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Abstract

Double-diffusion refers to a class of instabilities that develops when the density of a
fluid depends on two components with different diffusivities. For example, when warm,
salty water is layered over cool, fresh water, there is relatively rapid diffusive transfer of
heat from the upper layer to the lower layer, while there is negligible diffusive transfer of
salt. This loss of heat results in localized parcels of fluid of increased density above the
thermohaline interface, which sink out in the form of long, thin, convective cells called
salt fingers. In parts of the ocean, salt fingers are known to be an important mechanism
of heat and salt transport. However, they range from a few millimetres to centimetres
wide, and are much smaller in scale than many oceanographic processes. The fine scale
of these structures can also make their direct measurement in the environment using typ-
ical devices difficult. This thesis employs high-resolution direct numerical simulation for
detailed examination of fine-scale double-diffusive features. An advantage of numerical
simulation is the straightforward computation of quantities that cannot be measured di-
rectly through experiment, such as dissipation, stirring, and mixing. Two distinct types
of flow are investigated. First, simulations of salt fingering gravity currents are examined,
and the effect of different vertical boundary conditions and current volumes are analyzed.
Second, a three-layer system resulting in double-diffusive Rayleigh-Taylor (RT) instabil-
ities that transitions to double-diffusive turbulence in the absence of shear is presented.
The flows are governed by the incompressible Navier-Stokes equations under the Boussi-
nesq approximation, with salinity and temperature coupled to the equations of motion
using a nonlinear approximation to the UNESCO equation of state. Flow dynamics are
characterized using high-quality three-dimensional visualization techniques. In the grav-
ity current simulations, it was observed that no-slip boundaries cause the current head to
take the standard lobe-and-cleft shape, and encourage both a greater degree and an earlier
onset of three-dimensionalization when compared to free-slip boundary cases. Addition-
ally, numerical simulations with no-slip boundary conditions experience greater viscous
dissipation, stirring, and mixing when compared to similar configurations using free-slip
conditions. The Rayleigh-Taylor instabilities were observed to dominate the length scales
of kinetic energy, while the length scales associated with the density field were dominated
by double-diffusion. This was confirmed through spectral analysis, which also showed
similarity between the dominant salinity and density scales. The standard eddy viscosity
formulation was determined to be inappropriate for the salinity and temperature fluxes of
this simulation. Due to the effects of double-diffusion, densities greater than the initial
maximum value were observed in the RT instability simulations.
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Chapter 1

Introduction

1.1 Double-Diffusion and Salt Fingers

Double-diffusion refers to a type of instability that is driven by a difference in active
tracer diffusivities. As a result, the fluid may be stably-stratified in density, but unstably-
stratified in one of its constituent tracers. A difference in tracer diffusivities can result in
local density anomalies. For example, when salinity, the less diffusive tracer, and density
are stably-stratified, but temperature, the more diffusive tracer, is unstably stratified (i.e.,
lighter, cool, fresh water above heavier, warm, salty water), if a small parcel of fluid from
the lower layer is slightly perturbed upwards, it will lose heat to the fresh layer, while
retaining its salinity. This causes the parcel to increase in density and sink back towards
its initial state, resulting in an oscillation. This type of instability is often referred to
as an oscillatory instability, or diffusive convection. In the opposite configuration, when
a layer of lighter, hot, salty water rests over top of a layer of heavier, cool, fresh water,
heat from the upper layer diffuses into the lower layer much more quickly than salt. As
parcels of fluid just above the interface decrease in temperature, they increase in density,
resulting in locally unstable density gradients. This causes the heavier, salty parcels to
sink, forming long, thin convective cells called salt fingers. These fingers experience an
additional lateral loss of heat to the fresh water, further increasing their density. This
process is illustrated in Fig. 1.1. In the laboratory, salt fingers tend to be only millimetres
wide, and are significantly longer in the vertical direction, with bulbs forming at their
tips that spread into wider mushroom-like shapes, as shown in photographs presented in
Fig. 1.2. These fingers were created by slowly pouring hot, salty water tagged with blue
dye along a plastic dowel onto the surface of cool, fresh water to limit the lateral motion
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Figure 1.1: Diagram of (a) the initial stages of perturbation to the thermohaline interface
and (b) the development of salt fingers at a later time. The arrows indicate the direction
of heat and salt flux.

of the hot water and the number of fingers formed.

Double-diffusion was first reported by Jevons [37], who attempted to explain the mecha-
nism behind the formation of cirrus clouds by creating finger instabilities using a heat-sugar
system. Using a long-stemmed funnel, he introduced a layer of room temperature water
below a layer of heated sugar water in a beaker, and observed the formation of “minute,
thread–like streams.” Though he briefly appears to elucidate the role of the difference in
heat and sugar diffusivities as the mechanism behind the formation of these streams, he
later asserts that the only function of the temperature difference is to allow the layering of
heavier fluid over light when the two layers reach the same temperature, thereby missing
the true nature of the mechanism behind double-diffusion. The historical context and an
analysis of Jevons’s discovery was provided by Schmitt [85], as well as an examination of
the influence it had on subsequent work by Lord Rayleigh.

Double-diffusion is known to be an important mechanism governing heat and tracer
transport for a number of different systems. Circulation and water masses in the ocean
are thought to be strongly influenced by double-diffusion [83, 74]. Double-diffusion also
appears in a variety of chemistry applications, such as thermosolutal convection for crystal
growth [40] or at the interface between two dissolved reactants [117]. In astrophysics, there
is a double-diffusive process involving heat and helium in stars known as semi-convection
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Figure 1.2: Photograph of (a) the early stages of salt fingers and (b) the same fingers,
seconds later. Hot, salty water (in blue) is slowly introduced to the surface of the cool,
fresh water by pouring it along a plastic rod.

[72].

1.2 Double-Diffusion in Nature

Observations of double-diffusive processes have been recorded throughout a number of
regions of the Earth’s oceans. Salt fingering has been observed at the Mediterranean
Outflow [114, 115], in the Tyrrhenian Sea [115], in the Caribbean Sea [115], and in the
Central Waters of the Eastern North Pacific [21]. Evidence suggests that salt fingers are
responsible for the observed thermohaline stratification in the Central Waters, where the
sun heats the surface of the water, causing both an increase in temperature and an increase
in salinity due to evaporation [35, 86, 84].

Oceanic salinity and temperature profiles are often observed to decrease with depth
in a step-like fashion. Numerous instances of these “thermohaline staircases” have been
reported, such as in the Mediterranean outflow in the northeast Atlantic [98, 17], in the
Canadian Basin in the Arctic Ocean [102], and in the tropical North Atlantic east of Bar-
bados [87]. Staircase profiles are typically indicative of regions of salt fingering [87, 54].
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Several mechanisms have been proposed for staircase formation [58]. Laboratory exper-
iments [96] and numerical simulations [71] have shown that when smooth thermohaline
profiles can result in fingering, this can give way to step-like profiles. It has been observed,
however, that the steps in the temperature profiles may not be isothermal, but may in
fact consist of long horizontal regions of temperature inversions made stable by the salinity
stratification [54, 53]. These features are referred to as thermohaline intrusions, which typ-
ically develop when the vertical thermohaline distribution is favourable to the formation
of salt fingers, but there are also lateral gradients of heat and salinity [95, 106, 75]. In
alternating intrusions of warm, salty water and cool, fresh water, the interfaces display
tendencies towards salt fingering or diffusive convection depending on the stratification at
the interface [106]. A method of thermohaline staircase formation due to the evolution of
thermohaline intrusions was proposed by Merryfield [58].

Double-diffusive properties have also been observed in various lakes. Thermohaline
staircases have been detected in Lake Nyos [81], Lake Kivu [82], and Lake Vanda [29].
Meromictic lakes (i.e., lakes with layers that do not intermix) often display conditions
favourable to diffusive convection [109]. The destabilizing temperature profile responsible
for diffusive convection is often due to geothermal heating [34, 80].

The relatively low diffusivity of suspended particles presents the possibility of double-
diffusive instabilities when involved in a system with heat or salt. Though quantitatively
different, there are strong qualitative similarities between thermohaline double-diffusive
flows and flows involving suspended sediment and another tracer. Houk and Green [31]
present early experiments of suspension fingers, where a layer of warm, turbid water overlies
cold, clear water. A later paper by Green [23] examined experiments of sediment fingering
from a warm, turbid surface gravity current above cool, clear water. In nature, double-
diffusive sedimentation may manifest as rivers eject sediment-laden (or turbid) fresh water
into the clear, salty ocean [66, 67]. This double-diffusion has been proposed as a mechanism
responsible for enhanced sedimentation near river mouths [13].

1.3 Double-Diffusion in Laboratory Experiments

As with many field investigations, measurements of double-diffusion in nature can often
be cost-prohibitive and labor-intensive. Laboratory experiments have played an important
role in elucidating various mechanisms involving double-diffusion. Turner is responsible
for early experiments of two-layer heat-salt systems resulting in diffusive convection [103]
and salt fingers [104]. A possible mechanism for the formation of thermohaline staircases
due to salt fingering from linear vertical thermohaline gradients was proposed based on

4



experiments by Stern and Turner [96]. Experiments by Linden [50] were responsible for
discovering the organization of salt fingers into sheet-like structures arranged in the di-
rection of imposed shear. Other experimental studies have examined various phenomena,
including intrusions [106, 78, 73], salt fingers under the influence of shear [112, 19], and
measuring various buoyancy fluxes and eddy diffusivity parameterizations [57, 111, 110],
among others.

For comparison of different flows, the relationships between the kinematic viscosity ν,
the diffusivity of heat κT , and the diffusivity of salinity κs are parameterized by three
dimensionless numbers: the Prandtl number, Pr = ν/κT , the Schmidt number, Sc = ν/κs,
and the diffusivity ratio, τ = κs/κT . In the ocean, these parameters typically take values
of Pr = 7, Sc = 700, and τ = 0.01. An advantage of laboratory experiments over numerical
simulations is that they can achieve these physical diffusive scales without much difficulty.
However, the use of heat-salt systems can be complicated by the loss of heat through
uninsulated boundaries. As a result, salt-sugar systems are commonly used as substitutes
[55, 96, 121, 78]. In salt-sugar systems, the dimensionless values are typically reported
as Pr = 1000, Sc = 3000, and τ = 1/3 [65], with the higher diffusivity tracer (salt)
taking the place of heat. Stability analysis shows that for any two tracers with different
diffusivities, if the higher diffusivity tracer is stably-stratified, and the lower diffusivity
tracer is unstably-stratified, a fingering instability may form [105]. For example, to create
sugar fingers, one would arrange stable density and salinity distributions, and an unstable
sugar distribution. Though past results displayed qualitative similarities between salt-
sugar and heat-salt double-diffusive experiments, there is a quantitative dependence on
the values of the diffusivities [55].

1.4 Numerical Simulations of Double-Diffusion

Direct numerical simulation (DNS) allows for a more detailed analysis of flows that is
not afforded by laboratory experiments. Laboratory tank experiments can be difficult
to analyze visually, due to the typical limitation of viewing the tank from the outside.
DNS can allow for detailed examination of interior flow features. Additionally, measured
values of variables are not limited to the location and number of available measuring
devices, and instead are distributed throughout the domain at each grid point. Numerical
simulation also affords a greater degree of control on experimental parameters and initial
conditions. However, certain concessions must be made depending on the scale and primary
concerns of the simulations. Small-scale features require sufficiently fine grid spacings to
ensure adequate resolution, which necessitates a large number of grid points. The resulting
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Reference Phenomenon Simulated Pr Sc τ
Piacsek and Toomre [69] salt fingers layer of hot, salty over cool fresh water 6.8 680 1/100

Piacsek et al. [70] two- and three-layer systems to simulate intrusions NR NR NR
Shen and Veronis [88] salt fingers layer of hot, salty over cool fresh water NR NR 1/80

Özgökmen et al. [65] fingering with initially linear stratification 100 3000 1/30

Özgökmen and Esenkov [64] fingering in two-layer system with nonlinear equation of state 7 700 1/100
Radko [71] layer formation due to fingering in initially linear stratification 7 21 1/3

Konopliv and Meiburg [45] lock-exchange double-diffusive gravity currents 1 1− 8 1/8− 1

Table 1.1: Prandtl number, Schmidt number, and diffusivity ratio used in past two-
dimensional numerical studies of double-diffusion. NR indicates that the values were not
reported.

computational requirements limit the size of the domain that can be simulated and still
capture these features. Larger computational domains may accurately capture the size of
limnological or oceanographic domains of interest, however, the resulting resolution will not
adequately capture subgrid-scale features, requiring these phenomena to be parameterized
in some way. As such, it can be difficult to scale double-diffusive instabilities to larger
domains. Since the length scale of salt fingers is set by molecular diffusion, salt fingers
do not increase in size as the scale of the flow increases. Therefore, simulation of salt
fingers on larger domains requires either a large number of grid points, which may not be
computationally feasible, or some type of subgrid-scale parameterization.

The small length scales associated with double-diffusion are part of the reason for the
difficulty involved in simulating double-diffusive instabilities. Simulation is also compli-
cated by the need to resolve the different diffusive length scales of the tracers. Because
the diffusivity of salinity is so small (typically on the order of 10−9 m2/s [18]), it can
result in sharp interfaces that require a high number of grid points to be adequately re-
solved. In earlier numerical studies of double-diffusive instabilities, this typically meant
limiting simulations to two-dimensions [69, 70, 88, 65, 64, 71]. Table 1.1 lists several two-
dimensional numerical simulations of double-diffusive flows, and the corresponding Prandtl
numbers, Schmidt numbers, and diffusivity ratios. However, with advances in computa-
tional power, salt fingers and other double-diffusive processes have been the subject of
several high-resolution three-dimensional simulations in recent years (a summary of recent
three-dimensional double-diffusive simulations is presented in Table 1.2). One approach
to reduce the resulting memory constraints has been to use a finer grid for the salinity
field than for the temperature and velocity fields [43, 11, 93, 92]. While three-dimensional
simulations are currently typically capable of resolving physical thermal diffusion scales,
as shown in Table 1.2, it is still difficult to resolve physical saline diffusivity scales using
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Reference Phenomenon Simulated Pr Sc τ
Smyth et al. [93] double-diffusive Kelvin-Helmholtz billows 7 50 0.14

Kimura and Smyth [43] shear-induced salt sheets 7 43.75− 700 0.01− 0.16
Carpenter et al. [11] double-diffusive interface 6.25 18.94− 625 0.01− 0.33
Kimura et al. [44] double-diffusive shear layer (leading to salt sheets) 7 175 0.04

Smyth and Kimura [92] double-diffusive shear layer (leading to Kelvin-Helmholtz billows) 7 175 0.04
Konopliv and Meiburg [45] lock-exchange double-diffusive gravity currents NR NR 1/8− 1

Table 1.2: Prandtl number, Schmidt number, and diffusivity ratio used in past three-
dimensional numerical studies of double-diffusion. NR indicates that the values were not
reported.

current computational resources. As a result, many DNS still use Schmidt numbers smaller
than the reported value of the ocean. Though salt-sugar systems may facilitate laboratory
experiments, the resultant diffusive scales are too small to accurately resolve numerically
with current computational resources. Consequently, comparison between many laboratory
experiments and numerical simulations will be primarily qualitative.

1.5 Objective and Outline

This thesis endeavors to examine fine-scale double-diffusive flows at high resolution using
direct numerical simulation. Adequate resolution of the small-scale features and sharp dif-
fusive interfaces requires a relatively large number of grid points. Due to current restraints
on computational power, this necessitates the use of small computational domains. While
other references [43, 11] present results that, due to simulation design, may be more readily
applicable to oceanographic or limnological studies, the domains of the simulations pre-
sented here are on the scale of laboratory tanks. Since the scales of these flows are not
much larger than the scales of the resulting instabilities, direct scaling to larger environ-
mental currents would not be possible. Hence, the results presented here may be more
readily applicable to experimental or small-scale industrial applications.

The focus of this research is the development of double-diffusive instabilities in two
different types of flows initiated by buoyancy effects. The first set of simulations examines
surface double-diffusive gravity currents resulting from density differences due to lateral
salt and temperature gradients. The currents indirectly result in shear along the thermo-
haline interfaces. The second set of simulations examines primarily vertical flows due to
unstable density gradients resulting in double-diffusive Rayleigh-Taylor instabilities. The
remainder of this thesis is organized as follows: Chapter 2 details the numerical methods
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used for simulations, as well as the mathematical techniques used in flow analysis. Chap-
ter 3 discusses several simulations of double-diffusive gravity currents, and analyzes the
effect of current volume and boundary conditions on flow structure. Chapter 4 examines
a high resolution direct numerical simulation of double-diffusive Rayleigh-Taylor instabil-
ities in order to characterize double-diffusive turbulence in the absence of imposed shear.
In Chapter 5, the main results of the paper are summarized, and possible future work,
including preliminary results of one concrete direction, is discussed.
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Chapter 2

Methodology and Analysis
Techniques

In this chapter, the equations of motion that govern the flows described in subsequent
chapters are defined, and the DNS code used is briefly described. Relevant results of
stability analysis are presented, and some of the techniques used for flow analysis and
visualization are outlined.

2.1 Governing Equations and Numerical Methods

2.1.1 Governing Equations

The flows discussed here are governed by the incompressible Navier-Stokes equations sub-
ject to the Boussinesq approximation. The momentum equations are given by

∂u

∂t
+ u ·∇u = − 1

ρ0

∇p− g ρ
ρ0

δi3 + ν∇2u, (2.1)

while conservation of mass is expressed as

∇ · u = 0, (2.2)

where u = (u, v, w) is the velocity in the x-, y-, and z-directions, respectively, p is the
pressure, g = 9.81 m/s2 is the gravitational acceleration constant, ρ0 = 1000 kg/m3 is the
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reference value for density, and ν = 2 × 10−6 m2/s is the kinematic viscosity, which is
assumed constant for these simulations. δi3 is the Kronecker delta, which indicates in this
case that buoyancy acts only in the vertical direction. The density ρ is defined by the
nonlinear approximation to the UNESCO equation of state in terms of temperature T (in
◦C) and salinity s (in practical salinity units, or psu), as determined by Brydon et al. [8],

ρ (T, s)− ρ0 = c1 + c2T + c3s+ c4T
2 + c5sT + c6T

3 + c7sT
2, (2.3)

the coefficients of which are presented in Table 2.1. Equation (2.3) couples the Navier-
Stokes equations to the equations of conservation for temperature and salinity,

∂T

∂t
+ u ·∇T = κT∇2T, (2.4)

and
∂s

∂t
+ u ·∇s = κs∇2s, (2.5)

where κT is the thermal diffusion coefficient, and κs = 2×10−8 m2/s is the salinity diffusion
coefficient, which are set to 3.4× 10−7 m2/s and κs = 2× 10−8 m2/s, respectively.

2.1.2 Numerical Methods

Simulations were computed using the Spectral Parallel Incompressible Navier-Stokes Solver
(SPINS) model [97], which performs DNS of the incompressible Navier-Stokes equations.
Pseudospectral methods are used to calculate spatial derivatives, while time-stepping is
done using a variable step third-order Adams-Bashforth method. Sine/cosine transforms
and the Chebyshev method are used to calculate spatial derivatives in directions with free-
slip and no-slip boundaries, respectively. The fastest growing mode of instability is excited
by adding a small perturbation of white noise to the temperature field.

c1 −9.20601× 10−2 kg/m3

c2 5.10768× 10−2 ◦C−1 kg/m3

c3 8.05999× 10−1 psu−1 kg/m3

c4 −7.40849× 10−3 ◦C−2 kg/m3

c5 −3.01036× 10−3 ◦C−1psu−1 kg/m3

c6 3.32267× 10−5 ◦C−3 kg/m3

c7 3.21931× 10−5 ◦C−2psu−1 kg/m3

Table 2.1: Coefficients of the nonlinear equation of state (2.3).
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2.1.3 Linearization of the Equation of State

It is common practice in many simulations of double-diffusion (e.g.,[93, 43, 11]) to use an
equation of state that is linear in both temperature and salinity,

ρ = ρ0 (1− α(T − T0) + β(s− s0)) , (2.6)

with reference values of density, temperature, and salinity of ρ0, T0, and s0. α and β are
the coefficients of thermal expansion and haline contraction, respectively, defined as

α = −1

ρ

∂ρ

∂T
, (2.7)

and

β =
1

ρ

∂ρ

∂s
. (2.8)

For equation (2.3), this gives

α = −1

ρ
(c2 + 2c4T + c5s+ 3c6T

2 + 2c7sT ), (2.9)

and

β =
1

ρ
(c3 + c5T + c7T

2). (2.10)

Equation (2.6) is equivalent to expanding a general equation for ρ as a Taylor series about
some reference temperature and salinity (T0, s0),

ρ(T, s) = ρ(T0, s0) +
[
ρT (T0, s0)(T − T0) + ρs(T0, s0)(s− s0)

]
+

1

2

[
ρTT (T0, s0)(T − T0)2 + 2ρTs(T0, s0)(T − T0)(s− s0) + ρss(T0, s0)(s− s0)2

]
+ . . . ,

(2.11)

and truncating at the first-order terms,

ρ
(T0,s0)
lin (T, s) = ρ(T0, s0) + ρT (T0, s0)(T − T0) + ρs(T0, s0)(s− s0). (2.12)

Though the linear equation of state is convenient for comparison with results of linear
stability analysis, the formulation does have some issues regarding temperature. First, den-
sity does not decrease monotonically with temperature. In fact, the density of fresh liquid
water is a maximum at 3.98◦C [24]. As ice melts at 0◦C, it gains enough thermal energy to
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begin breaking the hydrogen bonds that are responsible for the molecular separation that
causes solid water to be less dense than liquid water. The breaking of the hydrogen bonds
allows for closer packing in its liquid form above 0◦C, which increases the density until
its maximum at 3.98◦C. Above this temperature, the thermal motion dominates, causing
greater separation of the water molecules, and thus lowering the density with tempera-
ture. Linear equations of state are incapable of representing the non-monotonicity and the
density maximum. Second, Özgökmen and Esenkov [64] determined that for an equation
of state that is quadratic in temperature and linear in salinity, the nonlinearity of the
temperature term causes a greater buoyancy force to be applied to the downward-moving
fingers when compared to the upward-moving fingers. This results in the faster growth of
the descending fingers. It was also observed that while a linear equation of state causes
symmetric development of upward and downward-moving fingers, increasing the strength
of the nonlinearity coefficient decreases the width of the descending fingers relative to the
ascending fingers.

In the thermohaline regime examined of the simulations presented here (15◦C ≤ T ≤
40◦C, 0 ≤ s ≤ 5 psu), the density maximum is not a concern. However, a linear equa-
tion of state would inaccurately reflect the effect of temperature. The behaviour of the
linearization varies significantly depending on the state around which ρ is linearized. For
example, in these simulations, the initial stratifications along which salt fingering occurs
are expressed by hyperbolic tangent functions, resulting in a two-layer system,

T (x, t = 0) = T0 +
∆T

2

(
1 + tanh

(
z0 − z

∆z

))
, (2.13)

s (x, t = 0) =
∆s

2

(
1 + tanh

(
z0 − z

∆z

))
, (2.14)

where z0 sets the stratification midpoint, and ∆z is the half-width of the pycnocline. T0,
∆T , and ∆s are chosen so that there is an upper layer of hot, salty water (40◦C, 5 psu),
and a lower layer of cool, fresh water (15◦C, 0 psu), with densities of 995.91 kg/m3 and
999.12 kg/m3, respectively. Along the stratification midpoint, (T0, s0) = (27.5◦C, 2.5 psu),
giving a density of 998.27 kg/m3. Linearizing around the cool, fresh state, the midpoint
state, and the hot, salty state yields

ρ
(15◦C,0 psu)
lin (T, s) = (999.12− 0.15◦C−1(T − 15◦C)

+ 0.77 psu−1s) kg/m3, (2.15)
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Density / kg/m3

Equation (15◦C, 0 psu) (27.5◦C, 2.5 psu) (40◦C, 5 psu) α / ◦C−1 β / psu−1

(2.3) 999.12 998.27 995.91

ρ
(15◦C,0 psu)
lin 999.12 999.18 999.24 1.5× 10−4 7.7× 10−4

ρ
(27.5◦C,2.5 psu)
lin 999.95 998.27 996.59 2.8× 10−4 7.5× 10−4

ρ
(40◦C,5 psu)
lin 1001.83 998.87 995.91 3.8× 10−4 7.4× 10−4

Table 2.2: Estimates of density at different values of temperature and salinity using the
nonlinear equation (2.3), and three linear approximations (2.15), (2.16), and (2.17), with
associated coefficients of thermal expansion and haline contraction.

ρ
(27.5◦C,2.5 psu)
lin (T, s) = (998.27− 0.28◦C−1(T − 27.5◦C)

+ 0.75 psu−1(s− 2.5 psu)) kg/m3, (2.16)

and

ρ
(40◦C,5 psu)
lin (T, s) = (995.91− 0.38◦C−1(T − 40◦C)

+ 0.74 psu−1(s− 5 psu)) kg/m3. (2.17)

The densities at each state given by each of the linearizations, and the corresponding ther-
mal expansion and haline contraction coefficients are presented in Table 2.2. Although
the haline contraction coefficient is similar for all three states, when linearized around the
hot, salty state, the thermal expansion coefficient is about 2.5 times greater than when lin-
earized about the cool, fresh state, and about 1.4 times greater than when linearized about
the interfacial state. Equation (2.15) (equation (2.17)) overestimates the density of the hot,

salty state ρ
(15◦C,0 psu)
lin (40◦C, 5 psu) = 999.24 kg/m3 (cool, state ρ

(40◦C,5 psu)
lin (15◦C, 0 psu) =

1001.83 kg/m3), compared to the value obtained by equation (2.3) of ρ (40◦C, 5 psu) =
995.91 kg/m3 (ρ (15◦C, 0 psu) = 999.12 kg/m3). Additionally, the density difference be-
tween the hot, salty state and the cool, fresh state, which equation (2.3) gives as 3.21 kg/m3,
is misrepresented by both linearizations. Equation (2.15) underestimates the density dif-
ference as 0.12 kg/m3, while (2.17) overestimates it as 5.92 kg/m3, which are 3.8% and
184.5% of the actual difference, respectively. This indicates that though a linear equation
of state may be a reasonable approximation near the state about which it is linearized, the
density approximation away from that state has the potential to be fairly inaccurate.
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2.1.4 Dimensionless Parameters and Stability Analysis

Double-diffusive flows can be described using a number of dimensionless parameters. As
mentioned in Chapter 1, the Prandtl number

Pr =
ν

κT
, (2.18)

and the Schmidt number
Sc =

ν

κs
, (2.19)

relate the diffusivities of heat and salinity to the kinematic viscosity. The relative strengths
of the diffusivities are related to one another through the diffusivity ratio,

τ =
κs
κT
. (2.20)

In the ocean, typical values for each of these parameters are Pr = 7, Sc = 700, and τ = 10−2,
while in salt-sugar systems, Pr = 1000, Sc = 3000, and τ = 1/3. In the double-diffusive
simulations presented in this thesis, Pr = 5.88, Sc = 100, and τ = 5.88 × 10−2. Both the
Prandtl and Schmidt numbers examined here are lower than the typical oceanic values,
while the diffusivity ratio is greater than the typical oceanic value. The use of values lower
than those in the ocean is due to the high number of grid points required to resolve the
resulting diffusive interfaces, and the computational constraints that result from modelling
such a large grid. For comparison purposes, a list of dimensionless parameters used in past
3D numerical studies can be found in Table 1.2. Prandtl numbers were typically chosen
in those simulations to reflect the value in the ocean, though the value used by Carpenter
et al. [11] was chosen to reflect the value measured in Lake Kivu. While Kimura and Smyth
[43] and Carpenter et al. [11] were able to use a physical value of τ , it was set to be greater
than 10−2 in the majority of simulations.

Salt Finger Growth Rate

In linear stability analysis, the buoyancy ratio is defined as

Rρ =
αTz
βsz

. (2.21)

Applying both (2.9) and (2.10) to equation (2.21) gives a nonlinear buoyancy ratio of

Rρ =
−(c2 + 2c4T + c5s+ 3c6T

2 + 2c7sT )Tz
(c3 + c4T 2 + c5T + c7T 2)sz

. (2.22)
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Huppert and Manins [33] determined that in order for salt fingers to develop along a
thermohaline interface, the inequality

Rρ <
1

τ 3/2
(2.23)

must be satisfied. This inequality can also be limited from below as 1 < Rρ < τ−3/2,
since Rρ < 1 implies that based on the linear equation of state (2.6), the fluid is initially
unstably-stratified

∂ρ

∂z
= −αTz + βsz = (1−Rρ) βsz =

(
1

Rρ

− 1

)
αTz > 0, (2.24)

provided either sz > 0 or Tz > 0, both of which are necessary conditions for salt fingers.
Kunze [47] estimated the wavelength of the fastest-growing salt fingers as

λSF = 2π

(
νκT

gβsz (Rρ − 1)

) 1
4

, (2.25)

with a corresponding initial growth rate of

σSF =
1

2

√
(κT −Rρκs) gβsz

ν

(√
Rρ −

√
Rρ − 1

)
, (2.26)

where sz is the initial linear salinity gradient. Using the definition of the thermal expansion
coefficient (2.7) and the haline contraction coefficient (2.8), equation (2.26) can be written
as

σSF =
1

2

√(
κT

∂ρ
∂s
βsz + κs

∂ρ
∂T
Tz
)
g

ρν

(√
Rρ −

√
Rρ − 1

)
. (2.27)

Standard linear stability analysis of the equations governing salt fingers assumes that the
initial heat and salt distributions are linear

T (x, t = 0) = T0 +
∆T

H
z, (2.28)

s (x, t = 0) = s0 +
∆s

H
z, (2.29)

where H gives the height of the domain, implying that Tz = ∆T/H and sz = ∆s/H.
Though the initial temperature and salinity stratifications (equations (2.13) and (2.14))
are not linear over the vertical domain in this simulation, the hyperbolic tangent functions
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are nearly linear about z = z0, where salt fingers are expected to develop. In this region,
the stratifications can be approximated as

TLin (z) = T0 +
∆T

2
+

∆T

2∆z
(z − z0) , (2.30)

and

sLin (z) = s0 +
∆s

2
+

∆s

2∆z
(z − z0) , (2.31)

which implies that, near z = z0,

∂TLin

∂z
(z) =

∆T

2∆z
, (2.32)

∂sLin

∂z
(z) =

∆s

2∆z
. (2.33)

The wavelength of the fastest-growing fingers and the associated initial growth rate can be
estimated by evaluating Rρ at (T (z0) , s (z0)) =

(
T0 + ∆T

2
, s0 + ∆s

2

)
, and approximating Tz

and sz with equations (2.32) and (2.33). Using these estimates, Rρ can be simplified to

Rρ =
−(c2 + 2c4T + c5s+ 3c6T

2 + 2c7sT )∆T

(c3 + c5T + c7T 2)∆s
. (2.34)

Evaluating at the midpoint of the salt fingering pycnoclines presented in this thesis,
(T0, s0) = (27.5◦C, 2.5 psu), and using the temperature and salinity changes across the
layers of ∆T = 25◦C and ∆s = 5 psu, gives a density ratio of Rρ = 1.9. This satisfies the
inequality condition for salt fingers, since τ−3/2 = 70.

Growth Rate of Rayleigh-Taylor Instabilities

The Atwood number,

A =
ρH − ρL
ρH + ρL

, (2.35)

is a measure of the density difference between layers of stratified flows, where ρH is the
density of the heavy fluid, and ρL is the density of the light fluid. In a typical configuration
resulting in Rayleigh-Taylor instabilities, ρH would be the density of the upper fluid, ρL
would be the density of the lower fluid. Rising and falling Rayleigh-Taylor instabilities are
referred to as bubbles and spikes, respectively. For smaller values of the Atwood number
(A � 1), for which the Boussinesq approximation is valid, the penetration (that is, the

16



height (depth) that the bubbles (spikes) rise (fall) from the original pycnocline) should
be nearly equal for the bubbles and spikes [3]. For larger values of the Atwood number
(A . 1), the penetration of the bubbles is much lower than the penetration of the spikes.
According to Youngs [122], the most unstable wavelength for Rayleigh-Taylor instabilities
under the effects of viscosity can be approximated as

λRT ≈ 4π

(
ν2

gA

) 1
3

, (2.36)

and a corresponding growth rate of

σRT =

(
πgA

λRT

) 1
2

. (2.37)

2.2 Dissipation, Stirring, and Mixing

An advantage of numerical simulation is that it is straightforward to compute diagnostic
values and geometric patterns of quantities like dissipation, stirring, and mixing, variables
that cannot be directly measured through experiment. The rate of viscous dissipation of
an incompressible fluid is defined as

φ = 2νρ0eijeij, (2.38)

where eij = 1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
is the rate of strain tensor for an incompressible fluid. It is a

measure of the irreversible conversion of mechanical energy to heat (or internal energy)
due to viscosity. Though the terms stirring and mixing are often used interchangeably
in casual conversation, their technical definitions are more distinct. Stirring refers to the
reversible mechanical process which increases the variability of a tracer by increasing the
surface area between regions of high and low tracer concentration, increasing the gradient
along these interfaces. Mixing is the process that irreversibly decreases variability due to
molecular diffusion. A metric of the total variability of a scalar tracer field θ can be defined
[15, 79] as

C ≡ 1

2

∫∫∫
V

∇θ ·∇θ dx dy dz. (2.39)

If the tracer flow is governed by a conservation equation in the form of (2.4) and (2.5), the
rate of change of the total variability can be computed as

dC

dt
=

∫∫∫
V

(u ·∇θ)∇2θ − κ
(
∇2θ

)2
dx dy dz, (2.40)
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where κ is the diffusivity of the tracer. The first and second terms on the right-hand side of
this relationship give measures of the stirring and mixing, respectively. The stirring term
can have either sign, while the mixing term is always negative, as variability is decreased
by mixing. Positive stirring can also lead to an indirect increase in the mixing, since it
increases the spatial variability of the tracer. This will lead to an overall decrease in total
variability.

2.3 Fourier Analysis

For a general function f (x), where x is the position in physical space, the Fourier transform
is given by

f̂ (k) =

∞∫
−∞

f (x) e−ikxdx, (2.41)

where f̂ (k) is the Fourier transform of f , and k is the wave number, equal to 2π/λx, where
λx is the corresponding physical wavelength. In this manuscript, the Fourier transform of
a variable will be indicated by a hat. To convert from Fourier space back into physical
space, the inverse Fourier transform is defined as

f (x) =
1

2π

∞∫
−∞

f̂ (k) eikxdx. (2.42)

Since the Fourier transform is complex in general, it is customary to examine its magnitude,∣∣∣f̂ ∣∣∣, which provides the strength of each wave number’s (or wavelength’s) contribution

to the physical variable. For example, consider a simple sine curve with period 2π, as

presented in Fig. 2.1(a). The Fourier spectrum,
∣∣∣f̂ ∣∣∣, given in Fig. 2.1(c), indicates that

the component wave number of this function is k = 1. For a function that is the sum of
multiple sines and cosines, such as in Fig. 2.1(b), the spectrum Fig. 2.1(d) indicates the
contributions from both of its component wave numbers, 2 and 3.

The Fourier transform can also be extended to two dimensions. For physical variables
x and z, the Fourier transform becomes

f̂ (k,m) =

∞∫
−∞

∞∫
−∞

f (x, y) e−ikxe−imzdxdz, (2.43)
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Figure 2.1: Line plots of (a) f (x) = sin (x) and (b) g (x) = sin (2x) + cos (3x), with
Fourier spectra in (c) and (d), respectively.

19



with corresponding inverse Fourier transform,

f (x, z) =
1

(2π)2

∞∫
−∞

∞∫
−∞

f̂ (k,m) eikxeimzdkdm, (2.44)

where k and m are the wave numbers corresponding to x and z, respectively. In this thesis
for a given three-dimensional position vector x = (x, y, z), the corresponding wave number
vector is written as k = (k, l,m). Two-dimensional Fourier transforms produce signals that
indicate the strength of the component wave numbers, with some directional information
included. For example, Fig. 2.2(a) shows a contour plot of the function f (x, z) = sin (4x),
which oscillates only in the x-direction with wave number k = 4 and period π/2. The

resulting two-dimensional spectrum in Fig. 2.2(c) (presented as a contour plot of log10

∣∣∣f̂ ∣∣∣),
shows peaks at k = (4, 0) and k = (−4, 0), indicating only horizontal variation in the data.
Fig. 2.2(b) shows a contour plot of the function g (x, z) = sin (2x+ 2z), which is a sine curve
that oscillates diagonally across the xz-plane. Its spectrum (Fig. 2.2(d)), indicates peaks
at k = (2, 2) and k = (−2,−2), representing the diagonal structure in the positive x- and
z-directions (or equivalently, the negative x- and z-directions). Since Fourier transforms
treat the data as if it exists on an infinite domain with an infinite number of copies of
the data extending in both directions, the functions and domain presented in Fig. 2.2 were
chosen so that a replication of the data in both directions would be continuous and smooth.

In the event that two-dimensional data does not smoothly transition at the boundaries
when replicated, a feature arises in the spectrum known as the edge effect. This results in
exaggerated signals at the lowest wave number corresponding to the length of the domain
which can pollute the spectra. For example, consider a slice of a three-dimensional density
field after the flow has become well-developed, with no-flux boundary conditions on all
sides, as presented in Fig. 2.3(a). This is a slice of the density field from the double-
diffusive Rayleigh-Taylor simulation analyzed in Chapter 4. The field shows clearly distinct
features at opposite sides of the domain, and as a result the corresponding two-dimensional
spectrum in Fig. 2.3(b) shows exaggerated contributions from smaller wave numbers along
the vertical and horizontal wave number axes.

One approach to curtail this behaviour is to apply a windowing function to the data,
which tapers the data toward zero at the boundaries. A second approach is to extend
the data with reflected copies at each of the boundaries, and take the transform of a
field that is four times the size of the original. The reflected extension ensures the data
is periodic in both directions, with a horizontal and vertical periods of twice the initial
horizontal and vertical lengths. This second approach is relatively straightforward in the
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Figure 2.2: Contour plots of (a) f (x, z) = sin (4x) and (b) g (x, z) = sin (2x+ 2z),
with the base 10 logarithm of the corresponding two-dimensional spectra in (c) and (d),
respectively.

21



Figure 2.3: (a) Density contour plot and (b) the resulting 2D spectrum.

current investigation, since the boundary conditions of the flow variables dictate the type
of extension that should be used.

Numerically, the code treats variables with Neumann boundary conditions (such as
the tracers or velocities parallel to the boundary in the case of free-slip conditions) using
cosine expansions, which implies an even extension at each of the boundaries. For fields
with Dirichlet boundary conditions (e.g., free-slip conditions where the direction of the
velocity is normal to the boundary, u · n̂ = 0), SPINS uses sine expansions, implying an
odd extension at the boundary. The former amounts to a reflection of the data field across
the appropriate boundary, while the latter is the negative of the reflection.

Returning to the density field in Fig. 2.3(a), even extensions can be applied to the
field in both directions, giving the extended field presented in Fig. 2.4(a). The resulting
spectrum is presented in Fig. 2.4(b). The contamination at lower wave numbers is not
present in this spectrum, however, there is a loss of directional information because the
extended density field is symmetric in horizontal and vertical direction, giving a spectrum
that is symmetric across both axes. This is not a significant concern for this research, since
the primary interest is to estimate the dominant length scales of the different variables.
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Figure 2.4: (a) Density contour plot with evenly extended copies and (b) the resulting
2D spectrum.

2.4 Flow Visualization

One of the primary benefits of numerical simulation is that it allows detailed analysis
of physical flow features through the use of visualization software that is not afforded
by laboratory experiments. The challenge is then to be able create visualizations that
capture important details of the flow without overwhelming the reader with extraneous
or overrepresented features. Throughout this thesis, VisIt, an open source visualization
software [12], was used to create most three-dimensional figures. In this section, a brief
overview of some the features of VisIt is provided, with a focus on software manipulation
for efficient production of high-quality publication-ready images. It is written to serve as an
informal guide for future students in the Environmental and Geophysical Fluid Dynamics
Group, with a focus on creating volume plots. Further details can be found in the VisIt
User’s Manual [1].

The Expression Window

The Expression Window allows for the simple arithmetic combination of multiple data
fields for plotting purposes without the need for external calculation of additional fields,
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Figure 2.5: The Expression Window, with equation of state (2.3) defined for computation
of the density field inside VisIt when the temperature and salinity fields are opened.

and expresses them as different types of mesh variables, including scalars (e.g., density)
and vectors (e.g., velocity). For example, Fig. 2.5 presents the definition of density as
determined by equation (2.3) saved in the Expression Window. When the temperature, t,
and salinity, s, fields are opened as active sources, VisIt makes the density field available for
plotting, without the need for an externally stored file. This saves on the overall memory
needed to store simulation data.

2.4.1 Creating Volume Plots

An important feature of any visualization software is the ability to manipulate images
in real time in order to view features from different orientations. Unfortunately, as the
object becomes more complicated, for example, by increasing the degree of transparency,
manipulation may take longer due to the additional computational power required to render
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the object. Therefore, an operation that should occur smoothly and instantaneously, such
as rotation, can instead become staggered and take significantly longer. It is advised that
orientation of the graphical object is best done early in processing, for example, prior to
increasing the transparency or changing to a more complex rendering method.

The Transfer Function

Volume plots are drawn using a “volume transfer function,” which applies both colour and
opacity values to a given value of the data. The transfer function can be defined under
the “1D Transfer Function” tab of the Volume Plot Attribute window. Under this tab,
the colour and the opacity of the transfer function can be defined. The “Color Table”
option contains a number of default options for the colour map. The extrema of the colour
map, are set by default to the minimum and maximum of the data, and can be changed
manually. Above the colour table are a number of arrows (colour control points) which can
be used to reorder the colour map. The Opacity section sets the opacity of the data values,
and can be defined in two ways. The first is Freeform, where by dragging the cursor over
the opacity table while pressing the left mouse key allows freehand drawing of the opacity
function. The second is Gaussian, where a number of editable Gaussian functions can be
applied to the table. Additionally, the opacity spectrum displays the proportion of the data
that would be displayed by a given colour using black bars. The taller the bar, the more
of the volume plot would be filled by that colour. These bars can be used to determine the
best way to determine the opacity function. For example, consider the density field of a
double-diffusive Rayleigh-Taylor instability (from Chapter 4) presented in the visualization
window in Fig. 2.6. The opacity spectrum shows that most of the plot contains either low
density fluid in red, or high density fluid in blue. Using the default linear opacity function
obscures the action above the upper pycnocline as low densities bubbles rise upwards into
the high density fluid. To better show the action above the upper pycnocline, Fig. 2.7 uses
a freehand opacity function to tag the regions of low and high densities regions with highly
transparent red and blue, while the regions around the pycnoclines are made opaque. As a
result, there is still an indication of the regions of high and low density fluid that dominate
the domain, while also displaying the action above and below the upper pycnocline.

Rendering Methods

VisIt offers several different rendering options for volume plots. By default, it uses the
“Splatting” method, where the transfer function defines the colours and opacities of a set
of textured polygons that are plotted over a resampled mesh of the data. Though this
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Figure 2.6: Volume plots of density using ray casting and a linear opacity function.

rendering method is quick, if too few points are used in the resampled mesh, the resulting
image can be fuzzy and poorly represent the data. This is shown in Fig. 2.8(a), which uses
the default settings of the Splatting method to create the volume plot. The “Ray Casting”
method, which is used to create the volume plots presented in this thesis, takes longer to
render using the default settings than Splatting, but with improved results. Instead of
sampling the data on a new mesh, Ray Casting samples the data at various points along a
ray traced from the computer screen through the data. The opacities and colours at each
of these sampled points are then combined to determine the colour of the pixel displayed
on the screen [1].

As a note, VisIt can only display a single volume plot at a time. In order to plot
multiple variables at once (e.g., density and dissipation), a different plotting method, such
as isosurfaces, would need to be used [1].

2.4.2 Python Scripting

In addition to using its GUI for graphical manipulation, VisIt can use Python scripting
to create plots through its command line interface (CLI). The CLI is found under the
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Figure 2.7: Volume plots of density using ray casting and a hand-drawn opacity function.
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Figure 2.8: Volume plots of the same density field using VisIt’s default settings for (a)
splatting and (b) ray casting.
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Controls tab in the menu bar. Though creating plots directly from a Python script does
not offer the convenience of direct graphical manipulation, VisIt gives the option to record
any manipulations in a Python script so the plot can easily be recreated later. After
manipulating the plot to achieve the desired visualization, annotations, colours, etc., the
sequence of commands

f=open(‘‘script.py’’,‘‘wt’’)

WriteScript(f)

f.close()

should be run in the CLI, as per the VisIt Python Manual [113]. This opens a file called
script.py to which the script will be written, then the WriteScript function records
every manual change made in the VisIt window to that file. It can be then run later in the
CLI using the command

Source(‘‘script.py’’).

In practice, WriteScript may sometimes ignore certain commands and transformations,
so repeated runs may be necessary to create different scripts with the desired commands.
The desired attributes can then all be collected in a single script.
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Chapter 3

Double-Diffusive Gravity Currents

Results from this chapter were initially published in

J. Penney and M. Stastna. Direct numerical simulation of double-diffusive gravity
currents. Physics of Fluids, 28:086602, 2016.

3.1 Gravity Currents

Gravity currents are a well-documented naturally occurring and industrial phenomenon
that develops because of a density gradient between interacting masses of fluids. In-depth
overviews can be found in Simpson [90] and Simpson [91]. When two masses of fluids of
different density distributed laterally come into contact, the heavier fluid will flow under-
neath the lighter fluid in order to create a stable density stratification, with the motion
of the flow being primarily horizontal. Two primary factors may be the cause of this gra-
dient: differences in temperature or differences in the amount of dissolved or suspended
material. In the event that the density gradient is dependent on both of these properties,
double-diffusive instabilities may develop.

Gravity current geometry is largely dependent on fluid properties and nearby boundary
conditions. Inviscid theory analysis [108, 5] has been used to predict gravity current heads
with shapes similar to the one presented in Fig. 3.1(a). When a gravity current flows
along a solid no-slip boundary, a characteristic spanwise “lobe-and-cleft” instability is
produced in the head, and a thin boundary layer tends to form, as in Fig. 3.1(b). Simpson
[89] observed this instability along a no-slip bottom boundary in laboratory experiments,
and was able to suppress it by moving the boundary with the gravity current speed to
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(a) Inviscid (b) No-slip

Figure 3.1: (a) The shape of a gravity current head predicted using inviscid theory, and
(b) the typical shape of gravity current heads observed along no-slip boundaries.

reduce the effects of viscosity, similar to the flow predicted by inviscid theory [5]. Härtel
et al. [28] presented the first direct numerical simulation (DNS) characterizing the lobe-
and-cleft structure in gravity currents arising from a lock-exchange configuration. The
mechanism leading to the lobe-and-cleft instability was further examined through linear
stability analysis in the companion paper [27], in which the authors determined that it is an
effect of the combination of an unstable density stratification and the hyperbolic velocity
profile near the stagnation point and nose of the current head.

For gravity currents that can give way to salt fingers, the shear along the current is
likely to affect finger development. The presence of shear in regions of the ocean where
double-diffusion may be important has led to a number of studies of salt fingering in the
presence of shear. An early set of important experiments was performed by Linden [50],
which examines salt fingers in a steady shear flow using both two-layer heat-salt and salt-
sugar systems. The key result of this paper was the first observation of “salt sheets.” It
was observed that in the absence of shear, salt fingers developed as normal, though the
length of heat-salt fingers were comparable to the tank depth, while the salt-sugar fingers
were much shorter. However, the fingers aligned parallel to the direction of flow as shear
was applied. As shear was increased, the streamwise variability of the fingers decreased
until they formed two-dimensional sheets. It was noted that “[a]t no stage was it possible
to inhibit the formation of these longitudinal sheets by the shear.” In recent years, double-
diffusive systems in the presence of shear have been the subject of several 3D DNS papers,
particularly systems resulting in salt sheets [43, 44] and Kelvin-Helmholtz billows [93, 92].

The numerical simulations presented in this chapter are designed to simulate dam-break
or lock-exchange flows that can be easily implemented in laboratory experiments. Fig. 3.2
presents the results of such an experimental setup, where a layer of lighter, warm, salty
water (on the right, in blue) is separated from denser, cool, fresh water in the rest of the tank
by an acrylic divider. The divider is slowly removed to reduce instabilities, allowing the
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Figure 3.2: Photograph of a double-diffusive gravity current, with warm, salty water in
blue moving leftward.

salty water to form a surface gravity current above the fresh water and flow leftward. This
is analogous to, though obviously much smaller in scale than, two different cases of riverine
outflow. The first is when cold fresh water is discharged from the mouth of a river into
warmer salt water. The second is when sediment-laden water flows into denser, cool brine
[67], although the details of the physics may differ due to the insoluble nature of sediment
and the addition of settling velocities to the equations of motion. Sedimenting gravity
currents have been the subject of a number of experimental [23, 56, 67] and numerical
[10, 61, 62] studies. Despite a number of similarities between sedimenting and double-
diffusive gravity currents (as observed by Maxworthy [56]), there has been less discussion
of double-diffusive currents in scientific literature. Past studies have been primarily limited
to laboratory experiments, such as heated saline jets along the surface of water [101], surface
double-diffusive gravity currents [55], and lock-exchange experiments [121] using sugar-salt
systems. Yoshida and Nagashima [120] provide a review of numerical and experimental
research related to double-diffusive intrusions prior to 2003, and while some older examples
of two-dimensional numerical models of double-diffusive gravity currents or intrusions are
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cited [39, 60], to our knowledge, three-dimensional DNS has remained largely unexamined.
Konopliv and Meiburg [45] presented a 3D simulation of a lock-exchange double-diffusive
gravity current with free-slip conditions along all sides, though that paper was primarily
a parametric study of two-dimensional lock-exchange double-diffusive gravity currents to
examine the effects of varying diffusivity and buoyancy ratios. Overall, they observed a
more rapid loss of heat and salt for strongly double-diffusive flows (lower τ) than for weakly
double-diffusive flows (higher τ). Additionally, they noticed faster fingering in their 3D
simulation than in their 2D simulations.

3.2 Mathematical Formulation

In order to simulate a dam-break situation, the temperature and salinity fields are initially
distributed in the streamwise direction using hyperbolic tangent functions in terms of x,

T (x, t = 0) = T0 +
∆T

2

(
1 + tanh

(
x0 − x

∆x

))
, (3.1)

s (x, t = 0) =
∆s

2

(
1 + tanh

(
x0 − x

∆x

))
, (3.2)

where x0 sets the density distribution midpoint, and ∆x defines the width of the pycnocline.
For these simulations, the cool water temperature is set to T0 = 15 ◦C, the change in
temperature between layers is ∆T = 25 ◦C, and the change in salinity is ∆s = 5 psu. The
stratification width is set by ∆x = 0.5 cm. These values result in an initial layer of hot,
salty water (40,◦C, 5 psu) on the left side of the domain, and cool, fresh water (15,◦C,
0 psu) on the right. Additionally, the initial density of the warm water is 995.91 kg/m3,
while the initial density of the cool water is 999.12 kg/m3, giving a density difference
of 3.21 kg/m3. These stratifications are designed to simulate lock-exchange or dam-break
setups, which are common configurations in laboratory experiments. Along each boundary,
no-flux conditions are assumed for both tracers.

The domain for each of the simulations is Ly = 4 cm wide in the spanwise direction,
Lz = 4 cm high in the vertical direction, and either Lx = 20 cm or 40 cm long in the
streamwise direction (designated SD or LD in the naming convention for short domain or
long domain, respectively). Nx = 2048 grid points are used in the x-direction for the short
domain experiments (4096 in the long domain experiments) resulting in a streamwise grid
spacing of 9.77× 10−3 cm. Ny = 128 grid points are used in the y-direction, for a spanwise
grid spacing of 3.13×10−2 cm. Across the small scale features, this gives 20-100 streamwise
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Experiment x0 Lx × Ly × Lz Nx ×Ny ×Nz Boundary Conditions
SD-LSV-FS 2 cm 20 cm× 4 cm× 4 cm 2048× 128× 192 Free-slip
SD-LSV-NS 2 cm 20 cm× 4 cm× 4 cm 2048× 128× 192 No-slip
LD-LSV-FS 2 cm 40 cm× 4 cm× 4 cm 4096× 128× 192 Free-slip
LD-MSV-FS 5 cm 40 cm× 4 cm× 4 cm 4096× 128× 192 Free-slip
LD-MSV-NS 5 cm 40 cm× 4 cm× 4 cm 4096× 128× 192 No-slip
LD-HSV-FS 10 cm 40 cm× 4 cm× 4 cm 4096× 128× 192 Free-slip

Table 3.1: Case name, stratification midpoint, domain size, grid resolution, and boundary
conditions for the experiments presented in this thesis.

grid points and 6-32 spanwise grid points per salt finger, depending on its size. Nz = 192
grid points are used in the z-direction, which for the no-slip cases gives a maximum vertical
grid spacing of 3.29 × 10−2 cm, and a minimum vertical grid spacing of 2.71 × 10−4 cm.
For the free-slip cases, this gives a grid spacing of 2.08× 10−2 cm. In the case names, NS
denotes no-slip vertical boundary conditions, while FS denotes free-slip vertical boundary
conditions. The midpoint of the stratification, x0, is set to 2 cm, 5 cm, or 10 cm to observe
the effects of different volumes of gravity currents. These are designated LSV, MSV, and
HSV in the naming convention for low salt volume, medium salt volume, and high salt
volume, respectively. The differences in simulation configurations are summarized in Table
3.1.

3.3 Results

3.3.1 General Flow Development

In this section, salinity isosurfaces at various times are presented for each of the numerical
simulations listed in Table 3.1, and the general flow properties of each are described. The
similarities and differences between each of the cases are examined in detail in Sections 3.3.2
and 3.3.4.

SD-LSV-NS, Lx = 20 cm, x0 = 2 cm

Fig. 3.3 presents isosurfaces of salinity for the 20 cm×4 cm×4 cm domain case with no-slip
boundary conditions and a stratification midpoint of x0 = 2 cm (experiment SD-LSV-NS).
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Because the initially warm, salty water is the less dense of the two layers, it moves along the
top of the cool, fresh layer in order to stabilize the density profile. This results in a surface
gravity current that moves in the positive x-direction. As the hot, salty current travels the
length of the channel, it loses heat to the surrounding fluid through diffusion, while mostly
maintaining its salt concentration. The no-slip boundary condition along the top of the
domain causes the current head to develop lobe-and-cleft instabilities (Fig. 3.3(b)). The
growth of initially two-dimensional horizontal salt fingers is instigated by shear along the
bottom of the gravity current (Fig. 3.3(a)). After 12 s, spanwise ripples begin to emerge
along the bottom of the current, indicating the initial growth of the salt sheet instability
that forms parallel to the primary direction of shear, as discussed by Linden [50] and
Kimura and Smyth [43] (see Fig. 3.3(b)). These ripples are the beginning of fully three-
dimensional fingers, both from the horizontal 2D fingers growing from the head and rear
of the current, as well as rows of fingers sinking from the thin trailing layer of salty water
that arises due to the no-slip conditions. As shown in Fig. 3.4, there is also a size disparity
between the fingers that emerge closer to the front of the head and fingers that emerge from
the wake. There are about four of the larger fingers in the spanwise direction in each of the
sets below the head ranging from 0.5 cm to 1 cm wide, and about nine smaller fingers in
each of the trailing sets, all roughly 0.2 cm wide. There appears to be some correspondence
between the size and locations of the larger fingers and the size and locations of the lobes
and clefts in the head, with clefts occurring in line with the separation between each of
the fingers, and with each of the lobes being slightly wider than the finger behind it. Both
sets of fingers eventually begin to slope down and away from the direction in which the
current is travelling. At t = 15 s (Fig. 3.3(c)), the large fingers at the front of the current
form an angle of about 22◦ with the top of the domain. By 21 s, this angle has reduced to
about 18◦.

SD-LSV-FS, Lx = 20 cm, x0 = 2 cm

Fig. 3.5 presents isosurfaces of salinity for the 20 cm × 4 cm × 4 cm domain case with
free-slip boundary conditions and a stratification midpoint of x0 = 2 cm (experiment SD-
LSV-FS). As in the no-slip cases, an initial intrusion of hot, salty water develops above
the cool, fresh water. The current head takes the typical shape predicted by inviscid
theory [5]. Key differences between this case and the no-slip cases are the lack of a cool,
fresh boundary layer between the top boundary and the current, as well as no reduction
in speed of the free-slip current front. A similar low salinity intrusion develops in the
back of the current as a result of cool fresh water moving to occupy the space left by
the warm, salty water. This intrusion experiences some overturning in the wake of the

35



Figure 3.3: Salinity isosurfaces for the short domain simulation with no-slip boundary
conditions (SD-LSV-NS) from t = 9 s to 33 s. The colour bar indicates the salinity in psu.
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Figure 3.4: Magnified views of salinity isosurfaces for the short domain simulation with
no-slip vertical boundary conditions (SD-LSV-NS) at time t = 17 s from the bottom (a)
and at the current head (b).

current, forming a medium salinity filament from which a horizontal two-dimensional finger
eventually emerges (Fig. 3.5(b)). An additional horizontal 2D finger begins to develop from
the bottom of the current in its wake. These fingers begin to slope down and to the left
of the domain, opposite of the direction in which the current is travelling. The leftmost
trailing salt finger displays the first instance of three-dimensionalization occurring around
15 s with the formation of spanwise ripples (Fig. 3.5(d)). These ripples begin to form along
each two-dimensional salt finger that emerges from the current, which eventually causes
separation into fully three-dimensional fingers (Fig. 3.5(e)). After collision with the right-
hand wall, the current maintains enough coherence that it rebounds towards the left side
of the tank and travels above any previously-formed fingers (Fig. 3.5(f)). The downward
motion of the current at the wall encourages heat loss from the salty water, resulting in
a large, two-dimensional, finger-like structure. Additionally, even upon overturning, the
current head remains two-dimensional after it collides with the wall and moves leftward.
Horizontal fingers stretch rightward from the wake of the current and exhibit spanwise
ripples much earlier in their development than the initial fingers (Fig. 3.5(h)). As with
previous fingers, these begin to slope down and away from the direction the current is
travelling.

LD-LSV-FS, Lx = 40 cm, x0 = 2 cm

Figs. 3.6 and 3.7 present isosurfaces of salinity for the 40 cm × 4 cm × 4 cm domain case
with free-slip boundary conditions and a stratification midpoint of x0 = 2 cm (experiment
LD-LSV-FS). This simulation uses an identical initial stratification to case SD-LSV-FS
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Figure 3.5: Salinity isosurfaces for the short domain experiment with free-slip boundary
conditions (SD-LSV-FS) from t = 6 s to 30 s. The colour bar indicates the salinity in psu.
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with a domain that is twice as long. The resulting flow patterns are identical prior to the
encroachment of the short domain case current on the right hand wall around t = 12 s. Both
the short domain and long domain cases begin to three-dimensionalize around the same
time (t = 15 s, Fig. 3.6(c)), with spanwise ripples forming along the same leftmost trailing
finger. As the current moves rightward, a number of two-dimensional, nearly horizontal
fingers emerge from the bottom rear of the current, which all experience spanwise rippling
before separating into fully three-dimensional fingers (Fig. 3.6(e)). In each set, there are
typically 6 separate spanwise fingers. As the trailing fingers three-dimensionalize, the
current head stays two-dimensional, even as it collides with the wall. Since this current
has twice as far to travel as the corresponding short domain case, much more salt is lost
due to fingering before it collides with the right side of the tank. Upon rebounding, the
current has lost enough coherence that it completely breaks apart (Fig. 3.7(k,l)).

LD-MSV-FS, Lx = 40 cm, x0 = 5 cm

Figs. 3.8 and 3.9 present isosurfaces of salinity for the 40 cm×4 cm×4 cm domain case with
free-slip boundary conditions and a stratification midpoint of x0 = 5 cm (experiment LD-
MSV-FS). This current initially develops in the same way as the the other flows, with the
warm, salty layer moving above the cool, fresh layer. The growth of a horizontal medium
salinity finger is instigated by shear along the bottom of the gravity current (Fig. 3.8(a)).
Above this finger, there is an intrusion of fresh water into the wake of the current, above
which a layer of salty water remains. As the current moves to the right, more horizontal
fingers grow from the bottom of the current at the rear (Fig. 3.8(b)). As these fingers begin
to sink and slope down and to the left, they develop spanwise ripples which separate into
6 to 7 three-dimensional fingers per spanwise set (Fig. 3.8(c)). Similarly-sized fingers also
begin to emerge from the salty layer above the freshwater intrusion, except sloping down
and to the right (Fig. 3.8(d)). This is because the salty layer remains mostly stationary,
while the fresh intrusion moves rightward. Around t = 18 s (Fig. 3.8(e)), larger, primarily
spanwise, three-dimensional undulations begin to form near the back of the current. Unlike
the smaller trailing fingers, these undulations grow into larger, fully three-dimensional
fingers without first separating from a single broad two-dimensional finger. The current
head remains two-dimensional during most of the flow, and retains enough coherence that
after rebounding off the wall that it continue travelling leftward, despite losing a significant
amount of salt. Enhanced development of finger-like structures occurs as the current turns
over during its interaction with the wall, and a layer of salt has settled out in the bottom
right corner of the domain.
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Figure 3.6: Salinity isosurfaces for the long domain experiment with a low initial volume
of salty water with free-slip boundary conditions (LD-LSV-FS) from t = 9 s to 24 s. The
colour bar indicates the salinity in psu.
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Figure 3.7: Salinity isosurfaces for the long domain experiment with a low initial volume
of salty water with free-slip boundary conditions (LD-LSV-FS) from t = 27 s to 42 s. The
colour bar indicates the salinity in psu.
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Figure 3.8: Salinity isosurfaces for the long domain experiment with a medium initial
volume of salty water with free-slip boundary conditions (LD-MSV-FS) from t = 9 s to
21 s. The colour bar indicates the salinity in psu.
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Figure 3.9: Salinity isosurfaces for the long domain experiment with a medium initial
volume of salty water with free-slip boundary conditions (LD-MSV-FS) from t = 24 s to
36 s. The colour bar indicates the salinity in psu.
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LD-HSV-FS, Lx = 40 cm, x0 = 10 cm

Figs. 3.10 and 3.11 present isosurfaces of salinity for the 40 cm× 4 cm× 4 cm domain case
with free-slip boundary conditions and a stratification midpoint of x0 = 10 cm (experiment
LD-HSV-FS). This case uses the largest initial mass of salty water of the experiments
presented in this section, resulting in the largest surface gravity current. As a result, the
current remains largely coherent throughout most of the flow, and exhibits significant two-
dimensionality throughout most of the current and towards the head. Again, the head
shape resembles the geometry predicted by inviscid theory. As in the other free-slip cases,
a horizontal finger that has been initialized by shear begins to peel off along the bottom
rear of the current, although the finger takes longer to emerge than in the case LD-MSV-FS
(Fig. 3.10(b)). As this finger slopes down and to the left of the domain, spanwise ripples
develop that cause it to split into 7 fully three-dimensional fingers (Fig. 3.10(c)). There
is also a fresh water intrusion at the back the current that results from cool fresh water
moving to fill the space left by the hot, salty current. As the cool intrusion follows the salty
current, a layer of salty water remains trapped along the top, causing the formation of salt
fingers that slope down and to the right of the domain, in the opposite direction of the
fingers forming off the bottom of the current (Fig. 3.10(d)). By t = 18 s, larger spanwise
undulations have begun to develop near the back of the current, as in LD-MSV-FS. As
in the previous case, these grow into a set of fingers larger than those that emerge from
the initial trailing fingers without developing from an initially two-dimensional instability.
Like the smaller trailing fingers, these larger fingers slope down and to the left. After
rebounding off the wall, the current retains enough coherence that it manages to continue
travelling leftward and reach the left-hand wall. Enough salty water has sunk to the bottom
due to fingering and overturning near the right wall that a thin salty layer accumulates
along the bottom of the domain.

LD-MSV-NS, Lx = 40 cm, x0 = 5 cm

Fig. 3.12 presents isosurfaces of salinity for the 40 cm × 4 cm × 4 cm domain case with
no-slip boundary conditions and a stratification midpoint of x0 = 5 cm (experiment LD-
MSV-NS). As with the short domain no-slip simulation (SD-LSV-NS), this current sees a
two-dimensional finger extend horizontally from the back of the current, as well as some
of the salty fluid stay trapped along the top of the domain due to the no-slip condition
(Fig. 3.12(b)). By t = 12 s, lobe-and-cleft instabilities have started to form, and there
is spanwise rippling along the trailing horizontal finger and the bottom of the current
(Fig. 3.12(c)). By t = 15 s, the rippling along the belly of the current has become quite

44



Figure 3.10: Salinity isosurfaces for the long domain experiment with a high initial volume
of salty water with free-slip boundary conditions (LD-HSV-FS) from t = 9 s to 21 s. The
colour bar indicates the salinity in psu.
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Figure 3.11: Salinity isosurfaces for the long domain experiment with a high initial volume
of salty water with free-slip boundary conditions (LD-HSV-FS) from t = 24 s to 36 s. The
colour bar indicates the salinity in psu.
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pronounced, with two sets of fingers beginning to sink out between x = 11 cm and 18 cm
(Fig. 3.12(d)). Each of these two sets contains about 6 to 7 fingers in the spanwise direction.
After t = 18 s, the organization of the fingers into distinct sets is much less apparent, as
a significant number have emerged between x = 15 cm and 21 cm, though it would still
appear as if 6 of these fingers fit along the spanwise direction (Fig. 3.12(e)). The fingers
emerging from the early 2D horizontal finger and the salty fluid trapped near the top left
are smaller in scale, with about 8 to 10 along the spanwise direction. Near the head, the
lobe-and-cleft instabilities seem to facilitate the growth of finger-like features, though the
shape and size is much more irregular than the belly fingers. As the fingers slope down
and away from the direction in which the current is travelling, they begin to stretch, and
eventually form bulb-like shapes at their tips (Fig. 3.12(g)).

3.3.2 Vertical Boundary Conditions

Salinity profiles near the spanwise midpoint (y = 1.98 cm) are presented for the short
domain free-slip case SD-LSV-FS (middle) and no-slip case SD-LSV-NS (right) in Fig. 3.13.
The major difference between the two double-diffusive simulations is the shape of the
current head. As discussed in Section 3.3.1, the current head in SD-LSV-NS takes on the
classical lobe-and-cleft shape. The shape of the head in SD-LSV-FS, however, resembles the
geometries predicted by inviscid theory [5] and produced by moving boundary experiments
[89, 7]. The tracer profiles intersect the top boundary at right angles in the free-slip case,
with no fresh water layer between the salty current and the upper boundary, or spreading
of the salty current along the length of the channel. The free-slip case experiences more
overturning in the rear of the current. Both double-diffusive cases display initial horizontal
two-dimensional fingering from the back of the current. For comparison purposes, an
additional simulation without double-diffusion (also called single-diffusive, achieved by
setting κT = κs = 3.4× 10−7 m2/s) using the same initial density distribution as the short
domain cases and free-slip vertical boundary conditions, is presented in the left column of
Fig. 3.13. In the single-diffusive case, the early flow is similar to SD-LSV-FS, as the head
takes the same shape, and a similar overturning pattern arises in the back of the current.
However, since the tracer diffusivity scales are equal, the current cannot lose any volume
due to fingering, and stays coherent as it travels the length of the domain. Additionally,
the current stays primarily two-dimensional, with almost imperceptible three-dimensional
effects occurring later in the flow.

The developing current is examined in greater detail at t = 6 s for the free-slip case SD-
LSV-FS in Fig. 3.14, which compares salinity and temperature profiles. The white contour
lines indicate regions of higher density (999 kg/m3) inside the sheet and throughout the

47



Figure 3.12: Salinity isosurfaces for the long domain experiment with a medium initial
volume of salty water with no-slip boundary conditions (LD-MSV-NS) from t = 6 s to 24 s.
The colour bar indicates the salinity in psu.
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Figure 3.13: Two-dimensional salinity profiles near the spanwise midpoint (y = 1.98 cm)
for the short domain numerical simulations. The left column ((a)-(f)) presents a flow with
the same initial and boundary conditions as SD-LSV-FS in the absence of double-diffusive
effects (by setting κT = κs = 3.4 × 10−7 m2/s). The middle column ((g)-(l)) presents the
double-diffusive simulation with free-slip vertical boundary conditions (SD-LSV-FS), and
the right column ((m)-(r)) presents the double-diffusive simulation with no-slip vertical
boundary conditions (SD-LSV-NS). The colour bar indicates the salinity in psu.
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Figure 3.14: Two-dimensional salinity (a) and temperature (b) profiles along y = 1.98 cm
with density isolines for ρ = 999 kg/m3 given in white at t = 6 s.

Figure 3.15: Salinity isosurfaces for the free-slip long domain case LD-LSV-FS after 25 s.
The direction of flow is indicated by the arrow. The colour bar indicates the salinity in
psu.

main mass of cold, fresh water. The relatively high thermal diffusivity causes an increase
in temperature in the wake of the salty current, while the low diffusivity of salt prevents
the salinity field from spreading. This causes a decrease in density in the surrounding fluid,
resulting in the two-dimensional fingers. Over time, the fingers begin to sink and slope down
and away from the direction of travel of the head. With time, the shear-induced salt sheets
emerge as ripples along the two-dimensional fingers in the spanwise direction, eventually
separating into fully three-dimensional fingers. As discussed in Section 3.3.1, larger fingers
begin to develop near the front of the head of the no-slip case. These are absent prior
to collision with the wall in the free-slip cases, with the current head remaining mostly
two-dimensional, as presented by the salinity contours of case LD-LSV-FS in Fig. 3.15.
Three-dimensionalization of the flow begins earlier for the no-slip cases than for the free-
slip cases, and will be examined further in Section 3.3.5. Additional vertical fingers develop
from the thin salty layer formed along the top of the channel by the no-slip conditions,
which are not present in the free-slip case.
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3.3.3 Current Volume

In this section, the effects of varying the initial volume of salty water, and thus the volume
of the current, are examined. Simulation LD-LSV-FS (presented at t = 25 s in Fig. 3.15)
uses an identical density distribution to simulation SD-LSV-FS (discussed in the previous
section) with a domain that is twice as long. The resulting flow patterns are identical prior
to the encroachment of the SD-LSV-FS current on the right-hand wall around t = 12 s.
Since the LD-LSV-FS current has twice as far to travel, it loses much more salt due to
fingering before it collides with the right side of the tank. Unlike the short domain case,
the current in the long domain case has lost enough coherence that upon rebounding from
the wall, it completely breaks apart. The initial volume of salty water is large enough
in cases LD-MSV-FS and LD-HSV-FS, however, that the gravity current maintains much
more of its structure as it travels along the streamwise direction. Salinity profiles of these
cases along y = 1.98 cm are presented in Fig. 3.16. As with the previously-described short
domain simulations, a horizontal two-dimensional salt finger emerges near the back of the
gravity current, although this finger takes longer to develop as the initial volume of salty
water is increased. The bulb of this finger eventually begins to sink, causing it to slope
down and away from the direction in which the current is travelling. As the current moves
to the right, more horizontal fingers emerge from its wake. Above the initial horizontal
finger, there is an intrusion of fresh water into the wake of the current that results from cool,
fresh water moving to fill the space left by the hot, salty water. In cases LD-MSV-FS and
LD-HSV-FS, as the cool intrusion follows the salty current, a layer of salty water remains
trapped along the top. Fingers begin to emerge from this layer that slope down and to the
right of the domain. This is opposite to the direction of sloping of the fingers forming off the
bottom of the current, due to the rightward moving freshwater intrusion inducing shear in
the opposite direction. Both LD-MSV-FS and LD-HSV-FS exhibit a fingering mechanism
not observed in the low current volume simulations. Along the bottom of the currents
around t = 18 s in both cases, three-dimensional undulations emerge that quickly give way
to fully three-dimensional fingers. This is in contrast to the primary mechanism of fingering
observed in the low volume cases, which involves the formation of two-dimensional fingers
that form in the direction of the shear before separating into three-dimensional fingers.
The fingers are also larger than those that develop from the initially 2D fingers. Similar
large fingers develop along the bottom of the current in the no-slip case LD-MSV-NS.

Once the medium and high volume currents collide with the wall, they retain enough
of their volume that they are able to rebound and begin travelling leftward, though both
currents lose a significant amount of salt as they overturn due to enhanced development of
larger finger-like structures. A layer of high salt concentration has settled in the bottom

51



Figure 3.16: Two-dimensional salinity profiles near the spanwise midpoint (y = 1.98 cm)
for cases initialized with medium (LD-MSV-FS, left, (a)-(f)) and high (LD-HSV-FS, right,
(g)-(l)) volumes of salty water. The colour bar indicates the salinity in psu.

right corner of the domain. The degree of fingering has also increased in the wake of the
current as it travels leftward when compared to the rightward travelling current earlier in
the flow.

3.3.4 Current Propagation Speed

In order to analyze the general displacement of the current and its overall propagation
speed, the position of the current front was selected as the rightmost instance of salinity
above a threshold value of 4.95 psu, prior to collision with the wall. Linear regression was
performed on the front position with respect to time, with the resulting slope giving the
approximate streamwise propagation speed of the gravity current. Fig. 3.17(a) presents
the position of each of the fronts, while Fig. 3.17(b) gives the front position relative to the
initial stratification midpoint to better compare displacement between experiments. Free-
slip cases SD-LSV-FS, LD-MSV-FS, and LD-HSV-FS all experience a relatively constant
change in position, giving an approximately constant propagation speed of 1.70±0.02 cm/s.
For cases LD-LSV-FS, SD-LSV-NS, and LD-MSV-NS, the front position as a function of
time is more nonlinear. SD-LSV-FS and LD-LSV-FS, which have the same initial strat-
ification but different domain lengths, have identical flow patterns prior to the collision
of the SD-LSV-FS current with the wall around t = 12 s. The current in LD-LSV-FS
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Figure 3.17: Current front position as a function of time (a), and distance of the current
front from the density distribution midpoint as a function of time (b) for each of the
numerical simulations. The dashed line in (b) has a slope of 1.7 cm/s, for comparison with
the average front speeds of the free-slip cases.
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travels with the same approximate propagation speed as the other free-slip cases until 11 s,
after which the current begins to slow down due to a decrease in salt concentration and
coherence of the current. From about t = 18 s until just before it collides with the wall
around t = 31 s, the LD-LSV-FS current moves at approximately 0.97 cm/s in the stream-
wise direction. The no-slip cases do not maintain a constant velocity, but instead slow
down as they travel the length of the channel. Although there is some overlap in their
displacements initially, the small current case SD-LSV-NS travels slower than the medium
current case LD-MSV-NS. The front position of the single-diffusion comparison case from
Fig. 3.13 was also calculated, showing front positions similar to the other two low volume
cases (and thus, displacements similar to all four double-diffusive free-slip cases), with an
average propagation speed of 1.70 cm/s. This indicates that, at least at early times, the
bulk motion of the free-slip cases is unaffected by fingering.

3.3.5 Three-Dimensionalization, Kinetic Energy, and Dissipation

To characterize the onset time and amount of three-dimensionalization in each simulation,
the spanwise standard deviation of salinity,

σy (x, z, t) =

√
1

Ly

∫ Ly

0

(s− s̄)2 dy, (3.3)

where s̄ is the spanwise mean,

s̄ =
1

Ly

∫ Ly

0

s dy, (3.4)

was computed numerically at each time step, and then integrated over the streamwise and
vertical directions

σTot
y (t) =

∫∫
[0,Lx]×[0,Lz ]

σy dx dz. (3.5)

These time series are presented for each simulation in Fig. 3.18(a). In each panel of this
figure, the x indicates when the current collides with the wall in each case. The time at
which each of the series becomes non-zero indicates when the salinity begins to vary in the
spanwise direction, and therefore, when the flow begins to three-dimensionalize. Both no-
slip cases first begin to exhibit noticeable three-dimensionalization at about the same time
(t ≈ 10 s), although the medium volume current (LD-MSV-NS) case increases faster and
exhibits a greater degree of three-dimensionalization than the small volume current case
(SD-LSV-NS). The free-slip cases take longer to exhibit three-dimensional effects than
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the no-slip cases. Cases LD-MSV-FS and LD-HSV-FS begin to three-dimensionalize at
about the same time (t ≈ 15 s), and see a similar initial rate of growth in total standard
deviation of salinity. Despite colliding with the right-hand wall relatively early at t = 12 s,
it is still some time before any significant 3D effects develop for SD-LSV-FS. Though the
initial growth of total standard deviation of LD-LSV-FS is identical to SD-LSV-FS, the
long domain case does three-dimensionalize before hitting the wall. In general, the total
degree of three-dimensionalization increases with current volume, while the no-slip cases
experience earlier three-dimensionalization at a faster rate and to a greater degree than
their free-slip counterparts.

In order to characterize the streamwise regions of three-dimensionalization, the spanwise
standard deviation integrated in the vertical direction

σTot,z
y (x, t) =

∫ Lz

0

σy dz, (3.6)

is calculated. Fig. 3.19(a) presents the vertical total spanwise standard deviation as a
function of x for the no-slip case SD-LSV-NS at t = 9 s, 12 s, and 15 s, normalized by
the maximum value of the three times. Salinity isosurfaces for this simulation at these
times are presented in Fig. 3.3. The position of the current front for each case as defined in
Section 3.3.4 is given by a black x. For SD-LSV-NS, the amount of three-dimensionalization
is relatively small at t = 9 s, with a sharp peak occurring near the head of the current
at x = 13 cm, and a smaller, broader peak further back in the current at x = 11 cm.
This three-dimensionalization is imperceptible in the isosurfaces presented in Fig. 3.3.
With time, the sharp peak near the current head increases in height as the lobe-and-cleft
instabilities develop. At t = 12 s, the greatest contribution to three-dimensionalization
still occurs near the front, although there is some contribution from the salt sheet ripples
between x = 10 cm and x = 15 cm. By t = 15 s, the strongest three-dimensionalization
corresponds to the fingers that have begun to emerge from the salt sheet ripples from
x = 12 cm to x = 16 cm. The three-dimensionalization at the front has increased from the
previous time, but is now weaker than that of the growing fingers. Fig. 3.19(b) presents
the vertical total spanwise standard deviation for each case at 15 s. At t = 15 s, as also
indicated in Fig. 3.18, the no-slip cases show a greater degree of three-dimensionalization
than the free-slip cases. Additionally, both no-slip simulations exhibit three-dimensional
effects at the head, which are absent in the free-slip cases. LD-MSV-FS experiences some
three-dimensionalization closer to its current front than LD-HSV-FS. This reflects the
volume of each gravity current, since at earlier times the fingers in these cases primarily
develop from the back of the currents, resulting in a greater distance between the front
and the fingers as current volume increases (see Fig. 3.16).
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Figure 3.18: (a) The total spanwise standard deviation (SD) of salinity, (b) the total
kinetic energy (KE), and (c) the total rate of viscous dissipation for the simulations as
labeled in the legend. The time at which each gravity current collides with the wall is
indicated by an x that matches the line colour of each simulation.
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Figure 3.19: The spanwise standard deviation (SD) of salinity integrated vertically as per
equation (3.6), (a) for the no-slip case SD-LSV-NS at t = 9 s, 12 s, and 15 s (normalized by
the maximum value of the three times), and (b) for each case at 15 s (normalized by the
maximum value of all six simulations at t = 15 s). The position of the current front for
each simulation is indicated by a black x.
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The total kinetic energy (KE) per unit mass (henceforth just kinetic energy),

KTot =
1

2

∫∫∫
V

u · u dx dy dz, (3.7)

where V is the volume of the domain [0, Lx]× [0, Ly]× [0, Lz], is presented as a time series
for each simulation in Fig. 3.18(b). The total kinetic energy of each simulation initially
increases at approximately the same rate, to a maximum which corresponds to the time at
which the entire volume of salty water moves over the fresh water, and the density gradient
stabilizes. After that, KTot begins to decrease at a nearly linear rate. Once the free-slip
cases that maintain significant coherence collide with the wall (SD-LSV-FS, LD-MSV-FS,
and LD-HSV-FS), there is a steep decrease in kinetic energy as the current moves toward
the bottom and loses some of its shape. This decrease is not observed for LD-LSV-FS, as
the current has lost most of its volume to fingering prior to colliding with the wall. Only
the LD-HSV-FS simulation maintains enough coherence for the total kinetic energy of the
system to increase after the gravity current rebounds off the wall. In general, the larger
the current, the greater the total kinetic energy. Additionally, the no-slip cases have lower
total kinetic energies than the corresponding free-slip cases due to slowing of the current
by the vertical boundary conditions.

The total rate of viscous dissipation (hereafter, total dissipation) is computed as

φTot = 2νρ0

∫∫∫
V

eijeij dx dy dz, (3.8)

where eij = 1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
is the rate of strain tensor for an incompressible fluid. Fig. 3.18(c)

presents the total dissipation for each simulation as a function of time. The dissipation
begins to increase similarly to the total kinetic energy, reaching an initial maximum in each
case at roughly the same time as the corresponding KE maximum. Both of the no-slip
simulations display greater overall total viscous dissipation than the corresponding free-slip
cases. In general, each simulation sees a decrease in total dissipation, although both low
volume cases see a slightly larger maximum about 4 s after the current initially becomes
stably stratified. Both no-slip cases experience a greater drop than the free-slip cases,
which experience a slight drop before remaining relatively constant. Upon collision with
the right-hand wall, cases SD-LSV-FS and LD-MSV-FS experience small, but rapid, drops
in total dissipation, while LD-HSV-FS experiences a much larger drop. After these initial
drops, SD-LSV-NS and LD-LSV-FS both continue to increase in dissipation after colliding
with the wall. The total dissipation time series of SD-LSV-NS, LD-LSV-FS, LD-MSV-FS,
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Figure 3.20: Viscous dissipation for LD-MSV-NS (left, (a)-(e)) and LD-MSV-FS (right,
(f)-(j)) from t = 1 s to 20 s (top to bottom) along y = 1.98 cm. The colour bar indicates
the viscous dissipation in kg/m s3.

and LD-HSV-FS all display local maxima that correspond fairly well to the maximum
total spanwise standard deviation of salinity. In the case of LD-HSV-FS, it corresponds
to the first local maximum of the standard deviation, not the maximum value at the end
of the simulation. While there is some correlation between the total KE and the total
viscous dissipation, there appears to be no relationship between total kinetic energy and
the spanwise standard deviation of salinity, as each simulation reaches its maximum KTot

well before significant three-dimensionalization takes place. This indicates that the pri-
mary contribution to kinetic energy is due to the formation of the gravity current, and
that, in comparison, relatively little kinetic energy is contributed by the three-dimensional
instabilities.

Fig. 3.20 compares the viscous dissipation for the no-slip case LD-MSV-NS (left) and
free-slip case LD-MSV-FS(right) from t = 1 s to 20 s, along y = 1.98 cm. The no-slip slices
indicate several different regions of high dissipation, while the free-slip slices only show
strong dissipation along the front of the current. The dissipative regions at the front of
the currents are similar in strength for both the no-slip and free-slip cases, while there
is significantly stronger dissipation in the boundary layer above the no-slip current (and
along the bottom of the domain at early times). At t = 15 s, there is a significant region
of dissipation in the upper boundary layer, which may be responsible for the second local
maximum in the total dissipation time series for LD-MSV-NS in Fig. 3.18. Additionally, in
the no-slip case, there is a thin region of strong dissipation along the bottom that travels
with the current and becomes smaller over time, until it is imperceptible at t = 20 s.
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Both cases show regions of relatively weak dissipation that trace outlines of the fingering
instabilities.

Fig. 3.21 presents time series of the total viscous dissipation in three different vertical
regions. The blue line gives the total viscous dissipation near the lower boundary (between
z = 0 cm and 0.25 cm), the black line gives the total viscous dissipation in the interior of
the domain (between z = 0.25 cm and 3.75 cm), and the red line gives the total viscous
dissipation near the upper boundary (between z = 3.75 cm and 4 cm). These three values
are denoted φTot

Low, φTot
Int , and φTot

Up , respectively, and are calculated by first determining the
total dissipation in the horizontal directions,

φTot
H (z, t) =

∫∫
[0,Lx]×[0,Ly ]

φ (x, t) dxdy, (3.9)

then multiplying the horizontal total by a window function defined in terms of z, W∗ (z),
and integrating in the vertical direction

φTot
∗ (t) =

Lz∫
0

W∗ (z)φTot
H (z, t) dz. (3.10)

The three window functions are defined to be 1 in the region of interest, and 0 everywhere
else, with a smooth transition between the two regions. The window functions are defined
as

WLow (z) =
1

2
− 1

2
tanh

(
z − 0.25 cm

0.05 cm

)
, (3.11)

for the lower region,

WUp (z) =
1

2
+

1

2
tanh

(
z − 3.75 cm

0.05 cm

)
, (3.12)

for the upper region, and

WInt (z) = 1−WUp (z)−WLow (z) (3.13)

for the interior of the domain. In the resulting time series presented in Fig. 3.21(a), where
each regional contribution to dissipation is divided by the total contribution to dissipation
at a given time, the interior of the vertical domain is the primary contributor to the total
dissipation. Initially, most of the dissipation is contributed in equal parts from the lower
and upper regions, as in Fig. 3.20(a), which shows thin regions of high dissipation near the
upper and lower boundaries near x = 5 cm due to the initial horizontal density distribution
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moving to form the gravity current. As the current develops, the greatest contribution to
dissipation comes from the interior. Both the contributions from near the upper and lower
boundaries generally decrease with time, though the relative contribution from the upper
region increases around t = 15 s, at which point there is a slight decrease in the interior
contribution. This corresponds to the long strip of high dissipation seen in the upper
boundary of the current head in Fig. 3.20(d).

It is reasonable to expect that most of the viscous dissipation would be in the interior of
the domain, given that, as defined, the interior region (between z = 0.25 cm and 3.75 cm)
comprises 87.5% of the total vertical domain. However, since the lower and upper regions
each comprise 6.25% of the vertical domain, these regions proportionally contribute more
to the total dissipation. This is shown in Fig. 3.21(b), which displays the mean contribution
in the vertical direction (per cm) to the total dissipation over each of the regions. The
mean total dissipation over the interior region increases slowly until about t = 4 s, where
it remains fairly consistent around 3.75 × 10−7 kg m2 s−3 / cm. Both of the means over
the upper and lower regions increase at the same rate until t = 2 s. The lower region
reaches its maximum of about 1.8 × 10−6 kg m2 s−3 / cm at t = 3 s, and decreases steadily
afterwards, becoming lower than the mean over the internal region at t = 17 s. The mean
over the upper region reaches its maximum of about 2.3 × 10−6 kg m2 s−3 / cm at t = 5 s,
and decreases until t = 11 s, after which it increases and reaches a second maximum of
about 1.75 × 10−6 kg m2 s−3 / cm at t = 14 s, before it decreases again. Over the entire
simulation period, the mean contribution to dissipation in the upper region is signifcantly
stronger than the mean contribution in the interior region.

To examine the regions of greatest viscous dissipation, φ = 2νρ0eijeij, around the
fingers, Fig. 3.22 presents a 2 psu salinity isosurface in grey and a 9.1 × 10−3 kg/m s3

viscous dissipation isosurface in red (which is 4% of the maximum value of dissipation)
for the no-slip experiment LD-MSV-NS at t = 20 s. This figure indicates that there is
dissipation primarily along the fronts and sides of the fingers, with negligible dissipation
along the backs. The amount of dissipation around the fingers increases and surrounds
more of each individual finger moving toward the front of the current, while the thinner
fingers near the back show negligible dissipation in the surrounding areas.

3.3.6 Stirring and Mixing

The stirring and mixing of salinity (as defined by equation (2.40)) along a slice near the
spanwise midpoint of the domain (y = 1.98 cm) at t = 20 s are presented for the free-slip
case LD-MSV-FS in Fig. 3.23, and for the no-slip case LD-MSV-NS in Fig. 3.24. These
images present a magnified view of the regions of primary stirring and mixing.
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62



Figure 3.22: 2 psu salinity isosurface in grey for the no-slip case LD-MSV-NS at t = 20 s,
with a viscous dissipation isosurface in red for φ = 9.1× 10−3 kg/m s3.

Figure 3.23: Stirring (top) and mixing (bottom) of the salinity field of simulation LD-
MSV-FS along y = 1.98 cm at t = 20 s in units of psu2/m2s.
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Figure 3.24: Stirring (top) and mixing (bottom) of the salinity field of simulation LD-
MSV-NS along y = 1.98 cm at t = 20 s in units of psu2/m2s.

The free-slip case experiences strong stirring of the salinity field along the current head
and around the fingers trailing from the back of the current, with almost no stirring along
the belly of the current. While there is some mixing around the fingers at the back of the
current, the strongest mixing occurs near the very front of the current head. The strength
of the stirring and mixing around the fingers of the no-slip case appears to be similar to
the stirring and mixing around the fingers of the free-slip case. There is strong stirring
and mixing at the top front of the current head, in the region where the lobes and clefts
have developed. In both cases, the regions of strongest mixing typically correspond to the
regions of strongest stirring. Overall, the strength of the stirring is significantly greater
than the strength of the mixing. The temperature stirring and mixing for the no-slip case
LD-MSV-NS are presented in Fig. 3.25. Both fields outline the fingers and the current
head, similar to the salinity stirring and mixing, although there are no small scale features
of alternating positive and negative stirring or strong mixing. Each of the mixing regions
appears to correspond to the regions of non-zero stirring. Additionally, there is a patch of
strong mixing above the head around x = 27.5 cm, which corresponds to very weak stirring.
This suggests that the transport of heat is primarily due to thermodynamic effects in that
region and not the motion of the fluid.

Fig. 3.26 presents the absolute value of the mixing of salinity integrated in the vertical
and spanwise directions as a function of the streamwise variable at t = 15 s (dashed line)
and 20 s (solid line) for the free-slip case LD-MSV-FS (a) and the no-slip case LD-MSV-NS
(b). The position of the current front, as defined in Section 3.3.4, is identified at each time
by a black x. The plots are normalized by the maximum of the absolute value of total
mixing for both cases and times (i.e., the minimum of LD-MSV-FS at t = 20 s, since mixing
is always negative). At both t = 15 s and 20 s, the free-slip case shows the highest values
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Figure 3.25: Stirring (top) and mixing (bottom) of the temperature field of simulation
LD-MSV-NS along y = 1.98 cm at t = 20 s in units of ◦C2/m2s.

of localized mixing about 3 cm behind the front of the current as defined by Section 3.3.4,
with the local mixing near the front at t = 15 s comprising about 90% of the local mixing
near the front at t = 20 s. This corresponds to the region of strong mixing that traces the
front of the current, as shown in Fig. 3.23. Both times show a rapid decrease in total mixing
moving towards the back of the current, with imperceptible mixing along the current belly,
and increased mixing at the back of the current due to fingering. At t = 15 s, there is
relatively weak mixing (typically below 5% of the maximum) between x = 8 cm to 15 cm,
with a localized peak of mixing (about 10% of the maximum) at x = 7.9 cm. At t = 20 s,
the length of this mixing region (from x = 8 cm to 24 cm) has more than doubled, and
a significant number of localized peaks are visible, with the largest reaching about 25%
of the maximum. In this region, the mixing is typically greater than at least 2% of the
maximum.

The no-slip case, at both t = 15 s and 20 s, shows strong mixing in two peaks just
ahead of the front of the current as defined by Section 3.3.4. There is more mixing near
the front of the current at t = 15 s (55% of the maximum) than at t = 20 s (40% of the
maximum). The decrease in mixing is less rapid moving towards the back of the current
for the no-slip case than for the free-slip case. Between x = 0 cm and 19 cm, the mixing
at t = 15 s is typically below 5% of the maximum, with strong localized peaks occuring at
x = 0 cm (25% of the maximum), 0.5 cm (30% of the maximum), and 7 cm (15% of the
maximum), among other places. At t = 20 s, the no-slip case shows relatively strong mixing
from x = 13 cm to 30 cm, where the mixing is always greater than 5% of the maximum.
The greatest localized mixing occurs near x = 1 cm, and is about 47% of the maximum.
Between x = 1 cm and 6 cm, there are a number of localized peaks ranging from 5% to 13%
of the maximum. Though the free-slip case exhibits localized regions of stronger mixing
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than the no-slip case near the front, overall, the no-slip case exhibits greater total mixing
than the free-slip case at corresponding times.

3.4 Summary

Through high-resolution DNS, double-diffusive gravity currents were simulated, and the
effects of boundary conditions and current volume on flow development were characterized.
In particular, it was observed that:

1. Current heads exhibit the typical lobe-and-cleft and inviscid theory patterns when
under the effects of no-slip and free-slip boundary conditions, respectively.

2. Two-dimensional salt fingers develop in the primary direction of the shear near the
bottom of the wake of the currents. These fingers eventually experience spanwise rip-
pling due to the shear-induced salt sheet instability, leading to fully three-dimensional
salt fingers.

3. The no-slip currents also experience the growth of a set of larger-scale fingers near
the front of the current head. These fingers are absent from the free-slip cases, where
the head remains mostly two-dimensional. The fingers near the head are typically
about 2 to 3 times the spanwise width of the fingers that trail from the back of the
current.

4. Larger volume currents retain enough coherence that upon colliding with the far
wall, they rebound and begin to flow back toward their starting point. If the current
volume is small enough with respect to the domain, the salt fingering may cause the
current to lose enough mass that it breaks down.

5. In each of the free-slip simulations, the gravity current was observed to move with
nearly the same propagation speed, which was the same for a single-diffusive free-slip
simulation.

6. The onset of three-dimensionalization occurs earlier and faster for the no-slip cases
than for the free-slip cases. There is also an increase in the amount of three-
dimensionalization with the volume of the current. Similar trends are observed for
the total viscous dissipation.
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Figure 3.26: The total mixing of salinity integrated in the spanwise and vertical directions
for (a) the free-slip case LD-MSV-FS and (b) the no-slip case LD-MSV-NS at t = 15 s
(dashed line) and 20 s (solid line), normalized by the maximum value for both cases and
times. The position of the current front at each time is indicated by a black x.
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7. Both the free-slip and no-slip cases exhibit regions of high dissipation that trace the
fronts of the currents, as well as regions of lower dissipation about the salt fingers.
The strongest dissipation in the no-slip cases is seen in the upper boundary layer.

8. Due to the lobe-and-cleft instabilities about the current head and the additional
fingering along the entire current, the no-slip simulation LD-MSV-NS experiences an
overall greater degree of stirring and mixing when compared to the corresponding
free-slip case. The profiles of salinity stirring and mixing feature structures that are
more fine scale than those of the temperature stirring and mixing.
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Chapter 4

Double-Diffusive Rayleigh Taylor
Instabilities

4.1 Rayleigh-Taylor Instabilities

The salt fingering experiments of Jevons were likely influential in later research performed
by Lord Rayleigh. Unpublished laboratory notebooks indicate that he and Eleanor M.
Sidgwick had attempted to replicate these experiments [85]. He would later attempt to
explain the observed phenomenon mathematically through linear stability analysis [52],
although he ignores viscous effects completely and assumes the instability is due to an
unstable density stratification. Based on his analysis, he concludes that in a fluid that
is stratified in two layers, if the upper layer of fluid is heavier than the lower layer, then
the interface of the two fluids will become unstable. Subsequent analysis by Taylor [99]
determined that in the event that the two layers are in a stable configuration, if the fluid
is accelerated downward at a rate greater than the acceleration due to gravity, then insta-
bilities will also form along the interface of the two layers. In the experimental companion
paper by Lewis [49], it was observed that the amplitude of the instabilities initially grew
as predicted by the first-order approximation derived by Taylor. The paper presents the
first experimental results of what are now referred to as Rayleigh-Taylor instabilities.

Recently, double-diffusion has been suggested as a mechanism which may be responsible
for enhanced sedimentation rates in sedimenting flows [67, 13]. In stably-stratified systems
with a layer of sediment-laden, fresh water over a layer of clear, salty water, two different
instability mechanisms may develop. The first is the sediment analog to salt fingers in a
typical double-diffusive system, where salt diffuses more rapidly than sediment into the
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upper layer, increasing its density and causing fingers. The second, called settling-driven
convection, is due to sediment settling across the pycnocline, increasing the density of the
upper region of salty fluid, which then sinks in the form of Rayleigh-Taylor instabilities
[32, 13]. Green [23] established a relationship between the double-diffusive flux and the
settling flux to determine whether fingers or settling convection would dominate. Burns
and Meiburg [9] performed linear stability analysis to further explore the nature of the
mechanisms behind particle sedimentation from buoyant river plumes. It was noted that
in an entirely freshwater system with a layer of sediment-laden water above clear water, the
development of Rayleigh-Taylor instabilities along the pycnocline was increasingly impeded
by larger particle settling velocities. When the density field is stabilized by adding salt
to the lower layer, it was determined that the nature of the instability is governed by a
relationship between the unstable layer thickness (i.e., the salty region into which particles
initially settle and destabilize) and the thickness of the salinity interface due to diffusion.
If the unstable layer thickness is less than or similar to the salinity interface thickness,
double-diffusion is important. If the unstable layer is thicker than the salinity interface,
then Rayleigh-Taylor instabilities dominate. This work was later extended using nonlinear
two- and three-dimensional DNS [10]. In a series of experiments involving silicon carbide
grinding powder and salt, Davarpanah Jazi and Wells [13] observed that for Rρ > 1.2,
settling-driven convection was the dominant mechanism.

In the aforementioned references, the dominance of Rayleigh-Taylor instabilities does
not necessarily preclude the occurrence of double-diffusive effects, as the density still de-
pends on two tracers with different diffusivities. Since there are no settling velocities to
drive Rayleigh-Taylor instabilities in a stably-stratified purely double-diffusive system, the
this research examines the development of a Rayleigh-Taylor instability along an unstable
pycnocline where the density difference is due to both temperature and salinity gradients.
This chapter examines a three-dimensional high-resolution direct numerical simulation of a
double-diffusive Rayleigh-Taylor instability arising from a three-layer density stratification.
Visualizations of the various flow fields are presented and discussed. An eddy diffusivity
parameterization for the temperature, salinity, and density fields is attempted, and deter-
mined to be inappropriate for the flow presented here. Fourier analysis of each of the fields
is performed to further examine the dominant scales, and the resulting information is used
to filter different length scales from the density field.
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4.2 Mathematical Formulation

Like gravity currents, Rayleigh-Taylor (henceforth RT) instabilities develop due to the
interaction of two masses of fluids of different densities. Unlike gravity currents, RT in-
stabilities are a result of the buoyancy force acting in the same direction as the density
gradient. The most basic example of such a configuration would be a layer of dense fluid
over top of a layer of less dense fluid. The simulation presented in this chapter consid-
ers an initial setup with two pycnoclines: a lower pycnocline, across which density and
temperature are stably-stratified, but salinity is unstably-stratified, and an upper pycno-
cline, across which density and temperature are unstably-stratified, but salinity is stably
stratified, as presented in Fig. 4.1. This stratification is expected to form primarily RT
instabilities along the upper pycnocline, while the lower pycnocline should produce salt
fingers.

Jacobs and Dalziel [36] performed experiments examining Rayleigh-Taylor instabilities
developing from a similar three-layer density stratification, where the stratification along
the upper pycnocline is unstable, and the stratification along the lower pycnocline is stable.
Although their stratification is much like the one described in Fig. 4.1, the simulation
presented here is complicated by the presence of two diffusive tracers. The authors observed
that in the event that the upper layer and lower layer have the same density, there is little
penetration (or erosion) of the lower layer by the RT instabilities. This is attributed to the
fact that the fluid remains stably stratified at the lower interface, even when impacted by
the RT instabilities. Piacsek et al. [70] performed 2D numerical simulations of three-layer
double-diffusive systems to examine the mechanics of flow inside interleaving layers of hot
and cold water. Their initial density profile was stable, with conditions favourable to salt
fingering along the upper interface, and oscillating instabilities along the lower interface.
From a similar perspective, the simulation presented here could be considered a small
region of three interleaving layers of water resulting from thermohaline intrusions, in a
regime where horizontal shear is not important.

Before proceeding with the equations of the initial stratification, it is important to note
that, in this chapter, a modification will be made to the governing equations. Because of
the way SPINS organizes blocks of memory along the x-direction, it is convenient when
simulating domains that have long vertical extents, but narrow horizontal domains, to treat
the x-direction as vertical. As such, equation (2.1) becomes,

∂u

∂t
+ u ·∇u = − 1

ρ0

∇p− g ρ
ρ0

δi1 + ν∇2u, (4.1)

indicating that buoyancy acts in the negative x-direction. For u = (u, v, w), u is the vertical
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Figure 4.1: Two-dimensional sketch of the initial conditions of the simulation presented
in this chapter, with x indicating the vertical direction, and the y-direction pointing out
of the page. In this simulation, ρ (T0, s0) > ρ (T0 + ∆T, s0 + ∆s), while T0 < T0 + ∆T and
s0 < s0 + ∆s, indicating that there is less dense, warm, salty fluid between two layers of
denser, cold, fresh fluid. Along x = xU , the density field is unstably stratified, while the
density is stably stratified along x = xL, though conditions are favourable for salt finger
formation.
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component of velocity, while v and w are the horizontal components of velocity. As in the
gravity current simulations of Chapter 3, the thermal and salinity diffusion coefficients are
κT = 3.4× 10−7 m2/s and κs = 2× 10−8 m2/s, giving dimensionless parameters Pr = 5.88,
Sc = 100, and τ = 5.88× 10−2.

The initial stratification is defined using a linear combination of hyperbolic tangent
functions, set by

T (x, t = 0) = T0 +
∆T

2

(
tanh

(
xU − x

∆x

)
− tanh

(
xL − x

∆x

))
, (4.2)

and

s (x, t = 0) = s0 +
∆s

2

(
tanh

(
xU − x

∆x

)
− tanh

(
xL − x

∆x

))
. (4.3)

As in Chapter 3, T0 and s0 refer to the temperature and salinity of the cold, fresh fluid.
xL = 2 cm and xU = 6 cm indicate that the transition from the bottom layer of cold, fresh
fluid to the intermediate layer of hot, salty fluid occurs at 2 cm, and that the hot, salty
fluid transitions to the upper layer of cold, fresh fluid at 6 cm. ∆x defines stratification
width, set to 0.1 cm. As in Chapter 3, the warm, salty water has an initial density of
995.91 kg/m3, while the density of the cool, fresh water is initially 999.12 kg/m3, giving
a density difference of 3.21 kg/m3. This gives an Atwood number of A = 1.61 × 10−3,
suggesting symmetric penetration by both the bubbles and the spikes (i.e., the rising and
falling RT instabilities, respectively).

Equations (2.36) and (2.37), can be used to determine estimates of the most unstable
wavelength, λRT, and corresponding growth rate, σRT, of the RT instabilities developing
along x = 6 cm. Using the above parameters for the simulations presented in this chapter,
λRT = 0.795 cm and σRT = 2.497 s−1. Similarly, from equations (2.25) and (2.26), the wave-
length of the fastest-growing salt fingers, λSF, and corresponding initial growth rate, σSF,
along the lower pycnocline at x = 2 cm can be computed. Since (T, s) = (27.5◦C, 2.5 psu)
at x = 2 cm initially, and using linear approximations to the temperature (2.32) and salin-
ity (2.33) derivatives at that height, this gives a density ratio of Rρ = 1.9, and therefore
λSF = 0.283 cm and σSF = 0.358 s−1. This implies that the RT instabilities along the upper
interface will develop significantly faster than the salt fingers along the lower interface.

4.3 Single-Diffusive Rayleigh-Taylor Instabilities

In the event that the density difference across the layers only depends on a single tracer
gradient, the sharpness of the density interfaces are set by the diffusivity of that tracer.
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Fig. 4.2 presents density contours of three different RT instabilities developing from the
same initial density stratification, with the densities of the lighter fluid and heavier fluid set
to 995.91 kg/m3 and 999.12 kg/m3, respectively, but where the density stratification is due
only to a temperature gradient ((a)-(b)), to a salinity gradient ((c)-(d)), and to gradients
in both temperature and salinity ((e)-(f)). Using initial conditions (4.2) and (4.3), in the
left column, salinity is kept constant at s = 0, while T0 = 15 ◦C and ∆T = 14.2015 ◦C.
In the middle column, temperature is kept constant at T = 40 ◦C, while s0 = 9.3548 psu
and ∆s = −4.3548 psu. The right column presents a density stratification that is due to
both variable salinity and temperature fields, with the temperature of the warm water set
to T0 = 15 ◦C, a change in temperature between layers of ∆T = 25 ◦C. The salinity of
the salty layer is s0 = 0, with a change in salinity of ∆s = 5 psu. Each of the simulations
displays similar rising mushroom-like parcels of low density fluid moving upwards from
near the upper pycnocline, while the lower pycnocline remains stable and flat. The primary
difference between the temperature-only and salinity-only simulations is the steepness of
the gradients between the high density fluid and the low density fluid. The pycnoclines of
the temperature-only simulation are much broader than the pycnoclines of the salinity-only
simulation, since the diffusivity of temperature is higher than that of salt. At t = 9 s, the
double-diffusive case displays thin alternating regions of low and high density outlining the
RT instabilities. This is also visible in the lower pycnocline, where a thin layer of high-
density fluid rests between a layer of slightly lower density fluid below, and the original low
density layer above. These alternating layers of high and low density are typical of double-
diffusive flows, and will be discussed later in this chapter. They will henceforth be referred
to as double layers. By t = 11 s, the lower pycnocline in the T - and s-only cases shows
a small degree of additional diffusion, while the double layer in the double-diffusive case
begins to show some oscillations, suggesting the initial stages of salt fingers. Meanwhile,
the RT instabilities in the T -only case appear to be larger in scale than the instabilities
in the s-only case, which display a number of fine filaments. The double-diffusive case
shows larger scale RT instabilities on roughly the same scale as the T -only case, which are
outlined by thin layers of alternating high and low density fluid.

This double layer along the double-diffusive interface is similar to the double-boundary
layer described by [51, 20, 11], with one important difference. Those papers were con-
cerned with stable density stratifications with cold, fresh water above hot, salty water.
As the lighter cool, fresh fluid gains heat, it experiences a decrease in density above the
thermohaline interface, while the heavier, hot, salty layer loses heat, causing an increase
in density just below the interface. This is in contrast to the simulation presented here,
where the lighter, hot, salty layer loses heat to the heavier, cool, fresh layer. Along the
interface, this causes an increase in density in the salty layer, and a decrease in density
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Figure 4.2: Density profiles of 2D Rayleigh-Taylor simulations where the density gradient
depends on only temperature ((a)-(b)), only salinity ((c)-(d)), and both temperature and
salinity ((e)-(f)), after 9 s (top) and after 11 s (bottom). The colour bar indicates the
density in kg/m3.
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Figure 4.3: Horizontal means of (a) salinity, (b) temperature, and (c) density as a function
of x. The dashed lines along x = 2 cm and 6 cm indicate the initial locations of the
pycnoclines.

in the fresh layer. Fig. 4.3 illustrates the formation of this double layer, presenting the
horizontally-averaged salinity, temperature, and density of the 3D simulation presented in
this chapter, as a function of the vertical position. Over the first 7.5 s of the simulation, the
salinity interfaces display negligible diffusion, while the higher thermal diffusion causes an
increase in the width of the temperature interface, increasing (decreasing) the temperature
just below (above) x = 2 cm, and just above (below) x = 6 cm. The resulting double layers
are visible in Fig. 4.3(c) at t = 2.5 s, 5 s, and 7.5 s along x = 2 cm and 6 cm.
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Figure 4.4: Volume plots of density, where the colour and opacity function are given by
the colour bar. Along each axis, the large ticks indicate 1 cm spacings, while the small
ticks indicate 0.2 cm spacings. The colour bar indicates the density in kg/m3.

4.4 Three-Dimensional Double-Diffusive Rayleigh-Taylor

Instability

The focus of this chapter is a three-dimensional direct numerical simulation of double-
diffusive Rayleigh-Taylor instabilities arising from an initial density stratification as defined
by equations (4.2) and (4.3). The stratification is identical to that of the two-dimensional
simulation presented in panels (e) and (f) of Fig. 4.2, with T0 = 15 ◦C, ∆T = 25 ◦C,
s0 = 0, and ∆s = 5 psu. The domain of this simulation is Lx = 10 cm tall in the vertical
direction, and Ly = 2.4 cm and Lz = 2.5 cm wide in the horizontal directions. 2048 grid
points are used in the x-direction, giving a vertical grid spacing of 4.88 × 10−3 cm. 512
grid points are used in each of the horizontal directions, for grid spacings of 4.69×10−3 cm
and 4.88 × 10−3 cm in the y- and z-directions, respectively. Volume plots of the density
field of this flow at various times are presented in Fig. 4.4. At t = 9.5 s, motion occurs
primarily along the upper pycnocline, as RT instabilities on the order of 1 cm wide begin
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to develop, which reflects the wavelength of λRT = 0.795 cm predicted in Section 4.2.
As noted in the 2D simulation presented in Figs. 4.2(e), (f), the presence of a double
layer is observed along each of the pycnoclines, with thin layers of lighter fluid forming
between regions of heavier fluid. By t = 12 s, some small rippling can be observed along
the lower pycnocline, indicating the initial formation of salt fingers, although some of
the sinking RT instabilities have begun to interact with and distort the lower pycnocline.
Between t = 12 s and 14.5 s, the RT instabilities slow down as they travel through the
lower pycnocline. This reflects the results of Jacobs and Dalziel [36], who observed that
there was little penetration by RT instabilities into the bottom layer of a three-layer system
when the densities were similar. However, there seems to be enhanced penetration later in
these simulations due to the increase in density above the initial maximum due to double-
diffusive effects. Additionally, fine features of alternating low and high density are observed
within the larger RT structures. As time progresses, the dominant flow features appear to
be due to the larger-scale rising and sinking RT instabilities, although finer density features
can be observed in the rising and falling bulbs. This can be difficult to distinguish in the
three-dimensional volume plots, so Fig. 4.5 presents slices of density (top, (a), (c), (e)) and
kinetic energy (bottom, (b), (d), (f)) in the xz-plane along y = 0.60 cm, at various times.
At t = 12 s, the high density region is still fairly coherent, with double layers occurring
along the interface of the easily-distinguishable large scale RT instabilities. By t = 15.75 s,
the shape of some larger RT instabilities are still noticeable, but the thin density filaments
are far more prominent. By t = 19.5 s, the flow has become fairly chaotic, though thin
regions of alternating levels of density are still prominent. In contrast, the kinetic energy
field displays no similar small scale features, instead appearing to trace some of the larger-
scale features of the density field. At t = 12 s, there is noticeable overlap between the RT
features visible in the density field and some of the larger features present in the KE field.

As depicted in Fig. 4.6, the flow can be separated into active and quiescent regions
that evolve with time. Early in the flow (Fig. 4.6(a)), the activity occurs near the original
upper pycnocline, as the RT instabilities have only begun to form. Above and below
the instabilities, the flow is fairly inactive, even near the double layer forming along the
lower pycnocline. At intermediary stages (Fig. 4.6(b)), the flow is active above the lower
pycnocline and quiescent below it. With enough time (Fig. 4.6(c)), the RT instabilities
pass through the lower double layer, and the entire domain becomes active.

Slices along y = 0.60 cm in the xz-plane of temperature (top, (a),(c),(e)) and salinity
(bottom, (b),(d),(f)) are presented in Fig. 4.7. The salinity and temperature fields exhibit
similar behaviour to the gravity currents presented in Chapter 3: the geometries of the
fields are similar, but the lower diffusivity of salt results in sharper interfaces throughout the
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Figure 4.5: Contour slices of density (top) and kinetic energy (bottom) in the xz-plane
along y = 0.60 cm. The upper colour bar indicates the density in kg/m3, while the lower
colour bar indicates the kinetic energy in m2/s2.
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Figure 4.6: Sketches depicting the general evolution of the flow with time. (a) Initially, as
the RT instabilities begin to grow, any activity is confined to near the upper pycnocline,
while the rest of the domain is largely quiescent. (b) As time passes, the RT instabilities
grow and fill the domain, the region below the lower pycnocline remains fairly inactive.
(c) Towards the end of the simulation, the RT instabilities have grown to fill the domain,
causing activity to permeate the entire domain.
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salinity fields. At t = 12 s, both fields are very similar geometrically, though, as expected,
the higher diffusivity of temperature has led to broader interfaces between the hot and
cold fluid, while the salinity interfaces are significantly sharper. This is indicative of the
double layer discussed above. For example, consider the round parcel of lower density fluid
(in yellow) near the top of the domain in Fig. 4.5 (a). It is immediately surrounded by
a thin ring of higher density fluid (in light blue), which is in turn surrounded by a thin
ring of low density fluid (in green). Fig. 4.8 examines the temperature and salinity fields
of this parcel in more detail, with white contour lines tracing regions where the density is
998.1 kg/m3. The region traced by the inner white contour is slightly higher in density than
the initially light fluid (995.91 kg/m3). Between the inner contour and the middle contour,
salinity stays high enough that the decrease in temperature results in denser fluid (near
the density of the initial high density fluid, 999.12 kg/m3). The middle contour effectively
traces the region of non-zero salinity, so between it and the outer contour, the fluid is
nearly fresh, indicating that the increase in temperature has caused a decrease in density
of the fresh fluid. At t = 15.75 s and 19.5 s, both the T and s fields exhibit similar large
scale features, though within the large scale features of the salinity field there are many
finer features. The small scale features of the salinity field also appear to correspond fairly
well with the small scale features of the density field.

In a system where the density depends on a single tracer subject to a typical advection-
diffusion equation, the maximum fluid density can never increase, and the minimum fluid
density can never decrease. However, this is possible in double-diffusive systems. For
example, in the heat-salt system presented here, if enough heat is transferred from the
hot, salty layer to the cool, fresh layer, the increase in heat to the cold layer along the
interface can be enough to decrease its density below the initial density of the hot, salty
layer. Similarly, this loss of heat can increase the density in the salty layer above the
initial density of the fresh layer. This behaviour will be captured when using both linear
and nonlinear equations of state for density.

By computing the minimum and maximum density at each time step and determining
when they are above and below the initial maximum and minimum, the time at which
double-diffusion becomes important can be estimated. In Fig. 4.9, the maximum and
minimum density as a function of time are given by the blue and red lines, respectively. The
dashed lines indicate the initial minimum (995.91 kg/m3) and maximum (999.12 kg/m3)
densities as set by equations (4.2) and (4.3). The first instance of ρ increasing above the
initial maximum density occurs at t = 9.25 s. The first instance of ρ decreasing below the
initial minimum density occurs 1.5 s later at t = 10.75 s. This is likely due to the greater rate
of change of density with respect to temperature when T = 40◦C than when T = 15◦C,
which implies that as the warmer water loses heat to the cooler water, there will be a
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Figure 4.7: Contour slices of temperature (top) and salinity (bottom) in the xz-plane
along y = 0.60 cm. The upper colour bar indicates the temperature in ◦C, while the lower
colour bar indicates the salinity in psu.

82



Figure 4.8: Magnified contour plots of temperature (top) and salinity (bottom) in the
xz-plane along y = 0.60 cm about the lower density parcel of fluid near the top of the
domain at t = 12 s. The white contour lines indicate regions where ρ = 998.1 kg/m3. The
upper colour bar indicates the temperature in ◦C, while the lower colour bar indicates the
salinity in psu.
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Figure 4.9: Minimum (red) and maximum (blue) density as a function of time, with the
initial minimum (995.91 kg/m3) and maximum (999.12 kg/m3) given by dashed lines.

greater increase in density in the warm, salty water than there a decrease in density of the
cool, fresh water. The maximum density increases to 1001.72 kg/m3 at t = 12.75 s, before
briefly decreasing to 1001.33 kg/m3 at t = 13.75 s, and then increasing above 1002 kg/m3

and staying fairly steady at the density for the remainder of the simulation. The minimum
density reaches its lowest value of 994.02 kg/m3 at t = 14 s.

Slices of the rate of viscous dissipation in the xz-plane along y = 0.60 cm are presented
in Fig. 4.10. These slices indicate that the regions of greatest dissipation occur along the
interfaces of the larger scale features in the kinetic energy fields. While not as large as the
length scales of kinetic energy, the dissipation lacks the finer scale features of density and
salinity. The length scales of each of the fields discussed in this section will be examined
in greater detail using Fourier analysis in Section 4.5.

Fig. 4.11(a) presents the total kinetic energy, as well as the individual contributions from
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Figure 4.10: The rate of viscous dissipation in the xz-plane along y = 0.60 cm at (a)
t = 12 s, (b) 15.75 s, and (c) 19.5 s. The colour bar indicates the viscous dissipation in
kg/m s3.
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u, v, and w, as a function of time. The primary contribution to kinetic energy comes from
the vertical motion of the fluid, while there is relatively little contributed by the horizontal
motions. The contributions to kinetic energy by each of the horizontal components are
nearly equal in magnitude, since the flow has no preferential horizontal direction. The KE
exhibits two different maxima at t = 12.5 s and 18.25 s, and a local minimum at t = 14.75 s.
The decrease in kinetic energy between t = 12.5 s and 14.75 s appears to correspond to the
interaction of the rising RT instabilities with the top of the domain, and to the sinking
RT instabilities interacting with the lower pycnocline, as observed in Fig. 4.4 at t = 12 s
and 14.5 s. The subsequent increase in KE appears to be due to additional action of the
instability in previously inactive regions, such as along the edge (nearest the x-axis label)
of the domain and along the front corner below x = 2 cm at t = 17 s in Fig. 4.4.

The total rate of viscous dissipation is presented in Fig. 4.11(b). It begins to increase
rapidly around t = 7.5 s, and reaches a maximum (φTot = 1.904×10−6 kg/m s3) at t = 12.5 s,
after which there is a slower decrease to approximately φTot = 1× 10−6 kg/m s3. The time
at which the maximum dissipation is reached corresponds to the first maximum of total
kinetic energy, while the total dissipation continues to decrease even as KE reaches its
second maximum.

4.4.1 Vertical Tracer Flux

The horizontal means of the salinity, temperature, and density fields as a function of x
from t = 10 s to 20 s are presented in Fig. 4.12. At t = 10 s, the effect of the developing
RT instability along the upper interface is visible, as the mean interface between the hot,
salty layer and the cool, fresh layer becomes broader. This interface appears to have two
distinct nearly linear regimes, with two distinct slopes above and below x = 6 cm, with the
decrease to the lower density fluid below x = 6 cm occurring over a greater depth than the
increase to the higher density fluid above it. Though there are some oscillations displayed
by the salinity (at x = 4.5 cm and 7 cm) and the density (at x = 2 cm and 7 cm), the mean
fields are still relatively smooth at t = 10 s. At later times, however, each of the mean
fields are dominated by small oscillations, with the salinity and density fields exhibiting
a greater number of finer scale oscillations than the temperature field. The general shape
of the mean salinity and temperature fields are very similar, though the salinity fields
exhibit far finer vertical features due to the lower diffusivity of salinity. On the time
scale of this simulation, the density field appears to be tending to a stable, nearly linear
stratification, though to verify that the steady-state for density is indeed linear, a larger
ensemble of experiments that simulate a longer time period would be needed. Above the
initial upper pycnocline at x = 6 cm, both temperature and salinity experience an overall
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increase, with their mean values tending to 2.25 psu and 28 ◦C above x = 6 cm at t = 20 s.
Between x = 2 cm and 6 cm in the initially hot, salty layer, there is an overall decrease in
temperature and salinity, while below x = 2 cm, both fields experience an increase. The
increase in mean temperature and salinity in the lower cool, fresh layer is not as significant
as the increase in the upper cool, fresh layer, due to the relative inactivity of the flow in
that region.

The vertical fluxes of salinity, temperature, and density are defined as

Fs (x, t) = u′s′, FT (x, t) = u′T ′, Fρ (x, t) = u′ρ′, (4.4)
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respectively, where the overline denotes the horizontal mean of the variable, e.g.,

s =
1

LyLz

∫∫
[0,Ly ]×[0,Lz ]

s dy dz, (4.5)

and the primes indicate the fluctuation from the horizontal means, e.g., s′ = s − s. At
early times (Fig. 4.13), the limited vertical motion results in negligible vertical fluxes for
each of the fields. Between t = 7.5 s and 9.5 s, there is a rapid increase in the magnitude of
each of the fluxes, with the maximum occurring at x = 6 cm for salinity, and slightly below
x = 6 cm for temperature and density. During this period, the salinity and temperature
fluxes are entirely positive, while the density flux is primarily negative, with some slightly
positive fluxes occurring at t = 7.5 s and t = 8 s just above x = 6 cm. For each tracer, the
flux profiles are all fairly smooth.

At later times (Fig. 4.14), the flux profiles are considerably less smooth. The temper-
ature and salinity flux profiles display similar shapes, although the salinity flux exhibits
a significant number of finer scale oscillations. This is indicative of the fine scale features
of alternating low and high salinity as presented in Figs. 4.7 (b), (d), (f). The density
flux exhibits similar fine scale oscillations, reflecting how the shape of the density field
is dominated by the salinity field. For salinity and temperature from t = 10 s to 17.5 s,
the flux is still mostly positive, though at t = 12.5 s, 15 s, and 17.5 s, it is negative below
x = 3 cm. It is also negative at t = 15 s above x = 8.5 cm. The density flux stays primarily
negative, although near and below x = 3 cm, similar to the salinity and temperature fluxes,
it is occasionally positive at certain times. At t = 20 s, the salinity flux is almost entirely
negative below x = 6 cm, while the temperature flux is almost entirely negative below
x = 4.5 cm.

In several studies [43, 92, 44], there has been an effort to parameterize effective diffusiv-
ities for salinity, temperature, and density (Ks, KT , and Kρ), based on the vertical fluxes
and gradients of the horizontal mean fields,

u′s′ = −Ks (t)
∂s

∂z
, u′T ′ = −KT (t)

∂T

∂z
, u′ρ′ = −Kρ (t)

∂ρ

∂z
. (4.6)

This is a form of parameterization that is common in turbulence theory [46]. Though it
would be beneficial to calculate these approximate diffusivities for usage in larger scale
models where this type of double-diffusion is a subgrid scale process, the flow considered
here does not lend itself well to such an approximation. First, consider the fluxes presented
in Figs. 4.13 and 4.14. As mentioned, until later times, the fluxes typically only have a
single sign, with the salinity and temperature fluxes being mostly positive, and the density
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fluxes being mostly negative. Now consider the vertical derivative of each of the mean fields
presented in Fig. 4.12. From the rapid oscillations of increasing and decreasing tracer fields,
this results in large magnitude derivatives that rapidly oscillate sign with height, as shown
in Fig. 4.15. Calculating the eddy diffusivities as described by equations (4.6) pointwise at
different heights would result in diffusivities that rapidly oscillate sign with x, as well as
alternating sign with time for values calculated at a given height. Fig. 4.16 presents time
series of the eddy diffusivities of salinity, temperature, and density calculated pointwise at
x = 2 cm, 4 cm, 6 cm, and 8 cm. At certain points when the vertical derivatives are near
zero, this can cause the estimated diffusivity to reach orders of magnitude larger than the
scales presented here, with maximum values on the order of 1. These time series show
how the diffusivities can vary significantly based on both position and time at which they
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were calculated. This indicates that the eddy diffusivity approximation is not valid for the
simulation presented here. Equations 4.6 assume that the flux is determined by the local
vertical gradient [46]. However, this assumption does not apply if the flux is a result of
motion on a larger scale than the length scale of the local gradients (Kundu and Cohen [46,
see Figure 13.21]). In this simulation, the vertical flux is largely dictated by the vertical
motion of the RT instabilities, carrying cool, fresh water downward, and hot, salty water
upward. Meanwhile, the length scales of the tracer gradients are much finer than the scale
of the RT instabilities, as shown in Fig. 4.17. The contours in this figure indicate the
magnitude of the density gradient, |∇ρ|. The thin scale of the high magnitude features
indicate very sharp transitions between regions of high density to low density. This is
indicative of the small diffusive scales of salinity. At t = 12 s, these regions also trace the
larger scales of primary motion as set by the RT instabilities. A sketch further detailing
this idea is presented in Fig. 4.18.

4.5 Fourier Analysis

A natural extension of double-diffusive research, especially for flows of oceanic interest, is
to examine the interplay of double-diffusion and turbulence. In the ocean, measurements
have been made to determine the viscous dissipation in double-diffusive regions [25, 2].
Laboratory experiments have examined the effects of intermittent and local patches of
turbulence on salt fingering-favourable stratifications [107, 111, 110]. Differential diffusion
in isotropic turbulence has been the subject of several papers [6, 118, 41]. Yeung and Pope
[118] observed that the correlation between the two tracers with identical initial conditions
decreased with time, which is the case with the salt and temperature fields presented in
the above DNS. In conjunction with classical turbulence theory, these studies ignore the
effect of variable density, and thus miss an important aspect of double-diffusive flow. More
recently, there have been numerical investigations into double-diffusive stratified turbulence
[22, 26]. Additionally, measurements from the North Atlantic Tracer Release Experiment
(NATRE) in a salt fingering-favourable region of the Canary Basin did not resolve the
typical staircase distribution associated with fingering [94]. It was suggested that region
was turbulent enough to prevent the formation of a persistant staircase, and the fluxes
due to both turbulence and salt fingering were estimated. Additional work based on the
NATRE by Ruddick et al. [76] attempted to determine the primary mixing mechanism in
the sampled region, and found that the measurements did not reflect the behaviour of salt
fingers, or isotropic or low-Reynolds number turbulence.

The research presented in this chapter was motivated in part by an effort to obtain
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Figure 4.17: Magnitude of the gradient of density in the xz-plane along y = 0.60 cm at
(a) t = 12 s, (b) 15.75 s, and (c) 19.5 s.
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Figure 4.18: Sketch of the behaviour of the vertical salinity profile s(x) in these simu-
lations, with rapidly changing gradients. The arrows indicate the scales of the currents
induced by the RT instabilities, which are larger than the local tracer gradient scales.
Image adapted from Kundu and Cohen [46, Figure 13.21].
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turbulence from a double-diffusive flow without imposing shear or artificially forcing the
flow. In this section, Fourier analysis is used to characterize the different dominant length
scales of the flow, and the results are used to estimate an appropriate filter to separate the
high and low wave number components of density.

4.5.1 Spectra of Two-Dimensional Slices

Each of the fields presented in Section 4.4 exhibit different dominant length scales. The
salinity and density fields display very fine scale features, which are absent from the kinetic
energy and temperature fields. The Fourier spectrum of each field provides a way of
measuring the contribution to that field from each length scale. A challenge with the data
presented in this chapter, and indeed a challenge in many scientific fields due to advances in
technology [38], is the analysis of large data files resulting from high-resolution simulations
or observations. At a given time step, a single variable file from the simulation presented
here is about 4 GB (gigabytes) in size. None of the boundaries in this simulation are
periodic, so to examine this data using Fourier analysis, each of the variable fields must be
extended appropriately in order to obtain periodicity and avoid edge effects, as noted in
Section 2.3. To perform a three-dimensional fast Fourier transform (FFT) on this data, a
given variable would need to be extended in all three directions. This means 7 additional
copies of the data field would be required, resulting in a 32 GB file that would be difficult
to analyze in real time on local architectures. To avoid these constraints, multiple two-
dimensional slices of data were analyzed along each direction, as each 2D slice would only
need 3 additional copies in order to apply a two-dimensional FFT. The density, temperature
and salinity fields require even extensions in all directions. For the velocity fields, the free-
slip conditions require odd extensions in the same direction as the velocity component, but
even extensions in the other two directions. For example, u would be subject to an even
extension in the y- and z-directions, but an odd extension in the x-direction. The result
of applying a Fourier transform that is even or odd in a given direction is the same as
applying a cosine transform or sine transform in that direction, respectively. Constructing
spectra using the discrete cosine transform (DCT) and discrete sine transform (DST) was
briefly investigated; however, because MATLAB has no built-in 2D DST function, it was
more straightforward to perform FFTs on extended data fields. The resulting periodicity
of each of the fields gives two-dimensional spectra that are symmetric across both of the
wave number axes. As such, the spectra presented here will be limited to examining the
upper right quadrant, as the other three would give identical information.

In Fig. 4.19, the base 10 logarithm of the two-dimensional spectra of horizontal slices
along x = 4 cm of (a) density, (b) salinity, (c) temperature, (d) kinetic energy, and (e)
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dissipation are presented, at t = 19.5 s, when the flow is well-developed. As a brief note,
all two-dimensional spectra presented in this section are displayed by taking the base 10
logarithm, so for the sake of simplicity, they will just be referred to as the 2D spectra
from here onward. The vertical axis of each spectrum corresponds to the wave number
in the y-direction, l, while the horizontal axis of each spectrum corresponds to the wave
number in the z-direction, m. The most obvious information that can be drawn from these
spectra is that both the density and salinity fields experience contributions from much
larger wave numbers than any of the other fields. Letting kH =

√
l2 +m2, where kH is the

wave number magnitude, both the density and salinity spectra appear to exhibit a steady
decrease in power until kH ≈ 300 − 400 cm−1, above which the contribution is minimal.
The temperature spectrum displays a similar drop in power, but over a much smaller range
of wave numbers, until kH ≈ 100 cm−1. The contribution to KE comes entirely from wave
numbers below kH ≈ 50 cm−1, indicating that the KE is dominated by large scale features.
The dissipation spectrum appears to experience a less rapid decrease in power (relative to
temperature and KE) as kH increases, with most of the contribution coming from wave
numbers below kH ≈ 200 cm−1. There is also a striking similarity between the spectra of
density and salinity, reinforcing the idea that the prominent scales of the density field are
due to the contribution from salinity.

To examine the evolution of the horizontal spectrum of density with time, Fig. 4.20
presents the 2D density spectra in the yz-plane (horizontal) at various points along the
x-axis (vertical). The first column shows spectra at various values of x at t = 8.25 s.
There is some low wave number activity along the initial pycnoclines at x = 2 cm and
6 cm, and negligible signals everywhere else, since initially the flow only occurs near these
two regions. Along the lower pycnocline, the signal is due to the variability in the density
field introduced by double-diffusion, while along the upper pycnocline, it is due to the
RT motion. By t = 12 s, the slices between x = 2 cm and 8 cm show activity at wave
numbers up to kH ≈ 400 cm−1, while along x = 1 cm all signals are still negligible due
to the lack of motion in that region, and along x = 9 cm there is a greater contribution
from larger values of m than from larger values of l. At later times, along x = 9 cm the
contributions from l and m appear to be similar, with no preference for either direction.
Along x = 1 cm, there is a greater contribution from larger wave numbers as time increases
due to the increased motion in that region. There are also protrusions that extend from the
edges of the spectrum that indicate preferred aspect ratios and directions for the density
field, although their locations and intensity vary with time step and vertical position. For
example, in Fig. 4.20(g), there is a significant protrusion close to the l-axis, indicating a
preference for smaller scale features in the y-direction along x = 2 cm at t = 15.75 s. In
Fig. 4.20(l), there is a similar feature near the m-axis indicating a preference for smaller
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Figure 4.19: Spectrum of (a) density, (b) salinity, (c) temperature, (d) kinetic energy, and
(e) rate of viscous dissipation at t = 19.5 s, along x = 4 cm.
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scale features in the z-direction along x = 4 cm at t = 19.5 s. This suggests that there is
no consistently preferred direction for the wave numbers along these horizontal slices.

Fig. 4.21 presents the 2D kinetic energy spectra in the yz-plane at various points along
the x-axis. At t = 8.25 s, the only important activity appears in the spectra along the
x = 6 cm slice (Fig. 4.21(m)), although there are some negligible signals appearing at very
low wave numbers along the x = 4 cm and x = 8 cm slices. This is in contrast to the
density spectra of Fig. 4.20 at t = 8.25 s, which displayed relatively strong signals along
x = 2 cm (Fig. 4.20(e)) and x = 6 cm (Fig. 4.20(m)), as sketched in Fig. 4.6(a), with an
active region near the upper pycnocline, and quiescent regions above and below it. Along
x = 2 cm, this reflects that the primary contributor to kinetic energy is the motion due to
the RT instabilities, and that while double-diffusion does serve to increase the variability
of the density field, it contributes relatively little KE. By t = 12 s, the slices between
x = 4 cm and 8 cm show activity at wave numbers below kH ≈ 60 cm−1, while the activity
along the x = 2 cm and x = 9 cm is confined to below kH ≈ 40 cm−1. Additionally, the
x = 1 cm spectrum shows some relatively strong activity below kH ≈ 10 cm−1, indicating
some motion into the quiescent region in Fig. 4.6(b). At t = 15.75 s and 19.5 s, x = 1 cm
spectra slowly starts to show more activity from larger and larger wave numbers, while
the spectra along the rest of the slices seems to have reached a well-developed state by
t = 15.75 s, as in Fig. 4.6(c). None of the spectra appear to indicate a preferred direction,
nor are there any features suggesting a preferred aspect ratio. The primary difference
between the kinetic energy spectra and the density spectra is that the kinetic energy
spectra at later times show their strongest wave number contributions below kH = 20 cm,
and display a severe drop in power (about seven orders of magnitude) between kH = 0 cm
and 80 cm−1. Meanwhile, the later time density spectra display reasonably strong signals
until kH = 100 cm, but experience a similar drop in power over a much broader range
of wave numbers (from 0 until about 400 cm). The KE spectra exhibit no preference for
the direction of the wave numbers, which is a reasonable expectation because the motion
of the flow is being driven in the vertical direction by gravity, with no forcing in the
horizontal direction. The fact that the density spectra display preferred directions that
vary significantly with vertical position and time while the kinetic energy spectra do not
is likely due to the increased variability of the long, thin double-diffusive features of the
density field which are subject to change from the more rapid, but larger scale and less
variable motion of the RT instabilities.

The horizontal 2D spectra of dissipation in Fig. 4.22 show greater intensity at higher
wave numbers than the horizontal KE spectra, but lower wave numbers than the density
spectra, with signals in the range kH ≈ 150 − 200 cm−1. These spectra also show similar
protrusions to the dominant aspect ratios displayed in the corresponding density spectra of
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Figure 4.20: Base 10 logarithm of the 2D FFT of density in the yz-plane at various points
along the x-axis (top to bottom, x = 1 cm, 2 cm, 4 cm, 6 cm, 8 cm, 9 cm), at various times
(left to right, t = 8.25 s, 12 s, 15.75 s, 19.5 s).
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Figure 4.21: Base 10 logarithm of the 2D FFT of kinetic energy in the yz-plane at various
points along the x-axis (top to bottom, x = 1 cm, 2 cm, 4 cm, 6 cm, 8 cm, 9 cm), at various
times (left to right, t = 8.25 s, 12 s, 15.75 s, 19.5 s).
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Fig. 4.20, though without the contribution from higher wave numbers. This supports the
observations of Fig. 4.10, which shows prominent length scales between the dominant large
scales of the KE and the fine scales of the density. It also suggests that some of smaller scale
regions of weaker dissipation displayed in Fig. 4.10 may be related to buoyancy effects.

Figs. 4.23 and 4.24 present 2D density spectra along vertical slices in the xz-plane at
various points along the y-axis, and in the xy-plane at various points along the z-axis,
respectively, at various times. The xz-slices and the xy-slices display very similar general
features, which is reasonable since the flow should have no preference between the y- or z-
direction. At t = 8.25 s, each of the spectra show strong contributions from wave numbers
below 100 cm−1, with a slight preference towards the vertical wave number. By t = 12 s,
there are increased contributions from all wave numbers below 400 cm−1, as in the later
time horizontal slices of Fig. 4.20, with no apparent preference for the vertical or horizontal
wave numbers. The vertical spectra also show higher intensity at larger wave numbers than
shown by the horizontal spectra in Fig. 4.24.

The 2D spectra of kinetic energy in the vertical direction are presented in Figs. 4.25
(slices in xz-plane at various points along the y-axis) and 4.26 (slices in xy-plane at various
points along the z-axis), and evolve similarly to the density spectra of Figs. 4.23 and 4.24.
Each slice at t = 8.25 s shows some activity from low wave numbers, with a slight preference
for the vertical direction. By t = 12 s, each of the spectra appear to have reached a well-
developed state, showing strong contributions from wave numbers below 50 cm−1. There
also appears to be a slight preference towards higher horizontal wave numbers (with lower
vertical wave numbers) at later times. This suggests that the dominant KE features at
later times along vertical slices have larger vertical scales than they do horizontal scales.
This aligns with the RT instabilities, stretching vertically as they rise and fall, resulting in
larger vertical scales than horizontal scales.

To better examine the rate at which the intensities of the 2D spectra decay with in-
creasing wave number, the directional information can be removed from the 2D spectra, so
instead the spectra can be expressed as functions of the magnitude of a 2D wave number
vector. This is achieved by plotting the intensity at arbitrary two-dimensional wave num-
ber vector

(
kxi , kxj

)
from the 2D spectrum as a 1D function at the corresponding wave

number magnitude kxixj =
√
k2
xi

+ k2
xj

. In the subsequent spectra plotted in this section,

these are the values given by the red dots. Given that multiple wave number vectors can
produce the same value of kxixj , this means that there will be multiple intensities plotted
for a single wave number magnitude. To obtain a better estimate of the shape of the
spectrum, the wave number magnitude domain is subdivided into multiple bins of width
∆k. For a given bin starting at k0, [k0, k0 + ∆k], all the contributions from wave numbers
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Figure 4.22: Base 10 logarithm of the 2D FFT of dissipation in the yz-plane at various
points along the x-axis (top to bottom, x = 1 cm, 2 cm, 4 cm, 6 cm, 8 cm, 9 cm), at various
times (left to right, t = 12 s, 15.75 s, 19.5 s).
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Figure 4.23: Base 10 logarithm of the 2D FFT of density in the xz-plane at various points
along the y-axis.
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Figure 4.24: Base 10 logarithm of the 2D FFT of density in the xy-plane at various points
along the z-axis.
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Figure 4.25: Base 10 logarithm of the 2D FFT of kinetic energy in the xz-plane at various
points along the y-axis.

107



Figure 4.26: Base 10 logarithm of the 2D FFT of kinetic energy in the xy-plane at various
points along the z-axis.
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residing in the bin are averaged, with the resulting mean plotted at k0 + 1
2
∆k as a blue

circle in the subsequent spectra. This is equivalent to subdividing the two-dimensional
spectra into annular shells, then averaging over each of the shells. In the spectra that
follow, 100 bins were used, with ∆k = 643 m−1.

In each of the spectra plotted below, the dashed lines indicate an estimate of the wave
number corresponding to the Kolmogorov microscale,

η =

(
ν3

ε

)1/4

, (4.7)

the scale at which viscous effects become important, where ε is a measure of dissipation,
and ν is the viscosity of the fluid. Though simulations of homogeneous turbulence may
use a volume average as an estimate of the dissipation scale, the inhomogeneity of the
dissipation field in this simulation prevents a reasonable estimate using the mean. A key
assumption in turbulence theory is that the dissipation scale of turbulent flow depends
only on the length and velocity scales of eddies in the flow. Therefore, ε can be calculated
using estimates of the velocity scale, U , and the length scale, L, of larger features of the
flow as

ε =
U3

L
. (4.8)

Through visual inspection the density fields of t = 9.5 s and t = 12 s of Fig. 4.4, a typical
velocity of rising or sinking RT instabilities was estimated to be on the order of U = 1 cm/s.
Estimating the typical width of an RT instability to be on the order of L = 1 cm, this
provides an estimate of ε = 1× 10−4 m2/s3 for the viscous dissipation. With the viscosity
used in this simulation, ν = 2 × 10−6 m2/s, the resulting estimate of the Kolmogorov
microscale is η = 5.32×−2 cm. The resulting estimate of the Kolmogorov wave number is
kη = 2π/η = 118 cm−1.

In accordance with classical turbulence theory, estimates of the slopes of the linear
regimes of the log-log plots of the annularly-averaged spectra were calculated, in order to
determine how the spectra behave with increasing wave number magnitude. The slopes
representing the decrease in signal strength in the kinetic energy, salinity, and density spec-
tra were estimated by performing a linear polynomial fit from kH = 29 cm−1 to 113 cm−1.
This choice of region over which to estimate the slopes was entirely subjective, and based
on trial and error. Due to the shape of the curve, extending the region too far past the
Kolomogorov scale resulted in an attempt to linearize over a regime that was clearly non-
linear, giving slopes with unrealistically high magnitudes. Because this flow does not give
way to fully-developed turbulence, these lines give an estimate of the decrease in strength
of the contributions of increasing wave numbers. It is therefore not expected that the
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slopes will reflect the results of classical turbulence theory, such as the −5/3-law in the
inertial subrange of the KE spectrum, or the −1-law in the viscous-convective subrange of
the tracer fields [100].

As a brief note, the horizontal axes of Figs. 4.27-4.33 are given as the logarithm of the
wave number magnitude in m−1.

The slopes of the KE spectra presented in Fig. 4.27 reflect the information presented
by the 2D KE spectra of Fig. 4.21, in that there is a rapid drop in contribution to kinetic
energy as the wave number magnitude increases, with slopes ranging from −7.5 to −9.6.
In contrast, the density spectra in Fig. 4.28 show a much weaker drop in contribution to
the density field as wave number magnitude increases, with estimated slopes ranging from
−1.7 to −3.0. As with the previous 2D spectra, the behaviour of the density spectra is
strongly reflected by the salinity spectra in Fig. 4.29, which exhibit similar slopes along
each of the slices. The temperature spectra of Fig. 4.30 appear to display two distinct
regions where the power of the spectra decreases nearly linearly. Below kH = 101.5 cm−1,
the temperature spectra of Fig. 4.30 decrease nearly linearly and rather slowly. Above
101.5 cm−1, there is a second nearly linear region that continues past kη that decreases
much more rapidly. The slope of the slowly decreasing region was estimated by performing
a linear polynomial fit from kH = 3.2 cm−1 to 29 cm−1, while the slope of the rapidly
decreasing region was estimated by performing a linear polynomial fit from kyz = 48 cm−1

to 229 cm−1. In the slowly decreasing region of the temperature spectra, the slopes range
from −1.6 to −2.1, while in the rapidly decreasing region, they range from −8.3 to −10.4.
The KE spectra display a much greater relative decrease in intensity with respect to wave
number than either the tracer fields, from about from 107 to 10−30 (far below numerical
precision), compared to a decrease of about 107 to 10−10.

Fig. 4.31 gives the viscous dissipation spectra as a function of kH , with slopes estimating
the decay rate calculated from kH = 29 cm−1 to 113 cm−1. These slopes range from −2.4 to
−4.1, with values from the slices away from the boundaries tending towards −3.0. Overall,
this is a more rapid decay than the rates estimated for the salinity and density fields, but
slower than the decay exhibited by the kinetic energy and temperature fields.

Figs. 4.32 and 4.33 present kinetic energy spectra of vertical slices along the xz-plane
at various points in the y-direction, and along the xy-plane at various points in the z-
direction, respectively. The slopes were estimated in the same way as for the horizontal
spectra, with values ranging from −7.8 to −8.5 for the xz-slices, and −8.1 to −8.8 for the
xy-slices. These values are similar to those calculated for the horizontal spectra.
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Figure 4.27: Base 10 logarithm of the kinetic energy spectrum slices in the yz-plane
along various values of x as a function of log10

√
l2 +m2. The dashed line indicates the

wave number corresponding to the estimate of the Kolmogorov scale, 2π/η. The red dots
indicate the contribution to KE from each individual wave number, while the blue circles
indicate the mean value within a given bin.
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Figure 4.28: Base 10 logarithm of the density spectrum slices in the yz-plane along various
values of x as a function of log10

√
l2 +m2. The dashed line indicates the wave number

corresponding to the estimate of the Kolmogorov scale, 2π/η. The solid line indicates the
slope of the nearly linear region to the left of the Kolmogorov wave number.
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Figure 4.29: Base 10 logarithm of the salinity spectrum slices in the yz-plane along various
values of x as a function of log10

√
l2 +m2. The dashed line indicates the wave number

corresponding to the estimate of the Kolmogorov scale, 2π/η. The solid line indicates the
slope of the nearly linear region to the left of the Kolmogorov wave number.
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Figure 4.30: Base 10 logarithm of the temperature spectrum slices in the yz-plane along
various values of x as a function of log10

√
l2 +m2. The dashed line indicates the wave

number corresponding to the estimate of the Kolmogorov scale, 2π/η. The solid lines
indicate the approximate slopes of the spectra in the slowly decreasing region and the
rapidly decreasing region.
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Figure 4.31: Base 10 logarithm of the dissipation spectrum slices in the yz-plane along
various values of x as a function of log10

√
l2 +m2. The dashed line indicates the wave

number corresponding to the estimate of the Kolmogorov scale, 2π/η. The solid line
indicates the slope of the nearly linear region to the left of the Kolmogorov wave number.
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Figure 4.32: Base 10 logarithm of the kinetic energy spectrum slices in the xz-plane along
various values of y as a function of log10

√
k2 +m2. The red dots indicate the contribution

to KE from each individual wave number, while the blue circles indicate the mean value
within a given bin.
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Figure 4.33: Base 10 logarithm of the kinetic energy spectrum slices in the xy-plane along
various values of z as a function of log10

√
k2 + l2. The red dots indicate the contribution

to KE from each individual wave number, while the blue circles indicate the mean value
within a given bin.
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4.5.2 Filtering the Density Data

In order to isolate the large and small scale features (or, in spectral space, the low and
high wave number components, respectively) of the density fields, two separate filters were
applied to the two-dimensional Fourier transform of a slice of the density in the xz-plane,
ρ̂ (k, y,m). The first is a low pass filter, designed to eliminate contributions from wave
numbers above a cutoff wave number kC , and maintain the contributions from the low
wave number components below the cutoff,

fLow (r) =
1

2
− 1

2
tanh

(
r − kC
dk

)
, (4.9)

where dk sets how quickly the filter transitions from unfiltered to filtered wave numbers,
and r2 = k2 +m2. Similarly, a high pass filter,

fHigh (r) =
1

2
+

1

2
tanh

(
r − kC
dk

)
, (4.10)

was designed to eliminate the contribution from wave numbers below kC while maintaining
the contribution from wave numbers above kC . Note that fLow + fHigh = 1. Letting F and
F−1 represent the Fourier transform and inverse Fourier transform operators, respectively,
the Fourier transform of density can be expressed as

F{ρ} = ρ̂ = (fLow + fHigh) ρ̂ = fLowρ̂+ fHighρ̂. (4.11)

From this, and using the linearity of the Fourier transform, the density can be shown to
be equal to the sum of a low frequency component ρLow = F−1 {fLowρ̂} and high frequency
component ρHigh = F−1 {fHighρ̂},

ρ = F−1 {ρ̂} = F−1 {fLowρ̂+ fHighρ̂} = F−1 {fLowρ̂}+ F−1 {fHighρ̂} = ρLow + ρHigh.
(4.12)

As per the two-dimensional spectra of kinetic energy presented in Fig. 4.25, the most
significant contributions to KE come from wave numbers below 20 cm−1, while the two-
dimensional spectra of density in Fig. 4.23 show relatively strong contributions to ρ from
wave numbers above 100 cm−1. Using the dominant wave numbers of KE as an estimate of
the larger length scales, kC was set to 10 cm−1, with dk = 1 cm−1. The resulting low- and
high-pass filters are presented in panels (a) and (b) of Fig. 4.34. Applying these filters to
slices of density in the xz-plane along y = 0.60 cm at t = 12 s, 15.75 s, and 19.5 s, gives the
fields presented in Fig. 4.35, with the result of the application of the high pass filter in the
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Figure 4.34: Contour plots of the two-dimensional filters defined by (a) equation 4.9 and
(b) equation 4.10.
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top row, and the result of the low pass filter in the bottom row. The white contour lines
indicate kinetic energy levels of 4× 10−5 m2/s2, and trace some of the larger scale features
present in the low pass filtered density fields. Additionally, comparing Figs. 4.35 (b),
(d), and (f) with the kinetic energy slices in Figs. 4.5 (b), (d), and (f), seems to indicate
correspondence between the low pass filtered density features and the primary kinetic
energy features. The low-pass density fields display density magnitudes similar to those
presented in the unfiltered density fields in Fig. 4.5, and could be considered more indicative
of the mean flow. The low-pass field also manages to capture regions where the density
is higher (lower) than the initial maximum (minimum), which are only possible because
of double-diffusion. The high-pass fields are reflective of small magnitude fluctuations
resulting from double-diffusive effects, which are less than 0.25% of the magnitude of the
low-pass densities. The high-pass fields could be considered a perturbation to the mean.

In the context of large-eddy simulation (LES), variables are separated into two parts

ρ = ρ̃+ ρ′, (4.13)

where ρ̃ is the resolvable (or filtered) part of the density field, and ρ′ is the subfilter part
of the field. These would correspond to ρLow and ρHigh from above, respectively. When
applying spatial filters to the equations of motion for LES, the filtered nonlinear advection
terms are dependent on the subfilter parts of the field, through terms referred to as subfilter-
scale fluxes [116]. The method of filtering DNS results examined here may be useful for
the parameterization of subfilter-scale fluxes based on double-diffusive processes that may
be considered subgrid-scale when modelling larger scale geophysical flows through LES.

4.6 Summary

High-resolution DNS was employed to examine the formation of double-diffusive Rayleigh-
Taylor instabilities in a three-layer system. In particular, it was observed that:

1. In two-dimensional simulations of single-diffusive systems, typical RT instabilities
were observed to form, with the width of the interface between the high and low
density fluids set by the tracer diffusivity. In contrast, a two-dimensional simulation
of a double-diffusive system experienced the formation of double layers between the
high and low density fluids. This indicates that the motion was primarily due to the
RT and not the double-diffusive instabilities.
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Figure 4.35: Filtered contours of density in the xz-plane along y = 0.60 cm at t = 12 s,
15.75 s, and 19.5 s, with the high pass filter applied in the top row, and the low pass
filter applied in the bottom row. The white lines indicate kinetic energy contours of
4× 10−5 m2/s2. The colour bars indicate the density in kg/m3.
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2. In the 3D DNS of the three-layer double-diffusive RT instability, salt fingers along the
lower interface were observed to form much slower than the RT instabilities along the
upper interface. Several bubbles and spikes emerged from the upper pycnocline, with
small-scale double-diffusive features inside. As in the gravity current simulations, the
temperature and salinity fields displayed similar shapes, though there was significant
smearing in the temperature field, while the salinity field maintained finer-scale fea-
tures. There was strong similarity between the density fields and the salinity fields.
The dominant KE features were much larger than the dominant density features, and
reflected the shape of the RT instabilities.

3. On the scales examined in this simulation, an eddy diffusivity parameterization for
the tracers was determined to be flawed, since the scales of the oscillating tracer
gradients are much smaller than the scales of motion set by the RT instabilities.

4. Through spectral analysis, it was verified that the length scales of density were set
by salinity, since the corresponding spectra agree well. Spectra of both fields showed
contributions from significantly higher wave numbers than in the spectra of other
fields examined. The KE spectra showed strong signals from very low wave numbers.
In the spectra of horizontal slices, the KE appeared isotropic, while the density dis-
played different preferred wave numbers and direction that did not remain consistent
between the height and time at which the spectra was examined. Density spectra
along the vertical direction displayed a similar trend. Spectra of KE slices in the
vertical direction showed a slight preference for higher wave number contribution in
the horizontal direction.

5. Filtering of the double-diffusive features from the larger-scale density was briefly
examined. The high wave number component of density was comprised of the sharp
gradient features due to double-diffusion, while the low wave number component of
density took the shape of more typical Rayleigh-Taylor flow. The low wave number
component also contained regions where the density was higher (lower) than the
initial maximum (minimum), which is only possible due to the effects of double-
diffusion. It is speculated that this type of filtering may be useful in parameterizing
double-diffusion as a subgrid-scale process in larger geophysical-scale LES models.
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Chapter 5

Discussions and Future Work

In this thesis, high-resolution direct numerical simulation was used to model surface grav-
ity currents that resulted in salt fingering, and a three-layer double-diffusive system was
set up so that Rayleigh-Taylor instabilities developed. In order to adequately resolve the
small-scale features characteristic of double-diffusion, the dimensions of the domain used
were chosen to be even smaller than typical laboratory tanks, with relatively large numbers
of grid points. Considering the computational expense involved in simulating such a small
domain, double-diffusion is an entirely sub-grid scale process for many geophysical models
[119]. As a result, the simulation data presented here may be useful in parameterizing
larger-scale phenomena using large-eddy simulation (LES) analysis methods, such as the
techniques using stratified turbulence DNS to calculate effective eddy viscosity presented
by Khani and Waite [42]. Initial investigations into determining an eddy diffusivity pa-
rameterization in Chapter 4, however, were unsuccessful, suggesting that perhaps such a
parameterization is not appropriate for the Rayleigh-Taylor simulation examined here, or
that the approach may need to be altered. Taking the horizontal mean did not appear to
adequately smooth the vertical tracer gradients and fluxes, giving local eddy diffusivities
that rapidly oscillated with time. By examining a larger ensemble of these simulations, a
more meaningful parameterization may be developed.

The results of these simulations have the potential to explain flow patterns that arise
during thermohaline interleaving, where lateral intrusions are formed due to buoyancy
differences at the interface of water masses of different temperature and salinity. Across
these layers, the resulting thermohaline gradients may cause salt fingering, while shear
is induced by the interleaving [59, 78, 75]. In numerical simulations, Kimura and Smyth
[43] imposed fixed background shear, salinity and temperature profiles in a smoothed two-
layer salt fingering system. They did so in order to encourage the growth of prominent salt
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sheets, which may be reflective of the behaviour along the interfaces away from the intrusion
fronts, where the interleaving layers and associated shear are already well-developed. In
contrast, in the gravity current simulations presented here, buoyancy effects give way to
a lateral intrusion, and any shear along the thermohaline interface is due to the resulting
gravity current, and hence develops naturally. Therefore, these results may be valuable
in the explanation of the early development of thermohaline intrusions. The three-layer
simulation may have use in explaining the late-time behaviour of a warm, salty intrusion
between cool, fresh layers, when shear effects are no longer important.

Provided that typical assumptions for suspended particles are satisfied by the system
(e.g., the size of the particles is smaller than the smallest scale motion of the fluid [61])
and that the continuity hypothesis remains satisfied with the inclusion of particles, the
model used in these simulations could be adapted to examine double-diffusive systems
involving suspended sediment or other material. This would, however, involve the addition
of a number of physical mechanisms to the model, such as settling velocities and particle-
particle interactions (see Ozdemir et al. [63] and the references therein). The Boussinesq
approximation would also need to be relaxed to allow for larger density differences.

Although the small-scale of the the simulations presented in this thesis would require
an appropriate scaling for more useful comparisons with environmental flows, there is a
more direct comparison to be made with laboratory or small-scale industrial processes. For
example, consider a hypothetical flow where fluid containing one reactant is delivered into
fluid containing a different reactant along a channel, similar to the gravity current setup
used in Chapter 3. Based on the results of Chapter 3, to encourage more mixing of the
reactants, the faster onset of instability in the no-slip cases can be exploited, with a sudden
introduction of a solid upper boundary yielding a more rapid three-dimensionalization and
local mixing. In the event one wanted to delay the mixing of the reactants, the results
of Chapter 3 would suggest ensuring the upper boundary is made as close to free-slip as
possible. A rather straightforward extension of this research would then be to investigate
flows containing reactive tracers. SPINS would be well-suited to modelling these types
of flows, since it was designed to be able to model up to ten tracer fields at a time.
There have been a number of numerical [117, 14, 48] and experimental [16, 48] studies
that examine the development of different buoyancy and diffusion-based instabilities along
reactive interfaces on scales similar to the simulations presented here. Such experiments
are commonly performed using Hele-Shaw cells, with two-dimensional simulations giving
reasonable flow representations. It could therefore be beneficial to examine similar reactions
with high-resolution 3D DNS, for a more detailed analysis of reactions in more standard
containers.
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Figure 5.1: Initial horizontal temperature (dashed line) and density (solid line) distribu-
tions for the gravity current presented in Fig. 5.3.

Future Work: Flows near the Density Maximum

In Chapter 2, it was noted that the density of water behaves non-monotonically with
temperature, reaching a maximum at 3.98◦C [24]. Although the simulations presented in
the previous chapters occur in a regime where the density changes monotonically with
temperature, the use of equation (2.3) allows for simulations of colder flows that behave
differently than those that use a linear equation of state. In this section, simulations
of flows with temperatures in the non-monotonic regime are examined, as precursors to
possible future work that builds on the results examined in detail in this thesis.

As a preliminary investigation, a fresh gravity current with an initial horizontal tem-
perature distribution defined by equation 3.1, with T0 = 1 ◦C, ∆T = 7 ◦C, and ∆x = 1 cm
was considered. This results in a layer of lighter, 8 ◦C fluid to the left of x0, and heavier,
1 ◦C fluid to the right. The temperature distribution as a function of horizontal position
x is given by the dashed line in Fig. 5.1, with x0 = 20 cm. The resulting density profile
has two distinct regions of constant density, to the left of x0, where ρ = 999.86 kg/m3,
and to the right of x0, where ρ = 999.95 kg/m3. However, there is a local density max-
imum of ρ = 1000 kg/m3 at x = 20.3 cm, where ∆T = 3.53 ◦C (the temperature value
which gives a density maximum for fresh water as defined by equation (2.3)). Two sim-
ulations were performed, one with a lower volume current (x0 = 10 cm, Fig. 5.2), and
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Figure 5.2: Temperature ((a)-(o)) and density ((p)-(ad)) contours for the smaller
temperature-only gravity current (x0 = 10 cm) from t = 20 s to 300 s along y = 3.17 cm.
The colour bar indicates the density in kg/m3.

one with a larger volume current (x0 = 20 cm, Fig. 5.3). The domain in both cases was
80 cm×6.4 cm×6.4 cm, on a 1024×96×96 grid, with free-slip boundaries in all directions.
Additionally, the kinematic viscosity and thermal diffusivity were set to ν = 10−6 m2/s and
κT = 1.7× 10−7 m2/s.

The resulting currents display head shapes similar to the free-slip currents presented
in Chapter 3. Because of the much smaller density difference between the two layers,
these currents travel much more slowly than the double-diffusive currents. In both cases,
there is a thin layer of high density between the current and the surrounding fluid. At
t = 40 s, both currents have formed billows towards the back. Both currents then start to
exhibit a fingering-like mechanism near the back of the current as the higher density fluid
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Figure 5.3: Temperature ((a)-(j)) and density ((k)-(t)) contours for the larger temperature-
only gravity current (x0 = 20 cm) from t = 20 s to 200 s along y = 3.17 cm. The colour bar
indicates the density in kg/m3.
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begins to sink out, while the current bellies and heads stay relatively smooth. The lower
volume current loses a significant portion of its mass via this mechanism, which completely
destroys the surface current. The accumulated mass along the bottom of the domain is
heavier than the surrounding fluid, forming a gravity current along the bottom. The larger
current retains enough of its mass that it manages to reach the right-hand wall, although it
becomes progressively thinner as it travels the length of the domain. The head and belly of
the gravity currents are mostly two-dimensional during the flows, as was the case with the
free-slip double-diffusive currents. Any three-dimensionalization occurs at the back of the
currents, as presented in Fig. 5.4. The high density finger-like structures that trail from
the back of the current are initially two-dimensional, but separate into three-dimensional
features.

The process through which to water masses of similar densities combine to give a mass
of higher density is known as cabbeling [4]. Cabbeling is responsible for the formation
of thermal bars in lakes, where warmer water from the shallower edges or river inflows
meet the colder water of the inner regions of lakes, resulting in sinking plumes of denser
water [30]. As with the double-diffusive simulations presented in this thesis, the scales of
the simulations discussed in this section are much smaller than limnological scales. There
is, however, potential for these simulations to help quantify the distance travelled by the
denser underflow, which would have repercussions for understanding nutrient distribution
in lakes.

A possible future direction for this work would be to examine double-diffusion in this
temperature regime, are it is possible for density increases to occur due to the nonlinearity
with respect to temperature and due to double-diffusive effects. It may also be worth
examining systems in which both active tracers behave nonlinearly. Ruddick and Shirtcliffe
[77] provide a number of empirically determined equations of state that are nonlinear in
heat, salt, and sugar.
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Figure 5.4: Density volume plots of the back of the larger temperature-only gravity current
from x = 0 to x = 30 cm. The colour bar indicates the density in kg/m3.
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[61] F. Necker, C. Härtel, L. Kleiser, and E. Meiburg. High-resolution simulations of
particle-driven gravity currents. International Journal of Multiphase Flow, 28:279–
300, 2002.
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