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Abstract 

The objective of this thesis was to examine algal lipids for industrially relevant 

characteristics, in addition to the broader implications within the food web. A focus was placed 

on the pharmaceutical and aquaculture applications of these naturally synthesized fatty acids. 

Chapter 2 focused on the use of fatty acids as antibacterial agents in which multiple fatty acids 

were identified that were able to inhibit bacterial growth. Among the most effective fatty acids 

were 10:0, 16:1, 18:3(n-6), 20:4(n-6) and 22:2(n-6). Light cycle, light intensity, temperature and 

nutrients were manipulated to identify growth conditions that produced the greatest 

concentration of antibacterial fatty acids. Five microalgae were tested (Goniochloris sculpta, 

Boekelovia hooglandii, Phaeodactylum tricornutum, Chloridella simplex, and Rhodella 

maculata). Phaeodactylum tricornutum produced the largest total concentration of antibacterial 

fatty acids at 206 mg g-1 dry weight (dw), however B. hooglandii had the higher lipid 

productivity  due to biomass productivity. For the 29 free fatty acids examined, on average, as 

the number of double bonds increased the degree of inhibition due to the acid increased. Through 

the demonstrated antibacterial effects of certain fatty acids, common structural characteristics 

could be linked to commercially valuable antibacterial properties. Chapter 3 investigated the 

species, B. hooglandii, in more detail to determine its potential use as aquaculture feedstock. 

This chapter examined the biomass productivity and nutritional profile in terms of protein, lipid 

(34 fatty acids), carbohydrates, and pigments (7 pigments) to establish whether this alga is a 

suitable feed. Within the aquaculture experiments performed in Chapter 3, the biomass 

productivity of B. hooglandii (0.52 g L-1 day-1 dw) was greater than three commonly used 

aquaculture algal feeds. In addition, the nutritional profile of this species was suitable for bivalve 

larvae and juvenile oysters. This experiment also identified trends and relationships within the 
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nutritional profile; for example, a strong correlation was identified between total protein and 

growth rate. Identification of new algal feeds and correlations among nutritional properties 

provides insight into the dynamic nature of the nutritional profile during culturing. In Chapter 4, 

emphasis was placed on identifying trends in omega-3 fatty acid behaviour in species under 

varying light, temperature, and nutrient conditions, and examining how these differences could 

impact the food web. An overall trend was observed where lower light intensity, continuous 

light, vitamin B12 supplementation, and reduced temperatures resulted in greater omega-3 

production. In addition, the omega-3 content of the five microalgae studied contained a large 

proportion of EPA (>50% of total fatty acid content). Further research is required to determine if 

these trends are broadly applicable. Of the five algae studied, G. sculpta produced the high 

omega-3 content and biomass productivity under the same growth conditions, resulting in an 

algal strain that can act as a rich source of omega-three in food webs and for industrial purposes. 

Overall, this thesis highlights 3 factors that were the most influential on algal performance: 

growth condition, species and lipid structure. By understanding how these three factors influence 

each other, experimental conditions can be established that allow for the increased productivity 

of desirable fatty acids, and a greater appreciation of the role of these fatty acids in industry and 

ecosystems.  
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Chapter 1: Introduction 
 

1.1. Lipids and fatty acids 

Lipids are defined as “fatty acids and their derivatives, and substances related 

biosynthetically or functionally to these compounds” (Christie, 2012). Fatty acids are chains of 

hydrocarbons that consist of a carboxylic group and an aliphatic tail (Lawrence, 2008). They are 

identified based on the carbon chain length and number of double bonds. Thus, a fatty acid with 

18 carbons and three double bonds would be identified as 18:3. A carbon chain with no double 

bonds is termed a saturated fatty acid (SFA), with one double bond it is a monounsaturated fatty 

acid (MUFA), and with two or more it is a polyunsaturated fatty acid (PUFA). Different PUFAs 

can have the same carbon length and number of double bonds. Hence, PUFAs are also identified 

based on the location of the closest double bond to the methyl terminal (Sahena et al., 2009). 

Additionally, fatty acids can be further categorized into groups based on a common structure. For 

instance, omega-3 fatty acids have a double bond that is three carbons away from the methyl 

terminal (Figure 1) (Sahena et al., 2009). This distinction is denoted using the notation (n-3) or 

ω3, for example α-linolenic acid (ALA) is known as 18:3(n-3) or 18:3ω3 (Yongmanitchai, 

1991). 

  

Figure 1. The structural diagram of ALA (modified from Bajpai, 1993).  
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1.1.1. Fatty acid synthesis pathways 

The lipid synthesis pathway used by plants and vertebrates share many similarities, as 

well as significant differences (Wallis et al., 2002). Higher plants have Δ12 desaturase and Δ15 

desaturase enzymes which allow them to synthesize 18:2(n-6) and 18:3(n-3) (Figure 2), whereas 

humans lack these two desaturases forcing them to rely on dietary sources for these two fatty 

acids (Schmid & Ohlrogge, 2002; Wallis et al., 2002). Once these fatty acids are ingested, 

humans are able to use other desaturases and elongases to synthesize a variety of fatty acids of 

different chain lengths and saturation. For example, the omega-3 fatty acid 20:4(n-6) can be 

synthesized from 18:2(n-6) via elongation of the carbon chain and increased unsaturation using 

Δ6 desaturase, elongase, and Δ5 desaturase (Wallis et al., 2002). From the omega-3 fatty acid 

18:3(n-3), with progressive elongation and desaturation, a variety of fatty acids can be 

synthesized, including 20:5(n-3), and 22:6(n-3) (with the assistance of β-oxidation) (Wallis et al., 

2002). Examining the pathway of fatty acid synthesis highlights the significant impact of certain 

fatty acids on fatty acids further along the synthesis pathway. 

Within food webs, certain PUFAs are considered essential nutrients for consumers, due to 

the important role of these fatty acids in growth rates, egg production, and neural development 

within a population (Parrish, 2009). In addition, within humans the pathway used to convert 

18:2(n-6) and 18:3(n-3) to 20:5(n-3) and 22:6(n-3), respectively, is not efficient and thus 

supplementing the diet with these fatty acids can help prevent fatty acid deficiencies (Surette, 

2008). Primary producers have the ability to synthesize these fatty acids de novo, and act as a 

source of these essential fatty acids for consumers. Algae are examples of primary producers that 

can synthesize long chain fatty acids from 18:0, as seen in Figure 3. Thus, consumers can 
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selectively grazing on primary producers rich in essential fatty acids, in order to supplement their 

diet (Surette, 2008). 

 

 

 

 

Figure 2. Fatty acid synthesis pathway involving plants (above line), and plants and humans 

(below line), where D represents desaturase, E represents elongase, and β-ox represents β-

oxidation (modified from Wallis et al., 2002). 
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Figure 3. Fatty acid synthesis pathway in eustimatophytes, where D stands for desaturase and E 

represens elongase (modified from Harwood & Guschina, 2006). 

 

1.1.2. The algal membrane 

Photosynthesis is a process performed by plants that allows them to convert solar energy 

into glucose (Starr & Taggart, 1995). The initial steps in photosynthesis involve the capture of 

light and formation of ATP within the thylakoid membrane. This membrane consists of a lipid 

bilayer that has dynamic characteristics that allow it to modify its structure in response to 

environmental conditions (Starr & Taggart, 1995). Hence, the membrane must be strong and 

stable, while maintaining a certain level of fluidity in order to be able to adapt to protein 
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conformation, cell or organelle shape changes (Harwood & Russell, 1984). Most algal lipids are 

primarily in membranes and, under certain circumstances, in the cytoplasm as storage lipids 

(Wada & Murata, 2009). Polyunsaturated lipids are critical for synthesis of thylakoid membranes 

within the chloroplast and assembly of oligomeric components making up the photosynthetic 

structure (Harwood & Russell, 1984). Saturated fatty acid aliphatic chains, in the thylakoid 

membrane, result in a compact structure consisting of tightly packed, parallel fatty acids (Starr & 

Taggart, 1995). However, the rigid nature of the saturated structure is reduced when unsaturated 

fatty acids containing double bonds are present, resulting in a structure that is unable to pack as 

closely or tightly together, forming a membrane that is more fluid (Starr & Taggart, 1995).  

Within the photosynthetic membrane, a variety of different lipid structures are present 

which play different structural roles. The thylakoid membrane, consists of glycerolipids, 

primarily monogalactosyl diacylglycerol (MGDG), digalactosyl diacylglycerol (DGDG), 

sulfoquinovosyl diacylglycerol (SQDG) and phosphatidylglycerol (PG), and proteins (Wada & 

Murata, 2009). The mitochondrial membrane is formed primarily from phospholipids 

[phosphatidylcholine (PC), PG, phosphatidylethanolamine (PE) and phosphatidylinositol (PI)] 

(Wada & Murata, 2009). Within an algal cell, there are a variety of lipids of different structures, 

with a variety of structural roles within the cell.  

1.2 Algal fatty acids within a food web 

 Algal lipids play a variety of roles within a food web. For example, omega-3 fatty acids 

can be a source of essential nutrient for consumers (Guschina & Harwood, 2009). Essential fatty 

acids are compounds that are required by consumers that are unable to synthesize these 

compounds. Within the food web structure, as trophic level increases the proportion of 

individuals with the ability to synthesize essential fatty acids decreases (Kainz & Fisk, 2009). 
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These fatty acids enhance growth rates, survival and reproductive success for a range of 

consumers, including vertebrates and invertebrates. Many fatty acids are also precursors for 

eicosanoids, which assist in the regulation of physiological processes, such as spawning, egg-

laying, and egg-production (Guschina & Harwood, 2009). Notably, some fatty acids can also 

function as semiochemicals, such as 18:3(n-3), and 20:5(n-3). However, further research is 

needed to understand the dynamic relationship between grazers, and the nutritional and 

semiochemical characteristics of certain fatty acids (Watson et al., 2009). The role of fatty acids 

as essential nutrients, eicosanoid precursors, and semiochemicals illustrates the complex nature 

of these fatty acids within a food web.  

1.3 Commercial applications of algal fatty acids 

1.3.1 Antibacterial effects of fatty acids 

Methicillin-resistant Staphylococcus aureus (MRSA) has become an ongoing concern in 

medical institutions (Desbois et al., 2009). This type of bacteria has developed resistance to a 

variety of drugs, creating a challenge for researchers and the medical community (Desbois et al., 

2009). The search for new sources of antibiotics has led to the discovery of antibiotic 

characteristics in algae (Desbois et al., 2009; Findlay & Patil, 1984; Ohta et al., 1994). Research 

on the diatom Navicula delognei demonstrated that the free fatty acids 18:4 and 16:4 have 

antibacterial effects on a variety of bacteria, including Salmonella typhimurium, Staphylococcus 

aureus and S. epidermidis (Findlay & Patil, 1984). Notably, 16:4 was as effective as ampicillin at 

inhibiting S. typhimurium (Findlay & Patil, 1984). During this same time period Lacey and Lord 

were able to show antibacterial properties of 18:3 on S. aureus (Lacey & Lord, 1981). In 1994, a 

study of 18:3 from Chlorococcum sp. demonstrated that low concentrations of this fatty acid 

were able to inhibit MRSA growth (Ohta et al., 1994).  
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Further research into the antibacterial properties of free fatty acids on MRSA demonstrated 

that 20:5, in Phaeodactylum tricornutum, can act as a successful antibiotic (Desbois et al., 2009). 

When compared with the common antibiotic ampicillin using disc diffusion, eicosapentaenoic 

acid (EPA) had a Minimum Bactericidal Concentration (MBC) of 40-80 µM while ampicillin 

had a MBC of 320-640 µM (Desbois et al., 2009). The fatty acid EPA can successfully inhibit 

gram positive human pathogens, such as Bacillus cereus, B. weihenstephanensis, S. epidermidis, 

S. aureus, and 2 MRSAs (MRSA252 and MRSA16a), and the gram positive fish/shellfish 

pathogen Listonella anguillarum  (Desbois et al., 2009). The inhibitory nature of EPA towards 

these different bacteria is of high potential importance to the medical and aquaculture 

community (Desbois et al., 2009).  

1.3.2. Aquacultural use of algal fatty acids 

Microalgae contain a wide array of nutritional compounds that can be used for aquaculture 

purposes, such as proteins, lipids, pigments, and carbohydrates (Yaakob et al., 2014). For 

example as a source of natural pigments, algae can be used to improve the colouring, and in turn 

the market value, of consumer species. For instance, the diatom Haslea ostrearia is used to 

‘green’ oysters, resulting in the gills and labial palp developing a blue-green pigment and oyster 

market value increasing by 40% (Spolaore et al., 2006). High synthesis rates of proteins, lipids, 

pigments, and/or carbohydrates allow algae to be a competitive feedstock in aquaculture. 

Traditionally within aquaculture, fishmeal was used as a protein source, however as the lack of 

sustainability and the presence of contaminants are growing concerns, demand for algae is 

increasing. In addition, algae are able to naturally synthesize essential fatty acids that increase 

the nutritional quality of the grazing organism (Yaakob et al., 2014). Due to the high nutritional 
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characteristics of algae, there is growing demand for microalgae within aquaculture (Yaakob et 

al., 2014).    

1.3.3. Omega-3 fatty acids 

1.3.3.1. The health benefits of omega-3s 

Research has shown that omega-3 fatty acids play an important role in prenatal health, by 

assisting with the development of reproductive, nervous and optical systems. This is also true for 

infants, thus having a diet rich in omega-3s at a young age, as well as during pregnancy, is vital 

to a child’s development (Yongmanitchai, 1991). Sufficient omega-3 intake is also important for 

adults; for example, clinical depression is linked to low omega-3 levels (Benatti, Peluso, Nicolai, 

& Calvani, 2004). A diet rich in omega-3 fatty acids has been linked to the prevention of retinal 

disease, cardiovascular disease, rheumatoid arthritis, Crohn’s disease, and omega-3s are 

beneficial as anti-inflammatories, vasodilators, and hypolipidemic agents (Simopoulos, 1999; 

San Giovanni & Chew, 2005). An omega-3 enriched diet has demonstrated positive effects on 

human health, and the pharmaceutical and food industries are using algae as a source of these 

fatty acids (Simopoulos, 1999; Sidhu, 2003; San Giovanni & Chew, 2005; Lane et al., 2014).  

1.3.3.2. Commercial demand for omega-3s 

A report released in 2012 estimates that sales of omega-3 containing products will increase 

from $25.4 billion in 2011 to $34.7 billion in 2016, or 6% growth per annum (Leray, 2015). The 

Asia-Pacific market is quickly growing, becoming the second largest market behind North 

America (Leray, 2015). Over the next ten years, the following four markets will result in the 

continued growth of omega-3 products. The first is the increased demand for fortified infant 

formula, as a result of the increasing global population and expanding middle class in India and 

China (Leray, 2015). The second market is the increased demand for vegetarian algae-based 
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supplements, which is in part a result of India’s growth (Leray, 2015). A third factor to consider 

is the expansion of generic products in the current markets, along with the introduction and 

creation of an omega-3 market in South America. Finally, the increased focus on high quality 

omega-3 supplemented pet foods will further increase the demand for omega-3s (Leray, 2015). 

As a result of this growth, there will be a greater market opportunity for algal products. 

1.4. Choosing the appropriate algae 

When selecting an algal species, a variety of factors must be taken into consideration. 

Since this project focuses on PUFA content, this needs to be a major factor to consider along 

with growth rate. Algal omega-3 content not only varies by phylum but also between genus and 

species. By closely examining the different algal groups, a better understanding of which groups 

show promise can allow for a more informed selection of an appropriate test organism. Lang et 

al. (2011) examined over 2000 strains of algae from the SAG culture collection. They 

determined that the Chlorophyceae typically contain very little omega-3s and the few that 

synthesize omega-3s produce primarily 18:3, with a third of species containing 5% or more of 

total FA content as 18:3 (Lang et al., 2011). However, an exception to this was the Chlorophyta, 

Chlorococcum novae-angliae, which had the second highest DHA level of the over 2000 strains 

analyzed, at 18.9% of total fatty acid content (Lang et al., 2011). They also noted that the 

Bacillariophyceae (diatoms) typically have high omega-3, in the form of EPA and sometimes 

DHA (Lang et al., 2011; Yongmanitchai, 1991). The DHA content was particularly high in 

Dinophyceae, Haptophyta and Euglenoids (with greater than 60% of strains containing at least 

5% DHA), while EPA was generally quite high in Eustimatophyceae, Glaucophyta, 

Xanthophyceae and Rhodophyta (with greater than 81% of strains containing at least 10% or 

more of total FA as EPA) (Lang et al., 2011; Yongmanitchai, 1991). Of the entire SAG 
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collection studied, the Rhodophyta Compsopogonopsis leptoclados had the highest EPA content 

at 52.4% of total fatty acid content (Lang et al., 2011). During algal selection, taxonomy can 

provide guidance based on general trends in the different taxonomic groups, however fatty acid 

content still varies greatly among species. 

1.5. Growth conditions 

Appropriate growth conditions are vital to maximizing the growth rate of an algal species. 

This can become quite a challenge as the optimal conditions can vary significantly depending on 

the specific species. Understanding the impact of growth conditions on algal populations is key 

to understanding their role in a food web and utilizing a strain for industrial applications. 

1.5.1. Temperature 

Temperature is an important factor that influences the ability of an algal species to live in 

an ecosystem. For example, temperature can modify the rate of nutrient uptake and carbon 

absorption, which can result in a change in the organisms’ physiology (Stengel et al., 2011). If 

the temperature is within an optimum range, the physiological changes that occur can be 

advantageous, such as increased growth rate, however if temperature moves out of this range, 

growth rate will suffer (Gotham & Rhee, 1981). In addition, the optimum temperature range can 

vary within class (Guscina & Harwood, 2012). When comparing two species within the 

Bacillariophyceae, Detonula confervacea shows optimum growth between 10-13°C while 

Ditylum brightwellii experiences optimum growth between 23-28°C (Eppley, 1972). Thus, 

temperature is a growth condition that can influence cell physiology and growth rate (Eppley, 

1972; Gotham & Rhee, 1981; Stengel et al., 2011). 
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1.5.2. Light intensity and light:dark cycle 

Light plays a key role in photosynthesis as the energy source responsible for 

photoautotrophic growth (Guschina & Harwood, 2012). The maximum growth rate of the algal 

culture is dependent on light conditions reaching saturation intensity. Higher light intensities 

result in photoinhibition due to damage to the chloroplast lamellae (Juneja et al., 2013). The rate 

of algal growth is also a function of algal species. A study working with the diatoms Cyclotella 

meneghiniana and Stephanodiscus binderanus determined that the light:dark (L:D) cycles 

resulting in optimal growth were 20:4 and 12:12, respectively (Sicko-Goad & Andresen, 1991). 

The light cycle has a major impact on an algal cell’s access to light, in addition to their growth 

and viability. Studies have shown that longer photoperiods result in higher cell division (Foy et 

al., 1976; Juneja et al., 2013). However, to prevent photoinhibition from occurring, a dark cycle 

is required to allow for the complete conversion of captured photons to chemical energy (Juneja 

et al., 2013). Thus, the effects of light (intensity and cycle) must be taken into consideration 

when maximizing algal growth. 

1.5.3. Nutrients 

There are many different aspects within growth media that must be considered, including 

micronutrients, macronutrients, vitamins, and salinity (Stengel et al., 2011). Thus, for successful 

growth, all of these components must be present at appropriate concentrations within the media. 

1.5.3.1. Nitrogen, Phosphorous and Silicate 

To produce optimum growth, major limiting nutrients must co-exist in appropriate ratios. 

Nitrogen and phosphorous are common limiting nutrients, while silica is specifically limiting for 

diatoms (Graham & Wilcox, 2000; Juneja et al., 2013; Lavens & Sorgeloos, 1996). For example, 

for marine algae an appropriate estimated ratio is 106C:16N:1P, and for algae requiring silica a 
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ratio of 106C:16Si:16N:1P is close to optimal (Graham & Wilcox, 2000). As a baseline, studies 

have shown that freshwater algae typically require a minimum of 20 µg L-1 of phosphorous 

(Yongmanitchai, 1991). Notably, algae have the ability to store certain nutrients when growing 

in a nutrient rich environment, for example dinoflagellates have the ability to store phosphorous. 

This capability can influence the capacity of the algal cell to cope with nutrient depleted 

conditions (Graham & Wilcox, 2000). Thus, the nutritional requirements and access an algal cell 

has to limiting nutrients can greatly affect growth rate. 

1.5.3.2. B Vitamins 

Vitamin B has been shown to be an important growth factor for a large variety of algae 

(Panzeca et al., 2001). For example, Ochromonas danica is reliant on vitamins, including 

vitamin B, for rapid growth. The majority of dinoflagellates require B12 in their diets (Graham & 

Wilcox, 2000). In addition, if B1 and B12 vitamins are combined with iron, a synergistic effect on 

growth is observed (Bertrand et al., 2007; Panzeca et al., 2001). 

1.5.3.3. Iron 

Iron has been shown to have a positive impact on phytoplankton growth, and has been 

linked to the production of algal blooms (Panzeca et al., 2001). A range of different factors can 

influence the effects of iron on algal growth, such as taxonomy, and trophic state. Research has 

shown that chrysophyceans have a high iron requirement relative to other algae (Graham & 

Wilcox, 2000). Another factor that influences the concentration of iron necessary for growth is 

whether the organism prefers eutrophic or oligotrophic environments (Moss, 1973). Taxonomy, 

and trophic state are just a few examples of factors that will influence the growth promoting 

properties of iron.  
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1.6. Manipulating fatty acid content 

In order to maintain normal functioning under a variety of growth conditions, an algal cell 

will alter its fatty acid composition. Membrane fluidity is a principle characteristic of a cell that 

must be maintained to sustain normal operation. Fluidity can influence the ion permeability of a 

membrane and electron transport between photosynthetic complexes, directly impacting the 

photosynthetic efficiency of the cell (Morgan-Kiss et al., 2006; Guschina & Harwood, 2013). 

Thus, growth conditions can greatly influence the lipid composition of the algal species and 

affect cell functioning.  

1.6.1. Effect of temperature on fatty acid profiles 

The effect of temperature on fatty acid content and composition is relatively well 

understood in comparison to the effect of other abiotic factors. An algal cell responds in a variety 

of different ways to adapt to shifts in temperature. The cellular response involves modification to 

fatty acid chain lengths, degree of unsaturation, lipid class concentrations, and membrane 

lipid:protein ratio (Williams, 1998). The response will vary depending on the algae, however all 

responses are closely linked to the homeoviscosity principle which states that organisms will 

modify membrane composition to maintain a constant degree of fluidity (Williams, 1998). For 

example, algal species that live in low temperature habitats typically have membrane lipids with 

high unsaturated fatty acid content (i.e. low melting point fatty acids) and algae in high 

temperature habitats have highly saturated content (ie. high melting point fatty acids) (Harwood 

& Russell, 1984; Juneja et al., 2013). The ability of the algal cell to acclimatize to different 

temperatures allows for these species to function under a variety of different growth conditions.  
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1.6.2. Effect of salinity on fatty acid profiles 

The relationship between fatty acid profiles in marine algae and NaCl is well established, 

however this is not the case with freshwater algae (Andersen, 2005; Zhila et al., 2011). In the 

freshwater Bacillariophyceae, Navicula tennelloides, increasing salinity from 0.5 to 1.7 M 

caused an increased lipid content but further increase to 2.5 M decreased lipid content (Al-Hasan 

et al., 1990). A study using two different strains of the freshwater chlorophyte, Botryococcus 

braunii (race-A), examined the impact of salt concentration on fatty acid content. Under high salt 

conditions, the UTEX strain exhibited decreased 18:1, while the Göttingen culture had increased 

the contentration of 18:1. For both strains the saturated fatty acid content decreased with 

increasing salinity, while the PUFA content increased. However, the extent to which PUFA 

increased varied significantly with the strain (Vazquez-duhalt & Arredondo-vega, 1991; Zhila et 

al., 2011). In comparison, marine algae have a higher salinity tolerance, thus an increase in lipid 

content is seen at much higher salinities. For example, the marine alga Dunaliella salina showed 

increased lipid content at 3.5 M NaCl, as compared to 0.5 M (Guschina & Harwood, 2006). 

These increased lipid concentrations could be the result of an osmotic response to liquid leaving 

the cell. To avoid damage to the cell from fluid loss, the cell wall compensates by increasing 

unsaturated fatty acid content and maintaining fluidity (Katz et al., 2007). Thus, more research is 

needed to look at the response of an algal cell to environmental conditions with respect to habitat 

and salinity concentrations.  

1.6.3. Effect of light on fatty acid profiles 

The presence of light promotes increased enzyme activity and MGDG production. Under 

light-limited conditions, there is an increase in total cellular content of polar lipids, MGDG and 

DGDG, and an increase in the proportion of PUFA content. This is hypothesized to be caused by 
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the increased proliferation of thylakoid membranes in reaction to the limiting light conditions, 

and has been demonstrated in green, red, and brown algae, as well as diatoms (Hamilton et al., 

2015; Jacob-Lopes et al., 2008; Wada & Murata, 2009). During high light intensities, the algal 

cell will respond by increasing polar lipid or storage lipid content (Napolitano, 1994; Stumpf et 

al., 1987). Within the diatoms and marine algae, low light typically results in high EPA and low 

DHA levels (Thompson et al., 1990). The explanation for the positive effect of high light on 

DHA content is currently unknown. Typically, high light intensity causes the thylakoid 

membrane in chloroplasts to decrease, which would be expected to result in decreased DHA. 

However, it is hypothesized that the high DHA content is a result of increased DHA in other 

membranes (Tzovenis et al., 1997). Access to light and light intensity are factors that can greatly 

influence thylakoid synthesis, resulting in shifts in the fatty acid profile of the algal cell (Jacob-

Lopes et al., 2008).   

1.6.4. Effects of nutrients on fatty acid profiles 

Nitrogen and phosphorous are limiting nutrients that are necessary for algal growth. 

However, deficiencies in nitrogen or phosphorous may produce desired results when high lipid 

content is required (Juneja et al., 2013). For example, under nitrogen deficient conditions, 

Scenedesmus obliquus exhibited decreased chlorophyll content, resulting in decreased levels of 

protein, polar lipids and PUFAs in the chloroplast membrane (Harrison et al., 1990; Piorreck & 

Pohl, 1984). However, nitrogen deficiency generally results in increased total lipid content 

(Guschina & Harwood, 2006). During nitrogen replete conditions PUFAs (notably C16 and C18) 

dominate and for some algae (Scenedesmus sp. and Chlorella sp.) EPA content increases, while 

for others (B. braunii, Dunaliella bardawil and D. salina) EPA content decreases (Piorreck & 

Pohl, 1984; Yongmanitchai & Ward, 1991). During phosphorous deficient growth conditions, 
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typically algal lipid content increases. For example, S. obliquus experiences an increase in lipid 

content by 10-30% under phosphorous deficient conditions (Tan & Lin, 2011). During these 

deficient conditions, the rate of phospholipid synthesis also decreases, while the synthesis rate of 

other lipids is unchanged (Harwood & Russell, 1984). A significant amount of PUFAs are 

observed within phospholipids in the membrane, thus a phospholipid decrease from phosphorous 

deficiency could have a deleterious effect on PUFA levels (Harrison et al., 1990). Thus, the 

effects of nitrogen and phosphorous concentration on the algal fatty acid profile, varies with the 

lipid type.  

1.6.5. Effect of vitamin B12 on fatty acid profiles 

Typically vitamin B12 (cobalamin), thiamine, or biotin may be required for growth 

(Andersen, 2005), though few algae require all three. A symbiotic relationship has been 

identified between bacteria and algae, with bacteria synthesizing cobalamin that is then taken up 

by auxotrophic algae and bacteria receiving fixed carbon (Croft et al., 2005). Certain algal 

species are able to synthesize cobalamin, while others require an exogenous source of this 

vitamin (Croft et al., 2005). For example, Yongmanitchai and Ward (1991) studied the effects of 

different culture conditions on growth rate and omega-3 content. Although, the addition of 100 

ng L-1 of vitamin B12 did not significantly influence growth rate, EPA content increased by 65%. 

Further research is still needed in order to further explore the impact of cobalamin on algal lipid 

content. 

1.7. Research objectives 

The objectives of this thesis were to examine the industrial applications and food web 

implications of algal fatty acids. Chapter 2 investigates the antibacterial properties of algal lipids. 

Chapter 3 focuses on B. hooglandii, which consistently produced the greatest growth rate and 
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desirable lipid content, and the potential use of this alga within aquaculture. Chapter 4 examines 

the role omega-3 fatty acids play in the health of organisms within food webs, in addition to 

potential application in industry.  

1.7.1. Chapter 2 objectives 

Chapter 2 investigates the antibacterial characteristics of 29 pure fatty acids that are 

naturally synthesized by algae. Surface zone inhibition assays were performed to quantify the 

inhibitory nature of these fatty acids. In order for all of these commercial applications to be 

realized in the market, growth of algae containing high concentrations of these target fatty acids 

is key. Chapter 2 also identifies growth conditions that result in increased production of these 

target antibacterial fatty acids. Thus, by understanding the environmental conditions that result in 

high growth, algae can play a much greater role in the world of antibiotics.    

Hypothesis: Polyunsaturated fatty acids are more inhibitory towards gram negative and 

gram positive bacteria, compared to monounsaturated and saturated fatty acids. 

1.7.2. Chapter 3 objectives 

Chapter 3 focuses on the nutritional profile and growth curve of one microalgal species, B. 

hooglandii, for potential aquaculture application. Through the analysis of protein, pigment, 

carbohydrate and fatty acid content, the appropriateness of this alga as a nutritional source can be 

identified. When combined with the growth curve of a culture, key times can be identified when 

biomass collection would be most appropriate for a specific aquaculture organism. In addition to 

this, Chapter 3 identifies trends between nutritional characteristics, and growth stages. This 

information can allow the aquaculture industry to make more informed decisions regarding 

potential nutritional compromises and appropriate sampling periods. 
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Hypothesis: The microalga B. hooglandii has a polyunsaturated fatty acid and protein 

content which would make it a suitable aquaculture feed for bivalve larvae. 

1.7.3. Chapter 4 objectives 

Chapter 4 examines the effects of light, temperature and nutrient conditions on omega-3 

production. The adaptive mechanisms used by the cell to maintain function under a variety of 

growth conditions are identified and discussed in the context of omega-3 production 

Hypothesis A: The higher light intensity of 130 µmoles m-2 s-1, relative to 45 and 80 

µmoles m-2 s-1, will result in greater biomass productivity and total omega-3 fatty acid content for 

species with a light saturation point close to 130 µmoles m-2 s-1.  

Hypothesis B: Supplementation with vitamin B12 will result in greater omega-3 fatty acid 

productivity for the algal species that require vitamin B12.  

Hypothesis C: As temperature decreases relative to conditions analogous to the algal 

species natural habitat, omega-3 fatty acid content will increase, due to synthesis of unsaturated 

fatty acids needed to maintain membrane fluidity.  
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Chapter 2: Comparative assessment of microalgal fatty acids as 

topical antibiotics  
 

This chapter contains material published in The Journal of Applied Phycology (Ruffell, S. E., 

Müller, K. M., & McConkey, B. J., 2015. Comparative assessment of microalgal fatty acids as 

topical antibiotics. Journal of Applied Phycology, DOI 10.1007/s10811-015-0692-4.) 

 

2.1. Introduction 

The increasing resistance of bacteria to traditional antibiotics has led to the search for new 

and more effective antibacterial agents (Desbois et al., 2009). Studies focusing on fatty acids as 

antibacterial agents have shown that certain bacteria have lower rates of resistance towards fatty 

acids compared to conventional antibiotics (Desbois et al., 2009; Desbois & Smith, 2010; 

Petschow et al., 1996). Algae have considerable potential as a source of antibacterial fatty acids 

due to a diverse fatty acid composition, high growth rate, high lipid content and the ability to 

grow under a range of conditions (Gong et al., 2011). In addition, research by Pratt (1942) 

demonstrated antibacterial properties in the green alga, Chlorella vulgaris. This led to further 

studies identifying similar properties in other algae and isolating fatty acids within algae as the 

main antibacterial agent (Desbois et al., 2009; Ohta et al., 1994; Sun et al., 2003). For example, 

using disc-diffusion Findlay and Patil (1984) noted that fatty acids 18:4 and 16:4 in the diatom 

Navicula delognei had antibacterial effects on a variety of bacteria, such as Salmonella 

typhimurium, Staphylococcus epidermidis and S. aureus. More recently, the omega-3 fatty acid 

20:5(n-3) extracted from P. tricornutum (Phaeodactylaceae), was shown to be a successful 

antibiotic against MRSA (Desbois et al., 2009).  
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The purpose of this study was to identify highly antibacterial fatty acids in algae and create 

growth conditions suitable for accumulation of these fatty acids within the cell. The present 

study measured inhibition of bacterial growth as an indicator of the antibacterial activity of 

twenty-nine pure fatty acids present in algae on two common opportunistic pathogenic bacterial 

species, Escherichia coli, and S. aureus. Escherichia coli (gram-negative) can result in a variety 

of human diseases such as food poisoning, wound infection, septicemia, and endocarditis 

(Sussman, 1997). Strains of the gram-positive bacterium S. aureus are becoming increasingly 

resistant to commercial antibiotics (Desbois et al., 2009).  

To study the effects of growth conditions on antibacterial fatty acid content, two marine 

algae Rhodella maculata (Rhodellophyceae) and P. tricornutum (Bacillariophyta), and three 

freshwater algae, Boekelovia hooglandii (Synurophyceae), Goniochloris sculpta 

(Xanthophyceae) and Chloridella simplex (Xanthophyceae) were selected. These five algae were 

chosen due to the expected high levels of fatty acids that may have antibacterial properties (Lang 

et al., 2011; Sheehan et al., 1998; Yongmanitchai, 1991; Desbois et al., 2009). The present study 

identified antibacterial fatty acids in algae as well as corresponding growth conditions that can be 

used to produce fatty acids for topical antibiotics.  

2.2. Materials and methods  

2.2.1. Bacterial strains and cultivation 

The bacterial strains used in this study were E. coli (Migula) Castellani and Chalmers 

(ATCC 11303), and S. aureus Rosenbach (ATCC 6538) (provided by the Departmental 

Microbiology Culture Collection, University of Waterloo). The algae B. hooglandii Nicolai et 

Baas Becking (CPCC 484) (Synurophyceae) and P. tricornutum Bohlin (CPCC 162) 

(Bacillariophyta) were purchased from the Canadian Phycology Culture Collection (CPCC) at 
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the University of Waterloo (Waterloo, ON, Canada), and G. sculpta Geitler (SAG 29.96) 

(Xanthophyceae), R. maculata L. V. Evans (SAG 45.85) (Rhodellophyceae) and C. simplex 

Pascher (SAG 51.91) (Xanthophyceae) were purchased from the Culture Collection of Algae at 

Göettingen University (SAG) (Göttingen, Germany).  

All the bacterial strains were sub-cultured three times as a purity check before beginning 

the experiment. This procedure was done by transferring one healthy colony to a new plate of 

media using streak plating. Once colonies were established, this was repeated two more times 

before the culture was used. Cultures were incubated in the dark in two Can-trol Environmental 

Systems Limited Model CES-37 (Markham, ON, Canada) on plates of Trypticase Soy Agar 

medium (TSA; Sigma-Aldrich) at 37°C (for E. coli and S. aureus). A colony was transferred to 

liquid medium, Tryptic Soy Broth (TSB), and incubated for 24h to use for spread plating. 

2.2.2. Antibacterial assays  

Fatty acids used in this experiment were purchased from Nu-Chek Prep Inc. (Elysian, MN, 

USA) and had a purity greater than 99%, with the exception of arachidonic acid with greater than 

90% purity. Fatty acid stock solutions of 100 mg mL-1 were prepared by dilution with 100% 

ethanol. Certain fatty acids [10:0, 14:0, 16:0, 17:0, 18:0, 20:0, 22:1(n-9), 23:0, 24:0, and 24:1(n-

9)] were heated to 50°C to improve solubility in alcohol. Seven millimeter diameter paper discs 

[Becton, Dickinson and Company (Mississauga, ON, Canada)] were loaded with appropriate 

volumes of stock solution to result in a disc containing 2000 µg, 800 µg, 250 µg or 25 µg of fatty 

acid. Tetracycline was used as a positive control and as a basis for comparison to determine how 

effective the fatty acids are relative to a typical dose of a common antibiotic (Heman-Ackah, 

1976). A tetracycline stock solution of 50 mg mL-1 was diluted with sterile water and used to 

prepare 5 µg and 30 µg discs of tetracycline, the latter of which is the Clinical and Laboratory 



22 

 

Standards Institute (CLSI) standard (Clinical and Laboratory Standards Institute, 2006). Ethanol 

soaked discs were additionally prepared as solvent controls. Disk diffusion was selected as the 

test method to be consistent with standard methodology used by the CLSI for evaluating 

antibiotic effectiveness against bacteria (Sader et al., 2007). 

Spread plating was used to disperse the bacteria on the plate. Loaded discs and bacterial 

plates were placed in a biosafety cabinet at room temperature until dry, then loaded discs were 

added to the bacterial plates. Bacteria were incubated in the dark, on plates of TSA media for 48 

h at 37°C (for E. coli and S. aureus). Inhibition was quantified by measuring the zone of clearing 

around the discs to the nearest millimeter. The zone of inhibition was measured at 24 h and 48 h 

during incubation (Dawson et al., 2002; Naviner et al., 1999). All treatments were repeated 4 

times. 

2.2.3. Algal culture conditions 

Algal cultures were grown in a Model E-36HO growth chamber (Percival Scientific, Inc., 

IA, United States) with 55 Watts PlusRite Compact Fluorescent FTL55/2G11/841 (CA, United 

States). Cultures were sub-cultured with new media every two weeks using aseptic technique. 

Pre-experiment growth conditions follow the methods described by the source culture collections 

for each alga. All stock cultures were grown in Erlenmeyer flasks in 50 mL of medium, not 

aerated/shaken, at 18 ± 1°C with a light intensity of 80 ± 5 µmol photons m-2 s-1, and a 17h:7h 

light:dark cycle.  The following media were used for culture maintenance: F/2 for P. tricornutum 

and B. hooglandii (Guillard, 1975), SAG Bold’s Basal Medium (SAG BBM) for G. sculpta, 

SWES for R. maculata and ESP for C. simplex (Experimental Phycology and Culture Collection 

of Algae (SAG), 2014). When a growth condition was being varied within experiments all other 

parameters were kept at culture collection conditions. 
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For the growth condition experiments, sterile media was inoculated with cultures on Day 0 

and culture optical densities were measured every two days over an 8 day period. On day 8 each 

algal sample was rinsed with dilute salt solution (9 g L-1 NaCl) two times and the rinsed pellet 

was stored at -80°C. The samples were then freeze dried using a Thermo Savant Model 

MODULYOD-115 (Holbrook, NY, US) prior to fatty acid analysis. Sampling was designed so 

algal cultures would be in exponential phase, however cultures could potentially be in a different 

growth phase due to changes in experimental growth conditions. Light absorbance measurements 

were taken on a Thermo Fisher Scientific Model Spectronic 200 spectrophotometer. 

Phaeodactylum tricornutum and B. hooglandii were measured at 600 nm, while G. sculpta, R. 

maculata and C. simplex were measured at 680 nm. Different wavelengths were optimal for the 

different species due to difference in pigmentation of the algae, with golden-brown algae 

measured at 600 nm (Yongmanitchai & Ward, 1991) and green algae measured at 680 nm (Jones 

et al., 2013). Standard curves were used to estimate culture density in g L-1 dry weight (dw). To 

create the standard curves algal samples at a range of densities were measured using absorbance 

and then samples were filtered and dried to establish a corresponding g L-1 dw. The following 

growth conditions were studied: light cycle (17h:7h and 24h:0h L:D), light intensity (45, 80 and 

130 µmol photons m-2 s-1) using a 55 Watts PlusRite Compact Fluorescent FTL55/2G11/841 

(CA, United States), temperature (15°C, 20°C and 25°C), media type (SAG BBM, CPCC BBM, 

SWES, F/2 and ESP) and additional vitamin B12 (0, 10 and 100 ng L-1). The growth of some 

algae is augmented by certain vitamins, notably vitamin B12, where vitamin supplementation can 

allow for increased growth rates (Watanabe, 2005). The F/2 and SWES are saltwater media and 

include silica and soil extract, respectively (Guillard, 1975; SAG, 2014). The ESP is a freshwater 

medium containing soil extract and 0.1% proteose peptone (SAG, 2014). The CPCC BBM and 
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SAG BBM are freshwater media that differ in the trace metals, with respect to elements present 

and the concentration (Stein, 1980; SAG, 2014). The SAG BBM also contains a higher 

concentration of vitamins (Stein, 1980; SAG, 2014). All experiments were repeated four times. 

The first component of this study was an antibacterial assay that tested the inhibitory effect 

of free fatty acids, whereas the second component of the study focused on growth conditions that 

increased the content of fatty acids in the form of triglycerides. For analysis, algal triglycerides, 

as well as fatty acid derivatives such as diglycerides and phospholipids, were converted to 

methylated fatty acids using the transesterification procedure described below.  

2.2.4. Extraction and analysis of lipids  

Extraction and analysis were performed by Dr. Ken Stark’s lab (Waterloo, ON, Canada) 

using Zuñiga et al.’s (2012) method of ‘direct transesterification with convectional heat’. Fatty 

acid content was quantified as fatty acid methyl esters and quantified using direct 

transesterification and gas chromatography. Derivatization occurred by adding 14% boron 

trifluoride in methanol and hexane to freeze dried algal powder, and the mixture was incubated at 

90°C for 1 h (Zuñiga et al., 2012). Gas chromatography (Varian GC 3900) was used to quantify 

the fatty acid methyl esters (Zuñiga et al., 2012). The gas chromatograph used hydrogen gas as 

the carrier and flame ionization was used as a detector. A film capillary thickness of DB-FFAP 

15 m x 0.10 mm i.d. x 0.10 µm was used as the separation column. Retention times were 

compared to standards in order to identify peaks (Metherel et al., 2013). 

2.2.5. Statistical analysis 

Algal culture biomass on day 0 and 8 were used to calculate the biomass productivity of an 

algal culture over 8 days. Biomass productivity was estimated using the equation Biomass 
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productivity (g L-1 day-1) = (X2-X1) (t2-t1)
 -1, where X2 was day 8 biomass (g L-1), X1 was day 0 

biomass (g L-1), and t was the sample day (t2=8 and t1=0) (Hempel et al., 2012).  

Statistical analyses were performed for antibacterial zone inhibition assays and algal 

growth conditions using SigmaPlot (San Jose, CA, US) and included independent t-tests or one-

way ANOVAs, as appropriate. The t-test along with the Holm-Sidak method was used for light 

cycle data. The one-way ANOVA was used on the data from the inhibition assay, light intensity, 

temperature, media and vitamin B12 experiments. If the parametric one-way ANOVA failed the 

equal variance test or the normality test, the non-parametric Kruskal-Wallis One Way ANOVA 

on Ranks was used. The Kruskal-Wallis test was used when the residuals were not normally 

distributed and did not agree with the assumptions of the one-way ANOVA. When a one-way 

ANOVA showed a statistically significant difference, multiple comparisons were performed 

using the Holm-Sidak or Tukey test for parametric or non-parametric ANOVAs, respectively. 

Notation within Tables 3 through 7 follows the same notation to indicate statistically significant 

differences among treatments. Where statistically significant differences are present, each 

distinguishable group is given a letter (A, B or C). The superscript letters indicate the presence or 

absence of a significant difference between the data points with a single taxa and growth 

condition. Two values with the same superscript letter are not significantly different (p>0.05), 

while values with different superscript letters are significantly different (p<0.05). The sample 

size for each growth condition experiment was n=4 and repeats were placed in randomized 

locations within the incubator. Reported plus/minus values (±) refer to the standard deviation, 

based on the four repeats. 
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2.3. Results and Discussion 

The antibacterial activity of twenty-nine free fatty acids was determined and the growth 

conditions (light cycle and intensity, temperature, nutrients, and temperature) of the five algae 

species investigated were manipulated to increase the content of inhibitory fatty acids in these 

algae. Of the twenty-nine fatty acids studied, thirteen were inhibitory towards growth of gram-

positive S. aureus at 24 and 48 h, whereas three fatty acids [10:0, 22:2(n-6) and 18:3(n-3)] were 

inhibitory towards the growth of gram-negative E. coli and only during the first 24 h (Table 1). 

This is supported by studies demonstrating that gram-negative bacteria are much more resistant 

to antibiotics than gram-positive (Kabara et al., 1972; Russel, 1991). Some studies have 

suggested that gram-negative bacteria’s low inhibition is a result of higher resistance to 

compounds that can influence the electron transport chain (Nagaraja, 1995). Others hypothesized 

that this resistance is a result of lipopolysaccharides in the cell wall of gram-negative bacteria 

that prevent the fatty acids from influencing the membrane (Kabara et al., 1972). 

Table 1 displays the response of S. aureus to candidate inhibitory fatty acids, with 250 µg 

of 20:4(n-6) creating the largest inhibition zone of 25.2 mm, exceeding that of 30 µg of 

tetracycline (19.3 mm) (p<0.001). Fatty acids 16:1 and 18:3(n-6) at 250 µg had comparable 

zones of inhibition as compared to the 30 µg tetracycline control, with inhibition zones of 19.4 

mm and 18.8 mm respectively. Two fatty acids, 18:2(n-6) and 22:6(n-3) had a reduced inhibition 

zone at 800 µg compared to 30 µg tetracycline, but not significantly different than 5 µg of 

tetracycline (14.7 mm), with 17 mm and 15.3 mm inhibition zones respectively. All 5 of the 

above fatty acids were inhibitory at 24 and 48 h.  

The resistance of bacteria to a particular fatty acid is dependent on the bacteria being 

assayed and the fatty acid chemical structure characteristics. This was shown previously in a  
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Table 1. The lowest fatty acid dose (25 µg, 250 µg, 800 µg or 2000 µg) and resulting growth 

inhibition zone (mm, in brackets) for two representative species of bacteria.  

Bacteria/ 

Lowest 

effective dose 

(µg) 

Escherichia coli Staphylococcus aureus 

Fatty Acidsa 24 h 48 h 24 h 48 h 

10:0 2000 (10.3±1.3) NI 800 (9.8±1.7) 800 (8.3±0.5) 

12:0 NI NI 2000 (9.5±0.6) NI 

14:0 NI NI NI NI 

16:0 NI NI NI NI 

17:0 NI NI NI NI 

18:0 NI NI NI NI 

20:0 NI NI NI NI 

23:0 NI NI NI NI 

24:0 NI NI NI NI 

14:1 NI NI 2000 

(11.5±2.4) 

2000 

(13.5±0.6) 

16:1 NI NI 250  

(19.4 ± 2.8) 800 (18.4±3.6) 

18:1(n-7) NI NI NI NI 

18:1(n-9) NI NI NI NI 

20:1(n-9) NI NI NI NI 

22:1(n-9) NI NI NI NI 

24:1(n-9) NI NI NI NI 

18:2(n-6) NI NI 800 (17.0±1.4) 800 (16.3±1.0) 

18:3(n-6) NI NI 250 (18.8±2.4) 250 (16.0±2.9) 

20:2(n-6) NI NI NI NI 

20:3(n-6) NI NI 800 (11.5±1.0) 800 (10.8±0.5) 

20:4(n-6) NI NI 250 (25.3±3.8) 250 (19.5±2.4) 

22:2(n-6) 800 (10.5±1.3) NI NI NI 

22:4(n-6) NI NI 250 (8.8±0.5) 2000 (9.0±1.2) 

22:5(n-6) NI NI 250 (12.5±1.0) 800 (11.5±0.6) 

18:3(n-3) 25 (8.5±1.0) NI 250 (13.1±1.4) 250 (12.0±1.4) 

20:3(n-3) NI NI 2000 (8.5±0.6) NI 

20:5(n-3) NI NI 250 (13.6±1.4) 250 (11.4±0.8) 

22:5(n-3) NI NI 800 (9.3±0.5) 2000 (9.3±0.5) 

22:6(n-3) NI NI 800 (15.3±2.2) 800 (15.0±1.4) 

ᵃ Arachidonic acid is >90% purity; all other fatty acids are > 99% purity 
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study by Galbraith et al. (1971), which identified a positive correlation between a fatty acid’s 

inhibitory effect, chain length and number of double bonds. Within the present study, as double 

bonds increased from 18:1 to 18:3, 20:1 to 20:5 or 22:1 to 22:6 the inhibitory response of S. 

aureus shifted from no inhibition to varying levels of inhibition. In addition, degree of 

unsaturation may account for the effectiveness of some of the most antibacterial fatty acids in 

this study 22:2(n-6), 18:3(n-6) and 20:4(n-6). The high level of inhibition may be a function of 

both long carbon chain length and number of double bonds. Within the monounsaturated fatty 

acids, 16:1 was highly effective as an antibacterial agent, which is an exception to the positive 

correlation between inhibition, carbon chain length and unsaturation. The fatty acid 16:1 has 

previously been identified as an effective antibiotic and is naturally excreted by the skin of mice 

as a topical antibiotic (Katsuta et al., 2005). Another exception to this correlation occurs within 

the saturated fatty acids 10:0 and 12:0, which have been shown to be strongly inhibitory in 

previous reports (Desbois & Smith, 2010) as well as the current study. The variation in inhibition 

between fatty acids of different chain length and unsaturation has also been linked to solubility 

and lipophilicity (Galbraith et al., 1971). However, mechanisms underlying the antibacterial 

properties of fatty acids are still unclear. One hypothesis is that the cell membrane is a primary 

focus of the antibacterial activity of a fatty acid, as a result of the decreased electron transport 

chain and oxidative phosphorylation in the presence of fatty acids (Desbois & Smith, 2010).  

Concentrations of these antibacterial fatty acids in algae can be increased by manipulating 

growth conditions. The effect of growth conditions (light intensity, light cycle, temperature, 

vitamins B12, and media) on fatty acid content in algae was investigated for the five selected 

strains. Light cycle (24h:0h and 17h:7h), as shown in Table 2, was tested to determine its effect 

on the cellular content of the subset of fatty acids with antibacterial activity identified within this 
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study (referred to herein as target fatty acids). Within the light cycle experiment, P. tricornutum 

produced the greatest total target fatty acid content at 24 h light with 64.1 mg g-1 dw. Twenty-

four hour light produced higher total target fatty acid content in four of the five tested algae, with 

R. maculata as the exception. Of the algae tested, P. tricornutum was influenced the most with 

an increase in total target fatty acid content of 80%. This was mainly due to the fatty acid 16:1, 

which was the most abundant, making up ~ 96-98% of total target fatty acid content. In addition 

to higher total target fatty acid content, twenty-four hour light produced the highest 20:4(n-6) 

content of the tested growth conditions with 7.66 mg g-1 dw in R. maculata. 

The effect of light intensity was also investigated over a range of 45 to 130 µmol photons  m-2 s-1 

(Table 3). Similar to the light cycle experiment, P. tricornutum had the highest total target fatty 

acid content of 182 mg g-1 dw at 80 µmol photons m-2 s-1; the other four tested algae had higher 

total target fatty acid content at the lowest intensity. In addition, the highest 18:3(n-6) content of 

all tested growth conditions was 2.00 mg g-1 dw in P. tricornutum at the lowest light intensity. 

Photoperiod can play a large role in the lipid composition of photosynthetic algae (Sukenik & 

Carmeli, 1990). For example, twenty-four hour light caused the total target fatty acid content in 4 

of the 5 algae to increase, primarily due to increased 16:1 content. This agrees with a study by 

Sukenik and Carmeli (1990) demonstrating that in the presence of light algae synthesize 

triacylglycerols (notably 16:0 and 16:1) and in the absence of light algal cell division occurs and 

lipids are metabolized for cellular maintenance.  Under the lowest light intensity the highest total 

target fatty acid in four of the five tested algae occurred, largely as a consequence of 16:1 

production. Typically, under lower light conditions the algal cells synthesize more thylakoid 

membrane to increase light capture, resulting in increased PUFAs (Wada & Murata, 2009; 
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Table 2. The target and total target fatty acid content of the five test algae to two different light cycles, 17h:7h  and 24h:0h (light: 

dark). T-tests and post-hoc testing were performed to determine statistically significant changes. 

 Light 

Duration 

Target Fatty acid (mg g-1 dw) Total 

Target FA 

(mg g-1 dw)a 

% of 

Total 

FAb C10:0 C16:1 C18:3(n-6) C20:4(n-6) C22:2(n-6) 

Boekelovia 

hooglandii 

 

17 h 0.013 ± 0.015 20.5 ± 3.0Bc 0.108 ± 0.021 0.19 ± 0.09 0.077 ± 0.078 20.9 ± 3.1B 23.8 

24 h 0.052 ± 0.006 28.7 ± 2.5A 0.226 ± 0.037 0.71 ± 0.15 0.022 ± 0.011 29.7 ± 2.5A 23.6 

Phaeodactylum 

tricornutum 

 

17 h 0.017 ± 0.009 34.1 ± 4.5B 0.488 ± 0.090 1.03 ± 0.24 0.033 ± 0.017 35.7 ± 4.8B 39.1 

24 h 0.004 ± 0.002 63.1 ± 5.3A 0.440 ± 0.025 0.53 ± 0.04 0.037 ± 0.009 64.1 ± 5.2A 41.8 

Goniochloris 

sculpta 

 

17 h 0.005 ± 0.004 0.5 ± 0.1 0.100 ± 0.013 1.59 ± 0.41 0.112 ± 0.021 2.3 ± 0.5 5.1 

24 h 0.003 ± 0.003 0.6 ± 0.1 0.247 ± 0.055 3.65 ± 1.04 0.072 ± 0.019 4.6 ± 1.2 8.7 

Rhodella 

maculata 

 

17 h 0.003 ± 0.004 1.9 ± 0.5 0.172 ± 0.040 7.81 ± 1.36 0.051 ± 0.027A 9.9 ± 1.1 20.0 

24 h 0.011 ± 0.006 1.0 ± 0.1 0.130 ± 0.017 7.66 ± 1.08 0.010 ± 0.002B 8.8 ± 1.2 29.7 

Chloridella 

simplex 

 

17 h 0.002 ± 0.002 36.6 ± 1.9B 0.179 ± 0.022 3.08 ± 0.29 0.046 ± 0.016 39.9 ± 2.2B 28.9 

24 h 0.050 ± 0.006 41.3 ± 1.0A 0.315 ± 0.026 4.32 ± 0.16 0.018 ± 0.002 46.0 ± 1.1A 34.2 

ᵃ includes five target FAs; ᵇ Total Target FAs as % of total FA; cA, B, and C represent statistically significant differences between 

light duration within a given species 
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Table 3.The target and total target fatty acid content in five different algae to three light intensities,45, 80and 130 µmol photons m-2 s-

1. One-way ANOVAs and post-hoc testing were performed to determine statistically significant changes. 

 Lightᵃ 

intensity 

Target Fatty acid (mg g-1 dw) Total 

Target FA              

(mg g-1 dw)b 

% of 

Total 

FAc 
C10:0 C16:1 C18:3(n-6) C20:4(n-6) C22:2(n-6) 

Boekelovia 

hooglandii 

 

45 0.0130 ± 0.0059 49.3 ± 6.6 0.75 ± 0.27 2.7 ± 1.2 0.062 ± 0.011Aᶜ 68 ± 7 21.2 

80 0.0156 ± 0.0142 36.6 ± 12.2 0.19 ± 0.30 0.6 ± 1.1 0.018 ± 0.008B 38 ± 14 22.8 

130 0.0172 ± 0.0170 48.6 ± 12.1 0.52 ± 0.34 1.7 ± 1.1 0.022 ± 0.004B 51 ± 14 23.6 

Phaeodactylum 

tricornutum 

 

45 0.0090 ± 0.0048 134.2 ± 4.6 2.00 ± 0.06 1.8 ± 0.1 0.018 ± 0.007 138 ± 5B 44.8 

80 0.0161 ± 0.0117 178.4 ± 82.2 2.45 ± 1.09 1.5 ± 0.6 0.031 ± 0.015 182 ± 84A 45.3 

130 0.0063 ± 0.0044 129.5 ± 26.9 1.54 ± 0.98 0.9 ± 0.6 0.020 ± 0.006 132 ± 28B 45.9 

Goniochloris 

sculpta 

 

45 0.0054 ± 0.0028 0.8 ± 0.1 0.33 ± 0.04 9.9 ± 1.3 0.049 ± 0.017 11 ± 1 15.6 

80 0.0142 ± 0.0152 0.8 ± 0.1 0.33 ± 0.02 9.1 ± 1.7 0.032 ± 0.012 10 ± 2 14.6 

130 0.0081 ± 0.0022 0.5 ± 0.4 0.40 ± 0.21 7.2 ± 3.1 0.039 ± 0.006 8 ± 3 13.3 

Rhodella 

maculata 

 

45 0.0012 ± 0.0008 1.3 ± 0.1Ad 0.14 ± 0.01 5.3 ± 0.6A 0.008 ± 0.003B 7 ± 1A 23.3 

80 0.0007 ± 0.0005 1.0 ± 0.1B 0.15 ± 0.02 3.2 ± 0.4B 0.007 ± 0.002B 4 ± 1B 20.3 

130 0.0003 ± 0.0004 1.0 ± 0.2AB 0.13 ± 0.09 2.6 ± 2.1B 0.018 ± 0.004A 4 ± 2B 16.2 

Chloridella 

simplex 

 

45 0.0051 ± 0.0012 43.7 ± 3.0 0.24 ± 0.01 4.6 ± 0.3 0.028 ± 0.014 49 ± 3 34.8 

80 0.0178 ± 0.0132 41.7 ± 3.8 0.24 ± 0.02 4.7 ± 0.4 0.050 ± 0.029 47 ± 4 31.2 

130 0.0168 ± 0.0047 35.5 ± 4.9 0.24 ± 0.04 4.1 ± 0.7 0.027 ± 0.011 40 ± 6 28.7 

ᵃ ± 5 µmol photons m-2 s-1; b includes five target FAs c Total Target FAs as % of total FA; 
d
A, B, and C represent statistical significant 

differences between groups 
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Guschina & Harwood, 2009). However, if light intensity is so low it is inhibiting growth, fatty 

acids may shift to storage lipids, predominantly monounsaturated and saturated fatty acids. Thus, 

light can play a major role in the content of a cell and 24 h exposure or low light intensity can be 

used to produce higher content of the most effective antibacterial fatty acids. 

Nutrients play a substantial role in the lipid content and growth of algal cells. In Table 4, 

a variety of different media types were compared to determine which recipe created the highest 

target fatty acid content. This part of the study focused on the influence of a medium recipe as a 

whole and therefore changes in algal response are not identified with changes to a specific 

nutrient, with the exception of vitamin B12, which was tested independently. Comparing all 

species, Chloridella simplex synthesized the greatest total target fatty acid content at 91.4 mg g-1 

dw in ESP medium, making up 41.7% of the total fatty acid content. Within a given species, 

higher target fatty acid content was achieved in the marine organisms’ P. tricornutum and R. 

maculata when  grown in marine media. For example, the total target fatty acid content was 65% 

greater in F/2 compared to CPCC BBM in P. tricornutum. The freshwater alga C. simplex 

showed the same trend in freshwater media, with a 120% increase from F/2 to ESP. Notably, the 

freshwater alga B. hooglandii showed the opposite trend of C. simplex, with higher total target 

fatty acid content in marine media. Goniochloris sculpta had no significant differences in fatty 

acid production with different media.  

The effect of vitamin B12 was tested at 3 doses (0, 10 and 100 ng L-1) as shown in Table 

5. The highest total target fatty acid content was in P. tricornutum, with 52.4 mg g-1 dw in 

medium enriched with 100 ng L-1 vitamin B12. Within B. hooglandii, P. tricornutum and G. 

sculpta, the addition of vitamin B12 (10 or 100 ng L-1) significantly increased the 20:4(n-6) 
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Table 4. The target and total target fatty acid content of the five test algae under different nutrient conditions: marine media (F/2), 

freshwater (CPCC BBM and SAG BBM), freshwater with soil extract (ESP) and marine with soil extract (SWES). 

 Media 

type 

Target Fatty acid (mg g-1 dw) TotalTarget 

FA                

(mg g-1 

dw)a 

% of 

Total 

FAb 

 

C10:0 C16:1 C18:3(n-6) C20:4(n-6) C22:2(n-6) 

Boekelovia 

hooglandii 

 

F/2 0.025 ± 0.008Ac 40.0 ±  2.2A 0.05 ± 0.01B 0.07 ± 0.02C 0.023 ± 0.015 40.2 ± 2.3A 26.9 

CPCC 

BBM 

0.007 ± 0.007B 28.6 ± 5.9B 0.41 ± 0.15A 1.09 ±  0.39B 0.012 ± 0.006 30.3 ± 6.5B 21.2 

 ESP 0.010 ± 0.008B 30.1 ± 1.7B 0.51 ± 0.04A 1.96 ±  0.27A 0.015 ± 0.008 32.6 ± 1.7B 18.2 

Phaeodactylum 

tricornutum 

 

F/2 0.005 ± 0.006 22.3 ± 9.8 0.12 ± 0.04A 0.28 ± 0.08A 0.060 ± 0.022A 22.7 ± 0.2A 24.8 

CPCC 

BBM 

0.003 ± 0.003 13.6 ± 1.8 0.08 ± 0.02AB 0.13 ± 0.03B 0.040 ± 0.017AB 13.8 ± 1.9B 21.6 

ESP 0.001 ± 0.002 14.8 ± 1.3 0.06 ± 0.01B 0.11 ± 0.02B 0.019 ± 0.005B 15.0 ± 1.4B 30.5 

Goniochloris 

sculpta 

 

F/2 0.029 ± 0.004 1.9 ± 0.2A 0.36 ± 0.07 2.12 ± 0.22B 0.077 ± 0.042 4.9 ± 0.5 3.32 

CPCC 

BBM 

0.002 ± 0.002 0.8 ± 0.1B 0.60 ± 0.24 4.94 ± 2.25A 0.031 ± 0.018 6.4 ± 2.6 9.19 

SAG 

BBM 

0.004 ± 0.004 0.8 ± 0.1B 0.40 ± 0.01 3.46 ± 0.10A 0.026 ± 0.004 4.7 ± 0.2 7.9 

Rhodella 

maculata 

 

F/2 0.003 ± 0.004 1.7 ± 1.0 0.18 ± 0.03 5.32 ± 1.63A 0.055 ± 0.024B 7.3 ± 2.1A 14.1 

CPCC 

BBM 

0.008 ± 0.010 2.6 ± 2.4 0.14 ± 0.10 1.45 ± 0.45B 0.350 ± 0.212A 4.5 ± 2.8B 6.32 

ESP 0.003 ± 0.002 1.0 ± 0.3 0.07 ± 0.07 1.68 ± 1.42B 0.026 ± 0.01B 2.8 ± 1.8C 13.1 

SWES 0.011 ± 0.020 2.2 ± 0.2 0.31 ± 0.04 5.47 ± 0.90A 0.030 ± 0.009B 8.0 ± 1.1A 17.2 

Chloridella 

simplex 

 

F/2 0.002 ± 0.001B 39.9 ± 3.9B 0.24 ± 0.03B 1.40 ± 0.15B 0.053 ± 0.026 41.6 ± 4.0B 40.4 

CPCC 

BBM 

0.003 ± 0.003B 45.6 ± 1.9B 0.31 ± 0.03B 1.64 ± 0.16B 0.043 ± 0.025 47.6 ± 2.0B 38.6 

ESP 0.017 ± 0.009A 87.8 ± 7.7A 1.05 ± 0.10A 2.49 ± 0.19A 0.039 ± 0.006 91.4 ± 8.0A 41.7 
a includes five target FAs; b Total Target FAs as % of total FA; c A, B, and C represent statistical significance  
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content. For example, on addition of 10 ng L-1 vitamin B12, the cellular content of 20:4(n-6) in P. 

tricornutum, The effect of vitamin B12 was tested at 3 doses (0, 10 and 100 ng L-1) as shown in 

Table 5. The highest total target fatty acid content was in P. tricornutum, with 52.4 mg g-1 dw in 

medium enriched with 100 ng L-1 vitamin B12. Within B. hooglandii, P. tricornutum and G. 

sculpta, the addition of vitamin B12 (10 or 100 ng L-1) significantly increased the 20:4(n-6) 

content. For example, on addition of 10 ng L-1 vitamin B12, the cellular content of 20:4(n-6) in P. 

tricornutum, B. hooglandii and G. sculpta increased by 68%, 322% and 560%, respectively. The 

study’s highest overall content of 10:0 and 20:4(n-6) was in G. sculpta in response to culture 

collection media enriched with 100 ng L-1 of vitamin B12 with 0.348 and 25.1 mg g-1 dw, 

respectively. 

Nutrient composition (in the form of media and vitamin supplements) can result in algal 

stress that can lead to reduced growth and fatty acids being directed to more saturated fatty acids 

(Guschina & Harwood, 2009; Wada & Murata, 2009).  Within this study, three of the algae 

exhibited an increase in PUFA content when growing in media analogous to the natural habitat 

(for example, freshwater algae in freshwater medium). This suggests that the algae were under 

minimal stress, resulting in greater fatty acid accumulation in the thylakoid membrane as PUFAs 

(Wada & Murata, 2009). The freshwater alga, B. hooglandii, was an exception with higher total 

target fatty acid content in marine medium, predominantly as 16:1 content. Higher 16:1 content 

from growth in marine media could be due to increased stress in the freshwater alga, resulting in 

a shift in fatty acid composition to storage lipids rich in monounsaturated fatty acids. The 

addition of vitamin B12 to media resulted in three test algae experiencing significantly increased 

20:4(n-6) content. Although the mechanism is not known, the results indicate that vitamin B12  
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Table 5. The target and total target fatty acid content to media enriched with 0, 10 and 100 ng L-1 of vitamin B12 in five algae. 

Statistical analysis: one-way ANOVAs and post-hoc testing were performed. 

 Vitamin 

B12ᵃ 

 

Target Fatty acid (mg g-1 dw) Total Target 

FA           

(mg g-1 dw)b 

% of 

Total 

FAc 

 

C10:0 C16:1 C18:3(n-6) C20:4(n-6) C22:2(n-6) 

Boekelovia 

hooglandii 

 

0 0.018 ± 0.010Ad 39.8 ± 5.5 0.16 ± 0.07C 0.35 ± 0.17C 0.038 ± 0.009 40.3 ± 5.6B 28.6 

10 0.014 ± 0.002A 44.2 ± 3.1 0.56 ± 0.050A 1.48 ± 0.13A 0.030 ± 0.004 46.3 ± 3.3A 21.6 

100 0.005 ± 0.004B 37.5 ± 2.9 0.44 ± 0.05B 1.12 ± 0.13B 0.029 ± 0.002 39.1 ± 3.0B 21.8 

Phaeodactylum 

tricornutum 

 

0 0.010 ± 0.038 33.7 ± 10.6AB 0.28 ± 0.09 0.41 ± 0.12C 0.046 ± 0.031 35.7 ± 11.6B 38.5 

10 0.007 ± 0.006 30.5 ± 8.2B 0.30 ± 0.09 0.69 ± 0.20B 0.065 ± 0.025 31.6 ± 8.5B 31.8 

100 0.003 ± 0.002 50.7 ± 4.4A 0.67 ± 0.06A 0.97 ± 0.09A 0.020 ± 0.003 52.4 ± 4.5A 37.5 

Goniochloris 

sculpta 

 

0 0.003 ± 0.003B 0.9 ± 0.3B 0.18 ± 0.03B 3.18 ± 0.20B 0.154 ± 0.102 4.4 ± 0.6B 7.08 

10 0.117± 0.064 B 2.3 ± 0.2A 1.28 ± 0.36A 21.03 ± 3.02A 0.362 ± 0.131 25.1 ± 3.7A 12.1 

100 0.348 ± 0.166A 3.6 ± 1.9A 1.36 ± 0.40A 25.13 ± 8.00A 0.418 ± 0.200 30.9 ± 10.2A 12.2 

Rhodella 

maculata 

 

0 0.008 ± 0.012 1.8 ± 2.3 0.10 ± 0.12B 5.28 ± 8.10 0.081 ± 0.12 7.2 ± 8.8 14.7 

10 0.005 ± 0.006 0.8 ± 0.1 0.05 ± 0.02A 1.52 ± 0.70 0.404 ± 0.006 2.4 ± 0.8 10.6 

100 0.001 ± 0.001 1.0 ± 0.2 0.06 ± 0.02A 3.75 ± 2.12 0.029 ± 0.013 4.9 ± 2.4 15.7 

Chloridella 

simplex 

 

0 0.002 ± 0.002  44.7 ± 6.0 0.27 ± 0.04 3.53 ± 0.58 0.052 ± 0.029 48.5 ± 6.6 33.8 

10 0.004 ± 0.004 37.9 ± 4.9 0.23 ± 0.04 3.10 ± 0.35 0.059 ± 0.013 41.3 ± 5.3 32.2 

100 0.003 ± 0.002 44.0 ± 3.1 0.25 ± 0.03 3.55 ± 0.20 0.067 ± 0.032 47.8 ± 3.3 33.2 

ᵃ ng L-1; ᵇ includes five target FAs; c Total Target FAs as % of total FA; dA, B, and C represent statistical significance 
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supplementation is beneficial for fatty acid synthesis. In this study nutrients greatly influenced 

algal fatty acids and could potentially result in greater antibacterial fatty acids within the cell.  

Temperature was the final growth condition investigated (Table 6). At 15°C P. tricornutum 

had the study’s overall highest total target fatty acid content of 206.1 mg g-1 dw, the vast 

majority of which was 16:1 (203.3 mg g-1 dw). The total target fatty acid content in B. hooglandii 

and P. tricornutum more than doubled, increasing by 39.1 mg g-1 dw (p<0.05) and 109 mg g-1 dw 

(p<0.001), respectively at 15°C compared to 25°C. The mid-range temperature of 20°C produced 

the lowest total target fatty acids levels for four of five algae, with C. simplex as the exception. In 

general, there appears to be higher fatty acid accumulation at 15°C and 25°C, with a reduction in 

fatty acid content at the intermediate temperature of 20°C.  

 When an environment’s temperature decreases the algal cells fatty acid composition 

typically shifts to greater PUFA content (Hu, 2007). This adaptation reduces the rigidity of the 

cellular membrane to allow for increased fluidity and prevent cellular damage (Nishida & 

Murata, 1996). Of the 5 growth conditions tested, temperature resulted in the greatest total target 

fatty acid content of 206.1 mg g-1 dw at 15°C in P. tricornutum, however the biomass 

productivity of this strain is low at 15°C (see section 4.3.3.). This suggests that at 15°C P. 

tricornutum is under stress, resulting in high lipid accumulation and low growth (Guschina & 

Harwood, 2009). Also, within the temperature experiment 20°C produced the lowest total target 

fatty acid content in four of the five algae. This could be a result of stress caused by a 

temperature change from culture maintenance (18°C) to experimental conditions (25°C or 15°C). 

The change from 18°C to 20°C may not have resulted in a significant stress response because 

temperature variation causes the two conditions to overlap (ie. 18 ± 1°C vs. 20 ± 1°C). Thus,   
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Table 6. The target and total target fatty acid content of different temperature (15°C, 20°C and 25°C) in five algae. Statistical 

analysis: one-way ANOVAs and post-hoc testing were performed. 

 Temperature Target Fatty acid (mg g-1 dw) Total Target 

FA               

(mg g-1 dw)a 

% of 

Total 

FAb 

 

C10:0 C16:1 C18:3(n-6) C20:4(n-6) C22:2(n-6) 

Boekelovia 

hooglandii 

 

15°C 0.031 ± 0.053 68.7 ± 32.3A 0.48 ± 0.30A 0.4 ± 0.6B 0.195 ± 0.028A 69.8 ± 3.3A 33.8 

20°C 0.013 ± 0.015 20.5 ± 3.0B 0.11 ± 0.02B 0.2 ± 0.1C 0.077 ± 0.078B 20.9 ± 3.1B 23.8 

25°C 0.033 ± 0.022 28.4 ± 4.3B 0.42 ± 0.05A 1.8 ± 0.2A 0.068 ± 0.034B 30.7 ± 4.5B 19.4 

Phaeodactylum 

tricornutum 

 

15°C 0.002 ± 0.002Bc 203.3 ± 43.0A 1.86 ± 0.82A 0.9 ± 0.4B 0.055 ± 0.014 206.1 ± 44.2A 50.1 

20°C 0.017 ± 0.009A 34.1 ± 4.5B 0.49 ± 0.09B 1.0 ± 0.2B 0.033 ± 0.017 35.7 ± 4.8C 39.1 

25°C 0.018 ± 0.005A 91.6 ± 9.8AB 1.43 ± 0.15A 3.8 ± 0.3A 0.044 ± 0.014 96.8 ± 10.1B 47.0 

Goniochloris 

sculpta 

 

15°C 0.003 ± 0.004B 1.0 ± 0.1B 0.25 ± 0.08B 3.8 ± 0.3B 0.068 ± 0.005B 5.1 ± 0.5B 9.64 

20°C 0.005 ± 0.004B 0.52 ± 0.1B 0.10 ± 0.01C 1.6 ± 0.4C 0.112 ± 0.021A 2.3 ± 0.5C 5.08 

25°C 0.025 ± 0.004A 2.0 ± 0.7A 1.63 ± 0.60A 19.3 ± 5.1A 0.130 ± 0.039A 23.0 ± 6.2A 13.5 

Rhodella 

maculata 

 

15°C 0.003 ± 0.002 1.8 ± 0.6 0.24 ± 0.07A 8.6 ± 2.5B 0.036 ± 0.006 10.7 ± 3.1 25.2 

20°C 0.003 ± 0.004 1.9 ± 0.5 0.17 ± 0.04B 7.8 ± 1.4C 0.051 ± 0.027 9.9 ± 1.1 20.0 

25°C 0.006 ± 0.004 2.0 ± 1.3 0.24 ± 0.04A 9.7 ± 1.6A 0.026 ± 0.012 12.0 ± 2.8 22.5 

Chloridella 

simplex 

 

15°C 0.007 ± 0.011 46.6 ± 17.8 0.24 ± 0.09 2.2 ± 0.8 0.031 ± 0.013 49.1 ± 19.0 38.7 

20°C 0.002 ± 0.002 36.7 ± 1.9 0.18 ± 0.02 3.1 ± 0.3 0.047 ± 0.016 39.9 ± 2.2 28.9 

25°C 0.013 ± 0.012 34.2 ± 3.8 0.37 ± 0.05 4.1 ± 0.4 0.049 ± 0.022 38.7 ± 4.2 33.9 

ᵃ includes five target FAs; b Total Target FAs as % of total FA; cA, B, and C represent statistical significance 
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temperature should be carefully selected to produce an alga with significantly higher cellular 

content of the most antibacterial fatty acids. 

In conclusion, this study identified multiple algal fatty acids that have potential use as a 

topical antibiotic. In addition, growth conditions were established that enhance algal content of 

the antibacterial fatty acids that caused the greatest inhibition. Fatty acids 10:0 (capric acid), 16:1 

(palmitoleic acid), 18:3(n-6) (gamma-linolenic acid; GLA), 20:4(n-6) (arachidonic acid) and 

22:2(n-6) (docosadienoic acid) were the most effective antibacterial fatty acids. Phaeodactylum 

tricornutum had the highest total target fatty acid content at 206.1 mg g-1 dw, at growth 

conditions of 15°C, 17h:7h, 80 µmol photons m-2 s-1 in F/2 medium. However, P. tricornutum 

has a low biomass productivity (0.048 g L-1 day-1 dw), whereas B. hooglandii has the highest 

biomass productivity (0.38 g L-1 day-1 dw) of the 5 algae (Ruffell et al., submitted; Chapter 4) 

and a total target fatty acid content of 32.6 mg g-1 dw in ESP medium at 17h:7h, 18°C, and 80 

µmol photons m-2 s-1. The marine alga P. tricornutum has potential as a source of antibiotics if it 

is initially cultured in ideal growth conditions, and then shifted to conditions suitable for 

accumulation of antibacterial fatty acids, such as 20°C, 16h:8h, and Mann and Myers medium 

(Yongmanitchai & Ward, 1991). Microalgae can grow under a range of growth conditions, can 

contain high concentrations of fatty acids, and can have a high growth rate (Gong et al., 2011). 

Thus, they provide a sustainable source of a variety of antibacterial fatty acids that could 

potentially be used as topical antibiotics.  
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Chapter 3: Nutritional characteristics of the potential aquaculture 

feed species, Boekelovia hooglandii  

 

This chapter contains material submitted to Aquaculture (Ruffell, S. E., Packull-McCormick, S. 

R., McConkey, B. J., & Müller, K. M., 2016. Nutritional characteristics of the potential 

aquaculture feed species Boekelovia hooglandii. Aquaculture (submitted). 

 

3.1. Introduction 

Approximately, 1 000 tonnes of algal biomass are used annually for aquaculture feed 

(Hemaiswarya et al., 2011), primarily for culturing larvae, juvenile finfish, and raising 

zooplankton as feed for juvenile animals (Priyadarshani & Rath, 2012). There are numerous 

factors that are considered by the aquaculture industry when selecting microalgae for aquaculture 

feed. These can include the size of the algal cells, nutrient composition, digestibility, pigment 

content, and growth rate of the candidate algae (Glaude & Maxey, 1994). However, algal cell 

size is the main determinant in the ability of an aquaculture species to be able to feed effectively 

on phytoplankton (Glaude & Maxey, 1994). For instance, planktivore rotifers intended as feed 

for marine finfish graze on microalgae of between 10 and 20 µm, whereas larval mollusks and 

shrimp can more easily digest cells that are less than 10 µm (Glaude & Maxey, 1994). 

Furthermore, the nutritional profile of the algal feed is dependent on the cellular content of 

proteins, fatty acids, pigments, and carbohydrates (Glaude & Maxey, 1994). Within the present 

study, the term nutritional profile refers to the concentration of fatty acids, proteins, 

carbohydrates, and pigments within the algal cell. This profile can impact the growth of the 



40 

 

aquaculture species to which this algal feed is being applied (Renaud et al., 1999). For example, 

bivalve larvae have increased growth when fed an algal diet rich in protein and moderate levels 

of lipids and carbohydrates (Renaud et al., 1999). On the other hand, microalgae with high 

carbohydrate concentrations and moderate levels of PUFAs, such as omega-3 fatty acids, have 

been used for culturing juvenile oysters and larval scallops (Brown et al., 1997). Notably, 

essential omega-3 fatty acids have been linked to the maintenance of homeostasis, neural 

development and cardiovascular health in vertebrates (Tocher, 2015) leading to better growth of 

those organisms. In addition, carotenoid pigments can enhance the color of certain aquatic 

organisms, thus increasing the commercial value (Spolaore et al., 2006). For example, tissue 

deposits of carotenoid pigments can be converted into vitamin A and can increase the 

pigmentation of the muscle in salmonids and carp, this in turn increases the market value of these 

fish (Spolaore et al., 2006; Tanumihardjo, 2011). Lastly, the growth rate of an algal species plays 

a critical role in the large-scale production of these organisms as aquaculture feed. For instance, 

if an important nutritional component (such as proteins, fatty acids, carbohydrates, or pigments) 

is abundant during high growth rates, this will result in an increased yield of the nutritional 

constituent. For example, the concentration of fatty acids should be considered with algal growth 

rate to determine the overall fatty acid productivity (Huerlimann at al., 2010). As a result, the 

composition and growth rate of different algal feeds are important factors for the aquaculture 

industry to consider when identifying the most suitable algal species (Brown et al., 1997). 

The growth phase of a species can greatly influence the concentration of nutritional 

components in the algal cell (Fernández-Reiriz et al., 1989). As an algal batch culture grows, it 

proceeds through four key phases: lag, exponential, stationary, and finally a death phase. The 

nutritional composition of algal cells in culture can shift depending on the conditions during 
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these different phases.  For example, lipids typically increase during the exponential and late 

stationary phases (Siron et al., 1989; Huerlimann, 2010; Chiu et al., 2009) and carbohydrates 

also increase as the culture shifts from lag to stationary phase (Chu et al., 1982; Fernández-Reiriz 

et al., 1989; Zhu et al., 1997). Furthermore, several studies have demonstrated that protein 

concentrations can be variable according to culture conditions (Chu et al., 1982; Fidalgo et al., 

1998; Fernández-Reiriz et al., 1989; Zhu et al., 1997). For example, cell protein concentration 

may stay the same throughout all growth phases, decrease between the exponential and 

stationary phases (Fidalgo et al., 1998; Fernández-Reiriz et al., 1989; Zhu et al., 1997), or 

increase between the exponential and stationary phases (Fernández-Reiriz et al., 1989). Lastly, 

Dawczynski et al. (2007) noted that microalgae contain the full complement of essential amino 

acids needed for aquaculture feedstock. By examining previous literature, it is clear that the 

nutritional composition of the algal cell is heavily influenced by a variety of factors, such as 

growth phase and algal species.  

The nutritional profile of an algal strain can vary over time and is dependent on the 

taxonomic class, genus and species (Fernández-Reiriz et al., 1989). For example, lipid and 

carbohydrate content tends to increase as the culture proceeds from lag to stationary phase in 

diatom species such as P. tricornutum and Chaetoceros calcitrans (Fernández-Reiriz et al., 

1989). In contrast, in the raphidiophyte Heterosigma akashiwo, peak lipid and carbohydrate 

concentrations occur during exponential phase, followed by a continual decline (Fernández-

Reiriz et al., 1989).  In addition, Fernández-Reiriz et al. (1989) noted that protein concentration 

tends to increase from lag to stationary growth phases for certain diatoms and chrysophytes (e.g. 

C. calcitrans), but typically decreases from lag to stationary phases for species within the class 

Chlorodendrophyceae (e.g. Tetraselmis suecica). Therefore, identifying the nutritional 
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composition of various algal species at different growth phases can enable the aquaculture 

industry to identify the species and the growth conditions that are most advantageous for 

aquaculture feed and when best to collect biomass for this purpose.  

The species B. hooglandii M.F.E. Nicolai & L.G.M. Baas-Beck (Synurophyceae) has 

considerable potential for use in the aquaculture feed industry. Boekelovia hooglandii was 

identified as having a high omega-3 fatty acid content, the ability to grow in a wide range of 

temperatures, and a tolerance to a range of salinities (Barclay et al., 1991). The algal species B. 

hooglandii has been classified as marine (Throndsen, 1996), however this species can be 

observed in inland saline waters and grows well in waters with intermediate conductivity 

(Barclay et al., 1991). In addition, this organism should be easily digestible by larval mollusks 

and shrimp (planktivores) due to the small size (6 µm mean diameter) and absence of a cell wall 

(Microalgal Technology Research Group, 1986). The present study examines the suitability of 

this species as an aquaculture feed and also evaluates the nutritional composition and changes in 

the concentrations of fatty acids, proteins, carbohydrates, and pigments through the different 

growth phases. In addition, these changes were examined to identify patterns over the growth 

phases of this organism. Information from this study can aid the aquaculture industry in making 

informed decisions to improve the nutritional properties and productivity of the algae used for 

aquaculture feed. 

3.2. Materials and Methods 

3.2.1. Algal stock culture conditions  

The microalga B. hooglandii (Synurophyceae) M.F.E. Nicolai & L.G.M. Baas-Beck 

(CPCC 484) was obtained from the Canadian Phycological Culture Centre (CPCC) at the 
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University of Waterloo (Waterloo, ON, Canada). The algal stock cultures were supplemented 

with new F/2 medium every two weeks in a 1:1 ratio. Stock cultures were grown in a Model-

36HO (Percival Scientific, Inc., IA, United States) growth chamber under a light cycle of 17h:7h 

light:dark with an intensity of 80 ± 5 µmoles m-2 s-1 using 55 Watts PlusRite Compact 

Fluorescent FTL55/2G11/841 (CA, United States), at a temperature of 18 ±1°C. The F/2 medium 

was used in accordance with the SAG culture collection F/2 recipe, and was being used by the 

culture collection as the base medium to grow B. hooglandii. The recipe consisted of 0.075 g L-1 

NaNO3, 0.005 g L-1 NaH2PO4 x H2O, 0.03 g L-1 Na2SiO3 x 9H2O, 1 ml L-1 vitamin solution, 1 ml 

L-1 micronutrient solution and 905 ml L-1 filtered artificial seawater (SAG, 2015). SAG (2015) 

provides the recipes for vitamin and micronutrient solutions. 

3.2.2. Media type experiment 

In order to determine growth conditions that result in higher growth rates and essential 

fatty acid production, B. hooglandii was grown in a number of media types. Three media recipes 

were compared: a saltwater medium [F/2 (Guillard, 1975)], a freshwater medium [BBM (Stein, 

1980)], and a freshwater medium with soil extract [ESP (SAG, 2015)]. Culture collection 

conditions were followed (17:7 light:dark cycle, light intensity 80 ± 5 µmoles m-2 s-1 using 55 

Watts PlusRite Compact Fluorescent FTL55/2G11/841 (CA, United States), F/2 medium and 18 

± 1°C), except when a media type was being tested at which time culture collection conditions 

were maintained except for use of a different medium (SAG, 2015). Biomass was estimated from 

optical density at 600 nm, measured using a Spectronic 200 spectrophotometer (Thermo Fisher 

Scientific). A standard curve was used to estimate culture density in gram dw per liter. In order 

to create a standard curve, algal samples at a range of densities were measured using absorbance, 

and then filtered and dried to establish the respective gram dw per liter concentrations. Biomass 



44 

 

was estimated using OD every other day for 8 days, at which point approximately 30 mg dw 

biomass was collected for fatty acid analysis.  Due to the higher levels of biomass and fatty acid 

content of B. hooglandii in ESP medium, this medium was used for the remainder of 

experiments. Light and temperature conditions used for generating the growth curve and for 

nutritional analysis remained at 18oC, 80 µmoles m-2 s-1 light intensity, and 17h:7 h light cycle. 

The ESP recipe consisted of 0.2 g L-1 KNO3, 0.02 g L-1 K2HPO4, 0.02 g L-1 MgSO4 x 7H2O, 30 

ml L-1 low clay soil extract, 0.1% proteose peptone, and 5 ml L-1 micronutrient solution (SAG, 

2015). 

3.2.3. Growth curve conditions  

Inoculations of algal cells were added to 4 L flasks each containing 2 L of fresh ESP media 

on Day 0, at an initial concentration of 0.469 ± 0.068 g L-1. Biomass (g L-1) was estimated based 

on optical density at 600 nm using a spectrophotometer (Thermo Fisher Scientific, Model-

Spectronic 200) three times per week over the course of the 70 day experiment. Once optical 

density was measured, algal culture was collected and aliquots were used for nutritional analyses 

(refer to `3.2.6. Nutritional profile` for volumes). Based on preliminary growth curves, analyses 

of fatty acids, carbohydrates, and proteins were performed on day 0 and the last day of each 

growth phase [lag (day 0-23), exponential (24-35), stationary (36-49), and death (50-70)]. 

Samples were additionally analyzed at either the mid-point of a stage (lag, exponential, 

stationary, and death) or approximately weekly if the growth phase was greater than two weeks 

long. The lag phase exhibited very little observable growth and thus was not analyzed at the mid-

point. Pigment samples were analyzed on day 0 and the final day of each growth phase. Overall, 

nine time points were analyzed for protein, fatty acid, and carbohydrate (day 0, 23, 30, 35, 44, 

49, 56, 63, and 70). This experiment was performed in four replicates. 
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3.2.4. Growth phase identification 

The growth curve was plotted using biomass (g L-1) on a log scale, and the log-linear 

portion was identified as the exponential phase of the curve. To calculate biomass (g L-1), a 

standard curve was constructed that related biomass to optical density. The standard curve was 

constructed using the absorbance values of a culture of B. hooglandii at 600 nm under a range of 

known culture densities (0.1 – 1.0 g L-1). Biomass of the culture was measured by collecting, 

drying, and then weighing the algae to establish grams dw per liter. Using the known biomass of 

the culture and the absorbance of the dilutions, a line of best fit was calculated and used to 

determine the biomass of the samples. The exponential phase and changes in culture density 

were used to identify the lag, exponential, stationary and death phases. 

3.2.5. Statistical analysis 

To determine growth rate the biomass (g L-1) was plotted over time on a log scale graph 

and an exponential curve was fit to the data. The slope parameter ‘b’ on the equation y=aebt was 

used to estimate the growth rate (day-1). Biomass in the late exponential phase (days 33 and 35) 

was used to calculate the biomass productivity (g L-1 day-1 dw). Biomass productivity was 

estimated using the equation Biomass productivity (g L-1 day-1) = (X2-X1) (t2-t1)
 -1, where X2 was 

day 35 biomass (g L-1), X1 was day 33 biomass (g L-1), and t was the sample day (t2=35 and 

t1=33) (Hempel et al., 2012).  

SigmaPlot (SanJose, CA, USA) was used for paired t-test comparisons, and SPSS 

(Armonk, NY, USA) was used for the linear regression analysis. Paired t-tests were used to 

compare the cell’s physiological characteristics at different growth phases. The r-squared values 

were calculated for variable pairs, and any comparisons with r-squared values greater than 0.5 

were analyzed by linear regression. The notation within Tables 7 to 12 was used to indicate 
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whether values were significantly different. Superscript letters indicate whether values are 

significantly different from one another using different letters (p<0.05), and values with the same 

letter were not significantly different (p>0.05). The letters compare values within a single taxa 

and growth condition. The data range indicated with the plus-minus sign (±) refers to the 

standard deviation (n=4).  

3.2.6. Nutritional profile 

Cultures of B. hooglandii were sampled for protein, pigment, fatty acid, and carbohydrate 

analysis. An estimated 120 mg dw of biomass was required for the protein (5 mg), fatty acid (10 

mg), carbohydrate (5 mg) and pigment (100 mg) analysis. A minimum equivalent of 120 mg dw 

of biomass was collected, using culture density to calculate the volume required for minimum 

biomass, i.e. day 0 (400 ml), day 23 (300 ml), day 30 (150 ml), day 35 (50 ml), day 44 (50 ml), 

day 49 (50 ml), day 56 (50 ml), day 63 (50 ml), and day 70 (100 ml). Over the 70 day period a 

total of 800 ml of culture was removed from the initial 2 L of culture. The algal samples 

collected were rinsed with a solution (9 g NaCl in 1 L deionized water), stored at -80°C, and 

freeze dried prior to analysis. Blanks were used to account for the effect of salt residue on overall 

sample weight. For protein analysis, microalgal proteins were extracted using a 24% 

trichloroacetic acid bath (Slocombe et al., 2013). The protein precipitate was resuspended in 0.5 

ml of Lowry reagent (48:1:1; 2% (w/v) Na2CO3 anhydrous in 0.1 N NaOH: 1% (w/v) NaK 

Tartrate tetrahydrate: 0.5% (w/v) CuSO4 x 5H2O in H2O). The solution was then incubated at 

55°C for 3 h, followed by centrifugation at 15,000 x g for 20 min. Proteins were then quantified 

using the Lowry assay according to Slocombe et al. (2013). Optical density at 600 nm was 

measured using a spectrophotometer (Thermo Fisher Scientific, Model-Spectronic 200) and was 
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used to determine protein content. A calibration curve using bovine serum albumin (BSA) stock 

solution (200 mg ml-1) was generated to estimate protein concentrations (Slocombe et al., 2013). 

The fatty acid content was analyzed by Dr. Ken Stark’s lab (Waterloo, ON, Canada) as 

fatty acid methyl ester equivalents, which were derivatized using direct transesterification and 

quantified by gas chromatography as described in Zuñiga et al. (2012). Fatty acids were 

derivatized by adding 300 µl hexane and 1 ml 14% boron triflouride in methanol to freeze dried 

algae, followed by incubation for 60 min at 90°C (Zuñiga et al., 2012). Then samples were dried 

under nitrogen, and the resulting fatty acid methyl esters were dissolved in 65 µl of heptane and 

quantified using gas chromatography (Varian GC 3900), using hydrogen as the carrier gas and 

flame ionization as the detection method (Zuñiga et al., 2012). A split ratio of 200:1 and 

temperature of 250°C was set on the injector. A DB-FFAP 15 m x 0.10 mm i.d. x 0.10 µm film 

thickness capillary column was used as the separation column. To identify peaks, retention times 

were compared with external standards (GLC-462, GLC-569; Nu-Chek Prep, Elysian, MN) 

containing 28 fatty acid methyl esters of equal concentration by weight (Zuñiga et al., 2012).  

For carbohydrate analysis, extraction of carbohydrates from algal biomass was performed 

using a sulfuric acid-UV method according to Albalasmeh et al. (2013). Algal biomass (5 mg) 

was combined with 3 ml concentrated sulfuric acid, rapidly mixed for 30 s, followed by cooling 

on ice for 2 min. Absorbance was then measured using UV light at 315 nm using a UV 

spectrophotometer to determine carbohydrate concentration (Albalasmeh et al., 2012). A glucose 

calibration curve was used to establish the corresponding carbohydrate concentration for an 

absorbance value.  
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Algal samples for pigment analysis were stored in the dark at -20°C (Thomas et al., 2013). 

In preparation for HPLC pigment analysis, freeze dried samples were extracted using an 80:15:5 

mixture by volume of acetone:methanol:water and incubated at -20°C for 24 h (Thomas et al., 

2013). The extract was filtered using a 0.22 µm polytetrafluoroethylene syringe filter, dried 

under a stream of nitrogen gas and re-suspended in 500 µL of injection solution (70:25:5 

acetone:ion pairing reagent:methanol by volume) before HPLC analysis (Thomas et al., 2013). 

The HPLC analysis was performed by Dr. Roland Hall’s lab (Waterloo, ON, Canada). To 

separate pigment compounds, a gradient of two mobile phases was used. Mobile phase A was 

composed of 90:10 v:v of methanol:ion pairing reagent, and mobile phase B was composed of 

73:27 v:v of methanol: acetone (Thomas et al., 2013). The ion pairing reagent consisted of 0.75 g 

tetrabutylammonium acetate and 7.7 g ammonium acetate. Pigment analysis was performed 

using Symmetry C18 columns (3.5 µm) on a Waters HPLC reverse-phase system. Calibration 

curves were conducted for all pigments [including β-carotene, chlorophyll (a, b, and c3), 

diadinoxanthin, echinenone, fucoxanthin, lutein, myxoxanthophyll, phaeophytin a, and 

zeaxanthin], and Sudan II was used as an internal standard for all samples (Thomas et al., 2013). 

3.3. Results and Discussion 

Within this study, experiments on the effect of media types were performed in order to 

identify a media resulting in greater biomass productivity (g L-1 day-1 dw) and fatty acid content, 

compared to the reference medium (F/2) used to grow B. hooglandii in the culture collection. For 

the most productive medium, trends in the algal nutritional profile and growth rate were 

established over the four growth phases (lag, exponential, stationary, and death). This study 

focused on the main cellular characteristics, such as total protein, fatty acid, pigment, and growth 

rate, in addition to highlighting certain fatty acids and pigments of commercial interest. 
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Emphasis was placed on highly correlated characteristics, based on the coefficient of 

determination using r-squared values greater than 0.9. In addition to the primary findings 

discussed in this Chapter, a complete list of identified correlations is provided in Appendices 

section ‘A.1. Chapter 3 Supplementary data’. Once culture conditions resulting in a stable algal 

population were established, additional studies were performed to explore nutrient composition 

over different phases of growth. 

3.3.1 Algal growth 

Growth media can have a large impact on fatty acid concentration and biomass 

productivity (Guschina & Harwood, 2006). The halotolerant alga, B. hooglandii¸ was grown in a 

variety of freshwater and marine media types [ESP (marine with soil extract), BBM (freshwater), 

and F/2 (marine)]. We noted that the media recipes being compared are quite different in nutrient 

composition and concentration, and the effect of individual components has not been 

investigated. Of the media studied, the greatest total omega-3 fatty acid content (62.4 mg g-1) and 

biomass productivity (0.38 g L-1 day-1) by B. hooglandii were in samples grown in ESP medium 

(Table 7). The halotolerant alga, B. hooglandii, has been identified in saline ponds containing 

humic acids (Barclay et al., 1991). This could partly explain the greater biomass productivity of 

the culture in the marine medium containing 0.1% proteose peptone and soil extract. Notably, 

soil extracts contain an array of micro-nutrients, macro-nutrients, vitamins and humic acids that 

can increase the growth of certain algae (Andersen, 2005). In addition, researchers have observed 

an increase in the abundance of B. hooglandii with increasing dissolved organic carbon 

concentration (Barclay et al., 1991). Thus, the presence of these nutrients within the medium 

may have resulted in the far greater biomass production in the ESP medium. There are a few 

potential concerns with use of ESP medium in industrial scale-up, notably the higher cost of  
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Table 7. The effects of five different culture collection media, F/2, BBM, and ESP, on the total fatty acid content and omega-3 fatty 

acid content of B. hooglandii (17h:7h, 80 ± 5 µmoles m-2 s-1, and 18 ± 1°C). 

Media Biomass 

productivity 

(g L-1 day-1 dw) 

Omega-3 fatty acid production (mg g-1dw) Total 

omega

-3 (mg 

g-1 dw)  

Total 

FA 
(mg   

g-1 dw) 

16:4 

(n-3) 

18:3   

(n-3) 

18:4  

(n-3) 

20:3    

(n-3) 

20:4     

(n-3) 

20:5   

(n-3) 

22:5     

(n-3) 

22:6         

(n-3) 

F/2 0.145 ± 0.005C 

 

 

0.372± 

0.061B 

 

 

0.055± 

0.012B 

 

 

 

0.829± 

0.070B 

 

 

0.020± 

0.011 

 

 

 

0.0227± 

0.0078B 

 

 

 

0.687± 

0.093B 

 

 

 

0.0115± 

0.0085B 

 

 

0.351± 

0.014B 

 

 

2.35± 

0.09B 

 

149± 

7B 

 BBM 0.264 ± 0.018B 

 

0.130± 

0.110A 

 

 

0.630± 

0.200A 

 

 

14.9 ± 

4.9A 

 

 

0.021± 

0.013 

 

0.094± 

0.027A 

 

 

31.0± 

12.1A 

 

0.169± 

0.057A 

 

 

8.91± 

4.02A 

 

56.1± 

21.4A 

143± 

37AB 

 
ESP 0.382 ± 0.012A 

 

0.121± 

0.114A 

 

 

0.666± 

0.068A 

 

 

14.7 

±1.8A 

 

0.042± 

0.017 

 

0.072± 

0.016A 

 

 

36.0± 

5.6A 

0.203± 

0.012A 

 

 

10.6± 

2.1A 

 

62.4± 

9.7A 

180± 

14A 

 

aA, B, and C indicate statistically significant differences between groups (refer to 3.2.5 Statistical analysis) 
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proteose peptone compared to other organic nitrogen sources and the unpredictable nutrients 

within soil extracts (Andersen, 2005) which may need to be addressed. Due to the higher levels 

of biomass and fatty acid content of B. hooglandii, ESP medium was used for the remainder of 

the project. After identifying a media type resulting in a relatively high biomass productivity for 

B. hooglandii, this study further examined the specific growth phases. 

Throughout the lag, exponential, stationary, and death phase of a culture, the growth 

characteristics of the algal cell culture continually shifted (Figure 4). The log-linear portion of 

the growth curve, when plotted on a log scale, was identified as the exponential phase of the 

curve (Day 24-35). The region prior to the exponential phase was identified as the lag phase 

(Day 0-23). Subsequently, the stationary phase was identified as the region of the curve after the 

exponential phase but before biomass loss (Day 36-49). Finally, the portion of the curve with 

continually decreasing biomass was identified as the death stage (Day 50-70). The lag phase 

exhibited minimal growth, however at the end of the exponential phase, the growth rate peaked 

(0.17 ± 0.02 h-1) as shown in Figure 5. Additionally, at the end of stationary phase the greatest 

culture density occurred at 4.89 ± 0.51 g L-1 (Fig. 4). These observations are consistent with 

nitrogen or nutrient deficiency in the stationary phase, which may have resulted in reduced 

growth and a shift away from protein synthesis (Markou et al., 2012). In addition to biomass and 

growth rate, other physiological characteristics including pigment, fatty acid, protein, and 

carbohydrate content also shift throughout the growth phases. 

3.3.2 Algal pigments 

 

In this study, the highest total pigment concentration in B. hooglandii occurred at the end 

of the lag phase and in exponential phase, with 0.058 ± 0.034 mg g-1 and 0.042 ± 0.028 mg g-1,  
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Figure 4. Algal biomass concentration (g L-1 dw algae) throughout growth phases, lag (day 0-

23), exponential (day 24-35), stationary (day 36-49), and death (day 50-70). Error bars indicate 

standard deviation (n=4). 

 

 

 

Figure 5. Algal rate of change of biomass (day-1) on the final day of each growth phase, lag (day 

0-23), exponential (day 24-35), stationary (day 36-49), and death (day 50-70). Error bars 

indicate standard deviation (n=4). 
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respectively (Table 8). Of the pigments analyzed, four out of seven (fucoxanthin, diatoxanthin, 

diadinoxanthin, and chlorophyll a) peaked at the end of the lag phase. However, this peak 

remained stable and was not significantly different from the concentration at the end of 

exponential phase. The drop in pigment concentration after exponential phase may be due to 

reduced nutrients and increased stress in stationary and death phase (Harket et al., 1996). As a 

culture ages and nutrient limitation occurs with increasing cell density, stress during the 

stationary and death phases can result in pigment loss. For example, Harker et al. (1996) 

demonstrated that as stress on a culture increases, pigment concentration decreases, and cells 

begin to bleach. This loss of cell pigment, due to stress, is possibly linked to oxidative 

degradation within the cell (Harker et al., 1996). Over the different growth phases pigment 

concentration varied, and correlations formed between different algal pigments. 

In addition to the increased cellular concentration in algal pigments during exponential 

phase, correlations were present among individual pigments. Of the pigments studied, 

chlorophyll a had the greatest positive correlation with total pigment concentration (r=0.962, 

p=0.009) as expected since chlorophyll a is the primary pigment in algae (Stace, 1989). 

Fucoxanthin was also strongly correlated with total pigment, with an r value of 0.897 (p=0.039). 

Of all pigments measured, chlorophyll a and fucoxanthin were present in the highest proportions 

within the algal cell, as seen in Table 8. Chlorophyll a and fucoxanthin are the major pigments in 

Chrysophyceae of which B. hooglandii is a member (Stace, 1989; Thomas et al., 2013). The high 

cellular content of both could explain the correlation with total pigment. Of the nutritional 

components analyzed, correlations were not only present between individual pigments, but also 

individual fatty acids.   
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3.3.3 Algal fatty acid composition 

Algal fatty acids vary significantly from one growth phase to the next and from species to species 

(Borowitzka & Moheimani, 2013). The highest total fatty acid concentration observed in this study 

occurred at the end of the stationary phase, at 271 ± 21 mg g-1 (Fig. 6). The high fatty acid content 

exhibited in the stationary phase may be the result of nitrogen deficiency (Markou et al., 2012). In 

addition, the increase in total fatty acid content is consistent with numerous other studies of 

microalgae such as P. tricornutum, D. tertiolecta, and I. galbana, which have shown that lipid 

concentration in algae increases during the lag and stationary phases (Siron et al., 1989; 

Huerlimann, 2010; Chiu et al., 2009; Fidalgo et al., 1998). However, Barclay et al. (1991) 

observed different changes in lipids where the lipid concentration increased during the 

exponential and stationary phases in B. hooglandii. Overall, the total lipid content was greatest in 

stationary phase, however the proportion of the individual fatty acids varied with growth phase. 

Throughout the different algal growth phases, certain fatty acids were present in consistently 

high concentrations relative to the other fatty acids analyzed (Figure 7). The relatively high 

proportions of these compounds allows them to be used as estimates of the concentration of their 

structural group, including 16:1 for total fatty acid, 16:0 for SFA, and 20:5(n-3) for PUFA 

content. Of the thirty-four fatty acids analysed, 16:1 was present in the greatest amounts (Table 

9), at a level consistently higher than that of total SFAs and PUFAs combined. This high 

concentration has been shown in other algal species such as Isochrysis zhangjiangensis 

(Chrysophyceae), with 16:1 being a major component of lipids (Huang & Cheung, 2011). As a 

result of the high proportion of 16:1 (28.5 to 48.0% of total fatty acid content, depending on 

sample day), the composition correlates significantly with the total fatty acid concentration 

(r=0.941, p=0.000). In addition, 16:1 has been identified as a precursor for the
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Table 8. The pigment content (µg g-1 dw) of B. hooglandii during the four growth phases, lag (day 0-23), exponential (day 24-35), 

stationary (day 36-49), and death (day 50-70). 

Day Fucoxanthin Diatoxanthin Diadinoxanthin Zeaxanthin Chlorophyll c Chlorophyll a β- carotene 
Total 

Pigment 

0 15.5 ± 6.4 0.133 ± 0.063 6.92 ± 2.42 0.94 ± 0.21 1.25 ± 1.19 5.79 ± 1.25 0.082 ± 0.041 30.6 ± 7.0 

23 22.7 ± 12.2 0.303 ± 0.212 9.02 ± 4.82 3.83 ± 2.89 2.82 ± 2.46 18.9 ± 12.1 0.191 ± 0.061 57.7 ± 34.0 

35 13.2 ± 9.0 0.122 ± 0.231 7.59 ± 2.74 5.23 ± 0.97 0.29 ± 0.74 15.3 ± 13.9 0.240 ± 0.050 41.9 ± 27.6 

49 7.57 ± 1.75 n.d.a 7.20 ± 1.36 2.45 ± 0.43 1.68 ± 1.91 5.00 ± 0.77 0.121 ± 0.124 24.0 ± 1.8 

70 3.37 ± 1.88 n.d. 3.77 ± 0.47 1.25 ± 0.36 0.31 ± 0.29 3.00 ± 0.42 n.d. 11.7 ± 2.4 

a not detected  

 

 

 

 

 

 



56 

 

 

Figure 6. Biochemical composition of the algal cell through growth phases, lag (day 0-23), 

exponential (day 24-35), stationary (day 36-49), and death (day 50-70). Error bars indicate 

standard deviation (n=4). 

 

PUFA synthesis pathway (Beaudoin, 2000), and hence the high 16:1 concentration in B. 

hooglandii would contribute to a higher PUFA content (Sheehan et al., 1998). Another example 

of a fatty acid being an accurate indication of the fatty acid group includes palmitic acid (16:0) 

and total SFA; which contributes to 64-75% of the total SFA content (Table 10). This finding is 

in agreement with Goss and Wilhelm (2009), who demonstrated that C16 is commonly present in 

higher concentrations in algae, relative to other fatty acids. The saturated fatty acid 18:0 was the 

only other fatty acid to have a strong correlation with the total SFA concentration (r=0.955, 

p=0.000). Eicosapentaenoic acid [20:5(n-3); EPA] is another example of a highly abundant fatty 

acid, making up ~ 80.9% of the total PUFA content. Not surprisingly, EPA was strongly 

correlated with total omega-3 (r=0.996, p=0.000) and total PUFA (r=0.986, p=0.000) 

concentrations, as seen in Tables 11 and 12. Of the PUFAs, EPA was present in the highest 

proportions within the class Chrysophyceae, of which B. hooglandii is a member (Borowitzka &  
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Moheimani, 2013). The high EPA content characteristic of this taxonomic group would explain 

the correlations among EPA, total omega-3 and total PUFA concentration (Borowitzka & 

Moheimani, 2013). In addition to the influence of 16:1, 16:0 and EPA on different fatty acid 

groups, a variety of other correlations were identified among fatty acids and other cellular 

characteristics, such as pigments. 

 

 

 

Figure 7. The fatty acid composition of the algal cell through growth phases, lag (day 0-23), 

exponential (day 24-35), stationary (day 36-49), and death (day 50-70). Error bars indicate 

standard deviation (n=4).. 
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Table 9. The monounsaturated fatty acid content (mg g-1 dw) of B. hooglandii during the four growth phases, lag (day 0-23), 

exponential (day 24-35), stationary (day 36-49), and death (day 50-70). 

Day C12:1 C14:1 C16:1 C18:1(n-7) C18:1(n-9) C20:1(n-9) C22:1(n-9) C24:1(n-9) 

0 0.0062±0.0018 0.0313±0.0009 81.9±3.7 5.53±0.50 11.3±0.9 0.177±0.007 0.0311±0.0009 0.808±0.009 

23 0.0090±0.0013 0.0310±0.0079 88.1±2.8 5.55±0.48 11.8±0.7 0.197±0.005 0.0310±0.0029 0.886±0.009 

30 0.0420±0.0200 0.0311±0.0027 42.8±0.8 3.54±0.13 4.01±0.37 0.104±0.023 1.29±0.03 0.301±0.055 

35 0.0262±0.0113 0.0401±0.0222 67.5±7.7 1.83±0.11 5.08±0.54 0.111±0.071 0.717±0.043 0.347±0.066 

44 0.0119±0.0044 0.0482±0.0181 83.1±3.5 1.76±0.07 6.24±0.15 0.0545±0.0094 0.480±0.105 0.298±0.063 

49 0.0097±0.0096 0.0545±0.0050 128±7 2.59±0.22 11.7±0.9 0.0434±0.0051 0.484±0.133 0.350±0.050 

56 0.0095±0.0033 0.0454±0.0076 109±12 3.73±0.35 9.92±1.02 0.0551±0.0201 0.461±0.050 0.305±0.029 

63 0.0123±0.0075 0.0280±0.0110 102±14 4.31±0.59 9.26±1.29 0.0597±0.0016 0.510±0.123 0.366±0.046 

70 0.0148±0.0038 0.0552±0.0122 79.4±4.4 3.77±0.60 8.05±2.09 0.0942±0.0342 0.881±0.111 0.389±0.067 
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Table 10.  The saturated fatty acid content (mg g-1 dw)  of B. hooglandii during the four growth phases, lag (day 0-23), exponential 

(day 24-35),  stationary (day 36-49), and death (day 50-70). 

 
Day C10:0 C12:0 C14:0 C16:0 C17:0 C18:0 C20:0 C22:0 C23:0 C24:0 

0 0.0273 

±0.0018 

0.0421 

±0.0370 

8.57  

±0.11 

33.0      

±1.3 

1.69  

±0.09 

1.57  

±0.09 

0.185 

±0.017 

0.219 

±0.013 

0.0187 

±0.0073 

1.73  

±0.03 

23 0.0253 

±0.0111 

0.0570 

±0.0293 

9.16  

±0.46 

35.8     

±0.9 

1.80  

±0.06 

1.77  

±0.06 

0.198 

±0.020 

0.150 

±0.013 

0.0207 

±0.006 

1.96  

±0.05 

30 0.0534 

±0.0391 

0.218 

±0.040 

15.0    

±0.4 

48.5     

±1.3 

2.27  

±0.04 

2.60  

±0.42 

0.293 

±0.059 

0.610 

±0.032 

0.0731 

±0.0233 

2.48  

±0.16 

35 0.0531 

±0.0134 

0.210 

±0.053 

15.7    

±0.6 

44.9     

±4.3 

3.57  

±0.36 

2.35  

±0.67 

0.230    

±0.100 

0.517 

±0.088 

0.0653 

±0.0432 

3.03  

±0.28 

44 0.0402 

±0.0312 

0.0961 

±0.0232 

13.6     

±0.4 

44.2     

±2.3 

3.39  

±0.13 

1.92  

±0.16 

0.175 

±0.014 

0.401  

±0.111 

0.0211 

±0.0130 

2.27  

±0.09 

49 0.0631 

±0.0212 

0.116 

±0.019 

18.1     

±1.3 

69.7     

±4.8 

3.76  

±0.21 

3.53  

±0.20 

0.215 

±0.016 

0.395 

±0.051 

0.0244 

±0.0133 

2.52  

±0.19 

56 0.0271 

±0.0134 

0.0906 

±0.0053 

14.4    

±1.3 

61.8     

±7.0 

2.37  

±0.23 

3.27  

±0.39 

0.196 

±0.032 

0.240 

±0.040 

0.0180 

±0.0181 

2.17  

±0.22 

63 0.0263 

±0.0082 

0.0900 

±0.0260 

13.6    

±0.9 

61.4      

±9.4 

1.53  

±0.20 

2.63  

±0.47 

0.208 

±0.046 

0.377 

±0.081 

0.0140 

±0.0134 

2.29  

±0.22 

70 0.0239 

±0.0069 

0.123 

±0.058 

11.0    

±1.2 

51.2     

±4.2 

0.459 

±0.017 

2.55  

±0.39 

0.218 

±0.022 

0.640 

±0.068 

0.0166 

±0.0027 

1.84  

±0.22 
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Table 11.  The omega-6 fatty acid content (mg g-1 dw)  of B. hooglandii during the four growth phases, lag (day 0-23),  exponential 

(day 24-35), stationary (day 36-49),  and death (day 50-70). 

 

Day C20:3(n-6) C20:4(n-6) C22:2(n-6) C22:4(n-6) C22:5(n-6) 

0 0.141±0.221 2.15±0.09 0.0901±0.0260 0.126±0.013 0.0621±0.0265 

23 0.354±0.200 2.30±0.07 0.0904±0.0294 0.125±0.012 0.0754±0.0191 

30 0.184±0.035 1.59±0.09 0.218±0.040 0.272±0.069 0.106±0.043 

35 0.386±0.061 3.20±0.20 0.0984±0.0501 0.212±0.052 0.0711±0.0720 

44 0.374±0.036 2.70±0.15 0.0664±0.0191 0.741±0.535 0.0363±0.0019 

49 0.385±0.055 2.90±0.25 0.0611±0.0063 0.452±0.484 0.0450±0.0101 

56 0.245±0.039 1.65±0.20 0.0510±0.0340 0.266±0.332 0.0320±0.0110 

63 0.226±0.072 1.06±0.20 0.0693±0.0632 0.390±0.291 0.0355±0.0253 

70 0.129±0.049 0.424±0.031 0.0443±0.0041 0.0185±0.0013 0.0148±0.0073 
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Table 12.  The omega-3 fatty acid content (mg g-1 dw)  of B. hooglandii during the four growth phases, lag (day 0-23),  exponential 

(day 24-35), stationary (day 36-49),  and death (day 50-70). 

Day C16:4(n-3) C18:3(n-3) C18:4(n-3) C20:3(n-3) C20:4(n-3) C20:5(n-3) C22:5(n-3) C22:6(n-3) 

0 0.263±0.141 0.186±0.009 0.234±0.006 0.0200±0.0055 0.165±0.002 16.1±0.9 0.215±0.015 1.98±0.09 

23 0.222±0.115 0.216±0.016 0.252±0.006 0.0351±0.0110 0.180±0.002 17.9±0.8 0.228±0.011 2.25±0.10 

30 0.612±0.099 0.229±0.059 0.291±0.036 0.0734±0.0213 0.269±0.020 17.6±1.2 0.176±0.019 1.51±0.04 

35 0.571±0.058 0.511±0.067 0.380±0.057 0.0470±0.0141 0.614±0.181 25.3±2.3 0.374±0.077 3.06±0.34 

44 0.292±0.046 0.347±0.026 0.429±0.025 0.0333±0.0174 0.656±0.085 20.8±0.8 0.179±0.049 2.42±0.07 

49 0.340±0.111 0.347±0.024 0.706±0.030 0.0416±0.0140 0.788±0.054 16.1±13.9 0.201±0.027 2.72±0.14 

56 0.284±0.066 0.221±0.017 0.548±0.062 0.0211±0.0040 0.501±0.084 15.6±1.9 0.143±0.010 1.66±0.19 

63 0.418±0.153 0.191±0.064 0.368±0.033 0.0441±0.0140 0.326±0.070 9.30±1.10 0.078±0.006 1.01±0.12 

70 0.467±0.032 0.0461±0.0041 0.188±0.007 0.0202±0.0088 0.116±0.014 3.46±0.24 0.0314±0.0065 0.400±0.081 
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3.3.4 Correlation between pigments and fatty acids 

Within this study, correlations were identified between pigments and fatty acids. For 

example, the omega-3 fatty acid EPA was positively correlated with β-carotene. This correlation 

may be a consequence of the role of omega-3 fatty acids, and hence EPA, in the thylakoid 

membrane. Under environmental conditions that enhance growth, the thylakoid membrane 

contains increased content of PUFA-rich lipids (that assist with membrane synthesis) and 

pigment-protein complexes are also formed, from carotenoids and chlorophyll (Guschina & 

Harwood, 2006; Takaichi, 2011). However, under stressful growth conditions (such as nutrient 

limitation or high light intensity), pigment and PUFA concentrations in the thylakoid membrane 

drop, and fatty acids shift to storage lipids, which are rich in MUFAs and SFAs (Guschina & 

Harwood, 2006; Markou et al., 2012). This response may explain the correlation between EPA 

and β-carotene; however, it does not explain why there is not a strong correlation among the 

other PUFAs and pigments. Notably, the omega-3 fatty acid 22:5(n-3) was also strongly 

positively correlated with β-carotene (r=0.930, p=0.022).  

3.3.5 Algal protein content 

Algal protein content can be greatly influenced by growth phase and environmental 

conditions. At the end of the exponential phase, the total protein concentration of B. hooglandii 

peaked at 556 ±11 mg g-1 dw (Figure 6). Zhu et al. (1997) noted a similar trend when examining 

the growth of the marine alga Isochrysis galbana, in which protein concentration increased 

during the lag and exponential phases, followed by a drop in concentration in the stationary 

phase. For I. galbana, this drop was attributed to nitrogen limitation, resulting in decreased 

synthesis of the proteins involved in photosystems I and II (Markou et al., 2012). A similar 

process may be occurring in B. hooglandii, as the concentration of total proteins in this study 
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followed a comparable trajectory- as the exponential phase came to an end and the stationary 

phase began, the cellular composition shifted away from protein production and towards lipid 

production. As the algal culture moves through the different growth phases, pigments, proteins, 

lipids and carbohydrates cellular content varies (Markou et al., 2012).  

3.3.6 Algal carbohydrate content 

In the present study, carbohydrate content peaked in B. hooglandii at 490 ± 116 mg g-1 

during the final growth phase (death). Carbohydrate concentration steadily increased, from the 

end of lag phase (day 23) to the end of death phase (day 70), which is in agreement with previous 

studies demonstrating a positive correlation between the age of an algal culture and relative 

carbohydrate concentration (Fidalgo et al., 1998; Fernández-Reiriz et al., 1989). This positive 

correlation may be a result of phosphorous limitation in the death phase, inducing increased 

carbohydrate content. Markou et al. (2012) demonstrated the effects of phosphorous limitation 

on C. vulgaris and Spirulina platensis, resulting in the carbohydrate content increasing from 15% 

to 55% and 11% to 63%, respectively. Phosphorus limitation changes the composition of algal 

cells due to a reduction in protein synthesis and an accumulation of carbohydrates and lipids 

(Markou et al., 2012). In addition to phosphorous limitation, sulfur deprivation could be a 

potential cause of the doubling in carbohydrate concentration from day 56 to 61. Sulfur is 

necessary for the synthesis of proteins, thus sulfur limitation would result in the accumulation of 

other nutritional compounds, such as carbohydrates (Markou et al., 2012). Electron transport 

carriers require sulfur, and in its absence, cell division halts and carbohydrate content rapidly 

increases. The specific mechanism behind the dramatic spike in carbohydrate concentration due 

to sulfur is unknown (Markou et al., 2012). A 2011 study investigated the effects of sulfur 

limitation on carbohydrate content in Chlorella sp., and demonstrated that sulfur-limited cultures 
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achieved a starch concentration of 2 g L-1 compared to 0.4 g L-1 in untreated cultures 

(Brányiková et al., 2011). Tracking the growth-limiting nutrients during algal growth and 

understanding the correlations that exist among the different nutritional characteristics are key to 

cost-effective harvesting. 

3.3.7 Nitrogen deficiency 

Nitrogen deficiency has pervasive effects, influencing the cellular content of growth, 

pigments, fatty acids, and proteins. Nitrogen limitation has a negative effect on the production of 

proteins and pigments (such as chlorophyll and carotenoids) in photosystem I and II (Markou et 

al., 2012). For example, nitrogen deficiency results in phycobilisome degradation in photosystem 

II (Hu, 2004), due to decreased synthesis and utilization of phycobilisome proteins as an internal 

nitrogen source (Collier & Grossman, 1992). Under nitrogen limiting conditions protein 

synthesis decreases, due to the structural role of nitrogen in proteins, and the synthesis of lipids 

or carbohydrates increases (Markou et al., 2012). Nitrogen deficiency and decreased protein 

synthesis lead to reduced biomass accumulation and enhanced lipid or carbohydrate content in 

the cell (Markou et al., 2012). This correlation is clearly illustrated by the correlation (r-value) of 

0.934 (p=0.020) between the protein content and the growth rate. Thus, growth rate can act as a 

predictor of protein concentration during the different growth phases, and could potentially be 

used by the aquaculture industry to identify a protein-rich culture.  

3.3.8 Aquaculture implications 

Cell size, digestibility, growth rate, pigment content, and nutrition composition are all 

characteristics that must be considered when selecting microalgae for aquaculture (Glaude & 

Maxey, 1994). A cell size of 6 µm (Microalgal Technology Research Group, 1986), as well as 

the absence of a cell wall, makes B. hooglandii easily digestible for larval mollusks and shrimp 
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(Glaude & Maxey, 1994; Mussgnug et al., 2010). The biomass productivity of this algal species 

(0.52 g L-1 day-1) was relatively high in comparison with previously estimated growth rates of 

currently used aquaculture feeds, e.g. I. galbana (0.16 g L-1 day-1), Tetraselmis suecica (0.27 g L-

1 day-1), and Pavlova sp. (0.28 g L-1 day-1) (Patil et al., 2007). In addition, the high biomass 

productivity will result in increased productivity of the nutritional components. For example, in 

the late exponential phase, the PUFA content in B. hooglandii was relatively low (Table 14); 

however, when biomass productivity was taken into consideration, the PUFA productivity was 

20.28 mg L-1 day-1 and 7.20 mg L-1 day-1 for B. hooglandii and I. galbana, respectively. These 

characteristics suggest that this species may be a suitable candidate for aquaculture feed. 

Boekelovia hooglandii can be used as an aquaculture feed, and can be optimized to be rich 

in protein (max. 55.6%), fatty acid (max. 27.1%), or carbohydrate (max. 49.0%) content 

depending on growth and harvest conditions. Collecting algal biomass on day 35 creates an 

aquaculture feed rich in protein (55.6%), with moderate levels of carbohydrates (13.9%) and 

fatty acids (18.6%). This combination is ideal for enhancing the growth of bivalve larvae, which 

prefer a protein and carbohydrate composition between 30-60% and 5-30%, respectively 

(Renaud et al., 1999). Day 35 biomass was also rich in PUFAs (3.9%), which can enhance the 

nutritional value of the aquaculture feed (Brown et al., 1997). Collecting B. hooglandii on day 63 

will create an aquaculture feed high in carbohydrates (49.0%) and moderate levels of PUFAs 

(1.6%). This nutritional profile is ideal for enhancing the growth of juvenile oysters and larval 

scallops (Brown et al., 1997). When protein, fatty acid, carbohydrate, and pigment content are 

taken into consideration, this species appears to be a viable aquaculture feed when compared to 

the commonly used microalgal feed I. galbana, as seen in Table 14. Nutrient requirements vary 

by aquaculture organism, so in addition to characterization of nutrients, feeding experiments 
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would be necessary before implementing B. hooglandii as a commercial feed.  

This study proposes the halotolerant alga B. hooglandii as a species for potential use as 

aquaculture feed. This research also identifies the peak concentrations and correlations among 

the nutritional constituents (protein, fatty acid, pigments and carbohydrates) throughout the four 

growth phases. These findings can be used by the aquaculture industry for future decision-

making concerning microalgal nutritional composition. For example, the ability of certain 

cellular characteristics to predict others could provide a high-throughput method for identifying 

potential microalgae for aquaculture. In conclusion, the small cell size, easy digestibility, and 

nutritional profile of B. hooglandii suggests that this microalga is a suitable candidate as 

aquaculture feed for bivalve larvae and juvenile oysters (Microalgal Technology Research 

Group, 1986; Glaude and Maxey, 1994; Mussgnug et al., 2010, Renaud et al., 1999; Brown et 

al., 1997).  
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Table 13.  A comparison of B. hooglandii  and I. galbana  as aquaculture feeds, using  percentage 

of total biomass. 

Aquaculture 

Characteristic 

Boekelovia 

hooglandii 

(Day 35; 

late 

exponential) 

Boekelovia 

hooglandii 

(Day 63; 

mid-death) 

Isochrysis 

galbana 

(Dörner et al., 

2014) (late 

exponential 

phase) 

Isochrysis 

galbana 

(Fidalgo et al., 

1998) (early 

stationary 

phase) 

Isochrysis 

galbana 

(Fidalgo et al., 

1998)  (late 

stationary 

phase) 

Protein  55.6% 28.0% 12.4% 34.5% 28.0% 

Carbohydrates 13.9% 49.0% 51.2% 10.6% 12.0% 

Fatty acid 18.6% 21.4% 15.3% 34.0% 38.5% 

PUFA 3.93% 1.55% 4.45% 7.15% 6.82% 

Omega-3 3.08% 1.17% 1.07% 4.56%  3.44% 

EPA + DHA 2.83% 1.03% 0.505% 2.69% 2.44% 
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Chapter 4: The effect of growth conditions on omega-3 fatty acid 

production in five microalgae 

 

4.1 Introduction  

Omega-3 fatty acids are essential to the healthy development of a wide range of 

organisms, including zooplankton, zoobenthos, fish, and humans (Kainz et al., 2004; 

Koussoroplis et al., 2011). Algae play a valuable role as a natural source of these essential lipids 

in both marine and freshwater food webs (Kainz et al., 2004). The ability of these organisms to 

synthesize essential fatty acids is due to the presence of desaturase Δ12 and Δ15 enzymes, which 

enables some algal groups to produce 18:2(n-6) and 18:3(n-3) fatty acids. The synthesis of these 

two fatty acids is an important step in the development of longer chain PUFAs including omega-

3s (Wallis et al., 2002). Omega-3 fatty acids are synthesized directly in algal cells (e.g. Cardozo 

et al., 2007), are present in the lipid bilayers of the membranes, and contribute to the 

maintenance of membrane function under varying growth conditions (Cardozo et al., 2007; 

Zhang et al., 2011). The algal omega-3 content influences the food quality throughout aquatic 

trophic levels (Kainz et al., 2004), largely because consumers lack Δ12 and Δ15 enzymes and 

need to obtain essential fatty acids from dietary sources (Schmid and Ohlrogge, 2002; Wallis et 

al., 2002). Hence, access to omega-3 fatty acids through diet directly affects the health of 

consumers (Kainz et al., 2004), and is closely associated with omega-3 content within the algal 

cell.   
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The necessity for omega-3 fatty acids in the human diet has resulted in increased demand from 

the pharmaceutical and food industries for novel sources of omega-3 fatty acids, such as omega-

3-rich algal species (Simopoulos 1999; Sidhu 2003; San Giovanni & Chew 2005; Lane et al., 

2014). Omega-3 fatty acids have been linked to the prevention of a variety of neurodegenerative 

and cardiovascular disease (San Giovanni and Chew 2005; Simopoulos 1999). Docosahexaenoic 

acid [DHA; 22:6(n-3)] intake during pregnancy and early childhood is critical for eye and brain 

development (Lane et al. 2014). This fatty acid is also beneficial throughout life as it aids in the 

maintenance of vision and cognition over time (Lane et al. 2014). Eicosapentaenoic acid [EPA; 

20:5(n-3)] is postulated to play a major role in reducing the effects of deep vein thrombosis 

(Lane et al. 2014). Furthermore, it can be used as a preventative measure against atherosclerosis, 

heart disease, and inflammatory disease (Dyerberg 1986; Ziboh 1991; Mata et al. 2010).  

Some algae are a rich source of omega-3s, and growth conditions can be manipulated to 

further increase the cellular content of these fatty acids (Guschina & Harwood 2006). Although 

they are a component of all membranes, FAs in algae are located primarily in the thylakoid 

membranes (rich in PUFAs) or as storage lipids (rich in saturated and monounsaturated fatty 

acids) (Guschina & Harwood 2006). Under favourable nutrient and light conditions, fatty acids 

are used to a greater degree in the thylakoids for membrane synthesis, which can result in algae 

with higher PUFA content (Harwood & Guschina 2009). Under stressful growth conditions, such 

as nutrient limitation or high light intensity, FA content increases in storage lipids, resulting in 

algae rich in saturated and monounsaturated fatty acids (Harwood & Guschina 2009). Algae can 

also shift their membrane composition to maintain function and fluidity under different growth 

conditions (Harwood & Guschina 2009). For example, low growth temperatures can result in a 
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modified FA chain length as well as a differing level of unsaturation to create a higher PUFA 

content within an algal cell (Harwood & Guschina 2009).  

The present study compared fatty acid production in five species of microalgae 

previously reported to have high levels of omega-3 fatty acids (Yongmanitchai, 1991; Sheehan et 

al., 1991; Lang et al., 2011). Experiments were conducted to identify patterns in omega-3 fatty 

acid production and growth conditions that increase total and omega-3 fatty acid content, and 

biomass productivity. Four different growth conditions were manipulated using a single factorial 

design, which tested the effects of light intensity, light cycle, temperature, and vitamin B12 

content. The growth and fatty acid content from two lipid-rich freshwater microalgae 

(Goniochloris sculpta and Chloridella simplex) were compared to those of three marine 

microalgae (Rhodella maculata, Boekelovia hooglandii and Phaeodactylum tricornutum). This 

study identified algal species and growth conditions that produced both a high biomass 

productivity and omega-3 content. Omeag-3 rich cells are beneficial for consumer health, 

however the combined high productivity and omega-3 content is a highly desirable feature for 

industrial application as well (Kainz et al. 2004; Yongmanitchai, 1991) 

4.2. Materials and Methods 

4.2.1. Microalgal cultures 

Cultures were purchased from the Canadian Phycological Culture Centre (CPCC) 

(Waterloo, ON, Canada; http://uwaterloo.ca/canadian-phycological-culture-centre/) and the 

Culture Collection of Algae at Göttingen University (SAG) (Göttingen, Germany; www.uni-

goettingen.de/en/184982.html) for the following microalgal taxa: B. hooglandii Nicolai et Baas 

Becking CPCC 484 (Synurophyceae, Heterokontophyta), P. tricornutum Bohlin CPCC 162 
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(Bacillariophyceae, Heterokontophyta), G. sculpta Geitler SAG 29.96 (Xanthophyceae, 

Heterokontophyta), R. maculata L. V. Evans (SAG 45.85) (Rhodellophyceae, Rhodophyta) and 

C. simplex Pascher SAG 51.91 (Xanthophyceae, Heterokontophyta). Strains were supplied as 

non-axenic monospecific cultures. 

4.2.2. Culture maintenance 

The cultures were maintained in 250 mL Erlenmeyer flasks in 50 mL of medium, from 

which inoculate was aseptically transferred into new sterile flasks containing prepared media 

every two weeks. Cultures were incubated in a Model E-36HO (Percival Scientific, Inc., IA, 

United States) growth chamber with 55 W PlusRite Compact Fluorescent FTL55/2G11/841 

lights (USA) under a 17 h:7h light:dark cycle, at 80 ± 5 µmoles m-2 s-1 light intensity, and 18 ± 

1°C without shaking or aeration. Media was sterilised and prepared according to the recipes 

provided by the culture collections. SAG Bold’s Basal Medium (SAG BBM) was used for G. 

sculpta, ESP for C. simplex, SWES for R. maculata and F/2 for both P. tricornutum and B. 

hooglandii. The above reference conditions were kept constant during experiments with the 

exception of changes to individual growth parameters under investigation.  

4.2.3. Experimental protocol 

Media was inoculated with stock cultures on day 0, with a starting biomass concentration 

of 1.27 ± 0.22 g L-1, expressed as dry weight biomass per liter of medium. The concentration was 

estimated every two days using optical absorbance measured with a Spectronic 200 

spectrophotometer (Thermo Fisher Scientific). To establish the linear equation required to 

convert absorbance values to weight, a calibration curve was made using dilution series of the 

algal cultures. These dilutions were then measured for absorbance and filtered using pre-weighed 

filter paper. The filter paper was then dried and re-weighed to determine the concentration (g L-1) 
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of the algae present. The algal concentration and corresponding absorbance were graphed and a 

line of best fit was calculated using Microsoft Excel (2007). The line of best fit (B. hooglandii R2 

= 0.93, P. tricornutum R2 = 0.91, G. sculpta R2 = 0.96, R. maculata R2 = 0.92 and C. simplex R2 = 

0.91) was used to convert subsequent absorbance values to biomass concentrations. Absorbance 

at 600 nm was used for P. tricornutum and B. hooglandii due to a dominant chlorophyll c 

content (Fawley, 1989; Rabinowitch and Govindjee, 1969), using previously established 

methods by Yongmanitchai and Ward (1991). Absorbance at 680 nm was used for G. sculpta, R. 

maculata, and C. simplex due to a dominant chlorophyll a content (Jones et al., 2013).  

Growth parameters were varied independently while all other conditions were maintained 

as described in section 2.2. All tests were performed in replicates of four. After eight days, 

samples were pelleted via centrifugation, the pellets were freeze dried and stored at -80°C for 

fatty acid analysis (Yongmanitchai and Ward, 1991). Lipid extraction and derivatization to fatty 

acid methyl esters was performed using a one-step direct transesterification followed by gas 

chromatography to quantify fatty acid content (Zuñiga et al., 2012). The direct transesterification 

method results in a greater recovery of total and PUFA content, compared to separate extraction 

and transesterification (Zuñiga et al., 2012). Boron trifluoride in methanol and hexane were 

added to freeze-dried algae to produce fatty acid methyl esters. The freeze-dried samples were 

hexane extracted to remove the fatty acid methyl esters. A Varian 3900 gas chromatograph 

equipped with a flame ionization detector was used to quantify the fatty acids. Derivatized fatty 

acids were identified through comparison of peak retention times with corresponding standards 

(Metherel et al., 2013).  

The following growth conditions were tested: light cycle (at 24h:0h and 17h:7h 

light:dark), light intensity (45, 80 and 130 µmoles m-2 s-1), and vitamin B12 supplementation (0, 
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10, and 100 ng L-1). Each organism was also grown in the media recommended by the source 

culture collection; the culture collections used F/2 for B. hooglandii, F/2 for P. tricornutum, SAG 

BBM for G. sculpta, SWES for R. maculata, and ESP for C. simplex. The F/2 saltwater medium 

is supplemented with silica (Guillard 1975), SWES is a saltwater medium that contains soil 

extract, SAG BBM is a freshwater media, and ESP is a freshwater medium with soil extract 

(SAG 2014). All media types contain nitrate as the nitrogen source. While one growth condition 

was being manipulated, the remaining growth conditions followed the appropriate culture 

collection criteria. All tests were performed in replicates of four. 

4.2.4. Statistics 

The biomass productivity over 8 days was calculated using the algal biomass on day 8 

and 0. Mean biomass productivity (g L-1 day-1 dry weight) was calculated using (X2-X1)/(t2-t1), 

where X2 was day 8 biomass concentration (g L-1), X1 was day 0 biomass concentration (g L-1), 

and t was the sample day (t2=8 and t1=0) (Hempel et al., 2012).  

SigmaPlot 10.0.1 (San Jose, CA, US) was used for all statistical analyses. T-tests were 

used to compare the two light cycle conditions, and one-way ANOVA was used for multi-factor 

comparison of fatty acid abundances, and biomass production under different growth conditions. 

If significant results were obtained using one-way ANOVA, the Holm-Sidak method was used to 

perform an all-by-all pairwise multiple comparison. The ANOVA data was additionally assessed 

for normality and for equal variances, and if data did not pass normality or equal variance tests, a 

Kruskal-Wallis One Way ANOVA on Ranks was used. The non-parametric Kruskal-Wallis test 

does not have to meet the assumptions of the parametric ANOVA, and can be used when these 

assumptions are not met by the data. If significant results were obtained using the Kruskal-Wallis 

One Way ANOVA on Ranks, the Student-Newman-Keuls method was used to perform a 
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pairwise comparison. Superscript letters were used in Tables 14 to 17 to indicate whether data 

points were significantly different (using the same letter; p<0.05) or not significantly different 

(using different letters, such as A, B, and C; p<0.05). Four repeats were used for each taxa under 

each growth condition, and the standard deviation for each mean is indicated in the data tables 

with plus-minus symbols (±).  

4.3. Results and Discussion 

4.3.1. Effects of light intensity on biomass productivity and fatty acid content 

This study examined the effects of 45, 80 and 130 µmoles m-2 s-1 on biomass productivity 

and omega-3 content. This range is comparable to the surface water of natural aquatic habitats, 

(e.g. within the English Channel at ~25-356 µmoles m-2 s-1) (Edwards et al., 2013).  Within the 

present study, B. hooglandii (p=0.002), P. tricornutum (p=0.004), and G. sculpta (p=0.0002) 

exhibited a significant increase in biomass productivity with increasing light intensity (Table 14). 

Chloridella simplex exhibited an 8.8% increase in biomass productivity at 80 µmoles m-2 s-1 

(p=0.0005), followed by a decline in biomass productivity of 7.5% at 130 µmoles m-2 s-1 

(p=0.0001). The biomass productivity of R. maculata was not significantly impacted. The 

maximum biomass productivity for an algal strain occurs at the light saturation point and 

decreases in response to suboptimal light intensities (Wahidin et al., 2013). The marine 

synurophyte in the present study, B. hooglandii, exhibited its maximum biomass productivity in 

130 µmoles m-2 s-1 at 18°C. A 1997 study of the synurophyceae Synura petersenii identified a 

saturation point at 20°C and 167 µmoles m-2 s-1 (Saxby-Rouen et al., 1997). The high growth of 

S. petersenii at 167 µmoles m-2 s-1 suggests that B. hooglandii had not reached the saturation 

point.  On the other hand, P. tricornutum (Bacillariophyceae), exhibited increased biomass 

productivity up to a plateau at ~80 µmoles m-2 s-1, and maintained this level at 130 µmoles m-2 s-
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1. This agrees with the study by Beardall and Morris (1976), who identified a similar plateau in 

P. tricornutum above ~80 µmoles m-2 s-1. The light saturation point for P. tricornutum was 

reached at 80-130 µmoles m-2 s-1, as demonstrated by the plateau. A similar plateau was 

observed in the biomass productivity of C. simplex; however, growth began to decline at 130 

µmoles m-2 s-1. The high biomass productivity at 80 µmoles m-2 s-1 agrees with a study on the 

Vaucheria dichotoma (Xanthophyceae) in which growth peaked at 86 µmoles m-2 s-1 (Aberg & 

Fries, 1976). The subsequent drop in the biomass productivity of C. simplex at 130 µmoles m-2 s-

1 would suggest that light intensity surpassed the saturation point for this particular species. 

Finally, Phooprong et al. (2007) studied the response of the macroalga Gracilaria salicornia to 

irradiance at 20°C and identified a light saturation point at 395 µmoles m-2 s-1. If R. maculata has 

a similarly high saturation point, then the three intensities analyzed in the present study would all 

be relatively low (in comparison with 395 µmoles m-2 s-1), which could explain this species’ lack 

of a significant response. Light intensity and saturation point can influence microalgal biomass 

productivity; the change in biomass productivity depends on the physiological capabilities of the 

algal species and previous light and temperature adaption.   

Of the microalgae examined in this study, only the diatom P. tricornutum exhibited 

significantly increased omega-3 content (p=0.0006) as light intensity decreased (Table 14). 

During light limitation, the algal cell will attempt to capture more light by increasing thylakoid 

synthesis, subsequently increasing the cellular content of PUFA-rich thylakoid membranes 

(Guschina and Harwood, 2009; Wacker et al., 2016). This mechanism would explain the high 

omega-3 content at the lowest light intensity. However, another mechanism for low light 

intensity has been demonstrated using D. tertiolecta (Wacker et al., 2016), which may explain 

the absence of a significant change in omega-3 content in the other four microalgae. Under 
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limited light availability, lower PUFA content reduces thylakoid fluidity, thereby decreasing 

proton leakage and preventing energy loss (Wacker et al., 2016). Thus, these two competing
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Table 14. The effects of three light intensities, 45, 80 and 130 µmoles m-2 s-1 (± 5 µmoles m-2 s-1) on the total and omega -3 fatty acid 

content of five algae growing under 17h:7h light:dark at 18 ± 1°C. 

 Light  

Int-

ensity 

Biomass 

productivity 

(g L-1 day-1 

dw) 

 

Omega-3 Fatty acid Production (mg g-1 dw)  Total 

Omega-3  

(mg g-1 

dw) 

Total 

FA   

(mg g-1 

dw)  

16:4n3 18:3n3 18:4n3 

  

20:3n3 20:4n3 20:5n

3 

22:5n3 22:6n3 

Boekelovia 

hooglandii 

 

130 0.105 

±0.016Aa 

0.082 

±0.022C 

0.854± 

0.069A 

11.245±

0.632B 

0.056 

±0.016A 

0.049± 

0.019 

36.19

±2.17 

0.648± 

0.0411A 

12.969 

±0.872
A 

62.6 

±3.79 

 

241± 

9.84B 

80 0.100 

±0.018AB 

0.509 

±0.038A 

0.635± 

0.075B 

11.0 

±1.21B 

0.0219± 

0.0041B 

0.039± 

0.013 

32.5± 

2.8 

0.289± 

0.019C 

8.94 

±0.72B 

54.0 

±4.8  

285± 

15.5A 

45 0.045 ± 

0.015B 

0.19± 

0.0149B 

1.16± 

0.37 

13.9± 

0.763A 

0.056± 

0.026A 

0.062± 

0.031 

47± 

17 

0.63± 

0.20B 

15.6 

±4.3A 

78.6±28 323± 

57A 

Phaeodactylum 

tricornutum 

 

130 0.172± 

0.0048A 

0.0503 

±0.0149 

0.32 

±0.17 

2.1 

±1.3 

0.0176 

±0.0046 

0.77 

±0.48 

22± 

14 

0.169 

±0.0151 

1.57 

±0.91B 

27.1 

±4.7 A 

287± 

58 

80 0.17±0.01AB 0.26 

±0.13 

0.57± 

0.26 

3.7±1.7 0.025± 

0.021 

1.28 

±0.56 

41±18 0.25± 

0.10 

3.2 

±1.2AB 

50.0 

±21.9 AB 

402± 

182 

45 0.1544± 

0.0061B 

0.291 

±0.012 

0.444 

±0.026 

2.13 

±0.14 

0.0182 

±0.0025 

0.82 

±0.11 

36.4 

±1.4 

0.1710 

±0.0086 

2.942± 

0.063A 

43.3 

±1.5 B 

308± 

11 

Goniochloris 

sculpta 

 

130 0.041± 

0.0087A 

0.16± 

0.11 

0.86 

±0.37 

0.273± 

0.091 

0.0168± 

0.0047 

0.190± 

0.091 

20±11 0.0194± 

0.0015 

0.047± 

0.015A 

22±11 61± 

20 

80 0.033± 

0.0069A 

0.308± 

0.072 

0.91 

±0.16 

0.256± 

0.029 

0.0156± 

0.0063 

0.13 

±0.11 

21.5 

±3.1 

0.0163± 

0.0075 

0.0147

± 

0.0074
B 

23.2 

±3.4 

70± 

12 

45 0.00073± 

0.0047B 

0.347± 

0.067 

0.98 

±0.11 

0.265± 

0.043 

0.0151± 

0.0079 

0.204± 

0.039 

22.2 

±2.5 

0.032± 

0.012 

0.0213

± 

0.0095
AB 

24.1 

±2.7 

71.1± 

9.7 

Rhodella 

maculata 

 

130 0.156 

±0.0074 

0.0047 

±0.0017 

 

0.0077

± 

0.0027 

0.020± 

0.017 

0.0109±

0.0035A 

0.013± 

0.012 

4.4± 

3.9AB 

0.012± 

0.012 

0.048± 

0.027B 

4.5±3.8 23.1± 

5.6 
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 Light  

Int-

ensity 

Biomass 

productivity 

(g L-1 day-1 

dw) 

 

Omega-3 Fatty acid Production (mg g-1 dw)  Total 

Omega-3  

(mg g-1 

dw) 

Total 

FA   

(mg g-1 

dw)  

16:4n3 18:3n3 18:4n3 

  

20:3n3 20:4n3 20:5n

3 

22:5n3 22:6n3 

 80 0.147± 0.018 0.0040 

±0.0064 

 

0.0075

± 

0.0047 

0.0073± 

0.0023 

0.0035±

0.0018B 

0.0040

± 

0.0018 

5.98± 

0.80B 

0.0110±

0.0037 

0.0065

± 

0.0026
A 

6.06± 

0.81 

21.5± 

2.9 

 45 0.1563± 

0.0057 

0.067 

±0.017 

0.0066

± 

0.0019 

0.0061 

±0.0015 

0.0054± 

0.0014B 

0.0070

± 

0.0015 

8.01± 

0.50A 

0.0140± 

0.0038 

0.0059

0±0.00

094A 

8.12 

±0.52 

28.8± 

2.6 

Chloridella 

simplex 

 

130 0.148 

±0.001B 

0.281 

±0.043 B 

2.33± 

0.29A 

0.259 

±0.036 

0.063± 

0.011 

0.763± 

0.089A 

53.7 

±5.6 

0.0272± 

0.0169 

0.023± 

0.014 

57.5± 6.0 139± 

15.4 

80 0.160 

±0.002A 

0.28 

±0.13 AB 

2.33 

±0.14A 

0.284 

±0.017 

0.069 

±0.013 

0.870 

±0.060
A 

54.1 

±4.6 

0.033 

±0.019 

0.0292 

±0.016 

58.1± 5.0 150.0± 

8.0 

45 0.147 

±0.0032B 

0.475±0

.043A 

1.810± 

0.032B 

0.248 

±0.0016 

0.068 

±0.013 

0.598± 

0.024B 

49.4 

±2.5 

0.0244 

±0.0066 

0.022 

±0.015 

52.6± 2.7 140.0± 

3.7 
a Superscripts A, B, and C indicate statistically significant differences due to light intensity within a given species (refer to Materials and 

Methods).
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mechanisms may be used by the algal cell to maintain functioning during low light intensity.  

4.3.2. Effects of light cycle on biomass productivity and fatty acid content 

Light cycle (17h light:7h dark) and continuous illumination (24h:0h) greatly influenced 

three of the five cultures studied (Table 15). Under continuous light, B. hooglandii and G. 

sculpta experienced a significant increase in EPA, total omega-3, and biomass productivity (p = 

0.003, 0.002, and 0.0001 for B. hooglandii and p = 0.005, 0.007, and 0.0001 for G. sculpta). 

Brown et al. (1996) identified a relationship between a culture approaching light saturation and a 

resulting increase in biomass productivity and omega-3 content. Based on this relationship, the 

high biomass productivity and omega-3 content of B. hooglandii and G. sculpta under 

continuous light suggests that these species were approaching the light saturation point, which 

was not reached at 130 µmoles m-2 s-1under a 17h:7h light:dark cycle. Within this study, P. 

tricornutum and C. simplex reached light saturation under 17h:7h from 80-130 and 80 µmoles m-

2 s-1, respectively. There was no significant difference in biomass productivity between 24h:0h 

and 17h:7h in P. tricornutum and C. simplex, which may be due to cultures undergoing 

photoacclimation to maintain growth with increasing irradiance. These photoprotective 

mechanisms help prevent damage to the cell due to the wide range of irradiances experienced in 

nature (Torzillo et al., 2012). As members of the Bacillariophyceae and Xanthophyceae 

respectively, P. tricornutum and C. simplex utilize the diadinoxanthin cycle, which removes 

excess energy in photosystem II by converting diadinoxanthin to diatoxanthin. This cycle 

prevents damage to the photosynthetic apparatus (Jahns et al., 2009) and may have contributed to 

the lack of a significant change in biomass productivity for these two species. The Rhodophyta, 

R. maculata, was also significantly affected by light:dark cycle. Both the biomass productivity 

and total fatty acid content significantly decreased (p=0.004 and p=0.012, respectively) under 
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continuous light. However, it is unclear which mechanisms contributed to this response. Algal 

omega-3 content and biomass productivity are physiologically determined by algal species and 

their associated light saturation point. The impact of light cycle and continuous light on omega-3 

content and biomass productivity was dependent on algal species and the associated light 

saturation point, resulting in a significant response in three of the five algae studied. 

4.3.3. Effects of temperature on biomass productivity and fatty acid content  

 

Within the present study, the effect of varying temperature (15, 20 and 25°C) on biomass 

productivity and fatty acid content was examined. This is within the natural temperature range of 

temperate climates (15-40°C varying with seasonal and regional changes) (Juneja et al., 2013). 

Three microalgae B. hooglandii, P. tricornutum and G. sculpta experienced significantly greater 

biomass productivities at 25°C [B. hooglandii (p=0.0001), P. tricornutum (p=0.0002) and G. 

sculpta (p=0.0001)]. The high biomass productivity of B. hooglandii under 25°C agrees with the 

results for other species within the Synurophyceae, such as S. petersenii which had optimal 

growth at 25°C (Saxby-Rouen et al., 1997). A study by Yongmanitchai and Ward (1991) 

supports the high biomass productivity of P. tricornutum at 25°C, establishing that this species 

had optimal growth at a temperature of 23°C. With respect to G. sculpta, it was previously 

determined (Iliev et al., 2008) that the optimal temperature for Trachydiscus lenticularis 

(Pleurochloridaceae) was 26°C, which is consistent with the high biomass productivity of the 

Pleurochloridaceae G. sculpta at 25°C within this study. Of the five species analyzed in the 

present study, B. hooglandii, P. tricornutum and G. sculpta exhibited significantly lower omega-

3 content at 20°C, compared to 15°C and 25°C [B. hooglandii (p=0.0001 and p=0.029, 

respectively), P. tricornutum (p=0.0001 and p=0.0001 respectively) and G. sculpta (p=0.020 and 

p=0.006, respectively)] (Table 16). Two different mechanisms may have resulted in the higher
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Table 15. The effects of two light cycles, 24h:0h and 17h:7h (light:dark), on the omega-3 fatty acid and total fatty acid content of the 

five test algae growing under 80 ± 5 µmoles m-2 s-1 light intensity at 18 ± 1°C. 

 Light 

Cycle 

Biomass 

productivity 

(g L-1 day-1 

dw) 

Omega-3 Fatty acid Production (mg g-1 dw)  Total 

Omega-3 

(mg g-1 

dw) 

Total 

FA (mg 

g-1 dw) 
16:4n3 18:3n3 18:4n3 20:3n3 20:4n3 20:5n3 22:5n3 22:6n3 

Boekelovia 

hooglandii 

 

24h:0h  0.255± 

0.025Aa 

0.238± 

0.068A 

0.357± 

0.058A 

2.70± 

0.34A 

0.0369±

0.0081 

0.0304± 

0.0037 

6.1± 

1.4A 

0.052± 

0.015A 

1.36± 

0.21A 

10.9± 

1.9A 

126±11
A 

17:7h  0.108± 

0.016B 

 

 

0.083±

0.014B 

 

0.159± 

0.074B 

1.08± 

0.50B 

0.039± 

0.019 

0.035± 

0.022 

2.1± 

1.1B 

0.0201±

0.0053B 

0.48± 

0.19B 

4.0± 1.8B 88± 11B 

Phaeodactylum 

tricornutum 

 

24h:0h 0.2098± 

0.0076 

 

 

0.52 

±0.12 

 

0.294± 

0.031A 

0.439±

0.062 

0.0494± 

0.0044 

0.203± 

0.034 

6.77± 

0.84B 

0.058± 

0.022 

0.532± 

0.035 

8.86± 

0.74B 

153±13
A 

17h:7h 0.1943± 

0.0082 

 

 

0.048±

0.022 

 

0.215± 

0.019B 

0.340±

0.071 

0.034± 

0.013 

0.199± 

0.035 

11.7± 

2.4A 

0.0404±

0.0046 

0.521± 

0.083 

13.1± 

2.6A 

91.2± 

8.9B 

Goniochloris 

sculpta 

 

24h:0h 0.158± 

0.016A 

 

 

0.067±

0.032 

 

1.06± 

0.25A 

0.323±

0.039A 

0.019± 

0.013 

0.085± 

0.020 

13.3± 

3.2A 

0.0168±

0.0077 

0.295± 

0.027A 

15.1± 

3.8A 

52± 12 

17h:7h 0.065± 

0.039B 

 

 

0.029±

0.018 

 

0.217± 

0.042B 

0.182±

0.026B 

0.093± 

0.030 

0.046± 

0.023 

3.07± 

0.81B 

0.0168±

0.0034 

0.171± 

0.034B 

3.83± 

0.94B 

45.8± 

9.6 

Rhodella  

maculata 

 

24h:0h 0.103± 

0.012B 

 

 

0.063±

0.016 

 

0.0078±

0.0019 

0.0049

±0.004 

0.0105±

0.0015 

0.0058±

0.0017 

7.33± 

0.67 

0.0134±

0.0019 

0.0154±

0.0013 

7.45± 

0.69 

29.5

±3.2B 

17h:7h 0.1336± 

0.0061A 

 

 

0.034±

0.042 

 

0.039± 

0.017 

0.012±

0.015 

0.029± 

0.013 

0.018± 

0.012 

5.2± 

1.2 

0.0201±

0.0078 

0.036± 

0.047 

5.4±     

1.1 

50± 

11A 

Chloridella 

simplex 

 

24h:0h 0.0966± 

0.0050 

 

 

0.505±

0.036 

 

1.65± 

0.12B 

0.142±

0.006B 

0.0706±

0.0036 

0.187± 

0.015B 

38.2± 

1.2A 

0.0190±

0.008 

0.0260±

0.006 

40.8± 1.3 135±

4.7 

17h:7h 0.100± 

0.0060 

 

 

0.063±

0.018 

 

2.99± 

0.29A 

0.215±

0.012A 

0.096± 

0.025 

0.288± 

0.012A 

33.6±2

.9B 

0.0076±

0.0064 

0.0438±

0.0093 

37.3± 3.2 138±

11 
aA, B and C indicate statistical significance (p<0.05) 
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omega-3 responses exhibited by these three microalgae at 15°C and 25°C. At 25°C, the 

significantly higher biomass productivities have been documented to result in increased 

thylakoid synthesis in preparation for cell division, resulting in a significantly higher omega-3 

content at 25°C, compared to 20°C (Sukenik & Carmeli, 1990). A different mechanism is likely 

to occur under the 15°C growth condition; during low temperature growth conditions the algal 

cell will increase omega-3 content to maintain membrane fluidity (Juneja et al., 2013). Rhodella 

maculata exhibited significantly increased biomass productivity of 0.122 ± 0.018 g L-1 day-1 

(p<0.0002) at the lowest tested temperature. The high biomass productivity exhibited by this 

algal species may be due to the adaptive mechanisms within the Rhodophyta, which allow this 

phylum to grow in deeper waters with reduced temperatures (Graham & Wilcox, 2000). The 

biomass productivity and omega-3 fatty acid content of C. simplex was not significantly 

influenced by the temperature range studied. Previously, Gigova et al. (2011) examined the 

impact of a 15-40°C temperature range on the cellular growth of another Xanthophyceae, T. 

minutus. From this study they determined that T. minutus could grow under a wide range of 

temperatures, only exhibiting growth inhibition at 15°C and 40°C (Gigova et al., 2011). A broad 

temperature tolerance, similar to T. minutus, may explain the lack of a significant response due to 

15, 20 and 25°C in C. simplex. The results in the present study are noteworthy as they suggest 

that certain tested microalgae, notably G. sculpta, P. tricornutum and B. hooglandii, have high 

omega-3 content and biomass production under similar growth conditions, and thus may have 

potential industrial application.  

4.3.4. Effects of vitamin B12 (cobalamin) on biomass productivity and fatty acid content 

Typically free vitamin B12 is present within nature at a concentration of 2-6 ng L-1 in freshwater 

and approximately 3 ng L-1 in marine environments, however this does not meet the minimum 
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typically required (>10 ng L-1 ) for algal growth (Croft et al., 2005). Research has shown that 

some algae can synthesize cobalamin de novo, however many species are cobalamin auxotrophs 

and exist in a symbiotic relationship with bacteria that are able to synthesize this vitamin (Croft 

et al., 2005). There does not appear to be a clear taxonomic relationship to indicate whether an 

algal species requires vitamin B12 or the source of this vitamin, via de novo synthesis or 

symbiotic relationships (Carlucci & Bowes, 1970; Croft et al., 2005). This is due to vitamin B12 

auxotrophy independently evolving multiple times (Croft et al., 2005; Croft et al., 2006). The 

present study examined the effect of added vitamin B12 (0, 10 and 100 ng L-1), as shown in Table 

17, on omega-3 content and biomass productivity. The presence of vitamin B12, as 10 or 100 ng 

L-1, significantly increased biomass productivity by 20.5% (p=0.010) and 33.8% (p=0.002) in B. 

hooglandii, suggesting that this species clearly benefits from vitamin B12 supplementation. The 

biomass productivity of two of the five cultures, G. sculpta and R. maculata did not significantly 

increase with increased vitamin B12, indicating that these species may not require vitamin B12 

supplementation. This may be due to these species having the mechanisms necessary to 

synthesize vitamin B12 themselves or being part of symbiotic relationships with bacteria 

(Carlucci & Bowes, 1970). Previous research on P. tricornutum determined that this species is 

able to synthesize vitamin B12 (Carlucci et al., 1974), which may explain the significantly 

increasing biomass productivity from 10 to 100 ng L-1 (p=0.002), but neither were significantly 

different from 0 ng L-1. The lack of a significant difference between 100 and 0 ng L-1, and 10 and 

0 ng L-1 suggests that under growth conditions lacking in vitamin B12 the algal cell may 

compensate by synthesizing vitamins. One of the five cultures analyzed, C. simplex, preferred no 

supplementation with 10 ng L-1 and 100 ng L-1 resulting in a significant reduction in biomass 

productivity by 10.5% as vitamin content increased (p=0.005 and p=0.013, respectively). It is
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Table 16. The effects of different temperatures, 15°C, 20°C and 25°C, on the total and omega-3 fatty acid content of five test algae 

growing under 17h:7h, and 80 ± 5 µmoles m-2 s-1 light intensity. 

 Temp-

erature 

Biomass 

prod-

uctivity   

(g L-1 day-

1dw) 

Omega-3 Fatty acid Production (mg g-1 dw) Total 

Omega-

3         

(mg g-1 

dw) 

Total 

FA (mg 

g-1 dw) 
16:4n3 18:3n3 18:4n3 

 

20:3n3 20:4n3 20:5n3 22:5n3 22:6n3 

Boekelovia 

hooglandii 

 

25°C 0.1847± 

0.0018Aa 

0.428± 

0.083A 

1.55 

±0.20A 

9.4 

±1.4A 

0.0290± 

0.0090 

0.061± 

0.017 

25.7± 

3.1A 

0.082± 

0.014A 

5.30 

±0.75A 

42.5± 

5.5A 

158 

±26.7A 

20°C 0.108± 

0.016B 

0.083± 

0.014B 

0.159± 

0.074B 

1.08± 

0.50B 

0.039± 

0.019 

0.035± 

0.022 

2.1 

±1.1B 

0.0201± 

0.0053B 

0.48 

±0.19B 

4.0± 

1.8C 

87.7 

±10.7B 

15°C 0.0412± 

0.0034C 

0.30± 

0.20AB 

0.32 

±0.34B 

2.6 

±2.8B 

0.15 

±0.15 

0.065± 

0.069 

7.5 

±9.6B 

0.064± 

0.068A 

2.2 ±3.2AB 13.2 

±6.2B 

207± 

103A 

Phaeodactylum 

tricornutum 

 

25°C 0.108± 

0.015B 

0.18± 

0.029B 

0.268± 

0.035 

0.560± 

0.060B 

0.0132± 

0.0039A 

0.695± 

0.068A 

24.8± 

1.6A 

0.125± 

0.015A 

1.70 

±0.12 

28.3 

±1.9A 

206± 

17.4B 

20°C 0.1943± 

0.0082A 

0.051± 

0.022C 

0.215 

±0.019 

0.340± 

0.071C 

0.034± 

0.013B 

0.199± 

0.035B 

11.7± 

2.4B 

0.0404± 

0.0046B 

0.52 ±8.3 13.1 

±2.6B 

 

91.2± 

8.9C 

15°C 0.0477± 

0.0043C 

0.54± 

0.17A 

0.45 

±0.18 

1.97± 

0.73A 

0.0355± 

0.0084B 

0.271± 

0.098B 

17.9± 

8.9B 

0.103± 

0.061AB 

1.45 

±0.82 

28.0 

±1.05A 

411± 

83A 

Goniochloris 

sculpta 

 

25°C 0.166± 

0.027A 

0.442± 

0.092A 

3.1 

±1.5A 

0.86± 

0.32A 

0.178± 

0.089 

0.38± 

0.16A 

55 

±17A 

0.092± 

0.046A 

0.0451 

±0.0030B 

60.2 

±19.1A 

170 

±52A 

20°C 0.065± 

0.040B 

0.029± 

0.018B 

0.217± 

0.042C 

0.182± 

0.026 C 

0.093± 

0.030 

0.046± 

0.023B 

3.07± 

0.81 C 

0.0168± 

0.0034B 

0.171 

±0.034A 

3.83 

±0.94C 

45.8 

±9.6B 

15°C 0.00207± 

0.00075C 

0.09± 

0.12B 

0.96 

±0.12B 

0.278± 

0.044B 

0.060± 

0.028 

0.120± 

0.024B 

14.7± 

2.0B 

0.014± 

0.013B 

0.060 

±0.030B 

16.2 

±2.1B 

52.7 

±2.6B 

Rhodella 

maculata 

 

25°C 0.0152± 

0.0061C 

0.092± 

0.050 

0.0286± 

0.0070 

0.0116± 

0.0057 

0.0165± 

0.0040 

0.0159± 

0.0043 

13.7± 

2.5A 

0.037± 

0.012 

0.043± 

0.015 

13.9±2.

5A 

53±11 

20°C 0.1336± 

0.0061B 

0.034± 

0.042 

0.039 

±0.017 

0.012± 

0.015 

0.029± 

0.013 

0.018± 

0.012 

5.2± 

1.2B 

0.0201± 

0.0078 

0.036 

±0.047 

5.4±1.1B 50±11 
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 Temp-

erature 

Biomass 

prod-

uctivity   

(g L-1 day-

1dw) 

Omega-3 Fatty acid Production (mg g-1 dw) Total 

Omega-

3         

(mg g-1 

dw) 

Total 

FA (mg 

g-1 dw) 
16:4n3 18:3n3 18:4n3 

 

20:3n3 20:4n3 20:5n3 22:5n3 22:6n3 

15°C 0.1762± 

0.0086A 

0.0147

±0.008

8 

0.039± 

0.015 

0.0070±

0.0058 

0.034± 

0.028 

0.0077± 

0.0069 

7.1 

±1.7B 

0.019± 

0.011 

0.036 

±0.026 

7.2 

±1.7B 

43 ±13 

Chloridella 

simplex 

25°C 0.0916± 

0.0086 

 

0.058 

±0.029 

 

1.03 ± 

0.12 C 

 

0.170 ± 

0.038 

 

0.064  ± 

0.021 

 

0.321 

±0.053 

 

26.7 

±2.7AB 

0.018  

±0.012 

0.039 

±0.013 

28.4 

±2.9 

 

114 ± 

11 

20°C 0.1047± 

0.0034 

 

0.063 

±0.018 

2.99 ±  

0.29 A 

 

0.215 

±0.012 

0.096 ± 

0.025 

 

0.288  

±0.012 

 

33.6 

±2.9A 

0.0076 

±0.0064 

 

0.0438± 

0.0093 

 

37.3± 

3.2 

 

138±11 

 

15°C 0.122  ± 

0.018 

 

0.064 

±0.022 

2.14 ± 

0.68 B 

 

0.192 

±0.064 

0.061 

±0.021 

0.238 

±0.091 

 

20.4 

±6.7B 

0.0067 

±0.0075 

0.029 

±0.011 

23.2 

±7.5 

127 ±45 

 

a A, B and C indicate statistical significance (p<0.05)
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unclear why this has occurred, as previous research has illustrated a plateau, not a decrease, in 

biomass productivity as vitamin B12 supplementation increased (Ford, 1958; Swift & Taylor, 

1974). With respect to the response of omega-3 fatty acids to vitamin B12, the omega-3 content 

of B. hooglandii (p=0.0001), P. tricornutum (p<0.0005) and G. sculpta (p<0.004) significantly 

increased during supplementation with vitamin B12. It was unclear what mechanisms were 

resulting in the omega-3 response to vitamins, as vitamin B12 typically plays a role in the 

synthesis of deoxyriboses and amino acids within the algal cell (Tang et al., 2010). Thus, further 

research exploring the potential role of vitamin B12 within the algal cell would be necessary 

before any relationships between vitamin B12 and omega-3 content can be identified. From an 

industrial perspective, the findings from this study suggest that the requirement for vitamin B12 

must be established on a species-by-species basis, however some microalgal cultures should be 

supplemented with vitamin B12 to increase their omega-3 content and biomass productivity.  

4.3.5. Abiotic influences on omega-3 production and its industrial implications 

Omega-3 fatty acids, notably EPA and DHA, are of primary importance due to their role in early 

development, reproduction and growth in consumers within the food chain (Kainz et al., 2004). 

Of the omega-3 fatty acids analyzed, EPA consistently represented over 50% of the total   

omega-3 content in all microalgae under all growth conditions tested. Across all tested growth 

conditions, the greatest concentration of omega-3 fatty acids was produced by G. sculpta at 

25°C, making up 61% (60.2 ± 19.1 mg g-1) of the cells total fatty acid content. Due to their rich 

EPA content, all five algal species could provide essential omega-3 fatty acids to consumers at 

higher trophic levels to maintain healthy development (Koussoroplis et al., 2011; Brett et al., 

2009).  
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Table 17. The effects of vitamin B12, 100 ng L-1, 10 ng L-1 and 0 ng L-1, on the total and omega-3 fatty acid content of the five algae 

growing under 17h:7h, 80 ± 5 µmoles m-2 s-1 light intensity, and 18 ± 1°C. 

 Vitam

in B12
 

Biomass 

prod-

uctivity 
(g L-1       

day-1dw) 

Omega-3 Fatty acid Production (mg g-1 dw) Total 

Omega-

3       

(mg g-1 

dw) 

Total 

FA 

(mg  g-1 

dw) 

16:4n3 18:3n3 18:4n3 20:3n3 20:4n3 20:5n3 22:5n3 22:6n3 

Boekelovia 

hooglandii 

 

100 0.1498± 

0.0091Aa 

 

 

0.235 

±0.038A 

 

 

 

0.611 ± 

0.092A 

 

 

 

11.4 

±1.6B 

 

 

0.0303 

±0.0073B 

 

 

 

0.0539 

±0.0031A 

 

 

 

27.7 

±4.0B 

 

 

 

0.296 

±0.040A 

 

 

9.1±  

1.48B 

 

 

49.5± 

7.0B 

 

 

179± 

16B 

 10  0.135± 

0.012A 

 

 

0.225 

±0.039A 

 

0.718 

±0.060A 

 

 

 

14.1 

±1.0A 

 

 

0.0547 

±0.0079A 

 

 

 

0.068± 

0.017A 

 

 

35.9± 

2.6A 

 

 

0.331± 

0.039A 

 

 

11.72±0

.82A 

 

63.1± 

4.6A 

 

 

214 

±16A 

0  0.112± 

0.0028B 

 

 

0.146± 

0.035B 

 

0.224 

±0.085B 

 

 

 

2.5 

±1.0C 

 

 

0.0355 

±0.0096B 

 

0.034 

±0.013B 

 

 

5.0 

±2.5C 

 

0.096± 

0.038B  

 

 

1.39± 

0.70 C 

9.5± 

4.3C 

 

 

141± 

22C 

Phaeodactylum 

tricornutum 

100 0.180± 

0.011 A 

 

 

0.211± 

0.031A 

 

0.413 

±0.029A 

 

 

0.694±

0.091A 

 

 

 

0.0199 

±0.0046 

 

 

0.538± 

0.050A 

 

 

25.9± 

2.1A 

 

 

0.0957 

±0.0091
A 

 

2.01± 

0.22 A 

 

29.9± 

2.5A 

 

140± 

11A 

10  0.1473± 

0.0061 B 

 

0.178± 

0.043A 

 

0.41 

±0.12A 

 

0.276±

0.072B 

 

 

 

0.0206 

±0.0090 

 

 

0.27± 

0.12B 

 

 

19.8 

±6.5B 

 

 

0.098 ± 

0.042A 

 

 

 

2.08 

±0.63A 

 

23.1± 

7.5A 

 

100± 

27AB 

0  0.16±  

0.018 AB 

 

0.068± 

0.029B 

 

0.196 

±0.050B 

 

 

0.29 

±0.11B 

 

 

 

0.038 

±0.026 

 

 

0.212±  

0.064B 

 

 

8.1 

±2.4C 

 

 

0.0504 

±0.0066
B 

 

0.67 

±0.20B 

 

 

9.6± 

2.9B 

 

89± 23B 

Goniochloris 

sculpta 

 

100 0.1531± 

0.0064 

 

 

0.79± 

0.16A 

 

4.3 

±1.3A 

 

 

1.23± 

0.45A 

 

 

0.41 ±0.18 

 

 

0.88± 

0.29A 

 

 

81 

±23A 

 

0.50 ± 

0.20A 

 

 

0.26 

±0.16 

 

 

89± 26A 

 

254 

±78A 

10  0.1350± 

0.0097 

 

0.591± 

0.111A 

 

0.37 

±0.62A 

 

 

1.04± 

0.29A 

 

 

0.25 ±0.16 

 

0.65± 

0.12A 

 

 

74±14
A 

 

0.46 

±0.11A 

 

0.173 

±0.093 

 

81± 16A 

 

207± 

26B 

0  0.173± 

0.031 

 

0.0200 

±0.0098
B 

 

0.577 

±0.092B 

 

 

 

0.245± 

0.057B 

 

 

0.22 ±0.29 

 

0.091 

±0.012B 

 

 

8.79 

±0.90B 

 

0.057 ± 

0.061 B 

 

0.19 

±0.16 

 

10.22 

±0.81B 

 

63± 19C 

Rhodella 

maculata 

100 0.155± 

0.018 

 

0.0119 

±0.0056 

 

0.0225 

±0.0047 

 

 

0.0335 

± 

0.0098 

 

 

0.028± 

0.023 

 

0.0084± 

0.0041 

 

 

4.8 

±3.1 

 

0.021 

±0.022 

 

0.017 

±0.016 

 

4.9 ±3.1 

 

30.9± 

6.6 
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 Vitam

in B12
 

Biomass 

prod-

uctivity 
(g L-1       

day-1dw) 

Omega-3 Fatty acid Production (mg g-1 dw) Total 

Omega-

3       

(mg g-1 

dw) 

Total 

FA 

(mg  g-1 

dw) 

16:4n3 18:3n3 18:4n3 20:3n3 20:4n3 20:5n3 22:5n3 22:6n3 

 10  0.144± 

0.026 

 

0.0143 

±0.0081 

 

0.0171 

±0.0049 

 

 

0.051 

±0.021 

 

 

0.037 

±0.019 

 

0.026 

±0.025 

 

1.86± 

0.92 

 

0.0127 

±0.0069 

 

0.020 

±0.021 

 

2.04± 

0.92 

 

22.6±2.

2 

0  0.1589± 

0.0096 

 

 

0.0154 

±0.0077 

 

0.036 

±0.036 

 

 

0.043± 

0.032 

 

0.051± 

0.059 

 

0.037± 

0.061 

 

 

7±10 

 

0.034 

±0.054 

 

0.090± 

0.075 

 

7±11 

 

49±60 

Chloridella 

simplex 

 

100 0.1375± 

0.0081B 

 

0.23 

±0.13 

 

2.04 

±0.10 

 

 

0.323± 

0.025 

 

0.061± 

0.010A 

 

0.648± 

0.050 

 

39.9 

±1.5 

 

0.0170 

±0.0096
B 

 

0.067±0

.038 

 

43.3± 

1.5 

 

144.0±4

.8 

10  0.1362± 

0.0058AB 

 

0.17 

±0.15 

 

1.85 

±0.23 

 

 

0.304± 

0.025 

 

0.0530 

±0.0097A 

 

0.581± 

0.072 

 

36.9 

±4.4 

 

0.0323 

±0.0045
A 

 

0.100±0

.039 

 

40.0± 

4.6 

 

128± 13 

0  0.1231± 

0.0017A 

 

0.146 

±0.050 

 

2.05 

±0.29 

 

 

0.326± 

0.054 

 

0.00412±0.

0048B 

 

0.67± 

0.12 

 

41.0 

±5.4 

 

0.0161± 

0.0086B 

 

0.053 

±0.024 

 

 

44.3± 

5.8 

 

144± 18 

aA, B and C indicate statistical significance (p<0.05) 
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 Docosahexaenoic acid [DHA; 22:6(n-3)] makes up over 60% of the total lipid content in 

retinal tissue and is required for healthy visual development within infants (Giusto et al., 2000). 

Of the five species and four growth conditions studied within this chapter, DHA was present in 

the greatest concentrations within B. hooglandii at 20.8% of total omega-3 content and 5.38% of 

total fatty acid content at 130 µmoles m-2 s-1. Under these same growth conditions, the greatest 

DHA productivity was from B. hooglandii at 1.36 mg L-1 day-1.This productivity was greater 

than the DHA productivity of the other four species studies in this project (≤ 0.544 mg L-1 day-1), 

however it was lower than the algal DHA producers used within industry. For example, the 

marine heterotroph Crypthecodinium cohnii has produced 3.33 g L-1 day-1 (Yoguchi et al., 1997) 

and 2.73 g L-1 day-1 (Fan et al., 2001). As a consequence of the significantly greater DHA 

productivity present within the literature, a high DHA producer for industrial applications was 

not established within this study. Future studies can continue to manipulate growth conditions, 

using trends identified within this study, to further increase DHA productivity.        

This study compared two freshwater and three marine microalgae under different light 

cycles, intensities, temperatures and vitamin B12 concentrations to identify key patterns in 

omega-3 content and biomass productivity. Overall, a few general patterns in fatty acid 

production and growth were identified. High light intensity resulted in increased biomass 

productivity and no significant change in omega-3 fatty acid. Continuous light resulted in both 

increased growth and higher cellular omega-3 content. The presence of vitamin B12 was 

positively correlated with omega-3 content, while the impact on biomass productivity was more 

variable. Finally, increased temperature resulted in increased omega-3 content. All algal strains 

studied were rich in EPA content (>50% of total fatty acid content). The effects of growth 

conditions on lipid content and biomass productivity were also examined on the species level. 
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The highest biomass productivity was noted in B. hooglandii (0.255 ± 0.025 g L-1 day-1). 

However, P. tricornutum exhibited the highest total fatty acid content at 411 ± 83 mg g-1 with 

22.7 ± 10.6 mg g-1 omega-3 fatty acid (79% EPA). Overall, G. sculpta had the greatest omega-3 

productivity at 100 ng L-1 due to a 0.153 ± 0.006 g L-1 day-1 biomass productivity and 89.1 ± 26.3 

mg g-1 dw omega-3 content. Of the five microalgae and four growth conditions studied, G. 

sculpta resulted in a high biomass productivity and omega-3 content under the same growth 

conditions. A strain that is capable of producing high levels of omega-3 fatty acids can greatly 

influence consumer health throughout the trophic levels, while maintaining a high biomass 

productivity is very valuable from a commercial point of view (Yongmanitchai & Ward 1991).  
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Chapter 5: Conclusion 

 

The objective of this research was to examine industrially relevant characteristics of algal 

lipids, in addition to the broader implications within the food web. Algae can naturally 

synthesize a variety of fatty acids (Yaakob et al., 2014), which play a valuable role within 

industry and the food web. Chapters 2 through 4 explore these potential roles within 

pharmaceuticals, aquaculture, and consumer health. These 3 chapters highlight the significant 

influence of growth conditions, algal species, and lipid structure on algal fatty acids for industry 

and food webs.   

Evolutionary adaptations utilized by an algal cell are closely tied to the surrounding growth 

conditions (Guschina & Harwood, 2013). Each alga has adapted to a certain range of 

environmental conditions. Once an organism is placed under non-optimal conditions the cell 

triggers a physiological response in order to maintain cellular functioning (Guschina & 

Harwood, 2013). These adaptive mechanisms can be used to manipulate the fatty acid profile of 

a species in order to establish growth conditions that enhance fatty acid content, or highlight the 

impact of certain fatty acids on higher trophic level consumers (Guschina & Harwood, 2013; 

Koussoroplis et al., 2011). This project identified different growth conditions required to produce 

antibacterial and omega-3 fatty acids. For example, this study determined that longer 

photoperiod increased antibacterial and omega-3 fatty acid content, while lower light intensities 

increased total, but not omega-3, fatty acid content. In addition, higher PUFA productivity 

occurred in media analogous with the species natural habitat (ie. freshwater media induced 

higher PUFA productivity in freshwater algae). Consumers, such as zooplankton and fish, that 
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supplement their diet with essential fatty acids, would have greater reproductive success and 

survival in low intensity-high photoperiod light conditions due to the higher availability of 

omega-3s (Dawidowicz et al., 2012; Kainz et al., 2004). Thus, identifying the optimal growth 

conditions of a specific algal species are key to better understanding an algal cell’s fatty acid 

response, and the impacts these shifts may have on the consumers. 

Among algal species there is huge variability in the fatty acid profiles, however fatty acid 

trends exist within classes (Lang et al., 2011). These trends in fatty acid content can be used to 

assist in the selection of species with high concentrations of specific fatty acids. A 2011 study 

analyzed the fatty acid profile of over 2000 algal strains, and provided valuable information for 

selecting lipid rich algal species (Lang et al., 2011). All five microalgae studied in this project, 

Synurophyceae (B. hooglandii), Bacillariophyta (P. tricornutum), Xanthophyceae (G. sculpta 

and C. simplex), and Rhodellophyceae (R. maculata), were selected because of the expected high 

EPA and DHA content (Lang et al., 2011). For example, of the 81 strains of Xanthophyceae 

studied 75.3% contained EPA, and of the eighteen strains of Bacillariophyceae studied 22.2% 

contained DHA (Lang et al., 2011). Within these classes, a review of the literature identified the 

above genus and species as high lipid producers (Lang et al., 2011; Sheehan et al., 1998; 

Yongmanitchai, 1991; Desbois et al., 2009). For example, within Chapter 4 the 

Heterokontophyta consistently had high EPA content (>50%). However, considerable variation 

in fatty acid content was present, for instance the EPA content of the freshwater G. sculpta and 

C. simplex responded differently to light cycle, with one (G. sculpta) of two significantly 

increasing. Thus, algal taxonomy can assist in the search for an organism rich in a desired lipid, 

however it can only provide an initial selection of species that may be appropriate.  
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Lipid components within the algal cell can vary in carbon chain length, number of double 

bonds, and positioning of double bonds on the chain (William, 1998). These three components 

are significant factors in determining the characteristics of the fatty acid. Depending on the 

combination of these three structural features a lipid can be an essential fatty acid, have 

antibacterial properties, or have a significant role in the food web. For example, 18:3(n-6), 

20:4(n-6) and 22:2(n-6) have antibacterial properties (Ruffell et al., 2015). However by slightly 

shifting the structure of the carbon chain (i.e. changing the positioning of a double bond, or 

adding/removing a carbon) omega-3 fatty acids are formed which are essential fatty acids (Kainz 

et al., 2004). In addition, growth conditions and growth phase can greatly influence what fatty 

acids are dominant within the algal cell. For example, Chapter 2 and 4 examined the influence of 

different growth conditions on fatty acid content, while Chapter 3 focused on the change in these 

fatty acids over different growth phases. Structure greatly influences the potential applications 

and responses of algal fatty acids to external pressures, and as a consequence molecular structure 

must be taken into consideration when studying fatty acids within the cell.           

The purpose of this project was to identify the potential role of algal fatty acids within 

industry and the food web. Through this research, industrial applications were identified within 

two business sectors. In addition, the impact of light and omega-3 content on consumer selective 

grazing was discussed. Overall, growth conditions, algal species and lipid structure were critical 

components influencing the fatty acid profile in the algal cell. These three factors are critical to 

the identification of industrial applications and food web implications of fatty acids. 
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5.1. Validation of the Hypotheses 

Of the twenty-nine fatty acids examined, the number of inhibitory fatty acids increased as 

the number of carbons and double bonds in the chain increased. There were exceptions to this 

trend, such as the inhibitory saturated fatty acids 10:0 and 12:0. After twenty-four hours, both 

fatty acids were inhibitory towards S. aureus at 800 and 2000 µg. Previous literature has 

demonstrated that fatty acids can be inhibitory towards bacteria (Desbois et al., 2009; Ohta et al., 

1994; Sun et al., 2003), however this study examined a larger number of fatty acids and was the 

first study to quantify the inhibitory effects of the four clinically applicable doses (25, 250, 800, 

and 2000 µg). This study does have some limitations, due to the small number of doses tested 

and the limited number of bacterial species selected. As a consequence of four doses being tested 

and the large gaps between concentrations, it is not possible to identify the minimum inhibitory 

concentration and only broad statements can be made regarding the inhibitory nature of the fatty 

acid. This element of the experimental design was intentional, as this study was a preliminary 

investigation into the inhibitory nature of these twenty-nine fatty acids. Thus, future research 

would be required to verify whether the trends observed can be applied to a broader set of fatty 

acids and bacterial species. In conclusion, Chapter 2 provides insufficient evidence to reject the 

hypothesis that polyunsaturated fatty acids are more inhibitory towards bacteria, compared to 

monounsaturated and fatty acids.  

Nutritional composition within the algal cell will shift with growth conditions and growth 

phase. This chapter tracked the composition and growth of the culture, and identified the key 

sampling period on day 35 when the composition of the cell (55.6% protein, 13.9% 

carbohydrates, and 18.6% fatty acids) was ideal as bivalve larvae feed. This was the first study to 

analyze the pigments, protein, fatty acids, and carbohydrate content of B. hooglandii over a 70 
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day time period. In addition to tracking the nutritional composition, this chapter provides the 

most complete growth curve, including lag, exponential, stationary and death phases, for this 

algal species. From this collected data, unique correlations were identified between the 

nutritional components. For example, the omega-3 fatty acid 22:5(n-3) was strongly positively 

correlated with β-carotene (r=0.930, p=0.022). There are some limitations to this study, due to 

the small scale of the experiments and batch culture approach. This experiment has potential 

industrial applications, therefore a larger batch size would have produced results more closely 

aligned to industrial conditions. For instance, larger batch size has a variety of challenges 

associated with it, such as light penetration, which would have been more accurately represented 

with a larger batch volume (Priyadarshani & Rath, 2012). The use of a batch culture approach 

was another limitation, as many industrial facilities use continuous cultures to reduce the periods 

of time with slower rates of algal growth (Priyadarshani, & Rath, 2012). Some implications from 

these limitations include potential variation in the results as culture size increases and culturing 

technique changes. This may change the nutritional composition and growth rate, possibly 

shifting the ideal day for harvesting biomass for bivalve larvae feed. Even with these limitations, 

this chapter identified key trends in nutritional composition and highlighted B. hooglandii as a 

potential aquaculture feed for further study. In conclusion, Chapter 3 provides insufficient 

evidence to reject the hypothesis that the microalga B. hooglandii has a high polyunsaturated 

fatty acid and protein content during late exponential phase, which would make them an ideal 

aquaculture feed for bivalve larvae. 

During the light intensity experiments biomass productivity and omega-3 fatty acid 

content varied between algae, and were influenced by the light saturation point of the algal 

strain. For example, Beardall and Morris (1976) identified a saturation point for P. tricornutum 
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at 80 µmoles m-2 s-1, which was exemplified by the plateau in biomass productivity in this study 

at 80 µmoles m-2 s-1. Within the vitamin experiments, the lack of a relationship between 

taxonomy and cobalamin requirements made it difficult to identify if an algal strain was an 

auxotroph, synthesized or did not require cobalamin. However, supplementation of growth 

medium with cobalamin significantly increased omega-3 productivity (p=0.010) for B. 

hooglandii, and did not have a significant influence on G. sculpta and R. maculata, suggesting 

that some species should be supplemented with cobalamin to enhance biomass productivity. The 

final hypothesis was tested using temperatures 15, 20 and 25°C, and as growth condition 

temperatures decreased relative to stock culture conditions (20°C), omega-3 fatty acid content 

increased in order to maintain membrane fluidity. For example, B. hooglandii had a significantly 

higher omega-3 content at 15°C (p=0.0001). Chapter 4 was the first study to identify the 

industrial potential of the algal species, G. sculpta and C. simplex, that are rich in omega-3 fatty 

acids and DHA, respectively. Overall, chapter 4 did have some limitations, such as the small 

number of species tested and the single factorial design. As a result of the five species chosen, an 

analysis of taxonomic trends under the different growth conditions was not feasible. Thus, 

further research would be required to determine if the trends observed in this chapter apply to 

other individuals within these taxonomic groups. The second limitation, single factorial design, 

allows for the identification of the impact of a single growth condition on biomass productivity 

and omega-3 content. A multifactorial design would be necessary in order to optimize the 

biomass productivity and total omega-3 content of these algal strains. This design would 

accommodate the competing and complementary influences of the different growth conditions 

on each other. The small number of species and single factorial design limited the discussion of 

trends in algal taxonomy or broader trends related to the impact of growth conditions on the algal 
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cell. Nonetheless, both limitations were included within the design to create a manageable study 

that would provide preliminary information on the effects of these growth conditions on five 

algal species. In conclusion, chapter 4 provides insufficient evidence to reject hypothesize A, B, 

and C. 

5.2. Commercial implications  

5.2.1. Pharmaceutical industry 

Fatty acids have a variety of different antibacterial applications and are becoming 

increasingly important in medicine, agriculture, and food processing (Desbois & Smith, 2010). 

This project highlighted multiple algal fatty acids with significant antibacterial properties against 

E. coli and S. aureus (Ruffell et al., 2015). In addition, this study identified growth conditions 

that increase the antibacterial fatty acid content within the cell (Ruffell et al., 2015). Studies 

focusing on antibiotic resistance have observed that rates of bacterial resistance towards fatty 

acids are significantly lower than conventional antibiotics (Desbois et al., 2009; Desbois & 

Smith, 2010; Petschow et al., 1996). In addition, MRSA has become a considerable concern due 

to increasing resistance of this bacteria (and others) to traditional antibiotics (Desbois, 2009). 

Fatty acids may have a competitive advantage as topical antibiotics that can be used as a 

treatment against resistant bacteria. Furthermore, various studies have demonstrated a variety of 

other antibacterial applications, which include cavity prevention, enriching milk to reduce infant 

gastrointestinal infections and inhibition of Propionibacterium acnes, the primary cause of acne 

(Desbois & Smith, 2010; Isaacs et al., 1995; Yang et al., 2009). Thus, there may be an important 

role for algae as a topical antibacterial agent, due to these naturally synthesized antibacterial fatty 

acids.  
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5.2.2. Aquaculture industry 

This study identified key sampling periods in the growth curve of B. hooglandii that 

provide algal biomass rich in protein, fatty acids, carbohydrates or pigments, as well as 

identifying correlations between different nutritional characteristics relevant to the aquaculture 

industry. Identifying shifts in the nutritional profile and correlations present throughout the 

growth phases allows for more informed decisions to be made during culturing and biomass 

collection. For example, growth conditions that produce high growth rates may not be the same 

that result in the high omega-3 fatty acid content or productivity (Thompson et al., 1990). Thus, 

selection of a species and appropriate growth conditions that maintain both a high growth rate 

and a high lipid content under the same growth conditions is highly desirable for industrial 

applications (Yongmanitchai & Ward, 1991).  

5.2.3. Nutritional supplement industry 

Currently, fish oils are the most common source of omega-3 fatty acids on the market. 

However, methyl mercury and carcinogen contamination in fish lipids is a concern (Sidhu, 

2003), as is the sustainability of fish oil production (Yongmanitchai & Ward, 1991). Flaxseeds 

and walnuts are also good sources of omega-3 fatty acids, but primarily in the form of alpha-

linolenic acid [ALA; 18:3(n-3)] (Lane et al., 2014). This fatty acid is the most prevalent omega-3 

fatty acid in vegetarian diets, although very little is metabolised to the more beneficial DHA and 

EPA (Lane et al., 2014). Algae, on the other hand, are an excellent source of DHA and EPA, and 

can provide a safe, contaminant-free, animal-free source of omega-3 FAs that can be extracted or 

ingested whole (Lane et al., 2014). In addition, algae are a sustainable source of omega-3 fatty 

acids and can grow in a range of environmental conditions, directly assimilating carbon dioxide 

(Mata et al., 2010; Gosch et al., 2012). This study identified adaptive mechanisms used by algal 
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cells, which could be used to enhance cellular content of omega-3 fatty acids. From an industrial 

perspective, algae are a viable source of omega-3 fatty acids and growth conditions resulting in 

increased production would assist in the scale up of these valuable fatty acids.     

5.3. Future Research 

From this research a variety of different avenues can be taken. 

 Further antibacterial experiments, similar to Chapter 2, could be performed on a 

larger range of gram-positive and gram-negative bacteria, most notably a biosafety 

level 2 bacterium due to the greater resistance of these strains to antibiotics.  

 

 A study should be developed that tests the use of the antibacterial fatty acids on 

animals and humans. Some of these fatty acids were stable over 48 h, and could 

potentially be used as a topical antibacterial agent. 

 

 A study could be performed that uses B. hooglandii as an aquaculture feed to 

determine if the nutritional properties identified are translated into nutrition for the 

aquaculture organism. 

 

 A cost analysis could be performed on the use of B. hooglandii as an aquaculture 

feed.  
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 Future research should focus on continued analysis of optimal growth conditions, in 

order to further increase growth rates and lipid productivity. Some suggestions 

include a detailed examination of salt content, pH, density, or soil medium. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



101 

 

 

 

References 
 

Aberg, H. & Fries, L. (1976). On cultivation of the alga Vaucheria dichotoma (Xanthophyceae) 

in axenic culture. Phycologia, 15, 133-141. 

Albalasmeh, A. A., Berhe, A. A., & Ghezzehei, T. A., (2013). A new method for rapid 

determination of carbohydrate and total carbon concentrations using UV spectrophotometry. 

Carbohydrate Polymers, 97, 253-261.  

Al-Hasan, R. H., Ali, A. M., Kawash, H. H., & Radwan, S. S. (1990). Effect of salinity on the 

lipid and fatty acid composition of the halophyte navicula sp.: potential in mariculture. Journal 

of Applied Phycology, 2, 215-222.  

 

Bajpai, P. (1993). Eicosapentaenoic acid (EPA) production from microorganisms: a review. 

Journal of Biotechnology, 30(2), 161 -83.  

 

Barclay, W., Johansen, J., Terry, K., & Toon, S., (1991). Influence of ionic parameters on the 

growth and distribution of Boekelovia hooglandii (Chromophyta). Phycologia, 30, 355-364. 

 

Beardall, J., & Morris, I. (1976). The concept of light intensity adaptation in marine 

phytoplankton: some experiments with Phaeodactylum tricornutum. Marine Biology, 37, 377-

387. 

Beaudoin, F., Michaelson, L. V., Hey, S. J., Lewis, M. J., Shewry, P. R., Sayanova, O., & 

Napier, J. A., (2000). Heterologous reconstitution in yeast of the polyunsaturated fatty acid 

biosynthetic pathway. Proceedings of the National Academy of Science USA, 97, 6421-6426. 

Behrens, P. W. & Kyle, D. J. (1996). Microalgae as a source of fatty acids. Journal of Food 

Lipids, 3, 259-272. 

 

Benatti, P., Peluso, G., Nicolai, R., & Calvani, M. (2004). Polyunsaturated fatty acids: 

biochemical, nutritional and epigenetic properties. The Journal of the American College of 

Nutrition, 34(4), 281-302. 

 

Bertrand, E. M., Saito, M. A., Rose, J. M., Riesselman, C. R., Maeve, C., Noble, A. E., Lee, P. 

A., DiTullio, G.R. (2007). Vitamin B12 and iron colimitation of phytoplankton growth in the 

Ross sea. Limnology and Oceanography, 52(3), 1079-1093.  

 



102 

 

Borowitzka, M. A., & Moheimani, N. R., (Eds.) (2013). Algae for Biofuels and Energy, New 

Delhi, India: Springer. 

 

Brányiková, I., Maršálková, B., Doucha, J., Brányik, T., Bišová, K., Zachleder, V., & Vítová, 

M., (2011). Microalgae—novel highly efficient starch producers. Biotechnology and 

bioengineering, 108, 766-776. 

 

Brett, M. T., Müller-Navarra, D. C., & Persson, J. (2009). Chapter 6: Crustacean Zooplankton 

Fatty Acid Composition. Lipids in Aquatic Ecosystems. Arts M. T., Brett M. T., Kainz, M. 

(Eds.) Springer-Verlag New York pp. 115-146. 

Brill, R.W., Block, B.A., Boggs, K.A., Bigelow, K.A., Freund, E.V., & Marcinek, D.J. (1999). 

Horizontal movements and depth distribution of large adult yellowfin tuna (Thunnus albacares) 

near the Hawaiian Islands, recorded using ultrasonic telemetry: implications for the physiological 

ecology of pelagic fishes. Marine Biology, 133, 395-408.   

Brown, M. R., Dunstan, G. A., Norwood, S. J., & Miller, K. A. (1996). Effect of harvest stage 

and light on the biochemical composition of the diatom Thalassiosira pseudonana. Journal of 

Phycology, 32, 64-73. 

Brown, M., Jeffrey, S., Volkman, J., Dunstan, G., (1997). Nutritional properties of microalgae 

for mariculture. Aquaculture, 151, 315-331. 

 

Cardozo, K. H. M., Guaratini, T., Barros, M. P., Falcão, V. R., Tonon, A. P., Lopes, N. P., 

Campos, S., Torres, M. A., Souza, A. O., Colepicol, P., & Pinto, E. (2007). Metabolites from 

algae with economical impact. Comparative Biochemistry and Physiology - Part C: Toxicology 

& Pharmacology, 146, 60-78.  

Chen, M., Tang, H., Ma, H., Holland, T. C., Ng, K. Y., & Salley, S. O. (2010). Effects of 

nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. Bioresource 

technology, 102, 1649-1655. 

Chiu, S. Y., Kao, C. Y., Tsai, M. ., Ong, S. C., Chen, C. H., & Lin, C. S., (2009). Lipid 

accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. 

Bioresource technology, 100.2, 833-838. 

 

Christie, W. W. (2012). A lipid primer. Retrieved from AOCS Lipid Library website: 

http://lipidlibrary.aocs.org/Primer/content.cfm?ItemNumber=39371 

Chu, F. L. E., Dupuy, J. L., & Webb, K. L. (1982). Polysaccharide composition of five algal 

species used as food for larvae of the American oyster, Crassostrea virginica. Aquaculture, 29.3, 

241-252. 



103 

 

Clinical and Laboratory Standards Institute. (2006). Methods for Dilution Antimicrobial 

Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard-Seventh Edition. 

Clinical and Laboratory Standards Institute, Wayne, Pennsylvania. 

 

Cohen, Z., Vonshak, A., & Richmond, A. (1988). Effect of environmental conditions on fatty 

acid composition of the red alga Porphyridium cruentum: correlation to growth rate. Journal of 

Phycology, 24, 328-332. 

Collier, J.L., & Grossman, A.R. (1992). Chlorosis induced by nutrient deprivation in 

Synerchococcus sp. strain PCC 7942: Not all bleaching is the same. Journal of Bacteriology, 

174, 4718-4726. 

Constantopoulos, G. (1970). Lipid metabolism of manganese-deficient algae. I. Effect of 

manganese deficiency on the greening and the lipid composition of Euglena gracilis Z. Plant 

Physiology, 45(1), 76-80.  

 

Croft, M.T, Lawrence, A.D., Raux-Deery, E., Warren, M.J., & Smith, A.G. (2005). Algae 

acquire vitamin B12 through a symbiotic relationship with bacteria. Nature letters, 438, 90-93. 

 

Daugbjerg, N., & Guillou, L. (2001). Phylogenetic analyses of Bolidophyceae 

(Heterokontophyta) using rbcL gene sequences support their sister group relationship to diatoms. 

Phycologia, 40, 153-161. 

Dawczynski, C., Schubert, R., & Jahreis, G. (2007). Amino acids, fatty acids, and dietary fibre in 

edible seaweed products. Food Chemistry, 103, 891-899. 

Dawson, P. L., Carl, G. D., Acton, J. C., & Han, I. Y. (2002). Effect of lauric acid and nisin-

impregnated soy-based films on the growth of Listeria monocytogenes on turkey bologna. 

Poultry Science, 81, 721-726.  

 

Desbois, A. P., Mearns-spragg, A., & Smith, V.J. (2009). A fatty acid from the diatom 

Phaeodactylum tricornutum is antibacterial against diverse bacteria including multi-resistant 

Staphylococcus aureus (MRSA). Marine Biotechnology, 11, 45-52. 

 

Desbois, A. P., & Smith, V. J. (2010). Antibacterial free fatty acids: activities, mechanisms of 

action and biotechnological potential. Applied Microbiology and Biotechnology, 85, 1629–1642 

Dörner, J., Carbonell, P., Pino, S., & Farias, A. (2014). Variation of fatty acids in Isochrysis 

galbana (T-Iso) and tetraselmis suecica, cultured under different nitrate availabilities. Journal of 

Fisheries and Aquaculture, 5, 106.  

 



104 

 

Edwards, K.F., Litchman, E., & Klausmeler, C.A. (2013). Functional traits explain 

phytoplankton community structure and seasonal dynamics in a marine ecosystem. Ecology 

Letters, 16, 56-63. 

 

Eppley, R. W. (1972). Temperature and phytoplankton growth in the sea. Fishery Bulletin, 70(4), 

1068-1085.  

 

Experimental Phycology and Culture Collection of Algae (SAG) (2014) List of media and 

recipes. http://www.uni-goettingen.de/en/list-of-media-and-recipes/186449.html. Accessed 30 

October 2015. 

 

Fan, K.W., Chen, F., Jones, E.B.G., Vrijmoed, L.L.P. (2001). Eicosapentaenoic and 

docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation. Process 

Biochemistry, 42, 1537-1545.  

 

Fawley, M. W. (1989). A new form of chlorophyll c involved in light-harvesting. Plant 

Physiology, 91, 727-732.  

Fernández-Reiriz, M. J., Perez-Camacho, A., Ferreiro, M., Blanco, J., Planas, M., Campos, M. J., 

& Labarta, U. (1989). Biomass production and variation in the biochemical profile (total protein, 

carbohydrates, RNA, lipids and fatty acids) of seven species of marine microalgae. Aquaculture. 

83, 17-37. 

 

Fidalgo, J. P., Cid, A., Torres, E., & Sukenik, A. (1998). Effects of nitrogen source and growth 

phase on proximate biochemical composition, lipid classes and fatty acid profile of the marine 

microalga Isochrysis galbana. Aquaculture, 166.1, 105-116. 

 

Findlay. J.A., & Patil, A.D. (1984). Antibacterial constituents of the diatom Navicula delognei. 

Journal of Natural Products, 47, 815-818. 

 

Ford, J.E. (1958). B12-vitamins and growth of the flagellate Ochromonas malhamensis. Journal 

of General Microbiology, 19, 161-172. 

 

Foy, R. H., Gibson, C. E., & Smith, R. V. (1976). The influence of day length, light intensity and 

temperature on the growth rates of planktonic blue- green algae. British Phycological Journal, 

(11), 151-163.  

 

Galbraith, H., Miller, T. B., Paton, A. M., & Thompson, J. K. (1971). Antibacterial activitiy of 

long chain fatty acids and the reversal with calcium, magnesium, ergocalciferol and cholesterol. 

Journal of Applied Bacteriology, 34, 803-813. 

Gigova, L., Ivanova, N., Gacheva, G., Andreeva, R., & Furnadzhieva, S. (2011). Response of 

Trachydiscus minutus (Xanthophyceae) to temperature and light. Journal of Phycology, 48, 85-

93. 

http://www.uni-goettingen.de/en/list-of-media-and-recipes/186449.html


105 

 

Giusto, N.M., Pasquare, S.J., Salvador, P.I., Roque, M.G. (2000) Lipid metabolism in vertebrate 

retinal rod outer segments. Progress in Lipid Research, 39, 315-391. 

Glaude, R. M., & Maxey, J. E. (1994). Microalgal feeds for aquaculture. Journal of Applied 

Phycology, 6, 131-141. 

Gong, Y., Hu, H., Gao, Y., Xu, X., & Gao, H. (2011). Microalgae as platforms for production of 

recombinant proteins and valuable compounds: progress and prospects. Journal of Industrial 

Microbiology and Biotechnology, 38, 1879-1890. 

 

Gosch, B. J., Magnusson, M., Paul, N. A., & De Nys, R. (2012). Total lipid and fatty acid 

composition of seaweeds for the selection of species for oil-based biofuel and bioproducts. GCB 

Bioenergy, 4, 919-930. 

Goss, R., & Wilhelm, C. (2009). Lipids in algae, lichens and mosses, In: Wada, H., Murata, N. 

(Eds.), Lipids in Photosynthesis: Essential and regulatory functions. Germany: Springer. pp. 

117-137. 

Gotham, I. J., & Rhee, G.-yull. (1981). The effect of environmental factors on phytoplankton 

growth: Temperature and the Interactions of temperature with nutrient limitation. Limnology and 

Oceanography, 26(4), 635-648.  

 

Graham, L. E., & Wilcox, L. W. (2000). Algae. (T. Ryu, L. Tarabojkia, & K. Dellas, Eds.). 

Toronto: Prentice-Hall, Inc. pp. 213-238. 

 

Guillard, R. L. (1975). Culture of phytoplankton for feeding marine invertebrates. In: Smith, 

W.L., Chanley, M.H. (Eds.), Culture of marine invertebrate animals. US: Springer. pp. 29-60. 

Guiry, M .D. (2015). AlgaeBase. World-wide electronic publication, National University of 

Ireland, Galway. http://www.algaebase.org; searched on 06 September 2015. 

Guschina, I. A., & Harwood, J. L. (2006). Lipids and lipid metabolism in eukaryotic algae. 

Progress in lipid research, 45(2), 160-86.  

 

Guschina, I. A., & Harwood, J. L. (2009). Chapter 1: Algal Lipids and Effect of the Environment 

on their Biochemistry. In Arts M.T., Brett M.T., Kainz, M. (Eds.) Lipids in Aquatic Ecosystems. 

New York: Springer-Verlag, pp. 1-24. 

Guschina, I. A., & Harwood, J. L. (2013). Chapter 2: Algal lipids and their metabolism. In 

Borowitzka, M. A., Moheimani, N. R. (Eds.) Algae for biofuels and energy. New York: Springer. 

pp. 17-36. 

Hamilton, M. L., Warwick, J., Terry, A., Allen, M. J., Napier, J. A., & Sayanova, O. (2015). 

Towards the industrial production of omega-3 long chain polyunsaturated fatty acids from the 

genetically modified diatom Phaeodactylum tricornutum. PLoS ONE, 10, e0144054.  



106 

 

Harker, M., Tsavalos, A.J., & Young, A. J. (1996). Factors responsible for astaxanthin formation 

in the chlorophyte Haematococcus pluvialis. Bioresource Technology, 55.3, 207-214. 

Harrison, P. J., Thompson, P. A., & Calderwood, G. S. (1990). Effects of nutrient and light 

limitation on the biochemical composition of phytoplankton *. Journal of Applied Phycology, 2, 

45-56. 

 

Harwood, J. L., & Guschina, I. A. (2009). The versatility of algae and their lipid metabolism. 

Biochimie, 91, 679-684. 

Harwood, J. L., & Russell, N. J. (1984). Lipids in Plants and Microbes. London, England: 

George Allen & Unwin Ltd.  

 

Hemaiswarya, S., Raja, R., Kumar, R.R., Ganesan, V., & Anbazhagan C. (2011). Microalgae: a 

sustainable feed source for aquaculture. World Journal of Microbiology and Biotechnology, 27, 

1737-1746. 

Heman-Ackah, S.H. (1976). Comparison of tetracycline action of Staphylococcus aureus and 

Escherichia coli by microbial kinetics. Antimicrobial Agents and Chemotherapy, 10, 223-228. 

Hempel, N., Petrick, I., & Behrendt, F. (2012). Biomass productivity and productivity of fatty 

acids and amino acids of microalgae strains as key characteristics of suitability for biodiesel 

production. Journal of Applied Phycology, 24, 1407-1418. 

Hessen, D.O., & Leu, E. (2006). Trophic transfer and trophic modification of fatty acids in high 

Arctic Lakes. Freshwater Biology, 51, 1987-1998. 

Hu, Q. (2007). Environmental effects on cell composition. In: Richmond A (Ed.) Handbook of 

microalgal culture: biotechnology and applied phycology. Oxford, London: Blackwell 

Publishing Ltd..pp. 83-95. 

Huang, J. J., & Cheung, P. C. K. (2011). +UVA treatment increases the degree of unsaturation in 

microalgal fatty acids and total carotenoid content in Nitzschia closterium (Bacillariophyceae) 

and Isochrysis zhangjianensis (Chrysophyceae). Food Chemistry, 129, 783-791. 

Huang, Y.-M., & Rorrer, G. L. (2002). Optimal temperature and photoperiod for the cultivation 

of Agardhiella subulata microplantlets in a bubble-column photobioreactor. Biotechnology and 

bioengineering, 79(2), 135-44.   

Huerlimann, R., De Nys, R., & Heimann, K. (2010). Growth, lipid content, productivity, and 

fatty acid composition of tropical microalgae for scale‐up production. Biotechnology and 

Bioengineering, 107, 245-257. 

IBM Corp. Released. (2013) IBM SPSS Statistics for Windows, Version 22.0. Armonk, NY: 

IBM Corp. 

 

Isaacs CE, Kim KS, Thormar H, Heird WC, Wisniewski HM (1995) U.S. Patent.  



107 

 

Jacob-Lopes, E., Scuparo, C. H. G., Lacerda, L. M. C. F., Franco, T. T. (2008). Effect of light 

cycles (night/day) on CO2 fixation and biomass production by microalgae in photobioreactors. 

Chemical Engineering and Processing: Process Intensification, 48, 306-310. 

Jahns, P., Latowski, D. & Strzalka, K. (2009). Mechanism and regulation of the violaxanthin 

cycle: The role of antenna proteins and membrane lipids. Biochimica et Biophysica Acta (BBA)- 

Bioenergetics, 1787, 3-14. 

Jones, J., Lee ,C-H., Wang, J., & Poenie, M. (2012). Use of anion exchange resins for one-step 

processing of algae from harvest to biofuel. Energies, 5, 2608-2625.  

Juneja, A., Ceballos, R.M., Murthy, G.S. (2013). Effects of environmental factors and nutrient 

availability on the biochemical composition of algae for biofuels production: A review. Energies, 

6(9), 4607-4638. 

Kabara, J. J., Swieczkowski, D. M., Conley. A. J., & Truant, J. P. (1972) Fatty acids and 

derivatives as antimicrobial agents. Antimicrobial Agents and Chemotherapy, 2, 23-23. 

Kainz, M., Arts, M. T., & Mazumder, A. (2004). Essential fatty acids in the planktonic food web 

and their ecological role for higher trophic levels. Limnology and Oceanography, 49, 1784-1793. 

Kainz, M. J., & Fisk, A. T. (2009). Chapter 5: Integrating Lipids and Contaminants in Aquatic 

Ecology and Ecotoxicology. In Arts M.T., Brett M.T., Kainz, M. (Eds.) Lipids in Aquatic 

Ecosystems. New York: Springer-Verlag, pp. 93-114. 

Katana, A., Kwiatowski, J., Spalik, K., Zakrys, B., Szalacha, E., & Szymanska H. (2001). 

Phylogenetic position of Koliella (Chlorophyta) as inferred from nuclear and chloroplast small 

subunit rDNA. Journal of Phycology, 37, 443-451.  

Katsuta, Y., Iida, T., Inomata, S., & Denda, M.  (2005) Unsaturated fatty acids induce calcium 

influx into keratinocytes and cause abnormal differentiation of epidermis. Journal of 

Investigative Dermatology, 124, 1008-1013. 

 

Katz, A., Waridel, P., Shevchenko, A., & Pick, U. (2007). Salt-induced changes in the plasma 

membrane proteome of the halotolerant alga dunaliella salina as revealed by blue native gel 

electrophoresis and nano-LC-MS/MS analysis. Molecular & cellular proteomics: MCP, 6(9), 

1459-72.  

 

Kawaguchi, A., Arao, T., & Yamada, M. (1987). Composition and positional distribution of fatty 

acids in lipids from diatom Phaeodactylum tricornutum. In: Stumpf, P. K., Mudd, J. B., & Nes, 

W. D. (Eds.). The metabolism, structure, and function of plant lipids. Davis: Plenum Press. pp. 

653-655.  

 

Kim, H.S., & Lee, K.L. (2011). Growth characteristics of bloom forming Mallomonas elongate 

(Synurophyceae) based on silicate and light intensity. Algae, 26, 73-77. 

 

Koch, F., Alejandra Marcoval, M., Panzeca, C., Bruland, K. W., Sañudo-Wilhelmy, S. a., & 

Gobler, C. J. (2011). The effect of vitamin B12 on phytoplankton growth and community 

structure in the Gulf of Alaska. Limnology and Oceanography, 56(3), 1023-1034.   



108 

 

 

Koussoroplis, A-M., Kainz, M.J. & Striebel, M. (2013). Fatty acid retention under temporally 

heterogeneous dietary intake in a cladoceran. Oikos, 122, 1017-1026. 

 

Lacey, R. W. & Lord, V. L. (1981). Sensitivity of staphylococci to fatty acids: novel inactivation 

of linolenic acid by serum. Journal of Medical Microbiology, 14, 41-49. 

 

Lane, K., Derbyshire, E., Li, W., & Brennan, C. (2014). Bioavailability and potential uses of 

vegetarian sources of omega-3 fatty acids: a review of the literature. CRC Critical Reviews in 

Food Science and Nutrition, 54, 572–579. 

Lang, I., Hodac, L., Friedl, T., & Feussner, I. (2011). Fatty acid profiles and their distribution 

patterns in microalgae: a comprehensive analysis of more than 2000 strains from the SAG 

culture collection. BMC Plant Biology, 11, 124-124. 

 

Lavens, P., & Sorgeloos, P. (Eds.) (1996). Manual on the production and use of live food for 

aquaculture. FAO Fisheries Technical Paper. No. 361. Rome, Italy: FAO.  

 

Lawrence, E. (Ed.). (2008). Henderson's dictionary of biology (14th edition). Essex, England: 

Pearson Education Limited. 

 

Leray, C. (2015). Lipids: Nutrition and health. Florida, USA: CRC Press Taylor & Francis 

Group. pp. 1-7, 14. 

 

Lewis, L. A., Wilcox, L. W., Fuerst, P. A., & Floyd, G. L. (1992). Concordance of molecular and 

ultrastructural data in the study of zoospore Chlorococcalean green algae. Journal of Phycology, 

28, 375–380. 

Markou, G., Angelidaki, I., Georgakakis, D. (2012). Microalgal carbohydrates: an overview of 

the factors influencing carbohydrates production, and of main bioconversion technologies for 

production of biofuels. Applied Microbiology and Biotechnology, 96, 631-645. 

Mata, T. M., Martins, A. A. & Caetano, N. S. (2010). Microalgae for biodiesel production and 

other applications: A review. Renewable & Sustainable Energy Reviews, 14, 217–232.  

Metherel, A. H., Aristizabal Henao, J. J., & Stark, K. D. (2013). EPA and DHA levels in whole 

blood decrease more rapidly when stored at -20°C as compared with room temperature, 4 and             

-75°C. Lipids, 48, 1079-1091.  

 

Microalgal Technology Research Group. (1986). Microalgae Culture Collection 1985-1986. U.S. 

Department of Energy DE-AC02-83CH-10093 

 



109 

 

Morgan-Kiss, R. M., Priscu, J. C., Pocock, T., Gudynaite-Savitch, L., Hunner, N. P. A. (2006) 

Adaptation and acclimation of photosynthetic microorganisms to permanently cold 

environments. Microbiol Mol Biol Rev, 70(1), 222-252. 

 

Moss, B. (1973). The Influence of environmental factors on the distribution of freshwater algae: 

an experimental study. Journal of Ecology, 61(1), 157-177.  

Mussgnug, J. H., Klassen, V., Schluter, A., & Kruse, O. (2010). Microalgae as substrates for 

fermentative biogas production in a combined biorefinery concept. Journal of Biotechnology, 

150, 51-56. 

Nagaraja, T. G. (1995) Ionophores and antibiotics in ruminants. In: Wallace, R.J., Chesson, A. 

(Eds) Biotechnology in animal feeds and animal feeding. Weinheim, Germany: Wiley-VCH 

Verlag GmbH. pp. 173-204. 

 

Napolitano, G. E. (1994). The relationship of lipids with light and chlorophyll measurements in 

freshwater algae and periphyton. Journal of Phycology, 30, 943-950. 

 

Naviner, M., Berge, J-P., Durand, P., Bris, H. L. (1999). Antibacterial activity of the marine 

diatom Skeletonema costatum against aquacultural pathogens. Aquaculture, 174, 15-24. 

 

Nishida, I., & Murata, N. (1996) Chilling sensitivity in plants and cyanobacteria: the crucial 

contribution of membrane lipids. Annual Review of Plant Physiology and Plant Molecular 

Biology, 47, 541-568. 

 

Ohta, S., Chang, T., Kawashima, A., Nagate, T. N., Murase, M., Nakanishi, H., Miyata, H., & 

Kondo, M. (1994). Anti methicillin-resistant Staphylococcus aureus (MRSA) activity by 

linolenic acid isolated from the marine microalga Chlorococcum HS-101. Bulletin of 

Environmental Contamination, 52, 673-680. 

 

Panzeca, C., Tovar-Sanchez, A., Agusti, S., Reche, I., Duarte, C. M., Taylor, G. T., & 

Sanudowilhelmy, S. A., (2001). B vitamins as regulators of phytoplankton dynamics. Earth and 

Space Science News, 595-596.   

 

Parrish, C. C. (2009). Chapter 13: Essential fatty acids in aquatic food webs. In Arts, M. T., 

Brett, M. T., Kainz, M. (Ed.) Lipids in aquatic ecosystems, New York: Springer-Verlag  pp. 309-

326. 

Patil, V., Källqvist, T., Olsen, E., Vogt, G., & Gislerød, H. R. (2007). Fatty acid composition of 

12 microalgae for possible use in aquaculture feed. Aquaculture International, 15, 1-9. 



110 

 

Petschow, B. W., Batema, R. P., Ford, L. L. (1996). Susceptibility of Helicobacter pylori to 

bactericidal properties of medium-chain monoglycerides and free fatty acids. Antimicrobial 

Agents and Chemotherapy, 40, 302-306. 

 

Phooprong, S., Ogawa, H., & Hayashizaki, K. (2007). Photosynthetic and respiratory responses 

of Gracilaria Salicornia (C. Agardh) Dawson (Gracilariales, Rhodophyta) from Thailand and 

Japan. Journal of Applied Phycology, 19, 795-801. 

 

Piorreck, M., & Pohl, P. (1984). Formation of biomass, total protein, chlorophylls, lipids and 

fatty acids in green and blue-green algae during one growth phase. Phytochemistry, 23(2), 217-

223.  

 

Pratt, R. (1942). Studies on Chlorella vulgaris. V. Some properties of the growth-inhibitor 

formed by Chlorella cells. American Journal of Botany, 29, 142-148. 

Priyadarshani, I., & Rath, B. (2012). Commercial and industrial applications of microalgae – A 

review. Journal of Algal Biomass Utilization, 3, 89-100. 

Prouse, T.D., Wrona, F.J., Reist, J.D., Gibson, J.J., Hobbie, J.E., Levesque, M.J., & Vincent, 

W.F. (2006). Climate change effects on hydroecology of arctic freshwater ecosystems. A Journal 

of the Human Environment, 35(7), 347-358. 

Rabinowitch, G. E. (1969). Photosynthesis. New York: John Wiley & Sons, Inc.. 

Renaud, S. M., Thinh, L-V., & Parry, D. L. (1999). The gross chemical composition and fatty 

acid composition of 18 species of tropical Australian microalgae for possible use in mariculture. 

Aquaculture, 170, 147-159. 

Rouse, W. R., Douglas, M. S., Hecky, R. E., Hershey, A. E., Kling, G. W., Lesack, L., Marsh, P., 

McDonald, M., Nicholson, B.J., Roulet, R., & Smol, J. P. (1997). Effects of climate change on 

the freshwaters of arctic and 844 subarctic North America. Hydrological Processes,11(8), 873-

902. 

 

Ruffell, S. E., McConkey, B. J., Müller, K. M. (2015). Omega-3 fatty acid profile and growth of 

five algae for potential use in industrial application. Journal of Applied Phycology (submitted). 

 

Russel, A. D. (1991). Mechanisms of bacterial resistance to non-antibiotics: food additives and 

food pharmaceutical preservatives. Journal of Applied Bacteriology, 71, 191-201. 

 

Sader, H. S., Ferraro, M. J., Reller, L. B., Schreckenberger, P. C., Swenson, J. M., & Jones, R. N. 

(2007) Reevaluation of clinical and laboratory standards institute disk diffusion breakpoints for 

tetracyclines for testing Enterobacteriaceae. Journal of Clinical Microbiology, 45, 1640-1640. 



111 

 

 

SAG (Experimental Phycology and Culture Collection of Algae). (2014). List of media and 

recipes. http://www.uni-goettingen.de/en/list-of-media-and-recipes/186449.html; searched on 5 

June 2013. 

 

Sahena, F., Zaidul, I, S. M., Jinap, S., Saari, N., Jahurul, H. A., Abbas, K. A., & Norulaini, N. A. 

(2009). PUFAs in fish: extraction , fractionation, importance in health. Comprehensive Reviews 

In Food Science And Food Safety, 8, 59-74.  

 

San Giovanni, J. P., & Chew, E. Y. (2005). The role of omega-3 long-chain polyunsaturated fatty 

acids in health and disease of the retina. Progress in Retinal and Eye Research, 24, 87–138. 

Schmid, K. M., & Ohlrogge, J. B. (2008). Lipid metabolism in plants. In: Vance, D. E., Vance, J. 

E. (Eds.), Biochemistry of lipids, lipoproteins and membranes. Elsevier. pp. 97-130. 

Sforza, E., Simionato, D., Giacometti, G. M., Bertucco, A., & Morosinotto, T. (2012). Adjusted 

light and dark cycle can optimize photosynthetic efficiency in algae growing in photobioreactors. 

PLoS ONE, 7, e38975. 

Sheehan, J., Dunahay, T., Benemann, J., Roessler, P. (1998). A look back at the U.S. department 

of energy’s aquatic species program - biodiesel from algae. Laboratory NRE, Golden, Colorado. 

NREL/TP-580-24190  

 

Sicko-goad, L., & Andresen, N. A. (1991). Effect of growth and light/dark cycles on diatom lipid 

content and composition. Journal of Phycology, 27(6), 710-718.  

 

Sidhu, K. S. (2003). Health benefits and potential risks related to consumption of fish or fish oil. 

Regulatory Toxicology and Pharmacology, 38, 336–344. 

Silva, A. L. C. da; Caruso, C. S., Moreira, R. de A., & Horta, A. C. G. (2005). Growth 

characteristics and dynamics of protein synthesis in callus cultures from Glycine wightii (Wight 

& Arn.) Verdc.. Science and Agrotechnology, 29, 1161-1166.  

Simopoulos, A. P. (1999). Essential fatty acids in health and chronic disease. The American 

Journal of Clinical Nutrition, 70(3 Suppl), 560S–569S. 

Siron, R., Giusti, G., & Berland, B. (1989). Changes in the fatty acid composition of 

Phaeodactylum tricornutum and Dunaliella tertiolecta during growth and under phosphorus 

deficiency. Marine Ecology Progress Series, 55, 95-100. 

 

Slocombe, S., Ross, M., Thomas, N., McNeill, S., & Stanley, M. S. (2013). A rapid and general 

method for measurement of protein in microalgal biomass. Bioresource Technology, 129, 51-57. 

 

http://www.uni-goettingen.de/en/list-of-media-and-recipes/186449.html


112 

 

Smith, K. I. M. L., & Harwood, J. L. (1984). Lipid metabolism in fucus serratus as modified by 

environmental factors, 35(158), 1359-1368.  

 

Spolaore, P., Joannis-Cassan, C., Duran, E., Isambert, A., (2006). Commercial applications of 

microalgae. Journal of Bioscience and Bioengineering, 101, 87-96. 

 

Starr, C., & Taggart, R. (1995). Biology: the unity and diversity of life. (B. McMillan, Ed.) (7th 

ed.). Belmont: Wadsworth Publishing Company. pp. 3-18. 

 

Stein, J. R. (1980). Handbook of phycological methods: culture methods and growth 

measurements. Camrbidge, UK: Cambridge University Press. 

 

Stengel, D. B., Connan, S., & Popper, Z. A. (2011). Algal chemodiversity and bioactivity: 

sources of natural variability and implications for commercial application. Biotechnology 

advances, 29(5), 483-501. Elsevier Inc.  

 

Su, K. P., Huang, S. Y., Shiu, C. C., & Shen, W. W. (2003). Omega-3 fatty acids in major 

depressive disorder. A preliminary double-blind, placebo-controlled trial. European 

Neuropsychopharamacology: the journal of the European College of 

Neuropsychopharmacology, 13(4), 267-71.  

 

Sukenik, A., Carmeli, Y. (1990) Lipid synthesis and fatty acid composition in Nannochloropsis 

sp. (Eustigmatophyceae) grown in a light-dark cycle. Journal of Phycology, 26, 463-469. 

 

Sun, C.Q., O'Connor, C.J., & Roberton, A.M. (2003) Antibacterial actions of fatty acids and 

monoglycerides against Helicobacter pylori. FEMS Immunology and Medical Microbiology, 36, 

9-17. 

 

Sunda, W. G., & Huntsman, S. A. (1997). Interrelated influence of iron, light and cell size on 

marine phytoplankton growth. Nature, 390(1977), 389-392.  

 

Sussman, M. (1997). Escherichia coli and human disease. In: Sussman, M. (Ed.) Escherichia 

coli mechanisms of virulence, Cambridge, UK: University Press. pp. 3-48. 

Surette, M. (2008). The science behind dietary omega-3 fatty acids. Canadian Medical 

Association Journal, 178(2), 177-180. 

 

Swift, D.G., & Taylor, W.R. (1974). Growth of vitamin B12-limited cultures: Thalassiosira 

pseudonana, Monochrysis lutheri, and Isochrysis galbana. Journal of Phycology, 10, 385-391. 

 

Tamura, K., Dudley, J., Nei, M. & Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics 

Analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596-1599.  



113 

 

 

Tan, Y., & Lin, J. (2011). Biomass production and fatty acid profile of a scenedesmus 

rubescenslike microalga. Bioresource technology, 102(21), 10131-5. Elsevier Ltd. 

doi:10.1016/j.biortech.2011.07.091  

 

Tang, Y.Z., Koch, F., & Gobler, C.J. (2010). Most harmful algal bloom species are vitamin 

B1and B12 auxotrophs. PNAS, 107, 20756-20761.  

 

Tanumihardjo S.A. (2011). Vitamin A: biomarkers of nutrition for development. The American 

Journal of Clinical Nutrition, 94, 658S-665S. 

Takaichi, S. (2011). Carotenoids in algae: distribution, biosyntheses and functions. Marine 

Drugs, 9, 1101-1118. 

Thomas, K. E., Hall, R. I., & Scrimgeour, G. J. (2013). Evaluating the use of algal pigments to 

assess the biological condition of streams. Environmental Monitoring and Assessment, 185, 

7895-7913. 

Thompson, P. A., Guo, M.-xin, Harrison, P. J., & Whyte, J. N. C. (1992). Effects of variation in 

temperature. II. on the fatty acid composition of eight species of marine phytoplankton. Journal 

of Phycology, 28, 488-497.  

 

Thompson, P. A., Harrison, P. J., & Whyte, J. N. (1990). Influence of irradiance on the fatty acid 

composition of phytoplankton. Journal of Phycology, 26, 278-288.  

 

Throndsen, J. (1997). The planktonic marine flagellates. In: Tomas, C. R. (Ed.) (1997). The 

planktonic marine flagellates. Identifying marine phytoplankton. San Diego: Academic Press. pp. 

591-715. 

Tocher, D. R. (2015). Omega-3 long-chain polyunsaturated fatty acids and aquaculture in 

perspective. Aquaculture, 449, 94-107. 

Torzillo, G., Faraloni, C., Silva, A.M., Kopecky, J., Pilny, J. & Masojidek, J. (2012). 

Photoacclimation of Phaeodactylum tricornutum (Bacillariophyceae) cultures grown outdoors in 

photobioreactors and open ponds. European Journal of Phycology, 47, 169-181. 

 

Tzovenis, I., De Pauw, N., & Sorgeloos, P. (1997). Effect of different light regimes on the 

docosaheaenoic acid (DHA) content of Isochrysis affgalbana (clone T-ISO). Aquaculture 

International, 5, 489-507.  

 

Vazquez-duhalt, R., & Arredondo-vega, B. (1991). Haloadaptation of the green alga 

botryococcus braunii (Race A). Phytochemistry, 30(9), 2919-2925.  

 



114 

 

Wacker, A., Piepho, M., Harwood, J.L., Guschina, I.A., & Arts, M.T. (2016). Light-induced 

changes in fatty acid profiles of specific lipids classes in several freshwater phytoplankton 

species. Frontiers in Plant Science, 7, 264. 

 

Wada, H., & Murata, N. (2009). Lipids in photosynthesis: essential and regulatory functions, 

Dordrecht, Germany: Springer. 

 

Wahidin, S., Idris, A., & Shaleh, S.R.M. (2013). The influence of light intensity and photoperiod 

on the growth and lipid content of microalgae Nannochloropsis sp. Bioresource Technology, 

129, 7-11. 

 

Wallis, J. G., Watts, J. L., Browse, J. (2002). Polyunsaturated fatty acid synthesis: what will they 

think of next ?. Trends Biochem Sci, 27(9), 467-473. 

 

Watanabe, M. M. (2005). Freshwater culture media. In: Andersen, R. A. (Ed.). (2005). Algal 

culturing techniques. New York, NY: Elsevier Academic Press. pp. 13-31, 431-432, 437, 462, 

491-493.  

 

Watson, S. B., Caldwell, G., & Pohnert, G. (2009). Chapter 4: Fatty Acids and Oxylipinds as 

Semiochemicals. In Arts M.T., Brett M.T., Kainz, M. (Eds.) Lipids in Aquatic Ecosystems. New 

York: Springer-Verlag, pp. 65-92. 

 

Williams, W. P. (1998). Chapter 6: The physical properties of thylakoid membrane lipids and 

their relation to photosynthesis. In Siegenthaler, P-A., Murata, N. (Eds.) Lipids in 

photosynthesis: structure, function and genetics. London, UK: Springer Netherlands. pp. 103-

118. 

 

Williams, W. P., & Quinn, P. J. (1987). Mini-Review: The phase behavior of lipids in 

photosynthetic membranes. Journal of Bioenergetics and Biomembranes, 19(6), 605-624.  

 

Yaakob, Z., Ali Ehsan, Zainal, A., Mohamad, M., Takriff, M. S. (2014). An overview: 

biomolecules from microalgae for animal feed and aquaculture. Journal of Biological Research. 

21:6h 

 

Yaguchi, T., Tanaka, S., Yokochi, T., Nakahara, T., Higashihara, T. (1997). Production of high 

yields of docosahexaenoic acid by Schizochytrium sp. strain SR21. Journal of the American Oil 

Chemists’ Society, 74, 1431-1434. 

 

Yang, D., Pornpattananangkul, D., Nakatsuji, T., Chan, M., Carson, D., Huang, C-M., & Zhang, 

L. (2009). The antimicrobial activity of liposomal lauric acids against Propionibacterium acnes. 

Biomaterials, 30, 6035-6040. 



115 

 

Yongmanitchai, W. (1991). Production of eicosapentaenoic acid from a freshwater diatom, 

Phaeodactylum tricornutum. PhD Thesis, University of Waterloo, Canada. 

 

Yongmanitchai, W., & Ward, O. P. (1991). Growth of and omega-3 fatty acid production by 

phaeodactylum tricornutum under different culture conditions. Applied Environmental 

Microbiology, 57(2), 419-425.  

 

Yoon, H. S., Müller, K. M., Sheath, R. G., Ott, F. D., & Bhattacharya, D. (2006). Defining the 

major lineages of red algae (Rhodophyta). Journal of Phycology, 42, 482-492.  

 

Zhang, P., Liu, S., Cong, B., Wu, G., Liu, C., Lin, X., Shen, J., & Huang, X. (2011). A novel 

omega-3 fatty acid desaturase involved in acclimation processes of polar condition from 

Antarctic ice algae Chlamydomonas sp. ICE-L. Marine Biotechnology, 13, 393–401. 

Zhila, N.O., Kalacheva, G.S. Volova, & T.G. (2011). Effect of salinity on the biochemical 

composition of the alga Botryococcus braunii Kütz IPPAS H-252. Journal of Applied Phycology, 

23, 47–52. 

 

Zhu, C., Lee, Y., & Chao, T. (1997). Effects of temperature and growth phase on lipid and 

biochemical composition of Isochrysis galbana TK1. Journal of Applied Phycology, 9, 451-457. 

 

Zuñiga, P.  K., Ciobanu, F.A., Nuñeza, O. & M., Stark, K. D. (2012). The use of direct 

transesterification methods and autoclaving for determining fatty acid yields from dried 

Philippine thraustochytrids, a potential source of docosahexaenoic acid. Journal of Functional 

Foods, 4, 915-923. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



116 

 

Appendices 

A.1. Chapter 3 supplementary data 

Table A1. Summary of the statistically significant correlations (r; white area) and r-squared 

values (r2; grey area) for biomass and cell size from Chapter 3 data***. 

Characteristic Biomass (g L-1) Cell size (µm) 

Biomass (g L-1)     

Cell size (µm)     

C10:0     

C12:0     

C14:0 0.749 (0.02)*   

C16:0 0.742(0.022)   

C17:0     

C18:0     

C20:0     

C22:0     

C23:0     

C24:0     

SFAs 0.783(0.013)   

C12:1     

C14:1     

C16:1     

C18:1(n-7) 0.752(0.019) 0.743(0.022) 

C18:1(n-9)     

C20:1(n-9) -0.901 (0.001)** 0.73(0.026) 

C22:1(n-9)     

C24:1(n-9) 0.745(0.021) 0.821(0.007) 

MUFAs     

C18:2(n-6)     

C18:3(n-6)     

C20:2(n-6) -0.796(0.01) 0.736(0.024) 

C20:3(n-6)     

C20:4(n-6)     

C22:2(n-6)     

C22:4(n-6)     

C22:5(n-6)     

N-6     

C16:4(n-3)     

C18:3(n-3)     

C18:4(n-3) 0.825(0.006)   
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Characteristic Biomass (g L-1) Cell size (µm) 

C20:3(n-3)     

C20:4(n-3) 0.855(0.003)   

C20:5(n-3)     

C22:5(n-3)     

C22:6(n-3)     

N-3     

PUFAs     

EPA+   DHA     

Total 0.708(0.033)   

Protein (mg g-1)     

Carbohydrates (mg g-1)     

Growth rate     

Fucoxanthin w/ derivatives     

Diatoxanthin w/ derivatives     

Diadinoxanthin w/ 

derivatives     

Zeaxanthin w/ derivatives     

Chl_c w/ derivatives     

Chl_a w/ derivatives     

B- carotene w/ derivatives     

Total Pigment (w/ 

derivatives)     

* p-value in the brackets; ** bolded numbers are negative correlations; ***The white section has 

r values with the corresponding p-value and the grey section  has r-squared values (note: only p- 

value < 0.05, r > 0.5 or < -0.5 and r2 > 0.5 were included) 
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Table A2. Summary of the statistically significant correlations (r; white area) and r-squared 

values (r2; grey area) for saturated FAs 10:0 to 17:0 (mg g-1 dw) from Chapter 3 data***. 

Characteristic C10:0 C12:0 C14:0 C16:0 C17:0 

Biomass (g L-1)     0.562 0.55   

Cell size (µm)           

C10:0     0.652   0.635 

C12:0           

C14:0 0.808(0.008)     0.567 0.503 

C16:0     0.753(0.019)     

C17:0 0.797(0.010)   0.709(0.032)     

C18:0     0.782(0.013) 0.949(0.000)   

C20:0   0.854(0.003)       

C22:0   0.812(0.008)       

C23:0   0.903(0.001)       

C24:0 0.784(0.012) 0.767(0.016) 0.817(0.007)   0.744(0.022) 

SFAs     0.857(0.003) 0.98(0.000)   

C12:1   0.912(0.001)       

C14:1           

C16:1           

C18:1(n-7)     
-0.773 

(0.015)   
-0.716 

(0.03) 

C18:1(n-9)   
-0.833 

(0.005)       

C20:1(n-9)     
-0.772 

(0.015) 

-0.846 

(0.004)   

C22:1(n-9)   0.868(0.002)       

C24:1(n-9)     
-0.804 

(0.009)     

MUFAs           

C18:2(n-6) 0.810(0.008)   0.735(0.024)   0.917(0.001) 

C18:3(n-6)         0.829(0.006) 

C20:2(n-6)     
-0.829 

(0.006) 

-0.793 

(0.011)   

C20:3(n-6)         0.819(0.007) 

C20:4(n-6)         0.884(0.002) 

C22:2(n-6)           

C22:4(n-6)           

C22:5(n-6)           

N-6         0.968(0.000) 

C16:4(n-3)   0.929(0.000)       

C18:3(n-3) 0.713(0.031)       0.917(0.000) 
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Characteristic C10:0 C12:0 C14:0 C16:0 C17:0 

C18:4(n-3)     0.79(0.011) -0.748(0.02) 0.732(0.025) 

C20:3(n-3)   0.743(0.022)       

C20:4(n-3)     0.817(0.007)   0.916(0.001) 

C20:5(n-3)         0.806(0.009) 

C22:5(n-3)           

C22:6(n-3)         0.878(0.002) 

N-3         0.851(0.004) 

PUFAs         0.888(0.001) 

EPA+   DHA         0.823(0.006) 

Total       
-0.742 

(0.022)   

Protein (mg g-1)         0.806(0.009) 

Carbohydrates 

(mg g-1)           

Growth rate           

Fucoxanthin w/ 

derivatives           

Diatoxanthin w/ 

derivatives           

Diadinoxanthin 

w/ derivatives           

Zeaxanthin w/ 

derivatives           

Chl_c w/ 

derivatives           

Chl_a w/ 

derivatives           

B- carotene w/ 

derivatives           

Total Pigment 

(w/ derivatives)           
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Table A3. Summary of the statistically significant correlations (r; white area) and r-squared 

values (r2; grey area) for saturated FAs 20:0 to 24:0 (mg g-1 dw) from Chapter 3 data***. 

Characteristic C20:0 C22:0 C23:0 C24:0 SFAs 

Biomass (g L-1)         0.613 

Cell size (µm)           

C10:0       0.615   

C12:0 0.729 0.66 0.816 0.589   

C14:0       0.668 0.735 

C16:0         0.961 

C17:0       0.554   

C18:0         0.911 

C20:0     0.705     

C22:0           

C23:0 0.84(0.005)         

C24:0           

SFAs           

C12:1 0.929(0.000)         

C14:1           

C16:1     
-0.713 

(0.031)     

C18:1(n-7)       -0.75(0.02)   

C18:1(n-9)   
-0.743 

(0.022)       

C20:1(n-9)         
-0.867 

(0.002) 

C22:1(n-9) 0.832(0.005) 0.944(0.000)       

C24:1(n-9)         -0.75(0.02) 

MUFAs     0.774(0.014)     

C18:2(n-6)       0.91(0.001)   

C18:3(n-6)           

C20:2(n-6)         
-0.836 

(0.005) 

C20:3(n-6)           

C20:4(n-6)           

C22:2(n-6) 0.812(0.008)   0.815(0.007)     

C22:4(n-6)           

C22:5(n-6)     0.769(0.015)     

N-6       0.734(0.024)   

C16:4(n-3) 0.857(0.003) 0.851(0.004) 0.794(0.011)     

C18:3(n-3)       0.846(0.004)   

C18:4(n-3)         -0.801 
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Characteristic C20:0 C22:0 C23:0 C24:0 SFAs 

(0.009) 

C20:3(n-3) 0.833(0.005)   0.802(0.009)     

C20:4(n-3)           

C20:5(n-3)           

C22:5(n-3)           

C22:6(n-3)           

N-3           

PUFAs           

EPA+   DHA           

Total         0.729(0.026) 

Protein (mg g-1)       0.763(0.017)   

Carbohydrates 

(mg g-1)     -0.753(0.019)     

Growth rate     0.987(0.002) 0.915(0.029)   

Fucoxanthin w/ 

derivatives           

Diatoxanthin w/ 

derivatives           

Diadinoxanthin 

w/ derivatives           

Zeaxanthin w/ 

derivatives           

Chl_c w/ 

derivatives           

Chl_a w/ 

derivatives           

B- carotene w/ 

derivatives           

Total Pigment 

(w/ derivatives)           

* p-value in the brackets; ** bolded numbers are negative correlations; ***The white section has 

r values with the corresponding p-value and the grey section  has r-squared values (note: only p- 

value < 0.05, r > 0.5 or < -0.5 and r2 > 0.5 were included) 
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Table A4. Summary of the statistically significant correlations (r; white area) and r-squared 

values (r2; grey area) for unsaturated FAs 12:1 to 18:1(mg g-1 dw) from Chapter 3 data***. 

Characteristic C12:1 C14:1 C16:1 C18:1(n-7) C18:1(n-9) 

Biomass (g L-1)       0.565   

Cell size (µm)       0.552   

C10:0           

C12:0 0.832       0.695 

C14:0       0.598   

C16:0           

C17:0       0.513   

C18:0           

C20:0 0.863         

C22:0         0.552 

C23:0     0.509     

C24:0       0.562   

SFAs           

C12:1     0.599   0.706 

C14:1           

C16:1 
-0.774 

(0.014)       0.587 

C18:1(n-7)           

C18:1(n-9) 
-0.840 

(0.005)   
-0.766 

(0.016)     

C20:1(n-9)           

C22:1(n-9) 0.853(0.003)       
-0.801 

(0.010) 

C24:1(n-9)       0.793(0.011)   

MUFAs 0.837(0.005)   0.983(0.000)   0.862(0.003) 

C18:2(n-6)       -0.82(0.007)   

C18:3(n-6)           

C20:2(n-6)       0.715(0.030)   

C20:3(n-6)           

C20:4(n-6)           

C22:2(n-6) 0.856(0.003)   
-0.751 

(0.020)     

C22:4(n-6)           

C22:5(n-6)           

N-6           

C16:4(n-3) 0.88(0.002)       0.804(0.009) 

C18:3(n-3)           

C18:4(n-3)           
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Characteristic C12:1 C14:1 C16:1 C18:1(n-7) C18:1(n-9) 

C20:3(n-3) 0.844(0.004)         

C20:4(n-3)       
-0.805 

(0.009)   

C20:5(n-3)           

C22:5(n-3)           

C22:6(n-3)           

N-3           

PUFAs           

EPA+   DHA           

Total     0.941(0.000)     

Protein (mg g-1)       0.88(0.002)   

Carbohydrates 

(mg g-1)           

Growth rate           

Fucoxanthin w/ 

derivatives   
-0.927 

(0.023)       

Diatoxanthin w/ 

derivatives           

Diadinoxanthin 

w/ derivatives           

Zeaxanthin w/ 

derivatives           

Chl_c w/ 

derivatives           

Chl_a w/ 

derivatives           

B- carotene w/ 

derivatives           

Total Pigment 

(w/ derivatives)           

* p-value in the brackets; ** bolded numbers are negative correlations; ***The white section has 

r values with the corresponding p-value and the grey section  has r-squared values (note: only p- 

value < 0.05, r > 0.5 or < -0.5 and r2 > 0.5 were included) 
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Table A5. Summary of the statistically significant correlations (r; white area) and r-squared 

values (r2; grey area) for unsaturated FAs 20:1 to 24:1 (mg g-1 day) from Chapter 3 data***. 

Characteristic C20:1(n-9) C22:1(n-9) C24:1(n-9) MUFAs 

Biomass (g L-1) 0.812   0.555   

Cell size (µm) 0.533   0.674   

C10:0         

C12:0   0.753     

C14:0 0.597   0.646   

C16:0 0.715       

C17:0         

C18:0 0.557       

C20:0   0.691     

C22:0   0.891     

C23:0       0.599 

C24:0         

SFAs 0.752   0.562   

C12:1   0.727   0.701 

C14:1         

C16:1       0.966 

C18:1(n-7)     0.629   

C18:1(n-9)   0.641   0.743 

C20:1(n-9)     0.813   

C22:1(n-9)     0.537   

C24:1(n-9) 0.902(0.001) -0.733(0.025)     

MUFAs         

C18:2(n-6)         

C18:3(n-6)         

C20:2(n-6) 0.95(0.000)   0.971(0.000)   

C20:3(n-6)         

C20:4(n-6)         

C22:2(n-6)       
-0.751 

(0.020) 

C22:4(n-6)         

C22:5(n-6)         

N-6         

C16:4(n-3)   0.893(0.001)     

C18:3(n-3)         

C18:4(n-3)         

C20:3(n-3)         

C20:4(n-3)         
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Characteristic C20:1(n-9) C22:1(n-9) C24:1(n-9) MUFAs 

C20:5(n-3)         

C22:5(n-3)         

C22:6(n-3)         

N-3         

PUFAs         

EPA+   DHA         

Total       0.888(0.001) 

Protein (mg g-1)         

Carbohydrates (mg g-1)         

Growth rate         

Fucoxanthin w/ 

derivatives         

Diatoxanthin w/ 

derivatives         

Diadinoxanthin w/ 

derivatives         

Zeaxanthin w/ 

derivatives         

Chl_c w/ derivatives         

Chl_a w/ derivatives         

B- carotene w/ 

derivatives         

Total Pigment (w/ 

derivatives)         

* p-value in the brackets; ** bolded numbers are negative correlations; ***The white section has 

r values with the corresponding p-value and the grey section  has r-squared values (note: only p- 

value < 0.05, r > 0.5 or < -0.5 and r2 > 0.5 were included) 
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Table A6. Summary of the statistically significant correlations (r; white area) and r-squared 

values (r2; grey area) for omega-6 FAs 18:2 to 20:4 (mg g-1 day) from Chapter 3 data***. 

Characteristic C18:2(n-6) C18:3(n-6) C20:2(n6) C20:3(n-6) C20:4(n-6) 

Biomass (g L-1)     0.633     

Cell size (µm)     0.542     

C10:0 0.656         

C12:0           

C14:0 0.54   0.688     

C16:0     0.628     

C17:0 0.841 0.687   0.671 0.782 

C18:0     0.538     

C20:0           

C22:0           

C23:0           

C24:0 0.828         

SFAs     0.699     

C12:1           

C14:1           

C16:1           

C18:1(n-7) 0.672   0.511     

C18:1(n-9)           

C20:1(n-9)     0.92     

C22:1(n-9)           

C24:1(n-9)     0.943     

MUFAs           

C18:2(n-6)       0.535 0.62 

C18:3(n-6)       0.713 0.652 

C20:2(n-6)           

C20:3(n-6) 0.731(0.025) 0.844(0.004)     0.666 

C20:4(n-6) 0.787(0.012) 0.808(0.008)   0.816(0.007)   

C22:2(n-6)           

C22:4(n-6)           

C22:5(n-6)           

N-6 0.917(0.001) 0.807(0.009)   0.861(0.003) 0.957(0.000) 

C16:4(n-3)           

C18:3(n-3) 0.963(0.000)     0.812(0.008) 0.889(0001) 

C18:4(n-3)   0.806(0.009)       

C20:3(n-3)           

C20:4(n-3) 0.820(0.007) 0.791(0.011)   0.771(0.015)   

C20:5(n-3) 0.801(0.009)       0.897(0.001) 
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Characteristic C18:2(n-6) C18:3(n-6) C20:2(n6) C20:3(n-6) C20:4(n-6) 

C22:5(n-3)         0.879(0.002) 

C22:6(n-3) 0.786(0.012) 0.822(0.007)   0.824(0.006) 0.997(0.000) 

N-3 0.837(0.005)     0.725(0.027) 0.925(0.000) 

PUFAs 0.865(0.003) 0.721(0.028)   0.764(0.016) 0.944(0.000) 

EPA+   DHA 0.808(0.008)       0.918(0.000) 

Total           

Protein (mg g-1) 0.894(0.001)     0.737(0.023)   

Carbohydrates 

(mg g-1)           

Growth rate 0.932(0.021)         

Fucoxanthin w/ 

derivatives           

Diatoxanthin w/ 

derivatives           

Diadinoxanthin 

w/ derivatives           

Zeaxanthin w/ 

derivatives           

Chl_c w/ 

derivatives           

Chl_a w/ 

derivatives           

B- carotene w/ 

derivatives           

Total Pigment 

(w/ derivatives)           

* p-value in the brackets; ** bolded numbers are negative correlations; ***The white section has 

r values with the corresponding p-value and the grey section  has r-squared values (note: only p- 

value < 0.05, r > 0.5 or < -0.5 and r2 > 0.5 were included) 
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Table A7. Summary of the statistically significant correlations (r; white area) and r-squared 

values (r2; grey area) for omega-6 FAs 22:2 to 22:5 (mg g-1 day) from Chapter 3 data***. 

Characteristic C22:2(n-6) C22:4(n-6) C22:5(n-6) N-6 

Biomass (g L-1)         

Cell size (µm)         

C10:0         

C12:0         

C14:0         

C16:0         

C17:0       0.938 

C18:0         

C20:0 0.66       

C22:0         

C23:0 0.665   0.592   

C24:0       0.538 

SFAs         

C12:1 0.732       

C14:1         

C16:1 0.564       

C18:1(n-7)         

C18:1(n-9)         

C20:1(n-9)         

C22:1(n-9)         

C24:1(n-9)         

MUFAs 0.563       

C18:2(n-6)       0.841 

C18:3(n-6)       0.652 

C20:2(n-6)         

C20:3(n-6)       0.742 

C20:4(n-6)       0.917 

C22:2(n-6)     0.806   

C22:4(n-6)         

C22:5(n-6) 0.898(0.001)       

N-6         

C16:4(n-3)         

C18:3(n-3)       0.964(0.000) 

C18:4(n-3)         

C20:3(n-3) 0.835(0.005)   0.73(0.025)   

C20:4(n-3)   0.726(0.027)   0.816(0.007) 

C20:5(n-3)       0.896(0.001) 
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Characteristic C22:2(n-6) C22:4(n-6) C22:5(n-6) N-6 

C22:5(n-3)       0.824(0.006) 

C22:6(n-3)       0.954(0.000) 

N-3       0.931(0.000) 

PUFAs       0.958(0.000) 

EPA+   DHA       0.912(0.001) 

Total         

Protein (mg g-1)       0.813(0.008) 

Carbohydrates (mg g-1)         

Growth rate         

Fucoxanthin w/ derivatives     0.893(0.041)   

Diatoxanthin w/ derivatives         

Diadinoxanthin w/ 

derivatives     0.931(0.022)   

Zeaxanthin w/ derivatives         

Chl_c w/ derivatives         

Chl_a w/ derivatives         

B- carotene w/ derivatives         

Total Pigment (w/ 

derivatives)     0.901(0.037)   

* p-value in the brackets; ** bolded numbers are negative correlations; ***The white section has 

r values with the corresponding p-value and the grey section  has r-squared values (note: only p- 

value < 0.05, r > 0.5 or < -0.5 and r2 > 0.5 were included) 
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Table A8. Summary of the statistically significant correlations (r; white area) and r-squared 

values (r2; grey area) for omega-3 FAs 16:4 to 20:4 (mg g-1 dw) from Chapter 3 data***. 

Characteristic 

C16:4 

(n-3) 

C18:3 

(n-3) 

C18:4 

(n-3) 

C20:3 

(n-3) 

C20:4 

(n-3) 

Biomass (g L-1)     0.681   0.731 

Cell size (µm)           

C10:0   0.508       

C12:0 0.863     0.552   

C14:0     0.624   0.668 

C16:0     0.559     

C17:0   0.841 0.537   0.839 

C18:0     0.553     

C20:0 0.735     0.694   

C22:0 0.724         

C23:0 0.631     0.643   

C24:0   0.716       

SFAs     0.642     

C12:1 0.774     0.712   

C14:1           

C16:1           

C18:1(n-7)         0.648 

C18:1(n-9) 0.647         

C20:1(n-9)           

C22:1(n-9) 0.797         

C24:1(n-9)           

MUFAs           

C18:2(n-6)   0.928     0.672 

C18:3(n-6)     0.65   0.626 

C20:2(n-6)           

C20:3(n-6)   0.66     0.594 

C20:4(n-6)   0.791       

C22:2(n-6)       0.698   

C22:4(n-6)         0.527 

C22:5(n-6)       0.533   

N-6   0.929     0.671 

C16:4(n-3)           

C18:3(n-3)         0.614 

C18:4(n-3)         0.78 

C20:3(n-3)           

C20:4(n-3)   0.784(0.012) 0.883(0.002)     
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Characteristic 

C16:4 

(n-3) 

C18:3 

(n-3) 

C18:4 

(n-3) 

C20:3 

(n-3) 

C20:4 

(n-3) 

C20:5(n-3)   0.871(0.002)       

C22:5(n-3)   0.884(0.004)       

C22:6(n-3)   0.891(0.001)       

N-3   0.904(0.001)       

PUFAs   0.928(0.000)       

EPA+   DHA   0.882(0.002)       

Total     0.882(0.002)     

Protein (mg g-1)   0.881(0.002)     0.828(0.006) 

Carbohydrates 

(mg g-1)           

Growth rate   0.93(0.022)       

Fucoxanthin w/ 

derivatives           

Diatoxanthin w/ 

derivatives           

Diadinoxanthin 

w/ derivatives           

Zeaxanthin w/ 

derivatives           

Chl_c w/ 

derivatives           

Chl_a w/ 

derivatives           

B- carotene w/ 

derivatives           

Total Pigment 

(w/ derivatives)           

* p-value in the brackets; ** bolded numbers are negative correlations; ***The white section has 

r values with the corresponding p-value and the grey section  has r-squared values (note: only p- 

value < 0.05, r > 0.5 or < -0.5 and r2 > 0.5 were included) 
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Table A9. Summary of the statistically significant correlations (r; white area) and r-squared 

values (r2; grey area) for omega-3 FAs 20:5 to 22:6 (mg g-1 dw) from Chapter 3 data***. 

Characteristic C20:5(n-3) C22:5(n-3) C22:6(n-3) N-3 

Biomass (g L-1)         

Cell size (µm)         

C10:0         

C12:0         

C14:0         

C16:0         

C17:0 0.009   0.77 0.724 

C18:0         

C20:0         

C22:0         

C23:0         

C24:0         

SFAs         

C12:1         

C14:1         

C16:1         

C18:1(n-7)         

C18:1(n-9)         

C20:1(n-9)         

C22:1(n-9)         

C24:1(n-9)         

MUFAs         

C18:2(n-6) 0.642   0.618 0.701 

C18:3(n-6)     0.676   

C20:2(n-6)         

C20:3(n-6)     0.679 0.526 

C20:4(n-6) 0.804 0.772 0.994 0.856 

C22:2(n-6)         

C22:4(n-6)         

C22:5(n-6)         

N-6 0.802 0.679 0.91 0.866 

C16:4(n-3)         

C18:3(n-3) 0.758 0.712 0.764 0.817 

C18:4(n-3)         

C20:3(n-3)         

C20:4(n-3)         

C20:5(n-3)   0.829 0.812 0.992 
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Characteristic C20:5(n-3) C22:5(n-3) C22:6(n-3) N-3 

C22:5(n-3) 0.911(0.001)   0.801 0.837 

C22:6(n-3) 0.901(0.001) 0.895(0.001)   0.864 

N-3 0.996(0.000) 0.915(0.001) 0.929(0.000)   

PUFAs 0.986(0.000) 0.906(0.001) 0.946(0.000)   

EPA+   DHA 0.999(0.000) 0.918(0.000) 0.922(0.000)   

Total         

Protein (mg g-1)         

Carbohydrates (mg g-1) 
-0.725 

(0.027)       

Growth rate         

Fucoxanthin w/ derivatives         

Diatoxanthin w/ derivatives         

Diadinoxanthin w/ 

derivatives         

Zeaxanthin w/ derivatives         

Chl_c w/ derivatives         

Chl_a w/ derivatives         

B- carotene w/ derivatives 0.939(0.018) 0.93(0.022)   0.933(0.021) 

Total Pigment (w/ 

derivatives)         

* p-value in the brackets; ** bolded numbers are negative correlations; ***The white section has 

r values with the corresponding p-value and the grey section  has r-squared values (note: only p- 

value < 0.05, r > 0.5 or < -0.5 and r2 > 0.5 were included) 
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Table A10. Summary of the statistically significant correlations (r; white area) and r-squared 

values (r2; grey area) for total FA, protein, carbohydrates and growth rate from Chapter 3 

data***. 

Characteristic 

Total 

FA 

Protein 

(mg/g) 

Carbohydrates 

(mg/g) 

Growth 

rate 

Biomass (g L-1) 0.502       

Cell size (µm)         

C10:0         

C12:0         

C14:0         

C16:0 0.551       

C17:0   0.65     

C18:0         

C20:0         

C22:0         

C23:0     0.567 0.974 

C24:0   0.582   0.837 

SFAs 0.531       

C12:1         

C14:1         

C16:1 0.885       

C18:1(n-7)   0.775     

C18:1(n-9)         

C20:1(n-9)         

C22:1(n-9)         

C24:1(n-9)         

MUFAs 0.788       

C18:2(n-6)   0.8   0.869 

C18:3(n-6)         

C20:2(n-6)         

C20:3(n-6)   0.543     

C20:4(n-6)         

C22:2(n-6)         

C22:4(n-6)         

C22:5(n-6)         

N-6   0.661     

C16:4(n-3)         

C18:3(n-3)   0.775   0.866 

C18:4(n-3) 0.779       

C20:3(n-3)         
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Characteristic 

Total 

FA 

Protein 

(mg/g) 

Carbohydrates 

(mg/g) 

Growth 

rate 

C20:4(n-3)   0.685     

C20:5(n-3)     0.526   

C22:5(n-3)         

C22:6(n-3)         

N-3         

PUFAs         

EPA+   DHA         

Total         

Protein (mg g-1)       0.872 

Carbohydrates (mg g-1)         

Growth rate   0.934(0.020)     

Fucoxanthin w/ derivatives         

Diatoxanthin w/ derivatives         

Diadinoxanthin w/ 

derivatives         

Zeaxanthin w/ derivatives         

Chl_c w/ derivatives         

Chl_a w/ derivatives         

B- carotene w/ derivatives         

Total Pigment (w/ 

derivatives)         

* p-value in the brackets; ** bolded numbers are negative correlations; ***The white section has 

r values with the corresponding p-value and the grey section  has r-squared values (note: only p- 

value < 0.05, r > 0.5 or < -0.5 and r2 > 0.5 were included) 
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Table A11. Summary of the statistically significant correlations (r; white area) and r-squared 

values (r2; grey area) for pigments fucoxanthin, diatoxanthin, diadinoxanthin and zeaxanthin (µg 

g-1 dw) from Chapter 3 data***. 

Characteristic 

Fucoxanthin 

w/ 

derivatives 

Diatoxanthin 

w/ 

derivatives 

Diadinoxanthin 

w/ derivatives 

Zeaxanthin 

w/ 

derivatives 

Biomass (g L-1)         

Cell size (µm)         

C10:0         

C12:0         

C14:0         

C16:0         

C17:0         

C18:0         

C20:0         

C22:0         

C23:0         

C24:0         

SFAs         

C12:1         

C14:1 0.86       

C16:1         

C18:1(n-7)         

C18:1(n-9)         

C20:1(n-9)         

C22:1(n-9)         

C24:1(n-9)         

MUFAs         

C18:2(n-6)         

C18:3(n-6)         

C20:2(n-6)         

C20:3(n-6)         

C20:4(n-6)         

C22:2(n-6)         

C22:4(n-6)         

C22:5(n-6) 0.798   0.866   

N-6         

C16:4(n-3)         

C18:3(n-3)         

C18:4(n-3)         
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Characteristic 

Fucoxanthin 

w/ 

derivatives 

Diatoxanthin 

w/ 

derivatives 

Diadinoxanthin 

w/ derivatives 

Zeaxanthin 

w/ 

derivatives 

C20:3(n-3)         

C20:4(n-3)         

C20:5(n-3)         

C22:5(n-3)         

C22:6(n-3)         

N-3         

PUFAs         

EPA+   DHA         

Total         

Protein (mg g-1)         

Carbohydrates (mg g-1)         

Growth rate         

Fucoxanthin w/ derivatives         

Diatoxanthin w/ derivatives         

Diadinoxanthin w/ 

derivatives         

Zeaxanthin w/ derivatives         

Chl_c w/ derivatives         

Chl_a w/ derivatives         

B- carotene w/ derivatives       0.927(0.023) 

Total Pigment (w/ 

derivatives) 0.897(0.039) 0.890(0.043) 0.924(0.025)   

* p-value in the brackets; ** bolded numbers are negative correlations; ***The white section has 

r values with the corresponding p-value and the grey section  has r-squared values (note: only p- 

value < 0.05, r > 0.5 or < -0.5 and r2 > 0.5 were included) 
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Table A12. Summary of the statistically significant correlations (r; white area) and r-squared 

values (r2; grey area) for pigments chlorophyll c, a and β-carotene (µg g-1 dw) from Chapter 3 

data***. 

Characteristic 

Chl_c w/ 

derivatives 

Chl_a w/ 

derivatives 

B- carotene w/ 

derivatives 

Total Pigment 

(mg/g; includes 

pigment w/ 

derivatives) 

Biomass (g L-1)         

Cell size (µm)         

C10:0         

C12:0         

C14:0         

C16:0         

C17:0         

C18:0         

C20:0         

C22:0         

C23:0         

C24:0         

SFAs         

C12:1         

C14:1         

C16:1         

C18:1(n-7)         

C18:1(n-9)         

C20:1(n-9)         

C22:1(n-9)         

C24:1(n-9)         

MUFAs         

C18:2(n-6)         

C18:3(n-6)         

C20:2(n-6)         

C20:3(n-6)         

C20:4(n-6)         

C22:2(n-6)         

C22:4(n-6)         

C22:5(n-6)       0.812 

N-6         

C16:4(n-3)         

C18:3(n-3)         

C18:4(n-3)         
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Characteristic 

Chl_c w/ 

derivatives 

Chl_a w/ 

derivatives 

B- carotene w/ 

derivatives 

Total Pigment 

(mg/g; includes 

pigment w/ 

derivatives) 

C20:3(n-3)         

C20:4(n-3)         

C20:5(n-3)     0.882   

C22:5(n-3)     0.865   

C22:6(n-3)         

N-3     0.87   

PUFAs     0.85   

EPA+   DHA     0.877   

Total         

Protein (mg g-1)         

Carbohydrates (mg 

g-1)         

Growth rate         

Fucoxanthin w/ 

derivatives       0.805 

Diatoxanthin w/ 

derivatives       0.791 

Diadinoxanthin w/ 

derivatives       0.854 

Zeaxanthin w/ 

derivatives     0.86   

Chl_c w/ 

derivatives         

Chl_a w/ 

derivatives       0.926 

B- carotene w/ 

derivatives         

Total Pigment (w/ 

derivatives)   0.962(0.009)     

* p-value in the brackets; ** bolded numbers are negative correlations; ***The white section has 

r values with the corresponding p-value and the grey section  has r-squared values (note: only p- 

value < 0.05, r > 0.5 or < -0.5 and r2 > 0.5 were included) 

 

 

 

 



140 

 

A.2. Sequencing of the five microalgae studied 

A.2.1. DNA extraction and amplification 

DNA was extracted from the sample using liquid nitrogen and a mortar and pestle to break 

open the cells and a DNeasy Plant Mini Kit (Qiagen Inc., Mississauga, ON, Canada) to extract 

the DNA. The 18S ribosomal RNA gene of P. tricornutum, B. hooglandii and C. simplex were 

amplified in a solution of 72 µl water, 10 µl ThermoPol Reaction Buffer (New England BioLabs 

Inc., Ipswich, MA, USA), 8 µl MgCl2, 2 µl dNTP, 4 µl primer 1, 4 µl primer 2, 0.4 µl Taq and 2 

µl DNA. An Eppendorf Mastercycle gradient thermocycler (Eppendorf Canada Ltd., 

Mississauga, ON, Canada) was used for amplification, with 34 cycles of 93°C for 1 min, 47°C 

for 1 min and 72°C for 4 min, a pre-denaturation step of 95°C for 2 min and a final extension of 

72°C for 6 min. The same forward and reverse primers were used to amplify the 18S region of 

these three microalgae, SSU1  5' TGG-TTG-ATC-CTG-CCA-GTA-G 3' and SSU2  5' TGA-

TCC-TTC-CGC-AGG-TTC-AC 3' (Lewis et al., 1992). The PCR product was cleaned using a 

QiaQuick PCR Purification Kit (Qiagen Inc., Mississauga, ON, Canada) and Sanger sequenced 

with an ABI 3730XL sequencer (Applied Biosystems Canada, Streetsville, ON, Canada). 

The same protocol was followed for R. maculata and G. sculpta, however a different PCR 

protocol and primers were used. The method used is based on a 2001 study by Katana et al. 

examining Chlorophyta. Amplification of 18S was performed using a pre-denaturation step of 

95°C for 5 min, with 25 cycles of 95°C for 1 min, 55°C for 1 min and 72°C for 2 min. The same 

forward and reverse primers were used to amplify the 18S of R. maculata and G. sculpta, 

F  5' AAC-CTG-GTT-GAT-CCT-GCC-AGT 3' and R  5' TGA-TCC-TTC-TGC-AGG-TTC-

ACC-TAC-G 3' (Katana et al., 2001). 
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A.2.2. Phylogenetic tree assembly 

Sequences were aligned using MEGA (Tamura et al., 2007). The consensus sequences 

were created by combining a forward and reverse sequence, and regions of uncertain alignment, 

near the ends, were removed. The program MEGA was used to create a maximum likelihood tree 

with bootstrap values. Outgroups were included in the tree in accordance with the literature for 

the Heterokontophyta (Daugbjerg and Guillou, 2001) and Rhodophyta (Yoon et al., 2006). The 

outgroups were used to root the tree, and bootstrap values below 65% were removed from the 

phylogenetic tree.. The phylogenetic trees constructed are displayed below. All five microalgae 

sequenced were closely related to algae with the same species identification provided by the 

culture collection. Notably, an 18S sequence for B. hooglandii could not be found within the 

literature, thus the closest match was AJ269501 P. tricornutum strain UTEX 640. Microscopy 

was used to verify that the species received from the CPCC had the morphological features of B. 

hooglandii documented within the literature (Throndsen, 1997).  
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Figure 8. Phylogenetic tree for Boekelovia hooglandii. 
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Figure 9. Phylogenetic tree for Phaeodactylum tricornutum. 
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Figure 10. Phylogenetic tree for Goniochloris sculpta.  
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Figure 11. Phylogenetic tree for Rhodella maculata. 



146 

 

 

Figure 12. Phylogenetic tree for Chloridella simplex. 

 

 

 



147 

 

A.3.   Culture growth curves 

Note: Culture conditions followed culture collection conditions (section 2.2.1), unless otherwise specified in the figure title. 

        

Figure A6. Growth curve of B. hooglandii in F/2 medium.                    Figure A713. Growth curve of B. hooglandii in CPCC BBM 

medium. 

 

         

Figure A8. Growth curve of B. hooglandii in ESP medium.                  Figure A9. Growth curve of B. hooglandii at 130 µmoles m-2 s-1. 
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Figure A10. Growth curve of B. hooglandii in 80 µmoles m-2 s-1.        Figure A1114. Growth curve of B. hooglandii in 45 µmoles m-2 s-

1. 

         

Figure A1215. Growth curve of P. tricornutum in 130 µmoles m-2 s-1.       Figure A13. Growth curve of P. tricornutum in 80 µmoles m-2 

s-1. 
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Figure A14. Growth curve of P. tricornutum in 45 µmoles m-2 s-1.           Figure A1516. Growth curve of G. sculpta in 130 µmoles m-2 s-

1. 

         

Figure A16. Growth curve of G. sculpta in 80 µmoles m-2 s-1.                   Figure A17. Growth curve of G. sculpta in 45 µmoles m-2 s-1. 
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Figure A18. Growth curve of R. maculata in 130 µmoles m-2 s-1.             Figure A1917. Growth curve of R. maculata in 80 µmoles m-2 s-

1. 

         

Figure A2018. Growth curve of R. maculata in 45 µmoles m-2 s-1.               Figure A21. Growth curve of C. simplex in 130 µmoles m-2 

s-1. 
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Figure A22. Growth curve of C. simplex in 80 µmoles m-2 s-1.                 Figure A2319. Growth curve of C. simplex in 45 µmoles m-2 s-

1. 

         

Figure A2420.Growth curve of B. hooglandii in 100 ngL-1 cobalamin.    FigureA25.Growth curve of B. hooglandii in 10 ngL-1 

cobalamin. 
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Figure A26.Growth curve of B. hooglandii in 0 ngL-1 cobalamin.    Figure A27.Growth curve of P. tricornutum in 100 ngL-1 cobalamin. 

 

         

Figure A28. Growth curve of P. tricornutum in 10 ng L-1 cobalamin.  Figure A29. Growth curve of P. tricornutum in 0 ng L-1 cobalamin. 
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Figure A30. Growth curve of G. sculpta in 100 ng L-1 cobalamin.         Figure A31. Growth curve of G. sculpta in 10 ng L-1 cobalamin. 

 

         

Figure A32. Growth curve of G. sculpta in 0 ng L-1 cobalamin.          Figure A3321. Growth curve of R. maculata in 100 ng L-1 

cobalamin. 
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Figure A34. Growth curve of R. maculata in 10 ng L-1 cobalamin.         Figure A35. Growth curve of R. maculata in 0 ng L-1 cobalamin. 

         

Figure A36. Growth curve of C. simplex in 100 ng L-1 cobalamin.        Figure A37. Growth curve of C. simplex in 10 ng L-1 cobalamin. 
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Figure A38. Growth curve of C. simplex in 0 ng L-1 cobalamin.             Figure A39. Growth curve of B. hooglandii in 24:0 light:dark. 

         

Figure A40. Growth curve of B. hooglandii in 17:7 light:dark.               Figure A41. Growth curve of P. tricornutum in 24:0 light:dark.              
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Figure A42. Growth curve of P. tricornutum in 17:7 light:dark.              Figure A43. Growth curve of G. sculpta in 24:0 light:dark. 

         

Figure A44. Growth curve of G. sculpta in 17:7 light:dark.                     Figure A45. Growth curve of R. maculata in 24:0 light:dark. 
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Figure A46. Growth curve of R. maculata in 17:7 light:dark.                    Figure A47. Growth curve of C. simplex in 24:0 light:dark.             

         

Figure A48. Growth curve of C. simplex in 17:7 light:dark.                     Figure A49. Growth curve of B. hooglandii in 25°C.     
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Figure A50. Growth curve of B. hooglandii in 20°C.                                Figure A51. Growth curve of B. hooglandii in 15°C.         

         

Figure A52. Growth curve of P. tricornutum in 25°C.                               Figure A53. Growth curve of P. tricornutum in 20°C.      
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Figure A54. Growth curve of P. tricornutum in 15°C.                               Figure A55. Growth curve of G. scuplta in 25°C.      

         

Figure A56. Growth curve of G. sculpta in 20°C.                                      Figure A57. Growth curve of G. sculpta in 15°C.           
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Figure A58. Growth curve of R. maculata in 25°C.                                    Figure A59. Growth curve of R. maculata in 20°C.      

         

Figure A60. Growth curve of R. maculata in 15°C.                                   Figure A61. Growth curve of R. maculata in 25°C.      
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Figure A62. Growth curve of R. maculata in 20°C.                                   Figure A63. Growth curve of R. maculata in 15°C.   
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