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Abstract 

Oil sands mining activities in the Athabasca Oil Sands Region in northeastern Alberta, 

Canada have resulted in an extensive amount of land disturbance. The Alberta government 

requires some reclamation of disturbed land to be to wetland ecosystems, and given the 

predominance of fen peatlands in the area, fen construction on post-mined landscapes has 

recently been attempted. Peatlands sequester substantial amounts of carbon over thousands of 

years due to waterlogged conditions and inefficient decomposition, and on a large time scale 

provide a cooling effect on the planet’s radiative budget. However, peatland conditions are also 

ideal for production of the strong greenhouse gas methane (CH4). Natural peatlands emit a 

significant amount of CH4 to the atmosphere, particularly following formation when these 

ecosystems have a net warming effect associated with the large CH4 flux. Given the knowledge 

that the conditions that are conducive to CH4 production and flux in natural peatlands also result 

in the eventual accumulation of peat and carbon sequestration, understanding the CH4 dynamics 

of constructed fens may indicate biogeochemical function, along with the ability of these 

ecosystems to ultimately accumulate peat, a major goal of reclamation. Further, understanding 

important controls on CH4 dynamics from the constructed fen, including vegetation and 

geochemistry, in comparison to natural sites, is beneficial for the development of 

recommendation that may result in lower CH4 flux through vegetation impacts, but appropriate 

water chemistry for peat accumulation.  

For this research CH4 flux, CH4 concentration, and variables including vegetation and 

hydrochemistry were monitored from a constructed fen and two natural reference sites in 

northeastern Alberta over the 2015 growing season. A factorial greenhouse experiment was also 

used to understand differences in CH4 flux, concentration, and oxidation between two vascular 

plants, Carex aquatilis and Juncus balticus, planted for fen construction. This greenhouse 

experiment further considered how water sourced from the reclaimed constructed fen influenced 

CH4 dynamics compared to natural rich fen water. Both the field data from 2015 and the 

greenhouse experiment results found lower CH4 concentration from constructed fen plots 

compared to natural fen plots. Differences in hydrochemistry/water chemistry variables were 

found between constructed fen and natural fen plots in both studies, including evidence of 

terminal electron acceptors known to influence CH4 production such as sulfur, iron, manganese, 

and inorganic forms of nitrogen. While aboveground biomass and productivity in the field was 
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found to be similar or higher at the constructed fen site compared to the two reference sites, 

belowground biomass was lower. In the greenhouse experiment, on the other hand, above and 

belowground biomass and productivity was similar between Carex aquatilis and Juncus balticus 

plots. Overall, several vegetation and hydrochemistry/water chemistry variables were found to 

significantly explain the CH4 results in the field and greenhouse experiment. For example, in 

both cases high sulfur at the constructed fen plots decreased CH4 flux and concentration. Lower 

CH4 concentration and higher relative oxidation found from plots including Juncus balticus 

compared to Carex aquatilis in the greenhouse experiment suggest that planting Juncus balticus 

in future constructed fen projects may result in lower CH4 flux. However, CH4 emissions will 

likely remain low at constructed fens if water chemistry does not change over time, or if future 

constructed fen designs are not altered to result in water chemistry more similar to natural sites.  
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Chapter 1: Introduction 

Peatland ecosystems play a significant role in the global carbon cycle and carbon 

sequestration (Vitt, 2006). It is projected that between 15-30% of the world’s soil carbon is 

stored as peat in boreal and subarctic peatlands (Limpens et al., 2008). Changes to the carbon 

stored in undisturbed peatlands depends on (1) net ecosystem exchange of carbon dioxide 

(CO2), (2) methane (CH4) flux resulting from waterlogged conditions, (3) waterborne exchange 

of dissolved organic, inorganic, and particulate organic carbon (Strack et al., 2008; Lai, 2009). 

Human activities such as agriculture, drainage, and horticultural peat extraction cause peatlands 

to change from net sinks to net sources of greenhouse gases (GHGs; Waddington and Price, 

2000). In the Athabasca Oil Sands Region (AOSR) near Fort McMurray, Alberta, Canada 

surface mining associated with oil sands extraction has effectively eliminated a substantial area 

of peatland ecosystems (Vitt et al., 1996). This has resulted in a tremendous release of carbon to 

the atmosphere that otherwise would have been stored in peat soil in this region (Rooney et al., 

2011). This has led to recent attempts at peatland reclamation through fen construction (Pollard 

et al., 2012). This study investigates CH4 dynamics following fen construction.   

Restoration of peatlands used for horticulture peat extraction, particularly from cutover bogs, 

have been studied extensively (e.g. Price et al., 1998; Rochefort et al., 2003; González et al., 

2014), and this has led to the development of a North American restoration guide (Quinty and 

Rochefort, 2003). Procedures for restoring cutover bog sites typically include blocking drainage 

ditches, introducing vegetation, including Sphagnum diaspores, from a nearby natural donor site 

on the area being restored, covering the vegetation with straw mulch to stabilize the surface and 

reduce water loss, and possibly applying phosphate rock fertilizer to promote vegetation 

establishment (Waddington et al., 2010; Strack et al., 2014). This technique has also been tested 
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for fen restoration (Rochefort et al., 2016). For example, Cobbaert et al. (2004) found successful 

re-establishment of vascular fen plants when fen donor material was used to restore a 

minerotrophic surface after horticulture peat harvesting. Research focused on alternative 

techniques for restoring fen species on harvested or mined peatlands also exists (e.g. Graf and 

Rochefort, 2008; Cooper and MacDonald, 2000).  

Until recently peatland construction on disturbed land with no remnants of a former peatland 

ecosystem had not been attempted (Price et al., 2010). In the AOSR the Alberta Government 

requires a portion of reclamation activities to be to wetland ecosystems (OSWWG, 2000); in the 

past this has resulted in research focused on marsh and open water wetland reclamation (Harris, 

2007). Given the prevalence of peatlands, particularly fens, in the AOSR, recent attempts have 

also been made to construct fen peatlands on post-mined landscapes; two examples of 

constructed fens are the Nikanotee Fen (Daly et al., 2012) and the Sandhill Fen (Wytrykush et 

al., 2012). These projects were created using donor peat transferred from a natural peatland 

(Nwaishi et al., 2015b) and are designed to provide appropriate hydrologic inputs for fen 

functionality (Price et al., 2010). Specifically, at the Nikanotee constructed fen, techniques used 

to restore vegetation at cutover peatlands in North America, such as spreading vegetation donor 

material and mulch on the surface, were tested through the vegetation experimental design (A. 

Borkenhagen, unpublished). Other methods for establishing fen vegetation were also attempted, 

including direct seedling plantation and the sowing of seeds.  

Peatland restoration results in different GHG emissions compared to natural and unrestored 

areas (Strack et al., 2014). The measurement of greenhouse gas fluxes at restored peatlands can 

be used to indicate if these altered ecosystems may eventually sequester carbon as they once did, 

as this is often a major goal of restoration (Andersen et al., 2010). Further, knowledge of GHG 
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emissions and controls on emissions from restored, unrestored, and natural sites across Canada 

can assist in national emission inventory reporting and recommendations to future restoration 

projects that may minimize GHG fluxes to the atmosphere (Strack et al., 2016a). Methane is a 

powerful GHG as it effectively traps heat in the atmosphere (IPCC, 2013). Since CH4 emissions 

are strongly controlled by water table position (Wilson et al., 2016) and vegetation, especially 

the presence of vascular species with aerenchymous tissues (Couwenberg and Fritz, 2012), 

understanding CH4 flux from restored peatlands can provide information on the hydrologic and 

ecological functioning of these sites in comparison to natural peatlands. Generally, CH4 flux has 

been found to increase following restoration of horticulturally-extracted sites (compared to 

unrestored areas), that is primarily associated with a rise in water table following re-wetting 

(Tuittila et al., 2000) and the emergence of vascular vegetation (Waddington and Day, 2007).  

Similarly, monitoring GHG emissions including CH4 from newly constructed fen 

ecosystems compared to natural sites can indicate hydrological and ecological functioning of 

these reclaimed ecosystems. Methane dynamics of constructed fens can also be used to 

understand biogeochemical cycling, as hydrochemistry and the associated redox conditions also 

influence CH4 production and emissions (Bridgham et al., 2013). Considering the 

hydrochemical controls on CH4 dynamics is important at the Nikanotee constructed fen for 

several reasons. First, fragmentation occurred to the donor peat used for fen construction, 

associated with dewatering and transport (Nwaishi et al., 2015b). Further, reclamation materials 

used for construction, such as tailings sand, are known to influence the water chemistry input of 

the constructed fen (Pouliot et al., 2012). Finally, elevated sulfur content at the constructed fen 

may occur due to emissions in the industry-dominated AOSR (Proemse et al., 2012). Nwaishi et 

al. (2016) reported a low CH4 flux from the Nikanotee Fen one-year post reclamation compared 
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to natural sites in the area, associated with differing physical peat properties and 

hydrochemistry. Continual monitoring at the Nikanotee Fen is valuable to understand how CH4 

dynamics and fen functionality may change over time.        

  

1.1 Objectives 

 While Nwaishi et al. (2016) reported on CH4 emissions as well as physical and 

hydrochemical controls on CH4 from the Nikanotee constructed fen compared to a nearby rich 

fen shortly following reclamation across different vegetation cover types, it is beneficial to 

understand how these results may change over time. Further, understanding how vegetation 

functional groups, species, and specific plot-scale vegetation parameters influence CH4 

dynamics at a constructed fen compared to natural reference sites can be used to make 

recommendations to future projects that may result in decreased CH4 emissions. The objectives 

of this research were to: 

1. Quantify CH4 emissions and CH4 pore water concentration across several vegetation 

cover types at a constructed fen, and between a constructed fen and natural reference 

sites in the region with similar vegetation.  

2. Through a greenhouse experiment, compare CH4 flux, concentration, and oxidation 

between two vascular species (Carex aquatilis and Juncus balticus) used for fen 

construction and grown in water from a constructed fen or natural rich fen. 

3.  Determine controls on the CH4 variables measured in the field or greenhouse 

experiment to make recommendations to future constructed fen projects from a CH4 

flux perspective. 
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Chapter 2: Methane emission dynamics from a constructed fen and reference sites in the 

Athabasca Oil Sands, Alberta 

2.1. Introduction 

Surface mining activities associated with the extraction of oil sand ore is a common land-

use in northeastern Alberta, Canada specifically in the Athabasca Oil Sands Region (AOSR) 

deposit around Fort McMurray where 896 km2 of land is affected by oil sands mining (Alberta 

Government, 2015). Mining in this area disturbs landscapes that were made up of over 40% 

wetlands, of which 90% were peatlands, pre-disturbance (Vitt et al., 1996). The Alberta 

Government requires reclamation of mined landscapes after use, a portion of which must be 

reclaimed to wetland ecosystems (OSWWG, 2000). As peatlands sequester carbon (Loisel et al., 

2014) and have a high capacity to store water (Rydin and Jeglum, 2006) it is advantageous to 

restore disturbed areas to peatlands where possible. Fens are the dominant peatland type in the 

AOSR (Natural Resources Canada, 2011), an area where potential evapotranspiration exceeds 

precipitation most years in the sub-humid climate of northeastern Alberta (Devito et al., 2005; 

Petrone et al., 2007). Recently, the construction of fen peatlands on post-surface mined 

landscapes has been attempted (Daly et al., 2012; Wytrykush et al., 2012). It has been suggested 

that the ecosystem function of constructed fen systems may not align with natural sites, since fen 

creation could result in unique hydrology and water chemistry conditions, causing the eventual 

development of novel ecosystems (Nwaishi et al., 2015a). Ongoing monitoring to understand 

how these potential novel ecosystems function should consider carbon dynamics (Wytrykush et 

al., 2012). Further, it is useful to compare carbon cycling results to natural reference ecosystems, 

or regional representative peatlands used for the development of reclamation plans, and against 

which the outcome of constructed fens can be assessed (Daly et al., 2012). Specifically, an 

enhanced understanding of greenhouse gas (GHG) emissions, including (CH4), from constructed 
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fens several years’ post-reclamation will provide valuable knowledge about these recently 

created ecosystems (Nwaishi et al., 2016).  

Although natural peatland ecosystems act to sequester carbon through the uptake of 

carbon dioxide (CO2), the incomplete decomposition of organic matter in waterlogged soils over 

thousands of years results in a CH4 loss from undisturbed peatlands to the atmosphere in the 

order of 30 Tg CH4 annually (Frolking et al., 2011). Specifically, CH4 is produced by microbes 

known as methanogens that utilize acetate, alcohols, or methylated compounds for anaerobic 

respiration through the process of methanogenesis, a final step in the stages of complex polymer 

decomposition in peat (Le Mer and Roger, 2001). Methane can also be consumed in the peat 

profile through oxidation by methanotrophic bacteria that are aerobic organisms that consume 

reduced carbon compounds for energy and use formaldehyde as a cellular carbon source for 

growth (Anthony, 1986). The most recent Intergovernmental Panel on Climate Change (IPCC, 

2013) AR5 report indicates that CH4 as a GHG is 28 times more effective at trapping heat on a 

100-year time scale than CO2. Over the long term (thousands of years), northern peatlands have 

had a cooling impact on Earth’s radiative budget related to persistent CO2 uptake; however, CH4 

emissions from these ecosystems are significant in the short term, causing net warming for some 

time following peatland formation (Frolking et al., 2006).   

Vascular plant species influence the way CH4 is produced, transported, and consumed in 

peat soils (e.g., Ström et al., 2005). The presence of vascular plant species in peatlands increase 

CH4 emissions by providing substrate that amplifies methanogenesis through litter and labile 

carbon from root systems and efficiently transporting CH4 through aerenchymous tissues to the 

atmosphere (Whalen, 2005). Vascular plants also introduce oxygen into the rhizosphere through 

the process of radial oxygen loss (ROL; van Bodegom et al., 2005). Radial oxygen loss can 
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reduce CH4 emissions by creating oxic zones in the deeper anoxic peat profile appropriate for 

oxidation by methanotrophs, and can also cause the re-oxidation of reduced terminal electron 

acceptors (TEAs) that may subsequently inhibit methanogenesis (Bridgham et al., 2013). 

Vascular plants were particularly important in a tool developed by Couwenberg et al. (2011) 

known as greenhouse gas emission site types, where vegetation from rewetted peatlands in 

Europe was used to indicate long-term water level and GHG emissions, including CH4. Species-

specific effects on CH4 dynamics between vascular plants in peatlands have been observed 

(Mahmood and Strack, 2011).  

Moss, especially Sphagnum species, have also been found to influence CH4 dynamics in 

peatlands through a syntrophic relationship between the moss and the methanotrophic bacteria that 

can consume CH4 through oxidation (Raghoebarsing et al., 2005). Endophytic methanotrophs 

living within Sphagnum moss may consume CH4, with the Sphagnum subsequently utilizing the 

carbon produced from the oxidation reaction (Basiliko et al., 2004). Sphagnum associated 

methanotrophy has been found to be highest with increasing temperature, as well as in submerged 

mosses where water table was at or above the surface (Kip et al., 2010). In a tundra environment, 

Liebner et al. (2011) found evidence of submerged brown mosses (particularly Scorpidium 

scorpioides) consuming CH4 through oxidation. 

Besides vegetation type, controls on CH4 dynamics from peatlands include water table 

position, soil temperature, and plant productivity (Lai, 2009). Peat geochemistry also influences 

CH4 flux as the presence of inorganic TEAs including nitrate, iron (III), manganese (III), and 

sulfate can inhibit methanogenesis due to thermodynamically favoured reduction reactions that 

utilize fermentation products necessary for CH4 production (Roden and Wetzel, 1996; Dise and 

Verry, 2001). Further, alternative TEAs may reduce CH4 emissions from peatlands associated 
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with the process of anaerobic CH4 oxidation (AOM; Smemo and Yavitt, 2007). While AOM in 

peatlands is not fully understood, it is likely linked to sulfate, nitrate, or iron (III) replacing 

oxygen as an electron acceptor through various microbial-mediated mechanisms (Smemo and 

Yavitt, 2011).  

Restoration and reclamation efforts of peatland ecosystems has resulted in different rates 

of CH4 emissions compared to natural and unrestored areas, varying in relation to restoration 

technique and time since disturbance (Höper et al., 2008). Studies focused on CH4 emissions 

after peatland restoration of horticulturally extracted sites or well-pads that include rewetting 

have found that emissions increase compared to the pre-restored state, associated with a higher 

water table and the emergence of vegetation that efficiently transport CH4 (Strack et al., 2016a; 

Komulainen et al., 1998). While past studies support lower CH4 flux after restoration compared 

to nearby natural peatland sites (Strack and Zuback, 2013; Tuittila et al., 2000), it is important to 

consider how emissions CH4 may offset an uptake of carbon as CO2 following restoration or 

reclamation (Waddington and Day, 2007). A constructed fen in the AOSR was found to have 

low CH4 flux two growing seasons post-reclamation, associated with different hydrochemistry 

and soil properties (bulk density and organic matter) compared to a natural reference site in the 

area (Nwaishi et al., 2016). As altered CH4 emissions from reclaimed peatlands are expected, 

management objectives with regard to CH4 dynamics should be created prior to projects such as 

fen construction. Objectives could focus on reclaimed sites acting as low GHG emitters overall 

(e.g. through the flux of CO2, CH4, and nitrous oxide (N2O)), or may be associated with similar 

CH4 dynamics to natural sites related to comparable hydrochemistry and vegetation. 

Management objectives would allow CH4 measurements to be one functional characteristic used 

to indicate the reclamation outcome from a biogeochemical perspective (Nwaishi et al., 2015a).     
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Past studies have found evidence of a vegetation species-specific effect on CH4 dynamics 

in peatlands, and further research focused on how different vascular and moss species may 

influence CH4 cycling is needed. Additional information on CH4 dynamics at a constructed fen 

compared to natural reference sites is beneficial in an effort to understand functionality of 

reclaimed fens. In this study CH4 emissions, pore water CH4 concentration, and environmental 

variables known to control CH4 flux and concentration were monitored over a growing season at 

a constructed fen and two peatland reference sites in northeastern Alberta with a focus on two 

vascular species (Carex aquatilis and Juncus balticus), and including a consideration of the 

presence of moss. Specifically, the objectives were to: 1) evaluate CH4 flux and CH4 pools at Carex 

aquatilis, Juncus balticus, moss, mixed graminoid and moss, and bare plots in a constructed fen, 

2) compare the CH4 flux and CH4 pore water pools of a constructed fen to reference sites with 

similar vegetation including Carex aquatilis + moss, Juncus balticus, moss, and bare plots, and 3) 

determine how water table position, soil temperature, geochemistry and vegetation productivity 

and biomass influence CH4 flux at the constructed fen and reference sites.       

 

2.2 Study Sites 

The study was conducted at three sites within 40 km of Fort McMurray, Alberta, Canada. 

The constructed fen site was ~30 km north of Fort McMurray (56° 55.8701 N, 111° 25.0166 W). 

Two natural reference sites, a poor fen located ~40 km south of Fort McMurray (56° 22.610 N, 

111°14.164 W) and a saline fen ~10 km south of Fort McMurray (56°34.398 N, 111° 16.518 W) 

were also used, as Carex aquatilis and Juncus balticus, the vascular species considered in this 

study from the constructed fen, occurred at the poor fen and saline fen, respectively. The study 

sites are within the Central Mixedwood Natural Subregion of Alberta’s Boreal Forest Natural 



10 

 

Region (Natural Regions Committee, 2006) that receives on average 419 mm of precipitation per 

year with an average temperature of 0.96°C, as indicated from the 30-year trend (1980-2010; 

Government of Canada, 2016).  

 

Constructed fen 

The constructed fen site (also referred to as the Nikanotee Fen) is ~3 ha in size within a 

32 ha watershed. It includes an upland aquifer constructed using tailings sands with high 

hydraulic conductivity that allows groundwater to flow towards the fen, that is surrounded by the 

upland as well as three previously reclaimed hillslopes (Ketcheson and Price, 2016; Price et al., 

2010). This results in an alkaline, nutrient-rich water input to the fen from the upland watershed 

and tailing sand (Kessel, 2016). Two meters of donor peat was placed on a layer of petroleum 

coke at the base of the slopes. Donor peat was collected from a nearby rich fen peatland that had 

been dewatered for two years prior to being transported to the reclamation site for construction 

(Nwaishi et al., 2015b). Vegetation was planted on the site with a randomized split-block, split-

split plot design to test vegetation establishment (A. Borkenhagen, unpublished). Specifically, 

for this study, seedling plantation (Cooper and Macdonald, 2000) of two vascular species 

(Juncus balticus, Carex aquatilis), moss layer transfer (Quinty and Rochefort, 2003), and bare 

control cover types were considered (Fig 2.1). Seedlings used for the seedling areas were 

propagated in a commercial nursery (A. Borkenhagen, unpublished). For the moss layer transfer 

areas, vegetation donor material, including the top 0.05-0.1 m of moss, vascular plants, and peat, 

was collected from a nearby rich fen and spread at a ratio of 1:10 donor area to reclaimed area, 

following Quinty and Rochefort (2003). Other vegetation methods not considered in this study 

included sowing of seeds and community plots with a mix of saline (Juncus balticus seedlings, 
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Calamagrostis inexpansa seedlings, and Triglochin martima seedlings) and freshwater (Carex 

aquatilis, Betula glandulosa, Oxycoccus microcarpus, Sarricenia purpurea) species. Vascular 

plant introduction and the moss transfer were accomplished in early summer 2013.    

Metal collars (0.6 m x 0.6 m) inserted ~0.2 m into the peat were used to capture carbon 

flux measurements at the constructed fen and reference sites. At the constructed fen six 

vegetation cover types were considered, including: 1) Carex aquatilis, 2) Juncus balticus, 3) 

Carex aquatilis + moss, 4) Juncus balticus + moss, 5) bare, and 6) moss. Each cover type had 

four plot replicates. The moss species found in collars with moss (Carex aquatilis + moss, 

Juncus balticus + moss, moss) were brown mosses including: Tomenthypnum nitens, 

Drepanocladus aduncus, Bryum pseudotriquetrum, and Leptobryum pyriforme. The moss cover 

type had plots located in the southwest section of the constructed fen where peat and donor 

material was spread in 2014; consequently, these plots included moss without a heavy cover of 

vascular vegetation (Fig 2.1). 
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Fig 2.1. Constructed fen study site including vegetation plot types and flux collar locations. Flux 

collar cover types include four plot replicates of bare (B1-B4), Carex aquatilis (C1-C4), Carex 

aquatilis + moss (CM1-CM4), Juncus balticus (J1-J4), Juncus balticus + moss (JM1-JM4), and 

moss only (M1-M4). In the Community plots a variety of freshwater or saline species were 

planted, and sowing of seeds occurred in the Seeds plots. The moss layer transfer method was 

used in the Moss plots. Community, Seeds, and Moss plots were not considered in this study. 
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Saline fen 

The saline fen reference site is influenced by saline groundwater, associated with 

Devonian carbonates causing halite deposits within the strata (Wells and Price, 2015). In total the 

saline fen comprises an area of about 27 ha. Measurements at saline fen were made within a ~0.5 

ha area at the northern down-gradient end of the site that had vascular vegetation dominated by 

Calamagrostis stricta, Hordeum jubatum, Triglochin maritima, and Juncus balticus. Metal 

collars to capture carbon fluxes were placed in areas dominated by Juncus balticus or in bare 

areas, with four replicates of each cover type. Late in the growing season it was determined that 

one of the plots thought to be dominated by Juncus balticus was actually Eleocharis palustris 

(common spike rush). Data from this plot were included in the analysis as no difference in CH4 

flux, concentration, vegetation cover, or hydrochemical variables compared to the plots including 

Juncus balticus were found.  

 

Poor fen 

The poor fen reference study site (also known as Pauciflora Fen) is an ~8 ha poor fen 

surrounded by upland coniferous forest. Discharge from the surrounding treed upland as well as 

bogs within the basin supply groundwater to the site (Khadka et al., 2016). This site includes 

both a treed poor fen ecosite and a shrubby poor fen ecosite (A. Borkenhagen, unpublished). 

Measurements were made in the richer shrubby poor fen area dominated by a Sphagnum fuscum 

and Sphagnum angustifolium carpet as well as Carex aquatilis, Andromeda polifolia, 

Chamaedaphne calyculata, Betula glandulosa and Oxyccoccus microcarpus. At this site metal 

collar plots were placed across a ~20 m long transect and included four replicates of moss 

dominated plots and four replicates of plots made up of primarily Carex aquatilis + moss. 
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2.3 Methods  

Methane flux measurements 

Flux measurements were made using the closed chamber method (Alm et al., 2007) 

between May 16-September 3, 2015. The height of each collar from the soil surface was 

measured in order to correct chamber headspace volume to calculate CH4 flux. Flux 

measurements were made nine times at each plot over the growing season at the constructed fen 

and seven times at the two reference sites.  

Methane flux was measured using opaque chambers (0.6 m x 0.6 m x 0.3 m; 0.108 m3) 

placed on the collars. Water was poured around the collar edge to seal the system, a battery-

powered fan mixed the chamber headspace, and a thermocouple and thermometer measured 

chamber temperature at the time of CH4 sampling. The chamber had a plug with a tube equipped 

with a three-way valve that was inserted into a hole drilled into the top of the chamber. Using a 

syringe, 20 mL gas samples were taken from the chamber at intervals of 7, 15, 25, and 35 

minutes and injected into evacuated Exetainers (Labco, UK). A gas chromatograph (GC; 

Shimadzu GC2014, Mandel Scientific, Canada) with a flame ionization detector was used to 

determine CH4 concentration of the gas samples collected in the field, and the flux was 

determined from the linear change in concentration over time including corrections for 

temperature and volume of the chamber. Small negative or positive flux values, where the 

change in concentration was within the variance of the GC (±20%), were assigned a value of 0 

for flux. Larger negative flux values (≤ -5.5 mg CH4 m
2 d-1) with concentrations that varied by 

more than 20% were removed from the data set as these fluxes were likely associated with 

ebullition followed by uptake inadvertently caused by chamber placement. In instances where 
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flux values appeared to capture true ebullition events, only values with an R2 > 0.80 were kept in 

the data set. These procedures resulted in loss of 8.6% of the data across all sites.  

 

Pore water CH4 concentration 

Pore water CH4 samples were collected adjacent to the metal flux collars at all sites over 

similar time periods and frequencies as the flux measurements. All samples were collected at 

both 0.2 m and 0.7 m depth with the intent of understanding CH4 pools in and below the rooting 

zone (A. Borkenhagen, unpublished). Pore water samplers were made using 0.2 m long, 0.025 m 

inner diameter PVC pipe slotted at the middle 0.1 m, with stoppers inserted at both ends. Nitex 

screening (250 µm mesh size) covers were sewed and placed around the slotted intake to prevent 

clogging, and tygon tubing was attached to the top stopper and extended above the surface 

(Strack et al., 2004). To collect pore water samples a three-way valve on the sampler was used to 

attach the tygon tubing to a 60 mL syringe, and 60 mL of water was flushed first before a 20 mL 

sample was collected. After sample collection 20 mL of ambient air was added to the syringe. 

The sample was subsequently shaken for 5 minutes to equilibrate dissolved gases into the syringe 

headspace before the air in the syringe was transferred to an evacuated Exetainer (Labco, UK). 

The time of equilibration was used to obtain the equilibration temperature from a meteorological 

station installed at each site. Pore water CH4 concentration at depth was calculated following the 

analysis of the headspace samples for CH4 concentration on the GC (Strack et al., 2016b; 

Mahmood and Strack, 2011; Kampbell and Vandegrift, 1998).  
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Vegetation variables 

Aboveground and belowground vegetation biomass sampling occurred from August 7-17, 

2015 across the three study sites. For this study above and belowground biomass refers to only 

vegetation (aboveground plant parts, roots, rhizomes) and no other living organisms (insects, 

microbes). A quadrat (0.2 m x 0.6 m) was placed adjacent to all collars used for flux 

measurements, and all aboveground vegetation was clipped from the soil surface. Litter was 

separated from live biomass in the field. Aboveground biomass samples were bagged and 

transported back to the University of Waterloo, Ontario, where they were sorted to species, dried 

for 72 hours at 60˚C, and weighed to determine aboveground dry biomass. Sphagnum 

magellanicum and Sphagnum angustifolium dominated the aboveground biomass samples from 

the poor fen. The Sphagnum was clipped at the capitulum base and the capitulum, deemed to be 

the photosynthetically active portion of the moss (Clymo, 1970), was dried to determine dry 

biomass. 

Belowground biomass cores within the clipped aboveground biomass quadrat were 

sampled. All sites were sampled to at least 0.2 m depth, but deeper cores were taken at randomly 

selected plots. At the constructed fen belowground biomass was sampled to a maximum depth of 

0.7 m. Due to difficult site access, cores at the reference sites (poor fen, saline fen) were only 

sampled to 0.4 m depth. At the constructed fen a Wardenaar peat profile sampler (Eijkelkamp Soil 

& Water, The Netherlands) was used to sample adjacent to two of the plots from each vascular 

vegetation cover type (Carex aquatilis, Carex aquatilis + moss, Juncus balticus, and Juncus 

balticus + moss) and one moss plot to 0.7 m (cores 0.10 m x 0.12 m). Compression of the soil 

cores occurred while using the Wardenaar profile sampler and soil core depth was adjusted 

accordingly in the field. Compression ranged from 22-45% of the soil core. For the remaining 
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collars at the constructed fen not sampled to 0.7 m depth, belowground biomass was sampled to 

0.2 m depth using a saw (0.10 m x 0.12 m). A saw was also used to sample belowground biomass 

adjacent to two plots of each cover type at the reference sites to either 0.2 m (poor fen: moss; saline 

fen: bare) or 0.4 m (poor fen: Carex aquatilis + moss; saline fen: Juncus balticus) depth. 

Belowground biomass cores were cut to 0.2 m increments in the field and bagged. Extracted cores 

were transported to the University of Waterloo, Ontario, where they were frozen prior to analysis. 

In the laboratory root biomass was sorted from the peat using tweezers and grouped into woody 

or herbaceous categories prior to being oven dried at 60ºC for 72 hr and weighed to estimate 

belowground dry biomass (Moore et al., 2002).  

To understand vegetation productivity of plots, net ecosystem exchange (NEE) of CO2 

was measured at similar CH4 flux measurement periods and frequencies to generate gross 

ecosystem productivity (GEP) values also using the chamber method (see Methane flux 

measurements). A clear chamber (0.108 m3) with battery-powered fans was placed on the water-

filled collars. A portable infrared gas analyzer (EGM-4, PP Systems, Massachusetts, USA) 

connected to the chamber using tubing measured CO2 concentration in parts per million (ppm). 

An integrated temperature and photosynthetically active radiation (PAR; µmol m-2 s-1) sensor 

connected to the EGM-4 and software logged CO2, PAR, and temperature in the chamber at 10-

second intervals from 0 to 120 seconds after the system had equilibrated and CO2 concentrations 

were stable. Net ecosystem exchange was determined from the linear change in the CO2 

concentration over time, with corrections for temperature and chamber volume. For each flux 

measurement date, NEE was measured in full light as well as in the dark using an opaque tarp to 

determine ecosystem respiration (ER). Gross ecosystem productivity was calculated as the 

difference between the NEE and ER. Only NEE fluxes with a PAR photon flux density greater 
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than 1000 µmol m-2 s-1 were used, resulting in maximum GEP values (GEPmax sensu Bubier et 

al., 2003). Negative GEPmax values in this study indicate uptake of carbon by the ecosystem (i.e. 

more negative values correspond to higher productivity).  

A vegetation survey to determine cover was conducted at the study sites from July 29-

August 2, 2015 in the metal collars used for carbon flux measurements. Each live plant was 

identified to species and percent canopy cover including litter was visually estimated for each 

species to the nearest 1%. Litter was not included in total vegetation cover values.   

 

Hydrochemical variables 

Water table position and soil temperature were measured adjacent to collars to understand 

controls on CH4 dynamics across the study sites. Water table position was measured with ~1 m 

long PVC standpipe (diameter 0.05 m) that had holes drilled for its full length and a mesh 

covering. Soil temperature at 0.2 m and 0.7 m depth were measured with a thermocouple probe 

inserted into the peat and thermometer.  

In order to understand hydrochemistry across the constructed fen and reference sites, 

plant root simulator (PRS)TM probes (Western Ag Innovations Inc., Saskatoon, Canada) were 

used. The PRS probes included a 10 cm2 resin membrane that mimicked the plant surface and 

measured in situ ion supply in the soil solution (Qian and Schoenau, 2002). Cation probes were 

chemically treated with HCO3
- while anion probes were saturated with Na+ prior to use, enabling 

counter-ions to adsorb onto the PRS probe following burial. The PRS probes estimated a supply 

rate of nutrients over the resin area in the soil for the length of burial based on physical, 

chemical, and biological properties (Nwaishi et al., 2016; Wood et al., 2015; Wang et al., 2016). 
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However, as all forms of sulfur, iron, and manganese adsorbed to the PRS probes and were 

measured during analysis, these results were unable to quantify the presence of specific ionic 

species for these compounds, but rather indicated the supply rate of any mobile species of sulfur, 

iron, and manganese in the soil (Eric Bremmer, personal communication). Hence, the PRS 

probes were used in this study to understand large differences between study sites that could 

imply the presence of TEAs that are known to limit methanogenesis.  

The PRS probes were buried directly outside metal collars at 0.2 m and 0.7 m depths for 

14 days from July 6-July 20, 2015. Four replicates each of anion and cation probes were buried 

around each collar. After the probes were removed they were cleaned with deionized water, 

placed in Ziploc® bags and transported to Western Ag Innovations in a cool box. Upon arrival at 

Western Ag Innovations 0.5 M HCl was used to wash the probes, and analytical analysis 

occurred on the resultant eluate (Hangs et al., 2004). Analysis for ammonium ions (NH4
+) 

occurred via colorimetrically with an automated flow injection analysis system, while sulfur, 

iron, and manganese were analyzed via inductively-coupled plasma spectrometry (PerkinElmer 

Optima 3000-DV, PerkinElmer Inc., Shelton, CT).  

 

Data Analysis 

A one-way ANOVA with repeated measures that accounted for date was used to compare 

differences in CH4 flux, CH4 pore water concentration at 0.2 m and 0.7 m depth, GEPmax, water 

table position, and pH and EC at 0.2 m and 0.7 m depth, over the growing season across cover 

types and between sites (Kravchenko and Robertson, 2015). The one-way ANOVA was further 

used to compare above and belowground biomass, percent cover of total vegetation, moss, shrub, 

graminoid, and litter, and sulfur, iron, ammonium, and manganese supply rates at 0.2 and 0.7 m 
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depth, across vegetation cover types and between sites. The Levene test was applied to ensure 

data met equality of variance assumptions, and the Shapiro-Wilks test was used to test data 

residuals for normality. Data that did not meet normality and equal variance conditions were log 

transformed. A value of 1 was added to CH4 flux and environmental variable values prior to log 

transformation as data included values of 0. In some instances, data were still not normally 

distributed after the log transformation was applied. In these instances, the ANOVA was still 

used because sample sizes were moderate and balanced, and ANOVA tests are robust to 

deviations from normality under these conditions (Whitlock and Schluter, 2009). A pairwise t-

test with adjusted p-values using the Bonferroni method was applied to determine which sites 

were different in the case of a significant ANOVA result.  

To understand environmental controls on CH4 dynamics across all plots at the three study 

sites the non-parametric Spearman’s rank correlation test was applied to seasonal averages of 

CH4 flux and CH4 pore water concentration at 0.2 m and 0.7 m depth and environmental 

variables at each plot. Seasonal averages were used in the correlation tests for GEPmax, water 

table position, soil temperature, pH, and EC. Results from the vegetation survey (percent cover 

of total vegetation, moss, shrub, graminoid, and litter) and biomass sampling conducted at the 

end of the growing season were used for the correlation analysis. The PRS results obtained from 

the middle of the growing season were used for the measurement of redox reactive ions in soil 

water. In order to understand variance in data across study sites, principle component analysis 

(PCA) was applied to seasonal average CH4 flux and pore water concentration (0.2 m and 0.7 m 

depth) data along with vegetation, physical, and chemistry environmental variables that had the 

highest correlation coefficient (Spearman’s rho) of alike variables with a similar and significant 

relationship with CH4 flux and CH4 concentration at 0.2 m and 0.7 m. Principle component 
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analysis was conducted on the correlation matrix, and the variables were shifted to be zero 

centred, log transformed, and scaled to account for unit variance before analysis to standardize 

the data. The statistical program R 3.2.5. (R Core Team, 2016) was used for all statistical 

analysis, and a significance of α = 0.05 was applied.  

 

2.4 Results 

Methane flux and concentration  

Across all cover types at the constructed fen the Juncus balticus plots specifically had 

significantly higher flux compared to bare and moss cover types (F5,74 = 2.7, p = 0.03; Fig 2.2I; 

Appendix 1). Considering all plots measured at each site, the poor fen had higher seasonal average 

CH4 flux compared to the constructed fen and saline fen (F2,33 = 28.8, p < 0.001; Fig 2.2II) sites. 

Comparing similar cover types at the constructed fen and reference sites revealed that the bare 

sites at the saline fen had higher average CH4 flux compared to the constructed fen (F1,21 = 4.4, p 

= 0.04), while the Juncus balticus cover type at the two sites had similar flux (F1,23 = 2.5, p = 0.126; 

Fig 2.2III). Both poor fen cover types had higher average CH4 flux compared to similar cover 

types at the constructed fen (Carex aquatilis + moss: F1,25 = 57.7, p < 0.001; moss: F1,16 = 13.9, p 

< 0.01; Fig 2.2IV). At the poor fen, seasonal CH4 flux values were influenced by high fluxes likely 

associated with ebullition events (five fluxes ranging from 45.6-173.0 mg CH4 m
-2 d-1 where the 

linear change in concentration over time had an R2 > 0.80). At the constructed fen and saline fen 

no high flux values indicating ebullition were measured.   
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Fig 2.2. Methane (CH4) flux (log transformed +1) across cover types and sites. I: cover types at 

the constructed fen (CF) including bare (CFB), Carex aquatilis (CFC), Carex aquatilis + moss 

(CFCM), Juncus balticus (CFJ), Juncus balticus + moss (CFJM), and moss (CFM). II: Flux 

between CF, poor fen (PF), and saline fen (SF) sites. III: Flux between similar cover types at the 

CF and SF (bare: CFB, SFB; Juncus balticus: CFJ and SFJ). IV: CH4 flux from similar cover 

types at the CF and PF (Carex aquatilis + moss: CFCM, PFCM; moss: CFM, PFM). Each cover 

types included four plot replicates. Letters indicate significant differences between cover types 

(I, III, IV) or sites (II). In III and IV, letters indicate significant differences between cover types 

in a similar column only (eg. CFB, SFB). 
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The average seasonal CH4 pore water concentration also varied between cover types at 

the constructed fen (Fig 2.3Ia; Appendix 1). At 0.2 m depth the moss cover type had 

significantly higher concentration compared to the Carex aquatilis + moss cover type, Juncus 

balticus + moss cover type, and Juncus balticus cover type (F5,54 = 3.7, p < 0.01). Deeper in the 

peat profile at 0.7 m the bare and moss plots at the constructed fen had higher average CH4 

concentration compared to all the cover types with vascular plants (Carex aquatilis, Carex 

aquatilis + moss, Juncus balticus, and Juncus balticus + moss; F5,56 = 17.6, p < 0.001). Further, 

the Carex aquatilis and Juncus balticus + moss cover type had higher CH4 concentration 

compared to Carex aquatilis + moss that had the lowest concentration of all cover types.  

Considering seasonal averages of all of the plots at each study site, the poor fen had the 

highest CH4 pore water concentration at 0.2 m, while the constructed fen had a lower belowground 

CH4 concentration compared to both reference sites (F2,24 = 114.2, p < 0.001; Fig 2.3IIa). At 0.7 

m, the constructed fen still had the lowest CH4 concentration, but the poor fen and saline fen had 

similar concentrations (F2,21 = 29.8, p < 0.001). At 0.2 m depth, both saline fen cover types had 

higher average CH4 concentrations compared to similar cover types at the constructed fen (bare: 

F1,15 = 86.8, p < 0.001; Juncus balticus: F1,17 = 27.5, p < 0.001; Fig 2.3IIIa). Similarly, at 0.7 m, 

the saline fen cover types had higher average concentrations (bare: F1,15 = 13.3, p < 0.01; Juncus 

balticus: F1,15 = 34.8, p < 0.001). Consistent with the CH4 flux results, the poor fen had higher CH4 

concentrations when considering similar cover types between the constructed fen and poor fen at 

0.2 m (moss: F1,13 = 27.7, p < 0.001; Carex aquatilis + moss: F1,17 = 289.7, p < 0.001; Fig 3IVa) 

and 0.7 m (moss: F1,13 = 5.3, p = 0.04; Carex aquatilis + moss: F1,16 = 198.1, p < 0.001).  
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Fig 2.3. Methane (CH4) concentration (left; a) and total vegetation biomass (right; b) at depth. 

Refer to Fig 2.2 for a description of cover types and sites. Each cover types represents four plot 

replicates for concentration data, and two to four replicates for biomass data. To increase clarity, 

error bars were excluded, and concentration data was not displayed log transformed. 
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Vegetation 

Aboveground biomass was similar at the constructed fen cover types Carex aquatilis, 

Carex aquatilis + moss, Juncus balticus, Juncus balticus + moss, and moss, while these cover 

types had higher biomass compared to the bare cover types at this site (Table 2.1; F5,18 = 7.1, p < 

0.001). A study focused on biomass at the constructed fen that had a more rigorous sampling 

design than the present study found total live aboveground biomass to be in a similar range as the 

values reported here for Carex aquatilis, Juncus balticus, and Juncus balticus + moss cover 

types (L. Messner, unpublished). However, the biomass study found a higher value for Carex 

aquatilis + moss (530.9 ± 39.5 (standard error of the mean (SEM)) g m-2 than the average value 

determined for this study (384.7 ± 40.6 (SEM) g m-2). 

The cover types Carex aquatilis + moss at the constructed fen and poor fen had similar 

aboveground biomass, while the moss cover types had higher aboveground biomass at the poor 

fen compared to the constructed fen (F9,30 = 10.4, p < 0.001). The Juncus balticus cover types at 

the constructed fen produced significantly higher biomass compared to the saline fen, with bare 

plots at these sites having significantly similar biomass (F9,30 = 10.4, p < 0.001). Aboveground 

biomass was dominated by herbaceous vascular plants (95.1% of total biomass weight) across all 

plots at the constructed fen, while moss made up 4.9% (results not shown). Litter was not 

included in the total aboveground biomass result; however, the proportion of litter weight to total 

live biomass weight was 31.9% at the constructed fen. The poor fen biomass included a much 

higher portion of moss across plots (31.6%), with herbaceous vascular vegetation accounting for 

41.7% of the biomass, and woody vascular vegetation (woody shrub tissues) making up 26.7% 

of biomass. Litter was 14.5% of the total live biomass at the poor fen. Finally, at the saline fen 

the biomass mostly included herbaceous vascular plants (98.3%). Moss was only found in one of 
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the Juncus balticus biomass plots and made up just 1.7% of total aboveground biomass. Average 

litter biomass at the Juncus balticus plots at the saline fen was higher than litter found at either 

the constructed fen or the poor fen, and in total litter had a mass equal to 94.9% of the total live 

biomass across saline fen plots. 

Belowground biomass from 0-0.2 m across the constructed fen was higher at cover types 

including vascular species (Carex aquatilis, Carex aquatilis + moss, Juncus balticus, and Juncus 

balticus + moss) compared to the bare and moss cover type that had similar belowground 

biomass (Fig 2.3Ib; F5,18 = 7.2, p < 0.001). Deeper in the peat profile, from 0.2-0.4 m, cover 

types sampled (not including the bare cover type) at the constructed fen did not have 

significantly different biomass (F4,4 = 2.2, p = 0.23). The belowground biomass at a depth of 0.4-

0.6 m for all the plots across the constructed fen (with the exception of the bare cover type) had 

an average biomass of 64.4 ± 26.7 (SEM) g m-2. From 0.6-0.7 m depth belowground biomass 

was not present in either the bare or the moss cover type, while the rest of the cover types that 

included vascular species had belowground biomass averaging just 13.1 ± 6.9 (SEM) g m-2. 

Results from the intensive biomass study at the constructed fen found higher total belowground 

biomass compared to the values found in this study (L. Messner, unpublished). The more 

thorough biomass study found belowground biomass values from 0-0.5 m depth for Carex 

aquatilis, Carex aquatilis + moss, Juncus balticus, and Juncus balticus + moss cover types of 

1402.0 ± 85.0, 1802.3 ± 150.5, 1537.0 ±111.0, and 1673.9 ± 106.1 (SEM) g m-2, respectively.  

Of the three study sites, belowground biomass across all cover types was significantly 

highest at the poor fen compared to both the constructed fen and saline fen that had similar 

biomass from 0-0.2 m and 0.2-0.4 m depth intervals (Fig 2.3IIb; 0-0.2 m: F2,29 = 5.7, p < 0.01; 

0.2-0.4 m: F2,10 = 12.1, p < 0.01). However, comparing similar cover types at the saline fen to the 
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constructed fen revealed higher belowground biomass at the saline fen Juncus balticus plots 

compared to the constructed fen from 0-0.2 m (Fig 2.3IIIb; F3,7 = 10.7, p < 0.01). Roots that 

made up the belowground biomass at the constructed fen and saline fen were from herbaceous 

vascular vegetation (results not shown). At the poor fen, woody shrub roots accounted for, on 

average, ~29% of all belowground biomass. 

Average growing season productivity, as measured through GEPmax, was highest and 

similar at cover types including vascular species compared to the bare and moss cover types across 

the constructed fen (Table 2.1; F5,181 = 3.3, p < 0.01). A similar pattern was found when considering 

total cover (F5,18 = 27.6, p < 0.001), graminoid cover (F5,18 = 21.7, p < 0.001), and litter cover (F5,18 

= 463.5, p < 0.001), with the vascular cover types having higher percent cover compared to the 

bare and moss plots at the constructed fen. While shrub cover was similar across all cover types at 

the constructed fen site (F5,18 = 0.4, p = 0.81), a higher cover of moss was found in plots including 

Juncus balticus + moss compared to the bare, Carex aquatilis and Juncus balticus only cover types 

(F5,18 = 6.1, p < 0.01). Across all sites average growing season productivity was higher at the 

constructed fen and poor fen cover types compared to the saline fen (F9,307 = 4.2, p < 0.001). 

Vegetation survey results showed that the poor fen had highest total (F2,37 = 4.3, p = 0.02), shrub 

(F2,37 = 19.5, p < 0.001), and moss cover compared to the other sites, with significantly higher 

moss cover also found across cover types at the constructed fen compared to the saline fen (F2,37 = 

25.7, p < 0.001). The constructed fen had higher graminoid percent cover than the poor fen and 

similar cover compared to the saline fen (F2,37 = 6.0, p < 0.01). Litter was highest overall at the 

saline fen compared to the other sites, associated with high litter cover found in the Juncus balticus 

plots (F2,37 = 3.5, p = 0.04).  
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Table 2.1. Vegetation parameters ± standard error of the mean measured at the constructed fen 

(CF), poor fen (PF), and saline fen (SF) flux collars. * 

Cover types AG GEPmax Moss Shrub Graminoid Litter Total 

 (g m-2) (g CO2 m-2 d-1)   (%) (%) (%) (%) (%) 

Constructed Fen        

CFB 45.0±30.7ac -7.1±3.3a 2±0.01b 2±0.01a 9±0.03ac 0±0a 14±0.03a 

CFC 554.7±92.1b        -32.3±2.9b 3±0.01b 2±0.01a 60±0.0b 11±0.01b 65±0.04b 

CFCM 384.7±40.6bc -31.6±1.3b 21±0.0 ab 2±0.01a 68±0.03b 9±0.02b 91±0.07bc 

CFJ 425.2±48.3b -31.0±5.0b 8±0.05b 3±0.02a 47±0.08b 11±0.02b 58±0.10b 

CFJM 431.4±67.4b -29.0±2.6bc 39±0.1a 4±0.02a 60±0.08b 9±0.02b 102±0.04bc 

CFM 387.2±83.1bc -5.5±1.9a 12±0.04ab 3±0.0a 5±0.04a 0±0b 20±0.05a 

Poor Fen        

PFCM 323.6±23.9bc -26.0±3.0bc 93±0.03c 15±0.05b 15±0.03ac 11±0.07b 122±0.02c 

PFM 325.1±60.6bc -15.4±3.1c 101±0.01c 21±0.05b 0±0a 0±0a 121±0.05c 

Saline Fen        

SFB 23.0±6.9ac -13.4±3.1a 0±0b 1±0.01a 12±0.04ac 0±0a 13±0.04a 

SFJ 154.5±17.8c -21.2±2.4c 11±0.11b 8±0.04ab 39±0.16c 53±0.24c 58±0.12b 

*Cover types at the CF included bare (CFB), Carex aquatilis (CFC), Carex aquatilis + moss 

(CFCM), Juncus balticus (CFJ), Juncus balticus + moss (CFJM), and moss (CFM). At the PF 

cover types were Carex aquatilis + moss (PFCM) and moss only (PFM), and the SF had a bare 

cover type (SFB) and Juncus balticus cover types (SFJ). All cover types were made up of 

measurements from four plot replicates. Aboveground biomass (AG biomass) was sampled in 

August 2015. Gross ecosystem productivity (GEP) values used were measurements made in full 

light conditions (photon flux density greater than 1000 µmol m-2 s-1) to determine GEPmax. 

GEPmax was averaged over the growing season. Percent cover of vegetation functional groups 

(moss, shrub, graminoid, litter) was determined from a vegetation survey from July-August, 

2015. Letters indicate significant differences between all cover types across the study sites (CFB, 

PFCM, SFB, etc.) for one variable only (AG, GEPmax, etc.). 
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Hydrochemistry 

 Seasonal mean water table position across cover types at the constructed fen over the 

growing season did not differ significantly (Table 2.2; F5,178 = 0.8, p = 0.57). Mean water table 

during the study period across the constructed fen was -6.9 cm. Average water table of all plots 

across this site was shallowest early in the growing season in May, averaging 2.7 cm, and 

deepest in August with a mean water table position of -12.9 cm (results not shown). Mean water 

table position at the saline fen was deeper seasonally compared to the constructed fen (-10.9 cm) 

and similar to the water table found at the poor fen (-9.6 cm; F2,274 = 26.9, p < 0.001). The 

constructed fen and poor fen also had statistically similar average water table positions. The 

saline fen was driest in June and wettest in July, whereas the poor fen experienced its deepest 

water table positions in August and its shallowest levels in May.  

Differences in pH among cover types at the constructed fen were not significant at both 

0.2 m (F5,66 = 1.0, p = 0.45) and 0.7 m depth (F5,67 = 0.1, p = 0.99), while there were distinct 

differences in pH between the three study sites at both depths (Table 2.2; 0.2 m: F2,126 = 20.6, p < 

0.001; 0.7 m: F2,137 = 48.0, p < 0.001). A range of EC values were found across the constructed 

fen, although no statistical differences emerged based on vegetation cover types (0.2 m: F5,66 = 

0.7, p = 0.65; 0.7 m: F5,67 = 0.3, p = 0.93). The saline fen cover types had much higher EC values 

than the constructed fen, and they were especially higher when compared to EC at the poor fen 

(0.2 m: F2,126 = 64.6, p < 0.001; 0.7 m: F2,137 = 106.0, p < 0.001).  
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Table 2.2. Physical and chemical parameters (water table (WT), soil temperature (Soil Temp.), 

pH, and electrical conductivity (EC)) across cover types and sites at the constructed fen (CF), 

poor fen (PF), and saline fen (SF). *  

Site/Cover type WT (cm)** Depth (m) Soil Temp. 

(˚C) 

pH EC (μS/cm) 

Constructed 

Fen 
-6.9±0.53a 0.2 13.7±0.3a 7.3±0.08a 2912.0±79.5a 

  0.7 9.3±0.2a 7.4±0.06a 2297.0±69.2a 

CFB -4.6±2.8 0.2 14.7±0.8 7.2±0.04 2859.1±606.9 

  0.7 9.8±0.5 7.5±0.2 1885.2±233.8 

CFC -10.0±3.7 0.2 13.5±0.4 7.4±0.1 2811.0±232.8 

  0.7 9.1±0.4 7.5±0.04 2035.6±218.5 

CFCM -6.7±1.5 0.2 13.5±0.7 7.4±0.04 2871.0±237.3 

  0.7 9.1±0.5 7.4±0.03 2416.0±203.9 

CFJ -10.0±3.5 0.2 13.5±0.4 7.3±0.04 2918.4±349.5 

  0.7 9.3±0.3 7.5±0.07 2196.4±186.7 

CFJM -5.9±1.9 0.2 13.2±0.5 7.5±0.03 2930.1±343.8 

  0.7 9.1±0.5 7.5±0.06 2628.9±436.7 

CFM -4.8±1.4 0.2 13.7±0.5 7.3±0.04 2683.1±204.9 

  0.7 9.1±0.3 7.4±0.02 2306.1±151.1 

Poor Fen -9.6±1.02ab 0.2 12.9±0.4a 5.5±0.16b 42.9±4.4b 

  0.7 9.3±0.1a 5.7±0.21b 61.5±3.3b 

PFCM -8.9±0.9 0.2 13.1±0.3 5.6±0.14 45.0±3.1 

  0.7 9.2±0.2 5.9±0.06 68.4±4.9 

PFM -10.8±0.4 0.2 12.3±0.7 5.3±0.12 53.8±11.8 

  0.7 9.3±0.3 5.6±0.15 55.3±3.8 

Saline Fen -10.9±1.8b 0.2 14.52±0.4a 6.1±0.07c 11410.0±549.5c 

  0.7 11.4±0.3b 6.2±0.09c 17440.0±567.1c 

SFB -5.4±2.7 0.2 14.7±0.2 6.0±0.05 12140.2±934.4 

  0.7 11.5±0.2 6.3±0.10 17342.1±450.0 

SFJ -16.6±1.8 0.2 14.3±0.3 6.1±0.13 10559.6±1168.2 

  0.7 11.3±0.2 6.1±0.04 17543.4±1385.4 
*Refer to Table 2.1 for a description of cover types. Each cover type includes the growing season 

average of four plot replicates. Letters indicate significant differences in variables (WTD, Soil 

Temp., pH., EC) across sites; for Soil Temp., pH, and EC differences between sites are compared 

at similar depths (0.2 or 0.7 m).   
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Plant root simulator results did not reveal major differences in the supply rate of sulfur 

(0.2 m: F5,18 = 0.6, p = 0.71; 0.7 m: F5,18 = 1.1, p = 0.42), ammonium (0.2 m: F5,18 = 2.3, p = 

0.09; 0.7 m: F5,18 = 2.2, p = 0.10), iron (0.2 m: F5,18 = 1.1, p = 0.38; 0.7 m: F5,18 = 0.4, p = 0.87), 

or manganese (0.2 m: F5,18 = 1.2, p = 0.34; 0.7 m: F5,18 = 0.4, p = 0.82) across distinct cover 

types at the constructed fen study site (Fig 2.4). The constructed fen had a much larger supply 

rate of sulfur compared to both reference sites, with an ~134% higher supply rate compared to 

the poor fen and ~20% higher rate than the saline fen at 0.2 m depth (0.2 m: F2,37 = 964.4, p < 

0.001; 0.7 m: F2,37 = 626.3, p < 0.001). The poor fen had a higher supply rate of ammonium 

compared to the two other sites at both depths (0.2 m: F2,37 = 67.9, p < 0.001; 0.7 m: F2,37 = 41.8, 

p < 0.001), and iron was highest at the poor fen and lowest at the saline fen, with the constructed 

fen having an iron supply rate in between the two reference sites (0.2 m: F2,37 = 58.6, p < 0.001; 

0.7 m: F2,37 = 50.8, p < 0.001). The manganese supply rate was higher and similar at the poor fen 

and constructed fen compared to the saline fen (0.2 m: F2,37 = 20.3, p < 0.001; 0.7 m: F2,37 = 

10.7, p < 0.001).    
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Fig 2.4. Plant root simulator (PRS) probe supply rates of sulfur, ammonium, iron, and 

manganese from cover types at the constructed fen (CF), poor fen (PF), and saline fen (SF). 

Refer to Fig 2.2 for a description of cover types. Each cover type was made up of four plot 

replicates. At each plot four of each anion and cation PRS probes were buried beside the flux 

collar on four sides. PRS probes were buried for 14 days from July 6-July 20, 2015. Notice the 

different scale used in the sulfur figure (top left) for the different sites (CF vs. PF and SF). 



33 

 

Controls on CH4 dynamics 

Several vegetation and chemical controls on CH4 flux and concentration at depth were 

found across plots at the three study sites (Table 2.3). Higher CH4 flux and pore water 

concentration was found to be correlated to higher belowground biomass, moss, shrub, and total 

plant percent cover, soil temperature and iron and ammonium supply rate. Negative correlations 

implied that lower CH4 flux and concentrations were associated with higher values of 

aboveground biomass, percent cover of graminoid and litter, pH, EC, and sulfur supply rate. The 

positive correlation between CH4 concentration at both depths and GEPmax suggested lower CH4 

was related to higher productivity. Considering CH4 flux, more variables associated with pore 

water chemistry (pH, EC, and sulfur, iron, and ammonium ion supply rate) were found to be 

significantly correlated compared to vegetation variables. Conversely, more vegetation related 

controls on CH4 pore water concentration at 0.2 m and 0.7 m depth were observed (total 

belowground biomass, aboveground biomass, GEPmax, and percent cover variables).  

  



34 

 

 

 

 

 

Table 2.3. Spearman correlation results of methane (CH4) flux and CH4 concentration at 0.2 m 

and 0.7 m with environmental variables. *  

 CH4 flux  CH4 Conc. 0.2 m  CH4 Conc. 0.7 m 

Variable rho p-value  rho p-value  rho p-value 

AG 0.04 0.828  -0.33 0.041  -0.47 0.002 

BG0-0.2 0.42 0.006  0.54 <0.001  0.48 0.002 

BG0.2-0.4 0.59 0.036  0.20 0.517  0.09 0.765 

GEPmax 0.05 0.753  0.43 0.006  0.42 0.007 

Moss 0.48 0.002  0.29 0.071  0.17 0.306 

Shrub 0.49 0.001  0.59 <0.001  0.48 0.002 

Graminoid -0.19 0.235  -0.57 <0.001  -0.54 <0.001 

Litter 0.01 0.884  -0.31 0.048  -0.34 0.032 

Total 0.55 <0.001  0.27 0.094  0.17 0.300 

WT -0.16 0.329  -0.27 0.094  -0.31 0.054 

Soil Temp. -0.18 0.253  -0.04 0.797  0.36 0.022 

pH -0.44 <0.01  -0.76 <0.001  -0.70 <0.001 

EC -0.51 <0.001  -0.21 0.189  -0.21 0.187 

Sulfur -0.60 <0.001  -0.78 <0.001  -0.79 <0.001 

Iron 0.40 0.011  -0.21 0.189  0.32 0.048 

Ammonium 0.42 0.006  0.61 <0.001  0.66 <0.001 

Manganese 0.14 0.381  -0.04 0.794  -0.23 0.150 
*Environmental variables include aboveground biomass (AG), belowground biomass (BG; 0-0.2 

m depth and 0.2-0.4 m depth), maximum gross ecosystem productivity (GEPmax), percent cover 

of moss, shrub, graminoid, litter, and total cover, water table (WT), soil temperature (Soil 

Temp.), pH, electrical conductivity (EC), and sulfur, iron, ammonium, and manganese supply 

rate. Average seasonal plot values were used for CH4 Flux, CH4 Conc. 0.2 m, CH4 Conc. 0.7 m, 

GEPmax, WTD, Soil Temp., pH, and EC. For CH4 Flux and CH4 Conc. 0.2 m, soil temperature at 

0.2 m depth was used; for CH4 Conc. 0.7 m, soil temperature at 0.7m depth was used. Bold 

indicates a significant result (p < 0.05). 
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Differences were found between the PCAs that included CH4 flux and CH4 pore water 

concentration at 0.2 m and 0.7 m depth (Fig 2.5). The first two principal components (PCs) were 

important (eigenvalues > 1, accounting for 81.1% of data variance) in the PCA that included CH4 

flux and correlated environmental variables (Fig 2.5I). Methane flux, followed by ammonium 

supply rate contributed the most to PC1, while belowground biomass and total vegetation cover 

had the highest loadings on PC2 (Appendix 2). The PCA indicated strong clustering based on 

sites, with the constructed fen and saline fen plots overlapping and the poor fen plots located on 

the opposite side of PC1. The first two PCs were also important, with eigenvalues greater than 

one, for the PCA that included CH4 pore water concentration at 0.2 m and highly correlated 

environmental variables. These PCs accounted for 84.3% of data variance, with CH4 

concentration at 0.2 m and pH contributing the most to PC1, and belowground biomass and 

graminoid percent cover contributing most highly to PC2 (Fig 2.5II; Appendix 2). In this PCA 

strong clustering based on site also occurred, with plots from each site clustering in distinct 

locations on the PCA. Finally, the PCA including CH4 pore water concentration at 0.7 m depth 

and environmental controls had three important principle components that accounted for 87.7% 

of data variance (Fig 2.5III). The first two variables with the highest loadings for PC1, PC2, and 

PC3 were: CH4 concentration at 0.7 m and pH, soil temperature at 0.7 m and ammonium supply 

rate, and graminoid and shrub vegetation cover, respectively (Appendix 2). In this PCA plots 

from each of the three study sites also clustered in different locations when examining the first 

two PCs. 
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Fig 5. Principle component analysis (PCA) of 

seasonal average methane (CH
4
) flux (CH4Flux; I), 

CH
4
 concentration at 0.2 m depth (CH4Conc0.2; II), 

and CH
4
 concentration at 0.7 m depth (CH4Conc0.7; 

III) with environmental controls across the 

constructed fen (CF), poor fen (PF), and saline fen 

(SF) sites. Environmental controls include total 

vegetation cover (TotalCover), shrub cover 

(ShrubCover), Graminoid cover (GraminoidCover), 

belowground biomass from 0-0.2 m depth (BG), 

electrical conductivity (EC), pH, temperature at 0.7 m 

depth (Temp0.7), and ammonium (NH4) and sulfur 

(S) supply rate. 
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2.5 Discussion 

Due to waterlogged and reducing conditions, CH4 is produced and emitted from most 

natural peatlands (Gorham, 1991), driven by microbial processes that regulate CH4 production 

and oxidation (Edwards et al., 1998). Fen construction in the AOSR in northeastern Alberta has 

recently been attempted. An understanding of carbon cycling including the CH4 dynamics of 

these systems for some time post-reclamation is advantageous to provide knowledge on 

biogeochemical functionality of these ecosystems compared to natural peatlands. In this study 

different CH4 flux and pore water pools were observed at a constructed fen in its third growing 

season post-reclamation compared with natural reference fens that had similar vegetation cover 

types as at the constructed fen. These differences were correlated with distinct hydrochemistry 

and differences in vegetation type and productivity.  

Average 2015 CH4 flux values from the constructed fen (4.0 mg CH4 m
-2 d-1) and saline 

fen (4.4 mg CH4 m
-2 d-1) in this study were substantially lower compared to values measured 

from the poor fen in this study (23.9 mg CH4 m
-2 d-1) as well as from other fen sites in the region. 

For instance, Long et al. (2010) reported average emissions of 25.6 mg CH4 m
-2 d-1 over a 

growing season at a moderately-rich treed fen in Alberta using eddy covariance. More broadly, 

in a synthesis of CH4 emissions from wetlands at a range of latitudes, Turetsky et al. (2014) 

report a growing season mean flux from boreal undisturbed wetlands including all types (bog, 

fen, etc.) of 72.7 mg CH4 m
-2 d-1. Monitoring GHG fluxes from the constructed fen considered in 

this study by Nwaishi et al. (2016) in 2013 directly after vegetation was planted, and in 2014 

one-year post reclamation, also revealed low seasonal CH4 flux (<2.5 mg CH4 m
-2 d-1), with no 

difference found across a range of vegetation cover types or between the two years. Subsurface 

CH4 pore water concentration at the constructed fen (0.16-0.52 mg/L at 0.2-0.7 m depth) was 
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also low compared to both the poor fen (4.63-4.30 mg/L at 0.2-0.7 m depth) and saline fen (1.81-

3.14 mg/L at 0.2-0.7 m depth) in this study. Strack et al. (2004) also found higher average 

subsurface CH4 concentrations in a pool-ridge complex of a poor fen in southern Quebec, where 

CH4 pore water concentration ranged from 1.3-5.8 mg/L from 0.2-1 m depth. Further sampling 

over time will be required to determine when the CH4 pool at the constructed fen may increase 

enough to result in a similar concentration to natural sites in the AOSR such as the poor fen 

analyzed in this study. 

 

Vegetation controls on CH4 dynamics  

At the constructed fen, bare and moss plots were found to have significantly lower flux 

compared to Juncus balticus plots (Fig 2.2I). Lower pore water CH4 concentration at the Juncus 

balticus plots compared to the bare and moss plots (Fig 2.3Ia) despite higher flux indicates that 

the Juncus balticus plants transported CH4 to the atmosphere through aerenchyma (Whalen, 

2005). Evidence of CH4 transport from the other cover types with vascular plants was also found, 

given lower concentrations at depth despite similar fluxes compared to the moss and bare cover 

types. While no evidence of differences in CH4 emissions between Carex aquatilis and Juncus 

balticus were found in the present study, low flux values at the constructed fen made it 

challenging to parse out the vegetation influence on the flux.  

 Similar patterns across sites emerged when all vegetation variables were considered. The 

constructed fen had similar or higher aboveground biomass, productivity through GEPmax, and 

graminoid cover compared to the reference sites in this study (Table 2.1). This indicates that the 

direct planting of vegetation at the constructed fen was beneficial for biomass accumulation and 
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for the CO2 sink to establish (Nwaishi et al., 2016). The vegetation results revealed that planted 

graminoid species at the constructed fen were thriving two years’ post-restoration, supporting 

past laboratory studies that found graminoids to reproduce quickly and be highly resistant to the 

influence of oil sands process-affected water with high salinity and naphthenic acid 

concentrations (Pouliot et al., 2012; Rezanezhad et al., 2012). Methane emissions have been 

reported to increase with higher vascular vegetation productivity (Joabsson and Christensen, 

2001), cover (Bubier et al., 1995a), and biomass (Bellisario et al., 1999). The present study did 

not support these findings, as even though vegetation biomass, productivity, and total cover at 

the constructed fen was higher or similar to the reference sites, CH4 flux remained low. 

Moreover, the correlation results across all study sites indicated lower CH4 pore water 

concentration with increasing aboveground biomass, percent cover of graminoid, and GEPmax 

(Table 2.3). Methane pore water concentration at 0.7 m was found to be lower at plots with 

higher litter cover, despite the expectation that more litter would increase the CH4 pool due to the 

presence of highly decomposable labile substrate (Shannon et al., 1996). While the Juncus 

balticus cover types at the saline fen had highest litter cover across all sites, more replicates at 

the constructed fen with high litter cover apparently influenced the negative correlation results 

(Table 2.1). Overall, the vegetation correlation results were related to low CH4 concentration at 

the constructed fen despite high vegetation cover and productivity, signifying that the 

hydrochemical conditions masked the vegetation effect. This was supported by the three PCA 

results, where vegetation variables such as total, graminoid, and shrub cover, did not fall along 

PC1 that correlated strongly with CH4 flux and pore water concentration, but rather in between 

PC1 and PC2 (Fig 2.5).       



40 

 

 The species composition across the three study sites differed, with the percent cover of 

shrub, moss, and total vegetation highest at the poor fen (Table 2.1). As the poor fen had the 

highest CH4 flux and concentration, the correlations that included these vegetation variables had 

positive relationships (Table 2.3). Moss was especially common in the vegetation survey at the 

poor fen, causing the total cover to be highest across sites. Due to the symbiotic relationship 

between methanotrophic bacteria (CH4 consumers) and moss, it may have been expected that the 

higher cover of moss found at the poor fen could result in low CH4 flux (Larmola et al., 2010). 

However, the result of highest CH4 emissions from the poor fen where moss cover was highest 

supports a predictive model for CH4 by Bubier et al. (1995b) using bryophyte species cover. This 

model was based on a negative relationship between CH4 flux and height above the mean water 

table, suggesting that bryophyte cover can indicate wetness, with bryophyte species found in 

wetter pools where CH4 flux is higher. The poor fen also had higher shrub cover compared to the 

other sites, and the shrub cover included woody tissues. Generally, woody shrub species have 

been known to result in lower CH4 flux compared to other vascular species, related to low 

transport through stems and leaves of woody species (Shannon and White, 1994). The 

relationship of higher CH4 flux and concentration with higher shrub cover in this study was 

associated with the low flux values from the constructed fen and saline fen. 

Belowground biomass was sampled to understand how roots that differentially affect CH4 

production and consumption (Segers, 1998) may be influencing CH4 dynamics across cover 

types and sites. Higher belowground biomass from 0-0.2 m was found at cover types with 

graminoids at the constructed fen compared to the bare and moss cover types (Fig 2.2Ib). Lower 

CH4 concentration at the cover types with higher biomass supports vascular species at the 

constructed fen acting as gas conduits for CH4 transport (Joabsson and Christensen, 2001). Moss 
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and Carex aquatilis + moss cover types at the poor fen, and at the saline fen Juncus balticus 

cover type from 0-0.2 m, had significantly higher belowground biomass compared to the 

constructed fen (Fig 2.3III-IVb), and correlation results revealed that the total biomass at these 

depths was related to higher CH4 emissions or concentration (Table 2.3). Greater belowground 

biomass was possibly one reason for a greater CH4 pool at the saline fen compared to the 

constructed fen, as evidenced by PCA results (Fig 2.5II-III), that may have been associated with 

labile root exudates increasing CH4 production (Megonigal et al., 1999; Whiting and Chanton, 

1993).  

A similar and low CH4 flux was found between the saline fen Juncus balticus plots and 

the constructed fen Juncus balticus plots, despite a higher CH4 concentration at the saline fen. It 

is possible that this was related to ROL from Juncus balticus causing CH4 consumption at the 

saline fen, especially from 0-0.2 depth where belowground biomass, particularly fine root 

biomass, was abundant (results not shown). This was further evidenced by the higher 

concentration of CH4 at the saline fen bare cover type, with less belowground biomass compared 

to the Juncus balticus cover type (Fig 2.2III). Further research on the role of Juncus balticus on 

peatland CH4 dynamics is required to better understand its role in rhizospheric oxidation. Likely 

aerobic oxidation above the 0.2 m pore water sampler also contributed to the low CH4 flux at the 

saline fen, given the relatively deep water table position across this site (-10.9 cm on average 

seasonally), particularly in areas dominated by Juncus balticus (Table 3.2).  
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Hydrochemical controls on CH4 dynamics 

Several studies have reported that water table acts as a dominant control on CH4 flux (e.g. 

Bubier et al. 1993; Pelletier et al., 2007; Couwenberg and Fritz, 2012) with a shallower water 

table corresponding to greater flux, associated with a smaller oxic zone where CH4 consumption 

could occur. This relationship is so dominant in undisturbed peatlands that water table has been 

used as a forcing in CH4 emission models (Walter and Heimann, 2000). Couwenberg and Fritz 

(2012) argue that water table position can be used as a proxy for CH4 emissions in boreal and 

temperate peatlands, with a water table position of 20 cm or shallower resulting in a significant 

increase in flux. Water table position is a known determinant of redox conditions (Belyea, 1999). 

The geochemistry implied an availability of alternative TEAs across sites in this study (Fig 2.4). 

This was related to reduced CH4 concentration and emissions (Table 2.3; Fig 2.5), particularly at 

the constructed fen, and suggests that water table position cannot be used to indicate CH4 

emissions from reclaimed fen systems in the AOSR. 

Chemical parameters varied across sites (Table 2.2). Distinct pH at each study site 

(constructed fen>saline fen>poor fen) largely explained CH4 flux and concentration. The 

constructed fen and saline fen sites had pH values within the optimal range for CH4 production 

(pH 6-7; Blodau, 2002), while the poor fen had a slightly lower pH (5.3-5.9). Higher CH4 

emissions and concentration from the poor fen regardless of lower pH levels indicate an adaption 

by methanogen communities to tolerate the more acidic conditions at this site (Updegraff et al., 

1996). Electrical conductivity was especially high at the saline fen, associated with high 

concentrations of chloride and sodium ions influenced by the unique groundwater (Wells and 

Price, 2015). Higher EC found at the constructed fen than the poor fen is likely related to higher 

concentration of ions in the water that moved from the upland slopes to the reclaimed fen, or 
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could be associated with a high ion concentration in the donor peat used for reclamation. Strong 

correlations found between pH and CH4 flux and concentration, and EC and CH4 flux (Table 2.3, 

Fig 2.5), highlight the distinct hydrochemistry across the three study sites.            

Differences in ammonium, as well as sulfur, iron, and manganese supply rate measured 

with the PRS probes implied that different TEAs and redox conditions occurred across the study 

sites (Fig 2.4). High sulfur supply rate at the constructed fen was highly correlated with the low 

CH4 emissions and concentration (Table 2.3, Fig 2.5). Sulfate is known to reduce CH4 release as 

sulfate-reducing bacteria efficiently compete for substrates necessary for CH4 production (Dise 

and Verry, 2001). Although the PRS probes did not specifically measure sulfate ions, it is highly 

likely that a portion of the measured sulfur supply rate was sulfate, particularly at the constructed 

fen where a circumneutral pH occurred (Table 2.2) and the anion binding capacity of sulfate was 

likely low (Lamers et al., 1998). Even if the PRS probes had adsorbed other mobile forms of 

sulfur, such as organic sulfur, sulfide, or disulfide, the eventual recycling of these forms to 

sulfate was possible (Pester et al., 2012). Regardless of the sulfur form, the PRS probes 

effectively revealed that the drastic differences in sulfur cycling across study sites influenced 

methane emissions and pore water concentration. High sulfur found at the constructed fen could 

be associated with the influence of tailing sand used for upland construction, or a high 

concentration of sulfur ions present in the donor peat (discussed above), or due to deposition of 

reactive sulfur associated with industrial activity in the oil sands area (Proemse et al., 2012). 

Methanogenic bacteria in wetlands have also been found to be supressed by inorganic 

compounds such as nitrate (Balderston and Payne, 1976), or by iron III oxide (Roden and 

Wetzel, 1996). Higher ammonium at the poor fen suggests a larger inorganic nitrogen pool at 

this site compared to the saline fen or constructed fen. Wood et al. (2015) found that elevated 
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total inorganic nitrogen supply rate at natural sites in the AOSR was associated with an external 

supply, such as from groundwater, as opposed to from internal processes including 

mineralization and decomposition. Hence, the higher ammonium supply rate at the poor fen in 

this study does not necessarily indicate less reduced conditions that may be non-ideal for 

methanogenesis. The iron ions adsorbed on the PRS probes were likely the more soluble iron (II) 

ions (Kirk, 2004), and the higher iron supply rate found at the poor fen corresponding to higher 

CH4 emissions suggests that the redox state at the poor fen was actually more reduced compared 

to the other site, causing less CH4 suppression.  

 

2.6 Conclusions 

In this study differences in CH4 flux, CH4 pore water concentration, and environmental 

variables, particularly geochemistry, were found between a constructed fen, poor fen, and saline 

fen in the AOSR. This indicates that constructed fens do not function similarly to natural 

reference fens in the area shortly after reclamation, although given the extent of disturbance to 

the pre-reclaimed landscape where fen construction occurred, this finding is not surprising. 

Controls on CH4 flux and concentration suggest that explaining CH4 emissions from a reclaimed 

fen requires in-depth knowledge of plot-scale ecohydrological and chemical conditions. As CH4 

is a strong GHG, low CH4 flux from a constructed fen may actually be seen as beneficial in 

future fen creation projects by reducing GHG emissions. However, CH4 production and flux 

indicate highly reduced conditions that inhibit organic matter decomposition resulting in its 

accumulation in the soil, and lack of these conditions are a concern for long term peat 

accumulation rates. Ultimately a clear statement of reclamation goals (e.g., greenhouse gas sink 
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vs. similar biogeochemical function as natural fens) will be required to determine how CH4 flux 

and its controls relate to the success of constructed fen projects, particularly over the long-term.  
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Chapter 3: The influence of Carex aquatilis and Juncus balticus on methane dynamics: a 

comparison with water sourced from natural and constructed fens 

3.1 Introduction 

Peatlands play a significant role in carbon sequestration related to the long-term carbon 

dioxide (CO2) sink of these ecosystems, associated with the incomplete decomposition of 

organic matter over thousands of years (Vitt, 2006). Methane (CH4) and nitrous oxide (N2O) are 

strong greenhouse gases (GHGs) that can also be emitted from peatlands, and may partially 

offset the CO2 sink (Strack et al., 2008). This is especially true for CH4, as it is estimated that 

natural peatlands globally release approximately 30 Tg CH4 on an annual basis; in comparison, 

annual N2O emissions have been found to be in the order of 0.02 Tg, while the CO2 sink of 

natural peatlands is around 100 Tg carbon per year (Frolking et al., 2011).  

In the Athabasca Oil Sands Region (AOSR) near Fort McMurray, Alberta, Canada 

surface mining has impacted large expanses of fen peatlands (Rooney et al., 2011). 

Consequently, fen construction in this area has been attempted (Pollard et al., 2012). Constructed 

fens have the potential to minimize the GHG footprint of mining companies by acting as an 

overall sink of CO2, CH4, and N2O (Nwaishi et al., 2016). It is valuable to understand rates of 

carbon cycling and GHG emissions from these reclamation projects (Daly et al., 2012). 

Understanding differences in variables that influence carbon cycling and GHG emissions, such 

as water chemistry and vegetation, between constructed fens and natural fens will provide 

information on the biogeochemical functioning of constructed fens (Nwaishi et al., 2015). For 

instance, constructed fen designs can result in alkaline ground water discharge that contains 

soluble organic chemicals (Pouliot et al., 2012) that can influence water chemistry and affect 

GHG emissions of reclaimed peatlands (Nwaishi et al., 2016). A variety of vegetation techniques 

have been attempted at constructed fens in order to test vegetation establishment (Vitt et al., 
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2016; A. Borkenhagen, unpublished), and these different vegetation cover types have been 

previously found to result in different GHG dynamics (Nwaishi et al., 2016). Recommendations 

for fen construction that could result in reduced GHG fluxes, including CH4, are beneficial to 

support the creation of these reclaimed ecosystems. 

Methane flux from peatlands is dependent on how the GHG is produced, consumed, and 

transported in the peat profile (Lai, 2009). Two types of methanogens produce CH4 under 

different conditions. Acetotrophic methanogens produce CH4 and CO2 from acetate, while 

hydrogenotrophic methanogens produce CH4 through the reduction of CO2 while using hydrogen 

as an electron donor (Whalen, 2005). Methanotrophic bacteria can also consume CH4 in the peat 

profile through oxidation (Anthony, 1986). Three main processes result in CH4 release from 

peatlands to the atmosphere including diffusion through the peat matrix, transport through 

vascular plants, and ebullition (bubbling; Bridgham et al., 2013). The diffusion of CH4 through 

peat, associated with a concentration gradient between the soil and atmosphere, is slower 

compared to release through plant-mediated transport and ebulltion events (Lai, 2009). 

As methanogenesis is strongly related to soil water chemistry, this is an important control 

regulating CH4 emissions from peatlands (Blodau, 2002). Methanogens can withstand a range of 

environmental conditions (Dise and Verry, 2001) when a redox potential lower than -300 mV 

exists, and thrive when electron acceptors including oxygen, nitrate, ferric iron (iron III), 

manganese (manganese III, manganese IV) and sulfate are not present (Kamal and Varma, 

2008). The presence of oxygen and nitrate can prevent methanogenesis due to aerobic and 

denitrifying bacteria, respectively, directly eliminating labile carbon from the system (Le Mer 

and Roger, 2001). The anaerobic decomposition process utilizing iron III, and manganese III and 

IV reduction can supress CH4 production, particularly in mineral wetlands (Roden and Wetzel, 
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1996; Lovely and Phillips, 1988). Sulfate-reducing bacteria are more efficient at competing for 

substrates necessary for methanogenesis (labile carbon, hydrogen) and sulfate availability also 

limits CH4 production (Lovely and Klug, 1983). Soil acidity should be considered in relation to 

methanogenesis as methanogen growth is favoured in a pH range between 6-7 (Dunfield et al., 

1993); however, field studies have indicated that adaptions to acidic conditions have allowed 

CH4 production to also occur outside this range (Updegraff et al. 1996). 

Soil water chemistry can also affect CH4 emissions by influencing CH4 oxidation. Given 

that CH4 is a necessary substrate for methanotrophy, oxidation is positively correlated to CH4 

production, and consequently soil water chemistry controls on methanogenesis discussed above 

will also indirectly control CH4 oxidation rates (Le Mer and Roger, 2001). Aerobic CH4 

oxidation has been estimated to consume between 40-70% of the CH4 created by methanogenesis 

in wetlands (Megonigal et al., 2004). However, CH4 can also be oxidized via anaerobic oxidation 

of CH4 (AOM) that is largely dependent on soil water chemistry (Smemo and Yavitt, 2007). 

Globally, AOM alleviates a large portion of the CH4 flux to the atmosphere in marine 

environments (Reeburgh, 2007). Anaerobic oxidation of CH4 is possible when oxygen is 

replaced by alternative electron acceptors and is understood to involve a process known as 

“reverse methanogenesis”, where methanogens act as oxidizers when hydrogen is in low supply, 

and the oxidation equation of CH4 involves H2O as an electron acceptor while releasing 

hydrogen and CO2 as products (Hoehler et al., 1994). A syntrophic relationship between sulfate-

reducing bacteria and the methanogens maintain the low hydrogen concentration necessary for 

reverse methanogenesis as the sulfate-reducers use the hydrogen produced by the CH4 oxidation 

as an electron donor to reduce sulfate (Valentine and Reeburgh, 2000). Recently, Gupta et al. 

(2013) found evidence for AOM in a range of North American peatlands using 13C tracers, 
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although it was unclear which electron acceptor(s) was (were) driving this process. In contrast, 

previous reviews had found little evidence of AOM in peatlands (Smemo and Yavitt, 2011). This 

was thought to be the case mostly because sulfate, an important alternative electron acceptor in 

marine and salt water AOM, is not usually observed in high quantities in freshwater 

environments (Smemo and Yavitt, 2011). It is accepted that nitrate, iron, manganese and organic 

alternative electron acceptors may also play a role in freshwater AOM (Bridgham et al., 2013). 

Nitrate as an electron acceptor could provide adequate free energy for AOM (Raghoebarsing et 

al., 2006). While metal concentrations including iron and manganese are lower in peat soils 

compared to mineral soils, the ability of these metals to be oxidized and reduced could also drive 

AOM in peatlands (Beal et al., 2009). Further research regarding controls on AOM in peatlands 

is necessary to understand how this process may limit CH4 emissions across natural and 

reclaimed ecosystems with a range of biogeochemical and environmental conditions (Gupta et 

al., 2013).  

The presence of vascular plants also acts as a strong control on the CH4 dynamics in 

peatlands (Joabsson et al., 1999). Plant-mediated transport of CH4 occurs through vascular plant 

aerenchyma that allow for gas movement, and consequently can distribute oxygen to the root 

zone (Couwenberg and Fritz, 2012). Plant-mediated diffusion occurs when oxygen consumption 

caused by plant respiration results in a concentration gradient causing oxygen flow to the roots 

and rhizomes in the anoxic peat layer (Whalen, 2005). This outflow of oxygen from the plant 

tissue corresponds to an influx of CH4 that can diffuse up the aerenchyma of the plant and be 

released to the atmosphere (Lai, 2009). Besides increasing CH4 transport in peatlands, vascular 

plants can also amplify CH4 flux to the atmosphere by providing organic matter from 

decomposing biomass that methanogens can utilize for production (Nilsson and Bohlin, 1993). 
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Vascular plants release several labile carbon compounds (organic acids, sugars, phenolics, amino 

acids, etc.) through root systems (Joabsson et al., 1999). These fresh compounds can increase 

CH4 emissions as they cause greater soil microbial activity that produces end products in the peat 

soil, such as acetate, important for CH4 production (Ström et al., 2003). Finally, vascular plant 

species can reduce CH4 emissions in peat soils influenced by radial oxygen loss (ROL), 

providing the necessary conditions for methanotrophs to consume CH4, even in soils that are 

largely anoxic (Wießner et al., 2002). Radial oxygen loss can also drive the oxidation of reduced 

terminal electron acceptors (TEAs) that may both decrease CH4 production and increase the 

potential for AOM (Laanbroek, 2010).  

Variation in vascular plant characteristics results in species-specific effects on CH4 

dynamics across peatlands (Ström et al., 2005). For instance, previous studies have found woody 

plants to have lower CH4 emissions compared to herbaceous species, associated with less 

transport through aerenchymous roots (Grosse et al., 1992), more lignin and suberin in root cells 

causing reduced ROL (Armstrong and Armstrong, 2001), slower decomposition of woody 

tissues, and a smaller labile belowground carbon pool related to decreased root exudates (Vann 

and Megonigal, 2003). As biomass, productivity, and vegetation cover are known to be 

positively correlated to CH4 emissions in natural peatlands, dissimilarities in these variables, 

even within similar herbaceous plant groups, can result in differential CH4 dynamics (Joabsson 

and Christensen, 2001; Bellisario et al., 1999; Bubier et al., 1995a). Differences in the 

efficiencies of vascular plants in contributing to CH4 oxidation have also been found: Wießner et 

al. (2002) measured higher rates of ROL from Typha latifolia compared to Juncus effusus in a 

hydroponic experiment, while Ström et al. (2005) found evidence that oxidation in the 
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rhizosphere decreased CH4 emissions by 20-40% for Carex rostrata but >90% for Eriophorum 

vaginatum and Juncus effusus.      

Production of CH4 in peatlands signifies anoxic conditions as well as slow, inefficient 

decomposition necessary for peat accumulation (Moore and Basiliko, 2006). The occurrence of 

CH4 production and flux similar to natural peatlands may indicate the ability of constructed fen 

ecosystems to ultimately accumulate peat, a goal of fen creation (Daly et al., 2012). Hence, a 

thorough understanding of controls on CH4 production and flux from constructed fen peatlands, 

including soil water chemistry and vegetation, is required to predict if appropriate chemical 

conditions exist to promote the eventual accumulation of peat. Given the evidence of species-

specific effects of vascular plants on CH4 emissions, it is further valuable to understand how 

vascular species used in reclamation projects differentially influence CH4 dynamics to make 

recommendations for future projects that could result in a decreased flux of this GHG. A 

factorial greenhouse experiment was conducted to determine the effects of two vascular plant 

species used for reclamation, Juncus balticus and Carex aquatilis, on CH4 dynamics. The goal of 

the greenhouse experiment was to understand how water sourced from a constructed fen 

influenced the CH4 dynamics of Carex aquatilis and Juncus balticus compared to water from a 

natural fen. Specific objectives were: 1) to evaluate CH4 emissions, pore water CH4 

concentration through the peat profile, and CH4 oxidation for Carex aquatilis and Juncus 

balticus grown in water from a constructed fen or natural fen and 2) determine controls on CH4 

emissions, pore water CH4 concentration, and oxidation of the different plant species and water 

types. Based on literature results (eg. Ström et al., 2005), it was hypothesized that Juncus 

balticus would have lower CH4 emissions and concentration related to higher ROL causing more 

CH4 oxidation compared to Carex aquatilis. It was further hypothesized that plots with water 
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from the constructed fen would have lower CH4 emissions and concentration associated with a 

pre-existing knowledge of high sulfur in soil water and low CH4 flux observed at the constructed 

fen site (Chapter 2; Nwaishi et al., 2016). 

 

3.2 Methods 

Greenhouse experiment set-up 

 A factorial greenhouse experimental design with two factors (cover and water type) was 

used for this study (Fig 3.1). This design included two vegetation species (Carex aquatilis and 

Juncus balticus) and a bare control, and water with two different chemical compositions 

(collected from a constructed fen and rich fen). Measurements were made in a light and 

temperature regulated greenhouse located at the University of Waterloo, Ontario, Canada, from 

January until July 2016. Carex aquatilis and Juncus balticus were collected from a constructed 

fen located in northeastern Alberta (56° 55.8701 N, 111° 25.0166 W; Chapter 2; Ketcheson and 

Price, 2016; Price et al., 2010) and transported back to the university in early September, 2015. 

Rhizomes and roots of the Carex aquatilis and Juncus balticus vegetation were rinsed 

thoroughly upon arrival at the university, after which they were kept damp and refrigerated 

(<4˚C) prior to planting. Approximately 80 L of water was also collected for use in the 

experiment from a ponded area at the constructed fen. A similar quantity of water was collected 

from a stream running through a rich-fen located in southern Ontario within the Fletcher Creek 

Ecological Preserve (43° 41.5671 N 80° 11.7077 W; see Duval et al., (2011) for full site 

description).  



53 

 

In November 2015 three PVC pipes (diameter x height = 0.2 m x 0.3 m) were placed in each 

of six large bins (length x width x height = 0.8 m x 0.5 m x 0.4 m) in the greenhouse (Fig 3.1). 

Four pore water samplers (see Water Chemistry description below) were placed in the middle of 

each PVC pipe, with tygon tubing extending out of 0.012 m diameter holes drilled in the side of 

the PVC. Mesh screening was attached to the bottom of the open pipe. Next, ~1700 g of milled 

peat (Premier Sphagnum Peat Moss) was weighed and placed in each PVC pipe. This resulted in 

a bulk density in the cores of 0.18 g/cm3, similar to the near-surface bulk density found at the 

constructed fen site in 2013 (0.19-0.36 g/cm3; Nwaishi et al., 2015b). A visually similar biomass 

of senesced Carex aquatilis or Juncus balticus individuals were planted in the peat of two of the 

PVC pipes within a bin, while a bare control was used for the third PVC pipe (PVC pipes are 

referred to as peat cores for the remainder of this study).   
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Fig 3.1. Schematic of the greenhouse experimental design (not to scale). Grey boxes represent 

bins that held peat cores and had water from the constructed fen (CF), while patterned boxes 

were bins that contained water from the rich fen (RF). Black circles and cylinders represent peat 

cores that had plants including Juncus balticus (J), Carex aquatilis (C), or bare controls (B).  
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The plants were left to establish for 70 days (Rezanezhad et al., 2012) before the water 

collected from the fen sites was introduced. Over this time ~50 L of untreated well water was 

added to the peat cores and bins as necessary to keep the peat wet and allow for plant growth. In 

January, 2016 the well water from the bins was drained and 25 L of water from the constructed 

fen was added to three of the bins, with 25 L of rich fen water added to the remaining three bins. 

The water was poured directly over the peat cores to allow infiltration. A further 17 L of well water 

was added the following day. The next week 12 L of well water was added, resulting in the soil 

cores being waterlogged within the bins. Measurements from the peat cores began on January 28, 

2016 (day of experiment (DOE) 1), once the bins were waterlogged. Over the following weeks of 

the experiment ~8 L of well water per week was added as necessary to each bin to maintain the 

waterlogged peat and provide appropriate conditions for anoxia within the peat core profiles. 

At the time of planting on November 13, 2015 until March 23, 2016 (DOE 55) an artificial 

high intensity discharge (HID) light fixture above the experiment bench was used, resulting in 

photosynthetically active radiation (PAR) of over 1000 µmol m-2 s-1
 throughout each 24-hour 

day. Around DOE 60 the lights in the greenhouse were turned off as natural lighting was 

sufficient for plant growth and survival. From approximately DOE 78 until the end of the 

experiment (DOE 189) shades on the greenhouse windows were used as necessary to regulate 

greenhouse temperature. This resulted in a range of PAR values (27-1254 µmol m-2 s-1) during 

measurements from about DOE 60 until the end of the experiment. Over the experiment the 

temperature in the greenhouse was maintained between 20 and 25 °C, with an average soil 

temperature at 2 cm of 21.3 ˚C.   
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Water chemistry 

 Water sampling occurred throughout the experiment to understand how constructed and 

natural fen water influenced CH4 production and oxidation. Water samples were taken from pore 

water samplers at each peat core, as well as from the bins that contained the peat cores. The pore 

water samplers were constructed using 0.1 m long, 0.012 m inner diameter polyethylene piping 

(SharkBite, United States) slotted the length of the pipe, with screening attached around the pipe 

to prevent clogging, and tygon tubing attached to barbed fitting (Spaenaur, Canada) at the end of 

the sampler that extended out of the peat core. Pore water from the specific depths was sampled 

using a 20 mL syringe attached to the three-way valve. Electrical conductivity (EC) and pH were 

sampled monthly at a depth of 0.2 m from the peat cores. Anion sampling including chloride, 

nitrate, and sulfate occurred twice over the experiment, on DOE 29 and DOE 147, from 0.1 m 

and 0.3 m depths from the peat cores, however water from the bins was only sampled on DOE 

29. Anion concentrations were determined via a Capillary Ion Chromatograph (IC) system 

(Dionex ICS-5000, ThermoFisher Scientific, United States) following filtration and preservation 

with chromate added approximately one hour after sampling (Ecohydrology Research Group 

Analysis Laboratory, University of Waterloo). On DOE 96 major cations including calcium, 

iron, manganese, sodium, and magnesium were sampled at a depth of 0.2 m from the peat cores, 

with analysis occurring by means of an Inductively Coupled Plasma-Optical Emission 

Spectrometry (ICP-OES; iCAP 6300, Thermo Scientific, Unites States) after filtration and 

preservation with ultrapure nitric acid that occurred approximately one hour following sampling 

(Ecohydrology Research Group Analysis Laboratory, University of Waterloo).  
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Plant monitoring 

The plants in peat cores with either Carex aquatilis or Juncus balticus were monitored 

over the experiment. Canopy cover was estimated three times on DOE 1, DOE 67, and DOE 173. 

Percent cover was visually estimated to the nearest 1% inside the peat core, including living 

tissue and litter of Carex aquatilis or Juncus balticus. 

To understand productivity of the peat cores, a measurement of net ecosystem exchange 

(NEE) of CO2 was determined using the closed chamber method (Alm et al., 2007). The closed 

chamber method was also used to measure CH4 flux (see below) with a plastic collar (diameter x 

height = 0.19 m x 0.15 m) that fit on the peat cores and a clear chamber (diameter x height = 

0.20 m x 0.41 m). The height of each collar from the peat surface was measured in order to 

correct chamber headspace volume for flux calculation. A battery-powered fan at the top of the 

chamber mixed the headspace. A plug was placed in a hole drilled in the side of the chamber that 

had a thermocouple to measure chamber temperature during flux measurements, as well as tubes 

equipped with three-way valves to facilitate measurements. From DOE 1 – DOE 78, CO2 was 

logged on an Ultraportable Greenhouse Gas Analyzer (UGGA; Model 915-0011, Los Gatos 

Research, United States) in part per million (ppm) at the same time as CH4 flux measurements. 

Upon chamber placement on the collar, the flux measurement was only started after the system 

had equilibrated and the GHG concentrations on the UGGA were stable. The CO2 concentration 

that was logged every 10 seconds for the first 120 seconds after concentrations had stabilized 

were considered to calculate NEE after correcting for temperature and chamber volume, from the 

linear change in the CO2 concentration over time. From DOE 102 - DOE 132, a portable infrared 

gas analyzer (IRGA; EGM-4, PP Systems, Massachusetts, USA) connected to the chamber using 
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tubing measured CO2 concentration in ppm at similar periods as the CH4 flux measurements. An 

integrated temperature and photosynthetically active radiation (PAR; µmol m-2 s-1) sensor 

connected to the EGM-4 measured PAR and temperature in the chamber. To obtain NEE the 

CO2 concentration, PAR, and chamber temperature were manually recorded at 15-second 

intervals from 0 to 105 seconds after the system had equilibrated and CO2 concentrations were 

stable. In order to understand ecosystem respiration (ER) of the peat cores, CO2 was measured 

with the IRGA under dark conditions using an opaque tarp that fit over the chamber twice over 

the measurement period (DOE 109 and DOE 138). Gross ecosystem productivity (GEP) could 

then be determined by calculating the difference between the NEE and ER values. In this study 

negative values for CO2 exchange denote an uptake of CO2 by the peat core. 

 Aboveground biomass, including all plant parts, was sampled from the peat cores at the 

end of the experiment from DOE 175 - DOE 189. All Juncus balticus or Carex aquatilis 

individuals were clipped from the peat surface of the cores. Litter was separated from live 

biomass after which the vegetation was dried for 72 hours at 60 ºC, and weighed to determine 

dry biomass. Belowground biomass (roots, rhizomes) from the peat cores was also determined. 

Following the completion of measurements on DOE 188, peat cores were removed from the 

greenhouse and frozen. Frozen peat cores were then cut into 0.075 m increments with a saw (0-

0.075 m; 0.075-0.15m; 0.15-0.225 m; 0.225-0.30 m). Upon thawing, belowground biomass, 

including both roots and rhizomes, was sorted from the peat using tweezers into coarse (>2 mm) 

and fine (<2 mm) biomass. The belowground biomass was then oven dried at 60ºC for 72 hr and 

weighed to estimate dry biomass (Moore et al., 2002). 
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Methane emissions 

Methane flux was monitored approximately biweekly from DOE 1 – DOE 177. From 

DOE 1- DOE 78, measurements were made on the UGGA (see Plant monitoring above). The 

CH4 concentration in the chamber in parts per million (ppm) was logged on the analyzer every 

10 seconds for 20 minutes, and the chamber temperature was recorded at intervals of 5, 10, 15, 

and 20 minutes over the flux measurement. The chamber flux was determined from the linear 

change in concentration over time including corrections for temperature and volume of the 

chamber. From DOE 102 – DOE 132, CH4 emissions from the peat cores were determined from 

gas samples. At intervals of 5, 10, 15, and 20 minutes, air temperature in the chamber was 

recorded and 20 mL gas samples were taken from the chamber using a syringe. Gas samples 

were subsequently injected into evacuated Exetainers (Labco, UK). A gas chromatograph (GC; 

Shimadzu GC2014, Mandel Scientific, Canada) with a flame ionization detector was used to 

determine CH4 concentrations of the gas samples, and the flux was determined from the linear 

change in CH4 concentration, as above. Small negative or positive flux values where the change 

in concentration was within the variance of the GC, as determined from control samples, were 

assigned a value of 0 for flux (variance = ±5.82%). In instances where flux values appeared to 

capture ebullition events, only values with an R2 > 0.80 were kept in the data set. This resulted in 

loss of 3.7% of the data analyzed via gas chromatography. Flux measurements were made from 

DOE 145 to DOE 188, using a Trace Gas Analyzer (TGA; LGR-DLT100, Los Gatos Research, 

United States). Methane flux was determined with the TGA in a similar manner to the UGGA 

(see above), with CH4 concentration (ppm) logged every second for 20 minutes, and the chamber 

temperature recorded at 5 minute intervals over the flux period. Cross calibration between the 
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three methods used to determine CH4 flux revealed that the variance in CH4 concentration 

determined by the GC was 1.0% and 5.9% compared to the TGA and UGGA, respectively.  

 

Methane concentration 

Pore water CH4 samples were collected at the same time as CH4 flux measurements from 

DOE 1 - DOE 132, from the pore water samplers in the peat cores (see Water chemistry above) 

at four depths: 0.05 m, 0.1 m, 0.2 m, and 0.3 m. Pore water from the four depths was sampled 

using the three-way valve attached to the tygon tubing and a 60 mL syringe, with 20 mL of water 

flushed before a 20 mL sample was collected (Strack et al., 2004). Ambient air (20 mL) was next 

added to the syringe, and the sample shaken for 5 min to equilibrate dissolved gases into the 

syringe headspace, after which air was transferred to an evacuated Exetainer (Labco, UK). Air 

temperature in the greenhouse was recorded using a thermometer and thermocouple at the time 

of pore water sampling. Pore water CH4 concentration at depth was calculated following the 

analysis of the headspace samples for CH4 concentration on the GC (Kampbell and Vandegrift, 

1998). 

 

Methane oxidation 

 At the end of the experiment, from DOE 147 – DOE 188, CH4 oxidation was determined 

by comparing CH4 fluxes taken in both oxic and anoxic conditions (Denier van der Gon and 

Neue, 1996). Fluxes for the oxic conditions were determined as above using the TGA (see 

Methane emissions above) in both light and dark conditions. Dark conditions were obtained by 

covering the flux chamber with an opaque tarp. Following the oxic flux measurements at a peat 
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core, the chamber was flushed with 99% compressed nitrogen (4.8 PP, Praxair) for one hour at a 

rate of approximately ten times the volume of the chamber to obtain anoxic conditions. During 

flushing dark conditions were maintained to prevent oxygen formation via plant photosynthesis. 

Oxygen in the chamber after the flush was determined from air samples stored in evacuated 

Exetainers and analyzed on the GC. When oxygen in these samples were compared to oxygen 

free standards ran on the GC, an average variance of 20.3% was calculated, with an average 

oxygen content of 3.2%. After nitrogen flushing the chamber was left sealed for 18 hours (van 

der Nat and Middelburg, 1998) before being flushed for a further hour at approximately ten times 

the volume of the chamber. Following the second nitrogen flush oxygen in the chamber had a 

variance of 23.3% compared to an oxygen free standard, with an average oxygen content of 

3.3%. After ~5 minutes following the second flush a CH4 flux was taken with the TGA for 40 

minutes in dark conditions, and then again in light conditions (without the shade) for 10 minutes. 

Finally, pore water CH4 samples at the four depths were taken before the chamber was removed 

in order to understand changes in pore water CH4 pools associated with anoxia. Absolute 

oxidation was determined as the difference between the anoxic and oxic CH4 fluxes under similar 

light conditions. Relative oxidation was calculated using the following formula: 

1 − (𝑎𝑏𝑠
𝐶𝐻4 𝐹𝑙𝑢𝑥𝑜𝑥𝑖𝑐

𝐶𝐻4 𝐹𝑙𝑢𝑥𝑎𝑛𝑜𝑥𝑖𝑐
)        (1) 

where abs was the absolute value (necessary for cases when the oxic flux had a negative value) 

and the CH4 flux in oxic and anoxic conditions from similar light levels (light or dark) was used.  
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Data Analysis 

The program R 3.2.5. (R Core Team, 2016) was used for all statistical analysis, and a 

significance of α = 0.05 was applied. To understand differences in variables that were measured 

continuously over the experiment (NEE, pH, and EC) between plots with different water types 

(rich fen, constructed fen) and between cover types (Carex aquatilis, Juncus balticus and bare 

controls), a two-way ANOVA with repeated measures that accounted for date was used. A 

pairwise t-test with adjusted p-values using the Bonferroni method was applied to determine 

differences between water or cover types for each significant factor. Anion concentration data 

measured twice over the experiment was analysed in a similar way, except an additional factor 

(depth) was added and a three-way ANOVA was used. To understand differences in variables 

that were not measured continuously over the experiment (above and belowground biomass and 

cations) data were analysed similar to above with a two-way ANOVA, except the repeated 

measures term (date) was not included in the model and the Bonferroni method was not used to 

adjust p-values. For belowground biomass a three-way ANOVA with depth as a factor was used. 

Bare plots were not included in the analysis of above and belowground biomass as these peat 

cores contained no vegetation at the end of the experiment. A one-way ANOVA with repeated 

measures followed by a pairwise t-test with adjusted p-values using the Bonferroni method was 

used to determine differences in pH and EC of water in the bins containing the peat cores. Cation 

and anion data from the bins were analyzed similarly, except repeated measures did not need to 

be accounted for. In order to understand specific differences between both water and cover types 

grouped together (ex. rich fen Carex aquatilis, constructed fen bare, etc.), one-way ANOVAs 

with the combination groups were used for analysis as well (with repeated measures as 

necessary), followed by a pairwise t-test (with the Bonferroni correction as necessary; results 
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found in tables only). In instances where significant interactions between factors were found in 

three-way ANOVAs, a one-way ANOVA (with repeated measures as necessary) was applied 

with each significant factor in the interaction grouped together (e.g. if an interaction was found 

between depth x cover type, groups would include bare at 0.1 m, Juncus balticus at 0.3 m, etc.), 

followed by a pairwise t-test (with adjusted p-values using the Bonferroni method as necessary). 

The Levene test and the Shapiro-Wilks test was used to test data for residual normality and 

equality of variance, respectively. Data that did not meet normality and equal variance conditions 

were log transformed to meet conditions.  

Methane flux and pore water concentration were analyzed in two separate periods, Period 

1 (DOE 1-78) and Period 2 (DOE 102-177), because of a significantly higher flux and 

concentration in Period 2 (p<0.01). The Levene and Shapiro-Wilks tests revealed that CH4 flux 

and concentration residuals did not meet assumptions of ANOVA tests. As sample sizes were 

small (<30), the non-parametric two factor Scheirer-Ray-Hare tests were used to determine 

differences in flux and concentration data (Dytham, 2011). For CH4 flux in Period 1 and 2, the 

Scheirer-Ray-Hare test was used with water and cover type included as factors in the model, 

followed by two separate post-hoc Dunn tests to determine differences in CH4 flux within water 

or cover type factors as necessary (Dunn, 1964). For CH4 flux data Scheirer-Ray-Hare tests were 

followed by one-way Kruskal-Wallis tests applied to data joined into water and cover type 

combination groups (eg. constructed fen bare, rich fen Carex aquatilis, etc.), followed by post-

hoc Dunn tests to understand interactions and differences between combination groups. Methane 

pore water concentration data in Period 1 and 2 were analysed with three separate Scheirer-Ray-

Hare tests, with combinations including two of the water type, cover type or depth factors in each 

model to determine any interactions between factors, followed by separate post-hoc Dunn tests to 
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understand differences in CH4 concentrations within the water type, cover type, and depth factors 

when necessary. The Bonferroni correction was applied to the CH4 flux and concentration non-

parametric statistics to account for multiple testing. Methane concentration data under anoxic 

conditions measured at the end of the experiment were analyzed similarly to CH4 concentration 

data averaged over Period 1 and 2. 

As absolute and relative oxidation determined by flux measurements in light and dark 

conditions did meet the assumptions of parametric tests, a two-way ANOVA to determine 

differences across water type and cover types was used, followed by pairwise t-tests if individual 

water type or cover type factors were found to be significant. Separate one-way ANOVAs were 

also applied with water type and cover type grouped together (eg. constructed fen bare, rich fen 

Carex aquatilis, etc.) to understand significant interactions and if differences between 

combination groups occurred, and these ANOVAs were also followed by a pairwise t-test.  

Correlation analysis was used to understand controls on CH4 flux, concentration, and 

absolute and relative oxidation. For this analysis, CH4 flux and concentration data from Period 2 

were averaged for each peat core plot, and oxidation values determined from DOE 147 – DOE 

188 were used. Plot averages from Period 2 for NEE, pH, and EC data were used in correlation 

tests, along with the above and belowground biomass data sampled at the end of the experiment 

at each plot. Values of zero were used for the bare plots for above and belowground biomass in 

correlation tests, as no vegetation grew in these peat cores over the experiment. Finally, the 

cation and anion data that was sampled on DOE 96 and DOE 147, respectively, from peat pore 

water were used to understand water chemistry controls on CH4 flux and concentration. The non-

parametric Spearman’s rank correlation test was applied to determine significant correlations 

between CH4 flux, concentration, or oxidation and the plant and water chemistry variables. In the 
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correlation between CH4 flux and oxidation and belowground biomass (coarse, fine, total), 

belowground biomass at all depths sampled (0-0.075 m, 0.075-0.15 m, 0.15-0.225 m, 0.225-0.30 

m) were added together. Pore water CH4 concentration data from Period 2 at a depth of 0.3 m 

were correlated against belowground biomass sampled from a similar depth (0.225-0.30 m). The 

CH4 concentration from Period 2 at 0.3 m depth was also used for the correlation analysis with 

the other plant data, because preliminary analysis showed that concentration at this depth had the 

most significant correlation relationships with the variables compared to average concentration at 

the shallower depths. Methane concentration and water chemistry at similar depths was used to 

understand water chemistry controls on CH4 concentration.   

 

3.3 Results 

Water chemistry 

 Differences in water chemistry were found across the peat cores as well as between water 

from either the constructed or rich fen bins (Table 3.1; Fig 3.2). The water chemistry of the well 

water used throughout the experiment to keep the peat cores waterlogged contributed to the overall 

peat core pore water chemistry. The well water had a higher pH, nitrate concentration (15.8 mg/L) 

and chloride concentration (294.8 mg/L) compared to the water sampled from the constructed fen 

pond and rich fen stream. Further, the well water had a higher EC, and a concentration of calcium, 

sodium, magnesium, and sulfate (30.6 mg/L) compared to the rich fen. Overall, higher pH values 

were measured from the water sources (rich fen, constructed fen, and well water) and bin water 

compared to the pore water sampled from the peat cores.    
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Specifically, there was no water type or cover type effect on EC (water: F1,91 = 1.1, p = 

0.29; vegetation: F2,91 = 0.9, p = 0.40) or pH (water: F1,89 = 0.3, p = 0.59; vegetation: F2,89 = 3.0, p 

= 0.057; Table 1) in pore water extracted from the cores. However, EC was higher in the bins with 

constructed fen water compared to rich fen water (F1,38 = 13.4, p < 0.01). Considering the cation 

results, water sampled from all peat cores and bins had higher concentrations of calcium, sodium, 

and magnesium compared to iron and manganese (Table 3.2). All cations were found in 

significantly higher concentrations at peat cores including constructed fen water compared to the 

cores with rich fen water including: calcium (F1,14 = 87.1, p < 0.001), sodium (F1,14 = 8.9, p < 

0.001), magnesium (F1,14 = 96.8, p < 0.001), iron (F1,14 = 11.2, p < 0.01), and manganese (F1,14 = 

15.8, p < 0.01). Similar results to the peat core pore water were found for cation concentrations 

across bin water with different water types, except the manganese concentration was similar 

between bins with constructed fen and rich fen water (F1,5 = 1.2, p = 0.33). Cover type did not 

influence iron (F2,14 = 0.1, p = 0.88) or manganese (F2,14 = 3.5, p = 0.058) across peat cores. Plots 

with Juncus balticus had higher magnesium compared to Carex aquatilis and bare peat cores (F2,14 

= 12.4, p < 0.01). Further, sodium and calcium concentrations were higher at Juncus balticus plots 

compared to bare plots, but similar between Juncus balticus and Carex aquatilis plots (sodium: 

F2,14 = 21.3, p < 0.01; calcium: F2,15 = 12.7, p < 0.001).  
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Table 3.1. Water chemistry results ± standard error of the mean measured from the constructed 

fen (CF) and rich fen (RF) pond and stream, as well as in greenhouse experiment bins and across 

plots. * 

Water 

Cover 

pH EC 

(μS/cm) 

Ca 

(mg/L) 

Fe 

(mg/L) 

Mn 

(mg/L) 

Na 

(mg/L) 

Mg 

(mg/L) 

RF 

Bare 

5.31±0.1
a 

2936.6±225.0
a 

42.43±4.7 
a 

6.62±0.2 
a 

0.15±0.0 
a 

474.30±30.7 
a 

73.74±6.1 
a 

RF 

Carex 

5.20±0.2
a 

3713.0±346.3
a 

70.76±18.5 
a 

7.18±2.5 
a 

0.20±0.0 
a 

615.09±27.3 
ab 

90.15±7.7 
a 

RF 

Juncus 

5.20±0.2
a 

4236.7±448.6
a 

91.65±12.5 
b 

9.76±1.6 
a 

0.36±0.1 
a 

693.07±51.8 
b 

122.16±12.0
b 

CF 

Bare 

5.05±0.2
a 

4089.1±334.6
a 

127.75±5.2 
c 

16.62±1.8 
b 

0.40±0.0 
b 

558.99±11.1 
a` 

157.33±4.7 
b 

CF 

Carex 

4.98±0.2
a 

4417.9±308.5
a 

145.52±13.2 
c 

13.16±1.4 
b 

0.41±0.1 
b 

680.10±3.8 
b 

163.01±5.3 
b 

CF 

Juncus 

5.41±0.2
a 

5392.9±530.7
a 

231.61±17.0 
c 

11.95±4.2 
b 

0.56±0.0 
b 

783.98±33.1 
b 

231.28±20.7
c 

        

RFbin 7.84±0.1
a 

3066.6±133.5
a 

120.47±6.7 
a 

0.03±0.0 
a 

<0.01±0.0 
a 

445.31±23.3 
a 

66.02±3.7 
a 

CFbin 7.81±0.1
a 

3864.1±122.9
b 

213.81±2.3 
b 

0.02±0.0 
b 

<0.01±0.0 
a 

542.10±19.8 
b 

126.08±4.7 
b 

RFstream 7.35 1017.0 50.68 0.05 <0.01 27.06 22.34 

CFpond 7.30 1670.0 412.74 0.02 <0.01 342.98 165.22 

Well 7.47 1590.0 96.55 <0.01 <0.01 194.58 27.46 

*Peat core plots included rich fen (RF) or constructed fen (CF) water and bare (Bare), Carex 

aquatilis (Carex), or Juncus balticus (Juncus) cover. Each water type and cover type 

combination (RF Bare, etc.) is an average of three plot replicates. Water samples from peat cores 

were collected from a depth of 0.2 m. Water chemistry results from the bins that contained the 

peat cores (CFbin, RFbin) is shown, along with data from the RF stream (RFstream), CF pond 

(CFpond), and untreated greenhouse well water (Well). Electrical conductivity (EC) and pH 

measurements were taken monthly over the experiment. Cation including calcium (Ca), iron 

(Fe), manganese (Mn), sodium (Na), and magnesium (Mg) were sampled on DOE 96. Letters 

indicate significant differences in one variables (pH, EC, etc.) between peat cores (RF Bare, RF 

Carex, etc.) or bins (RFbin, CFbin).  
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Considering anion concentrations across the peat cores, there was no water effect for 

chloride (F1,48 = 1.0, p = 0.33) or nitrate (F1,48 = 1.0, p = 0.33), while significantly higher sulfate 

was found at peat cores with constructed fen compared to rich fen water (F1,48 = 38.5, p < 0.001; 

Fig 3.2). Similar results were found with respect to the chemistry of the bin water. A depth (F1,48 

= 29.0, p < 0.001) and cover type effect (F2,48 = 13.0, p < 0.001) was found for the chloride 

concentration sampled from the peat cores, including a significant interaction (F2,48 = 5.3, p < 

0.01). The one-way ANOVA with depth and cover type exclusively considered indicated that 

bare plots at 0.1 and 0.3 m had lower chloride values compared to Juncus balticus plots at 0.1 m. 

Considering nitrate only an effect of depth was found across peat cores (F1,48 = 29.0, p < 0.001), 

with pore water sampled in the peat cores at 0.3 m having higher nitrate compared to the pore 

water sampled at 0.1 m (F2,48 = 2.3, p = 0.11). No cover type (F2,48 = 0.1, p = 0.9) or depth (F1,48 = 

0.01, p = 0.922) effect on sulfate concentrations in pore water sampled from the peat cores was 

observed.  
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Fig 3.2. Anion water chemistry results. Averages from peat cores include data from two 

sampling periods (DOE 29 and DOE 147) and at 0.1 and 0.3 m depth (I-III) with water from the 

constructed fen (CF) and rich fen (RF) and cover types including bare peat (Bare), Juncus 

balticus (Juncus), and Carex aquatilis (Carex). Note the different y-axis values from I-III. Anion 

concentrations CFbin and RFbin in IV were measured on DOE 29 from bins that contained the peat 

cores. Water was sampled from the CF pond in August, 2015, from the RF stream in October 

2015, and from the untreated well water in the greenhouse January, 2016 (IV).  

I II 

III IV 
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Plant variables 

 Water from the rich fen and constructed fen did not affect NEE differently across the peat 

cores from DOE 1 – DOE 177 (F1,179 = 0.1, p = 0.79), although NEE was significantly higher at 

plots including Carex aquatilis and Juncus balticus compared to bare plots (F2,179 = 4.8, p < 0.01; 

Table 3.2). Values of GEP calculated twice over the experiment were highly correlated to NEE 

values determined at the same time (Spearman rho = 0.98, p < 0.001). Consequently, NEE, 

which was measured more consistently throughout the sampling period was used in regression 

analysis as a proxy for plant productivity. Plant survey results throughout the experiment showed 

that litter cover decreased from DOE 1 to DOE 67, but increased again near the end of the 

experiment on DOE 173 (Appendix 3). Total live plant cover increased from DOE 1 to DOE 67, 

but decreased to DOE 173 with increasing litter cover. No clear pattern indicating greater CO2 

uptake through NEE over time was observed, associated with varying light levels in the 

greenhouse (results not shown).  

 No effect of the water type or cover type on aboveground biomass of Carex aquatilis or 

Juncus balticus plots were found (water type: F1,8 = 0.2, p = 0.70; cover type: F1,8 = 2.0, p = 

0.19), and while the constructed fen and rich fen water also did not affect litter biomass (F1,8 = 

0.8, p = 0.40), plots containing Carex aquatilis had higher litter compared to plots with Juncus 

balticus (F1,8 = 25.0, p < 0.01; Table 3.2). Belowground fine root biomass from 0-0.3 m was also 

not affected by different water type (F1,8 = 5.2, p = 0.053) nor did it differ between Carex 

aquatilis and Juncus balticus cores (F1,8 = 2.1, p = 0.18). However, Juncus balticus cores had 

higher coarse belowground biomass throughout the entire peat core than Carex aquatilis plots 

(F1,8 = 6.7, p = 0.03) at plots with both water type (F1,8 = 1.0, p = 0.35). Total belowground 

biomass (coarse + fine) was affected by depth and was higher at 0-0.075 m and 0.075-0.15 m 
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compared to 0.15-0.225 and 0.225-0.30 m (F3,40 = 73.9, p < 0.001) while similar across water 

type (F1,40 = 0.004, p = 0.95) and cover type (F1,40 = 1.7, p = 0.20) plots (Fig 3.5IV).  
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Table 3.2. Plant parameters ± standard error of the mean measured across plots with different 

water types and cover types. * 

Water 

type 

Cover  

type 

NEE 

(g CO2 m
-2 d-1)  

AG 

(g m-2)  

AG Litter  

(g m-2) 

BGcoarse  

(g m-2) 

BGfine  

(g m-2) 

RF Bare 1.45±0.96a n.a. n.a. n.a. n.a. 

RF Carex -17.72±2.72b 98.55±6.14a 120.38±6.47a 238.50±5.74a 105.23±11.85a 

RF Juncus -19.70±3.51b 93.77±10.90a 53.99±13.01b 387.83±44.35b 59.42±3.58a 

CF Bare 2.11±0.45a n.a. n.a. n.a. n.a. 

CF Carex -23.45±3.02b 111.83±11.22a 166.66±31.26a 258.84±27.72a 112.76±9.27a 

CF Juncus -18.07±4.46b 88.34±10.44a 42.32±16.03b 295.58±48.98b 116.96±24.11a 

*Water was from a rich fen (RF) or constructed fen (CF) with bare (Bare), Carex aquatilis 

(Carex), or Juncus balticus (Juncus) cover. Each water type and cover type combination group 

(RF Bare, etc.) was an average of three plot replicates. Live aboveground biomass (AG) and 

aboveground litter (AG Litter) were separated at the time of sampling. Belowground biomass 

was separated into coarse (BGcoarse; >2mm) and fine (BGfine; <2mm) biomass. Results shown 

here include belowground biomass of the entire peat core (0-0.3 m). Samples were taken from 

DOE 175 – DOE 189. Bare plots were not measured for biomass. 
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Methane flux, concentration, and oxidation 

 Methane flux across peat core plots increased over time (Fig 3.3). Flux in Period 1 from 

DOE 1 – DOE 78 was not influenced by the water type (χ2 = 1.0, p = 0.31, df = 1); however, 

cover type did affect Period 1 flux (χ2 = 43.6, p <0.001, df = 2; Fig 3.4I). Methane flux was lower 

from bare plots compared to the Juncus balticus and Carex aquatilis cover types. In Period 2 

(DOE 102 – DOE 177) the two-way ANOVA results indicated that the rich fen water plots had 

significantly higher flux compared to constructed fen water plots (χ2 = 6.4, p = 0.01, df = 1; Fig 

3.4II), with no significant difference between the three cover types (χ2 = 4.5, p = 0.1, df = 2). 

Although there was no significant interaction between water and cover type, the one-way 

ANOVA indicated a significantly higher flux from rich fen Carex aquatilis plots compared to 

constructed fen Juncus balticus plots.   
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Fig 3.3. Methane (CH4) flux over the greenhouse experiment from DOE 1 to DOE 188 at peat 

cores with water from either the constructed fen (CF) or rich fen (RF) and cover types including 

Juncus balticus (Juncus), Carex aquatilis (Carex), or bare (Bare) controls. Each point is an 

average of three plot replicates.  
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Fig 3.4. Average methane (CH4) flux across plots with either constructed fen (CF) or rich fen (RF) 

water types and cover types including bare controls (Bare), Juncus balticus (Juncus), or Carex 

aquatilis (Carex) over Period 1 (DOE 1-78; I) or Period 2 (DOE 102-177; II). Each water type and 

cover type combination group (RF Bare, etc.) represents averages from three plot replicates over 

the period measurements. Letters indicate significant differences between cover types and water 

types grouped together (eg. constructed fen bare vs. rich fen bare, etc.).  

  

Period 1 Period 2 

I II 
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While water type did not influence the pore water CH4 concentration in Period 1 (χ2 = 2.2, 

p = 0.1, df = 1), the bare plots had significantly higher pore water CH4 compared to Carex 

aquatilis and Juncus balticus plots (χ2 = 39.3, p < 0.001, df = 2), and CH4 concentration 

increased with depth (χ2 = 122.07, p < 0.001, df = 3; Fig 3.5I). In Period 2 the water type did 

affect CH4 concentration, and rich fen water plots had higher CH4 concentration compared to 

constructed fen water plots (χ2 = 39.1, p < 0.001, df = 1; Fig 3.5II). Bare plots had a significantly 

higher CH4 concentration compared to the plots with vascular species, while Juncus balticus had 

a lower concentration compared to plots with Carex aquatilis in Period 2 (χ2 = 53.0, p < 0.001, df 

= 2). Finally, CH4 concentration in Period 2 was highest at 0.3 m depth, and similar between 

depths 0.1 and 0.2 m and 0.1 and 0.05 m, with 0.2 m having a higher concentration than 0.05 m 

(χ2 = 38.4, p < 0.001, df = 3).  

There was a cover type (χ2 = 11.1, p < 0.01, df = 2) and water type (χ2 = 26.1, p < 0.001, 

df = 1) effect on the CH4 pore water concentration under anoxic conditions; however, depth was 

not found to significantly influence CH4 concentration after nitrogen flushing (χ2 = 2.3, p = 0.51, 

df = 3; Fig 3.5III). Higher pore water CH4 concentration under anoxic conditions was observed 

at rich fen water plots compared to constructed fen water plots, and bare and Carex aquatilis 

plots had higher CH4 concentrations under anoxic conditions compared to plots with Juncus 

balticus. 

  



77 

 

Fig 3.5. Average methane (CH4) concentration from Period 1 (DOE 1-78; I), Period 2 (DOE 

102-177; II), and in anoxic conditions after nitrogen flushing (III), as well as total belowground 

plant biomass (IV). Plots had water from either the constructed fen (CF) or rich fen (RF) with 

either Carex aquatilis (Carex), Juncus balticus (Juncus) or bare control cover. Methane 

concentration in anoxic conditions was measured from DOE 147- DOE 188. Total belowground 

biomass was measured at the end of the greenhouse experiment (DOE 175-189) and includes 

coarse + fine biomass. Each water type and cover type combination is made up of three plot 

replicates. Error bars were excluded for clarity. Note the difference in x-axis scale between CH4 

concentration plots (I-III).  

I II 

IV III 
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Considering absolute CH4 oxidation in dark conditions, there was a significant interaction 

between water type and cover type (F2,12 = 12.4, p < 0.01; Table 3.3). There was also a 

significant effect of both water type (F1,12 = 10.1, p = 0.01) and cover type (F2,12 = 14.3, p < 0.01) 

on oxidation. The subsequent one-way ANOVA with water type and cover type grouped together 

revealed that the Carex aquatilis growing in rich fen water had significantly higher absolute 

oxidation compared to all other plots (F5,12 = 12.7, p < 0.001). A significant interaction between 

water type and cover type was also found for the absolute CH4 oxidation determined through 

flux in light conditions (F2,11 = 5.4, p = 0.02), with the one-way ANOVA revealing that the rich 

fen Carex aquatilis plots had significantly higher CH4 oxidation compared to the constructed fen 

Carex aquatilis plots (F5,11 = 3.6, p = 0.04). However, no individual significant effect of water 

type (F1,11 = 3.4, p = 0.09) or cover type (F2,11 = 1.8, p = 0.22) was found, suggesting that the 

interaction between factors was masking the main effects, and implying that the Carex aquatilis 

was particularly impacted by the different water types.  

Water type did affect relative oxidation in dark conditions (F1,12 = 14.4, p < 0.01), with 

peat cores in bins including constructed fen water having higher relative oxidation compared to 

rich fen water, but the two-way ANOVA did not reveal significant differences across cover types 

(F2,12 = 2.3, p = 0.15; Table 3.3). While there was no significant interaction between water type 

and cover type for the relative oxidation in dark conditions, the one-way ANOVA indicated that 

higher relative oxidation occurred specifically at constructed fen bare and Juncus balticus plots 

compared to rich fen Carex aquatilis plots (F5,12 = 4.1, p = 0.02). In light conditions, relative 

oxidation was affected by both water type (F1,12 = 44.1, p < 0.001) and cover type (F2,12 = 11.0, p 

< 0.01), with constructed fen water plots having higher relative oxidation compared to rich fen 

plots, and Carex aquatilis having lower relative oxidation compared to bare and Juncus balticus 
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plots. Specifically, the one-way ANOVA results revealed that bare and Carex aquatilis plots 

with rich fen water had lower relative oxidation in light conditions compared to all plots with 

constructed fen water, and the Juncus balticus rich fen plots had similar oxidation to bare and 

Carex aquatilis plots with constructed fen water, but lower oxidation compared to Juncus 

balticus constructed fen water plots (F1,12 = 13.2, p < 0.01).  
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Table 3.3. Average absolute and relative methane (CH4) oxidation results ± standard error of the 

mean across cover types with constructed fen (CF) or rich fen (RF) water. * 

Water 

type 

Cover type Light 

condition 

Oxic CH4 Flux 

(mg m-2 d-1) 

Anoxic CH4 Flux 

(mg m-2 d-1) 

Absolute oxidation 

(mg m-2 d-1) 

Relative oxidation 

(%) 

RF Bare Dark 0.41±0.95 4.34±0.43 3.93±1.38a 70.7±18.4ab 

RF Carex Dark 16.51±6.38 27.41±6.96 10.89±0.58b 44.0±8.6a 

RF Juncus Dark 2.34±0.86 7.57±1.41 5.23±0.60a 71.4±7.0ab 

CF Bare Dark 0.24±0.28 4.74±0.19 4.50±0.34a 93.3±5.1b 

CF Carex Dark 0.77±0.27 5.69±0.26 4.92±0.49a 86.0±5.3ab 

CF Juncus Dark 0.17±0.24 5.21±0.23 5.04±0.40a 93.1±2.0b 

RF Bare Light 0.62±1.23 2.69±0.62 2.07±0.62ab 46.7±16.1a 

RF Carex Light 18.57±5.99 26.99±8.42 8.43±2.62a 30.8±3.3a 

RF Juncus Light 2.36±1.02 5.42±1.43 3.05±0.60ab 59.3±7.6ab 

CF Bare Light 0.15±0.55 3.48±0.13 3.33±0.44ab 80.8±7.4bc 

CF Carex Light 1.13±0.30 3.06±0.72 1.94±0.42b 64.0±1.6bc 

CF Juncus Light 0.20±0.32 3.57±0.81 3.36±0.85ab 90.7±5.3c 

*Cover types included bare (bare), Carex aquatilis (Carex), and Juncus balticus (Juncus). 

Oxidation was measured from DOE 147 - DOE 188. Oxic CH4 flux was determined before 

nitrogen flushing, after which anoxic CH4 flux was determined. Each water type and cover type 

combination is made up of an average of three plot replicates. Letters indicate significant 

differences between water type and cover type grouped together (RF Bare, CF Juncus, etc.) only 

between one light condition (dark or light).  
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Controls on CH4 flux, concentration, and oxidation  

 Several water chemistry variables were found to correlate to CH4 flux in Period 2, while 

both plant and water chemistry parameters were significantly related to CH4 concentration at the 

four depths measured (Table 3.4). Methane flux was lower when higher values of EC, calcium, 

iron, manganese, magnesium, sulfate, and nitrate were measured in the peat pore water. Net 

ecosystem exchange was positively correlated to CH4 concentration at 0.3 m, indicating less CH4 

concentration with higher productivity. Similarly, aboveground biomass, and total and fine 

belowground biomass had a negative relationship with CH4 concentration at 0.3 m. Similar to 

flux, pore water CH4 concentration decreased with higher concentrations of EC, calcium, 

manganese, sodium, magnesium, and sulfate. 

 No water chemistry or plant variables were found to correlate significantly with absolute 

CH4 oxidation in dark (Table 3.4) or light conditions (results not shown). Relative oxidation in 

dark conditions increased with higher calcium, magnesium, sulfate, and nitrate. In light 

conditions relative oxidation increased with higher calcium, magnesium, and nitrate at 0.1 m 

depth (results not shown).   
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Table 3.4.  Spearman correlation results of methane (CH4) flux, CH4 concentration, and absolute 

and relative oxidation with water chemistry and plant variables across plots with different water 

types and cover type. * 

*Averages from Period 2 (DOE 102 – DOE 177) were used in correlation for CH4 flux and 

concentration, as well as for net ecosystem exchange (NEE), pH, and electrical conductivity 

(EC). Aboveground biomass (AG), litter biomass (Litter), and belowground biomass (total: BG; 

coarse (>2mm): BGcoarse; fine (<2mm): BGfine) were sampled at the end of the experiment. 

Cations, including calcium (Ca), iron (Fe), manganese (Mn), sodium (Na), and magnesium (Mg), 

were sampled on DOE 96 and anions sulfate (SO4), nitrate (NO3), and chloride (Cl) were 

sampled on DOE 147. Bold indicates significant correlation (p<0.05). Plots included water from 

either the constructed fen or rich fen and cover types with Carex aquatilis, Juncus balticus, or 

bare controls. For the bare controls vegetation variables (AG, Litter and BG) were assigned a 

value of zero.   

**For CH4 flux and oxidation belowground biomass (BG, BGcoarse, BGfine) from the total core (0-

0.3 m) was used, while belowground biomass from 0.225-0.3 m was used in the correlation with 

CH4 concentration at 0.3 m.  

***CH4 concentration at 0.3 m depth was correlated with AG, Litter, and NEE. For correlations 

including CH4 concentration and water chemistry variables, the CH4 concentration used was at 

the same depth as the water chemistry sample.  

  

 

Variable 

 

Depth  

CH4 Flux CH4 Concentration 

*** 

CH4 Oxidation 

(Absolute) 

CH4 Oxidation 

(Relative) 

                  (m) rho p-value rho p-value rho p-value rho p-value 

AG  0.45 0.15 -0.52 0.03 0.45 0.06 -0.23 0.36 

Litter  0.43 0.16 -0.28 0.26 0.46 0.06 -0.34 0.17 

BG ** -0.08 0.82 -0.55 0.02 0.36 0.14 -0.04 0.87 

BGcoarse ** -0.10 0.75 -0.33 0.18 0.35 0.15 -0.09 0.71 

BGfine ** -0.03 0.94 -0.60 <0.01 0.34 0.17 -0.06 0.82 

NEE  0.27 0.27 0.68 <0.01 -0.15 0.54 0.05 0.86 

pH 0.2 -0.06 0.82 -0.06 0.81 -0.28 0.26 -0.36 0.14 

EC 0.2 -0.68 <0.01 -0.59 0.01 -0.23 0.35 0.33 0.18 

Ca 0.2 -0.63 <0.01 -0.81 <0.001 -0.14 0.57 0.58 0.01 

Fe 0.2 -0.57 0.01 -0.52 0.03 -0.26 0.30 0.41 0.09 

Mn 0.2 -0.60 0.01 -0.65 <0.01 -0.21 0.39 0.42 0.09 

Na 0.2 -0.42 0.08 -0.61 <0.01 0.17 0.50 0.19 0.44 

Mg 0.2 -0.62 <0.01 -0.79 <0.001 -0.14 0.57 0.62 <0.01 

SO4 0.1 

0.3 

-0.55 

-0.49 

0.02 

0.04 

-0.78 

-0.66 

<0.001 

<0.01 

-0.18 

-0.30 

0.48 

0.23 

0.63 

0.63 

0.01 

0.01 

NO3 0.1 

0.3 

-0.58 

-0.61 

0.01 

<0.01 

-0.44 

-0.45 

0.07 

0.06 

-0.40 

-0.25 

0.10 

0.32 

0.65 

0.51 

<0.01 

0.03 

Cl 0.1 

0.3 

-0.16 

-0.40 

0.52 

0.17 

-0.44 

-0.41 

0.07 

0.09 

0.35 

0.18 

0.16 

0.48 

-0.23 

-0.08 

0.35 

0.75 
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3.4 Discussion 

 Constructed fen reclamation projects in the AOSR near Fort McMurray, Alberta have 

recently been attempted to convert landscapes disturbed by surface mining into ecosystems that 

can support hydrological and ecological conditions similar to natural fen peatlands (Price et al., 

2010). As undisturbed peatlands function as natural carbon sinks over thousands of years (Loisel 

et al., 2014), developing constructed fens that also may accumulate carbon is beneficial, 

especially given the extensive release of carbon associated with peatland loss due to surface 

mining in the AOSR (Rooney et al., 2011). Carbon accumulation in peatlands is dependent on 

hydrophilic vegetation that can survive anaerobic conditions, resulting in highly productive 

ecosystems with low decomposition rates (Taylor and Smith, 1980). Emissions of the strong 

GHG CH4 also should be considered when discussing peatland carbon budgets, as a substantial 

amount of carbon is released as CH4 from these ecosystems (Roulet, 2000). On the other hand, 

high CH4 emissions coincide with poorly decomposed peat and may indicate the ability of 

reclaimed peatland to eventually accumulate carbon (Limpens et al., 2008). A greenhouse 

experiment was conducted to understand how CH4 dynamics are influenced by Juncus balticus 

and Carex aquatilis, that are clonal, native peatland plants, and were used in the reclamation of a 

constructed fen in the AOSR of Alberta. A goal of this study was to make recommendations to 

future projects that could reduce the release of the GHG to the atmosphere, resulting in a greater 

sink of carbon overall in constructed fens. In order to replicate conditions at the constructed fen 

in question, pond water from the reclaimed site was added to half of the peat cores in this 

experiment. Since natural fens, including rich fens, are common in northern Alberta (Chee and 

Vitt, 1989), the experiment also included adding rich fen water to the remaining peat cores in 
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order to understand CH4 dynamics from Carex aquatilis and Juncus balticus under conditions 

more similar to natural peatlands in the AOSR.  

 

Water chemistry impacts – CH4 flux and concentration 

 Methane flux and concentration was significantly higher in Period 2 (DOE 102 – DOE 

177), after which the peat cores had been fully saturated with constructed fen or rich fen water 

for more than 12 weeks, compared to Period 1 (DOE 1 – DOE 78; Fig 3.4; Fig 3.5). This 

indicates that CH4 production in the peat cores did not ensue quickly following water saturation, 

and supports a study by Blodau and Moore (2003) who found that weeks to months were 

required for dissolved CH4 pools to accumulate following flooding in a mesocosm experiment. 

In Period 2, average CH4 flux from peat cores in the bins with constructed fen water (2.8 mg CH4 

m-2 d-1) were lower than values found from the constructed fen site in the AOSR in 2015 (4.0 mg 

CH4 m
-2 d-1; Chapter 2), three-years post reclamation. Similarly, Nwaishi et al. (2016) found 

higher CH4 flux from a rich fen in the AOSR near the constructed fen site (>20 mg CH4 m
-2 d-1) 

in 2014 compared to average CH4 flux values from Period 2 from the peat cores in the bins with 

rich fen water (6.13 mg CH4 m
-2 d-1). Average CH4 concentration from Period 2 from peat cores 

in bins with constructed fen water at 0.2 m depth (0.03 mg/L) was also lower compared to values 

found in the field at the constructed fen site in 2015 at this depth (0.16 mg/L; Chapter 2). 

Further, the mesocosm study by Blodau and Moore (2003) found a CH4 concentration in peat 

cores from a natural oligotrophic peatland with a constant water table of 8.02 mg/L at a depth of 

0.4 m. This indicates a CH4 pool that was orders of magnitude higher compared to the CH4 pool 

found at depth from peat cores with rich fen water in this study, with an average concentration of 

0.25 mg/L at 0.3 m over Period 2.   
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Given that the water table in the bins was maintained above the peat surface in the cores 

over the experiment to promote CH4 production in anoxic conditions and limit aerobic CH4 

oxidation (Couwenberg and Fritz, 2012), higher CH4 flux from the peat cores, especially from 

the plots including rich fen water, were expected. The lower CH4 flux and concentration results 

may have been associated with the quality of the milled peat used for the experiment. Basiliko et 

al. (2007) found very low anaerobic CH4 production potential rates in a horticulturally harvested 

site in Quebec (~0.005-0.010 μg CH4 g
-1 peat d-1, 0.1-0.4 m depth), associated with low nutrient 

and substrate availability resulting in limited microbial activity. This result was related to the 

horticulture peat extraction process that involves draining and removing the top layer of 

vegetation from the peatland surface (Quinty and Rochefort, 2003). It is possible that few 

microbes, including methanogens capable of CH4 production, were available in the peat that 

could become active following saturation of the peat core. Acidity may have also limited CH4 

production in the peat cores, as pH values (ranging from 5-5.4 across all plots) were lower than 

pH values ideal for methanogenesis (Table 3.1; Dunfield et al., 1993). The milled peat used for 

the experiment was likely acidic and influenced the low pH values, as the water sourced from the 

constructed fen pond water, rich fen stream water, and well water had pH values of 7.3, 7.4, and 

7.5, respectively that were higher than those measured in the peat cores. Methane production 

may also have been limited by nitrate (Balderston and Payne, 1976) that likely was sourced from 

the well water used for the experiment (Fig 3.2). Nitrate was higher in the pore water at 0.3 m 

depth across all plots, averaging 2.9 and 1.2 mg/L at the rich fen and constructed fen plots, 

respectively. An ongoing investigating of CH4 production potential at depth within the peat cores 

used in the present study will assist in understanding the CH4 flux and concentrations observed.  
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 In Period 2 higher CH4 flux and concentration was observed in bins with rich fen water 

compared to constructed fen water (Fig 3.4II; Fig 3.5II). Correlation results revealed that average 

CH4 flux from Period 2 was correlated with water chemistry, as opposed to plant cover or 

biomass, and higher EC, calcium, iron, manganese, magnesium, sulfate, and nitrate resulting in 

lower flux (Table 3.3). Negative correlations with pore water CH4 concentration at the depths 

examined and similar water chemistry variables were also found. These water chemistry 

parameters predominantly had higher values from water samples taken in the peat cores and bins 

that contained constructed fen water (Table 3.1; Fig 3.2), indicating that by Period 2 the 

influence of constructed fen water was limiting methanogenesis, as was hypothesized. 

Specifically, reduction processes of manganese, iron, and sulfate, found in higher concentrations 

at the cores with constructed fen water, are known to supress CH4 production (Blodau, 2002). 

Higher pore water concentrations of other elements, including calcium and sodium, at the 

constructed fen peat cores compared to rich fen peat cores correlated to lower CH4 flux or 

concentration (Table 3.1; Table 3.4). This indicates that higher salinity levels decreased CH4 

flux, supporting previous studies in natural peatlands (Bartlett et al., 1987). Overall, evidence for 

the higher concentration of TEAs found at the peat core plots with constructed fen water 

indicated a greater oxidative capacity compared to plots with rich fen water, suggesting a higher 

availability of oxidants for organic matter respiration and quicker decomposition rates (Limpens 

et al., 2008). This finding suggests that the water chemistry at constructed fens may cause peat 

accumulation to ensue at a slow rate.  
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Water chemistry impacts – CH4 oxidation      

 Considering higher CH4 concentrations found in Period 2 and under anoxic conditions 

between the plots with rich fen and constructed fen water (Fig 3.5II; Fig 3.5III) it was surprising 

that the absolute oxidation was similar across plots with constructed fen water compared to plots 

with rich fen water in light conditions, and that relative oxidation values were higher at plots 

with constructed fen water in both light and dark conditions (Table 3.3). Correlation results 

indicate higher calcium, magnesium, and sulfate found at plots with constructed fen water 

resulted in higher relative oxidation (Table 3.4). This suggests that methanotrophy may be 

stimulated by a greater concentration of TEAs in the peat, although no previous studies exist that 

focus on the effect of nutrient deposition on methanotroph structure and diversity in peatlands 

that may support this speculation (Andersen et al., 2013). It is also possible that AOM was 

occurring across plots with constructed fen water due to higher concentrations of TEAs known to 

be important for AOM in freshwater systems (Gupta et al., 2013). Measurements of oxidation 

made in this study focused on aerobic methanotrophy associated with ROL and potential AOM 

rates were not determined. 

 

Plant impacts – CH4 flux and concentration 

Methane flux in Period 1 was lower in bare peat cores compared to cores including either 

Carex aquatilis or Juncus balticus (Fig 3.4I). A higher pore water concentration of CH4 observed 

in Period 1 at the bare plots compared to the plots with Carex aquatilis or Juncus balticus 

indicates that the aerenchymous plants were transporting CH4 from peat to the atmosphere (King 

et al., 1998). In Period 2 no prominent pattern based on cover type was found to relate to CH4 
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flux, although pore water CH4 concentration at bare peat cores remained highest, while Carex 

aquatilis plots had higher concentration compared to Juncus balticus (Fig 3.5II). These results 

indicate that the plants were still transporting CH4 through tissues, and also suggest that bare 

plots had increased release of CH4 through diffusion and ebullition processes (Lai, 2009), 

compared to in Period 1. Higher CH4 concentration found at Carex aquatilis plots compared to 

Juncus balticus plots given similar productivity, aboveground biomass, and total belowground 

biomass (Table 3.2, Fig 3.5IV) could indicate a species-specific influence on CH4 production 

between these graminoids. Ström et al. (2005) found higher CH4 emissions from Carex rostrata 

compared to Juncus effusus and Eriophorum vaginatum possibly due to different CH4 production 

pathways. In this study 14C-labelled acetate was predominantly emitted as 14CH4 from Carex 

plots suggesting acetoclastic production, but as 14CO2 from the Juncus and Eriophorum plots, 

possibly indicating that the CH4 emitted from these plots was produced via hydrogenotrophic 

methanogenesis instead (Zinder, 1993). Data collected from the current study were not able to 

imply CH4 production pathways or substrate dynamics within the peat profile. However, flux and 

concentration results suggest that Carex aquatilis and Juncus balticus have differential 

influences on belowground processes that drive CH4 production or oxidation (see discussion 

below).     

Plant parameters were correlated to CH4 concentration at the four depths examined in this 

study (Table 3.3). Higher above and belowground biomass resulted in lower pore water CH4 

concentration in the peat profile, as did higher productivity through NEE. This is further support 

for CH4 transport through aerenchyma that could explain the depletion of the CH4 pool in the 

peat cores. These results also support higher CH4 oxidation through ROL from the cores 

including vascular species (Armstrong and Armstrong, 1988). No plant controls on CH4 flux 
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across the peat cores were found, despite past studies that show higher CH4 flux with more 

aboveground biomass (Bellisario et al., 1999) and productivity (Joabsson and Christensen, 

2001). Peat chemistry has previously been found to be the main control on CH4 production 

(Valentine et al., 1994), and it is therefore possible that the plant effect on CH4 flux was masked 

by the overwhelming influence of water chemistry on the flux across all peat cores.  

 

Plant impacts - oxidation 

Methane oxidation was determined in both dark and light conditions as previous research 

supports diurnal cycles influencing subsurface microbial activities and CH4 concentrations in the 

presence of wetland plants (Thomas et al., 1996). This suggests that light availability could 

potentially cause changes to methanotrophy. Measurements of relative and absolute oxidation in 

both light and dark conditions (Table 3.3) showed similar values of oxidation across the different 

cover types in this study (p=0.08). This result supports the findings of van der Nat and 

Middelburg (1998) who did not find diurnal differences in rhizospheric oxidation rates of two 

peatland species. Previous research has provided evidence for seasonality controlling CH4 

oxidation (e.g. Lombardi et al., 1997), and it would be beneficial for future studies to measure 

CH4 oxidation more than once over a study period to understand if oxidation associated with the 

vascular species considered for this study may vary depending on growth cycle stage. van der 

Nat and Middelburg (1998) found higher CH4 oxidation rates during plant growth, and as 

oxidation was measured at the end of the experiment in this study, when plants appeared to be 

entering a senescence stage (Appendix 3), it is possible that oxidation was lower than if 

measurements had been made at an earlier date. 
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Given the expectation that oxidation in this study would be dominated by plant processes, 

particularly ROL from the vascular species causing rhizosphere oxidation, values of oxidation 

measured at the bare plots in this study were expected to be much lower than cores with plants. 

As the water table was maintained at the top of the peat core to prevent aerobic oxidation that 

could occur in a potential oxic peat zone (Whalen, 2005), zero oxidation was predicted from bare 

peat cores. However, absolute and relative oxidation from bare plots was often found to be 

similar to or greater than vegetated plots regardless of water type (Table 3.4). Absolute and 

relative oxidation from bare peat cores does suggest that some oxygen diffused from the surface 

into the cores despite the attempt at total peat saturation, possibly due to evapotranspiration at the 

plots in the greenhouse, as ~8L of water was added consistently each week to the peat cores in 

the bins. Some oxygen likely occurred in the peat cores in instances when water was not added 

directly following evapotranspiration, for instance on hot summer days when peat and air 

temperature, as well as PAR in the greenhouse, may have increased and caused greater 

evapotranspiration (Brown et al., 2010). It is possible that air bubbles may also have been 

trapped in the peat core when water was added to the bins. It is argued that the results of this 

study that focused on the species-specific effects on oxidation by Carex aquatilis and Juncus 

balticus are still valid, given that the peat cores including the vascular plants would have been 

impacted similarly by oxygen in the peat core that was not associated with ROL.   

 Results of this study provided evidence for species-specific effects on oxidation (Table 

3.3). The absolute oxidation calculated in dark conditions indicated that Carex aquatilis from the 

rich fen water plots had higher oxidation compared to all other plots. The result of higher 

absolute oxidation likely associated with ROL from Carex aquatilis at the rich fen water plots 

was not expected, as past studies have found Carex aquatilis to be inefficient at reducing CH4 
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emissions through rhizosphere oxidation (Nielson et al., 2016), while certain species of Juncus 

have been found to efficiently limit CH4 flux due to oxidation associated with ROL (Ström et al., 

2005). The higher absolute oxidation from rich fen Carex aquatilis plots compared to Juncus 

balticus could relate to the greater CH4 pool (Fig 3.5II) and consequent source of CH4 for 

methanotrophy across Carex aquatilis plots compared to Juncus balticus plots (Le Mer and 

Roger, 2001). However, no significant correlations between absolute oxidation and CH4 

concentration were found (results not shown). It is possible that the higher absolute oxidation 

calculated at the Carex aquatilis rich fen plots with higher CH4 concentration may not solely 

represent ROL associated with Carex cover. A greater concentration gradient between the peat 

core and atmosphere may have resulted in the much higher flux in anoxic conditions across 

Carex aquatilis rich fen plots, given that the anoxic CH4 concentration was higher than under the 

typical oxic conditions (Lai, 2009; Fig 3.5II, III).  

While higher absolute values of oxidation were found at Carex aquatilis plots, the 

percent relative oxidation was higher on average at Juncus balticus plots compared to Carex 

aquatilis plots across both water types. Therefore, the relative oxidation results do overall 

support the hypothesis that Juncus balticus would have greater ROL and methanotrophy 

compared to Carex aquatilis, and rhizospheric oxidation likely influenced the low CH4 flux and 

concentration found across Juncus balticus plots (Fig 3.4II; Fig 3.5II).  

 

3.5 Conclusions 

 In this study differences in CH4 flux, concentration, and oxidation were found across 

greenhouse peat core water type (constructed fen and natural rich fen water) and cover type 

(bare, Carex aquatilis and Juncus balticus) plots. Consistent with results from field studies at the 
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constructed fen site focused on GHG emissions including CH4 post-reclamation (Chapter 2; 

Nwaishi et al., 2016), peat cores in this study with water from the constructed fen had lower CH4 

emissions compared to peat cores with natural rich fen water. This was associated with water 

chemistry results that indicated a high concentration of ions in the peat pore water that are known 

to limit methanogenesis including manganese, iron, and sulfate. While plant productivity 

measured through net ecosystem exchange, as well as above and belowground biomass, were 

similar between Carex aquatilis and Juncus balticus plots regardless of water type, evidence for 

species-specific effects on CH4 production and oxidation were found. Higher pore water CH4 

concentration coincided with higher absolute values of oxidation at Carex aquatilis plots 

compared to Juncus balticus plots, while Juncus balticus had a smaller CH4 pool in pore water 

but higher relative oxidation. From a GHG perspective, Juncus balticus may be beneficial to 

plant at future constructed fen projects to keep CH4 emissions low. However, data from this 

study suggests that CH4 emissions from constructed fens will remain lower than emissions from 

natural fens, regardless of plant species, associated with the water chemistry at the constructed 

fen site. Future monitoring of the constructed fen will be required to understand if the 

concentration of ions that inhibit CH4 production, such as sulfate, decrease over time in order to 

better predict the ability of constructed fens to eventually accumulate peat. Future constructed 

fen projects may follow recommendations made by Nwaishi et al. (2016) who advised that 

reclamation materials be assessed prior to construction in order to decrease the impact of water 

chemistry on GHG fluxes. In these instances, planting Juncus balticus will likely result in lower 

CH4 emissions compared to Carex aquatilis and, given similar productivity between these two 

species, could increase the overall carbon sink of these reclaimed ecosystems.   



93 

 

Chapter 4: Recommendations and Implications for Fen Construction 

 Results from the field data and greenhouse experiment considered for this research 

indicated that understanding the methane (CH4) dynamics of a constructed fen site compared to 

natural sites can provide important information about constructed fen ecological and 

biogeochemical functioning. Future monitoring at the Nikanotee Fen is recommended to 

understand when CH4 production and emissions may increase to become more similar to natural 

reference fens in the Athabasca Oil Sands Region (AOSR), as the current differences suggest a 

distinct functionality at the constructed fen. Continual monitoring of CH4 from the constructed 

fen can indicate biogeochemical cycling, including redox conditions and the concentration of 

terminal electron acceptors (TEAs) that supress CH4 flux, such as sulfate. Overall, geochemistry 

or water chemistry effects on CH4 flux and concentration were found to be more dominant than 

vegetation or plant effects in this research, and it is therefore suggested that future studies of CH4 

emissions from constructed fens include a consideration of geochemical controls, particularly 

while the concentration of TEAs such as sulfate remains high. Further pore water sampling using 

different methods besides PRS probes at the constructed fen would be helpful to verify the form 

of the ions measured. More research focused on anaerobic oxidation of CH4 (AOM) at the 

constructed fen would also be beneficial, given the high concentration of TEAs found at this site 

that are seemingly necessary for this process to occur. It is further recommended that future 

studies on CH4 dynamics at the constructed fen include microbial data on the methanogen and 

methanotroph communities and function in order to better understand CH4 production and 

oxidation rates.  

Planting Juncus balticus at future constructed fens could be beneficial as this species will 

likely limit CH4 flux due to high relative rhizospheric oxidation observed from Juncus in this and 
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previous studies. However, this suggestion is exclusively made from a greenhouse gas (GHG) 

standpoint. Ecological recommendations for other potential constructed fen projects should also 

be based on the results of current and future ecological monitoring at the Nikanotee Fen to 

determine which species or vegetation will be most successful at establishment and long-term 

survival given the biogeochemical conditions at the constructed fen. Fluxes of CO2 and 

evapotranspiration should also be considered when making ecological recommendations for fen 

construction in order to take into account the carbon accumulating and water use efficiency 

function of different species and vegetation.  

 The low CH4 flux and concentration at the constructed fen in the AOSR and greenhouse 

plots influenced by constructed fen water found in this research may indicate that peat and 

carbon accumulation at the constructed fen will not occur at a similar rate to natural sites. 

Therefore, it would be beneficial to more clearly understand the source of the TEAs, such as 

sulfate, that are in the constructed fen pore water and inhibiting CH4 production. These water 

chemistry conditions may also supress peat accumulation through increased microbial respiration 

and organic matter decomposition. A better understanding of the effects of donor peat compared 

to the water influx from the upland slopes of the constructed fen on the water chemistry within 

the fen could allow for valuable recommendations to future projects that could result in 

biogeochemistry, including CH4 dynamics, being more similar to natural fens. However, given 

the similar or higher productivity and biomass of vascular species found at the constructed fen 

site and greenhouse plots influenced by constructed fen water, if future constructed fen designs 

are altered to achieve similar biogeochemical cycling to natural sites, it is likely that CH4 

emissions will be high, especially in the short-term. This may be disadvantageous for companies 

involved in constructed fen projects who may be interested in decreasing their overall GHG 
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footprint through reclamation. Consequently, management goals that incorporate a consideration 

of GHG emissions including CH4 will be required for future fen construction projects in order to 

make effective recommendations.   
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Appendix 1. Absolute values for average seasonal methane (CH4) flux and concentration ± 

standard error of the mean across the constructed fen (CF), saline fen (SF), poor fen (PF). * 

Site/Cover type CH4 Flux CH4 Conc. 0.2m CH4 Conc. 0.7m 

 (mg m-2 d-1) (mg/L) (mg/L) 

Constructed Fen 3.95±0.31 0.15±0.04 0.52±0.07 

CFB 2.52±0.46 0.13±0.08 0.99±0.24 

CFC 4.08±1.04 0.16±0.13 0.57±0.21 

CFCM 4.72±0.89 0.06±0.03 0.10±0.07 

CFJ 5.85±0.82 0.04±0.02 0.15±0.07 

CFJM 3.74±0.70 0.05±0.01 0.41±0.14 

CFM 2.86±0.45 0.46±0.18 0.90±0.16 

Poor Fen 23.90±3.98 4.63±0.35 4.31±0.39 

PFCM 23.93±3.14 4.43±0.50 4.61±0.57 

PFM 23.86±8.27 4.85±0.53 4.00±0.56 

Saline Fen 4.40±0.82 1.81±0.23 3.14±0.35 

SFB 5.63±1.27 2.66±0.25 3.53±0.52 

SFJ 3.22±1.04 0.92±0.26 2.76±0.47 
*Cover types at the CF included bare (CFB), Carex aquatilis (CFC), Carex aquatilis + moss 

(CFCM), Juncus balticus (CFJ), Juncus balticus + moss (CFJM), and moss (CFM). Cover types 

at the PF included Carex aquatilis + moss (PFCM) and moss (PFM), and at the SF cover types 

were bare (SFB) and Juncus balticus (SFJ). 
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Appendix 2. Principle component analysis (PCA) loadings for significant principle components 

in analysis with methane (CH4) flux and concentration at 0.2 m and 0.7 m depth and correlated 

environmental variables. * 

 CH4 Flux CH4 Conc. 0.2 m CH4 Conc. 0.7 m 

Variables PC1 PC2 PC1 PC2 PC1 PC2 PC3 

CH4** 0.46 -0.21 0.43 -0.01 0.44 -0.17 0.06 

Sulfur -0.42 0.10 -0.43 0.16 -0.44 0.26 -0.23 

Ammonium 0.45 -0.34 0.40 0.21 0.39 0.45 0.01 

pH - - -0.44 0.08 -0.45 0.12 -0.20 

EC -0.45 0.25 - - - - - 

Belowground 0.35 0.59 0.26 -0.72 - - - 

TotalCover 0.30 0.64 - - - - - 

GraminoidCover - - -0.30 -0.64 -0.33 -0.27 0.84 

ShrubCover - - 0.34 0.05 0.35 0.29 0.32 

Temp 0.7 m - - - - 0.16 -0.73 -0.31 

* Environmental controls included total vegetation cover (TotalCover), shrub cover 

(ShrubCover), Graminoid cover (GraminoidCover), belowground biomass from 0-0.2 m depth 

(Belowground), electrical conductivity (EC), pH, temperature at 0.7 m depth (Temp0.7), and 

ammonium and sulfur supply rate. 

**Refers to either CH4 Flux (first column) or CH4 concentration at 0.2 m (second column) or 0.7 

m (third column) depth. 
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Appendix 3. Vegetation survey results ± standard error of the mean at plots with water from a 

rich fen (RF) or constructed fen (CF) and including Carex aquatilis or Juncus balticus plants.   

DOE Water Vegetation Total (%) Litter (%) 

1 RF Carex 21.0±4.0 9.3±1.8 

67   28.7±3.7 4.7±0.7 

173   20.0±2.0 12.0±1.2 

1 RF Juncus 7.3±0.9 7.7±1.3 

67   21.0±0.6 4.0±1.2 

173   19.7±2.8 7.3±1.8 

1 CF Carex 19.3±2.3 10.7±0.7 

67   29.7±1.7 4.7±0.9 

173   22.3±0.7 17.0±1.2 

1 CF Juncus 10.0±2.0 7.5±0.5 

67   19.0±3.2 2.7±0.7 

173   16.7±1.7 6.7±2.9 

 

 

 


