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Abstract 

Load-bearing cold-formed steel (CFS) wall systems are commonly constructed with CFS C-shape studs 

with one or two layers of fire-rated sheathing attached to both sides. In practice, perforations are placed 

in stud webs to accommodate the passage of utilities or installation of intermediate braces. These walls 

may fail by local buckling at the web perforations, combined with studs bending towards the furnace, 

as demonstrated by several full-scale fire tests. Current understanding of fire performance of such walls 

with web-perforated studs remains relatively limited, and the effect of web perforations on the fire 

resistance have not yet been accounted for in current design methods.  

Finite element analysis (FEA) using the software ABAQUS, an alternative to full-scale fire tests, 

was employed to investigate the heat transfer and structural responses of CFS walls. Three-dimensional 

heat transfer models were developed and validated with full-scale fire tests. Parametric studies 

demonstrate that for insulated CFS walls, web perforations induce a larger temperature gradient in 

perforated cross sections than in the solid ones along the stud length; however, for non-insulated CFS 

walls, the effect of web perforations on the temperature distributions in stud cross sections is negligible. 

Sequentially uncoupled 3D FE thermal-stress models were developed to evaluate the fire 

performance of load-bearing CFS walls with web-perforated studs. These walls were partially insulated, 

sheathed by double layers of MgO board or Type C gypsum board, and by mixed Type X and MgO 

board. Unlike in previous studies, temperature distributions incorporated into the structural model were 

obtained from heat transfer analysis so as to include the difference in temperature distributions caused 

by web perforations. Three models were developed: (1) a CFS wall stud model, as in previous studies. 

The predicted failure time is acceptable when compared with that of full-scale fire testing. (2) a CFS 

wall frame model. Stiffness and force interactions among the CFS wall studs were considered. The 

middle few studs of the wall frame may bear higher loads than that applied to a single stud, 

demonstrating that the single stud model may overestimate fire resistance. Thus, the stiffness and force 

interactions should be considered in the FEA to achieve better accuracy. (3) a CFS wall system model. 

Sheathing, attached to CFS wall framing, may enhance the load carrying capacity of walls. Such an 

increase in load carrying capacity is permitted and can be evaluated in the design of CFS walls at 

ambient temperature. However, the effect of using sheathing to brace to wall studs has not been 

investigated at elevated temperature. Modelling sheathing using shell element, in addition to the CFS 
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wall frame, provides more realistic prediction of the structural response of full-scale fire tests than the 

above-mentioned two models.  

A simplified design method is extended for CFS web-perforated studs in walls, subjected to standard 

fire, based on effective width method as stated in the North American Specification for the Design of 

Cold-Formed Steel Structural Members (AISI S100). CFS wall studs are subjected to combined 

compression and bending due to neutral axis shift, thermal bowing and their magnification effects. A 

plate buckling coefficient, accounting for the web perforation length and width, is introduced to 

characterize the nominal axial strength. The effect of web perforations on the nominal flexural bending 

is ignored, as is consistent with AISI S100 (2012) at room temperature and parametric study results at 

elevated temperature. The limit of web perforation length is extended from the 114 mm, specified in 

AISI S100 at room temperature, to 130 mm at both room and elevated temperatures. The accuracy of 

the proposed design equations is acceptable when considering the complexity of the problem being 

dealt with and the simplicity of the calculation. 
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Chapter 1 Introduction 

1.1 Background 

Cold-formed steel (CFS) wall systems are increasingly being used in low- and mid-rise building 

structures. CFS wall systems are commonly constructed by CFS C-shape wall studs lined with one or 

two layers of sheathing on both sides, often with interior insulation. During fire events, load-bearing 

CFS wall systems serve as fire-resistant barriers that play an important role in sustaining applied loads, 

maintaining structural integrity, and controlling the spread of fire from the room of origin to adjacent 

compartments. Normally, the CFS C-shape wall studs are under concentrically compressive loads at 

ambient temperature. When exposed to fire attack, usually from one side, the CFS C-shape studs are 

subjected to highly non-uniform elevated temperature distributions on their cross sections, as shown in 

Figure 1.1(a). There is a steep temperature gradient from the fire-exposed side to the unexposed side 

along the web, and also a temperature gradient along the flanges since heat is dissipated rapidly from 

the thin-walled steel studs to the surrounding material. Such non-uniform temperature distributions 

induce bending in the studs. Consequently, the axially loaded CFS wall studs are subjected to a 

combination action of axial compression and flexural bending, which complicates the evaluation of 

their structural performance. Firstly, the neutral axis of the stud cross-section shifts from its original 

position, due to the non-uniform distribution of strength and stiffness throughout the stud, as shown in 

Figure 1.1(a). Secondly, thermal bowing (eΔT) and magnification effects (epΔT) are induced due to the 

elevated temperatures, as shown in Figure 1.1(b) (Alfawakhiri, Sultan, & MacKinnon, 1999). The 

foregoing effects caused by non-uniform temperature distributions will compound the already complex 

structural behaviour of CFS studs, which are already vulnerable to local buckling, distortional buckling, 

global buckling, as well as complex boundary conditions.  

In practice, CFS C-shape studs are perforated to allow electrical, plumbing, and heating passages 

through walls and ceilings. During fire, the non-uniform temperature distribution and structural 

behaviour of web-perforated CFS wall studs are more complicated than those of unperforated steel 

studs. Alfawakhiri’s (2001) experimental study on laterally braced load-bearing CFS wall systems with 

web-perforated studs under standard fire found that CFS wall studs failed by local buckling at the web-

perforated regions.  
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(a) Temperature distribution simplification proposed by  (Feng, 

Wang, & Davies, 2003c) and neutral axis shift (eΔE) 
(b) Thermal bowing (eΔT)  

and magnification effects (epΔT) 

Figure 1.1 Behaviour of CFS wall studs exposed to fire from one side 

Two approaches may be used to demonstrate structural fire safety of CFS walls: (1) prescriptive 

approach, in which fire resistance rating of CFS walls (45 min., 1 hr., 1.5 hr. or 2 hr.,etc.) is primarily 

based on specifying the number of layers and thickness in each layer of fire protection sheathing, and 

the percent of design load. (2) performance-based approach; that is, the behaviour of the CFS walls in 

fire is explicitly assessed. But challenges exist in the latter one, such as more realistic fire models; more 

accurate thermal properties; three-dimensional heat transfer models including detailed wall components; 

verified coupled thermo-mechanical models at system level; performance-based design method; etc. 

(Abreu, Vieira, Abu-Hamd, & Schafer, 2014). 

Although the performance-based fire resistance design guidelines for hot-rolled steel members are 

well-established, they are not applicable to CFS wall studs that are susceptible to various buckling. 

Several fire design recommendations based on effective width method (EWM) are proposed for CFS 

wall studs without web perforations, subjected to non-uniform temperature distributions under standard 

fire. These recommendations have been adopted for the American Iron and Steel Institute (AISI) design 

provisions (Gerlich, Collier, & Buchanan, 1996; Klippstein, 1980), Eurocode 3 (Feng & Wang, 2005; 

Kaitila, 2002; Ranby, 1999; Zhao et al., 2005) and Canadian cold-formed steel design rules 
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(Alfawakhiri, 2002). Unlike the abovementioned design method, Shahbazian’s (2013) equations is 

based on direct strength method (DSM). However, little research has been undertaken to investigate 

the performance of load-bearing CFS walls with web-perforated studs subjected to standard fire. In 

addition, only limited research is exploring the behaviour of perforated CFS wall studs at both ambient 

and elevated temperatures.  

1.2 Research objective and scope  

The research described in this thesis is undertaken to clarify the thermal and structural performance of 

CFS walls with web-perforated studs under standard fire. The ultimate goal is to propose a simplified 

design method to evaluate the fire resistance of steel studs with web perforations in CFS walls exposed 

to standard fire from one side. The scopes of this research are as follows: 

 investigating the effect of web perforations on the compressive strength of C-shape CFS stub 

columns at ambient temperature, and accessing the applicability of DSM for calculating the 

ultimate strength of CFS studs with web perforations; 

 evaluating the effect of web perforation length and load ratio on the failure time of steel studs in 

CFS wall segment exposed to standard fire  from one side using finite element analysis; 

 investigating the temperature distributions of steel studs with varying web perforation length in 

CFS wall segment exposed to standard fire  from one side using finite element analysis; 

 developing sequentially uncoupled thermal-stress finite element models, featuring heat transfer 

and stress analysis, for load-bearing CFS walls with web-perforated studs under standard fire; 

three models, i.e., single CFS stud mode, CFS wall frame model and CFS wall system model, 

are discussed; 

 proposing design equations, accounting for the presence of web perforations, for evaluating the 

fire resistance of web-perforated studs in CFS walls exposed to standard fire from one side. 

1.3 Thesis organization 

This thesis includes the development of sequentially uncoupled finite element thermal and structural 

analysis and proposes design equations for evaluating the behaviour of CFS walls with web-perforated 

studs subjected to standard fire. The thesis is organized into seven chapters as follows: 
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 Chapter 2 reviews selected previous studies on the performance of CFS wall systems subjected to 

standard fire. 

 Chapter 3 investigates the effect of web perforations on the behaviour of C-shape studs at ambient 

temperature, and uniform and non-uniform cross-sectional elevated temperatures.  

 Chapter 4 conducts a three-dimensional finite element analysis to trace the heat transfer process of 

CFS walls with web-perforated CFS studs subjected to standard fire. The thermal models of CFS 

walls are validated using data from full-scale fire tests. The temperature distribution within CFS 

studs of varying web perforation lengths are investigated.  

 Chapter 5 investigates the thermal and structural performance of CFS load-bearing walls with C-

shape studs with web perforations subjected to standard fire. Sequentially uncoupled 3D FE 

thermal-stress analysis is carried out, in which the heat transfer analysis is conducted to obtain the 

temperature distribution of an entire CFS wall. In the subsequent structural analysis, a CFS wall 

frame rather than a single stud is modeled to achieve system-level structural responses. 

Additionally, sheathing, modelled using both shell element and in-plane lateral restraint, is 

discussed. The finite element analysis results are compared with those from full-scale fire tests. 

 Chapter 6 develops a simple method for quantifying thermal performance and proposes design 

equations based on AISI S100 to evaluate the fire resistance of web-perforated studs in fully 

insulated CFS walls exposed to standard fire; 

 Chapter 7 concludes the thesis, and provides recommendations for future research. 
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Chapter 2 Literature Review 

Presented in this chapter is a literature review that covers a range of the must-relevant research papers, 

reports and theses on the fire performance of CFS wall systems.  

2.1 Experimental research 

In this section, some of previous experimental studies of full-scale load-bearing CFS walls under 

standard fire conditions are presented in chronological order.  

Gerlich (1995), Gerlich, Collier, and Buchanan (1996) conducted three tests on non-insulated load-

bearing CFS wall specimens exposed to ISO 834 fire (1975). All the test specimens generally failed by 

buckling of the compression flange of steel studs on the ambient side of the wall systems. A model to 

predict the failure time was proposed. The process of the prediction consisted of a heat transfer analysis 

of using computer software TASEF (Sterner & Wickstorm, 1990) and a structural analysis using self-

developed spreadsheets.  

Kodur and Sultan (2001) studied the effect of various factors influencing fire resistance of laterally 

braced load-bearing CFS wall systems with 14 full-scale CFS wall specimens. All the tests were 

performed based on the standard procedures stipulated in CAN/ULC S101-M89 (1989). The results 

showed that CFS wall specimens failed structurally as a result of local or overall buckling, and the 

insulation type and stud-spacing significantly influence the fire resistance of steel stud wall systems. 

Alfawakhiri (2002) conducted three standard fire resistance tests of laterally braced load-bearing 

CFS wall specimens. The effects of cavity insulation, resilient channels, and stud spacing on the fire 

resistance of CFS wall systems were investigated. All the CFS wall specimens exhibited structural 

failure as a result of overall buckling of wall studs at elevated temperature. The dominant failure mode 

of the studs for non-insulated walls was the buckling of the flange exposed to ambient temperature near 

mid-height and bending towards the furnace, while the failure of studs for insulated walls was the 

buckling of the flange exposed to elevated temperature at the location of the bottom web perforation 

and bending away from the furnace for insulated walls. This was because the existence of cavity 

insulation changed the temperature gradient across the stud sections in the wall thickness direction. 

Similar to that was found by Kodur and Sultan (2001), Alfawakhiri also concluded that the cavity 

insulation was detrimental to the fire resistance of load-bearing CFS walls. In Alfawakhiri’s study, each 
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stud had four web perforations, and the studs failed by local buckling at the locations of web 

perforations.  

Feng (2004) carried out eight full-scale tests of load-bearing CFS wall systems, of which two were 

at ambient temperature and six were exposed to the standard fire condition from one side. Load ratios 

of 0.2, 0.4, and 0.7 were considered in this study. The temperature development in the steel studs was 

found to be independent on the applied loads in the CFS wall systems. The failure mode of the CFS 

wall studs for all the tests was global buckling about the major axis with some torsion on the fire-

exposed side, except for one test failed by local buckling at the top. This was mainly because the 

unexposed gypsum boards were able to prevent lateral restraint for CFS wall studs about the minor axis 

during the whole fire tests. The failure times of CFS wall systems with thinner thickness of steel studs 

was found to be less than those of wall systems with thicker studs. 

Sultan (2010) conducted 41 full-scale wall fire resistance tests in accordance with ULC-S101 

standard fire exposure at the National Research Council of Canada. These tests, including CFS stud 

walls and timber stud walls, aimed to determine the gypsum board fall-off temperature criterion, which 

was based on the sudden temperature rise measured on the back side of the fire-exposed gypsum board 

caused by its falling-off or sagging. Little difference in the fall-off temperatures was observed for wall 

systems with a single layer or double layers of gypsum boards, with and without insulation in wall 

cavity and with different screw spacing.  

Kolarkar (2010) and Gunalan (2011) conducted a total of 12 full-scale fire tests of non-laterally 

braced load-bearing LFS walls with cavity insulation or external insulation subjected to ASTM E119 

fire (2002). Glass fibre, rock wool and cellulosic fibre were used as the insulation materials. Test results 

showed that CFS wall systems with external insulation, as shown in Figure 2.1, provided considerably 

increased failure time and smaller lateral deformations than those with cavity insulation. Similar to that 

was found by Feng (2004), the temperature gradient in the steel studs was found to be independent on 

the applied loads in the CFS wall systems. 

 

Figure 2.1 CFS wall systems with exterior insulation (Kolarkar, 2010) 

Insulation Studs Cavity Studs Gypsum boards 
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Xu (2011) conducted 16 full-scale tests of laterally braced load-bearing CFS wall systems with 

perforated studs subjected to ISO 834 fire (1999). The objective of these tests was to investigate for the 

application of laterally braced load-bearing CFS walls with web-perforated studs in mid-rise buildings. 

The effects of various lining materials, such as MgO boards and gypsum boards (Type C and Type X), 

on the fire resistance were also studied. In particular, fire test specimens with lining material mainly 

composed of MgO board, diamon lath and stucco with wine mesh on the fire-exposed side or both sides 

were investigated. 

Chen and Ye (2013) carried out six full-scale CFS wall specimens with double layers of lining 

materials on both sides, of which the insulation material of Aluminum silicate wool was used as external 

insulation on the fire-exposed side while no external insulation was used on the ambient side. Five 

types of lining materials were used in the experiments, including gypsum board, bolivian magnesium 

board, oriented standard board (OSB), autoclaved light weight concrete (ALC) board, and rock wool 

board. Similar to Kolarkar (2010) and Gunalan (2011), test results showed that the failure time of load-

bearing CFS wall systems was greatly increased due to external insulation. Results also demonstrated 

that the CFS walls attached with bolivian magnesium boards or ALC boards had superior fire 

performance to those attached with gypsum boards or OSB boards in mid-rise buildings. 

 

Figure 2.2 CFS wall systems with exterior insulation (Chen & Ye, 2013) 

2.2 Thermal modelling 

Since the temperature distributions in the steel studs are independent with the applied axial loads; thus, 

the developed analytical and finite element heat transfer models can be used to predict the temperature 

distributions of both non-load-bearing and load-bearing CFS wall systems.  

2.2.1 Analytical thermal modelling 

Klippstein (1978, 1980) first proposed an analytical method to predict the time of structural failure for 

load-bearing CFS walls subjected to standard fire. One-dimensional heat transfer models were 

developed to predict the temperature distribution across the steel studs of CFS wall systems without 

External insulation Studs Cavity Studs Lining materials 
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cavity insulation (Collier, 1996; Sultan, 1996) and with cavity insulation (Kodur & Sultan, 2001; 

Shahbazian & Wang, 2014). Chen and Ye (2013) improved the convergence of the one-dimensional 

thermal response models by using the Gauss-Seidel method to solve the governing equation. In all the 

above proposed  models, except for Shahbazian and Wang’s model (2014), the presence of the thin-

walled CFS steel frame was neglected because the argument that the CFS frame plays a minor role in 

the heat transfer mechanism. 

2.2.2 Finite element heat transfer analysis 

Gerlich (1995), Alfawakhiri (2001) and Gunawan (2011) performed heat transfer analyses to predict 

the temperature distributions associated with time variation for CFS wall systems exposed to standard 

fire conditions using computer programs TASEF (Sterner & Wickstrom, 1990), TRACE (Alfawakhiri, 

2001) and SAFIR (2004). Good accuracy was reported based on the results obtained from the programs. 

Jones (2001) investigated the performance of CFS and light timber frame wall assemblies lined with 

gypsum boards subjected to real building fires using SAFIR.  

Feng et al. (2003c) conducted heat transfer analyses of non-load-bearing small-scale CFS stud wall 

systems by using the finite element software ABAQUS. A parametric study was also carried out to 

examine the thermal performance of different steel stud systems. This study assumed a uniform 

temperature distribution along the stud length and perfect contact between the interior insulation and 

the steel sections. Feng, et al. (2003c) concluded that ABAQUS could be used to simulate the 

temperature distributions in CFS wall systems under standard fire conditions provided there was no 

integrity failure of the gypsum boards, including cavity radiation, by adopting appropriate thermal 

boundary conditions and thermal properties. It was also found that the temperature profiles of steel stud 

wall systems were not affected much by the shape of the CFS cross section. The effect of lips on 

temperature distribution can be ignored when the flange width is small. It was found that the thermal 

performance of CFS wall system was not significantly affected by the types of interior insulation and 

the shape of the CFS cross section. Temperatures of the steel section of a CFS stud panel system depend 

primarily on insulation panels on the fire-exposed side. However, it was noticed that cavity insulation 

was beneficial to the fire resistance of load-bearing CFS walls, which contradicted the conclusion that 

is found by Kodur and Sultan (2001) and Alfawakhiri (2001). 

Zhao et al. (2001) investigated the validity of different computer programs such as ABAQUS, 

ANSYS, FLUENT. The results obtained from the programs are in consistency with a good accuracy. 
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It was concluded that all the computer programs were capable for heat transfer analysis once one of 

them is validated against tests. In this investigation, it was assumed that conduction is the primary heat 

transfer mechanism in the steel studs and gypsum boards. Convection and radiation acted essentially 

for heat transfer from fire to gypsum boards. For the reason of simplicity, radiation effects within the 

gypsum boards were neglected. In numerical models, nonlinearity due to temperature dependency of 

material properties and boundary conditions were taken into account. The height and the cross-section 

size of the stud were considered as parameters affecting the thermal behaviour. However, the mass 

transfer in materials such as moisture movement was not simulated. 

2.3 Finite element structural modelling 

Finite element analysis has been carried out to investigate the structural behaviour of load-bearing CFS 

wall systems under fire conditions and to determine their fire resistance rating using ABAQUS by many 

researchers. The FEAs of CFS wall studs under fire conditions were conducted under two conditions, 

namely steady state condition (Feng et al., 2003c; Gunalan & Mahendran, 2013) and transient state 

condition (Feng et al., 2003c; Gunalan & Mahendran, 2013; Kaitila, 2002; Zhao et al., 2005). In 

modelling steady state, the non-uniform temperature distributions in CFS cross section were raised to 

the target levels and maintained. An external axial load was then applied to the stud in increments until 

failure. In modelling transient state, the target load was first applied based on the specified load ratio, 

after that the measured time-dependent non-uniform temperature distributions in the stud were 

incorporated.  

Kaitila (2002), Feng et al. (2003c), and Gunalan and Mahendran (2013) used a rigid plate at each 

end of the stud to simulate pinned support conditions. The reference point for the rigid plate was the 

original centroid of the gross cross section. Zhao et al. (2005) considered two support conditions. In the 

first case pinned support condition was assumed for both ends, whereas in the second case fixed support 

condition was used in one end while pinned support condition was used at the other end. The connection 

of CFS stud to gypsum boards was simulated by restraining the lateral displacement of both flanges at 

screw spacing intervals along the length of the stud. That is, gypsum boards on both sides of the CFS 

wall stud were assumed to be effective in restraining the stud from flexural buckling about the minor 

axis and torsional buckling until failure. This assumption was adopted by other researchers as well 

(Feng et al., 2003c; Gunalan & Mahendran, 2013; Kaitila, 2002; Zhao et al., 2005).  
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Three simplifications of non-uniform temperature distributions in CFS wall stud were adopted by 

the foregoing researchers in the FEAs as shown in Figure 2.3. In the first simplification, the lip and 

flange elements had the uniformly distributed temperature with same magnitude whereas the 

temperature distribution associated with the web is linear. In the second simplification, linear 

temperature distributions were assigned to all the three elements. In the final simplification, the lip 

temperature was taken as equal to that of the web at the corresponding height, the flange temperature 

was assumed to be a constant while the web temperature distribution was bilinear which decreased 

linearly from hot flange to the center of the web, and then further reduced linearly from the center of 

the web to the cold flange at a lower rate. The foregoing simplifications of non-uniform temperature 

distributions were adopted to develop manual- based methods to evaluate ultimate strength of CFS wall 

studs under fire, since the real temperature distribution in different elements of a CFS stud was highly 

non-uniform as shown from fire tests. Based on Feng et al. (2003c) and Gunalan and Mahendran (2013), 

the first simplification can yield the results with good accuracy in FEAs.  

 

   
 

(a) Simplification 1 

(Feng et al., 2003c; Gunalan & M

ahendran, 2013; Kaitila, 2002) 

(b) Simplification 2 

(Feng et al., 2003c) 

(c) Simplification 3 

(Zhao et al., 2005) 

Figure 2.3 Non-uniform temperature distributions in CFS wall studs for FE modelling 

In Zhao et al.’s (2005) study, the average measured temperatures at the mid-height of all the studs 

were used in the numerical simulations. In Gunalan and Mahendran’s (2013) investigation, the studs 

that had a vertical joint of gypsum boards were modeled as the studs were subjected to higher 

temperature due to the opening of gypsum board joints which could initiate the failure of the CFS wall 

systems during the fire test. Also, Gunalan and Mahendran’s (2013) research adopted the average 
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measured temperatures at three different height locations (top, mid and bottom) of each single critical 

stud. This could eliminate the sharp rise and fall in deformation-time curves of the stud.  

The initial geometrical imperfection does not have any noticeable effect on the behaviour of studs 

due to the dominance of thermal bowing according to Feng et al. (2003c), and Gunalan and Mahendran 

(2013). The residual stresses in steel studs were found to be unimportant in the FEAs under fire 

conditions by all the researchers (Feng et al., 2003c; Gunalan & Mahendran, 2013; Kaitila, 2002; Zhao 

et al., 2005). 

The FE models of CFS wall studs developed by Zhao et al. (2005), and Gunalan and Mahendran 

(2013) were validated with test results and shown a good accuracy. However, Kaitila (2002) and Feng 

et al.’s (2003c) models for CFS wall studs under transient conditions were not validated against relevant 

experimental results. Though the accuracy of these two models could not be validated, the failure time 

and deformation curves obtained from these FEAs were found to be in a good consistency with the 

FEA results obtained by Zhao et al. (2005) and Gunalan and Mahendran (2013). 
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Chapter 3 Behaviour of Web-Perforated CFS C-shape Studs at 

Ambient and Elevated Temperatures 

3.1 Introduction 

For ambient temperature, load-bearing CFS wall stud design in the North American is generally based 

on AISI S100 (2012) provisions. In the main specification of AISI S100 (2012), the width and length 

of a perforation are limited to be no more than 63.5 mm and 114 mm, respectively; and the strength 

determination of a stiffened element (e.g., the web of a C-section) with noncircular perforations is based 

on the traditional effective-width based method, that is, considering members as assemblages of 

individual elements often subject to local buckling. In Appendix 1 of AISI S100 (2012), the Direct 

Strength Method (DSM) provides an alternative procedure for determining the strength of CFS 

members, and extends the limits on the perforation size, shape and spacing. The DSM based approach 

utilizes finite strip analysis which accounts for the influence of perforations on predicting the elastic 

buckling loads of a stud, and then substitutes the obtained elastic buckling loads into a set of 

compressive strength prediction equations to determine the stud strength. However, only a limited 

number of tests have been carried out to validate the accuracy and generality of the DSM equations in 

AISI S100 (2012).  

Used as wall studs, cold-formed steel (CFS) C-shape studs are often enclosed with insulation in the 

wall cavity and protected by gypsum boards on both sides. Pre-punched web perforations in studs 

accommodate the passage of utilities and installation of intermediate braces in practice. A CFS C-shape 

stud in a CFS wall is subjected to non-uniform cross-sectional distribution of elevated temperature 

when the wall assembly is exposed to fire attack from one side. Consequently, the stud fail by a 

combination of axial compression and bending actions due to thermal bowing, magnification effects 

and neutral axis shift. Due to the existence of web perforations, the non-uniform temperature 

distributions and structural behaviour of CFS wall studs become more complicated than those of steel 

studs without perforations at elevated temperatures during fire events. The complexity associated with 

perforation shape, size, and spacing has created a challenge in determining the compressive strength of 

CFS C-shape studs with web perforations. Currently, research on the behaviour of web-perforated CFS 

wall studs at elevated temperatures is limited.  
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Presented in this chapter are experimental and finite element studies on web-perforated CFS wall 

studs under various conditions. First, at ambient temperature, the experimental investigation of CFS C-

shape stub columns with web perforations at varying lengths (Xu, 2014) are reported. The efficiency 

and accuracy of DSM in predicting the ultimate compressive strength of such columns is verified 

through a comparison with test data (Xu, 2014). Second, finite element analysis (FEA) is carried out to 

investigate the behaviour of CFS C-shape stub columns with web perforations at uniform cross-

sectional distribution of elevated temperatures, and the applicability of FEA is validated by tests (Feng, 

Wang, & Davies, 2003d). Finally, finite element analysis is performed to investigate the effect of web 

perforations on the behaviour of CFS C-shape wall studs subjected to non-uniform cross-sectional 

distribution of elevated temperatures. Sequentially uncoupled thermal-stress analysis is carried out 

under transient state condition. The non-uniform cross-sectional distributions of elevated temperature 

are obtained from the thermal analysis of insulated CFS walls. CFS C-shape wall studs subjected to the 

concentrically axial load with different ratios are investigated.  

3.2 Behaviour of CFS C-shape stub columns at ambient temperature 

This section aims to investigate the effect of the length of web perforations on the behaviour of CFS C-

shape columns. The compressive strength from CFS C-shape stub column tests (Xu, 2014) are 

compared with that calculated using the DSM approach. 

3.2.1 Stub column tests 

3.2.1.1 Stub column specimens 

To study the effect of web perforations on the compressive strength of CFS C-shape columns, a total 

of 18 stub columns were tested, six being solid sections without a web perforation, and 12 having pre-

punched web perforations. The parameters investigated were the nominal thickness of steel, t, and the 

length of web perforation, Lh. The nominal thicknesses of steel were 1.2 mm and 1.5 mm, and the 

lengths of the web perforations ranged from 0 to 130 mm. The details of specimens and perforation 

dimensions are shown in Figure 3.1 and Table 3.1, in which the first number of the designation denotes 

the length of web perforation, the second and third digits represent the steel thickness, and the number 

of the specimen in a column group, respectively.     

The specimens were fabricated with cold-formed galvanized steel. The length for all the specimens 

was selected as 490 mm for the following reasons: (i) to minimize the influence of global buckling; and 
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(ii) to ensure enough clear distance from the perforation to the end of the specimen, avoiding possible 

end effects. Both ends of the specimen were milled flat to ensure full contact between the specimen and 

the steel bearing plates. A slotted perforation, located in the center of the web, had a constant width, dh 

of 38 mm. The lengths of the perforations, Lh, were 0, 75, 114 and 130 mm. The nominal thickness of 

the specimen, t, were 1.2 and 1.5 mm. For each column group, three identical specimens were tested. 

Mechanical properties for the specimens were based on the tensile coupon tests as per the Chinese 

standard (GB/T228, 2010), which were tested at the Chang’an University, China. Three tensile coupons 

were cut longitudinally from the web of a randomly selected C-shape CFS specimen for each thickness. 

The average material properties are listed in Table 3.2, where fy, fu, Es and ν are the steel yield stress, 

tensile strength, Young’s modulus of elasticity and Possion’s ratio, respectively. 

 

Figure 3.1 Specimen profiles (Xu, 2014) 
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Table 3.1 Specimen dimensions (Xu, 2014) 

Specimen No. L (mm) H (mm) B (mm) D (mm) t (mm) R (mm) dh (mm) Lh (mm) 

0-1.5-1 

490 150 40 15 1.5 3.0 38 0 0-1.5-2 

0-1.5-3 

75-1.5-1 

490 150 40 15 1.5 3.0 38 75 75-1.5-2 

75-1.5-3 

114-1.5-1 

490 150 40 15 1.5 3.0 38 114 114-1.5-2 

114-1.5-3 

130-1.5-1 

490 150 40 15 1.5 3.0 38 130 130-1.5-2 

130-1.5-3 

114-1.2-1 

490 150 40 15 1.2 2.4 38 114 114-1.2-2 

114-1.2-3 

130-1.2-1 

490 150 40 15 1.2 2.4 38 130 130-1.2-2 

130-1.2-3 

 

Table 3.2 Mechanical properties from tensile coupon tests (Xu, 2014) 

t (mm) Es (N/mm2) fy (N/mm2) fu (N/mm2) ν 

1.2 2.03×105 235 400 0.3 

1.5 2.03×105 385 510 0.3 

3.2.1.2 Experimental setup 

Shown in Figure 3.2 is the setup of the experimental investigation. The compressive tests were 

conducted on a hydraulic compressive test frame system with a loading capacity of 2,000 kN. The load 

was applied uniformly and concentrically to each specimen through two bearing plates. The column 

cross section was restrained from lateral movement at ends by the friction-bearing conditions. The axial 

deformation of each specimen was measured with a dial gauge, and the longitudinal strains were 

recorded by four uniaxial strain gauges placed at the mid-height of the specimen. The axial load was 

applied with an increment of one-tenth of the estimated compressive strength of each specimen, and 

the smaller load increments were adopted when the specimen approached failure. 
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Figure 3.2 Experimental setup (Xu, 2014) 

3.2.1.3 Experimental results 

Shown in Figure 3.3 are the failure modes of the specimens. The typical failure mode observed was 

local buckling in the web near both column ends, together with inward distortional buckling with only 

one half-wave located longitudinally between the two ends. For the specimens showing a smooth half 

sine wave in the web near the perforation, there occurred larger out-of-plane deflection at the center of 

the web, and more localized deformation in both flanges at the mid-height of the column when 

compared to the specimens without perforation.  

The existence of the perforation degrades the transverse plate stiffness of the web, which in turn 

deteriorates the rotation restraint provided by the web to the flange. Consequently, both the web and 

flange deformations around the perforation are increased. However, owing to the possible presences of 

initial geometrical imperfections and minor misalignments in the specimens, local buckling 

concentrated in flanges and unstiffened strips adjacent to web perforations were observed in a few 

specimens, such as specimen 130-1.5-3. 
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The typical load-displacement curves for each specimen group obtained from the tests are shown in 

Figure 3.4. The differences in the ultimate strength, Ptest, among the three identical specimens for each 

group are found to be less than 7%. The length of web perforation has little influence on the ultimate 

strength. 

 

  

a) Group 0-1.5 b) Group 75-1.5 

  

c) Group 114-1.5 d) Group 130-1.5 

  

e) Group 114-1.2 f) Group 130-1.2 

Figure 3.3 Specimen failure modes (Xu, 2014) 
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Figure 3.4 Load-displacement relationships (Xu, 2014) 

3.2.2 Comparison with DSM approach 

According to the DSM approach, the nominal axial strength, Pn, is calculated as the minimum strength 

from the local, distortional, and global buckling, i.e., Pn=min (Pnl, Pnd, Pne). The limit state strengths, 

Pnl, Pnd, and Pne, are determined from Eqs. (3.1)-(3.9) for members without web perforations, and from 

Eqs. (3.1)-(3.6) and (3.10)-(3.16) for members with web perforations (AISI-S100, 2012).  

(a) Flexural, torsional, or flexural-torsional buckling 

 for  
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where 

  
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(b) Local buckling or local-global buckling interaction 

The nominal axial strength, Pnl, is calculated as the following: 
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where 

  
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(c) Distortional buckling 

For columns without web perforations,  
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 for 

0.6 0.6

0.561, 1 0.25 ,crd crd
d nd y

y y

P P
P P

P P

    
        

        

  (3.8) 

where 

  
0.5

/ .d y crdP P    (3.9) 

For columns with web perforations,  
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  (3.16) 

In the foregoing equations, λc, λl and λd are the slenderness ratios; Py and Pnet are the column squash 

loads associated with gross and net sections, respectively; and Pcre, Pcrl and Pcrd are the elastic global, 

local and distortional buckling loads, respectively. 

Due to the relatively short length of the specimens, global buckling (i.e., flexural, torsional, or 

flexural-torsional buckling) does not occur; thus, only the elastic buckling loads associated with local 

and distortional buckling modes, Pcrl and Pcrd, were investigated by finite strip analysis with CUFSM 

software (Schafer & Ádány, 2006). For members without web perforations, Pcrl and Pcrd are obtained 

from the two local minimums of the elastic buckling curve (Li & Schafer, 2010). For members with 

web perforations, Pcrl and Pcrd can be determined based on the method of Moen and Schafer (2009), 

which accounts for the influence of web perforations.  

The compressive strength of the 18 specimens obtained from the stub column tests (Xu, 2014) are 

used to assess the accuracy of the DSM approach. Shown in Table 3.3 is a comparison of the 

compressive strength obtained from the test results and predicted by the DSM approach. Among all the 

buckling limit states, local buckling loads Pnl are lowest, signifying that all the specimens were 

governed by local buckling. The ratio of local and distortional buckling loads Pnl/Pnd ranges from 0.89 

to 0.96. As the length of the perforation increases, the ratio Pnl/Pnd approaches 1.0, representing the 

intensive interaction between local and distortional buckling. When Lh=130 mm, ratio Pnl/Pnd 

approaches to 0.93 and 0.96 for specimens with thickness of 1.5 and 1.2 mm, respectively; which 

indicates sections with thinner thickness is more likely involved with the interaction of local and 

distortional buckling.  

From Table 3.3, it can also be seen that the nominal strengths of the specimens with web perforations 

evaluated by the DSM are in good agreement with those of the tests. The nominal strength Pn evaluated 

by DSM are slightly greater than the tested ultimate strength, Ptest, except in one case. The differences 

between the two are less than 9%. Thus, the DSM approach is accurate in determining the compressive 

strength of CFS C-shape stub columns with non-circular web perforations, and Lh is up to 130 mm. 
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Table 3.3 Comparison of test results with DSM approach 

Specimen 

No. 

Ag 

(mm2) 

Anet  

(mm2) 

Ptest  

(kN) 

Pne  

(kN) 

Pnl  

(kN) 

Pnd  

(kN) 

Pn  

(kN) 
Pn/Ptest  

0-1.5-1 

374 317 

76.0 

131.40 71.52 80.64 71.52 

1.06 

0-1.5-2 73.0 1.02 

0-1.5-3 74.0 1.03 

75-1.5-1 

374 317 

70.0 

131.34 71.50 78.80 71.50 

0.98 

75-1.5-2 75.0 1.05 

75-1.5-3 74.0 1.03 

114-1.5-1 

374 317 

75.0 

131.26 71.47 77.60 71.47 

1.05 

114-1.5-2 76.0 1.06 

114-1.5-3 73.0 1.02 

130-1.5-1 

374 317 

73.0 

131.23 71.46 77.10 71.46 

1.02 

130-1.5-2 76.0 1.06 

130-1.5-3 78.0 1.09 

114-1.2-1 

299 254 

42.0 

66.48 39.43 41.09 39.43 

1.07 

114-1.2-2 40.0 1.01 

114-1.2-3 40.0 1.01 

130-1.2-1 

299 254 

43.0 

66.46 39.43 40.87 39.43 

1.09 

130-1.2-2 43.0 1.09 

130-1.2-3 43.0 1.09 

 

3.3 Finite element modelling of CFS C-shape columns at ambient and uniform 

elevated temperatures 

Finite element analysis is performed to simulate the behaviour of CFS C-shape columns with and 

without web perforations at both ambient and elevated temperatures using ABAQUS (2012). In total, 

52 steady-state tests on CFS C-shape columns both at ambient and uniform elevated temperatures were 

conducted by Feng, Wang, & Davies (2003d). In this current study, 11 of those 52 specimens, from the 

Lipped channel 100×54×15×1.2 series (CFS C-shape sections), are used to develop and verify the finite 

element model. The temperature distribution of CFS columns is considered to be uniform in the cross 

section at a given temperature.  

3.3.1 Stub column tests  

Shown in Table 3.4 and Table 3.5 are the measured dimensions of the specimens exposed to different 

uniform temperatures throughout the tests. The notations included in these two tables and the specimen 

profiles are presented in Figure 3.1. The uniform temperatures range from 22 oC to 700 oC. The nominal 

length of the specimens is 400 mm. The dh and Lh are 40 mm and 100 mm, respectively.  
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Table 3.4 Nominal cross-section dimensions of specimens without perforations (Feng et al., 2003d) 

Temp.(oC) Specimen No. H (mm) B (mm) D (mm) t (mm) L (mm) 

Amb. Lip12a1 100.05 53.64 17.09 1.23 400.2 

250 Lip12b325 100.27 53.64 17.21 1.19 400 

400 Lip12c140 99.31 52.31 16.25 1.18 398 

550 Lip12c355 99.96 52.32 16.56 1.18 399 

700 Lip12d670 100.31 52.44 15.75 1.2 402 

 

Table 3.5 Nominal cross-section dimensions of specimens with perforations (Feng et al., 2003d) 

Temp.(oC) Specimen No. H (mm) B (mm) D (mm) t (mm) L (mm) 

Amb. Lip12a3 100.05 53.64 17.09 1.19 400.8 

 Lip12a4 100.05 53.64 17.09 1.19 400.4 

400 Lp12ch140 100.76 53.23 15.64 1.24 398 

 Lp12ch240 99.31 52.08 16.16 1.203 398.5 

550 Lp12bh155 99.43 51.92 16.15 1.188 399 

 Lp12bh255 99.87 51.04 16.17 1.19 399 
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Tensile coupon tests for S350GD+Z steel at ambient temperature were conducted by Feng et al. 

(2003d). The material properties are shown in Table 3.6. The measured stress-strain relationship 

indicates that cold-formed steel exhibits a gradual yielding behaviour followed by a considerable period 

of strain hardening, which is quite different from that of hot-rolled steel. Plotted in Figure 3.5 is the 

stress-strain curve at ambient temperature. The elastic stress-strain behaviour is represented by a linear 

segment up to a limit stress fp = 0.7fy, where fy is the 0.2% proof stress. The slope of this linear segment 

equals the measured elastic modulus. The gradual yield behaviour is idealised by using a bilinear 

representation with the tangent moduli E1 and E2 between the proportional limit fp and the yield strength 

fy with an intermediate point at a stress of 0.875fy. The strain-hardening behaviour is represented by a 

linear segment with a tangent modulus E3. The value of E1, E2 and E3 are 80000 N/mm2, 20000 N/mm2 

and 1/200E1. The stress-strain relationship at elevated temperatures is derived based on Eurocode 3 

Part 1.2 (BS EN 1993-1-2, 2005) as shown in Figure 3.6.  

Table 3.6 Mechanical properties at ambient temperature 

Cross-section fy (N/mm2) fu (N/mm2) E (N/mm2) 

100×54×15×1.2 410.58 526.02 186950 

 

 

Figure 3.5 Stress-strain relationship of steel at ambient temperature 

 

σ
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E
ε
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E2
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fy,θ - effective yield strength 

fp,θ - proportional limit 

Ea,θ - slope of the linear elastic range 

εp,θ - strain at the proportional limit 

εy,θ - yield strain 

εt,θ - limit strain for yield strength 

εu,θ - ultimate strain 

Figure 3.6 Stress-strain relationship of steel at elevated temperature 

3.3.2 Finite element modelling and analysis 

Each finite element analysis is carried out in two steps. First, apply a linear eigenvalue buckling analysis 

to obtain the buckling modes. Then, the lowest buckling mode derived is incorporated into the second 

step to conduct a nonlinear analysis. Feng, Wang, & Davies (2003a)  demonstrated that the compressive 

strength of CFS C-shape columns would have not been noticeably affected by initial geometric 

imperfection and the maximum initial local imperfection can be taken as the thickness of the cross 

section. Due to the test specimens are stub columns, the influence of global imperfection can be ignored. 

The round corners of the C-shape columns were simplified as rectangular ones, in which cold work of 

forming and residual stresses were ignored. 

3.3.2.1 Finite element type and mesh  

The four-node shell element with reduced integration and hourglass control (S4R) can be used in this 

study which was demonstrated by Feng et al. (2004). To study the sensitivity to mesh sensitivity, five 

mesh sizes are examined for the specimen without web perforation Lip12c355. The compressive 

strength predicted using different element sizes are provided in Table 3.7. The mesh control around 

web perforations is adopted as quad-dominated for element shape, free for technique, and media axis 

σ

εp,θ

fy,θ

fp,θ

α Ea,θ=tanα

εy,θ εt,θ εu,θ ε
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for algorithm. The element size of 7.5 mm×7.5 mm (length by width) ratio (Figure 3.7(a)) provides 

adequate accuracy with minimum computational time. For C-shape columns with web perforation, a 

finer mesh size of 5 mm×5mm (Figure 3.7(b)) is required to guarantee the accuracy. 

Table 3.7 Sensitivity study of element sizes 

Lip12c355      Compressive strength Ptest=23 kN 

Mesh size  2.5mm 5mm×5mm 7.5mm×7.5mm 10mm×10mm 15mm×15mm 

FFEA (kN)  25.53 25.73 25.90 26.61 26.75 

(FFEA-Ptest)/Ptest  0.11 0.12 0.13 0.16 0.16 

 

3.3.2.2 Boundary conditions and displacement application 

The ends of the columns were fixed against all degrees of freedom except for the axial displacement at 

the loaded end (Z direction), and the displacement was applied at each node of the loaded end to 

simulate the experimental boundary conditions (Figure 3.7(c)). The RIKS method is used to predict the 

post-buckling behaviour. 

  

 

(a) mesh (without perforation) (b) mesh (with perforation) (c) boundary conditions 

Figure 3.7 FE mesh and boundary conditions for specimen 100×54×15×1.2 
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3.3.2.3 Validation of finite element model 

The finite element model is validated by the experiments conducted by Feng et al. (2003d). Compared 

in Figure 3.8 and Figure 3.9 are the failure modes of specimens without and with web perforation 

between test and FEA results, respectively. The FEA results show that the specimens failed with a 

combination of local buckling and distortional buckling, which agrees well with the tests. 

Test 1 2 Test 1 2 

      

(a) Lip12c140 at 400 oC (b) Lip12d670 at 700 oC 

Figure 3.8 Failure modes of columns without perforations 

Test 1 Test 1 

    
(a) Lip12a3 at ambient temperature (b) Lip12a4 at ambient temperature 

Figure 3.9 Failure modes of columns with perforations 

Presented in Table 3.8 and Figure 3.10 are the comparison between test compressive strength and 

FEA results. The mean values of the Ptest/PFEA ratio are 0.91 and 0.95 for CFS C-shape columns without 

perforation and with perforation, and the standard deviations of the Ptest/PFEA ratio are 0.09 and 0.07, 
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respectively. It shows that the predicted compressive strengths are close to the test compressive strength 

below 550 oC while has a deviation of 36% at 700 oC. Since the test result at 700 oC is unreliable due 

to high temperature effect on load cell (Feng et al., 2003d), the FEA compressive strength can also be 

considered to be accurate. Thus, this comparison indicates that the FEA predicts credible compressive 

strength of CFS columns at uniform elevated temperatures. 

Table 3.8 Comparison of compressive strength between FEA and test results 

without perforations  with perforations 

Temp. 

(oC) 
Specimen 

 

Ptest 

(kN) 

PFEA 

(kN) 
test

FEA

P

P
  

 
Temp. 

(oC) 

Specimen 

 

Ptest 

(kN) 

PFEA 

(kN) 
test

FEA

P

P
 

Amb. Lip12a1 55.99 67.13 0.83  Amb. Lip12a3 54.86 60.79 0.90 

250 Lip12b325 53.16 59.64 0.89  Amb. Lip12a4 53.48 60.31 0.89 

400 Lip12c140 45.75 43.77 1.05  400 Lp12ch140 39.93 42.53 0.94 

550 Lip12c355 23.00 26.61 0.86  400 Lp12ch240 43.02 40.36 1.07 

700 Lip12d670 5.70 8.85 0.64  550 Lp12bh155 22.64 25.03 0.90 

      550 Lp12bh255 25.17 25.10 1.00 

   Mean 0.91      0.95 

   COV 0.09 (Lip12d670 at 700 oC is not included.) 0.07 
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Figure 3.10 Comparison of compressive strength between FEA and test results 
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3.4 Behaviour of web-perforated CFS wall studs subjected to non-uniform 

cross-sectional elevated temperature 

Presented in this section is an FEA on the effect of web perforations on the behaviour of cold-formed 

steel C-shape studs subjected to non-uniform cross-sectional distribution of elevated temperature with 

use of finite element analysis. The length of web perforations investigated varies from 0 mm to 630 

mm (25 in.). The non-uniform cross-sectional distributions of elevated temperature obtained from finite 

element thermal analysis of insulated CFS walls in standard fire for up to 105 minutes were employed. 

Sequentially uncoupled thermal-stress analyses were carried out under a transient state condition. 

Concentrically loaded cold-formed steel C-shape studs with load ratios of 0.6, 0.7, 0.8 and 0.9 are 

investigated.  

Using ABAQUS (2012), the FEA procedure commenced a thermal analysis to obtain the non-

uniform cross-sectional distributions of elevated temperature of a CFS column from a 600mm wide 

CFS wall section, followed by a structural analysis to investigate the behaviour of the column at 

elevated temperature. The nodal temperature at the elevated temperature obtained from the thermal 

analysis were applied as a predefined boundary condition of the FE model in the structural analysis.  

Illustrated in Figure 3.11 are the cross-section of the CFS wall segment modelled in FEA and the 

nominal cross-sectional dimensions of the CFS C-shape column at the location of web perforation. The 

modelled CFS wall segment, 600 mm in width and 3200 mm in height, consists of a CFS C-shape 

column (150 mm ×40 mm×15 mm×1.5 mm) sheathed with a double layer of 12 mm thick gypsum 

board on both sides. The 150 mm deep wall cavities are filled with glass fibre. Five web perforations 

are evenly spaced 640 mm o.c. along the height of the column. The Lh varies from 0 mm to 630 mm, 

whereas dh remains constant at 38 mm (1.5 in.). Six different Lh, i.e., 0 mm (0 in.), 130 mm (5 in.), 250 

mm (10 in.), 380 mm (15 in.), 510 mm (20 in.) and 630 mm (25 in.) are investigated. The ambient 

temperature is defined as 20 oC. The CFS walls are exposed to the standard fire curve defined by ISO 

834 (1999) for up to 105 minutes. 
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Figure 3.11 Configuration of CFS wall section 

3.4.1 Non-uniform cross-sectional temperature distribution 

Finite element thermal analysis was performed for insulated CFS walls subjected to standard fire. The 

method used to develop the FE thermal model in this study is similar to that from Section 4.4 in Chapter 

4, which was verified and calibrated with experimental tests. Shown in Figure 3.12(a) and (b) are the 

predicted temperature distribution in the CFS wall and C-shape column at 105 minutes’ fire exposure, 

respectively. The temperature of the gypsum board surface is 1023 oC on the fire-exposed side (ES), 

and 66 oC on the unexposed side (UES). The non-uniform cross-sectional temperature distribution in 

the CFS C-shape column also varies along the column height. The maximum temperature in the column 

is 654 oC. The cross-sectional views in Section 1 and 2 illustrate the temperature contours at the location 

with and without web perforation, respectively. It is observed that the temperature of Section 1 is higher 

on the hot flange and lower on the cold flange compared with the corresponding temperatures of Section 

2. The temperature distribution in the web of Section 1 also differs from that of Section 2 due to the 

presence of the perforation. 
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(a) CFS wall  

  

(b) C-shape column 

Figure 3.12 Temperature contour (Lh =380 mm): (a) CFS wall and (b) C-shape column 

Section 2 Section 1
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3.4.2 Finite element structural analysis 

The FE structural analysis was performed under a transient state condition in two steps. First, a pre-

determined axial compression load was applied as Step 1. After that, the temperature distributions 

obtained from the heat transfer analysis were incorporated in the analysis as Step-2. 

In the structural analysis, the CFS C-shape column is modeled with a rigid plate (150 mm×40 mm) 

attached to each end as shown in Figure 3.14. The reference point of the rigid plate coincides with the 

centroid of the cross section of the column. The element type and mesh of the CFS C-shape column are 

the same as those of the heat transfer model, for which correlations are required to import the 

temperature from the heat transfer analysis. A global mesh size of 15 mm is used to discretize the rigid 

plate. The time period of Step 2 is specified as 6300, which corresponds to 105 minutes. In the Step 2, 

the maximum number of time increments is 500; the initial increment size is 30; and the minimum and 

maximum increment sizes are 1×10-9 and 300, respectively. The CFS column and rigid plate are 

modeled with a 4-node shell element with reduced integration (S4R) and rigid bilinear quadrilateral 

elements (R3D4), respectively.  

When it is exposed to elevated temperature, the mechanical properties of steel deteriorate rapidly, 

consequently reducing the stiffness and strength of CFS columns. The yield strength, elastic modulus 

and Poisson’s ratio of steel at ambient temperature are taken as 345 MPa, 203 GPa and 0.3, respectively. 

Presented in Figure 3.13 is the nominal stress-strain relationship of cold-formed steel at elevated 

temperatures, which is derived base on EC 3 Part 1.2 (2005). Steel expands considerably when exposed 

to elevated temperature. Therefore, thermal bowing will be developed due to the presence of non-

uniform temperature distributions across the cross section. Hence, the thermal expansion coefficient, 

αT, of CFS at different temperatures needs to be determined for the structural analysis of CFS wall 

systems at elevated temperature. In this study, αT of CFS stipulated in Eurocode 3 Part 1.2 (2005) is 

adopted, and is the same as that of hot-rolled steel.  

Illustrated in Figure 3.14 is the load and boundary condition of the modelled CFS column. The 

column is simply supported by translational displacements; i.e., UX, UY and UZ at the lower end and 

UX and UY at the upper end are restrained. Twisting about the Z axis (URZ) is restrained at both ends. 

A target axial load is applied first via the reference node of the rigid plate at the upper end. The load 

ratio (R), i.e., the ratio of the applied load at the fire limit state and the ultimate compressive strength 

of the CFS column at ambient temperature, ranges from 0.6 to 0.9. Shown in Table 3.9 is the applied 
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axial load of CFS C-shape studs in the FE structural model. At ambient temperature, the ultimate 

compressive strength drops gradually as the perforation length increases. For example, with length of 

wen perforation Lh=630 mm, the ultimate strength of the CFS C-shape column is only about 60% that 

of a column without perforations. Initial global geometrical imperfection is accounted for through 

eigenvalue buckling analysis. The first mode shape and a magnitude of one thousandth of the column 

length (L/1000) is adopted (Figure 3.15). The time dependent nodal temperature obtained from the 

thermal analysis (Figure 3.12(b)) are incorporated into the structural model as a predefined boundary 

condition. The ambient temperature is assumed to be 20 oC.  

   

Figure 3.13 Stress-strain relationship of cold-formed steel at elevated temperature 

 

Table 3.9 Applied load at ambient temperature (Step-1) 

Lh (mm) 
Applied load (kN) 

R=0.9 R=0.8 R=0.7 R=0.6 R=0.5 

0 14.8 13.2 11.5 9.9 8.2 

130 13.3 11.8 10.3 8.9 7.4 

250 12.4 11.1 9.7 8.3 6.9 

380 12.1 10.7 9.4 8.0 6.7 

510 11.2 10.0 8.7 7.5 6.2 

630 9.0 8.0 7.0 6.0 5.0 
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Figure 3.14 Load and boundary conditions in structural analysis 

 

 

 

  

Figure 3.15 Initial global geometric imperfection (L/1000) 
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3.4.3 Results and discussions 

Respectively shown in Figure 3.16 and Figure 3.17 are the predicted external reaction force at the lower 

end and axial deformation of the column at the upper end for a CFS C-shape column with a web 

perforation Lh=380 mm (15 in.) and a load ratio R=0.9. As shown in Figure 3.17, the column shortens 

initially due to the applied axial load at ambient temperature, and then gradually expands as the 

temperature increases. However, the magnitude of the external reaction force at the lower end stay the 

same as that of the applied load until column failure occurs at 48.9 minutes. This failure is evidenced 

by the rapid increase of column deformation and sudden decrease of the reaction force at the lower end 

of the column. The corresponding end reaction force and axial deformation of the column at the failure 

is about 85% of the initially applied load and 54 mm, respectively. 

Presented in Figure 3.18 is the predicted failure mode of the CFS C-shape column with Lh=380 mm 

(15 in.) and a load ratio of 0.9. Global buckling about the Y-axis together with local failure around the 

perforation at mid-height is observed. No torsional buckling about the Z-axis occurs since the rotation 

URZ is assumed to be restrained by the presence of gypsum board on both flanges of the CFS C-shape 

studs. Thermal bowing is towards the fire-exposed side. The flange of the column on the fire-exposed 

side buckles first due to the higher temperature, and results in rapid degradation of both the stiffness 

and strength of the flange. The flange on the fire-unexposed side bears an increasing load and fails as 

a consequence. 

 

Figure 3.16 Time-end reaction force curve (Lh=380 mm, R=0.9) 
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Figure 3.17 Time-axial deformation curve (Lh=380 mm, R=0.9) 
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(b) YZ plane view 

Figure 3.18 Failure mode (Lh=380 mm, R=0.9) 

Compared in Figure 3.19 is the effect of perforation length on the predicted failure time. At a given 

perforation length, the failure time decreases rapidly as the load ratio increases. For the case of no web 

perforations i.e., Lh=0 mm, the corresponding failure time is 90.2 minutes for R=0.6, and 48.7 minutes 

when R=0.9. The failure time of the latter case is about 46% less than that of the former one. It is found 

in this investigation that for a given load ratio, the variation among failure times for studs with different 

Lh is within 10%.  

In addition, for a CFS C-shape column with a specified load ratio, the ultimate compressive strength 

of the columns at elevated temperature is significantly influenced by degradation of material properties 

of steel and fire exposure time. In contrast, the distribution of non-uniform cross-sectional temperature 

has a minor influence on the capacity of the column. Compared in Figure 3.20 are the temperature 

contours of CFS C-shape studs with different web perforation lengths of Lh=0 mm, 380 mm and 630 

mm in the region of mid-height of the studs at the exact failure time. As can be seen from the figure, 

there is a minor variation in temperature distributions among these cross sections, which further 

explains the results presented in Figure 3.19. The web perforation width investigated in this study 

maintains a constant of 38 mm (1.5 in.), that is, ¼ of the web depth of 150 mm (6 in.). If the perforation 

width increases, a larger temperature gradient is expected, which may more strongly influence the 

behaviour of the CFS C-shape studs. 

ES

UES
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Figure 3.19 Effect of web perforation lengths on failure time 

 

Figure 3.20 Effect of web perforation lengths on temperature distribution  
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3.5 Conclusions 

In this chapter, the behaviour of CFS C-shape stub columns at both ambient and uniform elevated 

temperatures are investigated. Based on the heat transfer analysis in Chapter 4, the structural analysis 

of CFS C-shape wall studs subjected to non-uniform cross-sectional distributions of elevated 

temperature is also carried out. The following conclusions can be drawn: 

 Stub column tests (Xu, 2014) found that the length of web perforations has slight effect on the 

ultimate compressive strength of CFS C-shape stub columns at ambient temperature. In this study, 

the comparison of the ultimate strength obtained from the tests and predicted by the DSM 

approach demonstrates that the DSM approach accurately assesses the compressive strength of 

C-shape CFS stub columns with web perforations. 

 Finite element structural model is developed using ABAQUS to investigate the behaviour of CFS 

C-shape columns at ambient temperature and uniform cross-sectional distribution of elevated 

temperature ranging from 22 oC to 700 oC. The accuracy of this model is validated based on the 

stub column tests with web perforations (Feng et al., 2003d). 

 The effects of web perforations on the behaviour of CFS C-shape slender columns subjected to 

non-uniform cross-sectional distribution of elevated temperatures are also investigated. The FEA 

results demonstrate that the web perforation can affect the temperature distribution in the stud 

cross sections, but the temperature gradient within a cross section is hardly associated with the 

web perforation length. The differences in failure times among the CFS C-shape studs with 

different web perforation lengths at a given load ratio are within 10%. 
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Chapter 4 Thermal Modelling and Analysis of CFS Walls with Web-

Perforated Studs Subjected to Standard Fire 

4.1 Introduction 

As growing interest in performance-based fire safety design, engineering professionals and researchers 

are increasingly exploring verified fire resistance models. The temperature distributions in CFS walls 

under fire have been investigated numerically using 1D and 2D models by other researchers. Several 

1D numerical models were proposed to estimate the temperature history through the cross sections of 

non-insulated CFS walls (Chen, Ye, Bai, & Zhao, 2013; Collier, 1996; Sultan, 1996) and insulated CFS 

walls (Shahbazian & Wang, 2013; Shahbazian & Wang, 2014; Sultan, Alfawakhiri, & Benichou, 2001). 

The thermal gradients along the length and width of the CFS walls were ignored. The quantity of heat 

transfer via conduction or radiation by the CFS steel frame was neglected, except in Shahbazian and 

Wang’s model (Shahbazian & Wang, 2013; Shahbazian & Wang, 2014; Sultan et al., 2001). Moreover, 

2D finite element (FE) thermal modelling was established for CFS walls, in which uniform temperature 

distribution along the stud length was assumed (Feng, Wang, & Davies, 2003b; Gunawan, 2011; 

Keerthan & Mahendran, 2012; Keerthan & Mahendran, 2013; Shahbazian & Wang, 2013). To develop 

manual-based methods for evaluating the ultimate strength of CFS wall studs under fire, simplified 

non-uniform temperature distributions through stud cross sections, as shown in Figure 4.1, were 

adopted (Feng et al., 2003c; Gunalan & Mahendran, 2013; Shahbazian & Wang, 2011). For example, 

it is found that it is acceptable to assume that the temperature varies linearly throughout the web while 

remaining constant in the flanges and lips (Shahbazian & Wang, 2011). However, neither 1D nor 2D 

models can be used to investigate the effect of web perforation of CFS stud on temperature distributions 

in the wall assemblies.  

Presented in this chapter are the FE thermal analyses to trace the heat transfer process of CFS wall 

systems under standard fire conditions. The FE models were developed for both the CFS walls with or 

without cavity insulation. These models were first validated by the standard fire resistance tests of CFS 

wall systems conducted at the Queensland University of Technology (Kolarkar, 2010), and then a 

parametric study was carried out to investigate the effects of stud perforations on the thermal 

performance of CFS wall systems. 
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(a) simplification 1 (b) simplification 2 (c) simplification 3 

Figure 4.1 Temperature simplifications in CFS wall stud without web perforations 

4.2 Thermal modelling 

4.2.1 Full-scale fire tests  

Shown in Table 4.1 are information of two fire tests conducted by Kolarkar (2010), representing non-

insulated and insulated CFS walls, which were designated as test specimen 3 and 4, respectively. The 

test specimens were lined with double layers of 16 mm thick Type X gypsum board. The CFS frames, 

with overall dimensions of 2400 mm by 2400 mm, were not laterally braced with either cross bracing 

or horizontal bridging. The CFS studs and tracks were fabricated from G500 galvanized steel sheets 

with a nominal base metal thickness of 1.15 mm. The C-shape section steel studs (90 mm×40 mm×15 

mm) were evenly spaced 600 mm o.c.. Shown in Figure 4.2 is the experimental set-up of the fire tests. 

The test specimens were not restrained at their perimeters. A constant axial compression load of 15 

kN/stud was first applied and maintained throughout the test based on a load ratio of 0.2, that is, 0.2 

times the unfactored ultimate compressive capacity of each steel stud at ambient temperature. A custom 

designed gas furnace was then used to expose one side of the wall to the standard temperature-time fire 

curve AS 1530.4 (Australian Standard, 2005). K type thermocouple wires were installed to measure the 

temperature history during testing. The tests were stopped when one or more of the steel studs could 

no longer sustain the applied load. The specimen 3 and 4 failed after 111 and 101 minutes’ fire 

exposure, respectively, due to structural instability. Further details of the fire tests can be found in 

(Kolarkar, 2010). 
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Table 4.1 Full-scale fire tests (Kolarkar, 2010) 

Test Specimen  Configuration Insulation Failure time  Failure mode 

3 

  

None 111 min. 

Structural failure 

4 
 

Glass Fibre 101 min. 

 

 

Figure 4.2 Experimental set-up (Kolarkar, 2010) 

In this study, as shown in Figure 4.3, 600 mm wide CFS wall sections of the specimen 3 and 4 were 

modeled to validate proposed 3D finite element analyses (FEAs). Such modelling was viable for two 

reasons. First, the heat transfer from the fire to the exposed surface at any point was assumed to be 

uniform, since minor temperature variation associated with the ventilation and heat sink characteristics 

of the furnace were negligible; second, the heat transfer is extensive between the steel flanges and the 

adjacent materials within the equivalent wall width, We, which can be expressed as  

 45 0.85 ( )e fW b mm    (4.1)

where bf is the width of the stud flange. The equivalent wall width is largely affected by the flange 
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width and no greater than 300 mm based on (Shahbazian & Wang, 2013). Outside the equivalent wall 

width, the temperature distribution within CFS walls becomes uniform. 

 

Figure 4.3 Equivalent wall width for determining temperature distribution 

4.2.2 Assumptions  

In this study, similar to that of the other researchers (Feng et al., 2003b; Gunawan, 2011; Keerthan & 

Mahendran, 2012; Keerthan & Mahendran, 2013; Shahbazian & Wang, 2013), no thermal contact 

resistance between adjacent elements was assumed. In addition, the effects of ablation, shrinkage and 

cracking of gypsum board were taken into account through the modification of thermal properties of 

materials as shown in Table 4.2 (Gunawan, 2011). The heat loss to the cavity was neglected. Moisture 

migration across the cavity and gypsum boards, which is highly dependent on the moisture content of 

the gypsum board, was neglected due to its complexity. However, moisture migration through the 

gypsum boards was considered by the specific heat of the material. The gypsum boards on both fire-

exposed and unexposed sides remained in place until failure during the fire tests (Kolarkar, 2010). Thus, 

the gypsum board fall-off was not included in the models. The foregoing assumptions yield smaller 

temperature gradient within CFS walls than that in the fire tests. 

4.2.3 Finite element type and mesh 

When modelling the wall assembly with software ABAQUS, the gypsum boards and insulation were 

modeled using 8-node continuum solid elements (DC3D8). The steel studs were simulated with 4-node 

shell elements (DS4). The geometry of 16 mm thick gypsum board, 90 mm thick Type X insulation, 

and CFS stud (90 mm×40 mm×15 mm) were defined by creating parts in the software. The part instance 

(a usage of a part within the assembly) of gypsum board was patterned four times to simulate the four 

layers of gypsum boards. All the part instances (gypsum boards, insulation, CFS studs) were positioned 

accurately to model the CFS wall. The part instances for double layers of gypsum boards on both sides 

We

600 mm
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and insulation within the cavity were merged into a single part instance but the intersecting boundaries 

were retained. Merging the gypsum board and insulation part instances avoids a large number of 

computationally expensive tie constraints between the intersecting boundaries. Since the intersecting 

boundaries were retained, material properties can be assigned to gypsum board and insulation 

individually. The temperature degree of freedom for the elements between all the contact surfaces is 

tied. Shown in Figure 4.4 are the FE meshes of the test specimens. A global mesh size of 30 mm was 

first selected for the specimen, and local seed number of six and fours were then assigned to the web 

and flange of the CFS stud by six and four nodes, respectively. It was subsequently found that such 

type of mesh scheme could ensure both computational accuracy and efficiency.  

   
(a) Test Specimen 3 (b) Test Specimen 4 (c) CFS stud 

Figure 4.4 Finite element meshes of CFS wall segments 
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4.2.4 Thermal boundary conditions 

Heat is transferred via conduction, convection and radiation between physical systems. Shown in Figure 

4.5 are the heat transfer mechanisms from the fire side to the ambient side through the CFS wall 

systems, where Gb denotes the gypsum board. For instance, the heat transfer modes for Test Specimen 

3 shown in Figure 4.5 (a) can be illustrated as follows: 

• heat transfer from the fire to the exposed surface by radiation and convection; 

• heat transfer through the gypsum boards on the exposed side by conduction; 

• heat transfer from exposed side gypsum board surface to the wall cavity by radiation and 

convection; 

• heat transfer through the steel studs within the wall cavity by conduction; 

• heat transfer from the wall cavity to the unexposed side gypsum surface by radiation and 

convection; 

• heat transfer through the gypsum boards on the unexposed side by conduction; 

• heat transfer from the unexposed surface to ambient by radiation and convection. 

The heat flux at the boundary on the fire-exposed and unexposed sides is represented by: 

      
4 4

0 0z zq h            
  

  (4.2) 

where q is the heat flux to the unit surface area (W/m2), σ is the Stefan-Boltzmann constant (5.67×10-

8 W/m2/K4), and ε is the relative emissivity, which is the relative ability of its surface to gain from or 

lose energy by radiation. In general, it depends on the emissivity of the combustion gas and the wall 

surface. Both the exposed and unexposed surfaces were regarded as a gray body and ε =0.9. θ is the 

measured temperaure at the point on the surface, θz is the absolute zero temperature (273.16 K) and θ0 

is a reference sink temperature. θ0 was taken as the gas temperature according to the standard cellulosic 

curve on the exposed side and 20 °C on the ambient side. h is the convective heat transfer coefficient 

(W/m2K), and 25 W/m2K and 10 W/m2K were adopted on the fire-exposed side and the unexposed side 

respectivley. 

The existence of cavities induced a complex problem of cavity radiation. In the cavity, the conduction 

in the steel studs was taken into account; for simplicity, the radiation was considered and the grey body 
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radiation was assumed in the cavity, while the convection within the gypsum boards was neglected 

(Mecozzi & Zhao, 2005). The emissivity was taken as 0.9 for gypsum board and 0.6 for steel studs on 

the wall cavity surfaces (Gunawan, 2011).  

 

                                  

(a) Test specimen 3 (non cavity insulation) 

                                  

(b) Test specimen 4 (glass fibre as cavity insulation) 

Figure 4.5 Heat transfer mechanism in CFS walls 
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4.2.5 Thermal properties 

Thermal properties govern heat transfer and thermal deformations. The latter is ignored in the 

uncoupled thermal analysis. The measured thermal properties reported by (Kolarkar, 2010) were used 

in the FEAs, as shown in Table 4.2 and from Figure 4.6 to Figure 4.8. The parameters, including thermal 

conductivity k, specific heat Cp, and density D, vary as functions of temperature T are defined.  

Table 4.2 Thermal properties (Gunawan, 2011) 

Material T (°C) Cp (J/kg/oC) T (°C) k (W/m/K) T (°C) D (kg/m3) 

Gypsum 

board 

0-20 950 0-140 0.25 0-120 729 

20-100 950 140-150 1.93-0.012T 120-170 904-1.458T 

100-140 413.75T-40425 150-300 0.13 170-1500 656 

140-156 -312.5T+61250 300-800 0.1+0.0001T   

156-170 35.714T+6928.6     

170-200 -401.67T+81283     

200-660 950     

660-670 205T-134350     

670-680 -205T+140350     

≥680 950     

Steel 

20-600 
425+7.73×10-1T-1.69 

×10-3T2+2.22×10-6T3 
20-800 54-3.33×10-2T 0-1200 7850 

600-735 666+13002/(738-T) 800-1200 27.3   

735-900 545+17820/(T-731)     

900-1200 650     

Glass 

fibre 
0-800 1200 

0-600 0.5+0.0002T 

0-800 15.42 600-700 -7.8+0.014T 

700-800 99.98T-69984 
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(a) Specific heat of gypsum boards 
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(b) Thermal conductivity of gypsum boards 
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(c) Relative density of gypsum boards 

Figure 4.6 Thermal properties of gypsum board (Gunawan, 2011) 
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(a) Specific heat of steel 
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(b) Thermal conductivity of cold-formed steel 

Figure 4.7 Thermal properties of cold-formed steel (Gunawan, 2011) 
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Figure 4.8 Thermal conductivity of glass fibre (Gunawan, 2011) 

4.3 Comparison with test results 

The measured time-temperature profiles from the tests are used for validation of the proposed 3D FE 

modelling. Compared in Figure 4.9 are the time-temperature profiles of the gypsum boards at different 

surfaces obtained from the FEAs in this study with those reported by (Kolarkar, 2010). The symbols 

ES, Gb1, Gb2, Gb3, Gb4 and UES are defined in Figure 4.5. 



 

49 

4.3.1.1 Test specimen 3 

As shown in Figure 4.9(a), the time-temperature profiles obtained from the FEA and the fire test 

followed the same general trends on each surface. Both the temperature profiles for the interface Gb1 

and Gb2 showed three phases. Initially, the temperature at the interface rose rapidly from the ambient 

temperature to approximately 100 oC within 10 minutes of starting the test. After that, the interface 

temperature increased gradually, and the heat in this phase was primarily consumed in the physical and 

chemical process of the gypsum board, that is, the process of free water evaporation and chemically 

bound water release. In the final phase, the temperature abruptly rose first and then increased slowly 

until the end of the test. The temperature profiles for the interfaces at the cavity surfaces Gb2-Cav and 

Cav-Gb3 from FEA coincided well but were slightly larger than those from the test results, which was 

probably resulted from that the radiation could not be simulated accurately in FEAs. The temperature 

profiles for interfaces Gb3-Gb4 and Gb4-UES obtained from FEAs and the tests were in good 

agreement which almost overlapped. 

4.3.1.2 Test specimen 4  

As shown in Figure 4.9(b), the temperature profiles of the FEA and the fire test for each interface also 

matched well, except for the interface Cav-Gb3. The temperature profile of the interface Cav-Gb3 

obtained from FEA was considerably lower than that measured from the test. This might be resulted 

from that the glass fibre had gradually melted and the insulation in the cavity almost burnt out on the 

exposed surface in the test. The melting and burning of the insulation eventually resulted in the heat 

transferring faster across the cavity. Unfortunately, the melting and burning process of glass fibre could 

not be accounted for in the FEAs. 
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(a) Test Specimen 3 (non-insulated CFS wall) 
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(b) Test Specimen 4 (insulated CFS wall) 

 

Figure 4.9 Comparison of time-temperature profiles between FEA and tests by Kolarkar (2010) 
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4.4 Effect of web perforations 

4.4.1 Parameters 

To investigate the effect of stud web perforation on time-dependent temperature distributions for CFS 

walls under fire, extensive FEAs were carried out based on the previously validated 3D FE models. 

Shown in Figure 4.10 and Table 4.3 are the CFS walls investigated in the parametric study. The CFS 

walls are lined with double layers of 12 mm Type X gypsum board on both sides. The CFS frame 

fabricated from G500 galvanized steel C-shape and track sections is built to a height of 3200 mm and 

a width of 3550 mm. Seven CFS C-shaped studs are evenly spaced 600 mm o.c. All the CFS studs (150 

mm×40 mm×1.5 mm) are connected to the top and bottom CFS tracks (150 mm×50 mm×1.5 mm). Five 

slotted web perforations are evenly spaced 640 mm o.c. along the length of each steel stud. The length 

of web perforations, Lh, varies from 130 mm to 530 mm as shown in Table 4.3 and Figure 4.12, whereas 

the width of web perforations remains at 38 mm. For the purpose of comparison, two CFS walls without 

web perforations, with and without insulation, are also investigated.  

 

Figure 4.10 Configuration of CFS walls with web-perforated studs  
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Table 4.3 CFS walls with web-perforated studs in parametric study 

CFS wall No. Configuration Insulation Perforation length, Lh (mm) 

1 

 
None 

0 

2 130 

3 330 

4 530 

5 

 
Glass Fibre 

0 

6 130 

7 330 

8 530 

 

The 600 mm-wide CFS wall section taken from the center of the wall was modeled in the FEAs. The 

time period of the step specified was 7200 (120 minutes). The maximum number of increments was 

1000. The initial increment size was 30 and the minimum and maximum increment size was 7.2×10-9 

and 720, respectively. The FEAs for both insulated and non-insulated CFS walls stopped at the 

increment number of 1000. The FEAs for the insulated CFS walls terminated at about 104 minutes 

resulted from severe element distortion around the slotted web perforation in both the CFS studs and 

the insulation. However, the FEAs for the non-insulated CFS walls were carried out smoothly up to the 

specified time limit of 120 minutes. 

4.4.2 Results and discussions 

4.4.2.1 Temperature contour 

Shown in Figure 4.11 and Figure 4.13 are the temperature contour at 104 minutes for the horizontal 

cross section at the mid-height and the CFS wall studs of insulated CFS walls with different lengths of 

web perforations, respectively. It can be seen that the existence of web perforation together with 

perforation length may affect the temperature distributions of the CFS wall studs in the insulated walls, 

whereas the web perforations have little influence on the temperatures of gypsum surfaces on both the 

exposed and unexposed sides. Shown in Figure 4.13 is the temperature contour of the horizontal cross 

section at the mid-height of non-insulated CFS walls at 120 minutes. Similar temperature distribution 

is observed among CFS walls with or without web perforations. 
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(a) Lh =0 mm (b) Lh =130 mm 

  
(c) Lh =330 mm (d) Lh =530 mm 

Figure 4.11 Temperature contour of insulated CFS walls at mid-height cross section 

    
a) Lh =0 mm (b) Lh =130 mm (c) Lh =330 mm (d) Lh =530 mm 

Figure 4.12 Temperature contour of insulated CFS wall frames at 104 minutes 
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(a) Lh =0 mm (b) Lh =130 mm 

  
(c) Lh =330 mm (d) Lh =530 mm 

Figure 4.13 Temperature contour of non-insulated CFS walls at mid-height cross section 

4.4.2.2 Temperature profiles at mid-height cross section of studs 

Shown in Figure 4.14 are the temperature profiles at the mid-height cross section of steel studs of 

insulated CFS walls at 104 minutes. All the lip and flange elements have close linearly distributed 

temperature. When the web is not perforated, temperature distribution of the web is almost linear. 

However, in the case that the web is perforated, the temperature distribution becomes bilinear. The 

temperature ditributions of the web portion which connects the hot and cold flange are almost linear 

but decrease from the hot flange toward the cold one with different slopes as shown in Figure 4.14(b)-

(d). The perforations block the heat transfer by conduction along the web. As the perforation length 

increases, the web temperature becomes higher on the hot side and lower on the cold side than those of 

studs without perforations as shown in Figure 4.14 and Figure 4.16(a). The large temperature difference 

between the stud flanges on the exposed and unexposed sides would result in more severe bending the 

CFS studs. 

Shown in Figure 4.15 are the temperature profiles at the mid-height cross section of steel studs for 

non-insulated CFS walls at 120 minutes. In this case, the web perforation has little influence on the 

temperature distribution across the section. From Figure 4.16(b), the web temperature distributions are 

almost linear with the same slope for both portions of the web separated by the perforation. As the 

perforation length increases, the web temperature becomes slightly higher than in the studs without web 

perforations.  
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(a) Lh =0 mm (b) Lh =130 mm (c) Lh =330 mm (d) Lh =530 mm 

Figure 4.14 Non-uniform temperature distributions in insulated CFS wall studs at 104 minutes 

 

    
(a) Lh =0 mm (b) Lh =130 mm (c) Lh =330 mm (d) Lh =530 mm 

Figure 4.15 Non-uniform temperature distributions in non-insulated CFS wall studs at 120 minutes 
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(a) Insulated CFS wall studs at 104 minutes 

 
(b) Non-insulated CFS wall studs at 120 minutes 

Figure 4.16 Stud depth-temperature profiles 
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4.4.2.3 Temperatures at flange-web junctions of studs 

Compared in Figure 4.17 are the temperatures at location A of the flange-web junction of steel studs 

inside the insulated CFS walls with 530 mm long web perforations and without web perforations, 

respectively. Sections (i) and (ii) are the horizontal cross sections of CFS studs corresponding to the 

center of the stud web perforations and at the center between the two web perforations. Section (iii) 

represents the horizontal cross section at mid height for CFS walls without stud web perforations. At 

fire exposure of 104 minutes, it is found that the temperatures at section (i) are 8% higher on the exposed 

side (ES) and 15% lower on the unexposed side (UES) than those at section (iii). However, the 

temperatures at section (ii) are only 2% higher on the exposed side and 4% lower on the unexposed 

side than those at section (iii). Thus, the temperature gradient between two perforations decreases 

gradually along the stud. Similar trend can be also found for the case 130 hL mm  as shown in Figure 

4.18. From Figure 4.17, it can be seen that as the perforation length decreases from 530 mm to 130 mm, 

the temperature differences between sections (i) and (iii) reduce to 4% from 8% on the exposed side 

and to 8% from 15% on the unexposed side; the temperature-time curves for sections (ii) and (iii) are 

almost the same on both sides. The results indicate that the temperature distribution between two 

perforations in the studs changes gradually. The temperature gradient in the studs reaches to the highest 

value at the center of the perforations, resulting in that the strength and stiffness at this cross section 

could be the lowest along the stud length. Thus, local buckling may be induced around the web 

perforations, which is detrimental to the stability of CFS studs and consequently to the integrity of the 

walls. Therefore, it may be non-conservative and inappropriate to neglect the existence of web 

perforations in CFS wall studs while evaluating the wall performance at elevated temperatures. 

Compared in Figure 4.19 are the temperatures at location B of the flange-web junction of steel studs 

inside the non-insulated CFS walls with 530 mm long web perforations and without web perforations, 

respectively. In this case, the temperature at section (i) is slightly higher than that at section (iii) on the 

exposed sides. The temperature at section (ii) becomes slightly lower first and then higher than that at 

section (iii) on the unexposed sides due to cavity radiation. When the perforation length reduces to 130 

mm, as shown in Figure 4.20, the temperature curves of all the three sections are almost overlapped. 

From Figure 4.19 and Figure 4.20, it can be seen that the temperature distribution along steel studs is 

much more uniform for the non-insulated CFS walls than that for insulated CFS walls. The absence of 

insulation in the cavity equalizes the temperatures across the stud cross sections more rapidly through 

radiation than that of the insulated CFS walls.  
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(a) flange-web junction on the exposed side (b) flange-web junction on the unexposed side 

Figure 4.17 Comparison of stud temperatures for insulated CFS walls (Lh=530 mm) 

 

  
(a) flange-web junction on the exposed side (b) flange-web junction on the unexposed side 

Figure 4.18 Comparison of stud temperatures for insulated CFS walls (Lh =130 mm) 
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(a) flange-web junction on the exposed side (b) flange-web junction on the unexposed side 

Figure 4.19 Comparison of stud temperatures for non-insulated CFS walls (Lh =530 mm) 

 

 

  
(a) flange-web junction on the exposed side (b) flange-web junction on the unexposed side 

Figure 4.20 Comparison of stud temperatures for non-insulated CFS walls (Lh =130 mm) 
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4.5 Conclusions 

Presented in this chapter is a numerical investigation on thermal performance of CFS load-bearing walls 

subjected to standard fire conditions. 3D FE thermal models of CFS walls with perforated studs were 

proposed and validated with the results from fire tests (Kolarkar, 2010). Parametric studies were carried 

out to evaluate the effect of web perforations on the temperature distribution within CFS walls. The 

following conclusions can be drawn based on the investigation: 

 3D FE thermal models of CFS walls have been developed and validated using full-scale fire tests 

on CFS load-bearing walls. The 3D models can be used to investigate the effect of stud web 

perforations on the temperature distributions of studs in CFS walls subjected to standard fire. 

Such investigation cannot be accomplished using the 1D and 2D FE models. 

 For non-insulated and insulated CFS walls, the web perforations in CFS studs have little 

influence on the temperature distributions for gypsum board surfaces on both fire-exposed and 

unexposed sides.  

 For non-insulated CFS walls, the stud web perforation has negligible influence on the 

temperature distribution through the cross sections and as well as along the stud length. The heat 

transfer via radiation within the cavity far overweighs that blocked by conduction via web 

perforations. 

 For insulated CFS walls with web perforations, the temperature distribution is no longer linear 

but almost bilinear along the web depth. The largest temperature gradient in the CFS studs occurs 

at the cross section located in the center of the web perforation along the stud length, perhaps 

induce local bending at web perforations. Therefore, it may be non-conservative if the web 

perforations in CFS studs are neglected when evaluating the fire resistance of CFS walls.  
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Chapter 5 Structural Modelling and Analysis of CFS Walls with 

Web-Perforated Studs Subjected to Standard Fire 

5.1 Introduction 

Fire resistance rating of load-bearing CFS walls under standard fire conditions is often governed by the 

structural failure of one or more studs. In order to understand the structural behaviour of CFS walls 

under fire conditions, it is important to simulate the complete loading history based on transient-state 

fire conditions. FE structural modelling of CFS walls under fire has been successfully developed by 

(Feng & Wang, 2005; Gunalan & Mahendran, 2013; Kaitila, 2002). In the foregoing studies, simplified 

temperature distributions across the CFS wall studs were obtained first based on the measured average 

time-temperature curves of CFS wall studs from the fire tests. Then the temperature distributions were 

input into the FE structural models as thermal boundary conditions. However, the simplified 

temperature distribution method is not applicable for modelling the CFS wall tests conducted by Xu 

(2011) for the following two reasons. First, the time-temperature curves of CFS wall studs were not 

measured during the fire tests. Second, the temperature distributions across and along the studs cannot 

be represented by the simplified temperature distribution shown in Figure 4.1 due to the existence of 

web perforations. The temperatures of the studs for FEAs, obtained by the uncoupled heat transfer 

analysis discussed in Chapter 4, were input into the sequential stress analysis as a predefined field.  

The use of finite element modelling to characterize the structural responses of CFS load-bearing 

walls with non-perforated C-shape studs has been validated by full-scale fire tests (Gunalan & 

Mahendran, 2013; Zhao et al., 2005). The CFS walls were simplified using a single stud model for 

stress analysis, and the temperature distributions used in the analysis were obtained from tests. 

Although the structural responses obtained from the single stud model appeared to be acceptable, the 

system effect, such as the possible redistribution of loading among studs was not considered. It is also 

noted that the above-mentioned investigations assumed temperature distributions to be bilinear or linear 

along the web depth, as shown in Figure 4.1. For CFS walls with web-perforated C-shape studs, the 

validity of such simplification is yet to be investigated.  

Also, it is well known that the sheathing which is fastened to the CFS wall framing may enhance the 

load carrying capacity of the wall by providing lateral braces to the wall studs. Such increase of load 

carrying capacity is permitted and can be evaluated in the design of the wall at ambient temperature. 
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However, the effect of sheathing bracing on the wall studs has not been investigated in the case of 

elevated temperature. As it is difficult to identify the effect of sheathing bracing in a fire test, a 

numerical investigation is carried out using FEA. The investigation results are presented in this section. 

The modelling of FEA to simulate the CFS wall framing employed in this investigation has been 

validated in previous investigations (Xu, 2011; Yang & Xu, 2016). The effect of sheathing bracing on 

the fire performance of load-bearing CFS walls was investigated by incorporating the sheathing into 

the FE model of stress analysis, accounting for different sheathing stiffnesses at elevated temperature. 

With the growing demand for more-accurate assessment of CFS building safety under fire, the 

outcomes of this investigation would certainly benefit design practitioners by providing better 

understanding of sheathing’s effect on the behaviour of load-bearing CFS walls subjected to elevated 

temperature. 

In this chapter, three finite element models, including CFS single stud model, CFS wall frame model 

and CFS wall system model, are developed to investigate the fire performance of load-bearing CFS 

walls with web-perforated studs subjected to standard fire. Sequentially uncoupled 3D FE thermal-

stress analysis is carried out in which heat transfer analysis is conducted to obtain the temperature 

distribution of an entire CFS wall. In the subsequent structural analysis, a CFS wall frame assembly 

rather than a single stud is modelled, to achieve system-level structural responses. The FEA results are 

compared with those from full-scale fire tests. 

5.2 Full-scale fire tests 

Shown in Table 5.1 are the configuration details and test results of the full-scale fire tests on seven 

load-bearing CFS walls conducted by Xu (2011). The test results, including the fire duration, 

temperature and failure mode, are also summarized in this table. 

Illustrated in Figure 5.1 are the specimen configurations. The overall dimension is 3,550 mm by 

3,000 mm for specimens 1-5 and 3,550 mm by 3,200 mm for specimens 6-7. The specimens are 

sheathed with one or two layers of Type X, Type C gypsum board or MgO board on both sides. The 

150 mm deep wall cavities are filled with 90 mm thick glass fibre on the fire side. Seven C-shape CFS 

studs (150 mm×40 mm×15 mm×1.5 mm) are evenly spaced 600 mm o.c., except for the rightmost stud 

which is spaced 550 mm o.c. Three slotted web perforations (Lh=75 mm, dh=38 mm) and five slotted 

web perforations (Lh=130 mm, dh=38 mm) are along the length of each stud for specimens 1-5 and 

specimens 6-7, respectively. An additional CFS stud is placed on each end of the CFS frame to eliminate 
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the gap between the specimen and the test frame in which the specimen is mounted so as to prevent 

lateral sway. The top and bottom ends of these studs are connected with U-shape CFS track (150 

mm×50 mm×1.5 mm). The CFS frames are laterally braced with a horizontal bridge (38 mm×13 

mm×1.5 mm) at mid-height. The CFS studs, tracks and bridging are fabricated from cold-formed 

galvanized steel sheets. The yield stress of the CFS studs and tracks are 345 N/mm2, and of the bridging, 

228 N/mm2. 

Shown in Figure 5.2 is the experimental setup. The target load was applied first and maintained 

throughout the fire test. A target load was applied axially to the specimens through ten jacks and 

maintained throughout the testing. The applied load ratio varied from 0.8 to 1.0. These jacks were 

connected to the same hydraulic pump and were spaced 310 mm along a 3470 mm long loading beam. 

A propane-fired gas furnace was used to expose one side of the wall to the ISO 834 time-temperature 

fire curve (1999). Eight type K thermocouples were installed to measure the temperature development 

of the sheathing surface on the ambient side. A comparison of the gypsum board surface temperature 

on the ambient side between FEA and test are shown in Appendix A. 
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Table 5.1 Load-bearing CFS wall fire tests (Xu, 2011) 

No. Specimen 

Wall systems (Wall height=3.0 m) Load (kN/m) Result Temperature Comment 

Fire-exposed  

side  

Sheathing 

Wall stud 

Fire-unexposed  

Side  

Sheathing 

Calculated Applied 

Fire  

Duration  

(minute) 

Initial

 (oC) 

Max 

(oC) 
Failure mode 

1 LBW-E1(a)    
(2) 12 mm  

MgO board 

150×40×15×1.5mm 

stud at 600 mm o.c. 

w/ three 75×38  

punched holes 

(2) 12 mm  

MgO board 
33.02 

28.07  

@ 85% 
155 13 

79.6  

@ #2 

Failed at cracked 

vertical joint 

at center line 

2 LBW-E1a(b) 
(2) 12 mm  

MgO board 

150×40×15×1.5mm 

stud at 600 mm o.c. 

w/ three 75×38  

punched holes 

(2) 12 mm  

MgO board 
33.02 

33.02  

@100% 
153 15 

136.8 

@ #4 

Failed at cracked 

vertical joint 

at center line, 

multiple horizont

al cracks also 

shown at mid-up

per location 

3 LBW-G1(a) 

(2) 12 mm  

Type C  

Gypsum Board 

150×40×15×1.5mm 

stud at 600 mm o.c. 

w/ three 75×38  

punched holes 

(2) 12 mm  

Type C  

Gypsum Board 

33.06 
29.75  

@ 90% 
100 15 

93.8 

@ #4 

Failed at cracked

 vertical joint  

at center line 

4 LBW-E2 

(1) 12 mm  

MgO board 

 + (1) 9 mm  

MgO Board 

150×40×15×1.5mm 

stud at 600 mm o.c. 

w/ three 75×38  

punched holes 

(1) 12 mm  

MgO board  

+ (1) 9 mm  

MgO Board 

33.19 
33.19  

@ 100% 
117 8.5 

78.5 

@ #2 

Failed by structur

al integrity cause

d by a horizontal  

crack 

5 LBW-E5 

(1) 12 mm 

MgO board 

 + 12 mm  

Type X  

Gypsum Board 

150×40×15×1.5mm 

stud at 600 mm o.c. 

w/ three 75x38 punc

hed holes 

(1) 12 mm  

MgO board 

 + (1) 12 mm  

Type X  

Gypsum Board 

33.13 
31.47  

@ 95% 
100 8.6 

83.2  

@ # 10 

Failed by fire  

escaped from  

a rear crack 
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Table 5.1 Load-bearing CFS wall fire tests (Xu, 2011) 

No. Specimen 

Wall systems (Wall height=3.2 m) Load (kN/m) Result Temperature Comment 

Fire-exposed  

side  

Sheathing 

Wall stud 

Fire-unexposed  

Side  

Sheathing 

Calculated Applied 

Fire  

Duration  

(minute) 

Intial 

(oC) 

Max 

(oC) 
Failure mode 

6 LBW-2    

(1) 12 mm  

MgO board 

 + (1) 12 mm  

Type X  

Gypsum Board 

150×40×15×1.5mm 

stud at 600 mm o.c. 

w/ five 130×38  

punched holes 

(1) 12 mm  

MgO board 

 + (1) 12 mm  

Type X  

Gypsum Board 

33.02 
26.5 

@ 80% 
68 23 

82.3 

@ #5 

Structural failure

 associated with 

130×38 punched 

holes 

7 LBW-3 

(2) 12 mm  

Type C  

Gypsum Board 

150×40×15×1.5m 

stud at 600 mm o.c. 

w/ five 130×38  

punched holes 

(2) 12 mm  

Type C  

Gypsum Board 

33.06 
26.5 

@ 80% 
83 21 

136.8 

@ #4 

Structural failure

 associated with 

130×38 punched 

holes 

 

Note:  

1. For Specimen 1-5: wall height=3.0 m; for Specimen 6-7: wall height=3.2 m. 

2. Cavity was filled with 90 mm fibre glass.  

3. Initial temperature: ambient temperature; max temperature: maximum temperature measured by thermocouple as shown in Figure 5.2.
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(a) Elevation view 

 

                      

(b) Plan view 

Figure 5.1. Configuration of load-bearing CFS wall specimens (Xu, 2011) 
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Figure 5.2. Experimental setup (Xu, 2011) 

5.3 Sequentially uncoupled thermal-stress analysis 

5.3.1 Finite element thermal model 

The method used to develop the FE thermal model is the same as that described in Chapter 4. The CFS 

walls are exposed to the standard fire curve defined by ISO 834 (1999) for up to 240 minutes.  
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(a) sheathing and glass fibre 

 

(b) CFS frame 

Figure 5.3. Finite element mesh of CFS walls 
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5.3.2 Thermal properties 

The thermal properties of materials are critical for heat transfer analysis, and indirectly influence the 

structural response of the wall system. The parameters, including thermal conductivity, specific heat, 

and density, vary as functions of temperature are defined. 

The thermal properties of cold-formed steel and glass fibre reported by Keerthan & Mahendran (2012) 

are adopted, as shown in Table 4.2 and from Figure 4.6 to Figure 4.8. The density of the cold-formed 

steel remains 7,850 kg/m3 at elevated temperatures. 

5.3.2.1 Type C and X Gypsum board  

Gypsum board consists of a noncombustible core, covered with thick sheets of paper. The sheets of 

paper, before burning out, maintain the integrity of the core. The core is primarily gypsum 

(CaSO4·2H2O), containing about 21% by weight of chemically bound water and a small amount of 

free water. Type X gypsum board is generic fire-rated to provide 45 or 60 minutes protection to a load-

bearing wood or steel frame with a lining thickness of 12.7 or 15.9 mm, respectively. Type X contains 

glass fibres in the core for enhanced fire performance and may have other additives to improve fire 

performance. Type C is manufactured to provide better fire resistance or to meet other performance 

needs, and meets all the requirements of the Type X board and is further enhanced with additional glass 

fibres, more core ingredients and greater gypsum core density.  

  Different gypsum boards may have scattered thermal properties, perhaps resulting from chemical 

composition and testing conditions. Shown in Table 5.2, from Clancy (1999), are the thermal properties 

at ambient temperature published by gypsum board manufacturers around the world. The thermal 

properties of Type X have been reported by Sultan (1996) and Mehaffey (1994), and those of Type C 

only by Mehaffey (1994). To ensure Type C has relatively higher fire performance than Type X, the 

data obtained from (Mehaffey et al., 1994) are selected for the FEA in this study. At ambient 

temperature, the densities of the Type C and Type X gypsum boards are 732 kg/m3 and 648 kg/m3, 

respectively; and the thermal conductivity of both types is approximately 0.24 W/m·oC.  

The thermal properties of gypsum board at elevated temperature reported by Mehaffey et al. (1994) 

are plotted in Figure 5.4. The dehydration (removal of free water) initiates at about 80 oC. The 

calcination of chemically bound water is complete at about 200 oC. During the dehydration and 

calcination processes, the temperature rise through gypsum board is effectively delayed. The density 

and thermal conductivity of gypsum board drop considerably, and the specific heat rises to a peak and 
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then decreases. After the completion of calcination, the paper sheets outside of the noncombustible core 

burn out, causing an increase of the thermal conductivity until 800 oC. After that, a higher thermal 

conductivity is used to include the effect of ablation and cracking. 

Table 5.2 Thermal properties of gypsum board at ambient temperature (Clancy, 1999) 

Country Reference 
Density 

(kg/m3) 

Specific Heat 

(J/kg·oC) 

Conductivity 

(W/m·oC) 

Canada 
Mehaffey (1994)-Type C 

-Type X 

732 

648 

950 

950 

0.24 

0.24 

Canada Westrock heavy, regular 578 600 0.2 

Canada Sultan (1996) -Type X  698 1500 0.25 

United states Gypsum Assoc. (1993)   0.16 

Europe 

Konig et al (2000) 

Nordic-Type F 

-Type GN (regular) 

 

825 

700 

  

0.25 

0.25 

United Kingdom British Gypsum Glasroc 1000  0.288 

United Kingdom British Gypsum Fireline 800  0.2 

United Kingdom Knauf Plasterboards 800  0.2 

Australia Boral (1997) Firestop 810  0.17 

Australia CSR Gyprock (1997)    

New Zealand 

Winstone Wallboards ltd 

-GIB® Fyreline 

-Standard 

 

730-880 

690 
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(a) Specific heat (J/kgoC) 

 

(b) Relative density (%) 

 

(c) Thermal conductivity (W/moC) 

Figure 5.4 Thermal properties of Type C and X gypsum board (Mehaffey et al., 1994) 
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5.3.2.2 MgO board 

MgO board, an alternative to gypsum board, has been found to show better fire resistance (Chen, Ye, 

Bai, & Zhao, 2012), but is more costly. The thermal properties of MgO board measured by (Chen, Ye, 

Bai, & Zhao, 2013), as shown in Figure 5.5, are adopted. Eq. (5.1) is used to fit the thermal properties; 

the relevant coefficients (A and B) are given in Table 5.3.  

 y A T B     (5.1) 

Table 5.3 Coefficients for thermal properties of MgO board 

y T (oC) A B 

Specific heat (J/kg⋅oC) 0-50 0 1,500 

 50-100 120 -4,500 

 100-122 -113.63 18,863 

 122-170 41.67 -83.33 

 170-200 -183.3 38.167 

 200-300 0 1,500 

 300-390 83.33 -23,500 

 390-450 -110 51,900 

 450-525 21.33 -7,200 

 525-600 -33.33 21,500 

 ≥600 0 1,500 

    

Relative density (%) 30-200 -1.294×10-1 103.8 

 200-300 -5×10-2 88 

 300-450 -1.4×10-1 115 

 450-600 -4×10-2 70 

 ≥600 0 46 

    

Conductivity (W/m⋅oC) 0-50 0 0.4 

 50-200 -1.6×10-3 0.48 

 200-300 -2×10-4 0.2 

 300-450 -1.333×10-4 0.18 

 ≥450 -3×10-4 -0.015 
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(a) Specific heat (J/kgoC) 

 

(b) Relative density (%) 

 

(c) Thermal conductivity (W/moC) 

Figure 5.5 Thermal properties of MgO board (Chen et al., 2013) 
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5.4 Finite element structural model of CFS wall stud 

For structural analysis, CFS wall stud model was developed using a single CFS C-shape wall stud from 

the wall specimens described in section 5.2. The temperature distribution within the CFS stud was 

incorporated from the heat transfer analysis, which requires the FE mesh in the structural model to be 

identical to that used in the heat transfer analysis such that the predefined nodal temperatures can be 

applied. The element type S4R was used to model the perforated CFS wall studs. Rigid plates made of 

R3D4 elements were attached to each end of the stud, as shown in Figure 5.6. Pinned support conditions 

were assumed for both ends. Axial load was applied at the centroid of the section, at the upper end. The 

sheathing restraint was simulated by restraining the appropriate horizontal displacement (UX) every 

300 mm along the length of the stud. No temperature deterioration for screws is considered. The in-

plane lateral restraint provided by the gypsum boards was considered on both fire-exposed and 

unexposed sides. It was assumed that the gypsum board on the hot flange side also provided sufficient 

lateral restraint until the stud failed. This assumption is consistent with that adopted by Kaitila (2002), 

Feng et al. (2003d), Zhao et al. (2005) and Gunalan (2011) in their FE models. 

 

Figure 5.6 Loading and boundary conditions of single CFS stud model 
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5.4.1 Mechanical properties 

The mechanical properties of cold-formed steel at elevated temperature are obtained based on Eurocode 

3 Part 1.2 (2005). The nominal stress-strain relationship at elevated temperature is shown in Figure 

3.13. For ABAQUS, the true stress-plastic strain relationship is used as input, as shown in Figure 5.7, 

and can be obtained using Eqs.(5.2) and (5.3). Listed in Table 5.4 are the reduction factors for the elastic 

modulus, proportional limit and yield strength at elevated temperature. For instance, the reduction 

factor for the elastic modulus versus temperature curve is plotted in Figure 5.8. According to (Xu, 

2011), the elastic modulus and yield strength at room temperature are 2.03×105 N/mm2 and 345 N/mm2, 

respectively. 

  1ture nom nom      (5.2) 

 ln(1 )pl true
true nom

E


       (5.3) 

where σtrue, σnom, εnom, pl

true  and E are the true stress, nominal stress, nominal strain, true plastic strain 

and elastic modulus of steel at a given temperature. 

Steel expands considerably when exposed to high temperatures, inducing thermal bowing due to the 

presence of non-uniform temperatures across the stud section. Hence, the thermal expansion coefficient 

is necessary in the analysis of CFS wall systems at elevated temperature. The thermal elongation Δl/l 

of cold-formed steel at elevated temperature is also assumed to follow those specified in Eurocode 3 

Part 1.2 (2005), and can be determined from the following: 

 

5 8 2 4

2

5 3

1.2 10 0.4 10 2.416 10 20 750

/ 1.1 10 750 860

2 10 6.2 10 860 1200

o o

o o

o o

T T C T C

l l C T C

T C T C

  



 

       


    


    

  (5.4) 

where: 

l is the length at 20 oC; 

Δl/l is the temperature induced elongation; 

T is the steel temperature (oC). 
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Taking a derivative of Δl/l with respect to temperature, 

 

5 8

5

1.2 10 0.8 10 ( 20) 20 750

0 750 860

2 10 860 1200

o o

o o

s

o o

T C T C

C T C

C T C



 


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

  


  

  (5.5) 

 

Table 5.4 Reduction factor for cold-formed steel based on EC 3 Part 1.2 (2005)  

T (oC) kE,T=ET/E kp,T=fp,T/fy kp0.2,T=fp0.2,T/fy 

20 1 1 1 

100 1 1 1 

200 0.9 0.807 0.89 

300 0.8 0.613 0.78 

400 0.7 0.42 0.65 

500 0.6 0.36 0.53 

600 0.31 0.18 0.3 

700 0.13 0.075 0.13 

800 0.09 0.05 0.07 

900 0.0675 0.0375 0.05 

1000 0.045 0.025 0.03 

1100 0.0225 0.0125 0.02 

where:  

kE,T: Reduction factor (relative to E) for the slope of the linear elastic range  

kp,T: reduction factor (relative to fy) for proportional limit 

kp0.2,T: reduction factor (relative to fy) for effective yield strength 

ET: slope of linear elastic range at elevated temperature T 

fp,T: proportional limit at elevated temperature T 

fp0.2,T: effective yield strength at elevated temperature T 

E: elastic modulus at 20 oC 

Fy: yield strength at 20 oC 
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Figure 5.7 True stress-strain relationship of CFS stud at elevated temperature 

 

Figure 5.8 Reduction factor of CFS stud at elevated temperature 

5.4.2 Residual stresses and initial geometric imperfection 

With increasing temperatures, the residual stresses in studs decrease rapidly (Lee, 2004). Therefore, the 

residual stresses were not considered in this study, an omission in line with that of other researchers 

(Feng et al., 2003d; Gunalan & Mahendran, 2013; Kaitila, 2002). Due to the thermal bowing effect, the 

initial geometric imperfection becomes insignificant on the ultimate strength of CFS wall studs 

subjected to non-uniform elevated temperature distributions (Gunalan & Mahendran, 2013); hence, 

initial geometric imperfection was also not considered in this study. 

0.000 0.005 0.010 0.015 0.020 0.025
0

50

100

150

200

250

300

350

400

 

 

T
ru

e 
st

re
ss

 (
N

/m
m

2
)

Plastic strain

 20 
o
C

 100 
o
C

 200 
o
C

 300 
o
C

 400 
o
C

 500 
o
C

 600 
o
C

 700 
o
C

 800 
o
C

 900 
o
C

 1000 
o
C

 1100 
o
C

0 200 400 600 800 1000 1200
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

 

 

R
ed

u
ct

io
n

 f
ac

to
r,

 k
E

,T
 (

k p
0

.2
,T
)

Temperature (
o
C)

 k
E,T

=E
a,T

/E
a

 k
p0.2,T

=f
p0.2,T

/f
yb



 

78 

5.4.3 Results and discussion 

The results obtained from the FE structural model based on a single stud model for the seven tested 

specimens, shown in Table 5.1, are analyzed. All the studs fails in a similar way. The failure mode of 

studs is found to have little difference associated with the web perforation length (Lh=75 mm or 130 

mm). Detailed FEA results, for instance, Stud-4 of specimen LBW-E1(a) are discussed below.  

Shown in Figure 5.9 is the predicted time-reaction force (RF2) curve at the bottom end of the CFS 

stud. For the single stud, RF2 equals the applied load at the top end. At point A, the target load is 

applied at room temperature. At point B, the applied load starts to decrease. At point C, the applied 

load reduces to 85% of the applied load. The RF2 of Stud-4 of specimen LBW-E1(a) remains constant 

until failure occurs at about 96 minutes.  

Plotted in Figure 5.10 is the time-axial deformation curve at the top end. The stud shortens initially, 

due to the applied axial load at room temperature; then gradually expands as temperature increases; and 

finally shortens again since the stud can no longer sustain the applied load. The failure of the stud is 

evidenced by the rapid increase of column deformation and sudden decrease of the reaction force at the 

lower end of the column.  

Presented in Figure 5.11 and Figure 5.12 are respectively the predicted stress contour (Mises) and 

out-of-plane movement (U3) with respect to the phase designated as point A, B and C. Global bending 

about the X-axis, combed with local failure at the top end, can be observed. However, no failure 

associated with the web perforation is observed. Thermal bowing is observed as the stud bends towards 

the fire-exposed side. The flange of the column on the fire-exposed side buckles first due to the higher 

temperature, and results in rapid degradation of both the stiffness and strength of the flange. The flange 

on the fire-unexposed side bears an increasing load and fails as a consequence.  

Illustrated in Figure 5.13 is the temperature contour at phase Point C. Section 1 and 2 represent the 

cross section located at the center of a web perforation region and between two web perforations, 

respectively. The temperature within the stud ranging from 363 oC to 721 oC. According to Table 5.4, 

at 363 oC, the elastic modulus and yield stress of cold-formed steel decreases to approximately 75% 

and 70% of those at room temperature, respectively; and at 721 oC, the elastic modulus and yield stress 

both drop to about 13% that at room temperature. As a result, a large stress gradient exists in the stud. 

Plotted in Figure 5.14 are the cross-sectional temperature distributions at Section 1 and 2 for all the 

specimens at failure time, obtained from the heat transfer analysis.  
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Presented in Table 5.5 is a comparison of failure times between FEA and test results. According to 

(Xu, 2011), specimen LBW-2 failed prematurely due to the failure of the specimen’s sheathing joints 

in the fire test. The difference in failure time between the predicted FEA and test results, excluding 

specimen LWB-2, is within 11%, which illustrates that the single CFS stud model provides results with 

good accuracy and can be used for parametric study to investigate the effect of web perforation. 

 

Figure 5.9 Time-reaction force curve (LBW-E1(a)) 

 

 

Figure 5.10 Time-axial deformation curve (LBW-E1(a)) 
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Figure 5.11 Mises stress contour of FEA results for single stud model (LBW-E1(a)) 

 

Figure 5.12 U3 of FEA results for single stud model (LBW-E1(a)) 
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Figure 5.13 Temperature contour of Stud 4 at failure time (LBW-E1(a)) 

  

(a) LBW-E1(a) (b) LBW-E1a(b) 
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(c) LBW-G1(a) (d) LBW-E2 

  

(e) LBW-E5 (f) LBW-2 
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(g) LBW-3 

Figure 5.14 Cross-sectional temperature contours of Stud 4 for all specimens at failure time  

 

Table 5.5 Comparison of failure time between FEA and test results 

No. Specimen tFEA (min) tTest (min) (tFEA-tTest)/tTest×100% 

1 LBW-E1(a) 156.01 155 0.65% 

2 LBW-E1a(b) 139.28 153 -8.97% 

3 LBW-G1(a) 89.19 100 -10.81% 

4 LBW-E2 118.21 117 1.03% 

5 LBW-E5 108.82 100 8.82% 

6 LBW-2 108.10 68 58.97% (premature failure) 

7 LBW-3 92.86 83 11.88% 

Average 4% 

Standard Deviation (STDEV) 

(excluding LBW-2) 

0.091 
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5.5 Finite element structural model of CFS wall frame 

Unlike the FE modelling using a single CFS stud discussed in Section 5.4, the system-level FE model 

of the CFS wall frame developed in this study is presented in this section. Modelling of the tested wall 

frames can simulate possible stress redistribution within the CFS studs. The FE model includes all the 

steel components of a CFS frame except for the bottom track, as shown in Figure 5.15. By excluding 

the bottom track, the reaction force at the bottom end of each stud, a key parameter in the FE result 

analysis, can be extracted from the output database (.odb) file of ABAQUS. Similar to that of the single 

CFS stud model, the restraints associated with sheathing are modelled by restraining the horizontal 

displacement (UX) at the locations of screws. As to interior glass fibre insulation, its contribution of 

delay to the temperature rise is modeled in the thermal analysis, but the effect of glass fibre swelling is 

disregarded in the stress analysis. In this study, swelling of glass fibre does not have much effect on 

CFS studs of the tested wall frames as there is about 50 mm space in the wall cavities since the stud 

depth is 150 mm but the thickness of glass fibre is only 90 mm. In addition, swelling of glass fibre was 

not observed in the tests. 

The CFS frame is modelled using S4R element. To incorporate nodal temperature into sequential 

stress analysis, the location of each node in the FE mesh should be consistent with that of the thermal 

analysis. The finite element meshes of the structural model are the same as those of the heat transfer 

model, for which correlation is required to import the heat transfer results. The time period of the step 

specified is 14400 (240 minutes). The maximum number of increments is 200. The initial increment 

size is 30, whereas the minimum and maximum increment sizes are 1×10-9 and 300, respectively.  

Shown in Figure 5.16 are the interactions and constraints between all the components of the CFS 

wall frame. The contact interaction between the webs of the two studs on each end of the CFS frame is 

hypothesized to be frictionless, and the hard contact is selected for the normal direction behaviour. The 

tie interaction is defined to model the contacted surfaces between the loading beam and top track of the 

CFS frame, and the locations of nodes are where screws are placed. The spring/dashpots are defined to 

simulate the contact relationship between the track web and stud ends.  

Presented in Figure 5.17 are the boundary and loading conditions. All three translational 

displacements associated with the bottom end of the stud, i.e. UX, UY and UZ, are restrained. The 

horizontal displacements of the web of the top track, UZ, are restrained. The axial loads are applied 



 

85 

evenly to eight nodes at the locations of the ten jacks to prevent the composed loading beam failing 

locally.  

 

Figure 5.15 FE mesh of CFS wall frame model 
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Figure 5.16 Interactions and constraints of CFS wall frame model 
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Figure 5.17 Boundary and loading conditions of CFS wall frame model 
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5.5.1 Results and discussions 

The results obtained from the FE structural model based on the CFS wall frame model are analyzed. 

The failure mode of the CFS walls with a wall height of 3.0 m and 3.2 m are illustrated using specimens 

LBW-E1(a) and LBW-3, respectively. Shown in Figure 5.18 and Figure 5.19 are the failure modes of 

the two specimens obtained from the CFS wall frame model. Both CFS studs of the specimens bend 

towards the furnace and both ends of the studs deform considerably, corresponding to local failure at 

the ends. The wall height for specimens LBW-E1(a) and LBW-3 are 3.0 m and 3.2 m, respectively. In 

addition, the length and number of web perforations are different, as shown in Table 5.1. Local failure 

is associated with the web perforation near ends of the studs for specimen LBW-3, but not for specimen 

LBW-E1(a), perhaps because the web perforation length is greater and the bearing height associated 

the with the perforation at the end is much shorter than that of specimen LBW-E1(a).  

Shown in Figure 5.20 is the time-average axial displacement curve. The average axial displacement 

is obtained based on all the loaded nodes of the loading beam. The frame is shortened at ambient 

temperature when the load is applied but subsequently elongated at elevated temperature due to thermal 

expansion. But unlike shown in Figure 5.10 for the single CFS stud model, there is no abrupt axial 

shortening is observed at the time of failure and after failure for both specimens. Due to the local failures 

at the web perforation and ends of the studs, the computer program terminates when the local failures 

occurred. 

Presented in Figure 5.21 are the time-reaction force relationships at the bottom ends of the studs for 

all the specimens. Unlike a sudden drop in reaction force and axial deformation for single CFS stud 

model as illustrated in Figure 5.9 and Figure 5.10, there are force and stiffness interactions among the 

CFS studs. For all seven specimens, at the first phase, the loads in the interior studs initially increase 

as the temperature increases but the loads in end studs are reduced. This may be caused by the 

deformation of the loading beam. However, as the further increase of the temperature, the loads in the 

interior studs reached to their peak values. The loads were started to shift to the end studs. In the second 

phase, the loads in the interior studs decreases as the increase of the temperature. At the meantime, the 

loads in the end studs increase considerably. For the CFS wall frame model, the failure time of the 

specimens cannot be identified. 
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Figure 5.18 Failure mode of CFS wall frame model (LBW-E1(a)) 
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Figure 5.19 Failure mode of CFS wall frame model (LBW-3) 
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Figure 5.20 Time-average axial displacement relationships at stud top end 

 

 

 

 

 

 

 

 
Figure 5.21 Time-reaction force relationships at stud bottom end 
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Figure 5.21 Time-reaction force relationships at stud bottom end 
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Figure 5.21 Time-reaction force relationships at stud bottom end 
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From Figure 5.21, it is found that axial forces in end studs, Stud-1 and Stud-7, are in tension for a 

certain period of time in all the modelled specimens. Intuitively, it is expected that all the studs of the 

CFS wall frame are in compression due to the applied load and elevated temperature. A thorough 

examination on modelling of CFS wall frame was conducted, and it was found that the tension forces 

in the end studs was resulted from adopting the tie interaction to simulate the surface contact condition 

between the hot-rolled structural loading beam and the top track of CFS wall frame. In the FE model 

of CFS wall frame, the loading beam is assumed to be remained at ambient temperature throughout the 

fire event. Thus, there is no thermal expansion in the loading beam. Due to the compatibility of 

deformation, the possible thermal expansion of the top track of the CFS wall frame is restrained by the 

loading beam when tie interaction is specified, which results in tension forces in Stud-1 and Stud-7. 

Evidently, when the tie interaction between the loading beam and the top track of CFS wall frame is 

replaced with friction interaction, the end studs are no longer in tension in any time during the fire 

duration.  

Presented in Figure 5.22 is the failure mode of a CFS wall frame (LBW-3) with the height of 3.2 m 

and web perforations of 38 mm ×130 mm, in which the surface contact condition between the loading 

beam and the top track of CFS wall frame was simulated with friction interaction. Considering there is 

no available information on the friction coefficient between hot-rolled structural steel and galvanized 

cold-formed steel at elevated temperature, the friction coefficient of 0.3 was adopted in the investigation. 

The CFS wall frame, shown Figure 5.22, failed in a similar way to the case when the tie interaction was 

specified (Figure 5.19). The FE simulation associated with Figure 5.22 terminated early at 75.5 minutes 

instead of 79.2 minutes as that of Figure 5.19. Differential horizontal movement at the contact surface 

between the loading beam and the top track of CFS wall frame was also observed, as illustrated in 

Figure 5.22.  

Shown in Figure 5.23 is the time-reaction force relationships of stud bottom support corresponding 

to the frame shown in Figure 5.22. It can be seen from Figure 5.23 that all the wall studs of the frame 

are in compression throughout the fire duration. Therefore, it appears that the friction interaction is 

more realistic than the tie interaction. However, convergence issues were encountered when adopting 

the friction interaction for simulating the wall specimens with height of 3.0 m and shorter web 

perforation length. Thus, there is a need in future research to further explore appropriate boundary 

conditions between the loading beam and the top track of CFS wall frame at elevated temperature to 

achieve more realistic and accurate simulations. 
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Figure 5.22 Failure mode of CFS wall frame model (LBW-3) (friction coefficient=0.3) 
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Figure 5.23 Time-reaction force relationships at stud bottom support (friction coefficient=0.3) 

5.6 Finite element structural model of CFS wall system 

To investigate the effect of sheathing bracing on the behaviour of CFS walls at elevated temperature, 

sheathing is modelled with shell element in this model in addition to the CFS wall frame. The 

mechanical properties, i.e., elastic modulus and yield stress is very limited for gypsum board and they 

are not available for MgO board. A parametrical study is conducted to study the effect of different 

sheathing stiffnesses on the structural performance of the wall systems. The FE model is developed 

according to the configuration of the 3.0 m tall CFS wall with three web perforations (38×75 mm). 

Shown in Figure 5.24 is the FE model where sheathing is modelled using shell element S4R. Presented 

in Figure 5.25(a) and (b) are the interaction and constraint between the sheathing and stud, respectively. 

The temperature is applied only to the CFS wall frame, as shown in Figure 5.25(c). The sheathing on 

both sides of the wall are modelled with different stiffness in order to simulate the corresponding 

elevated temperature difference. 
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which the effect of the sheathing is not directly simulated by the shell element in the FE model of stress 

analysis; instead, the effect of sheathing is simplified by restraining the horizontal displacement (UX) 

of the wall studs at the locations of screws as that discussed in section 5.5 for CFS wall frame model.   

 

Figure 5.24 Sheathing modelled using shell element S4R 
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(a) Surface contact (b) Tie interaction 

 

(c) Incorporate nodal temperature 

Figure 5.25 Interaction and constraint between sheathing and studs 
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Figure 5.26. Stress-strain relationship of sheathing 

5.6.1 FEA results and discussions 

Illustrated in Figure 5.27 is the structural response of the CFS wall system at 60 minutes. For the 

CFS walls with different mechanical properties of gypsum boards on the fire-exposed side, buckling 

failure occurs at the bottom end of CFS wall studs for the case fy-Exp=0.125fy-Uexp and Ey-Exp=0.125Ey-Uexp. 

However, for the other three cases, i.e. fy-Exp=0.25fy-Uexp and Ey-Exp=0.25Ey-Uexp, fy-Exp=0.5fy-Uexp and Ey-

Exp=0.5Ey-Uexp, and fy-Exp=fy-Uexp and Ey-Exp=Ey-Uexp, the failures occur at the web perforation near the 

bottom end of CFS studs. At 60 minutes, the furnace temperature is 945.3 oC, and the temperature 

within the CFS frame varies from 512 oC to 112 oC as shown in Figure 5.28. Based on Eurocode 3 Part 

1.2 (2005), the reduction factors for elastic modulus and yield strength of CFS vary from 0.6 to 1 and 

from 0.53 to 1, respectively. The stress reaches the yield strength first on the fire-exposed side, shown 

in Figure 5.27(a)-(c). For the case in which sheathing is not directly modelled by shell elements, i.e. in 

CFS wall frame model (Figure 5.27(c), buckling failure is not observed at 60 minutes, but buckling 

failure occurs at web perforations near the bottom stud ends for the cases of Figure 5.27(a) and (b). 

Therefore, it may indicate that the simulating effect of sheathing by restraining the horizontal 

displacements of CFS studs at the location of screws of without directly modelling sheathing with shell 

elements in stress analysis may overestimate the failure time of the wall. 
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(a) CFS frame (fy-Exp=0.125fy-Uexp) 

 

(b) CFS frame (fy-Exp=0.25fy-Uexp) 
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(c) CFS frame (restrain UX at screw locations) 

Figure 5.27. Structural response of CFS frame at 60 minutes 

 

Figure 5.28. Temperature distribution within CFS frames at 60 minutes 
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Figure 5.29. Out-of-plane deformation (UZ) versus time (min) curve 

 

(a) GypExp (fy-Exp=0.125fy-Uexp) 
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(b) GypExp (fy-Exp=0.25fy-Uexp) 

 

(c) GypUexp (fy-Exp=0.125fy-Uexp) 



 

104 

 

(d) GypUexp (fy-Exp=0.25fy-Uexp) 

Figure 5.30. Stress distributions within gypsum boards at 60 minutes 

As shown in Figure 5.28, temperature distributions are non-uniform through the wall cross sections 

and along the length of web-perforated CFS studs, inducing bending in the studs due to effects of neutral 

axis shifting and thermal bowing. Plotted in Figure 5.29 is the relationship between the lateral deflection 

(UZ), that is, out-of-plane deformation and exposing time in minute at mid-height on both sides of the 

wall for the cases (fy-Exp=0.125, 0.25, 0.5 and 1.0fy-Uexp). The lateral deflection of stud flange on the fire-

exposed side is greater than that on the fire-unexposed side for each case. As the increase of temperature, 

the difference of the lateral deflections between the two flanges increase except for the case (fy-

Exp=0.125fy-Uexp) because of early failure of the wall assembly. Also observed from Figure 5.29, the 

magnitude of mechanical property on the fire-exposed side, i.e., Ey-Exp, has the considerable effect on 

the out-of-plane deformation of the wall which can be critical to the fire performance of the wall. Taking 

the case of CFS wall with fy-Exp=0.125fy-Uexp and Ey-Exp=0.125Ey-Uexp, the lateral deflection reaches 8.3 

mm at about 43.1 minutes, which is L/360 (L=wall height). Then, the lateral deflection further increases 

to 25 mm at 55.5 minutes, which reaches the limit of L/120. For CFS walls with gypsum board finishes, 

the deflection limit of L/360 is normally used for preventing cracking at ambient temperature in practice. 

Therefore, in this case cracking of the gypsum boards may already occur as early as at 43.1 minute. 
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Once cracks developed in the sheathing, the fire may penetrate from the fire-exposed side to the fire-

unexposed side, the failure of the wall can system be imminent. It is also observed the lateral deflection 

of the case without directly modelling sheathing (i.e., CFS wall frame model) in stress analysis and 

case fy-Exp=0.125fy-Uexp and Ey-Exp=0.125Ey-Uexp are similar and they are considerably different from that 

of other cases, which illustrates that the effect of sheathing is not realistically simulated in the CFS wall 

frame model.  

Shown in Figure 5.30 are the stress distributions within the gypsum boards on the fire-exposed side 

(GypExp) and unexposed side (GypExp) at 60 minutes. In the horizontal direction, the stress on the left 

and right sides of the sheathing are higher than that at the central region. This is because the wall is 

similar to a four edges simply-supported one-way plate subjected to a uniformly distributed load in 

which the left and right sides are experienced the larger curvature gradients. Additionally, from Figure 

5.30, due to the stiffness of the wall system in the transverse direction of the studs is considerably less 

than that of the longitudinal direction, the stress with the sheathing is higher in the region near buckling 

failure than that in the other regions on the fire-exposed side due to large deformation of CFS studs, 

whereas the stress has a small difference on the fire-unexposed side. 

5.7 Conclusions 

A sequentially uncoupled 3D FE thermal-stress analysis is proposed for evaluating the performance of 

load-bearing CFS walls with C-shape web-perforated studs subjected to the standard fire. The predicted 

temperature profiles and the failure time are compared with the tests. It can be concluded in the 

following: 

 Simulating CFS wall fire tests using a single stud model is acceptable. The difference in the 

failure time predicted by the single stud model and seven fire tests is within 11%. The nodal 

temperature obtained from the heat transfer analysis is critical to the structural response.  

 Modelling the load-bearing fire wall tests using CFS wall frame can obtained the system-level 

response; however, the failure criteria are yet to be determined. From the FEA results obtained 

from the CFS wall frame model, it is found that the middle few studs may bear higher loads than 

that applied to a single stud and then there are stiffness and force interactions among the CFS 

wall studs. Consequently, the single stud model may overestimate the failure time. Thus, the 

stiffness and force interactions should be considered in FEA in order to achieve better accuracy. 
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 For laterally braced CFS walls, modelling the restraint provided by sheathing by restraining in-

plane lateral displacement is acceptable in case no credible mechanical properties of specific 

sheathing materials at elevated temperature. However, in case the mechanical properties are 

available, modelling the sheathing using shell element provides more realistic prediction on the 

structural response demonstrated in load-bearing wall fire tests. The interaction of force and 

stiffness among wall studs found in CFS wall frame model are verified by the CFS wall system 

model. Moreover, the failure time cannot be identified in the CFS wall system model. 
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Chapter 6 Extended Design Method Based on AISI S100 

6.1 Introduction 

Presented in this chapter is a design method to account for the effect of web perforation length on the 

fire resistance of studs in load-bearing CFS walls. At elevated temperature, CFS wall studs are 

subjected to combined compression and bending. Design calculations should check both cross sections 

at the mid-height and at the support of the column. At the mid-height of the column, the bending 

moment about the major axis (x-x) is a result of the thermal bowing, neutral axis shift and magnification 

effect (P-Δ effect). At the support, the bending moment about the strong axis is caused by a neutral axis 

shift only. In previous studies, investigation of the effect of web perforations on the ultimate strength 

and failure time of CFS studs at non-uniform temperature is very limited.   

The following are included in this chapter: 

 Investigating the effect of web perforation on the ultimate strength of studs using FEA; 

 Determining an applicable and simple non-uniform cross-sectional temperature distribution for 

CFS studs with web-perforated studs for design purposes; 

 Proposing a design method based on AISI S100 (2012) that accounts for the effect of web 

perforation; 

 Presenting a design example; 

 Comparing results between extended design method and FEA. 

6.2 Parametric study 

A parametric study has been performed to investigate the effect of web perforation length on the 

ultimate strength of CFS studs with web perforations in walls subjected to standard fire from one side. 

The temperature distribution of CFS wall studs are obtained from heat transfer analysis based on a 600 

mm wide CFS wall segment. The segment is sheathed by double layers of 12 mm MgO board on both 

sides, and fully insulated by 150 mm thick glass fibre in the cavity. The development of the heat transfer 

model and structural model are similar to those in sections 3.4 and 5.4, respectively. The material 

properties, including thermal and mechanical properties are the same as in sections 5.3.2 and 5.4.1. 
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6.2.1 Parameters of single CFS stud model 

The parameters adopted in this FE study are: 

 Stud section: C-shape section (150×40×15×1.5); 

 Length of studs: 3000 mm; 

 Web perforations: three web perforations spaced 600 mm o.c. along the stud length;  

dh=38 mm, Lh = 0, 75, 114, 130, 250, and 380 mm;  

 Screw spacing: 300 mm o.c.; 

 Applied axial load: varying from 12 kN to 82 kN 

6.2.2 Results and discussions 

Shown in Figure 6.1 are the cross-sectional temperature profiles of studs with varying perforation 

lengths. The effect of web perforation length on the temperature profiles is consistent with that 

discussed in section 4.4.2. Small temperature variations exist within the flange and lip on both hot and 

cold sides, but can be assumed to be uniform. The temperature distributions of cross-sections with web 

perforations are slightly higher on the hot side and lower on the cold side when compared with solid 

sections. As Lh increases, the temperature distribution on the cold side reduces slightly. Plotted in Figure 

6.2 is the time dependent temperature curve of the flange-web junctions of the studs (Lh=0 mm). The 

temperature gradient within the stud cross section increases with the fire-exposure time. 

Illustrated in Figure 6.3 and Figure 6.4 are the comparisons of the cross-sectional yield strength and 

elastic modulus for the stud (Lh=0 mm) at elevated temperatures, respectively. The symbols Fy,HF and 

Fy,CF are the yield strength of the hot flange and cold flange at elevated temperature; EHF and ECF are 

the elastic modulus of the hot flange and cold flange at elevated temperature. 

Presented in Figure 6.5 is the fie-exposure time-applied load relationship predicted by the FEA. The 

detailed failure times corresponding to the applied axial load can be seen in Appendix B. At a given 

applied axial load, the failure time of studs decreases as Lh increases. For studs with Lh=250 and 380 

mm, the drop in failure time is much larger when compared with the cases when Lh≤130 mm. For all 

the studs with varying Lh, as the applied load reduces, the difference in failure time caused by Lh drops 

gradually and eventually diminishes. For instance, when 0 mm<Lh≤130 mm, the following can be 

drawn according to Figure 6.5: 
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First phase: THF = 20 oC, TCF = 20 oC, there are no reductions in Fy,20  and E20, and 0e  . The failure 

time of the stud depends on the compression strength at room temperature only.  

Second phase: THF > 20 oC, TCF = 20 oC, there are no reductions in Fy,20 and E20, and e = eΔT ≠ 0. The 

failure time of studs is dominated by compression; and failure occurs at the mid-height. 

Third phase: THF > 100 oC, 20 oC <TCF ≤ 100 oC, there are reductions in Fy,HF and EHF and

  /T E xe e e     where eΔE is small, eΔT dominates failure. Bending moment increases in the studs; 

the failure time of studs is dominated by compression; and failure occurs at the mid-height. 

Fourth phase: THF >100 oC, TCF >100 oC, there are reductions in Fy,HF, Fy,CF, EHF and ECF. 

  /T E xe e e     where eΔT and eΔE increased rapidly. Bending moment increases further in the studs. 

Below about 102 minutes’ fire exposure, the effect of eΔE is beneficial; failure occurs at mid-height. 

After that, failure occurs at supports, and Fy,HF and EHF are relatively low when compared with EHF and 

ECF. 

The symbols e is the eccentricity caused by thermal bowing (eΔT) and central axis shift (eΔE); αx is the 

moment amplification factor related to e.  

 

   
(a) At 60 minutes (b) 120 minutes (c) At 180 minutes 

Figure 6.1 Cross-sectional temperature profiles of studs with different perforation lengths 
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Figure 6.2 Time-temperature curve of stud flange-web junctions 

 

Figure 6.3 Comparison of normalized cross-sectional yield strength 
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Figure 6.4 Comparison of normalized cross-sectional elastic modulus 

 

Figure 6.5 Failure time-applied load relationship predicted by FEA 
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6.3 Extended design equations based on AISI S100 

6.3.1 Nominal axial strength 

Using the same type of approach as in AISI S100 (2012) for cold-formed steel members at room 

temperature, the nominal axial strength, Pn, is calculated in accordance with Eq. (6.1).  

 
n e nP A F   (6.1) 

The symbol Ae is the effective area assuming uniform compression at elevated temperature and 

calculated at buckling stress Fn. The value Ae is the summation of the effective width of all compression 

elements calculated at buckling stress Fn, in accordance with Clauses B1 to B4. The average yield stress 

for each element at elevated temperature is used to calculate the effective width. For cross sections 

without web perforation, the web is considered as a uniformly compressed stiffened element, and the 

plate buckling coefficient, k, is taken to be 4 (Clause B2.1(a)). For cross sections with web perforation, 

the web is assumed to consist of two unstiffened strips A and B, adjacent to the perforations. The 

effective width of each unstiffened strip are determined in accordance with B2.1(a), except that plate 

buckling coefficient, k, is be taken to be 0.43, regardless of web perforation length. However, the 

presence of web perforations can either decrease or increase the critical buckling stress (El-Sawy & 

Nazmy, 2001; Komur & Sonmez, 2008; Maiorana, Pellegrino, & Modena, 2009). The influence of the 

length of web perforation and width of the unstiffened strip on k are accounted for in (Moen & Schafer, 

2009). The value ki for unstiffened strips A and B are approximated by Eqs. (6.2) and (6.3). The value 

ki varies from 0.425 to 0.925. At a given unstiffened strip width, k increases as web perforation length 

decreases. 

 
 

0.95

0.2
for / 1, 0.425

/ 0.6
h i i

h i

L h k
L h

  


  (6.2) 

 for / 1, 0.925, and  or .h i iL h k i A B     (6.3) 

To better fit the FE results in section 6.2, Eq. (6.2) is modified as in Eq. (6.4). 

 
 

0.95

0.2
for / 1, 0.425

/ ( 2.5 ) 0.6
h i i

h i

L h k
L h t

  
 

  (6.4) 

where t is the thickness of the web. 
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Correspondingly, the effective width of the unstiffened strip on each side is calculated using Eq.(6.5). 

 2.5 ; oreffi id h t i A B     (6.5) 

The buckling stress Fn is calculated as below: 

 For 1.5c    (6.6) 

  
2

,0.658 c
y TnF F


   (6.7) 

 For 1.5c    (6.8) 

 ,
2

0.877
y Tn

c

F F


 
  
 

  (6.9) 

where 

 
,y T

c

e

F

F
    (6.10) 

Fe = minimum of flexural and flexural-torsional buckling stresses calculated in accordance with 

Clauses C4.1.1 and C4.1.2, using the weighted average mechanical properties ( ,y TF , TE and TG ) at 

elevated temperatures. 

,y TF   = weighted average yield stress of cross section at elevated temperature. 

6.3.2 Nominal flexural strength 

In accordance with Clause B2.4, C-Section webs with perforations under stress gradient at room 

temperature ignores the effect of Lh and only accounts for dh/h (h=web depth). The effective width of 

web can be determined as below:  

 When dh/h<0.38, the effective widths shall be determined in accordance with Section B2.3(a) 

by assuming no hole exists in the web. 

 When dh/h≥0.38, the effective width shall be determined in accordance with Clause B3.1(a), 

assuming the compression portion of the web consists of an unstiffened element adjacent to the 

hole. 



 

114 

However, at elevated temperature, the bending strength for a cross section with perforations is 

associated with both dh and Lh. As discussed in section 6.2.2, for Lh≤130 mm, the effect of web 

perforation on the fire resistance of the CFS studs weakens as the cross-sectional temperature increases. 

At higher temperature, the bending moment caused by thermal bowing, central axis shift and 

magnification effect increase, which relatively reduces the weight of nominal axial strength. However, 

for Lh =250 and 380 mm, the fire resistance is largely reduced by the presence of web perforations; thus, 

the effect of web perforation should be accounted for. In this study, the extended design equations deal 

with Lh≤130 mm only. To simplify calculations, the CFS cross section is assumed to be solid, neglecting 

the effect of web perforation.  

The CFS wall studs are subjected to combined compression and bending at non-uniform elevated 

temperature. The effect on strength of bending moment about the minor axis (y-y axis) caused by 

neutral axis shift (eΔE) is small (Zhao et al., 2005), and ignored, as in (Klippstein, 1980; Gerlich et al., 

1996; Ranby, 1999; Kaitila, 2002; Zhao et al., 2005, Gunalan, 2013). Thus, the bending moment about 

major axis (x-x axis) is considered only.  
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Table 6.1 Failure criteria for calculating nominal flexural strength (Feng &Wang, 2005) 

 

Design calculations should check both cross sections. At the mid-height, compression is on the cold 

side. When calculating the moment strength of the cross section, partial plasticity is considered, as 

shown in Table 6.1 (Feng &Wang, 2005; Zhao et al., 2005). Yielding occurs on both flanges with bi-

linear stress distribution in the web on the hot side. However, the calculation is very complicated 

because of the need to determine the stress distribution on the hot side. A simpler calculation method 

extended by (Gunalan, 2013) is used in this study, and the nominal moment strength, Mnx,eff, is 

calculated in accordance with Eq. (6.11) as follows: 

 ,,, y Teff Tnx effM S F   (6.11) 
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At the supports, the hot flange is in compression whereby the first yield of the compression flange is 

adopted (Feng and Wang, 2005; Zhao et al., 2005; Gunalan, 2013). Mnx,eff is calculated in accordance 

with Eq. (6.12) as follows: 

 ,, ,eff Tnx eff y HFM S F   (6.12) 

where ,y TF  is the weighted average yield stress of the cross section; Fy,HF is the yield stress of the 

hot flange; and ,eff TS   is the weighted elastic section modulus of the effective section calculated based 

on pure bending in accordance with Eq. (6.13), in which ,eff TI and ymax are the weighted average moment 

of inertia and maximum distance from the extreme fibre of the flange to the centroid of the cross section. 

 
,

,

max

eff T
eff T

I
S

y
   (6.13) 

6.3.3 Combined compression and bending 

At elevated temperature, the CFS wall studs are subjected to combined compression and bending. The 

bending moment about the major axis (x-x axis) is considered only. Based on AISI S100 (2012) for 

cold-formed steel structural members at room temperature, the required strengths (factored force and 

moments) P  and xM are determined using second-order analysis and must satisfy the following 

interaction Eq.(6.14):  

 
,

1.0
xmx

c n b nx eff x

C MP

P M  
    (6.14) 

where  

P  = required compressive axial strength;   

nP  = nominal axial resistance; 

xM  = required flexural strength with respect to centroidal axis; 

,nx effM   = nominal flexural resistance about centroidal axis; 

,c b   = resistance factors whose values are taken to be 1 in this case;  
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x  = moment amplification factor and can be calculated using 1x

Ex

P

P
    at elevated temperature, 

in which
ExP  is the elastic buckling load

 

2

2

x
Ex

x x

EI
P

K L


  , where Ix is the moment of inertia of full 

unreduced cross section about the x-x axis, Lx is the unbraced length for bending about x-axis, and Kx 

is the effective length factor for buckling about the x-x axis; and the detailed calculation for
x can be 

seen in Appendix C; 

Cmx is the coefficient for unequal end moments; for members whose ends are unrestrained, Cmx=1.0. 

Design calculations should check both cross sections at the mid-height and at the support of the 

column. At the mid-height of the column, the bending moment about the major axis (x-x) is a result of 

the thermal bowing, neutral axis shift and magnification effect (P-Δ effect). At the supports, the bending 

moment about the strong axis is caused by a neutral axis shift only. The total moment strength xM , due 

to thermal bowing, neutral axis shift and their magnification effects, is given by Eqs. (6.15) and (6.16). 

At the mid-height:  

1

mx T Emx
x

x

Ex

C P e eC Pe
M

P

P



 
 

 
 

 

  (6.15) 

At the supports: 

1

mx mx E
x

x

Ex

C Pe C Pe
M

P

P


 

 
 

 

  (6.16) 

where e is the total eccentricity due to neutral axis shift, thermal bowing and their magnification 

effects; eΔE is the neutral axis shift in the x-x axis, and eΔT is the thermal bowing at the mid-height 

(shown in Figure 6.6). For a simply supported column, eΔT is calculated in accordance with Eq.(6.17) 

as follows: 

 
2( )

8

s HF CF
T

w

T T L
e

b





   (6.17) 

where L is the column length; THF and TCF are the average temperatures of the hot and cold sides of the 

cross section, respectively; αs is the thermal expansion coefficient of steel, taken as in Eurocode 3 Part 

1.2 (2005); and bw is the overall depth of the cross section. 
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(a) Simplified cross-sectional  

temperature distribution 

(b) Thermal bowing (eΔT)  

and P-Δ effects 

 

 

(c) Eccentricity e about x-x axis 

Figure 6.6 Neutral axis shift, thermal bowing and magnification effects 

To simplify the calculation of the combined compression and bending, the cross-sectional elevated 

temperature distribution is shown in Figure 6.6(a), and is the same as in (Feng et al., 2003c; Gunalan 

& Mahendran, 2013; Kaitila, 2002).  
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6.4 Comparison of results between extended design method and FEA 

When applying the extended calculation method, the compressive strength is calculated based on a 

given cross-sectional temperature distribution. This temperature distribution can be determined using 

the hot and cold flange temperatures of CFS studs without web perforations, obtained from heat transfer 

analysis. A detailed design example is presented in Appendix C, and detailed calculation results 

obtained from using the extended  design method can be seen in Appendix D. Shown in Figure 6.7 is 

an example of the calculated axial strength of the studs at the mid-height and at the support, using the 

extended  design method. The calculated axial strength equals the minimum of these two values. The 

intersection point in this figure separates the studs failing at the mid-height and at the support.  

Shown in Figure 6.8 is a comparison of the interaction of compression and bending for the studs 

obtained using the extended design method. / _n hP P L i  is the ratio of the calculated ultimate axial 

strength over the nominal compression strength for the studs with Lh=i mm, i=0, 75, 114 and 130 mm; 

and ,( / ) / _x x nx eff hM M L i  is the ratio of calculated ultimate flexural strength, considering 

magnification effects, over the nominal flexural strength for studs with Lh=i mm. The trend for the 

interaction of compression and bending is consistent with that discussed in section 6.2.2. The effect of 

web perforation length on the calculated ultimate strength also agrees well with that predicted by the 

FEA, as shown in Figure 6.5.  

Presented in Figure 6.9 are the stud normalized compressive strengths calculated using the extended  

design method with the applied axial loads used in the FEA to obtain the stud failure times. The symbols   

, ,hT L i proposedP   and , ,hT L i FEAP   represent the calculated nominal axial strength or the applied axial load in 

the FEA for studs without or with web perforations (i=0, 75, 114 and 130 mm) at 20 oC or elevated 

temperature. 20, 0,hL AISIP  is the nominal axial strength of the studs without web perforations at 20 oC, 

calculated using AISI S100 (2012). 20, 0, ( 73.1 )
hL AISIP N  is about 9% times lower than 

20, 0, ( 82.7 )
hL FEAP N  , since the former has included the effect of initial geometric imperfection, 

eccentricity, residual stress, etc. Thus, the calculated or predicted axial strength is normalized using  

20, 0,hL AISIP   and 20, 0,hL FEAP  , respectively. By doing this, the trends for calculated and predicted results 

are comparable. By accounting for the reduction caused by web perforation length in the extended 

method, the calculated ultimate strength for studs with perforations is always lower than that for studs 
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without web perforations. For design purposes, this level of accuracy is considered acceptable by 

accounting for the complexity of the problem being dealt with and the simplicity of the extended design 

method.  

 

Figure 6.7 Calculated ultimate compression strength at mid-height and at support 

 

Figure 6.8 Comparison of interaction of compression and bending  
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Figure 6.9 Comparison of axial strength based on extended design method 
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6.5 Conclusions 

In this chapter, a design method is extended based on AISI S100 (2012) to evaluate the ultimate strength 

for CFS studs in walls subjected to standard fire. Conclusions can be drawn as follows: 

 The reduction caused by web perforation length is accounted for in the extended method, which 

ensures that the calculated ultimate strength for studs with perforations is always lower than that 

for studs without web perforations. A plate buckling coefficient, accounting for the web 

perforation length and width is introduced to characterize the nominal axial strength. The effect 

of web perforation on the nominal flexural bending at elevated temperature is ignored, as is 

consistent with AISI S100 (2012) at room temperature. The accuracy is acceptable considering 

the complexity of the problem being dealt with and the simplicity of the calculation. 

 In the extended design equations, the limit of web perforation length is extended from the 114 

mm, specified in AISI S100 at room temperature, to 130 mm at non-uniform cross-sectional 

elevated temperature. For Lh ≤ 130 mm, the non-uniform cross-sectional temperature distribution 

of studs can be adopted as the case of studs without web perforations. The temperature in the 

stud web can be assumed to be linear and to have the same slope for the unstiffened strips on 

both hot and cold sides. For Lh larger than 250 mm, the effect of web perforation on the ultimate 

strength of studs at elevated temperature is amplified when compared with that for studs with Lh 

≤ 130 mm. 
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Chapter 7 Conclusions and Future Research 

7.1 Conclusions 

Cold-formed steel (CFS) load-bearing wall systems are commonly constructed with CFS studs, have a 

CFS track connecting their top and bottom, and are lined with one or two layers of sheathing on both 

sides. In practice, the CFS studs are perforated in the web to install intermediate braces, or to allow the 

passage of electrical, plumbing, and heating service. With the growing interest in performance-based 

fire safety design, coupled with the costly and time consuming nature of full-scale testing, engineering 

professionals and researchers are increasingly exploring validated fire resistance models and simple 

design equations. Several contributions have been made in this study: 

7.1.1 Web-perforated CFS C-shape studs at ambient and elevated temperatures  

The behaviour of CFS C-shape stub columns at both ambient, uniform and non-uniform elevated 

temperatures have been investigated.  

The effects of web perforations on the failure mode and ultimate strength of CFS C-shape stub 

columns were investigated at ambient temperature. The results show that a web perforation length of 

less than 130 mm has negligible effect on the ultimate compressive strength. Thus, the limitation on 

the length of web perforations not to exceed 114 mm stated in the effective width method in AISI-S100 

(2012) may be extended to 130 mm. Additionally, the DSM approach in AISI S100 (2012) accurately 

assesses the compressive strength of the stub column specimens. 

 Finite element structural models for web-perforated CFS C-shape columns at ambient and 

uniform elevated temperature (22 oC to 700 oC) have been developed, with validity of this model 

validated by stub columns tests. A parametric study of CFS C-shape slender columns with non-

uniform cross-sectional temperatures distribution found that the length of web perforations has 

small effect on failure time.  
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7.1.2 Finite element thermal modelling and analysis 

Heat transfer analysis has been conducted to investigate the thermal performance of CFS walls with 

web-perforated CFS studs under standard fire. Both cavity insulated and non-insulated CFS walls were 

considered. The extended 3D finite element thermal models were validated using data from full-scale 

fire tests. Unlike 1D and 2D models adopted by previous studies, the 3D models can simulate the 

temperature variation within the stud cross section and along the stud length caused by web 

perforations.  

 For non-insulated CFS walls, web perforations in the CFS studs have negligible influence on the 

temperature distribution through the cross sections and along the stud length. The heat transfer 

within the cavity dominates by radiation, far overweighing that by conduction, and is blocked by 

web perforations. 

 For insulated CFS walls with web perforations, the temperature distribution is no longer linear 

but almost bilinear along the web depth. The largest temperature gradient in the CFS studs occurs 

at the cross section located in the center of the web perforation along the stud length. The larger 

temperature gradient may induce local bending around web perforations, which can be 

detrimental to the stability of the studs and integrity of the CFS walls. Therefore, it may be non-

conservative to neglect the web perforations in CFS wall studs when evaluating wall 

performance at elevated temperature. 

7.1.3 Finite element structural modelling and analysis 

A sequentially uncoupled 3D FE thermal-stress analysis has been extended for evaluating the 

performance of load-bearing CFS walls with C-shape web-perforated studs subjected to the standard 

fire.  

 Simulating CFS wall fire tests using a single stud model is acceptable. The difference in the 

failure time predicted by the single stud model and seven fire tests is within 11%. The nodal 

temperature obtained from the heat transfer analysis is critical to the structural response. 

Modelling the load-bearing fire wall tests using a CFS wall frame can obtain a system-level 

response; however, the failure criteria are yet to be determined. From the FEA results obtained 

from the CFS wall frame model, it is found that the middle few studs may bear much higher 

loads than that applied to a single stud, due to stiffness and force interactions among the CFS 
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wall studs. Consequently, the single stud model may overestimate the failure time. Thus, stiffness 

and force interactions should be considered in FEA so as to achieve better accuracy. For laterally 

braced CFS walls, modelling the restraint provided by sheathing by restraining in-plane lateral 

displacement is acceptable, if no credible mechanical properties exist for specific sheathing 

materials at elevated temperature. However, if the mechanical properties are available, modelling 

the sheathing using shell element provides more realistic prediction of the structural response 

demonstrated in load-bearing wall fire tests. The interaction of force and stiffness among wall 

studs found in the CFS wall frame model have been verified by the CFS wall system model. The 

failure time cannot be identified in this model. 

7.1.4 Extended design method based on AISI S100 

Design calculations should check both cross sections at mid-height and at supports of the column. At 

the mid-height of the column, the bending moment about the major axis (x-x) is a result of the thermal 

bowing, neutral axis shift and magnification effect (P-Δ effect). At the support, the bending moment 

about the strong axis is caused by neutral axis shift only.  

 A parametric study using FEA is conducted to investigate the effect of web perforation on the 

ultimate strength of studs. The effect of web perforations longer than 250 mm on the ultimate 

strength of studs at elevated temperature is amplified when compared with that for studs of 

Lh≤130 mm. 

 For design purposes, when Lh≤130 mm, the non-uniform cross-sectional temperature distribution 

of studs can be adopted, just as in the case of studs without web perforations. The temperature 

in the stud web can be assumed to be linear and have the same slope for the unstiffened strips on 

both hot and cold sides.  

 The reduction caused by web perforation length is accounted for in the extended method, which 

ensures that the calculated ultimate strength for studs with perforations is always lower than that 

for studs without web perforations. A design method has been extended based on the effective 

width method in AISI S100 (2012) to evaluate the ultimate strength of CFS studs in walls 

subjected to standard fire. A plate buckling coefficient, associated with web perforation length 

and width, has been introduced to characterize the nominal axial strength. The effect of web 

perforation on the nominal flexural bending at elevated temperature is ignored, an approach 

consistent with that stipulated in AISI S100 (2012) at room temperature. The accuracy is 
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acceptable considering the complexity of the problem being dealt with and the simplicity of the 

calculation. In the extended design equations, the limit of web perforation length is extended 

from 114 mm, specified in AISI S100 at room temperature, to 130 mm at non-uniform cross-

sectional elevated temperature.  

7.2 Future research 

Several interesting future research topics arose from the experiments, sequentially uncoupled finite 

element thermal-stress analysis, and design method extended in this thesis. The major points for future 

study, organized by research topic, are listed below.  

 

Web-perforated CFS C-shape studs at ambient and elevated temperatures (Chapter 3) 

 Conducting experimental studies of web-perforated C-shape studs at uniform and non-uniform 

elevated temperatures to study their structural responses. 

 

Thermal modelling and analysis (Chapter 4) 

 Improving the accuracy of heat transfer analysis by quantifying the thermal properties of 

sheathing materials, i.e., gypsum board (Type X and Type C) and MgO board via lab testing; 

 Improving accuracy by simulating the effect of screws, sheathing joints, gypsum board cracking 

and spalling on temperature distributions of CFS walls; 

 Investigating how a variety of web perforation sizes (widths, lengths), shapes, arrangements, etc., 

in CFS studs affect the structural performance of load-bearing CFS walls; 

 Developing a simplified numerical heat transfer model to predict the cross-sectional temperature 

distribution of studs in CFS walls for engineering practice.  
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Finite element structural modelling and analysis (Chapter 5) 

 Performing additional validation of the CFS wall stud model, CFS wall frame model and CFS 

wall system model using academically oriented full-scale fire tests on load-bearing CFS walls 

with web-perforated studs; 

 Determining the failure criteria of the CFS wall frame model and CFS wall system model by 

further investigating the stiffness and force interactions among the CFS wall studs; 

 Improving the accuracy of the CFS wall system model by quantifying the mechanical properties 

of sheathing materials, i.e., gypsum board (Type X and Type C) and MgO board via lab testing; 

 Improving the accuracy of the CFS wall system model by modelling the effects of screws, 

sheathing joints, gypsum board cracking and spalling, and boundary conditions between loading 

beam and top track on the structural response of CFS walls;  

 Investigating how a variety of web perforation sizes (widths, lengths), shapes, arrangements, etc., 

in CFS studs affect the structural performance of load-bearing CFS walls. 

 

Extended design method based on AISI S100 (Chapter 6) 

 Validating the extended design method in this study with a variety of full-scale fire test results; 

 Extending the extended design method to account for a variety of web perforation sizes, both by 

width and length; 

 Incorporating a coefficient into the extended equations by considering how stiffness and force 

interactions among the CFS wall studs affect the ultimate strength and failure time of CFS walls; 

 Proposing a design method based on DSM approach, in addition to EWM method in this study, 

for CFS studs with non-uniform cross-sectional elevated temperature distribution. 
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Appendices 

Appendix A Comparison of gypsum board surface temperature on the fire-

unexposed side between FEA and full-scale fire tests 

Presented in this Appendix is a comparison of time-dependent temperature profiles obtained from FEA 

and data measured during the fire tests conducted by (Xu, 2011). The numbers from 1 to 8 indicate the 

locations where thermocouples were place throughout the test, as shown in Figure 5.2. The measured 

data by these thermocouples are named as ST1 to ST8 in the time-temperature curves below. The curve 

FEA represents the predicted average temperature of the sheathing surface on the fire-unexposed side. 

 
Figure 5.2. Experimental setup 
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Appendix B FEA results for parametric study (section 6.2)    

 

Failure time 

(min) 

Applied load 

0hL mmP   

(kN) 

0

,20 , 0

h

o
h

L mm

FEA C L mm

P

P





  Failure time  

(min) 

Applied load 

75hL mmP   

(kN) 

75

,20 , 0

h

o
h

L mm

FEA C L mm

P

P





 

3.0 82.5 0.997  2.2 81 0.979 

4.1 82 0.991  5.0 80.5 0.973 

5.0 81.5 0.985  6.3 80 0.967 

5.9 81 0.979  7.4 79 0.955 

7.7 80 0.967  9.3 78 0.943 

9.5 79 0.955  13.3 77 0.931 

11.9 78 0.943  15.5 76 0.919 

14.9 77 0.931  19.2 75 0.907 

19.3 76 0.919  23.0 74 0.895 

23.0 75 0.907  26.0 73 0.883 

25.8 74 0.895  28.8 72 0.870 

28.8 73 0.883  32.0 71 0.858 

31.3 72 0.870  36.8 70 0.846 

35.2 71 0.858  41.2 69 0.834 

39.8 70 0.846  44.5 68 0.822 

43.5 69 0.834  46.5 67 0.810 

45.8 68 0.822  48.3 66 0.798 

47.2 67 0.810  50.0 65 0.786 

49.3 66 0.798  51.8 64 0.774 

50.7 65 0.786  53.7 63 0.762 

52.3 64 0.774  55.8 62 0.750 

54.2 63 0.762  58.0 61 0.737 

56.2 62 0.750  60.0 60 0.725 

58.0 61 0.737  63.0 59 0.713 

60.0 60 0.725  65.8 58 0.701 

72.5 55 0.665  73.7 55 0.665 

83.3 50 0.605  83.7 50 0.605 

93.5 45 0.544  93.8 45 0.544 

100.2 40 0.484  100.2 40 0.484 

104.5 35 0.423  104.5 35 0.423 

110.0 30 0.363  110.0 30 0.363 

117.3 25 0.302  117.5 25 0.302 

126.7 20 0.242  127.7 20 0.242 
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129.0 19 0.230  130.2 19 0.230 

131.5 18 0.218  133.0 18 0.218 

134.8 17 0.206  137.2 17 0.206 

140.0 16 0.193  143.5 16 0.193 

147.8 15 0.181  153.2 15 0.181 

160.5 14 0.169  166.7 14 0.169 

178.3 13 0.157  185.0 13 0.157 
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114hL mmP   
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3.0 82.5 0.997  2.2 81 0.979 

4.1 82 0.991  5.0 80.5 0.973 

5.0 81.5 0.985  6.3 80 0.967 

5.9 81 0.979  7.4 79 0.955 

7.7 80 0.967  9.3 78 0.943 

9.5 79 0.955  13.3 77 0.931 

11.9 78 0.943  15.5 76 0.919 

14.9 77 0.931  19.2 75 0.907 

19.3 76 0.919  23.0 74 0.895 

23.0 75 0.907  26.0 73 0.883 

25.8 74 0.895  28.8 72 0.870 

28.8 73 0.883  32.0 71 0.858 

31.3 72 0.870  36.8 70 0.846 

35.2 71 0.858  41.2 69 0.834 

39.8 70 0.846  44.5 68 0.822 

43.5 69 0.834  46.5 67 0.810 

45.8 68 0.822  48.3 66 0.798 

47.2 67 0.810  50.0 65 0.786 

49.3 66 0.798  51.8 64 0.774 

50.7 65 0.786  53.7 63 0.762 

52.3 64 0.774  55.8 62 0.750 

54.2 63 0.762  58.0 61 0.737 

56.2 62 0.750  60.0 60 0.725 

58.0 61 0.737  63.0 59 0.713 

60.0 60 0.725  65.8 58 0.701 

72.5 55 0.665  73.7 55 0.665 
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83.3 50 0.605  83.7 50 0.605 

93.5 45 0.544  93.8 45 0.544 

100.2 40 0.484  100.2 40 0.484 

104.5 35 0.423  104.5 35 0.423 

110.0 30 0.363  110.0 30 0.363 

117.3 25 0.302  117.5 25 0.302 

126.7 20 0.242  127.7 20 0.242 

129.0 19 0.230  130.2 19 0.230 

131.5 18 0.218  133.0 18 0.218 

134.8 17 0.206  137.2 17 0.206 

140.0 16 0.193  143.5 16 0.193 

147.8 15 0.181  153.2 15 0.181 

160.5 14 0.169  166.7 14 0.169 

178.3 13 0.157  185.0 13 0.157 

 

 

 

 

 

Failure time 

(min) 

Applied load 

250hL mmP   

(kN) 

250

,20 , 0
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o
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FEA C L mm

P

P





  Failure time  

(min) 

Applied load 

380hL mmP   

(kN) 

380
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o
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L mm

FEA C L mm
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4.4 71 0.858  2.18 66 0.798 

7.3 70 0.846  5.35 65 0.786 

10.0 69 0.834  7.63 64 0.774 

13.5 68 0.822  10.18 63 0.762 

18.3 67 0.810  13.78 62 0.750 

23.3 66 0.798  18.83 61 0.737 

26.8 65 0.786  23.83 60 0.725 

30.2 64 0.774  27.50 59 0.713 

34.7 63 0.762  30.83 58 0.701 

40.0 62 0.750  35.67 57 0.689 

43.8 61 0.737  40.83 56 0.677 

46.2 60 0.725  44.17 55 0.665 

48.3 59 0.713  46.50 54 0.653 

50.3 58 0.701  48.67 53 0.641 

52.5 57 0.689  50.83 52 0.629 

54.8 56 0.677  53.17 51 0.617 

57.3 55 0.665  55.67 50 0.605 

60.2 54 0.653  58.50 49 0.592 

63.2 53 0.641  61.50 48 0.580 
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66.7 52 0.629  65.00 47 0.568 

70.2 51 0.617  68.67 46 0.556 

73.2 50 0.605  72.00 45 0.544 

76.0 49 0.592  74.67 44 0.532 

78.5 48 0.580  77.50 43 0.520 

80.7 47 0.568  79.83 42 0.508 

82.7 46 0.556  82.00 41 0.496 

85.2 45 0.544  84.33 40 0.484 

87.0 44 0.532  96.33 35 0.423 

89.7 43 0.520  99.17 34 0.411 

92.0 42 0.508  102.50 33 0.399 

95.2 41 0.496  105.33 32 0.387 

98.0 40 0.484  108.17 31 0.375 

101.2 39 0.472  111.50 30 0.363 

105.3 36 0.435  112.67 29 0.351 

106.2 35 0.423  115.33 27 0.326 

107.0 34 0.411  118.50 25 0.302 

109.2 32 0.387  120.17 24 0.290 

111.2 30 0.363  123.83 22 0.266 

112.5 29 0.351  127.83 20 0.242 

113.8 28 0.339  151.33 15 0.181 

115.3 27 0.326  164.83 14 0.169 

118.3 25 0.302  183.33 13 0.157 

120.2 24 0.290     

123.8 22 0.266     

128.0 20 0.242     

151.2 15 0.181     

164.5 14 0.169     

203.3 12 0.145     
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Appendix C Design example using proposed design method 

 
 

 

 

Cross-sectional dimension 
 

Cross-sectional temperature distribution 

 

Given: 

1. Steel: 
5

,20 20

2 2345 / ; /2.03 10y N mm N mmF E    at room temperature 

               Eurocode 3 Part 1.2 (BS EN 1993-1-2, 2005) at elevated temperature 

2. Section: C150×40×15×1.5  

148.5 ; 38.5 ; 14.25 ; 1.5w f lb mm b mm b mm t mm      

38 ; 130 ; ( ) / 2 55.25h h A B w hd mm L mm h h b d mm       

3. Simply supported at ends, and concentrically loaded 

4. 1.0; 3000 ; 300x y t x y tK K K L mm L L mm       

5. Temperature distribution in the cross-section: 176 ; 327 ; 478o o o

CF Web HFT C T C T C    

CFT - cold flange temperature; WebT - average web temperature; HFT - hot flange temperature. 

Required: calculate required applied load 

  

bw

bl

bf

t

THF=478 oC

THF=176 oC

TWeb=327 oC
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1. Sectional properties of full section (using software CUFSM) 

2381gA mm
  

 

41239448.5xI mm   481138.6yI mm
 

10.156cgx mm   74.25cgy mm
 

6371990314wC mm   4285.75J mm  

27.276ox mm    0.00oy mm  

/ 57.036x x gr I A mm    

/ 14.593y y gr I A mm   

2 2 2 2 64.885o x x o or r r x y mm       

2 2 2

,176 ,327 ,478294.395 / ; 193.507 / ; 128.754 /y y yF N mm F N mm F N mm    

2 2 2

176 327 478187572 / ; 156919 / ; 126266 /E N mm E N mm E N mm    

  2
, ,176 ,327 ,478( ) ( ) / 201.012 /y T y f l y w y f l gF F b b t F b t F b b t A N mm       

  2

176 327 478( ) ( ) / 156919 /T f l w f l gE E b b t E b t E b b t A N mm       

2156919
60353.462 /

2(1 ) 2(1 0.3)

T
T

E
G N mm


  

 
 

 

2. Nominal axial strength, Pn  

a) Check flexural buckling. 

 1.0 3000
52.598

57.04

x x

x

K L

r
    

 1.0 300
20.557

14.59

y y

y

K L

r
   
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Since , Euler buckling about the x axis will control.
y y x x

y x

K L K L

r r
   

 

 

     

22
2

2 2

156919
559.804 /

/ 1.0 3000 / 57.04

T

e

x x x

E
F N mm

K L r


    

b) Check flexural-torsional buckling. 

   
21

4
2

e ex t ex t ex tF      

     
  

  

   
2 2

1 / 1 27.276 / 64.885 0.823o ox r        

 

 

     

22
2

2 2

156919
559.804 /

/ 1.0 3000 / 57.04

T

ex

x x x

E
N mm

K L r


   

 

 

  
  

  

  

2

22

2

2 2

2

1

156919 3719903141
60353.462 285.75

381 64.885 1.0 300

4001.440 /

T w
Tt

g o t t

E C
G J

A r K L

N mm






 
  

  

 
  
    



  

  
        

2

2

1
559.804 4001.444 559.804 4001.444 4 0.823 559.804 4001.444

2 0.823

544.640 /

eF

N mm

     
  



  

c) Determine controlling buckling mode. 

2 2544.640 / 559.804 / , therefore flexural-torsional buckling governsN mm N mm   

2544.640 /eF N mm   

, 201.012
0.608 1.5; therefore,

544.640

y T

c

e

F

F
       

 

  

2

2

,

0.608 2

0.658

0.658 201.012 172.240 /

c
y TnF F

N mm




 
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d) Compute effective area at 2172.240 /nf F N mm    

Hot flange: uniformly compressed element with an edge stiffener. 

38.5w mm   

/ 38.5 /1.5 25.667w t     

4781.28 /

1.28 126266 /172.240 34.657

S E f

 
  

therefore, / 0.328 Check effective width of flangew t S    

Compute flange k based on stiffener lip properties 

   

4 4

3
4 4

4 4 4

/ /
399 0.328 3 115 5

38.5 /1.5 38.5 /1.5
399 1.5 0.328 1.5 115 5

34.657 34.657

141.880 456.480 ; therefore, 141.880

a

a

w t w t
I t t

S S

mm mm I mm

   
      

   

    
      

    

  

  

14.25d mm   

90 degrees    

 

     

3 2

3 2 4

sin /12

14.25 1.5 sin 90 /12 361.705

s

o

I d t

mm



 
  

/ 1

361.705 /141.880 2.549 1; therefore, 1.0

I s a

I

R I I

R

 

   
  

/ 15 / 38.5 0.390D w    

0.25 / 0.8; therefore,D w    

 

 
 

5
4.82 0.43 4

5 15
4.82 1.0 0.43 3.302 4 OK

38.5

n

I

n

D
k R

w

 
    
 

 
     
 
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 

 

 

22
478

2

22

2

2

12 1

126266 1.5
3.302 571.998 /

38.512 1 0.3

cr

E t
F k

w

N mm







 
  

  

 
  

  

  

172.240
0.549 0.673; therefore, the flange is fully effective.

571.998cr

f

F
       

1, 2,
38.5 19.25

2eff hf eff hfb b mm    

 

Cold flange: the calculation is similar to that of hot flange, but replace E478 with E176. The calculated 

values are listed below: 

w w/t S w/t-0.328S>0 d D Ia RI k Fcr λ ρ b 

 38.5 25.667  42.240 11.812 14.25   15 44.168 1 3.302 849.721 0.450 1 38.5 

 

1, 2,
38.5 19.25

2eff cf eff cfb b mm    

 

Hot lip: 

2172.240 /f N mm   

0.43k    

 

 

 

2

176

2

22

2

2

12 1

187572 1.5
0.43 543.732 /

14.2512 1 0.3

cr

E
F k

N mm










 
  

  

  

172.240
0.563 0.673 lip is fully effective.

543.732cr

f

F
        

, 14.25eff hfc mm  
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Cold lip: the calculation is similar to that for the hot flange, but E478 is replaced with E176. The 

calculated values are listed below: 

d k Fcr λ ρ ds' ds ,eff cfc  

14.25 0.43 807.730 0.462 1.0 14.25 14.25 14.25 

 

Web with perforation: 

130 ; 38h hL mm d mm    

 or i A B   

 
148.5 38

2.5 1.5 51.5
2

ih mm


     

 
0.95

0.2
0.425 if / 1

/ 0.6

0.925 if / 1

h i

h ii

h i

L h
L hk

L h


 

 




  

130
/ 2.524 1; therefore,

51.5
h iL h     

 
0.95

0.2
0.425 0.535

2.524 0.6
ik   


 

 

 

 

22

327

2

22

2

2

12 1

156919 1.5
0.535 64.428 /

51.512 1 0.3

cri

E t
F k

w

N mm







 
  

  

 
  

  

  

172.240
1.635 0.673

64.428cri

f

F
       

 

 

1 0.22 / /

1 0.22 /1.635 /1.635 0.529

   

  
  

   2.5 0.529 51.5 2.5 1.5 31.010effi id h t mm        
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2224.21eA mm  

Sum of the effective widths of the elements 

Element l (mm) 

 

effAd  31.010 

effBd  31.010 

1,eff cfb
 

19.25 

1,eff hfb
 

19.25 

2,eff cfb
 

19.25 

2,eff hfb
 

19.25 

,eff cfc
 

14.25 

,eff hfc
 

14.25 

sum    167.52 

 

Effective area of pure compression member at elevated temperature eA   

  21.5 167.52 251.28eA t l mm     

Nominal axial strength nP  

 251.280 172.240 43280.145n e nP A F N     

  

beff1,cf beff2,cf

deffA

deffB

beff1,hf beff2,hf

ceff,hf

ceff,cf
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Thermal bowing ΔTe   

Thermal expansion coefficient T   

327 o

avgT C   

5 8

5

5

1.2 10 0.8 10 ( 20) 20 750

0 750 860

2 10 860 1200

1.446 10 ( )

o o

o o

T

o o

avg

T C T C

C T C

C T C

T T



 





      


  


  

  

  

 

 

2

25

( )

8

1.446 10 (478 176) 3000
33.074

8 148.5

T HF CF
T

w

T T L
e

b

mm









 
 

  

Neutral axis shift about the major axis ΔEe   

 

   

        

 

176 , , 176 2, 176 1,

327 1 1 327 2 2

478 , ,

/ 2

/ 2 / 2 /

/ 2

187572 14.25 1.5 148.5 14.25 / 2 187572 19.25 1.5 148.5

187572 19.2

eff cf w eff cf eff cf w eff cf w

e Teff eff w eff eff eff

eff hf eff hf

E c t b c E b tb E b tb

Y E d t b d E d td A E

E c tc

   
 
 

    
 
  

 

        

       

   5 1.5 148.5 156919 31.010 1.5 148.5 31.010 / 2 / 224.21 156919

156919 31.010 1.5 31.010 / 2 126266 14.25 1.5 14.25 / 2

82.503mm

 
 

  
 
  



  

/ 2 82.503 148.5 / 2 8.253E eff we Y b mm     
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3. Nominal flexural strength, Mnx  

The web perforation in the cross-section is not accounted for when calculating the effective widths 

under pure bending.  

Effective area at elevated temperature for pure bending 

Web: under stress gradient 

2172.240 /nf F N mm   

148.5 ; / 148.5 /1.5 99w mm w t     

1    

   
3

4 2 1 2 1 24k          

 2 222
2

2 2

156919 1.5
24 347.291 /

12(1 ) 12(1 0.3 ) 148.5

Web
cr

E t
F k N mm

w





   
     

    
  

172.240
0.704 0.673

347.291cr

f

F
       

(1 0.22 / ) /

(1 0.22 / 0.704) / 0.704 0.976

   

  
  

  0.976 148.5 144.990eb w mm     

/ 150 / 40 3.750 4.0; therefore,o oh b      

1 / (3 ) 144.990 / (3 1) 36.248eb b mm       

2 efor 0.236, b =b /2=144.990/2=72.496mm    

1 2 36.248 72.496 108.745

/ 2 74.250 ; therefore, the web is fully effective.

b b mm

w mm

   

 
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Therefore, 

 The web is fully effective in this case 

 Effective flange and lip widths on the cold side are the same as under uniform compression (fully 

effective in this case) 

 The flange and lip on the hot side are in tension (do not buckle) 

 

 

 

 

 
 

  

wb  148.5 

fb  38.5 

lb  14.25 

t  1.5 

  

 

    
            

478 327 176 /

126266 1.5 38.5 14.25 156919 1.5 148.5 187572 1.5 38.5 14.25 /156919

381.000

e Tf l w f lA E t b b E tb E t b b E

mm

    

    



  

 

   
 

         

         
   

176 176

327 478

/ 2
/

/ 2 / 2

187572 14.25 1.5 148.5 14.25 / 2 187572 38.5 1.5 148.5
/ 381 156919

156919 148.5 1.5 148.5 / 2 126266 14.25 1.5 14.25 / 2

80.118

l w l f w
e Teff

w w l l

E b t b b E b tb
Y A E

E b t b E b t b

mm

    
  

   

   
  

   



 

 

  

x

y

bw

bl

bf

x

y

CF

effY

x’

HF
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Nominal flexural strength nxM   

      
    
    

 
       

  

2
3 3 2

176

2
3

, 327

2
3 3 2

478

3 3

1/12 1/12 / 2 ( )

1 /12 / 2 /

1 /12 1/12 ( / 2)

1 /12 1.5 14.25 1/12 38.5 1.5
187572

14.25 1.5 148.

l f l w eff l f w eff

eff T Tw w w eff

f l f eff l eff l

E tb b t b t b Y b b t b Y

I E tb b t b Y E

E b t tb b tY b t Y b

 
     

 
 
 

    
 
 
    
  







    

          

 
       

       

2 2

3 2

3 3

2 2

5 80.118 14.25 / 2 38.5 1.5 (148.5 80.118)

156919 1/12 1.5 38.5 148.5 1.5 148.5 / 2 80.118

1/12 38.5 1.5 1 /12 1.5 14.25
126266

38.5 1.5 80.118 14.25 1.5 80.118 14.25 / 2

156

  
   

       
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Euler buckling load ExP   
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Interaction of compression and bending 

At mid-height 

33.074 8.253 24.821T Ee e e mm        

1mxC    

Assuming 0 for initial stepP    

0
1 1 1

206671.913
x

Ex

P

P


   
       

  
  

,

1 24.821
1

206671.913 1 3076112

mx

Ex x nx eff

C PeP P P

P M

 
   


  

By iteration, the solution converges to: 

30679P N   

 

At support 
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By iteration, the solution converges to: 

35496P N   

Therefore, the ultimate strength of CFS stud in walls under standard fire =30.679 kN. The    

failure occurs at the mid-height.
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Appendix D Calculation results using proposed design method 

Studs (Lh=0 mm) 

Results: 0 min(  at mid-height,  at support)
hL mmP P P    

o
,20 , 0 nomimal axial strength calculated at 20 C under pure compression for studs without web perforationo

hn C L mmP     

        mid-height support mid-height support Results 

Time 

(min) 

THF 

(oC) 

TCF 

(oC) 

eΔT 

(mm) 

eΔE 

(mm) 
(eΔT -eΔE)/ αx 

Pn 

(kN) 

PEx 

(kN) 

Mnx,eff 

(kN.m) 

Mnx,eff 

(kN·m) 
P   

(kN) 

xM   

(kN·m) 
P   

 (kN) 

xM   

 (kN·m) 
P   

(kN) 

0

,20 , 0

h

o
h

L mm

n C L mm

P

P





 

0.0 20 20 0.000 0.000 0.000 73 261 5.76 5.76 73.12 0.00 73.12 0.00 73.12 1.00 

0.5 20 20 0.000 0.000 0.000 73 261 5.76 5.76 73.12 0.00 73.12 0.00 73.12 1.00 

0.6 20 20 0.000 0.000 0.000 73 261 5.76 5.76 73.12 0.00 73.12 0.00 73.12 1.00 

0.8 20 20 0.000 0.000 0.000 73 261 5.76 5.76 73.12 0.00 73.12 0.00 73.12 1.00 

0.9 20 20 0.000 0.000 0.000 73 261 5.76 5.76 73.12 0.00 73.12 0.00 73.12 1.00 

1.0 20 20 0.000 0.000 0.000 73 261 5.76 5.76 73.12 0.00 73.12 0.00 73.12 1.00 

1.1 20 20 0.000 0.000 0.000 73 261 5.76 5.76 73.12 0.00 73.12 0.00 73.12 1.00 

1.3 20 20 0.000 0.000 0.000 73 261 5.76 5.76 73.12 0.00 73.12 0.00 73.12 1.00 

1.4 20 20 0.000 0.000 0.000 73 261 5.76 5.76 73.12 0.00 73.12 0.00 73.12 1.00 

1.6 20 20 0.000 0.000 0.000 73 261 5.76 5.76 73.12 0.00 73.12 0.00 73.12 1.00 

1.8 21 20 0.091 0.000 0.126 73 261 5.76 5.76 73.01 0.01 73.12 0.00 73.01 1.00 

2.3 21 20 0.091 0.000 0.126 73 261 5.76 5.76 73.01 0.01 73.12 0.00 73.01 1.00 

4.0 25 20 0.455 0.000 0.630 73 261 5.76 5.76 72.54 0.05 73.12 0.00 72.54 0.99 

4.5 26 20 0.547 0.000 0.756 73 261 5.76 5.76 72.43 0.05 73.12 0.00 72.43 0.99 

7.2 36 21 1.371 0.000 1.887 73 261 5.76 5.76 71.41 0.13 73.12 0.00 71.41 0.98 

9.7 47 23 2.204 0.000 3.016 73 261 5.76 5.76 70.43 0.21 73.12 0.00 70.43 0.96 

15.0 66 28 3.517 0.000 4.777 73 261 5.76 5.76 68.94 0.33 73.12 0.00 68.94 0.94 
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19.7 80 33 4.377 0.000 5.916 73 261 5.76 5.76 68.01 0.40 73.12 0.00 68.01 0.93 

20.8 83 34 4.569 0.000 6.170 73 261 5.76 5.76 67.81 0.42 73.12 0.00 67.81 0.93 

26.0 103 40 5.924 0.066 7.857 73 261 5.74 5.72 66.42 0.52 73.12 0.01 66.42 0.91 

34.7 142 54 8.416 0.933 9.973 72 256 5.58 5.22 63.96 0.64 70.94 0.09 63.96 0.87 

38.4 155 60 9.140 1.230 10.505 71 254 5.49 5.06 62.79 0.66 69.70 0.12 62.79 0.86 

43.3 174 68 10.285 1.671 11.368 70 251 5.34 4.84 60.88 0.69 67.70 0.15 60.88 0.83 

46.4 193 73 11.731 2.120 12.594 69 248 5.20 4.61 58.85 0.74 65.80 0.19 58.85 0.80 

49.8 221 80 13.933 2.798 14.445 67 244 5.00 4.28 55.92 0.81 62.99 0.24 55.92 0.76 

52.6 243 86 15.648 3.344 15.842 65 240 4.84 4.03 53.70 0.85 60.75 0.27 53.70 0.73 

54.0 253 89 16.410 3.596 16.444 64 239 4.77 3.91 52.72 0.87 59.71 0.29 52.72 0.72 

55.4 263 91 17.273 3.850 17.166 64 237 4.70 3.79 51.71 0.89 58.71 0.30 51.71 0.71 

56.8 273 94 18.046 4.108 17.769 63 235 4.62 3.68 50.74 0.90 57.66 0.31 50.74 0.69 

59.6 293 100 19.610 4.631 18.975 62 232 4.48 3.45 48.85 0.93 55.56 0.34 48.85 0.67 

64.4 322 110 21.791 5.180 20.834 59 226 4.24 3.12 45.90 0.96 52.52 0.35 45.90 0.63 

70.1 349 123 23.504 5.627 22.221 57 221 4.01 2.82 43.21 0.96 49.57 0.36 43.21 0.59 

71.9 357 127 24.004 5.759 22.617 56 219 3.94 2.73 42.42 0.96 48.67 0.36 42.42 0.58 

73.6 365 132 24.409 5.871 22.921 55 218 3.87 2.65 41.63 0.95 47.76 0.36 41.63 0.57 

75.4 374 136 25.026 6.034 23.412 54 216 3.79 2.55 40.76 0.95 46.76 0.36 40.76 0.56 

77.2 383 141 25.549 6.176 23.811 54 214 3.71 2.45 39.89 0.95 45.73 0.36 39.89 0.55 

78.9 393 145 26.288 6.372 24.396 53 212 3.63 2.34 38.94 0.95 44.61 0.36 38.94 0.53 

81.6 410 152 27.536 6.710 25.383 51 209 3.51 2.23 37.46 0.95 43.00 0.36 37.46 0.51 

84.2 432 159 29.376 7.211 26.859 50 204 3.37 2.14 35.71 0.96 41.23 0.37 35.71 0.49 

86.8 454 166 31.244 7.727 28.332 48 200 3.23 2.06 34.01 0.96 39.49 0.38 34.01 0.47 

90.2 478 176 33.074 8.253 29.718 47 195 3.08 1.97 32.17 0.96 37.57 0.38 32.17 0.44 

93.5 501 187 34.711 8.800 30.847 45 190 2.91 1.88 30.42 0.94 35.64 0.39 30.42 0.42 

96.8 523 200 36.049 10.567 30.315 43 180 2.66 1.62 28.70 0.87 31.87 0.41 28.70 0.39 

100.1 546 214 37.425 12.535 29.613 40 169 2.40 1.37 26.89 0.80 27.89 0.42 26.89 0.37 
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100.9 552 218 37.752 13.063 29.387 40 165 2.33 1.30 26.41 0.78 26.83 0.42 26.41 0.36 

101.8 558 221 38.183 13.625 29.249 39 162 2.27 1.24 25.94 0.76 25.79 0.42 25.79 0.35 

102.1 560 223 38.224 13.791 29.106 39 161 2.25 1.21 25.77 0.75 25.43 0.42 25.43 0.35 

102.3 562 224 38.368 13.982 29.057 39 159 2.22 1.19 25.62 0.74 25.08 0.42 25.08 0.34 

103.9 573 231 39.009 15.025 28.633 37 153 2.11 1.08 24.82 0.71 23.18 0.41 23.18 0.32 

105.3 582 236 39.612 15.950 28.345 37 147 2.04 0.99 24.36 0.69 21.68 0.41 21.68 0.30 

107.4 596 244 40.533 17.454 27.819 36 139 1.93 0.84 23.64 0.66 19.28 0.39 19.28 0.26 

109.4 608 252 41.210 18.982 26.904 35 132 1.85 0.76 23.03 0.62 17.36 0.38 17.36 0.24 

111.2 618 258 41.847 20.120 26.377 34 128 1.79 0.71 22.52 0.59 16.04 0.37 16.04 0.22 

114.7 634 271 42.515 21.821 25.271 32 120 1.70 0.62 21.70 0.55 14.05 0.35 14.05 0.19 

118.0 648 283 43.037 23.169 24.411 31 113 1.61 0.55 20.97 0.51 12.45 0.32 12.45 0.17 

121.0 658 295 43.043 23.937 23.582 30 108 1.55 0.49 20.47 0.48 11.39 0.30 11.39 0.16 

122.5 663 300 43.153 24.353 23.259 29 105 1.51 0.47 20.21 0.47 10.87 0.30 10.87 0.15 

124.9 670 309 43.090 24.895 22.598 29 102 1.47 0.43 19.87 0.45 10.13 0.28 10.13 0.14 

128.1 679 322 42.851 25.594 21.546 28 97 1.40 0.39 19.39 0.42 9.20 0.26 9.20 0.13 

129.1 681 325 42.785 25.850 21.176 27 96 1.38 0.38 19.22 0.41 8.96 0.26 8.96 0.12 

130.9 685 331 42.652 26.378 20.417 27 93 1.34 0.36 18.89 0.39 8.48 0.25 8.48 0.12 

132.3 688 336 42.496 26.786 19.763 26 91 1.30 0.35 18.64 0.37 8.11 0.24 8.11 0.11 

136.1 695 347 42.203 27.786 18.261 25 86 1.23 0.31 18.06 0.33 7.29 0.22 7.29 0.10 

142.8 703 365 41.256 28.785 15.920 23 80 1.13 0.29 17.36 0.28 6.56 0.21 6.56 0.09 

157.6 714 398 38.992 29.731 11.883 20 74 0.99 0.28 16.34 0.19 6.03 0.20 6.03 0.08 

162.7 716 408 38.117 30.010 10.446 20 72 0.96 0.28 16.22 0.17 5.91 0.19 5.91 0.08 

179.0 724 444 35.025 31.264 4.811 17 73 0.85 0.27 15.91 0.08 5.47 0.18 5.47 0.07 

182.5 725 452 34.224 31.503 3.579 17 66 0.83 0.27 15.86 0.06 5.37 0.18 5.37 0.07 
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Studs (Lh=75 mm) 

Results:  

75 min(  at mid-height,  at support)
hL mmP P P    

o
,20 , 0 nomimal axial strength calculated at 20 C under pure compression for studs without web perforationo

hn C L mmP     

        mid-height support mid-height support Results 

Time 

(min) 

THF 

(oC) 

TCF 

(oC) 

eΔT 

(mm) 

eΔE 

(mm) 
(eΔT -eΔE)/ αx 

Pn 

(kN) 

PEx 

(kN) 

Mnx,eff 

(kN.m) 

Mnx,eff 

(kN·m) 
P   

(kN) 

xM   

(kN·m) 
P   

 (kN) 

xM   

 (kN·m) 
P   

(kN) 

75

,20 , 0

h

o
h

L mm

n C L mm

P

P





 

0.0 20 20 0.000 0.000 0.000 70 261 5.757 5.757 70.493 0.000 70.493 0.000 70.49 0.96 

0.5 20 20 0.000 0.000 0.000 70 261 5.757 5.757 70.493 0.000 70.493 0.000 70.49 0.96 

0.6 20 20 0.000 0.000 0.000 70 261 5.757 5.757 70.493 0.000 70.493 0.000 70.49 0.96 

0.8 20 20 0.000 0.000 0.000 70 261 5.757 5.757 70.493 0.000 70.493 0.000 70.49 0.96 

0.9 20 20 0.000 0.000 0.000 70 261 5.757 5.757 70.493 0.000 70.493 0.000 70.49 0.96 

1.0 20 20 0.000 0.000 0.000 70 261 5.757 5.757 70.493 0.000 70.493 0.000 70.49 0.96 

1.1 20 20 0.000 0.000 0.000 70 261 5.757 5.757 70.493 0.000 70.493 0.000 70.49 0.96 

1.3 20 20 0.000 0.000 0.000 70 261 5.757 5.757 70.493 0.000 70.493 0.000 70.49 0.96 

1.4 20 20 0.000 0.000 0.000 70 261 5.757 5.757 70.493 0.000 70.493 0.000 70.49 0.96 

1.6 20 20 0.000 0.000 0.000 70 261 5.757 5.757 70.493 0.000 70.493 0.000 70.49 0.96 

1.8 21 20 0.091 0.000 0.124 70 261 5.757 5.757 70.385 0.009 70.493 0.000 70.39 0.96 

2.3 21 20 0.091 0.000 0.124 70 261 5.757 5.757 70.385 0.009 70.493 0.000 70.39 0.96 

4.0 25 20 0.455 0.000 0.622 70 261 5.757 5.757 69.960 0.043 70.493 0.000 69.96 0.96 

4.5 26 20 0.547 0.000 0.746 70 261 5.757 5.757 69.855 0.052 70.493 0.000 69.85 0.96 

7.2 36 21 1.371 0.000 1.862 70 261 5.757 5.757 68.921 0.128 70.493 0.000 68.92 0.94 

9.7 47 23 2.204 0.000 2.979 70 261 5.757 5.757 68.012 0.203 70.493 0.000 68.01 0.93 

15.0 66 28 3.517 0.000 4.720 70 261 5.757 5.757 66.642 0.315 70.493 0.000 66.64 0.91 
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19.7 83 34 4.569 0.000 6.100 70 261 5.757 5.757 65.594 0.400 70.493 0.000 65.59 0.90 

20.8 103 40 5.924 0.066 7.772 70 261 5.745 5.718 64.301 0.500 70.348 0.006 64.30 0.88 

26.0 142 54 8.416 0.933 9.867 70 256 5.582 5.217 61.952 0.611 68.407 0.087 61.95 0.85 

34.7 155 60 9.140 1.230 10.391 69 255 5.490 5.061 60.829 0.632 67.219 0.112 60.83 0.83 

38.4 174 68 10.285 1.671 11.239 67 253 5.343 4.838 58.998 0.663 65.306 0.147 59.00 0.81 

43.3 193 73 11.731 2.120 12.448 66 250 5.204 4.614 57.056 0.710 63.488 0.180 57.06 0.78 

46.4 221 80 13.933 2.798 14.272 64 247 5.001 4.284 54.252 0.774 60.803 0.226 54.25 0.74 

49.8 243 86 15.648 3.344 15.646 63 244 4.840 4.026 52.120 0.815 58.658 0.258 52.12 0.71 

52.6 253 89 16.410 3.596 16.239 62 243 4.767 3.910 51.174 0.831 57.667 0.272 51.17 0.70 

54.0 263 91 17.273 3.850 16.949 61 241 4.696 3.793 50.206 0.851 56.705 0.285 50.21 0.69 

55.4 273 94 18.046 4.108 17.542 61 240 4.622 3.678 49.282 0.865 55.707 0.298 49.28 0.67 

56.8 293 100 19.610 4.631 18.727 59 237 4.476 3.447 47.463 0.889 53.699 0.321 47.46 0.65 

59.6 322 110 21.791 5.180 20.561 57 232 4.243 3.121 44.614 0.917 50.771 0.337 44.61 0.61 

64.4 349 123 23.504 5.627 21.930 55 227 4.012 2.822 42.006 0.921 47.918 0.342 42.01 0.57 

70.1 357 127 24.004 5.759 22.320 54 226 3.943 2.733 41.235 0.920 47.055 0.342 41.23 0.56 

71.9 365 132 24.409 5.871 22.621 53 224 3.869 2.646 40.469 0.915 46.172 0.341 40.47 0.55 

73.6 374 136 25.026 6.034 23.105 52 223 3.794 2.547 39.624 0.916 45.209 0.342 39.62 0.54 

75.4 383 141 25.549 6.176 23.498 51 221 3.714 2.449 38.772 0.911 44.216 0.341 38.77 0.53 

77.2 393 145 26.288 6.372 24.075 51 219 3.633 2.339 37.856 0.911 43.140 0.342 37.86 0.52 

78.9 410 152 27.536 6.710 25.048 49 216 3.509 2.225 36.427 0.912 41.583 0.346 36.43 0.50 

81.6 432 159 29.376 7.211 26.502 48 212 3.371 2.142 34.740 0.921 39.888 0.354 34.74 0.48 

84.2 454 166 31.244 7.727 27.953 46 209 3.235 2.059 33.095 0.925 38.212 0.361 33.10 0.45 

86.8 478 176 33.074 8.253 29.316 45 204 3.076 1.970 31.314 0.918 36.360 0.365 31.31 0.43 

90.2 501 187 34.711 8.800 30.424 43 200 2.915 1.878 29.619 0.901 34.493 0.367 29.62 0.41 

93.5 523 200 36.049 10.567 29.864 41 190 2.663 1.623 27.934 0.834 30.899 0.390 27.93 0.38 

96.8 546 214 37.425 12.535 29.132 38 180 2.403 1.366 26.172 0.762 27.103 0.400 26.17 0.36 

100.1 552 218 37.752 13.063 28.898 38 176 2.335 1.301 25.698 0.743 26.097 0.400 25.70 0.35 
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100.9 558 221 38.183 13.625 28.722 37 173 2.271 1.236 25.248 0.726 25.102 0.400 25.10 0.34 

101.8 560 223 38.224 13.791 28.542 37 172 2.246 1.215 25.080 0.717 24.756 0.399 24.76 0.34 

102.1 562 224 38.368 13.982 28.454 37 171 2.224 1.193 24.930 0.712 24.423 0.398 24.42 0.33 

102.3 573 231 39.009 15.025 27.806 36 164 2.110 1.078 24.148 0.679 22.600 0.394 22.60 0.31 

103.9 582 236 39.612 15.950 27.304 35 159 2.039 0.985 23.702 0.659 21.178 0.390 21.18 0.29 

105.3 596 244 40.533 17.447 26.418 34 150 1.929 0.845 23.011 0.628 18.888 0.377 18.89 0.26 

107.4 608 252 41.210 19.607 24.474 33 143 1.851 0.761 22.584 0.579 16.777 0.373 16.78 0.23 

109.4 618 258 41.847 21.189 23.247 32 138 1.795 0.705 22.207 0.547 15.357 0.366 15.36 0.21 

111.2 634 271 42.515 23.659 21.008 30 129 1.699 0.619 21.613 0.489 13.243 0.349 13.24 0.18 

114.7 648 283 43.037 25.551 19.333 29 121 1.613 0.545 21.051 0.445 11.599 0.328 11.60 0.16 

118.0 658 295 43.043 26.478 18.227 28 116 1.546 0.494 20.596 0.415 10.581 0.308 10.58 0.14 

121.0 663 300 43.153 26.990 17.738 28 113 1.514 0.469 20.369 0.401 10.072 0.298 10.07 0.14 

122.5 670 309 43.090 27.677 16.855 27 109 1.466 0.434 20.058 0.378 9.369 0.284 9.37 0.13 

124.9 679 322 42.851 28.590 15.520 26 104 1.400 0.390 19.652 0.345 8.466 0.263 8.47 0.12 

128.1 681 325 42.785 28.917 15.074 26 103 1.379 0.380 19.510 0.334 8.230 0.259 8.23 0.11 

129.1 685 331 42.652 29.592 14.161 25 100 1.336 0.361 19.231 0.311 7.769 0.249 7.77 0.11 

130.9 688 336 42.496 30.119 13.397 25 98 1.303 0.347 19.020 0.292 7.423 0.242 7.42 0.10 

132.3 695 347 42.203 31.427 11.611 23 92 1.227 0.314 18.550 0.250 6.634 0.225 6.63 0.09 

136.1 703 365 41.256 32.705 9.184 22 86 1.130 0.288 17.963 0.194 5.950 0.209 5.95 0.08 

142.8 714 398 38.992 33.779 5.599 19 79 0.988 0.278 17.009 0.113 5.475 0.199 5.48 0.07 

157.6 716 408 38.117 34.087 4.328 19 78 0.957 0.276 16.921 0.087 5.367 0.196 5.37 0.07 

162.7 724 444 35.025 35.496 -0.505 17 73 0.851 0.269 16.366 0.010 4.956 0.189 4.96 0.07 

179.0 725 452 34.224 35.757 -1.644 16 72 0.830 0.269 15.547 0.030 4.884 0.187 4.88 0.07 

182.5 725 452 34.224 31.503 3.579 17 66 0.83 0.27 15.86 0.06 5.37 0.18 5.37 0.07 
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Studs (Lh=114 mm) 

Results:  

114 min(  at mid-height,  at support)
hL mmP P P  114 min(  at mid-height,  at support)

hL mmP P P    

o
,20 , 0 nomimal axial strength calculated at 20 C under pure compression for studs without web perforationo

hn C L mmP     

        mid-height support mid-height support Results 

Time 

(min) 

THF 

(oC) 

TCF 

(oC) 

eΔT 

(mm) 

eΔE 

(mm) 
(eΔT -eΔE)/ αx 

Pn 

(kN) 

PEx 

(kN) 

Mnx,eff 

(kN.m) 

Mnx,eff 

(kN·m) 
P  

(kN) 

xM  

(kN·m) 
P  

(kN) 

xM  

(kN·m) 
P  

(kN) 

114

,20 , 0

h

o
h

L mm

n C L mm

P

P





 

0.0 20 20 0.000 0.000 0.000 69 261 5.757 5.757 68.795 0.000 68.795 0.000 68.79 0.94 

0.5 20 20 0.000 0.000 0.000 69 261 5.757 5.757 68.795 0.000 68.795 0.000 68.79 0.94 

0.6 20 20 0.000 0.000 0.000 69 261 5.757 5.757 68.795 0.000 68.795 0.000 68.79 0.94 

0.8 20 20 0.000 0.000 0.000 69 261 5.757 5.757 68.795 0.000 68.795 0.000 68.79 0.94 

0.9 20 20 0.000 0.000 0.000 69 261 5.757 5.757 68.795 0.000 68.795 0.000 68.79 0.94 

1.0 20 20 0.000 0.000 0.000 69 261 5.757 5.757 68.795 0.000 68.795 0.000 68.79 0.94 

1.1 20 20 0.000 0.000 0.000 69 261 5.757 5.757 68.795 0.000 68.795 0.000 68.79 0.94 

1.3 20 20 0.000 0.000 0.000 69 261 5.757 5.757 68.795 0.000 68.795 0.000 68.79 0.94 

1.4 20 20 0.000 0.000 0.000 69 261 5.757 5.757 68.795 0.000 68.795 0.000 68.79 0.94 

1.6 20 20 0.000 0.000 0.000 69 261 5.757 5.757 68.795 0.000 68.795 0.000 68.79 0.94 

1.8 21 20 0.091 0.000 0.123 69 261 5.757 5.757 68.693 0.008 68.795 0.000 68.69 0.94 

2.3 21 20 0.091 0.000 0.123 69 261 5.757 5.757 68.693 0.008 68.795 0.000 68.69 0.94 

4.0 25 20 0.455 0.000 0.616 69 261 5.757 5.757 68.292 0.042 68.795 0.000 68.29 0.93 

4.5 26 20 0.547 0.000 0.739 69 261 5.757 5.757 68.192 0.050 68.795 0.000 68.19 0.93 

7.2 36 21 1.371 0.000 1.847 69 261 5.757 5.757 67.309 0.124 68.795 0.000 67.31 0.92 

9.7 47 23 2.204 0.000 2.955 69 261 5.757 5.757 66.449 0.196 68.795 0.000 66.45 0.91 

15.0 66 28 3.517 0.000 4.684 69 261 5.757 5.757 65.148 0.305 68.795 0.000 65.15 0.89 
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20.8 80 33 4.377 0.000 5.806 69 261 5.757 5.757 64.332 0.373 68.795 0.000 64.33 0.88 

26.0 83 34 4.569 0.000 6.055 69 261 5.757 5.757 64.153 0.388 68.795 0.000 64.15 0.88 

34.7 103 40 5.924 0.066 7.718 69 261 5.745 5.718 62.921 0.486 68.656 0.006 62.92 0.86 

38.4 142 54 8.416 0.933 9.802 68 256 5.582 5.217 60.659 0.595 66.791 0.084 60.66 0.83 

43.3 155 60 9.140 1.230 10.324 67 255 5.490 5.061 59.568 0.615 65.641 0.109 59.57 0.81 

46.4 174 68 10.285 1.671 11.169 66 253 5.343 4.838 57.786 0.645 63.787 0.143 57.79 0.79 

49.8 193 73 11.731 2.120 12.374 64 250 5.204 4.614 55.901 0.692 62.025 0.175 55.90 0.76 

52.6 221 80 13.933 2.798 14.192 63 247 5.001 4.284 53.178 0.755 59.423 0.219 53.18 0.73 

54.0 243 86 15.648 3.344 15.564 61 244 4.840 4.026 51.104 0.795 57.344 0.251 51.10 0.70 

55.4 253 89 16.410 3.596 16.155 60 243 4.767 3.910 50.184 0.811 56.383 0.264 50.18 0.69 

56.8 263 91 17.273 3.850 16.864 60 241 4.696 3.793 49.242 0.830 55.450 0.277 49.24 0.67 

59.6 273 94 18.046 4.108 17.456 59 240 4.622 3.678 48.343 0.844 54.483 0.290 48.34 0.66 

64.4 283 97 18.825 4.368 18.048 58 239 4.549 3.562 47.451 0.856 53.510 0.301 47.45 0.65 

70.1 293 100 19.610 4.631 18.639 58 237 4.476 3.447 46.568 0.868 52.533 0.313 46.57 0.64 

71.9 322 110 21.791 5.180 20.471 56 232 4.243 3.121 43.791 0.896 49.687 0.327 43.79 0.60 

73.6 349 123 23.504 5.627 21.840 53 227 4.012 2.822 41.241 0.901 46.907 0.333 41.24 0.56 

75.4 357 127 24.004 5.759 22.230 52 226 3.943 2.733 40.487 0.900 46.067 0.333 40.49 0.55 

77.2 365 132 24.409 5.871 22.531 52 224 3.869 2.646 39.737 0.895 45.206 0.332 39.74 0.54 

78.9 374 136 25.026 6.034 23.015 51 223 3.794 2.547 38.911 0.896 44.267 0.333 38.91 0.53 

81.6 383 141 21.269 5.185 19.465 48 217 3.525 2.474 37.665 0.733 42.317 0.273 37.67 0.52 

84.2 393 145 26.288 6.372 23.986 49 219 3.633 2.339 37.181 0.892 42.251 0.334 37.18 0.51 

86.8 410 152 27.536 6.710 24.958 48 216 3.509 2.225 35.778 0.893 40.733 0.337 35.78 0.49 

90.2 432 159 29.376 7.211 26.412 47 212 3.371 2.142 34.137 0.902 39.083 0.345 34.14 0.47 

93.5 454 166 31.009 7.664 27.673 45 209 3.244 2.067 32.664 0.904 37.584 0.351 32.66 0.45 

96.8 478 176 33.074 8.253 29.227 44 204 3.076 1.970 30.787 0.900 35.642 0.356 30.79 0.42 

100.1 501 187 34.711 8.800 30.336 42 200 2.915 1.878 29.125 0.884 33.818 0.358 29.13 0.40 

100.9 523 200 36.049 10.567 29.779 40 190 2.663 1.623 27.469 0.818 30.327 0.381 27.47 0.38 
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101.8 546 214 37.425 12.535 29.049 37 180 2.403 1.366 25.736 0.748 26.635 0.392 25.74 0.35 

102.1 552 218 37.752 13.063 28.816 37 176 2.335 1.301 25.270 0.728 25.655 0.392 25.27 0.35 

102.3 558 221 38.183 13.625 28.642 36 173 2.271 1.236 24.828 0.712 24.687 0.392 24.69 0.34 

103.9 560 223 38.224 13.791 28.463 36 172 2.246 1.215 24.663 0.703 24.349 0.391 24.35 0.33 

105.3 562 224 38.368 13.982 28.377 36 171 2.224 1.193 24.516 0.698 24.025 0.391 24.03 0.33 

107.4 573 231 39.009 15.025 27.738 35 164 2.110 1.078 23.746 0.666 22.255 0.387 22.25 0.30 

109.4 582 236 39.612 15.950 27.242 34 159 2.039 0.985 23.308 0.646 20.864 0.383 20.86 0.29 

111.2 596 244 40.533 17.447 26.367 33 150 1.929 0.845 22.631 0.615 18.633 0.371 18.63 0.25 

114.7 608 252 41.210 19.607 24.433 32 143 1.851 0.761 22.198 0.568 16.564 0.367 16.56 0.23 

118.0 618 258 41.847 21.189 23.212 31 138 1.795 0.705 21.817 0.535 15.171 0.361 15.17 0.21 

121.0 634 271 42.515 23.659 20.981 30 129 1.699 0.619 21.216 0.479 13.094 0.345 13.09 0.18 

122.5 648 283 43.037 25.551 19.311 28 121 1.613 0.545 20.653 0.435 11.478 0.324 11.48 0.16 

124.9 658 295 43.043 26.478 18.210 27 116 1.546 0.494 20.199 0.405 10.478 0.305 10.48 0.14 

128.1 663 300 43.153 26.990 17.722 27 113 1.514 0.469 19.974 0.392 9.974 0.295 9.97 0.14 

129.1 670 309 43.090 27.677 16.841 26 109 1.466 0.434 19.662 0.369 9.282 0.281 9.28 0.13 

130.9 679 322 42.851 28.590 15.508 25 104 1.400 0.390 19.255 0.337 8.389 0.261 8.39 0.11 

132.3 681 325 42.785 28.917 15.063 25 103 1.379 0.380 19.114 0.326 8.159 0.256 8.16 0.11 

136.1 685 331 42.652 29.592 14.151 24 100 1.336 0.361 18.834 0.303 7.704 0.247 7.70 0.11 

142.8 688 336 42.496 30.119 13.387 24 98 1.303 0.347 18.622 0.285 7.362 0.240 7.36 0.10 

157.6 695 347 42.203 31.427 11.604 23 92 1.227 0.314 18.149 0.243 6.582 0.223 6.58 0.09 

162.7 703 365 41.256 32.705 9.179 21 86 1.130 0.288 17.556 0.188 5.905 0.207 5.91 0.08 

179.0 714 398 38.992 33.779 5.596 19 79 0.988 0.278 16.598 0.109 5.433 0.197 5.43 0.07 

182.5 716 408 38.117 34.087 4.326 18 78 0.957 0.276 16.500 0.084 5.325 0.195 5.33 0.07 

179.0 724 444 35.025 35.496 -0.504 16 73 0.851 0.269 15.923 0.010 4.917 0.187 4.92 0.07 

182.5 725 452 34.224 35.757 -1.643 16 72 0.830 0.269 15.140 0.029 4.845 0.186 4.85 0.07 
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Studs (Lh=130 mm) 

Results: 

130 min(  at mid-height,  at support)
hL mmP P P    

o
,20 , 0 nomimal axial strength calculated at 20 C under pure compression for studs without web perforationo

hn C L mmP     

        mid-height support mid-height support Results 

Time 

(min) 

THF 

(oC) 

TCF 

(oC) 

eΔT 

(mm) 

eΔE 

(mm) 
(eΔT -eΔE)/ αx 

Pn 

(kN) 

PEx 

(kN) 

Mnx,eff 

(kN.m) 

Mnx,eff 

(kN·m) 
P  

(kN) 

xM  

(kN·m) 
P  

(kN) 

xM  

(kN·m) 
P  

(kN) 

130

,20 , 0

h

o
h

L mm

n C L mm

P

P





 

0.0 20 20 0.000 0.000 0.000 68 261 5.757 5.757 68.456 0.000 68.456 0.000 68.46 0.94 

0.5 20 20 0.000 0.000 0.000 68 261 5.757 5.757 68.456 0.000 68.456 0.000 68.46 0.94 

0.6 20 20 0.000 0.000 0.000 68 261 5.757 5.757 68.456 0.000 68.456 0.000 68.46 0.94 

0.8 20 20 0.000 0.000 0.000 68 261 5.757 5.757 68.456 0.000 68.456 0.000 68.46 0.94 

0.9 20 20 0.000 0.000 0.000 68 261 5.757 5.757 68.456 0.000 68.456 0.000 68.46 0.94 

1.0 20 20 0.000 0.000 0.000 68 261 5.757 5.757 68.456 0.000 68.456 0.000 68.46 0.94 

1.1 20 20 0.000 0.000 0.000 68 261 5.757 5.757 68.456 0.000 68.456 0.000 68.46 0.94 

1.3 20 20 0.000 0.000 0.000 68 261 5.757 5.757 68.456 0.000 68.456 0.000 68.46 0.94 

1.4 20 20 0.000 0.000 0.000 68 261 5.757 5.757 68.456 0.000 68.456 0.000 68.46 0.94 

1.6 20 20 0.000 0.000 0.000 68 261 5.757 5.757 68.456 0.000 68.456 0.000 68.46 0.94 

1.8 21 20 0.091 0.000 0.123 68 261 5.757 5.757 68.355 0.008 68.456 0.000 68.36 0.93 

2.3 21 20 0.091 0.000 0.123 68 261 5.757 5.757 68.355 0.008 68.456 0.000 68.36 0.93 

4.0 25 20 0.455 0.000 0.615 68 261 5.757 5.757 67.958 0.042 68.456 0.000 67.96 0.93 

4.5 26 20 0.547 0.000 0.738 68 261 5.757 5.757 67.860 0.050 68.456 0.000 67.86 0.93 

7.2 36 21 1.371 0.000 1.844 68 261 5.757 5.757 66.987 0.124 68.456 0.000 66.99 0.92 

9.7 47 23 2.204 0.000 2.951 68 261 5.757 5.757 66.168 0.195 68.456 0.000 66.17 0.90 

15.0 66 28 3.517 0.000 4.677 68 261 5.757 5.757 64.849 0.303 68.456 0.000 64.85 0.89 
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19.7 80 33 4.377 0.000 5.797 68 261 5.757 5.757 64.041 0.371 68.456 0.000 64.04 0.88 

20.8 83 34 4.569 0.000 6.046 68 261 5.757 5.757 63.864 0.386 68.456 0.000 63.86 0.87 

26.0 103 40 5.924 0.066 7.707 68 261 5.745 5.718 62.644 0.483 68.318 0.006 62.64 0.86 

34.7 142 54 8.416 0.933 9.789 68 256 5.582 5.217 60.399 0.591 66.468 0.084 60.40 0.83 

38.4 155 60 9.140 1.230 10.310 67 255 5.490 5.061 59.314 0.612 65.325 0.108 59.31 0.81 

43.3 174 68 10.285 1.671 11.155 65 253 5.343 4.838 57.543 0.642 63.483 0.142 57.54 0.79 

46.4 193 73 11.731 2.120 12.359 64 250 5.204 4.614 55.669 0.688 61.732 0.174 55.67 0.76 

49.8 221 80 13.933 2.798 14.176 62 247 5.001 4.284 52.956 0.751 59.151 0.218 52.96 0.72 

52.6 243 86 15.648 3.344 15.549 61 244 4.840 4.026 50.918 0.792 57.087 0.249 50.92 0.70 

54.0 253 89 16.410 3.596 16.139 60 243 4.767 3.910 49.991 0.807 56.125 0.263 49.99 0.68 

55.4 263 91 17.273 3.850 16.764 60 246 4.696 3.793 49.087 0.823 55.220 0.274 49.09 0.67 

56.8 273 94 18.046 4.108 17.440 59 240 4.622 3.678 48.160 0.840 57.087 0.308 48.16 0.66 

59.6 293 100 19.610 4.631 18.622 57 237 4.476 3.447 46.393 0.864 52.301 0.311 46.39 0.63 

64.4 322 110 21.791 5.180 20.453 55 232 4.243 3.121 43.625 0.892 49.469 0.326 43.62 0.60 

70.1 349 123 23.504 5.627 21.823 53 227 4.012 2.822 41.096 0.897 46.701 0.331 41.10 0.56 

71.9 357 127 24.004 5.759 22.213 52 226 3.943 2.733 40.340 0.896 45.865 0.331 40.34 0.55 

73.6 365 132 24.409 5.871 22.513 51 224 3.869 2.646 39.589 0.891 45.011 0.331 39.59 0.54 

75.4 374 136 25.026 6.034 22.997 51 223 3.794 2.547 38.767 0.892 44.078 0.332 38.77 0.53 

77.2 383 141 25.549 6.176 23.391 50 221 3.714 2.449 37.941 0.887 43.116 0.331 37.94 0.52 

78.9 393 145 26.288 6.372 23.968 49 219 3.633 2.339 37.045 0.888 42.073 0.332 37.05 0.51 

81.6 410 152 27.536 6.710 24.941 48 216 3.509 2.225 35.654 0.889 40.564 0.335 35.65 0.49 

84.2 432 159 29.376 7.211 26.394 46 212 3.371 2.142 34.014 0.898 38.921 0.344 34.01 0.47 

86.8 454 166 31.244 7.727 27.844 45 209 3.235 2.059 32.411 0.902 37.290 0.351 32.41 0.44 

90.2 478 176 33.074 8.253 29.208 43 204 3.076 1.970 30.676 0.896 35.494 0.355 30.68 0.42 

93.5 501 187 34.711 8.800 30.318 42 200 2.915 1.878 29.025 0.880 33.681 0.357 29.03 0.40 

96.8 523 200 36.049 10.567 29.762 39 190 2.663 1.623 27.374 0.815 30.211 0.379 27.37 0.37 

100.1 546 214 37.425 12.535 29.032 37 180 2.403 1.366 25.648 0.745 26.540 0.390 25.65 0.35 
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100.9 552 218 37.752 13.063 28.799 37 176 2.335 1.301 25.183 0.725 25.566 0.391 25.18 0.34 

101.8 558 221 38.183 13.625 28.652 36 173 2.271 1.236 24.743 0.709 24.603 0.391 24.60 0.34 

102.1 560 223 38.224 13.791 28.507 36 172 2.246 1.215 24.578 0.701 24.267 0.390 24.27 0.33 

102.3 562 224 38.368 13.982 28.458 36 171 2.224 1.193 24.443 0.696 23.945 0.389 23.94 0.33 

103.9 573 231 39.009 15.025 28.016 35 164 2.110 1.078 23.663 0.663 22.177 0.385 22.18 0.30 

105.3 582 236 39.612 15.950 27.717 34 159 2.039 0.985 23.229 0.644 20.801 0.382 20.80 0.28 

107.4 596 244 40.533 17.447 27.179 33 150 1.929 0.845 22.553 0.613 18.580 0.370 18.58 0.25 

109.4 608 252 41.210 19.607 25.557 32 143 1.851 0.761 22.126 0.565 16.527 0.366 16.53 0.23 

111.2 618 258 41.847 21.189 24.524 31 138 1.795 0.705 21.738 0.533 15.133 0.360 15.13 0.21 

114.7 634 271 42.515 23.659 22.541 29 129 1.699 0.619 21.137 0.476 13.059 0.344 13.06 0.18 

118.0 648 283 43.037 25.551 21.053 28 121 1.613 0.545 20.572 0.433 11.453 0.323 11.45 0.16 

121.0 658 295 43.043 26.478 20.040 27 116 1.546 0.494 20.118 0.403 10.455 0.304 10.45 0.14 

122.5 663 300 43.153 26.990 19.602 27 113 1.514 0.469 19.893 0.390 9.954 0.295 9.95 0.14 

124.9 670 309 43.090 27.677 18.770 26 109 1.466 0.434 19.582 0.368 9.264 0.280 9.26 0.13 

128.1 679 322 42.851 28.590 17.473 25 104 1.400 0.390 19.175 0.335 8.375 0.260 8.38 0.11 

129.1 681 325 42.785 28.917 17.018 25 103 1.379 0.380 19.033 0.324 8.144 0.256 8.14 0.11 

130.9 685 331 42.652 29.592 16.079 24 100 1.336 0.361 18.753 0.302 7.690 0.247 7.69 0.11 

132.3 688 336 42.496 30.119 15.281 24 98 1.303 0.347 18.541 0.283 7.350 0.239 7.35 0.10 

136.1 695 347 42.203 31.427 13.399 23 92 1.227 0.314 18.067 0.242 6.572 0.222 6.57 0.09 

142.8 703 365 41.256 32.705 10.721 21 86 1.130 0.288 17.474 0.187 5.896 0.207 5.90 0.08 

157.6 714 398 38.992 33.779 6.581 19 79 0.988 0.278 16.514 0.109 5.424 0.197 5.42 0.07 

162.7 716 408 38.117 34.087 5.107 18 78 0.957 0.276 16.415 0.084 5.317 0.195 5.32 0.07 

179.0 724 444 35.025 35.496 -0.601 16 73 0.851 0.269 15.833 0.010 4.908 0.187 4.91 0.07 
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