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Abstract

The thesis investigates a new long-reach passive optical networks (LRPON) architecture
based on multi-band coherent optical orthogonal frequency division multiplexing (CO-
OFDM). The proposed CO-OFDM based LRPON system is characterized by a novel phase
noise compensation mechanism aiming to deal with optical signal dispersion in long-range
transmissions. By employing a dispersion compensating fiber (DCF) and local oscillator
(LO) laser phase shifter for each end-to-end transmission between OLT and ONU, we will
show the phase noise due to dispersion can be effectively mitigated. Simulation of the
downlink traffic between one optical line terminal (OLT) and 12 optical network units
(ONUs) is performed successfully at different fiber lengths, at the data rate of 10Gbps per
ONU. The required BER for the forward error correction (FEC) has been achieved for
most ONUs, using a dispersion compensating fiber (DCF) and local oscillator (LO) laser
phase shifter to compensate for the chromatic dispersion (CD) and the polarization mode

dispersion (PMD), respectively.
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Chapter 1

Introduction

1.1 Background and Motivation

In recent years, traffic in access networks has been increasing exponentially due to new
services that have become available to subscribers, such as high definition TV, video call,
on-line gaming, high speed internet, backbone mobile networks and cloud networks. As
result of this rapid rise in traffic, optical passive networks (PON) are increasingly seen as
promising architecture for access networks that could supply a high data-rate to subscribers

economically.

Optical-OFDM based long-reach PON (O-OFDM LRPON) is one approach NG-PONs,
and has attracted extensive attention from both academia and carrier operators due to its
high data rate, long transmission distance, high spectral efficiency, and high power splitter

ratios [2,3]. Tt also demonstrates superb flexibility to allow real-time spectrum allocation



according to instantaneous service requirements [3]. Fig. 1.1 illustrates the multi-band
O-OFDM LRPON of interest in this study. The OLT generates a multi-band O-OFDM
signal for all ONUs that are launched in the transmission line. Following the power splitter,
each ONU can identify its own sub-bands by synchronizing the subcarrier location assigned

to it.
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Figure 1.1: Multi-band O-OFDM LRPON architecture

There are two types of optical OFDM based PONs, classified according to the detection
scheme, namely direct detection (DD) OFDM PON and coherent optical detection (CO)
OFDM PON. Compared with DD-OFDM PON [3-7], only limited research exists on the
CO-OFDM PON technique. In [3], eight wavelengths of WDM-ROF-PON based on 4QAM-

OFDM technology have been achieved with 10 Gbps for each wavelength, to serve up to



64 users with 155Mbps/2.5Gbps guaranteed/peak rates. The authors in [9] discuss the
received power sensitivity for four-band OFDM PONs under various fiber lengths. Note
that the sub-bands generated by the multi-band CO-OFDM technology, although having
a high data rate and long transmission distance, can be severely affected by chromatic
dispersion (CD) and polarization mode dispersion (PMD). Moreover, the sub-bands that
have high frequency are also severely affected by CD and PMD. Accordingly, several studies
have suggested use of training-symbol and pilot-subcarrier techniques in the course of
channel estimation so as to compensate for chromatic and polarization mode dispersions
[3,8,9]. Nonetheless, this introduces overhead that decreases the transmission data rate.
This issue has motivated the research described in this thesis on ways to compensate for

CD and PMD without increasing the header on the transmission data rate.

1.2 Contributions

Based on the issues addressed in the previous section, The contributions of this thesis are

as in the following:

e Propose a single-band CO-OFDM point-to-point transmission system, where we ex-

amine and improve its performance with different RF frequencies by compensating

the phase noice due to CD and PMD.



e Propose a novel multi-band CO-OFDM based LRPON architecture that overcomes
the malicious effect of phase noises by employing dispersion compensating fiber

(DCF) and phase shift in LO laser at the receiver side for phase-noise elimination.

e Perform extensive simulate on the proposed multi-band CO-OFDM LRPON system,
where we show that the CD and PMD can be well compensated for by employing
DCF and phase shift in an LO laser, and the resultant BER performance can be sig-
nificantly improved under all considered fiber lengths. We also compare the proposed
system with two other legacy approaches: plain CO-OFDM without DCF and LO

phase shift implemented, and conventional CO-OFDM where only DCF is used.
1.3 Thesis Organization

This thesis is organized as follows: Chapter 2 provides background information and illus-
trates the principle design of an OFDM transmitter and receiver. Chapter 3 provides the
concept of incorporating an optical and an OFDM systems, and illustrates optical modu-
lation and demodulation techniques. Chapter 4 examines the performance of a single-band
CO-OFDM transmission system with the proposed phase compensation approach. Chap-
ter 5 presents our design of a multi-band CO-OFDM based LRPON and its simulation

results. Finally, the conclusion and future work are given in Chapter 6.



Chapter 2

Principles of OFDM

2.1 OFDM Background

OFDM has been used for a long time in wire and wireless telecommunication systems. In
the 1870s, frequency division multiplexing (FDM) was used to send telegraph information
over multiple channels [10]. Later on, orthogonal FDM was proposed to improve spec-
trum efficiency by overlapping multiple channels and avoiding the effect of intersymbol
and interchannel interference [11]. Since then, researchers and developers in the field of
telecommunications have investigated OFDM over the years and have managed to imple-
ment it in many applications. Fig. 2.1 shows a Discreet Fourier Transform was proposed
in 1969 by Salz to create orthogonal signals [12]. In 1980, a cyclic extension, which to-
day is known as the cyclic prefix, was used by Peled to eliminate ICI and IST [13]. The

developments described in this paragraph characterize the most basic OFDM system.



In the late twentieth century, researchers in wireless communication began to focus on

how OFDM could be used in wireless applications. In 1985, an OFDM was proposed for
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Figure 2.1: History of the evolution and implementation of OFDM [1]

mobile communications [11], and in 1987, a radio broadcast in France used OFDM tech-

nique to broadcast radio channels [15]. Many standards that use OFDM as a modulation



format have been issued, such as, IEEE 802.16e for WiMAX and IEEE 802.3 a/g for WiFi.
In addition to wire line communications, a variation of OFDM called discrete multi tone
(DMT) used for digital subscriber loops (DSL)was introduced in 1990 [10], and ITU issued

standard ITU G.992.1 for ADSL technique.

In the twenty-first century, researchers started to investigate using OFDM in optical
communication systems. Many experiments have been conducted recently on optical wire-
less [17]- [1%8] and fiber optic [2]- [19] systems. Optical OFDM is discussed in more detail

in Chapter 3.
2.2 OFDM System

OFDM is a special case of FDM, as shown in Fig. 2.2. In FDM, different data is transmitted
over a number of channels, and each channel has a different frequency carrier. A wide
guard band is set between adjacent channels to prevent overlapping. This wide guard
band makes the frequency spectrum inefficient, whereas in OFDM, the data is transmitted
through multiple orthogonal channels. The advantage of OFDM is that the frequency
spectrum is improved, even though channels are overlapping, by using inverse fast Fourier

transform (IFFT) and FFT to modulate and demodulate the data respectively.

This section illustrates a standard OFDM system for wireless applications. OFDM
systems have two main parts: the OFDM transmitter and receiver. Each has a number of
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modules. The functionality and process of each module will be described in detail in the

next subsections.



2.2.1 OFDM transmitters

In an OFDM transmitter, the input data, composed of serial bits, are first mapped to
an M-array sequence generator followed by a serial-to-parallel converter; then an IFFT
module is used to modulate each symbol to a certain subcarrier; afterwards a CP is added,
followed by parallel-to-serial and digital-to-analog converters, as shown in Fig. 2.3 After

all these processes, an OFDM signal is generated and ready to transmit over the channel.

( XN-G) )
— —h
| [ N\ X0) X0)

X(N-1)
Data M-array serial s K1), Add X0) | Parallel Digital
———|  Sequence / : IFFT : Cyclic (U /
Generator Parallel Prefix | X(1),| Seria Analog

X(N-1) KN-D) :
X(N-1)

Figure 2.3: Block diagram of an OFDM transmitter

M-array Sequence Generator

The M-array sequence generator is used to code the bit sequence and split it into two
parallel subsequences called the I/Q) components. The coded format could be any of
the digital modulation formats. The most common digital modulation used in OFDM
systems are BPSK, QBSK, 8-PSK, 16-PSK, 4-QAM, 16-QAM and 64-QAM. The I and Q)

9
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Figure 2.4: Different types of PSK constellation diagrams

components represent the x and y axes of a constellation diagram, respectively. Figs. 2.4
and 2.5 shown the different type of PSK and QAM constellation diagrams respectively. In

a QAM sequence generator, the amplitude of each symbol changes according to Eq. 2.1
a;=2i—-1-K),i=1,2,.,K (2.1)

K =2"? (2.2)

10
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Figure 2.5: Different types of QAM constellation diagrams

where K is the number of possible sequences of binary digits, and n is the number of bits

per symbol.

For example, in a 16-QAM, the number of bits per symbol is equal to four (n=4), and
each two consecutive bits from the input sequence are mapped to one of the subsequences,
which results in the number of possible sequences for each subsequence being equal to 4

(K=4). Table 2.1 shows that the amplitude depends on the symbols.

11



Table 2.1: 1/Q components for 16-QAM

Sequence In-phase (I) Quadrature (Q)

Subsequence i a Subsequence i a
0000 00 1 -3 00 1 -3
0001 00 1 -3 01 2 -1
0010 00 1 -3 10 3 1
0011 00 1 -3 11 4 3
0100 01 2 -1 00 1 -3
0101 01 2 -1 01 2 -1
0110 01 2 -1 10 3 1
0111 01 2 -1 11 4 3
1000 10 3 1 00 1 -3
1001 10 3 1 01 2 -1
1010 10 3 1 10 3 1
1011 10 3 1 11 4 3
1100 11 4 3 00 1 -3
1101 11 4 3 01 2 -1
1110 11 4 3 10 3 1
1111 11 4 3 11 4 3

Serial-to-Parallel and Parallel-to-serial conversion

For the serial-to-parallel conversion, the subsequence of /() components from the M-array
sequence generator are split into N parts, where N is the number of subcarriers used to
modulate the data to the OFDM signal. Each part has a sequence of symbols, and each
symbol has a number of bits that depends on the digital modulation scheme. In contrast,
the parallel-to-serial conversion is an inverse process, which combines N parts into 1/Q

components. N is the size of the IFFT.

12



IFFT

The IFFT is the main module in modern OFDM transmitters. It is a fast algorithm
for computing inverse Discrete Fourier Transform (IDFT) [12]. The advantages of using
IFFT in OFDM transmitters are that it is less complex than IDFT and can grantee the
orthogonality between subcarriers [12] [20]. The function of IFFT is to convert a discrete
frequency domain of the complex input sequence X (m), mapped from an S/P converter, to

the complex output sequence in the discrete time domain z(n). Eq. 2.3 shows the general

formula of IDFT.
N1 J2mnm

z(n) = X(m)e N (2.3)

wheren=1,2,..., N—1,m=1,2,...,N—1,and N is the IDFT poin. N is also known as
the size of the IFFT. In another way, IDF'T can be defined using the linear transformation
between discrete time and frequency sequences, x(n) and X (m), respectively. Eq’s. 2.4
and 2.5 show the N point vectors of Xy and xy;, respectively, and Eq. 2.6 shows the

N x N matrix of the linear transformation, Wy [21]

Xy = [X(0),X(1),..,X(N —1)]" (2.4)

xn = [2(0),z(1), .., z(N — 1)]" (2.5)

13



WNOO WN01 . WNO(Nfl)
WNIO WNII . WNI(N—I)
Wi = (2.6)
WN(NA)O WN(N71)1 W (N—1)2
j2m
WN =€ N (27)

The formula of the IDFT is expressed in Eq. 2.8 using Eq’s. 2.4, 2.5 and 2.6, where

WY is a complex conjugate of the matrix Wy [21]

1

~WiXn (2.8)

XN —

There are many algorithms of IFFT that can be used to compute IDFT. One of these
algorithms is called the decimation-in-time algorithm. In this algorithm, the N point of
the IDFT is divided into two parts, with each part having a length of N/2. The IDFT
is then performed for each part. This process of dividing the point of IDFT to two parts
is then repeated until IDFT is computed for one point [21]. This algorithm reduces the
complicity from O(N?) to O(Nlog N). Fig. 2.6 shows the decimation-in-time FFT for

eight points.

14
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Figure 2.6: 8-point DFT using decimation-in-time FFT algorithm

Cyclic Prefix (CP)

This module extends the waveform of OFDM into a guard interval. As shown in Fig. 2.7
the end numbers of sampling from the OFDM symbol are copied into a guard interval in the
beginning of the OFDM symbol. Therefore, the sequence shown in Eq. 2.9 is transmitted

instead x = [2(0), z(1), ..,z(N — 1)]" [1].

Xyinep = [£(N = G), ..., x(N = 1),2(0), z(1), .., z(N — 1)]" (2.9)

15



OFDM symbol period

& a s <>

Figure 2.7: OFDM symbol with CP in time domain

where G is the size of the cyclic prefix. It is clearly shown that the cyclic prefix perfectly
prevents both ICI and ISI from happening, if and only if the guard time interval Ag is
greater than the maximum time delay spread [22]. However, CP increases the overhead,

which reduces the transmitting data rate

nNg.

Ry =
ty + ts

(2.10)

where n is the number of bits per symbol, N,. is the number of subcarriers, and ¢, and
ty are the observation period, and guard time respectively. After the CP is added, P/S

conversion is performed to convert the parallel sequence to a serial sequence.

16



Digital-to-Analog Converter

The serial output sequence of the P/S conversion is passed through a DAC, where the
discrete time sequence is changed to continuous. The output of the DAC is given the base

band OFDM signal, which can be expressed as [22]:

) Nsc
2(t) = > N eI f(t i) (2:11)
i=—o00 k=1
kE—1 1
fo="——Af =+ (2.12)

1, (—AG <t S ts)
ft) = (2.13)
0, (t<—Ag,t>t)

where C},; is the information about the " symbol in subcarrier k', f; is the subcarrier’s
frequency, A f is the spacing between two adjacent subcarriers, and 7T is the OFDM symbol

period with CP.

2.2.2 OFDM Receiver

At the receiver side, inverse processing of an OFDM transmitter is performed for the
received signal. In Fig. 2.8 shows the receiving signal, which is defined as a cyclic convo-
lution between the base band OFDM transmitted signal s(¢) and the impulse response of

the transmitting channel A(t), is passed through the ADC to digitalizing the signal. Then,

17



the ADC output is converted from a serial to a parallel sequence. After that, the CP is re-
moved and passed to the FFT module, which de-modulates and de-multiplexes the signal.

Finally, the signal is decoded using the M-array sequence decoder. Eq. 2.14 represents the

( \ .
| Y(0) y(0) -
‘ ‘ y(N-1)
] 1 — .
Data M-array Parallel Ya) < @) Remove | Serial Analog
Sequence / : FFT : Cyclic |« / / y(t)
Decoder Serial Prefix ¢ Y(l) Parallel Dlgnal
0 Y(N-1) Y1) : T
J(ND)

Figure 2.8: Block diagram of an OFDM Receiver

received signal, and Eq’s. 2.15 and 2.16 represent the digitalization sequences before and
after removing the CP. Eq’s. 2.17 and 2.18 express the FF'T linear transformation and the

frequency domain sampling of the FF'T output.

y(t) = z(t) @ h(t) (2.14)

Yuitner = [Y(N = G), ., y(N = 1),y(0), y(1), .,y(N = 1)]" (2.15)
yn = [y(0),y(1), ... y(N = 1" (2.16)

Yn = Wnyn (2.17)

Yy =[Y(0),Y(1),.,Y(N-1)]" (2.18)



Chapter 3

Optical OFDM System

The previous chapter illustrated the principle of conventional OFDM. Recently, OFDM
has been used as an advanced modulation in optical communication systems, because its
advantages, such as high spectral efficiency and dispersion resistance. There are two main
techniques of an Optical OFDM, classified based on the detection scheme at the receiver.
These techniques are direct-detection OFDM (DD-OFDM) and coherent-detection OFDM
(CO-OFDM). In many papers, the CO-OFDM shows better spectral efficiency and receiver
sensitivity [2,20,22-24]. However, CO-OFDM needs a local optical source at the receiver

to generate a local optical carrier, so it is more complex and costly than DD-OFDM.
3.1 Optical OFDM Transmitter System

The optical OFDM transmitter (Fig. 3.1) consists of two main parts: a baseband OFDM
generator and an optical-up-conversion. The former has been discussed in the previous

19



section, and we will focus on the latter. In an optical-up-conversion, the I and Q compo-
nents of an OFDM generator’s output are modulated to an optical domain via an external
optical modulator and a continuous wave laser source. There are two types of external
optical modulators commonly used for O-OFDM systems: Intensity modulators and opti-
cal IQ modulators. Both are discussed in detail later. For each type, the lithium niobate
Mach-Zehnder modulator (LN-MZM) is widely used, because it provides low optical loss
and better performance for high data rates, and it can be use for high radio-frequency

signals [25, 26].

/ ~~~~~\ / CW Laser \
OFDM

Signal

LU U

\Baseband OFDM generator/ \Optical-up-conversiory

0-OFDM
Modulated Signal

14

LA A A A 2
XXX X
LA A A A 2

S/d
ova

Figure 3.1: Optical OFDM transmitter block diagram
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3.1.1 Intensity Modulation

The intensity modulator consists of a continuous wave laser and one LN-MZM. The output
of the LN-MZM is directly proportional to the electrical-OFDM signal, and the E-OFDM
must be a real and positive signal [27]. Therefore, the I and ) components of the OFDM
generator’s output, which represent the real and imaginary parts of a baseband OFDM
signal, are converted to the real radio frequency OFDM signal by using an electrical 1Q
modulator, as shown in Fig 3.2. In LN-MZM, the input optical power, which comes from
the CW laser, is split between two waveguide arms, and the electrical OFDM is applied
to these two arms to enable optical phase modulation. The output of LN-MZM is the
combination of two optical waves passing through two waveguide arms, The maximum

intensity can be reached if the two arms are in-phase, resulting in constructive interference.
[28].

The relation between the output optical field and the input optical field can be expressed
as in Eq. 3.1, where E,,;(t) is the LN-MZM’s output optical field, F;,(t) is the LN-MZM’s
input optical field, ¢; is the phase shift of the upper arm of LN-MZM, and ¢, is the phase

shift of the lower arm of LN-MZM. The phase shift can be represented by Eq. 3.2 [23].

Em(t)

Eout (t) = 9

(71 4 eie2(0) (3.1)
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where wu;(t) and uy(t) are the electrical OFDM signal on upper and lower electrodes, re-
spectively. When the LN-MZM configuration is operating as a push-pull with u(¢) =
—us(t) = u(t)/2, then the LN-MZM'’s output electrical field and output power are written
as in Eq. 3.3 and 3.4 [23], respectively. Fig. 3.3 shows the optical field and optical power

transfer functions.

Eou(t) = Ein(t). cos (”;é?) (3.3)
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Figure 3.3: Optical field and power transfer function of LN-MZM

Po(t) = Pon(t). (% + %Cos (”ﬂ”)) (3.4)
3.1.2 Optical IQ modulator

In Fig. 3.4, the I and Q components of the complex baseband OFDM signal are up-
converted to the optical domain by an optical IQ modulator, which consists of a CW laser
and and two LN-MZMs. The optical signal of the CW laser is connected to both LN-
MZMs as an input optical signal for both LN-MZMs. The upper and bottom LN-MZMs
modulate the input optical signal with the I and Q components of the baseband OFDM

signal, respectively. In addition, both LN-MZMs are biased at null point in order to achieve
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the linearity conversion. The output of the upper and bottom LN-MZMs can be expressed

as in Eqgs. 3.5 and 3.6 respectively [23].

up (t)

Y
— KO
Q up(t)
J
Baseband B LN-MZM Egue ()
OFDM @_ P—
generator CW laser
ug1(t)
uo(t)
Q
o/

Figure 3.4: O-OFDM transmitter based on optical 1QQ modulator

Brout(t) = % cos <g“17(:)) (3.5)
Fo-lt) = 22 cos (g“QT“)) (3.6)

The bottom LN-MZM'’s output is shifted by 90° and then combined with output of the
upper LN-MZM to generate an optical single side band OFDM (OSSB OFDM) signal. So

the optical IQ modulator’s output and transfer function can be written as in Eq. 3.7 and
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3.8 [23].

Eout(t) - El—out(t) + -E'Q—out(t)'ej777
(3.7)

Eout(t) - El—out(t) + jEQ—out(t)

Eoult) 1 (Z“I_(’f)) it cos (Z“Q_(t)) (3.8)

E;, 2 2 V. 2 2 V.

3.2 Optical OFDM Receiver System

There are two types of optical detector in optical OFDM systems: direct-detection and
coherent-detection. Direct-detection can be used when an intensity modulator is used at the
transmitter side, whereas coherent-detection can be used when an optical 1Q modulator
is used at the transmitter side. Both types of optical detector convert received optical
signals to a baseband OFDM signal, as discussed in detail in the next sub-sections. A
baseband OFDM signal is passed to an OFDM demodulator, as discussed in detail in
previous chapter in section 2.2.2. Coherent-detection has better receiver sensitivity than

direct-detection, but it is more costly and complex.

3.2.1 Direct Detection

In direct-detection, the received optical signal, where an IM is used at the transmitter, is
detected by a single photodiode, which converts the power of optical signals into electrical
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current. After that, the electrical IQQ demodulator is used to down-convert RF-OFDM to a
baseband OFDM signal, which has both real and imaginary OFDM components as shown
in Fig. 3.5. In IM-DD-OFDM systems, a guard-band is required between the OFDM band
and an optical carrier; therefore, the electrical IQ (de)modulator should be working on high
RF frequency. Thus, IM-DD-OFDM has less spectral efficiency. However, IM-DD-OFDM

is considered to be a cost-effective solution due to the design simplicity of IM/DD systems.

/,\/—\/ﬁ

€08 27 fprt 1
Electrical IQ- OFDM
demodulator Demodulator
Photodiode . >
sin 2mfppt Q

< J - J

Figure 3.5: Optical OFDM receiver based on direct detection

3.2.2 Coherent Optical Detection

Coherent-optical detection is needed when an optical OFDM signal is modulated using
an optical 1QQ modulator. As shown in Fig. 3.6, a coherent-optical detector consists of a

local oscillator (LO), a 90° optical hybrid, and two balanced photo detectors. The I and Q
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components are recovered by down-converting the incoming O-OFDM signal with the LO
signal linearly [23]. The 90° optical hybrid generates phase shifts of 90° and 180° for the
I/Q components and balanced detector, respectively. The four output signals of the 90°

optical hybrid can be written as in Eq. 3.9 [23].

R

R E, |—->‘ ft é ﬂ— 11
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Optical I P .
received > —'Z'I_..@_ Ly
E, i oy Demodulator
L0 3
L

Y
b

- deg Optlcal Hyb”d Pair of Balanced PDs \ /

Figure 3.6: Optical OFDM receiver based on direct detection

1 1
Ey = —=[Es+ Ero), By = —= [Es — Ero)
LR TR (3.9)
1 1
Es=—|E,+jE 0|, By =—|E, —jFE
3 \/5[ J LO] 4 \/5[ J LO]

where F is the received O-OFDM signal, and Ero is the LO optical signal. Each of these
outputs is detected by photodiode, which converts the optical power to electrical current.
The output of each photodiode can be expressed as in Eq. 3.10, whereas a pair of balanced
detectors’ outputs are expressed in Eq. 3.11 [23].
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1
I = |Eyf = 5 {|E,|* + |Ero|* + 2Re {E,F; 0} }

1
L =B = 5 {|E.f* + |Ero|* — 2Re {E;E}0}}

. (3.10)
Iy = |Bs|* = 5 {|Ef* = |Erol” + 2Im{E.E;o}}
1
Iy = |Eyf* = 5 {|E]° = |Erol? — 2Im {E,E;o}}
I;(t)=1 — I, = 2Re {E,E}}
(3.11)

Io(t) = Iy — Iy = 2Im {E,E},}
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Chapter 4

System Performance of Single-Band
CO-OFDM for Different RF
Frequencies

In this chapter, a single-band CO-OFDM transmission system is designed and simulated
using a commercial simulation tool called Optisystem V.14. The impacts of chromatic dis-
persion and polarization mode dispersion on different RF frequencies have been observed,
followed by an investigation into how the system’s performance can be improved by optimal
power transmission and by compensating for both chromatic dispersion and polarization

mode dispersion.

The structure of this chapter is as follows: it starts with a structural design for the
single-band CO-OFDM system; then it describes simulating the system with different
subcarrier positions to evaluate system performance; after that the system is modified and
simulated with phase dispersion compensation.
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4.1 Considered Single-Band CO-OFDM Transmission
System

The single-band CO-OFDM has been designed using Optisystem simulation tool version
14. Fig. 4.1 shows the architecture of the single-band CO-OFDM system, which consists of
a CO-OFDM transmitter, an optical channel, and a CO-OFDM receiver. In the CO-OFDM
transmitter, a binary input sequence of 10 Gb/s is generated using Pseudo Random Binary
Sequence (PRBS) and mapped to 16-QAM to generates two parallel M-array sequences.
The output M-array signal of the 16-QAM is passed to an OFDM modulator with the
following parameters: 512 IFFT points, 64 effective subcarriers, 50 dBm average OFDM
power and 32 prefix points that add 1/16 of the OFDM symbol period with CP to the total
baseband OFDM symbol period. The output of the OFDM modulator, which is defined
as in-phase I and quadrature (), is passed through the band-pass filter. The output is
then up-converted to the optical domain using an RF-to-optical converter consisting of
a laser source with a power of -6 dBm, two lithium Niobate Mach-Zehnder modulators

(LINB-MZM), and an optical amplifier with a gain of 20 dBm.

In an optical channel, an optical signal is transmitted over an SMF with a length of 84
km, an attenuation of 0.2 dBm/km, and a dispersion of 16 ps/nm/km. An optical amplifier
is used to compensate for the lost of fiber attenuation. In the CO-OFDM receiver, optical
received signals are detected by a coherent detector that down-converts optical signals
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Figure 4.1: Architecture of single-band CO-OFDM system

to RF signals. The coherent detector consists of four PIN photo-diodes, each one with
a dark current of 10 nA, and a local oscillator with a power of -5 dBm. After down-
converting to RF signals, a demodulation is performed by the OFDM demodulator, whose
its parameters are set with the same parameters as the OFDM modulator. The output of
the OFDM demodulator is mapped to the 16-QAM decoder, which decodes the M-array

sequence back into a binary sequence. Table 4.1 illustrates more details of the system
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parameters.

Table 4.1: System parameters

Global Parameter

Bit rate (Rp) 10 Gbps
Sequence length 131072 bits
Number of bit per symbol (n) 4
Symbol rate (R) 2.5 G'symbols/s
OFDM Modulation/Demodulation Parameters
()FFT points (IFFT,) 512
Number of Subcarriers (N;.) 64
Prefix Point (Pr)) 32
Average OFDM power 50 dBm
RF-to-optical up-converter Parameters

Laser source power -6 dBm
Optical carrier frequency (frp) 193.1 THz
Initial phase 0°

Optical-to-RF down converter Parameters
Local oscillator power -5 dBm
Local oscillator frequency 193.1 TH=z
Local oscillator phase 0°

SMF Parameters

Fiber length (L) 84 km
Attenuation 0.2 dB/km
Dispersion (D) 16 ps/nm/km

Differential Group Delay (DGD) 0.2 ps/km

The following equations explain how Optisystem computes some operation parameters,
starting with the frequency spacing between adjacent subcarriers A f, then the observation
period t,, CP operator n and period t4, total OFDM period T, and net data transmission

rate Rp.

R, 2.5Gsymbols/s

Af =
/ N 64

= 39.0625M Hz (4.1)
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Figure 4.2: OFDM symbol period
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Each point of the IFFT module at the OFDM modulator has a frequency, called the

subcarrier frequency. The zero subcarrier frequency is located at the middle of the I F'F'T,,.

In this case and as per Table 4.1, the 257" subcarrier has zero Hz. The subcarriers on the

left and right sides of the 257" subcarrier have the same frequencies that can be obtained
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using Eq. 4.8, where k is the location of the subcarrier at IFFT points and m is the integer

number, which can be defined as in Eq. 4.9.

fe =mAf (4.8)
m= |k — (IFng +1) (4.9)

However, the subcarriers located in the left side of zero frequency will up-convert to
the optical domain on the left side of the optical carrier frequency, while the right side

subcarriers will be on the right side of optical carrier frequency in the optical domain.

4.2 Evaluating the system with different subcarriers
positions

A simulation has been performed for the designed system with the different band positions

of the 64 subcarriers around the IFFT points. The BER is measured to evaluate system

performance. In addition, the impacts of chromatic and polarization mode dispersion are

observed. The position of the 64 subcarriers change as follows:

4.2.1 The 64 subcarriers located between the 225 and 288" IFFT
points

The data is carried on 64 subcarriers located in the IFFT between the 225" and 288"

points. This band is located exactly so that 32 subcarriers are on the left and 31 are on
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the right side of zero frequency. Fig 4.3a shows the power spectrum of the transmitting
base band OFDM signal in RF mode where the power is equal to 28d Bm, while Fig. 4.3b
shows the CO-OFDM power spectrum, where the power is equal to —32dBm, and the
optical carrier frequency (193.17'Hz) is in the middle of the CO-OFDM band. Fig. 4.3b
also illustrates that subcarriers located on the left and right sides of the zero subcarrier

are located in the left and right sides of the optical carrier frequency.

4.3 On the receiver side, the receiving optical power signal is equal to —31.56dBm, as
shown in Fig. 4.3c, and is also the same as the transmission power, because the optical
amplifier compensates for the fiber attenuation. The OSNR is equal to 30.6dB, which
is measured using an optical analyzer with a 0.0002nm bandwidth resolution. Fig. 4.3d
presents the OFDM power spectrum for the output of coherent detection where the signal
and noise power are equal to —51.2dBm and —96.5dBm, respectively. The SNR at this
stage is equal to 45.3dB, and is measured using an electrical analyzer with a 10M Hz
bandwidth resolution. As an output of OFDM demodulation, the 16-QAM constellation
diagram of 10Gbps is almost clear as shown in Fig.4.3e. After that, the 16-QAM decoder
is used, and the BER is measured, the log(BER) was found to be —5.1. The location of

the 64 subcarriers in this test shows good results in terms of the BRE.
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Figure 4.3: RF and optical OFDM power transmitting and receiving spectrum and con-
stellation diagram for subcarriers located between the 225" and 288",

4.2.2 Relocating the 64-subcarriers to different position

Multiple iterations are performed to evaluate the system’s performance by relocating the 64

subcarriers to different position along the IFFT module. The 64 subcarriers are relocated

as follows: from point 104" to 167" in case one, from point 185" to 248%in case two,
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from point 266" to 329"" in case three, from point 347" to 410%"in case four. Fig. 4.4
shows the power spectrum for the output of the OFDM modulator for the four cases; the
RF-OFDM power is around 25dBm. The electrical band frequency for the 64 subcarriers
in cases two and three begins at 0.35G Hz and ends at 2.81G H z as shown in Fig. 4.4b and
4.4c respectively, while in cases one and four it begins at 3.52G Hz and ends at 5.98GH z,

as shown in Fig. 4.4a and 4.4d, respectively.
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Figure 4.4: RF OFDM transmitting power spectrum

After RF-to-optical up-conversion is performed, the CO-OFDM power spectrum is as
shown in Fig. 4.5, and the power is approximately —31.5dBm for all cases. Since the
64 subcarriers for cases one and two are located on the left side of the zero subcarrier
frequency, Fig. 4.5a and 4.5b clearly show that these two cases are up-converted to the
optical domain on the left side of the optical carrier frequency. In contrast, Fig. 4.5¢ and

4.5d clearly show that cases three and four are up-converted to the optical domain on the
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right side of the optical carrier frequency since they are located on the right side of the

zero subcarrier frequency.
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Figure 4.5: CO OFDM transmitting power spectrum

At the receiver side, the CO-OFDM signal received is affected by the nonlinear impair-
ments. Fig. 4.6 shows the CO-OFDM power spectrum for the receiving signal, where the
power level is —31dBm, which is the same as power transmitted due to the fact that the
fiber attenuation is compensated for by the optical amplifier. Fig. 4.7 shows the power
spectrum for the coherent detection output, The signal power and noise power for all cases
are almost —H3dBm and —95dBm, respectively. The OSNR and SNR for all cases are

approximately 31.8dB and 42dB, respectively.

OFDM demodulation and digital signal processing then taken place. A 16-QAM con-
stellation diagram for 10Gbps of the single band CO-OFDM system, shown in Fig. 4.8,

illustrates that there is a phase dispersion for each subcarrier. It is clearly shown that
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Figure 4.7: RF-OFDM receiving power spectrum

hase dispersion increases when the frequencies of the 64-subcarriers increase, as in cases

one and four. This phase dispersion occurs because of the fiber chromatic and polarization

mode dispersion.

In cases one and two, the phase dispersion is equal to the chromatic dispersion plus

polarization mode dispersion, while in cases three and four it is equal to polarization mode

dispersion subtracted from the chromatic dispersion. Fig 4.8c shows that case three has
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a better constellation diagram because the value of phase dispersion from fiber chromatic
dispersion is almost the same as the fiber polarization mode dispersion. Fig 4.9 illustrates
the log( BER) with different locations for the 64 subcarriers. Once again, case three, where

the 64 subcarriers span between the 266" and 329", has the lowest BER.
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Figure 4.9: The relationship of the log(BER) and Subcarrier position
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4.3 Evaluating the system with phase dispersion com-
pensation

In this section, a simulation test is performed for the same system as above, plus a phase
dispersion compensator. In [22], the phase dispersion is defined as in Eq. 4.10, but the
authors have considered only the chromatic dispersion component. The research of this
thesis, however, has determined that polarization mode dispersion cannot be neglected,
and thus another component has been added to the phase dispersion as per Eq. 4.11,
thereby eliminating the impact of polarization mode dispersion. Therefore, in the propose

model, the phase dispersion is defined as in Eq. 4.12.

e

¢ep(k) = ED-JC;? (4.10)
¢p(k) = dcp(k) + dpup(k) (4.12)

where fj is the frequency of the subcarrier, and ¢py/p is negative when the subcarrier is

located on the right side of the zero subcarrier frequency.

There are many types of phase dispersion compensation, such as using pilot subcarriers
in the OFDM symbol to estimate the phase, but this method reduces the net data rate

as per Eq. 4.6. This theses proposes compensating for the phase dispersion by adding
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DCF to the optical link, which will eliminate the component of chromatic dispersion, and
setting the initial phase in the local oscillator at the coherent receiver to compensate for
the polarization mode dispersion. For simplicity, the middle frequency of the 64-subcarrier
band is used in Eq. 4.11 as an average frequency for all 64 subcarriers, because the
Optisystem simulation tool does not have the capability of accessing each subcarrier in the

optical domain. The proposed design evaluated against the pilot technique.

4.3.1 Compensate phase dispersion by using DCF and initial
phase shift

In this simulation, a DCF is added in the optical link with an attenuation of 0.4dB/km,

dispersion of —80ps/nm/km, and DGD of 0.2ps/km. The other system parameters are

kept the same except that the length of the optical link is divided between SMF and DCF,

at ration of 5/6 and 1/6, respectively, and the initial phase of the local oscillator is set as

per table 4.2.

Table 4.2: Initial phase for each 64-subcarrier location

64-subcarriers location Initial phase

23t — 86" 23.92
104th — 1670 14.35
185th — 248tk 4.78
266" — 329" -4.78
347t — 4100 -14.35
428th — 4915 -23.92

Fig. 4.10 shows that, after simulation, the system with a phase dispersion compensator
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Figure 4.10: 16-QAM constellation diagram for the designed system with/without phase
dispersion compensator

has a better constellation diagram than the system without a phase dispersion compen-

sator, even for the diagram that show higher impact for the phase dispersion. For example,

Fig. 4.10a shows high phase dispersion in the constellation diagram for the 64-subcarriers

located from 104" to 167", while Fig. 4.10b shows a clear constellation diagram for the

same position of the 64-subcarriers. Fig. 4.11 shows the relation between transmitting
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power and the log(BER) for all cases. As can be noticed, the log(BER) decreases when

the transmitting power increases. Cases one and four need more power than cases two and

three in order to have the same BRE.
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Figure 4.11: The relationship between the BER and transmitting power

4.4 Summary

In this chapter, a single-band of 16QAM CO-OFDM system with a bit rate of 10Gbps

has been designed and simulated. The simulation results show that the system has low

performance at high RF, because non-linear impairments of the optical fiber have higher

impact on high RF. After that, the system was modified to compensate for the chromatic

dispersion and polarization mode dispersion. Then, a simulation was performed and shows

improved system performance even for high RF.
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Chapter 5

System Performance of a Multi-band
CO-OFDM Based LRPON

Based on the knowlesge gained in the design of a single-band optical OFDM system in the
previous chapter, this chapter discusses a multi-band CO-OFDM based LRPONSs, which
aims to provide high data rate for numerous ONUs and long transmission distance between
OLT and ONUs. A simulation is performed using Optisystem. In addition, DCF and LO

phase shifter uses to compensate for CD and PMD.

This chapter is organized as follows. It starts with an introduction of the proposed
operational architecture for multi-band CO-OFDM LRPON system; then it describes the
simulation setup and the results of the proposed system under various digital-modulation

formats and transmission lengths.
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5.1 Proposed Multi-band CO-OFDM PON Architec-
ture

Fig. 5.1 shows the proposed multi-band CO-OFDM PON architecture, which consists of an

optical line terminal (OLT), an optical distribution network (ODN), and multiple optical

network units (ONU). In the OLT, the N users’ data are coded and mapped to one OFDM

modulator with an IFFT size of L points. Each user’s data is assigned to a specific location

on the IFFT, and has a number of subcarriers N, to generate a sub-band OFDM with

the bandwidth Bw, where i is the number of users. A guard band G B is needed to avoid

ISI and ICI; therefore, null subcarriers are inserted on the IFFT between two adjacent

sub-bands’ edges, as shown in Fig. 5.2.
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Figure 5.1: Proposed Multi-band CO-OFDM PON Architecture

The IFFT module has a subcarrier called zero subcarrier with zero frequency, and it is

46



located at §+1. The remaining subcarriers located from one to é are called left subcarriers,
and the subcarriers located from % + 2 to L are called right subcarriers. Thus, the IFFT
module comes up with two OFDM spectra for the left and right subcarriers, and the spectra
have the same frequencies from zero to Af x %, where A f is the subcarrier spacing. After
the IFFT, a CP is inserted into the mutli-band OFDM symbol period. Following the P/S
converter, DAC, and low pass filter, the in-phase I and quadratic () components of the
multi-band OFDM are up converted to OSSB using two MZMs, and a CW laser with a
launch power P. The zero subcarrier is shifted to an optical carrier frequency, while the
left and the right subcarriers’ frequencies are shifted to the left and the right of the optical
carrier frequency. The total multi-band CO-OFDM bandwidth fgpy will be twice that of

Af x L.

In ODN, the multi-band CO-OFDM signal is transmitted over D km SSMF and d km
DCF, where DCF is used to compensate for the chromatic dispersion. The multi-band CO-
OFDM signal is amplified by an optical amplifier to compensate for fiber attenuation, after
that the signal is split among the ONUs by the passive optical splitter, at a ratio 1 : V.
In the ONU, a coherent detector is used to down convert optical signals to RF signals. A
certain phase shift is applied in the LO laser of the coherent detector to compensate for
the polarization mode dispersion. This phase is not the same for all ONUs; it depends on

the differential group delay of the fiber, and the frequency difference between an optical
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carrier and a sub-band frequency of the ONU in the optical domain.

The RF-down-conversion’s output is passed to an OFDM demodulator, which reverse
the OFDM modulator’s process. It also will select the ONU sub-band according to the
assigned locations of ONU’s subcarriers on the FFT module. The subcarriers must be
synchronized with their assigned locations on the transmission side. Finally, the output

sequence from OFDM demodulator is decoded to its original shape.

Subcarrier-1 "N

- fe
o (]
[ |
f—
User_1 rommm— Bw
o
H GB
p—
User_2 Om— Bw
Com—
o
= GB
ol
User_N/2 Omm— Bw 2
[ =
Zero subcarrier =y fow =
L, 4 IFFT 168 38
=3 P ]
Om— 8
User_N/2+1 __ Bw g
=
: GB
|
User_N/2+2  gummmm Bw
po—
C—
GB
Ol
T — B
[ —
Lo | '
: fe
v

Subcarrier-L

Figure 5.2: Assigning Subcarriers for Multi-band OFDM

5.2 Simulation Setup and result

The proposed multi-band CO-OFDM PON architecture is simulated by an OptiSystem
V.14 platform. This simulation tests the downlink performance between one OLT and
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12 ONUs. At the OLT, a random binary sequence of 10Gbps is generated for each ONU
and mapped to an M-array coder, which is either 16QAM or 16PSK. The 12 sequences
are modulated into a 12-band OFDM signal by an OFDM modulator with the following
parameters: 1024 IFFT points, 64 subcarriers for each sub-band, and located as shown in

Table 5.1, and a 1/16 CP ratio.

Table 5.1: The properties of the Sub-bands

Subcarriers Base-band ~ Optical  LO laser

ONUs Location  Frequency Frequency  Phase
on IFFT (GHz) (THz) Shift

Subband-1 69:132 16.1133  193.08389 46.41

Subband-2 144:207 13.1836  193.08682 37.97
Subband-3 219:282 10.2539  193.08975 29.53
Subband-4 294:357 7.3242 193.09268 21.09
Subband-5 369:432 4.3945 193.09561 12.66
Subband-6 444:507 1.4648 193.09854 4.22

Subband-7 519:582 1.4648 193.10146 -4.22
Subband-8 594:657 4.3945 193.10439  -12.66
Subband-9 669:732 7.3242 193.10732  -21.09

Subband-10 744:807 10.2539  193.11025  -29.53

Subband-11 819:882 13.1836  193.11318  -37.97

Subband-12  894:957 16.1133  193.11611  -46.41
Column 3 in Table 5.1 shows the base-band central frequencies for all sub-bands.
Clearly, the first 6 sub-bands, which are located on the left side of the zero subcarrier,
have the same base band central frequencies as the other 6-bands are located on the right

side of the zero subcarrier. Two symmetrical 6-band OFDM signals, representing both left

and right subcarriers are generated, as shown in Fig. 5.3a and 5.3b, respectively with a
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2.5G'H z bandwidth for each sub-band, 39.0625M H z subcarrier spacing, and a 468.75M H z

guard band.

The I and Q@ components of the OFDM modulator are passed into two MZMs with a
CW laser at a frequency 193.17T'Hz and launching power of -5dBm to generate an OSSB
for both 6-band OFDM signals. Fig. 5.3c shows the 12-band CO-OFDM spectrum, with
6-bands on the left side of the optical carrier (1937 H z), and the other 6-bands on the right
side. The optical signal was transmitted over a total fiber length of 80km, where 66.66km
is the type of SSMF with an attenuation of 0.2dBm/km, a dispersion of 16ps/nm/km,
and a differential group delay (DGD) of 0.2ps/km, and 13.34km is the type of DCF with
an attenuation of 0.4dBm/km, a dispersion of -80ps/nm/km, and a DGD of 0.2ps/km.
Following the optical amplifier with a gain of 18.6d B, a passive power splitter was used to

split the optical signal on the 12 ONUs.

At each ONU, the signal is coherently detected by a four PIN and LO laser with a
frequency of 193.1T Hz and phase shift as shown in Table 5.1. After that, the OFDM
demodulator digitally selects the sub-band that belongs to the ONU, by assigning the
locations of subcarriers in the OFDM demodulator to be the same as the subcarriers’
locations in the OFDM modulator, as originally assigned to this ONU. Finally, the BER
is measured to evaluate the performance of the proposed architecture, and compared with

the BERs’ of two other architectures: conventional OFDM, where no DCF and phase shift
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are implemented, and conventional OFDM plus DCF, where only DCF is used. In Fig.
5.4, the proposed multi-band CO-OFDM architecture, for both 16QAM and 16PSK shows
a lower BER than those of the other two architectures, even when the sub-band has a high
frequency such as ONU-1, ONU-2, ONU-11, and ONU-12. In addition, the 16QAM shows
better performance than 16PSK for all ONUs except for ONU-1 and ONU12, which they

have the highest base band frequency of 16.11GH z.
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Figure 5.4: Measured BER for the proposed multi-band CO-OFDM PON architecture
compared with conventional CO-OFDM

Fig. 5.5 illustrates the 16QAM and 16PSK constellations diagram for some ONUs at
the conventional CO-OFDM, conventional CO-OFDM plus DCF, and proposed CO-OFDM

architectures. It is clearly shown that the high sub-band’s frequency cannot be used in
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conventional CO-OFDM, because of the chromatic and polarization mode dispersions.
Even though the chromatic dispersion is eliminated by DCF in conventional CO-OFDM
plus DCF, which shows more improvement for the constellation than conventional one, the
DGD still creates a phase shift, and the phase is increased at the higher frequencies. In
contrast, The proposed CO-OFDM architecture, where the DCF and LO laser phase shift
has been implemented, has the clearest constellation diagram, even for higher frequencies,
such as sub-band 1, sub-band 3, sub-band 9, and sub-band 12 in Fig. 5.5a, 5.5¢, 5.5g, and
5.51 for 16QAM respectively, and sub-band 1, sub-band 3, sub-band 9, and sub-band 12 in

Fig. 5.5b, 5.5d, 5.5h, and 5.5j for 16PSK, respectively.

Simulation result with CW launched power of -6 dBm

Fig. 5.6 shows the measurements of BER for 16QAM and 16PSK multi-band CO-OFDM,
respectively, with -6d Bm CW transmission power at fiber lengths of 70, 80, 90, and 100km,
respectively. The results show that the ONU-1 and ONU-12, which have a baseband
frequency of 16.11GH z, could not achieve the minimum BER (3.8 x 1073) for required
forward error correction (FEC) under 16QAM, whereas ONU-(2, 3, 10, and 11) could not
achieve the minimum BER under a transmission length of over 90s km. ONU-(4, 5, 6,
7, 8, and 9) did achieve the minimum BER under all considered transmission lengths, as

demonstrated in Fig. 5.6a. In contrast, the 16PSK shows that almost all ONUs have
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achieved the minimum BER under all considered transmission fiber lengths, except ONU-
(3 and 10) which manage to achieve the minimum BER for the transmission length up to

95 km
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Figure 5.6: The BRE at CW laser launched power -6dBm against transmission fiber length

Simulation result with CW launched power of -2 dBm

The system’s performance is improved by increasing the CW launched power to -2 dBm.
Fig. 5.7a shows the result of 16QAM, where the BER of all ONUs are bellow the BER
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threshold (3.8 x 1073) under all considered transmission fiber lengths. Furthermore, the
16PSK shows that also all ONUs achieve the minimum BER that required for FEC under

all considered transmission fiber lengths, as shown in Fig. 5.7b.
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5.3 Summary

This chapter has demonstrated a successful design for a multi-band CO-OFDM PON ar-
chitecture through simulation with a high data rate per user, long distance, and multiple
users. The DCF and LO phase shift were implemented to compensate for the dispersion
components in order to improve ONU performance quality. The proposed architecture
has been simulated to transmit 120Gbps between one OLT and 12 ONUs at different fiber
lengths. For concept validation, the architecture has been tested using two modulation
techniques (16QAM and 16PSK). Results show that the 16QAM multi-band CO-OFDM
has the potential to support up to 10 OUNs, with a data rate of 10Gbps for each one,
and a fiber length of 100km. In contrast, the 16PSK multi-band CO-OFDM can support
up to 12 ONUs with the same data rate and a fiber length of up to 90km. However, the
complexity of the architecture is increased using DCF, but the overhead data does not

increase as much as when using training-symbol and pilot-subcarrier techniques.
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Chapter 6

Conclusion and Future Work

6.1 Conclusions

The thesis has studied an optical coherent orthogonal frequency division multiplexing (CO-
OFDM), which is one of the candidates for long reach passive optical network (LRPON)
due to its spectral efficiency and cost effectiveness. This thesis has investigated the CO-

OFDM in two stages as follows

Chapter 4 has designed and simulated a single-band of a 16QAM CO-OFDM system
with a bit rate of 10Gbps. The simulation results show that the system has low performance
at high RF, because non-linear impairments of the optical fiber have a higher impact on
high RF. After that, the system was modified to compensate for the chromatic dispersion
and polarization mode dispersion. Then, a simulation was performed and shows improved

system performance even for high RF.
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Chapter 5 has demonstrated a successful design for a multi-band CO-OFDM LRPON
architecture through simulation with a high data rate per user, long distance, and multiple
users. The DCF and LO phase shift were implemented to compensate for the dispersion
components in order to improve ONU performance quality. The proposed CO-OFDM
LRPON architecture was simulated using Optiwave, and the results demonstrate that the
legacy problem of chromatic and polarization dispersions in CO-OFDM LRPON can be
effectively resolved. However the complexity of the architecture is increased due to the
DCF, even though the overhead data does not increase as much as when using training-

symbol and pilot-subcarrier techniques.

6.2 Future Work

The future research topics of the thesis will be listed as follows.

e Consider the dynamic bandwidth allocation when assigning the subcarriers in order

to increase spectrum efficiency.

e Examine how to reduce the guard band between sub-band OFDM without decreasing

system performance, thus increasing spectrum efficiency.

e Investigate how to compensate for the chromatic dispersion without using DCF, and

so reduce the system’s budget.
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e Investigate ways to optimize the launched power.
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