

For a matrix M with rows indexed by X and columns indexed by Y , let

I = fY 0 � Y :M [X ; Y 0] has full column rankg:

Consider (Y; I). Since the empty set is independent, (Y; I) satis�es (I1). Any subset of

independent columns is independent so (I2) is satis�ed. Axiom (I3) is also satis�ed; if

A � Y , then a maximal independent set of columns from A has size equal to the rank of

M [X ;A]. Therefore (Y; I) is a matroid, called a linear matroid.

For Y 0 � Y , de�ne r(Y 0) to be the rank of M [X ; Y 0]. Axioms (R1) and (R2) hold

for (Y; r), by properties of linear algebra, and Theorem 2.2 showed that submodularity

holds. Therefore the linear matroid also satis�es the rank axioms.

Two examples of linear matroids are thematching matroid and the branching matroid.

If G = (V;E) is a graph, let

I = fW � V : there is a matching in G which covers W g:

Consider (V; I). Axiom (I1) is satis�ed, and if there is a matchingM that coversW � V ,

thenM also covers any subset ofW , hence (I2) is satis�ed. If T is the V �V Tutte matrix

for G, then by Theorem 3.1, there is a matching covering W � V if and only if T [U ] is

nonsingular for some U � W . Let X � V . If W 2 I is a maximal subset of X , then

jW j = rank T [V ;X ], which is independent of W . Therefore (I3) is satis�ed and (V; I)

is a matroid. (For a proof which uses augmenting paths to show that (I3) is satis�ed,

see Cook et al. [10].) The branching matroid for a directed graph graph G = (V;A) is

de�ned by

I = fW � V : there is a branching in G which covers Wg:
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With similar arguments to those for the matching matroid, it can be shown that (V; I)

satis�es the independence axioms for a matroid.

7.2 Matroid duals

If M = (S; I) is a matroid then the dual of M is M� = (S; I�), where

I� = fX 2 S : X � Y for some base Y 2 Ig:

Equivalently, M� = (S;B�), where

B� = fB : B is a base for Mg:

Theorem 7.1. The dual of a matroid is a matroid.

A proof of Theorem 7.1 is given in Cook et al. [10]. Note that I�� = I and therefore

if M is a matroid, M�� =M .

If M = (S; I) is a matroid, then X 2 S is coindependent if X is independent in M�.

This terminology is generalized; if Y is a matroidal term with respect to the matroid M ,

then it is referred to as co-Y with respect to the dualM�. For example, X is a cocircuit in

M if it is a circuit in M�, and the complement of a base in M is a cobase (Fujishige [11].)

We construct the dual of the linear matroid de�ned by the independence axioms on

the columns of the matrixM . First, fM is formed by Gaussian elimination on the rows of

M . Since we are only interested in independent columns, and column dependencies are

not a�ected by Gaussian elimination on rows, fM can be used in place of M . A zero row

does not a�ect column dependencies, so this row is dropped, leaving the matrix M.
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M =

�
1 0 0 1 1
0 2 0 2 0
0 0 1 1 1
1 2 1 3 2

�
; fM =

�
1 0 0 1 1
0 1 0 1 0
0 0 1 1 1
0 0 0 0 0

�
; M =

�
1 0 0 1 1
0 1 0 1 0
0 0 1 1 1

�
: (7.1)

Note that the �rst three columns ofM are a base of the column space ofM. To construct

M�, columns 4 and 5 are transposed, and the identity matrix is appended:

M� =

0
B@1 1 1 1 0

1 0 1 0 1

1
CA : (7.2)

Columns 4 and 5 are a base of M�.

SupposeM is a matrix representation of a linear matroid with ground set Y . If X � Y

is a base of M , then by Gaussian elimination on the rows, the columns X can be made

into the identity matrix (dropping zero rows if necessary.) Permute columns and relabel

the rows to form M, and construct M� as in (7.2) of the example:

M =

�X X

X I C

�
; M� =

� X X

X C> I

�
:

We show that M� is the dual of M . Consider the column sets Z1 and Z2 of M, where

Z1 � X , Z2 � X, and jZ1j+ jZ2j = jX j. By the construction of M,

detM[X ;Z1 [ Z2] = detM[Z1;Z2]

= detC[Z1;Z2]

= detC>[Z2;Z1]

= detM�[X;Xn(Z1 [ Z2)]:

(7.3)

From (7.3), Z1 [ Z2 is a base of M if and only if Xn(Z1 [ Z2) is a base of M�, and
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therefore M� is the dual of M .

7.3 Matroid intersection and partition

Suppose M1 = (S; I1) and M2 = (S; I2) are matroids on the same ground set S, with

rank functions r1 and r2 respectively. The matroid intersection problem is to determine

if there exists B � S such that B is a base in both M1 and M2. Suppose X � S and

J 2 I1 \ I2. Then

jJ j = jJ \X j+ jJ \ (X)j � r1(X) + r2(X);

and therefore the minimum of r1(X) + r2(X) over all X � S is an upper bound on the

size of any set that is independent in both M1 and M2. This upper bound is met with

equality.

Theorem 7.2 (Edmonds). If M1 = (S; I1) and M2 = (S; I2) are matroids with rank

functions r1 and r2, then

maxfjJ j : J 2 I1 \ I2g = minfr1(X) + r2(X) : X 2 Sg

An algorithm of Edmonds solves the matroid intersection problem.

The matroid partition problem is to �nd a partition S1; S2 of the ground set S such

that S1 is a base of M1 = (S; I1) and S2 is a base of M2 = (S; I2). Suppose that J1 � S

and J2 � S are disjoint, and that J1 2 I1 and J2 2 I2. If X � S and we let J = J1 [ J2,
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then the following holds:

jJ j = jJnX j+ jJ \X j

� jSnX j+ jJ1 \X j+ jJ2 \X j

� jXj+ r1(X) + r2(X):

This upper bound is met with equality.

Theorem 7.3 (Edmonds). If M1 = (S; I1) and M2 = (S; I2) are matroids with rank

functions r1 and r2, then

maxfjJ1 [ J2j : J1 2 I1 and J2 2 I2)g = minfr1(X) + r2(X) + jXj : X 2 Sg

The intersection and partition problems are equivalent, as is shown in Recski [26].

Theorem 7.4. The base pair (B1; B2) solves the partition problem for the matroids M1

and M2 if and only if (B1; B2) solves the matroid intersection problem for M1 and M�
2 .

Proof. Assume B1 is a base for the matroid M1 and B2 is a base for M2, and assume

M1 and M2 have the same ground set S. Suppose (B1; B2) solves the matroid partition

problem for M1 and M2. Then B1 [ B2 = S and B1 \ B2 = ;, and therefore B2 = B1.

Since B2 is a base for the dual of M2, (B1; B2) solves the matroid intersection problem

for M1 and M�
2 . Similarly, if B1 is a solution to the matroid intersection problem for

M1 and M�
2 , then B2 = B1 is a basis for M2, and the pair (B1; B2) solves the matroid

partition problem for M1 and M2.

The intersection and partition problems can be generalized for more than two ma-

troids. Applications of the intersection and partition problem are given in the next

section.
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7.4 Matroid formulations

The three problems of �nding a maximum matching in an undirected bipartite graph,

a maximum branching in a directed graph, and a maximum matching forest in a mixed

graph, all of which were formulated as matrix rank problems in Chapter 3, can be for-

mulated as either matroid intersection or matroid partition problems.

7.4.1 Bipartite matchings

Let G = (V;E) be a bipartite graph, with bipartition V = V1 [ V2. For each i 2

f1; : : : ; jV1jg, de�ne Ei � E to be the set of edges incident with vertex vi. Then �1 =

E1; : : : ; EjV1j is a partition of E. (See Figure 7.1.)

1 2 3

E1

E2

E3

Figure 7.1: the edge partition �1

Let M1 be the partition matroid with ground set E, partition �1, and intersection

sizes di = 1 for all i. (Cook et al. [10].) De�ne the partition matroid M2 similarly, with

respect to V2. Suppose F � E is independent in both M1 and M2. Then every v 2 V is

incident with at most one edge in F , and therefore F is a matching in G, and a solution to

the matroid intersection problem for M1 and M2 solves the maximum matching problem

in G.
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7.4.2 Arborescences

Let G = (V; ~E) be a connected, directed graph. We describe matroids M1 and M2 such

that a set that is independent in bothM1 andM2 corresponds to a branching in G. (Cook

et al. [10].)

Let M1 = ( ~E;F) be the forest matroid (Section 7.1) for the underlying undirected

graph for G. For each v 2 V , let Xv = fa 2 ~E : v is the head of ag: A partition of

~E is then given by � = fXv : v 2 V g. Let M2 = ( ~E; I) be the partition matroid with

respect to �, with dv = 1 for all v 2 V . The bold edges in the graph in Figure 7.2 are

an example of an independent set in M2. The common intersection sets for M1 and M2

a
b

f

c

e

d

Figure 7.2: An independent set in M2

are branchings of G, and a solution to the intersection problem for M1 and M2 is an

arborescence in G.

7.4.3 Matching forests

For amixed graphG = (V;E;A), letM1 be the matching matroid for the undirected graph

G1 = (V;E) and let M2 be the branching matroid for the directed graph G2 = (V;A).

(The matching matroid and the branching matroid are described in Section 7.1.) If
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I1 � V is independent in M1, I2 � V is independent in M2, and I1 and I2 are disjoint,

then there is a matchingM covering I1 and a branching F covering I2 such that the union

of M and F is a matching forest that covers I1 [ I2. Therefore, if I1 [ I2 is a partition

of V , then there is a matching forest in G that covers the vertices I1 with edges and the

vertices I2 with arcs, and a solution to the matroid partition problem for M1 and M2

solves the maximum matching forest problem.

We remark that an algorithm for �nding a bipartite matching, branching, or matching

forest by the given matroid formulations requires an oracle for testing the rank in matroids

M1 and M2.

7.4.4 Solving the intersection problem by rank completion

The maximum bipartite matching, maximum branching, and maximum matching forest

problems can be solved by a maximum rank completion of the bipartite Tutte matrix,

the branching matrix, or the matching forest matrix. For linear matroids, the matroid

intersection problem can also be considered as an optimal evaluation problem.

Suppose M1 and M2 are linear matroids on the matrices A1 and A2 respectively, and

assume A1 is n1 �m and A2 is n2 �m. From section 7.2, we can assume n1 is the rank

of M1, and n2 is the rank of M2. Construct the (n1 +m)� (n2 +m) matrices A and Z,

where

A =

0 A1

A>2 0
; and Z =

0 0

0

z1

. . .

zm

: (7.4)

We will show that the rank of A+Z is determined by the size of the largest set of columns

independent in both A1 and A2, and therefore show that the matroid intersection problem
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can be solved by �nding an optimal evaluation of A + Z (Murota [24]).

Theorem 7.5. Let M1 and M2 be representable matroids with matrices A1 and A2 re-

spectively, and suppose M1 and M2 have the same ground set V . If A and Z are the

matrices from equation 7.4, then

maxfjJ j : J 2 I1 \ I2g = rank (A+ Z)� jV j:

Proof. Suppose the columns J � V are independent in both A1 and A2, and assume

jJ j = l. There is a set of rows, R1, in A1 and a set of rows, R2, in A2 such that both

A1[R1; J ] and A2[R2; J ] are nonsingular. Let fA1 = A1[R1;V ] and fA2 = A2[R2;V ], and

relabel R1 and R2 as R. Consider the matrix eA + eZ, where

eA =

R V

R 0 fA1

V fA2

>

0

; and eZ =

R V

R 0 0

V 0

z1

. . .

zm

: (7.5)

Applying Theorem 2.8 to eA + eZ, and using that a nonsingular submatrix of eZ must be

a principal submatrix of eZ [V ], we get
det( eA+ eZ) = X

X�V

det eZ[X ] det eA[(R [ V )nX ]: (7.6)

When X � V , (R [ V )nX = R [ (V nX), and eA[R [ (V nX)] is nonsingular only if
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jV nX j = l, or equivalently, jX j = m� l. Equation 7.6 can then be rewritten as

det( eA+ eZ) = X
X�V

jXj=m�l

det eZ[X ] det eA[R [ (V nX)]: (7.7)

WhenX1; X2 � V are distinct, the determinant of eZ [X1] and the determinant of eZ[X2] are

distinct, and there is no cancellation of terms in (7.7). By the assumption that J � V was

a common independent set, eA[R[J ] is nonsingular and the term det eZ [V nJ ] det eA[R[J ]
is nonzero. Therefore, from (7.7), the rank of A+ Z is at least m+ l.

To �nish the proof, we note that we can choose a nonsingular submatrix A+ Z with

size equal to the rank of (A+ Z) by starting with the independent rows V in A+ Z and

extending to a row base V [ R1, and extending the independent columns V in A + Z

to a column base V [ R2. Letting eA = A[V [ R1;V [ R2] and eZ = Z[V [ R1;V [ R2],

the matrix sum eA + eZ is nonsingular, and using equation (7.7), there exists a common

independent set of columns J in A1 and A2, where jJ j = rank (A+ Z)�m.
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