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Abstract

Spurred by declining costs of robotics, automation is becoming a prevalent area of
interest for many industries. In some cases, it even makes economic sense to use a team of
robots to achieve a goal faster. In this thesis we study sweep coverage path planning, in
which a robot or a team of robots must cover all points in a workspace with its footprint.
In many coverage applications, including cleaning and monitoring, it is beneficial to use
coverage paths with minimal robot turns.

In the first part of the thesis, we address this for a single robot by providing an efficient
method to compute the minimum altitude of a non-convex polygonal region, which captures
the number of parallel line segments, and thus turns, needed to cover the region. Then,
given a non-convex polygon, we provide a method to cut the polygon into two pieces that
minimizes the sum of their altitudes. Given an initial convex decomposition of a workspace,
we apply this method to iteratively re-optimize and delete cuts of the decomposition.
Finally, we compute a coverage path of the workspace by placing parallel line segments
in each region, and then computing a tour of the segments of minimum cost. We present
simulation results on several workspaces with obstacles, which demonstrate improvements
in both the number of turns in the final coverage path and runtime.

In the second part of the thesis, we extend the concepts developed for a single robot
coverage to a multi robot case. We provide a metric χ that approximates the cost of
a coverage path, which accounts for the cost of turns. Given a polygon, we provide a
method for cutting a polygon into two that would minimize the maximum cost χ between
the two polygons. Provided with an initial n-cell decomposition, we apply this method in
the iterative manner to re-optimize cuts in order to minimize the maximum cost χ over all
cells in the decomposition. For each cell in the re-optimized n-cell decomposition, a single
robot coverage path is computed using the minimum altitude decomposition. We present
the simulation results that demonstrate improvements in the maximum cost as well as the
range of costs over all robots in the team.
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Chapter 1

Introduction

1.1 Single and Multi-agent Coverage Path Planning

with Minimum Turns

The human reliance on robots to keep the society functioning is increasing. Enormous
amounts of resources are invested in automation in robotics by companies looking to enter
new markets, decrease operational costs, increase efficiency or solve problems that were
impossible before. There are numerous applications that stand to benefit from increased
degree of automation in robotics. A certain subset of these applications include highly
important tasks such as search and rescue [56], natural disaster monitoring and relief [22],
demining [3], and surveillance [53]. Other examples include tasks related to operations
research such as floor sweeping [38], factory automated painting [58], crop health moni-
toring [57], and ship hull inspection [63]. Despite the differences between all these appli-
cations, these problems are related to a common problem in robotics called the coverage
path planning problem.

Given a robot with a footprintM and a workspaceW , possibly with holes, the coverage
problem is that of computing a path contained in W such that traversal ofM along the
path results in each point in W being covered byM. An example of a robot performing a
coverage task is shown in Figure 1.1 where a robotic inspection arm inspects a test surface.
The problem is as old as the machine controlled milling where operators were generating
paths for the tool [33]. However, it is only in 2000 that Arkin [5] has demonstrated that the
problem is in fact NP-complete. As such, there are numerous suboptimal solutions that
have been proposed over the years. Moreover, there is an extension to this problem that
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Figure 1.1: An example of an inspection coverage performed by a robotic arm.

has been gaining popularity over the recent years. Spurred by decreasing costs of robotics,
the multi-robot systems for coverage are becoming more appealing.

It is difficult to discuss good solutions to the coverage path planning problem because
the notion of goodness varies from one application to another. For example, a good coverage
path for a painting robot would result in the most uniform paint layer on the surface. A
good coverage path for a crop monitoring application would yield a high quality capture of
the entire field. As such, works in literature that focus on one application offers solutions
that are specialized to that application. On the other hand, numerous other works offer
theoretical analysis and algorithmic approaches to the problem. These tend to propose
solutions that theoretically achieve complete coverage; however, the solutions tend to posses
undesirable properties such as excessive amount of turns that make their implementation
in practice challenging.

In this work we aim to compute coverage paths with properties that make them desirable
in practice by minimizing the amount of turns in the coverage path. Our key idea is to
perform a line decomposition: an approximate decomposition of the workspace into regions
that represent the area swept by the footprint traversing a straight line (Figure 1.2). The
process starts with any convex decomposition. We propose a method of re-evaluating cuts
in this convex decomposition with the objective of lowering the number of turns in the path.
For each polygon in the final decomposition, a minimal line decomposition is performed.
The complete coverage path is then generated by computing a tour of lines with minimal
cost. Unlike existing approaches, the tour is not forced to complete local coverage of each
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Figure 1.2: Coverage footprint over a line.

polygon before proceeding to the next.

Furthermore, this approach is used extensively in our extension to the multi-agent case.
The key idea in the multi-agent case is to perform an assignment of regions to the team of
n robots with the goal of minimizing the maximum cost that includes the turning costs.
The process starts with any n-cell decomposition. We propose a similar method of re-
evaluating cuts in this decomposition with a new cost that includes turning costs. The
result is a re-optimized n-cell decomposition where each cell represents an area assigned
to one of the n robots. The coverage path for each robot is computed using the minimum
turns decomposition approach.

1.2 Thesis Contribution

Our key contributions for the single-agent coverage are threefold. First, we provide a
method for computing the minimum altitude of a non-convex polygon, which captures the
number of parallel line segments, and thus turns, needed for coverage. Second, given an
initial convex decomposition of a workspace, we propose a method to iteratively re-optimize
and delete cuts of the decomposition in order to optimize the altitude of the polygon on
each side of the cut. The proof of its correctness and computational complexity is provided.
Third, we compute a coverage path of the workspace by placing parallel line segments in
each region, and then computing a minimum-length tour of the corresponding approximate
convex decomposition. The tour is computed by generating and solving a Generalized
Traveling Salesman Problem (GTSP) instance using existing solvers.

3



The key contributions for the multi-agent coverage are twofold. First, we introduce a
metric that assigns an approximation of the coverage cost that includes turning costs to
a polygon. Second, given an initial n-cell decomposition of a workspace, we propose an
iterative procedure for re-optimizing cuts of the n-cell decomposition in order to decrease
the maximum coverage cost over all cells in the decomposition. The coverage path for each
robot in the team is computed using the single-agent approach.

1.3 Organization

The thesis is organized into six chapters. Chapter 2 contains the literature review of single
and multi-agent coverage works. Chapter 3 reviews some of the concepts used throughout
this thesis. Chapter 4 introduces our approach to the single agent coverage path planning
problem. Chapter 5 introduces our approach to the multi-agent coverage path planning
problem. Finally, Chapter 6 provides a conclusion to this thesis and recommendations for
avenues of future research.
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Chapter 2

Literature Review

The problem of coverage path planning sees many applications across numerous fields.
The list includes applications like material polishing [55], autonomous farming [51], dem-
ining [3], floor cleaning [65], and many others. The roots of this problem could be traced
back to CNC trajectory planning, where operators rely on their experience and intuition to
plan an optimal trajectory for a tool to cut out different shapes out of a slab of metal [33].
However, the notion of coverage has been evolving since its conception. There are two
common views of coverage: static and dynamic.

The static coverage objective is typically to maximize some coverage sense function.
The sensor quality for these problems is a function of a distance from the robot. A common
approach to these type of problem is to guide a robot to a static location in the environment
that maximizes the coverage function. Examples of this include discretized workspace [24]
and gradient descent methods [20].

The dynamic coverage objective is to plan paths for a robot such that all points in the
workspace are covered up to a desirable level. There are a number of solutions that have
been proposed for this problem. We classify them by the approach used in the solution.

One class of solutions treat this problem as a control problem. Works by Atinc [6],
Hussein [41], Panagou [52] and Cassandraw [15] have developed control laws for a robot
or a team of robots that achieve complete coverage of the workspace. These methods are
based on gradient descent type controllers. The work by Atinc [6] fixed the issue of local
minima with a improved controller.

Other classes of solutions focus on computing static paths determined by the dynamics
and the workspace off-line. With these approaches, it is possible to leverage the knowledge
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of the workspace and the structure of coverage paths to compute optimal paths. This
thesis focuses on this approach.

Perhaps one of the earliest works in literature for static coverage paths is the work
by Cao [12], where the authors outline the requirements for such paths. One of the key
contributions to the field of static coverage is the work by Arkin [5]. The authors have
studied two variations of the coverage problem: lawn mowing and milling. The difference
is that the milling problem does not allow a robot to cross the boundary of its workspace.
The authors were able to show that these problems are in fact NP-hard. Some of the other
problems related to coverage are the Traveling Salesman Problem, art gallery problem, and
a watchman route problem.

There are various classifications used when talking about coverage problems. Choset [18]
have classified majority of the approaches by the methods used to discretized the environ-
ment. He summarized these to be either exact or approximate. However, since his survey,
numerous new works have been published that do not strictly fall into these two cate-
gories. The new categories would include random and pseudo-random approaches [8, 29],
3D coverage [7, 37], coverage under uncertainty [10], persistent coverage [46], cooperative
coverage [54], and others. In this section, we aim to review some of the important works
involving exact and approximate decompositions as well as works that deal with the coop-
erative coverage.

2.1 Exact Cellular Decomposition

Typically, approaches that rely on exact cellular decomposition compute a solution in two
steps. The first step involves performing some sort of decomposition of the workspace
resulting in a set of cells that together make up the original workspace. The second step
involves computing a path for each region separately. One of the classic examples of this is
the work by Latombe [43], where a trapezoidal decomposition is performed on a polygonal
planar workspace. The resulting decomposition consists of trapezoidal cells. An adjacency
graph can be computed for these cells, where an edge between two vertices exists if two
cells are adjacent. A tour of this graph is computed, where each cell is visited once. The
coverage of each cell is by a zig-zag like path. In practice, this method was used on an
agricultural field by Oksanen [50]. Despite the simplicity of its computation, there are
numerous drawbacks to this method. One of them is the excess of cells generated, which
leads to a significant overhead associated with transitioning between cells. Another problem
is the direction of these zig-zag paths. This direction is determined by the decomposition,
which disregards the optimality of coverage of that cell. Another problem is the generality
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of this method with respect to the shape of the footprint. For example, a circular footprint
would not be able to cover areas near the corners. As such, the path generated by this
method would not be able to achieve complete coverage.

To mitigate the problem of excessive number of cells, Choset [18] proposed a new
decomposition technique called the Boustrophedon decomposition. The Boustrophedon
decomposition is very similar to the trapezoidal decomposition with the exception that
some cells in the decomposition may be non-convex and the overall number of cells in
the decomposition is reduced. The path planning components is identical to Latombe’s
approach and therefore, suffers from similar drawbacks.

Wong [64]’s landmark based decomposition is similar to the Boustrophedon but works
for general workspaces. His approach is also suitable for on-line sensor based coverage.
However, the individual cells are covered via the same zig-zag type paths.

Acar [2] proposed a more general decomposition technique that works on non-polygonal
workspaces and could generate cells of various shapes to accommodate any coverage re-
quirements. This decomposition is based on finding critical points of a Morse function.
Boustrophedon decomposition is a specific case of a Morse decomposition, where the Morse
function is a straight line. Moreover, the search for these critical points can be performed
on-line leading to a number of on-line coverage algorithms [1]. The main drawback of this
approach is that rectilinear workspace cannot be used.

Huang [40] studied an approach to decomposition that aims to optimize the zig-zag
paths within each cell. In his work, he proposed a dynamic programming approach for
choosing shapes for the cells of the decomposition in a way that minimizes the number of
parallel segments of a zig-zag path within each cell. However, the transitions costs between
cells are completely ignored.

Recently, in the work by Das at el. [21], a greedy decomposition of a polygonal en-
vironment was proposed that seems to result in fewer convex cells for typical workspace
polygons. As with other approaches, a tour of the graph is computed. However, the inter-
cell coverage of each individual cell is computed based on the graph tour. Specifically, the
entry and exit points are chosen in a way that minimizes the transition costs between cells.
As a result, the optimality of the intra-cell coverage within the cell is ignored. A related
work by Yu [66], where the author have studied optimal traversal order for Boustrophedon
type paths by solving a TSP problem.

There is a common underlying problem with exact decomposition methods. The prob-
lem of convex decomposition is known to be NP-hard for general polygons as outlined
in the survey by Keil [42]. As such, most of the exact decompositions algorithms utilize
heuristics. Moreover, there is a dependency between inter-cell and intra-cell coverage. An
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optimal solution cannot focus on optimizing the intra-cell coverage and ignore the inter-cell
transitions or vice versa.

2.2 Approximate Decomposition or Grid Based Ap-

proaches

Exact cellular decomposition is not the only available class of solutions. Another class in-
cludes grid-based methods, sometimes referred to as approximate decomposition methods.
Typically, the workspace is represented as a grid of uniform cells. Such representation is
easy to compute but the memory requirement scales exponentially with the size of the
workspace.

Zelinsky [67] proposed a grid based coverage solution based on a wave propagation
algorithm. With this method, a start and a goal cells are given. A front is created by
computing the distance from the goal to the cell. Coverage is ensured by traversing the
wave front, a set of cells where the values are equal. On-line generalization is available
by Shrivashakar et al. [59]. A number of works [17, 28, 31, 32, 45] utilized the concepts of
spanning tree coverage. The grid of the workspace acts as a graph were every cell is a
node connected to its neighbors. A minimum spanning tree can be computed for slightly
modified version of this graph. A coverage path is generated by tracing the edges of the
minimum spanning tree, which ensures all cells are covered at least once. Arkin [5] also
proposed approximate solutions based on a grid decomposition of the workspace. The
workspace is represented in the form of a grid where the center point is a node in a graph.
Such graph is fed into a Traveling Salesman Problem solver, where the shortest tour is
computed.

All of the mentioned approaches share similar downsides. The representation of the
workspace by a grid is approximate. Hence, it is expected to see some points near corners or
the boundary not being covered. Furthermore, computational load for large environments
makes these methods intractable. Furthermore, these methods suffer from generalization
problem as well. Grid based approaches do not work well with circular coverage footprints.
A robot visiting two adjacent grid cells would have to incur some overlap because the circle
shape has to be larger than the grid cell. This leads to the reduction of efficiency of the
coverage path and results in longer paths.
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2.3 Minimizing Turns in Coverage Paths

Various works in literature study the problem of coverage with additional conditions. As
an example, the work by Bretl et al. [10] studied complete coverage path generation in the
presence of localization error. Others [60] looked at computing coverage paths with limited
energy budget. A number of other works have looked at computing coverage paths with
minimum turning. Many of the proposed solutions in literature produce paths that may
not be feasible for the types of robots that perform coverage, i.e, the paths may contain
turn profiles that are two aggressive. A common way to implicitly compute a path that
minimizes the dynamic cost of a coverage path is by minimizing the number of turns in a
coverage path.

The work by Huang [40] attempted to solve this by proposing a convex decomposition
scheme via a dynamic programming approach. With this convex decomposition, the num-
ber of cells for the overall coverage is minimized. However, the time to compute such a
decomposition becomes prohibitive for even medium size polygons. Arkin [4] have studied
an approach, where the environment is discretized with a grid and a tour is computed with
a Traveling Salesman Problem solver. However, the costs for edges connecting the grid
cells are designed to incorporate turning cost. An approximate solution is proposed. Wag-
ner [62] proposed another approximate solution with bounds. However, these two solutions
restrict the type of coverage path to be rectilinear, which is overly restrictive in practice.

2.4 Multi-agent Coverage

Decreasing cost of robotics motivates the use of multi-agent systems to tackle some task.
Utilizing a team of robots rather than a single robot has multiple benefits, one of which
is the ability to complete a task faster. Recently, there have been a surge of works in
literature for tackling robot collaboration for common tasks. In this section, we consider
tasks that involve coverage.

One common approach is to divide the workspace into cells for each robot. Works by
Carlsson [14] and Durham et al. [24] propose algorithms for area partitioning. The partition
is computed via a sporadic pair-wise re-optimization that converges to a pair-wise optimal.

The work by Maza [47] proposed a solution to multi-agent coverage. Given n robots,
the polygonal workspace is partitioned into n regions. This partition is performed via an
anchored area partitioning algorithm [36]. The area of the cells in this partition reflects
each robot’s individual abilities. Each cell is covered in an optimal manner. The problem
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is that the authors only consider convex polygons. This approach was validated with
extensive trials in [9].

Hokeyam [39] worked on an algorithmic approach to coverage by robots following inner
level sets of the polygonal workspace. These inner level sets are computed by shrinking the
boundary of the polygon inwards by a fixed distance. A team of robots follow these level
sets and resolve any collisions via sporadic communications. The idea of inner level sets is
appealing for convex polygons. However, for non-convex polygons, the transitions between
inner level sets could be tricky. This issue was not addressed by the authors. Moreover,
this method of coverage usually ends up with excessive number of turns.

Another work by Valente [61] and Barrientos [9] propose a solution to the multi-agent
problem. The solution involves several steps. The workspace is partitioned into cells with
areas specified by the robots’ abilities. This is performed in a distributed manner via a
negotiation process. The resulting cells are discretized into a grid and a flight path is
computed for each cell individually. The work by Barrientos contain extensive field tests
with a team of UAVs.

10



Chapter 3

Background

This chapter reviews some of the concepts required to understand the proposed solution
in this thesis. This chapter is organized as follows. Section 3.1 reviews robot dynamics
and representation of a workspace. Section 3.2 reviews some concepts from geometry.
Section 3.3 reviews graphs and the Traveling Salesman Problem.

3.1 Robot Dynamics

Throughout the thesis, we make multiple references to the coverage workspace of a robot.
The coverage workspace refers to the region in the environment, such as a floor of a room,
that is required to be covered. The workspace is denoted by W ⊂ R

2. For the purpose of
this thesis, we assume that W is connected. An example of a workspace is demonstrated
in Figure 3.1.

The robot that is to be used for coverage has some dynamics. These dynamics give rise
to the configuration space of a robot. The configuration space is denoted by Q. In the path
planning works, an important subset of the configuration space is the free configuration
space. That is, Qfree ⊆ Q is a configuration space of a robot that is free from any collisions.
Figure 3.2 demonstrates the free configuration space in orange for a robot with the shape
shown in orange. It is important to note that some areas of the workspace are not in the
free configuration space because the placement of a robot in such a configuration results in
a collision with the boundary of the workspace. An example of such areas are the corners
of the workspace. With this in mind, a feasible path is called a continuous path that is
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Figure 3.1: An example of a workspace with a disk robot.

x, y

Figure 3.2: An example of a free configuration space shown in orange for a point robot.

entirely in the free configuration space:

p =
⋃

qi, qi ∈ Qfree. (3.1)

A set of all feasible paths is denoted by P :

P = {pi | pi ⊆ Qfree}. (3.2)

In this thesis, a kinematic model of Dubins’ car [23] is used. The kinematic model is
as follows:

ẋ = V cos θ,

ẏ = V sin θ,

θ̇ = u

(3.3)

where (x, y) is a position of the robot and V is the linear constant speed of a car, u is
the turn rate, which is bounded. The maximum turning rate corresponds to the minimum
turning radius Rmin. With this model, the configuration space of a car is R2 ×Θ

12



x, y

Figure 3.3: An example of a coverable space show in green.

Throughout the thesis, numerous references are made to straight line segments and
transition segments. A straight line segment is a path that is a straight line. In other
words, a robot traversing a straight line segments will never change its heading. On the
other hand, a transition segment is a path where the robot does change its heading. A path
p has a linear component ℓ(p) and an angular component a(p). The linear component is the
total distance traveled by a robot traversing p. The angular component is an accumulation
of heading changes of a robot traversing p.

Any coverage robot is equipped with a coverage tool. When this tool is operational,
there is an associated coverage footprint with it. The location of this footprint and the
exact region covered by this footprint depend on the physical location of this footprint on
the robot. To formalize this relation, a function is introduced called the coverage map,
M : Q → R

2. The coverage map function maps the configuration q of a robot to a set
of points in R

2 that are located under the footprint. A set of points that can be covered
given a free configuration space of a robot is called the coverable space and is denoted by
C. An example of a coverable space is shown in Figure 3.3. In the figure, a disk robot has
a smaller circular coverage footprint in the center of the robot shown in green. Formally,
the coverage space is defined as follows:

C =
⋃

q∈Qfree

M(q). (3.4)

3.2 Geometric Preliminaries

A simple polygon is a non-intersecting chain of straight line segments forming a closed
loop and specified as a set of points, i.e., Z = {vi ∈ R

2|i = 1, . . . , n}. Note that since
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the chain is a circuit, any vi ∈ Z has two adjacent line segments. A boundary of a simple
polygon is a set of points, ∂Z, along a line connecting any two adjacent vertices of a
chain. A clockwise simple polygon is a simple polygon where vertices are specified in a
clockwise order. We associate these types of simple polygons with holes in the workspace.
A counter-clockwise simple polygon is a simple polygon where vertices are specified in a
counter-clockwise order. This type of simple polygons are associated with the external
boundary of the workspace. Finally, a polygon is a set of clockwise and counter-clockwise
simple polygons. For clarity, we will refer to simple polygons as chains and reserve the
term polygon for a set of chains, i.e., P = {Z0, . . . , Zm}. Z0 is a counter-clockwise chain
(i.e., the boundary) and all subsequent Zi are clockwise chains (i.e., holes). A boundary of
a polygon is the set of points defined as ∂P =

⋃M

i=1 ∂Zi where Zi ∈ P .

A reflex vertex is a vertex in one of the chains of P that has an internal angle of more
than π. As such, a polygon is convex if and only if there are no reflex vertices. Conversely,
a polygon is non-convex if and only if it contains at least one reflex vertex. Note that the
presence of a hole guarantees at least one reflex vertex.

Definition 3.2.1 (Cone of bisection). Suppose a non-convex polygon P containing a reflex
vertex v is given. Let dℓ = {vk, v} and dr = {v, vl} be the two adjacent edges of v. The
cone of bisection at v is defined by two line segments, eℓ = {v, wℓ} and er = {v, wr} that
are parallel to dr and dℓ respectively with wℓ, wr ∈ ∂P \ {v}. See Figure 3.4.

Definition 3.2.2 (Cut space). Consider a non-convex polygon P with reflex vertex v,
along with the cone of bisection. The cut space is a set S ⊂ ∂P of all points on ∂P

between wℓ and wr visible from v.

The cut space S can be represented by its straight line segments S1, . . . , SL where
⋃L

i=1 Si ⊆ S.

Definition 3.2.3 (Decomposing Cut). Given a non-convex polygon P with a reflex vertex
v, a decomposing cut is a straight line segment e = {v, w} within the cone of bisection of
v where v, w belong to the same chain. See Figure 3.4.

3.3 Traveling Salesman Problem Preliminaries

A graph G is defined by a pair of sets G = (V,E), where V is a set of vertices in the graph
and E is a set of edges between the vectices. An edge connecting vertices u and v exists
in the graph if there is a pair {u, v} in E. A graph is complete if there exist a pair {u, v}
for every u, v ∈ V, u 6= v. An example of a complete graph is shown in Figure 3.5.
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Figure 3.4: Decomposing cut originating at a reflex vertex.

Figure 3.5: An example of a complete graph G.
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Figure 3.6: An example of a TSP tour on a complete graph G.

Definition 3.3.1 (Weighted Graph). A graph G is weighted if for every edge ei ∈ E, there
exists a value wi > 0.

Definition 3.3.2 (Subgraph). A subgraph G = (VS, ES) of a graph G = (V,E) is a graph
where VS ⊆ V and ES ⊆ E. The subgraph is a spanning subgraph when VG = V .

Definition 3.3.3 (Cycle). A cycle C in graph G is a sequence of vertices v1, v2, . . . , vk,
such that there is no repeating vertices in the sequence and no repeating edges. The last
edge of a cycle is an edge between v1 and vk.

Definition 3.3.4 (Tour). A cycle on a spanning subgraph is called a tour.

Problem 3.3.1 (TSP). Given a complete weighted graph G = (V,E,w), compute a tour T
of G such that the sum of edge weights is minimized. An example of a TSP tour is shown
in Figure 3.6.

Another important problem is called the Generalized Traveling Salesman Problem
(GTSP). It is defined over a complete graph and a vertex partition. A vertex partition is
a set of disjoint subsets of V , {V1, V2, . . . , Vm}.

Problem 3.3.2 (GTSP). Given a complete graph G = (V,E,w) and a vertex partition
{V1, V2, . . . , Vm}, compute a tour of G that includes exactly one vertex from each subset
Vi and the sum of edge weights is minimized. An example of a GTSP tour is shown in
Figure 3.7.
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Figure 3.7: An example of a GTSP tour on a complete graph G.

A TSP problem is known to be NP-hard. A GTSP problem can be solved as a reduction
to a TSP problem [48]. However, there are numerous approximate and suboptimal solutions
available. One of them is a solver called GLKH, which utilizes a Lin-Kernighan TSP
heuristic [35]. In this thesis, we utilize the GLKH solver for solving GTSP problems.
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Chapter 4

Single Agent Coverage

In this chapter, the problem of single agent coverage is formulated and a solution is pro-
posed. The chapter is organized into six sections. Section 4.1 goes through a formulation
of the problem. Section 4.2 proposes an algorithm. Section 4.3 performs a computational
complexity analysis. Section 4.4 describes the formulation of the problem as a Generalized
Traveling Salesman Problem. Lastly, Section 4.5 presents the results of the algorithm in
the form of simulations.

4.1 Problem Statement

The general coverage problem is defined in Problem 4.1.1.

Problem 4.1.1 (Minimum Cost Coverage Path Planning). Given a workspace W , a robot
with dynamics, and a coverage footprint mapM(q), compute a path pi such that

pi ∈ P,
⋃

q∈pi

M(q) = C,

E(pi) ≤ E(pj), ∀pj ∈ P.

(4.1)

In Problem 4.1.1, a workspace W , a robot with dynamics, and a coverage footprint map
are given. The objective is to compute a path that lies entirely in the free configuration
space of the robot such that the footprint of the whole path is equal to the coverable
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space and the cost of the path is minimized. A number of aspects of this problem makes it
difficult. For instance, the set of feasible pathsW contains infinitely many paths. Also, it is
difficult to directly check the satisfiability of conditions (4.1). As such, several assumptions
and heuristics are used throughout this work.

Assumption 4.1.1 (Polygonal Workspace). The workspace is assumed to be polygonal,simply
connected, and noise free.

Assumption 4.1.2 (General Robot Model Assumption). We deal with kinematic robot
models with vmax as the maximum velocity. In Section 4.5, we utilize Dubins’ car model
for our simulations. We assume robot’s coverage footprint is a circle of radius r. The
localization problem is assumed to be solved.

4.1.1 Utilizing Segmented Paths

Assumption 4.1.3 (Reduced Set of Feasible Paths). It is assumed that paths considered
for coverage in this problem have a certain structure. The set of such paths is called a set
of feasible segmented paths.

The set of feasible segmented paths is defined in Definition 4.1.1 with an example shown
in Figure 4.1. Notably, these types of paths consists of a sequence of pairs of straight and
transition segments.

Definition 4.1.1 (Set of Feasible Segmented Paths). A set of feasible segmented paths is
defined as

Psegmented = {pi | pi ⊆ Qfree, pi = {s1, t1, s2, t2, . . . , sn, tn}}, (4.2)

where si refers to ith straight line segment and ti refers to ith transition segment.

Problem 4.1.1 is modified accordingly with a modified search space of feasible paths.

Problem 4.1.2 (Minimum Cost Coverage Path Planning with Straight Line Segments).
Given a workspace W , a robot with dynamics, and a coverage footprint mapM(q), compute
a path pi such that

pi ∈ Psegmented,
⋃

q∈pi

M(q) = C,

E(pi) ≤ E(pj), ∀pj ∈ Psegmented.

(4.3)
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4.1.2 Path Evaluation Metric

From the literature and our collaborations with companies that deal with coverage, we
have observed that the most desirable path for numerous types of robots is a straight line
segment. Human path planners generally try to avoid having excessive number of turns
in their paths. This is because many types of robotic systems do not handle turns well.
For instance, a battery powered differential drive robot often cannot maintain the same
linear speed when executing turn maneuvers. As a result, it needs to slow down, turn and
speed up afterwards, which penalizes the energy efficiency of the path. Other examples
include field scanning via a fixed wing UAV [27]. Such fixed wing UAV systems often
have the sensor suite mounted directly on to the chassis of the plane for cost and weight
considerations. When the plane is not pitching, the sensors point downwards. During
a turn maneuver, the UAV has to pitch, which cause the sensors to point in an other
direction. This reduces the quality of the coverage and usually requires a second pass over
the uncovered spot. Again, turns reduce the efficiency of coverage paths. Motivated by
these observations, we aim to compute coverage paths with minimum turning.

Note that any path pi has two components: linear and angular. A metric to evaluate
the cost of a path is designed to reflect the differences in the cost of a straight path versus
a curved path. The cost function for path pi is denoted by E(pi) and defined as follows:

E(pi) = c1ℓ(pi) + c2a(pi). (4.4)

Here, ℓ(pi) is the length of a path, a(pi) is the total cumulative angle of the path, c1 and
c2 are constants.

Assumption 4.1.4 (Turn Penalizing Dynamics). It is assumed that the robot has partic-
ular dynamics that heavily penalizes turning costs resulting in

c2 ≫ c1. (4.5)

In other words, for such a robot, the best path between any two points is a straight
line segment if it is feasible.

Remark 4.1.1 (Angular Component of Straight vs. Transition Segments). Observe that
the cost of a straight line segment si has only the linear component

E(si) = c1ℓ(si). (4.6)

Whereas the cost of a transition segment ti typically has both linear and angular compo-
nents

E(ti) = c1ℓ(ti) + c2a(ti). (4.7)

•
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Figure 4.1: An example of a segmented path.

ℓ1

ℓ2
ℓ3 ℓ4 ℓ5 ℓ6 ℓ7 ℓ8 ℓ9 ℓ10ℓ11

δx

Figure 4.2: Parallel line arrangement.

Note that the cost for a segmented path has the following structure:

E(pi) =
n
∑

i=1

(E(si) + E(ti)) =
n
∑

i=1

[c1ℓ(si) + c1ℓ(ti) + c2a(ti)]. (4.8)

4.1.3 Subclass of Segmented Paths: Boustrophedon

Suppose a coverage robot is traversing a straight line segment of length ℓi. Suppose the
width of robot’s coverage footprint is δx. The area covered after the robot finishes travers-
ing the line is ℓiδx + k where k is the amount of area covered beyond the starting and
end points of the line. Suppose there are n such lines with no overlap between their line
footprints stacked parallel to each other. For this exercise, assume the robot is able to
teleport from one line to another. Such an arrangement is commonly used in the coverage
literature and is commonly referred to as Boustrophedon paths [19]. An example is shown
in Figure 4.2.
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Figure 4.3: Polygon regions where lines can be reoriented.

Such an arrangement has some desirable properties such as having no overlap between
straight line segments, having most of the interior of the workspace covered by straight
line segments, and transitions are performed near the borders of the workspace. The total
area covered by this path can also be computed as

Acovered =
n
∑

i=1

ℓiδx+ k. (4.9)

Furthermore, this arrangement holds some similarities to Riemann sums. As such, as
δx gets smaller, which happens when a small robot is covering a huge workspace, Acovered

tends to the actual area of the workspace, which is a desirable property. And lastly, all
transition segments in such an arrangement have a nearly fixed cost. This is because every
transition segment is a transition from the end of one line to the start of the next line.
Such a transition has an 180o angular component associated with it.

However, several issues prevent us from using this arraignment is a sole solution to
the coverage problem. The first issue is related to the coverage near the borders of the
workspace. Some areas cannot be covered by this path alone and usually requires a wall
following path. Second issue is with choosing the orientation of these parallel line segments.
Some orientations are more optimal than others. And lastly, for concave workspaces, this
type of coverage is non-optimal. See Figure 4.3 for an example. Nevertheless, the solution
proposed in this work utilizes some aspects of Boustropheon paths.

4.1.4 Coverage with Minimum Turns

Suppose a Boustropheon path is to be used to cover a convex polygon. Recall the structure
of the cost function of a segmented path from equation(4.8) and the property of Boustro-
phedon paths that state that the transition segments have a fixed cost. Since the number
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of straight line segments is the same as the number of transition segments, the problem be-
comes one of minimizing the number of straight line segments such that complete coverage
is achieved.

To this end, a notion of altitude is introduced. This notion of the altitude first appeared
in the work by Huang [40]. For convex polygons, the altitude in direction θ is defined as
the minimum distance between two parallel lines angled at θ+ π

2
with respect to the x-axis

such that all vertices of the convex polygon are contained between these two lines [40].
This notion can be extended to general polygons. The method of obtaining θ altitude for a
general polygon is shown in Algorithm 1. Figure 4.4 provides an example of this procedure.
In the example, the altitude is x1+2x2+3x3+2x4+x5. Note that if r is the radius of the
footprint of the robot and α is the altitude of a polygon along θ then the total number of
lines required for complete coverage in direction θ is

n =
⌈ α

2r

⌉

. (4.10)

Moreover, because of the structure of the Boustrophedon paths, the altitude also pro-
vides the angular component of the whole path. Specifically,

a(pi) = 180o
⌈ α

2r

⌉

. (4.11)

Given a polygon W , we are interested in finding the minimum altitude α∗(W ). Note,
however, that the altitude can be measured with respect to an infinite number of directions
θ. The following result addresses this issue.

Proposition 4.1.1 (Minimum Altitude Directions, [40]). Given a polygon W , the direction
of minimum altitude is orthogonal to one of the edges of the polygon.

By Proposition 4.1.1, minimum altitude can be computed by performing Algorithm 1
on each direction associated with the edge of the polygon. The runtime of this approach
is O(n2 log n) in number of vertices of a polygon.

4.1.5 Decoupled Problem Statement

As stated before, the Boustrophedon paths are not optimal for non-convex polygons. How-
ever, it can act as a starting point in an optimization. A more sophisticated approach is
to decompose W into polygons w0, w1, . . . , wk, where for each wi, the coverage is achieved
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Algorithm 1 get general altitude(W, θ)

Require: Polygon W = {Z0, Z1, . . .}, direction θ.
1: counter← 0, α← 0
2: Rotate W by −θ to align direction with x-axis.
3: Sort all vertices in W by their x-coordinates
4: for each vi in the sorted list do
5: α← α + counter×(xvi − xvi−1

)
6: if both vertices adjacent to vi are on right then
7: Increment counter by 1
8: else if both vertices adjacent to vi are on left then
9: Decrement counter by 1
10: end if

11: end for

12: return α

x1 x2 x3 x4 x5

Open Split Open Merge Merge Close

Figure 4.4: Process of measuring altitude with θ equal to 0.
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through the Boustrophedon path. The straight line segments in each such path should
be oriented to minimize the number of lines. For example, the polygon in Figure 4.3 is
decomposed into four regions. Lines in the two regions on the sides of the polygon are
reoriented to reduce the number of lines in those regions.

With the notion of altitude for general polygons, the problem statement becomes as
follows.

Problem 4.1.3 (Min Altitude Decomposition). Given a polygon W , find k and w1, w2, . . . , wk

such that
∑k

i=1 α
∗(wi) is minimized where

⋃k

i=1 wi = W .

For each wi, a number of parallel lines is generated in an orientation that minimizes
the altitude. The result is a set of lines, Γ. Now the problem becomes that of choosing an
order and direction to traverse each line with, i.e., a tour of Γ. Observe that each line can
be traversed with two directions. Hence, the second subproblem can be defined as follows:

Problem 4.1.4 (Minimum Cost Tour). Given a polygon W and a set of lines Γ, generate
a matrix M of transition costs between any pair of elements of Γ. Find a tour of Γ such
that cost of the tour is minimized.

The following sections will introduce our approach to these problems.

4.2 Minimum Altitude Polygon Decomposition for Cov-

erage Planning

This section introduces our algorithm to Problem 4.1.3.

4.2.1 Minimum Altitude Decomposition

This section outlines the approach to Problem 4.1.3. The overall steps of the process are
described in Algorithm 2.

Algorithm 2 accepts a polygon as the input. On Line 1, initial decomposition is gen-
erated using any convex decomposition technique. The rest of the algorithm attempts to
re-optimize this decomposition in order to decrease the overall altitude. Re-optimization
steps on Lines 3 and 4 are performed until the cost of the decomposition no longer de-
creases. The core of Algorithm 2 is the procedure for making optimal decomposing cuts
shown in Line 3. The procedure for making optimal decomposing cuts is introduced in
Section 4.2.2.
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Algorithm 2 min alt decomposition(W )

Require: Polygon W = {Z0, Z1, . . .}
1: D ← any convex decomposition of W
2: repeat

3: Re-optimize a cut from D

4: Update cost of the decomposition
5: until stopping criteria is met

4.2.2 Optimal Decomposing Cut

The re-optimization step operates on a polygon with a reflex vertex. This polygon is formed
by removing previous cuts that were made by a convex decomposition. Our algorithm will
either generate a new cut or no cut depending on what is optimal with respect to the
altitude of the polygon. We do this by searching for optimal decomposing cuts. The
algorithm for doing that is shown in Algorithm 3. The procedure operates on a single
chain and a specified reflex vertex in that chain. On Line 2, a cut space is generated for
the reflex vertex, which provides a set of potential cuts. Two polygons, Wℓ and Wr, are
formed by initializing the cut at the first point of the cut space on Line 3. Two sets of
altitude directions are generated on Lines 4-5 based on the two polygons. The main loop on
Lines 6-17 locates candidates for a cut for each combination of directions and each straight
segment of the cut space. Lines 9-10 locate special points on Si called transition points
for each altitude direction. These points are points on Si that yield cuts minimizing the
sum of altitudes. Transition points are found by locating a point of intersection of Si and
a line hi parallel to the edge ei passing through v (left of Figure 4.6). Before moving on to
the next straight segment of the cut space, Wl is modified to include Si in its boundary.
Wr is modified to exclude Si from its boundary. The straight segment Si may also add a
new altitude direction θ, which has to be accounted for in Θℓ and Θr. These operations
are carried out on Lines 15-17. The algorithm returns the cut that has the lowest cost.

4.2.3 Proof of Correctness

Algorithm 3 provides an optimal decomposing cut. This section proves this claim.

Claim 4.2.1. Given a polygon W and a reflex vertex v, Algorithm 3 returns a decomposing
cut forming two new polygons that minimize α∗(Wℓ) + α∗(Wr).

The rest of this section will provide proof for this claim. Suppose a polygon W is given
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Algorithm 3 find optimal cut(W, v)

Require: Polygon W = {Z0}, reflex vertex v

1: Aℓ ← ∅, Ar ← ∅, U ← ∅
2: Find cut space S for v
3: Wℓ,Wr ← polygons after the cut at first endpoint of S
4: Θℓ ←set of directions θ orthogonal to edges of Wℓ

5: Θr ←set of directions θ orthogonal to edges of Wr

6: for each Si ∈ S do

7: for each dirℓ ∈ Θℓ do

8: for each dirr ∈ Θr do

9: dℓ ← transition point on Si w.r.t dirℓ
10: dr ← transition point on Si w.r.t dirr
11: Add tuple (dℓ, dirℓ, dirr) to U

12: Add tuple (dr, dirℓ, dirr) to U

13: end for

14: end for

15: Modify Wℓ by adding Si to its boundary
16: Modify Wr by removing Si from its boundary
17: Modify Θℓ,Θr if new θ was introduced by Si

18: end for

19: Compute costs for all tuples (u, dirℓ, dirr) ∈ U

20: return Lowest cost element from U
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v

w1 w2

vp

Figure 4.5: An example of a pinch vertex at vp.

with a reflex vertex v. Recall that a decomposing cut generates two new polygons, Wℓ and
Wr. The sets of all edges of Wℓ and Wr are Eℓ and Er respectively. We are interested in
studying how a choice of a cut affects the altitudes of Wℓ and Wr. Let us parameterize
the orientation of a cut with respect to t. There is a function f : R → R

2 that maps a
parameter t ∈ [0, 1] to a point x ∈ R

2 on the cut space. Let w1 be a point on cut space
when t = 0 corresponding to a cut on edge e1. See Figure 4.5. Define αi(t) as a function
that measures altitude orthogonal to edge ei.

Define the two sets of altitudes as follows:

Aℓ = {αℓ,i(t) | i ∈ {1, . . . , |Eℓ|},

Ar = {αr,i(t) | i ∈ {1, . . . , |Er|}.
(4.12)

Note, each element αℓ,i(t) ∈ Aℓ and αr,i(t) ∈ Ar is a semi-continuous function of t, with
discontinuities occurring only when the cut sweeps past a pinch vertex in the cut space as
shown in Figure 4.5.

Lemma 4.2.1. There exists a t ∈ [0, 1] that minimizes αℓ,i(t) + αr,j(t).

Proof. For Wℓ and Wr, the minimum altitudes are

α1,min(t) = min(α1,1(t), . . . , α1,n(t)),

α2,min(t) = min(α2,1(t), . . . , α2,m(t)).
(4.13)

These functions are semi-continuous. Furthermore, the objective of the optimization is
the sum of two minimum altitudes of the two polygons,

α1,min(t) + α2,min(t). (4.14)
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Figure 4.6: An example of a transition point.

The function in Equation 4.14 is also semi-continuous. Furthermore, since t ∈ [0, 1] is
in a compact set, the minimum of Equation 4.14 exists by the extension of the extreme
value theorem.

Fix Si ∈ S and let f(a) and f(b) correspond to end points of Si as shown in Figure 4.6.
Consider α1,i(t) ∈ Aℓ, which is measured with respect to ei. Construct a line hi that is
parallel to ei that passes through v. Denote f(t1,trans) as the point on Si that intersects hi.
Let us refer to this point as a transition point. There are three possibilities:

1. t1,trans ≥ b,

2. t1,trans ≤ a,

3. t1,trans ∈ (a, b).

These cases are shown in Figure 4.7. In the first case, α1,i(t) remains constant for all
t ∈ [a, b]. In the second case, α1,i(t) is an increasing linear function for all t ∈ [a, b]. In the
third case, α1,i(t) remains constant for all t ∈ [a, t1,trans] and becomes an increasing linear
function for all t ∈ [t1,trans, b].

Now, we perform similar analysis for the same Si but for the right polygon Wr. The
results are almost identical where the only difference is the behavior of α2,i(t) in three cases
outlined above. Figure 4.8 demonstrates these cases. In the first case, α2,i(t) is a decreasing
linear function for all t ∈ [a, b]. In the second case, α2,i(t) remains constant for all t ∈ [a, b].
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In the third case, α2,i(t) is a decreasing linear function for all t ∈ [a, t2,trans] and remains
constant for all t ∈ [t2,trans, b]. Hence, for each Si and a combination of altitudes, α1,i(t)
and α2,j(t), we have two transition points, {t1,trans, t2,trans}.

Lemma 4.2.2. For a given Si, altitudes α1,i(t) and α2,j(t), a minimizer of α1,i(t)+α2,j(t)
is t ∈ {t1,trans, t2,trans}.

Proof. Observe that α1,i(t) + α2,j(t) is a sum of piece-wise linear functions. For any com-
bination of two cases depicted in Figure 4.7 and Figure 4.8, there are two cases to consider
when looking for the minimizer of the sum.

If t1,trans ≥ t2,trans then the optimal happens at t2,trans. If t1,trans < t2,trans then the
optimal depends on the slopes of the linear functions. Let δαℓ and δαr be the slopes of
the left and right altitudes respectively. If δαℓ > δαr then the optimum point is at t1,trans.
Otherwise, it is at t2,trans.

There is an altitude associated with the cut itself in Aℓ and in Ar that does not exhibit
the same properties that were discussed previously. However, by the properties shown by
Huang [40], this altitude varies as a piece-wise continuous sinusoidal function of φ where
φ is the angle of a cut with respect to e1. This means the altitude for Wℓ is minimized
when either the cut is parallel to one of the edges of Wℓ or when t ∈ {a, b}. Likewise for
Wr. However, when the cut is parallel to one of the edges of Wℓ or Wr, this means that
the altitude is identical to another altitude in the set Aℓ or Ar. Since these altitudes are
checked first, we only have to check both transition points at f(a) and f(b).

By Lemma 4.2.2, it is enough to compute the cost of each transition point for each
Si ∈ S and all combinations of elements from Aℓ and Ar and pick one point with lowest
cost. This is the procedure described in Algorithm 3.

4.3 Computational Complexity

The core of the algorithm is Algorithm 3, where an optimal cut is computed. We start
the computational analysis with this algorithm. On Line 2, a cut space is computed. Its
computation is done by computing a visibility polygon centered around the reflex vertex.
An efficient O(n) algorithm for computing a visibility polygon is proposed in [25] where
n is the number of vertices in a polygon. Our implementation utilizes the Visilibity [49]
library. Line 3 performs a cut of a polygon resulting in two new polygons. This step is
performed in O(n) since it only involves a walk through the chain of a polygon. On Lines 4
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Figure 4.7: Three cases of altitude behavior for Wℓ.
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Figure 4.8: Three cases of altitude behavior for Wr.
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- 5, two sets of angles is generated. These steps are both O(n) in the worst case since all
edges of both polygons need to be checked. On Line 9 - 10, transition points are computed.
Computing an intersection point of two lines is O(1). Since we are checking all edges on
the boundary, it is O(n). The inner-most loop iterates n times in the worst case. Same for
the middle loop. Hence, the two loops run in O(n3). The cardinality of U after the two
inner loops is O(n3). Lines 15- 17 run in O(1) since the endpoints of Si are indexed and
inserting them into the chain is done in constant time. Hence, the outer-most loop runs
in O(n4). Finally, Line 19 finds the element with the lowest cost. This means that the
altitude has to be computed for each element. The altitude as shown in Algorithm 1 has a
run time of O(n2 log n). As an input, the altitude algorithm accepts a polygon. This means
a polygon has to be constructed for each element in U , which takes O(n). Therefore, for
each element in U , the run time for all computations is O(n3 log n). Since there are O(n3)
elements in U , this step of the algorithm runs in O(n6 log n) time. The overall run time
for Algorithm 3 is O(n6 log n).

The optimization procedure shown in Algorithm 2 has a stopping criteria, which is
determined by the polygon, the quality of the initial decomposition, and the size of the
polygon. As such, the run time cannot be stated. However, since the acceptance conditions
for any new cut is that it is strictly better than the previous cut, the convergence of
Algorithm 2 is guaranteed.

4.4 GTSP Tour Generation

Given a polygon W , Algorithm 2 is called on W , resulting in a set D of polygons. Each
Wi ∈ D, is populated with a minimum set Γe of straight line segments. Note, each line
γj ∈ Γe has two possible traversal directions. We refer to the choice of this direction as γ1

j

or γ2
j as shown in Figure 4.9.

Define cost(γm
i , γl

j) as the robot transition cost from line γi in m direction to region γj
in l direction, where m, l ∈ {1, 2} and i, j ∈ {1, . . . , k}, i 6= j. This transition cost takes
the dynamics of the robot into account. By computing this cost for each pair γm

i , γl
j, a

complete graph G = (V,E,w) is constructed.

In this graph, a vertex v ∈ V represents one possible choice of direction to traverse
a line, γm

i for some m ∈ {1, 2} and i = {1, . . . , k}. An edge e = {v, z} in E represents
transition between vertices v and z, and weights represent robot transition costs between
vertices. Furthermore, V is partitioned into sets {γ1

i , γ
2
i } for i = {1, . . . , k}. The graph

G and the partition define the GTSP instance, and a GTSP tour on this graph gives a
coverage path for the robot. This process is demonstrated in Figure 4.10.
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Figure 4.9: Two possible traversal directions for line γj.
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Figure 4.10: Process of converting a set of lines into a graph, followed by a GTSP instance.
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4.5 Simulations

The decomposition algorithm was implemented in Python. The algorithm was imple-
mented with the help of computational geometry libraries including Shapely [30] and
Visilibity [49]. The heuristic solver GLKH [34] was used as a GTSP solver. Transition
costs between segments were computed assuming a Dubins’ vehicle model [23].

Our method was compared to two other approaches. The first method relies on an
approximate point decomposition of the workspace from [5]. Each point is assigned eight
headings. These headings represent possible traversal directions for that point. Finally,
the GTSP tour of minimum cost is computed as in [44]. In the second method, the
coverage path is computed but the re-optimization procedure is not performed on the
initial decomposition. The initial decomposition is generated with a Python library for
greedy convex decomposition, based on [26]. We tested all approaches on four different
workspaces of similar size but various complexity, based on test environments used in [17].

Performance figures of all three methods are shown in Table 4.1. We compare four
aspects of the three approaches: the size of the GTSP instance, the execution time from
start to finish, the total length of the tour, and the area covered by the coverage path as
percentage of the total area of the polygon. In all cases, our method reduced the number
of turns in the final coverage path. This is shown in the reduction in GTSP size, which
is equivalent to the reduction in number of straight line segments. Naturally, since our
method uses greedy decomposition as a starting point, it runs more slowly then the pure
greedy approach. On average, our method is about three times slower than the greedy
approach. However, it is faster then the point decomposition by a factor of 100.

Notably, the overall path lengths are shorter with the greedy decomposition compared
to our method. However, this is attributed to the greedy decomposition producing many
regions whose area is small relative to the size of the footprint. These regions are typically
narrow, which makes it difficult to place lines for complete area coverage. Decompositions
that produce excessive number of such regions result in a significant portion of the total
area uncovered. Our method produces fewer regions and leaves less area uncovered. From
Table 4.1, our method leaves on average half of the uncovered area left by the greedy
approach. Note that the point decomposition in some cases covers less area than the com-
peting algorithms. However, this occurrence is due to the limitation of our implementation
of the approximate decomposition, which does not place any points at a distance of less
than r from the boundary, leading to uncovered areas near polygon boundaries. This has
the effect of reducing the covered area and the path length as well.

Figure 4.11 shows the resultant paths for three different approaches. The line seg-
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Table 4.1: Decomposition methods comparison for multiple test shapes.

Size Time Length Area

Point Decomposition

Shape 1 7144 2h 312.6 87.8%
Shape 2 7288 2h 306.3 86.9%
Shape 3 7464 2h 349.3 88.3%
Shape 4 6736 2h 312.2 85.1%

Greedy Decomposition

Shape 1 96 2s 231.0 91.6%
Shape 2 86 2s 216.8 84.6%
Shape 3 136 6s 226.9 79.8%
Shape 4 116 3s 226.5 88.1%

Min Alt Decomposition

Shape 1 78 2s 242.3 95.1%

Shape 2 80 7s 228.9 91.7%

Shape 3 92 15s 228.1 89.1%

Shape 4 88 13s 234.4 93.5%

ments are orange and Dubins transition costs are green. Note that green segments do not
necessarily indicate the path of the robot but rather show the cost associated with the
transition. The red lines highlight shared edges of adjacent polygons in the decomposition.
The first row of figures show the point decomposition. The second row of figures show the
greedy decomposition technique. And the last row shows our re-optimization technique.
Figure 4.11 demonstrates a reduction in the number of polygons with our method com-
pared to the greedy decomposition. Inefficiencies in the GTSP tour occur due to the very
large size of the GTSP instance, which poses a challenge for the heuristic GLKH solver.
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Figure 4.11: First column: point decomposition. Second column: greedy decomposition.
Third column: min altitude decomposition.
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Chapter 5

Multi-agent Coverage

In this chapter, the multi-agent coverage problem is introduced. The problem statement
is formalized in Section 5.1. One of the important aspects of the algorithm is a decompo-
sition metric used during the search algorithm. The design and analysis of this metric is
in Section 5.2. The algorithm is proposed in Section 5.3. Section 5.4 presents the compu-
tational complexity analysis of the algorithm. Lastly, Section 5.5 presents simulations and
a discussion of the results.

5.1 Problem Statement

A multi-agent coverage task is defined over a workspace W and a team of N robots.
The workspace W represents the area to be covered. The robots on the team are tasked
with coverage. Each robot on a team has the same dynamics and hence, the same free
configuration space Qi,free. Each robot also has a coverage map Mi(q), which maps a
configuration q of robot i to a set of points directly under the robot’s coverage footprint.
The objective of the problem is to compute a path for each robot such that the entire
coverable space C is covered and the maximum path cost amongst all robot is minimized.
This objective is motivated by the following.

Complicated tasks can be solved in a distributed manner with a team of robots. This
is where the overall task is divided into N subtasks and assigned to N robots in the team.
With this setup, it is often undesirable when one robot finishes its assigned subtask much
later than other robots. This leads to excessive idle times for the rest of the team and
unnecessarily long execution time for the overall task. This issue can be addressed if the
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subtask with the longest execution time is redistributed amongst other members of the
team such that the duration of the overall task is reduced. In other words, amongst a
collection of N subtasks, one would like to modify subtasks such that the longest duration
is minimized. As an example, such cost organization was used in [13] for multi-depot
vehicle routing problem.

Formally, this problem is introduced in Problem 5.1.1.

Problem 5.1.1 (Multi-agent Coverage Path Planning). Given a workspace W and a team
of N homogeneous robots with the same coverage map, compute {p1, p2, . . . , pn} with the
following conditions:

pi ∈ Pi, i = 1, . . . , N,

⋃

i=1,...,N

(

⋃

q∈pi

Mi(q)

)

= C,

max
i=1,...,N

{Ei(pi)} is minimized.

(5.1)

Remark 5.1.1 (Heterogeneous Team). Notice that Problem 5.1.1 is defined for a team of
homogeneous robots. A heterogeneous team consists of robots with different dynamics,
which leads to coverage spaces that vary from robot to robot. Recall that coverage space
determined by the configuration space of robot u is defined in the following way:

Ci =
⋃

q∈Qi,free

Mi(q). (5.2)

If Ci 6= Cj then there exists some areas in the workspace that are coverable by only one
of the robots. From the coverage planner’s perspective, these areas need to be identified
since their coverability is conditional on the dynamics of robots. This problem is beyond
the scope of this thesis; hence, the team is assumed to consist of homogeneous robots only.

•

Remark 5.1.2 (Path Costs). The path cost E(pi) is the same cost described in Section 4.1:

E(pi) = c1ℓ(pi) + c2a(pi). (5.3)

Notably, this cost consists of two components: linear and angular. Similar assumption
about the dynamics of the robots is made where c2 ≫ c1.

•
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Similar to steps taken in Chapter 4.1, the Problem 5.1.1 is modified by reducing the
search space for paths to a set of segmented feasible paths. The problem statement for
this problem is shown in Problem 5.1.2.

Problem 5.1.2 (Multi-agent Coverage Path Planning with Straight Line Segments).
Given a workspace W and a team of N homogeneous robots with the same coverage map,
compute {p1, p2, . . . , pn} with the following conditions:

pi ∈ Pi,segmented, i = 1, . . . , n,

⋃

i=1,...,N

(

⋃

q∈pi

Mi(q)

)

= C,

max
i=1,...,N

{Ei(pi)} is minimized.

(5.4)

Finally, we transform Problem 5.1.2 into an equivalent decoupled, two step problem.
First, observe that a robot i traversing a path pi covers a region wi where

wi =
⋃

q∈pi

M(q). (5.5)

By conditions stated in Problem 5.1.2, a team of robots has to entirely cover the coverable
space. As a result, a solution to the problem has to satisfy the following:

⋃

i=1,...,n

wi = C (5.6)

Notice that equation (5.6) suggests some sort of decomposition of C. This observation
motivates our decoupled approach to this problem. The first subproblem computes a n-
cell decomposition for each agent followed by a single-agent path planning for each cell
individually. The evaluation of the decomposition is performed with a metric designed to
approximate the coverage path cost. This first subproblem is stated in Problem 5.1.3.

Problem 5.1.3 (Workspace Allocation). Given a workspace W and N robots with same
dynamics, compute a decomposition of C into {w1, w2, . . . , wN} such that

⋃

i=1,...,N

wi = C,

max
i=1,...,N

{χi(wi, q
0
i )} is minimized.

(5.7)

We note that the second subproblem is the problem solved in Chapter 4 and will not
be covered in this section. The rest of this chapter focuses on the decomposition problem.
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5.2 Decomposition Metric

The solution to Problem 5.1.2 is a set of cells forming a decomposition of the coverable
space. The evaluation of decomposition is performed with the metric χ that assigns cover-
age costs to polygons. Ideally, this metric would be the real cost of a coverage path for a
given cell. However, as we have shown in Chapter 4, such metric would be computation-
ally expensive. In this chapter, we develop an approximation of such cost that is easy to
compute. This metric is shown in Definition 5.2.1. The rest of the section discusses the
design of this metric.

Definition 5.2.1 (Decomposition Metric). Given a polygonal workspace W and a robot
with dynamics, the partition metric χ : W,Q → R maps the workspace and the robot
dynamics to an approximation of a coverage path cost in the following way:

χ(wj, q
0
j ) = c1[F1(q

0
j , wj) + F2(wj)] + c2F3(wj). (5.8)

Here, wj refers to a workspace assigned to robot j and q0j refers to the initial position of
robot j, F1,F2, and F3 refers to individual terms in the metric.

Remark 5.2.1 (Segmented Coverage Path Structure). The design of the metric χ is mo-
tivated by the structure of a coverage path. A coverage path pi for a robot i consists of
three parts. The first part is the segment of the path from the starting location of the
robot to its assigned region. The second part consisting of all the straight line segments
used in the segmented coverage path. The last part includes all the transition segments
connecting the straight segments together as shown in Figure 5.1. Notice that the first
two parts could be used as approximations for the linear component cost of the coverage
path while the thirst part could be approximating the angular component. The following
subsections discuss all three components in detail. •

5.2.1 Initialization and Return Distance

This term is designed to approximate the travel distance of a robot from its starting
location to its assigned task. To demonstrate the important of this term, consider the
following. A team of N robots have N starting locations, q01, q

0
2, . . . , q

0
N . Depending on the

decomposition technique, the starting location of a robot may be some distance away from
its assigned cell. Since this travel distance may be significant, it cannot be ignored when
computing the cost of a path. For example, assume N robots have equal battery charge
and same dynamics. In the scenario where robot i is further to its assigned cell then robot
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q0

Figure 5.1: The structure of a coverage path. Orange: Segments where the robot travels
to its assigned region shown in blue. Red: Path segments that are straight line segments.
Yellow: path segments that are transition segments.
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j, robot i should be responsible for smaller cell than robot j. We also assume that after
the completion of robot’s coverage task, it is required to come back to its original starting
location.

This first term of the metric χ is the following:

F1(q
0
i , wi) = 2 min

x∈∂wi

||q0i − x||2. (5.9)

Proposition 5.2.1. F1 is a lower bound for the actual distance from the robot’s initial
position to the start of the coverage path.

Proof. Denote the combined distance from the starting location of the robot i, q0i , to the
start of the coverage path in wi, and the distance from the end of the path to q0i be denoted
as

dist(q0i , wi). (5.10)

Since a path pi is defined in a metric space, triangular inequality hold. Hence, the
following is true:

F1(q
0
i , wi) ≤ 2dist(q0i , wi). (5.11)

Remark 5.2.2 (Infeasible Paths). The benefit of this approximation is its simplicity and
ease of computation. However, it is important to note that a straight path from the
starting location to the closest point on the boundary of wi may not always be feasible as
it may intersect an obstacle. Therefore, a situation is possible where the distance from the
starting location to the assigned region is close but in reality, requires extensive navigation
through obstacles. A way to mitigate this situation is by computing the distance of a
shortest feasible path to wi. However, this requires utilization of visibility graphs, which
is computationally expensive [11].

5.2.2 Length of Straight Line Segments

Once the robot reaches the start of its coverage path, the coverage process begins. The
second term of the metric χ is designed to approximate the length of all the straight length
segments of the coverage path. This approximation is computed using the area of the
assigned polygon with a few modifications.
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Figure 5.2: Coverage footprints over lines.

The second term of the metric χ is the following:

F2(wi) =
Aactual(wi)− Amax

uncovered(wi)

r
. (5.12)

In this term, Aactual(wi) refers to the area of the polygon wi and Amax
uncovered(wi) refers to an

estimate of all the uncovered area in the polygon.

Suppose a workspace wi is filled with non-overlapping parallel straight line segments
as shown in Figure 5.2. Assuming that the coverage footprint has a width of r, then the
area covered by a robot traversing a line of length li is rli + k. Here, k is the amount of
area covered beyond the starting and stopping points of a line. These areas are associated
with footprints such as a circle as demonstrated by half circles in Figure 5.2. The total
area covered in this way is equal to

Acovered =
n
∑

i=1

(rli + k). (5.13)

Note that Acovered is not known prior to computing the coverage path. But it can be
computed from the following relation:

Acovered = Aactual − Auncovered. (5.14)

The term Auncovered represents the area near the borders of the workspace that remain
uncovered as shown in Figure 5.2.
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The expression for term Auncovered is derived in Appendix A and have the following
form:

Auncovered =
r2

2
(4 csc θ − π). (5.15)

However, this term is a function of θ, which is not known prior to computing the actual
coverage path. As such, an upper bound is derived in Appendix A:

Amax
uncovered = ⌈

αmin

r
⌉r2(4 csc θmax − π). (5.16)

With an easily computable expression for Amax
uncovered, the expression for the total length

of straight line segments can be stated as follows:

F2(wi) =
Aactual − Amax

uncovered

r
. (5.17)

Proposition 5.2.2 (Lower Bound of Total Length of Straight Line Segments). The term
F2(wi) is a lower bound to the actual total length of straight line segments in a segmented
path.

Proof. The term Amax
uncovered was computed with the value of θmax that maximizes the

Auncovered function. Moreover, the cardinality of set S is approximated by ⌈αmin

r
⌉ where

|S| ≤ ⌈αmin

r
⌉. Hence, the following is true:

Amax
uncovered ≥ Auncovered,

=⇒ F2(wi) ≤
N
∑

i=1

li.
(5.18)

5.2.3 Angular Component

The last term is designed to approximate the angular component of the coverage path.
As discussed in Chapter 4, coverage is achieved through segmented paths. With such
paths, only transition segments contribute to the angular component of the cost. One
can calculate the angular component of the path by computing the path and counting
the transition segments. However, this is computationally intensive. In this section, we
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develop an approximation for the angular component of the coverage path that makes use
of a set of contours. This last term of the metric χ is the following:

F3(wi) = 360o|T |. (5.19)

where T is a set of contours.

Contours were used for coverage path planning before for computing a contour-parallel
paths [33]. A contour is a closed chain generated by shrinking the polygon’s boundary
inwards by a fixed distance. If this process is performed repeatedly where each resultant
contour is shrunk by distance 2r every iteration, eventually these contours will converge
to a point or a line called the center contour as shown in Figure 5.3. Let us denote the
set of these closed contours, spaced distance 2r apart where r is the radius of the coverage
footprint, as T . An example of such a set is shown in Figure 5.3.

The computation of these contours requires no knowledge of the actual coverage path
as is solely determined by the shape of the polygon. Furthermore, the angular component
of each contour is at least 360o. This fact and the following proposition leads to the form
of F3 shown in equation 5.19.

Proposition 5.2.3. Given a polygonal workspace W , suppose a set of contours T is com-
puted. Let the coverage angle of a Boustrophedon path for W be Φ. Then the following
holds:

360o|T | ≤ Φ. (5.20)

Proof. The result is shown for convex polygons first. The process of iteratively shrinking
the boundary converges to the center contour as shown in thick line in Figure 5.3. The
distance from any edge of the convex polygon to the center contour is β. Suppose that the
minimum altitude of the same convex polygon is α. By construction of the center contour
and the minimum altitude, the following holds:

β ≤
α

2
. (5.21)

However, recall that Φ = 180o⌈α
r
⌉ and |T | = ⌈β

r
⌉. Assuming that α

r
is exact then

360o|T | ≤ 180o
α

r
. (5.22)

Recall that concave polygons can be decomposed into a set of convex cells. We have
also demonstrated that a decomposition can be constructed that minimizes the sum of
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α

β

Figure 5.3: Minimum altitude of a convex polygon, α. Distance to the center contour, β.

minimum altitudes over all convex cells in Chapter 4. The sum of all minimum altitudes
is related to the number of parallel line segments required for coverage. Hence, a coverage
angle can also be computed. Also note that every convex cell has its own center contour.
However, it was shown that 360o β

r
≤ Φ for convex polygons. Hence, the summation over

all cells will hold as well.

5.3 Area Allocation Algorithm

The algorithm proposed in this section is based on a greedy pair-wise optimization search
from some starting point. The procedure is initialized with any n-cell decomposition. For
certain adjacent pairs of cells in this decomposition, a search is performed for a new cut that
would improve the pair-wise maximum cost. This process terminates when no pair-wise
improvements to the decomposition can be made.

The optimization strategy is shown in Algorithm 4. The goal of this algorithm is to
identify a cell with the maximum cost and attempt a re-optimization step. As inputs, the
algorithm accepts a polygon describing the coverable space and a set of starting positions for
each robot in the team. The optimization procedure is initialized with some decomposition
on Line 1. This decomposition could be any decomposition that partitions C into n cells.
On Line 3, the adjacency graph is computed for the current decomposition. Costs are
computed for all cells in the decomposition and the cell with the maximum cost is identified
on Line 4. On Line 5, a recursive procedure is called on the cell with the highest cost. This
procedure returns, if possible, a modified decomposition where some two adjacent cells in
the decomposition were re-optimized. This procedure terminated when the decomposition
remains unchanged after the re-optimization step.

The call on Line 5 of Algorithm 4 is a recursive procedure called on the cell with
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Algorithm 4 optimization procedure(C, {q0i })

Require: Polygon C = {Z0, Z1, . . .}, Set of starting locations {q0i }
1: D ← some decomposition of C consisting of n cells
2: repeat

3: G ← adjacency graph of D
4: χmax

i , vi ← the cost and index of highest cost vertex in G
5: D ← reopt recursion(D,G, vi)
6: until D stops changing

the highest cost in the current decomposition. This procedure is recursive to account
for situations where the cost of the maximum cell cannot be improved via pair-wise re-
optimizations with the cell’s neighbors. This situations may arise when the costs of the
neighbors are similar to the highest cell. As such, the procedure recursively attempts to
re-optimize the neighbors through their children with the hope that in the next iteration,
the highest cell can be improved. This procedure is described in Algorithm 5.

The Algorithm 5 is a depth-first traversal of the adjacency graph. Cycles are avoided by
restricting recursive calls to cells with lower costs. The procedure accepts a decomposition,
an adjacency graph, and a vertex representing a cell in the decomposition as inputs. For
each neighboring vertex to vi that has a lower cost, the procedure performs the following
steps. On Line 3, a re-optimization cut is attempted for vi and vj. If the re-optimization
cut was not successful, meaning it failed to find a cut that would decrease the pair-wise
maximum, then the same procedure is called on vj on Line 5. If the re-optimization cut was
successful then the current decomposition is modified with the new cut and the procedure
terminates.

Algorithm 5 reopt recursion(D,G, vi)

Require: Decomposition D = {C0, C1, . . .}, Adjacency graph G, Vertex vi
1: for vj ∈ Nvi do

2: if χ(vj) < χ(vi) then
3: Dnew ← reopt cut(vi, vj,D,G)
4: if Dnew = D then

5: Dnew ←reopt recursion(D, vj)
6: end if

7: return Dnew

8: end if

9: end for
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It should be noted that a breadth-first traversal version of Algorithm 5 is also available
and is shown in Algorithm 6. With this approach, the all immediate neighbors of the
highest cell are attempted to be re-optimized first before continuing to the next level. It
should be noted that in simulations, this approach converged to the same results as the
depth-first traversal.

Algorithm 6 reopt recursion bft(D,G, vi, Q)

Require: Decomposition D = {C0, C1, . . .}, Adjacency graph G, Vertex vi, Queue Q

1: if Q is empty then

2: return D
3: end if

4: vi ← pop from Q

5: for vj ∈ Nvi do

6: if χ(vj) < χ(vi) then
7: Dnew ← reopt cut(vi, vj,D,G)
8: if Dnew = D then

9: Push vj to Q

10: else

11: return Dnew

12: end if

13: end if

14: end for

15: return reopt recursion bft(D,G, vi, Q)

Another important procedure is described in Algorithm 7. It is a procedure for recom-
puting a cut that would minimize the maximum cost. In this procedure, the two adjacent
cells are combined into one cell on Line 3. A cut space is generated from the origin of the
cut on Line 4. This cut space is sampled with equally spaced K points on Line 5. A cut
is performed for each point in L and evaluated. The best cut is found on Line 6. This cut
could be the original cut if no improving cuts were found. The cut is then implemented
and the current decomposition is modified.

Lastly, an algorithm for computing the metric χ is shown in Algorithm 8. Note that
this procedure calculates the three terms as a function of the polygon and the starting
location of the robot. The detailed description of the computation of these terms was
described in Section 5.2.

An example of the algorithm in action is shown in Figure 5.4. The top picture depicts
the initial decomposition of the rectangular workspace into three cells. The initial positions
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Algorithm 7 reopt cut(vi, vj,D,G)

Require: Vertices vi, vj, Decomposition D, Adjacency graph G
1: c← shared edge between vi and vj
2: ps, pe ← endpoints of c
3: wtemp ← D(vi) ∪ D(vj)
4: S ← cut space in wtemp generated from ps
5: L ← sample S with K points
6: p

′

e ← point from L that minimizes the maximum {χ(wa), χ(b)}
7: c

′

← cut (ps, p
′

e)
8: wa, wb ←cut wtemp with c

′

9: Dnew ← D modified with wa, wb

10: return Dnew

Algorithm 8 compute χ(q0, w)

Require: Initial position q0, Polygon w = {Z0, Z1, . . .}
1: F1 ← 2minx∈∂w ||q

0 − x||2
2: Aactual ← area of w
3: Θ← angles of all edges w.r.t. the x-axis.
4: θmax ← largest difference between any two pairs of elements of Θ
5: αmin ← minimum altitude of w
6: Amax

uncovered ← αminr(4 csc θmax − π)

7: F2 ←
Aactual−Amax

uncovered

r

8: T ← compute contours of w
9: F3 ← 360o|T |
10: return c1(F1 + F2) + c2F3
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Figure 5.4: Top: initial decomposition. Middle: after first iteration. Bottom: after second
iteration.

of the three robots are in the lower left corner of the workspace. The initial decomposition
was designed such that the cells two and three has almost equal costs while cell one has
the minimum cost. The algorithm identifies the cell three to be the cell with the highest
cost. During the recursive call, the algorithm attempts to re-optimize the cut between cell
three and two. However, due to costs being almost equal, no improving cuts were found.
As a result, a recursive call is called on cell two. Here, cell two is re-optimized with cell
one, resulting in lower cost of cell two shown in the middle picture. Finally, the bottom
picture shows the next iteration of the algorithm where the cell three is re-optimized with
the modified cell two, resulting in the decreased maximum cost.

5.4 Computational Complexity

The run time of Algorithm 8 is determined as follows. Line 1 computes the minimum
distance from a fixed points to a set of points. This operation is performed through an
exhaustive search in O(n) time by iterating over all vertices in the set. On Line 2, the area
of a polygon is computed in O(n) time by using Gauss’s area formula. On Line 3, a set of
angles is computed in O(n) time by traversing over all edges of the polygon. On Line 4, the
largest pair-wise difference between any two pairs of elements is computed in O(n2) time
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by evaluating all possible pairings. The minimum altitude is computed using Algorithm 1
in O(n2 log n) time. A set of contours is computed on Line 8. In our implementation of
this step, a Shapely library is used. The run time of this implementation is not known.
However, a robust implementation of contour computation was proposed by Chen [16]. The
algorithm computes one contour in O((n+k) log n) time where n is he number of edges and
k can be roughly approximated by the number of convex vertices in the polygon. Hence,
n + k = 2n for convex polygons. Furthermore, to compute the set of contours T , this
operation needs to be called several times. This number of times is determined by the
shape of the polygon. However, a upper bound on this number can be computed using
the minimum altitude of a polygon ⌈αmin

r
⌉. Let us refer to this quantity as d. As such, the

overall complexity of Algorithm 8 is O ((n+ d)n log n).

Algorithm 7 computes an improving cut if it exists. Starting with Line 1, an edge
is found that is common to both adjacent cells. One way of computing such edge is by
checking equality for each pair of edges from both polygons. This operation is O(mn)
time where m and n is the number of verticies in left and right polygons respectively. On
Line 3, a union of the two polygons is computed. This operation can be performed by
combining the two boundary chains together at the common edge. Since the indices of the
shared edge were calculated on Line 1, this operation runs in O(1) time. On Line 4, a cut
space is calculated similarly to Algorithm 3. Efficient O(m+ n) algorithms for computing
a visibility polygon exist such as one in [25]. The sampling step on Line 5 computes K

samples on the cut space. This operation is simple given a line segment. Hence, this
operation has to be performed in O(m + n) time in the worst case, potentially on every
edge of a combined polygon. On Line 6, a point on the cut space is found that results in
the best cost cut. This operation is performed by performing cuts at every point in the
set and computing the metric for both polygons. Followed by choosing a cut with the best
cost. The cut can be performed in O(m + n) time. The metric χ has to be computed for
both polygons with the following runtime:

O ((n+ dn)n log n+ (m+ dm)m logm) . (5.23)

It should be noted that there is no relation between n and dn. Since dn is related to
the dimensions of the polygon whereas n is the number of vertices. Hence, since K is a
constant, the whole step has the following run time:

O ((m+ n) [(n+ dn)n log n+ (m+ dm)m logm]) . (5.24)

Finally, the decomposition is modified in constant time.

Finally, Algorithm 4 is a recursive re-optimization algorithm. The recursive call in
Algorithm 5 can run as many as N times in the worst case where N is the number of
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cells in the decomposition. However, it is difficult to determine the number of iterations
required for Algorithm 4 to converge. It is clear that this algorithm converges because
only the cut that decrease the maximum pair-wise cost are allowed. As such, the whole
adjacent graph is traversed looking for possible improvement cuts. If no such cuts were
identified then the algorithm terminates.

5.5 Simulations

Our decomposition algorithm was implemented in Python. The algorithm was imple-
mented with the help of computational geometry libraries including Shapely [30] and
Visilibity [49]. The heuristic solver GLKH [34] was used as a GTSP solver. Transition
costs between segments were computed assuming a Dubins’ vehicle model [23].

The approach was tested on its ability to improve the existing decomposition with the
goal to minimize the maximum cost. Several test shapes of varying complexity were used
in simulations. The initial decomposition of the polygons was performed by hand. In all
test runs, four robots were used with starting locations usually located at the corners of
the polygon. For Algorithm 7, K is set to 100. To relate the metric χ to the length of
the coverage path, actual coverage paths are computed for each robot in the team using
Algorithm 2.

Performance figures for the algorithm are shown in Table 5.1 and Table 5.2. We compare
the improvements in the maximum cost χ as well as the actual lengths of the coverage
paths. This comparison demonstrates that our approach works as intended in minimizing
the maximum cost. We also compare the range of costs over four cells in the decomposition.
This comparison is to demonstrate the distribution of workloads amongst all robots in the
team. The lengths of the coverage paths were computed by solving the single agent coverage
problem for each robot in the team using the approach introduced in Chapter 4. We note
that the algorithm has improved the maximum value of metric χ on average by 26% and
the actual length of the coverage path by 28%, which suggests that the algorithm works
as intended. This is confirmed bu the data on the range of costs, which was also reduced
by 96% and 84% for metric χ and path lengths respectively. The reduction in the range
of costs demonstrates that the resultant costs over four cells is close together. It should be
noted that the data from the tables demonstrate strong correlation between the metric χ

and the actual coverage path length, which suggests validity of the metric’s design.

Figure 5.5 and Figure 5.6 demonstrate decompositions together with the coverage paths.
The assignment of paths to the robot is done with color coding. It should be noted that
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Table 5.1: Improvement to the maximum cost.

Max χ Max Tour Length

Old New % Old New %

Shape 1 47.5 41.6 12.4% 30.7 26.0 15.3%
Shape 2 228.1 155.3 31.9% 187.6 115.4 38.5%
Shape 3 214.3 154.3 28.0% 184.6 125.9 31.8%
Shape 4 220.4 157.5 28.5% 184.1 132.7 27.9%
Shape 5 205.0 145.9 28.8% 162.9 117.1 28.1%

Table 5.2: Improvement to the range of costs.

Range χ Range of Tour Lengths

Old New % Old New %

Shape 1 15.0 0.3 98.00% 14.5 3.4 76.55%
Shape 2 169.0 8.3 95.09% 157.4 3.0 98.09%
Shape 3 146.3 11.3 92.29% 142.5 28.5 79.98%
Shape 4 121.6 5.9 95.19% 122.4 22.6 81.51%
Shape 5 80.8 0.02 99.98% 89.8 14.5 83.84%
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after re-optimizations, the robots do not necessarily retain their previous color. Initial
positions of robots are shown as thick circles located on the boundary of the polygon. The
boundary of a cell is shown in a dashed gray line. Furthermore, Algorithm 2 from Chapter 4
may add minimum altitude cuts in each cell shown with red lines. The dotted segments
of the path represent transition segments computed using Dubin’s vehicle model. Note
that these segments do not necessarily indicate the path of a robot but rather show the
cost associated with the transition. As such, they may cross the boundary of the polygon.
The first column of figures demonstrates the initial decomposition and the second column
shows the decomposition after re-optimization.

We should note the limitation of our implementation that arises when cells contain
holes. Due to the limitation of the computational geometry library, Algorithm 7 cannot
consider a pair of adjacent cells where the union of them contains a hole even if there
exists improving cuts. This limitation is evident in the example shown in Figure 5.7. Here,
the yellow cell from the second column is never considered for re-optimization because
combining it with any of its two adjacent cells results in the presence of a hole. As such,
this particular cell is not changed throughout iterations of the algorithm.
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Figure 5.5: Decomposition results for shape 1,2, and 3. First column: decomposition before
re-optimization. Second column: after re-optimization.
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Figure 5.6: Decomposition results for shape 4 and 5. First column: decomposition before
re-optimization. Second column: after re-optimization.
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Figure 5.7: Hole Re-optimization results for shape 4 and 5. First column: decomposition
before re-optimization. Second column: after re-optimization.
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Chapter 6

Conclusions and Future Work

In this thesis, we study two coverage problems. The first problem is a single agent coverage
path planning problem with minimum turns. The objective of this problem is to compute
a path that covers the entire workspace and has the minimum number of turns. A greedy
algorithm is proposed that achieves a local minimal solution via an iterative re-optimizing
decomposition.

The second part of the thesis tackles a multi-agent coverage path planning problem.
The objective of the problem is to plan a coverage path for a team of robots such that
the entire workspace is covered and the maximum coverage cost between all robots in the
team is minimized. An approximation for the cost of the path is developed and an efficient
algorithm is proposed. This approximation is used to partition the workspace into a set of
regions assigned to each robot individually. The remainder of the problem solves a single
agent coverage problem for each robot individually.

6.1 Future Work on Single Agent Coverage

There are several potential modifications that would reduce the computational load of the
algorithm. The most computational intensive task in Algorithm 3 is computing the cut
candidates for each pair of altitude directions (Line 6-17). The computation load can be
reduced by only evaluating a subset of direction pairs as follows.

Define W ℓ and W r to be the polygons on either side of the cone of bisection. It is
important to note that the cone of bisection is not a part of these polygons. We com-
pute look-up tables of altitudes for every direction for W ℓ and W r separately such that
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Figure 6.1: An example of a undesired cell transition.

Figure 6.2: An example of a improvement to inter-cell transitions.

α(W ℓ, dir1) returns the altitude of W ℓ in direction dir1. These look-up tables represent
the best case scenario for a pair of directions. In the main loop of Algorithm 3, we keep
track of the best altitude so far. A check is added to the main loop such that for a pair
of directions, dir1 and dir2, if α(W ℓ, dir1) + α(W r, dir2) is larger than the best altitude so
far, then this pair of directions cannot be optimal, and no further computation is needed.

Also, the quality of the path produced by the proposed method can be increased via
an improved sampling. The paths generated by the proposed method may exhibit some
undesirable properties that complicate the transitions between cells. An example of such
paths is shown in Figure 6.1, where the thick dashed line represents a transition that is
very costly. A better alternative is to resample the long line closest to the adjacent cell to
allow for more elegant transitions. An example if shown in Figure 6.2. This method avoids
long and costly transitions between cells.
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10 3 7

Figure 6.3: An example where the current re-optimization technique terminates.

6.2 Improvements to Multi-Agent Coverage

One of the main mechanisms for re-optimization is the search for an improving pair-wise
cut for two polygons. In this work, the search is limited to a cone of bisection for all reflex
vertices. There is no guarantee that the search space of this approach contains the optimal.
Considering other search techniques could prove to be beneficial in aiding the search for
optimal cuts. For example, by also considering cuts outside the cone of bisection, the search
space is increased and the chances of finding an optimal cut are improved. Also, better
search techniques could be used to improve the computational burden of the algorithm,
i.e., binary search. Better techniques could results in few iterations requires to converge
to a minimum, thus reducing the computational burden.

The main limitation of Algorithm 4 is the greedy nature of choosing neighbors to the
current cell for re-optimization. That is, a neighboring cell is chosen only if it has a lower
cost compared to the current cell. This condition creates a possibility of a situation where
the proposed algorithm terminates but there are modifications to the decompositions that
are still possible. An example is provided in Figure 6.3 where the nodes represent cells, the
edges represent adjacency between cells, and the number represent the value of metric χ.
Suppose that no cut exists for cells with costs of ten and three. The proposed algorithm
will terminate after one iteration. However, it is possible that by making a cut for cells
with cost three and seven such that the cost of seven is increases slightly, the changes
in the decomposition allows for a new cut between ten and three that reduces the global
maximum cost.
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Appendix A

Uncovered Area Term Derivation

Suppose a workspace is to be covered and is populated with some straight line segments
as shown in Figure A.1. Note the white uncovered areas near the borders of the polygon.
An expression for the area of these regions is derived here. First, observe the uncovered
area generated by just one line segment as shown in Figure A.2(a), which depicts the top
half of a straight segment.

Note from Figure A.2(b), a region of interest is a trapezoid with two parallel sides a

and b, an orthogonal segment of length 2r, and a segment of the boundary of the polygon.
The area of such a trapezoid is

A = (a+ b)r. (A.1)

In this case, r is a constant determined by the width of the coverage footprint. However, a
and b are determined by r and θ, which is the angle between that particular section of the
boundary and the straight line segment as shown in Figure A.2(b). The expressions for a
and b are as follows:

a = r tan
θ

2
,

b = r tan

(

90o −
θ

2

)

.

(A.2)

Hence, the trapezoid area can be expressed in terms of r and θ as follows:

A = 2r2 csc θ. (A.3)

The area of a half circle is
πr2

2
. (A.4)
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Figure A.1: Sample workspace with parallel line segments.

Therefore, the amount of area that is left uncovered by the top half of the straight line
segment is

Auncovered = 2r2 csc θ −
πr2

2
=

r2

2
(4 csc θ − π). (A.5)

Note that the expression for Auncovered is exact and Auncovered is a function of θ, where
θ varies from one edge of a polygon to the next and the orientation of the straight line
segments themselves. As such, the computation of this term requires the knowledge of θ.
Next, we show an approximation to this value that gets rid of this requirement.

Suppose we compute θmax where

θmax = argmax
θ∈Θ

(

r2

2
(4 csc θ − π)

)

. (A.6)

Here, Θ is a set of all possible θ that a set of lines can have with the respect to any edge
of a polygon. Fortunately, by the result from Huang [40], the optimal orientation of a set
of lines is orthogonal to one of the edges of a polygon. Hence, if there are n edges in a
polygon then |Θ| = n2.
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Figure A.2: Geometry of the uncovered area.

Hence, the uncovered area can then be approximated as follows:

Amax
uncovered = 2|S|

r2

2
(4 csc θmax − π). (A.7)

Here, |S| is the number of straight line segments in a workspace scaled by a factor of two to
account for both ends of a line. Although |S| is unknown prior to computing the coverage
path, it can be approximated by the minimum altitude. This approximation is exact for
convex polygons and is an over approximation for non-convex polygons. Therefore, the
term is modified as follows:

Amax
uncovered = ⌈

αmin

r
⌉r2(4 csc θmax − π). (A.8)
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