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Abstract

The measurement of sentence similarity is a fundamental task in natural language pro-
cessing. Traditionally, it is measured either from word-level or sentence-level (such as
paraphrasing), which requires many lexical and syntactic resources. In order to solve the
problem of lacking labelled data and Chinese language resources, we propose a novel sen-
tence similarity framework based on a recurrent neural network (RNN) Encoder-Decoder
architecture. This RNN is pre-trained with a large set of question-question pairs, which
is weakly labelled automatically and heuristically. Though less accurate, the pre-training
greatly improve the performance of the model, also better than other traditional methods.
Our proposed model is capable of both classification and candidate ranking. In addition,
we release our evaluation dataset – a finely annotated question similarity dataset, which
will be the first public dataset under this purpose in Chinese to the best of our knowledge.
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Chapter 1

Introduction

As a Web 2.0 community service, the large user and text base of community Question
Answering (cQA) becomes an advantage for us to solve natural language tasks. Nowadays,
Chinese language has 900 million first language users as compared to 400 million in English,
and textual resources of 5,000 years history as compared to 1,500 for English. The Chinese
social messaging app WeChat has 1.1 billion users, as of 2016, with 570 million daily active
users. As the nearest report shows, the cQA website Yahoo Answers1 claimed they hit
300 million (English) questions on July 10, 2012. In contrast, the biggest Chinese cQA
website Baidu Knows2 claimed they have more than 330 million Chinese questions solved
as of September 10, 2014.

1.1 Query-Question Similarity

In the field of natural language processing (NLP), a core problem is to find if two sentences
have approximately the same meaning. That is, we need to know “Thou art mine” and
“You are mine” express the same feeling; and “How old are you?” and “What is your age”
are the same question. One of the most typical applications of the problem of question
similarity is the cQA system. For example, as depicted in Figure 1.1, when a user queries
the cQA system, it first retrieves a list of possible candidate questions from a large database
(typically via an indexing service), resulting in only a few hundred questions.

1http://answers.yahoo.com/
2http://zhidao.baidu.com/
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Figure 1.1: Example of a community question answering system.

Then, it selects the most similar question set from the candidate list with a sentence
similarity algorithm. The answers to these existing questions are most likely the correct
according to the original query. In such a system, the key issue is to determine query-
question similarities, i.e., find a question that is most similar to the user’s query. More
formally, the problem is defined as follows:

Given a query Q and a set of relevant question candidates {C1, C2, . . . , Cn}
retrieved from an indexing service, determine whether or not each candidate
Ci is similar to Q, and rank them by their similarities to the original query Q.

1.2 Motivation

Determining question similarity is difficult because of the complication of semantics in
human languages. For instance, for the query “What must not I feed a dog?”, similar
questions would be “What can’t dogs eat?”, and “What food may make dogs sick?”. On
the other hand, the seemingly similar question “What can I feed a dog?” has just the
opposite meanings; simply taking its answer may lead to tragic consequences.

But the research into Chinese sentence similarity is rather limited. First of all, there
is no Chinese open data set available for Chinese oriented algorithms. When it comes to
English, TREC9 [57] releases 54 groups of similar sentences which are cited by 187 articles.
Also, fields closely relate to sentence similarity like paraphrase identification (PI) also have
authentic open data sets. Microsoft Research Paraphrase Corpus (MSRP) [13] consists of
4,766 training pairs and 1,725 testing pairs retrieved from news clusters. In 2015, Xu et
al.[59] extracted paraphrases from twitter (13,063 training, 4,727 development, 972 testing)
for SemEval 2015 that attracts 18 teams taking part. Secondly, Chinese lexical resources
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and natural language processing is more difficult than English. Besides the two hard-to-
solve problems [19]: (1) different words may have the same meaning, and (2) different word
orders may cause different meanings, the Chinese word segmentation problem reduces the
accuracy of all succeeding processes. Worse still, the Chinese Thesaurus resources, such as
LTP-Cloud [8] and HowNet [14], are far from complete because of the versatility of Chinese
synonyms and fast emergence of Internet out-of-vocabulary words. Also, as findings of [9]
reveal, even the best Chinese sentence parser can achieve an accuracy of only 83.1% (as
compared to significantly above 90% for English), and such error can propagate in sentence
similarity task.

1.3 Contribution

In this paper, we design an Encoder-Decoder recurrent neural network (RNN) training
framework to solve this key problem of query-question similarity, which does not rely on
any external linguistic resources (except for segmentation). The goal is maximising the
probability of first sentence given the second similar one, while minimising the probability
of the first sentence given the second dissimilar one. The model solves the similarity
problems in three major ways: (1) We use a pre-trained word vector set that captures
semantic relatedness among words. (2) The sequential structure of RNN enables word
order recognition and it adaptively learns to update information from the previous word
using reset and update gates. (3) In order to deal with the lacking labelled data problem,
We have developed a distant supervision learning scheme: We use some hand-crafted
features to automatically label a large amount of query-question pairs, which are then
used for training. Experiments show that the pre-training boosts the performance of our
model.

Thus, to summarise, the main contributions of this paper are: (1) To the best of our
knowledge, it is the first time that an RNN Encoder-Decoder is applied to sentence simi-
larity task. (2) We design a semi-supervised framework to capture both textual similarity
and semantic similarity. (3) Finally, we extract a Chinese sentence similarity corpus, and
make it publicly available for other researchers.

1.4 Thesis Organisation

The rest of this thesis is organised as follows. In Chapter 2, we discuss work related
to our sentence similarity task to the best of our knowledge. In Chapter 3, we give the
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introduction of our Chinese sentence similarity corpus. In Chapter 4, we illustrate the
model structure and training method, including parameter tuning and training pipeline.
In Chapter 5, we did some experiments, comparing our model to our baselines. In Chapter
6, we discuss the outcome of our experiments. In Chapter 7, we make suggestions to our
future improvement and other models that may be efficient to solve the problem.
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Chapter 2

Related Work and Background

In our task, we mainly focus on the query-question similarity problem, which can be ab-
stracted into a sentence similarity problem. However, we use neural network models to
solve the problem. Thus, our work mainly connects to four main areas: sentence simi-
larity, paraphrase identification, word vectors, and sequence-to-sequence learning. Also,
query-question similarity, sentence similarity and paraphrase share some difference and
commonalities:

• Area: query-question similarity aims at estimating the similarity among sentence
pairs in community question answer area. But for general sentence similarity and
paraphrase identification, the training corpus needn’t be in the same fields. For
example, the Microsoft Paraphrase Corpus (MSRP) was extracted from news clusters.
TREC-9 and SemEval 2016 used cQA data. SemEval 2015 sentence similarity task
used Twitter posts.

• Sentence length: for query-question similarity and sentence similarity, the sentences
are relatively shorter. For example, for our query-question similarity corpus, the av-
erage length for each sentence is 8. But for MSRP, the average length is 20. This can
make the approaches toward these problems different. For paraphrase identification,
using large scale model is better, as the model needs higher level of representation.
But for sentence similarity, we always use light weight neural network models, or
simpler hand crafted features. Note that approaches for paraphrase identification
may not be suitable for sentence similarity, as for some model, short sentences will
not be able to feed into the model. An example will be used to illustrate this in the
experiment chapter.

5



• Similarity criteria: last but not the least, the similarity criteria are different. For
query-question similarity, we divide our similarity level into three categories (simi-
lar, relevant, dissimilar). Whereas Agirre et al.[2] defined six-level similarity levels:
(completely equivalent, mostly equivalent, roughly equivalent, not equivalent, not
equivalent but same topic, different topics). The details of our similarity level is
discussed in the corpus chapter.

2.1 Sentence Similarity

Many of the existing studies for sentence similarity are mainly based on feature engineering,
where derived forms of string comparison algorithms are used as to calculate “similarity
score” of the two sentences. These algorithms’ results are either linearly combined or con-
catenated as a feature vector for classification. As Achananuparp et al. [1] has mentioned,
sentence similarity algorithms are basically classified into three categories: word overlap
measures, corpus based measures, and linguistic measures.

Word overlap measures mainly calculates similarity by the common words of the two
sentences. Metzler et al.[38] and Allan et al.[3] count the common words and normalise the
result using sentence length. The measure is easy to implement, but it fails to capture other
information. For example, “I love pets” and “I don’t love pets” actually have different
meanings, but they will be considered similar using word overlap method. Also, this
method does not take word meaning into account. There are different words with the
same meanings, but will not be considered.

Corpus based measures mainly use bag-of-words model, mapping sentences into vec-
tors. Then cosine distance is used. Lund et al.[37] promoted the concept of hyperspace
analogue to language (HAL), using corpus to calculate co-occurrence word representation,
and measure the similarity of sentences using cosine distance. The method is more effec-
tive than the simple overlap method, but as Blacoe et al.[5]’s experiment points out, the
co-occurrence based word vectors is far less effective than neural network based ones.

Linguistic measures aims at the semantic similarity among words. Li et al.[36] use
hierarchical semantic knowledge base to capture word similarities, linearly combined with
word order similarity. But thesaurus based methods heavily rely on the quality of our
dictionary. As the fast emerging of Internet new words, out-dated lexical resources will
cause the algorithm fail.

All of the methods are based merely on word-level similarity, with no regard to sentence
structures.

6



2.2 Paraphrase Identification

The problem of sentence similarity is similar to paraphrase identification (PI), however,
they differ from each other, for two questions that are non-paraphrase can still be considered
similar, as long as they are on the same topic and share the same answer. Nevertheless,
the methods share commonalities.

With the introduction of word vectors, many works have successfully solved the prob-
lem in distributional semantic space. Also, by designing various kinds of neural network
structures, models are able to solve the problem in sentence level. Some previous work use
pre-trained word vector set from neural networks and specific sentence composition meth-
ods to detect similarity information. E.g., Socher et al. [49] use recursive auto-encoder
(RAE) to train their word vectors, where sentences are parsed into syntactic trees, and
construct similarity matrices for classification. Kiros et al. [28] train their contextual
skip-gram word vectors over RNN, and use simple compositional methods to compute the
sentence representation. They tested their word vector quality on the MSRP task.

Other work embed sentence vectors into self-defined deep learning structures. E.g.,
Wang et al. [58] use a two-channel convolutional neural network (CNN) to discriminate
similar and dissimilar components, then different components are filtered and dimension-
ality reducted to feed into a softmax classifier. Mueller et al.[42] use two long short-term
memory (LSTM) structures to compose two sentences, they take the last output of each
LSTM layer, and calculate the Manhattan distance between the two vectors. He et al.
[24] use CNNs to extract multiple similarity granularities and pooling ways for similar-
ity comparison. All these models are considered “Siamese” [7], where two sentences are
processed in parallel. Different from these models, we apply the sentence similarity to a
sequence to sequence (seq2seq) model, and prove that it can also achieve impressive results
besides those Siamese models. Due to the different background and languages (English
vs. Chinese), we do not directly compare with the above mentioned models. Although the
SemEval 2016 Task 31 is quite similar to our task, they require taking question description
into account, which does not fit our task.

2.3 Word Embedding

In the similarity tasks, a very important point is to map words into semantic space. That
is, we need to get vector representations of a words, where semantically similar words tend

1http://alt.qcri.org/semeval2016/index.php?id=tasks
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to have smaller cosine distance. By doing so, we can avoid the limitations of thesaurus
lexicons. An picture example is shown in Figure 2.12 to illustrate the attribute of word
vectors. In this picture, word vectors are cast into two-dimension space for virtualisation.
Words with the same meaning or context appear to be in the same cluster. This is only a
simple example to show how word vectors work, in practice, word representations appear
to be more powerful when trained with higher dimension.

Figure 2.1: Example of word vector clusters.

The most basic way to construct word vectors is using one-hot-encoding. That is, given
a word dictionary, for each word, we give an unique index. Then every word’s vector size

2Image source: http://sujitpal.blogspot.ca/2014/10/clustering-word-vectors-using-self.

html
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equals to the size of the dictionary. The vector is almost all-zero except for the word’s index
position, which is one. The method is easy to implement, but it has a main drawback.
That is, one-hot representation cannot capture the relationship among words. Words with
similar meanings will be treated as different ones. Among all these years, researchers have
endeavored to train word vectors that can better capture semantic information, so as to
better relate words. Mitchell et al.[41] assume that word meaning can be learned from the
linguistic environment. They build word vectors based on word co-occurrence. They first
obtained a set of representative words as dimension of word vector, and let each element of
word vectors stands for the weighted co-occurrence value of the relevant word. Landauer
et al. [33] used Latent Semantic Analysis, they construct a word document co-occurrence
matrix using their document collections, then they use singular value decomposition (SVD)
to extract eigenvalues. The words relation is also calculated in this process. There are also
probabilistic models. Blei et al. [6] and Griffiths et al. [23] represented words as probability
distribution over different topics. The method is called Latent Dirichlet Allocation (LDA).

Another way to obtain word vectors is through neural network. Bengio et al. [4] trained
their language model via a three-layered neural network. They used a word embedding
matrix as one of the parameters, and updated it during the unsupervised training process.
In the end, the word embedding matrix consists of sentiment carrying word vectors. Differ-
ent from Mitchell et al’s [41] work, Bengio et al.’s [4] word vectors capture both semantic
and syntactic feature. Mikolov et al. [39] further Bengio et al.’s [4] work by taking out
non-linear hidden layer, which is very time consuming. They proposed two new models:
Continuous Bag of Words, Skip-gram. The former model take context as input layer and
corresponding word as output layer, the latter one does the other way round. In order to
take more sentence information into account, Socher et al. [49] introduce syntactic tree
structure into their word vector training. They used recursive auto-encoder over tree struc-
ture and use minimising the reconstruction error. Apart from unsupervised ways, Socher
et al. [51] annotated 200, 000 phrases generated by Stanford Parser, and feed them into
their neural tensor network for sentiment polarity analysis. Their word vectors are trained
in this process.

2.4 Sentence Compositionality Methods

In many natural language processing tasks, a crucial problem is how to map sentences to
vector space, while losing as less information as possible. Because of different sentences’
lengths, simply concatenate the word vectors will not be possible. The most commonly
used way is to design approaches that can merge word vectors into sentence vectors. There
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are many linear methods to compose sentences or phrases. Mitchell et al. [41] pointed
out 9 phrasal composition methods (addictive, multiplicative, dilation, etc.), and did some
experiments on subject similarity ratings. The parameters in the multiplicative and dilation
model is trained using their dataset. They found that multiplicative and dilation model
out-perform others. But these methods do not take sentence structure information into
account, which means sentence will be merged in the same way regardless of its inner
content and structure.

Non-linear methods uses neural network. Socher et al. [49] used recursive auto-
encoders, aiming at finding parameter to merge two vectors to one without losing in-
formation. To minimise reconstruction errors, they used greedy algorithm to construct the
document tree, and added a softmax layer to each tree layer to predict sentiment distribu-
tion. Le et al. [35]’s approach is inspired by Mikolov et al. [39]’s continuous bag-of-words
model, where they add document representation as one of the input. Similar as the original
language model based structure, they also used a probabilistic output over the dictionary.
Apart from recursive structure, recurrent neural network (RNN) and convolutional neu-
ral network (CNN) can also be used to compose sentence vectors. Tang et al. [54] use
long short term memory (LSTM) or CNN for their first step to compose word vectors into
sentence vectors, in the following step, they use bidirectional RNN for document modelling.

2.5 Pairwise Learning

Figure 2.2: Example of RNN encoder decoder for machine translation.

In classical machine learning classification tasks, for each sample, there will be only
one input, which is usually a feature vector, fed into the classifier to get the classification
results. But in tasks such as machine translation, dialogue generation, and sentence sim-
ilarity, we need to think of other approaches to fit our task. Our core model, the RNN
Encoder-Decoder is used in a wide range of seq2seq applications. E.g., Kiros et al. [28] en-
code context into thought vectors and decode the succeeding sentence, where they trained
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context-aware word vectors. Cho et al. [10] and Sutskever et al. [53] apply this to machine
translation tasks, while both the encoder and the decoder learn language models during
pre-training, and the model is able to decode French given English encoding. See Fig-
ure 2.23 for example, sequence “ABC” represents source language sentence, while sequence
“WXYZ” represents target language sentence. Shang et al. [48] use RNN Encoder-Decoder
for their dialogue machine, responding with the output of decoder. Apart from these ap-
plications, we use this model for the sentence similarity task, where we also have two
sentences, fed into the encoder and the decoder respectively. There are also many other
pairwise model other than RNN encoder decoder. For example, Feng et al. [17] use two
CNNs to embed querys and answers, connected by a cosine similarity layer to calculate the
relevance. The model is used for answer selection. Similarity, Mueller et al. [42] use two
LSTM layers to embed two queries, connected by a Manhattan distance layer to calculate
sentence similarity.

2.6 Data sets

There have been a few English sentence similarity datasets. TREC-9 released a dataset4

of variants of questions. It included 54 groups of a total of 260 questions. Within each
group, the questions are considered paraphrases. Microsoft Research Paraphrase Corpus
(MSRP) [13] consists of 4,766 training pairs and 1,725 testing pairs retrieved from news
clusters. SemEval [2, 59, 43] have had semantic similarity tasks since 2012. Each year’s
dataset has a different focus.

Despite the sufficient English corpus, Chinese sentence similarity corpus is far from
enough. As far as we know, there is no accurately annotated and neatly pre-processed
corpus, that is ready for Chinese natural language processing researchers to use. In 2015,
Sogou Inc.5 hosted a query-title matching contest, where they have 20, 000 annotated
sentence pairs available for use. But the corpus is not finely-annotated, what is worse, the
corpus contains much junk information, which makes researchers hard to use for Chinese
sentence similarity tasks. For example, for query like “电脑怎么会关机 (why my computer
shuts down)”, many candidates will look like “电脑自动关机与重启是什么原因-太平
洋IT百科 - 产品报价 - 太平洋电脑网 (why my computer restarts automatically - price
listings - Ocean Computers Inc.)”. The results are automatically retrieved from google

3Image source: papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.
pdf

4http://trec.nist.gov/data/qa/T9_QAdata/variants.key
5www.sogou.com
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search results, which will cause the search title will also include website information. This
can be distinguished by human, but not computer programmes. Also, there are many
wrongly annotated pairs. In order to solve the lacking of data problem, we create a Chinese
query-question matching corpus consists of 4,322 records, with 1,346 similar pairs, 2,147
dissimilar pairs and 829 relevant pairs. We also made the data public. We will discuss our
corpus in detail in Chapter 3.
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Chapter 3

The Annotated Query-Question
Corpus

Our annotated corpus1 is extracted from question-answer (QA) pairs, crawled from some
cQA websites in China. The query and question pairs are formed by the following steps:

(1) We crawl 500,094,738 QA pairs from two of the biggest Chinese cQA websites,
Baidu Zhidao and Sogou Wenwen2. Then we build a word-based inverted index on the
questions using Apache Solr3.

(2) We randomly select 400 different questions (topics) from our database, and for each
question, we take it as user’s query and search in the indexing service, retrieving at most
100 results. The retrieved questions are considered as candidates to match with the query
(examples shown in Table 3.1).

As a keyword search method, the sentences within the same topic group share some
same words, but not necessarily the same meaning. After eliminating the duplicates we
get 10,000 sentence pairs. Due to the popularity of questions in the cQA websites, some
topics have mostly the same or very different questions, which bring little help for training.
Hence we remove topics with > 90% or < 10% similar pairs. As a result, the remaining
topic groups are of mostly small sizes: Half of them contain fewer than 30 pairs, while
the second half contain 30 – 80 pairs. Also, half of the groups contain fewer similar pairs
(< 30%), showing that not all questions are popular.

1Available at: https://cs.uwaterloo.ca/~b7ye/corpus.html
2Baidu Zhidao: http://zhidao.baidu.com/, Sogou Wenwen: http://wenwen.sogou.com/
3http://lucene.apache.org/solr/
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Table 3.1: Examples of queries and candidates.

Example 1 Example 2 Example 3

Query

1 平方公里等于多少平
方米
How many square me-
ters equal to 1 square
kilometer

非洲包括哪些国家
Which contries does
Africa include

flash制作要下载那些软
件
Which software should I
download to make flash
(videos)

Candidates

一平方公里等于多少平
方米
How many square me-
ters equal to one square
kilometer

非洲有什么国家
Which countries does
Africa have

下载 FLASH 制作软件
(How to) Download
FLASH-producing
software

0.8平方公里等于多少平
方米
How many square me-
ters equal to 0.8 square
kilometer

非洲最大的国家是哪个
Which is the largest
country in Africa

哪能下载制作 Flash 的
软件?
Where can I down-
load Flash-producing
software?

20 公顷 300 平方米等于
多少平方米
How many square me-
ters equal to 20 hectares
and 300 square meters

西方国家包括哪些
Which countries does
the Western world in-
clude

谁会制作 Flash
Who knows how to pro-
duce Flash (videos)

(3) For the remaining pairs, we annotate them into one of the three similarity labels
(examples shown in Table 3.2):

• Similar. Pairs that share the same meaning, or the user is actually asking for the
same thing.

• Relevant. Pairs that are mostly similar and answer to these two questions are
mostly the same, but the two sentences differ in some details.

• Dissimilar. Pairs that have different meanings, or the user expect different answers
although the sentences are mostly similar.

We ask three human judges to label the sentence pairs, with a Fleiss’ Kappa [20] of
82.84%. We did majority votes for each pair, with 21 undecided pairs annotated by a
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Figure 3.1: Number of candidates’ count of our corpus. For example, the first column
means we have 23 topics which have candidates number ranging from one to ten. We can
see most of the topics have number of candidates ranging from 1 to 60, the minority have
candidates more than 60.

fourth annotator. Finally we get 4,322 records, with 1,346 similar pairs, 2,147 dissimilar
pairs and 829 relevant pairs. We believe this set of pairs cover a wide range of queries
and questions on the Internet: The sentences have a length of [3, 123] characters with an
average of 16, a median of 13, and of [1, 76] words with an average of 8, a median of 7.
Figure 3.1 and Figure 3.2 show some statistics of our corpus.
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Figure 3.2: Relevant candidate ratio count of our corpus. This shows for each topic we
have relevant candidates, divided by total number of candidates, the result is called relevant
candidate ratio. For example, the first column means we have 25 topics which have relevant
candidate ratio ranging from 0 to 0.1.
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Table 3.2: Examples of question pairs and their labels, with explanations.
Question 1 Question 2 Explanation

Similar

宝来和高尔夫那款好
Which one is better,
Bora or Golf

买高尔夫好还是新宝来好?
Should I buy Golf
or the new Bora?

Same meaning.

耳机有回音怎么去除
How to erase the echoes
of my headset

电脑耳机有回音啊，求救
There are echoes in my
computer headset. Help!

Same intention.

芦荟胶囊能治痘痘么
Can aloe capsules heal pim-
ples

脸上长痘吃芦荟胶囊有效吗
Will it work if I take aloe cap-
sules when I have pimples on
my face

Same meaning
(with word variations).

JavaScript和java什么关系
Relation between
JavaScript and Java

JavaScript和java什么联系
Connection between
JavaScript and Java

“Relation” and “Connection”
are synonyms.

Dissimilar

win7怎么设置自动关机
How to set automatic shut-
down for win7

win7关机卡在正在关机不动
了。
win7 is stuck at “shtting
down” screen

Different meanings (although
sharing common words).

在那遥远的地方原唱
Singer of (the song) “The
place faraway”

什么地方最遥远？
What place is the most far-
away?

Different topics.

女属虎的和男属兔配吗
Does a woman born
in the year of Tiger
match a man born
in the year of Rabbit

男属虎女属兔相配吗
A man born in the
year of Tiger, a woman
born in the year of
Rabbit, do they match

Different meanings
(caused by word ordering).

Relevant

猫这个单词怎么写
How to spell the word cat

“野猫”的英语单词怎么写
How to spell the English
word for “wild cat”

Minor details differ.

儿童吃什么有助长高
What food will help
children grow taller

小孩子助长用什么好？
How to make children grow
taller

The answer of the latter
one includes the former one’s.
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Chapter 4

The RNN Similarity Model

As mentioned before, our model is based on an RNN Encoder-Decoder which outputs a
probabilistic distribution over different similarity classes. It is also pre-trained with some
weakly labelled data. In this section, we illustrate the architecture of our RNN Encoder-
Decoder, and also list the heuristic similarities for automatic labelling.

4.1 Preliminaries

In order to let reader fully understand our model, we briefly introduce RNN in this section.
The content will include RNN’s applications in natural language processing, how it updates
its parameters, and some of its variations.

4.1.1 Recurrent Neural Networks

Recurrent neural networks have achieved great success in many natural language processing
tasks including text generation [52], machine translation [10], speech recognition [22], and
image description [27]. Different from the traditional feed-forward neural networks which
previous layers’ outputs will feed only into the next layer (example is shown in Figure
4.1), recurrent neural networks will feed the output back into the previous layer’s input.
This is called feedback neural networks (example is shown in Figure 4.2). Feed-forward
neural networks work well for all kinds of classification and regression tasks, but they fail
to solve the sequential data. For example, given a word sequence, we want to predict the
word that comes after, we need not only know the set of words, but also the words’ order,
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inputs

input layer hidden layer output layer

outputs

Figure 4.1: Example of a feed-forward neural network.

Output Layer

Hidden Layer

Input Layer

Figure 4.2: Example of a recurrent neural network.
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because the probability of a word showing up in a sentence depends on the words that come
before it. RNN’s recurrent nature can beautifully solve the problem, as it memorises the
previous information and applies that to the current computation. This way, the nodes in
the hidden layer are connected, as RNN need to take both input layer’s input and hidden
layer’s output from the previous time unit. If we unfold the structure in Figure 4.2, we
can see how RNN behaves in each time step.

Unfold

Figure 4.3: Example of a recurrent neural network after unfolding. o is the output, U , V ,
and W are RNN’s weights, s is hidden layer, x is input, t is time unit counter.

4.1.2 Back-propagation Through Time

According to Figure 4.3, we can define RNN’s formula as follows:

st = tanh(Wst−1 + Uxt + B) (4.1)

ot = Vst (4.2)

where s is hidden layer, tanh is activation function, W,U,V are parameters, B is bias,
x is input, o is output, t is time unit. If the input’s dimension is 200, output dimension
is 8000, hidden layer dimension is 500, we have: s ∈ R500, W ∈ R500×500, U ∈ R500×200,
V ∈ R8000×500, B ∈ R500, x ∈ R200, o ∈ R8000.

For example, given a sentence with word sequence {w1, w2, ..., wn−1}, we want to pre-
dict the next word wn. We mapped the word sequence into word vector sequences:
{x1, x2, ..., xn−1}, we also map the objective word into one-hot vector y, where y ∈ N8000.
For all the sentence in our training set, the learning objective is to minimise the cross-
entropy:

L(θ) = −
N∑
i=1

8000∑
j=1

yji log oji (4.3)
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where yji is jth dimension for ith sentence’s one-hot label, oji is jth dimension for ith
sentence’s output.

Back-propagation Through Time The parameters are shared within different time
steps, so we only need to calculate the derivatives from output to input. We use chain rule
and take W as example:

∂L(θ)

∂W
=
∂L(θ)

∂on

∂on

∂st

∂st
∂W

=
∂L(θ)

∂on

∂on

∂st

∂st
∂st−1

∂st−1
∂st−2

· · · ∂s3
∂s2

∂s2
∂s1

∂s1
∂W

(4.4)

where
∂L(θ)

∂on

= − y

oln2
(4.5)

∂on

∂st
= VT (4.6)

∂st
∂st−1

= (1− tanh2(Wst−1 + Uxt + B))W (4.7)

∂s1
∂W

= (1− tanh2(Ws0 + Ux1 + B))s0 (4.8)

then
∂L(θ)

∂W
= − y

oln2
V

t∏
i=1

((1− tanh2(Wsi−1 + Uxi + B))Wt−1s0 (4.9)

finally, we apply changes to W :

W < −W − η∂L(θ)

∂W
(4.10)

Vanishing Gradient Problem Even though the back-propagation through time is
commonly used in the RNN training, it suffers from the “Vanishing Gradient Problem”.
The derivatives for each parameters will approximate zero as the length of sentences in-
crease. Consider the multiple multiplication part in Equation 4.9:

t∏
i=1

(1− tanh2(Wsi−1 + Uxi + B)) (4.11)
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Figure 4.4: tanh and derivative

The tanh function and its derivative function are shown in Figure 4.4. We can see that
tanh’s derivative function ranges from zero to one. When the sentence’s length is very
long (i.e. t in Equation 4.11 is very large), multiple multiplications’ value will shrink
dramatically. Thus, the parameter will be updated very slow.

4.1.3 Applications

Language Model and Sentence Generation

Definition 4.1.1. Language Model A statistical language model is a probability distri-
bution over sequences of words. Given such a sequence, say of length m, it assigns a
probability P (w1, w2, ..., wn) to the whole sequence.

If we connect RNN’s last time step’s output to a softmax layer, which output the last
word wn’s probability distribution over the dictionary. Thus, after using big data to train
RNN’s parameters, we can predict a sentence’s probability. Also, given a seed word, we
can even generate an article. An example is shown below [52]:
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The meaning of life is the tradition of the ancient human reproduction: it
is less favourable to the good boy for when to remove her bigger. In the show’s
agreement unanimously resurfaced. The wild pasteured with consistent street
forests were incorporated by the 15th century BE. In 1996 the primary rapford
undergoes an effort that the reserve conditioning , written into Jewish cities,
sleepers to incorporate the .St Eurasia that activates the population. Mar??a
Nationale, Kelli, Zedlat-Dukastoe, Flrendon, Ptu’s thought is. To adapt in
most parts of North America, the daynamic fairy Dan please belives the free
speech are much related to the

Machine Translation Machine translation aims at translating a source sentence to
target sentence. For example, translating English into Chinese. Different from language
model, machine translation needs to take all the input from source language and then
output then target language. That is, we need to get all of the input sequence in order to
output even the first word of the target language. An example of RNN translation model
is shown in Figure 4.5.

Figure 4.5: Machine translation model. Image source: http://cs224d.stanford.edu/

lectures/CS224d-Lecture8.pdf

Image Caption Generation Image caption generation is given a image, you need
to descriptive caption about the image. Karpathy et al. [27] designed a model combining
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CNN and RNN, where CNN is used for image feature extraction, and RNN is for sentence
generation. An example of RNN’s results is shown in Figure 4.6.

Figure 4.6: Example of image description. Image source: http://cs.stanford.edu/

people/karpathy/deepimagesent/

4.1.4 Gated Recurrent Unit and Long Short Term Memory

Gated recurrent unit (GRU) and long short term memory (LSTM) are two variations of
RNN, the difference is the formula to calculate hidden state is more complex.

Gated recurrent unit An illustration of GRU’s structure is shown in Figure 4.7 [10].
It has two gates: the update gate (z) and the reset gate (r). The update gate controls
how much information should be carried from the previous hidden state to the current
one, while the reset gate controls if the previous information should be remembered. If
the reset gate is close to zero, the network is forced to forget all the previous state. The
structure works as follows: GRU firstly compute the hidden state according to the current
input vector, and then uses this information to compute update gate and reset gate. Then,
it uses current reset gate, word vector and previous hidden state to calculate new memory
content. The final hidden state is the linear combination of previous hidden state and
the new memory content. In this way, GRU improves RNN in two aspects: 1. Within a
word sequence, different words are in the different positions, they have different effect on
the current hidden layer. The farther the word is from the current word, the less effect it
has on the current hidden layer. That is, GRU weighted the previous hidden states. The
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Figure 4.7: Illustration of GRU’s structure. Where x is the input vector, h is hidden state,
h̃ is the new hidden state, z and r are update and reset gates.

farther the previous word is, the smaller the weight is. 2. If there is an error which may
be caused by some previous words, we should ignore the word(s), and only consider the
current word.

Long short term memory LSTM is very prevalent in all kinds of natural language
processing models. Essentially, it does not have structural difference from RNN, but it
uses different kinds of formula to calculate hidden layer status. We can regard LSTM
cell as black box, where current input and previous hidden status are stored. It has been
proved that the LSTM inner structure is very effective at solving long term dependencies.
The inner structure of LSTM looks very similar to GRU (4.8[11]), while there are several
differences:

• GRU have the reset gate to control the quantity of information that flows from
previous state to current state, but LSTM does not have this gate.

• The approach to generate new state is different. LSTM have two different gates:
forget gate and input gate, but GRU has only update gate.

• LSTM has an output gate to adjust the output, but GRU has no such gates.

4.1.5 Softmax function

In practice, we often use Softmax function to output the probability distribution given the
input vector. That is, given the input vector that represents the probability distribution,

25



f

i

IN
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o

Figure 4.8: Illustration of LSTM’s structure. Where i is the input gate, f is the forget
gate, o is the output gate, C is the hidden layer.

Softmax can output the vector which contains real values range from zero to one. Also,
these values add up to one. The Softmax function is written as follows:

P (Y = a|x) =
ex

twa+ba∑n
i=0 e

xtwi+bi
(4.12)

4.2 Training Framework Overview

Our training framework is divided into five steps:

1. Training word vectors using large scale of unsupervised data.

2. Crawling huge amount of unsupervised question-question pairs from indexing service.

3. Calculating the similarity scores of the unsupervised pairs using simple similarity
algorithms.

4. Train the RNN without pre-training (i.e. using only supervised data), tune the
parameters until we find the best set of parameter.

5. Train the new RNN with unsupervised data, then with supervised data.

The work flow is shown in Figure 4.9.
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Figure 4.9: Overview of the RNN Encoder-Decoder architecture.

27



4.3 The RNN Encoder-Decoder Structure

The structure of our RNN model is demonstrated in Figure 4.10. It consists of two RNN
layers: the Encoder and the Decoder. The query and the candidate sentence are fed into
Encoder and Decoder, respectively. The structure of the RNN Encoder-Decoder model is
described as follows:

1. First of all, query and candidate sentences are segmented into a list of Chinese words.
Then words are mapped into word vectors using a pre-trained word embedding dic-
tionary. Thus, we get query and candidate matrix.

2. In the encoder layer, the word vectors are fed iteratively into RNN’s each time step,
then, we take final time step’s hidden layer as query’s sentence representation.

3. The decoder layer takes in two components. Similar as the encoder layer, it takes in
the candidate matrix’s word vectors for each time step. In addition, it also takes the
query sentence’s representation as one of the input (we will describe this in detail
in formula and picture in later part of the section, how the word vector and query
sentence representation combine). We take the final time step’s hidden layer as
“similarity representation” of the two sentences.

4. As a final step, the similarity representation vector is fed into a Softmax layer, which
outputs a probability representation among different similarity levels (similar, dis-
similar, relevant).

Furthermore, we illustrate the structure with a more detailed example, shown in Fig-
ure 4.11. In this picture, we show the inner details of encoder and decoder, the dotted-line
rectangle areas represent the two full-line rectangle areas in Figure 4.10.

Given the query words sequence {q1, q2, ..., qT} and the candidate words sequence {c1, c2, ..., cT ′},
the words are iteratively fed into each time step of the RNN. The only difference between
Encoder and Decoder’s memory cells is that the Decoder takes in the sentence’s represen-
tation as one of the inputs for each time step. As a result, the final output of the Decoder
can be considered as the “similarity representation” of the two sentences.

The RNN Encoder-Decoder formulations are derived from [10]’s Gated Recurrent Unit
(GRU).

For the Encoder, formulations are computed as follows:

r = σ(Wrqt + Urh<t−1>) (4.13)
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Figure 4.10: Overview of the RNN Encoder-Decoder architecture.

z = σ(Wzqt + Uzh<t−1>) (4.14)

h̃<t> = φ(Wqt + U(r� h<t−1>)) (4.15)

h<t> = z� h<t−1> + (o− z)� h̃<t−1> (4.16)

where qt is the t’th word in the query sentence, r is reset gate, z is update gate, o is an
all-one vector, h<t> is hidden layer at time step t, � is element-wise product, σ is sigmoid
function, φ is tanh function. In our experiment, word vector size is 200, hidden layer size
is 150, so r, z,h<t>, h̃<t> ∈ R150, Wr,Wz,W ∈ R150×200, Ur,Uz,U ∈ R150×150, qt ∈ R200.

For the Decoder, we also take the last hidden layer of the Encoder (denoted as M) into
consideration:

r′ = σ(W′
rct + U′rh

′
<t−1> + CrM) (4.17)

z′ = σ(W′
zct + U′zh

′
<t−1> + CzM) (4.18)

h̃′<t> = φ(W′ct + U′(r′ � h′<t−1>) + CM) (4.19)

h′<t> = z′ � h′<t−1> + (o− z′)� h̃′<t−1> (4.20)
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where ct is the t’th word in the candidate sentence, M is the first sentence’s representation.
Cr,Cz are parameters. ct ∈ R200, Cr,Cz ∈ R150×150.

Finally, the softmax layer at the output of the Decoder generates a probability dis-
tribution over different levels of similarities. Hence, given the query Q and the question
candidate C, the probability that they are similar, relevant, and dissimilar (i.e., the levels)
is:

Plevel(Q,C) = {problevel1 , problevel2 , ..., probleveln}

where Plevel(Q,C) represents the probability distribution of query and candidate sentences
over different levels, probleveli is the probability of similarity level i,

∑
probleveli = 1.

Our objective is to minimise the categorical cross-entropy between the label A and the
predicted probability P :

max{ 1

N

N∑
i=1

L∑
j=1

−Aij logP i
levelj

(Q,C)},

where N is the number of samples in our dataset, L is the number of similarity levels,
Ai is the annotated probability distribution for the ith sample, P i(Q,C) is the predicted
one. We optimise the parameters using the stochastic gradient descent algorithm. Once
the RNN Encoder-Decode is trained, it can be used in both classification and ranking.
Since it outputs a probability distribution over different classes: The sentence pair could
be labelled with the class that has the highest probability; or given a list of candidates, we
can rank them according to their probability scores.

4.4 Pre-training Heuristics

We have introduced four character-level and word-level similarities as heuristics, to pre-
train our RNN model. All of these similarities output a normalised score ranging from 0.0
to 1.0, where higher scores denote more similar sentences.

• Weighted Cosine Similarity: Sentences are mapped into a vector space using the
bag-of-words model (with word segmentation). Typically, in Chinese there are fewer
auxiliary words or particles in longer words, we apply the length as a weight to the
importance:

Scos =

∑
w∈Q∩C len(w)2∑

w∈Q len(w)2 ·
∑

w∈C len(w)2
.
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Figure 4.11: The structure of RNN Encoder-Decoder. {qi} and {ci} are the words se-
quences of Q and C, respectively. M is the output of the encoder; it is fed into each
hidden layer of the decoder h<t>.

• Overlap Similarity: The overlap similarity [38] is defined as the length of the
common words between a Q-C pair, normalised by their total length:

Solap =

∑
w∈Q∩C len(w)

len(Q) + len(C)
.

• Longest Common Substring: The longest common substring similarity is the
length of the longest common substring between two sentences. For example, Slcs(“ABCDE”,
“AXYDE”) = 2 (the longest common substring is “DE”). The algorithm details are
shown in Algorithm 1.

• Word Order Similarity: The word order similarity [34] considers the index of each
word in the sentence. Using a bag-of-words model, the value of each dimension of
the vector v is the index of that word, then:

Sw-order = 1− ||v1 − v2||/||v1 + v2||.

With these similarities, we are able to label many query-question candidate pairs au-
tomatically. We extract queries and question candidates following the same procedure of
Section 3, but instead of only 400 different questions, we select 9,693 totally different
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Algorithm 1: Longest Common String Length

input : Two strings, S1 and S2

output: Longest Common String Length of input strings, LCS
l1 ← length(S1) ;
l2 ← length(S2) ;
LCS ← 0 ;
M ← zeros(l1+1, l2+1) // M is a matrix of int

foreach char c1 at position i of S1 do
foreach char c2 at position j of S2 do

if c1 = c2 then
Mi+1,j+1 ← Mi,j +1

else
Mi+1,j+1 ← 0

LCS ← max(Mi+1,j+1 , LCS)

questions for pre-training, and retrieve a total of 1,557,985 query-question pairs. We then
assign a similar score to each pair, by linear combining the four similarities:

Score = αScos + βSolap + γSw−order + φSlcs

where α + β + γ + φ = 1.

This Score is given to each pair as the probability of the label similar, while 1−Score
for the label dissimilar. All the pairs are fed into the RNN Encoder-Decoder along with
the pre-trained word vectors as pre-training. In our practice, we use Theano [55] as the
framework, with a learning rate = 0.001 without regularisation terms. We only train the
pre-training dataset for one epoch. On our servers, the training process costs six to twelve
hours (varies with hidden layer dimensions).

4.5 Word Vector Training

Brief introduction of Word2Vec tool Word2Vec toolkit is developed by Mikolov
et al. [39], the project link is: https://code.google.com/archive/p/word2vec/. The
word vectors share two very interesting properties: 1. Words with similar meanings tend to
have small cosine distance. An example is shown in Figure 4.1. 2. The trained word vectors
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Table 4.1: Cosine similarity ranking given keyword “Paris”. The word candidates are
collected from dictionary. The top 10 most similar words are selected from dictionary, and
ranked by their cosine similarity with word “Paris”.

Word Cosine distance

spain 0.678515
belgium 0.665923
netherlands 0.652428
italy 0.633130
switzerland 0.622323
luxembourg 0.610033
portugal 0.577154
russia 0.571507
germany 0.562391
catalonia 0.534176

have many interesting linguistic rules, for example, vector(‘Paris’) - vector(‘France’)
+ vector(‘Italy’) results in a vector, which is very close to vector(‘Rome’).

The word vectors are used in the RNN model and one of the baseline evaluation
methods. They are also trained from our cQA corpus (segmented by jieba1), using the
Word2Vec [39] framework. The training takes 16 hours, results in 4, 128, 853 different
word vectors with 200 dimensions.

1jieba is a Python framework for Chinese word segmentation: https://github.com/fxsjy/jieba
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Chapter 5

Experiments

In this section, we show the performance of our model by two evaluations: One is sentence
similarity classification, and the other one is question candidates ranking.

5.1 Evaluation Metrics

In information retrieval, machine learning, and natural language processing fields, evalua-
tion is an essential job, which tells us the effectiveness of an approach.

5.1.1 Accuracy, Precision, Recall, and F1 Measure

In this section, we briefly discuss the meaning of accuracy, precision, recall, and F1 measure.
For example, we have a collection of documents, where P documents are wanted ones, N
documents are unwanted ones. Our task is to judge which documents are relevant (wanted)
ones, and which are not (negative). If we design an approach to retrieve the documents,
we may select the documents that are not relevant, as shown in Figure 5.1.

Definition 5.1.1. True positive In the collection of selected documents, the number
of relevant documents are true positives, denoted as TP.

Definition 5.1.2. False positive In the collection of selected documents, the number
of irrelevant documents are false positives, denoted as FP.

Definition 5.1.3. False positive In the collection of not selected documents, the num-
ber of relevant documents are false negatives, denoted as FN.
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selected items true positives
true negatives
false positives
false negatives

Figure 5.1: Illustration of true positive, true negative, false positive and false negative

Definition 5.1.4. True negative In the collection of not selected documents, the num-
ber of irrelevant documents are true negatives, denoted as TN.

Definition 5.1.5. Accuracy The ratio of correctly predicted documents. Calculated as
follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(5.1)

Definition 5.1.6. Precision In the collection of selected documents, the ratio of cor-
rectly predicted documents. Calculated as follows:

Precision =
TP

TP + FP
(5.2)

Definition 5.1.7. Recall In the collection of wanted documents, the ratio of retrieved
documents. Calculated as follows:

Recall =
TP

TP + FN
(5.3)

Definition 5.1.8. F1 measure Harmonic mean of precision and recall. Can be seen
as a balance between recall and precision, as neither of them can represent the overall
efficiency of a model. F1 measure is calculated as follows:

F1 =
2TP

2TP + FN + FP
(5.4)

35



5.1.2 Mean Average Precision

In our case, purely calculating the accuracy and F1 measure is not enough, as we will score
each sentence pair. In Figure 5.1, sometimes we will give each document a score indicating
the confidence of the predicted label. Thus, given relevant document A and irrelevant
document B, if we selected both of them, we have the same accuracy; but if we rank them
as AB, it will be different from BA. In order to make this difference, we resort to mean
average precision (MAP), which is calculated as follows:

AP =

(
N∑
i=1

P (Ci)

)
/N ′,MAP =

∑N
i=1AveP (Ci)

N
(5.5)

where P (Ci) is the precision at position i, and N ′ is the number of similar candidates, N
is the number of all candidates.

5.2 Sentence Similarity Classification

In this experiment, we use the model to predict the sentence pair similarity as a binary
classification problem: We only use the similar and dissimilar pairs in our dataset, which
are the most significant classes. In this way we can also compare the accuracy, precision,
recall, and F1 score of the models.

5.2.1 RNN training

Parameter Tuning

For our model, there are two parameters we need to tune: learning rate, hidden layer.

Learning rate Let’s recall Function 4.10:

W < −W − η∂L(θ)

∂W
(5.6)

where η is learning rate. Figure 5.2 shows an example of the loss function in three dimen-
sional space. The learning phase is like climbing down to the bottom of the valley, and
the learning rate is like step size. When you come close to the bottom and your step size
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Figure 5.2: Example of loss function in 3D space. The bottom of the bowl is the point we
want to reach in learning phase.

is too large, you may linger around the bottom and will never reach it. Figure 5.31 gives
an example of how the model converges using different learning rates.

Hidden layer size Apart from learning rate, the hidden layer size is also important
for training. The more neurons the hidden layer has, the stronger the neural networks
representation capability is. But if we use too many neurons, over-fitting problem will
emerge.

In order to find the optimal parameter, we use vanilla RNN to perform 5 fold cross
validation on our data set, and get the optimal parameter accordingly. we do 2 steps:

• Adjust learning rate. We tested 7 different learning rates: 1, 0.5, 0.1, 0.05, 0.01,
0.005, 0.001. Hidden layer size is set to 200. The results are shown in Figure 5.1.

• Adjust hidden layer size. We test 8 different hidden layer sizes: 1000, 700, 500,
300, 200, 100, 50. The learning rate is set to 0.001. The results are shown in Figure
5.2.

• Grid search. We picked up 0.0005, 0.001 from learning rate set and 100, 150, 200
from hidden layer size set. The results are shown in Figure 5.3.

1Image source: http://neuralnetworksanddeeplearning.com/chap3.html
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Figure 5.3: Example of loss convergence with different learning rates. If the learning rate is
too large, the loss will fluctuate. When the learning rate is appropriate, the loss will shrink
smoothly. (Image source: http://neuralnetworksanddeeplearning.com/chap3.html)

Pre-training

As mentioned before, we select 9,693 totally different questions for pre-training, and re-
trieved a total of 1,557,985 query-question pairs from our indexing service. We then assign
a similar score to each pair, by linear combining the four similarities:

Score = αScos + βSolap + γSw−order + φSlcs

where α + β + γ + φ = 1.

Table 5.4 shows scoring examples. We can see that the unsupervised pairs are not 100%
correct.

Cross-validation

After the pre-training, we perform a five-fold cross-validation on our annotated data set,
with the learning rate of 0.001, and the hidden layer size of 150. We do not deliberately
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Table 5.1: Learning rate tuning.

Learning rate Acc. Prec. Rec. F1

1 0.6146 – – –
0.5 0.6252 0.5591 0.1300 0.2109
0.1 0.5989 0.4753 0.3937 0.4307
0.05 0.6358 0.5391 0.3781 0.4445
0.01 0.7200 0.6319 0.6545 0.6430
0.005 0.7726 0.6935 0.7347 0.7135
0.001 0.7978 0.7328 0.7481 0.7404
0.0005 0.7964 0.7315 0.7451 0.7383
0.0001 0.7569 0.7008 0.6441 0.6713

Table 5.2: Hidden layer size tuning.

Hidden layer size Acc. Prec. Rec. F1

50 0.8007 0.7559 0.7132 0.7339
100 0.8033 0.7524 0.7295 0.7408
150 0.8081 0.7653 0.7243 0.7442
200 0.7978 0.7328 0.7481 0.7404
500 0.7904 0.7234 0.7384 0.7308

tune our parameter. For each fold we train 50 epochs.

5.3 Question Candidates Ranking

In this experiment, we test different models’ abilities to rank the matching degree given
the candidate list. We evaluate the retrieved candidates with mean average precision
(MAP) within the ranking context – the mean value among the precisions of the candidate
similarities. We select 26 topics out of 128 which has the percentage of similar candidate
ranging from 40% to 80%, and compared our model with Sim-Avg and logistic regression
(LR-Sim and LR-Avg).

This capability makes it possible to fit in more applications which require probability
distributions or continuous scores.
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Table 5.3: Grid search tuning.

Hidden layer size Learning rate Acc. Prec. Rec. F1

100 0.0005 0.7849 0.7019 0.7682 0.7335
100 0.001 0.8033 0.7424 0.7496 0.7460
150 0.0005 0.8038 0.7284 0.7830 0.7547
150 0.001 0.8081 0.7653 0.7243 0.7407
200 0.0005 0.7964 0.7315 0.7451 0.7383
200 0.001 0.7978 0.7328 0.7481 0.7404

Table 5.4: Examples of unsupervised query-question pairs.
Query Question Score

什么PDF阅读器好用
Which pdf reader is convenient to use

PDF阅读器有什么用?
How to use pdf reader?

0.9105

显示器进水了怎么办啊
The display is watered
, what can I do

三星液晶显示器进水怎么办
Sumsung LED display is watered,
what can I do

0.7174

电脑运行期间关掉显示器有好处吗
Is it better to turn off
display while my computer
is running

为什么电脑显示器不能关掉？
Why I cannot turn
off my computer display?

0.5566

怎样健身才能让胳膊变得粗壮
How to work out to
make arms stronger

怎样使手腕变得粗壮
How to make wrist stronger

0.3866

5.4 Baselines

We use the following four methods as our baselines:

• Average of the heuristic sentence similarities (Sim-Avg): The average of the four
similarities for pre-training is taken as the similarity score for each Q-C pair. Only
those with scores higher than a threshold θ are considered similar. The procedure is
depicted in Figure 5.4.

• Bag-of-features model: We compute the four similarities of each Q-C pair, as features
to form a vector. Classified with support vector machine (SVM-Sim) or logistic
regression (LR-Sim).
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Figure 5.4: Average of the heuristic sentence similarities

• Sentence representation: Instead of using the four similarities to represent a sentence,
we use the average of all the word vectors of a sentence as its representation, then
use SVM (SVM-Vec) and logistic regression (LR-Vec) for classification. See Figure
5.5 for details.

• Similarity matrix (SimMat): We adopt [49]’s similarity matrix method. Instead of
using the phrase vector from their RAE, we directly use our pre-trained word vectors.
The similarity matrix is shown in Figure 5.6.

Figure 5.5: Sentence Representation baseline pipline.

We used the Scikit Learn [45] toolkit for SVM (with the RBF kernel) and LR.
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Figure 5.6: Similarity matrix example. ci and qi are word vectors of candidate and query
sentence, respectively. aij is the matrix’s value, which is the cosine similarity of qi and cj
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Chapter 6

Results and Discussion

The results of classification and ranking MAP are shown in Table 6.1.

Obviously, the straight-forward Sim-Avg method can reach very high precision with a
higher threshold, but with the cost of an unacceptable recall rate. When measuring with
the F1 score, its capability can reach an accuracy of about 0.7.

With word vectors, the semantic information has been fully utilised, hence the results
with -Vec are better than -Sim. Between them, the SVM model has slightly higher preci-
sions than the logistic regression model. These results show the capability of traditional

Table 6.1: Comparison of the models on classification and ranking.
Model MAP Acc. Prec. Rec. F1

Sim-Avg, θ = 0.9 0.8701 0.6412 0.9793 0.0705 0.1316
Sim-Avg, θ = 0.8 0.8701 0.6965 0.9359 0.2280 0.3667
Sim-Avg, θ = 0.6 0.8701 0.7162 0.6256 0.6567 0.6408
LR-Sim 0.8778 0.7469 0.7015 0.5973 0.6452
LR-Vec 0.7670 0.7998 0.7549 0.7117 0.7326
SVM-Sim – 0.7472 0.7609 0.5014 0.6045
SVM-Vec – 0.8116 0.8127 0.6641 0.7309
SimMat – 0.6933 0.6395 0.4680 0.5405
RNN (150) – 0.8081 0.7653 0.7243 0.7442
RNN, Pre-trained (150) 0.8814 0.8393 0.7789 0.8142 0.7962
GRU (150) – 0.8273 0.7778 0.7726 0.7752
GRU, Pre-trained (150) 0.8646 0.8434 0.8158 0.7667 0.7905
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Table 6.2: Examples of the similarity prediction results. RNN is the pre-trained model in
this table.

Query Question Label Sim-Avg LR-Vec RNN

狗不能吃什么
What can’t dogs
eat

狗产后吃什么好
What can dogs eat after they
give births

0 0.7503 0.2564 0.0354

女属虎的和男属兔
配吗
Does a woman born
in the year of Tiger
match a man born
in the year of Rab-
bit

属虎男和属兔女配吗
Does a man born in the year
of Tiger match a woman born
in the year of Rabbit

0 0.8894 0.6976 0.0222

螃蟹多少钱一个
How much is one
crab

现在市场上螃蟹的价钱
The current market price of
crabs

1 0.2675 0.3320 0.9709

集体户口如何迁回
老家
How to move col-
lected registered
residence address
to my hometown

户籍迁移程序：我的户口都
是集体户口，现在想迁移回
家，需要哪些手续
The procedure to move res-
idence address: I have col-
lected registered residence, I
want to change it to my home
town, what is theprocedure

1 0.3530 0.1207 0.0002

models on this task.

We can also see that [49]’s similarity matrix performs badly on our task. We do not use
RAE’s phrase vector; besides, the sentence lengths are also different. In their experiments
with the MSRP corpus, the sentences are all very long (mostly > 20), making their pooling
step helpful. But our dataset’s sentence length varies from 1 to 76, making fix-sized pooling
more difficult. This also reveals that this pooling step is also easily influenced by different
data set nature.

Among all algorithms, the RNN model achieves better balance between precision and
recall. Also, we can see with pre-training, RNN’s performance is dramatically boosted,
which reveals that our framework can capture more information at the first pre-training
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stage, and perform a lot better in the succeeding processes. Moreover, the ranking result
(MAP) also shows that the RNN model is better.

We further investigate some examples, shown in Table 6.2. For Sim-Avg, its classifi-
cation output depends on threshold, but as a value of over 0.7, the threshold must be set
high to classify it into 0 (dissimilar). For LR and RNN, they give a positive label (similar)
if the output < 0.5. The first example shows RNN can better recognise negations, which is
very important in question-answering. The second example shows RNN takes word order
information into account, which solve one of the hard-to-solve problems to some extent.
The third example shows by using word vectors, we can better capture semantic informa-
tion, as “cost” and “price” are closely related. This greatly improve the performance of
the model in practice.
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