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Abstract

Despite significant advances in the study of cancer and associated combination thera-
peutic treatments, cancer still remains one of the most common and complex often-terminal
diseases. Acquisition of high—throughput experimental data from diverse cellular perspec-
tives has thrown light on some of the regulatory mechanisms underlying the development
of cancer. However, in general there is a lack of a general pattern and coherent model
which can explain the development and evolution of the disease. To this end, evolutionary
dynamics has been used, as a mathematical tool, in numerous studies to model various
aspects of cancer over time periods. Our main focus in this thesis is on the use of stochastic
and statistic methods to study cellular interactions within cancer tissues in order to un-
derstand the role of spatial structure, heterogeneity, and the microenvironment in cancer
development. By constructing multi-cellular structures and using both analytic calcula-
tions and stochastic simulations, we have investigated the phenotypic hierarchy of stem
cells within a heterogeneous system and in the presence of environmentally induced plas-
ticity. Moreover, the effect of a random environment on the development of cancer has been
explored in a general framework. As an important application of the multi-stage hierarchi-
cal model, the structure of the colonic/intestinal crypt has been taken into account to show
the crucial role of these stem cells in the initiation and progression of colorectal/intestinal
cancer. From an alternative viewpoint, we have envisaged the hierarchy of mutations as
an evolutionary mechanism in the context of acute myeloid leukemia and carried out a
statistical analysis of genetic data. Our findings in this thesis are general and most likely
have many implications across a wide array of fields including different blood and solid
cancers, bacterial growth, drug resistance and social networks. Moreover, the introduced
methods and analyses should have important applications in diverse branches of evolution,
ecology, and population genetics.
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Cancer initiation process. Before the tumor initiation, many random
mutations may occur within the population. Such mutational events lead to
new clones and increase the heterogeneity (diversity) of the system. How-
ever, only a few of the clones can survive and initiate the cancer. The crucial
mutation(s) which can trigger tumorigenesis are usually termed as founder
mutation(s): either as founder stem cells (SCs) or founder stem like cells
(SLCs). SLCs are those non-stem cells which can phenotypically switch to
a stemness state. Different suppressed or survived clonal expansions are
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Phenotypic—genotypic changes in individuals within a four— com-
partmental structure. We consider constant population sizes Ng and Np
for SCs and DCs respectively. With respect to the finite Markov chain, we
consider a generalized model to take into account the competition between
normal and malignant individuals in each of the SC and DC subpopulations.
Differentiation and dedifferentiation events connect the selection dynamics
between the two niches. In (a), all possible differentiation, dedifferentiation,
and death events with their corresponding rates are represented. The SC-DC
compartmental structure is depicted in (b) with the associated self-renewal
and differentiation/plasticity possibilities. . . . . . . ... ..o
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Effect of change in asymmetric differentiation and plasticity rates
on survivability of mutants. We assume that Ng = Np = 10, r; =
7 = 1, and ro = 75 = r. In subfigure (a), the fixation probability of SCs
as a function of n is given, where n = 0.01,0.1,0.5 while u; = us = 0.5,
and 7y = 0. In (b) 7, = 0 and n = 0.1. Changing parameters u; and us,
which are the asymmetric division rates of normal and tumor SCs resp., the
fixation probability as a function of uq, us is shown. Solid lines represent the
analytic calculation and points correspond to simulation results (error bars
are based on the standard error of the mean). . . .. ... ... ... ...

Dependency of the fixation probability on the initial mutant’s phe-
notype. Let us suppose that Ng = 10, Np = 10,17 =7 = 1,1y = 75 =
r,n = 0 and 7, = 0.1. Having a recently born mutant in DC compartment,
the fate of the system may differ than what concluded for the initiation pro-
cess of a new mutant in SC compartment. In part (a) Moran simulation and
analytic calculation , in a perfect agreement, have shown to represent the
trend for the fixation probability pp in terms of r. Now, when the location
of the newly imposed mutant is either in SC or DC compartment which is
the topic of subfigure (b). In this figure the total (average) fixation proba-
bility p = %(pg + pp) is drawn as a function of the relative fitness r. The
trends are also compared with the Moran simulation. Moran process was
run 5 times with 20,000 iterations in (a) and 50,000 iterations in (b) and
the error bars are prepared based on the standard error of the mean.

(a) Fixation of mutants in the absence of plasticity. We assume
that Ng = 10, Np = 10,7, = 1o = 0. (a) changing parameters uy, uy, the
differentiation rates of normal and tumor SCs respectively, the trends for the
fixation probability has shown as a function of relative fitness of mutants:
r1 =1y =7r. In (b) and (c) another observation can be concluded where the
variation of fixation probability in terms of asymmetric differentiation rate
u; = uy = wu 1s taken into account for various values of the relative fitness
r and the ratio of the differentiation rates of normal SCs: « = uy/u; where
in (b) @ = 0.5 and in (¢) a = 1.5. Numerical simulations are also done for
all the case that are shown by colorful points (analytic results are shown as
solid curves) with error bars as the standard error of the mean in a set of 5
iterations, each with 20,000 realization. . . . . . . . . . .. ... ... ...
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Comparison between analytic calculation and Moran simulation
among SC and non-SC compartments. We suppose that Ng = Np =
10,7"1 = 7:1 = 1,7"2 = Oé?”,fg = BT,dl = d2 =1= Jl = dNQ = 1. Changing
a from 0.5 to 1 and then to 2 while  is remained fixed. The disconnected
curves are related to the corresponding Moran simulations with a set of 5 it-
eration=>50,000 and error is the standard error of the mean. The best match
can be seen when there exist the symmetry in the system and between the
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In subfigure (a) there exists no plastic potential situation for normal cells,
that is 7, = 0 while in (b) both w.t. and mutant cells can dedifferentiate to
stem-like state. . . . . ... L

Phase diagram of plastic mutant SCs. The phase boundary for advan-
tageous and disadvantageous mutant populations are given as differentiation
and plasticity rates change. We assume that ry = 7y = 1, ry = 75 = 1,
u; = uy = u, and n; = 0. Different regions for advantageous and disadvan-
tageous mutant SCs are given in (a) as u changes. A similar analysis has
been carried out in (b) as n varies. In (a) n = 0.1,0.3,0.7, here the alter-
ation in the plasticity rate of DCs results in a tendency to approach various
regions of fixation for mutant SCs, while the extinction domain shrinks with
increasing 7. In (b) v = 0.1,0.3,0.7. Increasing the asymmetric division
rate u, the region for advantageous mutants expands to provide a higher
survival chance for mutant SCs. In both cases, advantageous criteria relate

to either fixation of mutants or coexistence of mutants and WT individuals.

Phase portrait of the four compartment BD model when 7, = 0.
Suppose that r = 7 = 1,71 =71 = r,u; = us = u,”m; = 0, Ng = 10,
and Np = 10. Different initial conditions would tend to different fate of
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state. Process is dominant for Normal DCs in (a), (d), (g), and (h) where
the mutants extinct. In (b) and (e) coexistence of both cancer SCs and DCs
occurs at steady state. Dominance of cancer SCs/DCs and extinction of w.t.
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r=0.95,u = 05,15 = 0.1, and finally (h) r =1,u=0.1,7, =0.3. . .. ..
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Cellular interactions in the colonic crypt as a newborn mutant
arises within the Stem or differentiated compartments. Within
this schematic cylindrical model, we represent how our model is structured
through the four compartments of host and mutant stem and differenti-
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model with N = 5. The blue cells are assumed to be normal and red
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higher proportional fitness will replace its offspring. This DB Moran process
may increase the number of mutants (moving to the right on the figure) or
decrease their fraction (move to the left on the figure). . . . . .. ... ..

The average fixation probability times N as a function of N for a
circle. The fitness of both mutants and wild types is given by 1 — ¢ and
140 with equal probability (the bimodal distribution). The inset shows the
behavior for small values of N. Points are the results of numerical simulations
based on stochastic simulation and bars are the standard deviation of mean.
Stochastic simulation are based on a set of 3 runs, each with 20,000 iterations
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The effect of skewness on the survivability of mutants. The function
(Pn)N in terms of the skewness (N = 4). We assume (r) = () = 1 and
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Correlation among the fitnesses of mutants and normal individu-
als. The average fixation probability as a function of the standard deviation
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Minority and the average fitness (r) > 1, (r) = 1, and (r) < 1.
The average fixation probability as a function of the standard deviation of
the bimodal fitness distribution (N = 8). Solid curves show the results of
analytic approach while the points (with bars as the standard deviation of
mean) represents the results of stochastic simulations. Stochastic simulation
are based on a set of 3 runs, each with 20,000 iterations . . . . . . . . ...

Relationship between standard deviations of normal and cancer
individuals. The heat plot for (Py) as a function of the two standard
deviations (N = 8). This result is based on analytic calculation of the
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Large population scale and randomness impact on the fixation of
mutants. The average fixation probability times N in terms of the standard
deviation of the bimodal fitness distribution for a complete graph. The dash
curves are based on analytic approach and points and error bars are based
on stochastic simulation of a set of 3 runs, each with 20,000 iterations.

Phase diagram of the complete graph vs the circle model. Complete
graph and the circle models are compared for different regimes for N = 5
and o, = 0, = 0. Different regimes pertaining to different means of mutants
have been considered in (a). In (b) a magnified version of the curves related
to (rp) = 0.99,1,1.01 are given whilst (r,) = 1. Opposite to what we had
for the circle model, a decline can be observed for larger values of o in well-
mixed model. We assumed that N = 100. data points are based on analytic
calculation for the average fixation probability of mutants on complete graph
and the circle model. . . . . . .o oo

A comparison between the well-mixed model and the circle model
both with the same population size. In figure (a) when N = 4 the
well-mixed model shows a sharper enhancement for the fixation probability
while for larger population size and when o, = 0, = ¢ is large enough the
circle model represents more survival probabilities. For instance in (b) this
behavior can be seen for N = 5. A similar figure is also given in (c) for
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Analytic results for the fixation probability of a newborn mutant
located in different positions within the line model. This figure
relates to the neutral case and in the absence of randomness. Except for
the fixation probability at boundary which shows a huge decline, rest of the
location tend to the same value for the fixation probability in this model.
Points are derived from analytic calculations. . . . . . . . . ... ... ...

Comparison among various analytic results for the fixation proba-
bility of disadvantageous, neutral, and advantageous mutants. The
new born mutant can arise in different locations within the population over
a 1D assay of individuals with N = 100. In figure (a) r, = 0.5 and r, = 1 in
which a smooth increasing trend can be seen for the fixation probability of
an initial mutant at different nodes. In (b) r, = 1 and r, = 1 demonstrates
the case of a neutral system. In (c¢) advantageous mutants with r, = 2 and
re = 1 depict a bump at adjacent-boundary point for the fixation probability
while as the location changes towards the center point(s), the same fixation
probabilities are achieved. Results are based on exact analytic approach.

The trend for the fixation probability starting at different locations
for various variances and population sizes. Analytic calculations show
the trends for the average fixation probability of mutants for various popu-
lation sizes: (a) N =3, (b) N =4, (¢c) N=5,(d) N =6, and (e) N =T.

In all cases we assumed that (r,) = (r,) =land oy, =0,=0. . .. .. ..

The treatment of the fixation probability for different population
sizes are compered separately at boundary, adjacent boundary,
and the third location on the line model. (a) the treatment at bound-
ary, (b) at adjacent boundary, and (c) at the third location on the line, all
show a similar increasing behavior as the circle model for larger population
size. Points are drawn based on analytic calculations. . . . . .. ... ..

Comparing the line and circle models for the same population sizes
and when (r,) = (r,) = 1 and 0, = 0, = 0. In (a) N = 6 and in (b)
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4.15 The randomness effect in higher dimensions. The average fixation

5.1

2.2

2.3

0.4

probability in terms of the standard deviation of the bimodal fitness distri-
bution for a 2D lattice L x L without reflecting boundary (3 < L < 10). The
fluctuations in the (standard deviation of the) fitness of both normal and
mutant cells with average fitness equal to 1, reveal the same trend for the
average fixation probability as that of the 1D spatial /non-spatial case. and
we run stochastic simulation for a set of 3 runs, each with 20,000 realization.
Error bars as the standard deviation of mean are very small and have not
shown in this figure. . . . . . . . . ...

A Schematic representation of the model with possible pathways.
This model includes four compartments: (i) central stem cells, S,, (ii) border
stem cells, S, (iii) transient amplifying cells, D, and (iv) fully differentiated
cells, Dy. Different types of proliferation and differentiation of stem and non-
stem cells occur in the system in order to preserve the constant population
size. The model includes the possibility of dedifferentiation; mutant D, or
Dy cells are able to generate immortal D, or Dy cells, respectively. . . . . .

The general algorithm. The figure reveals the algorithm we used in this
chapter for the natural mechanism of the colon.intestinal crypt: at each

updating step, two FD cells die and two cells divide to replace the dead cells. 78

A schematic view of the model. The figure represents the normalized
rate of cell’s division at each location of the crypt obtained from [135]. The
black solid line is the graph of the function g which shows the normalized
division rate of cells, in Parameter estimation section, and the discontinuous
curve represents the result of experiment. . . . . . . . . ... ... ... ..

Homeostasis in the number of border stem cells manages the com-
partmental growth via crucial factors ¢ and v. One mutant border
stem cell arises in the S, compartment and no more mutations are allowed
in the system. We assume that A\; # 0 and ¢ # 0 which means that both
symmetric and asymmetric division can occur and |S,| = 7. This figure
shows how the fixation probability 7« varies w.r.t. the changes in the pop-
ulation size of mutants in the S, compartment as ~ takes various values and
0=0.5,11 =38 . .
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Multi—variable Markov chain of mutants in non-stem cell com-
partments. In the absence of mutation and plasticity, when a mutant cell
appears in either D; or D; compartments, we calculate the probability of
fixation for mutant differentiated cells. Assuming |D;| = 150 and |Dy| = 50
we investigate three different approaches as Ay and A; alter. Firstly, (a)
represents the probability 7 o of starting from one initial mutant D; cell for
lower values of 0.01 < A; < 0.1 and higher values of 0.5 < Ay < 0.9. We
conclude that lower values for A; and higher values for Ay tends to higher
fixation probabilities. In contrast, changing the values of A\ to lower val-
ues as well, leads to a huge drop in the survival probability. (c) depicts a
landscape for the fixation probability for possible initial states (d*, f*) (for
0 < d* < 150,0 < f* < 50). A dramatic increase in the probability of
fixation can be obtained by starting from larger initial mutant population
of TA cells where Ay = 0.105, A\ = 0.026, and  =3.8. . . . .. ... ...

(a)-(c) The probability and time that mutant CeSCs will take over
the S. and the FD. The sub-figure (a) presents a schematic view of the
model at the initial time. The simulations start with e¢* mutants in the S,
while the other cells are wild-type. The sub-figure (b) indicates the average
time and the probability of the progeny of mutant CeSCs taking over the
CeSCs. The plot (¢) shows the probability and time that the progeny of
CeSC mutants will take over the FD. In this figure |Sy| = 7,|S.| = 4, and
u = v = 0, other parameters are given in Table 5.1. The points are the
average and the bars indicate the standard deviations of 5 batches of 100
runs, and the solid lines present the results of the formula. (d)-(f) Time
and probability of the progeny of mutant BSCs taking over the
Sp. The figure (d) shows that there are b* number of mutants in the S,
at the initial time of simulations, and (e) presents the result of simulations.
The bottom sub-figure of (e) indicates the probability that the progeny of b*
number of mutant BSCs will take over the entire Sy, and the top sub-figure
shows the time of its occurrence. Plot (f) presents the analytic results,
and it shows the effect of the number of BSCs, S,, and the proliferation
probability of CeSCs, 7, on the fixation probability, which is the probability
of the progeny of mutant BSCs taking over the entire S,. Here, |S,| = 7,
|Se| = 4, and the rest of parameters are given in Table 5.1. . . . . . . . ..
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(a)-(c) Role of TA mutants in generating FD mutants. Figure (a)
is a schematic view of the crypt at the initial time of the process. Plot (b)
indicates the effect of the initial number of TA mutants and the probability
of stem cells’ division, Ay, on the probability that mutants take over the
entire TA. Plot (c) reveals the effect of the mutants’ fitness on the fixation
probability of mutants in the TA. (d)-(f) Fixation probability in the
FD compartment. Sub-figure (d) is a schematic representation of the
crypt at the initial time. (e) shows the behavior of the system for a range of
the rate of divisions in the D group, Ay, as the initial number of mutants
varies. The curves in (f) illustrate the impact of the mutants’ fitness
and the division probability of FD cells, A¢, on the fixation probability of
mutants in the FD group. This figure shows the results of the analytical
formulas, when the total number of TA cells is 1500, and the number of FD
cells is 500, and in (b) and (c), the mutant’s fitness is 1, =3.8. . . . . ..

Probability and time that mutants are washed out from the crypt.
Cartoon picture in (a) shows how a S, compartment with all normal stem
cell is able to wash out mutants in the rest of the crypt. The sub-figure
(b) shows the result of simulations indicating the average time and the
probability that the all crypt’s cells become wild-type, i.e. all mutants are
washed out from the crypt. In this figure |S,| = 7,|S.| = 4, and u = v = 0,
other parameters are given in Table 5.1. The points are the average, and
the bars indicate the standard deviation. . . . . . .. ... ... ... ...

Fixation of immortal cells in the FD. The sub-figures (a) and (b)
represent a schematics view of the system at the initial time of simulations
generating the bottom and top sub-figures of (c), respectively. In the top
sub-figure (c), the process starts with f** immortal cells, while the rest are
wild-type. In the bottom sub-figure (c), at the initial time there are d**
immortal cells in D; and other cells are wild-type. In both sub-figures, we
obtain the time that immortal cells take over the entire FD. . . . . . . ..

One stem cell group instead of two compartments. The figure (a)
shows that there are b* number of mutants in the one stem cell group at
the initial time of the simulation, and (b) presents the result of simulations.
The bottom sub-figure of (b) indicates the probability that the progeny of b*
number of mutant SCs will take over the entire FD, and the top sub-figure
shows the time of its occurrence. Here, the total stem cell population is
|S| = 11, and the rest of parameters are given in Table 5.1. . . . . . . ..
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5.11 (a)-(b) The average spreading time of one mutant central stem

6.1

6.2

6.3

cell. The sub-figure (a) shows the average time that the progeny of one
mutant central stem cell will need to take over 10%, half, and the entire
crypt. The sub-figure (b) shows the average time that one mutant central
stem cell needs to generate 2-6 mutant central stem cells. In this figure
|Sp| = |S¢| = 6, and u = v = 0, other parameters are given in Table 1. The
points are the average time, and the bars indicate the standard deviations.
(c) The average time that the progeny of central stem cells need
to take the entire crypt. At the initial time of this simulation all cells are
mutants except central stem cells. We calculate the average time that the
crypt evolves, and all cells become wild-type. In this figure |S,| = |S.| = 6,
and u = v = 0, other parameters are given in Table 1. The points are
the average time, and the bars indicate the standard deviations. (d) The
probability that the progeny of one mutant stem cell takes over
the FD in One and two stem cell compartment models. In this
plots circles and squares indicate the results of simulation for the one-stem
cell compartment model, and diamonds are the results of two stem cell
compartment model. In these simulations we start the system with one
border stem cell mutant, and we obtain the probability that the progeny of
the mutant cell takes over the FD group. . . . . . .. .. ... ... .. ..

Unsupervised clustering. We perform the unsupervised clustering for
179 samples from TCGA and two more samples, HSC CD34+4 CD38-/ HSC
CD133 CD34dim from GEO. . . . . . ... ... .. .. ... .......

Supervised clustering (classification) of AML samples. Considering
the 179 TCGA samples, and HSC CD34+ CD38- and HSC CD133 CD34dim
samples from GEO, we derive a classification of our new subtype in order
to understand early vs. late events and the hierarchy of mutations to detect
the signature genes of AML. . . . . . ... ... ... ... ... .. ...

Distribution of DNMT3A, FLT3, TET2, and WT1 mutation. Using
the 179 TCGA samples as well as 15 normal and 14 DNMT3A samples
from John Dick’s Laboratory, the unsupervised clustering is given using
Euclidean metric for bootstrapping and neighbor—joining method to find
the most consensus trees after filtering out the samples comprising PML-

RARA, MYH-CBFB, and RUNX1 mutations. . . . . .. ... .......
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6.6
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Another distribution of DNMT3A, FLT3, TET2, and WT1 mu-
tation. Again we use the 179 TCGA samples as well as 15 normal and
14 DNMT3A samples from John Dick’s Laboratory to find the distribution
of DNMT3A, FLT3, TET2, and WT1 mutation within the unsupervised
clustering filtering out the samples that include any of PML-RARA, MYH-
CBFB, and RUNX1 mutations. We apply Euclidean bootstrapping method
and neighbor—joining/fastme consensus facility. The blue, purple, green,
and red strands are correspondence to DNMT3A, FLT3, TET2, and WT1
mutations respectively. . . . . ..o

Supervised clustering (classification) of AML samples. Considering
the 179 TCGA samples and HSC CD34+ CD38-/ HSC CD133 CD34dim
from GEO samples, we derive a classification of our new subtype in order to
to understand early vs. late events and the hierarchy of mutations to detect
the signature genes of AML. The blue, purple, green, and red strands are

119

correspondence to DNMT3A, FLT3, TET2, and WT1 mutations respectively.120

Supervised clustering (classification) of DNMT3A samples. Re-
stricting the TCGA samples to a set of 59 samples with DNMT3A mutation
classified in Rq,---, Ry; subtypes along with normal and DNMT3A sam-
ples John Dick’s laboratory using the same pipelines and methods described
in the last two figures. (a) represents the heatmap of mixture coefficient
method used to classify diverse subtypes based on the general mixture dis-
tribution model of 14 observation and 3 mixture component. Subfigure (b)
depicts the supervised classification of subtypes R; in compere with con-
trolled and DNT3a subtypes. . . . . .. .. .. ... ... ... ...

Distribution of the fixation probability shows skewness to the left
hand side which as population size increases shifts towards left.
Distribution of the fixation probability for different populations are given
in (a) for N = 10, in (b) for N = 15, in (c) for N = 20, and finally in (d)
for N = 50. In all of the considered cases we assumed that (r,) = (r,) =
Loy=0,=0. . . . e e
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A3

A4

A5

The relationship between differences in mean and variance of the
fixation probability with respect to o. Assuming (r,) = (r,) = 1,0, =
o, = 0, considering the probability distribution of the fixation probability in
the neutral case, the mean and variance are approximately linearly changing
in terms of 0. As can be seen in different figures, as population size increases,
as the line for standard deviation remains less than 0.2 with some slight
changes, the curve for the mean declines to intersect the line of means in
lower values for o. In (a), (b), (c), (d), and (e) respectively N = 5,10, 15, 20,

The trends for the mean and standard deviation of the fixation
probability when (r,) = (r,) = 1,0, = 0, = 0. In part (a), mean of
the fixation probability is drawn in terms of population size. The trend
for various values of o show the same decreasing behaviors. In part (b), a
similar result can be detected for intermediate and large population sizes.
These figures confirms the fact that mean is decreasing and the variance is
bounded for all valuesof o. . . . . . . . ...

The trends for the mean and standard deviation of the fixation
probability when (r,) = 0.9, (r,) = 1,0, = 0, = 0. In part (a), mean of
the fixation probability dramatically decreases as population size raises. In
(b), the trend for smaller values o increases compared to smaller os but for
o = 0.9 represents a huge decline as we conclude in the analytic results. . .

The trends for the mean and standard deviation of the fixation
probability when (r;,) = 1.2,(r,) = 1,0, = 0, = 0. In (a), mean of the
fixation probability for larger populations will saturate to a certain amount
which depends on o. In (b), standard deviation of intermediate populations
and larger populations stays unchanged on a certain value which is again
only dependent too. . . . . .. ..
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AT

B.1

B.2

Exact analytic calculations show increasing trends for the fixation
probability for universal randomness and decreasing when only
mutants are under effect of randomness. Let the population size vary
and is equal to N = 3,4,5,6,7,8,10 and a bimodal distribution imposes the
randomness on the system. In (a) cancer and wild-type cells have random
fitnesses 1y, r, with average (r,) = (r,) = 1 and variance o, = 0, = 0 respec-
tively. In (b) the exact analytic calculations reveals a decreasing behavior of
the fixation probability on a circle when only mutants are under the effect
of randomness. More precisely, cancer cells have relative random fitness r;,
with average (r,) = 1 and variance o, = o whilst normal cells have a fixed
fitness r, = 1 This result analytically confirms the result of [99]. . . . . . .

Dependency of the average fixation probability of mutants on the
initial number of malignant mutations. (a) The average fixation proba-
bility over the expected probability under neutrality (+ ), and (b) the average
fixation probability, in terms of initial number of mutants (for the bimodal
fitness distribution). In both subfigures, the total population size is assumed
to be N = 100 and each each point represents the result of stochastic simu-
lation for a given 1 < i < 100 and error bars are the standard deviation of
mean for a set of 3 iterations, each with 20,000 realization. . . . . . . . ..

The cartoon figure of the possible death and birth. The sub-figure (a)
represents the three possible death in the Dy compartment. The sub-figure
(b) shows the probable divisions occurring in either Dy or D; compartments
to replace the dead cells. With a probability of A, divisions occur in the Dy.
Otherwise the replacements can be the result of divisions in D; population
with a probability of 1 — Ay. We have D = rod™ + rid* +d and F =
ro [ A

A representative cartoon picture representing the hierarchy of di-
visions occurring in the D, S,, and S. compartments as a continua-
tion to the birth events. Figure (a) reveals a continuation to the second
step where all the possible cases happen in the Dy, S, S. compartments. A
cell divides in the D, population with a probability of 1 — A, and with a
probability of Ag in the S, or S. compartments. The sub-figure (b) indicates
the possibilities of migration from the S. compartment to the S,. Consid-
ering D and F as those defined in the preceding figure, in this figure, we
assume R, =rie*+eand Ry=r 0" +0b.. . . . . . ... ... ..
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Chapter 1

Introduction

Cancer can be thought of as a dynamical disease that is initiated through microenviron-
mental effects and genetic variations in living organisms. This type of malignancy occurs
through a multi-level process originating in mutations and epimutations during carcino-
genesis (cancer generation) which alters the delicate homeostatic balance between cell
reproduction and death. Among diverse diseases, cancer as a result of genetic/epigenetic
alteration(s) on somatic cells has been widely studied because of its abundance, diversity,
and high risk. Mutation (genetic alteration) is clearly one of the crucial factors leading
to cancer and this may occur in different types of genes: caretaker, gatekeeper, and/or
landscaper genes [110), | genes. In fact, genetic/epigenetic mutations have been thought
of as one of the important halmarks of various cancers [51, ]. More precisely, mutations
are natural responses to microenvironmental challenges, often leading to the Darwinian
evolution and adaptability of an organism. Mutants mostly have higher net reproduc-
tion rates [24]. Epigenetic changes are fundamentally associated to non—-mutational events
that affect the hierarchy of phenotypic-genotypic change in cells [$1]. In most cases, can-
cer arises from multiple changes in cellular pathways of various phenotypes and thus can
be subdivided into compartments of such phenotypes. In a healthy tissue, homeostasis
maintains constant cell numbers in each of the compartments.

Cancer initiation has been thought of as a hierarchy of mutations, which are genetic
changes that occur as a result of microenvironmental effects and heterogeneity (diversity
of cell types) [4, , , , , |. Figure 1.1 represents how different mutational
effects may lead to cancer initiation. In this figure, typical changes in the diversity of
different subclones is given over a cancer initiation period. Diversity, in fact, is a notion
of multiplicity for existing subclones within the population which may present phenotyp-
ically/genotypically different or may reveal diverse functionalities. Within tumorigenesis



(tumor initiation), the crucial and common effects of mutations on cells are related to
uncontrolled proliferation, avoidance of cell death, avoidance of anti—growth signaling, sus-
taining angiogenesis, and metastasis to the targeted tissue in invasive types of tumors
[23, 121]. There has been a long-standing discussion and debate on the three existing
carcinogenesis models: clonal evolution [58], cancer stem cell hypothesis [81], and plastic
cancer stem cell [51, 101]. Recent thinking suggests that the notion of a ‘cancer initiating
state’ also called a “stemness state”, for a pool of stem cells (SCs) and certain non-SCs,
might be a better interpretation of tumor development in the human body [$1]. Stem
cells, in fact, differentiate to produce progenitor cells, which give rise to fully differentiated
cells. The reverse procedure, that is, the switch back from progenitor cells to stem cells,
termed as plasticity or dedifferentiation, does not usually occur. However, there exists im-
portant recent evidence suggesting plasticity of cancer cells [101, 139, 147, 150, 164, 174].
Mathematical models have also been constructed to derive switching rates between these
two states [18]. In the present thesis, mutation and plasticity are considered as possible
underlying mechanisms in carcinogenesis.

Random Suppressed Mutational Events 1 Cancer Initiation

Diversity of Population

Tumorigenesis

Figure 1.1: Cancer initiation process. Before the tumor initiation, many random
mutations may occur within the population. Such mutational events lead to new clones and
increase the heterogeneity (diversity) of the system. However, only a few of the clones can
survive and initiate the cancer. The crucial mutation(s) which can trigger tumorigenesis
are usually termed as founder mutation(s): either as founder stem cells (SCs) or founder
stem like cells (SLCs). SLCs are those non-stem cells which can phenotypically switch to a
stemness state. Different suppressed or survived clonal expansions are shown with diverse
colores.

To study the dynamics of cancer, there exists a variety of mathematical approaches.
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Evolutionary dynamics is one of the approaches that has been played an important role to
improve our understanding of such complex mechanisms. Considering cancer as a stochas-
tic evolutionary process, Markov chains of finite or infinite populations have been used
in evolutionary dynamics to analyze development of cancer. In this thesis, our main fo-
cus is on evolutionary dynamics of cancer. We assume different types of Moran processes
[116, |: the process of competition between two types of individuals within a popu-
lation of constant size. The birth—death (BD) and death-birth (DB) Moran models are
two important mechanisms to study such dynamics. In a conventional (non-spatial) BD
Moran model, a cell is chosen at random for proliferation first, while its offspring replaces
another randomly chosen cell. In DB model, a cell is chosen at random for elimination
first, then another random cell sends its offspring for substitution. These procedures occur
proportional to the ability of each type of cell for reproduction, which is usually referred to
as the fitness (proliferation rate). The fitness of each type of individual can be greater (or
less) than that of the other types, then this type of cell would be called advantageous (dis-
advantageous). Applying evolutionary dynamics methods and considering finite Markov
chains of finite dimension and finite variable numbers, two important types of cancer are
studied in this thesis: colorectal/intestinal cancer and acute myeloid leukemia. We first
summarize some fundamental biological facts about each of these cancers separately and
explain how mathematical oncology can be used to probe and understand some aspects of
tumorigenesis.

Firstly we study colon cancer which is the second and third most common cancer,
respectively in women and men all over the world [32]. To start, we firstly review the
structure of the human colonic/intestinal crypt and then focus on the cancer development
process in such a tissue. There are millions (~ 107) of crypts in the human colon [53].
In the epithelium, the colonic mucosa consists of an assay of a single-cell layer including
stem—cells, progenitor cells, and fully differentiated cells. Precursor cells are gradually
produced by intestinal stem—cells (ISC) as they evolve to turn into more mature levels;
from early progenitor cells to fully differentiated cells. The rate of renewal in these organs
is about 5 days [132] and thus the epithelium is one of the most rapidly renewing organs
in the human body. Such a rapid renewal makes the crypt capable of hosting a wide range
of malignancies. The high frequency of such malignancies makes colorectal cancer a fatal
disease. The biology of cancerous colon/intestine is correlated with the natural homeostasis
mechanisms at the bottom of the crypt or in the rest of the epithelium. Colon/intestinal
cancer can also occur as a result of inheritable genetic and/or epigenetic factors. More
explanation about the mechanism of a cancerous intestine can be found in [51, 58, 75, ,
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In most colorectal cancers, mutation occurs over the patient’s lifetime, and it is not



inherited. The most frequent mutation in colon cancer is the inactivation of the tumor

suppressor gene adenomatous polyposis coli (APC) [78]. Moreover, the absence of APC
immediately perturbs Wnt signalling pathways (the processes of receiving signals in cell
surface receptors), and causes aberrant migration [119]. Another tumor suppressor gene

that becomes inactivated in many cancers as well as in some colon cancers is p53 (of-
ten called ‘the guardian of the genome’). There is evidence that p53 inactivation leads
to multiple mutations during a single cell cycle, like chromothripsis [59]. Chromothrip-
sis is a massive genomic rearrangement occurring only on a single chromosome or a few
chromosomes during a single cell cycle [203]. Moreover, in the majority of colorectal car-
cinomas, the loss of a large portion of chromosomes 17p and 18q has been observed [3(].
These massive changes in the cell’s genomes can evolve a cell to become immortal like

the Hela cell line [113]. In addition, the over-expression of polycomb ring finger oncogene
BMI1 transforms epithelial cells and influences telomerase functionality that can lead to
cell immortalization [101, , |. Telomeres, repetitive nucleotide sequences at each end

of all chromosomes, get slightly shorter with each normal cell division until they shorten
to a critical length. This leads to cell aging and ultimately to apoptosis, or cell death
[25, 40, 71, 84, , , ]. Normal cells have a maximum number of divisions, i.e.
‘Hayflick limit’, before these telomeres are depleted. Rare mutations or transformation
events, highly associated with telomerase activity, allow cells to escape from the first mor-
tality phase checkpoint (M1 or Hayflick limit) and the second M2 crisis checkpoint and
become immortal [21].

Colon and intestinal cells are commonly divided into three categories: stem cells (SCs),
transit amplifying (TA), and fully differentiated cells (FD). Colonic and intestinal stem
cells, which are located at the bottom of the crypt, generate themselves and TA cells. TA
cells, which are the most dividing cells in the crypt, give rise to the specialized differentiated
cells that fulfill the physiological functions of the intestine [181]. Sometimes in response
to an injury, TA cells that have some potential characteristics of stem cells can re-acquire
some stem cell functionality and regenerate the crypt [181]. We do not model this scenario,
and instead investigate the normal cell dynamics of crypts with no injuries.

Recently, it has been observed that the intestinal crypts contain two stem cell compart-
ments: border stem cells (BSCs) and central stem cells (CeSCs) [141]. BSCs, which are
located between CeSCs and transit amplifying (TA) cells, have high potential for differ-
entiation; in contrast, the CeSCs, which are located at the very bottom of the crypt, are
biased towards proliferation. The first computational cell dynamics model, which consid-
ered the existence of two stem cells groups, was developed by Shahriyari and Komarova
[154] to obtain the probability of second-hit mutant production in the stem cell niche.
Recently, by improving the model provided in [154], i.e. adding the possibility of cell mi-



grations from BSCs to CeSCs, we obtained the optimal structure for the stem cell niche,
which minimizes the probability of the progeny of mutants taking over the entire stem
cell niche [156]. Upgrading the existing models with mutational events and spatial struc-
tures [14, 51, 57, 86, 98, , , , , |, the general and relevant mechanism in
colorectal /intestinal cancer will be studied in this thesis.

Another important type of cancer which we study in this thesis is acute myeloid
leukemia (AML). The dynamics of such a complex mechanism has still remained unclear
even at steady state or even after the reconstitution of the blood [10%]. High level of cell
turnover at the reproduction rate of approximately 10'? cells per day occurs in the human
body. For this purpose, progenitor cells which are raised from hematopoietic stem cells
(HSCs) undergo the hierarchy of generating functionally matured hematopoietic cells. This
hierarchy starts from HSCs and then to multi-potential SCs, then to lymphoid/myeloid
progenitors and finally to white cells, red cells, and platelets. As HSCs cannot proliferate
and differentiate in vitro and since still there is no accurate biomarker to distinguish SCs
and non—SCs repopulated from the blood and bone marrow, there are many ambiguities
in the study of HSCs.

Among various types of blood cancers, AML is the result of quick growth of affected
myeloid cells tending to the accumulation of leukaemia blast cells in the blood and bone
marrow. This type of leukemia is the most common hematological disease in adults with
fewer occurrence of mutations [85]. The main source of leukaemia has still remained un-
clear but mostly arises via defection in transcription factor in the regulatory mechanism
of homeostasis-related genes. According to the results of [35], on average 13 mutations ob-
served in the genes of 200 clinical adult cases, in which 5 mutations occurred subsequently
and in most of the cases, in which there was one potential driver mutation.

Overall, the pathogenesis of leukemia can be studied through different perspectives: the
hierarchical method and clonal succession. There exists some evidence on both the hierar-
chical models of blood cancer formation, clonal succession and cancer stem cell hypothesis
in the mouse blood [29, 068, |. Repopulation mechanism in mammals most probably
occurs at different HSC self-renewal rates which makes hematopoiesis stochastic. This
means that we may rely on numerical simulation and other mathematical approaches to
understand human clonal kinetics [I, 108]. Such results then can be transferred to clinical
trails and therapeutic treatments.

In spite of much research into therapeutic treatments and prognosis schedules, AML
has endured as a case-dependent and high-death-rate malignancy [115]. The existing
methods in prognosis, diagnosis, relapse, and therapy are related to genetic alterations
which defines various subtypes of AML. The classical categories of AML, also called FAB



(French-American-British) classification, has been performed according to the morphology
and maturation of hematopoietic cells [112]. Another classification of AML which has been
defined by the World Health Organization (WHO) is based on the occurrence of dysplasia
(the early stage in cancer development) and chromosome translocations [3]. However, we
try to generalize these two classifications by considering phenotypic-genotypic features as
new subtypes. Each of the subtypes is determined by a set of driver genes which have been
thought to be genetically interconnected.

For the given list of the new AML subtypes, we perform gene expression analysis of
AML data. Variations in genomes may occur to activate oncogenes or deactivate tumor
suppressor genes, that can be observed over a range of information from raw data to
classified data. Novel sequencing methods have intensely enhanced the biological and evo-
lutionary understanding of hematopoiesis manipulating the analysis of genomes, exomes,
transcriptomes, and proteins [115]. A comprehensive analysis of AML clinical /experimental
samples would help us to map out the landscape of somatic mutations or the phylogeny of
recurrent genetic alterations based on the signature of AML genes. Such a phylogenetics
tree may provide worthwhile information about tumor initiation and progression, prognosis
and chemotherapy as well as targeted-therapy, and also detecting other related genes to
expand the tree. The cell of origin and those mutations that initiate and contribute to
AML have been poorly identified. However, highly purified fractionation of HSCs, progen-
itor, and differentiated blood cells revealed that pre-leukemic cells which are resistant to
chemotherapy and undergo a relapse, may be the origin of Leukemic cells in AML. More
precisely, the appearance of DNMT3A mutation as an early event may play a prominent
role in the evolution of pre-leukemic cells and in AML pathogenesis [159)].

We investigate some crucial aspects of heterogeneity, spatial structure, and pathogenesis
of various tumor types, which may have important effect on the fate of the system. The
first aspect to study relates to different types of division which may occur at different rates
depending on the inter/intra—cellular nature of the organ. Symmetric division produces
two daughter cells of the same type where either both are the same as the ancestor or
both different from the ancestor. An asymmetric division reproduces one cell of the same
type as the ancestor and the other one of different type. Various types of cell division play
important roles in the dynamics of cancer where a defect in one type of division can affect
the whole mechanism.

The second aspect is associated with the dynamics of multistage cancer initiation,
which has been studied in the literature for both well-mixed (independent of structure)
and position—dependent conditions and by using stochastic analysis [75, , , ]. In
this thesis, we use mutation as an important factor that changes a specific genotype of
individual to another genotype of cell. Considering the competition for life between two



genotypes, one may explore the hierarchy of mutations (in terms of tumor initiation and
progression) as a Moran process [/, 75, , , , , , , 166].

Another important aspect in the evolution of cancers relates to spatial structure of
the cancerous organism. In a spatially structured population, each individual within the
population has a specific position and the mechanism is not necessarily the same as in
the conventional Moran model [12, 39, 63, 75, 76]. Mathematically, the Moran model of
a finite population can be assumed on a finite (di)graph where each of the individuals
is located on a node of the graph whilst cellular interactions can only occur through the
existing edges. There has been much effort in evolutionary dynamics to investigate various
features of Moran models. The spatial Moran process for a structured population was
firstly investigated by Maruyama [103]. Later, it was shown that the location of the new
mutant is important in estimating the fixation probability, that is the probability of a
newly arisen mutant to take over the entire population [90, ].

Houchmandzade et al [51, 55] tried to give a general mechanism for the Moran model
on graphs based on Marayuma’s discoveries, but without repeating his simplifying assump-
tions. Their methods generalize spatial Moran models to consider islands over nodes of a
finite graph and investigate the effect of such a pattern on the fixation probability. They
emphasize the fact that for small selection pressures in DB models, the fixation probability
is reduced for an advantageous mutant. Moreover, in BD models, the probability for an
advantageous mutant to take over the whole system can exceed the neutral fixation proba-
bility for a non—structured population of the same size [54, 55]. A one-dimensional spatial
generalization of the DB Moran process is discussed in [75].

Finally, the last aspect that we consider in this thesis is related to the application of
the multi-compartment models. Our motivation for considering such structures is that
the majority of human cancers have origins in epithelial tissues, that are tiny compart-
ments of cells. In a multi-compartment model, each type of cell has its own particular
compartment. The idea of using the multi-compartment models has mostly been used for
a 1D spatial model. Combining all of the above aspects in a multi-compartment model,
we attempt to understand those patterns leading to cancer. Particularly, for the case of
colorectal /intestinal cancer, we generalize the existing models to more complex system
with more structural details to conclude a better understanding of the cellular interactions
among various compartments.

The thesis is organized as follows. Starting with some background materials about the
evolutionary dynamics of structured and unstructured populations, in Chapter 2, we briefly
review two important concepts: the fixation probability and fixation time, which will be
used in subsequent chapters. In Chapter 3, the general form of a multi-compartmental



model is given where the impact of various types of division, in the form of asymmetric
differentiation and self-renewal is compared with the effect of phenotypic plasticity in a
general multi-stage framework. We consider the phenotypic and genotypic alterations to
individuals and obtain the general formula for the survival probability of mutants when a
malignant mutation occurs.

Then micro-environmental fluctuations on the fitness of mutants will be investigated
in Chapter 4 to show how a neutral system can be affected under influence of randomness
in the system and how such an impact may provide a selection advantage for mutants.
We show that the minority enhances the fixation probability of mutants even though the
normal cells are selectively advantageous. As the simplest case of the 1D spatial model,
the line and circle have been studied under random effect. In the current research, we have
generalized some ideas about 1D spatial models of the circle, the line, and complete graph
in Chapter 4. Studying the effect of randomness on diverse 1D spatial models, we also
show how such an environmental effect may influence the survivability of mutants on a 2D
structure.

In Chapter 5, a general model of 4-compartmental mechanism is taken into account
to study the probable structure of the colon/intestinal crypt, where two compartments of
central and border stem cells are considered. We also examine the impact of immortal
cells on the fate of mutants within the fully differentiated subpopulation. Much effort
has been also expended in this chapter to characterize the role of different types of stem
cells in colorectal /intestinal cancer and confirm and develop some very recent experimental
results. The structure of the colonic crypt, different types of cells in epithelial layer, and
their various types of division have been assumed in our models to quantify some important
parameters for the first time and based on our analysis and existing experimental data.

Chapter 6 is devoted to the study of AML, in which statistical genetic analysis is used
to investigate the lineage of hematopoietic stem cells within the initiation and progression
of leukemia. Therefore in this chapter, the general mechanism of acute myeloid leukemia is
studied along with some gene expression analysis of this type of blood cancer. Phylogenetics
and the signature genes of AML are other important concepts which will be presented in
this chapter.

Finally in Chapter 7, we summarize all the models described in the chapters 3-6 and
suggest some new problems which may provide fruitful directions of research for future
work and further endeavours.



Chapter 2

Mathematical Background Materials

2.1 Evolutionary Dynamics

Those mathematical principles of natural events in life that may repeatedly occur over
time are the main topics of evolutionary dynamics. The origin of evolutionary dynamics
formulation is genetic evolution while the genetic changes are considered over a long period
of time. Mutation and proliferation are the main mechanisms underlying evolutionary
dynamics. Mutation leads to generating various types through selection process whilst
proliferation relates to the reproduction of copies of existing individuals.

The conventional Moran model is a dynamic condition between deterministic selection
and stochastic model of generations. Finding the fixation probability as the probability
that a beneficial mutant can take over the entire system (if applicable to spread), is an
important quantity in evolutionary dynamics and population genetics. To attain the fixa-
tion probability, we usually assume that the number of individuals in a specific population
is stochastic. Furthermore, this quantity is sensitive with respect to the time distribution.
To investigate a finite Markov process, uniform distribution is usually assumed. In small
populations, the probability of extinction is greater than that of larger populations due to
the higher fluctuations in the system. Furthurmore, the fixation probability of a beneficial
mutant in a large population is lower than that of in genetic drift. In large populations,
stochastic variation represents a lower effect on extinction or survivability [76] changing
the population size.

Among various methods in studying stochasticity of the evolutionary dynamics of a
population, one of the simplest approaches is the Moran model in which two types of indi-
viduals compete within a population of constant size. The Moran model can be considered



for a well-mixed population in which any pair of individuals can randomly participate in
birth/death events. However, the model can be assumed as a structured population (as-
suming to be located on vertices of a graph) where every individual has a specific position
and birth/death occur under certain rules and in proportion to their fitnesses and the
weight of the connecting edges. Weights are modeled with respect to the structure of the
considered graph and presumably the relative fitness of individuals. Inhabitants in both of
these models (structured and non-structured) can be exposed to selection pressure under
random drift or neutral drift with no selection.

The most important parameters in population genetics, fixation probability and time
to fixation, can be obtained by following the evolutionary dynamics of a newborn mutant
until its absorption. Proliferation/death rates can be frequency dependent (game theory)
or remain unchanged during the absorption process (in which the recently arisen mutant
experiences extinction or fixation). However, in reality, these parameters may change due
to some random effects and alter from location to location.

First, let us suppose a finite Markov chain for a random variable X which takes one
(or other) of the values 0,1,--- , N (N is the population size) respectively at time steps
0,1,2,---. We suppose the system is at state + when X = ¢. In a Markov process, the
probabilities P;_,; of reaching from state 7 to state j, do not depend on time and the process
at time t + 1 is dependent only on the procedure at time t. One question of interestt in
population genetics is associated with the absorption of the system to either 0 or N.

2.1.1 Fixation Probability for a one dimensional Markov change

When a new mutant in a homogeneous population takes over the whole population, the
probability that it successes is called the fixation probability. The fixation probability 74
of an individual A is, in fact, the probability that A takes over the whole population.

Let 7; be the probability of reaching state N starting from state 7, when X takes its
values at consecutive time steps, the m; satisfy the following Kolmogorov system [11, 7]

N
{ i = ijo Pisjmj, (2.1)

o = O, ™ = 1.
The solution to this system is

i
1
T = T <1+ %), T = T ;
ZH 1+Zj\[:11 ‘;:1 Vi

=1 k=1
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Pi%ifl

i—i+1

1 to 1 — 1 and 7 + 1 respectively.

for v, = , where P,_,; 1 and P,_,;;, are the transition probabilities of changing sate

2.1.2 Fixation Probability for a higher dimesional Markov change

Now let us consider a higher dimensional Markov chain. For the sake of simplicity, one may
consider a two dimensional random walk. Starting from an initial state (j, k), through the
two dimensional random walk, where j and k are respectively the number of some specific
subpopulations of two populations J and K with constant sizes |.J| and |K|. We follow the
all possible changes in the number of j and k. We find the generalize form of the probability
of fixation either in the J group, K compartment, and in the entire population of J and
K. We assume that no more mutations would occur after placing an initial mutant within
the population.

To envisage the fixation probability of starting from a state j in a 1-dimensional single
variable Markov change, we define 7; as the fixation probability of staring from j mutants,
i.e. m; is the probability that the progeny of the j number of mutants taking over the
entire system. Then, the fixation probability m; is the probability that the progeny of a
single mutant will take over the entire population. Thus, we have the following system of
equations:

N
=Y PimTm, 1<j<N-1,
m=0

N
™ = E P1—>m7rm7

= (2.2)
N
TN—1 = Pny_15n8 + Z P,
m<N-—1
™ — 1,

\
where P;_,,, is the transition probability of moving from state j to state m and NN is equal
to either |.J| or | K.

In higher dimensional state spaces, the procedure is similar while j is a vector, where
each coordinate in this vector is associated to the number of mutants in its corresponding
compartment. In the following, we illustrate a method to solve a bi—variable finite Markov
chain to find the fixation probability of mutants starting from the state (j, k) of having j
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mutant(s) in one of the compartments and & mutant(s) in the other compartment. This
method can be generalized to higher dimensional state spaces with more than two variables.

We suppose that 7(;) is the fixation probability of having j and & number of mutants
in two different J and K compartments at the initial time. We may start from the state
(j =1,k =0)or (j =0,k = 1) which respectively associate to the case of having one
initial mutant in compartments J or K, respectively. Moreover, we assume that W{m) is
the fixation probability of mutants in the compartment J starting from the state (j, k).
Thus W{LO) and WE{M) are respectively the fixation probability of an initial mutant in J
and K in the J compartment. Similarly, the probability W{io) (or W{é’l)) is the fixation
probability in the K compartment starting from a mutant in the J (or K) group. In
the following, we describe a model to calculate the fixation probability W{LO) of starting
from one mutation in the J compartment applying a two—variable Markov chain model
moving through all possible states (j, k) where (j,k) # (0,0) and 0 < j < |J| = 1,0 <
k < |K|. Overall, there exist |J|(|K|+ 1) — 1 distinct states in this case. We define
the (|J|(|K|+1) —1) x (|[J|(|]K| + 1) — 1) transition matrix A where the entries are the
coefficients of 7T5-{ . in the following Kolmogorov equation:

Jo— R
(k) = Z P(j,k)ﬁ(j,k) TGy (2.3)
ik
We also define B = [(j, /{:)} as the matrix of all possible states (j, k). One
0<k<|K],0<5<]J[—1

may correspond the matrix B to a vector in RIVI(IKI+D=1 considering the below isomorphism
ignoring the entry (0,0) in B is not taken into account:

F:B — S C RVIUKIF)-1
{ k) — (JI =D+ Ek=-DJ|+5+1, 1<;<|[J[-1L0<k<|K[ "~

Now to calculate the fixation probability WE]LO), taking the advantage of using the vector

representation of matrix B (ignoring the entry (0, 0)), one can define the vector X = [7/]es
as a list of all fixation probabilities associated to various states s, then the Kolmogorov
equation (2.3) can be viewed as a system: A - X7 = b for the vector b € RIVIIKI+D=1 jg
the matrix of values on the right hand side of the system (2.3) constructed by taking the
constants of each equation to the right hand side. The notation 7 accounts for the transpose
operator of matrices. We solve this equation for X by assuming the initial conditions are
Mooy = 0 and 7, ) = 1 for any 0 < k < |K|. Then, the fixation probability 7/, , is the
first entry of the matrix X. Similarly, the |J|™ entry of X is in fact the WE{M), the fixation
probability in the J compartment starting from one initial mutant in K. similarly, one can

12



find the other two fixation probabilities W{f’o) and W{é’l). We will consider this calculation
in the subsequent sections.

Example. To describe the method we introduced in this section, for instance one can
suppose that |S.| = 2 and |S,| = 2. Considering the transition probabilities in this case, we
derive the following system of equations for m(;x) = Wi]j7k) where 0 < j<2and 0 <k < 2:
FH&‘FP&BWOM‘*P&$”®M‘+PE$27@Q
~ (pg;g) + Poy+ Pisy + Pugy + P(;b*)?) T,0 = 0,
P mn + Py moa) + Py mao — (BES) + by + Py + PH7) mou =0,
Pg;f) + P+ P(]f) T0.1) + P(Ol’j) T2 + P(Ol’ Lo + Pr o
— (P + Pad) + By + Py + Py + P ) mn =0, (24)
P(J&’g) T(1,2) + P(OO’;) T(0,3) + P(%’E) T(0,1) + P(Jg”;) T(1,1) + P(Jgﬁ’;)z (1,0)
— (PSS + Pz + Py + Py ) mo =0,
pg;g) + Py + Pg;; + P(;;g) T02) + P(Ol’ 2T
— (RS + Pas) + Py + Bl + Py’ ) maa) =0,

Based on the range of change for variables j, k, the matrix B is

(0,0) (0,1) (0,2)
B:[(Lo) (1,1) (1,2) (2:5)

which defines the all possible states which should be taken into account in the calculation
ignoring (0, 0) state. Using the isomorphism defined in above B then is assumed to be be
equivalent to the vector [(|J] — 1) + (k — 1)|J| + j + 1]ix5 = (1,2, 3,4,5) in R®. The latter
system defines the 5 x 5 matrix A as follows

[ —A, PL PYT Pt

w0 Fao fao
Pon —A Pgy) Fgy 0
Pony Puby —As Py P (2.6)
Poy Pozy Pozy —Ar Py

0,— -0
0 0 P(1,2) (1,2) —As
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where
+,0 -0 0, —,+ —,+2

Ai = Puoy+ Puoy T Poo T Pao T Paoy

Ay = PR+ Peh 4+ Poyy + Ban

(0,1) (0, (0,1)°
+,0 -0 0+ 0,— - -+
As = Pooy+ Puy T Pay + Pay + Pany + Pal) (2.7)
+,0 0,— = pt2
As = Pay T Poay T Pz T Fo

+.0 -0 0,— +- +,-2
Moreover, assuming the matrix X as
X=[mo Ty T Toz T ] (2.8)

and the matrix b in this case as following

+,0 +,0 +,— +,0 +,— +,—-2
b= _P(1,0) 0 _P(1,1) - P(1,1) 0 _P(Lz) - P(Lz) - P(Lz) ] (2.9)

then we can have the linear non-homogenous system A - X7 = b7

2.1.3 Fixation Time

Defining t;; = > 7, Pz(?) as the mean time between states ¢ and j which is the total number
of times which X has been at state j before absorption into 0 or N (i.e. the population size)
starting from the state 4, and t; = Z;V:_ll t;; as the mean time at state i until absorption
into 0 or N. This is the fixation time as the average time of passing through different

states until fixation which satisfies in the below system of equations

— N —
=20 Pioiti+1, (2.10)
lo=1tn = 07

where the term 1 in the above equations of #; is due to the last system and the fact that
Sty =1

The mean time to fixation in the unconditional Moran process at state i is

N-1 k N-1 &k ] k
tzB — Ul H ’Ym+ Z P H Yms (211)
k=i m—1 =i =1



where

> ! T (2.12)

N-1 k k

=33 T e (2.13)
k=1 1=1 ~ ! m=i+1

7B - N-1 &k N-1 &k 1 k

tz = _7T_z tl ; 71_:[1 Tm — _~ ; PlalJrl mlz_l[—H 7m> . (2'14)

Generally speaking, a very useful approach to derive the time to fixation is to use
Kramers-Moyal expansion equation (see e.g [179, ] for more details) when an approx-
imation of this equation for a given model lead to a system of ODEs, such as replicator
dynamics. In this case, solving such a system subject to initial conditions will provide an
estimation of fixation time of the procedure. This might be very useful to obtain the time
of tumor growth. Moreover, it looks crucial to have an estimation for the time of metasta-
sis in an invasive mutant population when the epithelial markers switch to mesenchymal
markers in a somatic cancer.

2.2 Moran Model

The Moran process is the simplest possible stochastic model to study evolutionary processes
in a finite population when generations are allowed to overlap each other. Let us assume
that we have a population of two type A and B individuals. During a birth-death (BD)
Moran model, a random individual is chosen for proliferation while one of its daughter
cells replaces another random individual at the same time step. Death—birth (DB) Moran
model in turn, at first has a death event for a random individual and then a birth event
simultaneously occurs for a random individual which send its offspring for substitution.
Individuals in a Moran model either are in a mixed population in which every individual
could move freely (often referred to as conventional, well-mized, or unstructured model) or
on a digraph (directed graph) which every individual has a specific position on a particular
vertex (also called as structured or spatial Moran model). At each time step, there would
be three different mechanisms happening for individuals through a Moran process where
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P (P[) is the probability of increasing (decreasing) i by one while P? =1 — P, — Pt is

K3 (3

the probability of that ¢ remain unchanged through the finite Markov chain.

Furthermore, deriving the master equation from the Kolmogorov equation in terms of
transition probabilities, the probability generating function (PGF) can be used to find
survival/extinction probability. Let the finite summation ¢(z,t) = >, 2"p(n,t) be the
corresponding PGF for continuous variable z. Since the Markov process has two absorbing
states at n = 0 and n = N, this polynomial would be of degree N.

2.2.1 Well-Mixed Moran Model

Consider a well-mixed BD model of a finite population size N of two types of individuals:
A and B. There are two different models.

(i) Neutral drift model. Let reproduction rates (fitness) be the same (rs = rp).

When v =1, m; = § for 1 <2 < N — 1 and the fixation probability is equal to %, that

is, the neutral variant with respect to selection. In this case, the fixation time for large N
will be

t; = —N?(m In(m) + (1 —m) In(1 — m))
_ N =m) In(1 — ;). (2.15)

T

Q

(ii) Random drift (constant selection) model. When r4 =7 >1=rgory=1/r
then

N—i 1 ri N —i
PP=——_ _ Pf= . 2.16
' ri+N—iN’ ‘" ri+N-i¢ N (2.16)
1-(1) -1 1—r . . o
So m; = m and then py = W and pp = 7—x. The approximate fixation time in
this case is 7
_ 1
= (2.17)
r—1

The ratio of the fixation probabilities is given by ﬁ—g = r!=N which for N > 1 leads to
the outcompeteness of A with py = 1—1/r. Now considering a DB Moran model, repeating
the similar mechanism as we did for BD model, the same result will be determined, if we
consider r = 1 and then exchange d with 1/r then we can come up with the same expression.
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Let u be the probability of mutation from A to B in a BD model, the absorbing state
in this system would be i = N. Let N be the population size. Thus probability of having
a mutant from all A state is equal to Nu and R4, = Nup is the rate of fixation from
A to B, where the time-scale for this event is N times as much as that of a proliferation.
Then the probability for a new mutant to be absorbed at time ¢ is approximately

l—e MUl x Nupt (2.18)

where time is scaled with N. This is, in fact, the solution of the following two-state master
equation:

o = —Ra-B o,
jfl = RA—)B Zo, (219)
.770(0) = 1,33'1(0) = O,

where zy and x; denote the number of individuals at state ¢ = 0 and i = N respectively.

2.2.2 Spatial Structures and Moran Model

An important question in population genetics and evolutionary dynamics relates to the
effect of spatial structures on the behavior of a given heterogeneous system [95, 97, 54, 55

|. Tt has been shown that by applying branching process and finite Markov chain, the
compartmental structure of a well-mixed model has no effect on the fixation probability
compared with that of a similar well-mixed system [71]. Moreover, Houchmandzade et
al. [54, 55] have studied a general framework of spatial Moran model. They argue that
under small selection pressure in a DB model (but not in the neutral drift), the fixation
probability declines for an advantageous mutant. However, in BD model, the chance for
a beneficial mutant to take over the whole system can exceed the fixation probability of a
non-structured population of the same size with neutral drift.

Furthermore, there have been lots of efforts in the literature to understand the gen-
eral formalism regarding the fixation probability of a certain individuals in a BD versus
DB spatial structures (see e.g. [75, 60, , , 12]). Among diverse structures, tree-
shaped structures are very conductive (suppressive) for advantageous mutants where the
underlying mechanism is BD (DB). In a BD Moran model, the star or star-like trees are
very beneficial for mutants; however, the line and circle graphs are not among the best
conductive structures. Among various DB structures, the line and circle models are very
conductive and the star (star—like) model decreases the survival property of mutants.
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Another interesting feature of the spatial structure relates to the microenvironmental
effect on tumor development. To capture such effects one can consider a heterogeneous
population located on a one or two dimensional structure under the influence of epige-
netic/environmental alteration. The 1D or 2D spatial structures can be seen as lattices
(i.e. graphs in which cells are positioned on its nodes). One may also assume that within
a 1D structure, there exist two neighbors for each individual and for 2D structure one may
consider the Van Neuman’s model with four adjacent cells for each internal node.

Most of the cancers are happening in a tissue when carcinoma is generated on a lattice
of epithelial cells when this lattice usually is 1D or 2D graph. Moreover for other types of
cancer, such as blood cancers, when a well-mixed population exist, a complete graph can
be considered as the structure of the epithelium hosting wild-type or cancerous cells. While
a population consists of two types of cells, A and B, located on a weighted digraph. The
weight matrix W = (w; ;) also referred to as edge-transition probability matrix defines
the probability of choosing edges between two nodes of the graph as the weight of the
connecting edge. Moreover, one can look at the set of vertices (located cells) as a binary
vector v = (vy, v, -+ ,vy) in which for individuals of type A the corresponding vertex
index v; is equal to zero and is 1 for type B individuals. Let us assume that the relative
fitness of B individuals is equal to r compared to the fitness of A which is supposed to be
normalized to 1.

The major difference between spatial and well-mixed models relates to the fact that,
when the birth event (death event in DB case) randomly occurs within the population, the
death event (birth event in DB model) is a local mechanism associated to the neighbor
cells surrounding the first individual apparently chosen for birth (death in DB regime). In
the BD case we have

P (m,i) = — e
BD ) Tm_|_(N—m) dzjwijvj‘i‘zjwij(l_vj)’ ( )
2.20
1 — v d W5 U
PED(m’@'): ( ’Ul) Z] J 7]

rm A+ (N —m) d 32 w0+ 30 wji (1= v5)’

where index i in Pg,(m, 1) is indicating the position of the event regarding the configuration
index v; and m is the number of mutant cells. Also > . w;;v; and D wij (1 —v;) terms are
counting respectively the total number of type B and A neighbor cells. Moreover, having
the term v; guarantees that we are dealing with a B cell whilst 1 — v, is related to a A cell.
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Similarly in DB case we obtain

Py pm,i) = — ) [ 2y it
DB dm+ (N —m) r Y wjiv; + 3w (1 —v;)
(2.21)
. Wi (1 —w;
PZ;B(m,Z') B dv; 23 i ( i)

S dm+(N—m) r > wii v+ 3wy (1 =)’

The following important theorem investigates those conditions under which the spatial
system is equivalent to a well-mixed Moran model, meaning that the fixation probability
of mutant cells is free of position. The prerequsite for such an equivalence to occur is that
the given structure be equipped with a periodic boundary. In the following theorem, a
special case of the above construction is assumed when w;; is not only the weight of edges
but also comprises the death probability (or birth probability in DB model) itself. To have
a p—equivalence graph to the neutral drift model, the fixation probability of every node
(which in fact defines a balance between selection and drift (see [121])) must be equal to
that of any other point independent of the configuration of the system of A and B s. Thus

a graph is isothermal if we have the equality Zjvzl wiy = SN wy.

Isothermal Theorem [121]. A graph is p—equivalent (has equivalent fixation probability
at each vertez) to the Moran process iff it is isothermal, i.e., E;VZI wj; = Zjvzl Wi

[sothermal theorem is not hold for some structured Moran models such as the cycle
model (see e.g. [121]). In addition, we show how it differs for BD and DB Moran models,
revealing the fact that BD and DB Moran models are not generally the same. For instance,
see [67] for the the difference and the symmetry of these two types of preccesses in the
circle model.

BD Case. Considering N individuals of types A and B in a finite population as vertices
of a directed and weighted graph of weights w;; between vertices v; and v;.

If we define the state m to be as the total number of B individuals existing in the
population, hence m = >, v;. The only possible case to have an increase in the number
of B individuals is due to the case which in BD process one Bat site ¢ is proliferating and
an A at site j is selected to be killed (sites ¢ and j are in correspondence with vertices v;
and v; respectively). We know that in a BD model, the main process is the proliferation
which forces the equality > jwij = 1. Hence
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Thus the probabilities of increasing and decreasing of population B are respectively

P, = Zz: (7,m+7+_m) (wij (1 =), (2.22)

P, = Z (Tm i_Nvl m) (wijvy) - (2.23)

Thus

Po 2wl =)
P 2wl — ;)

(2.24)

Thus the isothermal theorem holds in this case when this ratio is equal to % which leads to
1-1/r
1-(1/m)N
If the graph be isothermal then in BD model Zjvzl w;; = const. taking summation of both
sides of this equality leads to the result. For the reverse side, having (2.24) equal to = for

any configuration vector v which leads to p—equivalency of the system.

the general form of the fixation probability in a perfect mixed Moran model: p =

DB Case. In this case, the probability of increasing and decreasing the population by
one for B individuals could be respectively

r(1—v;) v, Wi
P+: i) Uj i
Z N 1+kakivk(r—1)’

(2.25)

_ v; (1 — ;) Wi
p=y U i .
Z N 14 Zk: WEki ’Uk(T — 1)

and thus

B _vilvjwiy
i _ Zu 1+ka¢k]vk(7“]—1) (2.26)
Py oy _Umwues '

m 6,7 14>, wei vk(r—1)

Isothermal theorem doesn’t generally hold for DB Moran procedures. A generalization of
this modeling for more than two types of individual has been considered in Chapter 5 as
has been well-defined theoretically.
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2.2.3 Spatial Moran Model for Cycle

As a very simple and regular structure, a cycle (circular digraph) could be thought of as an
appropriate structure to study the evolutionary mechanism of a cell when a new mutant
is located on such a framework. For instance, when a new mutant appears within the host
cells in the niche of a crypt which usually assumed to be a circle of 4-8 wild-type stem—cells

[97].

Consider a cycle of N nodes with weight (transition probability) matrix W with w; ; =
1/2 for neighbor points and 0 for distant ones. Suppose that the vertices of the graph is
full of individuals of types A and B with relative fitness 1 and r respectively

BD case. Considering a circle as the model graph with N individuals of types A and
B the weight matrix is the same as we got for BD model

+ r - __ 2d
Pl - 7«+N_12’ P = (d+1)(r3—C]l\f—1’
+ r - _

Py_, = (d+D)(r(N=1)+1)° Py = r(N—1)+1"

Kolmogorov equation leads to the following form of fixation probability
d(d+1)(r —d)

(2.28)

™= N_1’
d(d(r 1)+ (r+ d)) + ((7“ —d)—d(r + 1)) (d)
where for d = 1 leads to m; = % which is exactly equal to that of for well-mixed

Moran model with the same population. Converse to the BD model, the DB Moran model
of the cycle provides the following transition probabilities

P+ — 2r Pf d

(r+1)(d+N—1)° — drN-1
2r

_ 2d
Py =gwpr Py = meoaieoe-
In this case we have
2(r —d
= (r—d) . (2.30)
2 +d(r = 1) +d(r - 1 - 2d)(4)
When d = 1 we obtain
2(r — 1
= (r=1) (2.31)



The same result as what is reported in [75] would be obtained when m; — % as

N — oo. Comparing to the BD and DB Moran models on a cycle for N > 1 and
assuming that r = 1+ s for s < 1)

WMOMD:l—l: " ms— s
1 Y
roet (2.32)
pp_ 2(r—1) _ § ~ §82
! 3r—1  1+3/2s 27"
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Chapter 3

Evolutionary dynamics of stem cell
hierarchy with phenotypic plasticity

In this chapter, phenotypic hierarchy of a compartment of individuals and effect of pheno-
typic plasticity on differentiated individuals on the fate of mutants is exhaustively investi-
gated. The majority of results presented in the current chapter are reported in [95]. This
study reveals how unwelcome evolution of malignancy during cancer progression emerges
through a selection process in a complex heterogeneous population structure. More pre-
cisely, we investigate evolutionary dynamics in a phenotypically heterogeneous population
of stem cells (SCs) and their associated progenitors.

The fate of a malignant mutation is determined not only by overall stem cell and
differentiated cell growth rates but also differentiation and dedifferentiation rates. We
investigate the effect of such a complex population structure on the evolution of malignant
mutations. We derive exact analytic results for the fixation probability of a mutant arising
in each of the subpopulations. The analytic results are in almost perfect agreement with
the numerical simulations. Moreover, a condition for evolutionary advantage of a mutant
cell versus the wild type population is given in the present study. We also show that
microenvironment-induced plasticity in invading mutants leads to more aggressive mutants
with higher fixation probability. Our model predicts that decreasing polarity between stem
and differentiated cells’ turnover would raise the survivability of non-plastic mutants; while
it would suppress the development of malignancy for plastic mutants. We discuss our model
in the context of colorectal /intestinal cancer (at the epithelium). This novel mathematical
framework can be applied more generally to a variety of problems concerning selection in
heterogeneous populations, in other contexts such as population genetics, and ecology.
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3.1 Introduction

Cancer can be thought of as a complex ecosystem in which not only tumor cells but also
other cell types (phenotypes) may influence the overall health of an organism. Experimental
results have recently shown that cancer cells may mimic the functional features of normal
cells [81]. The most important features are associated with a small subpopulation of cells,
namely the stem cells. Stem cells (SCs) are defined to be cells with self-renewal capacity
and pluripotency. For instance, they can replenish and regenerate the whole epithelial cell
population in normal tissues. It has been proposed that cancer stem cells (CSCs) maintain
invasive characteristics, such as (undesirable) multipotency and uncontrolled growth and
tumor initiating capacity [9, , , , ]. The differentiated progenies of SCs are
the cells with specialized distinct functions, within the organism. They are produced via a
hierarchical division scheme. As the differentiated cells (DCs) become more mature along
the hierarchy, their replication potential decreases [16, 88, 94, ).

CSCs reside in small niches and manifest characteristics similar to somatic SCs [9]. In
solid cancers, CSCs are usually imputed as a result of the expression of similar biomarkers as
those used to identify SCs [15, , , 7, ]. In colon cancer, the over—expression of the
polycomb ring finger oncogene BMI1 leads to the down-regulation of proteins p16INK4a
and pl4ARF. These proteins override cellular proliferation restriction and generate cancer
SLCs [28, 88, 101]. For mammary stem cells, CD44" and CD24~ are reported as markers for
stemness. In acute-myeloid leukemia (AML) CD34" CD38~ cells are a leukemia-initiating
subpopulation[101, 147].

Despite the new established dogma that cancer cells originate from a small niche of
cells [101, , |, a range of experiments have now investigated and reported on the
cancer initiating capacity of committed progenitor cells [127, 91, ]. In other words,
non-SCs can undergo a dedifferentiation process and regain stemness (these cells are also
called stem like cells). In breast cancer, epithelial-mesenchymal transition (EMT) factors
have been implicated in the production of stem like cells from non-stem cells [100, 106,

|. Gupta et al [18] have also observed that the epithelial differentiated cells with basal
markers can convert to cells with stem cell markers (see also [16]). There are several
other experimental observations supporting dedifferentiation of committed progenitor cells
[14, 57, 91, , |. In addition, this dedifferentiation has been observed, under certain
microenvironmental conditions, in normal SCs [81, 172, 30]. In fact, it is becoming apparent
that cellular trans—differentiation is activated in a number of organs to produce stem like
cells in support of SCs in tissue regeneration [31, 91, , , 16, 35, 37, 88].

In de novo AML, expression of NUP98-HOXA9 and also loss of TSG PML (promyelo-
cytic leukemia protein) has been observed to enhance symmetric divisions in WT hematopoi-
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etic SCs [5, 60] and shift the balance between symmetric and asymmetric divisions. Our
model reveals that in such a circumstance and where there is no DC plasticity in the sys-
tem, decreasing the asymmetric division rate tends to an increase in the survivability of
mutants. On the other hand, there exist some evidence relying on the dedifferentiation po-
tential of non-leukemic cells [40, |. As a result of our investigation, the specific type of
division in leukemic initiating cells may determine the fate of such an invasive malignancy.
More precisely, when the tissue is endowed with a potential for DCs to transform back
to stemness state, decrease in the rate of differentiation may decline the fixation proba-
bility of an originated cell in SC compartment. Our model may help to obtain a better
understanding of the evolutionary dynamics of resistant leukemic cells at diagnosis, during
treatment, or within relapse. In this viewpoint, it may improve the therapeutic strate-
gies to prevent or delay the development of AML. For instance, controlling the dynein
binding protein Lisl (Pafahlbl) been shown to regulate the asymmetric division in HSCs
[206]. Also, focusing on some translocation—associated oncogenes such as MLL-AF9 which
relate to dedifferentiation and the HSC self-renewal properties leading to higher differ-
entiation rates in LSCs, has thought of to be as another potential therapeutic target in

AML [82]. Moreover, defect in the expression of f—catenin Ctnnbl would tend to lower
survival chance of mutants [I88]. Furthermore, loss of the dynein-binding protein Lisl
increases differentiation of LSCs [200] and can be accounted as another method to pretend

the asymmetric differentiation of LSCs and thus control the growth rate in AML [5].

A variety of quantitative approaches have been utilized to investigate the effect of the
stem cell hierarchy and phenotypic heterogeneity on tumor growth [22, 26, , , 42].
In the context of cancer evolution, the deterministic population dynamics of the stem cell

hierarchy in the absence of plasticity, is discussed by Werner et al. [193, 192]. Plasticity and
dedifferentiation is explored under a diffusion approximation [62] and replicator equation
[66]. In [155], the authors discuss the rate of evolution in a simple hierarchical stem and

non-stem cell population. They argue that stem cell symmetric division is preferred under
natural selection for two-hit mutations.

The evolutionary dynamics of malignant and normal genotypes in the presence of phe-
notypic transformations (differentiation and dedifferentiation) is not well understood. In
this study, we consider a general framework to study natural selection in heterogeneous
populations. We analyze competition between resident and mutant populations which are
genotypically different. Each of these types divide into phenotypically different subpop-
ulations (stem cell and differentiated subtypes). Due to homeostasis, the size of SC and
DC subpopulations are assumed to remain constant. Stem cells can self-renew and replen-
ish their own population or contribute to differentiated cell population via differentiation
events. Differentiated cells can also divide into differentiated cells or dedifferentiate into
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stem like cell states.

We investigate conditions for the successful selection of a malignant mutation in this
complex population structure. Due to the plastic nature of the early malignant progenitors,
there is a finite chance for an advantageous mutant to exit the differentiated group and
become part of the SC niche. We derive analytic results that predict the fixation probability
of a mutant (either in the SC or DC subpopulations) to establish a finite colony. We
assume arbitrary population sizes and division rates and selection intensities as well as
(de)differentiation rates. The analytic results are in excellent agreement with stochastic
simulations in finite populations. We apply our findings to colorectal cancer and predict
dedifferentiation rates that can confer a selection advantage for p53 mutants.

3.2 Evolutionary dynamics of the model

Consider two populations of resident or wild type (type 1) and mutant or invader (type 2).
Mutants are the result of an oncogenic mutation in the resident population. Each genotype
is divided into phenotypically different subpopulations of stem cells (SC) and differentiated
cells (DC). Stem cells can self-renew symmetrically where the offspring are stem cells. They
can differentiate (symmetrically or asymmetrically) to produce differentiated progenies of
the same genotype. We denote the probability of asymmetric differentiation (per division)
by 1, Uy and symmetric differentiation by v, 0. The overall probability of differentiation
is U9 = U192 + 201 9. This is due to the fact that symmetric differentiation produces two
differentiated cells. Similarly the self-renewal probability is denoted by 1—wu; 2. The indexes
1 or 2 denote the corresponding probabilities for a wild type or mutant. The division rate
of a normal (or mutant) stem cell is denoted by 71 (r2) respectively. Similarly, the division
rates of progenitors/differentiated cells are denoted by 71 and 7. For evolutionary dynamics
we consider a birth-death (BD) Moran process as follows: At each time step, an individual
is chosen to reproduce proportional to its fitness within the SC or DC compartments.
If a normal (mutant) cell in the SC compartment is chosen to reproduce, its offspring
replaces a randomly chosen cell in the stem cell compartment with probability 1 — u,
(1 — ug). Otherwise, with probability u; (ug), the (differentiated) offspring replaces a
randomly chosen cell in the DC compartment. Similarly, if a differentiated cell is chosen
to reproduce, its offspring replaces another cell in the differentiated cell compartment with
the probability 1 — 7. Alternatively, the offspring can dedifferentiate into a stem-like cell
and replace a randomly chosen individual in the stem cell compartment with a rate 7,
where n = 1;(n = 12) denote the dedifferentiation probability for normal (mutant) DCs.
For simplicity we assumed death rates of all types to be equal and set this to unity.
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Figure 3.1: Phenotypic—genotypic changes in individuals within a four— com-
partmental structure. We consider constant population sizes Ng and Np for SCs and
DCs respectively. With respect to the finite Markov chain, we consider a generalized
model to take into account the competition between normal and malignant individuals in
each of the SC and DC subpopulations. Differentiation and dedifferentiation events con-
nect the selection dynamics between the two niches. In (a), all possible differentiation,
dedifferentiation, and death events with their corresponding rates are represented. The
SC-DC compartmental structure is depicted in (b) with the associated self-renewal and
differentiation /plasticity possibilities.

Table 3.1: Model parameters
| Notation | Description |

Ns, Np Total number of stem and differentiated cells

r1,T9 Net reproduction rate of wild type and mutant stem cells

T1, 7o Net reproduction rate of wild type and mutant differentiated cells
U1, Us Asymmetric differentiation rate of normal and mutant stem cells
M1y M2 Dedifferentiation rate of normal and mutant differentiated cells

The above dynamics models the differentiation mechanism with an effective asymmetric
division with the probabilities u, us. Thus in the following we use the terms differentiation
(of stem cells) and asymmetric division interchangeably.

The above Moran process can be written as a continuous time process (1/N is the
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duration of each time step for N = Ng + Np)

1 Op(ng,np;t _
N% = Wg(ns —1,np) p(ns — 1,np;t) + Wy (ns + 1,np) p(ns + 1, np; t)
+ Wg (ns,np — 1) p(ns,np — 1;t) + Wy (ns,np + 1) p(ns, np + 1;¢)

— (W (ns,np) + Wi (ns,np) + Wy (ng, np) + Wy (ns, np)) p(ns, np; t). (3.1)

where p(ng, np;t) denotes the probability of having ng mutant stem cells and np mutant
differentiated cells, at time ¢ (given nd and nd) at ¢ = 0). The population of normal cells
are given by Ng — ng and Np — np correspondingly. The probabilities I/VSjE and WSE are
the transition probabilities corresponding to an increase or decrease by one in the number
of mutant SCs and DCs resp. They are given by

W4 (ng,np) = Prob(ns,np — ns + 1,np)
_ ro (1 —ug) ng + T2 menp \ Ns — ng
Nr NS ’
Wg (ng,np) = Prob(ng,np — ng —1,np)
_ (7’1 (1_U1)(NS_nS)+7Z1771(ND_nD)) ns
N Ns (3.2)
W (ns,np) = Prob(ns,np — ns,np + 1)
_ To (1 —mo) np + 19 us ng ND—nD
N,
W5 (ns,np) = Prob(ns,np — ng,np — 1)
_ 71 (L —m) (Np —np) + 7 uy (Ns — ng) np
Nr ND‘
The denominator N, denotes the total fitness of SC and DC individuals:
Nr:rl(NS—ns)+7’2ns+f1(ND—nD)—I—fgnD. (33)

The above Markov process has two absorbing states corresponding to fixation or extinc-
tion of the mutant or WT. The competition between the two genotypes in the stem cell
compartment is tied to the competition inside the differentiated compartment via differen-
tiation and dedifferentiation mechanisms. In the absence of plasticity we have a hierarchical
population structure where only mutations in the stem cell compartments can give rise to
fixation in the whole population.

28



3.2.1 Fixation probability in a heterogeneous Moran process

One of the most important questions to address within a heterogeneous population is the
chance of success for a mutation in different subtypes.

The fixation probability of a mutant originating in the stem cell compartment, pg or
the differentiated cell compartment, pp is a measure of the tumor initiating capacity of
each subpopulation. For a completely hierarchical population, only mutants that arise in
the stem cell niche have a chance of fixating in the whole population thus ps = p. If
the progenitors can dedifferentiate into stem-like cells, the comparison between the two
fixation probabilities, (ps and pp), is a good measure of how the tumor initiating capacity
correlates with the notion of stemness.

The use of the probability generating function (PGF) method to study a constant
population Moran process is discussed in [54, 55, 67]. It is used to present an alternative
derivation of the (well-mixed) Moran fixation probability, by identifying a martingale for
the process. A martingale is a sequence of random variables where the average of a given
random variable is equal to the average of its previous random variable in the sequence. In
this stochastic model, the fate of future events only depends on its previous event, not on
the earlier events. Here we generalize this technique for a heterogeneous population under
selective pressure in the presence of phenotypic plasticity. A martingale for the above four
population model, Egs. (3.1), (3.3), can be written as

((28)" (25)™), (34)
where (-) denotes the stochastic average.

Taking advantage of the generating function, an exact analytic approach for the fixation
probability can be derived even in the presence of plasticity (when mutation and mutation—
back do not occur). The results are obtained for a BD Moran process; however, a similar
calculation can be performed for a Voter (DB) Model with presumably different fixed points
for the same initial conditions. The boundary and initial conditions for the corresponding
generating function are resp. as follows

F(zs=1,2p=1,t) =1, for anyt >0,

F(zs,2p,t =0) = zé zlj),

where ¢ and j are the initial number of cancer SCs and DCs resp. For the following
special cases, the system has two absorbing states at equilibrium which signify fixation
and extinction for mutant cells in either compartments. We denote the probability of
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reaching extinction and fixation states by By and B; resp. Thus we obtain the following
result from the PGF at steady state

F(zs,zp,t > 00) = p(ng=0,np=0,t — c0)
+p(ns = Ns,nd = ND,t — OO) ZéVs ZgD
= B() + B1 ZéVS Z(]iVD, (37)

based on the boundary condition (3.5), By+ B; = 1. Biologically, since the mutant DCs are
produced by cancer SCs, extinction of cancer SCs will result in replenishment of mutant
DCs. Moreover, the co-operation between SCs and DCs suggests that it is impossible to
have mutant SCs fixate while DCs become completely extinct. We conclude that

F(zs,zp,t > 00) =1— By (1—zévs b)) (3.8)
Finally, applying the initial condition, F(zs,2p,t = 0) = ziz) and the boundary

condition, F(zs = 1,2p = 1,t) = 1, the fixation probability for an initial population of i
malignant stem cells and ;7 progenitors is derived as

o 1— (25)2 (Zﬁ)j 3.9
TS ) ()™ &)

where (2§, 275) is the nontrivial fixed point of the generating Eq. (3.18). For i = 1 and
j = 0 (starting with one initial SC mutant) the fixation probability is

*
1 — 28

= ()™ ()™

ps = pro = (3.10)

Similarly, the fixation probability of a newborn mutant in the DC compartment (i = 0,j =
1) is

*
1—25

L= (28)™ ()™

pD = po]_ = (311)

Moreover, assuming random mutations, i.e. uniform mutation rates in both compartments,
the average fixation probability is given by

_ 1= (Ns/Niot)z5 — (N /Niot) 21

3.12
1—(25)™ ()" (812
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Figure 3.2: Effect of change in asymmetric differentiation and plasticity rates
on survivability of mutants. We assume that Ny = Np = 10, r; = 1 = 1, and
ro = 75 = r. In subfigure (a), the fixation probability of SCs as a function of 7 is given,
where n = 0.01,0.1,0.5 while u; = us = 0.5, and 9 = 0. In (b) 53 = 0 and = 0.1.
Changing parameters u; and ug, which are the asymmetric division rates of normal and
tumor SCs resp., the fixation probability as a function of wuy,us is shown. Solid lines
represent the analytic calculation and points correspond to simulation results (error bars
are based on the standard error of the mean).

with Nyt = Ns+ Np. The probability of a successful emergent mutant before time ¢ (from
a background of Ny, normal cells) is given by

P(t) = 1 — e Neovmot, (3.13)

where 1 denotes the mutation rate. In Figure 3.2 a comparison is represented to show how
the fixation probability would change with respect to different regimes having asymmetric
division and plasticity in the system. In this figure, the effect of variation in parameters
uy, U, 7M1, and 1y reveals the fact asymmetric division rate compare with plasticity rate
would have more effect on the survivability of cancer (and thus w.t.) cells. Moreover,
the probabilities uq, us of asymmetric division represent a symmetric relation with respect
to the case with u; = us. Interestingly when mutants are highly advantageous or dis-
advantageous dedifferentiation shows a negligible effect. More precisely, when system is
approximately close to neutral drift, the fate of the system can be brittle by change in the
rate of plasticity.

Now, changing the initial location of the newly born mutant, the dynamics of the system
may change (see Figure 3.3-(a)). Regarding the experimental evidence, as this location is
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Figure 3.3: Dependency of the fixation probability on the initial mutant’s phe-
notype. Let us suppose that Ng = 10, Np = 10,7y =7 = 1,y =7 = r,m; = 0 and
1o = 0.1. Having a recently born mutant in DC compartment, the fate of the system may
differ than what concluded for the initiation process of a new mutant in SC compartment.
In part (a) Moran simulation and analytic calculation , in a perfect agreement, have shown
to represent the trend for the fixation probability pp in terms of r. Now, when the loca-
tion of the newly imposed mutant is either in SC or DC compartment which is the topic
of subfigure (b). In this figure the total (average) fixation probability p = 1(ps + pp)
is drawn as a function of the relative fitness r. The trends are also compared with the
Moran simulation. Moran process was run 5 times with 20,000 iterations in (a) and 50,000
iterations in (b) and the error bars are prepared based on the standard error of the mean.

not determined and mutation may can appear in either compartments due to epigenetic
random events as considered in Figure 3.3-(b). One can compare these two scenarios with
the previous results of starting from one newborn mutant in SC compartment. Biological
observation and mathematical exact approach have shown that SCs control the cellular
automata in some organs such as the colon/intestine [144]. However, according to the
cancer initiation state hypothesis this might occur in other groups of individuals which has
been addressed in Figure 3.3.

The phase change diagram of the case in which only mutants have plastic properties
has been sketched in Figure 3.6 for two different values of 7. Interestingly, there exist a
coexistence region (the blue domain) between extinction and fixation phases in which both
normal and cancer cells remain in the system according to an imposed balance forced by
the system. In such a system, as the asymmetric division rate stays small enough, this
coexistence area will not appear and the process would have only two absorbing states as
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mutant and w.t. individuals are dominant. For such small enough u, although plasticity
exists, the procedure follows the conventional Moran procedure for disadvantageous, neu-
tral, and advantageous mutants. All possible destinies of the system in terms of stability of
dominant sub—populations, coexistence of subgroups, and the absorption speed of mutant
SCs or DCs can be observed in Figure 3.7 for some given parameters of relative fitness r,
and u;, n;.

3.2.2 Stochastic simulation

Using the model described above, we performed numerical simulations using such updates
until each of the runs tends to saturation in the fraction of SCs and DCs, or until we
reach the maximum updating time of T=15,000 for each realization. Then running the
whole procedure for 20,000 realizations, we calculated the fraction of results for the fixation
probability of SCs and DCs in those runs. Then repeating each calculation for a set of five
iterations, we calculated the mean and error bars. Errors are calculated as the standard
deviation of the mean.

3.3 Absorbing states: Exact stochastic analysis

Starting from the master equation (3.1) discussed in the previous section, the generating
equation can be derived by assuming the probability generating function (PGF) in which
coefficients define the probabilities of different possible states after a given time. In con-
tinuation, we conclude the fixed points of the given finite Markov chain which in turn
leads to the probability of extinction or fixation for malignant individuals starting from a
particular state. Moreover, we conclude the phase change diagram in terms of the fixation
probability, differentiation, and dedifferentiation rates.

Now let us define the probability generating function as follows for the probability
density function p(ngs, np;t) of having ng mutant SCs and np mutant DCs at time ¢. Then
the PGF is

F(zs, zp;t Z 25520 p(ns, np; t) (3.14)

ns,nD

It is straightforward to see that the PGF now satisfies in the following partial differential
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equation

aF _ — n n — — n n
o (55" —1) <(Ws — 2 Wy) ZsSZDD> +(p' = 1) <(WD — 2o W) 28% 27"
~ (25 — 1) W (s, 7in) + (25" — )Wy (s, 7in)
+(zp — W (g, ip) + (25" — 1)Wy (fs, Aip), (3.15)

where the operators are WS% and WS[ are the same as before and ng and np are assumed
to be

0 0

g = 25— An = 2 ——. 3.16

s = s 0z b = 2D 0zp ( )

In large-Ng (Np), we can simplify the large-t limit of the equation for the probability

generating function by keeping the linear derivative terms as the leading orders in Ng (Np).
This tends to

OF (55— 1) ro(1 — ug) 25 55 + 7y 12 25 H o (1= ) Ng 2 4 7y Ny 22
575 S Nr,S,D NLS’D NS
Pl =) 2 85+ ryuy 2 8 A1 (1= ) No 25 4 vy N 25
Hem N, - Ao IV , (3.17)
r,S,D r,S,D {VD

where the operator Nr’S’p = ry (Ns—ng)+ryng+71(Np —fip) + 72 fip can be considered
constant when Ng and Np are set equal to Ng, Np > 1.

Setting to zero the coefficients of the derivatives STF and g—F, we obtain approximate
S ZD

quasi-stationary points for the constant population model. This relates to the correspond-
ing martingales for N — oo branching process limit. Denoting the solutions with 2§ and
25, one obtains

(25— 1) [ra(1 —wg) 25 —ri(1 —uy) =] + (25 — 1) 2512 us = 0 (3.18)
(2p = D[F2 (L =m2) 2p =71 (L—=m) —riw] + (2§ — 1) 2p P22 = 0.

An interesting scenario occurs when the normal component is not plastic, i.e. 7, = 0,
in which the above equations can be simplified to the following expression for 2§, 21, # 1

L <r1 (1 —u2) (F1 + 11 Ul)) 5+ (1—w) (1 +rw) (3.19)
’ (T1T2(1—u2)(1—771)—f2T2U27I2> Z§_T1T2(1_“1>(1_n2). |
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From the equations (3.18), we conclude that
B F
2§ 25

ro (1 —ug), B=r
f2(1—772)> F=f1(1—n1)+r1u1, G =T91m;.

where

A
E
Equations (3.20) and (3.18) suggest the below solution for zg which depicts another fixed
point of the problem:

(A2E — ACG) (25)* + (ACF + C*G + BCG + ACG — 2ABE — A’E — ACE) (2%)°
+(B%E + BCE + 2ABE — BCG — BCF) zt = B*E. (3.21)

3.3.1 Standard BD Moran process as a particular case

Let us assume that there exist no communication between SC and DC compartments, that
is, u;,m; < 1fore, 7 =1,2. In this case, each compartment will follow the conventional BD
Moran model as we derive the following fixed points for 25 and z{;. Regarding the associated
transition probabilities in this case, we find the below fixed points in coincidence with what
can be derived from two disjoint Moran processes:

L) =1 2=1
() %=1 2="1,
(3) =1 5=1,
(4) =1, z=1

3.3.2 Stability in differentiated compartment

Another interesting case relates to a stationary condition in which no reproduction occurs
in DC compartment: 71,75 ~ 0. This case will most likely happen after large number
of generations which DCs reach to an steady state and do not pursue the proliferation
procedure anymore. In such a situation, SCs are also committed to reach a stationary
stage. The possible fixed points will be maintained as
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(1) 25=1, 25 =1,
(2) z5=11 2p =1

Subfigure 3.4-(a) reveals the phase change for the survival probability of mutant SCs as r
and 79 vary in the given range from 0 to 5. As 7y increases and r; declines, the fixation
probability climbs. The lower slopes of lines passing though origin (when slopes are less
than one), the higher survivability will be emerged. In the domains under associated lines
of the given parameters, the fixed points of the characteristic equation (3.18) for various
values of r and u are attractive and the evolutionary scenario is called harmony as cancer
SCs dominate.

3.3.3 Invasion model in the absence of plasticity

As a restriction to the model where there is no plastic potential in the system, assuming
ri=r1=1,1ry =79 =1, u; = us = u, and n; = 1o = 0, the system can encounter different
scenarios as are listed in the following

(1) 25=1, z5 =1,

(2 z5=-"1, 25 =1
S » “D
Yeff
* _ —rturtugsui—l4uo+l  _x __ ui+l
(3) s = 2r(—14us2) »AD = T
1— . . . Lo
where g = T(P—IZQ) is the effective asymmetric division rate and

[? =1 — 6rugu; + ud + 2rug — 2r — 2uy — 2uy + 2ruy + 1% + 2ugu? + 2uduy + us + uiu’.

Figure 3.4 represents the fixation probability variation in terms of the relative fitness of
mutant SCs/DCs as well as the probability of asymmetric division in the SC compartment
regarding solutions given of case (3). Figure 3.4-(a) shows how the trend for the fixation
probability may differ via defecting the balance between asymmetric divisions of normal
and malignant SCs. When u; < us the trend for the survivability of mutants is similar
to that for the balanced case u; = uy = % when system remains almost neutral. As r
increases, the survival chance of mutants for us, > u; behaves alike the balances case.
Another feature to be addressed relates to the dependency of the fixation probability to
asymmetric division rate u; = us = u where the role of change in r; < ry affect the system.
Fixing ro and rising r; the chance for fixation of malignant cells increases for any u but
the speed of growth in the fixation probability is linearly dependent to w.
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Figure 3.4: (a) Fixation of mutants in the absence of plasticity. We assume that
Ns = 10, Np = 10,m; = 2 = 0. (a) changing parameters u, us, the differentiation rates
of normal and tumor SCs respectively, the trends for the fixation probability has shown as
a function of relative fitness of mutants: m = ro = r. In (b) and (c) another observation
can be concluded where the variation of fixation probability in terms of asymmetric differ-
entiation rate u; = uy = w is taken into account for various values of the relative fitness r
and the ratio of the differentiation rates of normal SCs: a = us/u; where in (b) v = 0.5
and in (¢) @ = 1.5. Numerical simulations are also done for all the case that are shown by
colorful points (analytic results are shown as solid curves) with error bars as the standard
error of the mean in a set of 5 iterations, each with 20,000 realization.
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Figure 3.5: Comparison between analytic calculation and Moran simulation
among SC and non-SC compartments. We suppose that Ng = Np = 10,r; = 7 =
Liro =ar,/y=p0r,di =dy =1 = Jl = d~2 = 1. Changing « from 0.5 to 1 and then to 2
while § is remained fixed. The disconnected curves are related to the corresponding Moran
simulations with a set of 5 iteration=50,000 and error is the standard error of the mean.
The best match can be seen when there exist the symmetry in the system and between the
two compartments (SCs and DCs) where they have the same population size. In subfigure
(a) there exists no plastic potential situation for normal cells, that is 17, = 0 while in (b)
both w.t. and mutant cells can dedifferentiate to stem-like state.

3.3.4 Invasion model with plasticity

Suppose that dedifferentiation only occurs for the mutant DCs at a rate 7y = n for n >
m ~ 0. Also let assume that ry =7, =1, 719 = 7y = r, uy = uy = u and 1 = 7, then the
solutions for zg and z{; are

(2) 2§ satisfies in the equation

(A2E — ACG) (2%)* + (ACF + C*G + BCG + ACG — 2ABE — A*E — ACE) ()’
+(B?E + BOE +2ABE — BCG — BOF) 2§ = B*FE,
where A=r(l—u),B=1—u,C=ru, E=7r(1-n), F=u+1,G = rn, and

P (z§+1)(1—u2)
D ™ r[(1—u—run)zg—(1-u)(1-n)]"
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The values for z§ and 27, in this case, satisfy the following relations (for more details refer
to Supplementary Information):

(1-2)(e-%) -0 - Ty 6

where A=r(l—u),B=1—u,C=ru, E=r(1—n), F=u+1,G=rn.

The derived solutions introduce the possible fixed points of the characteristic equations.
We investigate this case in more detail later and through analyzing the phase diagram of
the generalized model for non-zero plasticity in the replicator dynamics.

3.4 Replicator dynamics of the invasion process

To capture more features of the BD Moran process of the considered multi—-compartment
model, studying the replicator dynamics of the system which envisages the average fre-
quency of various phenotypes, can be insightful. First of all, the growth trend can be
detected for each species, then the phase diagram for variations in parameters can be an-
alyzed. Now, considering the replicator dynamics of the four compartment model which
depict the alterations in the the average frequencies of mutant SCs and DCs, respectively

xs(t):<”;§?>, and xD(t):<n]]2[—](j)>, (3.23)

one obtains the following system of equations:

d
SR Ay
_ [ro (1 —ug) —r1 (1 —uy)]xs (1 — xg) + Fome xp (1 — 25) — Fimy w5 (1 — xp)
(1 —xs)+rexs +71 (1 —xp) + T2 xp 7
3.24)
d (
o (W —wy)

[Fo (L —m9) =71 (1 —m)]ap (1 —ap) + rous xs (1 — xp) — ryuy xp (1 — xs)
r1 (1 —xg) +rexs+ 7 (1 —ap) + 7 ap

At equilibrium, the fraction of mutant stem and non-stem cell groups would lead to
specific states which are the pseudo—fixed points of the problem. These type of fixed points
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d1=d2=d1=d21, r1=r1=1, r,=r=r, U =u=u, n1=0

4 Compartment BD Model -Phase Daigram
d1=d2=d1=d2=1, r=r =1, r,=r.=r, u,=u

1= 1, 171,71 u=up=u, =0

Plasticity Rate, n
u
S

Asymmetric Division Rate,

1 1.5 2 1l 15 2
Fitness of Mutants, r Fitness of Mutants, r

(a) (b)

Figure 3.6: Phase diagram of plastic mutant SCs. The phase boundary for advanta-
geous and disadvantageous mutant populations are given as differentiation and plasticity
rates change. We assume that ry =7, = 1, ro = 7y = 7, u; = us = u, and 7, = 0. Different
regions for advantageous and disadvantageous mutant SCs are given in (a) as u changes.
A similar analysis has been carried out in (b) as 7 varies. In (a) n = 0.1,0.3,0.7, here the
alteration in the plasticity rate of DCs results in a tendency to approach various regions
of fixation for mutant SCs, while the extinction domain shrinks with increasing 7. In (b)
u = 0.1,0.3,0.7. Increasing the asymmetric division rate u, the region for advantageous
mutants expands to provide a higher survival chance for mutant SCs. In both cases, ad-
vantageous criteria relate to either fixation of mutants or coexistence of mutants and WT
individuals.

can be attractive or repulsive, depending on the initial conditions of the system. As we
described in the paper, according to the cooperation between mutant SCs and DCs (and
similarly between normal SCs and DCs), the malignant individuals may become extinct or
survive together. Now defining the fixed point as (z§, x},), it may tend either to (0,0) or
o (1,1). Such criteria suggest two distinct phases for the fate of the malignant cells which
are separated by the phase boundary. At steady state, the following system can be derived
for the fixed points x§ and a7y:

[ra (1 —u2) = (1 —wa)] g (1 — a§) + Pampapy (1 — a§) — Fum s (1 — 2p) = 0,

(3.25)
[72 (1 —m2) —

1(L=m)]ap (1 —af) + rougal (1 —afy) —rpugapy (1 —af) = 0.

IRl

To analyze the latter system, we may consider two important cases:
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Case 1. At first, we assume u; = ug = 1y = 1o = 0, then the solutions to the system
(3.25) results in the extinction or fixation of mutant SCs and DCs. In this case, the phase
diagram is simply divided to two advantageous (r > 1) and disadvantageous (r < 1) cases.

Case 2. Suppose that ri =7 = 1,1 =79 = 1r,u; = us = u,m; = 0, and 1y =: . This
introduces an interesting scenario in which plasticity occurs only for the cancerous cells
but not for the WT individuals. These restrictions simplify system (3.25) to the following
possible cases for z§ and x7,

*
J,’g:O, ID:O,

* *x U
rs=1, zp= T and

(1)

(2) z§=1, a1 =1,

(3)
)IgzrnAMl_la xB:AM2_1>

My = 3ru® + 3r 4 2u — 3r*u® + 6r’*u — 6ru — rn — 2riu — 2r*nu 4+ ryu + 2r’n
—|—7"377u —3r? 43 4 rdu? — r377 — 11—
(3.26)
My =r*u+r*n -1 =2ru—ry+2r — 1 +u,

A=2r —1—rp+r*u+r’n+u® —ru—r*+rpu —ru’.
Among the given solutions (1)-(4) of the present case, the only acceptable non—trivial
solution is (4). The solution (3) does not satisfy the condition 0 < xp < 1 for all possible

values of r,u, and 1. Moreover, as we described above, the cooperation among mutant
cells results in the fixation of both mutant SC and DC groups to the state (1,1).

The last solution, then, implies that having (zs,zp) — (0,0) leads to the following
solution

A=(u+n—1)r*+ [+ (- Lu+2—n]r—1+u*=0, (3.27)

which characterizes the advantageous and disadvantageous regions for mutants (see Figure
3.6 for more details). Another limit relates to the case where (zs,xp) approaches (1,1).
One obtains

rn=(r—1)(u—1) (3.28)
This condition, which is not defined for » > 1, does not change the phase diagram and

would not have any effect on the selection pressure of the system on mutants.
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3.4.1 Application to colorectal cancer

Clonal expansion in colorectal cancer is known to be initiated as a result of mutations

considered

181]

More recently, Vermeulen et al. |

187).

[

the dynamics of cells at the bottom of a normal colonic/intestinal crypt. Such controlled
cells in their circular model of size 5 undergo a selection process. The selection mechanism
is investigated for several oncogenes and tumor suppressor genes imposed at the crypt

base. Fixation probability of a single mutation and the relative fitness r of the mutant

occurring at the bottom of the crypt
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cells, compared with the normal host, are reported. Their estimates reveal that the relative
fitness of the original cell containing APC~/~ is 7 = 1.58, while r = 1.56 for Kras®'??, and
r = 0.96 for P537'7H (compared with normal control cells mice). P53 mutation seems not
to confer a fitness advantage and is weakly deleterious. However for P537172 it has been
observed that the fitness of a mutant elevates from 0.96 to 1.16 in comparison with the
DSS-treated cells (colitis) which is in the presence of inflammatory injury. Thus, under
inflammatory signaling effects, the P53%172# mutants appear to gain a selection advantage
and thus a higher fitness [181, 183].

According to the recent in vivo study by Schwitalla et al [153], inflammatory signaling
plays a role in elevating the rate of dedifferentiation. It has been also shown that in-
flammatory disease activates the transcription factor NF-xB. NF-xB can, in turn, elevate
Wnt-signaling which leads to the phenotypic plasticity of non-SCs [65].

Thus we suggest that the higher survival chance of the P53 mutated SCs along with the
DSS-treated cells, may be the result of dedifferentiation in the presence of inflammatory
stroma [153]. The survival probability of mutants in colon/intestine, in the presence of
inflammatory signaling, is presumably correlated with both the fitness and plastic nature
of the epithelial cells. Thus the fixation probability reported in [181] of cells with P53 DSS
colitis mutation, can be derived by the same fitness » = 0.96 for P53 when dedifferentiation
occurs.

For instance, when r = 0.96 and u; = 0.5,us = 0.25, having the plasticity rate at
n = 0.12, one obtains the same fixation probability as [I51] (see Table 3.2). This finding
strongly suggests that there is an elevation in the fixation of a deleterious mutant into an
advantageous trait due to the plastic properties of the mutant (see also the next section).
In Figure 3.8, we considered a cylindrical model of the crypt-base, and immediate adjoining
transit amplifier layers, cells in the colon/intestine. The bottom layer consists of central
stem cells and border stem cells, while transit ampflifying and non-SC cells reside on top
of this layer and at higher layers. A mouse crypt is comprised of 5-7 functional stem
cells [97, , |. To compare the results of our model with experimental observations
of [181] for the fixation probability of P53 DSS colitis, we consider the first two circular
layers of SCs (see Figure 3.8) in which we roughly assume Ng ~ 10 [I11] and note that the
fitness reported in the experimental data [181] is for functional SCs and may be considered
unchanged for the two layers (Ng = 10) of central (functional) and border SCs as well.
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Figure 3.8: Cellular interactions in the colonic crypt as a newborn mutant arises
within the Stem or differentiated compartments. Within this schematic cylindrical
model, we represent how our model is structured through the four compartments of host
and mutant stem and differentiated cells. In contrast to the circular model of five SCs
considered in [183], we assume a cylindrical model of two circles, one on the top of the

other. SCs are located at the bottom circle while the circle on the top is full of partially-
differentiated cells.

Table 3.2: Comparison between our analytic result and experiment [181].

’ Case study \ r \ o \ Ps \ Reference ‘
P53 Controlled 0.96 | 0 0.113 | [181]
P53 DSS Colitis 1.16 | 0 0.343 | [181]
P53 DSS Colitis+Plasticity | 0.96 | 0.12 | 0.343 | Section 2.2.1
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3.5 Summary

The evolutionary implications of epigenetic heterogeneity are not very well understood in
cancer biology. A known picture for phenotypic heterogeneity (when the genotypes are as-
sumed to be identical) relates to the cancer stem cell hierarchy. In this picture, pluripotent
cells with tumor initiating capacity can undergo mitotic events and either replenish their
own population or produce a lineage of partially differentiated cells (including precursor
and/or transit amplifying cells).

In the current study, we present a general model of four distinct subpopulations to inves-
tigate Darwinian evolution in such a hierarchical structure. We consider two genotypically
different populations (mutant and wild-type). Mutations are results of unwanted oncogenic
or TSG mutations. Each genotype has phenotypically different subtypes of stem cells (SCs)
and differentiated cells (DCs). SCs ultimately generate their associated progenies, DCs,
through proliferation and asymmetric differentiation. DCs have restricted proliferation
capacity. Due to the tissue structure of the crypt, the population of different subtypes
remains approximately unchanged. Genetic mutations can occur among SCs or DCs which
we assume to be occurring through a uniform probability. Mutations can confer not only
higher division rates but also different rates of differentiation and plasticity among mutant
subtypes. These changes can be triggered, for example, by microenvironmental conditions.

Our model predicts the fixation probability of a newborn mutant as a function of
the division rates of mutant and resident SCs/DCs, differentiation and dedifferentiation
rates. Exact analytic calculation and numerical simulations — which are in almost perfect
agreement — suggest that the asymmetric differentiation in the SC group has a major
effect on the fate of mutants compared with dedifferentiation. More specifically, a greater
impact on the fixation probability of SCs can be observed by the change in asymmetric
differentiation of normal cells compared with that of malignant cells. Furthermore, we
observe that the more plastic trait has an evolutionary advantage. This is most notable
close to the neutral limit, i.e. when the proliferation rates of the mutants and residents
are very close in value. Most interestingly, a sufficient increase in the rate of plasticity can
turn a previously deleterious mutant into a beneficial one.

As an important application of this model, we consider the intestinal /colonic crypt with
two groups of SCs and their neighboring, partially differentiated cells. The competition
between malignant mutations and normal cells in the base of the crypt has attracted
much research interest, and is one the most studied scenarios in cancer evolution. It has
recently been shown that the Moran type process, initially suggested by [66, 67, 75, 70,

, 122] are in almost perfect agreement with the experimental observations [183]. In this
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in vivo experimental analysis, KRAS, APC*/~, APC™/~, and P53 DSS colitis mutations
separately induced in the crypt base. Assessing clonal lineage tracing [183], the authors
were able to observe the growth of mutants in the populations and thus measured the
fixation probability of mutants. However, the experimental observations sometimes ignore
the microenvironmental interaction between the neighboring transit amplifying (TA) cells
and SCs in the crypt (See [97, , 183] for the models and estimated parameter values
of population dynamics of the crypt, as well as numbers of central and border SCs at the
base of the crypt).

In this investigation, we have suggested a plausible estimation method for the dediffer-
entiation rate which can give the same value of the fixation probabilities of P53 inactivation
in the crypt base as observed by [181]. As the authors in [181] noticed, P53 mutations can
maintain advantageous features to invade the crypt base in the presence of inflammatory
signaling. We propose that this could potentially be a result of dedifferentiation caused
by an inflammatory stroma [153]. This finding supports our idea about the elevation of a
deleterious mutant into one with an advantageous trait due to the plastic properties of the
mutant.

This research is one of many mathematical approaches recently used to investigate vari-
ous aspects of tumorigenesis. In our approach, we attempt to dissect a part of the complex
machinery in multi-compartmental models, and understand this in greater detail. This
study provides various insights concerning some features of initiation and progression of
cancer, and suggests possible experimental investigations to confirm some of the theoretical
results. The approach taken here may lead to a better understanding of the natural patho-
logical mechanisms in the colonic/intestinal epithelium or any similar four-compartmental
structures in ecology, population genetics, and social networks. The particular application
of this approach to carcinogenesis may lead to an intense treatment to stop or prevent the
development of malignancy.
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Chapter 4

The effect of randomness on the
fixation probability of mutants:
Minority rules

In the previous chapter, the main concentration was on a hierarchical compartmental
structure of individuals within a population. More precisely, a mass-action (well-mixed)
Moran model was considered within each compartment and compartments were located on
the nodes of a graph. Moreover, the fitness of each phenotype assumed to be a constant
and diverse types of division in the form of self-renewal and differentiation were taken
into account. In this chapter, for which the majority of the presented results are reported
in [96], our study is concentrated on a 1D spatial structure in which every individual is
positioned on a node of a graph and fitness of each mutant is position and phenotype
dependent. We, in fact, study the effect of spatial randomness on the chances of mutant
fixation in a population of individuals of a constant size.

Such problems arise in models of cancer initiation and progression, bacterial dynamics,
and drug resistance. It turns out that spatial heterogeneity redefines the notion of neu-
trality, allowing, e.g., a minority of cells (whose fitness values are drawn from the same
distribution as that of the wild type) to behave as if they had a selective advantage. The
effect can be very significant (increasing the probability of mutant invasion by orders of
magnitude), it increases with the standard deviation of the underlying probability distri-
bution and decreases with the skewness. It is the largest when the fitness values of the
mutants and wild types are anti-correlated. We discuss the results for a spatial ring geom-
etry of cells (such as that of a colonic crypt), a mass-action (complete graph) arrangement,
and also for a line model with reflecting boundaries.
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4.1 Introduction

Fixation is the replacement of the initially heterogeneous population with the offspring of
just one individual, in a (finite population) birth-death process. The probability of fixation
has been widely studied by physicists and mathematicians for almost a century, starting
with the early works by Fisher [38], Haldane [19] and Wright [198], culminating in the
work of Kimura [73]. These models have been extended in a number of ways, which can be
roughly divided into three approaches: Markov chain methods, branching processes, and
diffusion approximations (see [132] and the references therein).

The spatial structure and heterogeneity of the network are known to be of significant
importance in evolutionary models. Maruyama [104] showed that regular spatial structures
do not enhance or suppress selection. Liberman et al. [90] extended this result and showed
that the fixation probability of mutants in a large group of graph structures (known as
isothermal graphs) coincides with that for the mixed population. We have recently shown
that this result is only valid for specific update rules [(67]. Many authors have also discussed
how the heterogeneity of the spatial structure affects fixation [2, , , 99, 53]. For
instance, Antal et al. [2] showed that the introduction of randomness in a scale-free random
graph suppresses the fixation probability. Considerably less effort has been devoted to
understanding the effect of heterogeneity in spatial structures due to the spatial fitness
distribution and environmental stress on the invasion probability. Here we use the Moran
model and study the effect of spatial randomness on the chances of mutant fixation in a
population of cells of a constant size.

Envisage the Moran process [116], where in a constant population of asexually repro-
ducing agents (or cells), at each update, a cell is removed and replaced with the offspring
of another cell according to some rules. Which cell gets to go and which one reproduces
is decided probabilistically. For example, suppose that death (removal) happens with the
same probability for all, and reproduction is performed for one of the ‘neighboring’ cells,
with probabilities proportional to the cells’ fitness (see [67] for other rules). The notion of
neighborhood is defined by spatial interactions and here we will specifically focus on the
mass-action case where the whole population belongs to a cell’s neighborhood, and on a
circular arrangement where each cell has only two neighbors. Reproduction is assumed to
be faithful, such that the offspring cell inherits the type of the parent cell. As the updates
continue, the population size remains constant, and eventually with certainty the whole
population will be replaced with the offspring of a single cell (and the corresponding type
will “fixate” in the population).

Introducing a specific distribution, the main question to address is the effect of random
fitness on the survival probability and time to fixation of mutants as one the moments
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(of the distribution) varies and the rest of the moments are constant. To answer this
question, we suppose that a new malignant mutation occurs among the resident cells with
a constant population size. Moreover, all cells are located on the nodes of a graph. Due
to the impact of randomness, the fitness of wild—type and mutant cells are then random
variables of specific distributions. These random variables might change subject to the
change of a moment (while the other moments are assumed to be fixed). More precisely
in this chapter, we consider the effect of change in variance of the random fitnesses, while
the mean of the random fitnesses are assumed to remain fixed. An important question
is at what variance, mutants can take over the entire system. A similar model could be
considered for a well-mixed model when randomness occurs within specific regions (we can
consider them as some islands which are located on the nodes of a graph). We will not
take the last scenario into account, but instead we tackle the more general case where each
individual can take a random fitness.

One may also ask about the type of the distribution which makes the fixation prob-
ability of mutants increasing or decreasing as variance changes. In fact, the type of the
distribution which might have an optimal effect on the survivability of mutants. Also effect
of changes in other moments (e.g. skewness or other subsequent moments) of the consid-
ered distributions other than the means and variances, may have tremendous impact on
the fixation probability or time to fixation. We also try to present an analytic approach
which tends to a general mechanism of the fixation probability of circle, complete graph,
and line models under moment variations.

4.2 Microenvironmental effects can make a minor sub-
population advantageous

Let us first assume that the fitness of all but one cell is equal to 1, and a single cell has
a smaller fitness, r < 1 (we will refer to this cell as a mutant, and the rest of the cells as
wild type cells). Not surprisingly, the mutant cell in this case will have a smaller fixation
probability compared to any of the wild type cells. In fact, in the mass-action problem the
probability of such disadvantageous mutant fixation, Py, is exponentially small in terms
of the population size N, and (in the case of a large population) is given by (1/r — 1)r".
In the opposite case of an advantageous mutant (r > 1), the probability of mutant fixation
is larger than the probability of fixation of wild type cells and is given by 1 — 1/r for
large populations. Similar results also hold in the case of a circular geometry, where the
probabilities of disadvantageous and advantageous mutant fixation are given respectively
by 2rN=2(1 —r)/(3 = r) and 2(r — 1)/(3r — 1) [75]. Not surprisingly, if the fitness of the
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mutant is exactly the same as the fitness of the rest of the cells (r = 1, a “neutral” mutant),
the probability that the whole population is eventually replaced by the offspring of such a
mutant is exactly the same as the probability of fixation of any other cell, and is equal to
1/N (this result holds both for mass action and for circular geometry).

The simple situations described above are idealizations because, for example, they do
not include the inhomogeneity of the environment. Let us suppose that the fitness of a
cell depends not only on its type but also on the spatial location. We will assume that the
fitness of a wild type cell at a given location is drawn from a fixed probability distribution.
Also we suppose that (Py) is the average fixation probability of an imposed mutant within
a population of size N where the average is taken over the all possible configurations for
the fitness of each individual located at NV different locations. We further assume that the
fitness of a mutant cell in a given location is also taken from exactly the same distribution.
In other words, for a single realization of a Moran process we need to assign the finesses of
wild type and mutant cells for each location, and these values remain fixed throughout the
realization. What is the probability of mutant fixation (starting with one mutant cell at a
randomly chosen location) averaged over realizations? Simple intuition would suggest that
it is 1/N, because the fitness values of the mutant are taken from the same distribution as
those for the wild type, and the probability is averaged over all the possible realizations.
We show that the answer 1/N however is only true for N < 3. Starting from N = 4,
the probability of fixation, (Py), of mutant in such a random landscape is greater than
1/N. In fact, for relatively small values of N the function (Py)N grows linearly with N
and for larger population sizes it continues to grow but becomes logarithmic (to compare,
(Pn)N =1 in the absence of randomness). One should note that when the mutants are
advantageous then (Py)N grows linearly with N and the slope increases with the standard
deviation of the fitness distribution. If the fitness of the wild type is constant (r = 1),
but the fitness of a mutant cell at a given location is selected from a fixed probability
distribution, then the average fixation probability is negatively correlated with the variance
of fitness distribution of mutants (for both advantageous and neutral mutants) [99]. This
could be due to the fact that increments and decrements of fitness values compared to the
background fitness do not have a symmetric effect on the fixation probability. For example,
if r=1and 7 =140.5, then the devastating effect of hitting the value 7 = 0.5 cannot be
compensated by a relatively mild advantage of hitting 7 = 1.5.

Consider a circle with N = 3 individuals. We denote the fitness for the wild (mutant)
type by a; (a;), i = 1,2,3. Further, P;, where s is a binary number of length 3, stands
for the probability of mutant fixation starting with configuration s, where “1” stands for
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mutant and “0” for the wild type. Defining f§ := a/(a + 3), we obtain,

3P0 = Puof& + Pioifd + Puoo(f2 + [2),
3P0 = Ponfiz—i-Pnofg;z‘f‘Pmo(fg; + f&),
3Pi1 = Pioif& 4 PS8 + Poor(f2 + &),

3Piig = 14 Puofs + Powfi —|‘P110(f§;,1 +f£),
3P101 = 1+P100f§12+P001f§;+P101( 5;1 + :;3)’
3Pp1 = 1+ Pouofd + Poorfal + Pou(f32 4 f32).

The solution to this system, averaged over all realizations of the fitness configurations
for a given distribution is PlOO = POlO = POOl = 1/3 and PllO = P101 = P011 = 2/3
This results in the fixation probability Py = 1/3, starting from one mutation. The above
formulation can be generalized to larger N, but against expectations, the probability of
fixation starting from one mutant for N > 4 is greater than 1/N (see Figure 4.1 for a circle
with N =5 and also Appendix A.3 for more details on analytic calculations).

Remark. As will be shown below, the trend for the fixation probability of mutant(s)
for N = 3 is different than those for N > 4. The reason for such a difference may relate
to the neutrality of the system with respect to increase and decrease in the number of
mutants (and thus normal individuals) after averaging over all possible configurations.
More precisely, in average the probability of increase by one from the state ¢ = 2 is equal
to that of decrease by one from the state ¢ = 1. Moreover, in average probability of
increase by one from the state ¢ = 1 is equal to that of decrease by one from the state
i = 2. These symmetric relations among the transition probabilities makes this case (with
N = 3) neutral and does not occur for any larger populations.

The linear algebraic system can be solved exactly for relatively small values of N. For
larger N, we perform numerical simulations of the Moran model (the results are verified by
solving the corresponding Kolmogorov system of equations for 10,000 realizations). The
results for a circle are presented in Figure 4.2, where the fixation probability starting from
one mutant, (Py), times NN is plotted in terms of N. For relatively small values of N,
this quantity increases linearly with N, suggesting that “neutral” (that is, obeying the
same fitness probability distribution) mutants behave similar to the advantageous mutants
in the non-random systems, where the probability of fixation approaches a constant as
system size increases. For larger values of N, we observe that (Py)N grows slower than
linear but is still increasing. The large N behavior is obtained by fitting the data to a
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Figure 4.1: Schematic evolution of a recently born mutant within the cycle model
with N = 5. The blue cells are assumed to be normal and red cells are cancerous. At
each updating time, either a normal cell or a mutant is chosen for death at random and an
adjacent neighbour cell which has a higher proportional fitness will replace its offspring.
This DB Moran process may increase the number of mutants (moving to the right on the
figure) or decrease their fraction (move to the left on the figure).

logarithmic function of the form of a + bIn(N + ¢), where the constants a, b and ¢ depend
on the standard deviation of the fitness distribution. In Figure 4.2 we used the fitness
distribution given by 1 — ¢ and 1 + ¢ with equal probability; later in the chapter, we will
refer to this distribution as the bimodal distribution.

4.2.1 Distribution of the average fixation probability

To understand the general behavior of the mechanism in the presence of randomness,
we consider the whole hierarchical Markov chain. Then the average fixation probability
will be calculated based on all the derived fixation probabilities. A question of interest
is then, assuming that the distribution of the whole scenarios are the same, does the
distribution of the average scenario have the same type? This can be investigated by
applying the central limit theorem [11] . To detect such a similarity between the average
distribution and the primitive distributions, the boundedness of the mean and variance of
the average distribution and their relationships to those of the priori distributions should
be investigated. In Appendix A, such an analysis has been performed for populations of
size 10, 15, 20, and 50 and all verify that the distribution of the average trait represents
a bounded distribution with skewness to the left (towards lower values than the mean of
the fitness) and as we increase the variance o? the distribution shifts more to the left.
This can be also thought of as a planar wavelet moving towards the lower fitnesses as the
variance climbs. This wavelet shows a more fat tail on the left (higher skewness to left) as
the population size grows (see Figure (A.1) and the related section for more details.).
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Figure 4.2: The average fixation probability times N as a function of N for a
circle. The fitness of both mutants and wild types is given by 1 — ¢ and 1 + ¢ with equal
probability (the bimodal distribution). The inset shows the behavior for small values of N.
Points are the results of numerical simulations based on stochastic simulation and bars are
the standard deviation of mean. Stochastic simulation are based on a set of 3 runs, each
with 20,000 iterations . Solid curves reveal the analytic calculation results.

4.2.2 Randomness impact on the all individuals

Throughout this section, we will envisage the behavior of a population of normal and mu-
tant individuals in the presence of randomness. Considering the same bimodal distribution
for normal and mutant individuals with the same mean y and variance o2 (for simplicity
we assume that g = 1 or normalize the means to 1 otherwise), the system does not change
the mean but variance can vary within a certain range. As can easily be detected, finding
the fixation probability of a 1D structure under influence of random effects tends to a
higher dimensional Markov chain which leads to a system of Kolmogorov equations based
on the initial mutant’s location, various types of individuals, and their fitness at each time
step. In this situation, an interesting approach can be to observe the average treatment of
the system by considering the whole possible scenarios from beginning to end separately,
and then to take the average of their corresponding fixation probabilities with respect to a
given probability distribution. Although the consequent results represent average features
of the mechanisms, the mean field approximation captures the overall trend of the system.
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As the fitness probability distributions of mutants and wild type cells are identical, the
only factor that differentiates mutants from the wild types in this setting is the fact that
initially, they are a minority. The results reported above (that is, the probability of mutant
fixation greater than what is expected of a neutral mutant) hold as long as the mutants
are initially a minority (i.e. (Py) > i/N as long as ¢ < N/2, where i is the initial number
of mutants, see Figure A.7 in the Appendix).

The magnitude of the effect depends on the standard deviation and the higher moments
of the underlying probability distribution, and can be quite significant. The difference
between (Py)N in the random and the non-random neutral cases is only about 1% for
N = 4 and becomes orders of magnitude greater for larger N. The larger the standard
deviation, the greater the deviation of (Py) from the neutral result for small values of N,
but at the same time the lower the size N at which the behavior of (Py)N becomes sub-
linear, see Figure 4.2. If we keep both the mean and the standard deviation of the fitness
distributions constant, and vary the third moment (skewness), we observe that (Py)N is
the largest for the largest negative skewness, Figure 4.3.

1.010

1.008 |-

1.006

<PN> N

1.004

1.002

1.000 L~

Skewness

Figure 4.3: The effect of skewness on the survivability of mutants. The function
(Py)N in terms of the skewness (N = 4). We assume (r) = (7) = 1 and 0 = 4. Curves
are based on analytic calculations.

The beneficial effect of randomness on the chances of a minority fixation described
here are observed in the presence of correlations between the wild type and mutant fitness
values. We define p = ((r — (r))(7 — (7)))/(05), where the Pearson correlation index p
can vary within the interval [—1,1]. Then r and 7 are uncorrelated, fully-correlated, or
anti-correlated if p = 0,1 or — 1, respectively. We plot the fixation probability as a function
of the standard deviation for these three cases in Figure 4.4 (for N = 4). It is observed
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that fully anti-correlated fitness values (with the Pearson correlation index of —1) yield
the largest magnitude of the effect.

Remark. Interestingly, when r and 7 are fully correlated, the fixation probability of
mutants (and thus the wild-type individuals) remains fixed with respect to the change
in standard deviation. Similar to the neutrality of the system for N = 3, one can show
that for a population size N > 4 and for any 2 < i < N — 2, after averaging over all
possible configurations of the system, the average transition probabilities for an increase (a
decrease) by one from the state i is equal to that for decrease from the state i +1 (i — 1).
Thus the trend for fully correlated case in Figure 4.4 remains unchanged with respect to
the standard deviation.

0.257 -

¢ == Uncorrelated
0.256 -

Fully—correlated
0.255 -

= Anti—correlated
A 0254
V' 0253

0.252

0.251

0.250

0.0 0.2 0.4 0.6 0.8 1.0

Standard deviation (o)

Figure 4.4: Correlation among the fitnesses of mutants and normal individuals.
The average fixation probability as a function of the standard deviation of the bimodal
fitness distribution for different degrees of correlation between mutant and non-mutant
fitness values (N = 4). The solid curves are based on analytic calculations.

In a more general case one can assume that the distributions of wild type and mutant
fitness values are not the same. Figure 4.5 demonstrates that mutants whose fitness values
come from a distribution with a lower mean could behave as if they are advantageous
(that is, fixate with a probability larger than 1/N). This shows that being a minority can
compensate even for having a lower mean fitness.

Next, let us suppose that while having equal means, the standard deviation of the two
distributions can be different (where larger standard deviations signify larger randomness).
It turns out that for the minority population, it is beneficial to be as deterministic as
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Figure 4.5: Minority and the average fitness (r) > 1, (r) = 1, and (r) < 1. The
average fixation probability as a function of the standard deviation of the bimodal fit-
ness distribution (N = 8). Solid curves show the results of analytic approach while the
points (with bars as the standard deviation of mean) represents the results of stochastic
simulations. Stochastic simulation are based on a set of 3 runs, each with 20,000 iterations

possible. Larger standard deviations of the background distribution and smaller standard
deviations of the mutant distribution lead to higher values of mutant fixation probabilities
(Figure 4.6).

For a circle of fixed size N, the mutants grow as a cluster and we only need to con-
sider the cells on the boundaries of mutants and wild type. Our results indicate that the
fixation probability times N grows linearly with N for relatively small population sizes
and becomes logarithmic for large N. For large N, the circular arrangement with random
fitness distribution is similar to the problem of random walks in a random environment.
Suppose a walker goes to the right (left) with a probability p; (¢; = 1 — p;), where p;
and ¢; are independent, identically distributed random variables. We define p; = p;/q;
and 7 = (Inpg). The random walk is transient if n # 0 and it is recurrent when n = 0
[167, 160]. In the case that the random variables p; take only two values o and 1 — o, with
probabilities & and 1 — «, respectively, then the walker is recurrent if « = 1/2 or 0 = 1/2.
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Figure 4.6: Relationship between standard deviations of normal and cancer in-
dividuals. The heat plot for (Py) as a function of the two standard deviations (N = 8).
This result is based on analytic calculation of the average fixation probability.

4.3 Complete graph (well-mixed) model equipped with
random effect

An interesting observation would be to compare the behavior of the circle model with that
for mixed population of the same size in the presence of randomness. To this end, we
consider a complete graph with finite number of nodes where randomness will impose a
random fitness to each particular node.

Similar to what we discussed about the analytic approach of the circle model, we assume
a heterogeneous system of normal and cancerous cells located on a complete graph of size

N. Again associating fitnesses aq,--- ,ay to mutant cells and aq,--- ,ay for normal cells
based on the type of the cell locating on nodes labeled as 1 to N. We also consider P, as the
probability of starting from state o = (o1, -+ ,0n) and absorbing to the state (1,1,--- 1)

for o; € {0,1} (1 <4 < N) in which o; = 0 means that a normal individual is located at
node i and otherwise we have a mutant cell in that location.

Writing the corresponding Kolmogorov equations, we have a system of 2V —2 equations
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of 2V — 2 variables as follows (0 < M1 < N)

NPa:ZieIl Pai [Az]+Pa [_N+CQ]> HJH =1
NPy =3 ier, Poi[Al + 2 jer, Po [Bil + P [-N+C1 4+, 2< |lof| < N -2 (4.2)
NPUZI"'ZjeIzPaj[Bj]+Pa[_N+C1]a ”UH:N_L

where 0;,0; € {0,1} for 1 < 4,5 < N and the transition probabilities of increase and
decrease by one from the state o are respectively

Zk‘EIl ak

Ai(o) = = ) for 1<|o]] <N —1,
Zkell ak + EIEIQ\{i} a
(4.3)
Zkel’z Ak
Bj(o) = — : for 1<|lo|| <N-1
Zlezl\{j} a1+ Y ez, O
In the latter expressions, when ||o|]] = N — 1 then A = Ay = 1 and for ||o|| = 1 we

can conclude that By = By = 1. Also the probabilities of having the state unchanged for
mutant and normal cells are respectively

C (U) _ Zkeﬂ\{i} Qr
1 o ~ )
i€Z1 Zkezl\{i} Ak + ZlEIQ ap
N a
Co(o) = keTo\(j}

~ Y
jETs Zl€I1 a + ZkEIQ\{j} g

where the initial conditions are Pyy..o = 0, Pi1..1 = 1.

We calculate the fixation probability for a complete graph, where all cells are connected,
using both analytic calculations and numerical simulations, Figure 4.7. The results indicate
a similar behavior as the circle, i.e. (Py)N grows linearly with N for small N (N < 100),
and becomes sublinear for larger population sizes. Similar to the circular case, the lines in
Figure 4.7 are obtained by fitting the results to a logarithmic function a + bln(N + c¢).

To compare the circle and complete graph structures in terms of their phase change, in
Figure (4.9) the phase change diagram of the circle is also given. There exist two different
phases for the complete graph: (i) for the advantageous mean of the fitness, trends are
similar to those for the circle model as the curve reveals a monotonic growth. (ii) for the
neutral and advantageous mean of the fitness, there is a bump and downward motion for
the curves as variance is large enough.
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Figure 4.7: Large population scale and randomness impact on the fixation of
mutants. The average fixation probability times N in terms of the standard deviation
of the bimodal fitness distribution for a complete graph. The dash curves are based on
analytic approach and points and error bars are based on stochastic simulation of a set of
3 runs, each with 20,000 iterations.

In contrast to what occurs for the circle model in the neutral mean of the fitness, the
treatment of the average fixation probability is not monotonically increasing. It is in fact
similar to the disadvantageous mean of fitness. In Figure (4.9)-(b) some curves around the
neutral case are magnified and show this important difference between the circle and the
complete graph structures.

When N > 5 and () = (r,) = 1 as the tendency of the curve for the circle model climbs
strictly, the graph for the complete graph provides a bump for large enough variances. More
precisely, the trend moves downward as the standard deviation increases. Increasing the
population size, the downward tendency occurs even for smaller values of the variance and
the difference between the two graphs increases (in Figure (4.9) various case are given
for various populations). For N = 4 the progression is different and the complete graph
represents a stronger impact on the system to enhance the fixation probability. The case
for a complete graph with N = 3 is similar to the graph of this case for the circle as a
straight line due to their same structures.
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Figure 4.8: Phase diagram of the complete graph vs the circle model. Complete
graph and the circle models are compared for different regimes for N =5 and o, = 0, = 0.
Different regimes pertaining to different means of mutants have been considered in (a). In
(b) a magnified version of the curves related to (r,) = 0.99, 1, 1.01 are given whilst (r,) = 1.
Opposite to what we had for the circle model, a decline can be observed for larger values
of o in well-mixed model. We assumed that N = 100. data points are based on analytic
calculation for the average fixation probability of mutants on complete graph and the circle
model.

4.4 'The dynamics of the line model: Significance of
reflecting boundary and randomness

In some tissues in the body such as the brain or those epithelial layers surrounded by bones
or vascular organs, the location of the newborn mutant within a homogeneous population
can have a significant effect on its extinction or fixation.

Within the present section, we consider a new geographic structure in which the pop-
ulation is positioned on a line with finite nodes. Over this spatial structure, a higher
dimensional Markov chain can be established to study the spatial effect of the structure
on the fixation probability of the newborn mutant. We first start our investigation with
the line model in the absence of randomness. Then taking advantage of this analysis,
we continue our study to identify the effect of randomness on the survival probability in
this 1D spatial model with a reflecting boundary. To maintain the crucial features of the
structure, we start with the transition probabilities of a DB Moran process for the given
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Figure 4.9: A comparison between the well-mixed model and the circle model
both with the same population size. In figure (a) when N = 4 the well-mixed
model shows a sharper enhancement for the fixation probability while for larger population
size and when o, = 0, = o is large enough the circle model represents more survival
probabilities. For instance in (b) this behavior can be seen for N = 5. A similar figure is
also given in (c) for N = 6. Points are based of exact calculations.

line Model.
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Figure 4.10: Analytic results for the fixation probability of a newborn mutant
located in different positions within the line model. This figure relates to the
neutral case and in the absence of randomness. Except for the fixation probability at
boundary which shows a huge decline, rest of the location tend to the same value for the
fixation probability in this model. Points are derived from analytic calculations.

4.4.1 Analytic approach without randomnes: Mutant at the bound-
ary

At first, we suppose that the recently imposed mutant is located at one of the boundary
points. Let the population size is N and there exist tw type of individulas: mutants, B
and wild-type A. r = :—Z is the relative fitness of mutants vs. the normal individuals. Also

d = fll_Z is the relative death rate of mutants compered with that for normal individuals.
The probability of increase and decrease by one in the number of mutants respectively are

—_—T 1<m<N-=-2
(r+1)(m(d—1)+N) — — ’
Pl = { . N (4.5)
d(N—-D)+1 m=N-4
and also
d
_d_ m=1
_ d+N-1 9
P = d 4.6
" { rr D) (m(d—1)+ V) 2<m< N -1 (4.6)
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Comparison among various analytic results for the fixation prob-
ability of disadvantageous, neutral, and advantageous mutants. The new born
mutant can arise in different locations within the population over a 1D assay of individuals
with N = 100. In figure (a) r, = 0.5 and r, = 1 in which a smooth increasing trend can
be seen for the fixation probability of an initial mutant at different nodes. In (b) r, = 1
and r, = 1 demonstrates the case of a neutral system. In (c) advantageous mutants with
r, = 2 and r, = 1 depict a bump at adjacent-boundary point for the fixation probability
while as the location changes towards the center point(s), the same fixation probabilities
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are achieved. Results are based on exact analytic approach.

Thus the fixation probability for r # d is

r—d

P AT 1) —d(d+ (G2
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and when d = 1, in general we conclude
r—1
gy T#E L
p:{ 2 12(1/ N2 - (4.8)
2(N—1) -
The first expression leads to the following simple form for large populations (N > 1):
r—1

p=—5 (4.9)

4.4.2 Mutant at internal nodes

Having the new mutant at the internal locations, calculation can be done by finding the
transition probability matrix. Finding the exact closed form for the probability of fixation
is very complicated due to the complexity of higher dimensional Markov changes. Despite
this, we study Kolmogrov equation of the system (the list of Kolmogorov equations are
given in 4.11 setting the standard deviation equal to zero) similar to the result of [75].

The fixation probability of a newly-raised mutant at different locations on a line model
except for the boundary points are the same when the relative fitness » = 1. In the neutral
case (r = 1), as the population size increases the gap between the fixation probability
at boundary and other points decreases. An interesting approach then would be about
advantageous and disadvantageous mutants and the relationship between survival chance
of different phenotypes at diverse locations on the line model.

The analytic calculation highlights the fact that in the DB Moran case converse to
the BD case, the boundary points have the minimum fixation probability within the whole
invasion probabilities compered with those for the internal nodes. According to Figure 4.11,
the analytic results represent a different behavior for the advantageous and disadvantageous
compared to the neutral case.

When r > 1, then mutants are beneficial in the system, although the fixation proba-
bility of the boundary points is minimum with a huge reduction. The fixation probability
at adjacent—boundary points reaches a peak and then its value slightly decreases to be
saturated at central points (see Figure 4.11-(c)).

Conversely, when r < 1 then there will be a monotonic increase in the probability of
fixation moving towards the center/central points. In other words, The maximum survival
probability occurs at center/central points. So one may conclude that for advantageous
mutants, the adjacent—boundary location represent the best initial location for cancer cells
to survive; however, the center (central points) are the best starting location for cancer
initiation (refer to Figure (LineAnal)-(a)).
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Remark 1. The reason for minimality of boundary points is due to their higher chance
of decrease in the population size which increases the survival probability of their neighbor
points. Such an enhancement is in favor of advantageous/disadvantageous mutants located
besides the boundary. The closer location for advantageous/disadvantageous mutants to
the boundary, the higher/lower survivability of mutants will be maintained compare to
that of the neutral case.

Remark 2. Increasing the net reproduction rate will boost the maximum at adjacent—
boundary point and make this peak sharper for » > 1. Similarly, the difference between
the central and adjacent—-boundary rises by decreasing the relative fitness of mutants.

Remark 3. Increasing the population size, the effect of the structure on the chance of
mutants to get absorbed will be less and the chance of having higher survival probability
will be distributed among central nodes.

A similar method can be performed for a BD Moran model to observe the symmetric
correlation between results of the DB and BD 1D spatial structures.

4.4.3 Analytic approach in the presence of randomness

In the present section, we investigate the effect of randomness on the line model while
reflecting boundaries are also taken into account. Detecting the location of the new raised
mutant, biologically seems to be very difficult, if not impossible. To study such an event,
we may want to put the mutant at a random position chosen through a specific distribution.

In the previous section, the exact analytic approach has provided a general picture
for the landscape of the fixation probability on the line model. Now let us assume that
the individuals are located on a line model of size N. Also, suppose that aq,--- ,ay are
corresponding net growth rates of mutants while aq,--- ,ay are those for normal cells,
each of which dedicated to the location 1 to N. Then one can define the probabilities P,
where the Markov chain is considered at state o = (a4, - -+ , ) within a certain time step.
Suppose that Z = {i : a; = 1,1 < i < N}, 0ypae = maxz i, and 0,,;,, = mingi. Moreover,
assume that M; = max({||Z]] — 2,0}) and My = max(N — {||Z]| — 2,0}). Let us also
suppose that o; (03) is the element-wise maximum of o with its permutation by one to the
right (left) and &1 (62) be the element—wise minimum of ¢ with its permutation by one to

the left (right).
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The associated Kolmogorov equations define a system of N (/N +1)/2 — 1 equations of
N(N +1)/2 — 1 variables as follows (0 < ||| < N). These equations are similar to those
reported in [75] but when there exist randomness in the system. This generalized system
assists us to investigate the behavior of a linear structure under microenvironmental as well
as boundary effects which occur at epithelial layer of numerous tissues within the human
body. For the transition probabilities by one from the state o:

a Qg .
Ai(o) = —lomes gy Tmen g i< ol < N— 1,
ao'ma:c + aa'max+2 aa'min + aa'min_2
L L (4.10)
Bi(o) = e . Ba(o) = i , for I<|o| <N -1
a’Umaz+1 + a/o'mazfl aaminfl + ajamzn+1
One concludes
(N P, = P,,[A1] + Ps,[As] + Ps,[B1] + Ps,[Bo]
+P, [-N + My + M3+ Cy +Co, 2 < omin < Omaz <N —1
NPU:Pal[Al]+P02[~A2]+Pa[_N+M2+C2]7 2<Umin:Umaz<N_1
N P, = P,,[A1] + P,,[1] + P5,[B1] + P5,[B2]
+P [_N+M1+M2+C1+C4]; 2:Umin<0maz<N_1
NP, —PUI[Al}—I—PgQ[l]—l-PU [—N+M2—|—C4}, 2= 0Omin = Omaz <N —1
NPO':PJl[ ]+P&1[Bl]+Pa[_N+M1+M2+CB+C4]7 1:Umin<0maz<N_1
NP, =P, [A]+ Py [-N + M3+ (4], 1= 0omin = Omaz <N —1
NPU:Ptfl[l}+P02[A2]+P&1[Bl]+P&2[B2] (4 11)
+PU[—N+M1+M2+61+CG], 2 < omin < Omaz =N — 1V
NP, =P, [1] + P,,[A2] + P, [-N + M2+ Cg) , 2 < Omin = Omaz = N — 1
NPU:PJQ[A2}+PUQ[B2]+P [ N+M1+M2+C5+Cﬁ]a 2<Umin<0mam:N
N P, = P,,[As] + Py [-N + Mz +Cg], Py [-N + M3 + Ce] , 2 < Omin = Omaz = N
NPO-:PJI[”‘FPJZ[ ]+P&1[Bl]+P&2[82]+Pg[_N+M1 +Cl]7 2:Umin <Umaz:N_]-
NPUZPUI[H—FPUQ[]-FPU[—N], 2 =0min < Omaz =N —1
NPO':PO'I[Bl] [ 2+C3]7 1= 0omin & Omae =N —1
NPU:PUQ[BQ] [ 2+C5]7 2 =0min & Opmax =N
\
In the latter expressions, when ||o|| = N —1 then A; = Ay = 1 and for ||o|| = 1 we can

conclude that B; = By = 1. Also we have
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Figure 4.12: The trend for the fixation probability starting at different locations
for various variances and population sizes. Analytic calculations show the trends for
the average fixation probability of mutants for various population sizes: (a) N = 3, (b
N=4,(c) N=5,(d) N =6, and (e) N =7. In all cases we assumed that (r,) = (r,) =

and o, = 0, = 0.
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where H(.) is the Heavyside step function. Additionally, the initial conditions of the
system are Pyg..o =0, P1..1 = 1.

According to the analytic calculation for N > 5 when (r,) = (r,) = 1 and 0, = 0, = 0,
the fixation probability of a newborn mutant increases starting from any initial location on
the line (Figure 4.13). For smaller populations, there exist some exceptional cases in which
the fixation probability decays for higher standard deviations (see Figure 4.13-(a)-(c)).

Remark 1. More pronounced effects can be seen at the boundary points and changing
the location of the first mutant towards central location(s) the effect of randomness slightly
declines. By increasing population size, a similar behavior to the circle model occurs in the
line model as p x N monotonically elevates via its dependency on the standard deviation o.
Another interesting observation relates to the influence of randomness on the system which
enhance the location—dependency of the initial mutant in this particular linear structure
even for the case in which the average fitness of both normal and cancer individuals are
neutral. Having the relative average fitness greater/less than 1 would lead to higher effect
of randomness on the system considering the analytic approaches of the previous section
for advantageous/disadvantageous mutants respectively.
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Figure 4.13: The treatment of the fixation probability for different population
sizes are compered separately at boundary, adjacent boundary, and the third
location on the line model. (a) the treatment at boundary, (b) at adjacent boundary,
and (c) at the third location on the line, all show a similar increasing behavior as the circle
model for larger population size. Points are drawn based on analytic calculations.

Remark 2. A comparison between line and circle model reveals that although their
behavior (when N > 5) are similar, they do not coincide. More precisely, the fixation
probability of circle will remain between the fixation probabilities of starting with initial
mutant at boundary in one hand (as the lower bound) and at the internal nodes (each
trend as an upper bound) in the line model (Figure 4.14). The relationship between these
trends is given in Figure 4.14 for N = 6,7 where the average net reproduction rate is 1.
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Figure 4.14: Comparing the line and circle models for the same population sizes
and when (1) = (r,) =1 and 0, =0, = 0. In (a) N =6 and in (b) N = 7 in which
the analytic result for the fixation probabilities in the circle model remains between those
of teh line models ifor various variances.

4.5 Higher dimensional spatial structures

In the previous sections, we observed that the influence of microenvironmental effects
on the fitness of mutants and/or host cells, changes the survival probability of mutants.
Particularly, such an effect on a neutral system where the average fitness of both phenotypes
remains approximately the same, may tend to a decrease (when randomness only affects on
mutants) or an increase (when randomness affects both resident and malignant individuals).
Such evidence which has been verified by our research and through analytic calculation
and stochastic simulation [96], has been discussed in the context of one-dimensional spatial
structures such as the circle and line models, as well as for complete graph (mass-action)
models.

Regarding the tissue structures and epithelial layer of many organs in mammals, it
turns out that the alterations to fitness in a heterogenous system is likely to occur in higher
dimensions as well. For instance the epithelial layer of the colonic/intestinal crypt is a 2D
essay of diverse types of cells. Our analysis shows that even for a two-dimensional lattice
(without reflecting boundary) the same behaviour as that of 1D case can be observed.
Figure 4.15 represents such a scenario when the average fitness of mutants and normal
individuals is 1 and standard deviation of their fitness increases. Then again, minority of
mutants makes this type of cell advantageous over the resident cells and in turn, tends
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to an increase in the the average survival probability of mutants. In this figure, we have
considered L x L lattices with L = 3,--- | 10.
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Figure 4.15: The randomness effect in higher dimensions. The average fixation
probability in terms of the standard deviation of the bimodal fitness distribution for a
2D lattice L x L without reflecting boundary (3 < L < 10). The fluctuations in the
(standard deviation of the) fitness of both normal and mutant cells with average fitness
equal to 1, reveal the same trend for the average fixation probability as that of the 1D
spatial /non-spatial case. and we run stochastic simulation for a set of 3 runs, each with
20,000 realization. Error bars as the standard deviation of mean are very small and have
not shown in this figure.

4.6 Summary

The effects of spatial structure and heterogeneity are important in biological models, in-
cluding evolutionary biological and biomedical models and social networks. It is known
that structure of the network can suppress or amplify the fixation probability [90, . In
addition, the heterogeneity of the spatial structure has impacts on the fixation probability,
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see for example |2, , , 99, 53]. Although several papers have focused on the study
of heterogeneous networks, less effort has been devoted to understanding the effect of het-
erogeneity, due to the spatial fitness distribution and environmental stress, and its effect
on the invasion probability. In real systems, the fitness of individuals strongly depends on
the microenvironmental conditions. For example, in models of bacterial growth or cancer
progression, fitness can be a function of the spatial distribution of nutrients and microen-
vironment. As demonstrated here, random fitness distributions can significantly influence
biological and social systems dynamics, leading to an advantage of a minority.

Due to its connections to some of the physical systems, the voter (death-birth) model
has been widely studied in the physics literature (see [105] and the references therein). An
important biological application of the ring geometry studied here is the model of a human
colonic crypt, where stem cells are situated along circular bands (in this context, fixation
is referred to as monoclonal conversion [5%]). These cells divide leading to proliferation or
differentiation (equivalent to removal in our models), and the origins of colon cancer can
be studied by examining selection dynamics of mutants in such a system. Of particular
importance is the APC*/~ mutant, which in many models is considered neutral or slightly
disadvantageous. Such a mutant taking over in one of about 107 crypts in a colon is often
a first step in the pathway to colon cancer. If the randomness of the environment is taken
into account the theoretical likelihood of such an event can be significantly higher than
predicted by the standard theories. In fact, given the relatively small population size of
the stem cell pool, such mutants will behave as if they are advantageous, leading to a very
different dynamics, see e.g. [121, 197].

On a more general note, a large part of population genetics theory relies on the fact
that neutral alleles arise with a probability inversely proportional to the population size, V.
This fundamental notion plays a role in famous concepts such as Kimura’s molecular clock,
genetic drift, evolutionary divergence, and coalescence [72, |, In this paper we show
that neutral mutants can behave as if they are selected for, and fixate with a probability
independent of N (or decaying much slower than 1/N), given that they are in a minority,
and given that a random environment plays a role. This result can impact prediction levels
of DNA divergence between species, levels of standing variation within species, patterns
of population subdivisions within species, tests for neutrality vs selection, and inferences
about demography [14].
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Chapter 5

The Significance of Central Stem
Cells in Initiation of Colon and
Intestinal Cancer

In the last two chapters, the effect of different spatial structures as well as microenvi-
ronmental impact on the development of malignancy within a heterogenous system were
investigated. The fixation probability of mutants under certain circumstances was inves-
tigated. In the present chapter, we propose a generalized structure to the compartmental
model given in Chapter 4, to capture an optimal structure for the cellular turnover within
the colonic/intestinal crypt. The majority of the results included in this chapter are re-
ported in [97]. This chapter accounts for another real-world implication of evolutionary
dynamics in the study of the complex structure of the crypt as well as tumorigenesis and
oncogenesis, and a potential therapeutic treatment to cure such a malignancy.

Rapidly dividing tissues, like colonic/intestinal crypts, are frequently chosen to inves-
tigate the process of tumor initiation, because of their high rate of mutations. To study
the interplay between normal and mutant as well as immortal cells in the human colon or
intestinal crypt, we developed a 4-compartmental stochastic model for cell dynamics based
on current discoveries. Recent studies of the intestinal crypt have revealed the existence of
two stem cell groups. Therefore, our model incorporates two stem cell groups (central stem
cells (CeSCs) and border stem cells (BSCs)), plus one compartment for transit amplifying
(TA) cells and one compartment of fully differentiated (FD) cells. However, it can be easily
modified to have only one stem cell group.

We find that the main deficiency occurs when CeSCs are mutated, or an immortal cell

73



arises in the TA or FD compartments. The probability of a single advantageous mutant
CeSC being able to transform all cells into mutants is more than 0.2, and one immortal
cell always causes all FD cells to become immortals. Moreover, when CeSCs are either
mutants or wild-type (w.t.) individuals, their progeny will take over the entire crypt in
less than 100 days if there is no immortal cell. Unexpectedly, if the CeSCs are wild-type,
then non-immortal mutants with a higher fitness are washed out faster than those with
a lower fitness (net reproduction rate). Therefore, we suggest one potential treatment for
colon cancer might be replacing or altering the CeSCs with the normal stem cells.

5.1 Introduction

In the present Chapter, we model the cell dynamics of the intestinal crypt based on the
available experimental data sets. We investigate the spread of one initial mutant at different
locations within the crypt. Furthermore, the proposed model accommodates the possibility
that a mutant cell becomes immortal in a single cell division. In this model, we vary the
fitness of mutants, which defines the probability that a mutant cell divides and replaces
its neighbor cells. We assume that the fitness of all w.t. cells is 1, and the relative fitness
of mutants is r. In other words, when there are j mutants and ¢ w.t. cells competing to
divide and fill out the available empty space, the probability that a mutant cell divides is

rJ

riti
Recently, the probability Pr that a mutant stem cell replaces its neighbor for various
mutants was empirically obtained [181]. Based on this mouse experiment, the fitness of

mutant APCt/~ is 1.6, while the fitness of mutant APC~/~ is 3.8. Moreover, the fitness of
the dominant-negative hotspot P53 72 mutant, which corresponds to the human hotspot
P53%175 has been obtained. The P53%172H protein has been shown to inhibit the w.t.
p53 function, and tumors expressing p53717™27 are more metastatic than tumors deleted
for p53 [129]. Surprisingly, the fitness of P53%7 mutants is 0.9 in the normal colon,
while the fitness of the P53%172H# mutant is 1.4 in the inflammatory environment. Thus,
we consider a range of fitness values for r such that the mutants can be disadvantageous
(r < 1), neutral (r = 1), or advantageous (r > 1) compared to w.t. cells. We consider
the expansion of mutant or marked cells presented at the initial time of simulations. For
simplicity, we assume all mutants in the tissue have the same fitness r. We also assume that
when a mutant cell divides, one of its children is immortal with a very small probability.

Several computational models have been developed to study the dynamics of multistage
carcinogenesis [116, 92 , 77, , , , 31, ]. Moreover, there are many compu-
tational and mathematical models investigating crypt cell dynamics [63, 13, 39, , ,
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, 01]. However, there are several recent experimental studies on animal colon/intestinal
crypts that reveal new information about the cell dynamics. Therefore, new mathematical
models are required to accommodate the latest experimental discoveries. Note, because of
the inability to use the cell fate mapping experimental techniques in humans, the available
data for the human colon/intestinal crypt cell dynamics is very limited. Therefore, in or-
der to obtain more realistic computational models for humans, we need to incorporate the
available observed data from animal studies.

Many cell dynamics models have been designed for the intestinal and colon crypts,
because of their fairly simple cell dynamics compared to the other tissues, i.e one directional
movement from bottom to the top of the crypt [162]. The cell dynamics of the intestinal
crypt are very similar to the colon crypt. One of the first models is a homogenous model
developed in 1992 to obtain cell division rates at each location of human crypts as well as
cell cycles [136]. The time and probability of the progeny of neutral stem cells taking over
the stem cell niche and the entire normal intestinal crypts have been modeled in [162]. This
stochastic model, which treats all stem cells as one stem cell type, is in perfect agreement
with their experimental data, and it predicts stem cells mostly divide symmetrically. Bravo
et al. [11] also provided an agent-based computer simulations for cell dynamics in normal
human colon crypts.

Although there are many mathematical models for cell dynamics of normal crypts,
several models have been designed to investigate the process of mutants’ production and
their dynamics. Zhao and Michor [204] developed a one-dimensional homogeneous model,
which includes only one column of cells, to track mutants in the crypt. They found that
most divisions should occur at the bottom of the crypt in order to maximize the time to
cancer. In contrast, a recent two-dimensional model, which only contains two columns of
cells, shows that most divisions should occur at the top of the crypt to delay cancer [156].
In [204], at each time step, a cell at position i is selected to divide, two daughter cells are
then placed into positions ¢ and ¢ + 1, causing cells that previously resided in positions
7 + 1 to shift by one position toward the top of the crypt. The difference, which accounts
for the discrepancy between the results of [204] and [156], is that the model developed by
Shahriyari et al. [150] considers the probability of two-hit mutant production from wild
type cells. Instead, [204] starts with an APC*/~ mutation (a 1-hit mutant) at a given
position and calculate the time to produce a APC~/~ mutation (a 2-hit mutant). The
predictions of [204] agree with [156] when they consider the probability of second mutation
production conditioned on the existence of 1-hit mutants. Additionally, Mirams et al. [ 11]
developed a computer model for cell dynamics of colonic crypts to obtain the probability
of mutants taking over or washing out from the crypt. In this model, cells are defined by
the location of their centers, and cell movement was determined by assuming that each cell
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exerts a linear spring force on its neighbors. They used an equation of motion to determine
the center of each cell at each time.

5.2 Multi-stage phenotypic hierarchy of cells in the
colon/intestinal crypt

We consider a 4-compartmental stochastic model for the tissue architecture. This model
consists of one compartment for TA cells D, and one compartment for FD cells D¢, and two
stem cell (SC) groups S, and S,, corresponding to BSCs and CeSCs, respectively. We also
denote the population sizes of S, Sy, Dy, and Dy with [S.|, |S|, |Dt|, and |Dy| respectively.

We assume at each updating time step, two FD cells die and two cells divide based on
their fitness. If stem cells divide with probability ¢ the division is symmetric and with
probability 1 — ¢ is asymmetric. Asymmetric stem cells’ divisions can only occur at the S,
compartment. There are two types of symmetric division; differentiation and proliferation.
In this model, differentiation only happens in the S, compartment, because it is close to
the TA cells. However, with probability ~, proliferation happens in the S. compartment
and with probability 1 — v it happens at the S, compartment. If it occurs at the S, group
then one random stem cell from the S. compartment migrates to the 5,. We denote the
total number of non-stem cells by D = |D;| + |Dy|, the total number of stem cells by
S =95, + 5., and the total number of cells by N = D + S. In summary, at each updating
time step two FD cells die and two divisions occur based on the following algorithm:

e With probability As, two FD cells divide. Or,

e with probability 1-As, one TA cell differentiates to two FDs, and one of the following
scenarios happens.

— With probability 1 — A,, one D, cell proliferates to replace the differentiated Dy
cell. Or

— with probability A, one stem cell divides according to one of the following steps:

x With probability 1 — o, the division occurs in the S, asymmetrically, i.e. a

T A cell is generated. Or
x with probability ¢ the division is symmetric. With probability = Sofg—fsw
this symmetric division is differentiation and happens in the S;, group, and

with probability 1 —§ is proliferation (Sy is the initial total number of SCs).
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If it is proliferation then with probability ~, it happens at the S. and with
probability 1 — « it occurs at the S,. If it occurs at the S, group, then one
random cell from the S. migrates to the Sp.

3" |evel: Supporting 2"d level: continuation 2" |evel: Birth 1%t level: Death
homeostasis in Dt & Sb  Subsequent births by TA or Sb cells of two TA/DF cells of two cells
I L] 11 11 1

n no

. Mutant SCs . Immortal TA/DF Cs | |Mutant TA/DF Cs

Figure 5.1: A Schematic representation of the model with possible pathways.
This model includes four compartments: (i) central stem cells, S, (ii) border stem cells,
Sp, (iil) transient amplifying cells, D, and (iv) fully differentiated cells, D;. Different
types of proliferation and differentiation of stem and non-stem cells occur in the system
in order to preserve the constant population size. The model includes the possibility of
dedifferentiation; mutant D, or Dy cells are able to generate immortal D, or Dy cells,
respectively.

In this model, the total number of cells stays constant. However, because of the def-
inition of the function #, the number of stem cells varies, but its variation is very small.
We assume, if a mutant divides, then its newborn children are mutants. To accommodate
the possibility of dedifferentiation in the division of one mutant non-stem cell, we assume
with probability u, that one of its children become immortal. In general, CeSCs can only
proliferate, and BSCs are able to proliferate, differentiate, and divide asymmetrically. TA
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cells are able to both proliferate and differentiate, and FD cells only able to proliferate.
Also for simplicity, death only happens in the FD compartment. A summary of the model

is given in Figure _— — re provided in the
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Figure 5.2: The general algorithm. The figure reveals the algorithm we used in this
chapter for the natural mechanism of the colon.intestinal crypt: at each updating step,
two FD cells die and two cells divide to replace the dead cells.

5.2.1 Parameter estimation
The number of studies on human colon crypt’s cell dynamics is very limited. However,

there are some works on inferring the parameters for human colon crypts [200, (], as well
as measurement of in vivo proliferation using bromodeoxyuridine (BrdU labeling) [130].
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These experiments show that there are approximately 2000 cells in each human crypt, and
the height of the crypt is around 80 cells [136]. Additionally, most divisions happen in the
lower part of the crypt; cells at positions 10-50 (Figure 5.2), where 0 is the bottom of the
crypt [135]. In order to calculate the division probabilities at each compartments (FD, TA,
Sy, and S.), we normalize the division rates experimentally obtained in [135].

Transient
Amplifying
Cells (TA)

o€

B
Central SCs

- ~
Division Rate (%)
J

Figure 5.3: A schematic view of the model. The figure represents the normalized rate
of cell’s division at each location of the crypt obtained from [135]. The black solid line is
the graph of the function g which shows the normalized division rate of cells, in Parameter
estimation section, and the discontinuous curve represents the result of experiment.

We find a function using curve fitting application in MATLAB, which fits the normalized
division rates of cells at each location z in the human crypt,

(x —17.9)?

= 10974+ 24.1 —
g(x) =0.974 + exp( v

)]/881.4. (5.1)
Then we count cells at positions 70-80 as FD cells, therefore the probability that a division
occurs in the FD compartment is given by Ay = 220260 g(x) = 0.026. Furthermore, each
crypt contains around 6 actively dividing stem cells [0], they divide once every 2-3 days
[135]. Hence, we assume cells at the locations 0-5 are stem cells, and TA cells are cells at the
locations 6-69. Thus, the probability that a division occurs at the stem cell niche when FD

cells do not replace two dead FD cells is Ay = ﬁ Zi:o g(x) = 0.105. Moreover, in this

model the division probability of CeSCs is given by Ayyo(1—3). According to Ritsma et al.,
cells at the locations 0-2 belong to the CeSC group. Since one CeSC is able to colonize [111],
then vo > 0. In our model, § is approximately 0.5, hence oy = /\3 Zi:o g(x) = 0.884.
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Since 0 < 0 < 1 and 0 < v < 1, we conclude o and ~ are greater than 0.884. The
parameters are summarized in Table 5.1.

Table 5.1: Model Parameters estimated from [136, 144].

’ Symbol \ Definition \ Value ‘

N total number of cells 2000

o probability of symmetric division 0.884 - 1
¥ division prob. of CeSCs when SCs proliferate | 0.884 - 1
7 fitness of mutants 0.9-38
Af division probability of FD cells 0.026

As division probability of stem cells 0.105

| Se| number of stem cells in S, (CeSC) 4-6

| Sp| number of stem cells in S, (BSC) 4-7

| Dy| total number of transit amplifying cells 1500
|Dy| total number of fully differentiated cells 500

5.3 The probability of fixation for central stem cells

The general system introduces a multi—variable Markov chain of dependent random pro-
cesses. Let us consider a particular case of one-dimensional multi—variable Moran process in
which there exist only one mutant stem cell in S, compartment where (e*, b*, d*, d**, f*, f**) =
(1,0,0,0,0,0). In other words, in this part we only investigate the cell dynamics in the S,
compartment. Therefore, we obtain the following non—zero transition probabilities for the
cell dynamics in the S¢ compartment:

Peue*H:( / )2(1—)\f)%{)\30(1—5)

riet e 1

f+f* 7 Ry e+ e*
I 2 rid* rie*e
P* * * *_1 — 1_>\ ]__ )\ 1_5 PN
e*,d*—e*+1,d*—1 (f+f* ( f) D ( U) 50( )7R2(6_|_€*)
21 f* rid* rie* e
Pe*,d*,f**—>e*+1,d*—1,f**+1 = W (1 - )\f) '1Z) u |:)\3 o (1 - 5) ’y 713,2 e + 6*:| 9

(5.2)
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Let us denote the probability of fixation starting from e* mutants located at the central
stem cell compartment by m.«. Based on the above transition probabilities associated to
increase and decrease in the number of S. mutants at each time step, when stem cells
divide only asymmetrically (i.e. when o = 0), then 7. is zero. Note, when stem cells
divide asymmetrically, no division occurs in the CeSC compartment, thus the number of
CeSC mutants does not change. However, when o > 0, the following system of equations
can be derived

7’17Te*+1—|—71'e*,1—(1+7°1)7'('::O, l<e < |SC|—1,
rime — (1+r)m =0, (5.3)
r1+ TS, |—2 — (1 + 7”1) T|Se|-1 = 0.

The solution to this system signifies that for 1 < e* < |5, — 1

1 [Sel|”
1- (H)

Therefore, the fixation probability of one mutant central stem cell in the S, i.e. the
probability of the progeny of one CeSC mutant taking over the entire S. compartment, is

1—(%1'
1_ (%)| y

5.4 The fixation probability for mutant S, stem cells

(5.5)

T =

To obtain the fixation probability in the S, group, i.e. the probability of progeny of a
mutant border stem cell taking over the entire S, compartment, we only consider the cell
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dynamics in the BSC compartment. We assume the system has one mutant stem cell
at the initial time in the S, compartment, while no more mutants exist elsewhere, i.e.
(e*,b*, d*,d**, f*, f**) = (0,1,0,0,0,0,0)). Then, we obtain the transition probabilities
pt(b*) and p~—(b*), which are the probabilities of transforming from b* number of mutant
BSCs to b* +1 and b* — 1 number of mutant BSCs, respectively. We denote the probability
of b* number of mutants taking over the S, by m,-. Therefore the the fixation probability
in the S, is obtained using the following system of equations.

pT ()1 +p () Ty — (pT(B°) + p~ (b%))mp = 0, 1<b" < |S] -1,
pr()m—(p*(1) +p (1)) m =0, (5.6)
(1Sl = 1) + p~(ISs] = 1)) mis,1—2 — (0T (16| = 1) + ™ (ISs] = 1))7m5,1-1 = 0,

where the total sum of transition probabilities of increase and decrease by one in the number
of border stem cells located in .S, are respectively defined by the following formulas:

P = Ao-9)-y) [F+ 0]

Lo (5.7)
() = Aod [5+% (1—u)].

Similar to what we had in the previous section, if the probability of stem cell division A
is zero or the probability of symmetric division ¢ is zero, then the number of S, mutants
does not alter and leads to m« = 0. On the other hand, when Ay # 0 and o # 0 then
both symmetric and asymmetric division can occur and the system will be reduced to the
following recurrence system in the absence of mutation (u = 0):

(1= 8)(1 =) mpar +0mp g — (L= 8) (1 —7) +8)mpe =0, 1<b" <|S|—1
(1= 8)(1 =), m — (1 —8)(1—~) +8)m =0, (5.8)
(1=0)1=7)+dms. -2 — (L =6)(1 =) 4+ 0)ms.j-1 = 0.

This system of equations reveals that

) v
- <<1—6)(1—~/)>

ISp]
)
1- ((H)(_lfw))
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Therefore, the fixation probability of a single mutant border stem cell is given by

1~ (=)
) (1—
(=31 (5.10)

[Sp]*
§
1- ((H)(_lfv))

The dependency of the fixation probability on the initial number of S, mutants has been
shown in Figure 5.4.
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Figure 5.4: Homeostasis in the number of border stem cells manages the com-
partmental growth via crucial factors ¢ and v. One mutant border stem cell arises
in the S, compartment and no more mutations are allowed in the system. We assume that
As # 0 and o # 0 which means that both symmetric and asymmetric division can occur
and |S,| = 7. This figure shows how the fixation probability m,+ varies w.r.t. the changes
in the population size of mutants in the S, compartment as 7 takes various values and
0=0.5,7 =3.8.

5.5 The probability of fixation for mutant progenitor
D, cells

In this case, we assume there exist only one mutant transit amplifying cell in the D,
compartment, i.e. (e*, 0% d*, d**, f* f**)=(0,0,1,0,0,0). When at the initial time, there
is only one mutant in the compartment of progenitor cells and no naive mutation appears
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in the system, e* and b* will have no chance to arise, however, the number of d**, f*, and
f** might change. If we assume no new mutations occur (v = v = 0), then d** and f** will
stay zero over time. Denoting the fixation probability of d* number of mutant progenitor
cells by mg«, we get

(p*(d*) +p (d*)) ma= = p*(d*) Tgrpr + (") Tar1 1< d" < |Dy| -1,
p (1) m = (p™(1) +p~ (1) m, (5.11)
pr(D] = 1) +p~(IDr — [) w2 = (7 (1D = 1) + p~(IDy] = 1)) 7,1

Here, the coefficient of g« 1 (p*(d*)) is, in fact, the sum of all transition probabilities which
tend to an increase by one in the number of mutant TA cells, and p~(d*) as the coefficient
of mg«_1 is the sum over all possible transition probabilities leading to a decrease by one
in the number of mutant progenitor cells. Under the assumptions of this case and when
no more mutation is occurring in the system, there would only exist normal and mutant
cells in the D, compartment and no immortal progenitor cells can arise or be produced
by mutant cells in this compartment (i.e. d** remains zero). Hence the coefficients of the
system can be reduced to the following form when A; # 1, which means that the division
is also allowed to occur in D; compartment.

Dy| — d*
@) = (1-a) 2 :
pT(d) ( >’Dt‘+(7"1—1)d*
Dyl — & (5.12)
“(d) = A+ (1=, b :
p(d) ( ) 1Dy + (r1 — D)d*
and the solution to this new system is in the following form
d -1
k
e — 2o M) (5.13)
k=0 ()
|Dt|+(As 1 —1) (k+2)
_1\* T e [(2 — |D])(1 = As)
H(k) = (Airl - ) ( o ) . (5.14)

P (22050 1k 41— [ D) (1 = Agry)

AsT1—1

where T'(t) = fooo r'71e® dr is the gamma function. Then the fixation probability 7 can

be derived from the following relation

1
|D¢|—1

m=H0) | Y HE)| . (5.15)
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Comparing the coefficients p* (d*) and p~(d*), when Ag, A; # 0, the chance of decreasing
by one in the number of mutant progenitor cells is higher than that of increasing by one
(pt(d*) < p~(d*) for 1 < d* < |Dy| — 1), which implies that as reproduction rate takes
larger values, the probability of fixation declines (See Figure 5.7-(¢) in the paper for more
details). This means progenitor cells are more capable of producing differentiated cells than
being fixated. Given the assumptions of this section, if no division happen in the stem cell

1
niche, i.e. Ay = 0, then 7g = W Figure 5.7-(b) in the results section, represents the
t

role of initial mutant cell population size in the absorption mechanism for this case.

5.6 The fixation probability of immortal D; cells in
the TA compartment

In this part, we calculate the fixation probability of a single immortal TA cell in the TA
compartment. Therefore, we assume at the initial time, the is only one mutant immortal
cell, i.e. (e*,b*,d*, d*, f*, f**) = (0,0,0,1,0,0). Based on the model, in this case the
number of e*,b*, and d* will stay zero, while the rest of the variables might change. As-
suming again u = v = 0, the system of equations for the fixation probability mg«, which
is the probability of the progeny of b** number of immortal cells taking over the entire TA
compartment, is

pr(d™) e g1 + 0 (A7) Tgeey — (pT(AF) + p~ (7)) mgee =0, 1< d™ < |Dy| -1,
pr()m— (p (1) +p (1)) m =0, (5.16)
P (1D = 1)+ p~ (1D = U minyz — (¢ (1D = 1) + 5 (1D1] = 1) mpyjo1 = 0.

where the coefficients p*(d**) and p~(d**) are respectively the probabilities that the number
of immortal TA cells increases by one and decreases by one in one time step. The above
system of equations can be simplified to the following system, when Ay # 1:

’Dt‘ _ d**
| Dy| + (r2 — 1)d*

|Dt| _d**
|Dy| + (rg — 1)d**’

prdT) = (1=

(5.17)

p(d7) = A+ (1=A)

85



Thus, the probability of fixation of d** immortal TA cells in the TA compartment is given
by

oy M(K)

|De]+(As r1—1) (k+2)
A 1\F T 71 T(2 = [Dy)(1 = Ay)
H(k) = ( A“_ : ) ( Aol ) . (5.19)

Asr1—1

P (220520 Tk 41— | D) (1 = Agry)

where T'(t) = [7 2" e” dx is the gamma function. Then the fixation probability m; can

be obtained as

[Ds|—-1

m=H0) | > HE)| . (5.20)

This result is similar to the one obtained for the mutant progenitor cells in section
C. The behavior of the system is also the same as those given in Figure 5.7 parts (b)
and (c). Therefore, the crucial role of immortal progenitor cells can be explained mainly
by producing immortal differentiated cells. It might be worthy to remark that a small
increase in the number of initial immortal D, cells would not significantly affect the fixation
probability (See Figure 5.7-(c)).

5.7 The fixation probability of mutant FD cells in the
FD compartment

Here, we investigate the survival probability of a mutant D cell while environment imposes
no further mutations, i.e. v = v = 0. Assuming the initial state is (e*,b*, d*, d**, f*, f**) =
(0,0,0,0,1,0), only the number of f* can vary. Therefore, the fixation probability of f*
number of mutant D cells, 7s+, can be obtained from the following system of equations.
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P e+ () w07 (F) mper + a7 (FF) e o
— (@ )+ )+ () + ¢ (f)) 7 =0,
2 < f*<|Dy| -2,

T+ g () m— (pT (1) +¢" (1) +p~ (1) m =0,
TR+ g @) m+p (2)m — (pT(2) +¢"(2) +p(2) +¢7(2)) m =0, (5.21)
(1Dl = 2) + ¢ (I1Dfl = 2) 7y (-1 + 2~ (IDsl = 2) mp, =3 + ¢~ (|Dg| = 2) mpe s

— (¢ (1Df| = 1)+ p~(IDf| = 1) + ¢ (|IDf| = 1)) 7,2 =0,
¢ (I1Df|= 1) +p~ (IDs||' = 1) mp, =2 + ¢~ (IDf = 1) g3

— (¢ (IDf|= 1) +p~(IDs| = 1) + ¢~ (IDy] = 1)) mp,—1 = 0.

p
p
p

Where,

P = Ay ( nJ )
D+ (n - D/

4/ pxy Tlf*
i (D51~ 1) 522
p (f):2/\f |Df|+(7’1_1)f*+2(1_/\f)7

— R\ ‘Df‘_f* ?
q (f)_)‘f (‘Df‘+(r1—1)f*) +2(1_)‘f)a

If divisions never occur in the FD compartment, i.e. Ay = 0, then the number of FD
mutants (d*) remains constant during the process, implying

T =0, for 1< f*<|Dg|—1. (5.23)

On the other hand, when 0 < Ay < 1, the coefficients p*, ¢* lead to a more complicated
system. In Figure 5.7-(e),(f) the solutions to this system are given for some particular
values of Ay where the other parameters have chosen from Table 5.1: |Df| = 500, = 3.8.
In this figure, as A; tends to zero, a dramatic change will occur in the graph. In part (f)
of this figure, the graphs reveal the fact that, even for a large value of the relative fitness
of mutants, the survival chance of mutants remains very small.
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Figure 5.5: Multi—variable Markov chain of mutants in non-stem cell compart-
ments. In the absence of mutation and plasticity, when a mutant cell appears in either D,
or Dy compartments, we calculate the probability of fixation for mutant differentiated cells.
Assuming |D;| = 150 and |D¢| = 50 we investigate three different approaches as \; and
As alter. Firstly, (a) represents the probability 7 o of starting from one initial mutant D,
cell for lower values of 0.01 < A; < 0.1 and higher values of 0.5 < Ay < 0.9. We conclude
that lower values for A\, and higher values for A tends to higher fixation probabilities. In
contrast, changing the values of A\, to lower values as well, leads to a huge drop in the
survival probability. (c) depicts a landscape for the fixation probability for possible initial
states (d*, f*) (for 0 < d* < 150,0 < f* < 50). A dramatic increase in the probability
of fixation can be obtained by starting from larger initial mutant population of TA cells
where Ay = 0.105, Ay = 0.026, and r; = 3.8.
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5.8 The fixation probability of mutant D; cells in the
FD compartment

In this part, we investigate the probability of the progeny of one mutant TA cell taking
over the entire FD compartment. Again, we assume no more mutation is expected to
occur through the whole procedure, i.e. u = v = 0. Therefore, we assume that initially
there is only one mutant TA cell, i.e. (e*,b*,d*,d**, f*, f**) = (0,0,1,0,0,0). This case is
more complicated compared to the previous cases because of dependency of the system on
both mutant progenitor and differentiated cells. Let w4 s« be the fixation probability of
starting from d* TA cells and f* mutant differentiated cells (initial state is (d*, f*)). Here,
we consider a bi-variable Markov chain to explore the cell dynamics in the FD and TA
compartments. There are 10 corresponding transition probabilities of possible changes to
the state (d*, f*). The initial state is (1,0) while the initial conditions are mpo = 0 and
Ta-|p;) = 1 for any d*.

Since there are D(D; + 1) — 1 different states (where (d*, f*) # (0,0) and 0 < f* <
|D¢l), the transition matrix is a |Dy|(|D¢|+1)—1 by |Dy|(|D;+1)—1 dimensional matrix A,

where each entry of A corresponds to one of the states (d*, f*) and includes the coefficients
of representing g« « in terms of all possible fixation probabilities 7. s

ﬂ—d*,f* — Z P(d*,f*)‘)(d'*vf*) 7r(d~*,f~*) (524)
J*’f*
Lot B — [(d*, JM)} be the matrix of all possible states (d*, f*) (for
0<d*<|D¢|,0<f*<|Dyf|-1

(d*, f*) # (0,0) and 0 < f* < |Dy|). The matrix B is isomorphic to a vector in RPs(1Pel+1)-1
by considering the subsequent rows in an ordered array as coordinates of this vector when
the first array (0,0) is ignored. More precisely, we have the following isomorphism

(d*, f*) — |Dy| — 1 + Heavyside <d* - ;) (d* —2)|Dy| + £,

for 0 < d* < |Dy|,0 < f* < |Dys| — 1. Thus, using the vector representation of matrix B
(after dropping the entry (0,0)), we label rows and columns of the matrix A with entries
of the isomorphic vector to matrix B. Figure 5.5-(c) reveals how the fixation probabilities
depend on all possible states having the landscape of changes for possible states (d*, f*).

If all divisions occur in the FD compartment, i.e. Ay = 1, then there is no chance
that mutant TA cells divide, thus 74 = 0 for all 1 < d* < |D,|. Moreover, when
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As decreases and Ay increases, the fixation probability dramatically climbs as these two
conditions reinforce the chance for proliferation in progenitor and differentiated cells rather
than divisions within other types of cells. For lower rates of A¢, a much higher mutants’
fitness is required to slightly increase the fixation probability. However, when mutants are
disadvantageous, the optimal fixation probability can occur for restrained birth rates (see
Figure 5.5).

5.9 The fixation probability of immortal differenti-
ated cells in the Dy compartment

Here, we calculate the probability of the progeny of f*x number of mutant FD cells taking
over the entire FD compartment, 7s... For this reason, we assume the initial state of
the system is (e*,b*,d*, d**, f*, f**) = (0,0,0,0,0,1), we also assume no new mutations
or immortal cells arise (u = v = 0). The fixation probability 7 satisfies the following
system of equations, when Ay # 0.

2Dyl = f7) mpega + (ro f7) Wpeeya — 2Dyl + (r2 = 2)f7) mpee = 0, 1< f7 < [Dyf -1,
dmps -1+ 12 (|Dy] —2) = (4+ 712 (|Dy| = 2)) mp;j—2 =0, (5.25)
2 — 27T\Df|71 = 0.

The above recurrence system implies that

When A; # 0, a similar approach will be achieved as the case for Ay = 1 since there
exist no supporting divisions from immortal D, cells to increase immortal D; population.
Therefore, immortal differentiated cells, in the absence of apoptosis, can exponentially
grow. Appearance of a minor population of this type of cells will take over the whole
population of Dy compartment. Another possible scheme is when Ay = 0 which results in
no chance for immortal cells to fixate even starting from |Df| — 1 number of initial cells.

5.10 The fixation probability of immortal D; cells in
the Dy compartment

Now, we obtain the probability of the progeny of d** number of immortal D; cells taking
over the FD, 74, while no more mutations is expected in the whole system. Assuming
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the initial state (e*,b*, d*,d**, f*, f**) = (0,0,0,0,1,0), we investigate the probability of
fixation mge g+ of d** immortal progenitor cell(s) and f** immortal differentiated cell(s) in
the FD compartment. When Ay = 1, then there is no chance for any migration of immortal
cells from D; compartment into Dy compartment and thus

Tqs*0 = O, 0 S d* S |Dt| (527)

Now if we consider the other extreme in which Ay = 0, the only resource for population
growth of immortal Dy cells is the immortal D, compartment. In this case, when A\, = 1,
there is a chance for the only immortal cell in D; to divide symmetrically to two immortal
differentiated daughter cells but these cells will not growth or decay in Dy group and the
the divided immortal cell in D; will not be substituted. Thus 74~ ¢ = 0 for small values
d** compared with the population size of D;. In this situation, if A; < 1 then proliferation
can occur in D, and each divided immortal cell in D, will be replaced with a certain chance
when d** > 2 at the beginning. But we conclude again 7 ¢ = 0.

Now, let us assume that 0 < Ay < 1. As we explained in the above, the onset of
any immortal cell in D; compartment given the assumptions of this case will tend to
fixation (although the time to fixation may vary). So the fixation probability equals to
the probability of having first immortal cell in Dy. Therefore, if A\; = 1, considering the
probability of division for the initial immortal cell in D,, we obtain

(]

= 5.28
|Dt|+’l"2—1 ( )

71,0

This probability will increase linearly as the initial number of immortal D, cells increases.
Finally if A\; < 1, we conclude that

In summary, these calculations reveal how different mechanisms would influence the system,
the appearance of an immortal cell either in D, or Dy compartments can trigger a cancer,
and how fast this may develop to take over the whole normal population via maintaining
the structured stability in the crypt.

91



5.11 Significant results for the general regulatory mech-
anism within the crypt

5.11.1 The probability of the progeny of mutant /marked CeSCs
taking over the S. and the entire crypt is high

The analytical methods reveal that the probability of the progeny of e* nunlber of mu-
1—(1/r1)°
is the fitness of mutants and |S.| is the total number of CeSCs. Although cells with high
fitness have high proliferation rate, their differentiation rate is also high. As a result, the
fixation probability of advantageous CeSC mutants is higher than disadvantageous mu-
tants, however their fixation time is also higher than disadvantageous ones. Additionally,
if the progeny of mutant CeSCs take over the FD compartment, its average occurrence
time is less than 100 days (Figure 5.6).

tated /marked CeSC taking over the S. compartment is given by 7.« = where 1,

If stem cells divide only asymmetrically (i.e. o = 0), then no division happens at
the CeSC compartment, thus CeSC mutants never divide. In other words, if stem cells
divide fully asymmetrically then the probability that a mutant CeSC spreads to any other
compartment is zero. The same scenario would occur, when the proliferation probability
in the S. is zero, i.e. v = 0.

5.11.2 The probability of a mutant BSC’s progeny taking over
the S, or D, is approximately zero

The analytical calculations show that the probability of the progeny of bi‘ number of BSCs
1—(3/[(1 = 6)(1=))"

1= (5/[(1=8)(1 =)™
are respectively the differentiation probability of BSCs and the proliferation probability
of CeSCs when stem cells divide symmetrically. This formula and the simulations imply
that the probability that the progeny of one BSC will spread over the entire BSC is almost
zero, because according to the parameter estimations ¢ is approximately half, and v is
between 0.884 and one. Additionally, the progeny of BSCs are always washed out from
the crypt regardless of their fitness when there is no immortal cell. If at least half of
BSCs are mutants, then they might have a small chance to colonize and take over the
entire BSC compartment. If this rare event happens, it occurs in one day (Figure 5.6-

taking over the entire BSC is given by 7 = where 0 and ~
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Figure 5.6: (a)-(c) The probability and time that mutant CeSCs will take over
the S. and the FD. The sub-figure (a) presents a schematic view of the model at the
initial time. The simulations start with e* mutants in the S,, while the other cells are wild-
type. The sub-figure (b) indicates the average time and the probability of the progeny of
mutant CeSCs taking over the CeSCs. The plot (c) shows the probability and time that
the progeny of CeSC mutants will take over the FD. In this figure |Sy| = 7,|S.| = 4, and
u = v = 0, other parameters are given in Table 5.1. The points are the average and the
bars indicate the standard deviations of 5 batches of 100 runs, and the solid lines present
the results of the formula. (d)-(f) Time and probability of the progeny of mutant
BSCs taking over the S,. The figure (d) shows that there are b* number of mutants
in the S, at the initial time of simulations, and (e) presents the result of simulations.
The bottom sub-figure of (e) indicates the probability that the progeny of b* number of
mutant BSCs will take over the entire Sy, and the top sub-figure shows the time of its
occurrence. Plot (f) presents the analytic results, and it shows the effect of the number of
BSCs, Sy, and the proliferation probability of CeSCs, =y, on the fixation probability, which
is the probability of the progeny of mutant BSCs taking over the entire S,. Here, |Sy| = 7,
|Se| = 4, and the rest of parameters are given in Table 5.1.

(d),(e),(f)). However, several days later the progeny of CeSCs will replace all mutant
BSCs, and eventually the progeny of mutant BSCs are washed out from the crypt.

Although we expect the higher proliferation probability in the BSC compartment (i.e.
smaller ) to lead to the higher fixation probability in the BSC group, it does not increase
the fixation probability 7+« very much. The reason is each proliferation is coupled with one
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differentiation. The differentiation of SCs increases the chance of transporting mutants
from the stem cell niche to the TA group. Additionally, advantageous mutants disappear
faster from the S, than disadvantageous ones. This result is in agreement with the result
of the experiments done by Ritsma et al. [I44], where they observed that the probability
of a BSC colonization is very small.

5.11.3 The progeny of a small number of FD or TA mutants
never take over the entire TA or FD

Experimental data shows that FD cells do not divide much compared to TA cells. If FD
cells do not divide at all (A = 0), then non-immortal FD mutants are always removed
from the crypt. Moreover, if Ay > 0 and no more mutation or plasticity is allowed in the
system, the probability 7s-—; that the progeny of one FD mutant will take over the whole
FD is very small (Figure 5.7-(b),(c)); however, it is much higher than the probability of
one TA cell’s progeny taking over the TA compartment, 7m4«—;. When the rate of divisions
in D, is approximately zero (it rarely occurs in reality), then 74— = 0. If a small but
non-zero number of divisions happen in stem cells and a high number of divisions occur in
D;, which corresponds to the experimental observations, then the probability of one TA
mutant’s progeny taking over the TA compartment decreases when the mutants’ fitness r
increases (Figure 5.7-(e),(f)). Meaning that TA cells are more capable of producing FD
cells than being fixated. In the extreme scenario, when no divisions happen in SCs (A = 0),

1
then mg—q is W Moreover, when no proliferation in D; is permitted and TA cells only
t

differentiate, i.e. A\; = 1, then 7y is zero. Note, when TA cells are only able to differentiate
but not proliferate, mutants differentiate to two FD mutants (and thus extinct), therefore
mutants will be removed from the TA compartment (Figure 5.7-(e),(f)).

We also study the probability of a TA mutant’s progeny taking over the FD compart-
ment. In the human colon crypt, where Ay = 0.011 and Ay = 0.104, the probability of one
TA or FD cell’s progeny taking over the entire FD or TA compartment is approximately
zero. This emphasizes the fact that although TA mutants generate FD mutants, the gen-
erated FD mutants are washed out from the crypt, before they get a chance to colonize.
Interestingly, mutants with a high fitness will be removed from the crypt quickly, because
most divisions occur in the TA compartment, and advantageous TA mutants quickly dif-
ferentiate to two FD cells.
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Figure 5.7: (a)-(c) Role of TA mutants in generating FD mutants. Figure (a) is a
schematic view of the crypt at the initial time of the process. Plot (b) indicates the effect
of the initial number of TA mutants and the probability of stem cells’ division, \,, on the
probability that mutants take over the entire TA. Plot (c) reveals the effect of the mutants’
fitness on the fixation probability of mutants in the TA. (d)-(f) Fixation probability
in the FD compartment. Sub-figure (d) is a schematic representation of the crypt at
the initial time. (e) shows the behavior of the system for a range of the rate of divisions in
the Dy group, Ay, as the initial number of mutants varies. The curves in (f) illustrate the
impact of the mutants’ fitness r; and the division probability of FD cells, ¢, on the fixation
probability of mutants in the FD group. This figure shows the results of the analytical
formulas, when the total number of TA cells is 1500, and the number of FD cells is 500,
and in (b) and (c), the mutant’s fitness is 71 = 3.8.

5.11.4 Central stem cells control the entire crypt

The results of simulations reveal that with probability one, the progeny of CeSCs will take
over the entire human colon crypt in less than three months. In other words, if all stem
cells are wild-type, while the rest of the cells in the crypt are mutants, then all crypt cells
become wild-type in less than 100 days. Surprisingly, the time that the progeny of the
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CeSCs need to take over the crypt decreases when the mutants’ fitness increases: meaning
the advantageous mutants are washed out from the crypt faster than disadvantageous
ones. Moreover, the probability that the progeny of a single normal stem cell will take
over the entire crypt is more than zero. This probability is more than 0.25, if mutants are
disadvantageous, and it is close to zero if mutants are advantageous. This implies that if
only one of the CeSCs is wild-type, and the rest of the crypt’s cells are P53%172H mutants,
then with a probability of 0.25 all cells will become wild-type in 1-2 months in the non-
inflammatory condition. Although the probability of w.t. cells taking over the entire crypt
depends on the number of normal cells in the S., its concurrence time does not depend on
the number of wild-type CeSCs (Figure 5.8).

If stem cells divide fully asymmetrically (o = 0), then no division occurs in the CeSC
compartment. Therefore, in this case CeSCs will not take over the crypt. Moreover, the
time that the progeny of CeSCs need to take over the entire crypt is a decreasing function
of 0. In other words, if stem cell divisions are mostly symmetric, then CeSCs progeny
will rapidly spread over the crypt. In addition, the probability 7, which is the probability
that a CeSC divides in the case of symmetric division, is not as important as the fitness
of mutants r;.

5.11.5 The progeny of a single immortal TA or FD cell always
take over the entire FD in less than 70 days

Some environmental conditions or genetic/epigenetic changes lead to creation of an immor-
tal cell in the TA compartment. Therefore, here we investigate the dynamics of potential
immortal cells in the crypt. We observe that the immortal TA cells have higher desire to
differentiate and generate more immortal FD cells than spreading over the TA compart-
ment. Moreover, the progeny of even a single immortal TA or FD cell will spread over the
entire FD in less than 70 days. Expectedly, the advantageous immortals spread faster than
disadvantageous ones.

5.11.6 Existence of the bi-compartmental stem cell niche has
some advantages and disadvantages.
Our 4-compartmental model can be easily modified as a 3-compartmental model with only

one stem cell group by assuming there is no CeSCs (|S.| = 0) and the probability of
division in CeSCs 7 is zero. Figure 5.10 shows that the probability that the progeny of one
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Figure 5.8: Probability and time that mutants are washed out from the crypt.
Cartoon picture in (a) shows how a S. compartment with all normal stem cell is able to
wash out mutants in the rest of the crypt. The sub-figure (b) shows the result of simulations
indicating the average time and the probability that the all crypt’s cells become wild-type,
i.e. all mutants are washed out from the crypt. In this figure |Sy| = 7,]S.] = 4, and
u = v = 0, other parameters are given in Table 5.1. The points are the average, and the
bars indicate the standard deviation.

mutant stem cell will take over the FD compartment is small (between 0.01 and 0.14) in
the one stem cell compartment model. However, this probability is zero for the progeny of
a mutant BSC in the 4-compartmental model.

In the 4-compartmental model, if a mutant appears in the CeSCs, with a high prob-
ability it stays in the crypt, and its progeny will take over the entire crypt especially for
advantageous mutants. However, in 3-compartmental model, the possibility that an ad-
vantageous mutant stem cell differentiates to two TA cells and be removed from the crypt
is high. This result may suggest the existence of only one stem cell compartment is an
advantage, however if half of SCs become mutants, then mutants take over the entire crypt
with a high probability in the 3-compartmental model. In the 4-compartmental model, if
all BSCs are mutants (more than half of SCs) and all CeSCs are wild-type, then mutants
will be washed out from the crypt in less than 3 months. Furthermore, in the work done
by Shahriyari et al. [I54], it has been shown that the bi-compartmental stem cell niche
delays the mutants generation.
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Figure 5.9: Fixation of immortal cells in the FD. The sub-figures (a) and (b) represent
a schematics view of the system at the initial time of simulations generating the bottom
and top sub-figures of (c), respectively. In the top sub-figure (c), the process starts with
f** immortal cells, while the rest are wild-type. In the bottom sub-figure (c), at the initial
time there are d** immortal cells in D; and other cells are wild-type. In both sub-figures,
we obtain the time that immortal cells take over the entire FD.

5.11.7 Time to Fixation and potential therapeutic treatments

An important concept corresponding to the fixation probability of a given finite Markov
chain is the time to fixation. This quantity measures the time that the progeny of a single
mutant cell require to take over an entire compartment. The time to fixation can be very
important when it approximates the tumor growth period, the time needed for tumor
initiation, or clonal conversion. Moreover, it seems crucial to have an estimation for the
time of metastasis for an invasive mutant population when the epithelial markers divert to
mesenchymal markers in a somatic cancer.

In the current study, assuming the Moran process for a four-compartmental model as
described in the analytic tools section, we performed a wide variety of time estimations to
maintain some critical features of tumor development within the crypt. We focus our at-
tention on the fixation time of some initial mutant(s) in the central stem cell compartment.
In Figures 5.11-(a) and (b) the average fixation time is given for different percentages of
mutants in the central stem cell compartment opposed to the probability of symmetric

division (o) for parameters obtained based on the experimental data summarized in Table
L.
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Figure 5.10: One stem cell group instead of two compartments. The figure (a)
shows that there are b* number of mutants in the one stem cell group at the initial time
of the simulation, and (b) presents the result of simulations. The bottom sub-figure of (b)
indicates the probability that the progeny of b* number of mutant SCs will take over the
entire FD, and the top sub-figure shows the time of its occurrence. Here, the total stem
cell population is |S| = 11, and the rest of parameters are given in Table 5.1.

Another interesting result is represented in Figures 5.11-(c) and (d) in which the fixation
time (washed-out time) of central stem cells depicts the number of days it takes for a central
stem cell compartment full of wild-type individuals to completely sweep out the rest of
the crypt covered by mutants. In these figures different regimes have been considered
for neutral and advantageous mutants (various values for r1) and different probabilities of
proliferation in the central stem cell group (). Other important observations can be found
in the results section of the paper.

In the present study, the high level of dependency on central stem cells has been ob-
served for colonic/intestinal crypt in light of analytic analysis and numerical simulation
which confirm the existing experimental data and predict some new consequences. Accord-
ing to the results, we suggest some significant and non—trivial methods which may improve
diverse therapies. Firstly and most importantly, we found that in the absence of immortal
cells a normal central stem cell compartment will sweep out all malignancies of the rest
of the crypt, thus substituting the mutant stem cells in the niche with the wild-type ones
will cure the crypt. This can be a potential method for chemotherapy and radiotherapy to
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Figure 5.11: (a)-(b) The average spreading time of one mutant central stem
cell. The sub-figure (a) shows the average time that the progeny of one mutant central
stem cell will need to take over 10%, half, and the entire crypt. The sub-figure (b) shows
the average time that one mutant central stem cell needs to generate 2-6 mutant central
stem cells. In this figure |S,| = |S.| = 6, and v = v = 0, other parameters are given in
Table 1. The points are the average time, and the bars indicate the standard deviations.
(c) The average time that the progeny of central stem cells need to take the
entire crypt. At the initial time of this simulation all cells are mutants except central
stem cells. We calculate the average time that the crypt evolves, and all cells become
wild-type. In this figure |Sy| = |S.| = 6, and u = v = 0, other parameters are given in
Table 1. The points are the average time, and the bars indicate the standard deviations.
(d) The probability that the progeny of one mutant stem cell takes over the
FD in One and two stem cell compartment models. In this plots circles and squares
indicate the results of simulation for the one-stem cell compartment model, and diamonds
are the results of two stem cell compartment model. In these simulations we start the
system with one border stem cell mutant, and we obtain the probability that the progeny
of the mutant cell takes over the FD group.

control malignancies of the crypt.
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Another approach of this attempt relates to two important quantities in evolutionary
dynamics and population genetics, the fixation probability and time to fixation. These two
concepts have been investigated in the current work to presumably describe the complex
intra/extra—cellular mechanisms in the colonic/intestinal crypt and then to predict the
chance and required time of different critical events within the onset of tumorigenesis.
Taking the derived results into account may tend to an improvement in arranging more
effective schedules for clinical trials, drug delivery strategies and radiation exposures in
anti—cancer treatments.

Numerical simulation

In order to obtain the fixation probability and time to fixation through simulation, we set
the maximum updating time T equal to 10,000,000. Then, we run the algorithm for 100
times, and we calculate the ratio of the fixation occurrence number out of 100. We repeat
this process for 5 times to obtain the mean and the standard deviation. Moreover, to
achieve the time of occurrence, the occurrence time collected for each single run whenever
the fixation appeared. Then, we obtained the average and standard deviation of these
times. To convert the simulation time to be in terms of day, we assumed that the average
cell cycle time of the crypt be equal to one day [20]. This means that having the total
number of cells equal to N, then the time step ¢ is equivalent to t/N + 1 days.

Summary
The absence of APC, which causes aberrant migration [119], is the most frequent mutation
in colon cancer[78]. If all cells in one compartment lose their APC, then a tumor initiates

because cells located lower than this compartment cannot migrate to the top of the crypt.
For this reason, we calculate the probability that mutants are fixated at each of the com-
partments. The simulations and analytical calculations, which are in perfect agreement,
show that the progeny of one non-stem non-immortal cell regardless of its fitness are not
able to take over any compartment. However, the progeny of one immortal neutral FD cell
will take over the entire FD in less than one month.

Only CeSCs are able to take over the entire crypt, and they are able to renew the
CeSC compartment in fewer than 2 days, and the whole crypt in fewer than 3 months.
Although the fitness of CeSCs does not make much difference in their fixation time in the
CeSC compartment, it affects the time that they need to take over the entire crypt. The
disadvantageous mutants take over the crypt quickly, but the probability of this occurrence
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is small. For example, the probability of one disadvantageous CeSC mutant’s progeny like
P537172H which has a fitness of 0.9, taking over the FD compartment is 0.2 in the non-
inflammatory environment. However, if it happens, they will spread over the entire FD
in less than one month. Moreover, the probability of the progeny of one CeSC APC~/~
mutant, which has a fitness of 3.8, taking over the FD is 0.8. Importantly, they need at
least 40 days to spread over the entire FD compartment (Figure 5.6). We conclude the
probability of the progeny of the mutant CeSCs with lower fitness like P53%172H mutants,
taking over over the crypt is small, but if it happens it is a fast process. Additionally, the
probability of the progeny of the mutant CeSCs with a high fitness, like APC™/~ mutants,
taking over the crypt is high, but it is a slow process.
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Chapter 6

The Pathogenesis of the Acute
Myeloid Leukemia

In the last three chapters, our main concentration was on the stochastic analysis of some
important spatial structures, which mostly applied to the understanding of some aspects of
colorectal /intestinal cancer. The results of these chapters are broadly applicable and can be
used in diverse disciplines with similar structures. One important application of such results
is in the study of blood cancers, where there exist sequential compartments of stem and
differentiated cells through the lineage of stem cells. Moreover, symmetric and asymmetric
divisions occur within different compartments and dedifferentiation may occur through
different stem cell generations. Also blood cells, presumably more than any other tissue
cells, are under the effect of environmental fluctuations. All these aspects can be taken
into account to illustrate the stochastic behavior of blood cancers. Another interesting tool
to investigate the general mechanism of blood cancer relates to the statistical analysis of
genetic data where genetic/epigenetic changes are encoded.

In this chapter, which has been done in collaboration with John Dick’s laboratory, we
focus on the statistical analysis of genetic data for a common type of leukemia, referred
to as acute myeloid leukemia (AML). The determination of the phylogenetic tree and the
signature genes of AML are two important open problems in AML that are explored in
this chapter. The phylogeny of AML and the order of signature gene mutations in this tree
would describe the spatial structure of the different compartments of normal and leukemic
cells. Being able to construct the phylogenetic tree of AML, one can employ the results
of the preceding three chapters to presumably arrive at a better understanding of this
heterogeneous malignancy.
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According to experimental results, the interaction between genetic inheritable functions
termed inter-cellular features on the one hand, and micro—environmental effects as intra—
cellular processes on the other hand, would allow determination of the genetic pathway
of leukemia cells. This means that in the hematopoetic system, not only oncogenes play
a crucial role in cancer development, but also the alterations to the surrounding environ-
ment can influence the heterogeneity of the blood system. There is no well-known empirical
and standard method to measure micro-environmental effects; however, genetic/epigenetic
changes reveal alterations in the expression level of functional and non—functional genes
compared with the normal gene expression. This would delineate important pathogenetic
information about the lineage of AML. Investigation of the change in hypoxia levels and
acidity of surrounding tissue(s), as well as the role of entropy (negative free energy) and
signaling in cancer development are some of the very recent attempts to understand the
environmental impacts [113, 93, |. Nevertheless, the most reliable evidence of pheno-
typic/geneotypic alterations can be found in the form of genetic data. Genetic/epigenetic
data may illustrate the tumorigenic behavior of a specific cancer in terms of the hierar-
chy of mutations, epigenetic effects and dedifferentiation, selective advantage, and clonal
conversion. In this chapter, we envisage some features of AML based on gene expres-
sion analysis and constructing phylogenetic trees. The main goal is to understand the
hierarchical pathway of mutations leading to a lesion of leukemia cells.

6.1 Introduction

Cancer is a disease which can be seen as a result of genetic alterations and intratumoral in-
fluences of tumor heterogeneity. Intratumoral factors are related to metabolic fluctuations.
For instance, when the tumor environment is hypoxic or when the functionality of tumor
cells varies due to nutrition distribution, the survivability of tumor cells can be affected.
Genetic diversity, tumor microenvironment, and epigenetic changes are interconnected in
the lineage of hematopoietic cells within tumorigenesis [$1]. Gene-expression signatures of
cancer and normal stem cells have been used to find various driver mutations which define
the early and late events in the hierarchy of oncogenes. The tumor microenvironment, in
turn, plays an important role in the fate of tumors and has been thought of as a reason of
chemotherapy failure [50].

AML has a complex mechanism which makes it, as a clonal abnormality, a dangerous
type of leukemia. Such a malignancy affects myeloid cells and is characterized by the
accumulation of stem/progenitor cells in the blood and bone marrow. AML has been
thought of as the result of change in the transcription factor regulation, which causes
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defects in the normal mechanism of differentiation in the blood system.

Similar to the general mechanism of hematopoiesis, the SC hierarchy in AML can also
be designed with a four—-compartmental model where the proliferation and differentiation of
leukemic SCs maintains the diverse phenotypes within the hematopoietic system [134, 150].
AML has been shown to be produced from a rare set of CD347CD38~ leukemic initiating
cells at the apex of tumorigenesis [27].

Based on morphology and differentiation status (maturation), traditionally there exist
eight different types of AMLs, referred to as French-American-British (FAB) classification.
Figure 6.1 represents the seven different categories of malignant types; the 8th category
if for normal samples with no symptoms for AML. There exist some other classification
such as WHO (the world health organization) classification which characterizes various
types of AMLs based on their disease development (dysplasia) and diverse chromosome
translocations [3]. Nevertheless, we will try to define a new classification of AMLs based
on some novel subtypes and regarding the most recent research for leukemia—initiating
mutations.

Table 6.1: FAB classification of AML cells

’ FAB Class \ Subtype Feature ‘
M, dedifferentiated
M, Myeloblastic
M, Myeloblastic with maturation
M Promyelocytic
My Myelomonocytic
M; Monocytic
Mg Erythroleukemic

As we described in Chapter 1, the accumulation of mutations which tends to generate
a chain of sequential clonal expansions, is known to be the main reason for cancer develop-
ment. Among various clonal populations, the clone of the fittest cells dominates the host
tissue. After acquiring more advantageous mutations, the progeny of the colony which
contains the mutations may have a higher growth rate [31].

As we described in above, because of the lack of a general mechanism to measure
the microenvironmental and genetic/epigenetic alterations, initiation and progression of
cancer can be traced from the dynamics of genomes via throughput genome sequencing of
tumors. Recent technologies allow for whole genome and exome sequence analysis which
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may provide important information for the hierarchy of tumor cells, compared with the
genetic data of similar normal cells. Such an analysis on the clonal expansion of different
advantageous mutations reveals a pathogenesis of a founder HSC as the root of the tree.
When the founder HSC emerges then the subsequent mutations create new branches of
the tree until the fittest subclone(s) take over the whole or majority of the organ. This
procedures introduce the phylogenetic tree of mutational events leading to AML.

Phylogenetics, in fact, is a testable hypothesis about relationships among phenotypic
or genotypic diversities and seeks to understand the corresponding phylogeny of some
species based on their shared traits and common functionalities. Finding the best way
of combining the information contained in numerous different gene-trees for the same set
of species remains an open problem in contemporary biology. Biologists use different
methods to construct trees from DNA sequence. The goal of phylogenetics is to obtain
the true phylogeny for a given group (taxa) of species. Phylogenetics has applications to
molecular biology, genetic evolution, epidemiology, ecology, conservation biology, forensics,
and oncology.

Compared to solid cancers in adults, leukemias require the lowest number of genetic
mutations in their genomes within tumorigenesis. On average, there are 13 mutations
reported in the pathogenesis of AML [35] with only 5 of them being recurrent mutations
[18]. This result has been observed in a comprehensive study of 200 AML samples [31,

|. Moreover, 23 of samples showed distinguishable mutations while another set of 237
mutations rarely occurred within the samples. Despite huge progression in the study of
AML, complexity of the inter/intra-tumor heterogeneity has not thrown light on how to
divide mutational events into driver and passenger mutations. However, the origin of
passenger mutations in AML were mostly observed in the founder HSC of the dominant
subclone [191]. Another interesting approach is to construct the phylogenetic tree of single
cells, in the lineage of cell of origin until maturations.

6.2 Exploring the expression data and sequencing ma-
nipulation

Genetic diversity (epigenetic differences) and Darwinian selection have been considered
as the building blocks of modern biology. Reproductions in cells may lead to sequential
mutations which occurs within the human genome and characterize the selection pressure
on a certain type of individuals in a heterogeneous population. The alterations in functional
genes describe how branching evolution leads to others species or various functionalities. To
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study such a hierarchy of mutations, a wide variety of methods have been applied to derive
applicable results from microarray, RNA, transcriptome, exome, chromatin, and protein
sequencing methods. The human genome project has recently discovered human DNA
to be 99.9% identical in different individuals with some differences in particular locations
on the genome (by identifying more than 30,000 genes in the human body). Comparing
these differences between individuals and especially between normal and malignant cells,
RNA sequencing (RNA-seq) has generally been used as an important tool to study genetic
diseases.

However, leukemia is a heterogeneous disease in which the heterogeneity in contribution
with genetic diversity leads to tumor development and therapy failure [81]. To capture
some features of the evolution of cancer, the only well-defined method is to pursue genetic
alterations of tumor cells over time. Such an analysis may tend to a phylogenetic tree in
leukemia. In [112], a phylogeny of acute myeloid leukemia (AML) has been represented
based on a gene database of 362 AML patients and also 7 unclassified Myelodysplastic
Syndrome samples [142]. More precisely, the authors construct a tree by considering a
set of different FAB (French-American-British) classification of AML patients. They also
considered some samples from peripheral blood (CD34 PB), bone marrow (CD34 BM),
human mesenchymal precursor cells (hESCMPC), and fully differentiated mononuclear
cells from peripheral blood (PB) and bone marrow (BM) to construct the phylogeny of
AML (see Table 6.1).

After normalizing the microarray sequences, the authors used false discovery rate (FDR)
of 0.05 (and less) to filter significant genes. Then they found the matrix of average gene—
expression differences in each subgroup of samples to construct the most consensus tree.
The leaves of the tree are the subgroups. Their results are general and reveal the hierarchy
of diverse types of samples between stem and fully differentiated cells. In this section,
applying a similar method, we analyzed the RNA-seq data of 179 AML samples from
the Cancer Genome Atlas (TCGA). Then we constructed the phylogenetic tree of AML
compared with normal skin samples from the Gene Expression Omnibus (GEO). In our
investigation, we additionally use single cell data of hematopoietic cell with DNMT3A
mutations, generated by John Dick’s laboratory.

The idea is to construct a new classification of diverse subtypes of AML as opposed
to the conventional FAB classification. Each subtype in this new classification includes
all samples which experienced a specific set of mutation(s) which determines the label of
that subtype. Then our analysis allows us to understand the relationships among various
subtypes (various sets of genes). Using different statistical methods, we construct the
phylogeny of the subtypes. Such a phylogeny may help us to understand the hierarchy of
mutations and/or parallel hierarchies that occur(s) for this set of AML samples. Either
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unsupervised or supervised clustering can provide useful information about the evolution
of AML for the given database. Unsupervised clustering reveals how different mutations
in different samples can be clustered and how diverse mutations are distributed all over
the samples in comparison to the normal samples. However, by defining the new subtypes
of AML, supervised clustering maintains the connections between mutual subtypes.

Table 6.2: The suggested new classification of AML based on [35].

’ Specific group ‘ Genetics H Specific group ‘ Genetics
G, PML-RARA Gs Other myeloid TF's
Go MYH11-CBFB Gy MLL-X fusions, MLL-PTD
G RUNX1-RUNX1T1, G1o NUP98-NSD1
RUNX1
Gy PICALM-MLLT10 G11 ASXL1
G5 DNMT3A,DNMT3B, G EZH?2
DNMT1
G6 TETl,TET2 G13 Cohesin
G, IDH2 Gu NPM1,TP53,WT1,PHF6,
FLT3,KIT,Other Tyr kinases,
Ser-Tyr kinases, KRAS/NRAS,
PTPs, KDM6A ,Other modifiers

According to the results of [35] for 200 AML samples from TCGA, a complete set of
possible mutations has been reported for each of the patients. This analysis was performed
on the whole genome sequencing (WGS) of 50 patients, the AML exome sequences of 150
samples, and also DNA Methylation results for these 50 samples. DNA Methylation is
usually used to capture epigenetic events based on regulatory mechanisms, was also per-
formed. Then based on these types of data, the frequencies of different mutations have
been reported in 9 categories regarding to the transcription-factor fusions, gene encod-
ing nucleophosmin, signaling genes, chromatin—modifying genes, tumor suppressor genes,
myeloid—transcription factor, splicesome, DNA methylation-related, and cohesion. Then
the most common mutations with the highest frequencies were found for the considered
AML dataset. Among a wide variety of different mutations, NPM1, DNMT3A, and FLT3
have the top three frequencies. Moreover, new discoveries via targeted sequencing on AML
genes suggest IDH1, IDH2, CEBPA, KIT, and TET2 may play crucial roles in the de-
velopment of leukemia at prognosis and intermediate/high risk levels [1 18, 85, , ].
Therefore, these types of mutations can be used to define some of the subtypes. Branching
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Table 6.3: The Suggested classification of AML: Early vs. late events

’ No. \ Early events \ Late events
1 PML-RARA NPM1
2 MYH11-CBFB TP53
3 RUNXI1-RUNXIT1/RUNX1 WT1
4 PICALM-MLLT10 PHF6
5 DNMAT3A/ DNMT3B/ DNMT1 FLT3
6 TET1/ TET2 KIT
7 IDH2 Other Tyr kinases: ABL1/ DYRK4/
EPHA2/ EPHA3/ JAK3/
MST1R/ OBSCN/ PDGFRB/ WEE1L
8 NUP98-NSD1 SerThr kinases: ACVR2B/ ADRBK1/
AKAP13/ BUB1/ CPNE3/
DCLK1/ MAPK1/ YLK2/
MYO3A/ NRK/ PRKCG/
RPS6KA6/ SMG1/ STK32A/
STK33/ STK36/ TRIO/
TTBK1/ WNK3/ WNK4
9 ASXL1 KRAS/NRAS
10 EZH2 PTPs: PTPN11/ PTPRT/ PTPN14
11 Cohesin: SMC1A/ SMC3/ KDMG6A
SMC5/ STAG2/ RAD21
12 Other myeloid TFs: GATA2/ Other modifiers: ARID4B/ ASXL2/
CBFB/ ETV6/ ETV3/ GLIL ASXL3/ BRPF1/ CBX5/ CBX7/ /
IKZF1/ MYB/ MYC/ MLLT10-CEP164 EED/ HDAC2/ HDAC3/ JMJD1C/
KAT6B/ KDM2B/ KDM3B/ MLL2/
MLL3/ MTA2/ PRDM9/ PRDM16/
RBBP4/ SAP130/ SCML2/ SUDS3/
SUZ12/ ZBTB33/ ZBTB7B/ CREBBP-KAT6A/
RPN1-MECOM/ RUNX1-MECOM
13 MLL-PTD Spliceosome: CSTF2T/ DDX1/
DDX23/ DHX32/ HNRNPK/
METTL3/ PLRG1/ PRPF3/
PRPFS/ RBMX,/ SF3B1/
SNRNP200/ SRRM2/
SRSF6/ SUPT5H/ TRA2B/
U2AF1/ U2AF1L4/ U2AF2
14 | MLL-X fusions: MLL-ELL/ MLL-MLLT4/
MLL-MLLT3/ MLLT10-MLL

processes in AML may occur through short—term evolutions such as those for acute pro-
muelocytic leukemia (APL) which defines the class G1 mutations (see Table 6.2). Such a
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branching process may also occur through long-term mechanisms involving the accumu-
lation of many passenger mutations and a wide variety of subclones such as the evolution
of myelodysplastic syndrome (MDS). However, the main question is about the order of
occurrence of mutations. To this end, we first explored preleukemic and driver genes and
specifically investigate early, intermediate, and late events in AML samples. Although the
initiation and progression of this heterogeneous and invasive malignancy has been poorly
understood.

Recent studies have shown some evidence which characterizes the role of some specific
genes such as DNMT3A, NPM1, PML, RUNX1, TET2 and so on in the development of
AML [159, , 85, , ]. Acquiring the novel discoveries, our new classification of
AML can be established in order to derive some features of such a complex disease. Our
suggesting list comprises 14 subtypes which are given in Table 6.2. The potential early
and intermediate events provide the majority of subtypes while the potential late events
are basically categorized in one subtype. Recent research which is mostly focused on the
hierarchy of mutational events in AML [33, 81, 89, 85, , 151] depicts a list of early and
late events, given in Table 6.3.

6.3 A phylogenetic tree of AML

Constructing the phylogenetic tree of AML is not only important to find the hierarchy
of mutational events, but also results in a better understanding of the whole mechanism
tending to a set of driver mutations. It also results in finding a set of signature genes,
which is a collection of possible mutations that cause initiation and progression of AML.
Moreover, the existence of such a phylogeny provides information about the survival chance
of patients, the type of drug which can be used to prevent the progression of the cancer,
and also about the relapse mechanism.

6.3.1 General algorithm to construct the phylogenetic tree

There are a wide variety of different methods to construct a phylogenetic tree; however,
the following algorithm sketches an overview of some crucial steps to construct such a tree.

Step 1. Firstly, a specific type of data from reliable resources is required. Particularly,
this type of data can be found from a public nucleotide database. For instance, public
data of different types, from gene expression and microarrays to SNV and raw data can be
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found from DNA Data Bank of Japan (DDBJ), European Molecular Biology Laboratory
(EMBL), or GenBank (in USA). Genomic data are accessible through the websites of the
Institute for Genomic Research (TIGR), the Join Genome Institute (JGI ), the Sanger
Institute, and the National Center for Biotechnology Information (NCBI). Moreover, the
evolutionary data of genomes-in-progress can be found in GenBank and NCBI which has
more than 44 billion base pairs of DNA. The data uploaded from these resources are usually
normalized but they might contain batch effects as they are produced in diverse situations.
In such a case, all data needs to be normalized after releasing the batch effects.

Step 2. Acquiring the data, to specify the location of each gene throughout the genome,
annotation process is used. Finding a general and standard annotation method of genomes
has still remained unsolved. Annotation is mostly used through the following general tools:

e Keywords: which annotate sequences by looking through their written descriptions.
This method is easy, intuitive, and mostly used for genomic data for which high

throughput analysis seems to be essential. Some of the softwares associated with this
method are Entrez (NCBI) and SRS.

e Similarity: which looks over the sequences themselves to find the similar parts of
the sequences and annotate based on those similarities. For instance, BLAST is a
software which works based on similarity. In this software, the hidden Markov model
(HMM) is applied to predict coding—base regions by a high level of probability.

Step 3. After annotating the genetic data, the next important step is associated to
the alignment process. Alignment stands for the method of sorting sequences through a
columnar list in which similar annotated parts are aligned in the same column. Multiple
sequence alignment plays a crucial role for this purpose and is placed in the heart of
constructing phylogeny. There exist different approaches to perform the alignment:

e Using pairwise (or multiple) sequence alignment models, the evolution of sequences
regarding insertion, deletion (insdel), and mutation could be characterized.

e Progressive sequence alignment: this method starts with the most similar sequences
and show the guide tree which is the most probable case for alignment. Then pro-
gressively the more dissimilar (divergent) sequences will be added to the guide tree.

e Pair HMM for two (or more) sets of observations and hidden variables is also used
as an other approach.
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Some important programs for the process of alignment on annotated data are ClustalX,
BioEdit, BCM, BLAST, and GCG.

Step 4. The next step is dedicated to the construction of a tree. The methods for
calculating phylogenetic trees fall into two general categories:

e Distance-matrix methods (clustering or algorithmic methods): This method
is relatively simple and straightforward and can be performed by applying simple
calculations. The distance which is, in fact, based on differences between the distri-
bution of expressions in each sequence. Each distribution is defines as the set of all
expression levels over the landscape of different genes. Then the distances are assem-
bled into a tree. Some of the methods to calculate the distance metric are UPGMA,
Euclidean, Pearson, neighbour-joining, Fitch, and Margoliash.

e Discrete data (tree-searching) methods: This method examines each column
of the alignment separately and search for the tree that best accommodates all the
information. This methods has more fruitful information by tracing the evolution of
specific sites such as catalytic sites or regulatory regions. Some of the main tools re-
garding the tree searching method are parsimony, maximum likelihood, and Bayesian
methods. Moreover, Mega2, PHYLIP, and Treeview are some softwares to construct
the phylogenetic tree based on this method.

Step 5. Finally and after constructing the tree we look for the consensus tree which
depicts the most probable tree among all possible choices. There are two main methods to
test the temporarily constructed phylogeny:

e Bootstrapping: This method tests whether the whole dataset supports the con-
structed tree, or if the tree has been chosen among nearly equal alternatives. Starting
from some random subsamples of the dataset, this method builds the corresponding
tree of each subsample and calculates the frequency of the random subsample com-
pared with the whole database.

e Long branches: This method accounts for highly divergent sequences, i.e. those
sequences that have long terminal branches. Then it groups them together in a tree
regardless of their true relationships. This can be applied when sequences do not
have close relatives but may have numerous unique mutations.
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6.3.2 Pipelines and the reduction of data

In many genetic expression analysis, such as that for RNA-seq analysis which includes a big
list of essential and redundant genes, various pipelines may be used to filter the redundant
information which may add noise to the data. Such pipelines help to clean the data to be
more efficient in terms of data analysis and tree construction. One of the most important
pipelines, generally applied to reduce a range of useless information, is the ‘t-test’. This
method can be used to compare the mean of a sample to the means of the other known
samples for a randomly drawn sample from the data. The distribution of the mean of the
chosen sample is assumed to be normal. For an unpaired (independent group) t-test, the
following formula is used:

tz,y) = ——==, (6.1)
Ua: O'y
n@ T )

where (), (y) and o0,, 0, are respectively the means and standard deviations of z,y. An-
other pipeline, referred to as ‘p-value’ is based on the false discovery rate (FDR) method,
which reveals the probability of error in rejecting the hypothesis of no difference between
the two given groups. A low p-value for a test (usually less than 0.01 or 0.05) means that
there is an evidence to reject the null hypothesis (that is, the means of the two groups are
equal) in favor of the alternative hypothesis. Two tailed form of p-value distribution can
be calculated in the following way:

| RN R
plt,v) = v/2 Bessl(1/2,v/2) /t (1 * 7) 4z, (6.2)

where Bessl = fol 711 — t)*7tdt and v = n(z) + n(y) — 2 is the degree of freedom in
unpaired case. Applying this pipeline, one can find those genes which have significant
variations. Beyond these two fundamental methods which have been widely used to find
a more accurate number of significant data, there are also many alternative pipelines
associated to the specific purpose of the analysis.

6.3.3 AML signature genes
The main question to address in this section is about the most common ancestor of the

new subtypes of AML (Table 6.2). Finding such a hierarchy of mutations which is basically
constructed compared with some normal samples and the hematopoietic stem cells (HSCs),
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depicts the signature genes of AML. However, since the number of mutations in AML is
very low, there might exist so many rare mutations occurring within the lineage of HSCs
based on the existing data [$85]. Among the most important concepts to address, the
features of the founder stem cell(s) and the pathogenesis of HSCs seems complicated to
investigate.

Knowing about the signature genes derived from the data, one can describe a hierarchy
or diverse parallel hierarchies of AML. Then the pathway(s) can be validated with exper-
imental data. For instance, the derived signature genes can be compared with the data
provided by the single cell analysis. Then using the biomarkers known for the maturation
process of hematopoietic cells, we can examine the type of mutation in terms of being
an early, an intermediate, or a late event. Similarly, one can follow the method to derive
the signatures of important AML genes such as DNMT3A, FLT3, TET2, WT1 known as
the most common mutations based on the data [35]. By obtaining signature genes of the
entire data, or signature of certain genes, the main purpose will be to obtain the accurate
relationships among mutations and genotypic-phenotypic alterations in the hierarchy of
AML mutations.

As we explained before, based on the recently discovered AML genes, a new list of 14
subtypes is proposed in this chapter. Each sample, then, belongs at least to one of the
subtypes. For each of the subtypes we find the distribution of gene expression over the
landscape of all the genes. Then the derived distributions will be compared with that
of the normal subtype and other additional subtypes (if exist). Such a comparison can
be done more efficiently by applying t-test or p-value analysis. Using t-test or p-value
analysis, one can find significant gene expression differences. Then ignoring the genes with
lower differences with respect to those of the normal subtype, we can conclude the list
of important genes. Such a pipeline will define a more accurate relationship between the
subtypes.

Based on the above illustration, starting from the 179 AML samples from TCGA in the
form of RNA-seqs, we use a complete table of mutational events for each patients reported
in [85]. Then manipulating the data for HSC CD34+ CD38-/ HSC CD133 CD34dim sam-
ples from GEO, we firstly find the unsupervised clustering of the these samples. Thus at
first, we find the list of common genes between these two databases. Applying the bio-
conductor packages ‘Phylogenetics’, ‘dvtools’, ‘biocGenetics’; ‘bioDist’, and ‘affy’ through
R modules, we find the unsupervised clustering of all samples with roots as HSC CD34+
CD38- and HSC CD133 CD34dim. The result is given in Figure 6.1 in which the immediate
cluster from the roots is the PML cluster. This consequence is coincidence with the short
evolutional of PML [191]. The the next cluster also seems to mostly contain mutations in
FLT3 (see Figure 6.1) which is thought of as an late event.
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and considering those genes which exist in one subtype
115

)

classification

(

Unsupervised clustering. We perform the unsupervised clustering for 179
but not in at least one of the other subtypes:

samples from TCGA and two more samples, HSC CD34+ CD38-/ HSC CD133 CD34dim

from GEO.

e Applying (unpaired case) t-test between each subtype and mutant HSC samples, and
normal single HSCs.

Then we perform the following algorithm to find the hierarchy of mutations based on

supervised clustering

Figure 6.1:



Finding the p-value and significant genes for each subtype using FDR less than 0.01
(or 0.05).

Through differentiation-based method [112], those genes are selected for the analysis
which exist in one subtype but not in at least one other subtype.

Finding the average expression matrix of the new list of differentiation-based genes.

Finding the distance matrix of all subtypes and then constructing the tree by con-
sidering the large number of bootstrap (10,000 times).

6.3.4 Supervised and unsupervised classification

Firstly, we use the 179 normalized data from TCGA and HSC CD34+ CD38- and HSC
CD133 CD34dim from GEO to understand the order of mutations on the lineage of HSCs.
Figure 6.2 represents Gy, - - - , G14 as the novel subtypes described in the previous sections.
Then we apply FDR p-value test at various levels, ranging from 0.01 to 0.05, to filter
significant genes. Our analysis shows that 17,433 genes are in common out of 19,065 genes
given in the database. Then using the selected set of genes we perform a hierarchical
clustering with stability assessment based on bootstrap method by using different metrics.
In continuation, we employ the consensus method by using Phylip software. The consensus
method provides the most consensus set of trees. Then using TreeView software, we unify
the produced trees to the most probable one.

Analysis shows that the potential signature genes for AML may contain PML mutation
in the lineage or at least in one of the parallel lineages of pre-leukemic/leukemic HSCs. Also
having FLT3 in the subsequent cluster shows that important mutations such as DNMT3A,
TET2, WT1, FLT3, PHF6, and PTPs also need to be taken into account. These mutation
are all located at the same subtype of FLT3 and can be another candidate mutations in
the AML signature gene. Moreover, NUP98, MLLs, RUNX1, and NPM1 mutations are
other potential candidates for the signature genes of AML regarding their close locations
to the root of the phylogenetic tree (see Figure 6.2). This analysis is required to be
experimentally validated and statistically confirmed through diverse investigations not only
gene expression data, but also at the transcriptional and chromatin levels.

Secondly, we perform a classification for a set of patients which have a certain type of
mutation, e.g. for DNMT3A, and restricting each subtype to this set of patients and re-
labeling the non-empty subtypes as Ry, -, R4 which are respectively the restricted sets
of Gy, -+, G4 to only include DNMT3A samples. To complete the analysis we have also
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Figure 6.2: Supervised clustering (classification) of AML samples. Considering
the 179 TCGA samples, and HSC CD34+ CD38- and HSC CD133 CD34dim samples from
GEO, we derive a classification of our new subtype in order to understand early vs. late
events and the hierarchy of mutations to detect the signature genes of AML.

considered 15 normal single—cell samples generated by John Dick’s laboratory mmebers.
Then we run two different scenarios to presumably capture the main features of such
mutations and their relationship:

e Filtering out the PML-RARA, MYH-CBFB, and RUNX1 samples, which are known
as early events, the unsupervised clustering of all samples performed in order to un-
derstand the distribution of mutations in DNMT3A, FLT3, TET2, and WT1 within
the samples. See Figures 6.3 and 6.4 which represents the distributions of these muta-
tions all over the tree instead of having them clustered in some particular subgroups.

Then a comparison among these distributions results in table 6.5, which reveals the
average distance of each mutation within the tree from the root and within each group
of patients with such mutations in common. Again, we use the 179 TCGA data as well
as 15 controlled samples, and 14 DNMT3A diagnosed /relapse data from John Dick’s
laboratory. The derived data suggests that TET2 and then DNMT3A respectively
have the first and second largest distances from the root using Euclidean bootstrap
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Figure 6.3: Distribution of DNMT3A, FLT3, TET2, and WT1 mutation. Using
the 179 TCGA samples as well as 15 normal and 14 DNMT3A samples from John Dick’s
Laboratory, the unsupervised clustering is given using Euclidean metric for bootstrapping

and neighbor—joining method to find the most consensus trees after filtering out the samples
comprising PML-RARA, MYH-CBFB, and RUNX1 mutations.

and FastME consensus methods. This result is compatible with the experimental
results which introduce these mutations as early events [33, 81, 89, 85, 130, 151]. An-
other evidence which show that TET2 and DNMT3A mutations as early events have
the largest average distances compared with those of WT1 and FLT3 (late events).
This result for DNMT3A mutation confirms the result of [83] arguing the high stabil-
ity of DNMT3A and preceding of this mutation to NPM1 which is another mutation
mostly referred to as a late event in the clonal evolution of AML.

e We, then, perform supervised clustering for the subtypes R; (i = 1,---,11) in com-
parison to the 15 normal samples (the controlled subtype), and 14 HSC DNMT3A
single—cell data (the DNMT3A subtype) at diagnosis and relapse (see Figure 6.6).
Different groups are denoted in different colors in the trees (blue, purple, green, and
red are respectively related to DNMT3A, FLT3, TET2, and WT1 mutations). Our
investigation about DNMT3A data results in a hierarchy of mutational events and
assuming DNMT3A as the apex of mutations, reveals important facts about the po-
tential signature genes of DNMT3A. It turns out that WT'1, FLT3, NPM1, and TP53
which are located in the Ry, cluster at the very first cluster within the phylogenetic
tree. This analysis has done for Euclidean bootstrap and FastME consensus method
for R;s.
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Figure 6.4: Another distribution of DNMT3A, FLT3, TET2, and WT1 muta-
tion. Again we use the 179 TCGA samples as well as 15 normal and 14 DNMT3A samples
from John Dick’s Laboratory to find the distribution of DNMT3A, FLT3, TET2, and WT1
mutation within the unsupervised clustering filtering out the samples that include any of
PML-RARA, MYH-CBFB, and RUNX1 mutations. We apply Euclidean bootstrapping
method and neighbor—joining/fastme consensus facility. The blue, purple, green, and red
strands are correspondence to DNMT3A, FLT3, TET2, and WT1 mutations respectively.

Summary

Despite years of research in diverse types of leukemia, different combination chemotherapy,
and HSC transplantation over several decades, leukemia still remains among complex,
dangerous, and poorly understood cancers. The low number of mutations leading to a
founder (leukemia—initiating) stem cells, makes this type of disease complicated. Moreover,
the high rate of relapse after chemotherapy among remitted cells also makes leukemia
even more lethal. In this chapter, we tried to study some aspects of AML. Our main
concentration was on the hierarchy of mutations. We used TCGA RNA-seq data and
defined a potential list of new subtypes. Some recent techniques in statistical analysis of
the genetic data, the construction of a phylogenetic tree of AML based on supervised and
unsupervised clustering has been taken into account.

It turns out that having HSCs at the apex of such a phylogeny, PML mutations are
occurring at the very first stage. This result was confirmed through the supervised cluster-
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Type of Number of Euc-Nj Euc-Fast Euc-Nj Euc-Fast
Mutation Samples Ave Distance Ave Distance Ave Distance Ave Distance

from the Root from the Root Within the Within the
Group Group

Early 14 6 ‘ 5.7278 7.7736 13.5527
- —esd] —-
Late 6.315 5.1593 9.9610 13.1773
Early 7.1571 ‘ 5.2671 8.7359 14.1070
--‘ -.-

Figure 6.5: Supervised clustering (classification) of AML samples. Considering the
179 TCGA samples and HSC CD34+ CD38-/ HSC CD133 CD34dim from GEO samples,
we derive a classification of our new subtype in order to to understand early vs. late events
and the hierarchy of mutations to detect the signature genes of AML. The blue, purple,
green, and red strands are correspondence to DNMT3A, FLT3, TET2, and WT1 mutations
respectively.

ing (classification) of subtypes Gy, - -+, G14. This result may have substantial effect on the
development of chemotherapy and may improve our understanding of drug-resistant traits
of leukemic disorders. Another observation delineates that even FLT3 mutation which has
though of as an early event, occurred in the majority of samples in the subsequent cluster
to the PML cluster.

We also find the unsupervised and supervised clustering of specific types of mutations
such as DNMT3A. This helps us to understand that early events such as DNMT3A and
TET2 are more distributed within the samples and farther from the root. This observation
has performed in comparison to the late events WT1 and FLT3, ignoring those samples
which include early events PML-RARA, MYH-CBFB, and RUNX1. Our analysis shows
that the potential set of AML signature genes should contain PML mutation in the lineage
or at least in one of the parallel pathways of pre-leukemic HSCs. Also having FLT3 in
the subsequent cluster shows that important mutations such as or at least in one of the
parallel pathways of DNMT3A, TET2, WT1, FLT3, PHF6, PTPs are other candidates
located in the same subtype as that of FLT3. Furthermore, MLLs, RUNX1, NUP9S,
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Figure 6.6: Supervised clustering (classification) of DNMT3A samples. Re-
stricting the TCGA samples to a set of 59 samples with DNMT3A mutation classified in
Ry, -+, Ry; subtypes along with normal and DNMT3A samples John Dick’s laboratory
using the same pipelines and methods described in the last two figures. (a) represents
the heatmap of mixture coefficient method used to classify diverse subtypes based on the
general mixture distribution model of 14 observation and 3 mixture component. Subfigure
(b) depicts the supervised classification of subtypes R; in compere with controlled and
DNT3a subtypes.

and NPM1 mutations are some other potential candidates for the set of AML signature
genes as they are located in the closer subtypes on the phylogenetic tree (see Figure 6.2).
This analysis is required to be experimentally validated and statistically repeated through
diverse investigation of not only a bigger gene expression database, but also on other type
of data such as miRNAs, transcriptomes, and chromatins.

Similar analysis has performed for a restricted number of samples having a certain
mutations such as DNMT3A. Our analysis shows that a hierarchy of mutational events
assuming DNMT3A as the apex of mutations, would include WT1, FLT3, NPM1, and
TP53 mutations as well. These mutations which are located in the R4 cluster at the
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very close location on the phylogenetic tree (based on Euclidean bootstrap and FastME
consensus method for R;s). This attempt is one of much research have been done to
understand the regulatory mechanism of blood cells and the hierarchical mutational events
leading to AML. Despite many developments in this regard, yet there is a big lack of a
standard hierarchy of genetic and epigenetic changes tending to AML and also to an intense
therapeutic treatment. Such a hierarchy or set of parallel hierarchies will, in addition,
reveal the accurate relationships between mutations and genotypic-phenotypic events, and
integrating leukemia initiation and progression. The next crucial step is about estimating
the contribution of pre-leukemia vs. leukemia to relapse. Another crucial aspect relates
to understand the correlation between clonal conversion and microenvironmental effect on
the chance of pre-leukemic/leukemic cells to develop leukemia. This would assist us to
illustrate the origin of AML and the mechanism(s) in corrolation with the transformation
of pre-leukemic/leukemic cells to relapse.
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Chapter 7

Conclusion and future work

In this Chapter, we briefly summarize the results of previous chapters and then suggest
possible future work related to each of the aforementioned topics in Chapter 3 to Chapter
6. These, I believe, might be not only of great general interest, but also may provide
novel insights for further endeavours to extend and/or apply these results in evolutionary
dynamics, population genetics, and oncology.

In Chapter 3, starting with a 4-compartmental model of stem and non-stem cells, we
asked about the most influential factors in the progression of tumor through comparing
asymmetric differentiation of stem cells and phenotypic plasticity of plastic differentiated
cells. After deriving a general analytic framework, which was in a perfect agreement with
stochastic simulation, we found that the asymmetric differentiation has a more significant
effect than plasticity on the fate of mutants under high selection pressure. The change
in the rate of different types of division would increase the survivability of non-plastic
mutants, but it would suppress the development of malignancy for plastic mutants. As
the introduced mechanism and analytic approach are completely general, both can be
used for similar mechanisms in other disciplines (e.g. in evolution, population genetics,
and ecology). One can also add the symmetric differentiation to the system and use the
Wright-Fisher model to study a similar mechanism to compare not only the asymmetric
differentiation and plasticity, but also symmetric and asymmetric divisions in the presence
of dedifferentiation. Another suggestion for future work relates to a generalization of the
model to higher compartments of diverse phenotypes to have a more accurate estimation
of natural mechanisms.

Then in Chapter 4, we defined and analyzed some aspects of microenvironmental effect
on a structured population. The effect was basically investigated for the change in the
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variance and higher moments of fitness of individuals proportional to their locations and
genotypes. We found that even in a neutral system, when an environmental fluctuation
impacts on both normal and mutant individuals, such an effect is in favor of mutants as
the fluctuation increases. This interesting and non-trivial observation is fundamentally
related to the minority power of mutants when a small portion of malignant mutations are
imposed on the system. For the sake of simplicity, we considered 1D spatial structures, such
as the circle, the line and complete graph structures, and allowed that the fitness of both
genotypes be drawn from the same distribution. Our result suggests that minority power
will also turn the disadvantageous mutants into advantageous mutants. We also found
that the largest average fixation probability is associated to the anti-correlated fitnesses of
mutants and resident individuals. For future study, a similar analytic investigation and/or
stochastic simulation for 2D structures with reflecting boundaries would be of interest,
where not only the mean, but also other moments of the random fitness are taken into
account. A comparison among 1D and 2D structures would indicate how randomness is
dependent on the dimension of the population and how the randomness effect may vary
from lower dimensions to higher dimensions.

Chapter 5 presented a 4-compartmental model of the crypt where two various com-
partments of stem cells, central and border stem cells, are taken into account. In such a
complex structure, we considered the migration of central stem cells towards border stem
cells and since the reverse migration is reported to be negligible [1414], we ignored the con-
verse migration. We have also provided a space for the production of immortal cells. Then
carrying out the required analytic calculations and stochastic simulation, we studied the
role of each compartment in the initiation and progression of cancer within the crypt. We
found that central stem cells may have a crucial role in the regulatory mechanism of the
whole crypt. We also showed that a newborn mutant in central stem cell population has
a high chance to take over the entire crypt. Conversely, using stem cell transplantation
to replace all the central stem cells with normal stem cells will eventually cure the en-
tire crypt, even if it is thoroughly occupied by mutants. Based on our research, another
interesting question is about adding plasticity into the system, where plastic progenitor
cells can dedifferentiate to either central or border stem cells. Then comparison between
these two migration models would reveal the role of central and border stem cells in the
progression of cancer in the presence of phenotypic plasticicty.

In Chapter 6, as opposed to the previous models that were basically concentrated on
the stochastic study of the evolutionary dynamics of mutants, we performed a statistical
analysis on genetic data. We analyzed the gene expression data of AML in the form of
RNA-seq and used diverse pipelines to ignore redundant genes and construct a hierarchy of
mutations. To derive the signature genes of AML, we took advantage of defining a new list
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of AML subtypes and applied different unsupervised and supervised clustering methods to
understand the correlation of the new subtypes. Our statistical analysis suggests DNMT3A
and TET2 mutations are early events and exist in the signature genes of AML, which is in
agreement with other existing experimental data. From unsupervised clustering we found
an immediate cluster of PML samples, which also confirms the short evolution of this type
of mutation. This can also be seen from the supervised clustering where the immediate
subsequent cluster is associated to the NUP98 mutation. Our analysis revealed that after
PML cluster, FLT3 mutation was found among the majority of samples in the subsequent
cluster, showing that other than other rare mutations, those samples which are close to the
root eventually experienced this type of mutation. Thus this type of mutation is almost
certainly among the signature genes within the lineage or parallel lineages of sequential
mutants in the pathogenesis of leukemia. Also having FLT3 in the subsequent cluster shows
that important mutations such as DNMT3A, TET2, WT1, FLT3, PHF6, PTPs, MLLs,
RUNXT1, TP53, and NPM1 mutations are potential candidates as the signature genes of
AML.

To further add to the results of Chapter 6, having a bigger cohort of samples may assist
in deriving more clusters through unsupervised clustering and may provide a more accu-
rate relationship among various subtypes within the supervised clustering (classification),
repeating the general algorithm described in this chapter. Moreover, data analysis of ex-
omes, transcriptomes, proteins, and chromatines as well as flow cytometry data analysis as
complimentary sources for the RNA-seq data would describe other features of mutational
events in AML. This would lead to a better understanding of founder stem cells or cancer
initiating cells and demonstrate the cell of origin in leukemia.
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Appendix A

Randomness Effects

A.1 Fixation probability distribution

We are investigating about the average treatment of the system as we have applied in the
preceding sections of the paper for the circle model and will perform later for the line and
complete graph structures. Prior to these investigations about the fixation probability of
the structured populations, we need to understand the distribution of the fixation prob-
ability when an average behavior is taken into account. The main implement to capture
the average behavior of the system can be the central limit theorem [11]. For instance to
analyze the variation of the fixation probability on average when the mean and variance
are not changing through a trial in which the proliferation rates are random variables of
a normal distribution, the central limit theorem predicts another normal distribution with
the same mean and a proportional variance. This will also predict that the derived distri-
bution of average behavior is not a composition of two or more distributions and as the
mean of the distribution remains fixed, the variance is also bounded with certain value.

In Figure A.1, a unique probability distribution for the average fixation probability can
be detected compared to the individual events in the fixation process of a newborn mutant
through all possible scenarios. Different histograms represent the existence of a skewness
towards left (or towards lower values than the average). For a considered population size
as o grows, the fixation probability values shift to the smaller values. Moreover, when one
increases N, the probability of distribution slides to the lower values. An interesting result
is that the standard deviation of the fixation probability remains bounded as N raises to
larger values.
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Figure A.1: Distribution of the fixation probability shows skewness to the left
hand side which as population size increases shifts towards left. Distribution of
the fixation probability for different populations are given in (a) for N = 10, in (b) for
N =15, in (c) for N = 20, and finally in (d) for N = 50. In all of the considered cases we
assumed that (r,) = (r,) = 1,0, = 0, = 0.

Overall this analysis confirm the fact that the central limit theorem can be applied
to analytically envisage the treatment of the mean filed approximation of the considered
simple structures in the present study.

Another interesting approach as is given in Figure A.2 relates to trends for the mean
and variance of the average fixation probability of the circle. Based on these graphs, both
mean and variance of the average fixation probability increases as the variance o of the
bimodal distribution of fitness increases. However, the both values can rise up to a limit
and as a function of o and population size N they are bounded for any given ¢ and N. In
this figure, as the population size grows, the rate of change for the variance of the average
fixation probability is larger than that for the mean and its corresponding graph passes
through the graph of mean sooner.
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Figure A.2: The relationship between differences in mean and variance of the
fixation probability with respect to o. Assuming (r,) = (r,) = 1,0, = 0, = 0,
considering the probability distribution of the fixation probability in the neutral case, the
mean and variance are approximately linearly changing in terms of o. As can be seen in
different figures, as population size increases, as the line for standard deviation remains
less than 0.2 with some slight changes, the curve for the mean declines to intersect the line
of means in lower values for o. In (a), (b), (c), (d), and (e) respectively N = 5,10, 15, 20,
and 50.
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A.2 Trends for the mean and variance of the average
fixation probability: Randomness for both types.

In this section, returning to the Section 4.5, we represent the main features of the change in
the mean and variance of the average fixation probability for small, intermediate, and large
populations. The main goal is to capture the long-term behavior of the average fixation
probability for each given variance o of the fitness which defines the randomness for both
normal and mutant individuals. Complementary to what we explained in Section 4.5, we
discuss about the mean and variance of the average fixation probability in more details as
follows.

At first, when (r,) > (r,) there is a monotonic decrease in the value of average fixation
probability as population increase. The trend is sharper when o is larger (see Figure A.1-
(a) for more details). Moreover, the tendency for the standard deviation of the average
probability of fixation declares an upper bounded in each graph. This confirms the result
of the previous section about the existence of an upper bound for the variance. Figure
A.1-(b) represents the trend for a variety of os.
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Figure A.3: The trends for the mean and standard deviation of the fixation
probability when (r,) = (r,) = 1,0, = 0, = 0. In part (a), mean of the fixation
probability is drawn in terms of population size. The trend for various values of o show
the same decreasing behaviors. In part (b), a similar result can be detected for intermediate
and large population sizes. These figures confirms the fact that mean is decreasing and
the variance is bounded for all values of o.

The second scenario relates to the case in which (r,) < (r,). The trends for various o
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signify a dramatic decrease for a range of different population sizes. More importantly, by
increasing the o there exist an upward shift for intermediate population sizes which starts
to shift downward for large enough os (this value for o depends on the average fitness of
the mutants. In Figure A.4-(a) the green curve that is associated to ¢ = 0.9 represents the
lowest average fixation probabilities compared with the corresponding values for smaller
os. So the overall mechanism tends to the deterioration of the average fixation probability
for large populations.

Similarly, the standard deviation of the mean of the survival chance of a recently born
mutant declines and approaches to zero. As o climbs to a certain level, then the trend
sharply drops to converge to zero even for average populations.
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Figure A.4: The trends for the mean and standard deviation of the fixation
probability when (r,) = 0.9,(r,) = 1,0, = 0, = 0. In part (a), mean of the fixation
probability dramatically decreases as population size raises. In (b), the trend for smaller
values o increases compared to smaller s but for ¢ = 0.9 represents a huge decline as we
conclude in the analytic results.

Finally when the average fitness of both mutant and host cells the same (r,) = (r,)
which can be simply normalized to 1, an intermediate behavior between the advantageous
and disadvantageous average fitness of cancer cells can be detected. Although the trend for
the standard deviation in Figure A.5-(b) shows almost constant trends for diverse values
of o as population size increases, the progression for the average survival chance reveals
an slight but monotonic decrease over a range from small population size to intermediate
and then to large population size (see A.5-(a) for a more details).
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Figure A.5: The trends for the mean and standard deviation of the fixation
probability when (r,) = 1.2,(r,) = 1,0, = 0, = 0. In (a), mean of the fixation
probability for larger populations will saturate to a certain amount which depends on
o. In (b), standard deviation of intermediate populations and larger populations stays
unchanged on a certain value which is again only dependent to o.

A.3 Analytic results for randomness effect on large-
scale populations

Starting from the smallest population size N = 4 on the circle model, in this section,
we let both populations of normal and mutant individuals take random fitness under the
influence of micro—environment when the associated stochastic procedure is based on a
bimodal distribution with peaks ri,ry. Considering the nodes of this 1D lattice, at each
vertex of the graph, both mutants and host cells can take either the value ry or ry without
any correlation. In this case, each of the three nodes may take a value from the set {ry,75}.
Now having a new mutant at a specific point, there exist three possible location for the
new mutant. Denoting the possible cases by a set of binary sequences 1150314 for [; € {0,1}
where [; = 1 is associated to have mutant at location ¢ on the circle and [; = 0 for a normal
cell. Considering different scenarios, based on the location and population size of mutants,
the transition probabilities of increase and decrease by one define the dynamic conditions
of progression of mutant cells. In this situation, one obtains the following system along
with its corresponding initial conditions and when the reproduction rates for cancer cells
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are assumed to be ,tilded while those of normal cells are denoted by a, b, ¢, d:

b a c d
4Pi100 = P, — | + P — + P, — + P, — | + 2 Pi1go,
1100 1110 o d 1101 a—l—c) 1000 (a—i—c) 0100 (b—i—d) 1100
a d c b
4P, = P, P _— P F, _— 2 P,
1001 1101 (EH—C) + o1t <d+b> + F1o00 (~ +c) + Foool (d—{—b) + 2 Foo1,
) (A1)
AP, j2 (6)+P LA Y (d>+P (“)+2P
o110 = Foun { Z7— 1110 1 d 0100 o d o010 { 7, 0110,
d ¢ a b
4Pyo11 = P, — | + B, — + P, — + P, — | + 2 Poora,
0011 1011 (d—l—b) 0111 (c—i—a) 0010 (c—l—a) 0001 <d+b> 0011
d d 20
4P1110 = 1+ Prigo (m) + Poio <I~)+—d> + Pii1o (1 + m) ;
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Let us now consider a circle with N(> 3) individuals of either cancerous or wild-type.
Labeling the graph with numbers 1 to N, one may dedicate the fitnesses a,--- ,ay to
mutant cells and aq, - -+ , ay for normal cells depending on the type of the individual located
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on a specific node. Denoting the probability of fixation by P, which is the probability of
starting from state o = (v, -+, ay) and ending up at absorption state (1,1,--- ,1) where
a; € {0,1} with 1 <i < N. When «; = 0, it means that a normal individual is located at
node i, otherwise (o; = 1) that is a mutant.
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Figure A.6: Exact analytic calculations show increasing trends for the fix-
ation probability for universal randomness and decreasing when only mu-
tants are under effect of randomness. Let the population size vary and is equal to
N = 3,4,5,6,7,8,10 and a bimodal distribution imposes the randomness on the system.
In (a) cancer and wild-type cells have random fitnesses ry, 7, with average (r,) = (r,) =1
and variance o, = 0, = o respectively. In (b) the exact analytic calculations reveals a
decreasing behavior of the fixation probability on a circle when only mutants are under
the effect of randomness. More precisely, cancer cells have relative random fitness r, with
average (r,) = 1 and variance o, = ¢ whilst normal cells have a fixed fitness r, = 1 This
result analytically confirms the result of [99].

Moreover, suppose that o; (0q) be the element-wise maximum of o with its permu-
tation by one to the right (left) and &1 (62) be the element—wise minimum of ¢ with its
permutation by one to the left (right). Furthermore, assume that omax = max{i|o; = 1}
and oy,;, = min{i|o; = 1}, and M; = max{|jo|| — 2,0}, My = max{N — ||o|| — 2,0}
with respect to Euclidean norm |.|. Then the forward Kolmogorov equations includes
N(N —1) equations of N(N — 1) variables and can be written in the following form (when
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0 < ||o|| < N and all the indices are considered modulo V)

NP, =P, [A] + Py, [As] + Py [N = 3+C], |o|| =1

N P, = P, [A] + P,,[As] + P5,[B1] + P5,[B2]
+PU[M1+M2+61+CQ], 2§HO’||§N—2

NP, =14 P [Bi]+ P5, [Bo] + P, [N =3+Ci]]|o]| =N -1,

(A.2)

where 0; € {0,1} for 1 < i < N and transition probabilities by one from the state o are

Qg Qg .
Ai(0) = = e , As(o) = = L , for 1< o] <N —1,
aamaz + a’Umaz"l‘Q aamin + ao"r‘rm"n,_2
(A.3)
a0'7rlaac+1 aa'min_l
Bi(o) = N . Bi(o) = — for 1< |lof] <N —1,
aO’ma:c“FI + aa'maa:_l aa'min_l + a’o'min"!‘l
In the latter expressions, when ||o|| = N — 1 then A; = Ay = 1 and for ||o]| = 1 we can
conclude that B; = By = 1. Also we have
ELU -1 6io’ in+1
Ci(o) = H(|lo|| —3/2 — e + = e >,
1< ) <H ” / ) ( Omaz—1 + agmaz“l‘l aUmin+1 + agmin_l
(A4)

Ag +1 (0|
Co(o) = H(N —|lo|| —3/2 e + e ,
2< ) ( H H / ) (aomaz+1 + aa'm,aa:*1 aominfl + alo'mzn+1>
where H(.) is the Heavyside step function. Note that the initial conditions of the system
are Poo...o = O, Pllml =1.

Remark. A comparison among different populations is given in Figure A.6. These
graphs emphasizes on the fact that the trend for the average fixation probability increases
as the variance grows. For larger populations, the trend is even sharper and represents
higher upward shifts compare to smaller population sizes. The reason of this increase in
the average probability of fixation relates to two important factors: minority of mutant
cells and majority of normal cells while both have random fitnesses. A simple analysis
reveals that having the peak values of the binomial distribution, ;4 — ¢ has a stronger
effect in reducing the fixation probability than pu + ¢ which makes an increase in the
fixation probability. In this situation, where randomness effects both host and mutant
cells, minority of mutants enforces a reduction in the fixation probability of mutants as
the upper peak of the binomial distribution have a lower increasing effect to the lower
peak of the binomial distribution for a given variance to decrease the fixation probability.
This means that the reduction in the fixation probability of normal cells will happen more
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often than the increase in the fixation probability of mutants and thus the average fixation
probability shows an increasing treatment. The represents sharper effects for larger values
of standard deviation. So overall, the effect of all different possible configurations on
the average fixation probability, only in the viewpoint of mutants is decreasing. the same
effect can be see in the viewpoint of normal cells when the same procedure will have a much
higher impact on normal cells and in the favor of mutants and thus in the circumstance
of the whole system while mutants are fighting against normal cells the average fixation
probability is increasing. Moreover, the structure of the model would also fortify the
conduction of mutants towards absorption.

This achievement for a 1D structure is opposite to the result of [99] in a 2D structure
where the trend for average fixation probability is thought to be decreasing as the variance
increases.

A.4 Initial frequency dependency of the fixation prob-
ability

The small number of initial mutants which is, in fact, associated with the minority of
malignancy has been observed in Chpater 4 to play a crucial role in the fate of this type
of individual, where both host and cancer individuals are under random effect of the
surrounding microenvironment.

Having an equal number of host and malignant individuals, tends to a neutral system
in which the configuration of the system in terms of random fitness in different locations,
tends to neutral drift. This means that although these types of cells are phenotypically
different, the regeneration mechanism for both phenotypes is completely similar and the
chance for any change in the size of either sub-populations remains the same. Therefore,
the average behavior of the system follows Darwinian evolutionary mechanism.

However, increasing the number of initial mutants to have larger population of mutants
compare with that of normal individuals, fluctuation will be in favor of normal individuals
which comprises the minor population. Figure 3.6 depicts how randomness (for two dif-
ferent values of the standard deviation o = 0.2,0.4 would change the trend of the average
fixation probability as the number of initial mutants alters. According to this figure, there
exist a symmetric behavior for the fixation probability of the corresponding initial size of

mutants ¢ and N — ¢ compared with that of having ¢ = %

152



35
. 6=0.2
3 L] =04
2.5
£ [}
A
o~ 24 =
¥ R =
- =
1.5 3 i
-
* = . =
N e,
L EEEEEEE ]
® o 0o 0 s ®
0.5 T T T T T T T
0 10 20 30 40 50 60 70 80 90 100
Initial number of mutants (7)
(a)
1
+ 0=0.2 ]
. c=04 -
A
0.8]
7 MR
/ =
,»'.7' = u
. .
. 0.6 T = .
¥ rya”
= % =
= g
SF g ® ;
-
0.4 - K.~
u
° -
.
-
0.2 ® 7
. ;
9 - : ' \ : . ‘ . :
0 10 20 30 40 50 60 70 80 90 100

Initial number of mutants (i)

(b)

Figure A.7: Dependency of the average fixation probability of mutants on the
initial number of malignant mutations. (a) The average fixation probability over the
expected probability under neutrality (#), and (b) the average fixation probability, in terms
of initial number of mutants (for the bimodal fitness distribution). In both subfigures, the
total population size is assumed to be N = 100 and each each point represents the result
of stochastic simulation for a given 1 <7 < 100 and error bars are the standard deviation
of mean for a set of 3 iterations, each with 20,000 realization.
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Appendix B

Evolutionary Mechanism of
Colorectal /Intestinal Cancer

B.1  Analytic tools

We denote the number of wild-type (w.t.) and mutant stem cells in the S, group respec-
tively by b and b*, in the S. group by e and e*, in the D, group by d and d*, and finally in
the D; compartment by f and f*. In addition d** and f** are respectively the number of
TA and FD immortal cells. We also assume that the fitness of mutant cells and immortal
cells are respectively r; and rs.

In this model at each updating time step, two Dy cells die. For each of these deaths,
with probability f*/(f+ f*), one mutant Dy cell dies and with probability f/(f + f*) one
wild-type (w.t.) Dy cell dies. Then, two randomly chosen cells divide according to the
following algorithm:

e With a probability of A¢, two Dy cells divide. For each of these divisions, with

probability m, one mutant D; cell divide and with probability v one of
its children becomes immortal cell. However, with probabilities m and

m, respectively one immortal and one wild-type Dy cell divides. Or,
e With a probability of (1 — /\f)#m or (1 — )\f)m, respectively one

immortal TA cell differentiates to two immortal FD cells or one normal TA cell differ-

entiates to produce two w.t. Dy cells. However, with probability (1 — X f)m,
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one mutant TA cell divides and with probability u, one of its newborn daughter cells
becomes an immortal FD cell, i.e. dedifferentiation happens, while the other offspring
is a mutant TA cell. However, with probability 1 — u, both newborn individuals are
mutant fully differentiated cells. Then one of below scenarios occurs

— With probability (1 — Ay), one TA cell proliferates. This is the proliferation of
a wild-type TA cell with a probability of to produce one w.t. TA

rod**

cell, or the proliferation of immortal TA cell with a probability of P T
produce one immortal TA cell. Or with probability ijdw, the proliferation
of a mutant TA cell occurs, then with probability u one of the newborn members
is immortal TA cell and the other one is mutant TA cell and with probability

1 — u both are mutant TA cells. Or,

— with probability A,, one stem cell divides in the following way:

to

* One mutant S, stem cell divides asymmetrically and makes one mutant TA

cell with probability (1 — J)ngfib. With probability (1 — a)ﬁ, one w.t.

Sy stem cell divides to generate one w.t. cell in the D, compartment. Or,

*x with probability & ﬁ, one wild-type S, stem cell differentiates to gener-
r1b*

ate two wild-type TA cells. However, with probability ¢§ g one mutant
border stem cell differentiates to make two mutant TA cells. Or,

* with probability 1 — ¢ proliferation happens in the stem cell niche.

- With probability Ve ONe normal S, cell proliferates to produce one

normal stem cell in the S, group. Moreover, with probability Virertes
one mutant stem S, cell proliferates to generate one mutant S. cell.
Then with probability = one random w.t. stem cell from S, migrates
to the Sy. In addition, with probability -~ one mutant S, cell migrates

e+e*
to the S, compartment. Or,

- with probability (1— fy)rlb—ljer, one wild-type S, cell proliferates to make

one wild-type stem cell in the S, compartment. However, with proba-

bility (1 — 7)7,17";5’;1) one mutant S, cell proliferates to generate another

mutant S cell.

More precisely, o is the probability of symmetric division in stem cell niche, while 9§ is
the probability of differentiation in the S, compartment in the case of symmetric stem cell
division. Moreover, v is the probability of proliferation in the S. compartment, when a
stem cell proliferates. Moreover, s is the probability of choosing fully differentiated cells
for birth event (see Figure 5.1), while A, is the probability of division in the stem cell niche.
Figure B.1 and B.2 reveal different steps of the procedure in details.

155



B.2 Evolutionary dynamics of colorectal /Intestinal can-
cer

In this model, the total number of stem cells in the S, and S, compartments (separately)
remain approximately fixed, which means that homeostasis controls each stem cell compart-
ment’s size. Moreover, the other two compartments of progenitor and fully differentiated
cells are subject to the same assumption and their sizes remain approximately unchanged
through the evolutionary dynamics of the system. Therefore, we have a 6-dimensional
multi—variable Markov model as the system of random movements over possible states
(e*7b*’d*’d**’ f*’ f**)

We denote the probability of moving from the state a to the state b in one time step by
P, where a,b € {(e*,b*,d*, d*, f*, f**}. For simplicity, indexes a and b only includes the
parameter(s), which are changing. For example, the probability P« .« is the probability
of moving from the state, which has e* number of S. mutants, to the state that has
e* + 1 number of S. mutants in one time step, while the number of the other mutants
(b*, d*, d*, f*, f**) has not changed. All possible non-zero transition probabilities are listed
as follows.

B.2.1 Transition Probabilities

(1) Ppeospein = <f+f*> {22 (£) (&£
F1 =) B (1= w) [(1=2) 2

) (1=} + F

(1—u)+ A (1 —0)

) Prop = it (M (3 +<1—Af)%[(1—As)%+AS<1—U)RLb
—i—)\sa(5%+(1—6)(1—7)%+(1—5)7%efe*)]}+(%>2 (20, L85 (1 - o))

2

(3) Prsgorn = (H—fff Dy 2 (- )]
H1=2) =) [(L=A) B (-0 + A (- 0) %},

(4) Ppeyr2 = (#)2
Ao (5% +(1-06)

—~ I~
>
<
—
S
N—
[\
—~
[
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>
>
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i
|
>
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>
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2
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(a) Step 1: Death event in Df compartment

(b) Step 2: Birth event D& Dy compartments
Two Divisions
7 nf”
7/ nf 7
F d rpd”
B 5/ gE\ 2
. -= 1-v v . 1 D
f ‘ m .. . = u .
1 1 1 . !
GiGHG as @ o

[} [}
e O

Figure B.1: The cartoon figure of the possible death and birth. The sub-figure
(a) represents the three possible death in the D; compartment. The sub-figure (b) shows
the probable divisions occurring in either Dy or D, compartments to replace the dead
cells. With a probability of A divisions occur in the D;. Otherwise the replacements
can be the result of divisions in D, population with a probability of 1 — As. We have
D=rod™*+mrd +dand F=ry [ +r f*+ f.

* r * r *ok * 2 r *
©) Prepeorsgon = i (230 (B) (F v+ 29} (75) {2 (3 0 -0)

157



Step 2&3: Continuation on Birth event

Divisions

/‘lS 1—0 (Asymmetric|
Division

(Symmetric

. 5; Division I 1-§
l ( Proliferation | nb
l i .. |Differentiation

Figure B.2:

= W=

Migration

= 8

A representative cartoon picture representing the hierarchy of
divisions occurring in the D,, S,, and S. compartments as a continuation to the
birth events. Figure (a) reveals a continuation to the second step where all the possible
cases happen in the D;, Sy, S. compartments. A cell divides in the D; population with a

probability of 1 — A,, and with a probability of A in the S, or S. compartments.

sub-figure (b) indicates the possibilities of migration from the S, compartment to the Sj.
Considering D and F as those defined in the preceding figure, in this figure, we assume

R.=rie*+eand Ry =r b* +b.
<[54

(6) Pre pomsprst prosr = <f+f*> {22 (B (1 =) [BF o+ 25
F1= A B (1= A) BE (1= w) + A (1 - o) 5]}

mL b (1= A) B (1= A)

D) Progeosasen = () A (5) [0+ 2]

2
(8) Pprarosprizd—1 = (#) {(1 — M)
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where F, D, Ry, R, are defined in the following

R. = rie +e,
Ry, = rb +0b,
D = rod™ +rid +d,
F = rfY+riff+f.

B.3 Fixation Probability

The structure of the model comprises a wide variety of different scenarios which may occur
in the system. Therefore, to conclude a specific probability of fixation, different mechanisms
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may need to be taken into account. Signifying the long-term behavior of the system after
initiation of a mutant within compartments, would assist us to understand the epithelial
cell dynamics in colorectal and intestinal cancer. Even though there might be a chance for
new mutations, according to the long time-scaling of mutations in compare to the the period
required for the dynamics of mutants as late of absorption. Moreover, since the washed
out mechanisms within the crypt eliminates new mutants, one may investigate dynamics
of newborn mutants in a specific compartment without any new mutations (forward or
backward mutations), i.e. w = v = 0. Such a scenario, in turn, will help us to understand
the survival chance of one mutant in each compartment as well as the fixation probability
of mutants, which may subsequently appear in the other compartments as a result of
mutants’ division. Therefore, in this section we study the fixation probability of a mutant
in a given compartment. To investigate the survival probability of a mutant in a particular
population, we calculate the probability that the progeny of mutants will take over the
whole compartment. We denote the probability of absorption of j number of mutants in a
population of size N > j by 7;, then the probability of one mutant’s progeny taking over
the entire population (1) can be obtained using the following system of equations.

( Wj:ZPj_mwm, 1<j<N-—-1,

™ = Pl—)mﬂ—ma
> .

TN-1= Pny_15n + E P T,

m<N—1

. 7TN:1.

Here, P;_,,, is the probability of transition from state j to state m and the initial condition
is to have only one mutant of a certain type while there exist no other type of mutants in
the system.

The analytic results, which are based on the transition probabilities derived in the
previous section, are in a perfect agreement with the simulation results. Therefore, we
can rely on simulation results to investigate more complicated scenarios for our generalized
multi-compartmental model. A general mechanism for higher dimensional Markov chains
is given in Chapter 2, Section 2.1.2.
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