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Abstract

Reviews provided by previous customers contain information, which can be used by

new customers. This research examines the impact of the user-generated reviews, on the

performance of an M/M/1 queueing system. We assume that customers do not know the

expected service time and they obtain this information by reading reviews. The results

show that reading unbiased reviews can result in either a better or worse performance,

depending on the parameters of the system. We also investigate the impact of the number

of reviews each customer reads, on the different performance measures. We observe that if

each customer reads more reviews, it does not necessarily result in a system which is more

similar to a system with full information. Moreover, even with a huge pool of reviews,

it may either not converge to the system with full information or converges very slowly.

Finally, we show that if reviews consist of the waiting time that customers experience in

the system along with the number of people that they observe upon their arrival, the rate

of convergence to the system with full information is much faster.
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Chapter 1

Introduction

Reviews provided by previous customers, contain information, which can be used by new

customers. This research examines the impact of the user-generated reviews, on the per-

formance of an M/M/1 queueing system, specifically, congestion. Customer reviews play

an undeniable role in the sale of a product or service, even if the related information and

specifications have been published in details. According to a survey done by BrightLo-

cal [2], 92% of customers in 2015 read online reviews. Reviews are often provided about

different aspects of the service or product and most of them can be translated into cost

(revenue) that one spends (gains) by choosing to purchase that product or service. In a

queueing system, the main cost imposed to customers is the waiting cost and the main

revenue is the value of the service they gain by being served, which is also called reward.

One important parameter of a queue is the service time which is usually considered as a

random variable. The randomness nature of the service time, is the source of uncertainty in

the cost. This uncertainty about the service time leads customers to find a way to estimate

it. In the literature of observable queues, originated by Naor [14] it is assumed that the
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expected service rate is known. In a very recent paper, Cui and Veeraraghavan [3] assume

that the service rate is unknown and customers can estimate it through different procedures

like their previous experience and reading reviews. They implicitly note that, if the server

reveals the information about the service rate, customers just use that information to make

a decision. Therefore, the problem is either to reveal the information or not, in order to

improve the performance of the system.

We consider a single server queue with a first-come first-served (FCFS) discipline in

which some previous customers randomly provide a review on the service time after being

served. Each new customer picks some reviews randomly and estimates the service time

based on those reviews. We assume that customers are homogeneous with respect to the

number of reviews they read. However, as the reviews are written and chosen randomly, the

estimations of the service time may vary among customers which results in heterogeneous

customers in terms of the estimation of the service rate. The aim of this research is to

determine the impact of nowadays’ prevalence of customer reviews on the performance

of a queueing system. Specifically, we investigate the impact of the number of reviews

on the probability of idleness, the expected length of queue, and, revenue. The reviews

are written based on the exact service time that the reviewer experiences, i.e., customers

write the reviews based on the truth and also reviews are picked randomly. Therefore,

the information about the service time in each review, follows the same distribution as the

service time. However, the results of this study show that, the same distribution of the

exact service time and reviews, does not result in a system that is identical to the one with

the known service rate.
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Chapter 2

Literature Review

Literature on queueing systems in which customers are decision makers, began with Naor

[14]. Strategic customers in Naor’s model make their decision about whether to join the

queue or not, based on the expected costs and benefits of joining. Naor considers an

observable FCFS single server queue with homogeneous customers whose decision is a

function of the parameters of the system and also the length of the queue they observe

upon arrival. He assumes that customers are homogeneous in terms of the waiting cost and

the reward of the service completion. In addition, they all have full information about the

service time. Therefore, for any given queue length observed upon arrival, all customers

make the same decision.

After Naor, various streams of research have emerged, discussing different aspects of his

model including: changing the assumptions and expanding his model. Among the broad

literature, we can mention Huang et al. [9] which discuss the rationality assumption and

Hassin [6] investigates the impact of a last-come first-served (LCFS) discipline on the social

welfare optimization.
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In the stream that is closely related to this research, the homogeneity assumption in

Naor [14], has been brought into question. Hassin ans Haviv [7] provide a comprehensive

review on this stream of research. Edelson and Hildebrand [4] consider that customers are

heterogeneous in terms of the waiting cost per unit of time. Larsen [11] assumes that the

reward, is different for each customer and it follows a uniform distribution. Zheng [19] also

considers heterogeneous customers in terms of the waiting cost, by considering a uniform

distribution for cost. Zheng also adds a new assumption of heterogeneity in terms of the

service rate. He considers two types of customers: optimistic and pessimistic. For each

type of customers he assigns a belief about the service rate. Then, he discusses the joining

probabilities of optimistic and pessimistic customers.

In our model, the queue is observable and although the customers are homogeneous in

the waiting cost and the reward they gain by service completion, because of the various

estimations of the service rate, they may make different decisions in the same state of the

system. The most closely related model to our research, is provided by Cui and Veer-

araghavan [3]. They suggest a model in which the service rate is unknown for customers.

Thus, each customer considers a threshold for the number of people in the system below

which, she joins the queue. Then, they assume a general but finite distribution for the

thresholds. They show that for pessimistic and consistent thresholds of customers; i.e.,

when the expected value of customers’ threshold is not more than the threshold derived

from Naor’s model, by revealing the information about the service rate, the revenue of the

service provider increases.

Revealing information about the service rate in Cui and Veeraraghavan [3] means that

all customers have full information about the service rate and so the system turns to Naor’s

model. In other words, they assume that, if the server reveals the exact expected service

time, customers forget about reviews and take the released information and the corre-
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sponding threshold, into consideration. As a result, they do not specifically investigates

the impact of reviews on the queueing system. In order to fill this gap in the literature, we

introduce a mechanism for writing and reading reviews. We show that although this mech-

anism results in constant beliefs about the service rate, it is always optimistic in terms of

the joining threshold. The main difference between this study and Cui and Veeraraghavan

[3], is that we assume customers rely on reviews to estimate the rate of service. Thus, the

question in our research is to determine whether reading more or less reviews improves the

performance of the system.

There is also some research investigating the impact of the previous experiences on a

queueing system. These experiences can be obtained either from the customer, herself or

from the other customers. Ho et al. [8] investigate the satisfaction of a customer from the

most recent purchase of that customer and its impact on her decision. Using the experience

of the other customers about the waiting time is discussed by Sankaranarayanan et al. [15].

In their agent-based model, at the beginning of each period, each agent based on its own

experience and also the experience of other agents about the sojourn time, decide either to

queue up or not. Veeraraghavan and Debo [18] and also Jin et al. [10] discuss how people

might make a decision based on the behavior of the other customers. They discuss a case

in which the reward is unknown and customers guess it by observing the other customers’

behavior. In their context, a server with a longer queue indicates a service with a higher

quality. However, none of these papers, consider the reviews on the service time by a focus

on the impact of the amount of information obtained from reviews, which is the aim of

this study.
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Chapter 3

Model

We consider an observable single-server queueing system in which customers arrive to the

system according to a Poisson process with parameter Λ, and they decide to join the queue

or not, upon arrival. Once one chooses to join, she will not change her decision had been

made upon arrival. In other words, there is no reneging in this system. The cost of waiting

per unit of time, represented by c, and each customer receives a reward, R, after the service

completion.

The service time for each customer follows an exponential distribution with rate µ.

Each customer has a belief about the service rate which comes from the reviews provided

by other customers, who have already experienced the service. We assume that customers

who decide to provide a review, express the truth about the service time they encountered.

We denote the belief of each customer about the service rate by µ̂. Consider a customer

with belief µ̂, confronting n customers in the system upon arrival. Then, this customer

decides to join if and only if:
(n+ 1)c

µ̂
≤ R. (3.1)
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In this research, we first find the stationary distribution of the number of people in the

system when each customer reads one review randomly and take the information in the

review as her belief about the service time. Then, we compare such a review-based system

with the model with full information about service rate, µ. From now on we refer to Noar’s

model which is a similar system with full information about µ, as the M/M/1 system.

Then, we generalize our analysis to a system, in which, every customer reads m reviews.

In this context, we analyze the impact of the number of reviews, m, on the performance

of the system. In the third section, we investigate the conditions under which our model

behaves similar to the M/M/1 system. Finally, we discuss reviews that reflect both waiting

time and the number of people in the system, instead of the service time.

3.1 One Review

We assume that some customers randomly decide to provide a review and share their

experience about the service time, which is available to all customers. Besides, strategic

customers who would make a decision about queueing up, pick one review among all written

reviews, randomly. As a result, the belief about the service time, 1/µ̂, is a random variable

following an exponential distribution with parameter µ. Note that, joining condition is the

same as Eq. (3.1) in which 1/µ̂ follows an exponential distribution. Thus, we can obtain

the probability of joining when there are n customers in the system, Pr(n), as follows:

Pr(n) = 1− e−
Rµ

c(n+1) . (3.2)

To obtain the probability of joining when there are n customers in the system upon arrival,

we use a birth and death process. Let π1
n denote the probability that there are n customers

in the system, when customers decide based on one review on the service time. Also, define

7



the state of the process as the number of customers in the system. Then, the probability

of being in state n is:

π1
n(ρ,

Rµ

c
) =

ρn
∏n−1

k=0 Pr(k)

1 +
∑∞

i=1 ρ
i
∏i−1

j=0 Pr(j)
;n ∈ {1, 2, 3, ...}, (3.3)

where ρ = Λ/µ. This probability is a function of ρ and Rµ
c

. Eq. (3.4) provides the

probability that the system is idle, i.e., π1
0,

π1
0(ρ,

Rµ

c
) =

1

1 +
∑∞

i=1 ρ
i
∏i−1

j=0 Pr(j)
. (3.4)

For more details about the birth and death process and the procedure to find the stationary

distribution of the number of people in the system, please see Appendix A.1.

Note that, any belief about the service time corresponds to a threshold for the number

of customers in the system, T , below which a customer joins the system. In the M/M/1

system, this threshold is bRµ
c
c. Therefore, in the M/M/1 system, a customer joins if and

only if she encounters less than or equal to bRµ
c
c customers in the system, upon arrival.

In a system with belief µ̂ about the service rate, this threshold is bRµ̂
c
c. As a result, Eq.

(3.4) can be written in terms of the distribution of the beliefs about thresholds instead of

the service time:

π1
0(ρ,

Rµ

c
) =

1

1 +
∑∞

i=1 ρ
i
∏i−1

j=0(1− F (T ))
, (3.5)

where F (T ) is the cumulative distribution function (CDF) of thresholds. Note that, Eq.

(3.5) is equivalent to the Eq.(1) in Cui and Veeraraghavan [3].

In case that the distribution of the service time is known and all customers have full

information about it, Naor [14] provides the stationary distribution of the number of people

in the system, which is:

πM/M/1
n (ρ,

Rµ

c
) =

ρn(1− ρ)

1− ρbRµc c+1
;n ∈ {0, 1, 2, 3, ..., bRµ/cc}. (3.6)
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Considering that

1− xq+1 = (1− x)
∑q

i=0 x
i,

π
M/M/1
0 can be also written as:

π
M/M/1
0 =

1∑bRµ
c
c+1

i=0 ρi
. (3.7)

The rest of this study about the system with one review on the service time, has been

structured as follows: first, we compare the congestion in the system when customers read

one review, with the congestion in the corresponding M/M/1 system. Then, we discuss

the revenue in such a system, and, finally we examine whether the proposed model results

in either pessimistic or optimistic beliefs defined by Cui and Veeraraghavan [3].

3.1.1 Congestion

One of the most popular and easy to use performance measures of a queue is the probability

that the server is idle. From the service provider’s point of view, it is more efficient to have

less idle time, since with a given service time, less idleness results in serving more customers,

which consequently increases the revenue. We examine, under what circumstances, the

system with one review is more or less efficient than the M/M/1 system. In order to conduct

this comparison, probability of idleness in both systems have been obtained numerically

for Rµ
c
∈{1, 1.1, 1.2,..., 5}∪{10,20,...,100} and ρ ∈ {0.1, 0.2, ..., 0.9} and the results are

illustrated in Figure 3.1.

From Figure 3.1, we observe that:

i. For any integer value of Rµ
c

, we have: π
M/M/1
0 ≤ π1

0. The intuition behind this result

is that, for an integer value of Rµ
c

, customers who observe Rµ
c
− 1 people in the

9



Figure 3.1: A comparison between π1
0 and π

M/M/1
0 for Rµ

c
∈ {1, 1.1, 1.2,...,

5}∪{10,20,...,100} and ρ ∈ {0.1, 0.2, ..., 0.9}
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system upon arrival, decide to join if they have full information about the service

time. However, if customers estimate the service rate using reviews, for estimations

even slightly less than the exact service rate, they do not join. For example if Rµ
c

= 2,

or equivalently µ = 2 c
R

, in case of observing 1 person in the system upon arrival,

the following happens in each system: (a) The M/M/1 system: The waiting cost is

c×2
µ

= R. As the expected waiting cost is not more than the reward, customers who

face 1 customer upon arrival, join. (b) System with one review: If µ̂ < µ, then, the

waiting cost is c×2
µ̂
> c×2

µ
= R, so they do not join. Otherwise, they join.

Therefore, some customers underestimate service rate. These customers, decide not

to join in the review-based system with one review, while all customers with a similar

situation join the M/M/1 system. We further discuss this case in Conjecture 1.

ii. If π1
0 is less than π

M/M/1
0 , for all values of Rµ

c
between two consecutive integers, k and

k+ 1, it will remain the same for any Rµ
c

more than k. In addition, π
M/M/1
0 is a lower

asymptote of π1
0. We can mathematically show that π

M/M/1
0 is the asymptote of π1

0

with respect to Rµ
c

; i.e.,

limRµ
c
→∞ π

1
0 = π

M/M/1
0 .

As joining probabilities approach 1 when Rµ
c

goes to infinity, the limit equals to:

π
M/M/1
0 = 1∑bRµc c+1

i=0 ρi
.

iii. The value of π1
0 is strictly decreasing with respect to Rµ

c
. Note that π

M/M/1
0 is a

function of bRµ
c
c. Thus, it is constant between each two consecutive integer values

of Rµ
c

. On the other hand, π
M/M/1
0 is a function of Rµ

c
. Based on Eq. (3.2), joining

probabilities are all strictly increasing with respect to Rµ
c

which implies that π1
0 is

strictly decreasing.
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The average number of people waiting in the system, including the one in the server,

can be considered as another performance measure of a queueing system, which is:

∑∞
l=0 kπl,

where πl stands for the stationary probability of state l. Let EL1 and ELM/M/1 denote

the expected number of customers in the system with one review and the M/M/1 system,

respectively. Then,

EL1 =

∑∞
n=1 nρ

n
∏n−1

k=0 Pr(k)

1 +
∑∞

i=1 ρ
i
∏i−1

j=0 Pr(j)
, (3.8)

and,

ELM/M/1 =

∑bRµ
c
c

n=1 nρn

1 +
∑bRµ

c
c+1

i=1 ρi
. (3.9)

Figure 3.2 provides a comparison between the expected number of people in the review-

based system with one review and that of the M/M/1 system. The expected length of the

queue in the review-based system, strictly increases in Rµ
c

: more reward, more people

decide to join, a longer queue. This figure also shows that, although using just one review

to estimate the service time, leads to a system with more idle time for an integer Rµ
c

, it

does not necessarily induce a less congested system. In other words, when π1
0 is greater

than π
M/M/1
0 , it does not always mean that π1

1 is less than π
M/M/1
1 . It can be interpreted

from Figure 3.2 that when the arrival rate, Λ, is high, for smaller integer values of Rµ
c

,

the system with one review is more congested. We can also show that ELM/M/1 is an

asymptote of EL1 and numerical results indicate that it is an upper asymptote. Although

Figure 3.2 does not illustrate that EL1 is asymptotically approaching ELM/M/1, when

ρ = 0.9, we verified that when bRµ
c
c is large enough, the expected number of people in the

12



Figure 3.2: A comparison between EL1 and ELM/M/1 for Rµ
c
∈{1, 1.2, 1.4,...,20} and

ρ ∈ {0.1, 03, 0.6, 0.9}

system, approaches that of the M/M/1 system with a slower rate. Table 3.1 shows the the

expected number of people in both systems. The results verify that for a large enough Rµ
c

,

they are almost equal.

3.1.2 Revenue

In this section, we investigate the impact of reviews, on the revenue of the service provider.

Assume that once customers join the system, the server charges them a service fee, denoted

by p. Note that this assumption does not affect the results given in Section 3.1.1, because

we can replace R with R − p and conclude the same results. The effective rate of arrival,

denoted by Λe can be defined as Λ × joining probability (see Hassin and Haviv [7] for

detailed definition). Joining probability can be obtained by conditioning on the state of

the system which is defined as the number of people in the system. The effective rate of

13



Table 3.1: Verifying if EL1 approaches ELM/M/1 for a large Rµ
c

ρ
Rµ/c=100 Rµ/c=1000

EL1 ELM/M/1 EL1 ELM/M/1

0.1 0.111111111 0.111111111 0.111111111 0.111111111

0.2 0.250000000 0.250000000 0.250000000 0.250000000

0.3 0.428571415 0.428571429 0.428571428 0.428571429

0.4 0.666666334 0.666666667 0.666666667 0.666666667

0.5 0.999994220 1.000000000 1.000000000 1.000000000

0.6 1.499909957 1.500000000 1.500000000 1.500000000

0.7 2.331871463 2.333333333 2.333333334 2.333333333

0.8 3.971160418 3.999999983 4.000000000 4.000000000

0.9 8.159853272 8.997585512 9.000000000 9.000000000

arrival can be written as:

Λe = µ(1− π0), (3.10)

(see Appendix B for details).

Eq. (3.10) and Figure 3.1 together imply that Λe for both the M/M/1 system and the

system with one review, is increasing with respect to Rµ
c

.

The expected revenue is defined as pΛe, when R is replaced with R − p in Eq. (3.4)

and Eq. (3.7). To simplify our analysis, we compare the M/M/1 system with the model

with one review for a given p, rather than finding the revenue optimizer price. Revenue

analysis based on a given p, is also used by Cui and Veerarghavan [3]. Here, we compare

the revenues based on the prices for which, (R−p)µ
c

is between two successive integers, k

and k + 1.
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In the M/M/1 system, when (R−p)µ
c

= k , the probability of idleness can be obtained

by replacing n with zero in Eq. (3.6) which yields:

π
M/M/1
0 = 1−ρ

1−ρk+1 .

Considering Eq. (3.10), revenue in the M/M/1 system can be written as:

Revenue = pµ(1− πM/M/1
0 ).

For a given k, it is straight-forward to show that the revenue increases in p. Therefore,

in order to increase the revenue in the given interval for p, the service provider should charge

as high as possible. Since, (R−p)µ
c

is between k and k + 1 by assumption, the maximum

price for a given k is:

p = R− ck
µ

.

Unlike the M/M/1 system, in the review-based model we already discussed that π1
0 is

strictly decreasing with respect to (R−p)µ
c

, which implies that it is increasing with respect

to p. As a result, Λe is decreasing with respect to p. Therefore, it is not straight-forward

to determine if the revenue is either increasing or decreasing in p.

We next, examine the effect of the price on the revenue, numerically. In the examples

illustrated in Figure 3.3, we set µ = c = 1 and vary k from 1 to 4. Then, we obtained the

revenue of both the M/M/1 system and the system with one review for some values of R

and ρ, for the prices such that (R−p)µ
c

varies between k and k + 1.

Figure 3.3 shows that although Λe is decreasing with respect to p, revenue is increasing

between each two integers for (R−p)µ
c

. However, we cannot say if the revenue of the M/M/1

15



(a)

(b)

Figure 3.3: The Revenue of review-based and M/M/1 systems for various values of R and

k such that (R−p)µ
c
∈ [k, k + 1). (a)ρ = 0.1 and (b)ρ = 0.9
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system is always more or less than the one in the review-based model. The numerical

results suggest that for a small ρ, the M/M/1 system always gain more revenue for a given

p. However, when ρ is high, this result does not always hold.

3.1.3 Optimistic vs. Pessimistic Customers

In the review-based system, we assume that reviewers provide the exact service time they

have experienced. In addition, the potential customers read a review randomly which

results in the beliefs that follow an exponential distribution with the same parameter

as the exact service time. As a result, customers are neither optimistic nor pessimistic

regarding the service time. However, Cui and Veeraraghavan [3] define pessimism and

optimism based on the threshold, rather than the service rate.

As we mentioned in Section 3.1, each customer with a certain belief about the service

time, considers a threshold, T , for the number of customers in the system. Therefore, if

the customer encounters less than or equal to T customers in the system, she joins. This

threshold is equal to bRµ̂/cc. Cui and Veeraraghavan [3], consider the population to be

optimistic (pessimistic), if the expected threshold, E(T ) is more (less) than the one in the

M/M/1 system. Then, they show that a system with pessimistic and even constant beliefs

about joining thresholds, T , results in a lower revenue than the M/M/1 system. In order

to use their result, we should examine if in the system with one review, customers are

pessimistic or optimistic about their joining threshold. The probability that a customer

has a threshold less than or equal to i, is:

Pr{T ≤ i} = Pr(bRµ̂/cc ≤ i) = Pr(Rµ̂
c
< i+ 1) = Pr( 1

µ̂
> R

c(i+1)
) = e−

Rµ
c(i+1) .

Similarly, the probability that a customer has a threshold less than or equal to i− 1 is:

17



Pr{T ≤ i− 1} = e−
Rµ
c×i .

Therefore, the probability that a customer considers i as her threshold, can be written

as follows:

Pr{T ≤ i} = Pr{T ≤ i} − Pr{T ≤ i− 1} = e−
µR

c(i+1) − e−µRc·i .

As a result, the expected value of the customer beliefs about the threshold which is denoted

by E(T ) is:

E(T ) =
∞∑
i=1

i ·
(
e−

µR
c(i+1) − e−

µR
c(i)
)
. (3.11)

We numerically approximated E(T ) for integer values of Rµ
c
∈ {1, 2, ..., 200}. Figure

3.4 shows that in this system, although the population is consistent about the service time

(neither optimistic nor pessimistic), they are defined significantly optimistic according to

Cui and Veeraraghavan [3], i.e., (E(T ) > Rµ
c

). Therefore, we cannot use their result about

the revenue in this model.

Figure 3.4: Approximated expected threshold vs. the threshold in the M/M/1 system.
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3.2 General Number of Reviews

In Section 3.1, we discussed the impact of one review on the performance of the queueing

system. Now, the question is, what happens to the performance of the system, if each cus-

tomer reads more reviews. Does it necessarily result in a system with a performance closer

to that of the M/M/1 system? In other words, we investigate the impact of the amount

and the accuracy of information about the service time, on the performance measures of

the system. In this section we show that sometimes the performance of the model with

less number of reviews, is more similar to that of the system with full information.

3.2.1 Congestion

Assume that some of the previous customers have provided a review on the service time

they experienced. Meanwhile, new customers pick m reviews randomly and they consider

the average of the service times of the chosen reviews as an estimation for the service time,

1
µ̂
. We can show that in the steady state, this system is in state n, with probability πmn

that can be obtained from Eq.(3.3) with a different joining probability, Pr(.). The details

are given in Appendix A.2.

We next obtain the probability of joining, when there are n customers in the system. As

the service time in each review is a random variable following an exponential distribution,

the summation of the service times in the reviews, follows an Erlang distribution with the

shape parameter, m and the rate, µ (see Evans et. al [5]). As a result, Pr(n) can be

defined as:

Pr(n) = 1−
m−1∑
l=0

1

l!
e
−mRµ
c(n+1) (

mRµ

c(n+ 1)
)l. (3.12)

We numerically obtain πm0 (ρ, Rµ
c

), for various values of m, ρ, and, Rµ
c

, from two points of
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view: First, we examine if the observations about the congestion of the system with one

review, holds for a general number of reviews. Second, we investigate the impact of the

number of reviews on the performance of the system.

Figure 3.5: A comparison between πm0 and π
M/M/1
0 with respect to Rµ

c
for various numbers

of reviews.

In order to compare the system with m reviews with the M/M/1 system, we plotted

πm0 , for m ∈ {5, 20, 50} and ρ ∈ {0.1, 0.3, 0.6, 0.9} as a function of Rµ
c
∈ {1, 1.2, 1.4, ..., 5},

in Figure 3.5. Numerical examples reveal that:

i. For any integer value of Rµ
c

, we have: π
M/M/1
0 ≤ πm0 . The intuition behind this result

is the same as what discussed in Section 3.1.1.

ii. Like π1
0, πm0 is always decreasing in Rµ

c
.

iii. If πm0 is less than π
M/M/1
0 , for all values of Rµ

c
between two consecutive integers, k
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and k + 1, it remains the same for any Rµ
c

more than k. In addition, π
M/M/1
0 is a

lower asymptote of πm0 .

In the context of this research, we are more interested in studying the impact of the number

of reviews everyone reads, on the performance of the system. In other words, we examine

if it is more beneficial to have a larger or smaller pool of reviews.

Here, the question is that how the probability of idleness changes, if each customer

reads more reviews, before making a decision. One possible response may be as follows:

by increasing the number of reviews, the estimation of the service approaches the exact

expected service time and, the customers decide more similar to the case when they have full

information. As a result, the stationary distribution of the review-based system becomes

closer to that of the M/M/1 system. Although this explanation might be correct for a large

enough m, we show that it is not true in general. In other words, we show that having

more accurate information does not necessarily leads to a more similar system to a system

with full information, in terms of the stationary distribution of the number of people in

the system. We clarify it by two examples.

Consider Figure 3.6a and assume that each customer reads 3 reviews. In this case,

the probability of idleness in a system with three reviews is higher than the one in the

M/M/1 system. However, it increases for more than three reviews and so the gap between

the review-based system and the M/M/1 system, increases. In other words, by increasing

the number of reviews we can see that πm0 does not necessarily become closer to π
M/M/1
0 .

Figure 3.6b also illustrates another case in which with more number of reviews, the system

not only does not become more similar to the M/M/1 system, but also, the gap between

them increases. In case (a), it is more efficient to have just one review and keep the pool

of reviews as small as possible. In contrast, in case (b), we can observe that it is more
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efficient to have 5 reviews rather than 1 to 4 reviews.

Figure 3.6: The probability of idleness in two systems with 1 to 5 reviews vs. the M/M/1

system

We obtained πm0 for m from 1 to 15 and various amounts of Rµ
c

and ρ. Figure 3.7

depicts the result for three values of Rµ
c

and ρ.

In general, we observe many different patterns for πm0 with respect to the number of

observations. Thus, if the service provider wants to decrease the idle time by affecting the

number of reviews each customer reads, he needs to determine if the probability of idleness

is increasing or decreasing with respect to m, for his system. We also find that when Rµ
c

is

large enough, πm0 is decreasing in m. Therefore, in systems with a large Rµ
c

, more reviews

results in a less probability of idleness.

3.3 Approaching the M/M/1 System

It may sound trivial that when the number of reviews each customer reads, go to infinity,

the belief about the service rate approaches the exact rate and so πm0 approaches π
M/M/1
0 .

However, it is not always true. Consider Figure 3.5. When everyone reads 50 reviews,

which is a large number, π50
0 looks far away from π

M/M/1
0 for some values of Rµ

c
. We realized
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Figure 3.7: Probability of idleness in the systems with various Rµ
c

and ρ for 1 to 15 reviews

vs. the M/M/1 system

that not all those differences have the same reason. For some values of Rµ
c

, although πm0

approaches π
M/M/1
0 asymptotically, the rate is too low. On the other hand, for some other

values of Rµ
c

, the probability of idleness in the review-based system never approaches the

one in the M/M/1 system. Below, we discuss each case, briefly.
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3.3.1 Conditions under which πm0 approaches π
M/M/1
0

In this section, we discuss the necessary and sufficient condition for approaching the M/M/1

system when the number of reviews everyone reads goes to infinity. In Conjecture 1, we

show that when Rµ
c

is an integer, no matter how many reviews everyone reads, πm0 never

approaches π
M/M/1
0 . In other words, π

M/M/1
0 is not an asymptote for πm0 for integer values

of Rµ
c

.

Conjecture 1. Let πm0 = 1

1+
∑∞
i=0 ρ

i
∏m−1
k=0 (1−

∑m−1
k=0 ( 1

k!
e
− mRµ
c(j+1) ( mRµ

c(j+1)
)k))

for R, µ, c > 0 and 0 ≤

ρ < 1. Also, let π
M/M/1
0 = 1−ρ

1−ρb
Rµ
c c+1

. Then, limm→∞ π
m
0 = π

M/M/1
0 if and only if Rµ

c
is not

an integer.

The intuition behind proof. In order to find the asymptote, since the number of reviews just

appears in the joining probabilities, we need to find the limit of the joining probabilities.

Based on Eq. 3.12, we should find the limit of the CDF of an Erlang distribution. We can

verify that the limit of Eq. 3.12 when m goes to infinity is:

limm→∞(1−
∑m−1

k=0 ( 1
k!
e−

mRµ
c(j+1) ( mRµ

c(j+1)
)k) =


0, if mRµ

c(j+1)
< m

0.5, if mRµ
c(j+1)

= m

1, if mRµ
c(j+1)

> m

.

Thus, we face two cases:

One: There is a j, for which the second condition holds, i.e., there is an integer, j, for

which Rµ
c

= j + 1 or equivalently, Rµ
c

is integer. Then,

limm→∞

(
1 +

∑∞
i=0 ρ

i
∏m−1

k=0

(
1−

∑m−1
k=0 ( 1

k!
e−

mRµ
c(j+1) ( mRµ

c(j+1)
)k)
))

= 1 +
∑Rµ

c
−1

i=0 ρi + 0.5ρ
Rµ
c .

Thus,
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πint0 = limm→∞ π
m
0 = 1−ρ

1−0.5ρ
Rµ
c −0.5ρ

Rµ
c +1

,

where πint0 denotes the asymptote of π1
0, for integer values of Rµ

c
. It is straight-forward

to show that piint0 is not equal to π
M/M/1
0 when ρ 6= 1.

Two: Rµ
c
6= j + 1, ∀j ∈ Z, so:

limm→∞

(
1 +

∑∞
i=0 ρ

i
∏m−1

k=0

(
1−

∑m−1
k=0 ( 1

k!
e−

mRµ
c(j+1) ( mRµ

c(j+1)
)k)
))

= 1 +
∑Rµ

c
−1

i=0 ρi,

and then, limm→∞ π
m
0 = π

M/M/1
0 .

Conjecture 1 indicates that when Rµ
c

is an integer, even in the case of reading a very

large number of reviews, the system has still a significant difference with the M/M/1

system. The source of this phenomena is the decision of customers who face j = Rµ
c
− 1

customers in the system upon arrival. If n is replaced with j in Eq. (3.1), we can verify

that these customers join the system if c.( 1
µ̂
).(Rµ

c
) ≤ R or equivalently µ ≤ µ̂. Therefore,

if the estimation of the service rate is higher than the exact service rate, even though the

difference converges to zero, they decide not to join. In contrast, they decide to join if they

know the exact service rate.

We numerically obtained πm0 , for integer values of Rµ
c

and a large m given in Table 3.2.

Numerical results supports the idea that for an integer Rµ
c

, πm0 approaches πint0 , which is

different from π
M/M/1
0 , when m is large enough.

3.3.2 The Rate and the Direction of Approaching Asymptote

In Section 3.3.1, we show that for the integer values of Rµ
c

, πm0 does not approach π
M/M/1
0 ,

when m increases. In this section, we examine the rate at which, πm0 approaches π
M/M/1
0 for
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Table 3.2: Comparison between the values of πm0 for m ∈ {100, 1000}, πM/M/1
0 , and, πint0

for ρ ∈ {0.1, 0.5, 0.9} and Rµ
c
∈ {2, 3, 4}

π1
0

π
M/M/1
0 πint0

ρ Rµ/c m=100 m=1000

0.1

2 0.904868 0.904943 0.900901 0.904977

3 0.900484 0.900492 0.90009 0.900495

4 0.900049 0.900049 0.900009 0.90005

05

2 0.614126 0.614987 0.571429 0.615385

3 0.551186 0.551564 0.533333 0.551724

4 0.524335 0.524518 0.516129 0.52459

0.9

2 0.431816 0.433199 0.369004 0.433839

3 0.324116 0.324932 0.290782 0.325256

4 0.264568 0.265265 0.244194 0.26546
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non-integer values of Rµ
c

. We also discuss either it approaches the asymptote from above

or below. Referring back to Figure 3.5, we observe that even for 50 reviews, there are still

some non-integer values of Rµ
c

, which are not close enough to π
M/M/1
0 . In order to find if

there is a pattern, we have numerically obtained πm0 for various values of ρ and Rµ
c

, and,

for some large numbers of reviews.

Figure 3.8 illustrates the relative deviation of πm0 from π
M/M/1
0 , i.e.,

πm0 −π
M/M/1
0

π
M/M/1
0

× 100,

form ∈ {100, 200, ..., 1000}, ρ ∈ {0.1, 0.3, 0.6, 0.9}, and, Rµ
c
∈ {i+0.1, i+0.5+i+0.9}for i ∈

{1, 3, 5}. Note that we do not use the absolute value of relative deviation, as it is important

to see if the probability of the idleness is less or more than the M/M/1 system.

We observe that Rµ
c

and ρ play the main role in determining the rate of approaching

the M/M/1 system. However, the main factor in determining whether it approaches the

asymptote from below or above, is the difference between Rµ
c

and the closest integer. Let

frac(Rµ
c

) denote the fractional part of Rµ
c

, i.e., Let frac(Rµ
c

) = Rµ
c
− bRµ

c
c. Then,

i. When frac(Rµ
c

) is less than 0.5, π
M/M/1
0 is the lower asymptote of πm0 . In other words,

for a large enough number of reviews, when frac(Rµ
c

) < 0.5, πm0 is decreasing with

respect to m and approaches π
M/M/1
0 , from above. As a result, when a service provider

encounters a large number of reviews, every step taken to increase the number of

reviews, results in a lower idle time which consequently increases the effective arrival

rate and revenue. In addition, as frac(Rµ
c

) becomes closer to zero, πm0 approaches

its asymptote faster while it may decrease at a lower rate. Figure 3.9a provides an

example to support this result.
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Figure 3.8: The relative deviation of πm0 from π
M/M/1
0
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ii. When frac(Rµ
c

) is more than or equal to 0.5, π
M/M/1
0 is the upper asymptote of πm0 .

In other words, for a large enough number of reviews, when frac(Rµ
c

) > 0.5, πm0 is

increasing with respect to m and approaches π
M/M/1
0 , from below. As a result, when

a service provider encounters a large number of reviews, every step taken to decrease

the number of reviews, will result in a less idle time and consequently increases the

effective arrival rate and revenue. In addition, as frac(Rµ
c

) becomes closer to 1, πm0

approaches its asymptote slower while it may increase at a higher rate. Figure 3.9b

provides an example to support this result.

We discussed the impact of the fractional part of Rµ
c

on the direction and also the rate

at which πm0 approaches π
M/M/1
0 as m increases. However, the value of ρ and Rµ

c
also affects

the rate at which πm0 approaches π
M/M/1
0 .

In order to investigate the impact of ρ, we plot the relative deviation of πm0 from π
M/M/1
0

for different values of ρ and Rµ
c

. The results are shown in Figure 3.10. According to these

results, a system with a lower ρ approaches the M/M/1 system faster, while it may change

at a lower rate. For example, when ρ = 0.1, πm0 is closer to π
M/M/1
0 for a large enough m,

however, it changes less with respect to m.

In order to discuss the impact of Rµ
c

on the rate of approaching asymptote, we plot

the relative deviation of πm0 from π
M/M/1
0 for various values of Rµ

c
with the same fractional

part. The results are illustrated in Figure 3.11. We observe that when Rµ
c

is small, πm0

approaches its asymptote faster and it changes at a higher rate, too (e.g. see Figure 3.11

for Rµ
c

= 1.1). As a result, when Rµ
c

is low, and there is still a difference between the idle

time of the review-based system and the one in the M/M/1 system, a change in the number

of reviews, affects the idle time more. When Rµ
c

is not small, as it increases, πm0 approaches

its asymptote faster while it may change at a lower rate. For example, in Figure 3.11, for

29



(a) Value of πm0 for Rµ
c ∈ {1.1, 1.2, 1.3, 1.4}

(b) Value of πm0 for
Rµ
c ∈ {1.6, 1.7, 1.8, 1.9}

Figure 3.9: The rate of approaching π
M/M/1
0 for different values of frac(Rµ

c
). m ∈

{100, 200, .., 100} and ρ = 0.6

Rµ
c
> 7, πm0 is closer to π

M/M/1
0 in compare with a lower Rµ

c
, while its slope is less.

Overall, we observe that there are three factors affecting the rate of approaching asymp-

tote: (a)Rµ
c

, (b)ρ, and, (c) fractional part of Rµ
c

. However, the value of frac(Rµ
c

) is enough

to determine the direction that πm0 approaches π
M/M/1
0 .
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Figure 3.10: The relative deviation of πm0 from π
M/M/1
0 for various values of ρ.

3.4 Reviews on Waiting Time and the Number of

People in the System

So far, we assumed that some customers provide reviews just about the service time they

have experienced. What happens if they provide more information including the whole

waiting time and the number of people they observed upon arrival? An estimation based

on each review can be obtained by dividing the waiting time by the number of people upon

arrival, i.e.,

1
µ̂

= w
N+1

,

where, w and N denote the total waiting time and the number of customers upon

arrival, respectively. Consider an exponential distribution with the service rate, µ. Then,
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Figure 3.11: The relative deviation of πm0 from π
M/M/1
0 for various values of Rµ

c
.

w follows an Erlang distribution with shape parameter N + 1 and rate µ (see [5]). Note

that the shape parameter of this distribution is a random variable, too. If the system is

not empty upon arrival, each review may contain the information of the service time of

more than one customer. Thus, depending on the congestion of the system, we expect the

people who read reviews on w and N to behave like the people who read more reviews on

the service rate. Specifically, when the system is more congested, each review contains the

information about the service time of more customers which may result in a higher rate of

approaching asymptote.
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3.4.1 One Review on the Waiting Time and the Number of Peo-

ple in the System

First, assume that each customer, before making a joining decision, picks one review ran-

domly and estimates the service rate as µ̂ = N+1
w

. In order to obtain the stationary dis-

tribution of the number of people in the system, we need to obtain the joining probability

when there are i customers in the system. The difference between the joining probabil-

ity of this system and the one with one review on the service time is the definition of µ̂,

which results in a different distribution. Using Bayes’ theorem and conditioning on N , the

probability of joining in state i, Pr(i), can be written as:

Pr(i) =
∞∑
q=0

Pr(w ≤ (q + 1)R

(i+ 1) · c
|N = q) · Pr(N = q), (3.13)

where w follows an Erlang distribution with shape parameter, q+ 1 and rate µ. Note that

the sum of exponential random variables with the same rate, follows an Erlang distribution

which is a special case of Gamma distribution (see [5]). Let π
1w/n
q denote the probability

that there are q customers in the system, in the steady state. The notation of the super-

script indicates that everyone reads one review and each review contains the information

about w and N .

Now we have two sets of equations related to each other. The stationary distribution

of the number of people in the system is a function of joining probability, and, joining

probability itself is a function of the stationary distribution. These two sets of equations

are as follows:

π1w/n
q = π

1w/n
0 ρi

q−1∏
i=0

Pr(j), (3.14a)
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Pr(i) =
∞∑
q=0

π1w/n
q Pr(w ≤ (q + 1)R

(i+ 1) · c
|N = q). (3.14b)

In order to solve these equations, we begin with an initial value for the stationary

distribution. A recommended initial point can be:

π
1w/n
q =

1, for q = 0

0, otherwise.

Then, we substitute these initial values in Eq. (3.14b). Next, we find the values of joining

probabilities in different states. Then, we substitute the results in Eq. (3.14a). We repeat

this procedure till the difference between two consecutive steps, is insignificant. We ran

this procedure for Rµ
c
∈ {1, 1.1, 1.2, ..., 5}∪{10, 20, ..., 100} and ρ ∈ {0.1, 0.2, ..., 0.9} to find

the probability of idleness. Figure 3.16a illustrates the results.

Figure 3.16a illustrates that when reviewers provide information about both waiting

time and then number of people in system upon her arrival, we still can observe results,

similar to the one in the system with reviews on the service time. For example, π
1w/n
0 is

greater than π
M/M/1
0 whenever Rµ

c
is integer.

By comparing Figure 3.16a with Figure 3.1, we observe the same pattern in both π
1w/n
0

and π1
0. However there are also some differences. In order to focus on differences, we plot

the relative deviation of the probability of idleness in each system from the one in the

M/M/1 system. Figure 3.13 shows that for a given ρ, π
1w/n
0 is closer to π

M/M/1
0 for a higher

Rµ
c

. This result, also supports the idea of the similar patterns in π
1w/n
0 and π1

0.

The other performance measure for congestion is the expected number of customers

in the system. Let EL1w/N denote the expected number of people in the system when

everyone reads one review on w and N . Here, we examine if, for more congested systems,
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Figure 3.12: A comparison between π
1w/n
0 and π

M/M/1
0 for Rµ

c
∈ {1, 1.1, 1.2, ..., 5} ∪

{10, 20, ..., 100} and ρ ∈ {0.1, 0.2, ..., 0.9}.
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Figure 3.13: A comparison between the relative deviation of π
1w/n
0 and π1

0 from π
M/M/1
0 .

the difference between EL1w/N and ELM/M/1 is less than the difference between EL1 and

ELM/M/1. For this purpose, we plot the relative deviation obtained by:

EL1w/N−ELM/M/1
ELM/M/1

× 100

, and we compare that to the relative deviation of EL1 from ELM/M/1. Not that, if the

graph is closer to zero, it means that EL1w/N is less deviated from the expected number

of customers in the M/M/1 system.

As we expected, Figure 3.14 indicates that when ρ is high, the difference between

EL1w/n and EL1 is higher. The intuition behind this observation is that for more congested

systems, reviewers, on average, encounter a longer queue upon arrival. Thus, the estimation

of the service rate based on their reviews, is obtained from a larger sample and consequently,

the estimation is closer to the exact service rate.
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Figure 3.14: A comparison between the relative deviation of EL1w/n and EL1 from

ELM/M/1.

3.4.2 Two Reviews on the Waiting Time and the Number of

People in the System

We discussed the case in which each customer reads one review on w and N . Here,

we investigate how the congestion of the system can be affected, if customers read more

reviews. Assume that each customer picks two reviews randomly, and let wi and Ni denote

the waiting time and the number of customers upon arrival indicated in those two reviews,

respectively, for i ∈ {1, 2}. Then, assume this customer estimates service time by taking

the average of the estimations from reviews, i.e.,

1

µ̂
=

1

2
(

w1

N1 + 1
+

w2

N2 + 1
). (3.15)

In other words, the new customer gives the same weight to reviews. We can obtain the

joining condition of this new customer, by replacing 1
µ̂

in Eq. (3.1) with its value in Eq.

(3.15), when she faces i customers upon arrival. Then, the joining probability would be:
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Pr(i) = Pr
(
w1(N2 + 1) + w2(N1 + 1) ≤ 2(N1+1)(N2+1)R

(i+1)c

)
.

The stationary distribution of the number of people in the system, is the same as

Eq. (3.14a). Let π
mw/n
0 denote the probability that the system with m reviews on w and

N , is in state n in the steady state. In this system, joining probabilities do not follow

a Gamma distribution anymore (both parameters are different now). Thus, we try to

numerically obtain the stationary distribution using Bayes’ theorem and by conditioning

on N1, N2 and w2. Therefore, the joining probability can be written as follows:

Pr(i) =
∞∑

N1=0

∞∑
N2=0

π
2w/n
N1

π
2w/n
N2

∫ ∞
0

Fw1(

2(N1+1)(N2+1)R
(i+1)c

− w2(N1 + 1)

N2 + 1
;N1+1, µ)·fw2(w2, N2+1, µ)dw2,

(3.16)

where Fx(X,α, β) and fx(X,α, β) indicate CDF and probability density function (PDF)

of an Erlang distribution with shape parameter α and rate β at point X, respectively.

In order to solve these sets of equations numerically, we assume that the length of the

queue is not more than 20, which seems reasonable for the assumed range of parameters.

In addition, we assume that µ is normalized to 1.

We discussed that the probability of idleness in the system with reviews on N and w,

may be closer to probability of idleness in the system with more reviews, m, on the service

time. We also showed that by increasing m, πm0 does not necessarily become closer to

π
M/M/1
0 when Rµ

c
is not large enough. This is the reason that π

2w/n
0 is closer to π

M/M/1
0 ,

just for a large Rµ
c

.

In order to support the idea that for congested systems, the probability of idleness in

the systems with reviews on N and w are close to the one in the system with more reviews
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Figure 3.15: The probability of idleness for systems with one and two reviews on w and N

for various amounts of ρ and Rµ
c

.

on service time, we plot the probability of idleness for systems with one review and 2

reviews on w and N for ρ = 0.9.

Figure 3.16a illustrates that the probability of idleness in the system with one review

on w and N , is between the one in the systems with one and two reviews on the service

time. For a large Rµ
c

, it even tends to the one in the system with three reviews on the

service time. Figure 3.16b also shows that 2 reviews on w and N yields a probability of

idleness, closer to that of the system with 3 reviews on the service time. Based on these

results observed in Figure 3.16, when the number of reviews on w and N increases, π
mw/n
0

approaches π
M/M/1
0 , with a rate, faster than what πm0 does.

We also investigate the impact of reading two reviews on w and N , on the expected

number of customers in the system, denoted by EL2w/N . For this purpose we obtained the

relative deviation of expected number of customers from that of the M/M/1 system.
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(a) 1 review on w and N

(b) 2 reviews on w and N

Figure 3.16: Comparison of the probability of idleness in systems with different numbers

of reviews on the service time and also on w and N

Figure 3.17 illustrates the relative deviation of the expected number of customers in

different systems. This figure shows that for a large Rµ
c

, EL2w/N is the closest to ELM/M/1.
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Figure 3.17: A comparison between the relative deviation of ELmw/N and EL1 from

ELM/M/1.
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Chapter 4

Conclusions and Future Research

Because of the prevalence of using online reviews, it is necessary to determine its impact

on almost every system, including queueing systems. In a queueing system, one of the

important factors in determining the customers’ decision, is their perception of the waiting

time. Thus, this question may arise that how this progressing behavior of using reviews of

the previous customers, affects a queueing system and under what conditions it enhances

the performance of a system.

In this research, we show that reading reviews, can make the performance of the queue-

ing system, either better or worse, depending on the parameters of the system. For example,

when the reward that customers gain from service completion, is large enough comparing

to the expected cost of waiting for each customer ahead in the queue, i.e., R � c × 1
µ
,

reading reviews results in more idle time. Also when the system is not congested enough,

it decreases the revenue.

This study contains some limitations. First, the suggested models could not be com-

pared mathematically. Second, we assume that customers choose among reviews randomly.
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This may not be close to reality. For example, customers may just choose among the recent

reviews or at least give more weight to recent reviews. In this situation, the method of

sorting the reviews matters which should be studied. (See e.g. Mudambi and Schuff [13]

and Marley et al. [12]).

We assume that customers reflect their exact service time. The perception of waiting

time might be affected by the condition they are waiting in. Baker and Cameron [1],

Thompson and Yarnold [16], and, Thompson et al. [17] discuss the impact of the environ-

ment on the perception of customers of the waiting time. This perception might lead to

biased reviews and consequently, affect the performance of the system.
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Appendix A

Calculating the Stationary

Distribution

A.1 The Stationary Distribution of the Number of

People in the System with One Review on Service

Time

In order to find the stationary distribution of the number of people in the system with one

review on the service time, we need to draw the birth and death process. This process is

shown in Figure A.1.

In Figure A.1, let Pr(i) denote the probability of joining in state i. Therefore, in the

state i, the fraction of customers who arrive to the system and decide to join is Pr(i). As

the arrival rate is denoted by Λ, the rate of going from state i to i + 1 can be written as:

ΛPr(i). On the other hand, in all states, the probability of going from state i to i − 1 is
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Figure A.1: The birth and death process of the system with one review on service time.

equal to the service rate, µ.

Now, based on the provided birth and death process, we can write the detailed balance

conditions as follows:

π1
0 × Λ× Pr(0) = π1

1µ,

π1
1 × (Λ× Pr(1) + µ) = π1

0 × (Λ× Pr(0)) + π1
2µ,

...

π1
n × (Λ× Pr(n) + µ) = π1

n−1 × (Λ× Pr(n− 1)) + π1
n+1µ.

Solving for π1
1 in the first equation, substituting in the second one and continuing this

process, and, using induction, we have:

π1
n =

Λn

µn
Pr(0).P r(1)...P r(n− 1)π1

0, for n ≥ 1. (A.1)

The summation of the probabilities of all states should be equal to 1. Then,

∑∞
i=0 π

1
i = 1.

∴ π1
0(1 +

∑∞
i=1 ρ

i
∏i−1

j=0 Pr(j)) = 1.
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∴ π1
0 = 1

1+
∑∞
i=1 ρ

i
∏i−1
j=0 Pr(j)

.

∴ π1
n =

ρn
∏n−1
k=0 Pr(k)

1+
∑∞
i=1 ρ

i
∏i−1
j=0 Pr(j)

, n ≥ 1.

We already discussed in Eq. (3.2), that:

Pr(n) = 1− e−
µR

c(n+1) .

Thus, we can write the probability of idleness and also the other states, as follows:

π1
0 = 1

1+
∑∞
i=1 ρ

i
∏i−1
j=0[1−e

− µR
c(j+1) ]

, n ≥ 1.

π1
n =

ρn
∏n−1
k=0 [1−e

− µR
c(k+1) ]

1+
∑∞
i=1 ρ

i
∏i−1
j=0[1−e

− µR
c(j+1) ]

, n ≥ 1.

A.2 The Stationary Distribution of the Number of

People in the System with m Reviews on the Ser-

vice Time

Here, we find the stationary distribution of the number of people in the system, when

everyone reads m reviews on the service time and they consider the average as an estimation

of the service time.

Let tf denote the service time provided in review f ∈ {1, ..,m}. Then, the estimation

of the service rate,µ̂ can be written as follows:

µ̂ = m∑m
f=1 tf

.

50



In order to find the stationary distribution of the number of people in the system, we

just follow the steps in the previous section, as the joining rule and also the death and

birth processes, are still the same. The only difference here, is the definition of joining

probability when there are n customers in the system, Pr(n). In this case we can write

Pr(n) as follows:

Pr(n) = Pr
(

1
µ̂
≤ R

c(n+1)

)
= Pr

(∑m
f=1 tf

m
≤ R

c(n+1)

)
= Pr

(∑m
f=1 tf ≤

mR
c(n+1)

)
.

As tf ’s are Independent and identically distributed random variables from an expo-

nential distribution with parameter µ,
∑m

f=1 tf follows an Erlang distribution with shape

parameter, m, and scale parameter, µ. Therefore, we can write Pr(n) as:

Pr(n) = FER(m,µ)

(
mR

c(n+1)

)
,

where, FER(m,µ)(.) denotes the CDF of an Erlang distribution with parameters m and

µ.
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Appendix B

Obtaining the Effective Arrival Rate

In order to find Λe, we should obtain the joining probability. In the system with one review

on the service time, the joining probability can be obtained by conditioning on the state

of the system. As a result:

Λe = Λ(Pr(0)π1
0 + Pr(1)π1

1 + ...). (B.1)

Substituting the values of the probabilities in different states from Eq. (A.1) in Eq. (B.1),

yields:

Λe = Λ× π1
0(Pr(0) + ρPr(0).P r(1) + ρ2Pr(0).P r(1).P r(2) + ...,

= Λ
ρ
(Pr(0)π1

0 + ρPr(0).P r(1)π1
0 + ρ2Pr(0).P r(1).P r(2)π1

0 + ...,

= Λ
ρ
(π1

1 + π1
2 + π1

3 + ...) = Λ
ρ
(1− π1

0).

∴ Λe = µ(1− π1
0).
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