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Abstract

A measurement system is developed for studying a lateral double quantum dot (DQD)

device formed in the two-dimensional electron gas (2DEG) of a GaAs/AlGaAs heterostruc-

ture. Copper powder and RC filters are constructed to isolate the device from sources of

instrumentation and thermal noise, allowing the temperature of the 2DEG to reach 70

mK. Coaxial cables and bias tees allow Gaussian shaped pulses to be delivered to sev-

eral depletion gates of the device for the purpose of quantum dot qubit manipulation. A

conventional charge detector based on a quantum point contact (QPC) and a room tem-

perature current preamplifier is implemented. This readout has a bandwidth of 25 kHz and

a sensitivity of order 10
�3
e©ÓHz when using a 200 µV (3 nA) bias. To improve readout

bandwidth, a radio-frequency QPC (RF-QPC) circuit is also developed. A superconducting

niobium inductor, manufactured using photolithography techniques, is the basis of a 520

MHz matching network. The RF-QPC system noise temperature is 5.2 K, limited by the

cryogenic semiconductor amplifier. Its sensitivity is 2�10
�3
e©ÓHz when using a �85 dBm

carrier. The RF-QPC has a bandwidth of 15 MHz. A summary of the first quantum dot

physics measurements is provided. Data related to fundamental phenomena such as con-

ductance quantization of a QPC, Coulomb blockade for a single dot, and spin blockade for

a DQD are presented. A qubit based on two-electron spin states in a DQD (S-T� qubit)

is created and coherent oscillations of the qubit known as Landau-Zener-Stückelberg oscil-

lations are observed. Analysis of the spin-to-charge conversion mechanism associated with

the qubit readout reveals the role played by metastable charge states, a result published

in Physical Review B 92, 125434 (2015).
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Chapter 1

Lateral Quantum Dot Devices

1.1 Introduction

A quantum dot is a submicron structure that confines electrons or holes in all three di-

mensions on length scales of tens of nanometers. The confinement potential forces the

electrons in the dot to occupy discrete energy levels similar to the electrons of an atom.

Quantum dots are thus sometimes referred to as artificial atoms. They have been realized

in many systems including nanoparticles [1], carbon nanotubes [2], and semiconducting

nanowires [3]. This work concerns quantum dots formed in the two-dimensional electron

gas (2DEG) of a GaAs/AlGaAs heterostructure. Scanning electron microscopy (SEM)

images of such devices designed by the Sachrajda group at the National Research Council

Canada (NRC) are displayed in Fig. 1.1. From left to right are shown a single, double,

and triple quantum dot device. Each device is composed of metallic electrodes called gates

patterned on top of the heterostructure using electron beam lithography techniques. Ap-

plying negative voltages to these gates depletes the underlying 2DEG, creating electron

puddles at the positions marked by the white circles. These puddles are the quantum dots.

By tuning the gate voltages, the number of electrons occupying each dot can be reduced

from hundreds to 2, 1, or even 0.

This work details the first steps towards establishing a quantum dot research program

in a low temperature physics laboratory. The ultimate goal is to study quantum dot physics

1



300 nm 300 nm300 nm

Figure 1.1: SEM images of depletion gate layouts for single, double, and triple quantum dot

devices. The white circles show the approximate positions of the dots. All three devices are

designed by the NRC group.

as it relates to the ongoing effort to implement a quantum computer. The development

of the field of quantum computing with quantum dot devices has been guided over the

past nearly 20 years by a 1998 paper of David DiVincenzo and Daniel Loss [4, 5]. In the

paper, the authors propose a quantum computer based on single-electron spin states. The

geometry of their proposed device is similar to that of the double quantum dot (DQD) and

the linear triple quantum dot (TQD) devices of Fig. 1.1(b,c). Each dot contains a single

electron spin and the tunnel barrier between dots is controlled with the metallic gates.

The qubit basis states are the Zeeman split states ¶�� and ¶�� of an electron in a magnetic

field.

For a general set of basis states ¶0� and ¶1�, any qubit state ¶ψ� � cos�θ©2� ¶0� �
e
iφ

sin�θ©2� ¶1� is represented by a unit vector on the Bloch sphere with polar and azimuthal

angles θ and φ [Fig. 1.2(a)]. The Bloch sphere representation of the single-electron spin

qubit is shown in Fig. 1.2(b). The basis states ¶�� and ¶�� are located on the z-axis

and equal weighted superpositions are located in the transverse plane. The superposition

states �¶�� � ¶���©Ó2 and �¶�� � ¶���©Ó2 define the x-axis. The red vector represents

the system in the ¶�� state. Moving the vector to any point on the sphere requires two

types of rotations, typically a z-axis and an x-axis rotation are employed. These are the

single-qubit gate operations. A rotation about the x-axis ¶�� � ¶�� is achieved using

the electron spin resonance (ESR) technique while the energy difference between the basis

2



states produces coherent rotations �¶���¶���©Ó2 � �¶���¶���©Ó2 about the z-axis. Two-

qubit operations are achieved using the metallic gates to tune the tunnel barrier between

dots thus controlling the exchange energy for neighboring electrons. Such a technique

allows, for example, the implementation of the SWAP gate ¶��� � ¶���. In addition to

possessing this universal set of quantum gate operations, the proposed quantum computer

satisfies other Divincenzo criteria [6]; it is scalable, the qubits can be initialized to a

fiducial state (eg. ground state by cooling in a magnetic field), and qubit readout is

possible using the spin-to-charge conversion technique (Section 4.6). A qubit based on the

DiVincenzo/Loss proposal has been implemented in a DQD device [7].

0

x

z

(b) (c)(a)

1

0 1+
√2

0 1
√2

θ

φ

↑

x

z

+
√2

y

↓

↑ ↓
√2

↑ ↓

S

x

z

y

T0

↓↑ ↑↓

Figure 1.2: Bloch sphere for (a) general qubit [0 & θ & π and 0 & φ $ 2π] (b) single-electron spin

qubit, and (c) two-electron singlet-triplet qubit S-T0. The red unit vector represents the qubit

state.

For any device to form the basis of a viable quantum computer, the lifetime of a qubit

must be long relative to the time required to execute a gate operation. The qubit lifetime

is characterized with three timescales, T1, T2, and T
�

2 . The T1 time refers to the decay

of the excited qubit state to the ground state. In the case of single-electron spin states,

this means a ¶�� � ¶�� transition which occurs on a timescale T1 % 1 s in a 1 T magnetic

field [8]. The timescale associated with the decay of a superposition state is called the

decoherence time and labeled T2. For the single-electron qubit, T2 � 0.44 µs has been

achieved using a spin-echo technique similar to that used in nuclear magnetic resonance

experiments [9]. Since the qubit readout procedure generally requires an average over an

ensemble rather than the measurement of a single system, a related quantity called the

dephasing time, T
�

2 , is sometimes used to characterize the decay of a superposition state.
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For single electron spins in GaAs/AlGaAs heterostructures, T
�

2 in the tens of nanoseconds

range is typical. For example, T
�

2 � 37 ns is reported in Ref. [9]. The single-qubit gate

operation �¶��� ¶���©Ó2 � �¶��� ¶���©Ó2 requires �0.1 ns while the ¶��� ¶�� operation

can be executed in 20 ns [10]. The two-qubit SWAP gate can be achieved in 350 ps [11].

Typically �10
4

operations must be performed within a decoherence time [12, 13] so work

remains to decrease the gate operation time and/or increase T2.

The dephasing of the electron spin is primarily the result of the hyperfine interaction

with the nuclear spins of the substrate. Each electron interacts with approximately 10
6

spin-3/2 Ga and As nuclei and the effect of the nuclear spins on the electron spin is

commonly described with reference to an effective nuclear field called the Overhauser field.

The root-mean-square of the statistical fluctuation of this internal field is a few mT [14].

It is these fluctuations of the nuclear field that lead to the decoherence of the electron spin.

In addition to using single-electron spin states to create qubits, a qubit based on two-

electron spin states can also be implemented in a quantum dot device. The qubit basis

states are the singlet ¶S� � �¶��� � ¶����©Ó2 and either the m � 0 triplet ¶T0� � �¶��� �¶����©Ó2 or the m � �1 triplet ¶T�� � ¶���. Such singlet-triplet qubits are realized in a

DQD device with each of the two tunnel coupled dots occupied by a single electron.

The Bloch sphere for the S-T0 qubit is shown in Fig. 1.2(c). The ¶S� and ¶T0� basis

states define the z-axis and the states ¶��� and ¶���, which are linear superpositions of¶S� and ¶T0�, define the x-axis. A magnetic field gradient parallel to the external field is

provided by the nuclear spins or a micromagnet. This creates an energy difference between

the states ¶��� and ¶��� thus producing a rotation ¶S� � ¶T0� about the x-axis . This

operation can be achieved on subnanosecond timescales [15]. The metallic gate controlled

finite exchange energy for the two electrons creates an energy difference between ¶S� and¶T0� and drives rotations �¶T0� � ¶S��©Ó2 � �¶T0� � ¶S��©Ó2. This is the single-electron

qubit SWAP gate operation ¶��� � ¶��� and, as mentioned above, can be executed in

350 ps [11]. Two-qubit operations are realized by capacitively coupling two DQDs. Using

the spin blockade phenomenon, the spin/charge configuration of one DQD controls the

exchange energy and therefore the oscillation frequency of the other DQD [16, 17]. The

T1 for the S-T0 qubit is on the order of milliseconds [18]. If the magnetic field gradient

is provided by the nuclear spins, T
�

2 � 10 ns although the decoherence time, T2, has been

4



increased to 276 µs using the Carr-Purcell-Meiboom-Gill spin-echo technique [19]. It is

thus possible to reach �10
4

gate operations in a decoherence time provided the two-qubit

gate can be executed in less than 30 ns [16].

Relative to the S-T0 qubit, the S-T� qubit is a recent development in the field. It was

first demonstrated in Ref. [20] and theoretical proposals for single and two-qubit gates have

been presented [21]. Operation of the qubit requires a magnetic field gradient transverse to

the external field, typically provided by the nuclear spin system. The coupling of the ¶S�
and ¶T�� states that results from this field gradient produces an anticrossing in the energy

level spectrum. Superposition states of ¶S� and ¶T��, and thus single-qubit operations, are

realized by means of Landau-Zener tunneling at this anticrossing. Limited by fluctuations

in the nuclear spin system, T
�

2 � 10 ns [20]. Because our NRC collaborators have shown

recent interest in the Landau-Zener tunneling phenomenon [22, 23], the S-T� qubit is

investigated in this work. A discussion is found in Chapter 4.

Important for any implementation of a quantum computer is the ability to quickly

and accurately measure the states of the qubits. In the case of spin qubits in a quantum

dot device, such a readout technique employs an electric field sensor such as a quantum

point contact (QPC) [24] and a technique for mapping each qubit spin state to a unique

charge configuration that can be distinguished with the sensor. This latter requirement

is usually achieved using the spin blockade phenomenon [25]. A now common technique

for increasing the fidelity of the qubit state measurement (i.e. lowering the probability of

making an error) by increasing the measurement speed is to embed the QPC in a radio-

frequency (rf) resonant circuit [26, 27]. The resulting sensor is known as an RF-QPC.

Details related to the implementation of this technique are provided in Chapter 3.

This first chapter reviews basic quantum dot physics. It begins with more detailed

discussions of the 2DEG and quantum dot formation using the metallic depletion gates.

Analysis of electrical transport measurements follow. They reveal the fundamental phe-

nomena of Coulomb blockade and conductance quantization. With this foundation, charge

detection using a quantum point contact (QPC) and the creation of a charge stability

diagram are then discussed. The chapter ends with a section concerning the phenomenon

of spin blockade, necessary for the spin qubit study of Chapter 4.
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1.2 Two-Dimensional Electron Gas

Consider the bandstructure diagrams of the physically separated intrinsic GaAs and Si

doped n-AlxGa1�xAs layers shown in Fig. 1.3(a) [28]. Following Anderson’s rule, the dia-

grams are drawn with reference to the vacuum level, Evac [29]. The electron affinity χ1 (χ2)

is the energy required for an electron at the bottom of the conduction band, EC1 (EC2), to

escape the n-AlxGa1�xAs (GaAs) crystal. Electrons at the top of the valance band in the

n-AlxGa1�xAs and GaAs crystals have energies EV 1 and EV 2 respectively. The conduction

and valance band offsets ∆EC � EC1 � EC2 and ∆EV � EV 1 � EV 2 are tuned with the

concentration x. The Si donor energy levels and thus the Fermi energy, EF1, lie near the

conduction band edge on the n-AlxGa1�xAs side. Being an intrinsic semiconductor, the

Fermi energy of the GaAs layer, EF2, is located in the middle of the band gap.

EC1
EF1

EV1

Evac

EF2

EV2

EC2
n-AlxGa1-xAs GaAs

(a)

EF

(b)

EV

EC

χ1

χ2

z z

Figure 1.3: (a) Energy band diagrams of physically separated n-doped AlxGa1�xAs and intrinsic

GaAs crystals. (b) Equilibrium energy band diagram of a heterostructure of the two semicon-

ductors. The electric field resulting from the electrons and their positively charged Si donor ions

(+) bends the energy bands creating a potential well that dips below the Fermi energy and thus

a two-dimensional electron gas near the interface.

In the context of a heterostructure, with the materials in contact, some of the electrons

released by the Si donors cross into the GaAs layer until a common Fermi level, EF , is

established across the entire heterostructure. This process leaves behind non-neutralized

positively charged donor impurities in the n-AlxGa1�xAs layer. This separation of electrons
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and ionized donors creates an electrostatic potential, φ�z�, that attempts to drive the elec-

trons back into the n-AlxGa1�xAs layer. The step in conduction band energy, however,

prevents the electrons from returning to the donors. The electrostatic potential simply

pushes the electrons against the interface of the two materials. Including this electrostatic

energy, �¶e¶φ�z�, produces the equilibrium band diagram of Fig. 1.3(b). The result is a

potential well in the conduction band near the interface on the GaAs side. If the concentra-

tion, x, and the doping level are chosen appropriately, this potential well can be engineered

to dip below EF , leading to a layer of electrons near the interface. Since this layer has a

thickness of 5-10 nm, discrete energy levels called z-subbands are created with a typical

spacing of �100 meV [30]. This large energy level spacing combined with the low electron

density (�10
15

m
�2

) means that only the lowest z-subband is typically occupied. In this

case, the electron gas is viewed as two-dimensional with free plane wave motion within the

interface layer.

1.3 Depletion Gate Layout

A scanning electron microscopy image of the NRC split-gate device is shown in Fig. 1.4(a).

The nine labeled TiAu metallic gates (T, LS, LP, C, RP, RS, Q1, Q2, Q3) are located on

top of the GaAs/AlGaAs heterostructure. Schematic cross sections of the device cutting

through three gates and the underlying 2DEG are sketched in (b)-(e). Although not drawn

to scale, the sketches are intended to correspond to a cross-section taken at the position of

the dashed line in (a). Since the low electron density of the 2DEG, ns � 2.1 � 10
15

m
�2

,

corresponds to a large Fermi wavelength, λf �
Ô

2π©ns � 55 nm, and a large screening

length, the electric field of a gate will locally deplete the 2DEG lying 90 nm below [14].

From (b) to (e), the three gate voltages are made progressively more negative with respect

to the 2DEG. In (b), the gates are grounded and the 2DEG is undisturbed. Depletion

directly underneath the gates is shown in (c) and, to some extent, also between the gates

in (d). At approximately �1 V the 2DEG is completely depleted, leaving the electrically

insulating region shown in (e). The ability to vary the electron density between pairs of

gates allows the formation of variable resistance constrictions in the 2DEG, examples of

which are represented as pairs of curved lines in (a).
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source drainT
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n-AlGaAs

2DEG

(a) (c)(b)

(d) (e)

T RSLS

300 nm

ohmic contact

Q1

Q2

Q3

Figure 1.4: (a) SEM image of the the DQD device. Dashed white circles indicate the approximate

positions of the quantum dots. Pairs of curved black lines indicate constrictions in the 2DEG

that determine the dot-to-dot and dot-to-lead tunneling resistances. Positions of ohmic contacts

to the 2DEG are indicated with |. (b)-(e) Cross-sections through the heterostructure and three

surface gates at the position of the dashed line in (a). From (b) to (e), the gate voltages decrease,

changing the degree of 2DEG depletion.

For typical gate voltages of VT � VLP � VRP � �0.5 V and VLS � VC � VRS � �1 V, the

2DEG is depleted in such a way as to form two quantum dots near the positions marked

by white dashed circles on the SEM image. The left and right side gate voltages, VLS and

VRS, play the dominant role in determining the electrostatic energy of the dots. The tunnel

coupling (resistance) between the dots is controlled primarily with VC and the coupling to

the leads (electron reservoirs in top left and top right labeled source and drain) is tuned

using VT . Fine tuning of the dot energies is accomplished with the left and right plunger

gate voltages, VLP and VRP . Ohmic contacts to the 2DEG allow for the performance of

electrical transport measurements. With a proper tuning of the gate voltages, each dot

contains a well defined number of electrons. Each DQD charge state is labeled (N1,N2),

where N1 (N2) electrons occupy the left (right) dot. For example (2,1) means two electrons

on the left dot and one electron on the right dot.
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1.4 Coulomb Blockade

Before discussing DQD physics, it is useful to analyze an electrical transport measurement

involving a single quantum dot. Starting with a DQD structure, a single dot is formed by

simply increasing VC until the central potential barrier separating the dots is eliminated.

A circuit diagram of the resulting configuration is superimposed on an SEM image in

Fig. 1.5(a). The single dot, represented by a white circle, is shown tunnel coupled to

source and drain leads and capacitively coupled to the gate labeled with a generic G

in this section. Tunnel coupling implies both a capacitive coupling to the leads and an

electrically resistive connection through which the quantum dot can exchange electrons

with the leads. Only the effect of gate G is considered in the following development. The

other gates are held constant at the voltages required to form the single dot. Consider the

quantum dot to contain charge Q at voltage V . The source, drain, and gate are connected

to voltage sources VS, VD, and VG and electrostatically coupled to the quantum dot through

capacitors CS, CD, and CG. The electrostatic energy of the quantum dot, Ue, is calculated

as a function of these six parameters. Begin by calculating the charge on each of the three

capacitors. The voltage across the source capacitor is V � VS, implying a stored charge

of CS�V � VS�. Proceeding in a similar manner for the drain and gate capacitors and

summing the results produces the expression

Q � CS�V � VS� � CD�V � VD� � CG�V � VG�.
Define the capacitance of the single dot as C � CS�CD�CG, solve for CV , and substitute

into Ue �
1

2
CV

2
� C

2
V

2©2C to give the expression for the electrostatic energy of the

quantum dot

Ue�N� � ���N �N0�¶e¶ � CSVS � CDVD � CGVG�2

2C
,

where Q � ��N � N0�¶e¶ has been used. N is the number of electrons that occupy

the quantum dot with the gates energized and N0 is the number of electrons in the dot

required to compensate the positive donors when the voltage sources are all zero [31]. The

confinement potential that leads to the quantization of charge number also produces a

discrete energy spectrum, similar to an atom. Adding these single particle energies, Ei, to

9



the electrostatic part gives an expression for the total energy of the quantum dot [14]

U�N� � ���N �N0�¶e¶ � CSVS � CDVD � CGVG�2

2C
�

N

=
i�1

Ei. (1.1)

Analysis of electrical transport does not, however, typically make use of U�N� directly

due to its quadratic dependence on VG. Instead transport phenomena are discussed with

reference to a related quantity, the electrochemical potential, defined as µ�N� � U�N� �
U�N�1�. It is the change in dot energy associated with adding the N

th
electron to an N�1

electron quantum dot (only ground states are considered here). Using Eq. 1.1, produces

an expression for the electrochemical potential

µ�N� � �N �N0 �
1

2

EC � EC¶e¶ �CSVS � CDVD � CGVG� � EN , (1.2)

where EC � e
2©C is referred to as the charging energy. The energy difference between

consecutive electrochemical potentials, called the addition energy, is given by

Eadd�N� � µ�N � 1� � µ�N� � EC �∆E,

where ∆E is the energy difference between two discrete energy levels. For lateral gated

quantum dots formed in GaAs/AlGaAs heterostructures, EC �1 meV and ∆E �100 µeV

as shown in the following subsection [32].

The electrochemical potentials, approximately equally spaced by EC , are represented

in quantum dot energy diagrams by a ladder of levels as shown in Fig. 1.5(b). Source

and drain leads contain Fermi-Dirac distributions of electrons with chemical potentials

µS and µD respectively. A voltage bias, VSD � VS � VD, is applied producing an energy

difference between the leads, µSD � µS �µD � �¶e¶VSD, called the bias window. Referring

to Eq. 1.2, note that VG can be used to move the ladder of electrochemical potentials up

and down in energy while maintaining the energy difference between levels. The value of

VG chosen in the left-hand energy diagram places µ�N� within the bias window. In this

case of ¶VSD¶ � 0, the energy gained by removing an electron from the source is equal to

the energy required to add the N
th

electron to the dot. Also, with the N
th

electron in

the dot, the energy gained by removing it from the dot is equal to the energy required

10
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Figure 1.5: (a) Single quantum dot circuit shown on an SEM image of the device. The quantum

dot (white circle) is tunnel coupled to the source and drain leads and capacitively coupled to

the gates. (b) Energy level diagrams showing the arrangement of levels for the single electron

transport (�) and Coulomb blockade (��) conditions. (c) Electrical current flowing through a

single quantum dot as a function of VG. As VG decreases, the number of electrons occupying the

dot changes from N to N � 1 at the peak labeled �.

to add it to the drain [32]. Single electron transport between a filled state in the source

and an empty state in the drain via the quantum dot is thus possible. The magnitude of

the current depends on the tunnel rate between the dot and the leads. In the right-hand

diagram, VG is set so that no level lies within the bias window and transport between the

source and drain cannot occur (ignoring cotunneling). This current blocking phenomenon,

being related to the electrostatic (charging) energy of the quantum dot, is called Coulomb

blockade. Fig. 1.5(c) is a plot of the current flowing through a quantum dot as a function

of VG. The plot shows peaks in current due to single electron tunneling events (�) and

regions of Coulomb blockade (��). As VG decreases, the number of electrons on the single

dot changes from N to N�1 at the � peak. Although Coulomb blockade is easily observed
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using a DC bias, the data in the figure is actually the result of an AC current measurement.

A 0.5 µVrms, 12 Hz sine wave is applied to the source lead with a lock-in amplifier and

the resulting current is measured with a DL Instruments, model 1211 current preamplifier

(Ithaco) connected to the drain lead. The lock-in measures the output of the Ithaco.

Note that observation of this Coulomb blockade phenomenon requires that the quantum

dot be coupled to the leads but still possess a well defined number of electrons. The

Heisenberg uncertainty relation provides an estimate of the required dot-to-lead tunneling

resistance. Since the electrochemical potentials are spaced by the charging energy EC �

e
2©C (ignoring the single electron levels due to the confinement potential), quantization

of the electron number on a quantum dot requires that the uncertainty in the dot energy,

∆E, be less than EC . If the dot has capacitance C and the tunneling resistance is Rt, the

RC time constant for charging the dot is ∆t � RtC. Setting ∆E � EC , the uncertainty

relation, ∆E∆t % h, then produces a lower bound for Rt of h©e2
� 25.8 kΩ [32].

1.4.1 Coulomb Blockade Diamonds

The data and energy level diagrams of Fig. 1.5 correspond to the case ¶VSD¶ - 0. Fig. 1.6(a)

shows the effect of increasing ¶VSD¶. It is a color scale plot of dI©dVSD as a function of VSD

and VG. The measurement involves applying a DC voltage to the source lead and measuring

the dot current with an Ithaco connected to the drain lead. A numerical derivative produces

the figure. The six labeled points correspond to the electrochemical potential level diagrams

(b)-(g). Note that as VG is increased for VSD � 0, peaks in dI©dVSD corresponding to the

three leftmost peaks in Fig. 1.5(c) are observed. The values of VG at which these resonances

occur are not the same in the two figures due simply to device drift in the time between the

measurements. Non-zero current and non-zero dI©dVSD is measured at VSD � 0 perhaps

because of a DC offset voltage produced by the Ithaco or thermocouple voltages produced

at solder joints due to temperature gradients along the fridge wiring. Probably due simply

to the coarse resolution of the data plot along the VSD axis, there does not seem to be a

value of VSD at which the current is zero.

As ¶VSD¶ increases from zero, triangular shaped regions open up. The edges of these

triangles which are extended as black lines for ¶VSD¶ % 1 mV intersect to form diamond
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Figure 1.6: (a) Coulomb blockade diamonds for a single quantum dot. Plot of dI©dVSD as a

function of bias VSD and gate voltage VG. Labeled points correspond to the energy level diagrams

in (b)-(g).

shaped regions of Coulomb blockade. For this reason, such data sets are referred to as

Coulomb blockade diamonds. These diamonds, labeled N � 2, N � 1, N , and N � 1 in the

figure, are a generalization of the regions between current peaks in the limit of small ¶VSD¶
shown in Fig. 1.5(c). Each positive (negative) sloped edge corresponds to a resonance

between a dot level and the source (drain) lead. Several are labeled in the figure. Consider

increasing VG along the horizontal dashed line at VSD � �800 µV . At the point labeled (b),

µ�N� � µS and current through the dot begins to flow via the cycle N � 1� N � N � 1,

producing a peak in dI©dVSD. As VG is increased further, current continues to flow [point

(c)] until µ�N� � µD at point (d) and the current stops, producing another peak in
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dI©dVSD. Note that in moving from point (b) to (d), the dot energy decreases by ¶eVSD¶
as VG increases. This change in energy is linearly related to the corresponding change

in gate voltage, ∆VG [32]. The proportionality constant is called the lever arm for the

gate, typically labeled α. Therefore, by definition, ¶eVSD¶ � α¶∆VG¶ and the lever arm is

given by the simple expression α � ¶eVSD¶©¶∆VG¶. The dashed line at VSD � �800 µV

intersects three triangular regions, each giving a slightly different value for ∆VG. The

resulting values for α lie in the range 70-75 meV/V. Consider the point labeled (e), located

at the intersection of the µ�N� � µD and µ�N � 1� � µS lines. Since µS � µD � �¶e¶VSD
and µ�N � 1� � µ�N� � Eadd, Eadd � �¶e¶VSD. For point (e), VSD � �1.4 mV and so

Eadd � 1.4 meV.

Within each triangular region, there are several lines that run parallel to the boundary

edges. These correspond to excited states. Consider the boundary (i.e. ground state) and

excited state lines that intersect the horizontal dotted line at points (f) and (g) respectively.

Moving VG positive along the dotted line, µ�N� � µS at the boundary point (f) and the

dot current increases, producing a peak in dI©dVSD similar to point (b). Further increase

of VG produces another change in current and thus another peak in dI©dVSD at point (g)

where µ
��N� � µS, µ

��N� being the electrochemical potential for an excited state of the

N -electron dot. Since µ
��N� corresponds to a transition between the �N � 1�-electron

ground state and the N -electron excited state while µ�N� is the energy difference between

ground states, µ
��N� is larger than µ�N� by the excitation energy of the N -electron dot.

Similar to the lever arm calculation, µ
��N� � µ�N� � α∆VG, so knowing α and taking

the value of ∆VG required to move between the (f) and (g) (at constant VSD) allows a

calculation of the excitation energy. For this particular excited state, the excitation energy

is 150 µeV. Incidentally, since EC � Eadd �∆E, the charging energy is about 1.25 meV.

1.5 Quantum Point Contact

The conductance of constrictions in the 2DEG are tuned by adjusting gate voltages as

shown in Fig. 1.7(a). As the gate voltages decrease, the extent of depletion of the 2DEG

increases and the general trend is a decreasing conductance; zero conductance is called the

14



pinch-off regime. The most notable aspects of the data are the plateaus at integer multiples

of GQ � 2e
2©h [33, 34]. Constrictions displaying such behavior are called quantum point

contacts (QPCs).
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Figure 1.7: (a) Conductance as a function of gate voltage for several QPCs of the device. Inset:

SEM image of the device with gate labels. (b) A voltage bias is applied between two electron

reservoirs (contacts) connected by a ballistic conductor. Boundary conditions in the y-direction

force the electron wavefunction to have nodes at the edges of the conductor. (c) Parabolic

dispersion for three channels. The lowest two channels participate in transport [32].

A discussion of quantized conductance begins by approximating the QPC as a ballistic

conductor of width W connecting two electron reservoirs (contacts) as shown in Fig. 1.7(b)

[30]. Confinement of the electron wave function in the y-direction by infinite potential

barriers leads to quantization of the electron motion and the following expression for the

energy eigenvalues [35]:

En,k �
�h2
k

2

2m
� En, En �

π
2 �h2

2mW 2
n

2
, (1.3)
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where k is the x-component of the wavevector. The first term results from the free plane

wave motion along the length of the conductor (x-direction) and second term, En, is

related to the width of the wire. The index n, the quantum number that arises due to the

confinement potential, labels a subband or channel. Each channel possesses a parabolic

energy dispersion with a different cut-off energy, En, examples of which are shown in

Fig. 1.7(c) [32].

Calculate the current flowing through the conductor that results from an applied bias

voltage. For each channel, n, integrate the product of electron charge, e, and velocity,

v�k�, over the one-dimensional k-space to produce an expression for the current traveling

from left to right (i.e. states with k % 0)

IL � 2e=
n

E
�

0

dk

2π
v�k�f�k�,

where f�k� is the occupation function and the factor of two accounts for spin. Use the

definition of group velocity, v�k� � �1© �h�dE©dk� dk � dE© �hv�k� to convert to an energy

integral

IL �
2e

h
=
n

E
�

En

f�E, µL�dE,
where the occupation function is taken to be f�E, µL�, the Fermi function for the left

reservoir. Similarly for current due to electrons traveling right to left (i.e. states with

k $ 0)

IR � �
2e

h
=
n

E
�

En

f�E, µR�dE,
where the minus sign is required because the current is traveling in the opposite direction

to IL. The net current is given by

I � IL � IR �
2e

h
=
n

E
�

En

�f�E, µL� � f�E, µR��dE. (1.4)

In the limit of zero temperature, the Fermi functions are replaced by step functions and

the net current becomes

I �
2e

h
N�µL � µR� � GQNV,
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where the voltage bias is V � �µL�µR�©e and N is the number of channels with En $ µR,

called open channels (Fig. 1.7(c); assume no cutoff energy within the gray shaded bias

window). Clearly the conductance is quantized in units of GQ � 2e
2©h. The corresponding

resistance Rc � 12.9 kΩ per channel in the case of this ballistic conductor (i.e. no electron

scattering) results from power dissipation of the electrons and holes in the contacts [30, 32].

The resistance Rc is therefore called the contact resistance.

x

E

En(x)

(b)(a)

y
x

V

µL µRW(x)

Figure 1.8: (a) A voltage bias is applied between two electron reservoirs (contacts) connected

by a conductor in the form of an adiabatic waveguide. (b) Potential barriers for three channels

that form at the narrowest part of the waveguide. For an electron of energy E, two of the three

channels are open.

Although this calculation gives insight into the conductance quantization phenomenon,

the QPC is clearly not a uniform conductor connecting the electron reservoirs. Typically

the next level of approximation views the QPC as a adiabatic waveguide, a schematic of

which is shown in Fig. 1.8(a). In this case, the width is a function of the x-coordinate and

as a result, En of Eq. 1.3 becomes x-dependent and takes the following form:

En�x� � π
2 �h2

2mW 2�x�n2
.

This energy expression enters the 1D Schrödinger equation as a potential energy [35].

Sketches of En�x� in Fig. 1.8(b) show that it acts as a potential barrier for electron motion

through the waveguide. Note that this potential still carries the index n and that the

maximum height, which occurs at the narrowest part of the constriction, increases with n.
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If W �x� is a smoothly varying function (i.e. changes on a length scale that is large relative

to W �x� itself), the potential barriers are nearly classical [35]. An electron of energy E,

therefore, avoids the barrier if E exceeds the barrier height (open channel) and is reflected

otherwise (closed channel).

Moving from the adiabatic waveguide to a potential landscape that more closely ap-

proximates that of a QPC is straightforward since the number of open channels and thus

the conductance are determined by the narrowest part of the waveguide. Changes to the

shape thus do not alter the transport properties provided the narrowest region is main-

tained. Of course, for the QPCs of the DQD structure, as the gate voltages decrease, the

width of this narrowest region decreases. As a result, the heights of the potential barriers

increase and one-by-one the channels close, decreasing the conductance in the step-like

pattern displayed in Fig. 1.7(a). Note that a modification of the expression for current in

Eq. 1.4 is required in the adiabatic waveguide and QPC cases. As alluded to above, the

potential barriers are not strictly classical. In a small energy window near the top of a

barrier, quantum mechanical tunneling occurs. Adding a transmission coefficient for each

channel, Tn�E�, to the integrand of Eq. 1.4 is required.
1

It is the energy dependence of

Tn�E� that leads to the smooth transitions between the plateaus in the transport data of

Fig. 1.7(a). That is, the conductance does not simply snap to a multiple of GQ. As a

result, it is possible to fine tune the conductance of a QPC in order to control tunneling

rates and charge detector sensitivity.

1.6 DC-QPC Readout

In a transport measurement of a single quantum dot, each current peak marks a transition

between stable charge states of the dot. The charge state can thus be monitored by simply

counting these current peaks [36]. Although a similar technique is possible for the DQD

case, charge detection with an electric field sensor such as a QPC is usually preferred

[24, 37, 38]. Its speed and ability to capture charge state changes that involve the transfer

of an electron between the dots make an electric field sensor necessary for control and

1
Also the lower limit of the integral becomes ��.

18



measurement of DQD based qubits.

Fig. 1.9(a) shows an SEM image of the DQD device. The dashed white circles show

the approximate positions of the quantum dots and the nearby QPC charge detector is

formed by gates Q1 and RS. The QPC resistance, RQPC , plotted as a function of VQ1 is

shown in Fig. 1.9(b). Between the last plateau (12.9 kΩ) and pinch-off, the slope is large

and as a result RQPC is highly sensitive to the electric field produced by gate Q1. For use

as a charge detector, the working point (black circle) is chosen where RQPC is maximally

sensitive to electric fields, including the electric fields of DQD electrons. Each DQD charge

state corresponds to a unique value of RQPC and, for a voltage biased QPC, to a unique

value of QPC current, IQPC . A typical QPC voltage bias of 200 µV is created by a 2 V

digital-to-analog converter (DAC) output and a 10000:1 voltage divider as shown in (a).

The resulting IQPC (3 nA) is measured using the Ithaco (I/V). An electron moving from

right to left dot, away from the QPC, reduces the electric field at the QPC and produces an

increase in IQPC . Similarly an electron moving from left to right dot reduces IQPC . Adding

an electron to either dot reduces IQPC while expelling an electron to the leads increases

IQPC . As an example, ejecting an electron from the right dot to the leads typically reduces

RQPC by 1 kΩ, increasing IQPC by 50 pA (Section 2.6).

Instead of measuring IQPC and relating it to a particular DQD charge state, sometimes

it is preferable to measure transconductance defined as dIQPC©dVLP [37]. Being a derivative

of IQPC , transconductance only reveals changes in the DQD charge state. The technique

involves applying a DC voltage across the QPC (again 200 µV) and an oscillating voltage

(1 mVrms, 17 Hz) to plunger gate LP using a lock-in amplifier and the 100:1 voltage divider

shown in the dashed box in Fig. 1.9(a) (the 5:1 voltage divider and a DAC output produce

the constant voltage required to deplete underneath the gate). The oscillating electric field

of gate LP produces an oscillation in RQPC and thus IQPC . This AC current is turned into

a voltage by the Ithaco. The lock-in amplifier measures the 17 Hz component of the Ithaco

output and produces a voltage proportional to the transconductance of the QPC.

Fig. 1.9(c) is a gray scale plot of QPC transconductance as a function of side gate

voltages VRS and VLS. The black and white lines divide the plot into charge stable regions

of the DQD. The details of this charge stability diagram are discussed in Section 1.7. For

the purposes of explaining the transconductance measurement, consider the scan taken

19



(a)

(d)

(b)

(c)

100

80

60

40

20

0

R
Q

PC
 (k
Ω

)

-1.00 -0.90 -0.80 -0.70
VQ1 (V)

-3

-2

-1

0

1

2

3

Tr
an

sc
on

du
ct

an
ce

 (a
rb

. u
ni

ts
)

-0.560 -0.555 -0.550 -0.545

(2,0) (2,1)(1,1)(1,0)

VLS (V)VRS (V)

V
LS

 (V
)

−0.720 −0.710

−0.555

−0.545
(2,0)

(1,0)

(2,1)

(1,1)

I/V

1 kΩ
100 kΩ 5 kΩ

100 kΩ 10 Ω

lock-in sine out
100 mVrms, 17 Hz

DAC

DAC
2 V

IQPC

VLP

VQ1

VRSVLS

transconductance

200 µV

Figure 1.9: (a) DC-QPC readout configuration. The QPC current resulting from VQPC is mea-

sured with the Ithaco (I/V). To measure dIQPC©dVLP , a voltage oscillation is applied to gate

LP using the circuit in the dashed box. (b) Charge detector resistance as a function of VQ1

(black circle at working point). (c) DQD stability diagram acquired using the transconductance

technique. (d) Line scan along the vertical dashed line in (c).
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along the dashed line and displayed in Fig. 1.9(d). The regions of approximately constant

background signal mark stable charge states. In these regions, the QPC sees only the

oscillating electric field produced by gate LP. The positive sign of this background signal

is explained by the following argument. During the segment of the oscillation when VLP is

decreasing (dVLP $ 0), the electric field at the QPC causes a decrease in IQPC (dIQPC $ 0).

Similarly, when VLP is increasing (dVLP % 0), IQPC also increases (dIQPC % 0). The

transconductance signal, being a ratio of two numbers with the same sign, thus has a

positive sign.

The dip in signal observed at VLS � �0.547 V indicates a degeneracy of two charge

states that differ by one electron, (2,1) and (2,0). At this degeneracy point, an electron

oscillates between the right dot and the right lead in response to the oscillating VLP . When

VLP is decreasing, IQPC changes for two reasons. The effect of the gate alone is to reduce

IQPC . The electric field of the gate, however, also ejects an electron from the DQD which

increases IQPC . A similar argument can be made for an increasing VLP . In both cases,

the electric fields of the gate and the moving electron are 180
`

out of phase with each

other at the QPC. The component of IQPC in phase with the VLP oscillation is therefore

reduced by the electron motion and the transconductance signal decreases. If the electric

field produced by the moving electron is larger than that of the gate, the transconductance

signal can actually swing negative as shown in the figure.

The peak in signal observed at VLS � �0.552 V indicates a degeneracy of two charge

states that possess the same number of electrons, (1,1) and (2,0). The oscillating VLP

causes an electron to move between the two dots. When VLP decreases, the electron moves

from left dot to right dot and towards the QPC. The electron now being closer to the QPC

results in a larger decrease in IQPC than would be possible with the gate alone. When VLP

increases, the electron moves back to the left dot, away from the QPC. In this case, the

electric fields produced by the gate and the electron both result in an increase in IQPC .

Clearly the electron motion enhances the amplitude of the IQPC oscillation and thus leads

to an increase in transconductance signal.
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1.7 Double Quantum Dot Stability Diagram

Fig. 1.10(a) shows a DQD circuit superimposed on an SEM image of the device. Each dot

is tunnel coupled to a lead and strongly capacitively coupled to a side gate, LS or RS. The

two quantum dots interact with each other through a tunnel barrier controlled with gate C.

The gates C, T, LP, and RP are all held at constant voltages while the side gate voltages,

VLS and VRS, are made progressively more negative, expelling electrons to the leads until

both quantum dots are empty. Measuring the QPC transconductance during this process

produces the charge stability diagram of Fig. 1.10(b). The transconductance extrema form

boundaries between equilibrium charges states defined by N1 electrons in the left dot and

N2 electrons in the right dot. These charge stable regions are labeled (N1, N2).

(a) (b)

source drainT

CLS LP RP RS

300 nm

Q1

−0.75 −0.70 −0.65 −0.60
−0.65

−0.60

−0.55
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(3,2)
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V
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 (V
)

VRS (V)

Figure 1.10: (a) Schematic DQD circuit shown on an SEM image of the device. Each quantum

dot (white circle) is tunnel coupled to a lead and capacitively coupled to the gates. The dots are

also tunnel coupled to each other. (b) Grey scale plot of QPC transconductance as a function of

the side gate voltages VLS and VRS . The QPC charge detector is formed between gates Q1 and

RS.
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In analogy with the Coulomb blockade analysis of Section 1.4, the boundaries are dis-

cussed with reference to the electrochemical potentials µ1�N1, N2� and µ2�N1, N2� defined

by the following expressions:

µ1�N1, N2� � U�N1, N2� � U�N1 � 1, N2�
µ2�N1, N2� � U�N1, N2� � U�N1, N2 � 1�,

where U�N1, N2� is the total energy of the DQD in charge state �N1, N2�. The electro-

chemical potential µ1�2��N1, N2� is the energy required to add the N
th
1�2� electron to an

N1�2� � 1 electron left (right) dot with N2�1� electrons on the right (left) dot [31].

A zoom-in of Fig. 1.10(b) (dashed circle) is displayed in Fig. 1.11(a). Energy level

diagrams showing electrochemical potentials for the DQD are shown in (b). Defining the

zero of energy such that the chemical potentials of the source and drain leads are equal

to zero (µS � 0 � µD), the boundary lines separating charge states that differ by one

electron correspond to either µ1 � 0 (�; nearly horizontal) or µ2 � 0 (�; nearly vertical).

The related reductions in QPC transconductance signal are plotted as black and dark gray

pixels to form the negatively sloped lines known as addition lines. The capacitive coupling

of the left (right) side gate to the right (left) dot, not included in the simple circuit of

Fig. 1.10(a), determines the slope of the near vertical (horizontal) lines.

Where two addition lines meet, the electrochemical potentials of both leads and both

quantum dots are equal (W,Y). These points are called triple points because they mark

a degeneracy of three charge states. With a small voltage bias applied across the DQD,

electron transport from left to right lead via the cycle (1,0)� (2,0)� (1,1)� (1,0) occurs

at W. Hole transport can proceed from right to left via the cycle (2,1) � (2,0) � (1,1) �

(2,1) at Y. The positively sloped white line connecting the triple points is called a charge

transfer line. It marks a degeneracy between two charge states that possess an equal

number of electrons, in this case (2,0) and (1,1). Moving along the charge transfer line

from W to Y, µ1�2, 0� and µ2�1, 1� stay in resonance but move further below the energy

of the leads. Perpendicular to this line runs an axis labeled ε, known as the detuning axis.

The charge transfer line intersects this axis at ε � 0. Moving along the ε-axis, the energy

difference between the electrochemical potentials µ1�2, 0� and µ2�1, 1� changes while their

average energy remains constant (#, ).
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Figure 1.11: (a) DQD stability diagram in the few electron regime. Along the near horizontal

dark lines, µ1 � 0 (�) while along the near vertical dark lines µ2 � 0 (�). At the triple points,

electron transport from left to right (W) or hole transport from right to left (Y) is possible. The

detuning axis is labeled ε. For points on this axis the charge states (2,0) and (1,1) have the same

average energy (#, ). (b) Energy level diagrams corresponding to the points labeled in (a).

1.7.1 Bias Triangles

By applying a voltage bias of several hundred microvolts to the source lead while keeping

the drain lead grounded, the stability diagram undergoes a significant change in the vicinity

of the triple points. A bias of VDQD � �500 µV increases µS � �¶e¶VDQD and results in

the stability diagram of Fig. 1.12(a). The nearly vertical addition lines (µ2 � 0) are in

approximately the same positions as in Fig. 1.11(a) but the nearly horizontal addition lines

(µ1 � �¶e¶VDQD) have moved to more negative values of VLS. This indicates that, relative

to the zero bias case, the electrochemical potential of the left dot must be moved upwards
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in energy by decreasing VLS in order to establish a resonance condition with the source

lead. The resulting movement of addition lines creates triangular shaped regions in the

stability diagram called bias triangles. The boundaries of these triangles are determined

by the inequalities �¶e¶VDQD � µS ' µ1, µ1 ' µ2, and µ2 ' µD � 0.
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µ2(1,1)

µ1(2,0) µ2(1,1)

µ1(2,0) µ2(1,1)

µ1(2,0)
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V
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µ2(2,1)=0 

µ2(1,1)=0 

µ1(2,0)=-|e|VDQD 

µ1(2,1)=-|e|VDQD 

(a) (b)
µS

µD

Figure 1.12: (a) DQD stability diagram for the VDQD � �500 µV case. With the increase in

source lead energy, the near horizontal lines move to more negative values of VLS relative to the

zero bias case of Fig. 1.11. This line movement creates electron (lower left) and hole (upper right)

bias triangles. (b) Energy level diagrams corresponding to the labeled points in (a).

Electrochemical potential level diagrams at the vertices and within the lower left trian-

gle are shown in Fig. 1.12(b). At point �, two addition lines intersect and the dots are in

resonance with their respective leads. Moving along the left dot addition line, the energy

of the right dot increases (by decreasing VRS) and a resonance involving both dots and the

source lead occurs at �. Moving along the base of the triangle (charge transfer line), the

dots stay in resonance and together reach the drain at W. At the point labeled  , the

dots are detuned from each other and possess an average energy approximately halfway

between the leads. The downward movement in energy from left to right in all of the dia-
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grams indicates that single electron transport is possible within and on the boundaries of

the triangle. Due to this transport, the charge state within the bias triangle is an average

of the three involved charge states (1,0), (2,0), and (1,1). A similar analysis for the upper

right triangle reveals single hole transport within and on its boundaries.

Note that at W, the energy configuration of the dots and drain lead are identical to the

electron triple point of the zero bias case shown in Fig. 1.11(a) (also marked W). The two

points are not at the same position in the stability diagram (i.e. different VLS coordinates),

however, because the source lead acts as an in-plane gate. That is, applying �500 µV to

the source lead also increases the energy of the left dot. An increase in VLS is thus required

to lower the energy of the dot and reestablish the resonance condition.

1.7.2 Plunger Gate Lever Arms

To compare data with theory sometimes requires converting a gate voltage axis to energy

units. In Section 2.4, such a procedure is required to measure the electron temperature

of the device. Since most manipulations of the DQD are performed using plunger gates,

the conversion factors relating volts to electron volts, called lever arms, are acquired for

the plunger gates in this section. These lever arms can be extracted from bias triangle

data. Two stability diagrams acquired at finite bias are displayed in Fig. 1.13. Applying

�500 µV to the left lead creates the bias triangles of Fig. 1.13(a) and a voltage of �350 µV

results in the bias triangles displayed in (b). The gate voltage ranges in the two diagrams

are similar because the side gates (LS and RS) are used to move between the two regions,

marked by circles on Fig. 1.10(b). Begin by deriving expressions for the lever arms in terms

of parameters that are easily extracted from the finite bias data. The discussion closely

follows the development presented in Ref. [39], using similar notation. The coordinate

transformations that connect changes in left and right dot energies, dµL and dµR, to

changes in left and right plunger gate voltages, dVLP and dVRP , are given by

dµL � �α
L
LPdVLP � α

L
RPdVRP

dµR � �α
R
LPdVLP � α

R
RPdVRP ,

(1.5)

where the coefficients are the lever arms.
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Figure 1.13: (a) Bias triangles near the (1,1)�(2,0) region created by applying a �500 µV bias

to the left lead. (b) Bias triangles near the (1,1)�(0,2) region resulting from a �350 µV bias on

the left lead.

The charge transfer (or charge recombination) line (AC) and the left (AB) and right

(BC) addition lines are defined by the conditions dµL � dµR, dµL � 0, and dµR � 0

respectively. The following expressions for the slopes of these lines scr, sL, and sR (s �

dVLP©dVRP ), are derived by combining these definitions with Eq. 1.5:

sL � �
α
L
RP

αLLP

sR � �
α
R
RP

αRLP

scr �
α
L
RP � α

R
RP

αRLP � α
L
LP

(1.6)

Note that in moving from B to C, the right dot energy does not change but the left dot

energy changes by �¶eVDQD¶ (��W in Fig. 1.12). Calling ∆VLP the required change in

LP for the transition B � C , substitute dVLP � ∆VLP , dµR � 0, and dµL � �¶eVDQD¶
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into Eq. 1.5 and eliminate dVRP to produce the expression for α
L
LP shown below. The other

three expressions are derived by rearranging terms in Eq. 1.6.

α
L
LP �

¶eVDQD¶
∆VLP

sR
sR � sL

α
R
LP �

scr � sL
scr � sR

α
L
LP

α
L
RP � �sLα

L
LP

α
R
RP � �sRα

R
LP

From Fig. 1.13, ∆VLP , scr, sL, and sR are extracted for the two cases. These values and

the resulting lever arms are summarized in Table 1.1.

Table 1.1: Summary of charging line slopes and plunger gate lever arms.

Fig. 1.13(a) Fig. 1.13(b)

VDQD (µV) -500 -350

sR -1.56 -1.52

sL -0.95 -0.94

scr 1.05 0.68

∆VLP (mV) 60 38

α
L
LP (meV/V) 21.3 24.1

α
L
RP (meV/V) 20.2 22.7

α
R
LP (meV/V) 16.3 17.7

α
R
RP (meV/V) 25.4 26.9
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1.8 Spin Blockade for a Double Quantum Dot

Electrical transport through a DQD is limited to the bias triangles of the charge stability

diagram. In some regimes of the device, however, strong suppression of this single electron

current is observed for one polarity of voltage bias [25, 40]. This current rectification

phenomenon, known as spin (or Pauli) blockade, results from the conservation of electron

spin in interdot tunneling processes and the Pauli exclusion principle.

Spin blockade is observed in several regions of the stability diagram but because of its

importance in spin-qubit applications, focus is given to the two-electron regime involving

charge states (1,1) and (0,2) [40]. The ground state for the (0,2) charge state is a spin

singlet, denoted S(0,2). The excited state triplet T (0,2) is separated from this singlet

by an energy, EST � 600 µeV [40]. This singlet-triplet splitting arises because one of

the electrons in the T (0,2) state must occupy a higher orbital in order for the total two-

electron wave function to be antisymmetric [14]. With the electrons separated by the

central tunneling barrier, the singlet, S(1,1), and triplet, T (1,1), are nearly degenerate.

The energy level diagrams for positive and negative voltage bias are shown in Fig.1.14(b)

and (d) respectively. These diagrams are of the standard sort one finds in the literature

related to transport involving electron spin states. One electron is always present on the

right dot. The levels are labeled S or T depending on whether the addition of an electron

to the DQD will form a singlet or a triplet spin state. For the positive bias case of (b), the

left lead has a lower energy (�¶e¶VDQD) than the grounded right lead and transport from

right to left proceeds by the cycle (0,1) � S(0,2) � S(1,1) � (0,1). Note that this process

conserves spin in the transition S(0,2) � S(1,1). For the negative bias case of (d), the left

lead has a higher energy than the right lead and transport from left to right can occur via

the process (0,1) � S(1,1) � S(0,2) � (0,1), with the step S(1,1) � S(0,2) conserving

spin. In this negative bias case, however, an electron can enter the left dot from the left

lead to produce T (1,1) instead of S(1,1) in the first step. The transition T (1,1) � S(0,2)

does not conserve spin and the transition T (1,1) � T (0,2) cannot occur because T (0,2) is

inaccessible due to EST . Therefore once T (1,1) is occupied, transport is stopped until some

mechanism causes the transition T (1,1) � S(1,1) followed by tunneling to S(0,2). Such

a process, requiring a spin-flip, can occur via an interaction with the Ga and As spin-3/2
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nuclei of the semiconductor heterostructure (Section 4.3). The time constant, T1, for such

a process is on the order of 100 µs leading to a suppression of the single electron current

[41].

Examples of charge detection measurements that reveal evidence of spin blockade in a

DQD are shown in Fig.1.14(a) and (c). Transconductance of the QPC charge detector is

measured to acquire stability diagrams for �500 µV bias applied to the left lead with the

right lead grounded. A magnetic field of 80 mT is applied in the plane of the 2DEG during

the measurements. Consider the resulting electron bias triangle in the �500 µV case of

(a) that is surrounded by the charge states (0,1), (0,2), and (1,1) (lower left triangle in

the solid circle). Transconductance signals forming the three sides indicate that the charge

state within the triangle is not (0,1), (0,2) or (1,1). In fact, because of the current flow,

the occupancy of the DQD is an average of these three states. Now note the effect of

inverting the bias (�500 µV) shown in (c) (dashed circle). A triangle is not observed in

this case. The third side that would form the triangle and separate it from the (1,1) region

is missing (arrows). This indicates that the time-averaged occupancy is heavily weighted

towards the (1,1) state as expected in this spin blockade regime. A similar argument is

made for the hole triangle (upper right triangle within the solid and dashed circles) and for

the finite bias triangles surrounded by regions (1,0), (2,0), (1,1), and (2,1). Spin blockade

(disappearance of a side) is observed for �500 µV bias in the latter case as expected. Note

that spin blockade is not observed for the finite bias triangles in the (2,1)�(1,2) region (i.e.

triangles observed for both bias polarities). This is consistent with transport measurements

made by Johnson et al. and a simple theory of Pauli filling of orbital levels which predicts

spin blockade for cases involving an even number of electrons and free flowing current in

both directions for cases involving an odd number of electrons [40]. There are no triangles

in the (1,0)�(0,1) case. This results from the presumably small interdot coupling which

forces the system to spend most of its time in (1,0) for the negative bias case and in (0,1)

for the positive bias case, again consistent with the measurements reported in Ref. [40].
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Figure 1.14: (a) Stability diagram for the �500 µV case (in-plane B � 80 mT). (b) Energy

level diagram for the electron bias triangle (lower left) located within the solid circle in (a). (c)

Stability diagram for the �500 µV case. (d) Energy level diagrams corresponding to the electron

bias ’triangle’ located within the dashed circle in (c).
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1.9 Conclusion

Several simple but necessary quantum dot experiments have been performed. Coulomb

blockade of a quantum dot and conductance quantization of a QPC has been observed.

Using a QPC based charge detector, control of the charge state of a DQD has been demon-

strated and a stability diagram formed. Finite bias measurements in the few electron

regime of the DQD reveal the spin blockade phenomenon, necessary for the qubit state

readout described in Chapter 4.
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Chapter 2

Measurement System

2.1 Introduction

Details related to the development of a measurement system for studying NRC quantum

dot devices on a dilution refrigerator are provided in this chapter. The system is centered

on the NRC developed sample holder, allowing devices to be easily measured in both the

NRC and UW labs. This chapter begins with a discussion of the cryostat shielding and

electrical lead filtering necessary to provide a low noise environment for the device. The

microwave frequency connections to the plunger gates required for spin-qubit manipulation

are also discussed. Finally an analysis of the DC-QPC readout is provided at the end of

the chapter.

2.2 Shielding, Grounding, and Wiring

Several types of metal shields help to reduce the coupling of the device to electromagnetic

noise in the lab. The Oxford 600 dilution refrigerator is mounted inside a screen room.

The walls and ceiling of the room are galvanized steel and the floor is copper. The few

pieces of electronics located inside the screen room are battery powered. These include

the Ithaco used for transport and charge detection measurements and the radio-frequency
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(rf) amplifiers used in the RF-QPC readout (Chapter 3). Signals pass into and out of the

screen room via SMA bulkheads and 25 pin D-subminiature, low-pass pi filters (Spectrum

Control 700 series, 800 kHz cutoff) mounted in a removable copper plate in one of the

screen room walls. The magnet power is similarly filtered at this plate. Surrounding the

fridge dewar is a µ-metal shield responsible for attenuating low frequency electromagnetic

signals, in particular 60 Hz noise. It also allows the Nb inductor of the RF-QPC and

the NbTi superconducting magnet to be cooled in a low magnetic field environment. A

copper radiation shield at the base temperature stage of the fridge surrounds the device

[Fig. 2.1(a)]. With several microwave lines running into the shield for readout and qubit

manipulation, there is concern about exciting resonances of this cylindrical cavity. In an

attempt to absorb microwave energy within the shield, its inner surface is coated with a

mixture 2850FT black epoxy, charcoal, SiO2 powder, and copper powder.

The power for the measurement electronics is filtered by a 1800 W Tripp-Lite isolation

transformer and a filter bank. The ground is not broken at the isolation transformer

meaning that the measurement system ground is the building ground. A copper braid

runs from the grounding post of the isolation transformer to the screen room where it is

attached to the copper electrical feedthrough panel. Inside the screen room, two copper

braids run from this panel, along the still pipe, to the top of the fridge. One is clamped to

the fridge and the other is attached to a central grounding copper plate. This plate is the

grounding point for the battery powered Ithaco and the voltage dividers used for transport

and charge detection measurements (Section 1.6).

DACs (Iotech, model DAC488HR/4) controlled by a LabVIEW program apply volt-

ages to the gates and ohmic contacts of the DQD device. Communication between the

data acquisition computer and the measurement electronics, including the DACs, is ac-

complished using an optical isolator. Each DAC produces four floating voltages on 9-pin

D-subminiature connectors. The 12 floating voltage lines (4 � 3 DACs) enter the screen

room via the feedthrough panel and run in 25-pin D-subminiature cables to the top of

the fridge where they enter a BNC breakout box (non-isolated connectors). This box is

connected to the central grounding copper plate. As a result, the DAC voltages become

ground referenced along with the dividers and the Ithaco at this location.
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Figure 2.1: (a) Base temperature radiation shield surrounding the device and copper coaxial

cables carrying both microwave and low frequency signals. (b) PCB mounted to the lid of the

radiation shield and the sample holder mounted to the PCB. (c) 19-pin socket, 4 MCX connectors

(and mating coaxial cables), and gold foil covered ceramic board of the NRC sample holder. (d)

Quantum dot device chip glued using GE varnish to the gold ground plane of a 19-pin mating

connector.
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Figure 2.2: Wire bonding configuration for the DQD device showing the pin labeling convention.

Low thermal conductivity wiring (CuNi clad, NbTi below the 1 K pot) runs from a

hermetic feedthrough at the top of the dilution refrigerator to the mixing chamber where

the DQD device is mounted. This low frequency wiring runs as a ribbon down the fridge.

It is heat sunk to the 4.2 K plate, 1 K pot, still, heat exchangers, and mixing chamber by

wrapping it around copper posts and fixing it in place with GE varnish. At the mixing

chamber, the ribbon is split apart and each wire is connected to the input of an electrical

filter. These combination RC, LC, and copper powder filters are described in Section 2.3.

To provide shielding from electromagnetic noise, each filtered lead is connected to the center

conductor of a UT-47 copper coax. The collection of coaxial cables run down into the tail

region of the fridge where they are soldered to the lid of the base temperature radiation

shield as shown in Fig. 2.1(a). The sample holder, developed by the NRC group, consists of

several parts. The 19-pin socket and high frequency compatible, ceramic board are mounted

to a printed circuit board (PCB) as shown in Fig. 2.1(c). This PCB is shown attached

to the lid of the radiation shield in Fig. 2.1(b). On the backside of the PCB, the filtered

low frequency lines are soldered to the pins of the socket. Fig. 2.1(d) displays a mating

19-pin connector plugged into the socket. A gold ground plane, necessary for transmitting
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microwave signals to the device chip, and the device chip itself are fixed in place using

GE varnish. The gates and most of the ohmic contacts of the device are connected to

the surrounding gold pins with 25 µm diameter gold wire bonds. Aluminum wire is used

for the RF-QPC ohmic. The wire bonding configuration is shown in Fig. 2.2. The two

ground pins in the second to top row (G1 and G2) are wire bonded to the ground plane

using gold wire. Using silver epoxy, the corresponding pins on the socket are connected

to copper wires which are pressed against the lid of the radiation shield using a stainless

steel screw. This high thermal conductivity path from the ground plane to the radiation

shield is the prime means of cooling the ground plane and thus the device. Pins T, LP,

RP, and O4 are connected to MCX connectors mounted to the ceramic board. Coaxial

cables running down the fridge plug into these ports, allowing microwave frequency signals

to be transmitted to the device. Pins LP and RP are used for the high bandwidth gates

(Section 2.5) and pin O4 is used for the RF-QPC readout (Chapter 3). The Nb inductor

(fixed in place using GE varnish) and the low temperature compatible, 16 pF capacitors

(fixed in place with silver epoxy) are part of the RF-QPC readout [Fig. 2.1(d)].

2.3 Low-frequency Filtering

Electromagnetic noise produced by control and measurement electronics and resistive el-

ements at higher temperature stages is transmitted to the device via the electrical leads.

This noise could lift the Coulomb blockade condition via photon-assisted tunneling, heat

the electrons of the 2DEG smearing out features in the stability diagram, and lead to qubit

decoherence. In an attempt to avoid these deleterious effects on the device, the electrical

leads are heavily filtered. Since filtering is required in a large bandwidth that no single type

of filter can cover alone, traditional RC and LC filters covering Hz to GHz are combined

with dissipative filters covering from hundreds of MHz to tens of GHz and beyond.

There are several types of dissipative filters, the most common of which are lossy trans-

mission lines and metal powder filters. Attenuation of noise in both cases relies on energy

loss via eddy current dissipation in an electrically resistive metal. As frequency increases,

the skin depth of the metal, δ � ω
�1©2

, decreases, effectively increasing the resistance of
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the metal and therefore increasing dissipation. Introduced to the low temperature device

community by Zorin in 1995, Thermocoax is now a widely used lossy transmission line

[42]. The 0.5 mm diameter cable is composed of a NiCr core (50 Ω/m) and a stainless steel

or Inconel sheath separated by compacted MgO powder. Bladh et al. report attenuation

measurements of Thermocoax at 4.2 K. For the stainless steel sheath version, they find

that attenuation (in dB) has the ω
1©2

dependence predicted by Zorin and an attenuation

of approximately 100 dB/m at 8 GHz [43]. Fukushima et al. show that the Inconel version

has a frequency dependence that is stronger than ω
1©2

at 4.2 K. They report an attenua-

tion of greater than 100 dB/m above 1 GHz at any temperature [44]. Thermocoax thus

provides significant noise attenuation for a cable length that could fit fairly easily on a

dilution refrigerator. The main disadvantages of Thermocoax are the difficulty soldering

to the NiCr and stainless steel conductors and the water absorbing properties of the MgO

that lead to leakage currents to ground [44]. The other popular dissipative filter is the

metal powder type invented in 1987 by Martinis for Josephson junction experiments [45].

A low frequency (i.e. not 50 Ω) version consists of a signal carrying wire wrapped in a

solenoid geometry and surrounded by fine grains of a metal powder. The attenuation of

this low-pass filter comes from the resistance of the solenoid wire and the dissipation of

eddy currents induced in the grains of the metal powder. The large effective surface area

of the powder produces substantial skin-effect damping.

Copper powder filters with manganin solenoids are chosen for the quantum dot mea-

surement system. These filters are shown surrounding the mixing chamber of the dilution

refrigerator in Fig. 2.3(c). Each filter consists of a copper shield inside of which is placed

a manganin solenoid and the copper powder. A completed shield is shown leftmost in

Fig. 2.3(a). To create a shield, a 9/32 inch diameter hole is drilled through a 1©2 � 1©2

inch, 37

8
inch long, oxygen free copper block. The hole is threaded using a 5/16-24 tap.

The block is then turned down to a cylindrical geometry over most of its length (0.39 inch

diameter). Four 2-56 threaded holes are drilled and tapped in both ends for mounting SMA

connectors. The cylindrical section is then lead plated to provide magnetic shielding for

the solenoid. The next step involves making a rod of copper powder and epoxy, an example

of which is shown rightmost in Fig. 2.3(a). Copper powder with particles of less than 63

µm diameter (EMD, part no. CX1925-4) is combined with Emerson and Cuming Stycast
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(a)

(b)

(c)

discoidal
capacitor

epoxy
plug

200 kΩ
resistor

Figure 2.3: (a) Components of the copper powder filter: copper powder rod (right), solenoid

wrapped on rod (center), lead plated copper shell and SMA connectors (left). (b) 12 nF dis-

coidal capacitor soldered to an SMA connector. (c) Copper powder filters (and 200 kΩ resistors)

mounted around the mixing chamber of the dilution refrigerator.
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1266 in a 50/50 by weight mixture. In an attempt to remove air introduced during the stir-

ring process, the mixture is placed in a desiccator and pumped on for approximately two

minutes. Using a mechanical pump the mixture is then pulled into 3/16 inch inner diam-

eter flexible tubing (Tygon). After a curing time of approximately 24 hours, the tubing is

easily peeled away, leaving the solid powder/epoxy rod. Using a solenoid winding machine,

enamel coated manganin wire (0.0025 inch diameter, 49.13 Ω/ft) is wound around the rod

as shown in the center of Fig. 2.3(a). The solenoid consists of 900 turns, half of which is

counter-wound to reduce the coupling of magnetic field noise into the system [43]. There is

no separation between the turns [46] and the total resistance of this coil is approximately

2 kΩ. To facilitate mounting the rod inside the copper shield, an epoxy plug is super-glued

to the rod as shown in Fig. 2.3(a). This plug has a 5/16-24 thread on its outside and a 3/16

inch diameter hole down its center to accommodate the powder/epoxy rod. The raw mate-

rial for the epoxy plug is purchased from McMaster-Carr. A slot for a flat-head screwdriver

is made in the end of the rod using a Dremel tool. With the threaded epoxy plug and the

threaded hole in the copper block having the same pitch, the rod/solenoid/plug assembly

is easily inserted into the copper block. A small amount of five minute epoxy is used to fix

the plug/rod in place and seal any leaks before more powder/epoxy mixture is poured into

the other end of the block filling the space surrounding the rod and solenoid. This step is

taken to increase the attenuation of the filter and also help thermalize the manganin wire

to the copper block and thus to the base temperature stage of the dilution refrigerator.

An SMA connector is soldered to each end of the solenoid. Finally, these SMA connectors

are fixed to the copper block with 2-56 stainless steel hex screws completing the filter.

The frequency dependence of the filter transmission is measured using an Agilent

E5071C network analyzer (300 kHz � 20 GHz) and displayed as a red trace (without

12 nF caps) in Fig. 2.4(a). All measurements are performed at room temperature unless

otherwise stated. The 2 kΩ resistance of the solenoid produces the 27 dB of attenuation in

the lowest frequency region of the spectrum. The transmission level enters the noise floor

of the network analyzer at 220 MHz.
1

The filter begins to fail in the GHz range. Peaks

emerge out of the noise floor at 4.6 GHz and 12.2 GHz where the attenuation changes

1
VNA noise floor: -120 dB for 300 kHz to 10 MHz, -130 dB for 10 MHz to 10 GHz, -120 dB for 10 GHz

to 20 GHz
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Figure 2.4: (a) Copper powder filters measured at 300 K. (b) Copper powder, reduced (/7)

winding density. (c) Bronze powder, high winding density. (d) Transmission of the final filter

configuration measured at 4.2 K [filters of (a) connected in series].
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to 113 dB and 75 dB respectively. Speculating that these failures are due to inter-turn

capacitance in the manganin coil, a filter is constructed with an approximately seven times

reduction in turn density. Measurements for this new filter are displayed in Fig. 2.4(b) and

reveal that similar problems remain. The peaks in this case are located at 5.5 GHz and

11 GHz. Attenuation in the GHz range can be improved, however, by adding capacitors

in parallel with the manganin coil. Following Lukashenko et al., 12 nF, NPO dielectric,

discoidal capacitors (Spectrum Control Technology) are soldered to each of the SMA con-

nectors as shown in Fig. 2.3(b) [46]. The data for this filter, displayed as a black trace in

Fig. 2.4(a), shows an attenuation level that enters the noise floor at 40 MHz and remains

below the noise floor to 20 GHz.

The GHz frequency problems with the powder filter can also be eliminated by substi-

tuting copper powder for a more electrically resistive powder such as bronze or stainless

steel [44, 46, 47]. To demonstrate this fact, a bronze powder filter without capacitors is

constructed. The bronze powder (from Kennametal) is mixed with Stycast 1266 epoxy,

50/50 by weight, and the manganin solenoid is wound with no separation between the

turns. The transmission versus frequency data for this bronze powder filter in Fig. 2.4(c)

shows that the problems in the GHz frequency range are indeed eliminated.

Concerns about cooling a comparatively low thermal conductivity powder such as

bronze (or stainless steel) motivated the choice to instead use two copper powder filters for

each electrical lead. For the gates, one of the two filters is of the LC type and the other is

a copper powder filter without capacitors [i.e. one of each from Fig. 2.4(a)]. Transmission

data for this combination of two filters measured at 4.2 K is displayed in Fig. 2.4(d). The

attenuation level stays below the noise floor of the analyzer from 15 MHz to 20 GHz.

Since the electrical leads to the gates do not carry current, the cutoff frequency of the

gate leads can be lowered using a resistor without concern about increasing the heat load

on the mixing chamber. For all gates except the two high bandwidth plungers, 200 kΩ

metal film, thru-hole style resistors are mounted inside copper blocks and connected at the

input of the powder filters as shown in Fig. 2.3(c). The complete filter circuit is shown

in Fig. 2.5(a). In an attempt to minimize the parasitic capacitance of the resistors, each

resistor is mounted inside a hole in the copper block. The diameter of this hole is only

slightly larger than the diameter of the resistor. The resistors are thermally connected
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(a)

200 kΩ

12 nF

100 µH, 2 kΩ

12 nF

100 µH, 2 kΩ
device

200 pF

100 µH, 2 kΩ

200 pF

100 µH, 2 kΩ
device

(b)

Figure 2.5: (a) Filter circuit for the gates. The 200 kΩ resistor is excluded for the DC lines to the

high-bandwidth plunger gates. The inductance of the copper powder filter solenoid is measured at

100 Hz. (b) Filter circuit for the ohmic contacts. Each solenoid has �200 pF of stray capacitance

to the copper shield.

to the copper blocks using vacuum grease. Using a waveform generator and a digital

oscilloscope, the 3 dB bandwidth of the complete low frequency gate line is measured to be

30 Hz. Low frequency connections to the plunger gates are made via bias tees as explained

in Section 2.5. Since each bias tee contains a 100 kΩ chip resistor, the 200 kΩ resistors

in the copper blocks are not necessary for these gates. The corresponding circuit has a

bandwidth of approximately 40 Hz (note that the bias tee resistors are on the output side

of the powder filters). Due to concerns about charge detection bandwidth and capacitive

loading of the Ithaco (see Section 2.6), the electrical leads to each of the four ohmic contacts

are filtered using two copper powder filters without capacitors. The solenoid of each copper

powder filter has a stray capacitance to ground of about 200 pF. The circuit is shown in

Fig. 2.5(b). The bandwidth of the lines to the ohmics is 200 kHz.

2.4 Electron Temperature

In order to observe single electron tunneling phenomena involving a single quantized energy

level, the available thermal energy kBT must be much less than the single particle energy

level spacing ∆E �100 µeV (i.e. T 8 1 K). This requirement is met by mounting the

quantum dot device on the mixing chamber stage of a dilution refrigerator with base

temperature Tb � 10 mK. Instrumentation and thermal noise transmitted to the device

via electrical leads, however, can prevent the electron temperature of the 2DEG, Te, from
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reaching Tb. Filtering the leads, as described in Section 2.3, is an attempt to keep Te

close to Tb. Electron temperature is therefore an appropriate metric for characterizing the

effectiveness of the filters. Attempts to measure electron temperature are described in this

section.

The leads of a quantum dot device contain a Fermi-Dirac distribution of electrons at

temperature Te. Any property of a quantum dot system that involves exchange of electrons

with the leads therefore depends on Te through the Fermi function. For example, Te can be

extracted from a single dot conductance resonance peak [48, 49]. Beenakker [48] provides

an expression for the dot conductance

G �
e

2

4kBTe

ΓSΓD
ΓS � ΓD

cosh
�2�α∆VG

2kBTe

, (2.1)

where ΓS and ΓD are the tunnel rates to the source and drain leads, ∆VG is the change

in the gate voltage VG (gate C of Fig. 2.2) required to sweep out the resonance, and

α � 80 meV/V is the lever arm for the gate extracted from a Coulomb diamond mea-

surement. Eq. 2.1 is derived assuming the resonance is thermally broadened, not tunnel

rate broadened (hΓ 8 kBTe), and only a single energy level participates in transport

(kBTe 8 ∆E). Fig. 2.6(a) shows measurements of G as a function of ∆VG for fifteen

fridge temperatures. Temperature dependence in the peak shape is observed down to the

lowest fridge temperature. This data is acquired by an AC resistance measurement. A

lock-in amplifier applies a 1 µVrms, 12 Hz sine wave to the source lead and the Ithaco

is connected to the drain lead (10
�9

A/V setting). The lock-in measures the output of

the Ithaco. Attempts at curve fitting several peaks of (a) using Eq. 2.1 are shown in (b).

Two parameters are extracted from the fitting procedure, electron temperature and the

tunnel rate dependent prefactor. Unfortunately, as noted in the figure, the values of Te are

larger than the fridge temperature in all cases. To gain insight into this discrepancy, the

full-width at half-maximum (FWHM) of the conductance peak is plotted as a function of

fridge temperature in (c). The peak width seems to decrease steadily until about 50 mK

where a distinct change in slope is evident. The dashed line is the theoretical prediction

of Eq. 2.1 [32]. The data for fridge temperatures above 50 mK lies near a line (solid) that

runs parallel to this dashed line. The data appears shifted vertically upward due to some

broadening mechanism that is not considered in the model that produces Eq. 2.1. So even
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Figure 2.6: (a) Conductance resonances at several fridge temperatures. (b) Conductance reso-

nance and associated curve fits using Eq. 2.1. (c) FWHM of a conductance peak as a function of

fridge temperature. Dashed line: theoretical prediction. (d) FWHM of a peak as a function of

source-drain AC excitation.
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though there is temperature dependence in the FWHM for fridge temperatures down to

50 mK, the curve fit at the lowest fridge temperature of 19 mK produces Te � 100 mK.

Essentially the Te extracted from the fit characterizes the effect of all peak broadening

mechanisms, not just temperature. The loss of temperature dependence in the FWHM

below 50 mK is not understood.

The excitation could produce broadening but VSD � 1 µVrms is chosen to avoid this pos-

sibility. That is, eVSD©kB � 11 mK. A plot of FWHM as a function of excitation voltage is

shown in (d). Excitation dependence into the few microvolt range is observed. Unintended

DC voltages from the Ithaco and thermocouples at solder joints in the wiring could also

contribute to broadening the peak since they increase the bias window (Section 1.4). An

attempt is made to mitigate this problem by applying a canceling DC voltage across the

dot in addition to the AC excitation. The voltage required is determined from a Coulomb

blockade diamond measurement (Section 1.4.1). Essentially the voltage that minimizes

the FWHM of a peak (all other parameters remaining the same) is chosen. For these

measurements approximately, 25 µV is required. Another possibility is 60 Hz noise on the

wiring to the device which could produce broadening during the several minute long scan

required to sweep out a peak. Lastly, the tunnel rates to the leads could be the source of

the broadening. Whatever the source, it is found to be influenced by this dot-to-lead cou-

pling. Decreasing the tunnel coupling decreases the FWHM of a conductance resonance.

Fig. 2.7 displays the best effort to minimize the FWHM. The data corresponds to a fridge

temperature of 19 mK. The same 1 µVrms excitation is employed and the Ithaco gain is

increased to the 10
�10

A/V setting. A curve fit using Eq. 2.1 gives an electron temperature

of 70 mK. It should be noted, however, that even with this better upper bound for the

electron temperature, the regime of pure thermal broadening [dashed line of Fig. 2.6(c)]

could not be reached.

DiCarlo et al. suggest an alternative technique for determining Te, one that does not

involve the coupling of the dots to the leads but also depends on the Fermi function [50].

They note that a detuning sweep crossing a charge transfer line produces a step in QPC

conductance with a shape that depends on Te [50, 51]. An example sweep trajectory,

shown as a black arrow in the stability diagram of the lower left inset of Fig. 2.8, crosses

the charge transfer line separating the (1,1) and (0,2) regions. Raw QPC conductance
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Figure 2.7: Minimum width conductance resonance. Conductance resonance measured at a fridge

temperature of 19 mK and the corresponding curve fit. The electron temperature extracted from

the fit is 70 mK.

data corresponding to a refrigerator temperature of 105 mK is displayed in the upper right

inset. It shows the step associated with the charge transfer and the background slope due

to the direct coupling of the plunger gates to the QPC (Q1, RS). It is acquired using the

AC resistance technique discussed above (50 µVrms excitation). Following DiCarlo et al.,

the data is plotted in units of left dot charge, M , in the main figure after a best-fit line is

subtracted to remove the background slope. Note that M � 1 for (1,1), M � 0 for (0,2),

and 0 $ M $ 1 in the charge transfer region. The gate voltage axis is converted to ε in

units of µeV using the lever arms calculated in Section 1.7.2 and displayed in Table 1.1.

The charge transfer line corresponds to ε � 0. Data for 12 mK, 34 mK, 52 mK, and 105

mK are displayed. It appears the filtering is sufficient to observe temperature dependence

in the 0� 1 transition width below 34 mK.

An expression for M�ε� is found by modeling the DQD as a two-level system with

basis kets ¶1, 1� and ¶0, 2� corresponding to charge states (1,1) and (0,2) respectively. The
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Figure 2.8: Probability of finding an electron on the left dot as a function of detuning for several

fridge temperatures. Solid lines are fits to the data assuming t � 0. Lower left inset: Stability

diagram showing the detuning trajectory (arrow) used to acquire the data of the main figure.

Upper right inset: Raw QPC conductance data for the 105 mK case.

interdot tunnel coupling t mixes these states producing eigenstates

¶a� � cos
θ

2
e
�iφ©2 ¶1, 1� � sin

θ

2
e
iφ©2 ¶0, 2�

¶b� � � sin
θ

2
e
�iφ©2 ¶1, 1� � cos

θ

2
e
iφ©2 ¶0, 2�

where tan θ � 2t©ε. The corresponding eigenvalues are Ea � Em�Ω©2 and Eb � Em�Ω©2,

where Em �
1

2
�E1,1 � E0,2� is the average energy of the unperturbed states and Ω �Ó

ε2 � 4t2 (see Appendix B). Since Ea � Eb � Ω, ¶a� is the excited state and ¶b� is the

ground state. The excited state is thermally occupied with average occupation given by

the Fermi function f�Ω� � 1©�1� exp��Ω©kBTe��. This is the source of Te dependence in

the data. With only two states, the ground state has average occupation 1 � f�Ω�. Since

the average left dot charge, M , is equivalent to the average occupation of the (1,1) state,
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the first step in producing an expression for M is calculating the probability of finding the

DQD in (1,1) for each of the eigenstates. When the system is in the ground state, the DQD

is found in (1,1) with probability ¶�1, 1¶b�¶2. A calculation of this probability proceeds as

follows:
2

¶�1, 1¶b�¶2 � sin
2 θ

2

�
1

2
�1 �

×
1

tan2 θ � 1
�

�
1

2
�1 � ε©Ω�

A similar collection of steps gives ¶�1, 1¶a�¶2 � 1

2
�1 � ε©Ω�.3 A calculation of M can now

proceed as follows:

M � f�Ω��¶�1, 1¶a�¶2� � �1 � f�Ω���¶�1, 1¶b�¶2�
� � 1

1 � exp��Ω©kBTe�
�1

2
�

ε

2Ω

�1 �

1

1 � exp��Ω©kBTe�
�1

2
�

ε

2Ω



�
1

2
�1 �

ε

Ω
�exp��Ω©kBTe� � 1

exp��Ω©kBTe� � 1

�

�
1

2
�1 �

ε

Ω
tanh� Ω

2kBTe

�

The solid lines in Fig. 2.8 are fits to the data using this expression and assuming t � 0

(i.e. in the limit t8 kBTe). They are simply meant as guides to the eye. Incidentally the

t � 0 curve fit for the 12 mK (base temperature) case gives Te � 35 mK (95% confidence

bounds: 32-38 mK). Of course this overestimates Te since with t � 0, Te solely determines

the transition width. It is not understood why this technique produces a lower value for

Te than the conductance resonance technique. Perhaps the tunnel coupling to the leads is

weaker for this configuration of the device.

2
Required trigonometric identities: sin

2 θ
2
� �1 � cos θ�©2, tan

2
θ � 1 � 1© cos

2
θ

3
Required trigonometric identities: cos

2 θ
2
� �1 � cos θ�©2, tan

2
θ � 1 � 1© cos

2
θ
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2.5 High-bandwidth Gates

Observation of Landau-Zener-Stückelberg (LZS) oscillations of the DQD two-electron spin

qubit (Chapter 4) involves transmitting Gaussian shaped pulses with rise times of 1-20 ns

from a Tektronix AWG7122B arbitrary waveform generator (AWG) to the plunger gates of

the device via semi-rigid coaxial cables. Each of the two high-bandwidth lines consists of

several coaxial cables of different electrical and thermal conductivities connected together

(Fig. 2.9). Copper cables (UT-141) run from the AWG to hermetic SMA bulkheads at the

top of the dilution refrigerator. Beryllium copper cables (UT-85, silvered inner conductor)

are used from room temperature to the 1 K pot (1.5 K) where they are thermally anchored

using the copper clamp shown in Fig. 2.10(a). Due to their low thermal conductivity,

superconducting NbTi cables run from the 1 K pot to the mixing chamber. They are heat

sunk to the still plate (700 mK) and the mixing chamber using the copper clamps shown

in Fig. 2.10(a) and (b) respectively.
4

Copper coax is used on the mixing chamber stage

to connect to the bias tees and ultimately to the MCX connectors on the NRC microwave

frequency compatible ceramic board. To attenuate noise produced by the AWG, a 10

dB attenuator is attached to each of the two hermetic SMA bulkheads at the top of the

fridge. To further attenuate instrumentation noise and also room temperature thermal

noise, 26 dB of attenuation (XMA Corporation) is placed in each line at the 1 K pot stage

[Fig. 2.10(a)]. Note that an attenuation level of 23 dB is required to attenuate 300 K

radiation down to 1.5 K, the temperature of the 1 K pot. (i.e. 10 log10�300©1.5� � 23 dB).

This fact guided the choice of the slightly larger value of 26 dB.

The bias tees for the high bandwidth gates are mounted on the mixing chamber plate

as shown in Fig. 2.10(c). They are modified versions of model BT-0018 made by Marki

Microwave. The circuit connecting the DC input port to the RF + DC output port is

removed and replaced by a 100 kΩ metal film chip resistor. The RF part of the circuit is

unchanged. It contains a 1 µF capacitor made with an X5R dielectric (Venkel, part no.

C0402X5R100-105KNP) in parallel with a 100 nF capacitor made with an X7R dielectric

(American Technical Ceramics, part no. 545L104KCA10). These dielectrics are highly

4
Importantly the clamp is connected directly to the mixing chamber rather than the mixing chamber

plate where the device is heat sunk.
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temperature dependent. The total capacitance is 38 nF at 4.2 K. A schematic of the

simple bias tee circuit is shown in Fig. 2.9.

To test the coaxial cables, attenuators, and bias tees, the two lines are connected

together at the output of the bias tees and the frequency response at room temperature

is measured using a network analyzer. The result is divided by two and displayed in

Fig. 2.11(c) - no sample holder. At 1 GHz, the attenuation of one line is 41 dB, 5 dB

beyond the 36 dB of fixed attenuation mentioned above. Approximately 2 dB is due to

the 5.5 m copper coax in the room and another 1 dB comes from the 1.5 m BeCu coax.

The remaining 2 dB of the attenuation is due to cabling below the 1 K pot. Of course,

this latter contribution may decrease when the fridge is cold.

Fig. 2.11(a) shows the ceramic board and 19-pin socket. The middle pin of each side of

the socket is connected to the center pin of a neighboring MCX connector. Even though

there are four MCX connectors on the board, only the left and right ones (LP, O4) are

designed to communicate microwave frequency signals to the device [Fig. 2.11(b)]. This

is accomplished by running a ground pin (G1, G2) beside the signal pin. A neighboring

ground pin for the top and bottom MCX jacks is not part of the design. With the left

MCX jack used for the left plunger gate (LP) and the right MCX jack used for the RF-

QPC readout (O4), a modification is made to the sample holder to allow transmission of

microwave signals to the right plunger gate (RP) via the bottom MCX jack. The simple

change involves creating a neighboring ground pin (G3) by soldering copper foil from the

ground (gold) of the ceramic board to the pin second from the left in the bottom row

as shown in Fig. 2.11(a). To test the high bandwidth connections for the plunger gates

including the sample holder, a 19-pin mating connector with short pieces of coax soldered

to the appropriate pins is plugged into the 19-pin socket. The shields of the coaxial cables

are soldered to the ground pins. Transmission as a function of frequency measured at

room temperature from the output of the AWG to one of these coaxial cables is shown in

Fig. 2.11(c) - with sample holder. Similar behavior is observed for both plunger gate lines.

The synchronization of the two lines is also tested. Pulses from the AWG are sent to the

sample holder and displayed on a digital oscilloscope. The difference in electrical length

is easily corrected by placing two male-to-female SMA adapters on the left plunger (LP)

output of the AWG.
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Figure 2.9: Schematic of the high bandwidth gate lines. Microwave frequency signals are com-

municated to the plunger gates via semi-rigid coaxial cables and bias tees.
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Figure 2.10: (a) Attenuators on the 1 K pot. Heat sinking clamps for the semi-rigid coaxial cables

on the 1 K pot and still plate. (b) Coax heat sinking clamp on the mixing chamber. (c) Bias tees

for the high-bandwidth gates heat sunk to the mixing chamber plate.
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Figure 2.11: (a) Modified NRC sample holder. To make the bottom middle pin (RP) compatible

with high bandwidth operation, a solder connection is made between a neighboring pin and the

ground on the ceramic board. (b) Device mounted to a 19-pin connector. High bandwidth pins

LP and RP are connected to the left and right plunger gates respectively. Pin O4 is connected

to the inductor used in the RF-QPC readout. (c) Frequency response of the high bandwidth

gate lines including attenuators (10 dB at 300 K, 26 dB at 1.5 K) and bias tees (on mixing the

chamber).

The high bandwidth gates are calibrated using the technique described in Ref. [52]. A

stability diagram in the few electron regime of the DQD is displayed in Fig. 2.12(a). The

calibration procedure involves using the AWG to apply a 10 kHz, 158 mVpp square wave to

gate RP during the acquisition of a stability diagram. The result is shown in Fig. 2.12(b).

Because the dot-to-dot and dot-to-lead tunnel rates exceed the square wave frequency, two

overlapping stability diagrams are created (one for the maximum amplitude, one for the

minimum amplitude of the square wave). Measuring ∆VRP separating the two electron

triple points indicates that 158 mVpp at the AWG is converted to 5 mVpp at the device

as expected (158 mVpp � 63 � 2 � 5 mVpp; the factor of 63 coming from the 36 dB of

attenuation and the factor of 2 from the fact that the gates present an open circuit, not a

50 Ω impedance, to the AWG). Repeating the procedure for gate LP results in a vertical

splitting of the stability diagram as shown in Fig. 2.12(c). In this case, the 158 mVpp

wave produced by the AWG is converted to a ∆VLP � 6 mVpp wave at the device, slightly
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different than expected.
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Figure 2.12: Calibration of the high bandwidth gates. (a) Stability diagram in the few electron

regime. (b) Stability diagram acquired in the presence of a 158 mVpp (5 mVpp at gates), 10 kHz

square wave on gate RP. (c) Repeat with a similar square wave on gate LP.

In some cases, the high bandwidth gates are used to measure tunnel rates. Consider

a vertical 1D sweep through the stability diagram of Fig. 2.13(a) from VLP � �0.418 V

to �0.398 V measured at VRP � �0.434 V (vertical line near the VLP -axis). Similar to

the gate calibration, if a square wave with frequency less than the left dot-to-lead tunnel

rate is applied to gate LP during the sweep, a doubling of the addition line is observed.

Using a MATLAB script to change the square wave frequency between consecutive sweeps

produces the data displayed in Fig. 2.13(b). The amplitude of the wave is 12 mVpp at gate

LP. The horizontal axis is the sweep number, i, related to the square wave frequency by

the expression

f � fstart� fendfstart

 i

n

.

For the data in Fig. 2.13, there are 100 steps from i � 0 giving f � fstart � 200 Hz to

i � 99 � n giving f � fend � 200 MHz. Below 500 Hz, the lines are broadened indicating

that the low frequency cutoff of the bias tees is approximately 500 Hz. This cutoff is

similar to what is expected from the RC time constant of the bias tee components. For

R � 100 kΩ and C � 38 pF (4.2 K), the time constant is �4 ms (250 Hz).
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Figure 2.13: Dot-to-lead tunnel rate measurements. (a) Stability diagram. (b) Left dot-to-lead

tunnel rate measurement: repeatedly sweep along the vertical line in (a) while applying a square

wave to gate LP. The emergence of the single line at i = 28 indicates a tunnel rate of 10 kHz.

(c) Attempt to measure the right dot-to-lead tunnel rate [horizontal line in (a)]. The tunnel rate

exceeds the 20 MHz limit of this technique.

As the frequency increases, the two lines fade and at 10 kHz (i � 28) they are replaced

by a single line. Above 10 kHz, an electron cannot tunnel between the left dot and the left

lead in response to the square wave. The left dot-to-lead tunnel rate is thus approximately

10 kHz. Fig. 2.13(c) shows data for a horizontal sweep from VRP � �0.43 V to �0.41 V at

VLP � �0.393 V through a right dot addition line [horizontal line in (a)] acquired in the

presence of a 10 mVpp square wave applied to gate RP. In this case, the doubling of the

addition line is observed up to 20 MHz (i � 83). At 20 MHz, both lines start to broaden.

The smearing between the lines may be the result of gate bandwidth limitations since the

rise and fall of the square wave contains frequency components in the GHz range. The

source of the smearing above the top line and bellow the bottom line is not understood.

For this configuration of the device, the right dot-to-lead tunnel rate is simply too large to

measure using this method. Clearly the technique is only appropriate for measuring tunnel

rates in the 500 Hz to 20 MHz range.

56



2.6 DC-QPC Readout Sensitivity

The DC-QPC charge detector introduced in Section 1.6 is analyzed in greater detail here.

The sensitivity and bandwidth of this readout technique are summarized in Fig. 2.14.

As in Section 1.6, charge state changes of the DQD are detected using the QPC formed

between gates Q1 and RS. The sensitivity of the QPC to the electrostatic environment

is found to be highest at 0.22 � 2e
2©h. This working point is labeled with a black circle

in the conductance data shown in Fig. 2.14(a). A stability diagram in the few-electron

regime of the DQD, acquired by measuring the QPC transconductance, is displayed in

Fig. 2.14(b). With RQPC � 60 kΩ, a bias voltage of VQPC � 200 µV produces a QPC

current of IQPC � 3 nA. Sweeping VLS along the trajectory represented by the vertical

dashed line in Fig. 2.14(b) produces the trace of IQPC in Fig. 2.14(c). Moving from right

to left towards more negative values of VLS, an electron is ejected from the right dot at

VLS � �0.6325 V changing the charge state from (2,1) to (2,0) and increasing IQPC by 50

pA. Reducing VLS further, an electron is removed from the left dot at VLS � �0.644 V in

the transition (2,0)� (1,0) increasing IQPC by another 24 pA. Parasitic gating of the QPC

by gate LS is compensated by moving VQ1 more positive during the sweep. This procedure

maintains IQPC at an approximately constant value for a fixed DQD charge state. The

single electron transitions of the DQD charge state change IQPC by 1.6% in the right dot

case and 0.8% for the left dot case, similar to the 1% change reported by the Delft group

in their version of the charge detection technique summarized in Ref. [38].

The system noise spectrum measured at the output of the battery powered Ithaco

(10
�7

A/V gain, min. rise time setting) is shown in Fig. 2.14(d). For comparison, the noise

spectrum of the preamplifier with an open circuit input is also displayed in the figure. In

both cases, the increase in the noise floor in the low frequency end of the spectrum is the

result of 60 Hz harmonics. The roll-off starting at 25 kHz is consistent with the bandwidth

specification for the preamplifier in the 10
�7

A/V setting. In the open circuit case, the

current noise floor IA � 60 fA/
Ó

Hz between 400 Hz and 25 kHz is also consistent with the

specifications. The system noise, however, clearly exceeds this lower bound. The dominant

source of noise is the preamplifier input voltage noise, VA. It is converted to a current noise

flowing from the preamplifier input to ground through the parallel combination of RQPC
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Figure 2.14: (a) QPC conductance (0.22�2e
2©h working point). (b) Stability diagram. (c) IQPC

measured along dashed line in (b). (d) Top trace: Ithaco output with the input connected to the

QPC through electrical leads and filters. Bottom trace: Ithaco output with open circuit input,

10
�7

A/V gain [right axis = (left axis)�(50 pA/e)].
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and the capacitance of the lines and filters, CL. As noted by the Delft group, this current

noise, INA, is simply VA divided by the impedance of this load. It is given by the following

expression:

INA � VA�1 � j2πfRQPCCL�©RQPC . (2.2)

The observed frequency dependence of the system noise is due to the frequency dependent

impedance of CL. The total capacitance of the two copper powder filters is approximately

400 pF (the contribution of the fridge wiring to CL is unknown). To produce the right

axis of Fig. 2.14(d) in units of e©ÓHz (typical units for discussions of charge detector

sensitivity), the current noise in units of pA/
Ó

Hz is divided by 50 pA/e (for an electron

leaving the right dot).

The increase in INA with frequency combines with the 25 kHz roll-off to produce the

peak at 20 kHz. Clearly the sensitivity of the readout could be improved by lowering the

filter capacitance though perhaps at the expense of an increase in electron temperature.

Noise spectrum data from the Delft group is shown in Fig. 2.15 [38]. The current noise is

similar to that shown in Fig. 2.14(d). They have better charge sensitivity but note that

they use IQPC � 30 nA (i.e. ten times the current bias).

Figure 2.15: Delft device and DC-QPC noise spectrum. (a) Right half of a DQD device operated

as a single dot with a QPC charge detector (gate Q, current I). (b) DC-QPC noise spectrum.

Sample trace: current preamplifier connected to the device. Ref. load: current preamplifier

connector to a 300 pF reference load (both theory and experimental data are shown). Reprinted

from Applied Physics Letters 85, 4394 (2004), with the permission of AIP Publishing.
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2.7 Conclusion

Transport measurements of a single dot show that the shielding of the device and the

filtering of fridge wiring is sufficient for the electron temperature of the 2DEG to reach 70

mK. Gate noise is low enough that phenomena not involving coupling to the leads display

temperature dependence for fridge temperatures below 34 mK. A slight modification to the

NRC sample holder allows GHz connections to the plunger gates of the device, necessary

for the manipulation of the spin qubit (Chapter 4). The DC-QPC readout has a sensitivity

on the order of 10
�3
e©ÓHz when using a 3 nA bias current.
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Chapter 3

RF-QPC Charge Detector

3.1 Principle of Operation

The time constant created by the QPC resistance and the capacitance of the fridge wiring

limits the bandwidth of a DC-QPC readout to tens of kHz. By using a cryogenic amplifier

mounted on the dilution refrigerator and thus closer to the sample, the Delft group lowers

the capacitance of the wiring and improves the bandwidth of the readout to 1 MHz [53].

Increasing the bandwidth further, into the several MHz to tens of MHz range, comes with

the demonstration of the radio-frequency quantum point contact (RF-QPC) [26, 27].

Similar to the radio-frequency single electron transistor (RF-SET) [54], the RF-QPC

technique uses a matching circuit to transform RQPC down to near Z0 � 50 Ω, allowing the

QPC to be incorporated into an rf circuit involving coaxial cables and a cryogenic rf ampli-

fier. Typically a simple matching circuit composed of two reactive components, called an L-

network, is employed in the RF-QPC readout. Since RQPC % Z0, this L-network takes one

of the two forms displayed in Fig. 3.1(a) and (b). Usually circuit (a) is employed although

the ETH group uses circuit (b) [55]. Very simply, matching with circuit (a) is accomplished

by choosing a shunt capacitance C that satisfies the conditions Re�RQPC¶¶C� � Z0 and

Im�RQPC¶¶C� � �jωL. The series inductance with impedance jωL, of course, cancels

the imaginary component leaving the desired Z0. Since the impedance of L and C are
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frequency dependent, the matching condition is only satisfied at one frequency. This is

certainly a limitation of the L-network technique but it is acceptable in the readout case.

(a) (c)

(b) (d)

LCL

CRQPC

RQPC

C

L
L

C

Reff = L/CRQPC

Figure 3.1: (a) and (b) LC matching circuits used to transform the QPC resistance to near 50 Ω.

(c) Equivalent circuit for the circuit shown in (a). (d) Matching circuit of (a) connected between

a coax and the QPC charge detector of the DQD device. The capacitor connected to the top

ohmic contact is used to establish an rf ground.

A detailed analysis of the matching network for an RF-SET is found in the theses of

Julie Love [56] and John Teufel [57] from the Schoelkopf group at Yale. The following

discussion, also applicable to the RF-QPC case, closely follows their analysis. The input

impedance of circuit (a) is

Zin�ω� � jωL � RQPC

jωCRQPC � 1
. (3.1)

Setting the imaginary component of Zin�ω� to zero defines the angular resonance frequency

ω0 �

Ø
1

LC
�

1�CRQPC�2
.
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Typically the second term can be ignored, giving the familiar definition of resonance fre-

quency

ω0 �
1Ó
LC

. (3.2)

The remaining impedance of the circuit on resonance is real and given by

Zin�ω � ω0� � L

CRQPC
. (3.3)

Since the reactance of L and C are equal for ω � ω0 � 2πf0, it is typical to define a

parameter called the characteristic impedance of the transformer

ZT �

×
L

C
� ω0L �

1

ω0C
.

The input impedance can then be written as

Zin�ω � ω0� � Z
2
T

RQPC

and the matching condition, Zin � Z0, as

Z0 �
Z

2
T

RQPC
, (3.4)

or equivalently

ZT �
Õ
Z0RQPC . (3.5)

This shows that the design goal for the impedance matching network is one of choosing L

and C such that Eq. 3.5 is satisfied for the value of RQPC that maximizes the sensitivity

of the charge detector.

The quality factor of a resonant circuit, Q, is defined as the ratio of stored energy

to energy lost in one cycle of oscillation. In this case the unloaded quality factor, which

characterizes the matching network dampened by only Z0, is given by

Q �
ZT
Z0
, (3.6)

and the matching condition of Eq. 3.4 can be written as

RQPC � Q
2
Z0, (3.7)
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A useful alternative perspective on the matching circuit, developed by Roschier et al.

in Ref. [58], again begins with Eq. 3.1. Rationalizing the denominator gives

Z � jωL �
RQPC � jωCR

2
QPC�ωCRQPC�2 � 1

.

Typically RQPC is tens of kΩ, the resonance frequency is in the range 0.1-2 GHz, and

C � 0.5 pF. Thus ωCR9 1, and the 1 in the denominator is ignored producing

Z � Reff � jωL �
1

jωC
, (3.8)

where ω � 1©ÓLC and Reff � L©CRQPC is known as the effective resistance. Eq. 3.8

motivates the construction of the equivalent circuit shown in Fig. 3.1(c). On resonance,

the impedance of L and C cancel leaving an input impedance Zin � Reff as in Eq. 3.3.

The RF-QPC readout is a time-domain reflectometry circuit. The basic principle of

the technique is explained with reference to Fig. 3.1(d) which shows the RLC circuit

terminating a coaxial cable. Simply, a signal of amplitude V
�

0 and frequency f0 is sent

down the coax and the reflected voltage wave is measured. The amplitude of this reflected

wave is V
�

0 � ΓV
�

0 , where Γ � �Zin � Z0�©�Zin � Z0� is the reflection coefficient of the

circuit [59]. Similar to the DC-QPC case in which each DQD charge state corresponds to

a unique value of RQPC and thus IQPC , the RF-QPC readout maps each charge state to a

unique value of RQPC , Zin, Γ, and thus V
�

0 .

3.2 Superconducting Matching Network

The matching network for an RF-QPC or RF-SET readout consists of an inductor, L, and

its parasitic capacitance to ground, Cp. It is common to employ a commercial (eg. Coil-

craft) copper wire chip inductor to make the matching network. Typically these inductors

lead to values of Cp in the range 0.4-1 pF [26, 27]. The resulting resonance frequencies

are hundreds of MHz and the readout bandwidths are MHz to tens of MHz. For example,

Reilly et al. describe an RF-QPC readout based on a chip inductor that has a resonance

frequency of 220 MHz and a bandwidth of 8 MHz [26].
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To increase the bandwidth, for a givenQ, requires increasing f0 by decreasing either L or

Cp or both [60]. Decreasing Cp is preferable because it produces an increase in ZT �
Õ
L©Cp

and thus improves impedance matching at the higher f0. To reduce Cp for their RF-

SET, Xue et al. fabricate a lithographically patterned on-chip superconducting aluminum

inductor [60]. They are able to achieve Cp � 0.17 pF and match an SET resistance of 19.2

kΩ at 942 MHz. They report a bandwidth of 50 MHz. In addition to reducing Cp, these

inductors, being superconducting, have negligible loss at radio frequencies. By contrast, a

normal metal inductor has loss terms associated with dissipation in L and Cp. Reducing

these losses by using a superconducting LC circuit should make the reflection coefficient

more sensitive to dissipation in the transformed impedance L©CpRQPC and thus to changes

in RQPC , leading to a more sensitive readout.

Primarily motivated by the possibility of improved sensitivity, a lithographically pat-

terned niobium inductor is fabricated for the RF-QPC readout. The planar inductor of

Xue et al. is a 14-turn circular spiral with 20 µm turn spacing and 3 µm linewidth. The

circular bonding pad in the center of the spiral is 100 µm in diameter. The inductor for

the RF-QPC readout also has 20 µm turn spacing but the linewidth is increased to 5 µm

due to resolution limitations of the optical lithography process [Fig. 3.4(c)]. It is a square

geometry of 18 turns patterned on 500 µm thick sapphire substrate resulting in a matching

network with a 522 MHz resonance frequency. The square bonding pads are 200 µm �

200 µm, about four times the area of the Xue et al. design. This larger area is chosen

to allow for two wire bonds per pad. The inductor is fixed in place beside the quantum

dot device chip using GE varnish as shown in Fig. 3.6(d). Aluminum wire bonds (25 µm

diameter) are used to connect the inductor to both the ohmic contact of the device and

the high bandwidth gold pin (O4) of the sample holder. To create an rf ground, the ohmic

contact on the other side of the QPC is connected to one of the plates of a 16 pF, NPO

dielectric capacitor (American Technical Ceramics, P/N 116YCA160D100TT) using 25 µm

diameter, gold wire bonds. The other plate is connected to the gold ground plane using

silver epoxy (EPO-TEK H20E). This capacitor, also shown schematically in Fig 3.1(d),

presents an impedance of 19 Ω to ground at 522 MHz.

Fig. 3.2(a) displays the S11 scattering parameter data for the RLC circuit composed
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Figure 3.2: (a) S11 as a function of frequency for several values of RQPC . (b) RQPC as a function

of QPC gate voltage (Q2, RS). Colored dots indicate the resistance values corresponding to the

curves in (a) and (c). (c) Reflection coefficient as a function of frequency for several values of

RQPC . (d) Reflection coefficient at the resonance frequency as a function of RQPC .
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of the lithographic inductor, its parasitic capacitance, and RQPC .
1

The QPC is formed by

gates Q2 and RS. Curves for several values ofRQPC are displayed. The corresponding points

are shown on the plot of RQPC versus (Q2, RS) gate voltage in Fig. 3.2(b). Following Xue

et al., the S11 curve corresponding to QPC pinch-off (i.e. insulating state) is considered

a reference for which Γ � 1. The difference between each of the curves of Fig. 3.2(a)

and this reference produce the curves displayed in Fig. 3.2(c), showing Γ as a function

of frequency. At 522 MHz, the minimum in Γ�RQPC� occurs for RQPC = 14 kΩ. Ideally

this optimal RQPC , near where d¶Γ¶©dRQPC has a maximum [Fig. 3.2(d)], would occur

at the same RQPC that corresponds to the maximum slope of the QPC resistance curve,

dRQPC©dVQ2,RS. Unfortunately this slope typically has its maximum at a higher resistance,

30-100 kΩ.

Calculation of L and Cp for the current design requires data from one of the curves in

Fig. 3.2(c) and the following two equations:

L©Cp � RQPCZ0�1 � Γ�©�1 � Γ� (3.9)

LCp � 1©�2πf0�2
(3.10)

Eq. 3.9 is produced by substituting Zin � L©CpRQPC into Zin � Z0�1 � Γ�©�1 � Γ�
and Eq. 3.10 is simply a rearrangement of the expression for the resonance frequency,

Eq. 3.2. Extracting f0 � 522 MHz, Γ � 4.7 � 10
�4

, and RQPC � 14 kΩ from Fig. 3.2(c),

substituting into the above equations, and solving the system produces L � 255 nH and

Cp � 0.36 pF. The inductance, parasitic capacitance, resulting resonance frequency, and

circuit bandwidth (measured in Section 3.6) are displayed in Table 3.1 along with values

from Reilly et al. [26], Cassidy et al. [27] (copper chip inductors), and Xue et al. [60]

(lithographic superconducting inductor). Note that the value of L for the chip inductors

is the nominal value, not the value in the context of the matching network.

Several changes to the inductor design could reduce Cp and thus increase the value

of RQPC corresponding to optimal match. Decreasing turn spacing, etching the sapphire

1
Similar to Γ , S11 is defined as the amplitude of the reflected voltage wave divided by the amplitude

of the incident voltage wave [59]. Following the readout literature, S11 is used for the raw reflectometry

data.
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Table 3.1: Summary of the inductance, capacitance, resonance frequency, and bandwidth of

several matching networks.

This work Reilly et al [26]. Cassidy et al. [27] Xue et al. [60]

L 255 nH 820 nH 490 nH 170 nH

Cp 0.36 pF 0.63 pF 0.47 pF 0.17 pF

f0 522 MHz 220 MHz 332 MHz 942 MHz

BW 15 MHz 8 MHz 21 MHz 50 MHz

between turns, and moving the inductor onto the device chip (eliminating the stray ca-

pacitance of the wire bonds) may lower Cp. Perhaps machining away the portion of the

ground plane where the inductor is to be placed would also lower Cp.

As noted above, one of the advantages of superconducting inductors is their low loss

relative to normal metal coils. Losses in a matching network are evaluated by performing

a reflection measurement with the QPC in the pinch-off state. Note that rf power incident

on the RLC circuit is either absorbed by the QPC (K), reflected back to the source (¶Γ¶2)

or dissipated in the matching network (N). Normalizing to the incident signal power, this

conservation of energy relationship produces the following equation:

¶Γ¶2 �K �N � 1

In the pinch-off regime, no power is absorbed by the QPC and thus K � 0. All incident

power is either absorbed by the matching network or reflected back to the source. The data

in Fig. 3.2(a) reveals that there is no dip in S11 at the 522 MHz resonance frequency with

the QPC in the pinch-off state. All of the power is reflected back to the source (Γ � 1).

No power is dissipated in the matching network (N � 0). If instead of a superconducting

inductor, a copper chip inductor is employed, a dip at the resonance frequency is typically

observed with the QPC in the pinch-off regime. The data from Reilly et al. [26] shown in

Fig. 3.3(a), for example, reveals a �20 dB deep dip at the 220 MHz resonance frequency for

the pinch-off case (gQPC � 0). This 20 dB return loss implies ¶Γ¶ � 0.1 and ¶Γ¶2 � 0.01.
2

Only 1% of the power is reflected while the other 99% is dissipated in the matching network.

2
Return loss in decibels is RL�dB� � �20 log10 ¶Γ¶.
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The data from Cassidy et al. [27] is displayed in (b), showing a 15 dB dip with the QPC

in the pinch-off regime.

fcarrier (MHz)
350

S 1
1

(d
B

) -20

300

-80

0-0.4-0.8
0

100

200

300

G
Q

PC
 (µ

S)

V2 (V)

(a) (c)(b)

Figure 3.3: S11 versus frequency data from (a) Reilly et al. [26] and (b) Cassidy et al. [27]. (c)

Conductance curve for the QPC described in Ref. [27]. At the resonance frequency, the curves

in (b) from top to bottom correspond to GQPC values of 325, 50, 0, and 30 µS (i.e. 3 kΩ, 20 kΩ,

% 1 MΩ, and 33 kΩ). Reprinted from Applied Physics Letters 91, 162101 (2007) and Applied

Physics Letters 91, 222104 (2007), with the permission of AIP Publishing.

The planar niobium spiral inductor is fabricated by optical lithography. Square pieces

(2.5 cm � 2.5 cm) of 500 µm thick sapphire substrate (Valley Design Corporation) are

cleaned in baths of acetone, isopropanol, and deionized water using an ultrasonic cleaner.

Baking in a convection oven at 180
`
C for 30 minutes dehydrates the substrate. To simplify

the lift-off process, the double layer resist technique, shown schematically in Fig. 3.4(a),

is employed. A 500 nm thick lift-off resist layer (Microchem LOR 5A) is spun onto the

substrate (5000 RPM for 30 seconds) and baked at 180
`
C for 15 minutes. After the

substrate cools to room temperature, a 1.3 µm thick layer of photoresist (Shipley 1813) is

spun (5000 RPM for 30 seconds) on top of the lift-off resist and baked for 30 minutes at

115
`
C. This photoresist layer is exposed for 6 s using a Karl Suss MJB3 mask aligner,

developed in MF-319, washed in deionized water, and finally blown dry using nitrogen

gas. The development time varies but is typically a few minutes. Fig. 3.4(b) shows a

false color photograph of the exposed substrate and remaining resist layers at this stage

in the process. The bright borders indicate that the lift-off resist has dissolved at the

edges of the exposed regions creating an undercut [Fig. 3.4(a)]. A 180 nm niobium film

69



sapphire substrate

LOR 5A (500 nm)

niobium (180 nm) 

Shipley 1813 (1.3 µm)

undercut

(a)

(b)

(c)

undercut 

200 µm

Figure 3.4: (a) Schematic cross-section after the niobium sputtering process. Proper choice

of development time creates the desired undercut below the photoresist layer. (b) False color

microscope image of the resist after the development process. This case of slight over development

clearly shows the undercut regions (bright borders). (c) An example of a niobium inductor after

the lift-off process.

is now sputtered onto the exposed sapphire (DC sputter, 280 V, 0.5 A, 2 minutes). The

resist lift-off process involves immersing the sample is a 65-70
`
C bath of Nano Remover

PG. The niobium covered resist is removed within a few minutes. The sample is rinsed

in isopropanol and deionized water and blown dry using nitrogen gas. Fig. 3.4(c) shows

the inductor after sputtering and lift-off. A layer of photoresist is then spun onto the

niobium inductor to protect it during the wafer dicing process. A 2 mm � 2 mm square

chip containing the inductor is cut using a dicing saw. The chip is immersed in acetone to

remove the photoresist, rinsed in deionized water, blown dry, and finally glued beside the

DQD device chip.
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3.3 Readout Circuit

The RF-QPC reflectometry circuit is shown in Fig. 3.5. A 520 MHz carrier sine wave

is produced by a signal generator (Agilent E8241A) and launched towards the device via

semi-rigid coaxial cables. For both the input and output rf lines, copper coaxial cables are

employed at room temperature, beryllium copper to the 1 K pot, superconducting niobium

titanium from the 1 K pot to the mixing chamber and finally copper to the device. They

run beside the high bandwidth gate coaxial cables and are heat sunk similarly (Section 2.5).

To absorb thermal noise produced at higher temperatures, the input line contains 20 dB

attenuators (XMA, P/N 2082-6418-20) heat sunk to the 1 K pot and the still plate. A

145 MHz cutoff, high-pass filter (Mini-Circuits, model VHF-145) is located at the 1 K pot

stage to attenuate instrumentation noise, in particular 60 Hz harmonics [Fig. 3.6(a)]. At

base temperature, the carrier signal and input noise is further attenuated by 30 dB in a

directional coupler (S.M. Electronics
3
, model MC3202-30) and sent via a homemade bias

tee to the device. The bias tee consists of a 51 pF, NPO dielectric capacitor (American

Technical Ceramics, 700A series) and a 1.2 µH conical inductor (Coilcraft, model BCS-

122JL). The directional coupler and bias tee are shown heat sunk to the mixing chamber

plate in Fig. 3.6(c). Copper coax connects the output of the bias tee to the MCX jack on

the right side of the NRC sample holder shown in Fig. 3.6(d).

A room temperature measurement of the input line attenuation to the end of the bias

tee is displayed in Fig. 3.7(a). The fixed attenuators and directional coupler collectively

contribute 70 dB at 520 MHz. The 5.5 m copper coax (UT-141) in the room and the 1.5 m

beryllium copper line (UT-85, silvered inner conductor) to the 1 K pot together contribute

another 2 dB. The remaining 3 dB of attenuation is due to filters and coax at and below

the 1 K pot stage.

Depending on the DQD charge state, some fraction of the carrier signal is reflected

from the RLC circuit formed by the matching network and QPC resistance. This signal

passes through the bias tee and directional coupler ($ 1 dB insertion loss) to the input

of a µ-metal shielded circulator mounted on the mixing chamber as shown in Fig. 3.6(b).

The circulator is a non-reciprocal device that allows signals reflected by the RLC circuit

3
Fairview Microwave
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Figure 3.5: RF-QPC readout circuit on the Oxford 600 dilution refrigerator.
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Figure 3.6: (a) Components on the 1 K pot. Input line attenuator and filter; output line filters

and Caltech amplifier. (b) Circulator connected to the mixing chamber. (c) Directional coupler

and homemade bias tee on mixing chamber plate. (d) Niobium inductor mounted beside the

DQD device chip.
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to pass essentially unattenuated (insertion loss � 1 dB) to the the input of the cryogenic

low noise amplifier (LNA). Signals traveling in the opposite direction, however, are atten-

uated by approximately 20 dB. Noise produced by the cryogenic LNA is therefore strongly

attenuated before reaching the DQD device. The specifications sheet for the circulator

(Quinstar, model VDA1129KIS) lists 1 dB maximum insertion loss and 20 dB minimum

isolation in a 450-550 MHz frequency range (measured at 2 K). Fig. 3.7(b) shows network

analyzer measurements of the circulator on a pulse tube refrigerator at 2.8 K.

Made in the Sander Weinreb group at Caltech, the cryogenic LNA is based on SiGe

field effect transistors. According to the specification sheet, the amplifier has a noise

temperature of 2.3 K and a gain of 37 dB at 520 MHz. This cryogenic LNA is mounted to

the 1 K pot (1.5 K) as shown in Fig. 3.6(a) and followed by an amplifier stage located at

the top of the fridge (i.e. inside the screen room). The room temperature post amplifier

has a gain of 50 dB and a noise temperature of 50.7 K in the 0.1-1 GHz frequency range

(Miteq, model AMF-3F-00100100-07-10P).
4

A 145 MHz cutoff high-pass filter and a 1350

MHz low-pass filter are placed at the 1 K pot stage between the two amplifiers (Mini-

Circuits, models VHF-145 and VLFX-1350). They are shown in Fig. 3.6(a). Together they

form a band-pass filter that reflects noise produced by the Miteq amplifier and other room

temperature instrumentation that would otherwise feed through the Caltech amplifier (i.e.

output to input) and down to the device. Fig. 3.7(c) and (d) show transmission as a

function frequency for these filters measured in a helium dewar at 4.2 K.

To extract the envelope of the reflected signal, a homodyne receiver is employed. The

output of the Miteq amplifier is connected to the RF input of a mixer (Macom, model

M2BC). Using a power splitter (Mini-Circuits, model ZFSC-2-5-S+), the required +13

dBm, 520 MHz linear oscillator (LO) signal is produced by the same signal generator used

to create the original carrier signal. In addition to the envelope, the intermediate frequency

(IF) output of the mixer also contains several components around 2�520 MHz � 1040 MHz.

These components are filtered away using a Mini-Circuits low-pass filter. Between the

splitter and the LO input of the mixer is placed a passive phase shifter in the form of an

adjustable line (874-LA). The phase difference between the RF and LO signals is tuned by

changing the length of this line until a maximum envelope signal amplitude is achieved.

4
Occasionally replaced by two Mini-Circuits ZRL-700+ amplifiers (gain = 60 dB, noise T = 170 K)
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Figure 3.7: (a) Transmission of the RF-QPC circuit input line measured at room temperature.

(b) Frequency response of the circulator measured at 2.8 K. (c)[(d)] Transmission of Mini-Circuits

VHF-145 high-pass [VLFX-1350 low-pass] filter measured at 4.2 K.
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3.4 Noise Temperature

In addition to amplifying both the signal and noise at their input, each amplifier stage

also contributes noise and thus degrades the signal-to-noise ratio. The amplifier stages are

the dominant noise sources and thus in part determine the sensitivity of the readout. The

ultimate goal of this section is to characterize the noise of the RF-QPC readout.

3.4.1 Noise Temperature Definition

Noise temperature is a convenient metric for characterizing an amplifier that produces

white (i.e. frequency independent) noise. Its definition is based on modeling the amplifier,

for noise analysis purposes, as a resistor producing thermal noise. Recall that the rms volt-

age noise produced by a resistor R at temperature T in a bandwidth B is vn �
Ô

4kBTBR.

It is sometimes convenient to replace R by a circuit composed of a noiseless resistor R and

a voltage source vn. This equivalent circuit is shown connected to a matched load R in

Fig. 3.8. The noise current is in � vn©2R and the noise power delivered to the load resistor

is therefore Pn � i
2
nR � kBTB.

R (noiseless)

R (load)

in= vn/2R

vn = √4kBTBR

Figure 3.8: For noise analysis, the Thévenin equivalent circuit of a resistor R consists of a source

producing an rms voltage vn �
Ô

4kBTBR in series with a noiseless resistor R.

Consider the situation depicted in Fig. 3.9(a) which shows an amplifier of power gain

A with source and load resistors R at temperature T . The total noise power delivered

to the load resistor is Pa � AkBTB � NA. It is composed of the noise from the source
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resistor amplified by the gain A and the noise power added by the amplifier itself, NA.

Now consider two special cases of this setup shown in (b) and (c). In part (b), the source

resistor is at the hypothetical temperature T � 0 K and the noise power Pb delivered to

the load is NA. In part (c), the amplifier is considered noiseless and the output noise,

Pc � AkBTB, is the amplified thermal noise of the source resistor. Now note that if the

temperature of the source resistor in (c) is set to Te � NA©AkBB, then Pc � Pb � NA. That

is, the source resistor in (c) at temperature Te produces the same noise as the amplifier in

(b). This scenario is shown in (d). The amplifier can thus be modeled as a resistor R at

temperature Te, called the equivalent noise temperature and the total noise power in (a)

can be written as Pa � AkB�T � Te�B.

R
A

Pa = AkBTB + NA

R R
T=0

A
Pb = NA

R

R
A

Pc = AkBTB

R

noiseless

R
T=Te

A
Pc = AkBTeB = NA

R

noiseless

(a)

(c) (d)

(b)

Figure 3.9: Schematics used to explain the concept of noise temperature.
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3.4.2 Noise Temperature of an Amplifier Cascade

The readout contains two semiconductor amplifier stages. It also contains several lossy

components between the device and the cryogenic amplifier that are collectively treated as

an amplifier with gain A $ 1 (Section 3.4.3). An expression for the noise temperature of

such a cascade of three amplifier stages is derived in this section. Consider the schematic

of Fig. 3.10 which shows three stages with gains A1, A2, A3 and noise temperatures Tn1,

Tn2, Tn3 connected to matched source and load resistors R at temperature T . The problem

is divided into pieces by calculating the noise powers Pn1, Pn2, and Pn3 at the outputs of

the corresponding stages. The noise at the output of the first stage is the amplified noise

of the source resistor added to the noise power contributed by the first stage amplifier

Pn1 � A1kBTB � A1kBTn1B � A1kB�Ts � Tn1�B.
Multiply this by A2 and add the noise contributed by the second amplifier to produce an

expression for the noise power at the output of the second stage

Pn2 � A2Pn1 � A2kBTn2B � A1A2kB�T � Tn1�B � A2kBTn2B.

Combining the first two amplifiers into one stage of gain A1A2 and noise temperature Tn12

gives the alternative expression

Pn2 � A1A2kB�T � Tn12�B.
Equating these two expressions for Pn2 gives

Tn12 � Tn1 �
Tn2

A1
.

Following similar arguments, the noise power at the output of the third stage is given by

Pn3 � A3Pn2 � A3kBTn3B � A1A2A3kB�T � Tn12�B � A3kBTn3B

or combining the three amplifiers into a single stage of noise temperature Tn123

Pn3 � A1A2A3kB�T � Tn123�.
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Equating these expressions gives the final expression for the noise temperature of the

cascade of three amplifiers

Tn123 � Tn1 �
Tn2

A1
�

Tn3

A1A2
.

Note that if the gain of the first stage is sufficiently large, the system noise temperature

will be dominated by the noise temperature of the first stage.

R
A1, Tn1 A2, Tn2 A3, Tn3

Pn1 Pn2 Pn3

R

Figure 3.10: A cascade of three amplifier stages with gains A1, A2, A3 and noise temperatures

Tn1, Tn2, Tn3. The noise power delivered to the load resistor consists of the amplified noise of the

source resistor and the noise added by each amplifier stage.

3.4.3 Noise Temperature of a Lossy Transmission Line

Between the device and the cryogenic amplifier, there is a directional coupler, bias tee,

circulator, and approximately one meter of coaxial cable. For the purposes of noise analysis,

they are collectively viewed as a lossy transmission line that forms the first stage in the

cascade described above. Calculate the noise temperature of the lossy line by modeling

it as an amplifier with gain A $ 1 [59]. Fig. 3.11(a) shows a lossy line terminated with

matched source and load resistors R.

Because the characteristic impedance of the line is Z0 � R, the line and source resistor

collectively look like a resistor R when looking into the circuit from the load side. The

noise power delivered to the load resistor is therefore Pn � kBTB. Equivalently the noise

contributions of the source resistor and the line can be taken separately. Similar to the

arguments associated with the amplifier cascade, the output noise can be viewed as the

attenuated noise of the source resistor added to the contribution of the line itself. Calling
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R (source) R (load)

lossy line

L = 1/A
Z0 = R

R
A = 1/L

Pn = AkBTB + ANadded

R

Pn = kBTB

=

Figure 3.11: A source resistor delivers noise power to a load resistor via a matched, lossy trans-

mission line. The equivalent noise temperature of the lossy line is �L� 1�T , where L is its linear

loss factor.

this latter contribution Nadded, gives Pn � AkBTB � ANadded, where Nadded is referred to

the input of the line. Equating the two expressions for Pn shows that

Nadded �
1 � A

A
kBTB � �L � 1�kBTB,

where the loss factor L is defined as L � 1©A. The noise temperature of the lossy line is

therefore

Te �
Nadded

kBB
� �L � 1�T.

3.4.4 RF-QPC Noise Temperature Measurement

This section describes how a shot noise measurement is used to evaluate the readout noise

temperature [27, 61]. Recall the well known Schottky expression for the spectral density

of shot noise [62]

S
c
I � 2eI.

This classical result describes fluctuations in the flow of electrons between a source and

drain lead due to a sample which randomly transmits/reflects electrons. It is derived under

the assumptions that the flow of electrons is uncorrelated and the tunneling attempts at the

sample are independent events (Poissonian statistics). In the quantum treatment of Martin

and Landauer, the leads are described by Fermi-Dirac distributions and the electrons are

modeled as wavepackets occupied according to the Pauli principle [63]. In the specific case
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of a QPC sample with conductance, G � T GQ, between pinch-off and the first plateau

(0 & T & 1), the spectral density takes the following form at T � 0 [64, 65]

S
q
I �T � 0� � 2eI�1 � T �. (3.11)

The Fermi-Dirac statistics correlates the flow of electrons and as a result suppresses the

shot noise relative to the Poissonian value. The noise in this case is called subpoissonian

and is characterized by the Fano factor η � S
q
I �T � 0�©ScI � 1 � T . Generalizing the

quantum result to also include the noise associated with the emission of electrons from the

leads at finite temperature, the spectral density of shot noise is given by

S
q
I �T � � 2eI�1 � T ��coth� eVSD

2kBT

 � 2kBT

eVSD
�, (3.12)

where VSD is the voltage bias applied between the source and drain leads [66, 67].

To measure the system noise temperature, the readout is used to measure the shot

noise of the QPC as function of VSD. The noise power of the readout before the detection

circuit (i.e. mixer) is given by

P � ABkB�TN � TQPC�, (3.13)

where A is the system gain (DQD device to mixer input) and B is bandwidth. The

readout noise temperature, TN , characterizes the noise contributions of both semiconductor

amplifiers and the passive components including the coaxial cables, circulator, directional

coupler, and bias tee. The shot noise associated with the QPC is characterized by the

noise temperature TQPC . To produce an expression for TQPC , note that the thermal noise

of a resistor of conductance G at temperature T is described by the spectral density S
th
I �

4kBTG. This motivates a definition of noise temperature TQPC � SI©4GkB, where SI is

given by Eq. 3.12. Kumar et al. note that for eVSD©2kB 9 T , the shot noise power varies

linearly with VSD and noise temperature is given by TQPC � ηeVSD©2kB [66]. Substitute

this expression into Eq. 3.13 and rearrange the terms to produce an expression for noise

power in a unit bandwidth [27]

P©B � AkBTN � 1

2
eηA¶VSD¶. (3.14)
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Figure 3.12: Noise power per unit bandwidth measured at the output of the room temperature

Miteq amplifier stage as a function of the DC voltage applied across the QPC. The QPC con-

ductance is set to 0.4 � 2e
2©h. Open circles are data points, solid lines show a y � b � a¶x¶ fit

to the data. The extracted slope and intercept give a system noise temperature of 5.2 K (i.e. at

VSD � 0).

Measurements of P©B at the readout resonance frequency for positive and negative

values of VSD (hence the absolute value) are performed using a spectrum analyzer and

displayed in Fig. 3.12. Note that Eq. 3.14 has the form y � b � a¶x¶, where y � P©B,¶x¶ � ¶VSD¶, the intercept is b � AkBTN , and the slope is a � 1

2
eηA. A curve fit to the data

(solid black lines), gives a � 3.76 � 10
�12

and b � 5.57 � 10
�15

. With a QPC conductance

of G � 0.4GQ, η � 1 � T � 0.6, and the slope gives A � 7.83 � 10
7
. This corresponds to

79 dB gain as expected from the following collection of components: room temperature

Miteq amplifier (50 dB), cryogenic Caltech amplifier (37 dB), fixed attenutor on Miteq

input (�3 dB), beryllium copper and copper coax of the output line (�2 dB), coax and

passive rf components on the fridge (�3 dB). Using the value of A calculated from the fit,

the intercept yields the noise temperature TN � 5.2 K (right-axis of Fig. 3.12).
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Viewing the readout as composed of a three stage amplifier cascade, a value for TN can

be calculated using the following expression:

TN � �L � 1�T � LTn2 �
LTn3

A2
. (3.15)

The first stage is due to the attenuation of the passive components between the QPC

and the cryogenic amplifier. This attenuation has a linear loss factor L � 1.58 (2 dB).

The second stage is the cryogenic amplifier. For 23 K ambient temperature and 2.5 V

supply voltage, this Caltech CITLF2 SiGe amplifier has a noise temperature of Tn2 �

2.3 K and a gain A2 � 5012 (37 dB) at 520 MHz (from specification sheet). The Miteq

room temperature amplifier with a noise temperature of Tn3 � 50.7 K is the third stage.

Substituting these values into Eq. 3.15 gives TN � 3.6 K. This is a lower bound because the

first term of Eq. 3.15 is ignored. The higher TN acquired from the shot noise measurement

may also be due to the potentially noisy supplies used to power the amplifiers. Eventually

these supplies are replaced with voltage regulators and batteries.

3.5 Sensitivity Theory

Roschier et al. analyze the RF-SET readout and produce an expression for sensitivity

which is also applicable to the RF-QPC case [58]. A review of their derivation, using similar

notation, is performed in this section. Fig. 3.13 shows the rf source, homodyne detection

circuit, and the associated signals at several stages. A carrier signal sc � v0 cos�ω0t�,
shown at the output of the source, is launched towards the QPC. Depending on RQPC ,

some fraction of this voltage wave is reflected and becomes the input signal to the detection

circuit (i.e. mixer). With the QPC in an initially static electric field environment, this

reflected voltage wave is simply v0Γ0 cos�ω0t�, where Γ � Γ0 is the reflection coefficient at

the value of RQPC chosen to maximize readout sensitivity. Choice of this optimal working

point is related to a combination of two factors: the sensitivity of Γ to changes in RQPC and

the sensitivity of RQPC to changes in electric field. Consider now the effect of a sinusoidal

oscillation of electric field at the QPC produced by a voltage oscillation on a gate. The

resulting oscillation in the reflection coefficient, Γm�t� � ∆Γ cos�ωmt�, about the working
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point Γ0 gives a new total reflection coefficient of Γ�t� � Γ0�Γm�t� and the following form

for the amplitude modulated reflected signal [Γ�t� � sc]:
sRF � v0�Γ0 �∆Γ cos�ωmt�� cos�ω0t�.

The product of cosines is converted to a sum of cosines using the trigonometric identity

cos�A �B� � cos�A �B� � 2 cosA cosB and the reflected signal becomes

sRF � v0Γ0vcos�ω0t� � ∆Γ

2Γ0
rcos��ω0 � ωm�t� � cos��ω0 � ωm�t�x|. (3.16)

An example spectrum of such a signal is shown at the RF input to the mixer in Fig. 3.13.

The peak at 519.3 MHz (ω0) is the carrier. The amplitude modulation produced by a 1

mVrms, 1 MHz oscillation on right plunger gate RP gives the sidebands at frequencies 518.3

MHz (ω0 � ωm) and 520.3 MHz (ω0 � ωm).

φ

sc = v0cos(ω0t)

sRF = Γ(t)v0cos(ω0t)

RF
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φ=0

sLO = cos(ω0t)
-3 dB

-3 dB

sIF sd + constant

-80

-60

-40

-20

0

Po
w

er
 (d

B
m

)

521520519518
Frequency (MHz)

ω0

ω0 − ωm ω0 + ωm

Figure 3.13: RF source and amplitude demodulation (i.e. detection) circuit of the RF-QPC

readout.
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Amplitude demodulation of the reflected signal is performed with the mixer and the

low-pass filter. The mixer multiplies the reflected signal by the LO signal, sLO � cos�ω0t�,
to produce, using the above mentioned trigonometric identity, the following result at the

IF port:

sIF � v0Γ0v1

2
�cos�2ω0t� � 1� � ∆Γ

4Γ0
rcos��2ω0 � ωm�t� � cos��ωmt�

� cos��2ω0 � ωm�t� � cos�ωmt�x|.
If ωm 8 ω0, a low-pass filter can be chosen to eliminate the 2ω0, 2ω0 � ωm, and 2ω0 � ωm

terms leaving a constant and the ωm terms. Eliminating the constant with a differential

post amplifier leaves the following signal at the output of the detection circuit:

sd � v0

∆Γ

2
cos�ωmt�.

The root-mean-square (rms) signal is given by

Ô
Sd �

Õ�s2
d� �Ø

v2
0

∆Γ2

4
�

1

T
E

T

0

dt cos2�ωmt� � v0

∆ΓÓ
8
. (3.17)

Development of an expression for readout sensitivity requires a calculation of the system

signal-to-noise ratio. A noise theory for the readout begins with the introduction of a

voltage noise term, n�t�, added to the amplitude modulated signal, sRF (Eq. 3.16), at the

RF input to the mixer. In the mixer, n�t� is multiplied by the LO signal to produce the

following noise expression at the IF port:

y�t� � n�t� cos�ω0t�. (3.18)

Comparison of noise with signal requires calculating the power spectral density of y�t�,
Sy�ω�. Because y�t� and n�t� are related by Eq. 3.18, Sy is related to the power spectral

density of voltage fluctuations associated with n�t�, SV . Haykin in Ref. [68] performs a

calculation that reveals the relationship between these two spectral densities

Sy�ω� � 1

4
�SV �ω � ω0� � SV �ω � ω0��. (3.19)
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The system noise includes contributions from thermal noise, instrumentation noise, and

gate voltage noise but is typically dominated by the noise of the cryogenic amplifier. As

explained is Section 3.4, these sources are collectively characterized by a noise temperature

TN � Pn©kBB, where Pn is noise power in units of Watts and B is bandwidth in Hz. Very

simply, the power spectral density of noise can be written as Pn©B � SV ©Z0, where SV is

in units of V
2©Hz and Z0 � 50 Ω is the impedance of the rf system. Following Roschier

et al., combine this definition with the above expression for TN to produce SV � kBTNZ0.

Substitute this frequency independent result into Eq. 3.19 to arrive at an expression for

the rms noise in units of V ©ÓHz Õ
Sy �

×
kBTNZ0

2
. (3.20)

Divide Eq. 3.17 by Eq. 3.20 to produce the signal-to-noise ratio in units of
Ó

Hz

S

N
�

Ø
Sd
Sy
�

v0∆ΓÔ
4kBTNZ0

. (3.21)

In order to eliminate ∆Γ from this expression, note that the oscillation of the electric field

at the QPC results from varying the charge, q, on the gate. The goal of this sensitivity

analysis is to determine how small of a change in gate charge, δq, can be detected by the

readout. Since δq produces ∆Γ, these parameters have the simple relationship (in rms

units)

∆Γ �
Ó

2∆Γrms �
∂¶Γ¶
∂q

Ó
2δqrms.

Substituting this result into Eq. 3.21 replaces ∆Γ with charge sensitivity, δqrms. Setting

S©N � 1, and rearranging produces an expression for charge sensitivity in units of e©ÓHz

(remember that S©N has units of
Ó

Hz)

δqrms �

Ô
2kBTNZ0

v0

∂¶Γ¶
∂q

. (3.22)

As a last step, note that some fraction, K, of the incident signal power, Pi � v
2
0©2Z0, is

dissipated in the QPC. With the dissipated power being given by PQPC � v
2
QPC©2RQPC ,
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setting PQPC � KPi and solving for v0 produces the expression

v0 � vQPC

Ø
Z0

RQPCK
,

where vQPC is the amplitude of the voltage across the QPC. Substitute this and ∂¶Γ¶©∂q ��∂¶Γ¶©∂RQPC��∂RQPC©∂q� into Eq. 3.22 to give the final expression for charge sensitivity

δq �

Ô
2kBTNRQPCK

vQPC
∂¶Γ¶
∂RQPC

∂RQPC

∂q

(3.23)

where rms units are understood and the corresponding label is dropped. Although the

electric field at the QPC is produced by a gate in this model, Eq. 3.23 is equally applicable

to the case of an electric field produced by charges on a nearby DQD where δq and the

amplitude modulation of the carrier signal (∆Γ) result from electrons moving to/from the

leads or between dots.

3.6 Sensitivity and Bandwidth Measurements

Bandwidth and sensitivity measurements of the RF-QPC readout are described in this

section. As in the DC-QPC case of Section 1.6, the (Q1, RS) QPC is employed in the rf

readout. Tuning for maximum electric field sensitivity involves applying an oscillation (eg.

1 mVrms, 11 Hz) to the left plunger gate LP and measuring the signal at the output of the

detection circuit, Vrf, with a lock-in amplifier while sweeping VQ1. The maximum lock-in

amplifier response and thus highest sensitivity occurs at the value of VQ1 corresponding to

RQPC � 70 kΩ. This working point is indicated by a black circle on the ¶Γ¶ versus RQPC and

RQPC versus VQ1 plots shown in Fig. 3.14(a).
5

The working point seems largely determined

by ∂RQPC©∂VQ1, as in the DC case, since clearly the maximum in ∂¶Γ¶©∂RQPC does not

occur near RQPC � 70 kΩ. Note in particular that ∂¶Γ¶©∂RQPC � 2 µS at RQPC � 70

5
The ¶Γ¶ � 1 reference corresponds to the smallest value of RQPC . A similar convention is followed in

most rf readout literature although not by Xue et al. as discussed in Section 3.2 [60].
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kΩ while at RQPC � 30 kΩ, the slope increases to 9.5 µS. As discussed in Section 3.2,

improvements in sensitivity may be achieved by redesigning the matching network to push

the maximum slope to a higher value of RQPC . A carrier power of Prf � �85 dBm at the

device is used for the optimization procedure.

After choosing the working point, Vrf is measured as VLS is swept along the trajectory

indicated by the vertical dashed line in the stability diagram of Fig. 3.14(b). Moving

from right to left on the VLS axis of Fig. 3.14(c), an electron is ejected from the right dot

at VLS � �0.633 V changing the charge state from (2,1) to (2,0) and increasing Vrf by

225 µV. An electron is then removed from the left dot at VLS � �0.644 V in the transition

(2,0)�(1,0) increasing Vrf by another 150 µV. The readout signal is maintained at an

approximately constant value in regions of constant DQD charge state by also sweeping VQ1

during the VLS sweep. The system noise spectrum measured at the output of the detection

circuit is displayed in Fig. 3.14(d). The left vertical axis is in units of µVrms©ÓHz and using

225 µV/e, the right axis shows the noise in units of e©ÓHz. The noise floor above 1 kHz

is 0.4 µV/
Ó

Hz or 1.8�10
�3
e©ÓHz (i.e. 0.4/225). Note that the DC offset inherent in the

detected signal (Section 3.5) is (mostly) removed using a differential (channel A � channel

B) voltage amplifier (PAR 113) and a DC voltage supply. The readout signal is input to

channel A and the supply to channel B. The supply voltage is tuned in an attempt to

remove the DC offset from the preamplifier output signal so that the following instrument

(i.e. voltmeter or oscilloscope) can run in its highest sensitivity range. The remaining �44

mV offset [Fig. 3.14(c)] is thus arbitrary and percent changes in Vrf associated with DQD

charge state changes are meaningless.

The (Q1, RS) QPC is used in the rf readout because it is closer to where the dots

form than the (Q2, RS) QPC. To use the (Q1, RS) QPC, however, requires setting VQ2

to approximately �0.25 V (after a +0.25 V bias cooling [69]). If Q2 is left grounded, no

change in Γ at the resonance frequency is observed as RQPC is swept from its lowest value

to the pinch-off regime. Apparently Q2 acts like an rf ground that is capacitively coupled to

the 2DEG. This capacitance is a low impedance for signals at the carrier frequency when

Q2 is grounded. This impedance, however, can be increased by depleting the electrons

under Q2. Although not investigated in detail, for this particular device, varying VQ2 from

�0.2 V to �0.3 V allows some tuning of the resonance frequency and Γ�RQPC�, similar
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Figure 3.14: (a) ¶Γ¶ as a function of RQPC with VQ2 � �0.25 V (black dot indicates the working

point). (b) Stability diagram acquired using the RF-QPC. (c) Vrf measured along the dashed line

in (b); 300 Hz bandwidth set by a PAR 113 voltage amplifier. (d) Voltage noise measured at the

output of the detection circuit [right axis = (left axis)�(225 µV/e)]. Inset: 60 Hz harmonics.
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to the use of a varactor diode as a voltage controlled capacitor in the matching network

of the ETH group [70]. This capacitance issue is the reason the resonance frequency has

varied slightly throughout the chapter, from 519 to 522 MHz. It is also the reason that¶Γ¶ approaches approximately 0.5 instead of 1 for large RQPC in Fig. 3.14(a). There is a

power divider effect involving the (Q1, RS) QPC and the Q2 gate that was not understood

at the time of these measurements. The desired ¶Γ¶� 1 behavior described in Section 3.2

can be achieved with proper tuning of Q2.

The RF-QPC bandwidth measurement involves applying a 1 mVrms oscillation at vari-

ous frequencies to the right plunger gate RP. The signal spectrum resulting from a 1 MHz

oscillation is measured at the output of the room temperature amplifier and displayed in

Fig. 3.15(a). Plotting the signal-to-noise ratio (SNR) of the lower sideband (LSB) as a

function of the gate oscillation frequency produces the data displayed in (b). The 3 dB

bandwidth of the readout is 15 MHz.

Note that the above sensitivity and bandwidth measurements are performed using a �85

dBm carrier. According to Eq. 3.23, the sensitivity could be improved by simply increasing

Prf (i.e. increasing vQPC). Fig. 3.15(c) shows the SNR of the LSB of a signal spectrum

as a function of Prf. The LSB is produced with a 1 mVrms, 1 MHz sine wave applied to

gate RP. The solid line indicates a 1 dB increase in LSB signal for every 1 dB increase in

Prf starting at �90 dBm. The noise floor in the band containing the carrier and sideband

frequencies is carrier power independent in the measured range. The SNR approximately

follows the straight line to about �75 dBm where is begins to deviate possibly due to

heating which distorts the QPC resistance curve [70]. Several groups use Prf � �75 dBm

for charge detection measurements [26, 27, 70]. Unfortunately during this cooldown, for

powers higher than about �80 dBm, traces similar to that shown in Fig. 3.14(c) contain

telegraph noise perhaps due to the activation of charge traps. This problem may be solved

by simply thermally cycling the device.
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Figure 3.15: (a) Spectrum measured at the output of room temperature amplifiers (Mini-Circuits

amps: 60 dB gain). The resolution bandwidth is 300 Hz and the video bandwidth is 10 Hz. (b)

SNR of the LSB as a function of modulation frequency. (c) SNR of the LSB as a function of Prf.

The SNR of the �85 dBm point (22 dB) should agree with the 1 MHz point of (b) (25 dB). The

two data set were acquired on different days, two weeks apart. The device drift made it difficult

to choose the same working point on the two days.
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3.7 Comparison

In this section, a simple comparison is made between the RF-QPC of this work and those

of Reilly et al. [26] and Cassidy et al. [27]. The expression for charge sensitivity (Eq. 3.23)

derived in Section 3.5 is shown here for convenience [58]

δq �

Ô
2kBTNRQPCK

vQPC
∂¶Γ¶
∂RQPC

∂RQPC

∂q

. (3.24)

Table 3.2 shows the charge sensitivity of each readout and a list of some of the parameters

relevant to a calculation of δq. The better sensitivity shown in columns two and three

is largely due to the higher carrier power (i.e. vQPC) in both cases and also the better

coupling (i.e. ∂RQPC©∂q) in the Cassidy et al. case. A larger value of ∂¶Γ¶©∂RQPC may

also contribute to a better sensitivity in the Cassidy et al. case, but there is not enough

data in Ref. [27] to confidently produce the function Γ�RQPC� and extract the required

derivative.

Table 3.2: Parameters relevant to the RF-QPC measurements and the corresponding charge

sensitivity.

This work Reilly et al [26]. Cassidy et al. [27]

RQPC 70 kΩ 86 kΩ 25.8 kΩ

∂RQPC©∂q 1 kΩ©e 0.85 kΩ©e 2 kΩ©e
Prf �85 dBm �75 dBm �73 dBm

TN 5.2 K 3.5 K $ 5.8 K

δq 2 � 10
�3
e©ÓHz 10

�3
e©ÓHz 2 � 10

�4
e©ÓHz
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3.8 Other Charge State Readout Techniques

There are several other radio-frequency charge detection techniques that use the same

reflectometry circuit as the RF-QPC. Two such techniques are briefly reviewed here. The

first involves the radio-frequency single electron transistor (RF-SET). Similar to the RF-

QPC, it converts a quantum dot charge state to a detector resistance that modulates the

amplitude of the reflected signal. The second type is a dispersive readout that converts

changes in the quantum capacitance of a DQD to a phase shift of the reflected signal.

3.8.1 Radio-frequency Single Electron Transistor

There are at least two flavors of the RF-SET. The version described in Ref. [71] is also

called a radio-frequency sensor quantum dot (RF-SQD). A SQD can be formed with gates

RS, Q1, and Q1 as shown in Fig. 3.16(a). The dashed white circle shows the approximate

position of the SQD. Barthel et al. show that their RF-SQD achieves a signal-to-noise

ratio three times that of their RF-QPC (using 10 dB lower incident rf power) [71].

The other version of the RF-SET is shown schematically in Fig. 3.16(b). The SEM

image is extracted from Ref. [72]. The source and drain leads are connected to the alu-

minum SET island through AlOx tunnel barriers. The electrical transport through the

SET exhibits Coulomb blockade oscillations similar to a quantum dot. The GSET gate

allows tuning to a point of maximum sensitivity (i.e. maximum slope on the Coulomb

blockade oscillation curve). The SET island is in the shape of a ’T’ that extends through a

break in the side gate to a region above the dots. This is done in an attempt to maximize

the capacitive coupling between the SET and the dots. Typically SETs are described by

a charge sensitivity metric similar to the QPC. Lu et al. report an RF-SET coupled to a

GaAs single dot with a charge sensitivity δq � 2.4� 10
�5
e©ÓHz [73]. Note, however, that

this value is referenced to the SET island itself. In an actual charge detection measurement,

a change by one electron in the quantum dot charge state changes the offset charge of the

SET island by �0.1e. The charge sensitivity referenced to the quantum dot is thus on

the order of �10
�4
e©ÓHz, similar to the RF-QPC. Yuan et al. describe charge detection

measurements of a Si/SiGe DQD using an RF-SET. They report a charge sensitivity of
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�10
�4
e©ÓHz referenced to the DQD [72].

GSET

Source

Drain

(a) (b)

Figure 3.16: Charge detection technique using an RF-SET capacitively coupled to the DQD. An

LC circuit is used to transform the resistance of a sensor quantum dot (white dash) in (a) and

a superconducting single electron transistor in (b). SEM image in (b) reprinted from Applied

Physics Letters 101, 142103 (2012), with the permission of AIP Publishing.

3.8.2 Quantum Capacitance Detectors

Transport through a DQD is characterized by a complex admittance, consisting of a real

component to describe resistance and a complex component related to electron tunneling.

The latter component is called quantum capacitance, defined by

CQ � �eκ�2∂
2
E

∂ε2
, (3.25)

where E is the energy of the relevant DQD state, ε is detuning, and κ is a coupling constant

that relates the voltage of the LC circuit to detuning energy [74]. Note that CQ is non-zero

only at the charging lines of a stability diagram where tunnel coupling produces hybridized

charge states and bonding and antibonding energy levels. As an example, the energy levels

of the superposition states formed near the (1,0)�(0,1) charge transfer line (ε � 0) is

shown in Fig. 3.17(a). There are several types of readout techniques based on the quantum

capacitance of a DQD, two of which are mentioned here. In both cases, the reflectometry

circuit is identical to that of the RF-QPC except for the particular connections to the
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device. Fig. 3.17(a) shows the LC circuit connected to an ohmic contact of the DQD. At

charging lines, when electrons tunnel in response to the incident rf signal, CQ changes.

This shifts the total capacitance of the LC circuit, changing its resonance frequency and

thus the phase of the reflected signal. By measuring such phase shifts at charging lines of

a stability diagram, Petersson et al. construct a readout that requires an integration time

of 4 ms to achieve a signal-to-noise ratio of one [74]. Their readout has a bandwidth of 24

MHz.

(a) (b)

(0,1)(1,0)

2t

ε

En
er

gy

0

Figure 3.17: Detect transitions between charge states by measuring the quantum capacitance of

the DQD. (a) The energy levels of the superposition states formed at the (1,0)�(0,1) charge

transfer line. The DQD quantum capacitance is non-zero near ε � 0. Connect the LC circuit to

an ohmic contact in (a) or a depletion gate in (b). In both cases, changes in quantum capacitance

shift the resonance frequency of the LC circuit producing a phase shift of the reflected signal.

Fig. 3.17(b) shows the connections to the DQD device for another technique that relies

on CQ. In this case, the LC circuit is connected to one of the gates that define the

DQD. Electron tunneling due to the rf signal applied to the gate produces a change in CQ

and a phase shift of the reflected signal. Colless et al. show that such a dispersive gate

sensor (DGS) can produce a 10 MHz bandwidth readout with a charge sensitivity of 6.3�

10
�3
e©ÓHz [75]. Note that unlike the RF-QPC, the DGS does not require compensation
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for parasitic gating. It also maintains sensitivity at elevated temperatures where the QPC

sensitivity is suppressed due to thermal broadening of the conductance curve.

3.9 Conclusions and Future Work

The RF-QPC achieves a charge sensitivity similar to that of other groups. Certainly

being able to increase Prf from �85 dBm to a more typical value of �75 dBm would

help improve the sensitivity of the readout. Hopefully after thermally cycling the device,

this will be possible. The superconducting inductor does not seem to improve readout

sensitivity relative to an RF-QPC based on a normal metal inductor. The improvement

one might expect, primarily from an increase in ∂¶Γ¶©∂RQPC , is not observed in the current

device because the working point for charge detection, determined by the slope of the

QPC resistance curve, is at RQPC � 70 kΩ instead of near h©e2
� 25.8 kΩ as in Ref. [27].

Perhaps machining the ground plane would lower the parasitic capacitance of the inductor

and increase the value of RQPC corresponding to optimal match. Increasing the charge

sensitivity should be possible by changing from the QPC to the SQD charge detector.
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Chapter 4

S-T+ Spin Qubit

4.1 Introduction

The building block of classical information theory is the Boolean bit which takes two dis-

tinct values, 0 and 1. Analogously, quantum information theory is based on quantum

two-level systems called quantum bits or qubits which are abstractly represented by ba-

sis states ¶0� and ¶1�. Being composed of quantum states, the qubit however, unlike the

classical bit, can take on a continuum of values a ¶0� � b ¶1�, where ¶a¶2 � ¶b¶2 � 1. Ma-

nipulation of these linear superpositions is the source of the greater efficiency of quantum

computing algorithms relative to their classical counterparts [76]. Qubits have been re-

alized in a variety of physical systems. For example, qubits based on spin states of a

spin-1/2 nucleus [77, 78], flux states of a Superconducting QUantum Interference Device

(SQUID) [79], and energy levels of atoms in a optical dipole trap [80] have all been demon-

strated. There are also several ways to realize qubits in lateral quantum dot devices [4].

Qubits based on the charge or spin of the electron have been proposed and implemented

in single [81, 82], double [11, 83], and triple quantum dot devices [22, 84]. This chapter

focuses on one flavor of spin-qubit formed by two-electron spin states in a DQD. The basis

states are the singlet, S, and m � �1 triplet, T�. This S-T� qubit was first demonstrated

by Jason Petta in Ref. [20].
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4.2 Landau-Zener Effect

The operation of several of these qubits relies on a phenomenon known as the Landau-Zener

effect. It describes nonadiabatic transitions at an avoided crossing of the energy levels of

a quantum system [85, 86, 87]. In the context of quantum computing, it is employed to

form and manipulate superpositions of the qubit basis states. This section is devoted to a

general description of the phenomenon. The physics of two-level systems required for this

discussion is reviewed in Appendix B and summarized in Fig. 4.1(a). The qubit basis states¶0� and ¶1� have energies E0 and E1 respectively. By definition, these energies cross when

plotted as a function of detuning, ε � E1�E0. For ε % 0, ¶0� is the ground state and ¶1� is

the excited state. For ε $ 0, the situation is reversed. Introducing off-diagonal coupling, ∆,

connecting the basis states, creates new eigenstates ¶a� and ¶b�, both superpositions of ¶0�
and ¶1� with expansion coefficients that depend on ε. The corresponding energy eigenvalues

Ea and Eb exhibit an anticrossing when plotted as functions of ε, with minimum separation

2¶∆¶ occurring at ε � 0.

E1

Ea

Eb

E0

ε

Energy

2|∆| ε

Energy
(a) (b)

PLZ

1 - PLZ

0 1

01

0 1

01

Figure 4.1: (a) Off-diagonal coupling of two states turns an energy level crossing into an anti-

crossing. (b) The analysis of Landau and Zener shows that during a detuning sweep through the

anticrossing, the system can transition between the branches.
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Begin with the system in the ground state ¶0� at ε 9 0, away from the anticrossing.

Consider the effect of executing the detuning sweep represented by the curved arrow in

Fig. 4.1(a). In the vicinity of the anticrossing, ¶b� is formed. As ε decreases, the weight

of ¶1� in the superposition state ¶b� increases and the weight of ¶0� decreases. At ε � 0,

the weight of the two basis states is equal. This process continues until at ε 8 0, the

system is found in the new ground state ¶1�. Note that this description does not consider

the speed of the sweep or more specifically the time rate of change of the energy difference

E1 � E0. Landau and Zener, with their fully time-dependent analysis, show that during a

detuning sweep, with an energy level velocity ν � ¶d�E1 � E0�©dt¶, it is possible for the

system to transition between ¶b� and ¶a� at the anticrossing and finish in the excited state¶0� instead of the ground state ¶1� for ε 8 0. In the case that ν is a linear function of

time, the probability of such a transition is PLZ � exp��2π∆
2

�hν
	, called the Landau-Zener

probability. With only two possibilities, the system remains on the ground state branch,

transitioning from one ground state to the other with probability 1 � PLZ . The detuning

sweep is recast in terms of PLZ in Fig. 4.1(b). Note that in the limit ∆ � 0, the branches

approach each other and PLZ � 1, called the diabatic case. In the opposite limit where

∆
2© �h is large relative to ν, PLZ � 0, called the adiabatic case. In the intermediate case, a

superposition of the two states results. As an example, for PLZ � 1©2, the resulting state

is an equally weighted superposition of the qubit basis states ¶0� and ¶1� for ε $ 0.

4.3 Energy Levels of Two-Electron States

A discussion of two-electron spin qubits begins with an analysis of the related energy

levels. Consider the possible spin states of the (0,2) and (1,1) charge states. The ground

state of (0,2) in a low magnetic field is composed of two electrons occupying the lowest

energy orbital state in a spin singlet configuration, S(0,2) [14]. Since the triplet state,

T (0,2), is a symmetric spin state, the corresponding spatial (orbital) component of the

total wavefunction must be antisymmetric. This requires one of the electrons to occupy an

excited orbital state. The result is an energy difference between T (0,2) and S(0,2) called the

singlet-triplet splitting, EST � 600 µeV , making T (0,2) inaccessible in the case of low DQD

bias and small values of detuning [40]. When the two electrons are separated on different
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dots, however, the singlet-triplet energy splitting is usually reduced to a negligibly small

value and the spin states S(1,1) and T (1,1) are thus nearly degenerate. At the boundary

in the stability diagram that separates the (0,2) and (1,1) regions (ε � 0), these states are

also degenerate with S(0,2) in the case of zero tunnel coupling between the dots (t � 0).

The resulting energy level crossing at ε � 0 is shown in Fig. 4.2(a). Introducing finite

tunnel coupling between the dots (t % 0) produces the anticrossing of the singlet states in

Fig. 4.2(b). The triplet T (1,1), however, being orthogonal to S(0,2) is unaffected. Finally,

a magnetic field, B, splits the triplet states T�(1,1), T0(1,1), and T�(1,1) by the Zeeman

energy EZ � gµBB, where µB is the Bohr magneton and g � �0.44 for electrons in GaAs

[88]. The result is shown in Fig. 4.2(c).
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Figure 4.2: Two-electron spin state energy levels. (a) without tunnel coupling (b) with tunnel

coupling (c) with tunnel coupling and a magnetic field. Hyperfine interaction with the lattice

nuclei produces the anticrossing at ε � εST .
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Note that the energy of the spin polarized triplet T�(1,1) [and T�(1,1)] is shown forming

an anticrossing with a singlet branch at εST (solid rectangle). The coupling that produces

this anticrossing results from the hyperfine interaction between each quantum dot electron

spin and the spin-3/2 Ga and As lattice nuclei in each of the dots [89, 90]. The interaction

is described by the Hamiltonian

HHF � S1 � h1 � S2 � h2,

where Si is operator for the electron spin in dot i and

hi �

ni

=
k�1

A
k
i I
k
i

is Overhauser effective magnetic field operator for the same dot [91]. The sum runs over

the ni � 10
6

nuclei in each dot. The spin operator for nucleus k in dot i is I
k
i and the

coupling constant A
k
i characterizes the overlap of the electron wavefunction with nucleus

k. Using raising and lower operators S
�

i � S
x
i � iS

y
i and h

�

i � h
x
i � ih

y
i , HHF can be recast

in the following form [91]

HHF �
1

2
=
i

�2Szi hzi � S�i h�i � S�i h�i �.
The first term adds to the energy of the triplet state while the second and third terms,

called flip-flop terms, couple S(1,1) and T�(1,1). Essentially a quantum dot electron spin

flip and a corresponding nuclear spin flop, a process which conserves angular momentum,

can turn S(1,1) with spin 0 into T�(1,1) with spin 1 and vice versa.

The remainder of this chapter is primarily concerned with the qubit formed by the

S(1,1) and T�(1,1) states, the S-T� qubit. Superpositions of these states are created

at the εST anticrossing by Landau-Zener tunneling. As mentioned in the introduction

to the chapter, other qubits based on two-electron states have also been proposed and

implemented. A qubit formed by the singlets S(0,2) and S(1,1) is demonstated in Ref. [83].

Again Landau-Zener tunneling, this time at the ε � 0 anticrossing, is employed to create

superposition states. Finally, S(1,1) and T0(1,1) are basis states for the S-T0 qubit first

demonstrated in Ref. [11]. In this case, mixing of the basis states does not occur at an

anticrossing but rather in the region of near degeneracy outlined with the dashed rectangle

in Fig. 4.2(c).
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4.4 Operation of the S-T+ Spin Qubit

Fig. 4.3 summarizes the basic operation of the S-T� qubit. It shows the trajectory through

the energy level diagram in the vicinity of the anticrossing at ε � εST and the motion

of a vector on the Bloch sphere [92, 93, 94, 95]. The arrow in Fig. 4.4(a) represents the

corresponding trajectory on the stability diagram.

εSTεP εM0 εSTεP εM0εSTεP εM0

I(0,2)

I(1,1)

sweep through anticrossing accumulate phase sweep through anticrossing

spin-to-charge conversion

φ = π

φ = 2π

En
er

gy

S

T+

S

T+

S

T+

S

T+

S

T+

Figure 4.3: Operation of the S-T� qubit in terms of sweeps through the S-T� anticrossing and

the corresponding motion of a vector on the Bloch sphere.

Starting with the system in the S(0,2) ground state at point M, a gate voltage pulse is

created by an arbitrary waveform generator and delivered to the plunger gates via the high-

bandwidth lines and bias tees described in Section 2.5. The timing diagram for the pulse is
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Figure 4.4: (a) Stability diagram in the few electron regime. The S-T� anticrossing (ε � εST ) is

marked with a dash-dotted line. The trajectory of the plunger gate voltage pulse is represented

by an arrow. (b) Timing diagram for the plunger gate voltage pulses. Synchronized Gaussian

shaped voltage pulses are applied to the plunger gates to sweep out the trajectory shown in (a).

shown in Fig. 4.4(b). It is the result of a numerical convolution of a rectangular pulse and a

Gaussian function of the form 1Ó
2πs
e
�t

2©2s
2

. Typically s � 4 ns giving a 10-90% rise time of

approximately 8 ns. The first half of the pulse moves an electron to the left dot by sweeping

the system into the (1,1) ground state region through the anticrossing (εST ) to point P, in

the process creating a superposition of the qubit states by the Landau-Zener effect. On the

Bloch sphere, this operation is described by a rotation of the singlet state into the transverse

plane, although this equal weighted superposition is created only in the PLZ � 0.5 case.

Since the S(1,1) and T�(1,1) terms of this superposition possess different energies, a phase

difference between the two terms φ � 1
�h
DrES�ε�t���ET��ε�t��xdt accumulates during the

time spent in the (1,1) ground state region beyond the anticrossing. The area corresponding

to φ, located between ES and ET� , that is swept out in moving from εST to εP is shaded gray

in the energy-level diagram of Fig. 4.3. This accumulation of phase difference between the

two qubit states corresponds to a z-axis rotation on the Bloch sphere. That is, the weights

of the two states in superposition remain the same. Only the relative phase changes. The
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second half of the pulse which sweeps the system back through the anticrossing to point

M in the (0,2) ground state region corresponds to another rotation about the axis in the

transverse plane. Finally the resulting qubit state is measured by a technique relying

on a DC-QPC charge detector and the spin-blockade effect. If φ � 2π, the final qubit

state is S(1,1) and the system transitions to the tunnel coupled S(0,2) ground state. The

corresponding QPC charge detector current is IQPC � I�0, 2�. If φ � π, the final qubit state

is T�(1,1). Since tunneling between dots conserves spin and the T (0,2) state is inaccessible,

the system remains in the (1,1) charge state for a characteristic time T1 � 100 µs due to

spin blockade [41, 52]. The charge detector current measured before the decay process is

IQPC � I�1, 1�. This technique of mapping each spin state to a unique charge state that

can be distinguished with a charge detector is called spin-to-charge conversion. In practice,

the final qubit state at point M is determined by measuring IQPC continuously during the

execution of �10
5

pulses. Since the pulse duration is τ � 20 ns and the pulse period

(time between pulses) is τm � 2 µs, the time-averaged charge detector signal is largely

determined by the charge state at point M. As φ increases and the relative weights of S

and T� in the final state changes, this time-averaged IQPC changes in a periodic manner

(i.e. oscillates) but stays within the range I(0,2) to I(1,1). If the final state is more

heavily weighted towards S, IQPC is closer to I(0,2) than I(1,1). Similarly, a final state

more heavily weighted towards T� corresponds to a value of IQPC closer to I(1,1) than

I(0,2). The qubit oscillations observed as φ varies are known as Landau-Zener-Stückelberg

(LZS) oscillations.

This standard description of the S-T� qubit operation needs slight modification to

correctly capture the physics of most experiments. Due to the fluctuating magnetic field

produced by the lattice nuclei, phase coherence is lost and the amplitude of the oscillations

decay with a characteristic timescale T
�

2 � 15 ns. As a result, the pulse length is typically

chosen to be of the same order, 10-20 ns [96, 97]. As noted in Ref. [20], for an energy

splitting of 2∆ � 120 neV and a Gaussian shaped pulse with a 10-90% rise time of about 7

ns, the Landau-Zener probability is PLZ � 0.96. The rotation of the Bloch vector associated

with the first sweep through the anticrossing therefore does not end with the vector in

the transverse plane. To achieve maximum LZS oscillation amplitude (called maximum

visibility) requires PLZ � 0.5. For the device configuration discussed in Ref. [20], detuning
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ramp times of approximately 160 ns 9 T
�

2 are needed to achieve PLZ � 0.5 [20]. There

is recent progress towards achieving this optimal condition using a pulse with a detuning

dependent energy level velocity. This new type of pulse has a slow ramp only near the

anticrossing and an overall pulse length of less than T
�

2 [98].

4.5 Spin Funnel

Consider the stability diagram of Fig. 4.5(a). This gray scale plot of QPC transconductance

is acquired in the presence of a τ � 50 ns gate voltage pulse (τm � 2 µs, s � 4 ns) represented

by the arrow on the diagram. That is, at each point of the stability diagram, �10
5

pulses are

executed and the average transconductance value is plotted. Since this pulse is significantly

longer than T
�

2 � 15 ns, only the result of incoherent mixing of S(1,1) and T�(1,1) that

occurs when the pulse just reaches the anticrossing is observed (white line). Alternatively,

instead of acquiring an entire stability diagram, simply execute detuning sweeps (1 � 2)

while continuing to apply the pulse. The resulting data for various magnetic fields (applied

in the plane of the 2DEG) is shown in Fig. 4.5(b). The vertical axis is the VLP component

of the 1 � 2 trajectory. Because the data has a funnel shape, such data sets are referred to

as spin funnels. The existence of magnetic field dependence provides some evidence that

the extra white line on the stability diagram is actually the result of S�T� mixing and not

just an artifact of the pulse. To observe LZS oscillations, repeat the same experiment with

a shorter duration pulse (same 8 ns rise time). Using a τ � 17 ns pulse produces the data

displayed in Fig. 4.5(c). The oscillations occur because as the system moves from point

1 to point 2, the pulse moves deeper into the (1,1) ground state region, further beyond

the anticrossing and φ increases, changing the value of IQPC and also transconductance,

dIQPC©dVLP , in a periodic manner.

Consider the oscillations in Fig. 4.5(c) for B � 80 mT (vertical short dashed line).

Starting at VLP � �0.381 V and moving towards the charge transfer line (horizontal dotted

line), first the line corresponding to incoherent mixing is encountered and then the coherent

oscillations begin, consecutive bright fringes corresponding to ∆φ � 2π. In an attempt to

understand the magnetic field dependence of the fringes, also consider the vertical long
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Figure 4.5: (a) Stability diagram acquired in the presence of a gate voltage pulse (τ � 50 ns,

s � 4 ns, τm � 2 µs) and a magnetic field of 100 mT. (b) QPC transconductance as a function

of the VLP component of path 1 � 2 in (a) for various values of magnetic field. (c) Repeat the

experiment with a τ � 17 ns pulse (long dash: 50 mT, short dash: 80 mT).
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dashed line at B � 50 mT. Relative to the B � 80 mT case, the fringes start closer to the

charge transfer line and possess a lower frequency. Referring to the energy level diagrams

in Fig. 4.6, a decrease in B (and thus EZ) moves the anticrossing (ε � εST ) away from the

charge transfer line (ε � 0), deeper into the (1,1) region. In order for the pulse to reach the

anticrossing, the initial point of the pulse (on the 1� 2 trajectory) in the (0,2) region must

therefore be located closer to the charge transfer line as the field decreases. The decrease

in oscillation frequency with decreasing field results from a corresponding decrease in the

area between the S and T� energy levels. Simply, a larger fraction of the pulse amplitude

is required to sweep out ∆φ � 2π and move between bright fringes as the field decreases.
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low field

εSTεP εM0

high field

EZ

T0
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Figure 4.6: As the magnetic field increases, EZ increases, moving the anticrossing towards ε � 0

and increasing the phase accumulated (gray area) for a given pulse.
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4.6 Spin-to-charge Conversion

4.6.1 Introduction

To distinguish the states of a quantum dot spin qubit using a charge detector such as

a QPC requires a technique that maps each spin state to a unique charge state. This

section reviews the standard spin-to-charge conversion technique explained in Section 4.4

and then discusses alternative techniques involving metastable charge states [23]. The

data and analysis presented here is also found in Ref. [99], a paper co-written with Sergei

Studenikin and Andrew Sachrajda of NRC.

The data shown in this section is a small subset of the data acquired during the course

of the graduate program. Most of the data contains distortions and is thus not easily

interpreted. A brief discussion of the difficulties associated with acquiring LZS data as

well as some preliminary data showing the effect of the QPC charge detector bias on the

LZS oscillations is presented in Appendix A.

4.6.2 Role of Metastable Charge States

Consider Fig. 4.7(a) which shows a stability diagram in the few electron regime of the

DQD. Addition lines (black and gray) and extensions of addition lines (dash) divide the

diagram into four regions labeled R1, R2, R3, and R4. The majority of this section is

devoted to explaining the spin-to-charge conversion mechanism in each of these regions.

A plunger gate voltage pulse (arrow), chosen to be approximately parallel to the left dot

addition line, is applied during the acquisition of a stability diagram to produce the LZS

oscillations shown in Fig. 4.7(b). Note that in this case, the qubit operation involves the

(2,0) rather than the (0,2) charge state. The operation of the qubit is otherwise the same

as described in the previous sections. The pulse is τ � 17 ns in duration, possesses an 8 ns

rise time (s � 4 ns) and is applied every τm � 2 µs. Each data point is the average QPC

transconductance resulting from 5 � 10
4

individual pulses. The QPC transconductance is

measured using VQPC � 200 µV and a 240 µVrms, 17 Hz sinusoidal oscillation on gate LP. A
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magnetic field of 80 mT is applied in the plane of the 2DEG approximately perpendicular

to the line joining the two dots.

An analysis of Fig. 4.7(b) begins by noting that, unlike in the case of Fig. 4.7(a), the

device is tuned to have very asymmetric tunnel couplings to the leads. By the technique

described in Section 2.5, the tunneling rate between the right dot and the right lead is

determined to be greater than 20 MHz. The corresponding tunneling time is therefore TR $

50 ns. The coupling between the left dot and the left lead is, however, comparatively weak.

The missing left dot addition line (black short-dash) separating the (2,0) and (1,0) regions

implies a tunneling rate of less than the 17 Hz modulation frequency and a corresponding

tunneling time of TL % 50 ms.
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Figure 4.7: (a) Stability diagram in the few electron regime. Addition lines (black and gray) and

extensions of addition lines (dash) form boundaries between the regions labeled R1, R2, R3, and

R4. (b) Stability diagram acquired in the presence of the plunger gate pulse (τ � 17 ns, s � 4 ns,

τm � 2 µs) shown in (a). The black short-dashed line represents the missing addition line and the

black dotted line shows the position of the charge transfer line. The lines labeled ε1, ε2, and ε3

indicate the positions of the line scans relevant to Fig. 4.10. An 80 mT magnetic field is applied

in the plane of the 2DEG in a direction perpendicular to the line joining the two dots.
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In the case of R1, the oscillations are contained within the highlighted boundaries shown

in Fig. 4.8(a). The arrow represents a pulse which just reaches the S-T� avoided crossing.

For initial points, M, within the boundaries, the pulse sweeps through the avoided crossing

producing the observed LZS oscillations. Note the order of energy levels corresponding to

region R1 shown in Fig. 4.9(a). The ground state is (2,0) while the first and second excited

states are (1,1) and (1,0) respectively. The spin-to-charge conversion technique that maps

spin states to charge states in R1 is shown below the energy-level diagram. Similar to the

technique outlined in Section 4.4, a final state S(1,1) quickly tunnels to the singlet ground

state S(2,0), resulting in IQPC � I(2,0). A T�(1,1) final state, however, is prevented from

transitioning to the ground state for a time T1 � 100 µs due to the spin blockade effect

[41]. Since T1 is longer than the measurement time (pulse period) τm � 2 µs, T�(1,1) is

effectively mapped to the (1,1) charge state and thus IQPC � I(1,1).

Moving from R1 to R2 in Fig. 4.7(b) involves crossing the extension of the right dot

addition line separating the (1,0) and (1,1) ground state regions (long-dash). As shown

in Fig. 4.9(b), (2,0) remains the ground state and (1,0) replaces (1,1) as the first excited

state. The LZS oscillations of R2 are located within the highlighted triangular area of

Fig. 4.8(b). As in R1, readout of S(1,1) involves a rapid transition to the S(2,0) ground

state leading to a charge detector current IQPC � I(2,0). The spin-to-charge conversion

process for T�(1,1), however, differs from that employed in R1. When the system returns

to R2 after the pulse, an electron is ejected from the right dot and T�(1,1) transitions to

the (1,0) charge state on a time scale TR $ 50 ns that is short relative to the relaxation time

T1 � 100 µs associated with a transition to the S(2,0) ground state. Because the relaxation

time from the (1,0) excited state to the (2,0) ground state, TL � 50 ms, is long compared

to the other time scales of system, the (1,0) state is considered a metastable excited state.

Since τm $ TL, T�(1,1) is effectively mapped to the (1,0) state and IQPC � I(1,0).

Consider the LZS oscillations in the highlighted region of Fig. 4.8(c). Since R3 is located

in the (1,0) region of the stability diagram, (1,0) moves to the ground state position in the

energy-level diagram shown in Fig. 4.9(c). The first and second excited states are (2,0)

and (1,1) respectively. Similar to the spin-to-charge conversion technique employed in R2,

readout of a spin state in R3 uses a metastable charge state. Following a pulse, since

TR 8 T1, an electron is ejected from the right dot and T�(1,1) transitions to the (1,0)
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Figure 4.8: (a) [(b),(c)] LZS oscillations in region R1 [R2,R3] are outlined. (d) Fluctuations

between the (1,0) and (2,0) charge states produce bounded regions of noise in R2 and R3 (A-D

and �).
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Figure 4.9: Energy level diagrams for regions (a) R1, (b) R2, (c) R3, and (d) R4 shown in

Fig. 4.7(b). Pathways from the qubit states to the ground state are also shown (metastable

states in bold). Spin-to-charge conversion in each region maps one of the qubit states to an

excited charge state that is long-lived relative to τm.

ground state before it can decay to the first excited state, S(2,0). The measured charge

detector current is IQPC � I(1,0) in this case. Readout of S(1,1) again involves a transition

to S(2,0). In R3, however, S(2,0) is a metastable excited state due to the long tunneling

time for the left dot, TL. Since τm $ TL, S(1,1) is mapped to the (2,0) charge state and

IQPC � I(2,0).

For region R4, (2,0) is the ground state while (2,1) and (1,1) are excited states as

shown in the energy level diagram of Fig. 4.9(d). In this case, T1 is short relative to the

tunneling time TL required for the transition of T�(1,1) to the (2,1) first excited state.

Therefore, unlike in R2 and R3, the first excited state is not involved in the spin state

readout. As in R1, T�(1,1) is mapped to (1,1), S(1,1) is mapped to (2,0) and as result, the

LZS oscillations in R4 appear identical to those in R1. Of course for a different choice of

lead tunnel couplings, the (2,1) excited state could become a metastable charge state and

be incorporated into the spin state readout as demonstrated in Ref. [23].

In regions R2 and R3, spin-to-charge conversion involves mapping T�(1,1) to the single

electron state (1,0). Once (1,0) is occupied, an electron must be added to the DQD to

create a two-electron spin state and initiate LZS processes again. In region R2, the system

may decay to the (2,0) ground state during the period between pulses. Alternatively, since
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the tunneling time between the right dot and its lead TR $ 50 ns is comparable to or less

than the pulse duration τ � 17 ns, the system may transition to the (1,1) state during the

segment of a pulse spent in the (1,1) ground state region. For region R3, since (1,0) is

the ground state, an electron is added when a pulse enters the (1,1) ground state region.

Examples of such pulses are labeled α and β in Fig. 4.8(c). Because the tunneling time

between the left dot and its lead is long relative to the pulse duration, an electron is unlikely

to be loaded into the DQD during the segment of pulse α spent in the (2,0) ground state

region. The oscillations stop at the lower left boundary of R3 because for initial points

on the boundary, pulses such as the one labeled γ just reach the addition line separating

the (1,0) and (1,1) ground state regions. For initial points to the left of this boundary, an

electron cannot be added to the right dot during a pulse.

Note that for pulse trajectories such as δ in Fig. 4.8(c) which start near the lower

left boundary of R3, the system sweeps through an extension [into the (1,0) ground state

region] of the S-T� avoided crossing. The existence of LZS oscillations near the lower left

boundary, which run parallel to those in the rest of the stability diagram, indicates that an

avoided crossing of the S and T� spin states of the excited charge state (1,1) exists within

the (1,0) ground state region.

Fig. 4.10 shows QPC transconductance data measured along the lines labeled ε1, ε2,

and ε3 in Fig. 4.7(b). Plunger gate pulse duration is varied along the horizontal axis.

Note that the pulse amplitude increases as the duration increases until full amplitude is

attained at �17 ns. This is the result of constructing the pulses to all have the same slew

rate. Pulses with τ $ 17 ns duration do not rise to full amplitude before the falling edge

begins. At full amplitude, a pulse has �8 ns rise and fall times. Observe that the fringe

(furthest from the charge transfer line) corresponding to incoherent mixing of the S and

T� states is white in R1 and black in R2 and R3. In fact, close examination reveals that

the coherent oscillations in R2 and R3 are also π phase shifted relative to those of R1. The

source of this phase shift lies in the use of the (1,0) metastable state for spin-to-charge

conversion in R2 and R3. Note that since the charge detector is closer to the right dot than

the left dot I(1,0) % I(2,0) % I(1,1). In region R1, a change from measuring a singlet to a

triplet state creates a change in QPC current ∆IQPC � I(1,1)�I(2,0) $ 0 while in regions

R2 and R3, the resulting change is ∆IQPC � I(1,0)�I(2,0) % 0. This difference in the sign
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of ∆IQPC leads to a difference in the sign of the transconductance signal, dIQPC©dVLP ,

and the observed π phase shift.
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Figure 4.10: QPC transconductance as a function of initial detuning along VLP and pulse duration

for regions R1, R2, and R3. The vertical axes are projections onto the VLP axis of the trajectories

labeled ε1, ε2, and ε3 in Fig. 4.7(b) (differences between the vertical axis gate voltages and those

expected from Fig. 4.7(b) are due to device drift).

4.6.3 Telegraph Noise produced by the LZS Pulse

In addition to the LZS oscillations in R2 and R3, there is also a region of telegraph noise.

Although such bounded regions of noise can result from the absorption of phonons produced

by a biased QPC charge detector [100], this particular noise region is a result of the plunger

gate pulses. It divided into two parts in Fig. 4.8(d). The parallelogram shaped region with

boundaries labeled A-D is mapped by the pulses (arrows) to an area within the (1,1) ground

state region of the stability diagram that lies between the charge transfer line (dot) and

the S-T� avoided crossing (dash-dot). The noise spans across both R2 and R3 but in both

cases, the underlying mechanism involves transitions between the (2,0) and (1,0) charge

states. To observe the noise using the low-bandwidth DC-QPC charge detector requires

a metastable state to slow down the transitions to the ground state. In the R3 case, for

example, (1,0) is the ground state and (2,0) is the metastable first excited state. Access to
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the (2,0) state, however, first requires a transition to the (1,1) second excited state. This

occurs during the segment of the pulse spent in the mapped area of the (1,1) region of

the stability diagram. Note that the (1,1) excited state can be either a triplet T (1,1) or

a singlet S(1,1). If T (1,1) is created, the system will relax to (1,0) after the pulse. If the

system occupies S(1,1), a transition to the (2,0) metastable charge state will follow. Since

S(1,1) and T (1,1) occur randomly, the noise is observed. The noise stops at boundary A

because the associated pulse α does not reach the (1,1) region. At boundary C, the pulse

labeled γ just reaches the the S-T� avoided crossing and the oscillations begin. Pulse β

connects boundary B to the right dot addition line separating the (1,0) and (1,1) ground

state regions. Along this addition line, the (1,0) and (1,1) states are degenerate and the

pulse therefore provides a means by which the system can transition out of the (1,0) ground

state of R3 and into the (1,1) second excited state. Since the pulse continues to reach the

addition line for initial points up the VLP axis, noise is observed within the outlined region

labeled �. Finally, boundary D, located on the extension of the addition line separating

the (1,0) and (1,1) ground state regions, is connected by pulse δ to the area between the

charge transfer line and the S-T� avoided crossing. To the right of this boundary, there is

no long-lived metastable state, so any fluctuations are suppressed due to fast relaxation to

the ground state.
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4.7 Ground State Initialization

Consider the dashed triangle on the stability of Fig. 4.11 formed by the charge transfer

line and the extensions of the (1,0)�(1,1) and (1,1)�(2,1) addition lines. Conventional

operation of the S-T� (R1 of Fig. 4.7) and S-T0 qubits involves applying a gate voltage

pulse (arrow) that sweeps the system from point M, within the triangle, to point P in

the (1,1) region and back to point M for readout of the final spin state. As explained in

Section 4.6.2, within the triangle, transitions between an excited state triplet T (1,1) and

the singlet ground state S(2,0) are blocked for T1 � 100 µs, allowing standard spin-to-

charge conversion at point M. Outside the triangle, in the absence of metastable charge

states, the spin blockade condition is usually lifted due to exchange of electrons with the

leads [41, 52]. Of course after spin state readout, the system occupies either the ground

state S(2,0) or the excited state T (1,1). If the final spin state is T (1,1) and decay to S(2,0)

does not occur during the period between pulses, τm, the next pulse begins with the system

still in T (1,1).

To simplify theoretical analysis, usually it is desirable to prevent this possibility and

instead initialize to S(2,0) before each pulse. Such a procedure requires applying another

gate voltage pulse, called an initialization pulse, which configures the system to briefly lift

the spin blockade condition. This initialization pulse moves the system from M to In and

then back to M before sweeping to P. At initialization point I1, located outside the dashed

triangle, (1,0) is lower in energy than (1,1), allowing a spin independent path to the ground

state via the process T (1,1) � (1,0) � S(2,0). This is a commonly employed technique of

singlet state initialization [101, 102, 103]. Although uncommon, choosing point I2 also lifts

the spin blockade condition by the process T(1,1) � (2,1) � S(2,0), again by exchange of

electrons with the leads. Deeper into the (2,0) region at point I3, T (2,0) is accessible and a

transition to the ground state by the process T (1,1) � T (2,0) � (1,0) � S(2,0) is possible

[104]. Lastly, initialization can also be accomplished by sweeping into a neighboring charge

state. At I4, the system transitions to the (1,0) ground state. In the process of returning

to M, an electron is added to the left dot, creating the S(2,0) ground state. A similar

argument can be made for I5.
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Figure 4.11: Standard spin-to-charge conversion is possible within the dashed triangle of the

(2,0) region. The arrow represents a pulse from M, within the triangle, to P in the (1,1) region.

Between each pulse, initialization to S(2,0) is accomplished by sweeping the system to one of the

points In where the spin blockade condition is lifted.

4.7.1 LZS Oscillations without Applied Initialization

Motivated by the potential difficulty of implementing such state initialization techniques

in a complex quantum dot circuit with nearly isolated inner dot electrons (eg. linear

triple dot), the NRC group has studied both theoretically and experimentally S-T� LZS

oscillations without applied initialization in a DQD [105]. Numerical calculations from

Ref. [105] are displayed in Fig. 4.12(a). The probability of measuring S�2, 0� after the

LZS pulse, P �S�, as a function of initial detuning (position of point M) is shown for both

initialization and non-initialization cases. For the purposes of this discussion, simply note

the waveform shape in both cases. With initialization, the oscillations are sinusoidal while

without initialization they contain sharp peaks centered on the points for which P �S� � 1.

Theoretical and experimental LZS oscillations in the non-initialization case for various

measurement periods, τm, are displayed in Fig. 4.12(b) and (c) respectively. Again these

results are from Ref. [105]. In the experimental case, T1 is in the range 20-60 µs while
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T1 � 60 µs for the calculations. Note that as the ratio τm©T1 increases, the waveform of

the oscillations approaches sinusoidal in the sense that the bright and dark regions for some

of the largest τm©T1 cases have approximately equal widths along the detuning axis. This

indicates that even without an initialization procedure in the form of a gate voltage pulse,

partial initialization occurs between the pulses simply due to relaxation to the ground

state.
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Figure 4.12: (a) Calculated probability of measuring a singlet after a pulse, P �S�, as a function

of detuning (IS - with initialization step, NIS - no initialization step) (b) Calculations showing

P �S� as a function of detuning for various values of τm©T1. (c) Experimental data of P �S� as

a function of detuning and τm. Similar to (b), for some of the larger values of τm, initializing

to the ground state singlet via T1-relaxation produces oscillations with a sinusoidal character.

Reprinted figures with permission from Granger et al., Physical Review B 91, 115309 (2015).

Copyright (2015) by the American Physical Society.

The S-T� qubit data discussed in Section 4.6.2 is acquired without an initialization

procedure.
1

Line scans taken at the positions of the dashed lines in Fig. 4.10(a), (b), (c)

are displayed in Fig. 4.13(a), (b), and (c) respectively. Note that IQPC is proportional to

P �S� but that this data is QPC transconductance, dIQPC©dVLP . Each sharp peak in P �S�
for the non-initialization case of Fig. 4.12(a) corresponds to a sharp dip followed by a sharp

1
Of course the tunnel rates and resulting metastable charge states prevent using several of the initial-

ization procedures outlined in Fig. 4.11.
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peak in transconductance. Even though τm � 2 µs, T1 � 100 µs and thus τm©T1 � 0.02, the

oscillations in R1 appear nearly sinusoidal. There are, however, markedly nonsinusoidal

oscillations in regions R2 and R3. Since T�(1,1) is mapped to (1,0) in regions R2 and R3,

the relaxation time in R1, T1, associated with coupling to the nuclear spin bath, is replaced

by the much longer metastable relaxation time TL. With τm©TL � 10
�5

, the nonsinusoidal

waveform is clearly apparent.
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Figure 4.13: Line scans taken at the positions of the vertical dashed lines in Fig. 4.10.

4.7.2 Boxcar Integrator

As alluded to above, ground state initialization can be accomplished by simply waiting

at point M between LZS pulses for the system to relax to the ground state. Because the

transition T�(1,1) � S(1,1) � S(2,0) occurs in a time of order T1 � 100 µs, a delay

between pulses of approximately 5T1 � 500 µs needs to be added to the pulse period τm.

Instead of continuously measuring the output of the charge detector during this longer

τm, the signal-to-noise can be improved by measuring only immediately after the pulse.

This is accomplished using a boxcar integrator (eg. Standford Research Systems, model

SR250). An associated timing diagram is shown in Fig. 4.14(a). The Gaussian pulse is

applied and the charge detector signal is measured for tm, a few µs. The remainder of τm

is the wait time, tw, during which the charge detector signal is not sampled. The boxcar
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integrator averages the results of 10
4

such cycles. Since the DC-QPC has a bandwidth of

25 kHz, it takes approximately 1/25 kHz = 40 µs after the LZS pulse before the charge

detector registers a response. Measuring in the first few µs immediately after the pulse is

thus not possible with the DC-QPC readout. The RF-QPC with its �100 ns response time

(i.e. 15 MHz bandwidth) is required for these boxcar measurements. Fig. 4.14(b) shows a

first attempt to use the boxcar integrator with the RF-QPC to measure LZS oscillations.

In this case, τm � 100 µs and tm � 3 µs. The charging lines are drawn on the stability

diagram. They do not show in the data because the boxcar is operated in AC coupled

mode (% 10 Hz).
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Figure 4.14: (a) Timing diagram for an LZS measurement involving the RF-QPC and the boxcar

integrator. Immediately after the Gaussian pulse, the boxcar samples the charge detector signal

for a time tm. A wait time, tw allows for T1 decay of a T�(1,1) excited state to the S(2,0)

ground state before the next pulse. (b) Stability diagram acquired with the RF-QPC and boxcar

(tm � 3 µs; LZS pulse: τ � 17 ns, s � 4 ns, τm � 100 µs).
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4.8 Conclusions and Future Work

Operation of the S-T� qubit in a DQD has been demonstrated. For a DQD with asymmetric

couplings to the leads, spin-to-charge conversion involving a metastable charge state is

possible. Combining this qubit readout technique with Gaussian pulses that do not contain

a ground state initialization step produces non-sinusoidal LZS oscillations. If the response

time of the QPC readout is comparable to the lifetime of the metastable state, telegraph

noise associated with the LZS pulse is observed in the charge stability diagram.
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Appendix A

Miscellaneous Issues with LZS Data

This section is a brief summary of LZS data that are not fully understood. It is included

for the benefit of a future student working on a related project. Most of the discussion

concerns various distortions in the LZS data.

Most of the data from a 2013 cooldown is of the type shown in Fig. A.1(a). This

stability diagram is constructed by starting in the bottom left corner and sweeping bottom

to top and stepping left to right. That is, VLP is changed on the inner loop and VRP on

the outer loop. Note the abrupt change along a vertical line (indicated with the arrow)

approximately halfway into the LZS region. Moving to the right of this line, the oscillations

change direction and begin to run nearly perpendicular to the charge transfer line (dotted).

Again starting at the bottom left corner, the stability diagram of Fig. A.1(b) is the result

of sweeping left to right and stepping bottom to top. That is, VRP is on the inner loop and

VLP on the outer loop. The abrupt change in the oscillations, which in this case takes place

on a horizontal line (arrow), is again parallel to the sweep direction. Observe that in both

cases, the line marking the change in the direction of the oscillations intersects the point

at which the first bright fringe and an extension of a addition line also meet (circle). At

present, however, it is unclear how this observation relates to the distortions in the data.

Since the positions of the oscillations are determined by the S and T� energy levels, it

is reasonable to think that the observed change in the direction of the oscillations must be

related to a change in these energy levels. As noted is Section 4.3, Landau-Zener tunneling

134



(b)(a)

−0.320 −0.300

−0.320

−0.300

−0.320 −0.300

−0.320

−0.300(2,0) (2,1)

(1,1)(1,0)

VRP (V)

V
LP

 (V
)

V
LP

 (V
)

VRP (V)

(2,0) (2,1)

(1,1)(1,0)

Figure A.1: (a) Stability diagram acquired by sweeping VLP (inner loop) and stepping VRP (outer

loop). (b) Sweep VRP and step VLP . The change in the direction of the oscillations occurs on

a line parallel to the sweep direction (arrow). This line intersects the point at which the first

fringe and an extension of an addition line meet (circle). The position of the charge transfer line

is indicated with a dotted line.

can produce a transition from a spin 0 singlet to a spin 1 triplet. Conservation of angular

momentum is satisfied since this electron spin flip is associated with a nuclear spin flop.

Repeated Landau-Zener tunneling events could build-up the nuclear field (which points

in the direction of the external magnetic field) thus changing the Zeeman splitting of the

triplets, EZ , and as a result, the relative positions of the S and T� energy levels and the

position of the anticrossing [101]. This dynamic nuclear polarization (DNP) effect may by

related to the change in the direction of the oscillations but it is unclear why DNP would

abruptly change along a line parallel to the sweep direction. Changing the pulse rise time,

angle, or period does not eliminate the abrupt change in the direction of the oscillations.

The problem is also not related to a lack of synchronization between the LP and RP gate

voltage pulses.

Stability diagrams corresponding to various values of QPC charge detector bias voltage,

VQPC , are shown in Fig. A.2. Note that the vertical line that marks the change in the

character of the oscillations moves to the right as VQPC decreases. Again, it appears to

intersect the point at which the extension of the (1,1)�(2,1) addition line and the first
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Figure A.2: Effect of VQPC on the LZS oscillations. As the magnitude of the bias increases, the

oscillation frequency increases and the first fringe moves away from the charge transfer line.

bright fringe also meet. Perhaps more interesting and important than the distortions in the

data is the fact that the LZS oscillation frequency increases as VQPC increases in magnitude.

Also the first bright fringe moves away from the charge transfer line as the magnitude of

VQPC increases. Recall that an increase in EZ associated with an increasing external

magnetic field produces these same two effects. Apparently, by some as yet unknown

mechanism, VQPC (or IQPC) can also change EZ . Certainly investigating QPC charge

detector backaction by studying the effect on LZS oscillations could be the basis of a new

project.

Examples of LZS data from a 2014 cooldown of a similar device are shown in Fig. A.3.

The stability diagram of part (a) is acquired using the DC-QPC and the stability diagram

of part (b) is acquired with the RF-QPC. The distortions in the data have a different

character from those of the 2013 cooldown. The reason for showing this data is to point

out the fringe furthest from the charge transfer line labeled with an arrow in (b). It is

observed only in RF-QPC data and results from the incoherent mixing of the S and T�

states driven by the 520 MHz, �85 dBm rf bias. Very simply, the pulse no longer has to
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Figure A.3: LZS oscillations measured using the (a) DC-QPC (b) RF-QPC. The additional fringe

in the RF-QPC case (arrow) is due to the 520 MHz, �85 dBm rf carrier signal. Inset: S-T� mixing

occurs when a pulse reaches the position at which ET� �ES � hf , f � 520 MHz. The new fringe

corresponds to a pulse that just reaches the point at which this resonance condition is satisfied.

reach the anticrossing for mixing to occur. Energy is absorbed from the rf carrier and the

system transitions from the ground state S to the T� excited state as shown in the inset

to (b).

During the same cooldown, the effect of various gate voltages on the LZS oscillations

were investigated, revealing some connection between tunnel rates and distortions in the

data. Fig. A.4(a) shows oscillations with slight distortions. Decreasing the top gate from

VT � �0.540 V to VT � �0.555 V creates straight oscillations, all parallel to the charge

transfer line as shown in (b). This gate voltage change has two effects. It decreases both

the tunnel rates to the leads and the interdot tunnel rate. Returning to VT � �0.540 V and

then decreasing the right side gate (RS) voltage from VRS � �0.989 V to VRS � �0.999

V also seems to eliminate the distortions as shown in Fig. A.5. This change similarly

decreases the tunnel rates to the leads. However, unlike in the case of decreasing VT ,

decreasing VRS pushes the dots closer together and thus increases the interdot tunnel rate.

Much work remains to fully understand the source of the distortions in the LZS data but

there is some evidence that the dot-to-lead tunnel rates play a role.
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Figure A.4: LZS oscillations for two values of VT . Decreasing VT in (b) lowers the dot-to-lead

tunnel rates and repairs the distortions shown in (a).
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Figure A.5: LZS oscillations for various values of VRS . As VRS decreases [(a) to (c)], the dot-to-

lead coupling decreases and the slight distortions present in (a) are eliminated.
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Appendix B

Two-Level Systems

This section reviews the theory of quantum mechanical two-level systems. The formalism

is needed for discussions of tunnel-coupled quantum dots, the Landau-Zener effect, and

two-electron spin qubits. The following development of the theory is similar to that found

in Refs. [31] and [106]; notation is borrowed from both. Consider a system described by a

Hamiltonian H0 with eigenstates ¶1� and ¶2� and corresponding eigenenergies E1 and E2.

The 2�2 matrix representation of H0 in the basis of its eigenstates is

H0 � �E1 0

0 E2

�
The eigenvalue equations of this system are

H0¶1� � E1¶1�
H0¶2� � E2¶2�.

Introduce a coupling between the two states which is represented by a purely off-diagonal,

time-independent, Hermitian matrix

V � � 0 ∆

∆
�

0
�

making the total Hamiltonian H � H0 � V . The matrix V could, for example, describe

tunnel coupling between two quantum dots near the charge transfer line of a stability
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diagram or the coupling of quantum dot electron spin states due to an interaction with the

nuclear spins of the GaAs substrate. With the addition of off-diagonal matrix elements

to the Hamiltonian, the original basis states, ¶1� and ¶2�, are no longer eigenstates of the

system. The new eigenstates satisfy the following eigenvalue equations:

H¶a� � Ea¶a�
H¶b� � Eb¶b�

Since this simple model captures some the physics of a chemical bond, the eigenstates

are sometimes referred to as bonding, ¶b�, and anti-bonding, ¶a�, states. Not surprisingly,

the bonding state has the lower energy of the two. Solving the characteristic equation,

Det�H � EI� � 0 (I is the identity matrix), gives the following eigenvalues:

Ea � Em �
Ω

2

Eb � Em �
Ω

2

where Ω �
Ó
ε2 � 4∆2, Em �

1

2
�E1�E2�, and ε � E2�E1. The energy eigenvalues E1, E2,

Ea, and Eb are plotted as a function of ε (detuning) in Fig. B.1(a). The energies in the

absence of coupling, E1 and E2, cross at ε � 0. The introduction of coupling produces an

anticrossing with energies Ea and Eb forming the branches of a hyperbola. The minimum

separation of the branches is 2¶∆¶ which occurs at ε � 0. The eigenstates of H written in

the basis of ¶1� and ¶2� are given by

¶a� � cos
θ

2
e
�iφ©2¶1� � sin

θ

2
e
iφ©2¶2�

¶b� � � sin
θ

2
e
�iφ©2¶1� � cos

θ

2
e
iφ©2¶2� (B.1)

where tan θ � 2¶∆¶©ε. See Ref. [106] (Complement BIV) for a detailed derivation of these

expressions.
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Figure B.1: (a) Energy levels Ea and Eb of the two coupled states as a function of detuning

ε � E2 � E1. They form branches of a hyperbola with asymptotes given by the energies E1 and

E2 of the uncoupled states (dashed lines). The off-diagonal matrix element, ∆, which characterizes

the coupling, gives a minimum branch separation of 2¶∆¶ at ε � 0.
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