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Abstract

Excessive vibration in response to human activities has been a significant problem as-
sociated with lightweight steel floor systems, especially cold-formed steel (CFS) floors.
Methods for accurately predicting these vibrations and evaluating floor systems are not
readily available to the design community. The limited amount and complexity of research
on the vibration serviceability of lightweight steel floor systems have shown an urgent
need for further investigation.

The objective of this research is to evaluate how human walking affects the performance
of lightweight steel floor systems. Four important aspects that influence floor vibration
performance are investigated: rotationally restrained floor joist ends, structural properties
of CFS floors, human-structure interactions, and the applicable design guidelines.

The investigation was carried out using an analytical approach in which CFS floor
systems are modelled by equivalent orthotropic plates, and the equivalent structural
properties are determined by using the Rayleigh method. The method of finite integral
transform is extended to obtain the exact series solutions of the bending and vibration of
orthotropic plates with rotationally restrained edges. The analytical/numerical results are
compared to the results obtained in previous methods and experimental investigations.
Then, the significant effects of human occupants on the dynamic properties and responses
of lightweight steel floors are examined through the proposed damped plate-oscillator
model, which determines frequencies and damping ratios through analytical analysis of
coupled floor-occupant systems. The predicted results are compared with previous test
results. Three loading models–moving force, moving damped-oscillator, and moving and
stationary damped-oscillators are subsequently proposed to obtain the dynamic responses
of floor systems to human walking. The analytical results from the three models are
compared with the previous test results. After that, parametric studies are conducted
on the effects of step frequency, damping ratio, human-to-structure mass ratio, and
walking path. The foregoing investigations provide a comprehensive understanding of
the dynamic performance of lightweight steel floors affected by human walking. Finally,
design guidelines are developed for lightweight CFS steel floors in residential constructions.
The floors are classified into three categories based on their fundamental frequencies,
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i.e. low-, mid-, and high-frequency floors. For each category, the corresponding design
criterion and method are proposed.

It is the author’s desire that the contributions made in this thesis research help
engineering practitioners better understand the dynamic responses and vibrational char-
acteristics of lightweight CFS floor systems, particularly on human-structure interactions
and ultimately lead to the efficient design of lightweight CFS floor systems that resisting
the vibration induced by human walking.
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1
Introduction

1.1 Background

Cold-formed steel (CFS) floor systems (Fig. 1.1) generally comprise a series of equally
spaced CFS joists sheathed with different subfloors such as plywood, oriented strand
board (OSB), cementitious board, or corrugated steel deck with lightweight gypsum-based
underlayment. They are also referred to as lightweight steel floors, light-gauge steel
framings or lightweight steel framings. Throughout the past few decades, CFS floor
systems have been increasingly used in residential construction and other light frame
construction in North America as a cost-effective alternative to traditional wood-framed
floors. Compared to this counterpart, CFS floors are relatively lighter in weight, have less
damping and allow for longer spans. However, similar to that of wood-framed floors in
residential construction, CFS floor systems are also prone to vibration induced by human
activities, typically walking (Fig. 1.2).

Design against perceptible vibrations disturbing the floor occupants is referred as the
vibration serviceability in this research. If special design considerations are not taken,
this longer span and lighter structure can unfortunately result in vibration serviceability
problems that may affect occupant comfort. Furthermore, if this issue is not seriously taken
into consideration, there is a risk that the potential market share growth of residential
buildings with lightweight structures will diminish (Hagberg et al., 2009).

Over the last half century, vibration serviceability of floors has attracted interest
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Ceiling
Blocking

Joist
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Figure 1.1 Typical CFS floor systems.

Figure 1.2 Vibration serviceability problem in residential buildings (Ohlsson, 1988a).
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1.2 Objectives and Scope of Research

from researchers, engineers and regulators. Several design methods were published to
enable engineers to ensure human comfort in daily life such as Steel Design Guide 11
(Murray et al., 1997) of the American Institute of Steel Construction/Canadian Institute
of Steel Construction (AISC/CISC) for structural steel-framed floor systems, CWC
et al. (1997) of Canadian Wood Council for wood-framed floors, and Applied Technology
Council (ATC) Design Guide 1 (Allen et al., 1999) for lightweight floor systems. However,
although significant developments in CFS joist products and sheathing have occurred,
research on vibration serviceability for CFS floor systems is limited. The current design
procedures for CFS floor systems are primarily based on that is developed either for
wood-framed floors or structural steel floors. The American Institute of Steel Construction
(AISI) standards on CFS building construction have been silent on the performance and
serviceability requirements of floor vibration due to the limited research. Current AISI
S100 (2012) shifts the burden of floor vibration serviceability to other design guides
such as AISC/CISC Design Guide 11 and ATC Design Guide 1. However, comparing to
the floor systems outlined in both design guides, the nature of being the lighter weight
and less damping of CFS floors may alter the dynamic responses of floors and complete
buildings, resulting in greater instances of vibration serviceability problems. As a result,
vibration serviceability of such floor systems needs separate investigation. An easier and
more economical approach is to limit the possibility of this problem in the design stage.

Vibration serviceability of CFS floor systems consists of two aspects: a design criterion
related to human acceptability of floors, and a design method to determine the criterion
parameters. Currently, the analytical background of vibrations is well developed and
understood. Detailed and rigorous computational tools are available to analyze static and
dynamic responses of both simple and complex structures. These complex approaches,
however, may be beyond the scope of engineers in their daily practice. A simple, practical
and comprehensive design criterion and method are desirable for engineers to prevent
floor vibration problems in design practice.

1.2 Objectives and Scope of Research

Initiated in 1999, multi-phase tests were carried out at the University of Waterloo by
Canadian Cold-Formed Steel Research Group (CCFSRG) for evaluating vibration perfor-
mance of CFS floor systems (Xu et al., 2000; Xu, 2000, 2001a; Tangorra et al., 2002; Xu,
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2005; Xu and Tangorra, 2007; Parnell et al., 2009; Xu, 2011). Full-scale floor systems with
different framing configurations were constructed and tested in both laboratory and in
situ conditions. The vibration performances of CFS floor systems constructed in current
practice were evaluated; critical parameters/details that contribute to the reduction of
floor vibrations were identified and discussed; and existing design methods and criteria
were examined by test results. Although comprehensive test results have been made
towards achieving a better understanding of the performance of CFS floor systems, there
is still a lack of reliable theoretical models and adequate design guideline pertinent to
vibration serviceability of CFS floor systems due to human occupant activities. The
objective of this study is, therefore, to conduct theoretical analyses for investigating the
structural properties and vibration performance of lightweight steel floor systems with
occupants.

The research has focused on a number of key aspects such as rotational restraints at
the joist ends, structural properties of CFS floors, human-structure interactions, and the
applicable design criteria as summarised in following:

• Developing a unified and simple method to obtain the exact series solutions of the
bending and vibration of orthotropic plates with rotationally restrained edges;

• Determining the structural properties of CFS floor systems in consideration of rota-
tional restraints at the joist ends for vibration analysis;

• Proposing a coupled floor-occupant model to evaluate the dynamic properties of
lightweight steel floor systems with occupants and predicting the response of such
floor systems under human activities;

• Providing design criteria and methods for CFS floor systems in residential construc-
tion.

This research provides better theoretical tools for vibration serviceability of lightweight
steel floor systems with a focus on rotationally restrained edges and human-structure
interaction. Moreover, the methods developed will not only improve structural analysis of
floor structures but also have helped to develop applicable design criteria and approaches
to lightweight steel floor systems.
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1.3 Thesis Organization

This thesis is divided into seven chapters. The current chapter introduces the research
topic. Chapter 2 summarizes the previous studies on vibration serviceability of lightweight
steel floor systems, particularly CFS floors. Design criteria, vibration tests and design
methods are reviewed. Chapters 3 to 6 discuss the various aspects of vibration ser-
viceability for lightweight steel floor systems. Chapter 3 presents a method of finite
integral transform to determine the exact series solutions of the bending and vibration of
orthotropic plates with rotationally restrained edges. Chapter 4 models CFS floor systems
by equivalent orthotropic plates, and the equivalent structural properties are determined
using the Rayleigh method. In Chapter 5, the significant effects of human occupants
on dynamic properties and responses of lightweight steel floors (i.e., Human-structure
interaction) are examined through the proposed damped plate-oscillator model. The
important effects of human occupants on the dynamic properties of flooring systems are
addressed by determining the frequencies and damping ratios obtained through analysis
of the coupled floor-occupant systems. Three loading models, i.e., the models of moving
force, moving damped-oscillator, and moving and stationary damped-oscillators, are
subsequently proposed to obtain the dynamic responses of floor systems to human walking.
Chapter 6 discusses existing design criteria and proposes design criteria and methods for
CFS floor systems in residential construction with demonstrated examples. The final
chapter concludes this thesis and provides recommendations for further research.
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2
Literature Review

2.1 Introduction

Floor vibration serviceability has been studied extensively from the 1970s in a number
of countries, including Australia, Canada, Finland, New Zealand, Norway, Sweden, the
United Kingdom, and the USA. Significant progress has been made towards a better
understanding of the parameters influencing human perception of vibrations, design
approaches for vibration control, floor response to static and dynamic loads, and the
influence of components and construction details on vibration performance (Hu et al.,
2001). However, the vibration serviceability concerns about lightweight steel floors have
not been well addressed in current construction practice. Extensive reviews of floor
vibration serviceability are available (Pavic and Reynolds, 2002; Sachse et al., 2003;
Ebrahimpour and Sack, 2005). The following review is limited to lightweight floor systems,
particularly CFS floor systems, for the design criteria, vibration tests, and design methods.

2.2 Design Criteria

Several design criteria have been proposed for lightweight floor systems (Ohlsson, 1988a;
Onysko, 1988a; Smith and Chui, 1988; Allen et al., 1999; Toratti and Talja, 2006) based
on long-standing historical practice in wood-framed building construction. Although a
general consensus has not been reached, many approaches still have merit.
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2.2 Design Criteria

One of the most widely used criteria–limiting the static deflection of a floor under 1
kN concentrated load– is based on extensive field and laboratory studies of solid sawn
lumber joist floors in Canada in the 1970s (Onysko, 1988a,b; Onysko et al., 2000). This
criterion was adopted by ATC Design Guide 1 (Allen et al., 1999) for light-frame floors
with a natural frequency greater than 8 Hz. The criterion is shown in Fig. 2.1 and is
expressed in the international system of units as:

∆P 6


2.0 mm for L 6 3.0 m

8.0/L1.3 for 3.0 m < L 6 9.9 m
(2.1)

where L is the joist span and ∆P is the maximum deflection of the floor under a 1 kN
concentrated load. It should be noted that the ATC criterion was adjusted in accordance
with CWC et al. (1997):

∆P 6



2.0 mm for L 6 3.0 m

8.0/L1.3 for 3.0 m < L 6 5.5 m

2.55/L0.63 for 5.5 m < L 6 9.9 m

0.6 mm for L > 9.9 m

(2.2)
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Figure 2.1 ATC design criterion for light-frame floors (Allen et al., 1999).
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Ohlsson (1986, 1988a,b) developed a design approach for lightweight floor systems
with a fundamental frequency of no less than 8 Hz. The design procedure is independent
of the construction material and made relatively simple through the use of several design
aids such as flow-charts and diagrams. Four design parameters for stiffness criteria and
dynamic serviceability were developed:

1 ) static deflection w under a point load of 1 kN at mid-span not exceeding 1.5 mm,

2 ) initial impulse velocity response h′
max form a unit impulse = 1 Ns,

3 ) damping coefficient σo = (c/ccr) · f1,

4 ) stationary vibration velocity w′
RMS from the force spectrum.

These parameters were presented by Ohlsson (1988a) in detail. This criterion was also
adopted by the Australian Standard for Domestic Metal Framing (AS 3623, 1993), with
slight modification.

Hu (2002) considered that vibration serviceability will likely involve multiple parame-
ters rather than a single parameter only. Based on the field investigation conducted by
the Eastern Laboratory of Forintek Canada Corp., several forms for a tentative criterion
were generated by using logistic regression. The proposed forms are the fundamental
frequency with 1kN static deflection, fundamental frequency with peak velocity, funda-
mental frequency with peak acceleration, and fundamental frequency with root mean
square (RMS) acceleration. Although some of these combinations showed good potential
for use as design criteria, the combination containing fundamental frequency and 1 kN
static deflection is easier to calculate and for designers to adopt (Hu et al., 2001). The
proposed design criterion was derived from a database of 112 field floors by using logistic
regression and is represented as follows

f

d0.39 > 15.3 (2.3)

where d is the calculated maximum static deflection under 1 kN concentrated load at
the floor center, and f is the fundamental natural frequency of a wood-framed floor. A
further validation study was also conducted by Hu (2002) to assess the robustness of
this criterion by using a database of 58 lightweight floors, of which 21 were field floors
studied by Forintek and 37 were floor specimens tested and subjectively evaluated by five
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Canadian and overseas research laboratories. In particular, 13 of the 37 laboratory floors
were built with CFS joists. The comparison of acceptance predicted using the proposed
criterion with subjective ratings of the floors in the second database is shown in Fig. 2.2.
Similarly, a new design criterion was proposed by Hu and Chui (2004) for wood floors as

Figure 2.2 Comparison between subjective rating and their predicted acceptance (Hu, 2002).

follows:
f

d0.44 > 18.7 (2.4)

Toratti and Talja (2006) classified floors in residential and office buildings into five
categories for floor acceptance based on test data collected over ten years for timber,
steel and concrete floors. Table. 2.1 gives their tentative criteria and limiting values
to be applied in either the design or testing of floors for the following parameters: the
fundamental frequency f0, the RMS for weighted acceleration aw.rms and for velocity
vrms during one second period, the peak vertical displacement |umax|, the peak vertical
velocity vmax, the global displacement of load bearing member δ0 due to 1 kN point
load, and the local displacement δl due to 1 kN point load. It was recognized that only
the global deflection (δ0) and the fundamental natural frequency (f0) can be expected
to be estimated accurately by engineers using formulas. The other parameters related
to acceptability of a floor performance (aw.rms, |umax| and vmax) have to be obtained
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by testing. In particular, the local deflection δl might be the first attempt to consider
vibration serviceability caused by soft toppings, floating and raised floors, although the
corresponding design methods were not given.

Table 2.1 Tentative acceptance limits for vibration classes (Toratti and Talja, 2006).

Classes

Dynamic vibration values Static deflection values

f0 < 10 Hz f0 >10 Hz f0 > 10 Hz
Floor plate or
superstructure

aw.rms vmax vrms |umax| δ0 δ1

(m/s2) (mm/s) (mm/s) (mm) (mm/kN) (mm/kN)
A 6 0.03 6 4 6 0.3 6 0.05 6 0.12 6 0.12
B 6 0.05 6 6 6 0.6 6 0.1 6 0.25 6 0.25
C 6 0.075 6 8 6 1.0 6 0.2 6 0.5 6 0.5
D 6 0.12 6 10 6 1.5 6 0.4 6 1.0 6 1.0
E > 0.12 > 10 > 1.5 > 0.4 > 1.0 > 1.0

2.3 Floor Tests

One of the earliest studies on the vibration serviceability of CFS floor systems was those by
Wiss et al. (1977).In order to determine the static and dynamic properties of cold-formed
steel-joist (CFSJ) floor systems, twelve laboratory floor systems were tested and rated
subjectively for the perceptibility of vibration due to human walking. It was found that
span length has a notable effect on the human rating but a superimposed live load has
no significant effect. No significant difference was found in the human rating between
the control wood-framed floor and the CFSJ floors with plywood decks for spans of 16 ft
(4.88 m). Dynamic deflection during human walking was considered as the best empirical
indicator for the human rating. CFSJ floors with a peak amplitude of dynamic deflection
less than approximately 0.005 in. (0.13 mm) were rated in the mid-span, comparable to
or better than the control wood-joist floor in terms of human rating.

Since it is known that human acceptance criteria of floor vibration are independent of
construction material, the earlier studies for design criteria of CFS floor systems started
from adoption or verification of the existing design criteria of wood floors. Kraus (1997)
conducted a series of tests on residential floor systems supported by C-shaped CFS
members. Dynamic impact and static loading tests were conducted on twelve full-size
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laboratory floors and five two-joist line laboratory floors to determine what properties
influenced vibration in light-gauge steel framed floors (i.e., CFS floors). The test results
were compared with four design criteria:

1 ) Australian Standard for Domestic Metal Framing (AS 3623, 1993);

2 ) Swedish Design Guide (Ohlsson, 1988a);

3 ) American Timber Floor Vibration Criterion proposed by Johnson (1994);

4 ) Canadian Timber Floor Criterion developed by Onysko et al. (Onysko, 1988a;
Onysko et al., 2000).

All laboratory test floors were classified by each criterion, and the results were compared
to the subjective evaluation. As a result, the Onysko criterion was recommended for
use as a possible criterion for CFS joist residential floors because of its simplicity and
satisfactory agreement with test results.

Three different lightweight steel-joist floors were tested by Kullaa and Talja (1999) to
study vibration induced by human walking. Experimental modal analysis was applied to
identify the dynamic properties of the structures. Walking tests and subjective evaluation
were conducted to compare with design criteria proposed by Ohlsson (1988a), Onysko
(1988a) and AISC/CISC Design Guide 11 by Murray et al. (1997). They concluded that
the deflection criterion proposed by Onysko (1988a) was more satisfactory. Although
AISC/CISC method is actually not intended for lightweight floors, this criterion also
agrees with the subjective evaluation. The test details can be found in Kullaa and Talja
(1998) and Talja and Kullaa (1998) as well.

The Swedish Institute of Steel Construction in cooperation with VTT Building Tech-
nology, Steel and Composite Structures summarized six test series with a total of 38 tests
on cold-formed C-section supported residential floors and wood-framed floors by sense
rating and dynamic measurements (Burstrand and Talja, 2001). The maximum peak
displacement of the vibration due to walking was found to correlate best with the rating
of floor vibration acceptability and was much better than a static deflection under 1 kN
concentrated load. A peak amplitude of 0.2 mm measured from the top surface of the
floor was proposed as an acceptance criterion when CFS floors are tested with a walking
test.
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From 1999 to 2005, six CFS floor systems were tested in the Structures Lab at the
University of Waterloo by CCFSRG (Xu, 2000, 2001a, 2005; Liu, 2001; Xu and Tangorra,
2007). In addition, five CFS floor systems were also tested in situ near Toronto, Ontario,
in 2002 (Tangorra, 2005), and a wood floor for comparison. In addition to the four
design criteria evaluated by Kraus (1997), ATC Design Guide 1 (Allen et al., 1999)
was also investigated. The tested CFS floors were evaluated based on these criteria.
Onysko method, ATC method, and Johnson’s method yielded the same results while the
Australian and the Swedish methods were too lax in their respective serviceability criteria
(Tangorra, 2005). In the end, a design method based on the ATC Design Guide 1 was
proposed. Further experimental studies in the laboratory and the field were conducted
by CCFSRG to investigate dynamic characteristics of CFS floor systems and assess the
influence of different construction details on those characteristics (Parnell et al., 2009).
The actual design and performance of the in-situ floor systems was evaluated by Parnell
(2008) based on the RMS heel-drop acceleration criterion developed by Smith and Chui
(1988), the ISO acceleration limit for residential occupancy proposed by AISC/CISC
Design Guide 11 (Murray et al., 1997), and Onysko’s static stiffness criterion defined in
ATC Design Guide 1 (Allen et al., 1999).

Rack and Lange (2009) built two types of CFS floor systems in the laboratory, by
using C-shaped CFS joists with OSB subfloors. Static and dynamic tests were conducted
to obtain the maximum deflection, load sharing capacity and dynamic characteristics.
Acceptance limits and construction details were discussed to draw the conclusion that
limiting the fundamental frequencies and the dead load and point load deflections do not
adequately quantify acceleration and velocity. For a practice-oriented solution, increasing
the damping ratio and reducing the dynamic response for a broad spectrum of adaptability
are recommended.

Rehman (2014) presented the test results of laboratory and field studies on the
vibration of a CFS I-shape joist called “iSPAN" and compared the experimental results
with available serviceability design codes. Experimental findings show that the CWC
et al. (1997) underestimates 1-kN load deflection but provides accurate results for floor
natural frequency. On the other hand, ATC Design Guide 1 does not show general trend
in estimating the 1-kN load deflection and floor frequency.
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2.4 Design Methods

2.4.1 Deflection under 1 kN concentrated load

In previous studies, the maximum deflection under 1 kN concentrated load was acknowl-
edged as one of the best indicators of floor performance for lightweight floors. Different
methods were developed to predict this 1 kN deflection in design practice. Among them,
Talja and Kullaa (1998) and Toratti and Talja (2006) developed a method based on
the deflection of an orthotropic plate with all edges simply supported. The maximum
deflection can be approximated by

δmax = γ · Fl2

(EI)l

(2.5)

where
γ = 4

απ4

∑
m

∑
n

1

(2m− 1)4 + β
(2n− 1

α

)4 (2.6)

In Eq. (2.6), α is the ratio of floor width to length, and β is the ratio of transverse to
longitudinal stiffness of the floor. They can be expressed as

α = b

l
, β = (EI)b

(EI)l

(2.7)

ATC Design Guide 1 (Allen et al., 1999) suggests that the equation for calculating
deflection under a concentrated load by adjusting the equivalent beam model in accordance
with CWC et al. (1997) should be

∆p = Cpd

Neff

PL3

48EIeff

(2.8)

where P is the concentrated load (1kN or 225 lb), L is the joist span length, EIeff is
the effective flexural stiffness of a joist panel, Neff is the number of effective joists, and
Cpd is a joist continuity factor (0.7 for continuous span and 1.0 for single span). The
partial composite action was considered in Eq. (2.8) by determining the effective flexural
stiffness based on the method in CWC et al. (1997). Meanwhile, ATC Design Guide 1
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2.4 Design Methods

provides two methods for calculating the number of effective joists, which needed account
for load sharing action when determining the coefficient Neff . The first method follows
the method of CWC et al. (1997) for wood floors. The second method adopts the design
equation in AISC/CISC Design Guide 11 (Murray et al., 1997), which is applicable for
open-web steel joists or structural steel beams supporting ribbed concrete decks. The
design equation was proposed by Kitterman (1994), who used linear regression analysis
for the SAP90 models of 240 floors: 103 open-web steel-joist supported floors and 137
structural-steel-beam-supported floors.

Based on ATC Design Guide 1 with modifications, a design method was proposed by
CCFSRG (Tangorra, 2005). First, an end-fixity factor, r, was introduced to account for
the partial restraining effects on the joist-end rotations from partitions and load-bearing
walls. Therefore, the maximum deflection due to 1 kN concentrated load at mid-span is
determined by

∆p = 1
Neff

L2

48EIeff

[3 (M1 +M2) − PL] (2.9)

where EIeff is the effective flexural stiffness, Neff is the effective number of joists, and
M1 and M2 are end moments expressed as

M1 = 3r1

8 (4 − r1r2)
[2 − r2]PL

M2 = 3r2

8 (4 − r1r2)
[2 − r1]PL

(2.10)

in which r1 and r2 are end-fixity factors associated with the two ends of a floor joist
(Xu, 2001b). In the case that r1 = r2 = 0, the joist ends are simply supported while
r1 = r2 = 1 indicates the joist ends are fully clamped. The joist ends are considered to
be semi-rigidly supported when the values of the end-fixity factors are between 0 and
1. Tangorra (2005) also indicated that the method of calculating Neff in ATC Design
Guide 1 is not applicable for the calculation of the effective number of CFS floor systems
because the design equation was calibrated with test results obtained from lightweight
floors supported by wood joists. Then, a new equation for determining the effective
number of joists, Neff , was developed as

Neff = 3.6eα (2.11)
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α = −
{
α0 + α1

L

D
+ α2

[
1 −

(254
D

)0.5]
− 2

[
1 −

(
s

400

)0.4
]}

(2.12)

where D is depth of floor joist (mm); L is floor span (mm); s is joist spacing (mm); and
α0, α1 and α2 are coefficients calibrated with the laboratory test results. Eq. (2.11) was
based on the assumption that the concentrated load was primarily resisted by the four
joists located near the center of the floors. A modified formulation for the calculation of
the effective flexural stiffness, EIeff , was developed for considering the presence of ceiling
material.

2.4.2 Fundamental frequency

The method proposed by Ohlsson (1988a) was suggested by Talja and Kullaa (1998) to
calculate the fundamental natural frequency of lightweight steel floors. The frequency
can be approximated by

f0 = π

2l2

√
(EI)l

m
(2.13)

where m is the floor mass per unit area, l is the length of the floor, and (EI)l is the
longitudinal floor stiffness per unit length. In many cases, the edge condition parallel to
the floor joist may be neglected (Toratti and Talja, 2006).

Kraus (1997) recommended the method proposed by Johnson (1994) to predict the fun-
damental frequency of a CFS floor. The fundamental frequency is obtained by calculating
the frequency of a representative T-beam in the floor system as follows:

f = 1.57
√

386EI
WL3 (2.14)

where E is the modulus of elasticity (lb/in2), I is the transformed moment of inertia
of the T-beam model (in4), L is the span (in), and W is the weight supported by the
T-beam (lb), calculated based on the tributary width of the beam.

Liu (2001) developed the equivalent orthotropic plate to evaluate the maximum
deflection of a floor system and compared the results with those of finite element modelling
and ATC Design Guide 1. However, no corresponding design method was proposed.
Tangorra (2005) proposed a modification method based on ATC Design Guide 1 by
introducing the end-fixity factor, r , to model the restraints provided by walls on joist end-
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2.4 Design Methods

rotations. The fundamental frequency can be expressed in terms of mid-span deflection
by

f = 0.18
√

g

∆j

(2.15)

where g is acceleration due to gravity and ∆j is a static deflection of a beam under a
uniformly distributed load (UDL), which can be determined similar to Eq. (2.9) as

∆j,r = L2

8EIeff

[
(M1 −M2) − 5WL2

48

]
(2.16)

in which
M1 = (WL2/12) [3r1 (2 − r2) / (4 − r1r2)]

M2 = − (WL2/12) [3r2 (2 − r1) / (4 − r1r2)]
(2.17)

Parnell (2008) examined the methods of evaluating floor frequency in ATC Design
Guide 1 and AISC/CISC Design Guide 11, which were both derived based on a single
degree of freedom (SDOF) beam model. In addition, a frequency-evaluation method
proposed by Chui and Hu (2004) based on a ribbed plate from Timoshenko and Woinowsky-
Krieger (1959) was also studied. As shown in Table 5-4 in Parnell (2008), floor frequencies
evaluated by all of the three methods were found to be significantly over-predicted.
However, the methods are generally more accurate when the estimated frequency does
not exceed approximately 13 Hz, indicating that the methods tend to be more accurate
for long-span floors.

2.4.3 Dynamic response

Occupants’ perception of vibration was correlated with vibration magnitude, a frequency
component, and vibration damping. However, although a number of dynamic tests were
conducted on CFS floor systems, very few research studies have investigated dynamic
criteria of CFS floor systems affected by human walking. For residential construction,
both AISC/CISC Design Guide 11 and ATC Design Guide 1 suggested that a minimum
floor stiffness is needed for a floor subjected to a 1 kN concentrated load when the
fundamental frequency of a floor is greater than 9-10 Hz. This requirement is in addition
to the resonance criterion proposed for steel construction with a fundamental frequency
less than 8 Hz.
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2.5 Summary

Parnell (2008) proposed to check the resonant RMS acceleration from walking exci-
tation by using the method provided in ATC Design Guide 1 (the same as AISC/CISC
Design Guide 11). The response threshold for residential construction is 0.5%g. However,
this acceleration limit was proposed for peak acceleration based on the experience of vari-
ous investigators with long-span steel and concrete floors. The limit is highly questionable
when it is used for RMS acceleration of CFS floor systems.

2.5 Summary

Accumulated studies have been carried out during the last 20 years on the vibration ser-
viceability of CFS floor systems. Extensive research on wood-framed floors has promoted
better understanding of the vibration performance of lightweight floor systems. Limiting
static deflection under concentrated load has been proved one of the best evaluation
methods for CFS floor systems. However, the method of predicting this deflection still
needs further investigation focusing on transverse flexural stiffness and various boundary
conditions.

Although many attempts have been made to develop a dynamic response-based method
for ensuring vibration serviceability of lightweight floors, a widely accepted method and
criteria have not been provided. Moreover, complex issues such as damping evaluation and
human-structure interaction are still puzzling researchers and engineering practitioners.
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3
Orthotropic Plates with Rotationally

Restrained Edges

3.1 Introduction

Among the different proposed design criteria, limiting the centre deflection of the floors
under a static concentrated load has been found to be a successful predictor of the vibration
performance of lightweight floor systems (Allen et al., 1999; Chui, 2002). Generally, the
effectiveness of static deflection criteria depends on factors such as how floors are supported
and whether they have significant flexural stiffness in the direction perpendicular to the
span (Weckendorf et al., 2015). Furthermore, the fundamental frequency plays a major
role in characterizing the dynamic response of a floor system, and needs to be manually
calculated in design practice. Design equations for lightweight floor systems (Allen et al.,
1999; Dolan et al., 1999) were developed based on the equivalent beam theory. Although
this theory is relatively simple and practical, the obtained fundamental frequency may
not be accurate, depending on the configuration and support conditions of the floor.
Alternatively, lightweight steel floor systems (i.e., CFS floor systems) can be regarded
as a thin plate reinforced by a series of equidistant stiffeners on one side with various
transverse elements such as strapping, blocking and strongback. In other words, the floor
can be simulated as an orthotropic plate. Thus, the orthotropic plate model is adopted
to simulate the behaviour of lightweight floor systems.

Experimental investigations reveal that the boundary conditions of lightweight floor
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3.1 Introduction

systems in current practice are neither simply-supported nor fully clamped. The com-
mon boundary condition of the floor can be best described as elastically restrained
against rotation (Xu and Tangorra, 2007). Although bending and vibration of rectangular
orthotropic thin plates with various combinations of boundary conditions have been
investigated extensively, most previous methods are suitable only for specific boundary
conditions. Unlike the large number of investigations on orthotropic plates with either
simply-supported and/or clamped boundary conditions, fewer solutions are available for
plates with elastically restrained edges. Furthermore, to this author’s knowledge, no
closed-form solution is available for bending of rectangular orthotropic thin plates with
rotationally restrained edges.

In the present chapter, the method of finite integral transforms is employed to solve the
bending and vibration of rectangular orthotropic thin plates with rotationally restrained
edges (i.e., R-R-R-R). A rotational fixity factor is introduced to define elastic restraints
against rotation along edges, and a general boundary condition is presented. The effects
of rotational restraints, load patterns and aspect ratios are investigated. The results
obtained from the proposed solutions are compared with previously reported results.
Furthermore, numerical issues associated with the application of finite integral transform
method for the flexure and vibration of orthotropic plates with rotationally restrained
edges are discussed. In addition, existing analytical methods are briefly compared and
discussed.

3.1.1 Exact series solutions

Over the last few decades, boundary value problems of beams and plates with general
boundary conditions have been studied extensively. Among the studies, considerable
efforts have been made to obtain the exact analytical solutions for structures with general
boundary conditions. Exact series solutions have been derived from different mathematical
principles with various procedures. The first notable method was proposed by Wang and
Lin (1996) who applied Fourier series to the vibration analysis of beams with general
boundary conditions. Subsequently, Wang and Lin (1999) extended the use of the Fourier
series to obtain the exact solutions of several structural mechanics problems with arbitrary
boundary conditions by transforming the governing differential equations into integral
form with sinusoidal weighting functions. Hurlebaus et al. (2001) broadened the use
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3.1 Introduction

of the method by Wang and Lin (1996, 1999) to calculate an exact series solution for
the free vibration of a completely free orthotropic plate. Other works based on Fourier
series were presented in references (Green, 1944; Greif and Mittendorf, 1976; Kim and
Kim, 2001; Khalili et al., 2005) and a short review can be found in Maurizi and Robledo
(1998). In order to remedy the slow convergence problem of the Fourier series method, an
improved (or modified) Fourier series method was proposed by Li et al. (Li, 2000; Li and
Daniels, 2002; Li, 2004; Du et al., 2007; Li et al., 2009b; Zhang and Li, 2009; Khov et al.,
2009), in which the displacement functions comprise a Fourier series and an auxiliary
function (polynomial function or one-dimensional Fourier series), resulting in remarkable
convergence and accuracy.

The method of superposition was thoroughly studied by Gorman (1999). In this
method, boundary conditions are decomposed into a set of “build blocks” such that
analytical solutions can be obtained by means of the generalized Levy method (Gorman
and Yu, 2012). Recently, Bhaskar et al. (Bhaskar and Kaushik, 2004; Bhaskar and
Sivaram, 2008; Kshirsagar and Bhaskar, 2008) simplified the method of superposition with
use of the so-called untruncated infinite Fourier series instead of conventional Levy-type
closed-form expressions to obtain accurate results.

Another remarkable analytical tool is the method of finite integral transform. Various
types of integral transform were employed to obtain the solutions of a wide variety of
boundary value and initial value problems several decades ago. Brown (1943) made a short
survey of the applicability of the finite Fourier transformation to engineering problems.
Jaramillo (1950) applied a Fourier integral to solve deflections and moments due to a
concentrated load on a cantilever plate of infinite length. Amba-Rao (1964) employed a
double finite sine transform to investigate the vibration of simply supported rectangular
plates carrying a concentrated mass. Magrab (1968) extended Amba-Rao’s solution
to plates simply supported on two opposite edges with the remaining two edges being
simply supported, clamped, or free by using the combination of the finite sine transform
and the Laplace transform. Sharp (1967a,b) and Anderson (1969) applied Hankel-type
finite integral transforms to vibration analysis of annular membranes and circular plates,
respectively. Using finite integral transform, Cobble and Fang (1967) determined the
motion of an elastically supported cantilever beam whose wall edge elastically restrained
against rotation. Notably, various researchers have recently adopted the double finite
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3.1 Introduction

integral transforms to acquire exact series solutions for plates with different complicated
boundary conditions, using various integral kernels, such as fully clamped orthotropic
plates (Li et al., 2009a), free orthotropic rectangular plates (Zhong and Yin, 2008; Li
et al., 2013; Tian et al., 2015), and rectangular cantilever thin plates (Tian et al., 2011).
However, flexural and dynamic analysis of a plate with rotationally restrained edges has
not been explored with use of the method of finite integral transform.

It should be recognised that even though the aforementioned methods are derived from
different mathematical principles with various procedures, the methods are all Fourier-
series-based analytical methods. The inversion formulas of finite Fourier transforms
are exactly Fourier sine/cosine series. Accordingly, Fourier series expansion and finite
Fourier-integral transform are equivalent, but the finite integral transform method is more
convenient and automatically involves boundary conditions in the process of conversion.
It also can be found that the improved superposition method proposed by Bhaskar et
al. (Bhaskar and Kaushik, 2004; Bhaskar and Sivaram, 2008; Kshirsagar and Bhaskar,
2008) literally adopted the same concept by using Fourier series expansion to replace
conventional Levy-type expressions in the forms of trigonometric and hyperbolic functions.
Nevertheless, the superposition process requires skillful decomposition of the original
boundary value problems as well as different formulations for each kind of boundary
condition (Li et al., 2009b). Furthermore, in the comparison of the Fourier expansion and
finite integral transform method, the improved Fourier series methods developed by Li
et al. (Li, 2000; Li and Daniels, 2002; Li, 2004; Du et al., 2007; Li et al., 2009b; Zhang
and Li, 2009; Khov et al., 2009) can be quite complicated for some boundary conditions
(except classical cases) such as edges elastically restrained against rotations, although
the solutions provide accurate results with rapid convergence for arbitrary boundary
conditions.

3.1.2 Method of finite integral transform

Over last several decades, integral transformation has been employed to obtain solutions
of a wide variety of boundary value and initial value problems (Sneddon, 1972, 1975). This
technique simply transforms partial or ordinary differential equations into reduced ordinary
differential equations or simple algebraic equations, although a substantial difficulty is
present regarding the inversion process (Watanabe, 2014). Various types of integral
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transform method have been used successfully to solve many kinds of mixed boundary
value problems in engineering. For finite domains, the suitable integral transforms are
the finite (Fourier) sine transform and the finite (Fourier) cosine transform.

In the present study, integral transform methods such as finite sine/cosine transform
is applied to solve the bending and vibration of orthotropic plates with rotationally
restrained edges. An introduction to and details about finite sine/cosine transform,
although omitted here, can be found in Debnath and Bhatta (2014) and Churchill (1972).
The application of the method of finite integral transform for the solution of vibration
problems is considered in Rao (2007). The pair of finite Fourier sine transforms is defined
as

f̄(m) =
∫ a

0
f(x) sin mπx

a
dx (3.1a)

f(x) = 2
a

∞∑
m=1

f̄(m) sin mπx
a

(3.1b)

Similarly, the pair of finite Fourier cosine transforms is expressed as

f̄(n) =
∫ a

0
f(x) cos nπx

a
dx (3.2a)

f(x) = f̄(0)
a

+ 2
a

∞∑
n=1

f̄(n) cos nπx
a

(3.2b)

Firstly, the application of finite sine/cosine transform in the bending and vibration
of orthotropic plates is illustrated by a simple problem in which all sides of Plates are
simply supported (i.e., S-S-S-S) as shown in Fig. 3.1. The governing equation for bending
of a rectangular orthotropic plate is found in Timoshenko and Woinowsky-Krieger (1959)

∇4
ow = q(x, y) (3.3)

where w(x, y) is the transverse flexural displacement, q(x, y) is an arbitrary transverse
load, and ∇4

o is the biharmonic operator for orthotropic plate, which can be expressed as

∇4
o = Dx

∂4

∂x4 + 2H ∂4

∂x2∂y2 +Dy
∂4

∂y4 (3.4)
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3.1 Introduction

a

o

x

y

b

Figure 3.1 Simply supported orthotropic plate.

in which Dx is the flexural rigidity in the x-direction, Dy is the flexural rigidity in the
y-direction, H = D1 + 2Dxy is effective torsional rigidity where Dxy = Gxyh

3/12 is
torsional rigidity and D1 = νxDy = νyDx is defined in terms of the Poisson’s ratios νx

and νy, respectively. For a simply supported plate, boundary conditions are

w = 0, Dx

[
∂2w

∂x2 + νy
∂2w

∂y2

]
= 0, for x = 0, a (3.5a)

w = 0, Dy

[
∂2w

∂y2 + νx
∂2w

∂x2

]
= 0, for y = 0, b (3.5b)

It may be noted that if w = 0 along the edges y = 0 and y = b, this guarantees that all
derivatives of w in the x-direction (∂w/∂x, ∂2w/∂x2, etc.) along those edges are zero
(Timoshenko and Woinowsky-Krieger, 1959). Then, the boundary conditions can also be
expressed as

w = 0, ∂
2w

∂x2 = 0, for x = 0, a (3.6a)

w = 0, ∂
2w

∂y2 = 0, for y = 0, b (3.6b)

A concentrated load P at the point (ξ, η) is expressed as
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3.1 Introduction

q(x, y) = Pδ(x− ξ)δ(y − η) (3.7)

where δ is the Dirac delta function. The pair of the double finite sine transforms is defined
as

¯̄w(m,n) =
∫ a

0

∫ b

0
w(x, y) sinαmx sin βnydxdy (3.8a)

w(x, y) = 4
ab

∞∑
m=1

∞∑
n=1

¯̄w(m,n) sinαmx sin βny (3.8b)

where
αm = mπ

a
, βn = nπ

b
(m = 1, 2, 3, ..., n = 1, 2, 3, ...) (3.9)

Using integration by parts and the boundary conditions of Eqs. (3.6), the double finite
sine transforms of the fourth derivatives in Eq. (3.3) can be obtained by

∫ a

0

∫ b

0

∂4w

∂x4 sinαmx sin βnydxdy = α4
m

¯̄w(m,n) (3.10a)

∫ a

0

∫ b

0

∂4w

∂x2∂y2 sinαmx sin βnydxdy = α2
mβ

2
n

¯̄w(m,n) (3.10b)

∫ a

0

∫ b

0

∂4w

∂y4 sinαmx sin βnydxdy = β4
n

¯̄w(m,n) (3.10c)

Taking double finite sine transforms to both sides of Eq. (3.3) and using the property that

∫ a

0

∫ b

0
δ(x− ξ)δ(y − η) sinαmx sin βnydxdy = sinαmξ sin βnη (3.11)

it can be derived that

¯̄w(m,n)
[
Dxα

4
m + 2Hα2

mβ
2
n +Dyβ

4
n

]
= P sinαmξ sin βnη (3.12)

or
¯̄w(m,n) = 1

Ωmn

P sinαmξ sin βnη (3.13)

where
Ωmn = Dxα

4
m + 2Hα2

mβ
2
n +Dyβ

4
n (3.14)
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The inverse transform of Eq. (3.13) gives the solution

w(x, y) = 4P
ab

∞∑
m=1

∞∑
n=1

sinαmξ sin βnη sinαmx sin βny

Ωmn

(3.15)

For an arbitrary load of density f(x, y) distributed over an area A inside the region of
plates, the corresponding deflection can easily be obtained. Assuming an elementary load
f(ξ, η)dξdη at x = ξ, y = η and using the principle of superposition, the deflection is
obtained and has the form

w(x, y) = 4
ab

∞∑
m=1

∞∑
n=1

sinαmx sin βny

Ωmn

∫∫
A

f(ξ, η) sinαmξ sin βnηdξdη (3.16)

3.1.3 Stokes’s transformation

If a function is expanded in a Fourier sine series, the end values of the function are forced
to be zero. As a result, the sine series may not actually converge to the true end values of
the function. However, if two end points are excluded and defined separately, the end
values are released and the function is not forced to be zero at the end points even if it is
being represented by a Fourier sine series (Greif and Mittendorf, 1976). In this manner,
the function is defined in two separate regions, one involving the end points and the other
involving the intermediate region between these end points as

f(0) = f0, f(a) = fa, f(x) =
∞∑

m=1
Am sinαmx (0 < x < a) (3.17)

where
Am = 2

a

∫ a

0
f(x) sinαmxdx (3.18)

After that, the derivative of functions must be handled carefully because term-by-term
differentiation may not be valid. Mathematical discussions and proofs on this topic can
be found on pages 137-139 in Tolstov (1962) and on pages 375-377 in Bromwich (1965).
This differentiation procedure is called Stokes’s transformation as shown below.

First, an independent cosine series is formulated for f ′(x):
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f ′(x) = B0 +
∞∑

m=1
Bm cosαmx (3.19)

in which

B0 = 1
a

∫ a

0
f ′(x)dx = f(a) − f(0)

a
= fa − f0

a
(3.20a)

Bm = 2
a

∫ a

0
f ′(x) cosαmxdx (3.20b)

Applying integration by parts gives
∫ a

0
f(x) sinαmxdx = − 1

αm

f(x) cosαmx

∣∣∣∣a
0

+ 1
αm

∫ a

0
f ′(x) cosαmxdx (3.21)

and substituting Eq. (3.18) and Eq. (3.20b) into Eq. (3.21) yields

a

2Am = − 1
αm

[
(−1)mfa − f0

]
+ 1
αm

a

2Bm (3.22)

Therefore,
Bm = 2

a

[
(−1)mfa − f0

]
+ αmAm (3.23)

Similarly, the second derivative can be defined as

f ′′(x) =
∞∑

m=1
Cm sinαmx (0 < x < a) (3.24)

where
Cm = 2

a

∫ a

0
f ′′(x) sinαmxdx (3.25)

Applying integration by parts results in
∫ a

0
f(x) sinαmxdx = − 1

αm

f(x) cosαmx

∣∣∣∣a
0

+ 1
α2

m

f ′(x) sinαmx
∣∣∣∣a
0

− 1
α2

m

∫ a

0
sinαmxf

′′(x)dx

(3.26)
Then, it can be obtained that

Cm = −2
a
αm

[
(−1)mfa − f0

]
− α2

mAm (3.27)

Once the values of f ′′(0) and f ′′(a) are known, the coefficient in the Fourier-series for
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the fourth derivative f ′′′′(x) can be determined by using the formula

Em = −2
a
αm

[
(−1)mf ′′(a) − f ′′(0)

]
− α2

mCm (3.28)

The results are summarized below:

f ′(x) = fa − f0

a
+

∞∑
m=1

2
a

[
(−1)mfa − f0

]
+ αmAm

 cosαmx, (0 6 x 6 a) (3.29)

f ′′(0) = f ′′
0 , f ′′(a) = f ′′

a

f ′′(x) = −
∞∑

m=1
αm

2
a

[
(−1)mfa − f0

]
+ αmAm

 sinαmx, (0 < x < a)
(3.30)

f ′′′(x) = f ′′
a − f ′′

0
a

+
∞∑

m=1

2
a

[
(−1)mf ′′

a − f ′′
0

]

− α2
m

2
a

[
(−1)mfa − f0

]
+ αmAm

 cosαmx,

(0 6 x 6 a)

(3.31)

f ′′′′(x) = −
∞∑

m=1
αm

2
a

[
(−1)mf ′′

a − f ′′
0

]

− α2
m

2
a

[
(−1)mfa − f0

]
+ αmAm

 sinαmx,

(0 < x < a)

(3.32)

If the function is expanded in a Fourier cosine series, it yields

f(x) =
∞∑

n=0
Bn cos βny, (0 6 y 6 b) (3.33)

f ′(0) = f ′
0, f ′(b) = f ′

b, f ′(y) = −
∞∑

n=0
βnBn sin βny (0 < y < b) (3.34)
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f ′′(x) = f ′
b − f ′

0
b

+
∞∑

n=1

2
b

[
(−1)nf ′

b − f ′
0

]
− β2

nBn

 cos βny, (0 6 y 6 b) (3.35)

f ′′′(0) = f ′′′
0 , f ′′′(b) = f ′′′

b

f ′′′(x) = −
∞∑

n=1
βn

2
b

[
(−1)nf ′

b − f ′
0

]
− β2

nBn

 sin βny, (0 < y < b)
(3.36)

f ′′′′(x) = f ′′′
b − f ′′′

0
b

+
∞∑

m=1

2
b

[
(−1)nf ′′′

b − f ′′′
0

]
−

β2
n

2
b

[
(−1)nf ′

b − f ′
0

]
− β2

nBn

 cos βny,

(0 6 y 6 b)

(3.37)

3.1.4 Rotational fixity factors

In the present research, the rotational restraints are assumed to be proportional to the
rotations, and the restraint stiffness may have any value in the range between simply
supported (i.e., perfectly hinged) and fully clamped (i.e., completely fixed) conditions.
Although the stiffness of such restraints may vary from point to point, the values of
restraints are assumed to be uniform along a given boundary for the sake of simplicity .

The rotational spring constant or stiffness, R, is commonly defined to account for
the effects of rotational restraints along edges in previous analyses (Li, 2004). Although
these constants are straightforward in analyses, they actually have little practical use in
determining the flexibility at the edges, because they are not related to the stiffness of a
plate. It is difficult to answer “How large a spring constant can represent zero flexibility
(i.e., clamped edges) and how small a constant for infinite flexibility (i.e., simply supported
edges)?" Bapat et al. (1988) raised this question and attempted to provide the answer,
but without signifying that the flexibility does not solely depend on the restraints but
also involves the flexural stiffness of plates.

On the other hand, non-dimensional restraint ratios of Ra/D and Rb/D (Rxa/Dx
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and Ryb/Dy for orthotropic plates) were applied to evaluate the relative stiffness of the
plate and the rotational elastic restraints (Laura et al., 1978; Warburton and Edney,
1984). However, as can be seen from the variation of frequencies with the restraint ratios
demonstrated in Warburton and Edney (1984), slight changes in frequencies would require
significant increases of the restraint ratios when the magnitudes of the ratios are greater
than 103. Conversely, if the magnitudes of the ratios range between 1 and 102, small
increases of the ratios would lead to appreciable increases in the frequencies. This highly
nonlinear feature associated with the directly use of the ratios is unfavorable in design
practice as the structural response, such as frequency in this case, is not proportional
to the selected design parameters (i.e., the non-dimensional ratios Ra/D and Rb/D). A
similar issue was reported in the design of semi-rigid beam-column members in the framed
structures (Cunnigham, 1990; Xu, 2001b).

In this matter, a “fixity factor" was developed for semi-rigid beam-column members
to characterise the relative stiffness between the member and the rotational spring of the
end-connection, as in Monforton and Wu (1963)

r = 1

1 + 3EI
RL

(3.38)

in which R is the end-connection spring stiffness and EI/L is the flexural stiffness of the
beam-column member. The physical meaning of the fixity factor, r, can be interpreted as
the ratio of the beam end’s rotation under a unit end moment divided by the rotation of
the beam plus the connection spring, for the same unit end moment as that shown in
Fig. 3.2. The far end of the beam is simply supported.

θ

α
R

x

y

L

M=1 EI

Figure 3.2 Definition of the end-fixity factor.
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From the illustration of Fig. 3.2, this factor can be derived as

r = α

ϑ
= α

1/R + α
= 1

1 + 3EI
RL

(3.39)

The factor can vary from 0 to 1. The simply-supported or fully clamped condition will be
the limiting case with the value of 0 or 1, respectively. This range of values from 0 to 1
provides to engineers an intuitive manner for the extent of fixity available in a connection
(Cunnigham, 1990). Moreover, this factor is insensitive to R, and a simple linear model
will produce satisfactory results for design practice (Xu, 2001b).

Similar to Eq. (3.38), the rotational fixity factors can also be defined for plates with
rotationally restrained edges as

rx = 1

1 + 3 Dx

Rxa

(3.40a)

ry = 1

1 + 3 Dy

Ryb

(3.40b)

where Dx and Dy are the flexural rigidities of an orthotropic plate in the x and y -
directions, respectively; Rx and Ry are the rotational stiffness along the edges. Thus, the
following can be obtained:

3rxDx = (1 − rx)Rxa (3.41a)

3ryDy = (1 − ry)Ryb (3.41b)
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3.2 Bending of R-R-R-R Orthotropic Plates

3.2.1 Formulation and methodology

Consider now an orthotropic rectangular thin plate of span a, width b and thickness h, as
shown in Fig. 3.3. The plate is assumed to be rigidly supported against transverse dis-
placement around all the edges and these edges are rotationally restrained (i.e., elastically
restrained against rotation).

a

h

o

x

y

b

Ry0

Rxa

Rxa

Ryb

Rx0

Rx0

Figure 3.3 Orthotropic plate with four edges rotationally restrained.

The governing equation is Eq. (3.3). Denoting partial differentiation by a comma, the
boundary conditions can be written as

w = 0, Mx = −Dx (w,xx +νyw,yy ) = −Rx0w,x at x = 0 (3.42a)

w = 0, Mx = −Dx (w,xx +νyw,yy ) = Rxaw,x at x = a (3.42b)

w = 0, My = −Dy (w,yy +νxw,xx ) = −Ry0w,y at y = 0 (3.42c)

w = 0, My = −Dy (w,yy +νxw,xx ) = Rybw,y at y = b (3.42d)
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It can be noted that the second terms in bending moment Mx and My are zero because
w = 0 along the edges (Timoshenko and Woinowsky-Krieger, 1959). After taking finite
sine transform, the boundary conditions in Eqs. (3.42) becomes

Dxw̄,xx (0, n) = Rx0w̄,x (0, n) (3.43a)

Dxw̄,xx (a, n) = −Rxaw̄,x (a, n) (3.43b)

Dyw̄,yy (m, 0) = Ry0w̄,y (m, 0) (3.43c)

Dyw̄,yy (m, b) = −Rybw̄,y (m, b) (3.43d)

Applying Eqs. (3.41), Eqs. (3.43) can be rewritten as

(1 − rx0)aw̄,xx (0, n) = 3rx0w̄,x (0, n) (3.44a)

(1 − rxa)aw̄,xx (a, n) = −3rxaw̄,x (a, n) (3.44b)

(1 − ry0)bw̄,yy (m, 0) = 3ry0w̄,y (m, 0) (3.44c)

(1 − ryb)bw̄,yy (m, b) = −3rybw̄,y (m, b) (3.44d)

Taking double finite sine transforms on both sides of Eq. (3.3) gives

∫ a

0

∫ b

0
∇4

ow sinαmx sin βnydxdy =
∫ a

0

∫ b

0
q(x, y) sinαmx sin βnydxdy (3.45)

Using integration by parts and considering the boundary conditions of Eqs. (3.42), the dou-
ble finite sine transforms of the fourth derivatives in Eq. (3.45) can be obtained (Meirovitch,
1967):

∫ a

0

∫ b

0
w,xxxx sinαmx sin βnydxdy = α4

m
¯̄w(m,n)

− αm

[
(−1)mw̄,xx (a, n) − w̄,xx (0, n)

] (3.46a)

∫ a

0

∫ b

0
w,xxyy sinαmx sin βnydxdy = α2

mβ
2
n

¯̄w(m,n) (3.46b)
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∫ a

0

∫ b

0
w,yyyy sinαmx sin βnydxdy = β4

n
¯̄w(m,n)

− βn

[
(−1)nw̄,yy (m, b) − w̄,yy (m, 0)

] (3.46c)

where coefficients w̄,xx (0, n), w̄,xx (a, n), w̄,yy (m, 0) and w̄,yy (m, b) are determined from
the finite-sine transformed boundary conditions at four edges by

w̄,xx (0, n) =
∫ b

0
w,xx (0, y) sin βnydy (3.47a)

w̄,xx (a, n) =
∫ b

0
w,xx (a, y) sin βnydy (3.47b)

w̄,yy (m, 0) =
∫ a

0
w,xx (x, 0) sin βnxdx (3.47c)

w̄,yy (m, b) =
∫ a

0
w,xx (x, b) sin βnxdx (3.47d)

Substituting Eqs. (3.46) into Eq. (3.45), the following is obtained

¯̄w(m,n) = 1
Ωmn

¯̄q(m,n) + αmDx

[
(−1)mw̄,xx (a, n) − w̄,xx (0, n)

]

+ βnDy

[
(−1)nw̄,yy (m, b) − w̄,yy (m, 0)

]
(3.48)

where
Ωmn = Dxα

4
m + 2Hα2

mβ
2
n +Dyβ

4
n (3.49)

¯̄q(m,n) =
∫ a

0

∫ b

0
q(x, y) sinαmx sin βnydxdy (3.50)

Taking the inverse finite sine transform on Eq. (3.48) with respect to variable x yields

w̄(x, n) = 2
a

∞∑
m=1

¯̄w(m,n) sinαmx (3.51)

Taking the derivative of Eq. (3.51) with respect to x and using Stokes’s transformation,
it is found

w̄,x (x, n) = 2
a

∞∑
m=1

αm
¯̄w(m,n) cosαmx (3.52)

- 33 -



3.2 Bending of R-R-R-R Orthotropic Plates

Substituting Eq. (3.44) and (3.48) into Eq. (3.52), the following can be obtained

a2(1 − rx0)w̄,xx (0, n) =6rx0

∞∑
m=1

αm

Ωmn

¯̄q(m,n)

+ αmDx

[
(−1)mw̄,xx (a, n) − w̄,xx (0, n)

]

+ βnDy

[
(−1)nw̄,yy (m, b) − w̄,yy (m, 0)

]

(3.53a)

a2(1 − rxa)w̄,xx (a, n) = − 6rxa

∞∑
m=1

(−1)mαm

Ωmn

¯̄q(m,n)

+ αmDx

[
(−1)mw̄,xx (a, n) − w̄,xx (0, n)

]

+ βnDy

[
(−1)nw̄,yy (m, b) − w̄,yy (m, 0)

]

(3.53b)

Similarly, it is obtained

b2(1 − ry0)w̄,yy (m, 0) =6ry0

∞∑
n=1

βn

Ωmn

¯̄q(m,n)

+ αmDx

[
(−1)mw̄,xx (a, n) − w̄,xx (0, n)

]

+ βnDy

[
(−1)nw̄,yy (m, b) − w̄,yy (m, 0)

]

(3.54a)

b2(1 − ryb)w̄,yy (m, b) = − 6ryb

∞∑
n=1

(−1)nβn

Ωmn

¯̄q(m,n)

+ αmDx

[
(−1)mw̄,xx (a, n) − w̄,xx (0, n)

]

+ βnDy

[
(−1)nw̄,yy (m, b) − w̄,yy (m, 0)

]

(3.54b)

Rearranging Eqs. (3.53) and (3.54) yields
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∞∑
m=1

A0
m

¯̄q(m,n) = βnDy

∞∑
m=1

A0
mw̄,yy (m, 0) − (−1)nβnDy

∞∑
m=1

A0
mw̄,yy (m, b)

+
[
a2(1 − rx0) +Dx

∞∑
m=1

αmA
0
m

]
w̄,xx (0, n) −Dx

∞∑
m=1

(−1)mαmA
0
mw̄,xx (a, n)

(3.55a)

∞∑
m=1

(−1)mAa
m

¯̄q(m,n) = βnDy

∞∑
m=1

(−1)mAa
mw̄,yy (m, 0)

− βnDy

∞∑
m=1

(−1)m+nAa
mw̄,yy (m, b)

+Dx

∞∑
m=1

(−1)mαmA
a
mw̄,xx (0, n) −

[
a2(1 − rxa) +Dx

∞∑
m=1

αmA
a
m

]
w̄,xx (a, n)

(3.55b)

∞∑
n=1

B0
n
¯̄q(m,n) =

[
b2(1 − ry0) +Dy

∞∑
n=1

βnB
0
n

]
w̄,yy (m, 0)

−Dy

∞∑
n=1

(−1)nβnB
0
nw̄,yy (m, b)

+ αmDx

∞∑
n=1

B0
nw̄,xx (0, n) − (−1)mαmDx

∞∑
n=1

B0
nw̄,xx (a, n)

(3.55c)

∞∑
n=1

(−1)nB0
n
¯̄q(m,n) = Dy

∞∑
n=1

(−1)nβnB
b
nw̄,yy (m, 0)

−
[
b2(1 − rya) +Dy

∞∑
n=1

βnB
b
n

]
w̄,yy (m, b)

+ αmDx

∞∑
n=1

(−1)nBb
nw̄,xx (0, n) − αmDx

∞∑
n=1

(−1)m+nBb
nw̄,xx (a, n)

(3.55d)

where

A0
m = 6rx0

αm

Ωmn

(3.56a)

Aa
m = 6rxa

αm

Ωmn

(3.56b)

B0
n = 6ry0

βn

Ωmn

(3.56c)
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Bb
n = 6ryb

βn

Ωmn

(3.56d)

Eqs. (3.55) are four infinite systems of linear equations with respect to coefficients
w̄,xx (0, n), w̄,xx (a, n), w̄,yy (m, 0), and w̄,yy (m, b). For each combination of m and n,
Eqs. (3.53) and (3.54) produce 2m+2n equations with 2m+2n unknown coefficients. This
set of equations can be solved to find the coefficients in Eq. (3.48). Once these coefficients
have been computed, the deflection w(x, y) can be obtained by substituting Eq. (3.48)
into Eq. (3.8b). It should be noted that the limiting cases of simply-supported and fully
clamped can also be obtained from Eqs. (3.55) by setting rx0 = rxa = ry0 = ryb = 0 and
rx0 = rxa = ry0 = ryb = 1, respectively. The corresponding equations for a fully clamped
plate are exactly equal to equations presented in Li et al. (2009a).

Furthermore, the bending moments along the edges can be obtained from the following:

Mx

∣∣∣∣
x=0

= −Dx (w,xx +νyw,yy )
∣∣∣∣
x=0

= −2
b
Dx

∞∑
n=1

w̄,xx (0, n) sin βny (3.57a)

Mx

∣∣∣∣
x=a

= −Dx (w,xx +νyw,yy )
∣∣∣∣
x=a

= −2
b
Dx

∞∑
n=1

w̄,xx (a, n) sin βny (3.57b)

My

∣∣∣∣
y=0

= −Dy (w,yy +νxw,xx )
∣∣∣∣
y=0

= −2
a
Dy

∞∑
m=1

w̄,yy (m, 0) sinαmx (3.57c)

My

∣∣∣∣
y=b

= −Dy (w,yy +νxw,xx )
∣∣∣∣
y=b

= −2
a
Dy

∞∑
m=1

w̄,yy (m, b) sinαmx (3.57d)

For any position not located along the edges, the bending moments can be expressed by

Mx = −Dx (w,xx +νyw,yy ) (3.58a)

My = −Dy (w,yy +νxw,xx ) (3.58b)

where w,xx can be given by using Stokes’s transformation as

w,xx = − 4
ab

∞∑
m=1

∞∑
n=0

α2
mεn

¯̄w(m,n) sinαmx cos βny (3.59)
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and w,yy can be expressed as

w,yy = 2
a

∞∑
m=1

w̄,yy (m, y) sinαmx (3.60)

The foregoing method is valid for arbitrary loads by various ¯̄q(m,n). A concentrated
load P at the point (ξ, η), for instance, will have the expression of ¯̄q(m,n) as

¯̄q(m,n) = P sinαmξ sin βnη (3.61)

This is obtained by using the property that
∫ a

0

∫ b

0
δ(x− ξ)δ(y − η) sinαmx sin βnydxdy = sinαmξ sin βnη (3.62)

Similarly, any one, two or three rotational fixity factors of rx0, rxa, ry0, ryb equal to
zero will produce corresponding edges simply supported. For instance, for ry0 = ryb = 0,
plate only have two opposite edges rotationally restrained and the other two edges simply
supported. Thus, Eq. (3.48) becomes

¯̄w(m,n) = 1
Ωmn

¯̄q(m,n) + αmDx

[
(−1)mw̄,xx (a, n) − w̄,xx (0, n)

] (3.63)

in which w̄,xx (0, n) and w̄,xx (a, n) can be determined from a system of linear equations
as follows:

a2(1 − rx0)w̄,xx (0, n) = 6rx0

∞∑
m=1

αm

Ωmn

¯̄q(m,n)

+ αmDx

[
(−1)mw̄,xx (a, n) − w̄,xx (0, n)

]
(3.64a)

a2(1 − rxa)w̄,xx (a, n) = −6rxa

∞∑
m=1

(−1)mαm

Ωmn

¯̄q(m,n)

+ αmDx

[
(−1)mw̄,xx (a, n) − w̄,xx (0, n)

]
(3.64b)
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In addition, the foregoing results for orthotropic plates also apply to the special case
of isotropic plates just by replacing the orthotropic constants by their corresponding
isotropic values as listed

νx = νy = ν, Dx = Dy = H = D, D1 = νD and Dxy = 1 − ν

2 D (3.65)

where D is the flexural rigidity and ν is Poisson’s ratio.

3.2.2 Numerical results and discussion

Comprehensive numerical results are presented in this section to validate the foregoing
derived analytical procedure. Results of the proposed analytical procedure for both
isotropic and orthotropic plates are compared with previously published results. Deflection
and bending moments under three types of loading are examined:

1 ) a uniform distributed load of intensity q;

2 ) hydrostatic pressure with the intensity qx;

3 ) a concentrated load P at the center of the plate.

Numerical results associated with the proposed analytical procedure for the foregoing
cases are obtained using the MATLABr software package. For the sake of convenience,
the numbers of terms in double series are chosen to be same and denoted by N (i.e.,
m, n = 1, 2, 3, ..., N) and four edges have the same values for the rotational fixity factors
(i.e., rx0 = rxa = ry0 = ryb = r). The results are theoretically exact when N → ∞,
while convergent solutions with satisfactory accuracy can be acquired by a finite number
of terms. The convergence rates of the displacement at the plate center (x = a/2 and
y = b/2) and bending moment at the center along the edge of x = 0 with respect to N are
respectively shown in Fig. 3.4(a) and 3.4(b), for the case of an isotropic plate with four
edges rotationally restrained and subjected to a uniform distributed load. The rotational
fixity factors are the same along the four edges and set as 0.9. From the results of a
convergence study, N is taken as 200 in this study.

The proposed analytical approach to plates with rotationally restrained edges can
be applied for plates with general boundary conditions ranging from simply supported
to fully clamped with use of appropriate rotational fixity factors. However, for the fully
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Figure 3.4 Convergence of results for an isotropic plate under a uniform distributed load.
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clamped plates r = 1, it can be found that the coefficient matrix of Eqs. (3.55) becomes
singular for any combination of m and n, making the system of equations unsolvable. A
technique reported in Li et al. (2009a) was to evaluate the summations of the coefficients
of w̄,xx (0, n) and w̄,xx (a, n) in Eqs. (3.55a) and (3.55b) without truncation; a similar
process was applied for w̄,yy (m, 0) and w̄,yy (m, b) in Eqs. (3.55c) and (3.55d) as well.
This technique can be performed by symbolic mathematical computation programs such
as MATHEMATICA Wolfram Research, Inc. (2016). The infinite series in Eqs. (3.55) can
be summed without much difficulty for isotropic plates but the process is very complicated
for orthotropic plates. Alternatively, given that no singularity issue occurs in the presented
approach for plates with any values of rotational fixity factors except r = 1.0, the results
of clamped plates can be approximately obtained by setting rotational fixity factors as
0.999 or 0.9999 according to the required accuracy.

Figs. 3.5 and 3.6 illustrate the effects of rotational restraints on the displacement and
bending moment of the plate. Both the rotational fixity factor, r, and the restraint ratio,
Ra/Dx, are employed to evaluate the corresponding displacement and bending moment.
From Eq. (3.40), it can be obtained that

Ra

Dx

= 3r
1 − r

(3.66)

The range of r is from 0 to 0.99 and the corresponding Ra/Dx varies between 0 and
297. It can be observed from Figs. 3.5 and 3.6 that the correlations of the moment and
deflection to the restraint ratio are highly nonlinear, whereas the relationship between
the moment or deflection and the rotational fixity factor is approximately linear. Thus,
in practice, it is more favorable to characterize the edge rotational restraints with use of
the rotational fixity factor rather than the restraint ratio.

Tables 3.1 and 3.2 tabulate the present results of the displacement and bending
moment of an isotropic plate under a uniform distributed load, which agree well with
those in Timoshenko and Woinowsky-Krieger (1959), Mbakogu and Pavlović (2000) and
Li et al. (2009a). Similarly, the numerical results of flexural displacement and bending
moment of an isotropic plate under a hydrostatic pressure qx are tabulated in Table. 3.3.
Excellent agreement can be observed, except in the results of Mx at x = 0, y = b/2.
The highlighted values of present results in Table. 3.3 are considerably less than those
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Figure 3.5 Significance of rotational restraints to the displacement at x = a/2, y = b/2 for an
orthotropic plate under a concentrated load.
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Figure 3.6 Significance of rotational restraints to the bending moment at x = 0, y = b/2 for
an orthotropic plate under a concentrated load.
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of Timoshenko and Woinowsky-Krieger (1959) and Li et al. (2009a). However, further
comparison shows that the present results agree fairly well with the results of Odley
(1947), as shown in Table. 3.4. Therefore, the discrepancies between the present results
and those of Timoshenko and Woinowsky-Krieger (1959) and Li et al. (2009a) need further
validation in the future.

Other disagreements can be found in the results for the bending moment for an
isotropic rectangular plate with four edges rotationally restrained under a concentrated
load, as marked values listed in Table. 3.5. It is noted that the present results of Mx agree
with My in Timoshenko and Woinowsky-Krieger (1959) and Li et al. (2009a); and the
present results of My agree with Mx in Li et al. (2009a). Nonetheless, the present results
agree very well with Li et al. (2009a) in Table. 3.7 for the orthotropic plate. The accuracy
of the results of Li et al. (2009a) are inconsistent. The values of bending moments from
Timoshenko and Woinowsky-Krieger (1959) and Li et al. (2009a) for a fully clamped
isotropic plate under a concentrated load are doubtful. These facts may suggest typos in
Timoshenko and Woinowsky-Krieger (1959) and Li et al. (2009a) for the bending moment
of an isotropic rectangular clamped plate under a concentrated load.

For future comparison, the bending solutions of rectangular orthotropic plates with
edges rotationally restrained at varying degrees are also included in Tables. 3.6, 3.7 and
3.8. The material properties for an orthotropic plate have been taken to be

Dy = 4Dx, Dxy = 0.85Dx, νx = 0.075, νy = 0.3 (3.67)

Table. 3.6 presents the results for an orthotropic plate under a uniform distributed load
and compares them with the results of An et al. (2016). Numerical results for a rectangular
orthotropic plate with four edges rotationally restrained and subjected to a concentrated
load at the center of the plate are compared with those of a fully clamped plate in Li
et al. (2009a) as shown in Tables. 3.7 and 3.8. Both comparisons are shown excellent
agreement between the results of this study and those of Li et al. (2009a) and An et al.
(2016), respectively.

Additionally, plates with any of one, two and three edges being rotationally restrained
and other edges being simply supported can also be easily obtained by setting the ro-
tational fixity factor of the simply supported edge to equal 0. Table. 3.9 illustrates the
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displacement results of an isotropic plate with two opposite edges (y = 0 and y = b) rota-
tionally restrained and the remaining edges simply supported under a uniform distributed
load.

The comparison show that, overall, the results determined in this research agree very
well with the results for fully clamped plates when rotational fixity factors are approaching
1 (i.e., 0.999, 0.9999). It can also be observed that the results of displacement when
r = 0.9999 are slightly less than those for fully clamped plates and a little higher for values
of bending moments. In consideration of the singular problem in the coefficient matrix
for fully clamped plate (i.e., r = 1) when applying finite integral transform, the results
for plates with rotational fixity factors approaching 1 are more applicable for clamped
plates. Thus, it can be concluded that the present approach to bending of plates with
rotationally restrained edges can be applied for plates with general boundary conditions
from simply supported to fully clamped, by using various rotational fixity factors.

Table 3.1 Displacement w(0.01qa4/D) at the center (x = a/2, y = b/2) for an isotropic
rectangular plate with four edges rotationally restrained under uniform distributed load q

(ν = 0.3).

b/a
rotational fixity factor rx0 = rxa = ry0 = ryb References∗

0 0.05 0.1 0.5 0.9 0.99 0.999 0.9999 I II III
1.0 0.406 0.394 0.382 0.277 0.158 0.129 0.126 0.126 0.126 0.127 0.127
1.1 0.487 0.472 0.457 0.332 0.189 0.154 0.150 0.150 0.150 0.151 0.151
1.2 0.565 0.548 0.530 0.381 0.216 0.176 0.172 0.171 0.172 0.173 0.172
1.3 0.639 0.619 0.598 0.427 0.240 0.195 0.190 0.190 0.191 0.191 0.191
1.4 0.708 0.685 0.662 0.467 0.260 0.211 0.206 0.205 0.207 0.207 0.207
1.5 0.772 0.746 0.719 0.502 0.276 0.224 0.218 0.218 0.220 0.220 0.220
1.6 0.831 0.801 0.771 0.531 0.289 0.234 0.229 0.228 0.230 0.230 0.230
1.7 0.884 0.851 0.818 0.557 0.300 0.243 0.237 0.236 0.238 0.238 0.238
1.8 0.932 0.895 0.859 0.578 0.308 0.249 0.243 0.242 0.245 0.245 0.245
1.9 0.974 0.935 0.896 0.596 0.315 0.254 0.248 0.248 0.249 0.250 0.250
2.0 1.013 0.971 0.929 0.611 0.320 0.258 0.252 0.251 0.254 0.254 0.253

note: ∗ results of fully clamped plates
reference I: Timoshenko and Woinowsky-Krieger (1959)
reference II: Mbakogu and Pavlović (2000)
reference III: Li et al. (2009a)
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Table 3.2 Bending moment Mx(−0.1qa2) at (x = 0, y = b/2) for an isotropic rectangular plate
with four edges rotationally restrained under uniform distributed load q (ν = 0.3).

b/a
rotational fixity factor rx0 = rxa = ry0 = ryb References∗

0.05 0.1 0.5 0.9 0.99 0.999 0.9999 I II III
1.0 0.020 0.041 0.221 0.443 0.508 0.515 0.516 0.513 0.515 0.513
1.1 0.024 0.049 0.260 0.509 0.575 0.582 0.583 0.581 0.582 0.581
1.2 0.028 0.056 0.295 0.566 0.633 0.641 0.641 0.639 0.640 0.639
1.3 0.031 0.063 0.328 0.614 0.682 0.689 0.689 0.687 0.688 0.687
1.4 0.035 0.069 0.356 0.654 0.721 0.727 0.728 0.726 0.726 0.726
1.5 0.037 0.075 0.380 0.685 0.752 0.758 0.759 0.757 0.756 0.757
1.6 0.040 0.080 0.401 0.711 0.775 0.782 0.782 0.780 0.779 0.780
1.7 0.043 0.085 0.419 0.730 0.794 0.799 0.800 0.799 0.796 0.798
1.8 0.045 0.089 0.434 0.746 0.807 0.813 0.814 0.812 0.809 0.812
1.9 0.047 0.093 0.446 0.757 0.817 0.823 0.824 0.822 0.817 0.822
2.0 0.048 0.096 0.457 0.765 0.824 0.830 0.830 0.825 0.823 0.829

note: ∗ results of fully clamped plates
reference I: Timoshenko and Woinowsky-Krieger (1959)
reference II: Mbakogu and Pavlović (2000)
reference III: Li et al. (2009a)
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Table 3.3 Deflection and bending moment for an isotropic rectangular plate with four edges
rotationally restrained under hydrostatic pressure qx (ν = 0.3).

b/a
rotational fixity factor rx0 = rxa = ry0 = ryb References∗

0 0.05 0.1 0.5 0.9 0.99 0.999 0.9999 I II
w(0.01qa4/D) at x = a/2, y = b/2

0.5 0.032 0.03 0.029 0.019 0.01 0.00806 0.00787 0.00785 0.008 0.00788
2/3 0.076 0.074 0.071 0.0495 0.0272 0.0221 0.0216 0.0215 0.0217 0.0217
1.0 0.203 0.197 0.191 0.139 0.0792 0.0644 0.0629 0.0628 0.063 0.0629
1.5 0.386 0.373 0.359 0.251 0.138 0.112 0.109 0.109 0.11 0.11

Mx(−0.1qa3) at x = 0, y = b/2
0.5 0 0.0011 0.0022 0.0104 0.0211 0.0272 0.0281 0.0282 0.115 0.115
2/3 0 0.0029 0.0058 0.0288 0.0549 0.0653 0.0667 0.0668 0.187 0.187
1 0 0.0085 0.017 0.0873 0.1596 0.1775 0.1794 0.1796 0.334 0.334

1.5 0 0.0167 0.0335 0.1632 0.2749 0.2939 0.2956 0.2957 0.462 0.461
My(−0.1qa3) at x = a/2, y = 0

0.5 0 0.006 0.012 0.057 0.096 0.103 0.104 0.104 0.104 0.104
2/3 0 0.0083 0.017 0.084 0.152 0.167 0.168 0.168 0.168 0.168
1 0 0.01 0.021 0.111 0.222 0.254 0.257 0.258 0.257 0.257

1.5 0 0.009 0.018 0.1 0.226 0.28 0.287 0.287 0.285 0.285

note: ∗ results of fully clamped plates
reference I: Timoshenko and Woinowsky-Krieger (1959)
reference II: Li et al. (2009a)

Table 3.4 Deflection and bending moment for a clamped isotropic rectangular plate under
hydrostatic pressure qx (ν = 0.3).

b/a
0.6 0.8 1 1.2 1.4 1.6 1.8 2

w(0.01qa4/D) at x = a/2, y = b/2
Odley (1947) 0.0146 0.0433 0.066 0.0893 0.104 0.111 0.115 0.116

Present (r = 0.9999) 0.0152 0.037 0.0628 0.0855 0.102 0.114 0.121 0.125
Mx(−0.1qa3) at x = 0, y = b/2

Odley (1947) 0.034 0.083 0.150 0.208 0.247 0.269 0.280 0.285
Present (r = 0.9999) 0.049 0.110 0.179 0.239 0.281 0.307 0.323 0.331

My(−0.1qa3) at x = a/2, y = 0
Odley (1947) 0.143 0.222 0.272 0.293 0.302 0.308 0.313 0.318

Present (r = 0.9999) 0.143 0.213 0.258 0.279 0.286 0.288 0.288 0.288
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Table 3.5 Deflection and bending moment for an isotropic rectangular plate with four edges
rotationally restrained under a concentrated load P (ν = 0.3).

b/a
rotational fixity factor rx0 = rxa = ry0 = ryb References∗

0 0.05 0.1 0.5 0.9 0.99 0.999 0.9999 I II
w(0.01Pa2/D) at x = a/2, y = b/2

1 1.1600 1.1345 1.1085 0.8862 0.6311 0.5664 0.5596 0.5589 0.560 0.561
1.2 1.3556 1.3246 1.2933 1.0277 0.7285 0.6535 0.6458 0.6450 0.647 0.648
1.4 1.4866 1.4502 1.4135 1.1092 0.7793 0.6985 0.6902 0.6894 0.691 0.692
1.6 1.5700 1.5287 1.4872 1.1516 0.8023 0.7188 0.7102 0.7093 0.712 0.712
1.8 1.6214 1.5760 1.5307 1.1722 0.8117 0.7269 0.7182 0.7173 0.720 0.720
2 1.6524 1.6038 1.5556 1.1815 0.8151 0.7297 0.7210 0.7201 0.722 0.723

Mx(−0.1P ) at x = 0, y = b/2
1 0 0.0448 0.0904 0.4943 1.0445 1.2385 1.2593 1.2591 N.A. 1.2560

1.2 0 0.0540 0.1090 0.5941 1.2486 1.4706 1.4948 1.4959 N.A. 0.9351
1.4 0 0.0601 0.1212 0.6511 1.3505 1.5830 1.6086 1.6104 N.A. 0.6466
1.6 0 0.0640 0.1286 0.6805 1.3947 1.6301 1.6563 1.6585 N.A. 0.4217
1.8 0 0.0663 0.1330 0.6947 1.4119 1.6476 1.6742 1.6766 N.A. 0.2603
2 0 0.0676 0.1355 0.7010 1.4178 1.6534 1.6801 1.6826 N.A. 0.1511

My(−0.1P ) at x = a/2, y = 0
1 0 0.0448 0.0904 0.4943 1.0445 1.2385 1.2593 1.2591 1.257 1.256

1.2 0 0.0344 0.0693 0.3721 0.7727 0.9213 0.9370 0.9347 1.490 1.490
1.4 0 0.0257 0.0516 0.2679 0.5336 0.6368 0.6470 0.6427 1.604 1.604
1.6 0 0.0190 0.0379 0.1875 0.3500 0.4154 0.4209 0.4145 1.651 1.651
1.8 0 0.0139 0.0276 0.1287 0.2196 0.2569 0.2585 0.2504 1.667 1.669
2 0 0.0101 0.0200 0.0871 0.1317 0.1498 0.1486 0.1389 1.674 1.674

note: ∗ results of fully clamped plates
reference I: Timoshenko and Woinowsky-Krieger (1959)
reference II: Li et al. (2009a)
N.A.: Not Available
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Table 3.6 Deflection and bending moment for an orthotropic rectangular plate with four edges
rotationally restrained under a uniform distributed load q with N = 200.

b/a
rotational fixity factor rx0 = rxa = ry0 = ryb References∗

0 0.1 0.5 0.99 0.9999
w(0.01qa4/D) at x = a/2, y = b/2

1 0.179477158 0.167512605 0.118007975 0.053175615 0.051790351 0.052239018
1.2 0.284370124 0.266917312 0.192466802 0.088755641 0.086444444 0.087223947
1.4 0.398068014 0.374292071 0.271870190 0.126292735 0.123004495 0.123982330
1.6 0.511766718 0.480722097 0.347731553 0.160862718 0.156674086 0.157928260
1.8 0.619497474 0.580336215 0.415073010 0.189863668 0.184918907 0.186629070
2 0.717908634 0.670050421 0.472031900 0.212702462 0.207161405 0.208807100

Mx(−0.1qa2) at x = 0, y = b/2
1 0 0.01910395 0.10401693 0.27930060 0.28636592 0.28415356

1.2 0 0.02935664 0.15936679 0.39165037 0.39924677 0.39689187
1.4 0 0.04032832 0.21711586 0.50058840 0.50838627 0.50606117
1.6 0 0.05115019 0.27155217 0.59479747 0.60253700 0.60024615
1.8 0 0.06125028 0.31941970 0.66965647 0.67717686 0.67505836
2 0 0.07033046 0.35961026 0.72565299 0.73288007 0.73074900

note: ∗ results of fully clamped plates in An et al. (2016)
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Table 3.7 Bending moment for an orthotropic rectangular plate with four edges rotationally
restrained under a concentrated load P with N = 100.

b/a
rotational fixity factor rx0 = rxa = ry0 = ryb References∗

0.05 0.1 0.5 0.9 0.99 0.999 0.9999
Mx(−0.1P ) at x = 0, y = b/2

1 0.0178 0.0357 0.1851 0.368 0.4388 0.4417 0.4356 0.4436
1.1 0.0215 0.0433 0.2299 0.4714 0.5626 0.5684 0.564 0.569
1.2 0.025 0.0505 0.2724 0.5687 0.6779 0.6863 0.6833 0.6852
1.3 0.0283 0.0571 0.3112 0.6562 0.7805 0.791 0.7892 0.7885
1.4 0.0313 0.0631 0.3456 0.7318 0.8684 0.8806 0.8797 0.8768
1.5 0.0339 0.0685 0.3753 0.7951 0.9411 0.9548 0.9545 0.95
1.6 0.0362 0.0732 0.4004 0.8466 0.9997 1.0146 1.0147 1.009
1.7 0.0383 0.0772 0.4213 0.8875 1.0458 1.0615 1.062 1.055
1.8 0.04 0.0807 0.4384 0.9194 1.0813 1.0977 1.0984 1.091
1.9 0.0415 0.0837 0.4512 0.9437 1.1081 1.125 1.126 1.118
2 0.0428 0.0862 0.4631 0.962 1.128 1.1453 1.1465 1.137

My(−0.1P ) at x = a/2, y = 0
1 0.0855 0.1723 0.9263 1.924 2.2561 2.2907 2.2931 2.275

1.1 0.0806 0.1626 0.8822 1.8487 2.1735 2.2065 2.2082 2.192
1.2 0.0752 0.1519 0.8296 1.75 2.0635 2.0943 2.0951 2.082
1.3 0.0697 0.1407 0.771 1.6325 1.9305 1.9589 1.9596 1.948
1.4 0.0641 0.1295 0.7092 1.5023 1.7813 1.8068 1.8052 1.799
1.5 0.0587 0.1184 0.6464 1.3655 1.623 1.6453 1.6422 1.639
1.6 0.0534 0.1078 0.5846 1.2277 1.462 1.4809 1.4762 1.477
1.7 0.0485 0.0977 0.5254 1.0932 1.3036 1.3192 1.3127 1.318
1.8 0.0438 0.0883 0.4695 0.9652 1.1518 1.164 1.1557 1.165
1.9 0.0395 0.0795 0.4177 0.8458 1.0093 1.0182 1.0079 1.021
2 0.0356 0.0715 0.3701 0.7361 0.8777 0.8834 0.8711 0.8887

note: ∗ results of fully clamped plates in Li et al. (2009a)
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Table 3.8 Displacement w(0.01Pa2/Dx) at the center (x = a/2, y = b/2) for an orthotropic
rectangular plate with four edges rotationally restrained under a concentrated load P with
N = 100.

b/a
rotational fixity factor rx0 = rxa = ry0 = ryb References∗

0 0.05 0.1 0.5 0.9 0.99 0.999 0.9999
1 0.5282 0.5152 0.5021 0.3933 0.2756 0.2467 0.2437 0.2434 0.2454

1.1 0.6069 0.5926 0.5782 0.4569 0.322 0.2884 0.2849 0.2846 0.2869
1.2 0.6811 0.6657 0.65 0.5168 0.3659 0.3278 0.3239 0.3235 0.3261
1.3 0.7497 0.7331 0.7162 0.5715 0.4057 0.3636 0.3592 0.3587 0.3617
1.4 0.8119 0.794 0.7759 0.62 0.4405 0.3948 0.3901 0.3896 0.3928
1.5 0.8676 0.8485 0.8289 0.6619 0.4701 0.4213 0.4162 0.4157 0.4191
1.6 0.9167 0.8962 0.8753 0.6975 0.4945 0.4432 0.4378 0.4373 0.4409
1.7 0.9597 0.9377 0.9155 0.7271 0.5142 0.4607 0.4552 0.4546 0.4583
1.8 0.9969 0.9736 0.95 0.7513 0.5298 0.4745 0.4688 0.4683 0.4721
1.9 1.0289 1.0042 0.9793 0.771 0.5419 0.4853 0.4794 0.4788 0.4828
2 1.0563 1.0303 1.0041 0.7867 0.5511 0.4934 0.4874 0.4868 0.4909

note: ∗ results of fully clamped plates in Li et al. (2009a)

Table 3.9 Displacement w(0.01qa4/D) at the center (x = a/2, y = b/2) for an isotropic
rectangular plate with two opposite edges rotationally restrained (y = 0 and y = b) and
remaining edges simply supported under an uniform distributed load q (ν = 0.3).

b/a
rotational fixity factor rx0 = rxa = ry0 = ryb Reference∗

0 0.05 0.1 0.5 0.9 0.99 0.999 0.9999
1 0.4062 0.4001 0.3937 0.3293 0.2265 0.1944 0.1909 0.1906 0.192

1.1 0.4869 0.4809 0.4746 0.4090 0.2946 0.2560 0.2518 0.2514 0.251
1.2 0.5650 0.5594 0.5534 0.4891 0.3673 0.3232 0.3183 0.3178 0.319
1.3 0.6392 0.6340 0.6285 0.5672 0.4423 0.3939 0.3883 0.3878 0.388
1.4 0.7085 0.7037 0.6987 0.6417 0.5173 0.4659 0.4599 0.4593 0.46
1.5 0.7724 0.7682 0.7637 0.7115 0.5906 0.5375 0.5312 0.5305 0.531
1.6 0.8308 0.8271 0.8231 0.7761 0.6607 0.6072 0.6007 0.6000 0.603
1.7 0.8838 0.8805 0.8770 0.8350 0.7268 0.6739 0.6673 0.6666 0.668
1.8 0.9316 0.9287 0.9257 0.8885 0.7883 0.7367 0.7302 0.7295 0.732
1.9 0.9745 0.9720 0.9694 0.9367 0.8448 0.7953 0.7889 0.7882 0.79
2 1.0128 1.0107 1.0084 0.9798 0.8963 0.8492 0.8431 0.8424 0.844

note: ∗ results of fully clamped plates in Timoshenko and Woinowsky-Krieger (1959)
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3.3 Vibration of R-R-R-R Orthotropic Plates

Although a number of studies have investigated the vibration of plates with uniform or
non-uniform elastic boundary restraints (Carmichael, 1959; Laura and Romanelli, 1974;
Laura et al., 1978; Laura and Grossi, 1979; Leissa et al., 1980; Mukhopadhyay, 1979,
1989; Warburton and Edney, 1984; Bapat et al., 1988; Li, 2004), most of those studies use
approximate methods such as the Rayleigh-Ritz method, which is inconvenient compared
to the method of finite integral transform (Wang and Lin, 1999). The study presented in
this section is the first to examine whether the method of finite integral transform can
be applied to plates with different boundary conditions other than the completely free
conditions reported in Hurlebaus et al. (2001). Its universal application was questioned
by Li et al. (2009b).

3.3.1 Free vibration

Consider an orthotropic rectangular thin plate with rotationally restrained edges as shown
in Fig. 3.3. The governing equation of the free vibration is (Leissa, 1969)

Dx
∂4w

∂x4 + 2H ∂4w

∂x2∂y2 +Dy
∂4w

∂y4 + ρh
∂2w

∂t2
= 0 (3.68)

in which ρ is the density of the plate; Dx, Dy, and H are the same as those defined in
Section 3.1.2. The displacement function w(x, y, t) can be expressed as the product of
two functions, one involving only the coordinates x and y, called a mode shape function
W (x, y), and the other involving the variable time T(t). Denoting the frequency of
sinusoidal oscillations by ω, the displacement function can be expressed as

w(x, y, t) = W (x, y)eiωt (3.69)

Substituting Eq. (3.69) into Eq. (3.68) yields

Dx
∂4W

∂x4 + 2H ∂4W

∂x2∂y2 +Dy
∂4W

∂y4 − ω2ρhW = 0 (3.70)

The boundary conditions of the plates are described in Eqs. (3.42) and (3.43). The pair
of double finite sine transforms is defined in Eqs. (3.8) as (Sneddon, 1972):
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¯̄W (m,n) =
∫ a

0

∫ b

0
W (x, y) sinαmx sin βnydxdy (3.71a)

W (x, y) = 4
ab

∞∑
m=1

∞∑
n=1

¯̄W (m,n) sinαmx sin βny (3.71b)

Taking double finite sine transforms on both sides of Eq. (3.70) gives

∫ a

0

∫ b

0
∇4

oW (x, y) sinαmx sin βnydxdy − ω2ρh ¯̄W (m,n) = 0 (3.72)

Using integration by parts and considering the boundary conditions of Eqs. (3.42), the dou-
ble finite sine transforms of the fourth derivatives in Eq. (3.72) can be obtained (Meirovitch,
1967):

∫ a

0

∫ b

0
W,xxxx sinαmx sin βnydxdy = α4

m
¯̄W (m,n)

− αm

[
(−1)mW̄ ,xx (a, n) − W̄ ,xx (0, n)

] (3.73a)

∫ a

0

∫ b

0
W,xxyy sinαmx sin βnydxdy = α2

mβ
2
n

¯̄W (m,n) (3.73b)∫ a

0

∫ b

0
W,yyyy sinαmx sin βnydxdy = β4

n
¯̄W (m,n)

− βn

[
(−1)nW̄ ,yy (m, b) − W̄ ,yy (m, 0)

] (3.73c)

where coefficients W̄ ,xx (0, n), W̄ ,xx (a, n), W̄ ,yy (m, 0) and W̄ ,yy (m, b) are determined
from the finite-sine transformed boundary conditions at the four edges. Substituting
Eq. (3.73) into Eq. (3.72), the following is obtained

¯̄W (m,n) = 1
Ωmn − ω2ρh

αmDx

[
(−1)mW̄ ,xx (a, n) − W̄ ,xx (0, n)

]

+ βnDy

[
(−1)nW̄ ,yy (m, b) − W̄ ,yy (m, 0)

]
(3.74)

Taking the inverse finite sine transform of Eq. (3.74) with respect to the spatial variable
x and y, separately, results in
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W̄ (x, n) = 2
a

∞∑
m=1

¯̄W (m,n) sinαmx (3.75a)

W̄ (m, y) = 2
b

∞∑
n=1

¯̄W (m,n) sin βny (3.75b)

Using Stokes’s transformation and taking the derivative of Eq. (3.75a) with respect to x
and Eq. (3.75b) to y, respectively, yields

W̄ ,x (x, n) = 2
a

∞∑
m=1

αm
¯̄W (m,n) cosαmx (3.76a)

W̄ ,y (m, y) = 2
b

∞∑
n=1

βn
¯̄W (m,n) cos βny (3.76b)

Applying Eqs. (3.43) and Eqs. (3.74), four infinite systems of equations with respect
to W̄ ,xx (0, n), W̄ ,xx (a, n), W̄ ,yy (m, 0), and W̄ ,yy (m, b) can be obtained.

W̄ ,xx (0, n) = 2
a

Rx0

Dx

∞∑
m=1

αm

Ωmn − ω2ρh

αmDx

[
(−1)mW̄ ,xx (a, n) − W̄ ,xx (0, n)

]

+ βnDy

[
(−1)nW̄ ,yy (m, b) − W̄ ,yy (m, 0)

]
(3.77a)

W̄ ,xx (a, n) = −2
a

Rxa

Dx

∞∑
m=1

(−1)mαm

Ωmn − ω2ρh

αmDx

[
(−1)mW̄ ,xx (a, n) − W̄ ,xx (0, n)

]

+ βnDy

[
(−1)nW̄ ,yy (m, b) − W̄ ,yy (m, 0)

]
(3.77b)

W̄ ,yy (m, 0) = 2
b

Ry0

Dy

∞∑
n=1

βn

Ωmn − ω2ρh

αmDx

[
(−1)mW̄ ,xx (a, n) − W̄ ,xx (0, n)

]

+ βnDy

[
(−1)nW̄ ,yy (m, b) − W̄ ,yy (m, 0)

]
(3.77c)
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W̄ ,yy (m, b) = −2
b

Ryb

Dy

∞∑
n=1

(−1)nβn

Ωmn − ω2ρh

αmDx

[
(−1)mW̄ ,xx (a, n) − W̄ ,xx (0, n)

]

+ βnDy

[
(−1)nW̄ ,yy (m, b) − W̄ ,yy (m, 0)

]
(3.77d)

For each combination of m and n, Eqs. (3.77) produce 2m+2n equations with 2m+2n
unknown variables. Non-trivial solutions require the determinant of the coefficient matrix
to vanish. Then, the eigenfrequencies of the plate can be calculated as well as the
associated vibration modes. This approach was also reported in Green (1944), Hurlebaus
et al. (2001) and Zhong and Yin (2008). However, such a procedure involves solving a
highly non-linear equation, which requires quite laborious computation even for small
m and n. This problem cannot be remedied through reducing the 2m+ 2n equations to
m+ n equations by using the symmetry conditions of modes in the case with symmetric
boundary conditions, i.e., Rx0 = Rxa and Ry0 = Ryb. For the purpose of illustration,
consider the doubly symmetric modes of a clamped plate, from which it can be obtained

0 =
∞∑

m=1

αm

Ωmn − ω2ρh

αmDx

[
(−1)mW̄ ,xx (a, n) − W̄ ,xx (0, n)

]

+ βnDy

[
(−1)nW̄ ,yy (m, b) − W̄ ,yy (m, 0)

]
(3.78a)

0 =
∞∑

m=1

(−1)mαm

Ωmn − ω2ρh

αmDx

[
(−1)mW̄ ,xx (a, n) − W̄ ,xx (0, n)

]

+ βnDy

[
(−1)nW̄ ,yy (m, b) − W̄ ,yy (m, 0)

]
(3.78b)

0 =
∞∑

n=1

βn

Ωmn − ω2ρh

αmDx

[
(−1)mW̄ ,xx (a, n) − W̄ ,xx (0, n)

]

+ βnDy

[
(−1)nW̄ ,yy (m, b) − W̄ ,yy (m, 0)

]
(3.78c)
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0 =
∞∑

n=1

(−1)nβn

Ωmn − ω2ρh

αmDx

[
(−1)mW̄ ,xx (a, n) − W̄ ,xx (0, n)

]

+ βnDy

[
(−1)nW̄ ,yy (m, b) − W̄ ,yy (m, 0)

]
(3.78d)

Using the symmetric boundary conditions, it can be found that

W̄ ,xx (a, n) = W̄ ,xx (0, n)

W̄ ,yy (m, b) = W̄ ,yy (m, 0)
(3.79)

Thus, terms with even m or n in Eqs. (3.78) will vanish. After that, Eqs. (3.78) turn into

∞∑
m=1,3,...

α2
mDx

Ωmn − ω2ρh
W̄ ,xx (a, n) +

∞∑
m=1,3,...

αmβnDy

Ωmn − ω2ρh
W̄ ,yy (m, b) = 0 (3.80a)

∞∑
n=1,3,...

αmβnDx

Ωmn − ω2ρh
W̄ ,xx (a, n) +

∞∑
n=1,3,...

β2
nDy

Ωmn − ω2ρh
W̄ ,yy (m, b) = 0 (3.80b)

It can be observed that even for the simplified Eqs. (3.80), the highly non-linear equation
must still be solved. The infinite series of the first term in Eq. (3.80a) or the second term
in Eq. (3.80b) can be summed without much difficulty in the case of isotropic plates, as
it will benefit the numerical computation. However, the sum of the infinite series will
be complex for orthotropic plates. In addition, it can also be recognised that Eqs. (3.80)
are coincidentally identical to Eqs. (16) in Kshirsagar and Bhaskar (2008), in which the
improved superposition method is applied for isotropic plates. This verifies that the finite
integral transform method is essentially the same as the improved superposition method.

Alternatively, instead of solving non-linear equations, Li et al. (Li, 2000; Li et al.,
2009b) proposed a simple procedure to obtain the natural frequency. This procedure is
also adopted herein for the method of finite integral transform. Combining Eqs. (3.43)
and Eqs. (3.76) yields

W̄ ,xx (0, n) = 2
a

Rx0

Dx

∞∑
m=1

αm
¯̄W (m,n) (3.81a)
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W̄ ,xx (a, n) = −2
a

Rxa

Dx

∞∑
m=1

(−1)mαm
¯̄W (m,n) (3.81b)

W̄ ,yy (m, 0) = 2
b

Ry0

Dy

∞∑
n=1

βn
¯̄W (m,n) (3.81c)

W̄ ,yy (m, b) = −2
b

Ryb

Dy

∞∑
n=1

(−1)nβn
¯̄W (m,n) (3.81d)

Substituting Eqs. (3.81) into Eq. (3.74) produces

Ωmn
¯̄W (m,n) + 2αm

a

∞∑
i=1

[
(−1)i+mRxa +Rx0

]
αi

¯̄W (i, n)

+ 2βn

b

∞∑
j=1

[
(−1)j+nRyb +Ry0

]
βj

¯̄W (m, j) − ω2ρh ¯̄W (m,n) = 0
(3.82)

where
αi = iπ

a
, βj = jπ

b
(i = 1, 2, 3, ..., j = 1, 2, 3, ...) (3.83)

Based on Eqs. (3.40), rotational fixity factors are introduced to define elastic restraints
along edges and can be expressed as

Rx0a

Dx

= 3rx0

1 − rx0
(3.84a)

Rxaa

Dx

= 3rxa

1 − rxa

(3.84b)

Similarly,

Ry0b

Dy

= 3ry0

1 − ry0
(3.85a)

Rybb

Dy

= 3ryb

1 − ryb

(3.85b)

Substituting Eqs. (3.84) and Eqs. (3.85) into Eq. (3.82) yields
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Ωmn
¯̄W (m,n) + 2αmDx

a2

∞∑
i=1

[
(−1)i+m 3rxa

1 − rxa

+ 3rx0

1 − rx0

]
αi

¯̄W (i, n)

+ 2βnDy

b2

∞∑
j=1

[
(−1)j+n 3ryb

1 − ryb

+ 3ry0

1 − ry0

]
βj

¯̄W (m, j) − ω2ρh ¯̄W (m,n) = 0
(3.86)

Eq. (3.86) can be conveniently expressed in the following matrix form:

AW = ω2ρhW (3.87)

where W = [ ¯̄W (1, 1), ¯̄W (1, 2)... ¯̄W (1, N), ¯̄W (2, 1)... ¯̄W (2, N)... ¯̄W (M,N)] and A is the cor-
responding coefficient matrix which can be obtained from Eq. (3.86). It is assumed that
all the series expansions are truncated to finite number M for m and N for n while the
upper limit of summation may be theoretically specified as infinity. It can be observed
that Eq. (3.87) is a standard characteristic equation for a matrix, and the corresponding
eigenfrequencies ω can be conveniently determined. As a result, a complex non-linear
problem of Eqs. (3.77) is now converted to the simple eigenvalue problem of Eq. (3.87).
For any obtained eigenfrequency, the corresponding eigenvector can be directly determined
by substituting the eigenfrequency into Eq. (3.87). Subsequently, the corresponding mode
shape can be derived by substituting the eigenvector of ¯̄W (m,n) into Eq. (3.71b) for each
natural frequency.

3.3.2 Forced vibration

The classical method of analyzing the forced vibration response of a plate is the method
of modal analysis (i.e., eigenfunction expansion) by expanding the forcing function into a
series of eigenfunctions and taking advantage of their orthogonality relation. Instead of
using classical modal analysis to analyse the forced vibration response, a straightforward
unified approach by applying the finite integral transform is also presented. Theoretically,
any loading function can be expanded into a Fourier series (Wang and Lin, 1996). Thus,
for illustration, only forced vibrations induced by harmonic excitations are studied.

A forced vibration of the orthotropic plate is governed by

Dx
∂4w

∂x4 + 2H ∂4w

∂x2∂y2 +Dy
∂4w

∂y4 + ρh
∂2w

∂t2
= f(x, y, t) (3.88)
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in which f(x, y, t) = p(x, y) sinωt where p(x, y) is the spatial distribution and ω is the
angular frequency of force. Eq. (3.88) admits a solution of the form

w(x, y, t) = W (x, y) sinωt (3.89)

Therefore, w must satisfy the equation

Dx
∂4W

∂x4 + 2H ∂4W

∂x2∂y2 +Dy
∂4W

∂y4 − ω2ρhW = p(x, y) (3.90)

By applying the same procedure illustrated in Section 3.3.1, forced vibration responses
can be determined.

3.3.3 Numerical results and comparison

Several representative examples are presented in this section to validate the foregoing
proposed analytical procedure and the corresponding numerical results are obtained
by using built-in eigs function in the MATLABr software package. For the sake of
convenience, the numbers of double series items are chosen to be the same and denoted by
N (i.e., m, n = 1, 2, 3, ..., N) and the four edges have the same values for the rotational
fixity factors (i.e., rx0 = rxa = ry0 = ryb = r). The results are theoretically exact when
N → ∞, while convergent solutions with satisfactory accuracy can be acquired by a finite
number of items.

First of all, the convergence of the fundamental frequency is shown in Fig. 3.7 for the
case of a square isotropic plate with four edges rotationally restrained with r = 0.999.
The exact value of the fundamental frequency parameter of the fully clamped plate is
35.985 in Li et al. (2009b) with use of improved Fourier series method. It can be observed
from Fig. 3.7 that the parameter converges to the exact value quite slowly. Since the
computation time becomes very long when N > 150 on a standard PC, the values are
examined by truncating the series up to N = 150. From the results of convergence study,
N is taken to be 100 for all numerical results presented in the present study. Figs. 3.8
illustrate the first six mode shapes of a square isotropic plate with r = 0.25. Figs. 3.9
show the influence of rotational stiffness on the mode shapes of plate. Square isotropic
plates with four different values of rotational fixity factors (0, 0.25, 0.5 and 0.999) are
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examined. The results indicate that the rotational stiffness may alter the mode shapes,
as shown in Figs. 3.9.
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Figure 3.7 Convergence of the fundamental frequency parameter Ω = ωa2√ρh/D of a square
isotropic plate with r = 0.999.

The next example involves a square isotropic plate with four edges rotationally re-
strained. Various rotational fixity factors from 0.0323 to 0.997 are investigated, and
the results are shown in Table. 3.10. The present results are compared with those of
Mukhopadhyay (1979) and Li et al. (2009b). The differences between the present results
and those of Mukhopadhyay (1979) are calculated with respect to the exact solutions
of Li et al. (2009b), separately. It is found that the proposed method provides better
predictions than those of Mukhopadhyay (1979) in general, with differences from the exact
solutions of Li et al. (2009b) being less than 0.9 percent. Furthermore, the frequencies
obtained from the proposed method are more accurate when the rotational restraint is
flexible, say when r < 0.25.

Last, rectangular orthotropic plates with three edges simply supported (rx0 = rxa =
ryb = 0) and one edge rotationally restrained are considered. The effect of aspect ratios and
rotational fixity factors are investigated. The obtained fundamental frequency parameters
are tabulated in Table. 3.11 and compared with the results of Laura and Grossi (1979)
using the material properties of Dx/H = Dy/H = 0.5. The comparisons shown in
Table. 3.11 indicate good agreement in the results, with difference less than 0.8 percent.
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(a) First mode (b) Second mode

(c) Third mode (d) Fourth mode

(e) Fifth mode (f) Sixth mode

Figure 3.8 First six mode shapes of a square isotropic plate with r = 0.25.
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r=0

r=0.25

r=0.5

r=0.999

(a) Third mode

r=0

r=0.25

r=0.5

r=0.999

(b) Fourth mode

Figure 3.9 The effect of rotational restraints on the mode shapes of a square isotropic plate
with rotational restrained edges.
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Table 3.10 First six frequency parameters Ω for a square isotropic plate with four edges
rotationally restrained.

r Ka/D
Ω = ωa2

√
ρh/D

1 2 3 4 5 6
0.0323 0.1 Mukhopadhyay (1979) 19.839 48.894 49.629 79.04 95.678 99.211

Present 19.936 49.546 49.546 79.155 98.895 98.895
0.25 1 Li et al. (2009b) 21.5 51.187 51.187 80.816 100.58 100.59

Mukhopadhyay (1979) 20.511 49.116 50.927 79.851 95.777 100.727
(%)a -4.60 -4.05 -0.51 -1.19 -4.78 0.14

Present 21.505 51.195 51.195 80.831 100.587 100.594
(%)b 0.02 0.02 0.02 0.02 0.01 0.00

0.7692 10 Li et al. (2009b) 28.501 60.215 60.215 90.808 111.19 111.41
Present 28.583 60.337 60.337 90.957 111.352 111.578

(%)b 0.29 0.20 0.20 0.16 0.15 0.15
0.8696 20 Li et al. (2009b) 31.08 64.31 64.31 95.85 116.8 117.2

Mukhopadhyay (1979) 31.111 64.342 64.861 95.85 117.029 118.214
(%)a 0.10 0.05 0.86 0.00 0.20 0.87

Present 31.219 64.535 64.535 96.112 117.181 117.566
(%)b 0.45 0.35 0.35 0.27 0.33 0.31

0.9709 100 Li et al. (2009b) 34.671 70.78 70.78 104.45 127.02 127.61
Mukhopadhyay (1979) 34.753 69.319 70.929 103.377 120.047 127.616

(%)a 0.24 -2.06 0.21 -1.03 -5.49 0.00
Present 34.918 71.259 71.259 105.128 127.845 128.439

(%)b 0.71 0.68 0.68 0.65 0.65 0.65
0.997 1000 Li et al. (2009b) 35.842 73.103 73.103 107.79 131.06 131.68

Present 36.134 73.694 73.694 108.658 132.129 132.756
(%)b 0.81 0.81 0.81 0.81 0.82 0.82

note: a–percentage difference of results between Mukhopadhyay (1979) and Li et al. (2009b)
b–percentage difference of results between the present study and Li et al. (2009b)
Ka/D–rotational stiffness coefficient defined in Li et al. (2009b)

Table 3.11 Fundamental frequency parameter Ω1 for rectangular orthotropic plates with three
edges simply supported (rx0 = rxa = ryb = 0) and one edge rotationally restrained ry0.

k3
Ry0b

Dy
ry0

Ω1 = ω1a2
√

ρh/Dx

b/a=0.5 b/a=1 b/a=1.5
Ref.∗ Present (%) Ref.∗ Present (%) Ref.∗ Present (%)

0 0 0 56.5685 56.6966 0.23 24.1831 24.1755 -0.03 16.9706 17.0242 0.32
0.5 1 0.25 58.8313 59.1302 0.51 24.4659 24.5448 0.32 17.0963 17.1301 0.20
5 10 0.7692 67.8823 68.0681 0.27 26.1630 26.1534 -0.04 17.7248 17.6557 -0.39
∞ ∞ 0.9999 75.2362 75.7808 0.72 28.0014 27.9691 -0.12 18.5419 18.4179 -0.67

note: k3–rotational stiffness coefficient defined in Laura and Grossi (1979)
∗–Laura and Grossi (1979)
(%)–percentage difference between reference and present results
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3.4 Discussion and remarks

The flexural and vibration analysis of rectangular orthotropic plates with rotationally
restrained edges has been carried out by means of double finite sine transforms in preceding
sections. This method is essentially the same as the Fourier series expansion (Wang
and Lin, 1996, 1999) and the improved superposition method (Bhaskar and Kaushik,
2004; Bhaskar and Sivaram, 2008; Kshirsagar and Bhaskar, 2008). Compared to these
equivalent methods, the finite integral transform method is more convenient and can
be routinely applied to more complex boundary value problems by choosing different
integral kernels. However, due to slow convergence, these so-called theoretical-exact series
solutions normally produce only approximate results for vibration analysis of plates. The
larger the value of rotational fixity factors, the greater the time needed to achieve a high
degree of accuracy. In such cases, the improved Fourier series method developed by Li
et al. (Li, 2004; Li et al., 2009b) can be applied to improve convergence and as well as
accuracy.

3.4.1 Formulations

The method of finite integral transform presented in this study is straightforward in
concept and systematic in formulation. First, the governing differential equation is
converted into an algebraic equation in terms of the integral form of the solution by
applying an appropriate integral kernel. The initial or boundary conditions will be
accounted for automatically in the process of conversion. The resulting algebraic equation
can be solved without much difficulty. If the algebraic equation involves variables that are
unknown, the boundary conditions can be applied to determine the variables eventually.
Through this procedure, a system of linear algebraic equations will be obtained for
unknown variables. Once the integral form of the solution is known, the original function
can be derived by using the inverse integral transform (Rao, 2007).

As discussed in Section 3.3.1, two different formulations (i.e., Eqs. (3.77) and (3.86))
can be generated. For the case investigated in this present research, the first formulation
leads to Eq. (3.74) and then to four infinite systems of equations, Eqs. (3.77), with
respect to W̄ ,xx (0, n), W̄ ,xx (a, n), W̄ ,yy (m, 0), and W̄ ,yy (m, b). For each combination of
m and n, Eqs. (3.77) produce 2m+ 2n equations with 2m+ 2n unknown variables. As a
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results, frequencies can be acquired by solving a highly nonlinear equation representing
the determinant of the coefficient matrix with dimensions of (2m + 2n) × (2m + 2n).
This approach was employed by Hurlebaus et al. (2001) and Zhong and Yin (2008).
However, the number of terms used in the numerical computations (size of the matrix)
and the corresponding numerical method are not reported in Hurlebaus et al. (2001).
Zhong and Yin (2008) computed the eigenfrequencies and corresponding mode shapes by
truncating the series up to 13 terms. It would be quite difficult to solve the non-linearly
equation resulting from the determinant to obtain the frequency when large values of
m and n are selected. The other formulation results in Eq. (3.82) or Eq. (3.86) by
expressing W̄ ,xx (0, n), W̄ ,xx (a, n), W̄ ,yy (m, 0) , and W̄ ,yy (m, b) in terms of ¯̄W (m,n)
and substituting them into Eq. (3.74). A system of linear equations about ¯̄W (m,n) with
dimensions of (m× n) × (m× n) is obtained. Natural frequencies can be easily obtained
by determining the eigenvalues of the coefficient matrix. As shown in Section 3.3.3, the
numerical results can be calculated without much difficulty by selecting m = n = 150.
The second formulation is more efficient than the first one for the case of free vibration
analysis for either one-dimensional elements or two-dimensional elements.

For the flexural analysis carried out in Section 3.2, the first formulation leads to a
coefficient matrix with dimensions of (2m + 2n) × (2m + 2n), but the second one has
dimensions of (m× n) × (m× n). The first formulation is more computationally efficient
for flexural analysis, and also more efficient for forced vibration analysis as well because
their procedure are same.

3.4.2 Convergence

A convergence study has been conducted to analyze the free vibration of a square isotropic
plate with four edges rotationally restrained with r = 0.999 in Section 3.3.3, using the
MATLAB program on a desktop computer equipped with a 3.40 GHz Intel Core i7-2600
processor and 8 GB of memory. Similarly, the rate of convergence was examined during
flexural analysis of plates with edges rotationally restrained in Section 3.2. It was observed
that the results converged slowly. However, during the flexural analysis in Section 3.2,
numerical results were easily obtained for a series of up to 2000 terms. Thus, the exact
solutions were acquired. On the other hand, overflow problems occurred shortly when m

and n were greater than 200 on the computer program carried out for the free vibration
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analysis in this research. Therefore, only approximate values are obtained by applying
the method of finite integral transform for free vibration analysis, whereas exact solutions
can be theoretically determined by using an infinite series.

However, the convergence of the solutions is significantly accelerated by adopting the
improved Fourier series methods developed by Li et al. (Li, 2000; Li and Daniels, 2002;
Li, 2004; Du et al., 2007; Li et al., 2009b; Zhang and Li, 2009; Khov et al., 2009) through
introducing the supplementary terms to Fourier series. Highly accurate results can be
obtained by setting M = N = 6 as reported in Li (2004). This improvement seems to be
unnecessary for flexural analysis of beams or plates with arbitrary boundary conditions,
because the issue of the convergence is not significant in flexural analysis.

3.4.3 Untruncated and truncated

For numerical calculations, the series solution has to be truncated to a finite number of
terms. However, as pointed out in Section 3.2, the coefficient matrix will become singular
when applying this method for fully clamped plates (i.e., r = 1.0); therefore, the infinite
summations should first be evaluated without truncation. This step might be required
because the infinite summations are the counterparts of the derivatives of the closed-form
Levy-type expressions (Kshirsagar and Bhaskar, 2008). Nevertheless, there is no issue of
singularity in applying the proposed method for plates with rotationally restrained edges.
Alternatively, fully clamped plates can be treated as a limiting cases by specifying the
rotational fixity factor to be either 0.999 or 0.9999.

3.4.4 Broad applicability

The broad generality of the method of finite integral transform in solving plate flexural
problems was summarized by Li et al. (2013). Selecting appropriate integral transform
kernels based on boundary conditions will improve the accuracy and convergence. Li
(2000, 2002) proved that the cosine series expansion would converge faster than its sine
counterpart for beams with arbitrary elastic restraints, but the convergence speed of the
sine series solution will be greatly increased when beams are simply supported with only
rotational restraints. This fact might explain why the kernels sinαmx sin βny are applied
in this research for an orthotropic plate with rotationally restrained edges. Similarly,
Hurlebaus et al. (2001) employed cosαmx cos βny for free orthotropic plates.
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In general, the sinusoidal kernel (i.e., sinαmx) is taken for edges that are simply
supported, clamped or rotationally restrained (i.e., elastically restrained against rotation).
The co-sinusoidal kernel (i.e., cosαmx) is recommended for free or translational restrained
(i.e., elastically restrained against translation) edges, as presented in Appendix A. Alter-
natively, if for a pair of opposite edges, one is fully clamped or simply supported and
the other is free, a half-sinusoidal kernel (i.e., sin αm

2 x) can be chosen (Li et al., 2013).
The half-sinusoidal kernel is also defined as the modified finite sine transformation as
demonstrated by Churchill (1972).

3.5 Summary

In the present research, the method of finite integral transform has been applied to
the flexural and vibration analysis of a rectangular orthotropic plate with rotationally
restrained edges. A rotational fixity factor is introduced to define elastic restraints along
edges against rotations, thereby reflecting the relative stiffness of the plate and the rota-
tional elastic restraints. Thus, the approach used in this thesis for plates with rotationally
restrained edges can be applied for plates with general boundary conditions from simply
supported to fully clamped by using various rotational fixity factors. Two formulations
are developed for flexural and vibration analysis, separately. The validation of the present
method is conducting by comparing the results with different exact solutions and ap-
proximate solutions reported from other researchers. The effects of rotational restraints,
load distributions and aspect ratios on plate bending and vibration are investigated
using comprehensive numerical results. In addition, various exact analytical methods for
beams and plates with general boundary conditions have been reviewed, such as Fourier
series expansion, improved Fourier series method, improved superposition method, and
finite integral transform method. Brief comparisons and discussions are summarized for
these exact analytical methods. Although the present research focuses on investigating
orthotropic plates, conclusions obtained from the research are also applicable for isotropic
plates.

It can be concluded that the finite integral transform method is simple and straightfor-
ward, can be calculated with the desired accuracy, and has general applicability. However,
due to its slow convergence, this unified and systematic method only provides approximate
values for vibration analysis of plates.
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4
Equivalent Orthotropic Plates of CFS

Floor Systems

4.1 Introduction

CFS floor systems can be regarded as a thin plate (i.e., subfloor) reinforced by a series of
equidistant stiffeners (i.e., CFS joists) on one side in one direction with various transverse
elements such as strapping and blocking. These floor systems can be idealized as equiv-
alent orthotropic plates as discussed in Chapter 3. Analysing CFS floors as equivalent
orthotropic plates is often sufficiently accurate and usually less complicated than an
approach that considers the stiffeners discretely. Thus, it is necessary to determine the
four elastic rigidities Dx, Dy, Dxy, D1 and the mass of the equivalent orthotropic plate.

With the determination of the equivalent rigidities, the equivalent orthotropic plates
can simulate the desired behavior of original CFS floor systems. For instance, in free
vibration analysis, the equivalent orthotropic plates should provide the accurate solution
on natural frequencies and modal shapes of original structures (Iyengar and Iyengar,
1967). Considerable efforts have been devoted to obtaining the rigidities of an equivalent
orthotropic plate (Troitsky, 1976). Nevertheless, most existing methods have been de-
veloped in the context of static problems, such as in Huffington (1956) and Timoshenko
and Woinowsky-Krieger (1959). The rigidities of equivalent orthotropic plates in free
vibration were proposed by Iyengar and Iyengar (1967) for stiffened plate with stiffeners
in both longitudinal and transverse directions, which is different from CFS floors with
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joists running in one direction only. Moreover, considering the elastic rotational restraints
along with the joist ends of CFS floors, existing equivalent rigidities based on simply
supported boundaries cannot be applied directly. Therefore, it is necessary to obtain the
rigidities for the equivalent orthotropic plates of CFS floors in vibration analysis with
accounting for the actual boundary conditions and construction details.

This chapter presents an analytical method based on the Rayleigh method for deter-
mining the equivalent rigidities of CFS floor systems while considering elastic rotational
restraints at the joist ends. Simplified design equations are developed for calculating
the fundamental frequency of the floor systems. Lastly, the results obtained from the
proposed equations are validated with existing test results.

4.2 Equivalent properties for vibration of CFS floors

4.2.1 Methodology

Iyengar and Iyengar (1967) employed the Rayleigh method to determine the equivalent
rigidities and mass of stiffened plates in free vibration. In their study, the natural frequen-
cies for the stiffened and the equivalent orthotropic plate were obtained by the Rayleigh
method by applying eigenfunctions of beams with similar boundary conditions. The
equivalent rigidities and mass were determined through equating the natural frequencies
of the stiffened plates with those of the equivalent orthotropic plates. A similar method
was also proposed by Smith and Chui (1988) to predict natural frequencies of lightweight
wood floors.

It is well known that more accurate results can be obtained by using the Rayleigh-Ritz
method with a series of admissible functions as the Rayleigh method achieves only a first
approximation to a vibration frequency by using a single admissible function (Leissa,
2005). However, the Rayleigh-Ritz method can be labour intensive because the plate
deflection W (x, y) is expressed as the sum of a series of products of undetermined weighting
coefficients and admissible functions. The one-term approximation of the Rayleigh method
was applied by Warburton (1954) to derive approximate expressions for the frequencies of
isotropic plates with various boundary conditions, then extended to orthotropic plates by
Hearmon (1959). Its accuracy was assessed and confirmed by comparison with published
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4.2 Equivalent properties for vibration of CFS floors

theoretical and experimental results (Warburton, 1983).

Consequently, in the context of the engineering practice, the Rayleigh method is
adopted to establish the equivalent rigidities and mass of CFS floor systems. The selection
of appropriate admissible functions is critical for accuracy in calculating natural frequencies
of floors using the Rayleigh method. Characteristic functions for beams with similar
boundary conditions are often adopted in practice as admissible functions for the various
boundary conditions. Thus, to facilitate the discussion on modelling CFS floor systems
with the equivalent orthotropic plates with elastically restrained edges, the free vibration
of rotationally restrained beams (i.e., simply supported beams with ends elastically
restrained against rotation) is investigated firstly.

4.2.2 Free vibration of rotationally restrained beams

The method of finite integral transform is applied to investigate the vibration of rotation-
ally restrained beams. The equation of motion for the free vibrations of a Bernoulli-Euler
beam with uniformly distributed mass shown in Fig. 4.1 is (Weaver Jr et al., 1990)

EI
∂4w (x, t)
∂x4 + ρA

∂2w (x, t)
∂t2

= 0 (4.1)

where w(x, t) is the displacement at distance x along the length of the beam and time t,
EI is the flexural rigidity of the beam, ρ is the mass density, and A is the cross-sectional
area of the beam.

L

w (x,t)
x

R0 RL

Figure 4.1 Simply supported beam with ends elastically restrained against rotation.

Upon assuming harmonic motion for the free vibration analysis, the displacement
w(x, t) can be expressed as

w (x, t) = ψ (x) cosωt (4.2)
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where ω is the natural circular frequency and ψ(x) is the modal displacement function.

Substitution of Eq. (4.2) into Eq. (4.1) will lead to

EI
d4ψ (x)
dx4 − ρAω2ψ (x) = 0 (4.3)

Then, the boundary conditions can be expressed as

ψ = 0, R0
dψ

dx
= EI

d2ψ

dx2 at x = 0 (4.4a)

ψ = 0, RL
dψ

dx
= −EI d

2ψ

dx2 at x = L (4.4b)

in which R0 and RL are rotational spring constants at x = 0 and x = L, respectively.
The end restraints are assumed to be proportional to the end rotations and the restraint
stiffness, R0 and RL, may have any value in the range between simply supported (i.e.,
zero) and completely restrained (i.e., infinity).

The pair of the finite sine transform is defined as

ψ̄(m) =
∫ L

0
ψ(x) sinαmxdx (4.5a)

ψ(x) = 2
L

∞∑
m=1

ψ̄(m) sinαmx (4.5b)

where
αm = mπ

L
(m = 1, 2, 3, ...) (4.6)

Using integration by parts and the boundary conditions of Eqs. (4.4), the finite sine
transforms of the fourth derivatives in Eq. (4.3) can be obtained by

∫ L

0

d4ψ(x)
dx4 sinαmxdx = α4

mψ̄(m) − αm [(−1)mψ′′
L − ψ′′

0 ] (4.7)

where
ψ′′

0 = d2ψ(0)
dx2 , ψ′′

L = d2ψ(L)
dx2 (4.8)

Taking the finite sine transform to both sides of Eq. (4.3) and substituting Eq. (4.5a) and
(4.7) yield
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α4
mψ̄(m) − αm [(−1)mψ′′

L − ψ′′
0 ] − β4ψ̄(m) = 0 (4.9)

where
β4 = ρA

EI
ω2 (4.10)

From Stokes’s transformation, it can be obtained from Eq. (4.5b)that

dψ(x)
dx

= 2
L

∞∑
m=1

αmψ̄(m) cosαmx (4.11)

According to the boundary conditions of Eqs. (4.4), ψ′′
0 and ψ′′

L can be determined as

ψ′′
0 = d2ψ (0)

dx2 = 2
L

R0

EI

∞∑
m=1

αmψ̄(m) (4.12a)

ψ′′
L = d2ψ (L)

dx2 = 2
L

RL

EI

∞∑
m=1

(−1)m+1αmψ̄(m) (4.12b)

Rearranging Eq. (3.38), it yields

R

EI
= 1
L

3r
1 − r

(4.13)

Substituting Eq. (4.13) into Eqs. (4.12), it gives

ψ′′
0 = 1

L2
6r0

1 − r0

∞∑
m=1

αmψ̄(m) (4.14a)

ψ′′
L = 1

L2
6rL

1 − rL

∞∑
m=1

(−1)m+1αmψ̄(m) (4.14b)

where r0 and rL are rotational fixity factors at beam ends x = 0 and x = L, respectively.
Substituting Eqs. (4.14) into Eq. (4.9), it produces

m4ψ̄(m) + 6m
π2

∞∑
i=1

[
r0

1 − r0
+ (−1)i+m rL

1 − rL

]
iψ̄(i) − λ4ψ̄(m) = 0 (4.15)

where
λ4 = ρAL4

EIπ4ω
2 (4.16)
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It would be convenient to expressed Eq. (4.15) in the following matrix form:

AΨ = λ4Ψ (4.17)

where Ψ = [ψ̄(1), ψ̄(2), . . . , ψ̄(M)] if only the first M vibration modes of the beam is
considered and A is the corresponding coefficient matrix of size M ×M whose elements
can be expressed as

Aii = i4 + 6i2
π2

[
r0

1 − r0
+ rL

1 − rL

]
(4.18a)

Aij = 2ij
π2

[
r0

1 − r0
+ (−1)i+j rL

1 − rL

]
(4.18b)

in which i = 1, 2, . . . ,M , j = 1, 2, . . . ,M but i ̸= j.

The natural frequencies can be obtained by solving the eigenvalue problem of Eq. (4.17)
and the corresponding mode shape can be determined in terms of Fourier sine series by
substituting ψ̄(m) of the eigenvector into Eq. (4.5b). Numerical results for the first eight
frequencies are listed and compared with those from Wang and Lin (1996) in Table 4.1.
Values are easily obtained by MATLAB program for M = 1000. Excellent agreements
can be observed in Table 4.1.

Table 4.1 Frequency parameter, λ with r0 = 0.9997⋆.

Mode
rL = 0 rL = 0.7692 rL = 0.9709 rL = 0.9712

Ref∗ Present Ref∗ Present Ref∗ Present Ref∗ Present
1 1.251 1.250 1.288 1.287 1.412 1.411 1.494 1.492
2 2.252 2.250 2.273 2.271 2.374 2.372 2.481 2.478
3 3.252 3.250 3.267 3.265 3.353 3.350 3.475 3.470
4 4.253 4.250 4.256 4.262 4.338 4.335 4.469 4.463
5 5.254 5.250 5.264 5.260 5.328 5.323 5.463 5.455
6 6.255 6.251 6.263 6.259 6.320 6.315 6.457 6.449
7 7.256 7.251 7.263 7.258 7.314 7.308 7.452 7.443
8 8.258 8.251 8.263 8.257 8.310 8.302 8.447 8.437

Note: ∗ Wang and Lin (1996)
⋆ r0 = 0.9997 is adapted from K̄o = 105 in Wang and Lin (1996).
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4.2.3 Free vibration of orthotropic plates with rotationally re-
strained edges

For a rectangular orthotropic plate having one pair edges simply supported and the other
pair edges elastic restrained against rotation as shown in Fig. 4.2, the determination
of the natural frequencies by using the Rayleigh method applying beam characteristic
functions as admissible functions is presented as follows.

a

o

x

y

b RxaRx0

S. S.

S. S.

Figure 4.2 Orthotropic plate with two opposite edges rotationally restrained.

The boundary conditions of the orthotropic plate shown in Fig. 4.2 are

w = 0, Rx0
∂w

∂x
= Dx

[
∂2w

∂x2 + vy
∂2w

∂y2

]
, at x = 0 (4.19a)

w = 0, Rxa
∂w

∂x
= −Dx

[
∂2w

∂x2 + vy
∂2w

∂y2

]
, at x = a (4.19b)

w = 0, Dy

[
∂2w

∂y2 + vx
∂2w

∂x2

]
= 0, at y = 0 (4.19c)

w = 0, −Dy

[
∂2w

∂y2 + vx
∂2w

∂x2

]
= 0, at y = b (4.19d)
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where a is the floor span; b is the floor width; Rx0 and Rxa are the rotational stiffness (per
unit length) along the corresponding edges x = 0 and x = a, respectively; Dx and Dy are
flexural rigidities; νx and νy are Poisson’s ratios. The restraint stiffness, Rx0 and Rxa, can
be treated the same as R0 and RL for the beam in the last section. For the free vibration
of a plate vibrating harmonically with circular frequency ω, the deflection w(x, y, t) can
be expressed as

w (x, y, t) = W (x, y) cosωt (4.20)

If only the bending stresses is accounted for, the maximum strain energy (i.e. potential
energy) of an orthotropic plate is given by (Timoshenko and Woinowsky-Krieger, 1959)

Upmax = 1
2

∫ a

0

∫ b

0

Dx

(
∂2W

∂x2

)2

+ 2D1
∂2W

∂x2
∂2W

∂y2 +Dy

(
∂2W

∂y2

)2

+ 4Dxy

(
∂2W

∂x∂y

)2
 dxdy
(4.21)

Supplementary to the plate strain energy, there is additional strain energy stored in the
rotational springs along the edges (i.e. associated to the rotational restraints in the edges).
The maximum strain energy associated with these boundary conditions is calculated by

Urmax = 1
2Dx

{∫ b

0

[
∂2W

∂x2 + νy
∂2W

∂y2

]
∂W

∂x

∣∣∣∣∣
x=0

dy −
∫ b

0

[
∂2W

∂x2 + νy
∂2W

∂y2

]
∂W

∂x

∣∣∣∣∣
x=a

dy

}

= −1
2Dx

∫ b

0

[
∂2W

∂x2
∂W

∂x
+ νy

∂2W

∂y2
∂W

∂x

]∣∣∣∣∣
x=a

x=0
dy

(4.22)

The total maximum strain energy, Umax is obtained by summing contributions form
Eqs. (4.21) and (4.22).

Umax = 1
2

∫ a

0

∫ b

0

Dx

(
∂2W

∂x2

)2

+ 2D1
∂2W

∂x2
∂2W

∂y2 +Dy

(
∂2W

∂y2

)2

+ 4Dxy

(
∂2W

∂x∂y

)2
 dxdy

− 1
2Dx

∫ b

0

[
∂2W

∂x2
∂W

∂x
+ νy

∂2W

∂y2
∂W

∂x

]∣∣∣∣∣
x=a

x=0
dy

(4.23)

The maximum kinetic energy is calculated by

Tmax = 1
2ρω

2h
∫ a

0

∫ b

0
W 2dxdy (4.24)
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where ρ is the mass density of the plate and h is the thickness of the plate.

Using the Rayleigh quotient, the natural frequencies of the plate can be obtained by
equating the maximum potential energy Umax and the maximum kinetic energy Tmax and
given as

ω2 = Umax

1
2ρh

∫ a

0

∫ b

0
W 2dxdy

(4.25)

In order to obtain natural frequencies, W (x, y) can be assumed to be separable in x

and y as
W (x, y) = Bψ (x)ϕ (y) = B

∞∑
m=1

Am sinαmx sin βny (4.26)

where B is a constant, βn = nπ/b, ϕ(y) = sin βny is the characteristic function of a simply
supported beam, and

ψ(x) =
∞∑

m=1
Am sinαmx (4.27)

represents the characteristic function of the simply supported beam with rotational
restraints, which can be obtained by Eq. (4.5b) with Am = ψ̄(m).

Substituting Eq. (4.26) into Eq. (4.25) yields

ω2 =

abπ4
[

Dx

a4

∞∑
m=1

m4A2
m + 2D1+2Dxy

a2b2 n2
∞∑

m=1
m2A2

m + n4Dy

b4

]
+2Dx

[
ψ′′

0
πb
a

∞∑
m=1

mAm − ψ′′
a

πb
a

∞∑
m=1

(−1)mmAm

]
ρhab

∞∑
m=1

A2
m

(4.28)

where ψ′′
0 and ψ′′

a can be obtained from Eq. (4.14) and (4.27) as

ψ′′
0 = d2ψ(0)

dx2 = π

a2
3r0

1 − r0

∞∑
m=1

mAm (4.29a)

ψ′′
a = d2ψ(a)

dx2 = π

a2
3ra

1 − ra

∞∑
m=1

(−1)m+1mAm (4.29b)

Substituting Eq. (4.29) to Eq. (4.28) and rearranging the equation, it gives
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ω2 =
abπ4

[
c1

Dx

a4 + 2c2n
2 H

a2b2 + n4 Dy

b4

]
ρhab

(4.30)

where H = D1 + 2Dxy, c1 and c2 are defined as restraint coefficients which can be given
by

c1 =
 ∞∑

m=1
m4A2

m + 1
π2

6r0

1 − r0

( ∞∑
m=1

mAm

)2

+ 1
π2

6ra

1 − ra

( ∞∑
m=1

(−1)mmAm

)2
/ ∞∑

m=1
A2

m

c2 =
∞∑

m=1
m2A2

m

/ ∞∑
m=1

A2
m

(4.31)

The fundamental frequency can be obtained by letting n = 1 in Eq. (4.30) and
choosing Am of Eq. (4.31) associated to the first vibration mode of the rotationally
restrained beam for the orthotropic plate with two opposite edges (i.e., x = 0 and x = a)
rotationally restrained and the other two edges (i.e., y = 0 and y = b) simply supported.
Numerical investigations have been performed to confirm the validity of the present
equations for evaluating the fundamental frequency of rectangular orthotropic plates with
rotational restraints and compared with results of Hearmon (1959) as shown in Table 4.2.
The numerical results of c1 and c2 are obtained by setting m up to 1000 in Eq. (4.31).
Hearmon (1959) applied the Rayleigh method to determine closed formulas for the natural
frequencies of orthotropic plates under any combination of clamped or simply supported
edges. The general equations for the natural frequencies can be expressed as

ρhω2 = A4Dx

a4 + B4Dy

b4 + 2CH
a2b2 (4.32)

where the values of A, B and C of the fundamental frequency for boundary conditions
of four edges simply supported (i.e., S-S-S-S) are A = B = C = π4. For two opposite
edges clamped and the others simply supported (i.e., S-C-S-C), A = 4.7304, B = π4 and
C = 12.30π2. Then, from Hearmon (1959) the restraint coefficients, c1 = c2 = 1, can be
calculated for the boundary conditions of S-S-S-S and c1 = 5.138 and c2 = 1.246 for the
boundary conditions of S-C-S-C. Table 4.2 shows that the coefficients c1 and c2 increase
as rotational fixity factors increase as expected and approach to the value of the S-C-S-C
case when rx0 and rxa are closing to 1.
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Table 4.2 Frequency coefficients for different rotational fixity factors.

Rotational fixity factor rx0 = rxa

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.999 1∗

c1 1 1.131 1.284 1.464 1.680 1.945 2.274 2.695 3.254 4.024 5.133 5.138
c2 1 1 1.001 1.003 1.006 1.012 1.022 1.040 1.071 1.130 1.246 1.246

Note: ∗ results from Hearmon (1959).

Furthermore, the frequencies in Eq. (4.30), obtained using the Rayleigh method,
are also compared with those determined by the method of finite integral transform in
Section 3.3. Rearranging Eq. (4.30), the fundamental frequency parameter can be derived
as

Ω1 = ω1a
2

√
ρh

Dx

= π2

√
c1 + 2c2

H

Dx

(
a

b

)2
+ Dy

Dx

(
a

b

)4
(4.33)

Assuming Dy/Dx = 4 and H/Dx = 2, results of the fundamental frequency parameter
obtained using both methods are listed in Table 4.3. Excellent agreements can be observed.

Table 4.3 Fundamental frequency parameter Ω1 for different rotational fixity factors.

rx0 = rxa

Ω1 = ω1a2
√

ρh/Dx

b/a = 1 b/a = 1.5 b/a = 2
FIT∗ present⋆ FIT∗ present⋆ FIT∗ present⋆

0 29.609 29.609 18.643 18.643 14.804 14.804
0.100 29.825 29.824 18.983 18.982 15.230 15.229
0.200 30.078 30.079 19.375 19.367 15.714 15.714
0.300 30.379 30.382 19.832 19.831 16.271 16.268
0.400 30.742 30.745 20.372 20.367 16.919 16.911
0.500 31.190 31.200 21.020 21.016 17.684 17.675
0.600 31.756 31.770 21.814 21.805 18.603 18.585
0.700 32.493 32.517 22.810 22.794 19.732 19.702
0.800 33.492 33.525 24.099 24.071 21.158 21.110
0.900 34.921 34.956 25.836 25.780 23.026 22.943
0.999 37.099 37.083 28.278 28.156 25.561 25.411

Note: b/a Aspect ratio
∗ Finite integral transform method
⋆ Rayleigh method
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Additionally, if edges parallel to the span (i.e., y = 0 and y = b) are free (i.e., S-F-S-F),
the first mode shape ϕ1(y) in Eq. (4.26) can be defined as ϕ1(y) = 1. Following the same
procedure, the fundamental frequency is expressed as

ω2 = c1
abπ4

m

Dx

a4 (4.34)

where m = ρhab and c1 is same as shown in Eq. (4.30).

4.2.4 Free vibration of CFS floor systems

b

a

Joists

Blocking

Blocking

Strapping

Sub�oor

a/2

yi

x

z

y

y

Figure 4.3 Layout of typical CFS floor systems.

Fig. 4.3 illustrates the configuration details of a typical CFS floor system. The maxi-
mum potential energy of a CFS floor system consists of the following three components.

Umax = Usmax + Ujmax + Utmax (4.35)

where Usmax, Ujmax and Utmax are the maximum potential energy of subfloor, joists and
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transverse elements, respectively. For the simplicity of presenting the analysis proce-
dure, only one row of transverse elements at the mid-span is considered in the following
derivation. The components of potential energy can be expressed as

Usmax = 1
2

∫ a

0

∫ b

0

Dsx

(
∂2W

∂x2

)2

+ 2Ds1
∂2W

∂x2
∂2W

∂y2 +Dsy

(
∂2W

∂y2

)2

+ 4Dsxy

(
∂2W

∂x∂y

)2
dxdy

(4.36a)

Ujmax = 1
2EIj

Nj∑
i=1

∫ a

0

(
∂2W

∂x2

)2

y=yi

dx− 1
2EIj

Nj∑
i=1

(
∂2W

∂x2
∂W

∂x

)
y=yi

∣∣∣∣∣∣
x=a

x=0

(4.36b)

Utmax = 1
2EIt

∫ b

0

(
∂2W

∂y2

)2

x=a/2
dy (4.36c)

where Dsx, Dsy, Ds1 and Dsxy are the flexural and torsional rigidities of the subfloor, EIj

and EIt are flexural rigidities of joists and transverse element at mid-span, separately, yi

represents the location of joists; and Nj is the number of joists.

The maximum kinetic energy of a CFS floor system is given by

Tmax = 1
2ω

2

ρshs

∫ a

0

∫ b

0
W 2dydx+ ρjAj

Nj∑
i=1

∫ a

0
W 2

y=yi
dx+ ρtAt

∫ b

0
W 2

x=a/2dy

 (4.37)

where hs is the height of the subfloor; ρs, ρj and ρt are the densities of the subfloor, steel
joists and transverse elements, separately; Aj and At are the cross-sectional areas of the
joists and the transverse elements, respectively.

The natural frequencies can be obtained by the Rayleigh quotient. After substituting
Eq. (4.26), the natural circular frequency ω can be obtained as

ω2 =
abπ4

c3Dsx + c1
EIj

b/(Nj−1)

a4 + 2c2n
2 (Ds1 + 2Dsxy)

a2b2 + n4Dsy + 2c4EIb/a

b4


ρshsab+ (Nj − 1)ρjAja+ 2c4ρtAtb

(4.38)

where restraint coefficients c1 and c2 can be found in Eq. (4.31); c3 and c4 are expressed

- 79 -



4.2 Equivalent properties for vibration of CFS floors

as

c3 =
∞∑

m=1
m4A2

m

/ ∞∑
m=1

A2
m (4.39a)

c4 =
( ∞∑

m=1
Am sin mπ2

)2/ ∞∑
m=1

A2
m (4.39b)

When evaluating the integrals in Eq. (4.36b) and (4.37), a summation of the series is
adopted from Chui (1987):

Nj∑
i=1

sin2
(
πyi

b

)
=

Nj∑
i=1

sin2
(
π (i− 1) s
(Nj − 1) s

)
=

Nj∑
i=1

sin2
(
π (i− 1)
Nj − 1

)
= Nj − 1

2 (4.40)

In addition, if boundary condition is S-F-S-F, the fundamental frequency can be
obtained as

ω2 =
abπ4

c3Dsx + c1
EIj

b/Nj

a4


ρshsab+NjρjAja+ 2c4ρtAtb

(4.41)

4.2.5 Equivalent properties of CFS floor systems

If the equivalent orthotropic plate is used to predict the natural frequencies of CFS floor
systems, Eq. (4.30) and Eq. (4.38) should be equal. This equality is obtained by taking

Dx = c3

c1
Dsx + EIj

b/ (Nj − 1) (4.42a)

Dy = Dsy + 2c4EIb/a (4.42b)

H = Ds1 + 2Dsxy (4.42c)

ρhab = ρshsab+ (Nj − 1) ρjAja+ 2c4ρtAtb (4.42d)

Therefore, Eqs. (4.42) will be used to obtain the equivalent rigidities and mass when a
CFS floor system is modelled as an orthotropic plate. In addition, comparing Eq. (4.34)
and Eq. (4.41), the equivalent rigidities and mass for the fundamental frequency of a CFS
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floor system with boundary conditions of S-F-S-F can be expressed as

Dx = c3

c1
Dsx + EIj

b/Nj

(4.43a)

ρhab = ρshsab+NjρjAja+ 2c4ρtAtb (4.43b)

4.3 Evaluation of the fundamental frequency of CFS
floor systems

In characterizing the dynamic response of a lightweight floor system, the fundamental
frequency plays a major role on the evaluation of vibration performance and it is desirable
to be evaluated manually in design practice. From the preceding section, the fundamental
frequency of CFS floor systems considering edges elastically restrained as shown in
Eq. (4.38) (i.e., R-S-R-S) can be expressed as

f1 = π

2

√
ab

m

√
c1Dx

a4 + 2c2H

a2b2 + Dy

b4 (4.44)

where Dx and Dy are the equivalent flexural rigidities in x − − and y − − direction,
respectively; H is the equivalent torsional rigidity; and m is the equivalent mass of a CFS
floor system and is given as

m = ρshsab+ (Nj − 1) ρjAja+ 2c4ρtAtb (4.45)

For CFS floor systems with two opposite edges elastically restrained and the other free
(i.e., R-F-R-F), the fundamental frequency is obtained as

f1 = π

2

√
ab

m

√
Dx

a4 (4.46)

where
m = ρshsab+NjρjAja+ 2c4ρtAtb (4.47)
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4.3.1 Equivalent rigidities

From Eq. (4.42a), it is found through the numerical investigation in Zhang and Xu (2016)
that the coefficient c1 and c3 are identical for simply supported and clamped boundary
conditions. For the case of rotational restrained edges, the magnitude of c3 is comparable
to but less than that of c1. Moreover, if elastic restraints at the edges of a subfloor
are considered, the restraint coefficient of Dsx, c3, will be equal to c1. Furthermore,
considering the flexural stiffness of the subfloor, Dsx, is much less than that of the joists;
for the sake of simplicity, c3 is taken as the same value as that of c1 regardless of whether
there are restraints at the edges of the subfloor or not. Thus, Eq. (4.42a) becomes

Dx = 1
s

(Dsxs+ EIj) (4.48)

where s = b/(Nj −1) is joist spacing, and Dsxs+EIj is the effective stiffness of a composite
T-beam as shown in Fig. 4.4.

Neutral axis

CFS joist

Sub!oors

(b) full composite (c) partial composite(a) composite T-beam

Figure 4.4 Composite T-beam and strain distribution.

The calculation of effective stiffness depends on the location of the neutral axis and the
stress/strain distribution. Fig. 4.4(b) illustrates the strain distribution of a full composite
T-beam in which no slip occurrs between the joist and subfloor. Otherwise, the beam
becomes a partial composite beam. When a partial composite beam is subjected to a
downward load, the lower extreme fibres of the subfloor tends to lengthen and the upper
flange of the joist tend to shorten (Newmark et al., 1951). The shear connectors counteract
these tendencies by exerting forces that produce compression in the subfloor and tension
in the joist. Considering the partial composite action between the subfloor and the joists,
the effective flexural stiffness, EIeff , can be used in Eq. (4.48), and calculated based on
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the procedure in Allen et al. (1999). Then, the flexural rigidity in the x-direction is given
by

Dx = EIeff

s
(4.49)

When CFS floors are modelled as orthotropic plates, difficulties are often experienced
in determining the transverse flexural stiffness in the y-direction, Dy. This is because
transverse elements are on only one side of the plate (i.e., underneath the subfloor), and
their number may vary. An approximation was developed by Kirk (1970) assuming that
the neutral plane is located at the middle plane of the plate if the plate is reinforced by a
single stiffener placed along one of its centre lines. Timoshenko and Gere (1961, P. 399)
claimed that the centroid of a cross section consisting of the stiffener and plate is very
close to the surface of the plate when the stiffener is in the form of a channel or a bar
of the Z section. The stiffness of the composite section can be evaluated by assuming
the moment of inertia of the stiffener with respect to the axis coinciding with the outer
surface of Z-shape stiffener’s flange.

As illustrated in Figs. 4.5 and 4.6, transverse elements such as strapping, blocking,
and strongback are commonly used in CFS floor systems to provide transverse floor
stiffness. Since the stiffness contribution of strapping is very small, it can be ignored when
calculating the stiffness of transverse elements. Given that no connection exists between
the transverse elements and the subfloor, they act as independent bending members in
carrying the load. The flexural stiffness in y-direction of CFS floors, Dy, is given by

Dy = Dsy + 2c4
EtIt

a
= 1
a

(EIsy + 2c4EIt) (4.50)

with EIsy and EIt being the flexural stiffness of the subfloor in y-direction and the
transverse elements, respectively.

Lastly, the Poisson’s ratios in Eq. (4.48) and Eq. (4.50) are assumed to be zero for
the reason of simplicity. This approximation is acceptable because the Poisson’s ratios of
various subfloors (i.e., OSB, Plywood, and structural concrete panel) are generally less
than 0.3. Then, Ds1 = 0 and H, in Eq. (4.42c) is expressed as

H = 2Dsxy = Gst
3
s

6 (4.51)
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Sub�oor sheathing

Strapping

Joist

Blocking

Figure 4.5 Blocking and strapping (Courtesy: ClarkDietrich).

(a) Free end (b) Restrained end

Figure 4.6 Strongback of CFS floors.
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where Gs is the shear modulus of the subfloor.

Thus, the fundamental frequency of a CFS floor system can be obtained by Eq. (4.44),
and the corresponding equivalent rigidities are calculated based on the Eqs. (4.49), (4.50)
and (4.51).

4.3.2 Simplified equations for restraint coefficients

In attempting to find simple formulas for computing restraint coefficients c1, c2 and c4 for
engineering practice, the coefficients can be closely approximated by

ci = ar3 + br2 + cr + 1, i = 1, 2, 4 (4.52)

where the rotational fixity factors r = rx0 = rxa; and a, b and c are constants as shown in
Table 4.4.

Table 4.4 Constant values of simple formulas for restraint coefficients.

Coefficients a b c R2

c1 4.619 -2.277 1.757 0.9994
c2 0.662 -0.522 0.097 0.9929
c4 0.284 -0.134 0.109 0.9995

Note: R2–Coefficient of determination

A comparison of values by simplified equation Eq. (4.52) and results obtained by
numerical analysis of c1 is presented in Fig. 4.7. As can be seen, the simplified equation
can provide close predictions. Comparisons of other coefficients (not presented here) also
reach the same conclusion.

4.3.3 Effects of the torsional rigidity of joists

In derivation of the equivalent rigidities, the torsional effects of joists were ignored. Thus,
effective torsional rigidity, H, of Eq. (4.51) does not include the torsional rigidity of joists.
However, the torsional property proposed by Chui (2002) for wood floors is presented as
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Figure 4.7 Comparison of c1 between numerical analysis and simplified equation.

Dxy = Gsh
3

12 + C

2b1
(4.53)

in which the first term is the torsional rigidity of a subfloor, i.e., Dsxy in Eq. (4.51) and
C is the torsional constant of the joist, provided by the joist manufacturer. This equation
follows the work of Timoshenko and Woinowsky-Krieger (1959).

For the C–shape CFS joist, the torsional constant is given by (AISI S100, 2012)

C =
∑ bt3

3 (4.54)

where b represents the element plate lengths between points of intersections on their axes,
and t represents the plate thicknesses. Since the thickness of C–shape CFS joists is much
less than that of the wood joist, the torsional constant of the CFS joist is neglected.

4.3.4 Multiple rows of transverse elements

Chui (2002) proposed a method to determine the fundamental frequency for a wood-
framed floor based on the ribbed plate theory by Timoshenko and Woinowsky-Krieger
(1959). In this method, Dy is approximated by
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Dy = EIb

a1
+ EIpb1

b1 − t+ α3t
(4.55)

where t is the width of the cross-section of a timber joist, a1 is the spacing of transverse
elements, b1 is the spacing of joists, EIb is the stiffness of transverse elements, and EIp

is the stiffness of the floor deck. The first term of the right–hand side of Eq. (4.55)
represents the stiffness of transverse elements. This method assumes that the stiffness
contributions from various transverse elements (i.e., lateral-bracing elements) are the
same, which is feasible if the spacing of transverse elements compared to the span is small
enough. However, this approximation may not be valid for floor with only one or a few
rows of transverse elements, as commonly seen in current construction practices, because
the effective width of the subfloor is limited.

The coefficient c4 is used to characterise the contribution on Dy by transverse elements
such as blockings and strongbacks. In the derivation of c4 presented in Eq. (4.39), it is
assumed that there is only one row of transverse element located at mid-span, and Dy

should be evaluated based on Eq. (4.50). However, if there are multiple rows of transverse
elements along the span, Dy is evaluated as

Dy = 1
a

(
EIsy +

Nt∑
i=1

2c4iEIti

)
(4.56)

where Nt is the number of rows of transverse elements; EIti is the flexural stiffness of the
ith row of the transverse elements. It should be noted that coefficient c4i is associated with
locations of the transverse elements. For instance, for a floor with two rows of transverse
elements located at one third and two thirds of the span (i.e., x = a/3, x = 2a/3 in Eq.
(4.36c)), c4i can be obtained by

c41 = c42 =
( ∞∑

m=1
Am sin mπ3

)2/ ∞∑
m=1

A2
m (4.57)

Values of c4i for different locations of transverse elements are listed in Table 4.5.
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Table 4.5 Restraint coefficient c4i for different positions of transverse elements.

Position Rotational fixity factor rx0 = rxa

x/a 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.999
1/2 1 1.0082 1.0179 1.0293 1.043 1.0598 1.0808 1.1076 1.1431 1.1917 1.2607

1/3 or 2/3 0.75 0.7510 0.7522 0.7536 0.7551 0.7568 0.7587 0.7607 0.7627 0.7641 0.7633
1/4 or 3/4 0.5 0.4963 0.4919 0.4867 0.4804 0.4727 0.4629 0.4500 0.4328 0.4085 0.3727

4.3.5 Continuous and discrete transverse elements

The transverse elements are assumed to be continuous in the foregoing derivation. However,
in practice, only strongbacks are continuous elements and blockings are installed in several
joist spaces discretely. For instance, blockings are typically installed at the first, middle
and last joist space, as shown in Fig. 4.3. Taking into account the discontinuity of
transverse elements, Eq. (4.36c) becomes

Ut max = 1
2

Nb∑
i=1

EIb

∫ bi+s

bi

(
∂2W

∂y2

)2

x=a/2
dy (4.58)

where Nb is the number of blockings and bi is the position of the ith blocking. Substituting
Eq. (4.26), Eq. (4.58) can be approximated by

Ut max = Nb

Nj − 1 · 1
2EIb

∫ b

0

(
∂2W

∂y2

)2

x=a/2
dy (4.59)

Thus, Eq. (4.59) will be used in Eq. (4.36c) to consider the potential energy associated
with the discrete blockings.

4.3.6 Effects of ceiling

The installation of a gypsum board ceiling significantly contributes to the stiffness of a
floor and increases damping as well as adds additional mass to the floor (Hu, 1998). As a
result, the natural frequencies of floors are reduced accordingly. The impact of a ceiling
becomes more significant with multiple layers of the ceiling. A similar conclusion can also
be found in Liu (2001). The potential energy and the kinetic energy of the ceiling are in
the same forms as those of the subfloor, and can be expressed as
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Usmax = 1
2

∫ a

0

∫ b

0

Dcx

(
∂2W

∂x2

)2

+ 2Dc1
∂2W

∂x2
∂2W

∂y2 +Dcy

(
∂2W

∂y2

)2

+ 4Dcxy

(
∂2W

∂x∂y

)2
dxdy

(4.60)

Tcmax = 1
2ω

2ρchc

∫ a

0

∫ b

0
W 2dxdy (4.61)

where Dcx, Dcy, Dc1 and Dcxy are the flexural and torsional rigidities of the ceiling. In
Eq. (4.61), ρc and hc are the density and thickness of the ceiling, respectively.

As can be found from Eqs. (4.60) and (4.61), the effect of a ceiling is similar to that
of a subfloor. However, since the stiffness of the ceiling is relatively small, the effect of
ceiling mass would be much more significant than the influence of ceiling stiffness provided.
Therefore, for simplicity, only ceiling mass should be considered in calculating frequency
and added into the Eq. (4.45).

4.4 Rotational fixity factor

In CFS construction, three framing systems are commonly used: ledger framing, platform
framing, and balloon framing, as shown in Figs. 4.8 and 4.9. In design practice, a simply
supported condition was traditionally assumed for all the three types of framing, including
the calculation of the natural frequency and deflection of CFS floors. However, construc-
tion practice may introduce additional rotational restraints on the support condition. In
platform framing, the weight of stories above is transferred to the ends of joists, which
may restrain the rotation of the joist ends. For balloon framing and ledger framing, the
joist-to-stud clip angle provides some degree of moment resistance at the joist end, similar
to that of a semi-rigid connection. In addition, the floor sheathing in ledger framing also
applies a rotational restraint on the floor joist end. The rotational restraint may influence
the vibration behavior of the floor and should be accounted for in design calculations
(Hernández and Chui, 2014).

Parnell et al. (2009) tested the platform framing condition by using a structural steel
I-beam with steel blocks welded to the top flange (Fig. 4.10) to simulate the effect of
the storey above in practice. A superimposed load of 1.9 kN/m was applied on the
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(a) Platform framing

Ledger

Clip angle

(b) Balloon framing

Figure 4.8 Details of platform framing and balloon framing (Courtesy: ClarkDietrich).

Top track

Stud

Base track

Floor sheathing

Clip angle

Ledger

Joist

Interstory strap
tie at shear wall
chord studs

Figure 4.9 Details of ledger framing (Ayhan and Schafer, 2017).
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subfloor at the end of joists. It was found that the end restraints of the platform framing
have little effect on the fundamental frequency of CFS floors. In contrast, when ledger
framing was tested, Parnell et al. (2009) found it had a considerable influence on the
fundamental frequency as shown in Table 4.6. In this table, the restraint coefficient c1 is
calculated, and then rotational fixity factors, r, can be obtained from Eq. (4.52). In the
tests reported by Hernández and Chui (2014), the end restraints of platform framing in a
wood-framed floor was increased from 5 kN/m to 30 kN/m to stimulate multiple stories
above. They found that the rotational stiffness significantly increased and, therefore, also
the natural frequencies. Thus, it can be concluded that the effect of rotational stiffness at
joist ends of platform framing is related to the weight of storeys above, while the effect of
end rotational restraints of ledger framing needs to consider in the design.

Figure 4.10 Platform framing with end restraints.

Yu et al. (2015) conducted an experimental investigation aimed at determining the
strength of load-bearing CFS clip angles widely used in CFS-wall and floor framing, as
shown in Fig 4.11(a). A typical load-deflection curve obtained from the investigation is
demonstrated in Fig. 4.11(b), in which the deflection of 1/64 in. (0.4 mm) is selected for
determining the initial rotational stiffness of the clip. As can be seen from Fig. 4.11(b),
the load corresponding to the deflection of 1/64 in is in the range between 300–500 lbs

- 91 -



4.4 Rotational fixity factor

Table 4.6 Fundamental frequencies of CFS floors (Parnell et al., 2009).

Floor Fundamental frequency (Hz)
c1 r

specimen Platform framing† Ledger framing ratio
LF14.5B 18.2∗ 22.5 1.236 1.112 0.086
LF14.5C 17.9∗ 24.8∗ 1.385 1.177 0.131
LF14.5D 16.2 19.7 1.216 1.103 0.079
LF17.0A 13.5 14.9 1.104 1.051 0.040
LF17.0C 12.8 14.3 1.117 1.057 0.045
LF19.5A 11.4 12 1.053 1.026 0.021
LF19.5B 10.6 11.4 1.075 1.037 0.030

Note: † No end restraints, i.e., simply supported
∗ Frequency revised by subsequential analysis

(1.33–2.22 kN), which corresponds to an end reaction of 300 lbs (1.33 kN) of a floor joist
with a span length of 20 ft (6.1 m), 24 in (610 mm) spacing, and typical 10 psf dead
and 20 psf live load. From the test results of Yu et al. (2015), the rotational stiffness or
constants can be calculated by using Eq. (4.62).

(a) Shear buckling failure
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Figure 4.11 Test result of clip angle S8 #3 (Yu et al., 2015).

R = M

ϑ
= V L

∆/L = V L2

∆ (4.62)
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where V = V1/64, ∆ = 1/64, and L is the the flat length of the cantilevered leg of clip
angle between the center of the first line of screws and the bend line in clip tests in Yu
et al. (2015). Considering the shear deflection, the values of the rotational stiffness R
can be obtained and presented in Table. 4.7. Only clip angles with height B larger than
5 in. (12.7 cm) are selected with consideration of compatibility with the depth of floor
joists. To evaluate the rotational fixity factor, two span lengths (i.e., 4.42 m and 5.94 m)
and four C-shape CFS sections with typical floor joists depths are selected as shown in
Table 4.7, in which 1200S200–54 is same as TDW 12 × 2 × 16 of Dietrich TradeReadyr

in tests of Parnell et al. (2009), and the smallest section 800S200-54 satisfies the live load
limit L/480 stipulated in the Steel Stud Manufacturers Association (SSMA) Floor Joist
Span Table (SSMA, 2001) up to span length of 20 ft (6.1 m) with 24 in. (610 mm) joist
spacing.

Table 4.7 Rotational stiffness and fixity factors.

Test R 1200S250–97 1200S200–54 1000S200–54 800S200–54
label Nm/rad r1 r2 r1 r2 r1 r2 r1 r2

S3† 3322.7 0.002 0.002 0.004 0.005 0.005 0.007 0.009 0.012
S4† 15682.6 0.008 0.011 0.016 0.022 0.025 0.034 0.040 0.053
S5† 4835.5 0.003 0.003 0.005 0.007 0.008 0.011 0.013 0.017
S8† 12442.0 0.007 0.009 0.013 0.018 0.020 0.027 0.032 0.042
S9† 9780.5 0.005 0.007 0.010 0.014 0.016 0.021 0.025 0.034
S10† 11659.2 0.006 0.008 0.012 0.016 0.019 0.025 0.030 0.040
T‡ 74774.0 0.038 0.051 0.074 0.097 0.110 0.142 0.165 0.210
Note: R–rotational stiffness

r1–rotational fixity factor for 4.42m span
r2–rotational fixity factor for 5.94m span
†–tests of Yu et al. (2015)
‡–test of Ayhan and Schafer (2017)

Ayhan and Schafer (2016a,b, 2017) tested a full-scale floor-to-wall connections used
in ledger-framed CFS construction to determine the moment-rotation behavior of the
connections. The effects of the four parameters were investigated: i) the presence of
subfloor sheathing, ii) the presence of top and bottom screws connecting the joist and
ledger flanges; iii) the location of applied load, and iv) the clip angle rotation. The
obtained moment-rotation behavior of the joist-to-wall connection is characterized with
bilinear model with rotational stiffness k1 and k2 as shown in Fig. 4.12, in which k1 is
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initial stiffness corresponding to 40% of the peak load. It was concluded that the forgoing
four parameters significantly influence of the initial stiffness of the connection. Specifically,
initial stiffness would dramatically decrease if the subfloor sheathing was absence, the top
and bottom screws connecting joist and ledger flanges were omitted or the location of the
floor joist is not in line with that of the wall stud. The rotational stiffness obtained by
the initial stiffness k1 of the connection and corresponding rotational fixity factors for the
foregoing joist sections are also presented in Table 4.7.

Connection Rotation (Rad.)
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Figure 4.12 Example of stiffness degradation observed on test results (Ayhan and Schafer,
2017).

Table 4.7 shows considerable differences on the rotational fixity factors obtained from
the initial stiffness between Yu et al. (2015) and Ayhan and Schafer (2016a,b, 2017).
Based on Yu’s tests, one may conclude that the magnitudes of the rotational fixity is quite
small and can be neglected. However, it needs to point out only CFS clip angles were
tested in Yu’s investigation as shown in Fig. 4.11(a). Restraining effects contributed by
other components of the joist end assemblage, such as subfloor sheathing and joist-to-track
flange screws connections were not accounted for. In addition, there are only three screws
connected the joist web and clip angle in Yu’s tests. Yu subsequently confirmed that
with increase number of the screws the initial stiffness of the clip angle would increase
accordingly because the premature shear buckling of the clip angle was eliminated (Yu,
2016).

It should also mention that the initial stiffness obtained from tests by Yu et al. (2015)
and Ayhan and Schafer (2016a,b, 2017), respectively based on joist end reaction under
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the design dead plus live load and 40% peak load of the connection, are corresponding to
deflection serviceability requirement in current practice. For evaluating floor vibration
performance, the actual of live load 0.25 kPa should be used instead of the design load
1.9 kPa as stipulated in ATC Design Guide 1 by Allen et al. (1999) and AISC/CISC
Design Guide 11 by Murray et al. (1997). With that in mind, the initial stiffness selected
for evaluation of floor vibration performance can be higher than that of shown in Table 4.7.

Table 4.8 shows restraint coefficients corresponding to the rotational fixity factors in the
range of 0 to 0.1. It is found that the trivial increase of the restraint coefficients associated
with the rotational fixity factor being in the range 0 to 0.1 results in a negligible influence
on the fundamental frequency in Eq. (4.44). Therefore, in this research, the rotational
fixity factor for CFS floor systems with balloon or ledger framing is approximately taken
as 0.1 and the corresponding restraint coefficients can be obtained roughly as c1 = 1.13;
c2 = 1; and c4 = 1, 0.75, and 0.5 for transverse elements located at 1/2, 1/3 and 1/4 span,
respectively.

Table 4.8 Restraint coefficients for rotational fixity factor in the range of 0 to 0.1.

r c1 c2
c4

1/2∗ 1/3∗ 1/4∗

0 1 1 1 0.75 0.5
0.01 1.0122 1 1.0008 0.7501 0.4996
0.02 1.0247 1 1.0015 0.7502 0.4993
0.03 1.0372 1 1.0023 0.7503 0.4989
0.04 1.0501 1 1.0031 0.7504 0.4986
0.05 1.0630 1 1.0040 0.7505 0.4982
0.06 1.0762 1 1.0048 0.7506 0.4978
0.07 1.0896 1 1.0056 0.7507 0.4974
0.08 1.1031 1 1.0065 0.7508 0.4971
0.09 1.1169 1 1.0074 0.7509 0.4967
0.1 1.1310 1 1.0082 0.7510 0.4963

Note: ∗ transverse elements located at 1/2,
1/3 and 1/4 of span, respectively
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4.5 Design method for fundamental frequency of
CFS floor systems

4.5.1 Proposed method

The procedure for evaluating fundamental frequency of CFS floor systems based on the
proposed equivalent orthotropic plates is summarized as follows:

the fundamental frequency is expressed as

f1 = π

2

√
ab

m

√
c1Dx

a4 + 2c2H

a2b2 + Dy

b4 (4.63)

where

• a is the span and b is the width.

•Dx = EIeff/s

s is the spacing of the joists;
EIeff is the effective flexural stiffness, which can be calculated based on ATC Design
Guide 1 by Allen et al. (1999).

•Dy = 1
a

(
EIsy +

Nt∑
i=1

2c4iEIti

)
Nt is the number of rows of transverse elements;
EIsy and EIti are the flexural stiffness of the subfloor in y-direction and the ith row
of the transverse elements, respectively;
c4i is restraint coefficient associated with locations of the ith row of the transverse
elements;
For discrete transverse elements such as blockings, the stiffness contribution is reduced
through multiplying by a constant of Nb/(Nj − 1), in which Nb is the number of
blockings per row and Nj is the number of joists.

•H = Gst
3
s/6

Gs and ts is the shear modulus and thickness of the subfloor, respectively.

•m = ms +mc + (Nj − 1)mj + 2mt
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ms, mc, mj and mt are mass of subfloor, ceiling, single joist and transverse ele-
ments,respectively.

• c1, c2 and c4 are restraint coefficients, and can be obtained roughly as c1 = 1.13;
c2 = 1; and c4 = 1, 0.75, and 0.5 for transverse elements located at 1/2, 1/3 and 1/4
span, respectively, for CFS floor systems with balloon or ledger framing. For platform
framing, c1 = c2 = 1 and c4 is same as that of balloon or ledger framing.

For CFS floor systems with two opposite edges being free, the design equation of
fundamental frequency is expressed as

f1 = π

2

√
ab

m

√
Dx

a4 (4.64)

where m = ms +mc +Njmj + 2mt.

4.5.2 Comparison with test results

The fundamental frequencies obtained from the proposed method and two existing meth-
ods (Allen et al., 1999; Chui, 2002) are compared with available test results in this
section. The method adopted in ATC Design Guide 1 by Allen et al. (1999), known
as ATC method, evaluates the fundamental frequency of the floor based on the model
of a simply-supported beam. Chui (2002) simulated lightweight wood floors by using
the ribbed-plate theory of Timoshenko and Woinowsky-Krieger (1959) and provided a
procedure to evaluate the corresponding equivalent rigidities. Test results of CFS floor
systems obtained from the investigations at Virginia Polytechnic Institute and State
University (VT) (Kraus, 1997) and CCFSRG at the University of Waterloo (UW) (Parnell
et al., 2009) are selected for the comparison.

VT tests

Kraus (1997) conducted a series of tests on residential floor systems constructed by OSB
decking supported by C-shaped CFS joists at VT. Twelve full-scale laboratory floors
were built and tested. Each floor system was simply supported on four edges and only
one row of bridging with C-shape blockings was placed at mid-span. Thus, restraint
coefficients c1 = c2 = c4 = 1 are applied. The structural properties of floor specimens were
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4.5 Design method for fundamental frequency of CFS floor systems

also provided in Kraus (1997). As shown in Table 4.9, test results of the fundamental
frequency of the floor specimens with blockings are compared with predicted values by
the proposed method in this study, the ATC method (Allen et al., 1999), and Chui’s
method (Chui, 2002).

It can be observed from Table 4.9 that the predictions obtained from all three methods
for floor specimens with short spans (i.e., 8B, 8D, 8E, and 12E) are considerably greater
than test results. Both plate-based methods (the proposed and Chui’s method) provide
a better predictions than that of the beam-based method, i.e., the ATC method. As
CFS floors with OSB subfloor and one row of bridging with C-shape blockings lack of
the transverse stiffness, such floors behave similar to one-way floor systems. For one-way
floor systems, the plate-based methods may not necessarily provide more accurately
predictions.

Table 4.9 Comparison test results of Kraus (1997) with the results predicted by using different
methods.

Floor Span Test ATC Chui Proposed
specimens (m) (Hz) (Hz) (%) (Hz) (%) (Hz) (%)

8A 4.19 20.3 19.11 -5.88 19.19 -5.47 19.27 -5.05
8B 3.73 17.4 24.07 38.34 24.15 38.77 24.22 39.20
8C 3.28 29.0 31.26 7.79 31.32 8.01 31.39 8.24
8D 2.69 31.4 39.07 24.42 39.14 24.64 39.20 24.86
8E 2.16 35.6 60.76 70.67 60.81 70.82 60.87 70.97
10C 4.65 22.0 19.10 -13.18 19.53 -11.23 19.95 -9.31
10D 3.99 25.0 25.95 3.80 26.32 5.28 26.69 6.74
12B 5.33 20.6 18.33 -11.02 18.68 -9.34 19.02 -7.69
12C 4.93 22.6 21.48 -4.97 21.80 -3.55 22.11 -2.15
12D 4.29 26.5 26.31 -0.72 26.64 0.52 26.96 1.75
12E 3.43 28.5 41.23 44.67 41.50 45.60 41.76 46.52

Mean 13.99 14.91 15.82
Standard deviation 27.08 26.66 26.26

Note: % – the difference between test results and calculated values
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4.5 Design method for fundamental frequency of CFS floor systems

UW tests

Parnell et al. (2009) investigated vibration performance of lightweight CFS floor systems
with different subfloors such as OSB, FORTACRETEr, and CFS steel deck with and
without lightweight concrete topping (i.e., LevelRockr 3500). The floor specimens were
supported on edges of joist ends and were free on the other two edges. Each floor specimen
was tested in three different joist-end boundary conditions: ledger framing, platform
framing and simply supported. It can be found from the test results of the fundamental
frequency in Parnell et al. (2009) that the effect of the restraints in platform framing is
negligible comparing with the simply supported condition. Then in this research, only test
results in the simply supported condition and the ledger framing condition are compared
with the predictions obtained by ATC and proposed methods.

First, Table 4.10 tabulates comparisons among test results of floor specimens with
ledger framing and the predicted values of the proposed methods and ATC method.
Four types of subfloor configurations were tested, namely, OSB, FORTACRETEr (FC),
FORTACRETEr with LevelRock r topping (LR), and steel deck (UFS of Dietrich) with
LevelRock r topping. As discussed in Section 4.4, the rotational fixity factor associated
with ledger framing is taken as 0.1 and the corresponding restraint coefficients c1 = 1.13;
c2 = 1; and c4 = 1 and 0.5 for transverse elements located at 1/2 and 1/4 span, respectively.
Partial composite action is considered for connections between CFS joists and OSB or
FC, and the slip modulus between joists with OSB or FC is assumed as 4.14 × 106N/m2

from Allen et al. (1999). However, since lacking of research on composite action between
CFS joists with steel deck, fully composite action is assumed for them in this research.

It can be observed from Table 4.10 that both the ATC method and the proposed
methods provide predictions with excellent accuracy for floor specimens with FC subfloor.
For these floors, the results of r = 0 provide more accurate predictions than those
of r = 0.1. It means that the influence of the rotational restraints at joist ends of
ledger framing may be overestimated if r = 0.1. For floors with subfloor of FC & LR
(LF14.5E, LF17.0A and LF19.5A), the predictions are considerably less than the test
results, while calculated results for those with UFS & LR (LF14.5F, LF17.0C and LF19.5B)
are significantly greater than the tested values. For LF14.5E, LF17.0A and LF19.5A,
transverse stiffness provided by subfloor and transverse elements could be comparable to
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the flexural stiffness parallel to the joists, and then two-way behavior occurs although the
edges parallel to joists are free. By using the design equations for boundary conditions
of R–S–R–S shown in Eq. (4.63), prediction errors as shown in Table 4.10 are reduced
notably. For subfloor of UFS & LR (LF14.5F, LF17.0C and LF19.5B), the large differences
may be caused by the assumption of fully composite action.

Second, Table 4.11 illustrates test results of floor specimens in simply supported
condition and the corresponding predictions by the proposed methods and ATC method.
It is noticed that predictions for floor specimens with FC subfloor (LF14.5B and LF14.5D)
do not agree well with the test results.

In summary, the effect of subfloor materials can be significant on transverse stiffness
of the floor. CFS floor systems with OSB subfloor behave similar to that of one-way
systems whereas the floors with lightweight concrete topping may are similar to two-way
systems. Thus the plate-based method proposed in this research should provide better
predicted results for CFS floor systems with lightweight concrete topping.

4.6 Summary

An analytical approach based on the Rayleigh method has been presented for calculating
the fundamental frequency of a CFS floor system while considering the effect of the
rotational restraints along two opposite edges by using the beam characteristic function
as the admission function. The equivalent rigidities and mass of equivalent orthotropic
plates for CFS floor systems were developed. The effects of transverse elements such as
strapping, blocking and strongback are taken into accounted in the proposed method. In
addition, the rotational fixity factors were introduced to evaluate the restraint coefficients
for calculating the fundamental frequency of the CFS floor system in design practice.
Lastly, the fundamental frequencies obtained by proposed method were validated using
the test results and other existing methods. For ledger-framed CFS floor systems, the
rotational fixity factor being 0.1 is recommended for evaluating the floor fundamental
frequency.
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5
Vibration of Lightweight Steel Floor

Systems with Occupants

5.1 Introduction

Besides generating loads, human occupants also interact with a structure, and such
interaction, known as human-structure interaction (HSI), can be significant if the mass of
the occupants is comparable to that of the structure (Ellis and Ji, 1997). For lightweight
floors, vibration analysis ought to consider a coupled system of the floor and occupants
because the dynamic properties of the latter may influence the overall response of the
system considerably (Foschi et al., 1995). One widely-known fact is that human occupants
do not act merely as mass on the structure but behave as highly damped dynamical
systems (20%-50% damping ratio) (Griffin, 1990). Two important issues must be borne
in mind. Firstly, human bodies may have a considerable influence on the modal mass and
damping in lightweight floor systems, and the dynamic characteristics therefore change
with the location of human walking (Smith and Chui, 1989). Secondly, the traditional
modal analysis where damping is ignored or assumed to be proportional is not valid (Ji,
2003) because floor-occupant systems consist of a lightly damped structure system and
human bodies with high damping.

Most previous studies on HSI are based on two-degree-of-freedom (2-DOF) human-
structure model (Zheng and Brownjohn, 2001; Sachse et al., 2004; Shahabpoor et al., 2013;
Zhou et al., 2016). Such 2-DOF models were developed to describe coupled vibration
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5.1 Introduction

of the structure and human occupants, in which the human bodies and the structure
were simulated as a SDOF model, respectively. Dynamic properties such as natural
frequencies and damping ratios could be examined parametrically for a certain range of
ratios of frequency, mass and damping coefficients of SDOF models of human occupants
and the structure. The 2-DOF model considers only one structural mode based on the
rule of superposition of the linear vibration, i.e., the total response can be obtained by
summing up the contribution of each separate mode in modal analysis. However, human
occupants may affect all the vibration modes of the structure, not just one mode solely.
Furthermore, the 2-DOF model is inadequate without taking into account the spatial
variation of human occupants on the structure. For instance, the influence of human
occupants on floor vibration will vary with their locations on the floor. Based on tests of
a concrete slab occupied by humans in various situations, Sachse (2002) concluded that
the location of a human occupant affected the dynamic properties of the test structure
and the influence of the occupant increased with the amplitude of the mode shape at
the occupant’s location. Same conclusions were also reported by Weckendorf and Smith
(2012). Therefore, it is desirable to develop integrated human-structure models to obtain
realistic properties and responses of structure.

Additionally, dynamic properties of the human body are strongly related to the
intensity of vibration. Thus, the human models used in biomechanics may need to be
modified before being adopted to model human occupants of building and bridge structures
because the vibration intensities usually encountered in such structures are considerably
less than those employed by biomechanics to derive dynamic human models (Griffin, 1990;
Sachse et al., 2003). Furthermore, existing human models proposed for application in civil
engineering are primarily developed based on the dynamic behaviour of human occupants
on a simply-supported beam, one-way slab or a test rig under laboratory conditions (Ellis
and Ji, 1997; Brownjohn, 1999; Falati, 1999; Sachse et al., 2003; Zhang, 2013). It is
necessary to recalibrate the parameters of the human models by realistic full-scale test
results and thus to model human occupants on lightweight floor systems to investigate
the vibration of such coupled floor-occupant systems based on the parameters obtained
from tests of lightweight floors.

Nicholson and Bergman (1986) adopted the Green’s function of the vibrating plate to
obtain the natural frequencies and mode shapes of the undamped plate–oscillator system.
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The forced response of the combined system is also determined by modal analysis for
both proportional damping and general damping. However, the dynamic properties of the
undamped plate-oscillator system may not be applicable for floor-occupant systems. Based
on a finite-strip formulation, Foschi and colleagues (Foschi and Gupta, 1987; Folz and
Foschi, 1991) made an early effort to investigate the combined transient dynamic response
of floor systems with occupants . The wood floor systems with various complexities
commonly applied in construction were modeled by using finite strips combined into T-
beam elements and the occupants were idealized as damped oscillators. Two human models
were compared: a simple 2-DOF model and a more-detailed undamped 11-DOF model.
Further applications were extended to develop the design criteria for residential wood floor
systems and a SDOF human model was proposed by Foschi et al. (1995). Nevertheless,
the finite-strip formulation might only be applicable for one-way stiffened floor systems
without accounting for effects of the transverse elements such as blocking, bridging and
strongbacks. Furthermore, Foschi et al. (Foschi and Gupta, 1987; Folz and Foschi,
1991; Foschi et al., 1995) applied the impulse due to heel drop impact for the dynamic
response of floors but did not investigate the response induced by walking, although they
recognised that the use of heel drop impacts to develop design guidelines for lightweight
floors was questioned by Allen and Rainer (1989). In addition, considerable research
was also conducted to develop the combined vibrational systems for investigation of
human-structure interaction in other structures such as stadia and footbridges (Živanović,
2015).

In the present study, a damped plate-oscillator model is proposed to represent
lightweight steel floor systems with occupants. The dynamic properties and responses
obtained from the proposed model are compared with test results. The influence of
human occupants on dynamic properties of floors is investigated in three scenarios: an
unoccupied floor, a floor with one standing occupant and a floor with two standing occu-
pants. Several existing human models are examined. Three loading models: moving force,
moving damped-oscillator, and moving and stationary damped-oscillator, are subsequently
proposed to obtain the dynamic responses of floors to human walking. Finally, parametric
studies are conducted on the effects of step frequency, damping ratio, human-to-structure
mass ratio, and walking path.
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5.2 Damped plate-oscillator model

5.2 Damped plate-oscillator model

To simplify the presentation, occupants are modeled by SDOF oscillators and the floor
is represented by an orthotropic plate. Then, the coupled floor-occupant system can
be simulated by a damped plate-oscillator model as illustrated in Fig. 5.1, which is a
rectangular orthotropic plate of constant thickness h connected to No linear, damped
oscillators at locations of (ξi, ηi), i = 1, 2, ..., No. The dimensions of the plate are 0 6 x 6 a

and 0 6 y 6 b. The occupant-induced force, f(x, y, t), is located at the position of one
occupant, and g(t) is an external force applied to the oscillator.

xa

b

mh1

mh2

kh1

kh2

ch1

f(x,y,t)

g(t)

ch2

(ξ2,  η2)

(ξ1,  η1)

z

y

Figure 5.1 A damped plate-oscillator model.

5.2.1 Methodology and formulation

Using the dot denoting differentiation with respect to time t, the governing equation for
the orthotropic plate is

∇4
ow(x, y, t) + cẇ(x, y, t) + ρhẅ(x, y, t) = f(x, y, t)

+
Np∑
i=1

{
khi

[
zi(t) − w(ξi, ηi, t)

]
+ chi

[
żi(t) − ẇ(ξi, ηi, t)

]}
δ(x− ξi)δ(y − ηi)

(5.1)

where w(x, y, t) is the vertical deflection of the plate; c is the viscous damping constant
for the plate; ρ is the mass density; khi, chi and zi(t) are the stiffness, damping constant
and displacement of ith oscillator; δ is the Dirac delta function; and ∇4

o is the biharmonic
operator for orthotropic plates as defined in Eq. (3.4).

The equation of motion for each oscillator (i.e., human occupant) is
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5.2 Damped plate-oscillator model

mhiz̈i(t) + chiżi(t) + khizi(t) = chiẇ(ξi, ηi, t) + khiw(ξi, ηi, t) + gi(t) (5.2)

where mhi, chi and khi are the mass, damping constant and spring stiffness of the ith
human occupant, respectively. Divide both side of Eq. (5.2) by mhi and rewrite Eq. (5.2)
in terms of the circular frequency ωhi and the damping ratio ζhi of the ith human occupant:

z̈i(t) + 2ζhiωhiżi(t) + ω2
hizi(t) = 2ζhiωhiẇ(ξi, ηi, t) + ω2

hiw(ξi, ηi, t) + 1
mhi

gi(t) (5.3)

where
ζhi = chi

2mhiωhi

, ωhi =
√
khi

mhi

(5.4)

The plate-oscillator system in Fig. 5.1 can be treated as a plate constrained by attached
oscillators. For a ‘constrained’ plate performing free vibration, the inertia forces of the
concentrated masses and the restoring forces of the translational springs can be considered
as the external exciting forces for the plate (Wu and Luo, 1997). Thus, the assumed-mode
method or eigenfunction expansion (i.e., the mode superposition theory) adopted for the
forced vibration of an ‘unconstrained’ plate (without any oscillator attached) may be
used to determine the natural frequencies and mode shapes of the ‘constrained’ plate.
Therefore, the vertical displacement of the plate w(x, y, t) can be expressed as

w(x, y, t) =
∞∑

n=1
Wn(x, y)qn(t) (5.5)

where Wn(x, y) is the vibration modes of the ‘unconstrained’ plate with same boundary
conditions and qn(t) is the time varying generalized coordinate. It can be obtained for
Wn(x, y) that (Leissa, 1969)

∇4
oWn(x, y) − ω2

nρhWn(x, y) = 0 (5.6)

where ωn is the circular frequency of the n-th mode of the ‘unconstrained’ plate with same
boundary conditions. If all edges are simply supported, Wn and ωn can be determined
from

Wn(x, y) = sinαix sin βjy (5.7a)
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5.2 Damped plate-oscillator model

ω2
n = Ωij

ρh
(5.7b)

where

Ωij = Dxα
4
i + 2Hα2

iβ
2
j +Dyβ

4
j (5.8a)

αi = iπ/a, βj = jπ/b (5.8b)

Substituting Eqs. (5.5) and (5.6) into Eq. (5.1) results in

∞∑
n=1

ω2
nρhWn(x, y)qn(t) + c

∞∑
n=1

Wn(x, y)q̇n(t) + ρh
∞∑

n=1
Wn(x, y)q̈n(t)

= f(x, y, t) +
No∑
i=1

khi

[
zi(t) −

∞∑
n=1

Wn(ξi, ηi)qn(t)
]

+chi

[
żi(t) −

∞∑
n=1

Wn(ξi, ηi)q̇n(t)
]δ(x− ξi)δ(y − ηi)

(5.9)

Multiplying both sides of Eq. (5.9) by Wm(x, y), integrating on area of the plate and
applying the orthogonality relation yields

Mnq̈n(t) + 2ζnωnMnq̇n(t) + ω2
nMnqn(t)

+
No∑
i=1

2ζhiωhimhiWn(ξi, ηi)
∞∑

j=1
Wj(ξi, ηi)q̇j(t) +

No∑
i=1

ω2
himhiWn(ξi, ηi)

∞∑
j=1

Wj(ξi, ηi)qj(t)

−
No∑
i=1

2ζhiωhimhiżi(t)Wn(ξi, ηi) −
No∑
i=1

ω2
himhizi(t)Wn(ξi, ηi)

=
∫ a

0

∫ b

0
f(x, y, t)Wn(x, y)dxdy

(5.10)
where Mn is the n-th modal mass, represented as

Mn = ρh
∫ a

0

∫ b

0
W 2

n(x, y)dxdy (5.11)

ζn is the n-th modal damping ratio, expressed by
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5.2 Damped plate-oscillator model

ζn = c

2ρhωn

(5.12)

Introducing the modal mass ratio γni = mhi/Mn, Eq. (5.10) can be rearranged as

q̈n(t) + 2ζnωnq̇n(t) + ω2
nqn(t)

+
No∑
i=1

2ζhiωhiγniWn(ξi, ηi)
∞∑

j=1
Wj(ξi, ηi)q̇j(t) +

No∑
i=1

ω2
hiγniWn(ξi, ηi)

∞∑
j=1

Wj(ξi, ηi)qj(t)

−
No∑
i=1

2ζhiωhiγniżi(t)Wn(ξi, ηi) −
No∑
i=1

ω2
hiγnizi(t)Wn(ξi, ηi) = Fn(t)

(5.13)
where

Fn(t) = 1
Mn

∫ a

0

∫ b

0
f(x, y, t)Wn(x, y)dxdy (5.14)

Similarly, substituting Eq. (5.5) into Eq. (5.3), it gives

z̈i(t) + 2ζhiωhiżi(t) + ω2
hizi(t)

−2ζhiωhi

∞∑
j=1

Wj(ξi, ηi)q̇j(t) − ω2
hi

∞∑
j=1

Wj(ξi, ηi)qj(t) = 1
mhi

gi(t)
(5.15)

Eqs. (5.13) and (5.15) can be solved simultaneously and expressed in a matrix form as
follows:

MÜ + CU̇ + KU = F (5.16)

where M, C and K are the mass, damping and stiffness matrices, respectively; and U,
U̇, Ü and F are the displacement, velocity, acceleration and force vectors, respectively.
M is an identity matrix of size (N +No) × (N +No). The expressions of the matrices
and vectors are presented in Appendix B.

Since the high damping of human occupants, the damping matrix cannot be expressed
as a linear combination of mass and stiffness matrices (Ji, 2003). Thus, the state-space
method is employed in this study. Eq. (5.16) can be transformed into the state-space
form as (Balachandran and Magrab, 2009)

V̇ = AV + B (5.17)
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5.2 Damped plate-oscillator model

where the state vector V and its time derivative V̇ are given by

V =


U

U̇


2(N+No)×1

V̇ =


U̇

Ü


2(N+No)×1

(5.18)

In Eq. (5.17), the state matrices A and B are, respectively, expressed as

A =

 0 I

−M−1K −M−1C


2(N+No)×2(N+No)

(5.19a)

B =


0

M−1F(t)


2(N+No)×1

(5.19b)

For free vibration, F(t) is the (N + No)–dimensional null vector 0. Thus, Eq. (5.17)
becomes

V̇ = AV (5.20)

Since Eq. (5.20) is a set of linear ordinary differential equations with constant coefficients,
a solution can be assumed as

V = Xeλt (5.21)

in which λ is a scalar constant and X is a constant 2(N +No) vector. Then, it can be
obtained

qn(t) = xne
λt (n = 1, 2, 3, ..., N) (5.22a)

zi(t) = xie
λt (i = N + 1, N + 2, ..., N +No) (5.22b)

where xn and xi are elements of vector X. Substituting Eq. (5.21) into Eq. (5.20) and
canceling the common factor of eλt on both sides of the equation, the following eigenvalue
problem can be obtained

AX = λX (5.23)

Since the state matrix A is not a symmetric matrix, the eigenvalues and eigenvectors
of the matrix are complex valued. The solution of Eq. (5.23) consists of 2(N + No)
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5.2 Damped plate-oscillator model

eigenvalues λi (in complex conjugate pairs) and 2(N +No) corresponding eigenvectors Xi

(also in complex conjugate pairs). Once the state-space eigenvalue problem is solved, the
modal frequencies and damping ratios can be determined by (Inman, 2006)

ω̃i = |λi|, ζ̃i = −Re(λi)
|λi|

(5.24)

The ith mode shape of plate are given by

W̃i(x, y) =
N∑

n=1
Wn(x, y)xn, x1, x2...xN ∈ Xi (5.25)

Meanwhile, the mode values of oscillators are taken as xj, (j = N + 1, N + 2, ..., N +No)
in Xi for corresponding oscillators.

The dynamic responses of forced vibrations of occupant-floor systems can be obtained
from Eq. (5.17) numerically by the Runge-Kutta method (Inman, 2006) or the Newmark-β
method (Clough and Penzien, 2003). Then, the acceleration of occupant-floor systems is
determined from (Qin et al., 2013)

Ü = M−1
(
F − CU̇ − KU

)
(5.26)

The preceding process adopted the model of SDOF oscillator for human occupants.
The extension of the process to multiple degrees-of-freedom (MDOF) oscillators for human
occupants is straightforward. For instance, if a 2-DOF oscillator is adopted for a human
occupant as that shown in Fig. 5.2, the corresponding Eq. (5.2) becomes

xa

b

mh1

mh2

kh1

kh2

ch1

f(x,y,t)

g
1
(t)

g
2
(t)

ch2

(ξ1,  η1)

z

y

Figure 5.2 Occupant-floor systems: 2-DOF oscillators for human occupant.
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MhZ̈ + ChŻ + KhZ = Fh (5.27)

in which

Mh =

mh1 0

0 mh2

 , Ch =

ch1 + ch2 −ch2

−ch2 ch2

 , Kh =

kh1 + kh2 −kh2

−kh2 kh2



Fh =

ch1ẇ(ξ1, ζ1, t) + kh1w(ξ1, ζ1, t) + g1(t)

g2(t)



Z̈ =

z̈1

z̈2

 , Ż =

ż1

ż2

 , Z =

z1

z2



(5.28)

Eq. (5.10) turns into

Mnq̈n(t) + 2ζnωnMnq̇n(t) + ω2
nMnqn(t)

+2ζh1ωh1mh1Wn(ξ1, η1)
∞∑

j=1
Wj(ξ1, η1)q̇j(t) + ω2

h1mh1Wn(ξ1, η1)
∞∑

j=1
Wj(ξ1, η1)qj(t)

−2ζh1ωh1mh1ż1(t)Wn(ξ1, η1) − ω2
h1mh1z1(t)Wn(ξ1, η1)

=
∫ a

0

∫ b

0
f(x, y, t)Wn(x, y)dxdy

(5.29)

Consequently, the governing equation, Eq. (5.16), will be revised accordingly. The expres-
sions of matrices and vectors in Eq. (5.16) are provided in Appendix B for a plate having
No damped 2-DOF oscillators.

5.2.2 Model validation

The damped plate-oscillator model proposed herein is examined by the undamped plate-
oscillator system developed in Nicholson and Bergman (1986). The frequencies are
obtained by Eq. (5.24) and compared with results of Nicholson and Bergman (1986).
The system consists of a simply supported rectangular isotropic plate (ν = 0.3) with
a SDOF undamped oscillator attached to the plate. Damping was considered only for
forced response in Nicholson and Bergman (1986). The properties of the system provided
in Nicholson and Bergman (1986) are nondimensional and they can be converted in terms
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of the parameters defined in present study as:

b/a = 0.75, ξ = 0.225a, η = 0.275a,
mo

ρha2 = 1, koa
2

D
= 100,

co = 0.1mo

√
D

ρha4 , c = 0.01ρh
√

D

ρha4 .

(5.30)

where a, b and h is the length, width and thickness of the plate, respectively; ρ is the
density of the plate; c is the damping constant of the plate; D is the flexural rigidity of
the plate; ξ and η define the location of the oscillator on the plate; and mo, ko and co

is the mass, stiffness and damping constant of the oscillator, respectively. The circular
frequency of the SDOF oscillator can be obtained as

ωo =
√
ko

mo

= 10
√

D

ρha4 (5.31)

The first six frequencies in terms of frequency parameter (
√
D/(ρha4)) of the plate-

oscillator model and plate alone are listed in Table. 5.1. The present results obtained
from the proposed model agree well with the results in Nicholson and Bergman (1986). It
should be noted that the present results are calculated by setting the number of vibration
modes in Eq. (5.5) as 100.

Table 5.1 Frequency parameter of simply supported plate coupled to a SDOF oscillator.

Mode
Frequency parameter (

√
D/(ρha4))

Uncoupled plate Plate-oscillator model
Present Reference∗ Present Reference∗

1 27.41556 27.41556 8.09821 8.09799
2 57.02438 57.02437 30.13916 30.13446
3 80.05346 80.05346 60.46412 60.45673
4 106.37240 106.37239 80.83531 80.83303
5 109.66227 109.66227 107.36724 107.36171
6 159.01029 159.01028 111.57198 111.56776

∗–Nicholson and Bergman (1986)

- 113 -



5.3 Dynamic properties of coupled floor-occupant systems

5.3 Dynamic properties of coupled floor-occupant
systems

In order to assess the proposed plate-oscillator model for its application on vibration
of lightweight steel floor systems with occupants, the predicted dynamic properties are
compared with the test results of the floors with/without human occupants. A variety of
existing human models used in civil engineering application are examined in the proposed
plate-oscillator model.

5.3.1 Laboratory tests

Full-scale lightweight CFS floor systems with different configurations were constructed
and tested in the Structures Lab at the University of Waterloo by CCFSRG from 1999
to 2005. The details on the test apparatus and procedure were reported previously (Xu
et al., 2000; Xu, 2000, 2001a; Liu, 2001; Tangorra et al., 2002; Tangorra, 2005; Xu and
Tangorra, 2007). Both static and dynamic tests were carried out on the floor systems to
identify the critical parameters that contribute to the control of floor vibration. The test
results were then compared with those obtained from different design methods.

In addition to the published test results reported in Xu et al. (2000), Tangorra et al.
(2002), and Xu and Tangorra (2007), the influence of occupants was also studied when
conducting sandbag drop on floors without occupants and with one or two occupants
standing at the center of the floor as shown in Fig. 5.3. The obtained natural frequencies
and damping ratios are listed in Table 5.2. The acceleration time-history records of floor A
in Table 5.2 and corresponding Fourier spectrum are illustrated in Fig. 5.4. It can be found
from Fig. 5.4(a) that floor vibration decays faster when human occupants are standing on
the floor. The more human occupants, the faster the rate of decay. Fig. 5.4(b) illustrates
that due to human occupant’s presence, the peaks of spectra are significantly reduced and
the damping is increased. The damping ratios are evaluated by the bandwidth method.
Additionally, the control tests were conducted for floors with furnitures which have same
weight as the human occupants. The results of control tests are shown in Table 5.3.

Table 5.2 shows that the frequencies are slightly changed when there are occupants
standing at the center of the floor whereas the damping ratios more than doubled. However,
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the damping ratios are not increased proportionally with the number of the occupants.
Furthermore, Fig. 5.4 shows that the rates of dissipation of the acceleration for the floor
with occupants are much faster than that without occupants. As it can be observed in
Table 5.3, the weight of furniture changes the first natural frequency much more than
that by the occupant although the weight of the furniture is the same as that of a person.
As it was expected, the addition of furniture does not improve the damping ratio to any
great extent.

Figure 5.3 The sandbag drop test with two occupants on the floor.

Configuration and structural properties of the floor specimens listed in Table 5.2 and
5.3 are provided in Table 5.4. Floor layout and configuration details can be found in
Tangorra et al. (2002). Floor structural properties can be calculated from equivalent
rigidities provided in Zhang and Xu (2016). Since the shear modulus and the thickness of
the OSB are very small, values of H in Table 5.4 are ignored.

5.3.2 Human models

The human body is a complex mechanical system and it is often modelled as a lumped
parameter vibratory model consisting of an assemblage of discrete masses, linear springs,
and viscous dashpots as shown in Fig. 5.5. The model has a point contact with the
floor and maintains that contact as it walking or stay on the floor. Such a model may
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Figure 5.4 Acceleration of the floor A with and without occupants induced by sandbag drop.
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Table 5.2 Influence of human occupants on dynamic properties of CFS floors (Liu, 2001).

Floor No. of Natural Frequencies Damping ratio
ID Occupants f1 (Hz) f2 (Hz) f3 (Hz) ζ1 (%)

A
0 12.909 16.434 23.575 1.338
1 13.123 16.632 23.85 5.506
2 13.474 17.09 24.811 8.5

B
0 11.917 15.549 24.857 1.422
1 11.765 15.71 25.238 7.95
2 12.054 16.007 25.452 11.444

C
0 10.849 14.526 20.783 1.276
1 10.849 14.786 20.996 8.687
2 10.757 15.289 22.202 12.085

Table 5.3 Influence of furniture and human occupants on dynamic properties of CFS floors
(Liu, 2001).

Floor
Furniture

No. of Natural Frequencies Damping ratio
ID Occupants f1 (Hz) f2 (Hz) f3 (Hz) ζ1 (%)

D

No 0 13.031 16.571 24.078 1.398
No 1 13.046 16.846 24.643 5.825
Yes 0 11.429 16.266 24.323 2.476
Yes 1 11.398 16.327 25.208 6.447

E

No 0 13.519 17.975 24.597 1.088
No 1 13.656 18.265 24.841 4.767
Yes 0 11.932 17.334 24.658 2.154
Yes 1 11.551 17.181 24.78 5.153

vary from a simple SDOF model (Foschi et al., 1995) to a more complex multi-degree-of-
freedom model (e.g., 15-DOF in Nigam and Malik (1987)), the choice of which may be
determined in terms of the effects of frequency, activity and posture when the human
body is subjected to certain level of vibration. A considerable number of properties of
human models are reported by biomechanical scientists in widely differing values. Detailed
reviews on dynamic models of human body in civil engineering can be found in Sachse
et al. (2003) and Shahabpoor et al. (2016b).

For representing the dynamic properties of the human body, the most common,
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Table 5.4 CFS floor configurations in Liu (2001).

Floor Floor configuration
Span Width Density Dx Dy H
(m) (m) (kg/m2) (Nm) (Nm)

A fl-6.114-2-6"-1/5-B0-S6-2b 6.114 4.5 25.22 2.655×106 1.694×104 0
B fl-6.114-2-6"-1/5-B0-S6-2b-Ce 6.114 4.5 35.62 2.656×106 1.694×104 0
C fl-6.754-2-6"-1/5-B0-S6-2b-g 6.754 4.5 25.11 2.655×106 1.533×104 0
D fl-6.114-2-6"-1/5-B0-S6-2b-g 6.114 4.5 25.22 2.655×106 1.694×104 0
E fl-6.114-2-6"-1/5-B2-S6-2b-g 6.114 4.5 25.22 2.655×106 1.694×104 0

convenient and simple reasonable model is a SDOF model (Griffin, 1990). Sachse et al.
(2003) summarized that vertical vibrations of the whole-body of sitting or standing people
are dominated by a heavily damped mode with a natural frequency between 4 and 6 Hz
and a damping ratio ranging from 20% to 50%. Shahabpoor et al. Shahabpoor et al.
(2016b) suggested ranges of 1.85-3.5 Hz and 20-50% for a SDOF model of a walking
human. Four typical SDOF models of human walking, sitting and standing are presented
in Table 5.5.

Furthermore, 2-DOF human models are also commonly used. One of most well-known
2-DOF human models for standing position might be the one proposed by Coermann
(1962). This model was adopted by the ISO 5982 (1981) and employed by Folz and Foschi
(1991) to predict the vibration response of wood-framed floors subjected to heel-drop
impact. Farah (1977) reevaluated the experimental data of Coermann (1962) and provided
the properties of 2-DOF models of standing human. These two 2-DOF human models for
standing position are tabulated in Table 5.6.

mh

SDOF 2-DOF

mh1

mh2

kh kh1

kh2

ch
ch1

ch2

Figure 5.5 Dynamical models of a human occupant.
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Table 5.5 Properties of SDOF models of a human body subjected to vertical vibrations.

Human models References Mass Frequency (Hz) Damping ratio
Sitting Coermann (1962)∗ mt 5.0 32%

Standing
Zheng and Brownjohn (2001) mt 5.24±0.40 39%±0.05

Falati (1999) mt/3 10.43 50%
Walking Shahabpoor et al. (2016a) mt 2.75v3.00 27.5%v30%

∗– unit converted by Sachse et al. (2003)
mt–total mass of human body

Table 5.6 Properties of 2-DOF models of a standing human body subjected to vertical vibrations.

References Mass Frequency (Hz) Damping ratio

Coermann (1962); ISO 5982 (1981)
mh1 = 62mt/75 fh1 = 5.0 ζh1 = 37%
mh2 = 13mt/75 fh2 = 12.5 ζh2 = 46%

Farah (1977)
mh1 = 5.1mt/5.6 fh1 = 6.9 ζh1 = 25%
mh2 = 0.5mt/5.6 fh2 = 7.6 ζh2 = 31%

mt–total mass of human body

5.3.3 Numerical results

The weights of human occupants are both 80 kg. The natural frequencies and damping
ratios are obtained by the proposed damped plate-oscillator model for different human
models and compared with the test results. The human occupants are modelled to be
located at the center of the floor even though for the case of two occupants are not exactly
standing at the center of the floor in the tests (Fig. 5.3). Four human dynamical models
in standing position, two SDOF human models presented in Zheng and Brownjohn (2001)
and Falati (1999) and two 2-DOF human models described in Coermann (1962) and
Farah (1977), are adopted and the corresponding model properties are listed in Table 5.5
and 5.6. The models are denoted in present study as Brownjohn SODF model (Zheng
and Brownjohn, 2001), Falati SDOF model (Falati, 1999), Coermann 2-DOF model
(Coermann, 1962) and Farah 2-DOF model (Farah, 1977).

Firstly, natural frequencies are determined for unoccupied floors (i.e., no occupants on
the floors). Although only two joist-end edges were supported in the tests, the boundary
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conditions are assumed as simply-supported for all four edges for the sake of simplicity in
this study. Such simplification is reasonable because the tested CFS lightweight floors are
one-way floors of which the transverse stiffness of the floor is contributed only by 20mm
thick OSB subfloor and is much less than the stiffness of the joists. The test and present
results of frequencies of unoccupied floors are listed in Table 5.7. Good agreements on the
results obtained from the tests and proposed models can be observed. Since test results
only provide the damping ratio of the first vibration shape, present damping ratios for
higher vibration modes of the unoccupied floors are assumed to be 1.5%.

Then, the dynamic properties of the coupled floor-occupant systems are evaluated
by the proposed damped plate-oscillator model with adoption of the Brownjohn SDOF
human model and the Falati SDOF human model, respectively. In this evaluation, the
first 100 vibration modes are adopted in numerical computations. Table 5.7 lists the test
results and the evaluated results for the floors occupied by one person at the floor center.
The evaluated results by the foregoing different human models shows an additional lower
frequency and a corresponding very large damping ratio, which are introduced by human
SDOF models and denoted as f0 and ζ0, respectively. These additional vibration modes
are associated with presence of human occupants and might be not observed directly
from the data measured from floor tests (Ellis and Ji, 1997; Sachse et al., 2004). For
illustration, the first and second mode shapes of floor specimen A obtained by the proposed
plate-oscillator model with adoption of the Brownjohn SDOF human are presented in
Fig. 5.6. The magnitudes of the complex mode shapes obtained from Eq. (5.25) are
normalized with the mode value of human occupant, and the normalized first and second
mode shapes (|W̃1(x, y)| and |W̃2(x, y)|) of floor specimen A with one occupant are plotted
in Fig. 5.6. It can be observed that the first and second modes are dominated by the
occupant and the floor, respectively. The extra mode introduced by the human occupant
may not be detected by accelerometers placed on the floors in tests, therefore, test results
of floors with one person in Table 5.7 do not contain f0 and ζ0, but they are included in
the evaluated results from the damped plate-oscillator models.

Furthermore, from the comparison shown in Table 5.7, frequencies and damping ratios
of the second and fourth vibration modes of unoccupied floors (i.e., f2, f4, ζ2 and ζ4

highlighted in Table 5.7) are not affected by the human occupants. This is because the
human occupants were located at the nodal point of the second and fourth vibration
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modes, which is the center of the floors. It can be concluded that the influence of the
human occupants on the floor vibration are associated with the human location on the
floor. The dynamic properties of a vibration mode may not be much affected by human
occupants if they are standing at the nodal points of the mode. Additionally, it is also
observed that the first natural frequencies f1 of the floor A and B with one occupant
evaluated by the Falati SDOF human model are less the ones evaluated for the floors
without occupants, which contradicts the test results shown in Table 5.7.
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Figure 5.6 The normalized first and second mode shapes of floor A with one occupant.

Dynamic properties of floors with two occupants are also evaluated by the proposed
damped plate-oscillator model with adoption of Brownjohn SDOF human model and
Falati SDOF human model, respectively. Both occupants are modelled individually and
the evaluated results are listed in Table 5.8. Similar to those in the Table 5.7, f01 and f02

are two additional frequencies introduced by human SDOF models and their corresponding
damping ratios are ζ01 and ζ02. However, f02 and ζ02 are same as the human models. The
comparison in Table 5.8 illustrates that the effects of human occupants is overestimated
considerably when modelling each occupant separately for the case that two occupants
closely standing on the floor. As a results, the obtained damping ratios become extremely
large. Since the damping ratios obtained from tests are not increased proportionally with
the number of the occupants, it may suggest that closely standing human occupants

- 123 -



5.3 Dynamic properties of coupled floor-occupant systems

should be modeled by one SDOF model instead of modelling each occupant as a SDOF
model individually.

Lastly, 2-DOF human models (i.e., Coermann (1962) and Farah (1977)) are adopted
into the proposed plate-oscillator model to predict the dynamic properties of floors with
one occupant and corresponding results are shown in Table 5.9. Comparing the results
shown in Table 5.7 and 5.9, it can be found that the results obtained from the 2-DOF
human models are not better than those from SDOF models. The 2-DOF models, however,
introduce two extra vibration modes in the floor-occupant systems. These extra modes
will cause some difficulties to recognise the dominant modes of floor-occupant systems.
Thus, it requires more efforts to identify the dominant modes from the results obtained
using Coermann 2-DOF model (Coermann, 1962) and Farah 2-DOF model (Farah, 1977)
for floor B and C. Therefore,a SDOF model of human is sufficient to obtain dynamic
properties of floor-occupant systems.
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5.3.4 Discussion and remarks

2-DOF model of human-structure system

An integrated 2-DOF model of a human-structure system was investigated as a reasonable
way to simplify the dynamic analysis of human-structure interaction (Sachse et al., 2004;
Shahabpoor et al., 2013). The 2-DOF model could be sufficient for qualitative analysis of
human-structure interaction to explain damping increases, additional vibration modes as
well as the insignificant changes of natural frequencies observed on structures due to human
occupancy. However, caution is advised when employing the 2-DOF human-structure
model to evaluate the dynamic properties and responses of floor-occupant systems because
the model considers only one structural mode. Alternatively, the proposed plate-oscillator
model can be reduced to a 2-DOF human-structure model through the selection of one
certain vibration mode using Eq. (5.5) instead of adding many modes together. For
instance, Table. 5.10 shows the results evaluated by the proposed plate-oscillator model
and the 2-DOF human-structure model. The Brownjohn SDOF human model is adopted
to simulate the presence of human and 100 vibration modes are considered for the damped
plate-oscillator model, whereas only first vibration mode is taken for the 2-DOF human-
structure model. Differences between the results evaluated by the two models can be
observed in Table 5.10.

Table 5.10 Dynamic properties evaluated by proposed plate-oscillator model and 2-DOF model.

Floor Model
Frequencies (Hz) Damping ratio (%)
f1 (Hz) f2 (Hz) ζ1 ζ2

A
Plate-oscillator 5.121 14.108 33.796 9.407

2-DOF 5.171 13.965 35.44 9.738

B
Plate-oscillator 5.126 11.838 33.526 8.759

2-DOF 5.176 11.737 35.208 9.049

C
Plate-oscillator 5.088 11.692 32.105 11.502

2-DOF 5.149 11.56 33.896 11.466

- 127 -



5.3 Dynamic properties of coupled floor-occupant systems

Non-existence of the “bubble mode”

In 1998, Talja and Kullaa (Talja and Kullaa, 1998; Kullaa and Talja, 1998) performed
modal testing on the lightweight steel joist floors with use of a 5 kg impact hammer. The
person who applied the hammer impact was resting his knees on a soft mat near the
center of the floor. Surprisingly, results from experimental modal analysis illustrated that
the first mode of the structure was a full sine wave in the vertical direction instead of a
half-sine wave (i.e., “bubble mode”), a mode that could not be found from the test results.
The so-called “bubble mode” was found only for the floor specimens with concrete topping
and the associated damping ratios are abnormally high (i.e., around 10%). However, the
reasons for not being able to find the the ‘bubble mode’ and the high damping ratios
were unclear.

From the analysis of the damped plate-oscillator model, human occupants can increase
the first frequency slightly and damping ratio substantially, but have no influence on
vibration modes when located at the nodal points. In the tests by Talja and Kullaa
(Talja and Kullaa, 1998; Kullaa and Talja, 1998), the presence of the test person at
the floor center increased the damping ratios and the first natural frequency, but the
second frequency was expected to be unchanged because the person was located at the
nodal point of the second mode. If the first two natural frequencies of unoccupied floors
are closely spaced, the presence of a person on the floor would result in the frequency
associated with the half-sine wave mode (i.e., the first frequency of the unoccupied floor)
being greater than that of sine wave mode (i.e., the second frequency of the unoccupied
floor). Consequently, the first mode from test results was the one with a full sine wave.

Nested frequencies

It is generally accepted that the natural frequencies of the combined plate-oscillator
systems are nested among the natural frequencies of the plate alone (Nicholson and
Bergman, 1986; Folz and Foschi, 1991). Extensive studies of human-structure interaction
also conclude that the frequencies of the human and unoccupied structure are always
between those of the coupled human-structure system if only considering the first frequency
of the unoccupied structure (Ellis and Ji, 1997). The relationship can be expressed as
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f1 < (fh, fs1) < f2 (5.32)

in which fh and fs1 are the natural frequency of the human and the first frequency of
the unoccupied structure, respectively; and f1 and f2 are the first and second frequency
of coupled human-structure system, respectively. However, Eq. (5.32) may not always
be true. The issue of the “bubble mode” in Section 5.3.4 is a notable example. Sachse
(2002) (page 107-108) also discussed this equation (5.32) based on the parametrical study
of 2-DOF model of a human-structure system.

Based on the findings of Sachse (2002), Eq. (5.32) is studied in more detail in this
study, using the proposed damped plate-oscillator model. Only the first two frequencies, f1

and f2, of the combined floor-occupant system are considered, and SDOF human models
with two different modal masses, mh, and their corresponding mass ratios γ = mh/M (M
is the mass of the floor) are used, as listed in Table 5.11. Then, the natural frequencies
f1 and f2 are determined for floor A with a human standing at the floor center. The
results are plotted in Fig. 5.7(a) and 5.7(b). It is found that f1 or f2 is within the range
bound by the natural frequencies of the human model and structure (i.e., fh and the first
frequency of structure fs1), which can be described as

fh < f1 < f2 < fs1 (5.33)

or
fh < f1 < fs1 < f2 (5.34)

In particular, the frequency relationship of Eq. (5.33) can be observed in Fig. 5.7(a) for
the mass ratio γ = 0.038 with a human damping ratio of 50%. Similarly, the frequency
relationship of Eq. (5.34) can be noticed in Fig. 5.7(b) for the mass ratio γ = 0.115, with
a human damping ratio of 50%. The nested-frequency relationship (i.e., Eq. (5.32)) occurs
in the case of human damping ratio of 30%, as shown in both Fig. 5.7(a) and 5.7(b).

In summary, the issue of Eq. (5.32) not always being true occurs for the case with
smaller mass ratios (i.e., γ < 0.1) and a higher human damping ratio (ζh > 50% in this
study). Therefore, it can be concluded that human occupants will introduce additional
vibration modes, but the frequencies of combined floor-occupant systems are not always
nested among the natural frequencies of the unoccupied floors, especially for the case
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with smaller mass ratios (i.e., γ < 0.1) and a higher human damping ratio (ζh > 50% in
this study).

Table 5.11 SDOF human models for parametrical study.

Model mh γ = mh/M ζh fh(Hz)
A mt/3 0.038 30% or 50% 0.8fs1v1.1fs1

B mt 0.115 30% or 50% 0.8fs1v1.1fs1

mt–total mass of human body assumed as 80kg

Human model in standing position

Through the numerical results in Section 5.3.3, the Brownjohn SDOF human model
(Zheng and Brownjohn, 2001) for standing position is verified and can be adopted for the
application of lightweight steel floor systems. However, it is observed that the evaluated
damping ratios are larger than those for the tested results. Thus, it is necessary to
recalibrate the Brownjohn SDOF human model for its application in lightweight steel floor
systems. Table. 5.12 demonstrates the dynamic properties of floor specimen A by applying
Brownjohn SDOF human model with different modal mass mh. The frequency f1 and
corresponding damping ratio ζ1 of the combined floor-occupant system increase along with
mh. Same observation was also for other floor specimens. Ji and Ellis (1995) proposed
the human body model in a standing position as a continuous system and derived its
modal mass and mh = 2mt/3 was suggested. Therefore, when applying Brownjohn SDOF
human model, the mass mh may be less than the human total mass mt.
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Figure 5.7 Natural frequencies f1 and f2 of floor-occupant systems with SDOF human model.
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Table 5.12 Brownjohn SDOF human model with different mass mh.

f0 f1 ζ0 ζ1

tested / 13.123 / 5.506

mh

mt/3 5.206 13.849 37.235 4.239
mt/2 5.187 13.899 36.361 5.575
0.6mt 5.175 13.934 35.839 6.363
0.7mt 5.163 13.972 35.322 7.141
0.8mt 5.149 14.014 34.809 7.908
0.9mt 5.136 14.059 34.230 8.664

mt 5.121 14.108 33.796 9.407

/–Not available
mt–total mass of human body
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5.4 Dynamic responses induced by human walking

A variety of approaches exist in the literature for modelling human-induced vibration
(Caprani and Ahmadi, 2016). The simplest one only considers the concentrated force
induced by human walking without taking into account the HSI during walking. This
model is denoted as moving force (MF) model. A more realistic model can be established
based on the proposed plate-oscillator model in which human occupants are represented
by damped oscillators. Thus, a moving damped-oscillator (MDO) model is proposed.

Furthermore, human occupants do not only excite the floor systems but also receive
the vibration response. As illustration in Fig. 1.2, human occupants that perform walking
can be referred to as active occupants. Other humans sitting or standing on the structure
may be the passive ones who are referred to as stationary occupants (Pedersen, 2011).
Besides difference in loading, the dynamic properties of human body also differ between
the active and stationary occupants as well as acceptability of vibrations. It is known
that a walking person accepts much larger vibrations than a stationary person (Ohlsson,
1986). In residential occupancies, the thresholds of vibrations are determined by a seated
person rather than one that is standing or in motion (Onysko et al., 2000). Thus, the
model of moving and stationary damped-oscillators (MSDO) is desirable to determinate
the vibrations felt by a stationary person (receiver), sitting or standing on the floor, when
another person (impactor) applies a footfall impact at any other point on the floor.

It should be noted that although the damped–oscillator models may not be the best to
model human walking in terms of reflecting the gait cycle as the bipedal model reported by
Qin et al. (2013), the simplicity of its dynamics also allows a comprehensive investigation
of coupled human-structure system under different loading conditions (Shahabpoor et al.,
2013).

5.4.1 Moving force model

As shown in Fig. 5.8, human walking is modelled using a single-footfall force loading on
the footprints (i.e., the position of the feet during walking) in a sequence of footsteps. For
the location of a footprint is (ξi, ηi), the single-footfall force f(x, y, t) can be expressed as

f(x, y, t) = F (t)δ(x− ξi)δ(y − ηi) (5.35)
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where F (t) is the force from a single footfall and δ is the Dirac delta function. The vertical
force produced by humans walking has been paid much attention by researchers in last
several decades (Živanović et al., 2005; Racic et al., 2009). In present research, the single
footfall force model developed by Li et al. (2010) based on Young’s equation (Young,
2001) is adopted. The force model is given by

F (t) = G
+∞∑
n=1

An sin(nπ
te
t), te = 1

0.76fs

, 0 6 t 6 te (5.36)

where G is the weight of a human body, An is the Fourier coefficient, fs is walking step
rate and te is the duration of single foot step. The first five order Fourier coefficients are
determined by

A1 =

−0.0698fs + 1.211, 1.6Hz 6 fs 6 2.32Hz

−0.1784fs + 1.463, 2.32Hz 6 fs 6 2.4Hz

A2 =

 0.1052fs − 0.1284, 1.6Hz 6 fs 6 2.32Hz

−0.4716fs + 1.210, 2.32Hz 6 fs 6 2.4Hz

A3 =

 0.3002fs − 0.1534, 1.6Hz 6 fs 6 2.32Hz

−0.0118fs + 0.5703, 2.32Hz 6 fs 6 2.4Hz

A4 =

 0.0416fs − 0.0288, 1.6Hz 6 fs 6 2.32Hz

−0.2600fs + 0.6711, 2.32Hz 6 fs 6 2.4Hz

A5 =

−0.0275fs + 0.0608, 1.6Hz 6 fs 6 2.32Hz

0.0906fs − 0.2132, 2.32Hz 6 fs 6 2.4Hz

(5.37)

Fig. 5.9 illustrates the single-footfall force with 2 Hz walking frequency.

The dynamic responses of floor systems due to footfall forces can be determined by
the proposed plate-oscillator model discussed in Section 5.2 by setting No = 0 and solving
Eq. (5.16) numerically. Alternatively, the analytical solutions can also be obtained by

∇4
ow(x, y, t) + cẇ(x, y, t) + ρhẅ(x, y, t) = f(x, y, t) (5.38)

By applying the assumed-mode method (Meirovitch, 1967), it can be obtained that
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Figure 5.8 Moving force model.
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Figure 5.9 Single footfall force.

q̈n(t) + 2ζnωnq̇n(t) + ω2
nqn(t) = Fn(t) (5.39)

Fn(t) = Wn(ξi, ηi)
Mn

F (t) (5.40)

Then, the solution of Eq. (5.39) can be solved by using Laplace transform as

qn(t) = Wn(ξi, ηi)
∫ t

0
F (τ)h(t− τ)dτ (5.41)
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in which h(t− τ) is the impulse response function of the floor as

h(t− τ) = 1
ωndMn

e−ζnωn(t−τ) sinωnd(t− τ) (5.42)

It is known that there are some short time periods when both feet are on the ground
which gives an overlapping between the left and right foot during walking (Živanović
et al., 2005). Then, the duration of single footfall te will be greater than period of human
walking ts = 1/fs. When considering the overlap periods, the loading scheme is illustrated
in Fig. 5.10. The response of the floor during interval its < t < (i+ 1)ts is

ts 2ts 3ts 4ts 5ts 6ts 7ts 7t ts e+te Time

Position

Force

Figure 5.10 Loading scheme of single-footfall forces.

w(x, y, t) =
N∑

n=1
Wn(x, y)Wn(ξ1, η1)

∫ te

0
F (τ)h(t− τ)dτ

+
N∑

n=1
Wn(x, y)Wn(ξ2, η2)

∫ te

0
F (τ)h(t− ts − τ)dτ + . . .

+
N∑

n=1
Wn(x, y)Wn(ξi, ηi)

∫ t−its

0
F (τ)h(t− its − τ)dτ

(5.43)

Applying Liebnitz’s rule (De Silva, 2007), the velocity and acceleration responses can be
obtained by successive differentiation of Eq. (5.43) with respect to time as follows:
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v(x, y, t) = ∂w(x, y, t)
∂t

=
N∑

n=1
Wn(x, y)Wn(ξ1, η1)

∫ te

0
F (τ)ḣ(t− τ)dτ

+
N∑

n=1
Wn(x, y)Wn(ξ2, η2)

∫ te

0
F (τ)ḣ(t− ts − τ)dτ + . . .

+
N∑

n=1
Wn(x, y)Wn(ξi, ηi)

∫ t−its

0
F (τ)ḣ(t− its − τ)dτ

(5.44)

a(x, y, t) = ∂2w(x, y, t)
∂t2

=
N∑

n=1
Wn(x, y)Wn(ξ1, η1)

∫ te

0
F (τ)ḧ(t− τ)dτ

+
N∑

n=1
Wn(x, y)Wn(ξ2, η2)

∫ te

0
F (τ)ḧ(t− ts − τ)dτ + . . .

+
N∑

n=1
Wn(x, y)Wn(ξi, ηi)

[
F (t− its)

Mn

+
∫ t−its

0
F (τ)ḧ(t− its − τ)dτ

]
(5.45)

where
ḣ(t− τ) = e−ζnωn(t−τ)

ωndMn

[
ωnd cosωnd(t− τ) − ζnωn sinωnd(t− τ)

]
(5.46)

ḧ(t− τ) = e−ζnωn(t−τ)

ωndMn

[
(ζ2

nω
2
n − ω2

nd) sinωnd(t− τ) − 2ζnωnωnd cosωnd(t− τ)
]

(5.47)

Since the forcing function F (t) is expressed by Fourier series in Eq. (5.36), the closed-
form solutions of Eqs. (5.43), (5.44) and (5.45) can be derived explicitly. Alternatively,
numerical methods can also be applied to obtain an approximate evaluation of the
Duhamel’s integral in the solutions, e.g., the trapezoidal method (Humar, 2002).

5.4.2 Moving damped-oscillator model

In order to consider HSI during human walking, the human body can be simulated as a
heavily damped oscillator (i.e., a SDOF mass-spring-damper) moving on a structure as
shown in Fig. 5.11. The proposed damped-oscillator model can be adopted to determine
the floor responses due to human walking. Eq. (5.16) can be adopted to obtained the
dynamic responses for every footprint. Then, the total responses during human walking
on the floor can be obtained from the principle of superposition.
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Figure 5.11 Moving damped-oscillator model.

5.4.3 Model of moving and stationary damped-oscillators

If there are stationary occupants on the floor, both moving and stationary occupants need
to be modelled separately in the proposed damped plate-oscillator model. As illustrated
in Fig. 5.12, moving and stationary occupants are modelled as the damped oscillator
moving on the floor from one footprint to next footprint and staying at a fixed location,
respectively. The properties of the moving oscillator and the stationary oscillator are
selected from Table 5.5 for sitting human model (Coermann, 1962) and walking human
model (Shahabpoor et al., 2016a). Similar to that of MDO model, Eq. (5.16) and the
principle of superposition can be applied to obtain the total response at the location of
the stationary occupant while the other occupant is walking on the floor.

5.4.4 Comparison with test results

The three models, MF, MDO and MSDO, are assessed by comparing with the test results.
In these comparisons, two types of tests conducted in structures laboratory at University
of Waterloo are selected. The first type is walking tests which were performed by a 82
kg man walking perpendicular and parallel to the direction of the joists at 2007 (Davis,
2008; Parnell, 2008). MF and MDO models are examined by results of walking tests.
The second one are human evaluation tests which were conducted at 2001 (Liu, 2001;
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Figure 5.12 Model of moving and stationary damped-oscillators.

Tangorra, 2005). In these tests, an evaluator sitting on a stool while a 82.5 kg (i.e., 185
lb) man walked in the directions of parallel, perpendicular and diagonal to the joist as
shown in Fig. 5.13. Then, MDO and MSDO models are analyzed through comparing
with the human evaluation tests. The damp ratios of all these floors are 0.015.

Figure 5.13 Human evaluation of floor vibration induced by human walking.
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Numerical procedure

Dynamic responses of floors due to human walking can be obtained numerically through
MF, MDO and MSDO models in the following steps:

1) Input the geometric parameters and structural properties of floors and the mechanical
characteristics of human occupants with their positions;

2) Determine the parameters of human walking and footprints;

3) Obtain the natural frequencies and damping ratios of the unoccupied floors;

4) Solve the Eq. (5.17) numerically for each footprint (i.e., the Runge-Kutta method)
and determine the corresponding acceleration of the floor by Eq. (5.26); and

5) Sum the dynamic responses of each footprint based on the principle of superposition
for linear vibration system.

In this research, the step frequency of human walking are assumed to be normal, i.e.,
fs = 2 Hz. The step length ls is 0.7 m.

Walking tests

Three lightweight floors constructed with CFS C-shape joists with different spans are
selected from Davis (2008) and Parnell (2008) and the structural properties and the
fundamental frequency are listed in Table 5.13. It is observed that the fundamental
frequencies obtained from tests and the proposed method in Section 4.5.1 is in good
agreement with floor LF 14.5B. However, considerable discrepancy can be found on the
results for floors LF17.0A and LF19.5B which needs to be further investigated in the
future. Applying the structural properties in Table 5.13, the dynamic responses induced
by human walking can be predicted by models of MF and MDO. The obtained acceleration
time histories are compared with test results for human walking parallel to the joists as
illustrated in Fig. 5.14.

It can be found from Fig. 5.14(a) that acceleration predicted by MDO model agrees
well with test results and is more accurate than that of MF model although the pre-
dicted maximum accelerations are almost the same for both models. However, the good
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agreement between the predicted and test results are not encountered for floors LF17.0A
and LF19.5B, as shown in Fig. 5.14(b) and 5.14(c). The build-up resonant responses
associated with low-frequency floors (Brownjohn and Middleton, 2008; Middleton and
Brownjohn, 2010) may become an issue as such resonance cannot be found from the
test results. Moreover, the magnitudes of the maximum acceleration obtained by MDO
model are less than those by MF model. The large differences on the magnitudes of
the acceleration between predicted and tested may result from the discrepancies of the
frequencies in Table 5.13. For instance, the test results reflect LF19.5B is a high-frequency
floor (i.e., f1 > 10Hz) while the predicted results show LF19.5B as a low-frequency floor
(i.e., f1 < 10Hz) based on the clarification of high-frequency floors and low-frequency
floors by Brownjohn and Middleton (2008). As a result, Fig. 5.14(c) demonstrates the
distinction between the impulsive response obtained by tests and the resonance response
predicted by MF and MDO models.

Table 5.13 CFS floor configurations of walking tests.

Floor
Span Width Density Dx Dy H

Fundamental frequency (Hz)
(m) (m) (kg/m2) (Nm) (Nm) test present

LF14.5B 4.42 4.88 31.2347 2260000 234000 0 22.5 22.4
LF17.0A 5.18 4.88 80.1629 2930000 199612 0 14.9 11.7
LF19.5B 5.95 4.88 103.4151 2966000 174000 0 11.4 7.98

Human evaluation tests

Further information of human evaluation tests can be found in Liu (2001) and Tangorra
(2005). Fig. 5.15 illustrates the acceleration histories obtained from the test and predicted
by MDO and MSDO models for floor C in Table 5.4 subjected to one person walking
parallel to the joists and the other siting on the floor center to conduct subjective eval-
uation. It should be noted that the restraining beams were placed on the floor at the
support ends of the joists in the test to simulate the possible end rotational restraints
provided by the end walls on the floor, but the boundary conditions in both models are
still assumed as simply supported in numerical prediction. As a result, the magnitudes
of predicted acceleration histories are greater than that of the test. The maximum
acceleration magnitudes predicted by both MDO and MSDO models are the same but
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Figure 5.14 Comparisons of floor responses induced by human walking parallel to the joists.
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the decay rate of the response after each footfall is faster for MSDO model due to the
consideration of the evaluator at the floor center.
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Figure 5.15 Human evaluation of floor vibration induced by human walking.
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5.5 Parametric study

Floor vibration due to human walking is primarily influenced by four parameters: step
frequency, floor damping ratio, mass ratio of human to floor, and the walking paths.
Parametric studies are conducted in the following by means of the foregoing three loading
models and the test results.

5.5.1 Step frequency

The step frequency (i.e., footfall rate) dominates the resulting dynamic load. For normal
walk on a horizontal surface, the frequency range was found between 1.5 and 2.5 Hz
(Bachmann and Ammann, 1987). In general, the peak of the force of single-footfall
shown in Fig. 5.9 increases with the step frequency (Wheeler, 1982). Thus, for relatively
higher step frequency, larger dynamic response will be induced. On the other hand, if the
natural frequencies of floors are in coincidence with one multiple of the step frequency,
resonance response will occur and the magnitude may be larger than that of the higher
step frequency.

The influence of the step frequency on the dynamic response of the lightweight floors
induced by human walking is investigated by MF, MDO and MSDO models respectively.
LF14.5B is selected and with a 80 kg human walking parallel to the joists. The damping
ratio of the floor is assumed as 0.015 and the step length is 0.7 m. The step frequency
varies from 1.5 Hz to 2.5 Hz. The RMS values of acceleration history are illustrated in
Fig. 5.16 for three loading models. It can be found that the RMS values have an upward
tendency with the increase of the step frequency. However, sudden significant increases
can be observed at the step frequencies of 1.7 Hz and 2.2 Hz, which may result from their
multiples are close to the fundamental frequency of the floor of LF14.5B (i.e., 22.4 Hz in
Table 5.13).

5.5.2 Damping ratio

For floor LF14.5B with same values of the parameters specified in Section 5.4.4, the
influence of damping ratios of floors is investigated within the range of 0.005 to 0.06 and
the step frequency is 2 Hz. RMS accelerations obtained from three loading models are
shown in Fig. 5.17. The RMS accelerations from MF model decrease rapidly with the
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Figure 5.16 The influence of the step frequency on the dynamic response of floor.

increase of the damping ratio in the range between 0.005 and 0.02. However, for MDO and
MSDO models, the decrease is much slower and insignificant. It can be concluded that
the damping ratio of the floor may not play a important role in the floor vibration when
HSI is considered. This finding may bring many benefits to design practice. Damping
is a headache issue because the damping capability of a structure is difficult to assess
and the scatter in quantification of damping parameters for lightweight floors reported
in the literature is large (Weckendorf et al., 2015). Moreover, on-site measurements of
floor responses have reflected damping to be significant higher than that in laboratory
conditions (Toratti and Talja, 2006; Xu and Tangorra, 2007). However, Fig. 5.17 implies
that the damping ratios of unoccupied floors may not play an important role in the
vibration of lightweight floors as the human occupants will increase the floor damping
considerably. Consequently, the inconsistencies between the laboratory and field studies
will be reduced. This would be a trade-off for lightweight steel floors which are significantly
influenced by human occupants.

5.5.3 Mass ratio

The intensity of the dynamic interaction between the structure and human occupants is
influenced by the mass ratio of human to structure. The HSI is significant if the human
mass is comparable to that of the structure but is negligible when the human mass is
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Figure 5.17 The influence of damping ratio on the dynamic response of floor induced by human
walking.

relatively small comparing to the structure mass. Thus, the influence of the mass ratios
on the HSI is investigated through applying human models with different masses on floor
LF14.5B. Two loading models: MF and MDO are adopted and the RMS values of the
acceleration are calculated. The comparison is illustrated in Fig. 5.18. It can be found
that the influence of HSI becomes more significant as the increase of the mass ratio.

5.5.4 Walking path

Human occupants may walk randomly on structures and change path direction frequently,
which can be either unexpected or unanticipated in advance. For the reason of simplicity,
the occupants are assumed to walk across the structures along a certain path suitable
for producing maximum responses even though it is rarely encountered in everyday life.
In the context of residential and office floors, it is widely accepted that footfall loading
induced by a single human has proved to be the major source of vibration disturbance
(Pavic and Reynolds, 1999). The goal of this investigation is to determine the difference
of the floor responses of four different walking paths: parallel and perpendicular to the
floor joists, diagonal path and circular path as shown in Fig. 5.19. Both test results and
analytical predictions obtained from the proposed loading models are presented.
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Figure 5.18 The influence of mass ratio on the dynamic response of floor induced by human
walking.

Walking tests conducted by Parnell (2008) and Davis (2008) were performed at the
University of Waterloo by a 82 kg man walking perpendicular and parallel to the direction
of the floor joists. Test results of LF14.5B and LF19.5B, the typical of a high-frequency
and a low-frequency floor, respectively, are plotted in Fig. 5.20. It can be observed that
human walking perpendicular to the joists produces greater acceleration responses in both
cases of LF14.5B and LF19.5B. This results may be because only edges at joist ends are
supported and the edges perpendicular to the joists are free.

The second comparison is performed for human evaluation tests on the floor C in
Table 5.4 with edges at the joist ends restrained. Acceleration histories of three walking
paths: parallel, perpendicular and diagonal path are illustrated in Fig. 5.21. Acceleration
responses induced by human walking perpendicular to the joists are found to be close to
those of human walking along diagonal path. Similar to waht was found in floor LF14.5B
and LF19.5B, perpendicular to floor joist direction yield large response.

What was not investigated in the tests of Parnell (2008) and Davis (2008) is walking
with a circular path on the floor, as shown in Fig. 5.19(d). The circular path can be
investigated by the proposed loading models either MDO or MSDO. Fig. 5.22 illustrates
the dynamic responses induced by human walking perpendicular to the joists as well as
walking along the circular paths on the floor of LF14.5B. The acceleration responses are
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Figure 5.19 Walking paths on the floor.

obtained by MDO model and the radius of the circular path shown in Fig. 5.19(d) is set
as same as the step length. It can be observed from Fig. 5.22 that the response of circular
path is almost the same as that of perpendicular path.

5.6 Summary

In this chapter, a damped plate-oscillator model is proposed to investigate the dynamic
properties of lightweight steel floor systems with occupants and predict the dynamic
responses of floors due to human walking. The influence of stationary occupants on
dynamic properties of lightweight floors was studied. The predicted results by the proposed
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Figure 5.20 Floor responses induced by human walking parallel and perpendicular to the joists.

damped plate-oscillator model were compared with results of the laboratory tests on CFS
floor systems with and without occupants. Three models used for predicting dynamic
response: MF, MDO and MSDO are examined by the test results. At last, parametric
studies are conducted on the influence of step frequencies, damping ratios, mass ratios
and walking paths.
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Figure 5.21 Floor responses induced by human walking along different paths.
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Figure 5.22 Dynamic responses induced by human walking along different paths on LF14.5B.
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6
Performance criteria and design

methods for Residential Construction

6.1 Introduction

Traditionally, in design practice, floor vibration is controlled by ensuring the adequacy of
floor stiffness when a floor is subjected to a distributed load. Approaches have included
limiting the maximum floor deflection under the combination of dead load and a uniformly
distributed live load to span/360 or even span/480, along with restricting the ratio of
the span to depth of a supporting steel beam to 24 or under. However, many examples
have shown that this approach may not be sufficient (Allen and Rainer, 1976; Ohlsson,
1986; Murray et al., 1997), in part, perhaps, because the stiffness due to a distributed
load is essentially equivalent to the floor’s fundamental frequency. This frequency can be
calculated by

f = 0.18
√
g

∆ (6.1)

where g is the acceleration of gravity and ∆ is the mid-span deflection under the dis-
tributed load. Thus, limiting stiffness under a distributed load is intended to restrict the
fundamental frequency such that the possible resonance induced by human walking can
be avoided. Lightweight floors, however, rarely experience resonance, due to their higher
fundamental frequencies (Hu et al., 2006).

Currently, the most widely used design standard for lightweight floor systems is the
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static stiffness criterion adopted by ATC Design Guide 1 (Allen et al., 1999), which limits
the floor deflection under a 1 kN concentrated load. This criterion relates more directly to
vibration performance of floor systems subjected to human walking. It can be traced back
to subjective surveys of wood floors in residential construction, conducted in Canada in
the 1980s (Onysko, 1988a), which reported that the static deflection under a concentrated
load applied at the centre of a floor correlated very well with occupant acceptabnce of
various types of wood floors. Nevertheless, this standard does not take account of the
mass of floors and other properties unique to floor transient response such as damping
(Onysko et al., 2000). Furthermore, since the database of the subjective surveys of Onysko
(1988a) did not include floors with concrete toppings, and most of the floor spans in the
surveys were far shorter than 6.0 m, the criterion may be unreliable for floors with heavy
toppings (Smith and Chui, 1988) or with long spans. It is also questionable whether it
can be applied to lightweight CFS floors.

In essence, the aforementioned two approaches do not directly deal with dynamic
responses due to human activities. It would desirable to have alternative methods charac-
terized by the dynamic nature of loads and relatively simple to implement practically.
The design guidelines proposed in this chapter are primarily applicable for residential
construction.
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6.2 Basis of design guidelines

A design guideline for floor vibration serviceability normally consists of two parts: a design
criterion related to human tolerance of floor vibration (i.e., a human acceptance criterion)
and a design method to evaluate the parameters specified in the design criterion. Prior
to developing the design guidelines for vibration serviceability of lightweight floors, it is
necessary to discuss some important issues associated with the vibration serviceability.

6.2.1 Human perception of vibration

HUMAN RESPONSE
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Interference with sleep
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Figure 6.1 Factors affecting the acceptability of building vibrations induced by human activity
(Griffin, 1990).

Human perception of vibration in a building relates to a large number of parameters,
as shown in Fig. 6.1. In many circumstances, the degree of annoyance and complaint
cannot be explained directly by the magnitude of vibration alone but also depends on
audio and visual impressions. To evaluate human perception, many additional effects need
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to be considered, such as the environment surrounding the person, the person’s activity,
as well as the psychological reaction of the person. Under some conditions of amplitude
and frequency, adverse comments may arise even though the measured amplitude is lower
than the perception level (ISO 2631-2, 2003). For instance, people can be aware of a
low-level vibration in a quiet apartment, which may not be perceived in a busy workplace.
It is known that the vibration perception is greatest in a seated person rather than one
standing or in motion (Onysko et al., 2000). Humans who are moving may experience
hundred times greater vibration magnitude than stationary people. Thus, the current
edition of ISO 2631-2 (2003) deviated from the first edition (ISO 2631-2, 1989) by not
specifying the acceptable magnitudes of vibration; instead, it provides guidelines for
collecting data concerning complaints about building vibration to develop corresponding
design criteria. Clearly, it is unrealistic to assume that human sensitivity to a given
vibration amplitude will be predicted precisely. Vibration levels can be considered as
general indicators of serviceability rather than precise assessments (Ellis, 2001).

6.2.2 Direct criteria and correlative criteria

Existing design criteria to control floor vibration can be classified into two categories:
direct and correlative (i.e., indirect). Direct criteria relate one aspect of human perception
of whole body vibration (e.g., acceleration) to floor vibration serviceability, and require
correct predictions or suitable measurements of human responses to vibration and absolute
thresholds for human sensitivity to vibrations. However, the criteria for deciding the
acceptability of building vibration will vary from situation to situation (Griffin, 2007).
Efforts to determine the individual acceptance levels of occupants of a building would
produce inconsistent results.

Extensive attempts were made to quantify human responses to floor vibrations last
century (Wright and Green, 1959; Allen and Murray, 1993). One direct criterion still
widely used in North America is the acceptance criterion recommended in Steel Design
Guide Series 11 (Murray et al., 1997) of AISC/CISC. The AISC/CISC criterion was
developed using acceleration limits provided by ISO 2631-2 (1989), as shown in Fig. 6.2.
A base curve of RMS acceleration was given in ISO 2631-2 (1989) as the average level of
human perception to constant sinusoidal vertical vibration at different frequencies. The
design criteria for different occupancies can be obtained from multiples of the base curve by
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referring to experiences and practices. For instance, in the case of residential construction
in day time, a multiplier of 2 to 4 is suggested for continuous or intermittent vibrations,
and 60 to 90 for transient vibrations. Since walking vibration is intermittent and low
frequency in nature, the multiplier for walking vibration in residence can be estimated in
the range of 5 to 8 (Allen and Murray, 1993). Based on the RMS acceleration criteria, the
AISC/CISC criterion was developed by using peak acceleration, which was transferred
from RMS limits by an estimated ratio of approximately 1.7 for typical walking vibration.
Finally, a value of 0.5 percent of the acceleration of gravity for 4-8Hz is recommended as
the peak acceleration limit used in AISC/CISC Steel Design Guide Series 11 (Murray
et al., 1997) as illustrated in Fig. 6.2.
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Figure 6.2 Peak acceleration criteria for different occupancies (Murray et al., 1997).

Unfortunately, the acceptance criterion in ISO 2631-2 (1989) was withdrawn, as the
range of potential applications was too widespread for that standard (ISO 10137, 2007).
Therefore, the AISC/CISC criterion based on the acceptance criterion of ISO 2631-2
(1989) collapsed immediately. Furthermore, the method of evaluating floor responses due
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to occupant activities associated with the AISC/CISC criterion may be overly simplified
and is often inaccurate and inappropriate, as discussed extensively by Middleton and
Brownjohn (2011). It is noticed that the recently published guideline by the Steel Joist
Institute (SJI) (Murray and Davis, 2015) still recommends the tolerance acceleration limits
of the AISC/CISC criterion. The SCI Standard P354 (Smith et al., 2009) of the UK Steel
Construction Institute (SCI) has adopted the human tolerance criterion which are similar
to that of the AISC/CISC but are in terms of a multiplying factor, R. Optimistically,
the predicted peak acceleration response and the AISC/CISC criterion in Murray et al.
(1997) were compared to the subjective evaluations for human occupants in quiet spaces
and the comparison results show excellent agreement between subjective and predicted
evaluations (Murray and Davis, 2015). This validation by subjective evaluations is the
technique applied by the other type of criteria, i.e., correlative criteria.

Correlative criteria relate the acceptability of a floor to its engineering-performance
characteristics not exactly the vibration experienced by occupants (e.g., static deflection
under a concentrated load). In contrast to direct criteria involving accurate predictions of
floor responses due to human activities, as well as the subjectivity of human perception
to one single parameter, correlative criteria derive some empirical links by correlating on
human acceptability of floors to measured or computed parameters from tested floors
and subjective evaluations of the same floors. In particular, the parameters must be
conveniently addressed in design. The correlation studies can be conducted by statistical
analysis such as logistic regression (Hu, 2002). The complex calculation of floor responses
induced by human walking will not necessarily be considered. The limitations of maximum
deflection under a 1 kN concentrated load recommended by Onysko (1988a) and Hu
(2002) come under this category. The static deflection limitations corresponding to a 1
kN concentrated load are still widely used and are preferred by the wood floor industry
(Weckendorf et al., 2015). The application of the limitations on lightweight steel floors
will be validated by subjective evaluations of CFS floors in the following sections.

Above all, direct criteria require accurate prediction of floor responses under human
activities and thresholds of human sensitivity to vibration, which is theoretically impossible
and difficult to apply in daily engineering practice. On the other hand, correlative criteria
would be more practical, although subjective evaluations may result in some uncertainty.
Such uncertainty will be reduced if the subjective surveys are fairly adequate. If the exact

- 157 -



6.2 Basis of design guidelines

floor responses cannot be accurately predicted, direct criteria are essentially correlative
criteria to some extent, even though the absolute thresholds for human sensitivity of
vibrations exist. For instance, since the floor response due to occupant activity is predicted
by simplified methods by Murray et al. (1997) with questionable accuracy in some cases,
the AISC/CISC criterion was developed as a direct criterion initially, but becomes a
correlative criterion after its results were compared with those of subjective evaluations.

6.2.3 Lightweight high-, mid- and low-frequency floors

It is convenient to have different approaches for different types of floors based on their
vibration characteristics under human activities. Building floors are commonly classified
into two categories when vibration serviceability is the focus: high- and low-frequency
(ISO 10137, 2007). This classification was originally introduced by Wyatt (1989), who
suggested that low-frequency floors responded harmonically, with a resonant response,
and high-frequency floors acted impulsively with a transient response (Middleton and
Brownjohn, 2010, 2011). More specifically, floors with a fundamental frequency less
than four times the step frequency will most likely resonate with one of the harmonics,
and the resonance will be constantly maintained by subsequent footfalls. On the other
hand, when the natural frequency of a floor is above four times the step frequency, the
response generated by an individual footfall decays to a comparatively small value by the
time the successive footfall begins due to damping. Resonance is thus unlikely to occur,
and the vibration will most likely be dominated by a transient response. Hence, the
fourth harmonic of the step frequency is commonly used to set the threshold frequency as
approximately 10 Hz (Brownjohn and Middleton, 2008). Different design methods have
been developed for the calculation of resonance and transient responses in floor vibration
serviceability, such as Arup’s methods by Willford and Young (2006).

However, the classification of high- and low-frequency floors needs to be refined for
lightweight floors because most of them have a fundamental frequency greater than 10 Hz
or even more than 20 Hz. The dynamic responses of high-frequency floors (over 10 Hz)
comprise two parts: transient vibrations generated by higher harmonic components of
the footstep forces and motions produced by the varying static floor deflection caused by
the low-frequency components of the footstep forces and their varying location (Allen
and Rainer, 1989). If a high-frequency floor has a fundamental frequency of considerably
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greater than 10 Hz, say over 20 Hz, vibrations in the higher modes generally damp out
quickly and might not cause discomfort. It is the varying static deflection that causes
much of the discomfort. Therefore, the stiffness of the floor under concentrated load will
be sufficient to control floor vibrations. For high-frequency floors with a fundamental
frequency between 10 Hz and 20 Hz, transient vibrations should be taken into account.
For instance, based on a database of 112 field wood floors, Hu (2002) developed a criterion
using the combination of 1 kN deflection and fundamental frequency, as shown in Fig. 6.3.
The fundamental frequency of misclassified floors in Fig. 6.3 are primarily in the range of
10 Hz to 20 Hz.
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Figure 6.3 Proposed criterion by Hu (2002).

Thus, for lightweight floors, the category “high-frequency floor" can be further classi-
fied into two groups: lightweight mid-frequency floors (between 10 Hz and 20 Hz) and
lightweight high-frequency floors (over 20 Hz). It should be pointed out that the threshold
frequencies of 10 Hz and 20 Hz are preliminary assumptions for lightweight floors in this
study and need further investigation. From the governing vibration characteristics of
lightweight high-, mid- and low-frequency floors, three simple vibration models can be
developed: a resonance model for lightweight low-frequency floors, an impulse-vibration
model for lightweight mid-frequency floors, and a point-deflection model for lightweight
high-frequency floors. These three simple models of floor vibration were first proposed in
ATC DG 1 (Allen et al., 1999).

Additionally, it has been noticed that the natural frequencies of lightweight high-
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frequency floors can be within the audible frequency range of humans (roughly 20 Hz–20000
Hz). A thump-like response to footfalls will be primarily audible, and is distinct from
perceptible deflection or vibration. Given the high rigidity of most lightweight floors,
this characteristic appears to reflect a drum-like ability to radiate sound in response
to impacts, especially for wood floors (Bernard, 2008). As a consequence, those floors
satisfying existing vibration design criteria may fail to display satisfactory performance
with respect to vibrational disturbances such as drumminess. However, this issue is
beyond the scope of this research.

6.2.4 Damping

Damping is one of most important factors in vibration serviceability evaluation but
is always excluded in existing design guidelines. Onysko et al. (2000) stated that the
computed response of a floor subjected to an arbitrary dynamic impulse load resulted
in equally successful discrimination between acceptable and unacceptable floors as the
maximum static deflection under 1 kN concentrated load. However, evaluation of damping
was problematic, which inhibited their attempts to develop design guidelines based on
dynamic response. Similarly, zero damping was assumed by Dolan et al. (1999) in their
derivation of a design criterion that requires the fundamental frequency of a floor system
be greater than 15 Hz for unoccupied conditions and greater than 14 Hz for occupied
conditions.

In general, two troublesome problems have impeded the application of damping in
design. First, damping is difficult to assess, and the scatter in quantification is large.
Second, results show many inconsistencies between laboratory and field studies. Damping
in on-site measurements has been significantly higher than that under laboratory con-
ditions (Xu and Tangorra, 2007; Weckendorf and Smith, 2012). However, the problem
can be compensated for by the presence of human occupants. Since human occupants
can increase the damping of unoccupied floors several fold, the wide range of damping
and the inconsistencies between laboratory and field floors have little effect on human
acceptability of floors, assuming single values in a design, which was discussed in the
parametric studies of Section 5.5.2.
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6.2.5 Development of design guidelines

It should be acknowledged that complex engineering problems such as floor vibration
may not have final or universal solutions, and such complex problems need to be reduced
and simplified to achieve a clearer picture of the governing relations. Design criteria and
methods for floor vibration serviceability should capture the most-important features, and
the corresponding performance parameters of the criteria should be measurable, calculable
and explainable. Based on the foregoing discussion of the four important issues in the
vibration serviceability of lightweight floors, it can be recognised that predicting human
acceptability of floors through a given vibration amplitude is unreliable. Correlative
criteria are likely more practical than direct criteria in residential constructions.

Based on the above discussion, a comprehensive subjective evaluation should be
conducted for each type of particular structure based on its intended occupancies and
structural characteristics. The subjective evaluations involve more actual conditions and
can aggregate the effects of experience gained under multiple scenarios. Moreover, with
the significant increase of damping introduced by human occupants, the damping ratios
obtained based on laboratory floors and field floors may not have large inconsistencies if
HSI is considered.

Once the results of subjective evaluations are available, simple parameters should
be proposed for reflecting the governing structural properties and characterizing the
dynamic performance of each type of floor under human activities rather than calculating
the responses induced by human activities. In particular, these parameters must be
conveniently addressed in design and involve the most important factors. After that,
design criteria can be proposed by correlating studies that use subjective evaluations of
human acceptability of floors with computed parameters. Then, design methods need to
be developed for calculation of the parameters.

Finally, the previous investigation in Chapter 5 has illustrated that HSI is an impor-
tant issue that needs to be considered in the evaluation of serviceability performance,
especially for lightweight floors. However, for correlative criteria, it is not necessary to
calculate the exact responses induced by human activities. A carefully selected design
parameter is sufficient to characterize the vibration performance of floors. A floor is
unacceptable owing to its structural properties. Even though human occupants can affect
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the dynamic properties of structures, such as their natural frequencies and damping ratios,
the vibration serviceability may not be improved significantly. Therefore, HSI has been
taken into account in previous analytical studies of floor vibration but not considered in
the development of design guidelines.

6.3 Static criterion for lightweight mid- and high-
frequency floors

In this research, limiting the maximum deflection of floors under a 1 kN concentrated load
applied at the centre is referred to as a static criterion. Two forms of static criteria are
reviewed in Section 2.2: the first in ATC Design Guide 1 (Allen et al., 1999) and CWC
et al. (1997) developed based on Onysko (1988a,b), and the other proposed by Hu (2002)
and Hu and Chui (2004). These two forms are herein designated as Onysko criteria and Hu
criteria, respectively. For the sake of consistency with criteria for lightweight low-frequency
floors, the form of Hu criteria, combining the fundamental frequency and 1 kN deflection,
is adopted to propose a static criterion for lightweight mid- and high-frequency CFS
floors.

6.3.1 Test database and logistic regression

A total of 65 floors tested in a laboratory forms the main database used to find a static
criterion. The tests were conducted by Wiss et al. (1977), Kraus (1997), Samuelsson and
Sandberg (1998), Talja and Kullaa (1998), and Liu (2001). Wiss et al. (1977) measured
the maximum deflection caused by a 300 lb (1.334 kN) concentrated load at mid-span of
the centerline joist. Since the load-deflection curves in Wiss et al. (1977) indicate that
floor systems behave linearly under a concentrated load within this range, the deflections
under 1 kN (225 lb) concentrated load can be obtained from the test results for these
deflections of 1.334 kN (300 lb). As mentioned in Section 2.3, Kraus (1997) and Liu (2001)
conducted similar subjective evaluations on CFS floor systems in the laboratory. Four
lightweight steel joist floors (designated SBI in the tables) tested at the laboratory of the
Swedish Institute of Steel Construction (Samuelsson and Sandberg, 1998) and nine similar
floors (designated VTT in the tables) tested at VTT Building Technology in Finland
(Kullaa and Talja, 1998; Talja and Kullaa, 1998). The test results for these SBI and VTT
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floors were also collected by Hu (2000) to validate her static criteria of wood floors.

Binary logistic regression analysis in SPSSr statistical analysis software (Norušis, 2003)
is performed on the database to determine the correlation of the subjective evaluations with
fundamental frequencies and deflections under 1 kN concentrated load. The background
and methods are given in Hu (2000). It is noted that the binary logistic regression is
restricted to two categories (i.e., acceptable and unacceptable). However, in the database,
the subjective evaluations have three categories: acceptable, marginal and unacceptable.
Given that all the floors were built in a laboratory and that the acceptable floors are far
fewer than the unacceptable floors, the marginal floors in the database are merged with
the acceptable floors in the binary logistic regression analysis. Thus, in total, 65 floors
consisting of 35 unacceptable floors and 31 acceptable floors are used in the analysis. The
cut-off point is equal to 0.5.

6.3.2 Proposed static criterion

From the results of the regression analysis, the criterion for acceptable floors can be
obtained as the fundamental frequency, F , and the deflection under 1 kN concentrated
load, d, satisfying the relationship:

F

d0.44 > 15.9 (6.2)

Table 6.1 summarises classification of floor acceptability as predicted by Eq. (6.2)
and their comparisons with subjective evaluations. In the 31 acceptable floors, 15 floors
are marginal and 16 acceptable in the subjective evaluations. As illustrated in Figs. 6.4
and 6.5, the subjective evaluations in the database are compared with predictions using
the Onysko criterion (i.e., Eq. (2.1)), Hu criteria (i.e., Eqs. (2.3) and (2.4)), and the
proposed criteria in Eq. (6.2). The details of comparisons for each floor in the database
can be found in Tables C.1, C.2, C.3, and C.4 of Appendix C. Although the accuracy
of the prediction using Eq. (6.2) is 64.5% in Table 6.1, only 3 of 16 acceptable floors
are misclassified, which can be observed in Fig. 6.5. Thus, the accuracy for predicting
acceptable floors in the database becomes 81.2%.

Furthermore, the static criteria are also validated using test results for field floors by
Kraus (1997) and CCFSRG, and the comparisons are tabulated in Tables C.5 and C.6
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6.3 Static criterion for lightweight mid- and high-frequency floors

Table 6.1 Classification by logistic regression analysis in SPSSr.

Subjective Predicted results
Accuracy

evaluations Unacceptable Acceptable
34 unacceptable floors 27 7 79.4%
31 acceptable floors† 11 20 64.5%

Overall accuracy 72.3%

†–15 marginal floors and 16 acceptable floors
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Figure 6.4 Comparison of Onysko criterion with subjective evaluations.
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Figure 6.5 Comparison of Hu criteria and proposed criterion with subjective evaluations.

of Appendix C. As can be observed, the acceptance of floors predicted by all four static
criteria match well with the subjective evaluations in tests. However, the Onysko criterion
provides the best predictions, followed by the proposed static criterion of Eq. (6.2). Thus,
both these criteria are recommended for design criteria for the vibration serviceability of
lightweight mid- and high-frequency CFS floor systems. Such criteria may be sufficient for
lightweight high-frequency floors but the dynamic criteria associated with the transient
response of lightweight mid-frequency floors may need to be considered as well, and so is
presented in the following sections.

6.4 Impulsive criterion for lightweight mid-frequency
floors

The static criteria do not directly deal with the dynamic response due to human activities.
A design criterion should be developed based on the transient vibration of lightweight
mid-frequency floors. In this section, a simple parameter is proposed to represent transient
properties of these floors, and then used to develop the design criterion for such floors.
This criterion is termed as the impulsive criterion.
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6.4.1 Floor impulsive factor

The dominant feature of the transient vibration of lightweight mid-frequency floors is
that the floor response is a series of impulses, wherein the impulse due to one footstep
dies away before the next footstep impulse takes place. This feature can be illustrated
by either test results or analytical modelling. Thus, a single impulse due to a footstep
will be sufficient to represent the dynamic response of a lightweight mid-frequency floor
under human walking, as shown in Fig. 6.6. Furthermore, from the parametric study
of walking paths, it can be found that the maximum response always occurs when the
position of the footstep is close to the center of the floor, regardless of walking paths. As
a consequence, the single impulse due to a footstep at the floor center should be selected;
the time window is the period of a walking stride, ts. Given that it is not necessarily to
calculate the exact response of a floor under a footstep, a unit impulse (1 Ns) can be
assumed to excite the floor at the center. If only the first vibration mode is considered,
the deflection response of the floor at the center will be reduced to a SDOF oscillator
under a unit impulse and can be expressed as in Kelly (2012)

x(t) = 1
M1ωd

e−ζωt sinωdt (6.3)

where M1 is the modal mass of the first mode of a floor structure, ζ is the damping ratio
of the first mode, ω and ωd are the first circular frequency and the damped frequency,
respectively. The acceleration response can be obtained by taking the second derivative
with respect to the time. It gives

a(t) = e−ζωt

ωdM1

[
(ζ2ω2 − ω2

d) sinωdt− 2ζωωd cosωdt
]

(6.4)

Since the damping ratios of unoccupied CFS floor systems are unlikely to exceed 0.06,
the damped frequency ωd is approximately equal to ω. Then, substituting ω = 2πf yields

a(t) = −2πfe−2πζft

M1

(
sin 2πft+ 2ζ cos 2πft

)
(6.5)

The duration of the single impulse is the period of the stride, ts. The RMS value can be
used to assess the vibration serviceability, which can be expressed as
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Figure 6.6 Selection of the time window ts for a typical transient response.

arms =
√

1
ts

∫ ts

0
a2(t)dt (6.6)

The faster the walking speeds, the greater the floor responses (Willford and Young,
2006). However, it is not necessary to perform the calculation for the fastest anticipated
walking speed. Having the same step frequency for all floors is sufficient; for instance, the
step frequency of normal walking, fs = 2 Hz, and the corresponding period, ts = 0.5 s.
The setting of the sampling frequency is 200 Hz. The floor impulsive factor, IF , which is
introduced to represent the transient properties of lightweight mid-frequency floors, is
defined as the RMS, with a duration of ts = 0.5 s:

IF =

√√√√ 1
100

100∑
i=1

a2
i (6.7)

where

ai = 2πfeiπζf/200

M1

(
sin

(
iπf

200

)
+ 2ζ cos

(
iπf

200

))
, i = 1, 2, 3, . . . , 100 (6.8)
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6.4.2 Modal mass and damping ratio

As discussed in Section 4.4, the rotational fixity factors are very small. Thus, it can be
assumed that all edges are simply supported when calculating the modal mass. From the
calculation methods in Feldmann et al. (2009), the modal mass is obtained from

M = Mt

4 (6.9)

where M is the modal mass and Mt is the total mass. If span a is much larger than width
b, the modal mass can be determined from

M = Mt

4

(
2 − b

a

)
(6.10)

For field floors, the portion of live load should be added to the total mass. As recommended
in ATC Design Guide 1 by Allen et al. (1999) and AISC/CISC Design Guide 11 by Murray
et al. (1997), the live load for residential construction is 0.25 kPa.

Based on test data and other design guides such as from Willford and Young (2006),
Feldmann et al. (2009), and Smith et al. (2009), damping values for floor systems can be
determined as suggested in Table 6.2 for different construction materials, furnishings and
conditions of use.

Table 6.2 Suggested damping ratio for CFS floor systems.

Type Damping ratio
Structural damping D1

wood joists with subfloor 0.03
CFS joists with subfloor 0.01
Damping due to topping and Ceiling D2

Topping or covering 0.005
Ceiling 0.005

Concrete topping 0.015
Damping due to furnishings D3

a small amount of furnishings 0.01
fully furnished 0.02

Total damping D = D1 + D2 + D3
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6.4.3 Proposed impulsive criterion

The RMS acceleration levels tolerated by humans tend to increase for flooring with higher
fundamental frequencies (de Andrade and de Andrade, 2000), as can be observed from the
limits in ISO 2631-2 (1989). Thus, limiting floor impulsive factors for acceptable floors
depends on the fundamental frequency. The relationship between the floor impulsive
factors, IF , and the fundamental frequency, F , can be developed by correlation studies
on the subjective evaluations of lightweight mid-frequency floors.

The database built in Section 6.3.1 for static criteria is employed again, but only
floors with a fundamental frequency in the range of 9Hz to 24Hz are selected. Then, floor
impulsive factors can be calculated for every floor, based on Eq. (6.7). As mentioned in
Section 6.3.1, the binary logistic regression analysis in SPSSr statistical analysis software
can be employed to obtain the correlation of the subjective evaluations with fundamental
frequencies and floor impulsive factors. After merging the marginal floors to acceptable
floors in the database, a total of 49 floors, consisting of 31 unacceptable floors and 18
acceptable floors, is used in the analysis. The cut-off point is also equal to 0.5.

From the result of the regression analysis, the criterion for acceptable floors can be
obtained as the fundamental frequency, F , and the floor impulsive factors, IF , satisfying
the relationship:

F

I0.24
F

> 22.5 (6.11)

Table 6.3 summarises the classification of floor acceptability as predicted by Eq. (6.11)
and their comparisons with subjective evaluations. Fig. 6.7 illustrates the subjective eval-
uations in the database and predictions by the impulsive criterion proposed in Eq. (6.11).
It can be observed that 2 of 6 acceptable floors in the database are misclassified, and the
accuracy of predictions is 66.7%. For comparison, the vibration performance of the floors
is also evaluated by the static criterion proposed in Eq. (6.2), as shown in Fig. 6.8. The
details of the predictions by both proposed static criterion and impulsive criterion can be
found in Tables D.1, D.2, and D.3 from Appendix D.

Furthermore, the proposed impulsive criterion is also validated using test results for
field floors by Parnell (2008) and Davis (2008). Meanwhile, test results of wood floors
collected by Hu (2000) are also adopted for validation. The comparison of the subjective
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Table 6.3 Classification by logistic regression analysis in SPSSr.

Subjective Predicted results
Accuracy

evaluations Unacceptable Acceptable
31 unacceptable floors 25 6 80.6%
18 acceptable floors† 10 8 44.4%

Overall accuracy 67.3%

†–12 marginal floors and 6 acceptable floors

8 10 12 14 16 18 20 22 24 26
0

0.5

1

1.5

2

Measured Fundamental Frequency (Hz)

F
lo

o
r 

im
p

u
ls

iv
e 

fa
ct

o
r 

(m
/s

2 )

 

 

Unacceptable !oors
Marginal !oors
Acceptable !oors

F/I
F

0.24=22.5

Figure 6.7 Proposed impulsive criterion with the subjective evaluations.
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evaluations with predictions using the proposed criteria are tabulated in Tables D.4 and
D.5 in Appendix D. As can be observed, the acceptance of floors predicted by the proposed
static and impulsive criteria are in excellent agreement with each other, and both criteria
match well with the subjective evaluations in tests.

6.5 Resonance criterion for lightweight low-frequency
floors

6.5.1 Floor resonance factor

Resonance is the dominant floor vibration in lightweight low-frequency floors, and it
occurs when a harmonic component of a periodic force introduced by footsteps corresponds
to the natural frequency of the floor. Since all other harmonic vibrations are small in
comparison to the harmonic associated with resonance, only one harmonic component of
the footstep force is adopted (Murray et al., 1997). If only the first vibration mode is
accounted for, a SDOF oscillator under the sinusoidal force corresponding to the resonance
can be adopted to characterise the resonant nature of lightweight low-frequency floors.
The unit sinusoidal force can be expressed as

F (t) = sin 2πft (6.12)

where f is the forcing frequency, which is equal to the fundamental frequency of the
floor. To determine dynamic response to the sinusoidal loading of Eq. (6.12) of a SDOF
oscillator, the dynamic deflection of the oscillator under a steady-state response is given
by (Inman, 2007):

x(t) = AF sin 2πft
k

(6.13)

where k is the stiffness of the oscillator, and AF is the amplification factor as in

AF = 1√√√√√1 −
(
f

fo

)2
2

+
(

2ζ f
fo

)2
(6.14)
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where f is the forcing frequency and fo is the frequency of the oscillator. Under resonance
conditions (f = fo), the amplification factor will be

AF = 1
2ζ (6.15)

Substituting Eq. (6.15) and (2πf)2 = k/M1, where M1 is the modal mass corresponding
to the first vibration mode, into Eq. (6.13) gives

x(t) = 1
2ζ

sin 2πft
(2πf)2M1

(6.16)

The acceleration response can be determined by taking the second derivative with respect
to time t on Eq. (6.16), yielding

a(t) = −sin 2πft
2ζM1

(6.17)

The RMS values of the acceleration response can be employed to evaluate the vibration
serviceability. Given that the maximum value is approximately 0.7 times the RMS value
for the sinusoidal response, it gives

arms = 0.35 1
ζM1

(6.18)

Thus, a floor resonance factor RF is proposed for lightweight low-frequency floors as

RF = 1
ζM1

(6.19)

It should be noted that the unit sinusoidal force of Eq. (6.12) is inspired from one
harmonic component of footstep forces associated with resonance, which will decrease
with increasing frequencies. As a result, the floor resonance factor, RF , for acceptable
lightweight low-frequency floors is related to the fundamental frequencies of floors. This
issue will be reflected in the development of the design criterion.
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6.5.2 Resonance criterion

In view of the correlative criteria, subjective evaluations of CFS floor systems should be
conducted on-site or in a laboratory. However, there are no existing subjective evolutions
available for lightweight low-frequency floors built with CFS joists. Fortunately, as
discussed in Section 6.2.2, subjective evaluations have been reported recently (Murray
and Davis, 2015) for open-web steel-joist and joist-girder supported concrete slab floor
systems. The subjective evaluations show excellent agreement with evaluations predicted
by applying the method of Murray and Davis (2015), which has minor revisions to the
approach proposed by Murray et al. (1997). The floor response due to occupant activity
was predicted by simplified methods (Murray et al., 1997) which might not be able to
provide accurate responses in some cases. As a consequence, the AISC/CISC criterion was
initially developed as a direct criterion, but it eventually becomes a correlative criterion.
Since it is known that the design criterion is independent of the construction material, the
AISC/CISC criterion can be applied as a tentative criterion for lightweight low-frequency
floors. Validation studies should be conducted if the subjective evaluations exist for such
floors in the future.

The AISC/CISC criterion is expressed as

Poexp(−0.35fn)
βW

6
ao

g
(6.20)

where P0 is a constant force equal to 0.29 kN for floors, fn is the fundamental natural
frequency of a floor, β is modal damping ratio, and W is the modal mass of its funda-
mental mode of vibration. The acceleration limit, ao/g, for office and residential building
occupancies is taken as 0.5%. Rearranging Eq. (6.20) gives

1
βW

6
ao

g

1
Poexp(−0.35fn) (6.21)

Therefore, resonance criterion–that is, the design criterion for lightweight low-frequency
floors, plotted in Fig. 6.9, will be derived as

RF = 1
ζM1

6
1

5800e−0.35f (6.22)
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where f , ζ and M1 are the fundamental frequency, the damping ratio and the modal mass
of the first vibration mode of the floor.

10

1

4 5 7 8 9 106
0.1

Fundamental frequency (Hz)

Acceptable

Unacceptable

R
F

  (
×

10
-3

)

Figure 6.9 Resonance criterion for lightweight low-frequency floors.
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6.6 Design procedure

The design procedure is set out step-by-step below:

1) Calculate the fundamental frequency, F ;

2) Determine the floor type based on F ;

3) Compute floor resonance factors, RF , for lightweight low-frequency floors or deflection
under 1 kN concentrated load, d, for lightweight high- and mid-frequency floors, and
check the resonance criterion or static criterion.

4) Evaluate the floor impulsive factors, IF , for lightweight mid-frequency floors if they
satisfy the static criterion.

The flowchart of the design procedure is illustrated in Fig. 6.10.

Structural properties

Fundamental 
frequency

Resonance criterion Impulsive criterion
No

No

No Yes

Yes

Yes

Floor impulsive factor

Static criterion

1 kN de!ection 

Floor resonance factor

Adjust 
!oor 

structure

Adjust 
!oor 

structure

    Lightweight
low-frequency !oors

( < 10 Hz )

    Lightweight
mid-frequency !oors

( 10 Hz ~ 20 Hz )

    Lightweight
high-frequency !oors

( > 20 Hz )

Finish

Figure 6.10 Flowchart of the design guideline.
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6.7 Examples

The following examples illustrate the application of proposed design procedures to evaluate
vibration performance of CFS floor systems.

Example 1: A CFS floor with OSB sheathing

As shown in Fig. 6.11, a residential floor, spanning 4.27 m and 4.5 m wide, is designed for
strength criteria with 800S162–43 CFS C-shape joists at 400 mm spacing. The subfloor
and ceiling of the floor are 16 mm (5/8 in.) OSB and 13 mm (1/2 in.) gypsum ceiling
board, respectively. One row of steel strapping (58×1.44 mm) are located at mid-span
with a 600S162–43 CFS channel blocking placed at every five joist-spacing. The joist ends
are connected to a CFS rim-track section and are simply supported.

Sub�oor

Strapping

CFS joists

Ceiling

Blocking

Figure 6.11 A CFS floor with OSB sheathing.

Geometry

Span: L = 4.27 m Width: b = 4.5 m Joist spacing: s = 400 mm
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Structural properties

Structural properties of joists and blockings are obtained from SSMA (2015), and those
of OSB and gypsum board are from Allen et al. (1999).

CFS joists 800S162-43 C-shape
Depth: dj = 203 mm Area: Aj = 346 mm2 Density: ρ = 2.723 kg/m

Mass: mj = ρL = 11.63 kg

Flexural stiffness: EIj = 3.914 × 105 Nm2

Axial stiffness: EAj = 7.024 × 107 N

Blocking
Area: Ab = 288 mm2 Moment of inertia: 9.64 × 105 mm4

Flexural stiffness: EIb = 1.957 × 105 Nm2

Mass: mb = 2.26 kg/m× s× 3=2.712 kg

OSB panel
Depth: do = 16 mm Mass mo = 199.84 kg

Flexural stiffness (parallel to joists): EIoj = 361.6 Nm2

Flexural stiffness per unit width (transverse to joists): EIot = 3051 Nm

Axial stiffness (parallel to joists): EAoj = 2.468 × 107 N

Ceiling
Mass: mc = 162.37 kg

Effective flexural stiffness

Slip modulus: k = 4.14 × 106 N/m2 (Allen et al., 1999)
Modified axial stiffness of the OSB (Eq. (4-3b) of Allen et al. (1999)):

EA′
oj = EAoj

1 + 10EAoj

kL2

= 5.78 × 106 N

Effective flexural stiffness:
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h = dj + do

2 = 109.6 mm

From Eq. (4-3a) of Allen et al. (1999), it can be obtained that

EIeff = EIj + EIoj +
EA′

oj · EAj

¯EAoj + EAj

h2 = 4.559 × 105 Nm2

From Section 4.5.1, the equivalent rigidities and fundamental frequency can be deter-
mined as follows:

Equivalent rigidities

Dx = EIeff

s
= 1.14 × 106 Nm

Dy = 1
L

(
EIot + 2 3

11EIb

)
= 2.57 × 104 Nm

where 3/11 is used for discrete blockings because only three blockings are installed in the
eleven joist spacings.

H = 0

Fundamental frequency

Mass
m = mo +mc +mj(Nj − 1) +mb = 492.8 kg

Fundamental frequency

F = π

2

√
Lb

m

√
Dx

L4 + 2 H

L2b2 + Dy

L4 = 18.33 Hz

Since
10 Hz < F < 20 Hz

the floor is a lightweight mid-frequency floor. The static criterion and impulsive criterion
should be checked for vibration serviceability. For the reason of demonstration, only the
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impulsive criterion is checked here. The evaluation of floor deflection subjected to 1 kN
concentrated load at the center of the floor can be referred to ATC Design Guide 1 by
Allen et al. (1999).

Checking the impulsive criterion

Modal mass: M1 = m/4 = 123.2 kg Damping ratio: ζ = 0.015
Floor impulsive factor (Eq. (6.7))

IF =

√√√√ 1
100

100∑
i=1

a2
i = 0.4565 m/s2

Check the impulsive criterion (Eq. (6.11))

F

I0.24
F

− 22.5 = −0.3783 < 0

The floor is unacceptable for vibration serviceability.

Ledger or balloon framing

If the floor is ledger or balloon framing, the restraint coefficient c1 = 1.13, c2 = 1 and
c4 = 1 for the transverse elements located at the mid-span. Then, the fundamental
frequency will be

F = π

2

√
Lb

m

√
c1Dx

L4 + 2 c2H

L2b2 + Dy

L4 = 19.46 Hz

Floor impulsive factor

IF =

√√√√ 1
100

100∑
i=1

a2
i = 0.4783 m/s2

Check the impulsive criterion

F

I0.24
F

− 22.5 = 0.7298 > 0
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After considering the rotational restraints of ledger or balloon framing, the floor is
acceptable for vibration serviceability.
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Example 2: A CFS floor with steel deck and lightweight concrete
topping

A CFS floor system (Fig. 6.12) is constructed using nine 1200S2000–68 CFS C-shape
joists at 610 mm (24 in.) spacing, and the span length is 5.95 m. The subfloor is 22 gauge
(0.76 mm) metal form deck (UFS) with lightweight concrete topping: USG LevelRockr

3500 floor underlayment. The ceiling is 15.9 mm (5/8 in.) type C gypsum board. Two
rows of 1200S200–54 CFS channel blockings are placed at every four joist-spacing at the
3/4 and 1/4 of the span. The joist ends are connected to a CFS rim-track section and are
simply supported.

Blocking

Strapping

CFS Joists

Ceiling

Steel deck with concrete topping

Figure 6.12 A CFS floor with steel deck and concrete topping.

Geometry

Span: L = 5.95 m Width: b = 4.88 m Joist spacing: s = 610 mm

Structural properties

Structural properties of joists and blockings are obtained from SSMA (2015), and those
of OSB and gypsum board are from Allen et al. (1999). Properties of steel deck and
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concrete topping LevelRockr can be referred to the manufacturer.

CFS joists
Depth: dj = 305 mm Area: Aj = 769 mm2 Density: ρ = 6.041 kg/m

Mass: mj = ρL = 39.87 kg

Flexural stiffness: EIj = 1.854 × 106 Nm2

Axial stiffness: EAj = 1.561 × 108 N

Blocking
Area: Ab = 615 mm2 Moment of inertia: 7.35 × 10−6 m4

Flexural stiffness: EIb = 1.376 × 106 Nm2

Mass: mb = 4.82 kg/m× s× 6=17.6 kg

Steel deck
22 gauge UFS form deck Thickness: td = 0.7 mm Mass: md = 212.63 kg

LevelRockr

Thickness (parallel to joists): tlj = 23.8 mm Mass md = 1727.58 kg

Thickness (transverse to joists): tlt = 31 mm

Young’s modulus (ACI Committee 318, 2008): Ec = 16.6 Gpa

Flexural stiffness (parallel to joists): EIcj = 11393.88 Nm2

Based on ANSI/SDI C-2011 (2012), flexural stiffness per unit width (transverse to

joists):
EIct = 84001 Nm

Axial stiffness (parallel to joists): EAcj = 24.11 × 107 N

Ceiling
Mass: mc = 311.84 kg

Effective flexural stiffness

Slip modulus is assumed as k = 100 × 106 N/m2 from test results of Erdélyi and Dunai
(2009).
Modified axial stiffness of the subfloor:
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EA′
oj = EAcj

1 + 10EAcj

kL2

= 143.43 × 106 N

Effective flexural stiffness:

h = dj + tlj
2 + 0.5 × 0.0254 = 0.1778 m

EIeff = EIj + EIcj +
EA′

cj · EAj

¯EAcj + EAj

h2 = 4.208 × 106 Nm2

From Section 4.5.1, the equivalent rigidities and fundamental frequency can be deter-
mined as follows:

Equivalent rigidities

Dx = EIeff

s
= 6.899 × 106 Nm

From Eq. (4.50),

Dy = 1
L

(
EIot + 2 × 2 × 0.5 × 3

8EIb

)
= 1.88 × 105 Nm

where 3/8 is used for discrete blockings because only three blockings are installed in the
eight joist spacings. Two rows of blockings are installed at the 1/4 and 3/4 of the span.
For each location, the restraint coefficient c4 = 0.5.

H = 0

Fundamental frequency

Mass
m = md +ml +mc +mj(Nj − 1) +mb = 2557.26 kg

Fundamental frequency
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F = π

2

√
Lb

m

√
Dx

L4 + 2 H

L2b2 + Dy

L4 = 12.78 Hz

Since
10 Hz < F < 20 Hz

the floor is a lightweight mid-frequency floor. The static criterion and impulsive criterion
should be checked for vibration serviceability. For the reason of demonstration, only the
impulsive criterion is checked here. The evaluation of floor deflection subjected to 1 kN
concentrated load at the center of the floor can be referred to ATC Design Guide 1 by
Allen et al. (1999).

Checking the impulsive criterion

Modal mass: M1 = m/4 = 639.32 kg Damping ratio: ζ = 0.03
Floor impulsive factor in Eq. (6.19)

IF =

√√√√ 1
100

100∑
i=1

a2
i = 0.0679 m/s2

Check the impulsive criterion of Eq. (6.22)

F

I0.24
F

− 22.5 = 1.88 > 0

The floor is acceptable for vibration serviceability.

Ledger or balloon framing

If the floor is ledger or balloon framing, the restraint coefficient c1 = 1.13, c2 = 1
and c4 = 0.5 for the transverse elements located at the 1/4 and 3/4 span. Then, the
fundamental frequency will be

F = π

2

√
Lb

m

√
c1Dx

L4 + 2 c2H

L2b2 + Dy

L4 = 13.54 Hz
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Floor impulsive factor in Eq. (6.19)

IF =

√√√√ 1
100

100∑
i=1

a2
i = 0.0714 m/s2

Check the impulsive criterion of Eq. (6.22)

F

I0.24
F

− 22.5 = 3.0227 > 0

The floor is acceptable for vibration serviceability.
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Example 3: A long-span CFS floor

Fig. 6.13 illustrates a long-span CFS floor system with span of 7.2 m. Floor configurations
are the same as the floor in Example 2 except that one strongback of 362S125-54 is
installed at the mid-span.

Steel deck with concrete topping

CFS Joists

Ceiling

Strapping

Blocking

Strongback

Figure 6.13 A long-span CFS floor with steel deck and concrete topping.

Structural properties

Structural properties are the same in Example 2.

Strongback
Area: As = 222 mm2

Flexural stiffness: EIs = 5.58 × 105 Nm2

Mass: ms = 1.74 kg/m× b=8.5 kg
From Section 4.5.1, the equivalent rigidities and fundamental frequency can be deter-

mined as follows:

Equivalent rigidities
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Dx = EIeff

s
= 7.17 × 106 Nm

From Eq. (4.50),

Dy = 1
L

(
EIot + 2 × 2 × 0.5 × 3

8EIb + 2 × EIs

)
= 1.81 × 105 Nm

H = 0

Fundamental frequency

Mass
m = md +ml +mc +mj(Nj − 1) +mb +ms = 3099.3 kg

Fundamental frequency

F = π

2

√
Lb

m

√
Dx

L4 + 2 H

L2b2 + Dy

L4 = 9.14 Hz

Since
F < 10 Hz

the floor is a lightweight low-frequency floor. The resonance criterion should be checked
for vibration serviceability.

Checking the resonance criterion

Modal mass: M1 = m/4 = 774.8 kg Damping ratio: ζ = 0.03
Floor resonance factor (Eq. (6.19)) (Eq. (6.22))

RF = 1
ζM1

= 0.043 m/s2

Check the impulsive criterion (Eq. (6.22))

RF − 1
5800e−0.35F

= 0.0379 > 0
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The floor is unacceptable for vibration serviceability.

6.8 Summary

In this chapter, existing design criteria for the evaluation of the performance of floor
vibration are classified into two categories: direct and correlative. The correlative criteria
are developed for CFS floor systems in residential construction. Based on the fundamental
frequency of the floor, CFS floors are divided into three types: lightweight high-, mid- and
low-frequency floors. A static criterion is proposed for lightweight high- and mid-frequency
floors, and the existing static criteria are also validated with the test results. From the
validation studies, the Onysko criterion provides the best predictions, followed by the
proposed static criterion of Eq. (6.2). Thus, both are recommended as design criteria for
the vibration serviceability of lightweight mid- and high-frequency CFS floor systems.
Static criteria are not sufficient for lightweight mid-frequency floors (between 10 Hz and
20 Hz), and an impulsive criterion is needed. By introducing the floor impulse and
resonance factors, impulse criterion and resonance criterion are respectively developed
for the evaluation vibration performance of mid- and low-frequency floors. Lastly, a
design procedure is proposed together the presentation of three examples to illustrate the
proposed procedure.
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7.1 Conclusions

This research has produced numerous results and findings related to rotational restraints
along floor edges and human-structure interaction. These findings have been used to
evaluate the vibration performance of lightweight steel floors affected by human walking,
and led to recommendations on performance criteria and corresponding methods for
vibration serviceability in residential construction. The key conclusions are as follows.

7.1.1 Method of finite integral transform

The finite integral transforms are remarkable methods, which simply convert differential
equations to algebraic equations. The resulting equations can be solved without much
difficulty, and solutions for the original differential equations can be obtained using the
inverse integral transform. This procedure is straightforward in concept and systematic
in formulation.

The method of finite integral transform has been applied to flexural and vibration
analysis of a rectangular orthotropic plate with rotationally restrained edges. A new
rotational fixity factor has been introduced to define rotational restraints to reflect the
relative stiffness of the plate and the restraints. Thus, the present approach for plates with
rotationally restrained edges can be applied for plates with general boundary conditions–
from simply supported to fully clamped–by using the corresponding rotational fixity
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factors. The present method is validated through numerical examples by comparing the
results with available exact solutions and approximate solutions. It can be concluded that

• The proposed rotational fixity factor is simple and convenient for design practice as
it results in an approximately linear relationship between the factor and the moment
or deflection.

• The method of finite integral transform is simple and straightforward, can be calcu-
lated with the desired accuracy, and has general applicability. However, this unified
and systematic method only provides approximate values for vibration analysis of
plates due to the issue of slow convergence.

• Two different formulations exist for the method when applying it to flexural and
vibration analysis of plates. The right one must be carefully chosen for free vibration
analysis of plates with rotational restrained edges; otherwise, the numerical results
may not be available.

7.1.2 Equivalent orthotropic plates for CFS floor systems

An analytical approach based on the Rayleigh method has been presented for calculating
the fundamental frequency of a CFS floor system while considering the effect of the
rotational restraints along two opposite edges. The beam characteristic function has
been obtained using the method of finite integral transform and used as the admission
function. The equivalent rigidities and mass of equivalent orthotropic plates for CFS floor
systems were developed. The effects of transverse elements such as blocking, strapping
and stongbacks are discussed. Some conclusions can be drawn from the study:

• The rotational fixity factor needs to be considered when calculating the fundamental
frequency, and the recommended values can be adopted as 0.1 for ledger-framed or
balloon-framed CFS floor systems and 0 for platform framing.

• The proposed method makes more-accurate evaluations of the transverse flexural
stiffness that significantly influences the floor’s structural properties.

• A design equation has been developed for calculating the fundamental frequency of
CFS floors.
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7.1.3 Damped plate-oscillator models

A damped plate-oscillator model has been proposed to investigate the dynamic behaviors
of lightweight steel floor systems with occupants and predict the dynamic responses of
floors affected by human walking. The influence of stationary occupants on dynamic
properties of lightweight floors has been studied. The results predicted by the proposed
damped plate-oscillator model were compared with results of the laboratory tests on CFS
floor systems with and without occupants. Three models used for predicting dynamic
response induced by human walking–MF, MDO and MSDO–were proposed and examined
against the test results. Finally, parametric studies have been conducted on the effects of
step frequencies, damping ratios, mass ratios and walking paths. The analyses show that

• The influence of the human occupants on floor vibration are dependent on the humans’
location on the floor. The dynamic properties of a vibration mode will not be affected
by the presence of occupants who are located at the nodal points of the mode.

• It may not be necessary to adopt 2-DOF human models to evaluate dynamic properties
of floor-occupant system as a SDOF model appears to be sufficient for design practice.

• The Falati SDOF model (Falati, 1999) may not be appropriate for simulating occupants
on lightweight steel floor systems. Human occupants standing close together should
be modelled as one SDOF model instead as individuals.

• Human occupants will introduce additional vibration modes, but the frequencies of
combined floor-occupant systems are not always nested among the natural frequencies
of unoccupied floors, especially for cases with small mass ratios (i.e., γ < 0.1) and
high human damping ratios (ζh > 50% in this study).

• A 2-DOF human-structure model may be sufficient for qualitative analysis of human-
structure interaction, but it is not recommended for evaluating the dynamic properties
and responses of floor-occupant systems because the model considers only one struc-
tural mode. The damped plate-oscillator model provides more- accurate results.

• The Brownjohn SDOF human model can be adopted for lightweight steel floor systems
but the modal mass mh may be less than the human total mass mt.

• Given that the significant influence of human occupants, the model of moving and
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stationary damped-oscillators is appropriate for predicting floor responses induced by
human walking.

• Damping ratios of lightweight steel floors are significantly increased by human oc-
cupants, and the uncertainties and inconsistencies between the laboratory and field
studies will be reduced.

7.1.4 Design criteria and methods in residential construction

Design criteria were classified as either direct or correlative, with the correlative criteria
being developed for lightweight steel floor systems in residential constructions. For
simplicity, lightweight floors are divided into three types: lightweight high-, mid-, and
low-frequency. Existing static criteria were validated for lightweight steel floors. A static
criterion has been developed by logistic regression. Impulse and resonance criteria were
proposed by introducing the floor impulse factor and resonance factor, respectively. Lastly,
a design procedure was presented along with three demonstrated examples. It can be
concluded that

• Static criteria are not sufficient for lightweight mid-frequency floors (between 10 Hz
and 20 Hz), and an impulsive criterion is needed.

• From the validation studies, the Onysko criterion provides the best predictions, followed
by the proposed static criterion of Eq. (6.2). Thus, both are recommended as design
criteria for the vibration serviceability of lightweight mid- and high-frequency CFS
floor systems.

• The proposed impulsive criterion and resonance criterion are both tentative, and so
future investigations and validations may be needed.

7.2 Recommendations for future research

Recommendations for future work include:

• Partial composite action and load sharing action of CFS floor systems should be
investigated for calculating the maximum deflection under 1 kN concentrated load.
The slip modulus between subfloor and CFS joists need to be determined. The exact
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series solutions obtained by the finite integral transform method can be adopted to
develop the load sharing action.

• The equivalent rigidities of CFS floors in Chapter 4 are used for vibration analysis.
The structural properties of equivalent orthotropic plates of CFS floors under static
load should be determined.

• Retrofit techniques to improve the vibration performance of lightweight steel floors
should be investigated using the analytical tools developed in this research.
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Appendix A
Bending of R-F-R-F Orthotropic

Plates

A.1 Formulation and methodology

Consider a rectangular orthotropic thin plate with length a and width b having two
opposite edges free (i.e., y = 0 and y = b) and the others elastically restrained against
rotations (i.e., x = 0 and x = a) as shown in Fig. A.1.

Denoting partial differentiation by a comma, the boundary conditions of the plate can
be written as

w = 0, Mx = −Dx (w,xx +νyw,yy ) = −Rx0w,x at x = 0 (A.1a)

w = 0, Mx = −Dx (w,xx +νyw,yy ) = Rxaw,x at x = a (A.1b)

My = −Dy (w,yy +νxw,xx ) = 0 at y = 0, b (A.1c)

Vy = −Dyw,yyy − (H + 2Dxy)w,yxx = 0 at y = 0, b (A.1d)

where Mx and My are the bending moments, Vy is the effective shear force, and Rx0 and
Rxa are rotational spring constants shown in Fig. A.1. Based on Eqs. (3.41), a rotational
fixity factor r was introduced as
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A.1 Formulation and methodology

a

o

x

y

b RxaRx0

Free

Free

Figure A.1 Orthotropic plate with opposite free and rotationally restrained edges.

3rx0Dx = (1 − rx0)Rx0a (A.2a)

3rxaDx = (1 − rxa)Rxaa (A.2b)

Then, a general boundary condition can be simulated by different values of rotational
fixity factors with range from 0 to 1. The simply supported and fully clamped boundary
conditions will be treated as the limiting cases with r = 0 and r = 1, respectively. Taking
the finite cosine transform of the boundary conditions in Eqs. (A.1a) and (A.1b) with
respect to y, and the finite sine transform of the boundary condition in Eqs. (A.1c) and
(A.1d) with respect to x, it results the following

Dxŵ,xx (0, n) = Rx0ŵ,x (0, n) (A.3a)

Dxŵ,xx (a, n) = −Rxaŵ,x (a, n) (A.3b)

w̄,yy (m, y) = νxα
2
mw̄(m, y), for y = 0, b (A.3c)

w̄,yyy (m, y) = H + 2Dxy

Dy

α2
mw̄,y (m, y), for y = 0, b (A.3d)
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A.1 Formulation and methodology

Subsequently, the method of finite integral transform will be applied to solve Eq. (3.3).
First of all, the joint finite integral transform is defined by applying finite sine transform
with respect to x with m as the subsidiary variable and the finite cosine transform with
respect to y with n as the subsidiary variable. It can be expressed as

̂̄w(m,n) =
∫ a

0

∫ b

0
w(x, y) sinαmx cos βnydxdy (A.4)

where
αm = mπ

a
, βn = nπ

b
(m = 1, 2, 3, ..., n = 0, 1, 2, 3, ...) (A.5)

The inversion of Eq. (A.4) can be obtained as (Sneddon, 1972)

w(x, y) = 4
ab

∞∑
m=1

∞∑
n=0

εn
̂̄w(m,n) sinαmx cos βny (A.6)

where

εn =


1/2, n = 0

1, n ̸= 0
(A.7)

Similarly, the joint finite sine and cosine transforms of the fourth derivatives in Eq. (3.3)
are given by

∫ a

0

∫ b

0
w,xxxx sinαmx cos βnydxdy =α4

m
̂̄w(m,n)

− αm

[
(−1)mŵ,xx (a, n) − ŵ,xx (0, n)

] (A.8a)

∫ a

0

∫ b

0
w,xxyy sinαmx cos βnydxdy =α2

mβ
2
n
̂̄w(m,n)

− α2
m

[
(−1)nw̄,y (m, b) − w̄,y (m, 0)

] (A.8b)

∫ a

0

∫ b

0
w,yyyy sinαmx cos βnydxdy =β4

n
̂̄w(m,n)

+
[
(−1)nw̄,yyy (m, b) − w̄,yyy (m, 0)

]

− β2
n

[
(−1)nw̄,y (m, b) − w̄,y (m, 0)

]
(A.8c)
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A.1 Formulation and methodology

where coefficients ŵ,xx (0, n) and ŵ,xx (a, n) are determined from the finite cosine trans-
form with respect to y at the rotationally restrained edges (x = 0 and x = a). Similarly,
w̄,y (m, 0) and w̄,y (m, b) are determined from the finite-sine transformed boundary condi-
tions at two free edges, separately. Then, it can be obtained from Eq. (A.3d) that
[
(−1)nw̄,yyy (m, b) − w̄,yyy (m, 0)

]
= H + 2Dxy

Dy

α2
m

[
(−1)nw̄,y (m, b) − w̄,y (m, 0)

]
(A.9)

Substituting Eq. (A.9) into Eq. (A.8c) yields

∫ a

0

∫ b

0
w,yyyy sinαmx cos βnydxdy

=β4
nŵ(m,n) +

H + 2Dxy

Dy

α2
m − β2

n

[(−1)nw̄,y (m, b) − w̄,y (m, 0)
] (A.10)

Taking the joint finite sine and cosine transform of the governing equation Eq. (3.3) and
making use of Eqs. (A.8a), (A.8b) and (A.10) yields

̂̄w(m,n) = 1
Ωmn

̂̄q(m,n) + αmDx

[
(−1)mŵ,xx (a, n) − ŵ,xx (0, n)

]

+Dy(νxα
2
m + β2

n)
[
(−1)nw̄,y (m, b) − w̄,y (m, 0)

]
(A.11)

where
Ωmn = Dxα

4
m + 2Hα2

mβ
2
n +Dyβ

4
n (A.12)

̂̄q(m,n) =
∫ a

0

∫ b

0
q(x, y) sinαmx cos βnydxdy (A.13)

Taking the inverse finite cosine transform with respect to y of Eq. (A.11), it is obtained

w̄(m, y) = 2
b

∞∑
n=0

εn
̂̄w(m,n) cos βny (A.14)

Taking second-order derivative of Eq. (A.14) with respect to y and using the Stokes’s
transformation gives
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w̄,yy (m, y) = 2
b

∞∑
n=0

εn


[
(−1)nw̄,y (m, b) − w̄,y (m, 0)

]
− β2

n
̂̄w(m,n)

 cos βny (A.15)

Substituting Eqs. (A.3c) and (A.14) into Eq. (A.15), it is arrived at

∞∑
n=0

εn


[
(−1)nw̄,y (m, b) − w̄,y (m, 0)

]
− (νxα

2
m + β2

n) ̂̄w(m,n)

 = 0 (A.16a)

∞∑
n=0

(−1)nεn


[
(−1)nw̄,y (m, b) − w̄,y (m, 0)

]
− (νxα

2
m + β2

n) ̂̄w(m,n)

 = 0 (A.16b)

Then, taking the inverse finite sine transform of Eq. (A.11) with respect to x yields

ŵ(x, n) = 2
a

∞∑
m=1

̂̄w(m,n) sinαmx (A.17)

Taking the derivative of Eq. (A.17) with respect to x and using Stokes’s transformation,
it is found

ŵ,x (x, n) = 2
a

∞∑
m=1

αm
̂̄w(m,n) cosαmx (A.18)

Substituting Eq. (A.3a) and (A.3b) into Eq. (A.18) and replacing constants Rx0 and
Rxa by the corresponding rotational fixity factors rx0 and rxa based on Eqs. (A.2), the
following equations can be obtained

a2(1 − rx0)ŵ,xx (0, n) = 6rx0

∞∑
m=1

αm
̂̄w(m,n) (A.19a)

a2(1 − rxa)ŵ,xx (a, n) = −6rxa

∞∑
m=1

(−1)mαm
̂̄w(m,n) (A.19b)

Substituting Eq. (A.11) into Eqs. (A.16) and (A.19), it yields four infinite systems of linear
Eqs. (A.20), (A.21), (A.22) and (A.23) with respect to coefficients ŵ,xx (0, n), ŵ,xx (a, n),
w̄,y (m, 0), and w̄,y (m, b).
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A.1 Formulation and methodology

∞∑
n=0

εnΦmn
̂̄q(m,n) =

∞∑
n=0

(−1)nεn(1 − ΨmnDy)w̄,y (m, b)

−
∞∑

n=0
εn(1 − ΨmnDy)w̄,y (m, 0)

−
∞∑

n=0
(−1)mεnαmΦmnDxŵ,xx (a, n)

+
∞∑

n=0
εnαmΦmnDxŵ,xx (0, n)

(A.20)

∞∑
n=0

(−1)nεnΦmn
̂̄q(m,n) =

∞∑
n=0

εn (1 − ΨmnDy) w̄,y (m, b)

−
∞∑

n=0
(−1)nεn (1 − ΨmnDy) w̄,y (m, 0)

−
∞∑

n=0
(−1)n+mεnαmΦmnDxŵ,xx (a, n)

+
∞∑

n=0
(−1)nεnαmΦmnDxŵ,xx (0, n)

(A.21)

6rx0

∞∑
m=1

αm

Ωmn

̂̄q(m,n) = − 6rx0

∞∑
m=1

(−1)nαmΦmnDyw̄,y (m, b)

+ 6rx0

∞∑
m=1

αmΦmnDyw̄,y (m, 0)

− 6rx0

∞∑
m=1

(−1)mα2
mDx

Ωmn

ŵ,xx (a, n)

+
[
a2(1 − rx0) + 6rx0

∞∑
m=1

α2
mDx

Ωmn

]
ŵ,xx (0, n)

(A.22)

6rxa

∞∑
m=1

(−1)mαm

Ωmn

̂̄q(m,n) = −6rxa

∞∑
m=1

(−1)m+nαmΦmnDyw̄,y (m, b)

+ 6rxa

∞∑
m=1

(−1)mαmΦmnDyw̄,y (m, 0)

−
[
a2(1 − rxa) + 6rxa

∞∑
m=1

α2
mDx

Ωmn

]
ŵ,xx (a, n)

+ 6rxa

∞∑
m=1

(−1)mα2
mDx

Ωmn

ŵ,xx (0, n)

(A.23)

where

- 214 -
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Φmn = νxα
2
m + β2

n

Ωmn

(A.24a)

Ψmn = (νxα
2
m + β2

n)2

Ωmn

(A.24b)

For each combination of m and n, Eqs. (A.20), (A.21), (A.22) and (A.23) produce
2m+ 2(n+ 1) equations with 2m+ 2(n+ 1) unknown coefficients. This set of equations
can be solved to find the coefficients in Eq. (A.11). Once these coefficients have been
computed, the deflection w(x, y) can be obtained by substituting Eq. (A.11) into Eq. (A.6).
Furthermore, the bending moments along the edges x = 0 and x = a can be obtained as
following:

Mx

∣∣∣∣
x=0

= −Dx (w,xx +νyw,yy )
∣∣∣∣
x=0

= −2
b
Dx

∞∑
n=0

ŵ,xx (0, n) cos βny (A.25a)

Mx

∣∣∣∣
x=a

= −Dx (w,xx +νyw,yy )
∣∣∣∣
x=a

= −2
b
Dx

∞∑
n=0

ŵ,xx (a, n) cos βny (A.25b)

For any position not along the edges, the bending moments can be obtained by

Mx = −Dx (w,xx +νyw,yy ) (A.26a)

My = −Dy (w,yy +νxw,xx ) (A.26b)

where w,xx can be given by using Stokes’s transformation as

w,xx = − 4
ab

∞∑
m=1

∞∑
n=0

α2
mεn

̂̄w(m,n) sinαmx cos βny (A.27)

and w,yy can be expressed by substituting w̄,yy (m, y) of Eq. A.15 as

w,yy = 2
a

∞∑
m=1

w̄,yy (m, y) sinαmx (A.28)

In addition, for a rectangular orthotropic plate with two opposite edges simply sup-
ported and the others free (S-F-S-F), the solution can be easily obtained by setting
rx0 = rxa = 0. For the orthotropic plate with two opposite edges fully clamped and the
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A.2 Numerical results and discussion

others free (C-F-C-F), rotational fixity factors are equal to 1. Alternatively, for S-F-S-F
orthotropic plates, the following can also be obtained from the foregoing procedure:

̂̄w(m,n) = 1
Ωmn

̂̄q(m,n) +Dy(νxα
2
m + β2

n)
[
(−1)nw̄,y (m, b) − w̄,y (m, 0)

] (A.29)

Substituting Eq. (A.29) into Eqs. (A.16) yields two infinite systems of linear equations
with respect to coefficients w̄,y (m, 0) and w̄,y (m, b). Consequently, the corresponding
deflection w(x, y) can be obtained by the preceding procedure.

A.2 Numerical results and discussion

The presented numerical results are obtained by using MATLABr software. For the sake
of convenience, the numbers of double series terms are chosen to be same and denoted by
N (i.e., m = 1, 2, 3, ..., N , n = 0, 1, 2, 3, ..., N) and the two restrained edges have the same
elastic fixity factor (i.e., rx0 = rxa = r). The results are theoretically exact when N → ∞
while convergent solutions with satisfactory accuracy can be acquired by a finite number
of terms. In this study N is taken to be 300. Furthermore, although the proposed method
is valid for arbitrary loading, numerical results are presented here only for two common
cases: uniform distributed load q and concentrated load P at the center.

The first example validates the solution of a S-F-S-F isotropic plate subjected to a
uniform distributed load. The numerical results are compared with those of Timoshenko
and Woinowsky-Krieger (1959),Hutchinson (1992) and Lim et al. (2007). The obtained
displacement of a square plate is plotted as shown in Fig. A.2. As it can be seen in
Table. A.1, the results obtained from the proposed method agree well with those of the
references with exactly four and five significant digits for flexural moments and deflections,
respectively. In addition, it needs to point out, the result of My at x = a/2, y = b/2
of Timoshenko and Woinowsky-Krieger (1959) for b/a = 0.5 is inaccurate which was
discovered by Ramsay and Maunder (2016) and reconfirmed by this study.

The second example validates the proposed method with a C-F-C-F isotropic plate
loaded by a concentrated load P at the center with results of Timoshenko and Woinowsky-
Krieger (1959). Four different aspect ratios are investigated. Form Table. A.2, considerable
differences between the results of the present study and Timoshenko and Woinowsky-
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Figure A.2 Displacement of an isotropic plate under a uniform distributed load.

Krieger (1959) are observed in cases of aspect ratio, i.e., b/a = 1 and b/a = 0.5. However,
it is known that the deflection will increase with the decrease of the aspect ratios such
as results shown in Table. A.2. This tendency is illustrated by present results but not
the ones of Timoshenko and Woinowsky-Krieger (1959). Further validation with other
methods is desirable to verify present results.

The third investigation is performed for a C-F-C-F orthotropic plate loaded with a
uniform distributed load q with results from the symplectic geometry method Li and
Zhong (2011). As shown in Table. A.3, excellent agreements in both flexural deflections
and moments can be found between the proposed method and Li and Zhong (2011). In
addition, numerical results of R-F-R-F orthotropic plates obtained from the proposed
method are also presented in Table. A.3.

Finally, as shown in Table. A.4, present numerical results are compared with the ones
from Morley (1966) for case of a S-F-S-F orthotropic plate subjected to a concentrated
load P at the center of the plate. The singular solution of the bending of an infinitely long
simply supported orthotropic strip under concentrated load was employed to accelerate
the convergence rate in Morley (1966) where the results were obtained by summing
the series up to n = 100. As expected, present results agree well with those of Morley
(1966). Additionally, a convergence study is conducted and plotted in Fig. A.3. Generally,
it is known that the single series solution (e.g., Levy’s solution) presents much faster
convergence rates than the double series solution (e.g., Navier’s solution) (Bauchau and
Craig, 2009). Nevertheless, it can be found that the convergence rate of the present
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Table A.1 Deflection and bending moment for a S-F-S-F isotropic rectangular plate under
uniform distributed load q (ν = 0.3).

b/a Present
References

I II III
w(0.01qa4/D) at x = a/2, y = b/2

0.5 1.37138 1.377 N.A. 1.37131
1.0 1.30939 1.309 N.A. 1.30937
2.0 1.28867 1.289 N.A. 1.28873

Mx(0.1qa2) at x = a/2, y = b/2
0.5 1.23641259 1.235 1.23642359 1.23642
1.0 1.22539461 1.225 1.22545398 1.22545
2.0 1.23460079 1.235 1.23467772 1.23468

My(0.1qa2) at x = a/2, y = b/2
0.5 0.12122895 0.102 0.12147577 0.121476
1.0 0.27051852 0.271 0.27078215 0.270782
2.0 0.36382430 0.364 0.36388775 0.363888

w(0.01qa4/D) at x = a/2, y = 0 or b

0.5 1.4643483 1.443 1.4644623 N.A.
1.0 1.5009268 1.509 1.5011257 N.A.
2.0 1.5199052 1.521 1.5202171 N.A.

Mx(0.1qa2) at x = a/2, y = 0 or b

0.5 1.27802858 1.259 1.27812536 N.A.
1.0 1.31070797 1.318 1.31087659 N.A.
2.0 1.32776004 1.329 1.32801999 N.A.

Note: N.A.–Not available
Reference I–Timoshenko and Woinowsky-Krieger (1959)
Reference II–Hutchinson (1992)
Reference III–Lim et al. (2007)

double trigonometric series solution is not that much slower than that of the single series
solution of Morley (1966). Five-figure precision is given for m = n = 200.
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Table A.2 Displacement w(0.01Pa2/D) at the center (x = a/2, y = b/2) for a C-F-C-F
isotropic rectangular plate under a concentrated load P at the center (ν = 0.3).

b/a
Rotational fixity factor rx0 = rxa = r References

0.5 0.9 0.99 0.999 0.9999 1 I
3 1.18789 0.81738 0.73194 0.72323 0.72236 0.72226 0.72404
2 1.19453 0.81873 0.73279 0.72403 0.72315 0.72306 0.72243
1 1.38961 0.87631 0.77377 0.76353 0.76250 0.76239 0.70308

0.5 2.36970 1.32296 1.12901 1.11005 1.10814 1.10793 0.38379

Note: Reference I–Page 191 of Timoshenko and Woinowsky-Krieger (1959)
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Figure A.3 Convergence of displacement results for a S-F-S-F orthotropic plate under a
concentrated load.
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Table A.3 Deflection and bending moment for a C-F-C-F orthotropic rectangular plate under
uniform distributed load q.

b/a
Rotational fixity factor rx0 = rxa = r References

0.5 0.9 0.99 0.999 0.9999 1 I
w(0.01qa4/Dx) at x = a/2, y = b/2

1.0 0.671805 0.328095 0.263622 0.257377 0.256754 0.256684 0.2578
1.1 0.670831 0.327779 0.263401 0.257165 0.256543 0.256647 0.2577
1.4 0.669132 0.327451 0.263245 0.257027 0.256407 0.256338 0.2574
1.7 0.668867 0.327759 0.263574 0.257358 0.256738 0.256670 0.2578
2.0 0.669471 0.328354 0.264089 0.257866 0.257246 0.257177 0.2584

Mx(−0.1qa2) at x = a, y = b/2
1.0 0.496628 0.768778 0.819177 0.823473 0.822484 0.821155 0.8223
1.1 0.495898 0.767942 0.818555 0.822881 0.821976 0.820994 0.8216
1.4 0.494713 0.767578 0.819054 0.823464 0.822860 0.822429 0.8225
1.7 0.494635 0.768913 0.821041 0.825504 0.825162 0.824952 0.8250
2.0 0.495178 0.770726 0.823178 0.827667 0.827518 0.827410 0.8274

Mx(0.1qa2) at x = a/2, y = b/2
1.0 0.743949 0.469830 0.418472 0.413497 0.413000 0.412944 0.4101
1.1 0.743156 0.469624 0.418347 0.413379 0.412882 0.412827 0.4103
1.4 0.741837 0.469546 0.418431 0.413476 0.412981 0.412926 0.4112
1.7 0.741783 0.470056 0.418991 0.414043 0.413548 0.413493 0.4123
2.0 0.742543 0.470879 0.419775 0.414825 0.414330 0.414275 0.4133

Note: Reference I–Page 191 of Li and Zhong (2011)

Table A.4 Deflection w(0.01Pa2/D) at loaded point for a S-F-S-F orthotropic square plate
under a concentrated load P .

Position Present Morley (1966)
x = a/2, y = b/2 1.28343 1.28335
x = a/4, y = b/2 0.779029 0.778973
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Appendix B
Matrices and vectors for the damped

plate-oscillator model

For SDOF oscillators, M is an identity matrix of size (N +No) × (N +No). C and K
can be represented as

C =



c(1,1) c(1,2) . . . c(1,N) c(1,N+1) . . . c(1,N+No)

c(2,1) c(2,2) . . . c(2,N) c(2,N+1) . . . c(2,N+No)
... ... ... ... ... ... ...

c(N,1) c(N,2) . . . c(N,N) c(N,N+1) . . . c(N,N+No)

c(N+1,1) c(N+1,2) . . . c(N+1,N) c(N+1,N+1) . . . c(N+1,N+No)
... ... ... ... ... ... ...

c(N+No,1) c(N+No,2) . . . c(N+No,N) c(N+No,N+1) . . . c(N+No,N+No)



(B.1a)
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K =



k(1,1) k(1,2) . . . k(1,N) k(1,N+1) . . . k(1,N+No)

k(2,1) k(2,2) . . . k(2,N) k(2,N+1) . . . k(2,N+No)
... ... ... ... ... ... ...

k(N,1) k(N,2) . . . k(N,N) k(N,N+1) . . . k(N,N+No)

k(N+1,1) k(N+1,2) . . . k(N+1,N) k(N+1,N+1) . . . k(N+1,N+No)
... ... ... ... ... ... ...

k(N+No,1) k(N+No,2) . . . k(N+No,N) k(N+No,N+1) . . . k(N+No,N+No)



(B.1b)

in which
c(i,i) = 2ζiωi +

No∑
k=1

2ζhkωhkγikW
2
i (ξk, ηk)

c(i,j) =
No∑

k=1
2ζhkωhkγikWi(ξk, ηk)Wj(ξk, ηk)

c(i,N+k) = −2ζhkωhkγikWi(ξk, ηk)

c(N+k,i) = −2ζhkωhkWi(ξk, ηk)

c(N+k,N+k) = 2ζhkωhk

k(i,i) = ω2
i +

No∑
k=1

ω2
hkγikW

2
i (ξk, ηk)

k(i,j) =
No∑

k=1
ω2

hkγikWi(ξk, ηk)Wj(ξk, ηk)

k(i,N+k) = −ω2
hkγikWi(ξk, ηk)

k(N+k,i) = −ω2
hkWi(ξk, ηk)

k(N+k,N+k) = ω2
hk

i = 1, 2, ..., N i ̸= j 6 N

k = 1, 2, ..., No k ̸= l 6 No

(B.2)

Note that elements of C and K above not specified are zero. The displacement vector U
and the force vector F are given by

- 222 -



U = [q1(t), q2(t), ..., qN(t), z1(t), ..., zNo(t)]

F =
[
F1(t), F2(t), ..., FN(t), 1

mh1
g1(t), ...,

1
mhNo

gNo(t)
]

(N+No)

(B.3)

For 2-DOF oscillators, M, C and K are matrices of size (N + 2No) × (N + 2No) and
can be represented as

M =



M1 0 . . . 0 0 0 . . . 0

0 M2 . . . 0 0 0 . . . 0
... ... ... ... ... ... ... ...

0 0 . . . MN 0 0 . . . 0

0 0 . . . 0 mh11 0 . . . 0

0 0 . . . 0 0 mh12 . . . 0
... ... ... ... ... ... ... ...

0 0 . . . 0 0 . . . mhNo1 0

0 0 . . . 0 0 . . . 0 mhNo2



(B.4a)

C =



c(1,1) c(1,2) . . . c(1,N) c(1,N+1) . . . c(1,N+2No)

c(2,1) c(2,2) . . . c(2,N) c(2,N+1) . . . c(2,N+2No)
... ... ... ... ... ... ...

c(N,1) c(N,2) . . . c(N,N) c(N,N+1) . . . c(N,N+2No)

c(N+1,1) c(N+1,2) . . . c(N+1,N) c(N+1,N+1) . . . c(N+1,N+2No)
... ... ... ... ... ... ...

c(N+2No,1) c(N+2No,2) . . . c(N+2No,N) c(N+2No,N+1) . . . c(N+2No,N+2No)


(B.4b)
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K =



k(1,1) k(1,2) . . . k(1,N) k(1,N+1) . . . k(1,N+2No)

k(2,1) k(2,2) . . . k(2,N) k(2,N+1) . . . k(2,N+2No)
... ... ... ... ... ... ...

k(N,1) k(N,2) . . . k(N,N) k(N,N+1) . . . k(N,N+2No)

k(N+1,1) k(N+1,2) . . . k(N+1,N) k(N+1,N+1) . . . k(N+1,N+2No)
... ... ... ... ... ... ...

k(N+2No,1) k(N+2No,2) . . . k(N+2No,N) k(N+2No,N+1) . . . k(N+2No,N+2No)


(B.4c)

where
c(i,i) = 2ζiωiMi +

No∑
k=1

2ζhk1ωhk1mhk1W
2
i (ξk, ηk)

c(i,j) =
No∑

k=1
2ζhk1ωhk1mhk1Wi(ξk, ηk)Wj(ξk, ηk)

c(i,N+2k−1) = −2ζhk1ωhk1mhk1Wi(ξk, ηk)

c(N+2k−1,i) = −2ζhk1ωhk1mhk1Wi(ξk, ηk)

c(N+2k−1,N+2k−1) = 2ζhk1ωhk1mhk1 + 2ζhk2ωhk2mhk2

c(N+2k−1,N+2k) = −2ζhk2ωhk2mhk2

c(N+2k,N+2k) = 2ζhk2ωhk2mhk2

c(N+2k,N+2k−1) = −2ζhk2ωhk2mhk2

i = 1, 2, ..., N i ̸= j 6 N

(B.5)
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k(i,i) = ω2
iMi +

No∑
k=1

ω2
hk1mhk1W

2
i (ξk, ηk)

k(i,j) =
No∑

k=1
ω2

hk1mhk1Wi(ξk, ηk)Wj(ξk, ηk)

k(i,N+2k−1) = −ω2
hk1mhk1Wi(ξk, ηk)

k(N+2k−1,i) = −ω2
hk1mhk1Wi(ξk, ηk)

k(N+2k−1,N+2k−1) = ω2
hk1mhk1 + ω2

hk2mhk2

k(N+2k−1,N+2k) = −ω2
hk2mhk2

k(N+2k,N+2k) = ω2
hk2mhk2

k(N+2k,N+2k−1) = −ω2
hk2mhk2

k = 1, 2, ..., No k ̸= l 6 No

(B.6)

Elements in C and K which are not specified above are zero. The displacement vector U
and the force vector F are given by

U = [q1(t), q2(t), ..., qN(t), z11(t), z12(t), ..., zNo1(t), zNo2(t)](N+2No)

F = [F1(t), F2(t), ..., FN(t), g11(t), g12(t), ..., gNo1(t), gNo2(t)](N+2No)

(B.7)

in which
Fn(t) =

∫ a

0

∫ b

0
f(x, y, t)Wn(x, y)dxdy (B.8)
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Appendix C
Floor evaluations by static criteria

Table C.1 Comparison of floor acceptability by subjective evaluations and predictions from
static criteria for laboratory floors in Wiss et al. (1977).

Floor ID
Span F d Floor acceptability
(m) (Hz) (mm) Tested Onysko Hu-I Hu-II Proposed

A1 6.1 9.4 2.44 M U U U U
A2 5.49 15.6 1.68 M U U U U
A3 4.88 14.9 1.49 A U U U U
B1 6.1 14.2 2.61 U U U U U
B3 4.88 25.9 1.66 A U A A A
C 6.1 10.6 0.21 A A A A A
E1 6.1 16.3 2.21 U U U U U
E2 5.49 17.7 1.87 M U U U U
E3 4.88 22.8 1.43 M U A A A
F 4.88 15.1 2.4 M U U U U

F–Measured fundamental frequency; d–Measured deflection under 1 kN concentrated load
U–Unacceptable; M–Marginal; A–Acceptable
Hu-I–F/d0.39 > 15.3 in Hu (2002); Hu-II–F/d0.44 > 18.7 in Hu and Chui (2004)
Tested–Subjective evaluations
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Table C.2 Comparison of floor acceptability by subjective evaluations and predictions from
static criteria for laboratory floors in SBI and VTT.

Institute Floor ID
Span F d Floor acceptability
(m) (Hz) (mm) Tested Onysko Hu-I Hu-II Proposed

SBI

SBI-1a 4.27 14.2 0.42 U A A A A
SBI-1b 5.87 12.8 0.9 U U U U U
SBI-2a 4.27 17.5 0.09 A A A A A
SBI-2b 5.87 11.4 0.2 U A A A A

VTT

VP1-a 7 11.81 0.97 U U U U U
VP1-b 7.8 10.18 1.22 U U U U U
VP1-c 8.8 8.1 1.55 U U U U U
VP2-a 7 12.09 0.55 A A U U U
VP2-b 7.8 10.7 0.69 U U U U U
VP2-c 8.8 8.76 0.85 U U U U U
VP3-a 7 11.97 0.24 A A A U A
VP3-b 7.8 10.34 0.29 A A A U A
VP3-c 8.8 8.12 0.35 A A U U U

F–Measured fundamental frequency; d–Measured deflection under 1 kN concentrated load
U–Unacceptable; A–Acceptable
Hu-I–F/d0.39 > 15.3 in Hu (2002); Hu-II–F/d0.44 > 18.7 in Hu and Chui (2004)
Tested–Subjective evaluations
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Table C.3 Comparison of floor acceptability by subjective evaluations and predictions from
static criteria for laboratory floors in Kraus (1997).

Floor ID Parameters
Span F d Floor acceptability
(m) (Hz) (mm) Tested Onysko Hu-I Hu-II Proposed

8A Blocking 4.191 20.300 2.286 U U U U U
Drywall 4.191 16.200 1.803 U U U U U

8B Strap 3.731 17.200 1.778 U U U U U
Blocking 3.731 17.400 1.727 U U U U U

8C Strap 3.276 29.200 1.372 A A A A A
Blocking 3.276 29.000 1.270 A A A A A

8D Strap 2.692 32.900 0.965 A A A A A
Blocking 2.692 31.400 1.245 A A A A A

8E Strap 2.160 37.200 0.305 A A A A A
Blocking 2.160 35.600 0.635 A A A A A

10C Strap 4.648 24.000 1.168 U U A A A
Blocking 4.648 22.000 1.041 U A A A A
Drywall 4.648 20.500 1.219 U U A A A

10D Strap 3.988 24.300 0.991 U A A A A
Blocking 3.988 25.000 1.295 M A A A A

12A Strap 5.969 19.100 1.549 M U A U U
12B Strap 5.334 20.200 0.991 U U A A A

Blocking 5.334 20.600 1.143 M U A A A
12C Strap 4.930 23.600 1.118 M U A A A

Blocking 4.930 22.600 1.041 M U A A A
12D Strap 4.290 27.000 1.016 M A A A A

Blocking 4.290 26.500 0.940 M A A A A
12E Strap 3.430 29.300 0.483 A A A A A

Blocking 3.430 28.500 0.635 A A A A A

F–Measured fundamental frequency; d–Measured deflection under 1 kN concentrated load
U–Unacceptable; M–Marginal; A–Acceptable
Hu-I–F/d0.39 > 15.3 in Hu (2002); Hu-II–F/d0.44 > 18.7 in Hu and Chui (2004)
Tested–Subjective evaluations
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Table C.4 Comparison of floor acceptability by subjective evaluations and predictions from
static criteria for laboratory floors in Liu (2001).

Floor ID
Span F d Floor acceptability
(m) (Hz) (mm) Tested Onysko Hu-I Hu-II Proposed

fl-6.754-2-6-1/5-B0-S12-2b 6.754 10.500 1.886 U U U U U
fl-6.754-2-6-1/5-B2-S12-2b 6.754 10.600 1.863 U U U U U
fl-6.754-2-6-1/5-B0-S6-2b 6.754 10.500 1.689 U U U U U
fl-6.754-2-6-1/5-B2-S6-2b 6.754 10.700 1.596 U U U U U
fl-6.754-2-6-1/1-B0-S12-2b 6.754 10.650 1.615 U U U U U

fl-6.754-2-6-1/5-B0-S6-2b-Ce 6.754 9.700 1.278 U U U U U
fl-6.754-2-6-1/5-B2-S6-2b-Ce 6.754 9.900 1.234 U U U U U
fl-6.754-2-6-1/5-B2-S6-2b-g 6.754 11.100 1.571 U U U U U
fl-6.114-2-6-1/5-B0-S12-2b 6.114 12.970 1.483 U U U U U
fl-6.114-2-6-1/5-B2-S12-2b 6.114 13.550 1.452 U U U U U
fl-6.114-2-6-1/5-B0-S6-2b 6.114 12.800 1.359 U U U U U
fl-6.114-2-6-1/5-B2-S6-2b 6.114 13.240 1.334 U U U U U
fl-6.114-2-6-1/1-B0-S6-2b 6.114 12.900 1.160 U U U U U
fl-6.114-2-6-1/1-B2-S6-2b 6.114 13.400 1.121 U U U U U

fl-6.114-2-6-1/5-B0-S6-2b-Ce 6.114 11.900 1.163 M U U U U
fl-6.114-2-6-1/5-B2-S6-2b-ce 6.114 12.300 1.040 M U U U U

fl-6.114-2-6-1/5-B2-S6-2b-g-Ce 6.114 12.400 0.911 M U U U U
fl-6.114-2-6-1/5-B2-S6-2b-g 6.114 13.500 1.304 U U U U U

F–Measured fundamental frequency; d–Measured deflection under 1 kN concentrated load
U–Unacceptable; M–Marginal
Hu-I–F/d0.39 > 15.3 in Hu (2002); Hu-II–F/d0.44 > 18.7 in Hu and Chui (2004)
Tested–Subjective evaluations
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Table C.5 Comparison of floor acceptability by subjective evaluations and predictions from
static criteria for field floors in Kraus (1997).

Floor ID
Span F d Floor acceptability
(m) (Hz) (mm) Tested Onysko Hu-I Hu-II Proposed

S1LR 4.7752 22.5 0.3048 A A A A A
S1FYR 3.6449 / 0.2286 / A / / /
S1MBR 3.6322 27.25 / A / / / /
S1GR 4.7752 13 0.254 A A A A A

S1BR#3 4.7752 17.5 / A / / / /
S1BR#4 4.7752 17.5 / A / / / /
S2DIN 4.9784 19.3 0.6858 A A A A A
S2LR 4.7752 14.5 0.635 A A A U A

S2MBR 5.4864 15.5 1.3716 A U U U U
S3LR 4.1656 25.5 / A / / / /
S3BR 3.2004 11.5 / U / / / /

/–not available; U–Unacceptable; A–Acceptable
F–Measured fundamental frequency; d–Measured deflection under 1 kN concentrated load
Hu-I–F/d0.39 > 15.3 in Hu (2002); Hu-II–F/d0.44 > 18.7 in Hu and Chui (2004)
Tested–Subjective evaluations

Table C.6 Comparison of floor acceptability by subjective evaluations and predictions from
static criteria for field floors by CCFSRG.

References Floor ID
Span F d Floor acceptability
(m) (Hz) (mm) Tested Onysko Hu-I Hu-II Proposed

[1] iSPAN 5.45 20.3 0.36 A A A A A

[2]
House 1 lot 9 5.91 18 0.97 U U A U A

5.3 14.9 1.2 U U U U U
House 2 lot 15 5.09 15.4 0.91 U A A U A

[3]
CG601 5.33 14.4 0.46 A A A A A
CG604 4.51 16.3 0.28 A A A A A

CGMH6 5.12 15.7 0.36 A A A A A

[4]

DDG1 6 12 0.39 A A A U A
DDG2 6 14 0.37 A A A A A
DDG3 6 13.2 0.2 A A A A A
DDG4 6 16.1 0.08 A A A A A

[1]–Xu (2005); [2]–Xu and Tangorra (2007); [3]–Parnell et al. (2009); [4]–Parnell (2008)
F–Measured fundamental frequency; d–Measured deflection under 1 kN concentrated load
U–Unacceptable; A–Acceptable
Hu-I–F/d0.39 > 15.3 in Hu (2002); Hu-II–F/d0.44 > 18.7 in Hu and Chui (2004)
Tested–Subjective evaluations
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Appendix D
Floor evaluations by proposed static

and impulsive criteria

Table D.1 Comparisons of floor acceptability by subjective evaluations with predictions from
proposed criteria for laboratory floors in Kraus (1997).

Floor Parameters
F

ζ∗ M1 d IF Subjective Proposed criteria
(Hz) (kg) (mm) (m/s2) evaluations Static Impulsive

8A Blocking 20.300 0.010 82.437 2.286 0.938 U U U
Drywall 16.200 0.015 82.437 1.803 0.728 U U U

8B Strap 17.200 0.010 82.437 1.778 0.923 U U U
Blocking 17.400 0.010 73.389 1.727 0.933 U U U

10C Strap 24.000 0.010 39.451 1.168 0.929 U A A
Blocking 22.000 0.010 96.199 1.041 0.864 U A A
Drywall 20.500 0.015 96.199 1.219 0.757 U A U

12A Strap 19.100 0.010 82.539 1.549 0.522 M U U
12B Strap 20.200 0.010 141.856 0.991 0.608 U A A

Blocking 20.600 0.010 126.765 1.143 0.618 M A A
12C Strap 23.600 0.010 126.765 1.118 0.756 M A A

Blocking 22.600 0.010 117.163 1.041 0.724 M A A

F–Measured fundamental frequency; ζ–Damping ratio; M1–Modal mass of the first mode;
d–Measured deflection under 1 kN concentrated load; IF –Floor impulsive factors
U–Unacceptable; M–Marginal; A–Acceptable
∗–the damping ratio are assumed based on the floor configuration.
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Table D.2 Comparisons of floor acceptability by subjective evaluations with predictions from
proposed criteria for laboratory floors in Wiss et al. (1977), SBI and VTT.

Test Floor ID
F

ζ∗ M1 d IF Subjective Proposed criteria
(Hz) (kg) (mm) (m/s2) evaluations Static Impulsive

Wiss

A1 9.400 0.010 134.531 2.440 0.294 M U U
A2 15.600 0.010 121.078 1.680 0.514 M U U
A3 14.900 0.010 107.625 1.490 0.551 A U U
B1 14.200 0.010 130.895 2.610 0.431 U U U
C 10.600 0.020 868.996 0.210 0.046 A A U
E1 16.300 0.010 149.075 2.210 0.428 U U U
E2 17.700 0.010 134.167 1.870 0.517 M U U
E3 22.800 0.010 119.260 1.430 0.718 M A A
F 15.100 0.010 95.989 2.400 0.628 M U U

SBI

SBI-1a 14.200 0.015 269.010 0.420 0.200 U A U
SBI-1b 12.800 0.015 369.810 0.900 0.133 U U U
SBI-2a 17.500 0.030 538.020 0.090 0.102 A A A
SBI-2b 11.400 0.030 739.620 0.200 0.054 U A A

VTT

VP1-a 11.810 0.033 650.720 0.970 0.062 U U A
VP1-b 10.180 0.040 743.680 1.220 0.046 U U U
VP2-a 12.090 0.017 862.400 0.550 0.053 A U A
VP2-b 10.700 0.021 985.600 0.690 0.041 U U A
VP3-a 11.970 0.018 1332.800 0.240 0.034 A A A
VP3-b 10.340 0.018 1523.200 0.290 0.026 A A A

F–Measured fundamental frequency; ζ–Damping ratio; M1–Modal mass of the first mode;
d–Measured deflection under 1 kN concentrated load; IF –Floor impulsive factors
U–Unacceptable; M–Marginal; A–Acceptable
∗–the damping ratio are assumed based on the floor configuration except the floors of VTT
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Table D.3 Comparisons of floor acceptability by subjective evaluations with predictions from
proposed criteria for laboratory floors in Liu (2001).

Floor ID F
ζ

M1 d IF Subjective Proposed criteria
(Hz) (kg) (mm) (m/s2) evaluations Static Impulsive

fl-6.754-2-6-1/5-B0-S12-2b 10.500 0.019 190.818 1.886 0.209 U U U
fl-6.754-2-6-1/5-B2-S12-2b 10.600 0.021 190.818 1.863 0.208 U U U
fl-6.754-2-6-1/5-B0-S6-2b 10.500 0.022 190.818 1.689 0.205 U U U
fl-6.754-2-6-1/5-B2-S6-2b 10.700 0.021 190.818 1.596 0.210 U U U
fl-6.754-2-6-1/1-B0-S12-2b 10.650 0.017 190.818 1.615 0.215 U U U

fl-6.754-2-6-1/5-B0-S6-2b-Ce 9.700 0.022 262.351 1.278 0.142 U U U
fl-6.754-2-6-1/5-B2-S6-2b-Ce 9.900 0.021 262.351 1.234 0.144 U U U
fl-6.754-2-6-1/5-B2-S6-2b-g 11.100 0.015 190.818 1.571 0.230 U U U
fl-6.114-2-6-1/5-B0-S12-2b 12.970 0.016 173.464 1.483 0.286 U U U
fl-6.114-2-6-1/5-B2-S12-2b 13.550 0.017 173.464 1.452 0.296 U U U
fl-6.114-2-6-1/5-B0-S6-2b 12.800 0.013 173.464 1.359 0.289 U U U
fl-6.114-2-6-1/5-B2-S6-2b 13.240 0.013 173.464 1.334 0.301 U U U
fl-6.114-2-6-1/1-B0-S6-2b 12.900 0.012 173.464 1.160 0.295 U U U
fl-6.114-2-6-1/1-B2-S6-2b 13.400 0.011 173.464 1.121 0.311 U U U

fl-6.114-2-6-1/5-B0-S6-2b-Ce 11.900 0.014 244.998 1.163 0.191 M U U
fl-6.114-2-6-1/5-B2-S6-2b-ce 12.300 0.013 244.998 1.040 0.197 M U U

fl-6.114-2-6-1/5-B2-S6-2b-g-Ce 12.400 0.012 244.998 0.911 0.200 M U U
fl-6.114-2-6-1/5-B2-S6-2b-g 13.500 0.011 173.464 1.304 0.313 U U U

F–Measured fundamental frequency; ζ–Damping ratio; M1–Modal mass of the first mode;
d–Measured deflection under 1 kN concentrated load; IF –Floor impulsive factors
U–Unacceptable; M–Marginal; A–Acceptable
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Table D.4 Comparisons of floor acceptability by subjective evaluations with predictions from
proposed criteria for field floors in Parnell (2008) and Davis (2008).

Floor ID
F

ζ
M1 d IF Subjective Proposed criteria

(Hz) (kg) (mm) (m/s2) evaluations Static Impulsive
CG601 14.4 0.036 466.5276 0.46 0.0965 A A A
CG604 16.3 0.042 499.1868 0.28 0.0934 A A A
CG805 15.2 0.036 1107.464 / 0.0425 A / A

CGMH6 15.7 0.073 736.8732 0.36 0.0501 A A A
CGMH7 16.6 0.062 736.8732 / 0.0552 A / A
CW707 16.1 0.038 952.0721 / 0.0503 A / A
CW708 18.7 0.036 907.767 / 0.0593 A / A
CW709 9.9 0.038 1297.069 / 0.0262 A / A
CW805 11.9 0.050 1149.196 / 0.0313 A / A
OK401 22.3 0.045 1101.454 / 0.0499 A / A
OK402 23.7 0.060 1101.454 / 0.0455 A / A

F–Measured fundamental frequency; ζ–Damping ratio; M1–Modal mass of the first mode;
d–Measured deflection under 1 kN concentrated load; IF –Floor impulsive factors
U–Unacceptable; M–Marginal; A–Acceptable
/–not available
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Table D.5 Comparisons of floor acceptability by subjective evaluations with predictions from
proposed criteria for wood floors in Hu (2000).

Test Floor ID
F

ζ∗ M⋆
1 d IF Subjective Proposed criteria

(Hz) (kg) (mm) (m/s2) evaluations Static Impulsive

Field

newf5 16.8 0.035 256.693 0.880 0.197 A A A
newf6 20.5 0.030 173.760 0.170 0.349 A A A
newf7 13.3 0.050 678.627 0.540 0.057 A A A
newf8 17.0 0.040 258.582 0.510 0.189 A A A
newf9 10.1 0.040 258.107 1.610 0.131 U U U
newf10 13.5 0.035 127.949 0.450 0.342 A A U
newf11 10.7 0.035 307.872 0.680 0.119 U U U
newf15 10.5 0.035 428.563 0.870 0.084 U U U
newf16 10.1 0.040 427.873 1.010 0.079 U U U
newf17 11.4 0.035 428.563 0.850 0.090 U U U
newf18b 16.1 0.030 1526.080 0.320 0.034 A A A
newf18c 15.1 0.030 1526.080 0.270 0.032 A A A
newf18d 15.4 0.040 403.273 0.700 0.114 A A A

Lab

I-F2a 8.5 0.030 147.544 1.960 0.211 U U U
I-F2b 9.1 0.030 147.544 1.360 0.227 U U U
TR-Fa 11.2 0.030 128.124 2.080 0.309 U U U
TR-Fb 11.5 0.030 128.124 1.120 0.315 U U U
TR-Fc 11.5 0.030 128.124 0.970 0.315 U U U
TR-Fd 11.6 0.030 128.124 1.270 0.317 U U U
TR-Fe 9.2 0.030 330.532 0.590 0.103 U U U
IF1b 14.3 0.030 99.105 1.630 0.475 U U U
IF1g 11.3 0.040 218.063 0.810 0.170 U U U
IF2lc 9.8 0.050 396.459 0.460 0.079 U U U
IF3nc 22.9 0.030 146.521 0.970 0.446 A A A
IF3b 12.2 0.050 674.081 0.300 0.054 A A A
IF4b 15.5 0.030 227.074 1.270 0.222 U U U
IF4nc 8.0 0.050 1044.671 0.530 0.026 U U U

F–Measured fundamental frequency; ζ–Damping ratio; M1–Modal mass of the first mode;
d–Measured deflection under 1 kN concentrated load; IF –Floor impulsive factors
U–Unacceptable; A–Acceptable
∗–the damping ratio are assumed based on the floor configuration
⋆–modal mass of field floors includes a 0.25 kpa live load
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