
Up-Scaling Distinct Element Method

Simulations of Discontinua

by

Michael Yetisir

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Applied Science

in

Civil Engineering

Waterloo, Ontario, Canada, 2017

© Michael Yetisir 2017



I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

Pre-existing fractures significantly influence the geomechanical response of the rock mass

at the reservoir scale. For geomechanical applications, these natural fractures need to be

considered in the mechanical response of the system. Distinct Element Methods (DEM) are

often used to explicitly model the mechanics of Naturally Fractured Rock (NFR); however,

they are often too computationally prohibitive for reservoir-scale problems. A DEM up-

scaling framework is presented that facilitates estimating a representative parameter set

for continuum constitutive models that capture the salient feature of Naturally Fractured

Rock (NFR) behaviour.

Up-scaling is achieved by matching homogenized DEM stress-strain curves from multiple

load paths to those of continuum constitutive models using a Particle Swarm Optimization

(PSO) algorithm followed by a Damped Least-Squares (DLS) algorithm. The effectiveness

of the framework is demonstrated by up-scaling a DEM model of a NFR to a Drucker-

Prager damage-plasticity model; the up-scaled model is shown to capture well the effect of

confinement on the the yielding and sliding of natural fractures in the rock mass.

The goal of this thesis is to present a framework to facilitate effective simulation of fine-

scale behaviour in full-scale NFR systems while significantly reducing the computational

demands associated with modelling these systems with DEM.

As such, four main research objectives have been identified and achieved: 1) Develop and

implement stress and strain homogenization algorithms for DEM models with deformable

blocks, 2) present a methodology to parameterize complex nonlinear continuum consti-

tutive models, 3) develop and implement an automated modular software framework for

up-scaling DEM simulations, and 4) demonstrate that the performance of the up-scaled

continuum models are accurate and significantly more computationally efficient.

The up-scaling methodology is verified through a case study on a naturally fractured granite

slope in which the top surface is loaded until failure. The up-scaled continuum model is

shown to compare quite well to Direct Numerical Simulation (DNS) in a slope stability

analysis and requires two orders of magnitude less computational effort.

iii



Acknowledgements

This thesis, though perhaps at times a lonely affair, could not have been possible without

the involvement and support of many individuals who helped and encouraged me at every

step along the way. I wish to acknowledge the invaluable support and contributions that

everyone provided.

First and foremost, I wish to thank my two research supervisors, Dr. Rob Gracie and

Dr. Maurice Dusseault, for their endless technical insights, inspirational ideas, and moral

support throughout the duration of this degree. Without their guidance, this research

thesis would not have been nearly as comprehensive nor comprehensible.

Additionally, I would like to acknowledge Dr. L. Shawn Matott for allowing me to use his

OSTRICH optimization software and providing some much needed support when I was

getting started.

Furthermore, I should thank my partners in crime (and research), Endrina Rivas and

Eleanor Mak, with whom I have shared many late nights at the office. These ladies have

kept me motivated when my research has stagnated, while conversely making sure I never

worked too hard.

Lastly, additional thanks goes to my coaches, Vinit Kudva, Clive Porter, and Jeff Muirhead

for pushing me to be my best on and off the court, distracting me from my studies, and

allowing me to be part of such a wonderfull team.

iv



Table of Contents

List of Tables vii

List of Figures viii

List of Abbreviations xi

1 Introduction 1

1.1 Context and Research Motivation . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Scope of Study and Research Limitations . . . . . . . . . . . . . . . . . . . 6

2 Up-Scaling Methodology 7

2.1 Up-Scaling Implementation Overview . . . . . . . . . . . . . . . . . . . . . 8

2.2 Distinct Element Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Homogenization Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Stress Homogenization . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Strain Homogenization . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Assessment of the REV Size . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Macroscale Constitutive Model . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5.1 General Formulation and Assumptions . . . . . . . . . . . . . . . . 26

2.5.2 Drucker-Prager Plasticity Model with Ductile Damage . . . . . . . 27

2.5.3 Damage-Plasticity Model for Quasi-Brittle Materials . . . . . . . . 30

2.6 Parameter Estimation Algorithms . . . . . . . . . . . . . . . . . . . . . . . 33

2.6.1 Particle Swarm Optimization (PSO) . . . . . . . . . . . . . . . . . 35

2.6.2 Asynchronous Parallel PSO (APPSO) . . . . . . . . . . . . . . . . . 37

v



2.6.3 Levenburg-Marquardt Algorithm (LMA) . . . . . . . . . . . . . . . 38

2.7 Physically Meaningful Model Parameterization . . . . . . . . . . . . . . . . 42

2.7.1 Drucker-Prager Model with Ductile Damage . . . . . . . . . . . . . 42

2.7.2 Damage-Plasticity Model for Quasi-Brittle Materials . . . . . . . . 45

3 Framework Implementation 51

3.1 Software Module Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1.1 Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1.2 Defined Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.1.3 Undefined Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2 Data Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2.1 Data Storage Structures . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2.2 Binary Serialization . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3 Third Party Software Modules . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4 HODS Homogenization Software . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4.1 Class Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4.2 Class Data Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4.3 Class Homogenization Methods . . . . . . . . . . . . . . . . . . . . 71

4 Verification and Application 74

4.1 DEM Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 Verification of the Parameter Estimation Module . . . . . . . . . . . . . . 76

4.3 Comparison of CDM Constitutive Models . . . . . . . . . . . . . . . . . . 79

4.4 Impact of REV Size on Estimated Parameters . . . . . . . . . . . . . . . . 81

4.5 Comparison to DNS - Application to Slope Stability Analysis . . . . . . . . 82

4.5.1 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.5.2 DNS Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.5.3 Up-Scaling Computational Efficiency . . . . . . . . . . . . . . . . . 87

5 Conclusions and Future Considerations 90

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

References 95

vi



List of Tables

2.1 Parameter set for Drucker-Prager Material Model with Ductile Damage . . 44

2.2 Parameters for Damage-Plasticity Model for Quasi-Brittle Materials . . . . 50

3.1 Block data attributes in third level hash . . . . . . . . . . . . . . . . . . . 62

3.2 Contact data attributes in third level hash . . . . . . . . . . . . . . . . . . 63

3.3 Corner data attributes in third level hash . . . . . . . . . . . . . . . . . . . 63

3.4 Domain data attributes in third level hash . . . . . . . . . . . . . . . . . . 63

3.5 Gridpoint data attributes in third level hash . . . . . . . . . . . . . . . . . 64

3.6 Zone data attributes in third level hash . . . . . . . . . . . . . . . . . . . . 64

4.1 Rock and joint properties for DEM Simulations . . . . . . . . . . . . . . . 75

4.2 Parameter estimation results for Drucker-Prager model with ductile damage 77

4.3 Parameter estimation results for damage-plasticity model for quasi-brittle

materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4 Comparison of Computational Time for the DNS . . . . . . . . . . . . . . 88

vii



List of Figures

2.1 Up-scaling workflow used to estimate the optimal continuum model param-

eter set. The DEM software (a) produces a data set which is run through

homogenization software (b) which in turn produces another dataset that is

fed into the parameter estimation program (c). This parameter estimation

program drives the macroscale simulations (d) iteratively in order to find an

optimal parameter set for the fitted model. . . . . . . . . . . . . . . . . . 9

2.2 DEM block formulation for an arbitrary domain, Ω, with a set of subdo-

mains, Ωi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Assessment of the homogenization boundary given a circular REV. . . . . 13

2.4 Homogenization boundary algorithm step 1 showing the set of blocks that

lie on the REV boundary in the underformed configuration. . . . . . . . . 15

2.5 Homogenization boundary algorithm step 2 showing the set of blocks that

lie outside the REV boundary in the undeformed configuration. . . . . . . 15

2.6 Homogenization boundary algorithm step 3 showing the contacts along the

homogenization boundary. Note how there are orphaned contacts not asso-

ciated with the blocks defined in step 1 when deformed. . . . . . . . . . . . 16

2.7 Homogenization boundary algorithm step 4 showing corners along the ho-

mogenization boundary. Again, note how there are orphaned corners not

associated with the blocks defined in step 1. . . . . . . . . . . . . . . . . . 17

2.8 Homogenization boundary algorithm step 5 showing contacts within the

homogenization boundary blocks. Again, Note how there are orphaned con-

tacts not associated with the blocks defined in step 1. . . . . . . . . . . . 18

2.9 Homogenization boundary algorithm step 6 showing only the boundary

blocks that are in contact with the blocks outside the REV domain. Note

the differences between this set of blocks and the set of blocks in Figure 2.4. 19

viii



2.10 Homogenization boundary algorithm step 7 showing all the corners associ-

ated with the boundary blocks defined in step 6. . . . . . . . . . . . . . . . 20

2.11 Homogenization boundary algorithm step 8 showing all the corners on the

boundary blocks that lie on the homogenization boundary. . . . . . . . . . 20

2.12 Homogenization boundary algorithm step 9 showing all the corners from

step 7 connected in sequence to form the homogenization domain. . . . . . 21

2.13 Assessing the REV of a heterogeneous domain for a single realization. For

very small subdomain sizes, the material property measurement is very sen-

sitive to small fluctuations, whereas at a sufficiently large subdomain size,

the material property measurement becomes insensitive to small fluctuations

and converges to a single value representative of the whole domain. It is at

this convergence that one can say the REV exists. . . . . . . . . . . . . . . 24

2.14 Compressive hardening/softening function from the Barcelona model. The

curve is able to be parameterized using three parameters. . . . . . . . . . . 43

2.15 Tensile hardening/softening function. The curve is able to be parameterized

using two parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.16 Tensile and compressive damage evolution curves. . . . . . . . . . . . . . . 47

3.1 MOUSE module implementation schematic. The DEM software, UDECTM,

produces a data set which is run through homogenization software, HODS,

which in turn produces another dataset that is fed into the parameter esti-

mation program, OSTRICHTM. This parameter estimation program drives

the macroscale simulations in ABAQUSTM iteratively in order to find an

optimal parameter set for the fitted model. . . . . . . . . . . . . . . . . . . 52

3.2 Module class inheritence structure. . . . . . . . . . . . . . . . . . . . . . . 54

4.1 Axial Stress-Strain curves of the monotonically loaded DEM simulations

used for estimating the Drucker-Prager CDM parameter set under different

confining stresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Axial Stress-Strain curves of the verification simulations for the fractured

granite rock mass under different confining stresses for both the DEM sim-

ulations and the fitted Drucker-Prager CDM simulations. . . . . . . . . . . 80

4.3 Axial Stress-Strain curves of the monotonically loaded DEM simulations

used for estimating the CDM parameter set under different confining stresses

using the damage-plasticity model for quasi-brittle materials. . . . . . . . . 82

ix



4.4 Axial Stress-Strain curves of the verification simulations using the damage-

plasticity model for quasi-brittle materials under different confining stresses

for both the DEM simulations and the fitted CDM simulations. . . . . . . 83

4.5 Convergence of three constitutive material parameters as the REV homog-

enization area is increased. Annotations indicate the specified radius of the

circular REV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.6 Schematic geometry and boundary conditions of the slope failure problem. 85

4.7 Comparison of DEM (left) and CDM (right) horizontal stress contours for

the slope just before failure. . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.8 Comparison of DEM (left) and CDM (right) vertical stress contours for the

slope just before failure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.9 Comparison of DEM (left) and CDM (right) shear stress contours for the

slope just before failure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.10 Comparison of DEM and CDM surface deflection profile for the slope just

before failure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.11 Mesh for converged Drucker-Prager CDM FEM slope failure simulation . 89

4.12 Selectiverly Refined Mesh (SRM) for Drucker-Prager CDM FEM slope fail-

ure simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

x



List of Abbreviations

API . . . . . . . . . . . . . . . . . . . Application Program Interface

APPSO . . . . . . . . . . . . . . . . . Asynchronous Parallel Particle Swarm Optimization

CDM . . . . . . . . . . . . . . . . . . Continuum Damage Mechanics

CLI . . . . . . . . . . . . . . . . . . . Command Line Interface

DEM . . . . . . . . . . . . . . . . . . Distinct Element Method

DFN . . . . . . . . . . . . . . . . . . Discrete Fracture Network

DNS . . . . . . . . . . . . . . . . . . . Direct Numerical Simulation

FDM . . . . . . . . . . . . . . . . . . Finite Difference Method

FEM . . . . . . . . . . . . . . . . . . Finite Element Method

LMA . . . . . . . . . . . . . . . . . . Levenberg-Marquardt Algorithm

NFR . . . . . . . . . . . . . . . . . . Naturally Fractured Rock

PSO . . . . . . . . . . . . . . . . . . . Particle Swarm Optimization

REV . . . . . . . . . . . . . . . . . . Representative Elementary Volume

RMSE . . . . . . . . . . . . . . . . . Root-Mean-Square Error

SRM . . . . . . . . . . . . . . . . . . Selectively Refined Mesh

xi



Chapter 1

Introduction

Traditional modelling approaches tend to focus on single scale problems. For example,

when considering the macroscale response of a system, the effect of the microscale me-

chanics is described implicitly by macroscale phenomenological constitutive relations. Con-

versely, when interested in the microscale behaviour, macroscale features are assumed to

be homogeneous and irrelevant to the microscale response.

Macroscale constitutive relationships are generally obtained empirically based on simple

methods such as linearization, Taylor series expansion, and symmetry [Weinan, 2011]. For

simple systems, this empirical approach can yield sufficiently accurate approximations of

the overall constitutive behaviour. However, this approach is often insufficient to capture

an accurate constitutive response of highly non-linear and complex systems with materials

exhibiting physical behaviour over multiple length scales. These materials are often referred

to as multi-scale materials.

Alternatively, one can model the microscale behaviour explicitly throughout the domain in

order to accommodate complex systems and materials. This approach is far more accurate;

however, the degree of complexity can be orders of magnitude larger, making the solution

difficult to find, and often finding the solution becomes computationally prohibitive [Xu

et al., 2002].

To overcome the limitations of single-scale models, multi-scale approaches have been de-

veloped. Multi-scale methods attempt to model a system at both the microscale and the

macroscale in such a way that shares the computational efficiency of the macroscale models

as well as the accuracy of the microscale models.

1



The most common types of multiscale methods are hierarchical and concurrent [Gracie and

Belytschko, 2011]. In concurrent multiscale models, different scales are used in different

regions of the domain; the solution of the coupled model proceeds by solving both scales

simultaneously. This approach is computationally expensive since the time step of the en-

tire simulation is controlled by requirements of the fine-scale model; however, the solution

is often more accurate. In hierarchical multiscale methods, the constitutive behavior at the

coarser scale is determined by exercising a finer scale Representative Elementary Volume

(REV) [Li et al., 2014]. The finer scale models vary from relatively simple models, as in

micromechanics, to complex nonlinear models such as FE2 models [Feyel, 2003]. This ap-

proach is much more efficient, but can be less accurate, and furthermore presents challenges

when the REV loses stability [Belytschko et al., 2008]. Up-scaling in this investigation can

be considered to be a hierarchical multiscale method using computational homogenization.

Many homogenization techniques have been developed and proposed in the past, but none

have presented algorithms for homogenizing Distinct Element Method (DEM) simulations

with deformable blocks. The homogenization algorithms presented here are based on the

work of D’Addetta et al. [2004] and Wellmann et al. [2008] in which homogenization is

applied to rigid body DEM simulations and focused on the computation of the homogenized

stress and strain response.

1.1 Context and Research Motivation

Naturally Fractured Rock (NFR) is often modeled as a multiscale material because of the

vastly different length and time scales involved in the deformation process [Zhou et al.,

2003]. At the fracture scale (10-2 m), the physics is dominated by brittle fracture propaga-

tion and fracture-to-fracture contact force interaction. However, one is normally interested

in the reservoir scale (103 m) response as a result of the spatial extension of the fractures.

Because these length scales of interest span approximately five orders of magnitude, mul-

tiscale methods may aid in assessing the overall response, as models with natural fracture

scale resolution at the reservoir scale becomes computationally prohibitive.

When dealing with reservoir scale geomechanics problems, the complex behaviour of pre-

existing fractures become influential upon and indeed may dominate the constitutive re-

sponse of the rock mass because of strain localization, stress redistribution, and damage-

induced anisotropy [Petracca et al., 2015]. However, attempting to capture the consti-

2



tutive response of the NFR in a laboratory context becomes impractical because of the

prohibitively large samples required to obtain a representative response. Since natural

fracture spacing in a stiff sedimentary rock can be between 0.1 m to 1m [Nelson, 2001],

physical samples required to obtain a response representative of the macroscale could be

as large as 1000m3, a nearly impossible scale for testing.

There exist methods to estimate constitutive parameters of rock masses, but their validity

can be tenuous and methods exist only to estimate some of the parameters. These methods

can either be based directly from in-situ geophysical measurements, or deduced indirectly

through small scale laboratory testing and empirical correlations. A common way to esti-

mate the elastic properties is through the use of seismic methods by comparing the seismic

wave velocities measured in-situ to the seismic velocities of the intact rock mass [Sjogren

et al., 1979]. These in-situ methods, however, do not have the capacity to estimate the plas-

tic parameters very well, and it is well-known that seismically deduced elastic parameters

invariably over-estimate the system stiffness exhibited in response to static stress changes

[Barton, 2006]. Attempts to estimate the plastic properties of the rock mass through small

scale lab testing and qualitative assessments of the rock mass have been presented, e.g.,

the Geological Strength Index (GSI) proposed by Hoek and Brown [1997]. These methods

are limited by the necessarily qualitative aspect of the rock mass classification systems

employed. More recently, others [Min and Jing, 2003, Chen et al., 2012, Bidgoli et al.,

2013] have used numerical methods to estimate the elastic properties of the rock mass

using prescribed fracture networks. These methods are again limited by the lack of plastic

behaviour characterization.

To address the limitations of continuum models, Distinct Element Method (DEM) models

are used commonly in geomechanics to explicitly model the mechanics of Naturally Frac-

tured Rock (NFR) masses to capture the constitutive response of the rock mass indirectly

[Jing, 2003].

DEM models, unlike standard continuum models, consider the fractures within the rock

mass as a Discrete Fracture Network (DFN) which explicitly defines the geometry of the

rock blocks. The physics of block interaction is then governed by the motion, contact

forces and traction-separation laws between the rock blocks and the fractures [Thallak

et al., 1990]. Because NFR behavior is complex, even sophisticated phenomenological

constitutive relationships may be inadequate to describe the complete rock mass behavior.

The DEM approach aims to address this deficiency by requiring only constitutive relations

3



for the block interactions and the intact rock [Barbosa and Ghaboussi, 1990]. In this thesis,

deformable DEM blocks are considered which require the constitutive parameters of the

intact rock to be specified, but these parameters are more easily acquired from lab testing.

However, the main issue with DEM models is primarily the computational demands. Be-

cause of the large number of degrees of freedom in the models and the requirement for very

small time steps — because of the constant need for contact detection between blocks —

executing reservoir-scale models is computationally prohibitive. The intent of this thesis is

to develop a framework that incorporates the response of DEM models while harnessing the

computational speed of continuum models. The general goal of up-scaling is to formulate

simplified coarse-scale governing equations that approximate the fine-scale behavior of a

material [Geers et al., 2010]. In the case of the DEM simulations in this investigation, the

aim of up-scaling is to identify the parameters of a continuum model that best mimic the

response of the DEM model. Up-scaling is accomplished in this thesis by ’calibrating’ a

continuum model with DEM virtual experimental data using a combination of a heuristic

optimization algorithm and an iterative least squares regression algorithm.

The goal of this thesis is to present a framework to facilitate effective simulation of fine-

scale behaviour in full-scale NFR systems while significantly reducing the computational

demands associated with modelling these systems with DEM.

1.2 Research Objectives

In this thesis, a multi-scale up-scaling framework is developed to address the computational

demands of simulating microscale phenomenon in a macroscale domain in the context of

NFR. The primary research objectives are:

1. Deformable DEM Homogenization: Develop and implement stress and strain

homogenization algorithms for DEM models with deformable blocks.

2. Parameterization Methodology: Present a methodology to parameterize com-

plex nonlinear continuum constitutive models.

3. Up-Scaling Framework: Develop and implement an automated modular software

framework for up-scaling DEM simulations.

4. Framework Verification: Demonstrate that the performance of the up-scaled con-

tinuum models are accurate and significantly more computationally efficient.

4



1. Deformable DEM Homogenization

In order to extract the constitutive stress-strain curves from the DEM simulations, suitable

homogenization algorithms are developed and applied to the DEM data. Here, since the

DEM simulations use deformable bodies, application of homogenization algorithms that

account for the block deformation are required. Additionally, it is also necessary to define

an appropriate REV in order for the applied homogenization algorithms to be valid.

2. Parameterization Methodology

Running the parameter estimation algorithms requires the macroscale constitutive law

to be parameterized in terms of a series of scalar parameters. Here, a parameterization

methodology is presented to reduce complex constitutive laws to a manageable number

of scalar parameters. The key to effective parameterization is minimizing the number of

parameters, while maintaining the fidelity of the original model. This is done by assum-

ing functional forms of curves normally provided by laboratory data. The constitutive

relationships chosen aim to capture all the salient features of the discrete system.

3. Up-Scaling Framework

An up-scaling framework for DEM simulations is developed in this thesis. The aim of

the framework is to generate a continuum parameter set that best captures the salient

features of the DEM constitutive response. The framework developed is general, such that

the DEM and continuum models are not directly part of the framework, but are rather

plug-ins to the framework. Thus, my software implementation of the up-scaling framework,

”Modular autOmated Up-Scaling softwarE” (MOUSE), primarily contains protocols for

different modules to exchange information. The model components are wrapped as modules

that plug-in to the framework so that the core up-scaling software is model independent.

4. Framework Verification

A series of verification studies need to be conducted in order to confirm the formulation and

implementation of various aspects of the the up-scaling framework. Studies to verify the

5



parameter estimation module, investigate the influence of the REV size on the estimated

parameters, compare different macroscale constitutive models, and compare a DEM and

up-scaled simulation in a Direct Numerical Simulation (DNS) are conducted. The results

of these studies will show the accuracy and computational speed increase of the up-scaling.

1.3 Scope of Study and Research Limitations

The scope of this research is to present an up-scaling framework and a simple implemen-

tation as a proof of concept. Here, the goal is to provide all the necessary pieces using

in-house and third-party software to show the up-scaling process from DEM simulations

to optimal macroscale parameter set.

For simplicity, the DEM simulations considered here are large deformation, isotropic, two-

dimensional, and purely mechanical (not thermo-hydro-mechanically coupled). These sim-

plifications reduce the complexity of the implementation significantly. As a result, the ho-

mogenization algorithms presented are generalized to two-dimensional DEM simulations,

though they can easily be adapted for three-dimensional problems.

The macroscale constitutive models that are used are also implemented with an isotropic

response assumption and do not account for any thermal or hydraulic coupling effects.

The macroscale constitutive models used are pre-implemented in ABAQUSTM, but custom

material subroutines are required for more sophisticated constitutive responses.

There are countless different optimization algorithms to investigate along with their respec-

tive optimization parameters. Exhaustively searching for the most efficient and accurate

algorithm for this particular application in a quantitative capacity was not a focus of this

thesis. As such, several different algorithms are presented and compared in their capacity

to accurately and efficiently converge to the optimal parameter set.

Ultimately, the research presented in this thesis aims to show the efficacy of a modular

up-scaling framework for DEM simulations that can facilitate the installation of upgraded

modules in the future to account for more sophisticated physics.

6



Chapter 2

Up-Scaling Methodology

The goal of the following up-scaling methodology is to identify the parameters of a con-

tinuum constitutive model (macroscale model) that best emulates the average response

in the DEM Representative Elementary Volume (REV) (microscale model). Let the dis-

placement, strain and stress of the DEM REV (microscale) model be denoted by um, εm,

and σm, respectively. Let the homogenized (averaged) strain and stress in the DEM REV

model be denoted by 〈ε〉 and 〈σ〉, respectively. Finally, let the strain and stress from the

continuum (macroscale) constitutive model be denoted as εM and σM , respectively. The

rate of macroscale stress, σ̇M = σ̇M
(
ε̇M ,χ,h

)
, is defined in terms of the rate of macroscale

strain, ε̇M , a set of material parameters χ and a set of internal history variables h.

The up-scaling methodology has five steps:

1. Identify the DEM REV for the NFR.

2. Exercise the DEM REV using multiple load paths. Store um, εm, and σm for each

load path.

3. Apply homogenization algorithms to the microscale results (um, εm, and σm) to

determine the average stress-strain response of the REV, i.e., 〈σ〉-〈ε〉, for each load

path.

4. Identify a continuum constitutive model, σ̇M = σ̇M
(
ε̇M ,χ,h

)
, that captures the

salient features of NFR mechanics.

5. Run parameter estimation algorithms to identify the parameters, χ, that minimize

the difference between 〈σ〉-〈ε〉 and σM -εM over all load paths.

7



Once an optimal parameter set, χ, for the desired model, σ̇M = σ̇M
(
ε̇M ,χ,h

)
, has been

identified, the newly established constitutive model can be used in Finite Element Method

(FEM) models or with other suitable numerical or analytical simulations.

2.1 Up-Scaling Implementation Overview

The up-scaling framework consists of four main software components (Figure 2.1): a DEM

simulator, a homogenization module, a Finite Element Method (FEM) simulator, and a

parameter estimation module. In procedural order, the first software component involved

is a DEM simulation package, which is used to directly model the NFR.

The DEM software accepts as inputs the geometry of the DFN, the material properties

of the rock and the natural fractures, and the load paths. The DEM REV is exercised

for different load-paths in a way that is akin to conducting multiple triaxial tests on

physical specimens to characterize the full range of material behaviour. The DEM software

outputs the microscale displacement, um, and stress-strain, σm-εm, responses for each load

path. This microscale data is subsequently fed into the homogenization module to compute

the average stress-strain response, 〈σ〉-〈ε〉, for each load path. Next, the homogenized

stress-strain data, 〈σ〉-〈ε〉, is used by the parameter estimation software as observation

data (i.e., laboratory/field data). The parameter estimation module iteratively executes a

constitutive model, σ̇M = σ̇M
(
ε̇M ,χ,h

)
, embedded in the FEM simulator for each load

path using different parameter sets, χi, while attempting to minimize the error between the

homogenized microscale, 〈σ〉-〈ε〉, and macroscale, σM -εM , stress-strain curves. Eventually,

the algorithm converges to a near-optimal parameter set, χ, that can be viewed to be the

best estimate of the NFR responses by the given continuum model.

In my implementation, UDECTM was used as the DEM simulator and ABAQUSTM was

used as the FEM simulator. In ABAQUSTM, single element simulations were performed

with a strain-history prescribed through displacement boundary conditions for a given set

of material parameters and the stress is obtained as the output. There is nothing partic-

ularly special about the DEM or FEM simulators chosen; each could easily be replaced

to overcome any inherent limitations. Moreover, a FEM simulator is not actually needed,

since its inclusion in this framework is simply to gain access to the constitutive mod-

els within. The FEM simulator could easily be replaced by a Finite Difference Method

(FDM) simulator or simply by a material subroutine. OSTRICHTM, a model-independent

8



Figure 2.1: Up-scaling workflow used to estimate the optimal continuum model parameter
set. The DEM software (a) produces a data set which is run through homog-
enization software (b) which in turn produces another dataset that is fed into
the parameter estimation program (c). This parameter estimation program
drives the macroscale simulations (d) iteratively in order to find an optimal
parameter set for the fitted model.

9



optimization package [Matott, 2016], is used for the parameter estimation module. I im-

plemented the homogenization module in PythonTM. I also used PythonTM to develop

interfaces drive the various components of the up-scaling framework.

2.2 Distinct Element Method

Discontinuous systems are characterized by the existence of discontinuities that separate

discrete domains within the system. In order to effectively model a discontinuous system,

it is necessary to represent two distinct types of mechanical behaviour: the behaviour of

the discontinuities and the behaviour of the solid material.

There exists a set of methods, referred to as discrete element methods, which provide the

capacity to explicitly represent the behaviour of multiple intersecting discontinuities. The

methods allow for the modelling of finite displacements and rotations of discrete bodies,

including contact detachment as well as automatic detection of new contacts. Within the

set of Discrete Element Methods, there are four subsets [Cundall and Hart, 1992]: Modal

Methods, Discontinuous Deformation Analysis Methods, Momentum Exchange Methods,

and Distinct Element Method (DEM). In this thesis, the discrete element method used is

DEM.

With DEM methods, the discontinuous system is represented as an assembly of deformable

blocks such that the interfaces between the blocks represent the discontinuities. With

respect to NFR, the blocks can be used to represent the intact rock while the discontinuities

represent the joints in the rock mass.

Consider an arbitrary deformable domain, Ω, with a boundary, Γ, that is subdivided by

prescribed discontinuities into i subdomains, each denoted by Ωi (Figure 2.2). Let Γij = Γji
represent the boundary between Ωi and Ωj. The motion of these subdomains (discrete

elements) is governed by the conservation of momentum which relates the divergence of

the stress field at a material point, ∇·σm, to the element acceleration, üm, and density, ρ:

ρüm = ∇ · σm (2.1)

The interaction between Ωi and Ωj along Γij is the distinguishing feature in the DEM

formulation, and is comprised of two main components: contact detection and the consti-

tutive relationship. The contact detection algorithms are responsible for ensuring that Ωi

10



Figure 2.2: DEM block formulation for an arbitrary domain, Ω, with a set of subdomains,
Ωi.

and Ωj do not penetrate each other and ensures that the appropriate contact forces are

transferred between elements. These contact forces are governed by constitutive models of

Γij which can be described in general by a shear stiffness, ks, in a direction parallel to the

Γij, and a normal stiffness, kn, in a direction normal to Γi. The normal stress over any

Γij, σ
n, can be expressed as a function of the normal elastic displacement jump across the

interface, un, up until the tensile strength, T , is exceeded:

σn =

{
σn (kn, un) if σn ≥ −T

0 if σn < −T (2.2)

Futhermore, the shear stress, τ , over any Γij can be written in terms of the elastic shear

displacement jump across the interface, us, until the maximum shear strength, τmax is

reached. The point when the shear stress at a point on Γij exceeds the prescribed maximum

shear stress, the discontinuity experiences plastic shear displacements in order not to exceed

the maximum shear stress:

11



τ =

{
τ (ks, us, σn) if |τ | < τmax

us

|us|τ
max if |τ | ≥ τmax

(2.3)

The microscale stress field, σm, within Ωi is described by standard continuum constitutive

relationships. With the constitutive behaviour of the discontinuities and the constitutive

behaviour of the continuum blocks, the overall behaviour of the rock mass can be charac-

terized through material properties of the rock discontinuities and the intact rock.

2.3 Homogenization Approach

The main objective of up-scaling DEM simulations is to be able to describe the behav-

ior of the discontinuous medium in terms of a more computationally efficient continuum

model. The homogenization algorithms used herein to determine the average stress-strain

behaviour, 〈σ〉-〈ε〉, of the REV from the microscale displacements um, strain εm, and

stresses σm are based on the methods developed by D’Addetta et al. [2004] and Well-

mann et al. [2008]. In this homogenization process, the resultant inter-block contact forces

and block displacement from the DEM simulations are converted to average stresses and

strains.

For the homogenization procedure to yield meaningful results, it should be applied to a

Representative Elementary Volume (REV). The exact size of the REV depends on the

geometry and mechanical properties of the DEM model. For the homogenization approach

to hold, the REV of size d within a system with a characteristic length D and consisting

of blocks with a characteristic diameter δ, must satisfy scale separation [Hill, 1963]:

D � d� δ (2.4)

In the following sections, all deformations are assumed to be small, such that there is no

need to differentiate between the deformed and undeformed configurations.

Consider a L× L square DEM simulation domain over which mixed-boundary conditions

will be applied. The REV is taken as a circular domain of radius R, 2R < L. The REV is

taken to be a subdomain of the actual DEM simulation domain to eliminate any boundary

effects. As will be seen below, it is convenient to take the boundary of the domain used

12



for homogenization as a slightly larger domain encompassing the REV boundary. The

boundary of the homogenization domain, denoted as Γh, is defined by the outer edges of

the deformable blocks, i.e., the cohesive/contact surfaces between deformable blocks, which

intersect a circle of radius R located in the center of the DEM simulation domain. Let the

homogenization domain, the domain bounded by Γh, be denoted by Ωh. These definitions

are illustrated in Figure 2.3 for a 10m × 10m DEM domain, where the deformable blocks

are defined through a Voronoi tessellation. The radius of the REV domain is 2.5m. It can

be seen that the actual domain used for homogenization is non-circular and larger than

the REV domain.

Figure 2.3: Assessment of the homogenization boundary given a circular REV.

Given a circular REV, due to the discontinuous nature of the DEM simulations, the circular

REV cannot be used directly. Because the calculated displacements and contact forces

from the DEM are known at the block edges, the homogenization domain boundary must

follow the block boundaries. The homogenization domain is characterized by a series of

block corners which are identified at the initial (zero strain) state. These corners continue

to define the homogenization domain once deformation occurs, allowing for a consistent

homogenization domain definition as the model is deformed. An algorithm is developed

here to assess the homogenization domain boundary:

1. Identify all blocks that intersect the circular REV boundary.

2. Identify all blocks that lie completely outside the REV boundary.

13



3. Find all contacts corresponding to the intersection between blocks in 1 and 2.

4. Find all corners corresponding to the contacts in 3.

5. Find all contacts of blocks in 1.

6. Find all blocks corresponding to the intersection of contacts in 3 and 5.

7. Find all corners corresponding to blocks in 6.

8. Find intersection of corners in 4 and 7.

9. Order corners from 8 such that they form the closed boundary of the homogenization

area.

This algorithm for defining the homogenization domain is developed to provide an unam-

biguous method for assessing a unique homogenization domain for a given circular REV

at a specific location. In steps 1 and 2, two mutually exclusive block sets are identified

(Figures 2.4 and 2.5), which necessarily share contacts. It is the boundary between these

two block sets that is the homogenization domain boundary which is characterized by this

algorithm. In the diagrams accompanying each step, the model is shown in both the orig-

inal and deformed configuration for clarity. In some cases, the diagram of the deformed

configuration helps illustrate the reason for the steps, though for the calculations, the orig-

inal configuration is used. Furthermore, this algorithm is formulated to be able to be used

for homogenization in the deformed configuration as well.

Ultimately, the goal of this process is to identify the corners on this boundary that are on

the blocks that intersect with the REV boundary and not the blocks that are outside the

REV boundary. As such, the corners (step 4, Figure 2.7) corresponding to the contacts

(step 3, Figure 2.6) between the two sets of blocks are determined. Step 5 (Figure 2.8)

is necessary to help eliminate some blocks from the set of boundary block which intersect

the REV boundary, but only have contact with blocks inside the homogenization domain

boundary, and thus do not have any overall contribution to the definition. Step 6 (Figure

2.9) determines this resultant set of boundary blocks of which every member is connected

to the boundary in some capacity. Finding the set of corners that is mutually shared by

these blocks in step 7 (Figure 2.10) and the boundary contact corners in step 4 allow for

the determination of the initial set of boundary corners (step 8, Figure 2.11). It is also

necessary to order the corners (step 9, Figure 2.11) to define a closed set of boundary

segments along which integration can be performed.

14



(a) Undeformed configuration (b) Deformed configuration

Figure 2.4: Homogenization boundary algorithm step 1 showing the set of blocks that lie
on the REV boundary in the underformed configuration.

(a) Undeformed configuration (b) Deformed configuration

Figure 2.5: Homogenization boundary algorithm step 2 showing the set of blocks that lie
outside the REV boundary in the undeformed configuration.

15



(a) Undeformed configuration (b) Deformed configuration

Figure 2.6: Homogenization boundary algorithm step 3 showing the contacts along the ho-
mogenization boundary. Note how there are orphaned contacts not associated
with the blocks defined in step 1 when deformed.

The homogenization boundary, Γh, can be described in terms of n ordered boundary ver-

tices, V h
i = (xhi , y

h
i ), representing the i-th set of vertex coordinates along the boundary,

such that the area of the homogenization domain, Ah, can be calculated using the following

formulation for the area of an arbitrary, non-self-intersecting polygon [Zwillinger, 1995]:

Ah =
1

2

n∑
i=1

xhi (y
h
i+1 − yhi−1) (2.5)

2.3.1 Stress Homogenization

The homogenized Cauchy stress, 〈σ〉, is derived from the definition of the spatial average

of the microscale stress of the deformable blocks of the DEM simulation, σm, over the

homogenization domain Ωh [Hill, 1963].

〈σ〉 =
1

Ah

∫
Ωh

σmdA (2.6)

16



(a) Undeformed configuration (b) Deformed configuration

Figure 2.7: Homogenization boundary algorithm step 4 showing corners along the homoge-
nization boundary. Again, note how there are orphaned corners not associated
with the blocks defined in step 1.

Since the block subdomain is inherently discretized, the integration of the stress over the

homogenization domain in can be written as a summation of the average stress in each

block. Let σmI denote the average stress in block I with an area AI and let N b represent

the number of blocks in the homogenization domain. The homogenized stress from (2.6)

can now be written as:

〈σ〉 =
1

Ah

Nb∑
I=1

σmI AI (2.7)

When each deformable block is discretized by constant stress triangles (elements/zones),

the integration of the stress over each deformable block subdomain can be written as a

summation in the form of a spatially weighted average of the zone stresses. Let σmIJ denote

the stress in zone J of deformable block I, N z
I denote the number of zones within block I,

and AIJ denote area of zone J in block I. The average stress in a block is then defined as:

17



(a) Undeformed configuration (b) Deformed configuration

Figure 2.8: Homogenization boundary algorithm step 5 showing contacts within the ho-
mogenization boundary blocks. Again, Note how there are orphaned contacts
not associated with the blocks defined in step 1.

σmI =
1

AI

Nz
I∑

J=1

σmIJAIJ (2.8)

Here, substituting (2.8) into (2.7) allows us to write the homogenized stress in terms of

the zone stresses:

〈σ〉 =
1

Ah

Nb∑
I=1

Nz
I∑

J=1

σmIJAIJ (2.9)

In my implementation, (2.9) is incorporated into the homogenization module.

2.3.2 Strain Homogenization

The derivation for the homogenized strain tensor, 〈ε〉, begins in a similar manner to the

homogenized stress tensor derivation with the familiar definition of the spatial average:

18



(a) Undeformed configuration (b) Deformed configuration

Figure 2.9: Homogenization boundary algorithm step 6 showing only the boundary blocks
that are in contact with the blocks outside the REV domain. Note the differ-
ences between this set of blocks and the set of blocks in Figure 2.4.

〈ε〉 =
1

Ah

∫
Ωh

εmdA (2.10)

At this point, it becomes convenient to assume a small displacement formulation of strain.

This displacement assumption limits the applicability of the strain homogenization, but in

the context of large scale geomechanics, this assumption remains reasonable. As such, the

linear infinitesimal strain tensor can be written in terms of the displacement vector, um:

εm =
1

2

[
∇um +

(
∇>um

)]
(2.11)

The above integral can be converted to the following boundary integral using the divergence

theorem where n is the outward pointing normal to Γh. :

〈ε〉 =
1

2Ah

∮
Γh

[um ⊗ n + n⊗ um] dΓ (2.12)

19



(a) Undeformed configuration (b) Deformed configuration

Figure 2.10: Homogenization boundary algorithm step 7 showing all the corners associated
with the boundary blocks defined in step 6.

(a) Undeformed configuration (b) Deformed configuration

Figure 2.11: Homogenization boundary algorithm step 8 showing all the corners on the
boundary blocks that lie on the homogenization boundary.

20



(a) Undeformed configuration (b) Deformed configuration

Figure 2.12: Homogenization boundary algorithm step 9 showing all the corners from step
7 connected in sequence to form the homogenization domain.

When Γh is defined by a set of line segments over which the displacement is also linear, the

boundary integral can be rewritten as a summation over each of the N boundary segments.

Let ūmI denote the average displacement along the I th boundary segment of the homog-

enization boundary, which is calculated as the average of the two nodal displacements

defining the boundary of each segment. Let nI represent the outward pointing normal to

the I th boundary segment on the homogenization boundary. Let the length of boundary

segment I be denoted by LI . The homogenized strain can be rewritten as

〈ε〉 =
1

2Ah

N∑
I=1

[ūmI ⊗ nI + nI ⊗ ūmI ]LI (2.13)

In my implementation, (2.13) is incorporated into the homogenization module.

21



2.4 Assessment of the REV Size

Homogenizing DEM simulations requires the existence and determination of the REV for

the given medium. Generally, the REV of a given domain can be described as the smallest

subdomain that is statistically representative of the entire domain [Kanit et al., 2003,

Gitman et al., 2007]. This qualitative definition is insufficient to rigorously define an REV

as it is subjective with respect to what ”statistically representative” means. Hence, the

assessment of the REV can be a contentious issue, fraught with ambiguity.

One can conceptualize an REV to be ”statistically representative” in two primarily differ-

ent ways [Drugan and Willis, 1996]. The classically cited means for characterizing an REV

suggests that the micro-scale heterogeneities (e.g., fractures, voids, grains, etc.) should be

statistically representative within the REV such that the REV should contain a sufficiently

large sample of these heterogeneities. This characterization of the REV is potentially prob-

lematic when attempting to quantify the REV as the descriptions of these heterogeneities

tend to be nominally qualitative, and at best, quasi-quantitative.

The alternative means of conceptualizing ”statistically representative”, and arguably a

more pragmatic way, proposes that the constitutive response of the REV should be statis-

tically representative of the domain. In other words, as one increases the size of a sample

domain, the point at which the constitutive response within the domain becomes sensibly

constant can be referred to as the REV. Thus, the subdomain constitutive response is

quantifiable through resultant model properties and parameters. This REV interpretation

has been widely used because of its quantifiability [Kanit et al., 2003, Gitman et al., 2005,

Gusev, 1997, Müller et al., 2010], and is adopted for this work.

Here, the aim of this discussion is to present tools to help evaluate the size and existence

of the REV for a given microscopically heterogeneous domain. The method of assessing

the REV that is presented here is based on testing the statistical significance of the sample

distribution parameters. In this method of REV assessment, only one numerical simulation

is required if it is of sufficient size. Instead of running the numerical simulations for each

realization, subsets of the larger simulation are extracted and analysed independently for

their respective constitutive response. This method is far less computationally demanding

and correspondingly much faster as a result.

For a given measurement of a material property (e.g., stress, strain, etc.) in an REV, one

can assume that it is primarily variant within the heterogeneous domain with respect to

22



two key parameters: the spatial location of the subdomain and the subdomain size. As

such, these parameters can be modified to observe the changes in the measured properties

of the subdomain. To clarify some terminology, the set of data that corresponds to a

single location will be termed a realization. Whereas the set of data that corresponds to

a single subdomain size will be referred to as a sample in the statistical sense. Therefore,

the statistical population can be interpreted as the set of all possible material property

measurements for a given subdomain size as the spatial location of the subdomain changes.

To assess the size of the REV for a given realization, a selection of subdomain sizes is

chosen and the material property measurement is evaluated over each subdomain. The

material property measurement can be plotted against the corresponding subdomain size

as conceptually indicated in Figure 2.13. In this plot, one can see that as the subdomain

size increases, the variability in the material property measurement decreases such that it

converges to a single value. It is at this convergence that one can say that the subdomain

is statistically representative of the whole domain, and therefore represents the REV for

that realization. Each realization is spatially static such the spatial variability is not

sampled. As such, in order to account for the spatial variability of the material property

measurement, multiple realizations are required to accurately define the REV.

2.5 Macroscale Constitutive Model

In this section the macroscale stress-strain relationships, σ̇M = σ̇M
(
ε̇M ,χ,h

)
, used in the

validation examples are described. The models are chosen to be complex enough to make

the validation of the framework meaningful; however, these are not claimed to be the ”best”

macroscale models. The framework presented is general and the macroscale constitutive

models described here can be replaced in particular applications by different ones. To

simplify the discussion and notation in this section, the superscript ”M” is omitted since

all quantities defined describe macroscale behaviour.

Continuum Damage Mechanics (CDM) constitutive models are chosen to represent the

NFR at the macroscale. CDM is a branch of continuum mechanics that is concerned

with modeling the progressive failure and stiffness degradation in solid materials [Zhang

and Cai, 2010]. CDM in this investigation is used to help describe the micro-mechanical

degradation of the rock mass due to the nucleation and growth of cracks and voids. This

micro-mechanical degradation is represented in a CDM model by using macroscopic state

23



Figure 2.13: Assessing the REV of a heterogeneous domain for a single realization. For very
small subdomain sizes, the material property measurement is very sensitive to
small fluctuations, whereas at a sufficiently large subdomain size, the material
property measurement becomes insensitive to small fluctuations and converges
to a single value representative of the whole domain. It is at this convergence
that one can say the REV exists.

variables to represent a spatial average of the effects of this degradation [Krajcinovic,

1989]. These state variables used in this context with respect to CDM are known as

damage variables.

The damage variables in a CDM model can be described in different capacities. Often, for

mathematical and physical simplicity, a single scalar damage variable is used to character-

ize the state of damage in the material. In this case, the damage variable, D, takes a value

between 0 and 1 to represent the degree of damage to the material, where D = 0 represents

a completely undamaged material (original stiffness) and D = 1 represents a completely

damaged material with no stiffness. A scalar damage description limits the applicability

of the CDM model to an isotropically damaged state, which may not be appropriate in

some circumstances. More sophisticated CDM models use 2nd and 4th order tensorial rep-

resentations of the damage variables as well as distinguishing between compressive damage

24



and tensile damage states in order to more accurately characterize anisotropic damage

evolution.

Consider the standard elastic relationship described by Hooke’s law which relates the stress,

σ, and the elastic strain, εel through an elastic stiffness tensor, E:

σ = E : εel (2.14)

Introducing a scalar damage variable, D, to Hooke’s law using CDM to describe the stiffness

degredation of the material can be shown as:

σ = (1−D) E : εel (2.15)

Here, the damaged stiffness of the material, Ed, is described as follows:

Ed = (1−D) E (2.16)

So the constitutive elastic CDM relationship is:

σ = Ed : εel (2.17)

In addition to damage, the elasto-plastic behaviour of the rock is also considered. Models

that incorporate theories of plasticity and damage mechanics in a unified approach to

damage evolution and constitutive relationships are often referred to as damage-plasticity

models [Zhang and Cai, 2010]. In general, the constitutive relationship for these damage-

plasticity models describes the relationship between the stress, σ, and the strain, ε as a

function of the damage variable, the original elastic stiffness tensor, E, and the plastic

strain, εpl:

σ = Ed :
(
ε− εpl

)
(2.18)

Here, an additive decomposition of the elastic and plastic strain associated with small

deformations is assumed:

ε = εel + εpl (2.19)

25



In CDM, the notion of effective stress, σ̄, becomes useful to describe the mechanics of the

system, as it refers to the stress that the system would be experiencing without damage.

This effective stress can be related to the actual Cauchy stress through the scalar damage

variable:

σ = (1−D) σ̄ (2.20)

2.5.1 General Formulation and Assumptions

The plasticity models used are comprised of three key components: the yield function,

the flow rule, and the hardening rule. The yield function, F
(
σ̄, ε̄pl

)
describes whether or

not the material has experienced yield given a particular stress state. The yield function

varies between the two models but can be written in general as a function of the effective

stress, σ̄, and equivalent plastic strain, ˙̄εpl, expressed through three stress invariants: the

Von-Mises equivalent stress, p (σ̄), the hydrostatic stress, q (σ̄), and the third invariant of

deviatoric stress, r (σ̄):

F = F (σ̄) = F (p, q, r) (2.21)

The Von Mises equivalent stress is:

p (σ̄) =
1

3
trace [σ] (2.22)

The hydrostatic stress is:

q (σ̄) =

√
3

2
[S : S] (2.23)

where S is the stress deviator and I is the identity matrix:

S = σ + p (σ̄) I (2.24)

The third invariant of the deviatoric stress is:

26



r (σ̄) =

[
9

2
S · S : S

] 1
3

(2.25)

In addition, the flow rule describes the amount of plastic deformation that the material

exhibits given an applied stress. The flow rule is assumed to be of the following form:

ε̇pl = λ̇
∂G (σ̄)

∂σ̄
(2.26)

Where ε̇pl is the plastic strain rate, λ̇ is referred to as the plastic consistency parameter,

and G (σ̄) = G (p, q, r) is the flow potential function. In addition to the yield function

and the flow rule, the hardening rule is prescribed to govern the increase/decrease in yield

stress as the plastic strain increases. More specifically, the hardening function, h
(
σ̄, ε̄pl

)
,

in these models is used to relate the equivalent plastic strain, ε̄pl, to the plastic strain in

rate form:

˙̄εpl = h
(
σ̄, ε̄pl

)
: ε̇pl (2.27)

For the damage models, the damage initiation criteria and evolution equations are different

for each material model. In general though, the damage initiation criteria for both material

models is strain based and the nature of the damage evolution is assumed to be a function

the equivalent plastic strain:

D = D
(
σ̄, ε̄pl

)
(2.28)

2.5.2 Drucker-Prager Plasticity Model with Ductile Damage

In this constitutive model, a ductile isotropic damage formulation is prescribed using

a modified Johnson-Cook damage initiation criterion and a linear stiffness degradation

model. In addition to damage, the elasto-plastic behaviour of the rock is also considered

using an extended Drucker-Prager model with a linear yield criterion and a Barcelona

hardening function.

The Drucker-Prager plasticity model was developed by Drucker [1950] for modelling fric-

tional materials like granular soils and rock. An important aspect of this plasticity model

27



is the use of a pressure dependent yield criterion to account for the increase in yield stress

of geomaterials as the in-situ stresses increase. Specifically, the Drucker-Prager material

model is formulated and used for materials with compressive yield strength much greater

than the tensile yield strength such as one finds in soils and rocks. However, this material

model is intended to simulate the material response under essentially monotonic loading

which limits the capacity for modeling cyclic loading.

In addition, the Drucker-Prager model is suitable for using in conjunction with progressive

damage and failure models. In this formulation, the Johnson-Cook Damage model is

used to model the damage evolution of the rock mass [Johnson and Cook, 1985a]. At a

sufficiently large scale, the damage response of NFR can be thought of as behaving in a

ductile capacity.

Here, for the extended Drucker-Prager plasticity model, a linear yield function, F
(
σ̄, ε̄pl

)
,

is assumed to be a function of three stress invariants: the Von-Mises equivalent stress,

p (σ̄), the hydrostatic stress, q (σ̄), and the third invariant of deviatoric stress, r (σ̄). In

addition, the yield function is written in terms of the compressive yield stress, σyc
(
ε̄pl
)
,

which is defined by the hardening function and two material parameters: the friction

angle, φ, and a parameter K, defined as the ratio of the yield stress in triaxial tension to

the yield stress in triaxial compression:

F
(
σ̄, ε̄pl

)
=

1

2
q (σ̄)

[
1 +

1

K
−
[
1− 1

K

] [
r (σ̄)

q (σ̄)

]3
]

− p (σ̄) tanφ−
[
1− 1

3
tanφ

]
σyc
(
ε̄pl
)

(2.29)

The flow rule in this formulation is non-associated but the flow potential function, G (σ̄),

is written in a very similar form as the yield function with dilation angle, ψ, in place of the

friction angle. As with the yield function, the flow potential function is written in terms

of three stress invariants and two material parameters, dilation angle, and K:

G (σ̄) =
1

2
q (σ̄)

[
1 +

1

K
−
[
]1− 1

K

] [
r (σ̄)

q (σ̄)

]3
]
− p (σ̄) tanψ (2.30)

28



In addition to the yield function and the flow rule, the hardening rule is assumed to take

the form of the Barcelona model [Lubliner et al., 1989]. The Barcelona model allows for

material hardening before softening and approaches a yield stress of 0 as the plastic strain

increases. This form of the hardening function can be written in terms of three material

parameters, initial compressive yield strength σiyc , α, and β:

σc = σiyc

[
[1 + α] e−βε̄

pl − αe−2βε̄pl
]

(2.31)

The damage initiation criterion for this material model is based on the Johnson-Cook

model of ductile damage initiation [Johnson and Cook, 1985a]. The standard Johnson-

Cook model assumes the equivalent plastic strain when damage is initiated, ε̄plf (η), is a

function of triaxiality, η, and is written in terms of five material parameters:

ε̄plf

(
η, ˙̄εpl, T̂

)
=
[
D1 +D2e

D3η
] [

1 +D4 ln

(
˙̄εpl

˙̄ε

)] [
1 +D5T̂

]
(2.32)

However, assuming isothermal conditions, neglecting rate effects, and assuming a simplified

form of the exponential relationship, the initiation criterion can be reduced to two material

parameters, D2 and D3:

ε̄plf (η) = D2e
D3η (2.33)

After the material has experienced yield and material damage has occurred, the stress-

strain relationship becomes strongly mesh-dependent because of strain localization due

to the energy dissipation decreasing as the mesh is refined. As such, Hillerborg et al.

[1976] proposed a stress-displacement response based on fracture energy after damage

initiation assuming that evolving damage is a linear degradation of the material stiffness in

compression. Assuming a linear form, the effective plastic displacement when the material

is completely damaged, ūplf , can be specified, and the damage evolution can then be written

in terms of the effective plastic displacement, ūpl:

Ḋ =
˙̄upl

ūplf
(2.34)

29



2.5.3 Damage-Plasticity Model for Quasi-Brittle Materials

In this constitutive model, a quasi-brittle isotropic damage formulation is prescribed using

a linear stiffness degradation model that accounts for cyclic loading. In addition to damage,

the elasto-plastic behaviour of the rock is also considered using Lubliner’s plasticity model

with a linear yield criterion and a Barcelona hardening function [Lubliner et al., 1989].

This damage-plasticity model was developed by Lubliner et al. [1989] as a plasticity based

damage model for non-linear analysis of concrete failure. Subsequently, Lee and Fenves

[1998] further developed the model to facilitate cyclic loading by adding a second damage

variable and introducing a new yield function to account for the additional damage variable.

This model was specifically formulated for modeling quasi-brittle materials under low con-

fining stresses subject to cyclic loading. In addition to the separate damage variables

governing the stiffness degradation, the stiffness recovery and material hardening/soften-

ing is also treated separately in both compression and tension. Because the formulation

does not consider the effects of large hydrostatic stresses, the applicability of this plasticity

model to in-situ geomechanics at depth may not be sufficiently accurate. As such, this

model is more appropriate for shallow geological models that require cyclic loading paths

to be considered.

The yield function for this model is based on the yield function proposed by Lee and

Fenves [1998] which was developed to allow for differential hardening under tension and

compression. The resultant yield function, F
(
σ̄, ε̄pl

)
, can be expressed in terms of two

stress invariants: the Von-Mises equivalent stress, p (σ̄), the hydrostatic stress, q (σ̄):

F
(
σ̄, ε̄pl

)
=

1

1− A
[
q (σ̄)− 3Ap (σ̄) +B

(
ε̄pl
) 〈

ˆ̄σ
〉
− γ

〈
−ˆ̄σ
〉]
− σ̄c

(
ε̄c
pl
)

(2.35)

Where A and γ are dimensionless material constants. Experimental testing has yielded

values of A between 0.08 and 0.12, as well as a typical γ value of approximately 3 [Lubliner

et al., 1989]. The hat notation, ˆ̄σ, for an arbitrary stress tensor, σ̄, represents the al-

gebraically maximum eigenvalue, or, the maximum principle stress. In addition, 〈〉 are

Macauley brackets and can be defined as:

〈x〉 =
1

2
(|x|+ x) (2.36)

30



The flow rule in this formulation is non-associated which means that the flow potential

function, G (σ̄), follows a different form than the yield function. Like with the yield

function, the flow potential function, is written in terms of two stress invariants, p (σ̄) and

q (σ̄), and two material parameters, dilation angle, ψ, and eccentricity ε:

G (σ̄) =

√
[εσiy tanψ]2 + q (σ̄)2 − p (σ̄) tanψ (2.37)

In this formulation of damage-plasticity, the brittle nature of rock necessitates separate

characterization of tensile and compressive damage. With quasi-brittle materials such as

rock, it has been found that compressive stiffness can be recovered upon crack closure.

Conversely, in these materials, tensile stiffness is not recovered after compressive cracks

have developed. This behaviour implies that two separate scalar damage values should

exist for the given system to account for both the compressive stiffness degradation and

the tensile stiffness degradation. As such, the equivalent plastic strain is also considered

separately for tension (ε̄plt ) and compression (ε̄plc ) and is represented as follows:

ε̄pl =

[
ε̄plt
ε̄plc

]
(2.38)

The hardening rule for this model is slightly modified from (2.27) to accommodate two

hardening variables (equivalent plastic strains) for tension and compression. The hardening

rule can thus be written in matrix form:

h
(
σ̄, ε̄pl

)
=

 r
(
ˆ̄σij
) σt(ε̄plt )

gt
0 0

0 0 −
(
r
(
ˆ̄σij
)
− 1
) σc(ε̄plc )

gc

 (2.39)

Where σt and σc are the yield stresses in tension and compression as specified by the hard-

ening curves which describe the evolution of the equivalent plastic strains. The compressive

hardening rule is approximated here using the Barcelona model in a similar capacity as

was done for the Drucker-Prager model in the previous section. The only difference here

being that the hardening is defined in terms of the inelastic strain, ε̄in, rather than the

plastic strain before:

σc = σiyc

[
[1 + α] e−βε̄

in − αe−2βε̄in
]

(2.40)

31



There exists a subtle but important distinction between these two strain measurements

when considering CDM. The plastic strain refers to all the strain that is non-elastic (i.e.

the remaining strain after the applied stress is unloaded in the damaged state), while the

inelastic strain refers to the theoretical plastic strain that would remain if the material was

unloaded with the original material stiffness (i.e. in an undamaged state).

The tensile hardening function has a fundamentally different behavior than the compressive

hardening function, and is therefore approximated using an exponential function. This

function is described by the initial tensile yield stress, σiyt , and a decay parameter, λ.

These parameters describe the relationship between the tensile yield stress, σt, and the

cracking strain, ε̄ck which is the tensile portion of inelastic strain:

σt
(
ε̄ck
)

= σiyt e
λε̄ck (2.41)

In addition, gt and gc from (2.39) represent the dissipated fracture energy density during

micro-cracking. The use of the dissipated fracture energy density over fracture energy

(a material property) stems from the fact that the strain softening part of the stress-

strain curve cannot represent a local physical property of the material in addition to being

highly mesh sensitive. The dissipated fracture energy densities are defined in terms of a

characteristic length, l, associated with the mesh size and the fracture energy in tension,

Gt, and compression, Gc:

gt =
Gt

l
(2.42)

gc =
Gc

l
(2.43)

Furthermore, the weighting function, r
(
ˆ̄σ
)
, weights the hardening functions depending on

the degree of tension or compression that the model is experiencing:

r
(
ˆ̄σ
)

=

∑3
i=1

〈
ˆ̄σi
〉∑3

i=1

∣∣ˆ̄σi∣∣ , 0 ≤ r
(
ˆ̄σ
)
≤ 1 (2.44)

Loading a quasi-brittle material in compression or tension causes damage in the material,

which reduces the effective stiffness, weakening the unloading response. This damage is

32



characterized by two damage variables, one of which represents the damage due to tensile

loading, Dt, the other represents damage due to compressive loading, Dc.

Dt = Dt

(
ε̄plt

)
, 0 ≤ Dt ≤ 1 (2.45)

Dc = Dc

(
ε̄plc
)
, 0 ≤ Dc ≤ 1 (2.46)

The damage in both compression and tension is a necessarily increasing function of the

equivalent plastic strains. For cyclic loading, both the compressive and tensile damage

need to be considered. Two stiffness recovery factors are introduced, st and sc, which

represent the stiffness recovery effects associated with stress reversals. The damage takes

the form of:

[1−D] = [1− stDc] [1− scDt] , 0 ≤ st, sc ≤ 1 (2.47)

2.6 Parameter Estimation Algorithms

Parameter estimation involves a process of obtaining a parameter set χ of a CDM model

that minimizes the difference between the model response(σM -εM) and the measured sys-

tem response (〈σ〉-〈ε〉) for all load paths. Herein, the parameter estimation was conducted

with optimization methods which attempts to minimize a least-squares objective function.

Optimization algorithms are often described as either deterministic, which find the same

optimum each time, or stochastic, which may find different answers each time because

of introduced randomness. Additionally, optimization algorithms can also be described

as either heuristic, which find an approximate optimum, or exact, which find the precise

optimum.

Deterministic optimization algorithms are often used to focus on searching for the optima

within the local parameter space by iteratively converging towards a consistent solution

because finding a global optima deterministically can be computationally prohibitive, de-

pending on the complexity of the problem. Stochastic optimization algorithms can allow

for more computationally effective exploration of the global parameter space by introducing

some randomness in the solution, allowing for arbitrary exploration of the parameter space.

33



Heuristic techniques are useful for highly non-linear problems, where there are numerous

local optima within the parameter space. When searching the global parameter-space ex-

actly becomes too computationally demanding, heuristic methods are used, at the cost of

completeness and accuracy. A compromise between speed and accuracy can be obtained

by strategically using different types of algorithms.

A combination of two optimization algorithms is used to assess the optimal parameter

set. An initial stochastic heuristic algorithm is applied to search for the approximate

global optima, followed by a deterministic algorithm as a local refinement of the optimal

parameter set. Particle Swarm Optimization (PSO) is used for the global heuristic search,

and the Levenberg-Marquardt Algorithm (LMA) is used for the local deterministic search.

Let sj represent any arbitrary scalar stress component at any given simulation time where

j represents the stress measurement number. Consider any component of a homogenized

stress tensor, 〈s〉j, which acts as the target solution for the macroscale model. The same

stress measurement in the macroscale model, sMj (χ, 〈e〉), can be expressed as a function

of the parameter set for the continuum constitutive model, χ, containing n number of

parameters, and the homogenized strain at the given load step, 〈e〉. Here, the weighted

least-squares objective function to be minimized, Ψ, can be written in terms of a weighting

parameter, wj, for m number of stress measurements:

Ψ =
m∑
j=1

[
wj

[
〈s〉j − s

M
j (χ, 〈e〉)

]]2

(2.48)

The aim of the optimization algorithms is to minimize Ψ with respect to χ, subject to

the constraint that all parameters values within χ are realistic and fall within specified

bounds.

The parameter estimation algorithms work by iteratively running a single element CDM

model, subject to boundary conditions provided by the homogenized DEM simulations,

with successive parameter sets that intelligently adapt in order to minimize Ψ. The ap-

proach used here is similar to the Least Squares method described briefly in Marquardt

[1963].

34



2.6.1 Particle Swarm Optimization (PSO)

The PSO algorithm is a heuristic optimization algorithm that was developed by Kennedy

and Eberhart [1995] as a by-product of modeling the cooperative-competitive nature of

social behaviour in birds as they flocked searching for food. The PSO algorithm, in a

conceptual sense, consists of a series of ’particles’ (birds) which ’swarm’ through the en-

tire parameter space (sky) searching for the global optima (food) using a combination of

individual ’particle’ knowledge and global ’swarm’ (flock) knowledge.

Consider a particle in an n dimensional parameter space with an arbitrary velocity, ~vi, and

position, ~xi. At each position in this parameter space, Ψ can be evaluated with an attempt

to find the position that minimizes Ψ. The motion of this particle allows the exploration of

the parameter space to find a minimum value of Ψ and the corresponding position. After a

period of time, ∆t, the new position of the particle, ~xi+1, can be written as a combination

of the old position and the new velocity, ~vi+1.

~xi+1 = ~xi + ~vi+1∆t (2.49)

Here, ~vi+1, is considered to be influenced by ~vi, the position of the current local optimum,

pl, and the position of the current global optimum, pg. The local optimum refers to the

minimum value of Ψ observed by the individual particle, while the global optimum refers

to the minimum value of Ψ observed by all particles. As such, ~vi+1 is written as a linear

combination of ~vi, the velocity required to move the particle back to the local optimum and

the velocity required to move the particle back to global optimum. In order to prevent the

algorithm from oscillating indefinitely in a predictable manner, a randomization vector,
~U (φ), of length n is introduced to provide coefficients between 0 and φ to the velocity

vectors. The operator � refers to the Hadamard product (element-wise multiplication):

~vi+1 = ~vi +
~Ui (φ1)� [~pl − ~xi] + ~Ui (φ2)� [~pg − ~xi]

∆t
(2.50)

As one would expect, the behaviour of the PSO is highly sensitive to the chosen values of φ1

and φ2. If these parameters are too small, then the optimization becomes ”unresponsive”

such that the initial velocity is maintained and successive iterations do not have the capacity

to appreicably change their velocity to search the parameter space effectively. Alternatively,

if these parameters are too large, the PSO has the capacity to become unstable such that

35



the particle speeds keep increasing on successive iterations. Commonly accepted in most

PSO algorithms is the assumption that φ1 = φ2 = 2. To overcome these limitations and

control the scope of the search, Shi and Eberhart [1998] introduced the inertial weight

term, ω:

~vi+1 = ω~vi +
~Ui (φ1)� [~pl − ~xi] + ~Ui (φ2)� [~pg − ~xi]

∆t
(2.51)

This inertial weight acts as a scalar multiplier between 0 and 1 for ~vi, and can be interpreted

as a measure of the fluidity of the system. A large inertial term allows the particle to

maintain its current velocity to a higher degree indicating a system with low viscosity

lending to a more explorative search, while a small inertial term dissipates the particles

velocity more rapidly indicating a more viscous system which favours exploitative searching.

Additional damping can be provided in the form of a constriction coefficient which controls

the convergence of the particle, by ensuring convergence and preventing explosion. Clerc

and Kennedy [2002] noted that many means of constricting the velocity function exist, but

provided a simple form of the constriction, using a constriction coefficient, ζ (φ1, φ2).

~vi+1 = ζ (φ1, φ2)

[
ω~vi +

~Ui (φ1)� [~pl − ~xi] + ~Ui (φ2)� [~pg − ~xi]
∆t

]
(2.52)

Here, ζ (φ1, φ2) is given by the following, where φ = φ1 + φ2:

ζ (φ1, φ2) =
2

φ− 2 +
√
φ2 − 4φ

(2.53)

In addition, with the desire to give more credence to either the local optimum or the

global optimum, two ”trust” parameters are introduced. c1 is referred to as the cognitive

parameter as it weights the particles own experience, while the second parameter, c2, is

referred to as the social parameter as it weights the influence of the combined experience

of the swarm:

~vi+1 = ζ (φ1, φ2)

[
ω~vi +

c1
~Ui (φ1)� [~pl − ~xi] + c2

~Ui (φ2)� [~pg − ~xi]
∆t

]
(2.54)

36



In terms of the up-scaling application, the position of the particle can be taken to represent

an estimate of the optimal parameter set, χi, while the velocity of the particle represents the

direction and magnitude of the change in the parameter set estimate for the next iteration

∆χi+1. Furthermore, the time step is considered to be a unit iteratation step, which allows

for (2.54) to be abstracted as follows in the context of up-scaling DEM simulations.

∆χi+1 = ζ (φ1, φ2)
[
ω∆χi + c1

~Ui (φ1)� [χl − χi] + c2
~Ui (φ2)�

[
χg − χi

]]
(2.55)

Where χl is the parameter set corresponding to the minimum value of Ψ for the particle,

and χg is the parameter set corresponding to the minimum value of Ψ for all particles. In

addition, (2.49) can be rewritten in a similar capacity:

χi+1 = χi + ∆χi+1 (2.56)

For a particle swarm containing an arbitrary number of particles, the optimal parameter

set of the system, χ, is considered to be χg after a specified number of iterations, or once

all the particles converge to a stable solution. The general PSO algorithm as described

here is summarized as follows:

1. Assign particles random positions and velocities in the parameter space

2. Move each particle with (2.55) and (2.56)

3. For each particle, revise χl if new local optimum found

4. Revise χg if new global optimum found

5. If current iteration is greater than the maximum number of iterations or solution is

stable, iteration is complete. Otherwise, go to step 2

2.6.2 Asynchronous Parallel PSO (APPSO)

The PSO described above possesses a large number of attractive qualities for parameter

estimation which make it desirable for up-scaling. However, the main drawback of the

PSO is the large computational costs in terms of total elapsed time primarily due to the

fact that the algorithm was originally designed for a serial implementation. The serial

37



implementation, although effective in its own right, can be dramatically improved through

parallelization.

The nature of the PSO lends itself to a fairly trivial implementation of a synchronous

parallelization scheme which does not require changing the nature of the algorithm. Here,

since all the particles at each iteration are treated independently, the updated positions

and corresponding objective functions can be computed in parallel. This parallelization

scheme waits for all the particles to complete their analysis before moving on to the next

iteration. As a result, the parallel efficiency is often compromised due to processors having

to wait for the final particle(s) to finish their analysis. This idleness of the processors

can be caused by having a swarm size that is not an integer multiple of the number of

processors, having a heterogeneous computing environment where processors have different

computational speeds, or having a numerical simulation that requires different amount

of computational time depending on the input parameters [Venter and Sobieszczanski-

Sobieski, 2006]. This inefficiency of this synchronous parallelization increases as the number

of processors increases due to the increasing number of idle processors towards the end of

the iteration.

To overcome these parallel inefficiencies, Venter and Sobieszczanski-Sobieski [2006] intro-

duced an Asynchronous Parallel Particle Swarm Optimization (APPSO) algorithm to con-

tinuously use the available processors with the goal of having no idle processors from one

iteration to the next. The key here, is to separate the update calculations associated with

each point and those associated with the swarm as a whole. Normally, in the synchronous

scheme, the update calculations (i.e., updating χl and χg) are done at the end of each

iteration. In this asynchronous scheme, updating χl remains the same, but updating χg
uses the best position from the previous iteration instead of the current iteration in order

perform the update calculations immediately and allow the analyses to proceed without

waiting for the rest of the particles to complete their analysis.

2.6.3 Levenburg-Marquardt Algorithm (LMA)

Levenberg-Marquardt Algorithm (LMA) is a deterministic optimization algorithm that was

proposed by Marquardt [1963] which builds on the work of Levenberg [1944]. This calibra-

tion algorithm combines a quasi-Newton approach with a conjugate gradient technique in

order to efficiently minimize non-linear least-squares problems.

38



For notational simplicity (2.48) is rewritten in matrix form by considering a vector con-

taining m number of arbitrary homogenized stress measurements at any given time, 〈s〉,
and a corresponding vector of stress measurements for the macroscale model, sM :

〈s〉 = [〈s〉1 , 〈s〉2 , . . . , 〈s〉m]T (2.57)

sM =
[
sM1 , s

M
2 , . . . , s

M
m

]T
(2.58)

This vectorization facilitates writing the weighted least-squares objective function in matrix

form using Q as a weighting matrix:

Ψ =
[
〈s〉 − sM

]T
Q
[
〈s〉 − sM

]
(2.59)

Where Q is written as a diagonal matrix containing the weighting parameters:

Q =


w2

1 0 . . . 0

0 w2
2 0

...
. . .

...

0 0 . . . w2
m

 (2.60)

The first step in the LMA formulation considers an arbitrary initial set of parameters, χ0,

and the corresponding macroscale stress measurements, sM0 . The relationship between χ

and sM is generally highly non-linear, so the function is approximated with a taylor series

expansion about χ0, yielding the following linearization:

sM ≈ sM0 + J [χ− χ0] (2.61)

Where the partial derivatives of the given set of sM stress measurements with respect to

the parameters in χ are represented in the Jacobian matrix, J:

39



J =


∂sM1
∂χ1

∂sM1
∂χ2

. . .
∂sM1
∂χn

∂sM2
∂χ1

∂sM2
∂χ2

∂sM2
∂χn

...
. . .

...
∂sMm
∂χ1

∂sMm
∂χ2

. . . ∂sMm
∂χn

 (2.62)

Substituting (2.61) into (2.59) gives an linearized approximation of the objective function:

Ψ ≈
[
〈s〉 −

[
sM0 + J [χ− χi]

]]T
Q
[
〈s〉 −

[
sM0 + J [χ− χ0]

]]
(2.63)

Since (2.63) is still an approximation of the objective function, an iterative approach is

required to converge to an optimal estimate of χ. Here, (2.63) can be modified and written

in an iterative capacity such that the current parameter set estimate, χi, simulated stress

measurements, sMi , objective function value, Ψi, and Jacobian matrix, Ji can be used to

estimate the next parameter set estimate χi+1:

Ψi =
[
〈s〉 −

[
sMi + Ji

[
χi+1 − χi

]]]T
Q
[
〈s〉 −

[
sMi + Ji

[
χi+1 − χi

]]]
(2.64)

The vector
[
χi+1 − χ0

]
, which represents the difference in the current estimate of the

parameter set and the next parameter set estimate is termed the upgrade vector. By

taking the derivative of Ψ with respect to χ, the upgrade vector can be written as:

[
χi+1 − χi

]
=
[
JTi QJi

]−1
JTi Q

[
〈s〉 − sMi

]
(2.65)

Here, for convenience, the upgrade vector is written as Ui =
[
χi+1 − χi

]
. Since (2.65) is

still an approximation of the upgrade vector, an iterative approach to finding χ is required.

The LMA further proposes that U i be modified with the Marquardt parameter, α:

Ui =
[
JTi QJi + αI

]−1
JTi Q

[
〈s〉 − sMi

]
(2.66)

Here, I is the n × n identity matrix. The Marquardt parameter in (2.66) allows Ui to

approximate a Steepest-Descent Method (SDM) for large values of α, while using a Taylor

Series Approximation (TSA) for small values of alpha. This formulation allows for a

40



smooth transition between a SDM when the parameter set estimate is far away from the

optimal parameter set, and a TSA when the parameter set estimate is close to the optimal

parameter set.

Another key development in the LMA notes that for many calibration and parameter

estimation problems, elements within sMi and 〈s〉 may differ by several orders of magnitude.

Such large variations can lead to significant roundoff error during the calculation of Ji. This

error can be avoided by introducing a scaling matrix, Si:

Si =


1

Ji11w1
0 . . . 0

0 1
Ji22w2

0
...

. . .
...

0 0 . . . 1
Jinnwn

 (2.67)

With (2.67), the upgrade vector in (2.66) can be rewritten in a mathematically identical

way while avoiding numerical errors:

Ui = Si
[
STi JTi QJiSi + αSTi Si

]−1
STi JTi Q

[
〈s〉 − sMi

]
(2.68)

The final feature of the LMA is the introduction of the Marquardt Lambda, λ. The

Marquardt Lambda is taken as the largest term in the matrix αSTS. Here, the adjustment

of λ provides control over the relative weighting of the SDM versus the TSA, such that

for large values of λ, the SDM dominates, while for small values of λ, the TSA dominates.

The iterative algorithm is summarized as follows [Matott, 2008]:

1. Choose initial value for λ

2. Compute sM (χi, 〈e〉)

3. Compute Ψi with (2.64)

4. Compute Ui with (2.68)

5. Compute χi+1 = χi + Ui

6. Compute sM
(
χi+1, 〈e〉

)
7. Compute Ψi+1 with (2.64)

8. Adjust λ

41



(a) If number of λ adjustments is optimal or exceeds maximum, go to step 9

(b) If Ψi+1 < Ψi, reduce λ, increment i, and go to step 2

(c) If Ψi+1 ≥ Ψi, increase λ, and go to step 4

9. Test for convergence by comparing Ψi+1 and Ψi

(a) If converged, iteration is complete and χi+1 represents the optimal solution.

(b) If not converged, increment i, and go to step 2

2.7 Physically Meaningful Model Parameterization

To accelerate the process of finding a near-optimal set of parameters, it is important to

limit the search space of the parameterization algorithm. This is especially important when

the number of parameters is large. It was found to be beneficial for the parameters to have

physical meaning in order to specify realistic bounds. This is the case when functional

assumptions have to be made for curves used in the constitutive models.

Here, the parameterization of the two macroscale continuum models is presented. For both

models, the approach to parameterization is the same, but the specific methods and result-

ing parameters are different due to the inherently different constitutive models. However,

the elastic behaviour for both models is governed by the same constitutive relation. The

elastic behaviour is parameterized by Young’s modulus, E, and Poisson’s ratio, ν. Bounds

on these quantities are well known.

2.7.1 Drucker-Prager Model with Ductile Damage

The yield function and flow potential function are parameterized in terms of the friction

angle, dilation angle, and the stress ratio K. Bounds on these quantities are relatively well

known.

The hardening function (2.31) is given in terms of two empirical coefficients α and β and

the initial compressive yield stress σiyc . While it is possible to set bounds on σiyc , it is less

straightforward to set bounds for α and β as they do not have obvious physical meaning.

The hardening function for the Barcelona model is shown in Figure 2.14. The coefficients

42



α and β can be rewritten in terms of the peak compressive yield strength, σpc , the plastic

strain at the peak compressive yield strength, εpc , and the initial compressive yield stress

σiyc :

Figure 2.14: Compressive hardening/softening function from the Barcelona model. The
curve is able to be parameterized using three parameters.

β =
ln
[

2α
1+α

]
εpc

(2.69)

α =
2σpc − σiyc + 2

√
−σpc

[
σiyc − σpc

]
σiyc

(2.70)

Thus, the hardening law is parameterized in terms of σpc , ε
p
c , and σiyc so that bounds can

be more easily defined.

43



Similarly, the Johnson-Cook damage initiation criterion from (2.33) is described by two

empirical coefficients (D2, and D3) which do not have intuitive physical meaning. To make

setting the bounding limits during the parameter estimation simpler, the Johnson-Cook

parameters were rewritten in terms of equivalent plastic strain at which damage is initiated

at triaxialities of -0.5 and -0.6, ε̄ply−0.5
and ε̄ply−0.6

, respectively:

D2 =

[
ε̄ply−0.5

]6[
ε̄ply−0.6

]5 (2.71)

D3 = 10 ln

[
ε̄ply−0.5

ε̄ply−0.6

]
(2.72)

In addition, the damage evolution was parameterized using only the plastic displacement

at failure parameter. The goal of the parameter estimation module, in the verification

examples, is therefore to estimate the 11 parameters χ = {E, ν, ψ,K, φ, σiyc , σpc , εpc , ε̄ply−0.5
,

ε̄ply−0.6
, ūplf }, which are summarized in Table 2.1.

Table 2.1: Parameter set for Drucker-Prager Material Model with Ductile Damage

Parameter Type Name Symbol

Elastic
Young’s Modulus E
Poisson’s Ratio ν

Plastic

Flow Rule/Yield Function
Dilation Angle ψ

Yield Stress Ratio K
Friction Angle φ

Hardening Rule
Initial Compressive Yield Strength σiyc
Peak Compressive Yield Strength σpc
Strain at Peak Compressive Yield εpc

Damage
Initiation

Yield Strain at −0.5 Triaxiality ε̄ply−0.5

Yield Strain at −0.6 Triaxiality ε̄ply−0.6

Evolution Plastic Displacement at Failure ūplf

44



2.7.2 Damage-Plasticity Model for Quasi-Brittle Materials

The yield function for this model, (2.35), is written in terms of three material parameters:

A, B, and γ. These material parameters are not directly measurable, but can be expressed

in terms of measurable parameters. A is expressed here as a function of the ratio f0, which

is defined as the ratio of the initial biaxial compressive yield strength, σb0 to the initial

uniaxial compressive strength, σc0:

f0 =
σb0
σc0

(2.73)

A =
f0 − 1

2f0 − 1
(2.74)

Additionally, γ is expressed in terms of the ratio Kc which expresses the ratio of hydrostatic

pressure at yield in tension to the hydrostatic pressure at yield in compression:

γ =
3 [1−Kc]

2Kc − 1
(2.75)

Similarly, B is expressed as a function of A and the two yield stresses from the hardening

rule in (2.39), σ̄c
(
ε̄plc
)

and σ̄c

(
ε̄plt

)
.

B =
σ̄c
(
ε̄plc
)

σ̄t

(
ε̄plt

) (1− A)− (1 + A) (2.76)

The compressive hardening function, similar to the hardening function in the Drucker-

Prager model in the previous section, is also approximated using the Barcelona model as

shown in Figure 2.14. The same parameterization scheme is also used to write α and β

in terms of the peak compressive yield strength, σpc , and the plastic strain at the peak

compressive yield strength, εppc :

β =
ln
[

2α
1+α

]
εinc

(2.77)

45



α =
2σpc − σiyc + 2

√
−σpc

[
σiyc − σpc

]
σiyc

(2.78)

The tensile hardening rule has a fundamentally different behavior than the compressive

hardening rule, and was therefore approximated using an exponential function (Fig 2.15).

The exponential function required only two parameters to characterize the curve com-

pletely. The first parameter was the initial tensile yield stress, σiyt , which defines the

y-intercept of the curve, while the second parameter was the tensile yield stress decay

parameter,λ.

Figure 2.15: Tensile hardening/softening function. The curve is able to be parameterized
using two parameters.

In addition to the hardening rules, the damage evolution equations are also parameterized.

The compressive damage, Dc, is assumed to be a linear function of the inelastic strain

through a compressive damage rate parameter, m:

Dc

(
ε̄in
)

= ε̄inm (2.79)

46



The tensile damage (Dt) evolution is slightly less trivial, but can also be characterized by

a single parameter due to some constraints imposed on the function by the nature of the

damage parameter. In tension, the damage evolution curve starts at the origin and asymp-

totically approaches Dt = 1 as ε̄ck → ∞. As such, under this functional assumption, the

only parameter required to describe this relationship is the tensile damage rate parameter,

n:

Dt

(
ε̄ck
)

= 1− 1

[1 + ε̄ck]n
(2.80)

Sample damage evolution curves for both tension and compression are illustrated in Fig

2.16, where one can see that the rate at which the tensile damage evolves is far larger

than the rate at which the compressive damage evolves. The combination of the elastic

parameters, the hardening rule parameters, and the damage evolution parameters, yield

a total of 11 parameters that must be identified by experiments or through up-scaling to

define the behavior of CDM model.

Figure 2.16: Tensile and compressive damage evolution curves.

At this point, there are some parameter constraints for the damage evolution that need

to be considered for numerical stability. In this model, the damage curves are specified in

47



terms of inelastic strain and cracking strain which need to be converted into plastic strain

for the analysis. The inelastic and cracking strains represent the same strain component

but refer to compression and tension respectively. This inelastic/cracking strain can be

considered as the theoretical plastic strain given that the material is in an undamaged

state. The conversion from inelastic/cracking strain to plastic strain is a function of the

damaged state at every increment and can be expressed as:

ε̄plc = ε̄in − Dc

1−Dc

σiyc
E

(2.81)

ε̄plt = ε̄ck − Dt

1−Dt

σiyt
E

(2.82)

The numerical issues with this formulation arise due to the fact that it is very possible for

the converted plastic strain to not be monotonically increasing with respect to the tensile

damage. By having a damage evolution curve with a sufficiently steep slope, such that the

second term in (2.81) increases faster than the first term, it becomes mathematically pos-

sible to have decreasing and/or negative plastic strains in the damage evolution definition.

As such, the following conditions are applied to constrain the damage evolution to always

yield monotonically increasing plastic strains as damage increases:

dε̄plc
dDc

> 0 (2.83)

dε̄plt
dDt

> 0 (2.84)

For the compressive damage evolution, (2.79) is substituted into (2.81) to get the following

expression of plastic strain as a function of the compressive damage rate parameter:

ε̄plc = ε̄in − Dc

1−Dc

σiyc
E

(2.85)

Combining (2.85) and (2.83) yields the following expression governing the stability limit

for the compressive damage rate parameter:

48



m <
σiyc + 2Eε̄in −

√
σiyc
[
σiyc + 4Eε̄in

]
2E [ε̄in]2

(2.86)

However, since this upper bound for m is functional on several of the parameterization

parameters, which are not constant, the upper bound varies depending on the other input

parameters. Because of this, a compressive damage scaling factor, dc, is introduced. In

addition, the upper bound for m is dependent on the inelastic strain which is not constant

throughout the model. Since only one value of m can be specified for a given simulation,

the chosen value of m should be the smallest value over the range of the expected inelastic

strain experienced. As can be seen from (2.86), as ε̄in → ∞, m → 0 such that for very

large inelastic strains the conversion to plastic strain becomes very unstable. Thus, the

compressive damage rate parameter can be written as:

m = dc min
ε̄in

σ
iy
c + 2Eε̄in −

√
σiyc
[
σiyc + 4Eε̄in

]
2E [ε̄in]2

 (2.87)

where the compressive damage scaling factor has the following limits:

0 < dc < 1 (2.88)

The tensile damage evolution curve has the same numerical constraints when converting

form cracking strain to plastic strain. Substituting (2.80) into (2.81) yields the following

expression for the plastic strain:

ε̄plt = ε̄ck −
[[

1 + ε̄ck
]n − 1

] σiyt
E

(2.89)

Solving for n with (2.83) and (2.89) yields the following inequality governing the upper

bound of the tensile damage rate parameter:

n <

W

(
E[ε̄ck+1]

σiy
t

ln
[
ε̄ck + 1

)]
ln [ε̄ck + 1]

(2.90)

49



where W (x) is the Lambert W function defined implicitly as [Corless et al., 1996]:

x = W (x) eW (x) (2.91)

Using the same methodology as was used to derive (2.87) in compression, the tensile damage

scaling factor can be written as:

n = dt min
ε̄ck


W

(
E[ε̄ck+1]

σiy
t

ln
[
ε̄ck + 1

])
ln [ε̄ck + 1]

 (2.92)

Where the tensile damage scaling factor has the following limits:

0 < dt < 1 (2.93)

The goal of the parameter estimation module, is therefore to estimate the 11 parameters

χ = {E, ν, ψ,Kc, φ, ε, σ
iy
c , σ

p
c , ε

p
c , dc, dt}, which are summarized in Table 2.2.

Table 2.2: Parameters for Damage-Plasticity Model for Quasi-Brittle Materials

Parameter Type Name Symbol

Elastic
Young’s Modulus E
Poisson’s Ratio ν

Plastic

Flow Rule
Dilation Angle ψ

Flow Eccentricity ε

Yield Function
Second Stress Invariant Ratio Kc

Initial Equibiaxial Stress Ratio f0

Hardening Rule
Initial Compressive Yield Strength σiyc
Peak Compressive Yield Strength σpc
Strain at Peak Compressive Yield εpc

Damage
Compressive Compressive Damage Scaling Factor dc

Tensile Tensile Damage Scaling Factor dt

50



Chapter 3

Framework Implementation

The software that I developed for the implementation of this up-scaling framework is

called ”Modular autOmated Up-Scaling softwarE” (MOUSE). MOUSE for DEM simula-

tions was created and written in PythonTM to provide an implementation of the up-scaling

framework presented in the previous chapter using in house and third-party software mod-

ules. Additionally, I also developed the homogenization software, Homogenization Of

DEM Simulations (HODS) to be used as the homogenization module. The MOUSE soft-

ware itself aims to provide a platform through which the four software elements of the up-

scaling framework (DEM, homogenization, parameter estimation, and macroscale model)

can communicate with each other. The communication is facilitated by MOUSE through

modules which wrap the third party software in such a way that the I/O routines to and

from the modules are performed in a consistent way regardless of the third party software

being used.

This chapter of the thesis aims to provide a very high level overview of the key aspects of

the MOUSE and HODS software implementations. The programmatic structure of some

of the important software components is presented to illustrate the software design, but a

complete discussion on the construction of all the specific wrappers is beyond the scope of

the discussion in this chapter. The modular implementation of MOUSE is summarized by

Figure 3.1

The goal of the up-scaling framework implementation is that it is model independent. So,

MOUSE was written in such a way that allowed for different models (both DEM and

macroscale) to be implemented without rewriting the up-scaling algorithms. As such, a

51



Figure 3.1: MOUSE module implementation schematic. The DEM software, UDECTM,
produces a data set which is run through homogenization software, HODS,
which in turn produces another dataset that is fed into the parameter estima-
tion program, OSTRICHTM. This parameter estimation program drives the
macroscale simulations in ABAQUSTM iteratively in order to find an optimal
parameter set for the fitted model.

52



modular approach was taken such that each module is isolated from the others and only

communicates data through strict protocols set out by MOUSE.

There exist four base classes that are used as parents to the third-party software module

classes. Because each software component has distinct I/O protocols, the base classes

serve as a collection of useful methods which the software module can inherit to ensure

compatibility with MOUSE. Each of these four component base classes inherit from a base

module class. Figure 3.2 indicates this class hierarchy, as well as, where each method and

attribute definition falls in the hierarchy.

3.1 Software Module Format

A base module class, BaseModuleClass, is implemented to provide a framework con-

taining required methods and attributes for the MOUSE modules to inherit. The module

class contains methods pertaining to I/O routines associated with the module so that each

module that is written behaves in a consistent manner and to avoid reimplementation of

certain methods.

3.1.1 Attributes

Attributes are assigned to BaseModuleClass through the constructor method ( init )

when the class is initialized. The following attributes are passed as arguments through

instantiation of the class children.

The program attribute is a string that contains the name of the software executable

associated with the given module. This parameter allows the module the capacity to run

the program through a Command Line Interface (CLI) As such, the program must be able

to accept command line arguments.

#S t r i n g c o n t a i n i n g name o f module s o f t w a r e e x e c u t a b l e f i l e .

s e l f . program = program

The parameters attribute is a dictionary that contains all the command line parameters

and corresponding arguments. Here, the parameters are the dictionary keys and the argu-

ments are the dictionary values. If no arguments are required, then an empty dictionary

is acceptable as well.

53



F
ig

u
re

3.
2:

M
o
d
u
le

cl
as

s
in

h
er

it
en

ce
st

ru
ct

u
re

.

54



#Dict ionary o f command l i n e parameters and corresponding

arguments

s e l f . parameters = parameters

The supressText and supressErrors attributes are Boolean parameters that, when true,

allow for the suppression of command line output of text and errors, respectively.

#Boolean parameter t h a t a l l o w s t e x t output to CMD to be supres sed

s e l f . suppressText = suppressText

#Boolean parameter t h a t a l l o w s e r r o r s to be supres sed

s e l f . suppre s sEr ro r s = suppre s sEr ro r s

The binaryDirectory and textDirectory attributes are strings that refer to file folders

in which the binary and text data are to be saved, respectively. These values are determined

through relative directory parsing, rather than as an initialization argument.

#S t r i n g t h a t i n d i c a t e s where to s t o r e the b inary data

s e l f . b inaryDi r ec to ry = os . path . j o i n ( dataDirectory , ’ Binary ’ )

#S t r i n g t h a t i n d i c a t e s where to s t o r e the t e x t data

s e l f . t ex tD i r e c to ry = os . path . j o i n ( dataDirectory , ’ Text ’ )

3.1.2 Defined Methods

Methods in BaseModuleClass are divided into two types: defined and undefined. Defined

methods are methods that are common to all the module classes and are thus able to be

defined at the parent level. The undefined methods are methods that require overloading,

so they are defined at the child level.

The init method is a built-in constructor method that is automatically called when

the class is initialized. The only required argument for this method is parameter, with

the other three being optional arguments.

55



#Contructor method t h a t i s c a l l e d when the c l a s s i s i n i t i a l i z e d

def i n i t ( s e l f , program , parameters ={} , suppressText=False ,

suppre s sEr ro r s=True ) :

”””

program : s t r i n g o f program name

parameters : d i c t i o n a r y o f parameter−argument p a i r s

suppressText : boo lean

suppressErrors : boo lean ”””

A series of printing methods are included in BaseModuleClass to allow each module to

route command line output through the parent module for consistent output formatting.

The printText, printTitle, printSection, printStatus, printDone, and printErrors

methods are implemented to give a large degree of flexibility in the displayed output.

#Method to p r i n t t e x t to command l i n e i f t e x t s u p r e s s i o n i s o f f

def pr intText ( s e l f , t ex t ) :

”””

t e x t : s t r i n g o f t e x t to p r i n t ”””

#Method to format primary t i t l e in command l i n e output

def p r i n t T i t l e ( s e l f , t i t l e ) :

”””

t i t l e : s t r i n g o f primary t i t l e to p r i n t ”””

#Method to format s e c t i o n t i t l e in command l i n e output

def p r i n t S e c t i o n ( s e l f , s e c t i o n ) :

”””

s e c t i o n : s t r i n g o f s e c t i o n t i t l e to p r i n t ”””

#Method to format s t a t u s update in command l i n e output

def pr in tS ta tu s ( s e l f , s t a t u s ) :

”””

s t a t u s : s t r i n g o f s t a t u s to p r i n t ”””

56



#Method to p r i n t ’Done ’ when s e c t i o n i s f i n i s h e d

def printDone ( s e l f ) :

”””

”””

#Method to c o n t r o l and p r i n t e r r o r s i f e r ror s u p r e s s i o n i s o f f

def p r i n t E r r o r s ( s e l f , e r r o r ) :

”””

error : e r ror to p r i n t ”””

The saveData and loadData methods use binary serialization methods to write and load

specified data structures to and from file. Saving and loading serialized binary data is

much faster and more compact than unicode.

#Method to save s e r i a l i z e d data s t r u c t u r e s as output

def saveData ( s e l f , data ) :

”””

data : Data format s p e c i f i e d by module type ”””

#Method to load s e r i a l i z e d data s t r u c t u r e s as input

def loadData ( s e l f ) :

”””

”””

The updateParameters method allows for the dynamic updating of module input pa-

rameters. This allows for the module to run the program multiple times without being

re-instantiated.

#Method t h a t a l l o w s dynamic updat ing o f parameters .

def updateParameters ( s e l f , parameters ) :

”””

parameters : d i c t i o n a r y o f parameter−argument p a i r s ”””

The commandLineArguments method takes the parameters dictionary attribute and

converts it to a string which can be passed to the command line when running the specified

program.

57



#Method to c r e a t e a s t r i n g o f command l i n e arguments from

parameters

def commandLineArguments ( s e l f ) :

”””

”””

The run method simply runs the specified program with the specified parameters.

#Method to run the program with the s p e c i f i e d parameters

def run ( s e l f ) :

”””

”””

3.1.3 Undefined Methods

The undefined methods listed here are required to be defined in the child classes. These

methods are different for each type of module or even each module implementation, which

does not allow them to be written in baseModuleClass.

The createArgumentParser method creates an argument parser that allows the module

to parse any command line arguments passed to it if the module is run in an isolated

environment, While the parseArguments method parses the command line arguments

derived from createArgumentParser.

#Creates a module s p e c i f i c argument parser s p e c i f i c to a l l o w the

module to run independant l y

def createArgumentParser ( s e l f ) :

”””

”””

#Parses the command l i n e arguments passed to the module

def parseArguments ( s e l f ) :

”””

”””

58



The inputFileName and outputFileName methods provide the formatting for the file

names in a means that is consistent amongst modules.

#Name of input f i l e

def inputFileName ( s e l f ) :

”””

”””

#Name of output f i l e

def outputFileName ( s e l f ) :

”””

”””

The final two undefined methods parseInput and formatOutput are provided by the

software specific modules. These two methods act as wrappers for the software by manipu-

lating the MOUSE inputs into input files for the specified programs as well as manipulating

the software output to a form which is consistent with the MOUSE data architecture.

#c o n v e r t s MOUSE input to input f i l e s accep ted by the s o f t w a r e

def parseInput ( s e l f ) :

”””

”””

#c o n v e r t s module s o f t w a r e output to MOUSE c o n s i s t e n t data

s t r u c t u r e s

def formatOutput ( s e l f ) :

”””

”””

3.2 Data Architecture

This section aims to explain the data structures used to store and transfer data between

the modules in the up-scaling framework presented in this thesis. Three fundamental data

structures are used for the storage of data in conjunction with each other: hash tables,

lists, and arrays. Using these three structures, three distinct types of data in the up-scaling

59



framework are used to transfer between the modules in a consistent manner: constitutive

parameters, DEM data, and continuum data.

Python Lists

The list in PythonTM is one of the most versatile data structures. The list treats the

data as a sequence such that each element in the list is assigned a number referring to its

position or index. The implementation of the list structure in python contains a number of

unique features. The main feature of python lists is that the elements within the lists are

not required to be of the same data type. Additionally, these lists are mutable, allowing

for more advanced manipulation of the data structure. Because of this flexibility, the list

structure is slow and can be unsuitable for large data sets.

Numpy Arrays

Numpy arrays are a specific implementation of a PythonTM list which are optimized for

numerical operations on large datasets. Here the numpy arrays are much more compact

by using a sequence of uniform values, rather than a sequence of pointers as is the case for

the list structure.

Python Dictionaries (Hash Tables)

In general, a hash table is a data structure that maps keys to values. The implementation

of hash tables in PythonTM, are referred to as dictionaries. Similar to a PythonTM list, a

PythonTM dictionary is a mutable structure that does not require the elements to be of the

same type. However, instead of accessing the element value through an index argument,

the data is accessed through a key argument. This unordered structure is useful for storing

non-sequential data.

3.2.1 Data Storage Structures

Three distinct types of data are used in the information transfer protocols between modules:

constitutive parameter data, DEM data, and continuum data. These different types of data

60



require different data structures which are explained in more detail below. The constitutive

parameter data is stored in a hash table, the DEM data is stored in a three level nested

hash table, and the continuum data is stored in a list of arrays.

Hash Tables for Constitutive Parameters

Constitutive parameters are required as an input to the DEM and macroscale modules as

well as an output from the parameter estimation module. Here, the constutive parame-

ters are always stored in a PythonTM dictionary with the constitutive parameter name as

the key. To access the value of a specific constitutive parameter in a dictionary named

’constitutiveParameters’, the value corresponding to any parameter name can be accessed

by:

parameterValue = cons t i tu t i v eParamete r s [ parameterName ]

For example, accessing the value of the elastic modulus from a hash table named ’consti-

tutiveParameters’ is performed as follows:

e l a s t i cModu lus = cons t i tu t i v eParamete r s [ ’ e l a s t i cModu lus ’ ]

Nested Hash Tables for DEM Data

The raw DEM Data is considered to be comprised of six distinct types: block data, contact

data, corner data, domain data, grid point data, and zone data. Here, each block, con-

tact, corner, domain, grid point, and zone is assigned a unique 7-digit numeric identifier

(assuming here that the number of components in the system does not exceed 10 million)

by which the associated data can be accessed. The same identifier may be repeated for

different data types.

To allow for convenient access to the data, the DEM data is stored in six distinct nested

hash tables corresponding to each of the DEM data types. Each DEM data hash table

has three levels of nesting. The first level keys are the simulation times, which returns

the second level of hash tables. The second level keys are the component identifiers,

which returns a third level hash table. In this third level, the component attributes can be

accessed using the attribute name as the key. In general, accessing an attribute of a specific

61



component with a given ID at a specific time from a hash table called demDataHash is

done as follows:

componentAttributeValue = demDataHash [ time ] [ ID ] [ a t t r i b u t e ]

For example, accessing the list of grid points associated with block ID 2543465 at a simu-

lation time of 1.0 is performed as follows:

g r idPo in t s = blockData [ 1 . 0 ] [ 2 5 4 3 4 6 5 ] [ ’ g r i dPo in t s ’ ]

The keys of each of the third level dictionaries for each component are presented in Table

3.1, Table 3.2, Table 3.3, Table 3.4, Table 3.5, and Table 3.6 for the block data, contact

data, corner data, domain data, gridpoint data, and zone data, respectively.

Table 3.1: Block data attributes in third level hash

Parameter Description (Data Type)

x X coordinate of block centroid (float)
y Y coordinate of block centroid (float)

xForce Resultant forces at block centroid (float)
yForce Resultant forces at block centroid (float)
corners Corners associated with this block (list of corner IDs)
zones Zones associated with this block (list of zone IDs)

gridPoints Grid points associated with this block (list of corner IDs)

Nested List of Arrays for Continuum Data

The continuum data is stored in three lists: a normal list and two nested lists of arrays.

The three lists contain the time data, stress data, and strain data. The time data is in the

normal list, with each element representing a different time step. The other two lists contain

two-dimensional nested arrays representing the stress and strain tensors respectively. Each

array element within these lists represents the stress or strain tensors for the corresponding

time step.

62



Table 3.2: Contact data attributes in third level hash

Parameter Description (Data Type)

x X coordinate of contact point (float)
y Y coordinate of contact point (float)

length Length associated with contact point (float)
flowRate Fluid flow rate through contact (float)
nForce Resultant normal force on contact (float)
sForce Resultant shear force on contact (float)

xCosine X component of contact normal cosine (float)
yCosine Y component of contact normal cosine (float)
blocks Blocks associated with this contact (list of block IDs)

domains Domains associated with this contact (list of domain IDs)
corners Corners associated with this contact (list of corner IDs)

Table 3.3: Corner data attributes in third level hash

Parameter Description (Data Type)

gridPoint Grid points associated with this corner (list of grid point IDs)

Table 3.4: Domain data attributes in third level hash

Parameter Description (Data Type)

x X coordinate of domain centroid (float)
y Y coordinate of domain centroid (float)

area Area of domain (float)
porePressure Average pore pressure in the domain (float)

3.2.2 Binary Serialization

These data structures mentioned above are great for efficiently accessing the desired data,

but cannot easily be saved to file in standard unicode. In the event that this is possible,

formatting and parsing large data sets from text files is slow and increases the possibility

of data corruption. To speed up the data access and increase the integrity of the data,

binary serialization is employed.

63



Table 3.5: Gridpoint data attributes in third level hash

Parameter Description (Data Type)

x X coordinate of grid point (float)
y Y coordinate of grid point (float)

xDisp X displacement of grid point (float)
yDisp Y displacement of grid point (float)
xForce Resultant X force on grid point (float)
yForce Resultant Y force on grid point (float)
xVel X velocity of grid point (float)
yVel Y velocity of grid point (float)
block Block associated with this grid point (block ID)
corner Corner associated with this grid point (corner ID)

Table 3.6: Zone data attributes in third level hash

Parameter Description (Data Type)

S11 X component of stress in the zone (float)
S22 Y component of stress in the zone (float)
S12 Corresponding shear stress in the zone (float)

block Block associated with this zone (block ID)
gridPoints Grid points associated with this grid point (list of block IDs)

Binary serialization stores the state of any given object by converting the public and private

fields of the class to a stream of bytes, which is then written to the data stream. This

data stream can easily be written to a binary file and subsequently read at any later date.

The deserialization of this data stream takes the stream of bytes and reconstructs an exact

clone of the original object whenever it is required. This method is useful when attempting

to store large non-linear data structures to file.

3.3 Third Party Software Modules

Four software modules are required for the MOUSE software to be functionally complete.

The DEM software, parameter estimation software, and macroscale modules were devel-

64



oped by wrapping third-party software in PythonTM scripts. However, commercial homog-

enization software does not exist, so an in-house homogenization software (HODS) was

created and implemented into the homogenization module.

Some of these module implementations are non-trivial and require a substantial amount of

code to properly parse the output files and format the input files. In the interest of brevity,

the majority of the details of these implementations have been omitted.

For the DEM module, the commercial software UDECTM was used. Here, the binary output

from the software was unable to be parsed easily without knowing the data structure of

the serialization method or having access to an Application Program Interface (API). As

such, a cycling script, using the built-in scripting language, FISH, was written to write the

simulation data to text file as the simulations are running. These text files are subsequently

consolidated and parsed with the PythonTM wrapper to create a data file that is consistent

with the MOUSE architecture.

The homogenization module, as previously stated, was written in-house as a 2D homoge-

nization code, HODS. This development meant that full control over the I/O routines was

possible. As such, the software was able to be directly written as a module with the exact

same data structures to avoid and parsing and formatting issues.

The parameter estimation module was implemented using OSTRICHTM software, a model

independent optimization software toolkit. Here, this parameter estimation module it-

eratively generates input parameters for the macroscale model in order to converge on

a solution. The module accepts writes the DEM data and FEA data to text files for

the OSTRICH program to read in. Here, multiple different optimization algorithms are

implemented and easy to switch between.

The macroscale module was implemented using the commercial FEA software, ABAQUSTM.

Similarly to the DEM module, an internal script had to be written to describe the consti-

tutive relationships as well as write the simulation data to text file since no API exists to

parse the output binary data file. Subsequent to the simulation completion, the PythonTM

wrapper converts the text to the appropriate MOUSE format to be used in the parameter

estimation module.

65



3.4 HODS Homogenization Software

Since no commercial homogenization software exists, a code is developed here to integrate

into the homogenization module. The Homogenization Of DEM Simulations (HODS)

software implements the stress and strain homogenization algorithms described in the

previous chapter.

This section aims to describe the implementation of the homogenization algorithms in the

HODS software. The main software is comprised of a single class, in which both the stress

and the strain homogenization calculations are conducted. The instantiation of this class

requires the subdomain location and radius, and the file containing the DEM binary data

(the constructor function is also overloaded to be able to parse text files as well in the case

that the binary files do not exist or are somehow corrupted). Once the class is instantiated,

the homogenization boundaries are defined based on the subdomain radius and location.

The homogenization algorithms can then be applied to this subset of the DEM data when

requested. It is possible to modify the input parameters and rerun the homogenization

algorithms in this implementation without re-instantiating the class. This structure makes

efficient use of the memory when running multiple homogenization inquiries when trying

to assess the REV. Some of the relevant attributes and methods used to implement the

homogenization algorithms are presented below.

The class methods have been (roughly) divided into two subsets in order to clarify the

process a bit more: data methods and homogenization methods. The data methods are

methods that are used to manipulate or retrieve data while the homogenization methods

are methods that are used to perform the actual homogenization calculations and return

the resultant homogenized DEM results. This is not a complete, nor comprehensive list of

the methods used in the implementation, but illustrate the structure of the software.

3.4.1 Class Attributes

There are three main subsets of class attributes used for the HODS class in this imple-

mentation. The first subset of attributes contains the subdomain parameters, centre and

radius, which completely define a circular subdomain. In the case that the specified cir-

cular subdomain does not fully intersect with the full domain, the subdomain is chosen to

66



be the intersection of these two areas. That being said, it is not recommended to specify

such a subdomain as the influence of boundary effects will be large.

s e l f . c en t r e = cent r e

s e l f . r ad iu s = rad iu s

An additional set of class attributes, blockData, contactData, cornerData, zoneData,

gridPointData, and domainData, contain their respective DEM data in nested hash

tables as described above. Here, the data is loaded from a parseDataFile method, which

is called in the overloaded constructor method to parse the DEM data from text files

instead of binary data. The functionality of this method is explained in more detail below.

s e l f . blockData = s e l f . parseDataFi l e ( blockFileName )

s e l f . contactData = s e l f . parseDataFi l e ( contactFileName )

s e l f . cornerData = s e l f . parseDataFi l e ( cornerFileName )

s e l f . zoneData = s e l f . parseDataFi l e ( zoneFileName )

s e l f . gr idPointData = s e l f . parseDataFi l e ( gr idPointFi leName )

s e l f . domainData = s e l f . parseDataFi l e ( domainFileName )

The third subset of attributes below relates to the definition of the homogenization bound-

ary. These attributes represent the algorithmic steps required to define the homogenization

domain as discussed in Chapter 3. Though perhaps not strictly necessary for these param-

eters to be class attributes, it becomes useful to retain these steps in the class memory to

be recalled for plotting to verify and debug the algorithms for assessing the homogenization

domain.

s e l f . boundaryBlocks = s e l f . blocksOnBoundary ( )

s e l f . i n s i d e B l o c k s = s e l f . b locksIns ideBoundary ( )

s e l f . ou t s ideB locks = s e l f . blocksOutsideBoundary ( )

s e l f . ins ideBoundaryBlocks = s e l f . boundaryBlocks + s e l f .

i n s i d e B l o c k s

s e l f . boundaryContacts = s e l f . contactsBetweenBlocks ( s e l f .

outs ideBlocks , s e l f . boundaryBlocks )

s e l f . boundaryContactCorners = s e l f . cornersOnContacts ( s e l f .

boundaryContacts )

s e l f . boundaryContactBlocks = s e l f . blocksWithContacts ( s e l f .

boundaryBlocks , s e l f . boundaryContacts )

67



s e l f . out s ideCorner s = s e l f . cornersOutsideBoundary ( )

s e l f . outs ideContact s = s e l f . contactsOutsideBoundary ( )

s e l f . boundaryBlockCorners = s e l f . cornersOnBlocks ( s e l f .

boundaryContactBlocks )

s e l f . boundaryCorners = common . l i s t I n t e r s e c t i o n ( s e l f .

boundaryContactCorners , s e l f . boundaryBlockCorners )

s e l f . a l lBoundaryCorners = s e l f . boundaryCorners

s e l f . boundaryBlocksOrdered = s e l f . o rderBlocks ( s e l f .

boundaryContactBlocks , s e l f . outs ideContact s )

s e l f . boundaryCornersOrdered = s e l f . orderCorners ( s e l f .

boundaryBlocksOrdered , s e l f . a l lBoundaryCorners )

3.4.2 Class Data Methods

These data methods are class methods that are primarily used to manipulate and retrieve

the DEM data. The constructor method, init , here requires 8 parameters to properly

be instantiated: centre, radius and the 6 nested hash tables containing the DEM data.

Additionally, the constructor method is overloaded to be able to parse the raw DEM data

from text files.

#Constructor method

def i n i t ( s e l f , centre , rad ius , blockData , contactData ,

cornerData , zoneData , gridPointData , domainData ) :

”””

c e n t r e : c e n t r e o f subdomain to be homogenized

r a d i u s : r a d i u s o f subdomain to be homogenized

b lockData : Nested hash t a b l e o f b l o c k data

contactData : Nested hash t a b l e o f c o n t a c t data

cornerData : Nested hash t a b l e o f corner data

zoneData : Nested hash t a b l e o f zone data

gr idPointData : Nested hash t a b l e o f g i r d p o i n t data

domainData : Nested hash t a b l e o f domain data ”””

68



#Overloded c o n s t r u c t o r method

def i n i t ( s e l f , centre , rad ius , f i leName ) :

”””

c e n t r e : c e n t r e o f subdomain to be homogenized

r a d i u s : r a d i u s o f subdomain to be homogenized

f i leName : p r e f i x o f f i l e s t h a t conta in \ a c r s h o r t {
dem} data ”””

The parseDataFile method takes a raw DEM text data file and returns a triple level

nested hash table. Here the first column of the text data file is specified to be simulation

time and the second column is the component ID. These two columns represent the first

two levels of hash keys. For the third level hash keys, the remaining column headers are

used.

#Method to parse the \ a c r s h o r t {dem} raw t e x t f i l e s .

def parseDataFi l e ( s e l f , f i leName ) :

”””

fi leName : Name o f f i l e t h a t con ta ins \ a c r s h o r t {dem}
data ”””

return data

The following series of methods are implemented here in order to provide the capacity to

find the relational influence of different DEM components.

#Finds the l i s t o f c o n t a c t s t h a t are between the two s e t s o f

b l o c k s

def contactsBetweenBlocks ( s e l f , b locks1 , b locks2 ) :

”””

b l o c k s 1 : l i s t o f b l o c k IDs

b l o c k s 2 : l i s t o f b l o c k IDs ”””

return contac t s

#Finds the l i s t o f b l o c k s t h a t conta in the s p e c i f i e d c o n t a c t s

def blocksWithContacts ( s e l f , b locks , contac t s ) :

”””

b l o c k s : l i s t o f b l o c k IDs

c o n t a c t s : l i s t o f c o n t a c t IDs ”””

69



return newBlocks

#Finds the l i s t o f b l o c k s t h a t conta in the s p e c i f i e d corners

def blocksWithCorners ( s e l f , b locks , c o rne r s ) :

”””

b l o c k s : l i s t o f b l o c k IDs

corners : l i s t o f corner IDs ”””

return newBlocks

#Orders the b l o c k s in a c l o c k w i s e f a s h i o n .

def orderBlocks ( s e l f , b locks , r e lContac t s ) :

”””

b l o c k s : l i s t o f b l o c k IDs

r e l C o n t a c t s : l i s t o f c o n t a c t IDs ”””

return orderedBlocks

#Orders the corners in a c l o c k w i s e f a s h i o n

def orderCorners ( s e l f , orderedBlocks , c o rne r s ) :

”””

orderedBlocks : l i s t o f b l o c k IDs

corners : l i s t o f corner IDs ”””

return orderedCorners

Additionally, the following set of methods relate to describing the homogenization bound-

ary given a circular subdomain. These methods use the already defined class attributes

(radius, centre, DEM hash tables) to perform the search rather than by passing argu-

ments.

#Finds a l l the b l o c k s i n t e r s e c t i n g the c i r c u l a r subdomain

def blocksOnBoundary ( s e l f ) :

”””

”””

return b locks

#Finds a l l the b l o c k s o u t s i d e o f the c i r c u l a r subdomain

def blocksOutsideBoundary ( s e l f ) :

”””

”””

70



return b locks

#Finds a l l the b l o c k s i n s i d e the c i r c u l a r subdomain

def blocksIns ideBoundary ( s e l f ) :

”””

”””

return b locks

#Finds a l l the corners o u t s i d e o f the c i r c u l a r subdomain

def cornersOutsideBoundary ( s e l f ) :

”””

”””

return co rne r s

#Finds a l l the corners i n s i d e the c i r c u l a r subdomain

def corners Ins ideBoundary ( s e l f ) :

”””

”””

return co rne r s

#Finds a l l the c o n t a c t s o u t s i d e the c i r c u l a r subdomain

def contactsOutsideBoundary ( s e l f ) :

”””

”””

return contac t s

#Finds a l l the c o n t a c t s i n s i d e the c i r c u l a r subdomain

def contacts Ins ideBoundary ( s e l f ) :

”””

”””

return contac t s

3.4.3 Class Homogenization Methods

The calculateHomogenizationParameters method implements the algorithm for as-

sessing the homogenization domain and boundary. This method is called by the construc-

tor function after the DEM data is loaded to calculate the homogenization boundary and

71



associated parameters. When the subdomain parameters are modified, this method is

called again in order to update the homogenization domain. The parameters calculated in

this method are used in both the stress and the strain homogenization alogirithms, and

are thus stored as class attributes to be accessed by the stress and strain methods.

#C a l c u l a t e s homogenizat ion boundary and homogenizat ion parameters

def ca lcu lateHomogenizat ionParameters ( s e l f ) :

”””

”””

The stress and strain methods are where the majority of the homogenization algorithms

are implemented. These methods can be copmutationally expensive if the dataset is suf-

ficiently large, and thus don’t run automatically upon instantiation. These methods can

be called independently and at any time the class is alive. When these classes are called,

the homogenization algorithms are run and a nested list of homogenized tensor arrays are

returned, in accordance with the MOUSE data architecture.

#C a l c u l a t e s and r e t u r n s a nes ted l i s t o f s t r e s s t e n s o r s

def s t r e s s ( s e l f ) :

”””

”””

return s t r e s s H i s t o r y

#C a l c u l a t e s and r e t u r n s a nes ted l i s t o f s t r a i n t e s n o r s

def s t r a i n ( s e l f ) :

”””

”””

return s t r a i n H i s t o r y

The time method simply returns a list of time steps corresponding with each of the ho-

mogenized stress and strain tensors. Again, this format is consistent with the MOUSE

architecture.

#Returns a l i s t o f s i m u l a t i o n t i m e s t e p s

def time ( s e l f ) :

”””

”””

72



return t imeHistory

73



Chapter 4

Verification and Application

In this chapter, two-dimensional DEM models are used to demonstrate the effectiveness

of the up-scaling methodology. The framework is validated using three tests: 1) The

homogenized stress and strain behaviour obtained from the DEM microscale response are

compared to that of the macroscale response. This test verifies the effectiveness of the

parameter estimation module and the ability of the chosen macroscale constitutive model

to capture the salient features of NFR behaviour. 2) The homogenization and parameter

estimation algorithms are rerun using the same data, but with different REV sizes to

investigate the REV size effect has on the resultant parameter set. 3) Slope stability

analyses carried out by both Direct Numerical Simulation (DNS) with a DEM model and

with an up-scaled macroscale model are compared. This last test verifies the whole up-

scaling methodology.

The up-scaling is conducted by running a series of four quasi-static DEM virtual ’triaxial’

compression tests under different confining stresses. These are not true triaxial tests as

simulations are in 2D, but illustrate the method regardless. Algorithms are rerexecuted

using different REV sizes to determine an appropriate REV size. In a macroscopically

homogenous domain, as the REV size increases, the parameter values will converge to a

single value, when the REV is too small, local heterogeneities induce a variance into the

optimal parameter set.

74



4.1 DEM Simulations

The DEM models used consist of a pseudo-random isotropic fracture network defined by

a Voronoi tessellation. The average block size is specified to be 0.5m using 20 iterations of

Lloyd’s method [Lloyd, 1982] in order to achieve an even size distribution. A 10m x 10m

domain was determined to be sufficiently large to represent the rock mass behaviour as an

REV.

A Mohr-Coulomb plasticity model was used as the constitutive model to describe the plastic

behaviour of the intact (deformable blocks) and the joint (natural fracture) behaviour was

governed by a Coulomb area slip model. The parameters for the rock and joints summarized

in Table 4.1 are representative of a fractured granitic rock mass. The joints are relatively

weak compared to the blocks, so the blocks behave mostly elastically.

Table 4.1: Rock and joint properties for DEM Simulations

Property Type Property Value

Rock

Young’s Modulus 65GPa
Poisson’s Ratio 0.2

Density 2.7g/cm3

Friction Angle 51◦

DilationAngle 0◦

Cohesion 55.1MPa
Tensile Strength 11.7MPa

Joint

Friction Angle 32◦

Dilation Angle 5◦

Cohesion 100kPa
Tensile Strength 100kPa
Normal Stiffness 10GPa/m
Shear Stiffness 1GPa/m

The blocks are meshed with linear three-node triangular plane strain finite difference ele-

ments with an average side length of 0.5m. This discretization yielded 5-10 zones within

each block. A rounding length of 10% of the average block edge length (0.05m) is applied

to the blocks to prevent numerical instabilities in the contact algorithm. Quasi-static anal-

ysis is obtained through dynamic relaxation, in which the dynamic equations are integrated

75



in time using velocity-proportional viscous damping and mass scaling. State data of the

model is collected at 50 evenly spaced intervals.

The quasi-static loading of the DEM simulations is intended to imitate triaxial laboratory

tests, so a constant confining stress was applied on the lateral boundaries of the DEM

model. Loading is achieved by applying vertical displacements to the top boundary while

fixing the bottom boundary, compressing the model to a vertical strain of 5% for four con-

fining horizontal stresses: 0.5MPa, 1MPa, 2MPa, and 4MPa. These load paths capture

key physical phenomena including the pressure dependent yield of the NFR, hardening,

and the dependence of damage initiation on the triaxiality.

4.2 Verification of the Parameter Estimation Module

Using a PSO algorithm followed by an LMA optimization, the Drucker-Prager plasticity

model with ductile damage is then fitted to the homogenized DEM simulation data in

order to obtain an optimal parameter set. Each simulation is fit to 50 points defining the

homogenized stress-strain curve resulting in a total of 200 data points for all four DEM

simulations at different confining stresses. The PSO algorithm uses a swarm size of 24 for

100 generations which is found to be sufficient to converge to a consistent solution.

Here, the CDM model is confined laterally by the homogenized horizontal DEM stress and

vertical displacements are prescribed by the homogenized vertical DEM strain with the pa-

rameter estimation algorithms programmed to match the horizontal strain and the vertical

stress. Because of the large variation in observation magnitudes (between stress/strain

and from different confining stresses), each curve is weighted with a normalization factor

to prevent the large stress values from dominating parameter estimation. In addition, a

linear weighting scheme is applied to each curve to give larger influence to the loading

section and lesser influence to the post-damage section.

Parameter bounding limits are required by the optimization algorithms in order to limit

the search space. These limits are chosen based on two criteria: physical limitations

and numerical stability. If there exist physical limitations that prevent parameters from

exceeding certain values or if there exists a range of realistic values that the parameter

should not deviate from, then those physical limitations are specified as the bounds. In

other cases, the parameter bounds come from numerical limitations such that beyond a

76



certain capacity, certain parameter values would cause the simulations to become unstable.

In these cases, a combination of the two bounding methods is used. The specified bounding

limits for each parameter results can be seen in Table 4.2.

Table 4.2: Parameter estimation results for Drucker-Prager model with ductile damage

Parameter Sym-
bol

Units Lower
Bound

Upper
Bound

Opti-
mum

Young’s Modulus E GPa 1 25 1.8
Poisson’s Ratio ν 0.1 0.4 0.15
Dilation Angle ψ ◦ 5 15 22

Flow Stress Ratio K 0.78 1 0.81
Friction Angle β ◦ 45 60 56

Initial Compressive Yield Strength σiyc kPa 1 100 52
Peak Compressive Yield Strength σpc MPa 0.5 5 3.1
Strain at Peak Compressive Yield εpc % 0.5 5 1.7

Yield Strain at -0.5 Triaxiality ε̄plf−0.5
% 0.01 0.1 0.0078

Yield Strain at -0.6 Triaxiality ε̄plf−0.6
% 0.1 10 0.30

Plastic Displacement at Failure ūplf m 0.01 1 0.12

The stress-strain curves from the DEM simulations used for the parameter estimation

and the stress-strain curves of the CDM simulations using the optimal parameter set are

presented in Figure 4.1. The CDM fit is good with a Root-Mean-Square Error (RMSE)

of 1.03MPa and the pressure dependent yield function works well with this model as the

error is not biased to curves of a certain confining stress. This fit implies a strong likelihood

that the model will be valid under confining stresses outside of the range fitted. Also, the

damage initiation points at the peak of the curve are well correlated and indicate that

the triaxiality based damage initiation criterion is a good model for this problem. The

majority of the error in the curves is found in the post-yield behaviour. This error results

from limitations in the continuum constitutive model because the post-yield behaviour of

the DEM simulations is discontinuous in nature (stick-slip response). The CDM model

cannot accommodate for such oscillations and thus represents the post-yield response as

an average.

The optimal parameter set in Table 4.2 represents the constitutive response of the rock

mass. As expected, the elastic modulus of the rock mass (1.9GPa) is substantially less

77



Figure 4.1: Axial Stress-Strain curves of the monotonically loaded DEM simulations used
for estimating the Drucker-Prager CDM parameter set under different confining
stresses.

than the elastic modulus of the intact rock (65GPA) because of yielding in the joints.

Additionally, Poisson’s ratio of the rock mass (0.15) is less than Poisson’s ratio of the

intact rock (0.2) because of the compliance of the joints before yield, which limits the

lateral strain. After yielding however, substantial lateral strain is observed because of

dilation of the joints, resulting in a large dilation angle (22◦). This dilation response of

the rock mass is larger than the the prescribed joint dilation (5◦) because of block rotation

and geometry.

There are additional minor sources of error from the homogenization algorithms that do

not manifest themselves in this fitted relationship. In addition, if the REV is too small, it

78



introduces its error in the DEM data rather than in the fitted response. Furthermore, the

global fitting algorithms are not completely exhaustive, so it is possible they do not find the

actual globally optimal parameter set, potentially leading to some error. With the given

PSO parameters, up to 2400 sets of simulations are conducted for the global parameter

estimation, and replicate optimization trials with different random seeds tend to give results

within 1% deviation. This consistency and large search domain give confidence that the

estimated parameter set is the globally optimal set.

In addition to the loading response under the specified confining stresses, DEM simulations

under confining stresses of 3MPa, 6MPa, 8MPa and 10MPa are compared to the the

CDM model using the previously estimated parameter set to see how well the constitu-

tive behaviour is captured (Figure 4.2). These simulations demonstrate the interpolative

(3MPa) and extrapolative (6MPa, 8MPa and 10MPa) capacity of the fitted parameter

set, and indeed a strong fit is obtained (RMSE of 2.83MPa) for all confining stresses, with

the error being more prominent for larger degrees of strain.

4.3 Comparison of CDM Constitutive Models

Here, the results from the damage plasticity model for quasi-brittle materials are compared

to the results from the Drucker-Prager model with ductile damage presented above. Like

with the Drucker-Prager model, a PSO algorithm followed by an LMA optimization is

employed to fit the damage-plasticity model to the homogenized DEM simulation data

in order to obtain an optimal parameter set. Again, 200 data points for all four DEM

simulations are used and the PSO algorithm uses a swarm size of 24 for 100 generations.

Additionally, parameter bounding limits are again required by the optimization algorithms

in order to limit the search space. The specified bounding limits for each parameter results

can be seen in Table 4.3.

The benefit of the damage plasticity model for quasi-brittle materials used here is its

ability to differentiate between tensile and compressive damage, allowing for cyclic loading

to be more accurately modelled. However, the fitted curves in Figure 4.3 show that the

loading response is very poor for this material for larger confining stresses. The poor

fit is attributed to deficiencies in the contitutive model rather than the the optimization

algorithm becasue replicate optimization trials showed less than a 1% deviation. This

behaviour is somewhat expected as the constitutive relationship is formulated primarily

79



Figure 4.2: Axial Stress-Strain curves of the verification simulations for the fractured gran-
ite rock mass under different confining stresses for both the DEM simulations
and the fitted Drucker-Prager CDM simulations.

with uniaxial loading conditions considered. Unfortunately, without a successful match on

the loading curve, the cyclic modelling capacity of this model cannot be used effectively.

The interpolated and extrapolated curves show an expectedly poor fit (Figure 4.4).

The optimal parameter set in Table 4.3 compares well in some respects to the optimal

parameter set in Table 4.2. The estimated elastic modulus of the rock mass, compares

well, but Poisson’s ratio and dilation angle are quite different. Based on the fit and the

RMSE of the two fitted parameter sets, the discrepancy in parameter values shown by the

damage plasticity model can be attributed to the poor overall fit of the constitutive model

for the dataset.

80



Table 4.3: Parameter estimation results for damage-plasticity model for quasi-brittle ma-
terials

Parameter Sym-
bol

Units Lower
Bound

Upper
Bound

Opti-
mum

Young’s Modulus E GPa 1 25 1.4
Poisson’s Ratio ν 0.1 0.4 0.32
Dilation Angle ψ ◦ 5 15 5

Flow Eccentricity ε 0.05 0.5 0.11
Second Stress Invariant Ratio Kc 0.51 1 0.61

Initial Equibiaxial Stress Ratio f0 m 1.05 1.3 1.1
Initial Compressive Yield Strength σiyc kPa 1 100 28
Peak Compressive Yield Strength σpc MPa 0.5 5 0.5
Strain at Peak Compressive Yield εpc % 0.5 5 3.4

Compressive Damage Scaling Factor dc 0.4 0.95 0.85
Tensile Damage Scaling Factor dt 0.4 0.95 0.90

4.4 Impact of REV Size on Estimated Parameters

The appropriateness of the REV size was tested using eight different sample REV radii

and running the homogenization and parameter estimation algorithms for each. The as-

sumed REV radius for the parameter estimation simulations is 4m, which corresponds to

a homogenization area of 57.7m2. To validate this assumption, the REV radii is sampled

at 0.5m intervals to see where the resultant parameters converge.

The convergence of three of the 11 parameters is shown in Figure 4.5 as a function of

REV size. The material parameters apparently converge at different sizes, illustrating part

of the challenge in defining an REV; some parameters require a larger REV than others

and it is not obvious a priori which parameters will dominate. For the granite rock mass

considered, an REV of radius 3m or with a homogenization area of 34.8m2 is chosen to be

the minimum size based on the convergence of the dilation angle - the last parameter to

converge. The suitability of the assumed REV size is confirmed since it is larger than the

minimum REV size determined by the convergence study.

81



Figure 4.3: Axial Stress-Strain curves of the monotonically loaded DEM simulations used
for estimating the CDM parameter set under different confining stresses using
the damage-plasticity model for quasi-brittle materials.

4.5 Comparison to DNS - Application to Slope Sta-

bility Analysis

To validate the up-scaling methodology used, a simple 2-D slope problem is presented and

loaded from the top until failure using both DEM and the up-scaled CDM model. Here,

the resultant stress distributions are compared just as failure occurs.

In the DEM model, failure can be assessed based on the unbalanced forces in the model.

Since the joints in the model have a stiffness and cohesion, when the slope fails, the explicit

quasi-static solution becomes dynamic because of a sudden release of elastic energy and

82



Figure 4.4: Axial Stress-Strain curves of the verification simulations using the damage-
plasticity model for quasi-brittle materials under different confining stresses for
both the DEM simulations and the fitted CDM simulations.

the inability of the applied damping to suppress it all. At this point, the total unbalanced

forces in the model increase and the slope can be said to have failed.

For the CDM model, failure can be assessed based on non-convergence of the model when

run as an implicit static simulation, which does not converge when the slope fails. The

load step in which the CDM model fails to converge because the slope fails dynamically is

considered the point of failure.

83



Figure 4.5: Convergence of three constitutive material parameters as the REV homog-
enization area is increased. Annotations indicate the specified radius of the
circular REV.

4.5.1 Model Description

The plane-strain slope stability problem has a height of 50m and a depth of 80m with a

30m high slope with a grade of 300% (Figure 4.6). This geometry provides enough space

for the failure mechanisms to occur with little influence from the boundaries. The lateral

boundary conditions are zero displacement in the x-direction, and the bottom boundary

84



conditions are zero displacement in the y-direction. The slope and top boundaries are free.

A uniformly distributed load was applied over a 5m section on the backslope in a linear

incremental fashion until failure.

Figure 4.6: Schematic geometry and boundary conditions of the slope failure problem.

The meshing of the DEM simulations is identical to the REV simulations for the parameter

estimation, while the CDM model is meshed using 4-node bilinear plane strain elements.

The models in both DEM and FEM are allowed to find a static equilibrium after the

gravity force is applied, then a linearly increasing compressive stress along the top of the

slope is applied until the slope fails. The load is increased from 0MPa to 25MPa over

85



the course of 100s in the quasi-static/static simulations, knowing that the slope should fail

long before 25MPa is reached.

4.5.2 DNS Comparison

A qualitative comparison of the DEM and the CDM model results uses the stress distribu-

tion and the surface deflection just before failure. For the DEM solution, since the stress

field is discontinuous, the stress fields are smoothed using a cubic spline interpolation and

subsequently run through a Gaussian filter with a standard deviation of 2 to reduce the

noise in the data set. Figures 4.7, 4.8, and 4.9 show the horizontal stress distributions, the

vertical stress distributions, and the shear stress distributions, respectively.

Figure 4.7: Comparison of DEM (left) and CDM (right) horizontal stress contours for the
slope just before failure.

The continuum approximation of the stress fields shows a good match to the smoothed

DEM stress fields. More importantly, the load at failure for the two models are quite close.

The DEM simulation failed at 11.2MPa, while the CDM simulation failed at 11.5MPa, a

3% error considered to be not only negligible in the context of geological uncertainty but

acceptable in terms of the computational savings. This agreement of the two models both

in terms of the stress distribution and the failure load shows a high degree of success for

the up-scaling framework.

An additional comparison of the surface deflection where the load was applied is presented

in Figure 4.10. Again, the behaviour of the two models is similar, with downward displace-

ment occurring where the load is applied, upwards displacement towards the slope on the

86



Figure 4.8: Comparison of DEM (left) and CDM (right) vertical stress contours for the
slope just before failure.

Figure 4.9: Comparison of DEM (left) and CDM (right) shear stress contours for the slope
just before failure.

left and negligible displacement towards the right model boundary. Some divergence from

the DEM results can be observed in the CDM approximation where sharp changes in the

profile gradient occur; this arises partly from CDM model limitations and partly because

the scale of the deviation is similar to the REV scale, which is the limiting case. For larger

scales, the error will be smaller.

4.5.3 Up-Scaling Computational Efficiency

The CDM model for this case requires about two orders of magnitude less computational

effort than the DEM model (Table 4.4). The CDM simulation uses a comparable num-

ber of continuum elements (29, 866) (Figure 4.12) as in the DEM simulation (25, 898) for

87



Figure 4.10: Comparison of DEM and CDM surface deflection profile for the slope just
before failure.

comparison and adequate convergence. The CDM model efficiency can be improved by

applying a Selectively Refined Mesh (SRM) (Figure 4.11) where only the areas with stress

concentrations and large stress gradients have a strongly refined mesh. With the SRM, a

converged CDM solution is achievable with only 3, 577 elements leading to another order

of magnitude reduction in computational effort. The SRM is verified to be accurate by

comparing the results to the fully converged solution with 29, 866 elements. To obtain the

SRM, the number of elements is selectively reduced until an appreciable divergence from

the actual solution is noted.

Table 4.4: Comparison of Computational Time for the DNS

Simulation
Type

Continuum
Elements

Processor
Clock Speed

Slope Failure
Load

Computational
Time

DEM 25, 898 2.20GHz 11.2MPa 46.5hr
CDM 29, 866 1.80GHz 11.5MPa 0.65hr

CDM - SRM 3, 577 1.80GHz 11.5MPa 0.013hr

The DEM simulation was run serially on a 2.2GHz CPU while the CDM simulation was

run serially on a 1.8GHz CPU. Despite the CDM model having more continuum elements

than the DEM model, and the CDM model running on a slower CPU, a decrease in

computational time of the DEM simulation from 46.5hr to 0.65hr was observed. Running

88



Figure 4.11: Mesh for converged Drucker-Prager CDM FEM slope failure simulation

Figure 4.12: Selectiverly Refined Mesh (SRM) for Drucker-Prager CDM FEM slope failure
simulation.

the CDM model with a SRM reduces the total computational time to 0.013hr, or eight

minutes instead of two days. This large increase in computational efficiency with marginal

decrease in model accuracy can be immensely useful for large scale geomechanical problems

in NFR.

89



Chapter 5

Conclusions and Future

Considerations

A summary of the main conclusions from the development of the up-scaling framework

as well as the implementation and testing of the framework are presented here. These

conclusions represent a successful completion of the research objectives for the thesis. That

being said, there are substantial limitations to this research. A series of recommendations

are provided to address some of these limitations and to provide guidance on how to extend

this research.

5.1 Conclusions

A multi-scale framework for up-scaling DEM simulations has been developed to address the

computational demands of simulating microscale phenomenon in a macroscale domain in

the context of NFR. Up-scaling is achieved by matching homogenized stress-strain curves

from REV-scale DEM simulations to single element continuum models using PSO and

LMA optimization algorithms. A Drucker-Prager plasticity model with ductile damage

is implemented in the CDM model to empirically capture the effect of the degradation

(damage) of the NFR as deformation takes place.

90



1. Deformable DEM Homogenization

Homogenization algorithms were developed for homogenizing DEM simulations with de-

formable bodies to assess the spatially averaged stress-strain behaviour of the REV from

the microscale displacements, strains, and stresses. In this homogenization process, the

resultant inter-block contact forces and block displacement from the DEM simulations

are converted to average stresses and strains. To apply the homogenization algorithms, a

method of automatically assessing a suitable REV given a sufficiently large domain was

developed. These algorithms were implemented in PythonTM as the HODS software, which

was used as a module for MOUSE.

2. Parameterization Methodology

Two examples of the parameterization methodology are presented. Here, the key param-

eters required to capture the salient features of the model are isolated in order to be able

to run the parameter estimation algorithms effectively. the main aspect of this parameter-

ization methodology is the functional assumptions of the hardening/softening and damage

evolution functions. In addition, the parameters are rewritten in term of physically mean-

ingful parameters to provide more insight into the mechanics. The Drucker-Prager model

with ductile damage is shown to be a reasonable CDM model approach to represent NFR

in a continuum context, including effects of pressure dependent yield and the triaxiality

based damage initiation criterion. Compared to a full DEM simulation, the CDM model

shows a good fit pre-damage, but is unable to emulate the subtle post-yield oscillations

arising from non-continuous yielding in the NFR.

3. Up-Scaling Framework

MOUSE software was created and written in PythonTM to provide an implementation of

the up-scaling framework presented in this thesis using in house and third-party software

modules. The software itself provides a platform through which the four software elements

of the up-scaling framework (DEM module, homogenization module, parameter estimation

module, and macroscale module) can communicate with each other. The communication

is facilitated by MOUSE through modules which wrap the third party software in such a

way that the I/O routines to and from the modules are performed in a consistent capacity

91



regardless of the third party software being used. A consistent set of data protocols were

developed for the modules to effectively transfer data between them.

4. Framework Verification

The parameter estimation module was tested and yielded an appropriate parameter set

that both matched the DEM data and provided realistic parameters. Additionally, the

Drucker-Prager model with ductile damage was found to provide a far superior fit than

the damage plasticity model for quasi-brittle materials. Most importantly, the DNS of

the slope stability analysis showed that with this up-scaling framework, very significant

computational gains can be had with an acceptable error. Very comparable results (< 5%

error) to full DEM solutions were obtained with the CDM method but required two orders

of magnitude less computational time. The computational demands were again able to be

reduced by another order of magnitude by using a selectively refined continuum mesh at

the locations in the domain with high stress gradients.

5.2 Recommendations

The main limitation of the presented up-scaling implementation is the macroscale constitu-

tive model module. In the current ABAQUSTM module, the constitutive models consider

only isotropic behaviour. In addition, the model does not consider the effects of pore

pressure in the rock mass or fluid flow in any capacity. Though the isotropic assumptions

for the elasto-plastic constitutive relationships are likely sufficiently accurate, future im-

plementations of the macroscale constitutive model should consider anisotropic damage

behaviour, as anisotropic implementations are found to be completely insufficient. In the

case of the Drucker-Prager model with ductile damage, the exponential Johnson-Cook tri-

axiality based damage initiation criterion provides an excellent fit for monotonic loading,

but does not model cyclic loading well. Here, it would be ideal for the cyclic loading capac-

ity of the damage plasticity model for quasi-brittle materials to be incorporated as well.

Ultimately, the available damage material subroutines in ABAQUSTM are insufficient for

the key physical characteristics in the system to be captured. As such, a custom anisotropic

damage implementation is recommended for the macroscale constitutive model.

92



Retrospectively, the functional form of the hardening curve is overly complex. Though it is

often necessary to model the softening of the material in the plasticity model, with CDM

the damage can implicitly model the softening behaviour. Here, it is observed that for

the Barcelona model used for the hardening/softening curve, only the hardening portion

of the curve is ever used. As such, for future implementations of the plasticity hardening

functions, a simpler exponential function could be applied which would also have the

benefit of decreasing the number of parameters that need to be estimated, leading to more

consistent solutions and faster convergence of the optimization algorithms.

Furthermore, it is speculated by the author that portions of the parameterization method-

ology could be modified to yield more consistent solutions. In the parameterization for-

mulations presented in this thesis, too much emphasis was placed on creating physically

meaningful parameters rather than numerically consistent parameters. This inconsistency

is the case with certain paired parameters if one of the parameters is highly sensitive.

Additionally, effectively searching a 11+ dimensional parameter space is computationally

expensive. By dividing the problem and exploiting features of the curves and constitutive

models, it may be possible to increase the convergence rate and effectively get a better,

faster solution. Instead of searching the entire parameter space, it is possible to split the

parameters into groups (e.g. pre-damage and post damage). Here, the damage param-

eters don’t actually affect the plasticity calculations until damage is initiated. As such,

the plasticity parameters can be estimated using the pre-damage curve and the damage

parameters can subsequently be estimated using the post-damage curve.

A more rigorous examination of other available optimization routines and associated opti-

mization parameters would be another way to potentially reduce the computational cost

and increase the accuracy of the parameter estimation process. PSO and LMA were used

in this research, but Dynamically Dimensioned Search (DDS), Real-Coded Genetic Algo-

rithm (RGA) and Simulated Annealing (SA) were also briefly investigated. As previously

stated, rigorously assessing the most effective algorithm was not a priority of this research,

but the PSO + LMA combination was chosen for its simplicity and effectiveness. The

other algorithms, if properly applied may provide a faster and more accurate solution.

For this up-scaling methodology to be more accurate, 3D DEM simulations are required to

capture accurate physical responses of these complex systems. In addition to modifying the

DEM simulations, the associated homogenization algorithms would have to be modified to

provide the 3D stress and strain tensors.

93



Hydro-mechanically coupled DEM simulations are also an important consideration for

more accurate simulations. Here, the homogenization module should be modified to assess

the homogenized fluid properties such as pore pressure and flow velocity vectors and the

macroscale model needs to be modified to simulate poroelastic physics.

Ultimately, rigorous validation studies should be done with real-world applications to show

the viability of this approach. Incorporating some of the above reccomendations will allow

this up-scaling framework to validly be applied to complex geomechanical problems in

order to avoid the computational demands of DEM modelling.

94



References

S. I. Aanonsen and D. Eydinov. A multiscale method for distributed parameter es-

timation with application to reservoir history matching. Comput Geosci, 10(1):97–

117, mar 2006. doi: 10.1007/s10596-005-9012-4. URL http://dx.doi.org/10.1007/

s10596-005-9012-4.

R. E. Barbosa and J. Ghaboussi. Discrete finite element method for multiple deformable

bodies. Finite Elements in Analysis and Design, 7(2):145–158, nov 1990. doi: 10.1016/

0168-874x(90)90006-z. URL http://dx.doi.org/10.1016/0168-874x(90)90006-z.

N. Barton. Rock Quality Seismic Velocity, Attenuation and Anisotropy. Informa UK

Limited, oct 2006. doi: 10.1201/9780203964453. URL http://dx.doi.org/10.1201/

9780203964453.

T. Belytschko, S. Loehnert, and J.-H. Song. Multiscale aggregating discontinuities: A

method for circumventing loss of material stability. International Journal for Numerical

Methods in Engineering, 73(6):869–894, feb 2008. doi: 10.1002/nme.2156. URL http:

//dx.doi.org/10.1002/nme.2156.

M. N. Bidgoli, Z. Zhao, and L. Jing. Numerical evaluation of strength and deformability

of fractured rocks. Journal of Rock Mechanics and Geotechnical Engineering, 5(6):419–

430, dec 2013. doi: 10.1016/j.jrmge.2013.09.002. URL http://dx.doi.org/10.1016/

j.jrmge.2013.09.002.

S. Chen, J. He, and I. Shahrour. Estimation of elastic compliance matrix for fractured

rock masses by composite element method. International Journal of Rock Mechanics

and Mining Sciences, 49:156–164, jan 2012. doi: 10.1016/j.ijrmms.2011.11.009. URL

http://dx.doi.org/10.1016/j.ijrmms.2011.11.009.

95

http://dx.doi.org/10.1007/s10596-005-9012-4
http://dx.doi.org/10.1007/s10596-005-9012-4
http://dx.doi.org/10.1016/0168-874x(90)90006-z
http://dx.doi.org/10.1201/9780203964453
http://dx.doi.org/10.1201/9780203964453
http://dx.doi.org/10.1002/nme.2156
http://dx.doi.org/10.1002/nme.2156
http://dx.doi.org/10.1016/j.jrmge.2013.09.002
http://dx.doi.org/10.1016/j.jrmge.2013.09.002
http://dx.doi.org/10.1016/j.ijrmms.2011.11.009


M. Clerc and J. Kennedy. The particle swarm - explosion stability, and convergence in a

multidimensional complex space. IEEE Transactions on Evolutionary Computation, 6

(1):58–73, 2002. doi: 10.1109/4235.985692. URL http://dx.doi.org/10.1109/4235.

985692.

R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth. On the

LambertW function. Advances in Computational Mathematics, 5(1):329–359, dec 1996.

doi: 10.1007/bf02124750. URL http://dx.doi.org/10.1007/bf02124750.

P. A. Cundall. A discontinuous future for numerical modelling in geomechanics? Proceed-

ings of the ICE - Geotechnical Engineering, 149(1):41–47, jan 2001. doi: 10.1680/geng.

2001.149.1.41. URL http://dx.doi.org/10.1680/geng.2001.149.1.41.

P. A. Cundall and R. D. Hart. Numerical Modelling of Discontinua. Engineering Compu-

tations, 9(2):101–113, feb 1992. doi: 10.1108/eb023851. URL http://dx.doi.org/10.

1108/eb023851.

P. A. Cundall and O. D. L. Strack. A discrete numerical model for granular assemblies.

Géotechnique, 29(1):47–65, mar 1979. doi: 10.1680/geot.1979.29.1.47. URL http://dx.

doi.org/10.1680/geot.1979.29.1.47.

G. D’Addetta, E. Ramm, S. Diebels, and W. Ehlers. A particle center based homoge-

nization strategy for granular assemblies. Engineering Computations, 21(2/3/4):360–

383, mar 2004. ISSN 0264-4401. doi: 10.1108/02644400410519839. URL http:

//www.emeraldinsight.com/doi/abs/10.1108/02644400410519839.

B. M. Das. Principles of geotechnical engineering. Cengage, Mason, OH, 7th ed edition,

2009. ISBN 0-495-41130-2.

D. C. Drucker. Some Implications of Work Hardening and Ideal Plasticity. Quarterly of

Applied Mathematics, 7(4):411–418, 1950. ISSN 0033-569X. URL http://www.jstor.

org/stable/43633751.

W. Drugan and J. Willis. A micromechanics-based nonlocal constitutive equation and

estimates of representative volume element size for elastic composites. Journal of the

Mechanics and Physics of Solids, 44(4):497–524, apr 1996. doi: 10.1016/0022-5096(96)

00007-5. URL http://dx.doi.org/10.1016/0022-5096(96)00007-5.

96

http://dx.doi.org/10.1109/4235.985692
http://dx.doi.org/10.1109/4235.985692
http://dx.doi.org/10.1007/bf02124750
http://dx.doi.org/10.1680/geng.2001.149.1.41
http://dx.doi.org/10.1108/eb023851
http://dx.doi.org/10.1108/eb023851
http://dx.doi.org/10.1680/geot.1979.29.1.47
http://dx.doi.org/10.1680/geot.1979.29.1.47
http://www.emeraldinsight.com/doi/abs/10.1108/02644400410519839
http://www.emeraldinsight.com/doi/abs/10.1108/02644400410519839
http://www.jstor.org/stable/43633751
http://www.jstor.org/stable/43633751
http://dx.doi.org/10.1016/0022-5096(96)00007-5


F. Feyel. A multilevel finite element method (FE2) to describe the response of highly non-

linear structures using generalized continua. Computer Methods in Applied Mechanics

and Engineering, 192(28-30):3233–3244, jul 2003. doi: 10.1016/s0045-7825(03)00348-7.

URL http://dx.doi.org/10.1016/s0045-7825(03)00348-7.

M. Geers, V. Kouznetsova, and W. Brekelmans. Multi-scale computational homogeniza-

tion: Trends and challenges. Journal of Computational and Applied Mathematics, 234

(7):2175–2182, aug 2010. doi: 10.1016/j.cam.2009.08.077. URL http://dx.doi.org/

10.1016/j.cam.2009.08.077.

I. Gitman, H. Askes, and L. Sluys. Representative volume: Existence and size determi-

nation. Engineering Fracture Mechanics, 74(16):2518–2534, nov 2007. doi: 10.1016/

j.engfracmech.2006.12.021. URL http://dx.doi.org/10.1016/j.engfracmech.2006.

12.021.

I. M. Gitman, M. B. Gitman, and H. Askes. Quantification of stochastically stable repre-

sentative volumes for random heterogeneous materials. Archive of Applied Mechanics,

75(2-3):79–92, dec 2005. doi: 10.1007/s00419-005-0411-8. URL http://dx.doi.org/

10.1007/s00419-005-0411-8.

R. Gracie and T. Belytschko. An adaptive concurrent multiscale method for the dynamic

simulation of dislocations. International Journal for Numerical Methods in Engineering,

86(4-5):575–597, feb 2011. doi: 10.1002/nme.3112. URL http://dx.doi.org/10.1002/

nme.3112.

D. Griffiths and P. Lane. Slope Stability analysis by Finite Elments. Géotechnique, 49:

387, 1999.

A. A. Gusev. Representative volume element size for elastic composites: A numerical

study. Journal of the Mechanics and Physics of Solids, 45(9):1449–1459, sep 1997. doi:

10.1016/s0022-5096(97)00016-1. URL http://dx.doi.org/10.1016/s0022-5096(97)

00016-1.

R. Hill. Elastic properties of reinforced solids: some theoretical principles. Journal

of the Mechanics and Physics of Solids, 11(5):357–372, 1963. URL http://www.

sciencedirect.com/science/article/pii/002250966390036X.

97

http://dx.doi.org/10.1016/s0045-7825(03)00348-7
http://dx.doi.org/10.1016/j.cam.2009.08.077
http://dx.doi.org/10.1016/j.cam.2009.08.077
http://dx.doi.org/10.1016/j.engfracmech.2006.12.021
http://dx.doi.org/10.1016/j.engfracmech.2006.12.021
http://dx.doi.org/10.1007/s00419-005-0411-8
http://dx.doi.org/10.1007/s00419-005-0411-8
http://dx.doi.org/10.1002/nme.3112
http://dx.doi.org/10.1002/nme.3112
http://dx.doi.org/10.1016/s0022-5096(97)00016-1
http://dx.doi.org/10.1016/s0022-5096(97)00016-1
http://www.sciencedirect.com/science/article/pii/002250966390036X
http://www.sciencedirect.com/science/article/pii/002250966390036X


A. Hillerborg, M. Modéer, and P.-E. Petersson. Analysis of crack formation and crack

growth in concrete by means of fracture mechanics and finite elements. Cement and

Concrete Research, 6(6):773–781, nov 1976. doi: 10.1016/0008-8846(76)90007-7. URL

http://dx.doi.org/10.1016/0008-8846(76)90007-7.

E. Hoek and E. Brown. Practical estimates of rock mass strength. International Journal

of Rock Mechanics and Mining Sciences, 34(8):1165–1186, dec 1997. doi: 10.1016/

s1365-1609(97)80069-x. URL http://dx.doi.org/10.1016/s1365-1609(97)80069-x.

L. Jing. A review of techniques, advances and outstanding issues in numerical mod-

elling for rock mechanics and rock engineering. International Journal of Rock

Mechanics and Mining Sciences, 40(3):283–353, apr 2003. ISSN 13651609. doi:

10.1016/S1365-1609(03)00013-3. URL http://linkinghub.elsevier.com/retrieve/

pii/S1365160903000133.

G. R. Johnson and W. H. Cook. Fracture characteristics of three metals subjected to various

strains strain rates, temperatures and pressures. Engineering Fracture Mechanics, 21(1):

31–48, jan 1985a. doi: 10.1016/0013-7944(85)90052-9. URL http://dx.doi.org/10.

1016/0013-7944(85)90052-9.

G. R. Johnson and W. H. Cook. Fracture characteristics of three metals subjected to various

strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics, 21

(1):31–48, jan 1985b. ISSN 0013-7944. doi: 10.1016/0013-7944(85)90052-9. URL http:

//www.sciencedirect.com/science/article/pii/0013794485900529.

T. Kanit, S. Forest, I. Galliet, V. Mounoury, and D. Jeulin. Determination of the size

of the representative volume element for random composites: statistical and numer-

ical approach. International Journal of Solids and Structures, 40(13-14):3647–3679,

jun 2003. doi: 10.1016/s0020-7683(03)00143-4. URL http://dx.doi.org/10.1016/

s0020-7683(03)00143-4.

J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings of ICNN'95

- International Conference on Neural Networks. Institute of Electrical & Electronics

Engineers (IEEE), 1995. doi: 10.1109/icnn.1995.488968. URL http://dx.doi.org/10.

1109/icnn.1995.488968.

D. Krajcinovic. Damage mechanics. Mechanics of materials, 8(2):117–197, 1989. URL

http://www.sciencedirect.com/science/article/pii/0167663689900112.

98

http://dx.doi.org/10.1016/0008-8846(76)90007-7
http://dx.doi.org/10.1016/s1365-1609(97)80069-x
http://linkinghub.elsevier.com/retrieve/pii/S1365160903000133
http://linkinghub.elsevier.com/retrieve/pii/S1365160903000133
http://dx.doi.org/10.1016/0013-7944(85)90052-9
http://dx.doi.org/10.1016/0013-7944(85)90052-9
http://www.sciencedirect.com/science/article/pii/0013794485900529
http://www.sciencedirect.com/science/article/pii/0013794485900529
http://dx.doi.org/10.1016/s0020-7683(03)00143-4
http://dx.doi.org/10.1016/s0020-7683(03)00143-4
http://dx.doi.org/10.1109/icnn.1995.488968
http://dx.doi.org/10.1109/icnn.1995.488968
http://www.sciencedirect.com/science/article/pii/0167663689900112


J. Lee and G. L. Fenves. Plastic-Damage Model for Cyclic Loading of Concrete Structures.

Journal of Engineering Mechanics, 124(8):892–900, 1998. ISSN 0733-9399. doi: 10.

1061/(ASCE)0733-9399(1998)124:8(892). URL http://dx.doi.org/10.1061/(ASCE)

0733-9399(1998)124:8(892).

K. Levenberg. A method for the solution of certain non–linear problems in least squares.

In Meeting of the American Math Society in Chicago, 1944. URL http://en.journals.

sid.ir/ViewPaper.aspx?ID=53617.

X. Li, Y. Liang, Q. Duan, B. Schrefler, and Y. Du. A mixed finite element proce-

dure of gradient Cosserat continuum for second-order computational homogenisation

of granular materials. Computational Mechanics, 54(5):1331–1356, jul 2014. doi:

10.1007/s00466-014-1062-9. URL http://dx.doi.org/10.1007/s00466-014-1062-9.

S. Lloyd. Least squares quantization in PCM. IEEE Trans. Inform. Theory, 28(2):129–

137, mar 1982. doi: 10.1109/tit.1982.1056489. URL http://dx.doi.org/10.1109/tit.

1982.1056489.

S. Loehnert and P. Wriggers. Aspects of computational homogenisation of microhetero-

geneous materials including decohesion at finite strains. Proc. Appl. Math. Mech., 5

(1):427–428, dec 2005. doi: 10.1002/pamm.200510190. URL http://dx.doi.org/10.

1002/pamm.200510190.

J. Lubliner, J. Oliver, S. Oller, and E. Onate. A plastic-damage model for concrete.

International Journal of solids and structures, 25(3):299–326, 1989. URL http://www.

sciencedirect.com/science/article/pii/0020768389900504.

D. W. Marquardt. An algorithm for least-squares estimation of nonlinear parameters.

Journal of the Society for Industrial & Applied Mathematics, 11(2):431–441, 1963. URL

http://epubs.siam.org/doi/pdf/10.1137/0111030.

L. S. Matott. OSTRICH: An Optimization Software Tool; Documentation and User’s

Guide, 2008. URL http://www.eng.buffalo.edu/~lsmatott/Ostrich/OstrichMain.

html.

L. S. Matott. OSTRICH: An Optimization Software Tool; Documentation and User’s

Guide, 2016. URL http://www.eng.buffalo.edu/~lsmatott/Ostrich/OstrichMain.

html.

99

http://dx.doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892)
http://dx.doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892)
http://en.journals.sid.ir/ViewPaper.aspx?ID=53617
http://en.journals.sid.ir/ViewPaper.aspx?ID=53617
http://dx.doi.org/10.1007/s00466-014-1062-9
http://dx.doi.org/10.1109/tit.1982.1056489
http://dx.doi.org/10.1109/tit.1982.1056489
http://dx.doi.org/10.1002/pamm.200510190
http://dx.doi.org/10.1002/pamm.200510190
http://www.sciencedirect.com/science/article/pii/0020768389900504
http://www.sciencedirect.com/science/article/pii/0020768389900504
http://epubs.siam.org/doi/pdf/10.1137/0111030
http://www.eng.buffalo.edu/~lsmatott/Ostrich/OstrichMain.html
http://www.eng.buffalo.edu/~lsmatott/Ostrich/OstrichMain.html
http://www.eng.buffalo.edu/~lsmatott/Ostrich/OstrichMain.html
http://www.eng.buffalo.edu/~lsmatott/Ostrich/OstrichMain.html


K.-B. Min and L. Jing. Numerical determination of the equivalent elastic compliance

tensor for fractured rock masses using the distinct element method. International Jour-

nal of Rock Mechanics and Mining Sciences, 40(6):795–816, sep 2003. doi: 10.1016/

s1365-1609(03)00038-8. URL http://dx.doi.org/10.1016/s1365-1609(03)00038-8.

C. Müller, S. Siegesmund, and P. Blum. Evaluation of the representative elementary volume

(REV) of a fractured geothermal sandstone reservoir. Environ Earth Sci, 61(8):1713–

1724, mar 2010. doi: 10.1007/s12665-010-0485-7. URL http://dx.doi.org/10.1007/

s12665-010-0485-7.

R. Nelson. Detecting and Predicting Fracture Occurrence and Intensity. In Geologic Anal-

ysis of Naturally Fractured Reservoirs, pages 125–162. Elsevier BV, 2001. doi: 10.1016/

b978-088415317-7/50006-3. URL http://dx.doi.org/10.1016/b978-088415317-7/

50006-3.

M. Petracca, L. Pelà, R. Rossi, S. Oller, G. Camata, and E. Spacone. Regularization of

first order computational homogenization for multiscale analysis of masonry structures.

Computational Mechanics, 57(2):257–276, dec 2015. doi: 10.1007/s00466-015-1230-6.

URL http://dx.doi.org/10.1007/s00466-015-1230-6.

A. Prantl, J. Ruzicka, M. Spaniel, M. Moravec, J. Dzugan, and P. Konoṕık. Identification

of Ductile Damage Parameters. In SIMULIA Community Conference, 2013.

Y. Shi and R. Eberhart. A modified particle swarm optimizer. In 1998 IEEE Interna-

tional Conference on Evolutionary Computation Proceedings. IEEE World Congress on

Computational Intelligence (Cat. No.98TH8360). Institute of Electrical & Electronics

Engineers (IEEE), 1998. doi: 10.1109/icec.1998.699146. URL http://dx.doi.org/10.

1109/icec.1998.699146.

B. Sjogren, A. Ofsthus, and J. Sandberg. Seismic Classification of Rock Mass Quali-

ties. Geophysical Prospecting, 27(2):409–442, jun 1979. doi: 10.1111/j.1365-2478.1979.

tb00977.x. URL http://dx.doi.org/10.1111/j.1365-2478.1979.tb00977.x.

I. Temizer and P. Wriggers. A Contact Homogenization Framework for Granular Interfaces.

Proc. Appl. Math. Mech., 9(1):417–418, dec 2009. doi: 10.1002/pamm.200910182. URL

http://dx.doi.org/10.1002/pamm.200910182.

100

http://dx.doi.org/10.1016/s1365-1609(03)00038-8
http://dx.doi.org/10.1007/s12665-010-0485-7
http://dx.doi.org/10.1007/s12665-010-0485-7
http://dx.doi.org/10.1016/b978-088415317-7/50006-3
http://dx.doi.org/10.1016/b978-088415317-7/50006-3
http://dx.doi.org/10.1007/s00466-015-1230-6
http://dx.doi.org/10.1109/icec.1998.699146
http://dx.doi.org/10.1109/icec.1998.699146
http://dx.doi.org/10.1111/j.1365-2478.1979.tb00977.x
http://dx.doi.org/10.1002/pamm.200910182


S. Thallak, L. Rothenburg, M. Dusseault, and R. Bathurst. Numerical Simulation of

Hydraulic Fracturing in a Discrete Element System. In ECMOR II - 2nd European Con-

ference on the Mathematics of Oil Recovery. EAGE Publications, sep 1990. doi: 10.3997/

2214-4609.201411126. URL http://dx.doi.org/10.3997/2214-4609.201411126.

G. Venter and J. Sobieszczanski-Sobieski. Parallel Particle Swarm Optimization Algo-

rithm Accelerated by Asynchronous Evaluations. Journal of Aerospace Computing In-

formation, and Communication, 3(3):123–137, mar 2006. doi: 10.2514/1.17873. URL

http://dx.doi.org/10.2514/1.17873.

B. L. Wahalathantri, D. P. Thambiratnam, T. H. T. Chan, and S. Fawzia. A material

model for flexural crack simulation in reinforced concrete elements using ABAQUS.

In Proceedings of the First International Conference on Engineering, Designing and

Developing the Built Environment for Sustainable Wellbeing, pages 260–264. Queensland

University of Technology, 2011. URL http://eprints.qut.edu.au/41712.

R. E. Walpole, editor. Probability & statistics for engineers & scientists. Pearson Prentice

Hall, Upper Saddle River, NJ, 8th ed edition, 2007. ISBN 978-0-13-204767-8.

E. Weinan. Principles of multiscale modeling. Cambridge University Press, 2011.

C. Wellmann, C. Lillie, and P. Wriggers. Homogenization of granular material modeled

by a three-dimensional discrete element method. Computers and Geotechnics, 35(3):

394–405, may 2008. ISSN 0266352X. doi: 10.1016/j.compgeo.2007.06.010. URL http:

//linkinghub.elsevier.com/retrieve/pii/S0266352X07000754.

M. Xu, R. Gracie, and T. Belytschko. Multicale Modeling with Extended Bridging

Domain Method. In Multiscale modeling with extended bridging domain method. Oxford

University Press, 2002. URL http://www.civil.uwaterloo.ca/rgracie/papers/

2009/(2009a%20Gracie)%20Concurrent%20Coupling%20of%20Atomistic%20and%

20Contiuum%20Models.pdf.

W. Zhang and Y. Cai. Continuum Damage Mechanics and Numerical Applications. Ad-

vanced Topics in Science and Technology in China. Zhejiang Univeristy Press, Hangzhou,

2010. ISBN 978-7-308-06589-4 978-3-642-04707-7.

Q. Zhou, H.-H. Liu, G. S. Bodvarsson, and C. M. Oldenburg. Flow and transport

in unsaturated fractured rock: effects of multiscale heterogeneity of hydrogeologic

101

http://dx.doi.org/10.3997/2214-4609.201411126
http://dx.doi.org/10.2514/1.17873
http://eprints.qut.edu.au/41712
http://linkinghub.elsevier.com/retrieve/pii/S0266352X07000754
http://linkinghub.elsevier.com/retrieve/pii/S0266352X07000754
http://www.civil.uwaterloo.ca/rgracie/papers/2009/(2009a%20Gracie)%20Concurrent%20Coupling%20of%20Atomistic%20and%20Contiuum%20Models.pdf
http://www.civil.uwaterloo.ca/rgracie/papers/2009/(2009a%20Gracie)%20Concurrent%20Coupling%20of%20Atomistic%20and%20Contiuum%20Models.pdf
http://www.civil.uwaterloo.ca/rgracie/papers/2009/(2009a%20Gracie)%20Concurrent%20Coupling%20of%20Atomistic%20and%20Contiuum%20Models.pdf


properties. Journal of Contaminant Hydrology, 60:1–30, jan 2003. ISSN 0169-7722.

doi: 10.1016/S0169-7722(02)00080-3. URL http://www.sciencedirect.com/science/

article/pii/S0169772202000803.

D. Zwillinger. CRC Standard Mathematical Tables and Formulae 30th Edition. Informa

UK Limited, dec 1995. doi: 10.1201/noe0849324796. URL http://dx.doi.org/10.

1201/noe0849324796.

102

http://www.sciencedirect.com/science/article/pii/S0169772202000803
http://www.sciencedirect.com/science/article/pii/S0169772202000803
http://dx.doi.org/10.1201/noe0849324796
http://dx.doi.org/10.1201/noe0849324796

	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Context and Research Motivation
	Research Objectives
	Scope of Study and Research Limitations

	Up-Scaling Methodology
	Up-Scaling Implementation Overview
	Distinct Element Method
	Homogenization Approach
	Stress Homogenization
	Strain Homogenization

	Assessment of the REV Size
	Macroscale Constitutive Model
	General Formulation and Assumptions
	Drucker-Prager Plasticity Model with Ductile Damage
	Damage-Plasticity Model for Quasi-Brittle Materials

	Parameter Estimation Algorithms
	Particle Swarm Optimization (PSO)
	Asynchronous Parallel PSO (APPSO)
	Levenburg-Marquardt Algorithm (LMA)

	Physically Meaningful Model Parameterization
	Drucker-Prager Model with Ductile Damage
	Damage-Plasticity Model for Quasi-Brittle Materials


	Framework Implementation
	Software Module Format
	Attributes
	Defined Methods
	Undefined Methods

	Data Architecture
	Data Storage Structures
	Binary Serialization

	Third Party Software Modules
	HODS Homogenization Software
	Class Attributes
	Class Data Methods
	Class Homogenization Methods


	Verification and Application
	DEM Simulations
	Verification of the Parameter Estimation Module
	Comparison of CDM Constitutive Models
	Impact of REV Size on Estimated Parameters
	Comparison to DNS - Application to Slope Stability Analysis
	Model Description
	DNS Comparison
	Up-Scaling Computational Efficiency


	Conclusions and Future Considerations
	Conclusions
	Recommendations

	References

