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Abstract

Conservation rules are central to our understanding of the physical world, they place re-

strictions on how particles can move and dictate what can occur during an interaction.

However, it is often taken for granted how a conservation law is implemented. For exam-

ple, “conservation of momentum” is the condition that the sum of incoming and outgoing

momenta equals zero. In particular, we place a constraint on the momenta by means of

a linear function. The assumption of a linear conservation rule is intimately linked to

both the geometry of momentum space and locality of the corresponding interaction. In

this thesis we investigate the link between locality and conservation rules in a variety of

settings.

Part 1 is principally concerned with scalar particles. We begin by constructing the

interaction vertex for an arbitrary scattering process in a generic spacetime, showing that

curvature is not sufficient to induce a non-local interaction. Along the way we develop a

notion of covariant Fourier transform which is used to translate between spacetime and

momentum space in the presence of a non-trivial geometry. We also explore the effect on

quantum fields of explicitly imposing non-locality via the “Relative Locality” framework.

It is found that the fields depend, implicitly, on a fixed point in momentum space with

fields based at different points related by a non-local transformation. On the other hand,

all non-local behavior in the action can be concentrated in the interaction term.

In the second part of this thesis we generalize the analysis of Part 1 to particles with

internal structure, specifically spin. Of particular interest was the possibility that the

presence of internal degrees of freedom could provide a sufficient modification of the vertex

factor to allow for non-local interactions. Utilizing the coadjoint orbit method we develop

a classical model of the relativistic spinning particle called the “Dual Phase Space” model

(DPS) which allows for a coherent analysis of the vertex factor. We find that in addition

to locality in the standard spacetime variable, interactions are “local” in a second “dual”

spacetime variable. Inspired by this overt “duality” we show that DPS can be reformulated

as a bilocal model. Specifically, DPS can be realized as the relativistic extension of a

mechanical system consisting of two particles coupled by a rigid rod with fixed angular

momentum about the center of mass. Interpreted in this way the model is easily quantized

and yields the correct values for the spin quantum numbers.

Next we consider a spinorial parameterization of DPS which is entirely first class and

reveals several insights into how spin affects the dynamics of a relativistic particle. In

particular, we find that the spin motion acts as a Lorentz contraction on the four-velocity
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and that, in addition to proper time, spinning particles posses a second gauge invariant

observable which we call proper angle. The notion of a “half-quantum” state is also intro-

duced as a trajectory which violates the classical equations of motion but which does not

produce an exponential suppression in the path integral. In the final chapter of the thesis

we explore an extension of the Dual Phase Space Model which includes continuous spin

particles. This extended model is then generalized to deSitter spacetime where we present

a fully covariant parameterization of the model.
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Chapter 1

Introduction and Overview

1.1 Conservation Laws and Locality

A conservation law expresses the invariance of a particular quantity during the evolution

of a system, and determines what are considered valid physical processes. They find

applications in two distinct realms: motion of a single particle and interactions between

multiple particles. For an individual particle, a quantity Q is conserved if it is independent

of the particles’ motion, a notion which is formalized by saying that Q commutes with the

Hamiltonian. In an interaction, on the other hand, Q is conserved if its value, aggregated

across all particles, is the same before and after the interaction takes place. To make

this idea formal let us focus on four-momentum, which is arguably the most fundamental

conserved quantity. For an n-point vertex with incoming momenta pµI , µ = 0, 1, 2, 3 and

I = 1, 2, . . . , n, conservation of momentum can be expressed as

P µ(p1, p2, . . . , pn) = 0, (1.1)

for some functions P µ. Of course, in almost every case, we choose P µ to be the linear

function P µ(p1, p2, . . . , pn) =
∑

I p
µ
I , but this raises an important question: Why do we

reject other forms of P µ, what makes linear conservation rules special? The answer is

related to an idea at the heart of theoretical physics: locality.

Locality is the physical principle which states that interactions only occur if there is

a coincidence of multiple particles at a single point in spacetime. This seemingly innocu-

ous statement governs our description of interactions, of observables via the S-matrix, and

most importantly implies the physical separation of different scales as embodied in the
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renormalization group. The assumption that spacetime localization is independent of an

observers internal state, i.e. quantum numbers, is known as the hypothesis of absolute

locality. “Relative Locality” [1, 2] on the other hand, allows for a violation of this hypoth-

esis by positing that spacetime itself may be observer dependent. In this thesis we will

utilize the framework of Relative Locality to explore how locality effects the interaction of

fundamental probes.

One way to formalize the notion of Relative Locality is to consider momentum space,

and not spacetime, as fundamental. In this framework, momentum space is permitted a

non-trivial geometry and spacetime emerges as cotangent planes to points in momentum

space so that each observer experiences their own, energy dependent, spacetime. Let us

return to our previous example of an n-point vertex. This can be described by the sum of

a free action, giving the motion of the particles coming into the vertex, and an interaction

term, which defines the vertex itself. Let pµI denote the momenta of the incoming particles

and xIµ the canonically conjugate spacetime coordinates, then the free action is

Sfree =
∑
I

∫ 1

0

dτ
(
xIµṗ

µ
I +NICI(pI)

)
, (1.2)

where CI(pI) is some mass-shell condition. Note that the appearance of a τ derivative

on pµI , as opposed to xIµ, reflects the choice to treat momentum space as fundamental.

The interaction term is determined by conservation of momentum, however since the pµI
take values in a non-linear manifold we can not simply add them together, i.e. we must

leave P in eq. (1.1) generic. Thus, assuming that all particles are incoming and reach the

interaction vertex at τ = 1, the total action is given by

S =
∑
I

∫ 1

0

dτ
(
xIµṗ

µ
I +NICI(pI)

)
+ zµP

µ (p1(1), p2(1), . . . , pn(1)) , (1.3)

where zµ is some Lagrange multiplier which imposes the conservation law. The vertex

factor can now be computed by taking the variation of S with respect to pµI (1), we find

xIµ(1) = zν
∂P ν

∂pµI
, (1.4)

where xIµ(1) is the spacetime coordinate of the interaction vertex for particle I. If P µ

were linear in pI then eq. (1.4) would yield xIµ(1) = zµ and so each particle assigns the

same coordinate to the vertex, i.e. the interaction is local. On the other hand, for a

generic P µ it is not necessarily true that the value of zν∂P
ν/∂pµI is the same for different

I and so each particle potentially assigns a different coordinate to the interaction vertex,
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i.e. the interaction is non-local. This shows that locality requires, at minimum, a linear

conservation rule, or stated a different way, a non-linear conservation law can lead to

non-local interactions.

In Part 1 of this thesis we explore the link between locality and the linearity of con-

servation rules for the special case of scalar particles. Chapter 2 is based on the paper [3]

where we study the coupling of a particle worldline to a gravitational field and investigate

its key properties. More specifically, we utilize the worldline formalism1 to study the be-

havior of scalar particles undergoing an arbitrary series of interactions while propagating

through an arbitrary spacetime geometry.

The chapter begins by considering the standard example of the relativistic particle

in a flat spacetime since this allows us to introduce the relevant techniques and make a

smooth transition to a more general geometry. We show that, for an arbitrary scattering

process, locality is sufficient to generate the expected results: edge momenta is constant,

momentum is conserved at each vertex and edge momenta is identical to vertex momenta.

After exhausting this familiar example we generalize the worldline action to allow for

non-trivial spacetime geometries. We begin by demonstrating that edge momenta are no

longer constant, instead they are carried along the worldline by parallel transport. Next,

we introduce a notion of covariant Fourier transform which is then utilized in deriving

the vertex factor. We find no modification from the case of flat spacetime, momentum is

conserved at each vertex and edge momenta is identical to vertex momenta.

These results are then used to analyze a loop diagram in the presence of a gravitational

field. We show that in a generic curved spacetime the loop momenta is entirely determined

by the external momenta, presenting an intriguing approach for regulating the ultraviolet

divergences which plague loop integrals in standard QFT. Finally, we argue that the semi–

classical effects of quantum gravity can be accounted for by modifying the interaction vertex

so as to relax strict locality. We then make a particular choice for the de-localized vertex

which preserves Lorentz invariance and demonstrate, rather remarkably, that conservation

of momentum at a vertex is preserved.

Chapter 3, which is based on the paper [5], considers the extension of the Relative

Locality framework to scalar ϕ3-theory. We begin with the generating functional for stan-

dard ϕ3-theory, Fourier transform this into momentum space and extract the corresponding

Feynman rules. We then deform these rules to account for the non-trivial geometry on mo-

mentum space. With modified momentum space Feynman rules in hand we write down

1See [4] for a review of the formalism along with a list of references
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the corresponding generating functional and read off the action for our theory. The action

will be written in terms of momenta and should be Fourier transformed into spacetime.

As we are working in the context of a curved momentum space it will be necessary to

utilize the covariant Fourier transform introduced in Chapter 2. It follows that the trans-

formed fields depend, implicitly, on a fixed point in momentum space with fields based at

different points being related by a non-local transformation. This implies that there are a

continuum of quantum field theories, one for each point in momentum space, that can be

patched together by a field redefinition which we derive explicitly. The transformed action

is also non-local, although the kinetic term can be made local by choosing the base point

to be the origin of momentum space. In the limit where the geometry of momentum space

becomes trivial we recover standard ϕ3 scalar field theory.

Relative Locality represents a radical departure from our usual understanding of space-

time and locality as evidenced by the modification of the interaction vertex discussed above.

However, Chapter 2 demonstrates that such modifications are not present in interactions

between scalar particles even when spacetime is curved. Most particles are not scalars

though, they possess spin which is known (see [6]) to modify the vertex factor. Therefore,

by considering interactions between spinning particles we may be able to uncover non-local

effects. In Part 2 of this thesis we consider the worldline formulation of the relativistic

spinning particle. In particular we focus our attention on understanding at a deeper level

the interplay between spin and the notion of localization. Beyond the initial question of un-

derstanding the geometry of the interaction vertex in the presence of spin we also discover

a fascinating array of relationships between spin and an extended notion of geometry.

1.2 Classical Spinning Particle

The notion of “intrinsic angular momentum” was first discussed in the context of classical

general relativity by Cartan [7] in 1922. Spin, as it relates to the description of elementary

particles, did not make an appearance until 1925 in the work of Goudsmit and Uhlenbeck

[8], who proposed that the splitting of spectral lines in the anomalous Zeeman effect could

be explained by attributing an internal angular momentum to the electron. This idea

was made rigorous a few years later when Dirac [9] published his famous equation, now

universally accepted as the correct quantum-mechanical description of spin-1
2

particles.

Despite the success Dirac’s theory has enjoyed, it offers little insight into the physical

origin of spin, referred to by Pauli as a “two-valued quantum degree of freedom.” Modern

treatments hold to this line of thought, either claiming outright that spin has no classical

4



interpretation [10] or avoiding the topic altogether [11]. That is not to say that attempts

have not been made to understand spin from a classical perspective; the literature on the

subject is vast, predating even Dirac.2

Classical models of spin can be roughly divided into two types: phenomenological and

group theoretic. Phenomenological models were the first to appear and took as their

starting point some intuition regarding the internal structure of a spinning particle. For

example, Frenkel [18], Thomas [19, 20], and Kramer [21, 22] proposed that spin was rep-

resented by an antisymmetric tensor Sµν whose interaction with the electromagnetic field

Fµν was governed by a covariant generalization of ∂t~S ∝ ~S× ~B, the equation for precession

of a magnetic moment ~S in a magnetic field ~B. In contrast, Mathisson [23], Papapetrou

[24, 25], and Dixion [26, 27, 28] assumed that all information about the spinning particle

is contained in its stress energy tensor Tµν with equations of motion following from conser-

vation of energy, ∇νT
µν = 0. Others characterized a spinning particle by a point charge

and dipole moment [29, 30, 31], or as a relativistic fluid [32, 33], while still others proposed

semiclassical models [34, 35]. The last of these was quantized and shown to reproduce

the Dirac propagator in the path integral formalism [36, 37]. This Lagrangian perspective

continues to be developed today [38, 39, 40, 41].

Group theoretic models, on the other hand, connect directly with the quantum descrip-

tion of a spinning particle as irreducible representations of the Poincaré group. The first

to attempt such a formulation were Hanson and Regge [42] and Balachandran [43, 44],

both of whom assumed that the configuration space of a spinning particle was coordina-

tized by elements of the Poincaré group. This approach was formalized by Kirillov [45],

Kostant [46], and Souriau [47, 48], who showed that the coadjoint orbits of a group form

a symplectic manifold and therefore have a natural interpretation as the phase space of

some classical system. Several authors [49, 50, 51, 52, 53] have utilized the coadjoint orbit

method to construct classical descriptions of spin, with quantization achieved by means of

the worldline formalism [54, 55].

This approach is dramatically different from the most common worldline treatment of

spinning particles [56, 57, 58, 59, 60, 61], where the spin degrees of freedom are represented

by Grassmann variables. The group theoretical approach has in our view the merit of

conceptual clarity: it allows the spinning degrees of freedom to be parametrized by variables

which possess a semiclassical interpretation while also providing a common treatment of all

spins at once. Moreover, Wiegmann [52] has shown the equivalence between the Grassman

2For readers interested in the subject, see the review articles [12, 13, 14, 15] or the full-length books

[16, 17].
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variable treatment and the bosonic group theoretical approach.

In Chapter 4, which is based on the paper [62], we utilize group theoretic methods

to develop a worldline description of spinning particles. We begin by introducing a novel

parameterization for the phase space of a relativistic spinning particle, called the “Dual

Phase Space” model (DPS). In this parametrization, the standard phase space of (x, p) is

extended by a second set of canonical variables (χ, π) which span a “spin” or “dual” phase

space. Here (x, p) label the standard position and momentum of the particle while (χ, π)

determine the internal degrees of freedom. We describe in detail the set of constraints on

this dual space that realize the relativistic spinning particle and show that interactions are

local not only in x, but in the dual position space χ as well. This dual locality property

is one of the main results of the Chapter. We also provide a precise formulation of the

on-shell action for a spinning particle.

If one ignores the constraints, the phase space of DPS is identical to that of two scalars,

suggesting the spinning particle may have a realization as a composite system. In Chap-

ter 5, which is based on the paper [63], we show that this intuition is accurate and that

DPS is equivalent to a bilocal model. The notion that elementary particles posses a finite

extension has a long history, dating back to Lorentz’s theory of the electron. The advent

of local quantum field theory seemed to superseded these early notions, modeling elemen-

tary particles as field quanta with no internal geometry. However, in the 1950’s, persistent

divergences in the description of hadrons prompted Yukawa [64, 65] to reconsider these

canonical ideas, showing that particles with an intrinsic extension could be modeled by

means of a simple bilocal field theory. Unfortunately, these models possessed a number

of undesirable features and ultimately fell out of favor when QCD realized an accurate

description of hadrons as point like field quanta. Bilocal models would have been relegated

to the history books were it not for the advent of another model which also emerged around

this time. String theory began as an attempt to understand certain QCD processes and

is by far the most studied model in which elementary particles are considered to have a

finite extension. There is an intimate link between string theory and bilocal models, with

several varieties of the latter being published [66, 67, 68] following the work of Yukawa.

In particular, many of the aforementioned models can be viewed as restrictions on the

motion of a classical string [69]. More recently bilocal models have emerged in the context

of higher spin theory as a method for deriving interaction vertices [70].

Chapter 5 begins by considering a non-relativistic system of two particles, coupled by

a rigid rod with a fixed angular momentum about the center of mass. As a constrained

system the model is easily quantized and yields the correct values for the spin operators

6



Ŝ2 and Ŝ3. The relativistic extension is then considered and shown to be equivalent to the

representation of spin given by the “Dual Phase Space” model (DPS). This allows results

from Chapter 4 to re-interpreted in the bilocal picture, in particular we show that “dual

locality” is viewed as locality at each constituent particle. The relativistic model can also

be quantized and we find that spin sector behaves as in the non-relativistic case yielding

the correct values for the spin quantum numbers.

The group theoretic models of classical spinning particles discussed above can be sub-

divided into those which parameterize the spinning degrees of freedom with vectors [52, 71,

72, 73] and those which utilize spinors [74, 75, 76, 77, 36, 78]. The Dual Phase Space model

falls into the former category, and although it provides a ready physical interpretation of

spin, it suffers, like its peers, from a proliferation of second class constraints. These are

cumbersome and can obscure the true spinning degrees of freedom. On the other hand,

models based on a spinorial parameterization do not suffer from this issue, in fact they can

eliminate second class constraints entirely. A particularly notable spinor model, and one

that will be important for us, is that of Lyakovich et al. [76], further developed in [79] and

generalized to any dimension in [80, 81].

In Chapter 6 we present a spinorial version of the DPS model, equivalent to that of

Lyakovich, in which spinors are used to resolve all second class constraints. Although

the Chapter is quite technical the new parameterization provides additional insight into

how spin affects the dynamics of a relativistic particle. We find that, in addition to proper

time, a spinning particle possesses a second gauge invariant observable which we call proper

angle. This proper angle can then be interpreted as a measure of the oscillation along the

particles’ classical trajectory, a phenomena known as Zitterbewegung [82]. We also show

that the measure of proper time is affected by the spin motion, experiencing a Lorentz like

contraction when the particle undergoes a spin transition. The precise delineation between

Zitterbewegung and spin transitions is one of the Chapters’ major results.

The thesis concludes with Chapter 7 which begins by considering a generalization of

the “Dual Phase Space” model that allows for a description of continuous spin particles. A

continuous spin particle (CSP) [83] forms one of the four distinct irreducible representations

of the Poincaré group. The other three correspond to massive, massless helicity, and

tachyonic particles. A modern and thorough treatment of CSP’s is given by Schuster

and Toro in the series of papers [84, 85, 86] where they show that a consistent gauge

theory of these particles can be constructed in flat space. CSP’s have also been linked to

aspects of both string and higher spin theory. For example, Mourad has shown [87] that

the continuous spin representation of the Poincaré group can be obtained from a classical
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action which has been generalized to a conformal string action. In addition, Bekaert and

Mourad show in [88] that Wigner’s equations for describing continuous spin particles can

be obtained as the limit of the equations for massive higher spin particles. For the purpose

of this thesis, the most relevant property of CSP’s is their ability, as shown by Schuster and

Toro, to mediate long range forces. This opens the possibility that CSP’s are a heretofore

unexplored dark matter candidate. Unfortunately, facilitating such an exploration would

require an understanding of how CSP’s couple to gravity and to date this has proven

difficult to obtain.

This shortcoming is addressed in the remainder of Chapter 7 where we utilize the dual

phase space formalism to develop a consistent theory of CSP’s in deSitter. In fact we

generalize the entire Dual Phase Space model to a curved background, but it is the inclu-

sion of continuous spin particles that makes this generalization so challenging. A similar

programme was proposed in [89] but that model can not accommodate CSP’s. The pro-

cess proceeds in stages. First we consider the irreducible representations of the deSitter

symmetry group SO(4, 1) and then restrict our attention to those representations which

contract to a well known irrep of the Poincaré group. It is assumed that the physical

interpretation of the latter can be assigned to the former which allows us to classify irreps

of SO(4, 1) into particle types. Next, we utilize the dual phase space paradigm to parame-

terize the generators of the deSitter group in 5-dimensional embedding space. This initial

parameterization has no physical significance and so in subsequent sections we develop a

four-dimensional fully covariant version of the model.
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Part I

Interaction Vertex for a Scalar

Particle

9



Chapter 2

Worldline Formalism in General

Relativity

In this Chapter we explore the connection between locality and the linearity of the interac-

tion vertex for scalar particles propagating in a generic spacetime. A similar investigation

in the context of relative locality has been conducted by J. Kowalski–Glikman et al. [90].

2.1 Worldline Action in Minkowski Space

Consider a particle of mass m propagating in a spacetime with flat Minkowski metric ηab

and having a worldline given by Xa(τ), for some parameter τ . The motion of such a

particle is governed by the action

S[e,X] =
1

2

∫
dτ

(
1

e
ẊaẊbηab − em2

)
, (2.1)

where Ẋa = dXa/dτ and −e2(τ) is the metric along the worldline. Under a change in

parametrization τ → s(τ) we have e(τ)→ ẽ(s) = (dτ/ds)e(τ) and so the worldline metric

ensures that S[e,X] is invariant under such re-parameterizations.

It will prove convenient to re-write this action in-terms of the momentum conjugate to

Xa(τ), which we easily calculate to be

Pa =
∂L
∂Ẋa

=
1

e
Ẋbηab.

10



Taking the variation of S[e,X] with respect to e gives the constraint X2/e2 +m2 = 0, and

upon substituting for Pa we obtain the standard mass-shell condition

P 2 +m2 = 0. (2.2)

A brief calculation shows that the Hamiltonian for this system is H = e(P 2 + m2)/2; an

inverse Legendre transform then gives L = ẊaPa −H as the Lagrangian. Noting that the

action eq. (2.1) is just the time integral of the Lagrangian we find

S[X,P, e] =

∫ 1

0

dτ
(
ẊaPa −

e

2
(P 2 +m2)

)
. (2.3)

In this formulation the worldline metric behaves like a Lagrange multiplier that imposes

the mass shell constraint eq. (2.2). It is conventional to re-label the worldline metric as

the lapse function, e(τ) = N(τ), so that eq. (2.3) becomes

S[X,P,N ] =

∫ 1

0

dτ

[
Ẋa(τ)Pa(τ)− N(τ)

2

(
P 2(τ) +m2

)]
. (2.4)

Suppose that the worldline of the particle satisfies Xa(0) = xa and Xa(1) = ya, i.e.

the worldline begins at the point x and terminates at the point y. The amplitude for

propagating from x to y is then obtained by taking the path integral of the exponential of

the action eq. (2.4), viz

G(x, y) =

∫
DXDPDN exp

{
i

∫ 1

0

dτ

[
Ẋa(τ)Pa(τ)− N(τ)

2

(
P 2(τ) +m2

)]}
. (2.5)

G(x, y) is simply the propagator for the theory and so we will represent it graphically in

the usual way

G(x, y) =
x y

,

where the arrow indicates the direction of momentum flow.

2.2 Propagation Amplitude for an Arbitrary Process

Consider a process in which ni initial state particles undergo a series of interactions to

produce nf final state particles. No restriction is placed on the number of particles par-

ticipating in a given interaction, we demand only locality, i.e. interacting particles occupy

a single point in spacetime. This evolution can be represented by an oriented graph Γ
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in which the edges, labeled ei, represent the worldlines of the particles and the vertices,

labeled vi, represent interactions. An example with ni = 1 and nf = 2 is given in Figure

2.1.1

v1

v2

v3

v4

e1

e2 e3

e4e5

e6

e7

Figure 2.1: A possible graph, Γ, with ni = 1 and nf = 2.

Let Xe(τ) denote the worldline of a particle propagating along the edge e and Pe(τ)

the momentum it carries. If we reverse the orientation of an edge, e→ −e, then Xe(τ) =

X−e(1 − τ) since X−e(τ) traverses the same path as Xe(τ) only backwards. Similarly,

Pe(τ) = −P−e(1 − τ), where the overall minus sign takes into account that the direction

of momentum flow has be reversed. We will adopt the notation xe ≡ Xe(0) and x−e ≡
X−e(0) = Xe(1) for the endpoints of the edge e while xin

e and xout
−e will denote the coordinates

of the initial and final state particles respectively. The amplitude for the graph Γ, denoted

IΓ(xin
e , x

out
−e ), is constructed as follows:

1. Introduce vertex coordinates zv.

2. Assign a propagator to each edge e and form their product.

3. Integrate over the fiducial coordinates zv.

Implementing this procedure yields

IΓ(xin
e , x

out
−e ) =

∫ ∏
v∈Γ

d4zv
∏

initial e

Ge (xe, ze,t)
∏

internal e

Ge (ze,s, ze,t)
∏

final e

Ge (ze,s, x−e) , (2.6)

1To emphasize, a vertex is a point having both incoming and outgoing momentum. Therefore, where

an initial edge originates and where a final edge terminates are not considered vertices.
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where ze,s and ze,t are, respectively, the coordinates of the sourcing and terminating vertex

of the edge e. The requirement that interactions occur at a single point in spacetime can

be made explicit by extracting a delta function for each vertex and re-writing eq. (2.6) as

IΓ =

∫ ∏
v∈Γ

d4zv
∏
v∈Γ

∏
se=v
te=v

d4xeδ
(4) (xe − zv)

∏
e∈Γ

Ge (xe, x−e) , (2.7)

where the product
∏

se=v
te=v

is taken over all edges sourcing (se) from v and terminating (te)

at v with the latter having their orientation reversed. For example, referring to Figure 2.1

we have ∏
se=v4
te=v4

d4xe = d4x−e3d
4x−e4d

4xe6d
4xe7 .

This type of product will appear repeatedly and it will be convenient to introduce the

notation ∏
v∈Γ

∏
se=v
te=v

≡
∏
v,e

.

Returning to our expression for IΓ in equation eq. (2.7) we take the Fourier transform

of the delta functions and expand the Ge using equation eq. (2.5). The result is

IΓ =

∫ ∏
v∈Γ

d4zv
∏
v,e

d4xe
d4pe
(2π)4

∏
e∈Γ

Dae exp (−iSΓ) , (2.8)

where Dae = DXeDPeDNe and

SΓ = −
∑
e∈Γ

∫ 1

0

dτ
[
Ẋe · Pe −Ne

(
P 2
e +m2

e

)]
+
∑
v,e

pe · (xe − zv). (2.9)

The coordinates, pe, employed in the Fourier transform are dual to the vertex coordinates

zv, a relationship which suggests the designation “vertex momentum” for the pe. This

should be contrasted with the Pe(τ) which are dual to the worldline coordinates Xe(τ) and

referred to as edge momenta.

To obtain the equations of motion for this system, and in particular the vertex factor,

we simply take the variation of SΓ:

δSΓ =
∑
e∈Γ

∫ 1

0

dτ
[
δXa

e Ṗa,e − Ẋa
e δPa,e − δNe

(
P 2
e +m2

e

)
+NeP

a
e δPa,e

]
+
∑
v,e

[(δpa,e)(x
a
e − zav ) + pa,eδx

a
e − pa,eδzav − Pa,e(0)δxae ] ,
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where we have assumed that δXe(0) = 0 and δXe(1) = 0 for incoming and outgoing edges

respectively. Setting the variations along the worldline to zero we obtain

Ṗa,e = 0 Ẋa
e = Neη

abPb,e P 2
e +m2

e = 0, (2.10)

which hold for all e ∈ Γ. The interpretation is standard; momentum is conserved along a

linear worldline and the mass-shell condition is satisfied. Turning now to the variations at

the vertices we find

xae = zav ∀v ∈ Γ, (2.11)

pa,e = Pa,e(0) ∀e ∈ Γ, (2.12)∑
se=v
te=v

pa,e = 0 ∀v ∈ Γ, (2.13)

and it is assumed that if xe and zv appear in the same equation the edge e innervates the

vertex v. eq. (2.11) can be easily recognized as the locality condition; all interactions must

occur at a single point in spacetime. The subsequent equation relates the vertex momenta

to the edge momenta, and noting that the edge momenta is conserved we obtain

Pe(0)− Pe(1) = pe + p−e = 0,

where Pe(1) = −P−e(0) was used in the second equality. The locality condition can be

combined with this relation and the expression for Ẋe in eq. (2.10) to relate the vertex

momenta to a difference in position, viz

zte − zse = τepe, τe ≡
∫ 1

0

Ne(τ)dτ. (2.14)

The interpretation of the final equation, eq. (2.13), is immediate when combined with

equation eq. (2.12), we find ∑
se=v
te=v

Pa,e(0) = 0, (2.15)

which expresses the conservation of edge momentum at each vertex. Having exhausted this

simplest example we now consider the case where the geometry of spacetime is non-trivial.

2.3 Worldline Action in Curved Spacetime

Recall the form of the worldline action for a particle propagating in flat spacetime

S[X,P,N ] =

∫
dτ

[
Ẋa(τ)Pa(τ)− N(τ)

2

(
Pa(τ)Pb(τ)ηab +m2

)]
.
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We now suppose that Xa 7→ Xµ takes values in some generic manifold M with metric

gµν = eaµe
b
νη

ab. The momentum conjugate to Xµ, say Pµ, takes values in TX(τ)M, but for

convenience we write it in-terms of the flat momentum Pa as Pµ = eaµ(X)Pa. Making the

additional replacement ηab → gµν in the mass shell term we obtain the action

S[X,P,N ] =

∫
dτ

[
ẊµeaµPa −

N

2

(
PaPbη

ab +m2
)]
, (2.16)

where we have used gµνeaµe
b
ν = ηab. To demonstrate that this action is reasonable we will

now calculate the equations of motion for Xµ and Pa:

δS =

∫
dτ
[
− d

dτ

(
eaµPa

)
δXµ + Ẋµeaµ,νPaδX

ν + ẊµeaµδPa −
1

2
δN
(
PaPbη

ab +m2
)

−NPbηabδPa
]
.

Setting the variations to zero we find

− d

dτ

(
eaµPa

)
+ eaν,µPaẊ

ν = 0, (2.17)

Ẋµeaµ −NPbηab = 0, (2.18)

PaPbη
ab +m2 = 0. (2.19)

The second equation can be solved for Pa, and after changing variables to proper time

ds = Ndτ we obtain

Pa = ηabe
b
µ∂sX

µ. (2.20)

Substituting this relation into eq. (2.17) gives the evolution equation for Xµ:

∂s
(
eaµe

b
νηab∂sX

ν
)
− ηabeaν,µebα∂sXν∂sX

α = 0. (2.21)

The product of tetrads in the second term can be symmetrized over (α, ν) and re-written

as, ∂µ(ηabe
a
νe
b
α)ẊνẊα/2. Making the replacement gµν = ηabe

a
µe
b
ν in eq. (2.21) then gives

∂2
sX

ρ +
1

2
gρµ (gµν,α + gµα,ν − gνα,µ) ∂sX

ν∂sX
α = 0,

which is just the geodesic equation. This is what we expected, free particles in a curved

spacetime obey the geodesic equation. It is also enlightening to write the evolution equation

eq. (2.17) in terms of Pa as

d

ds
Pa = eµa(ebν,µ − ebµ,ν)Pb∂sXν . (2.22)
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Noting that the above equation is antisymmetric in µ, ν, we obtain that P aPa is conserved

along the worldline and so the mass-shell constraint is satisfied if it is satisfied initially.

Introducing the spin connection, we can write this in the more compact form

d

ds
Pa − ∂sXµωµ

b
aPb = 0, ωµ

b
a ≡ −(∇µe

b
ν)e

ν
a. (2.23)

Equations of this type can be solved by iterative integration, viz

Pa(s) = Pb(0)U(s)ba, U(s) = −→exp

∫ s

0

dτẊµωµ(X(τ)), (2.24)

where U(s) is the parallel transport operator along the geodesic to which Pa is dual.

Returning to our expression for the worldline action in curved spacetime, eq. (2.16), it

follows that the amplitude for a particle to propagate from the point x to the point y is

given by

G(x, y) =

∫
DXDPDN exp

(
i

∫ 1

0

dτ
[
Ẋµeaµ(X)Pa −N

(
PaPbη

ab +m2
)])

.

The development now proceeds as in the previous section. We consider an arbitrary process

in which ni initial state particles undergo a series of interactions to produce nf final state

particles. No restrictions are placed on these interactions other than demanding locality.

The process is represented by an oriented graph Γ with a corresponding amplitude given

by

IΓ(xin
e , x

out
−e ) =

∫ ∏
v∈Γ

dµ(zv)
∏

initial e

Ge (xe, ze,t)
∏

internal e

Ge (ze,s, ze,t)
∏

final e

Ge (ze,s, x−e) ,

where dµ(zv) =
√
g(zv)d

4zv is the covariant measure on spacetime.

To obtain the form of the interaction vertex we would like to follow the same procedure

as in flat spacetime:

1. Make locality explicit by extracting a delta function for each vertex

2. Fourier transform the delta functions

3. Take the variation of the resulting action

Unfortunately the second step in this sequence presents a major impediment. The stan-

dard Fourier transform does not respect diffeomorphism invariance and threfore its naive

application would break the general covariance of the amplitude IΓ.To proceed we need

to define a generalization of the Fourier transform which does preserve diffeomorphism

covariance; it is to the development of such a “covariant Fourier transform” that we turn

in the subsequent section.
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2.4 Covariant Fourier Transform

The standard Fourier kernel is given by exp(ix · p) and manifestly breaks diffeomorphism

covariance. In particular, since xµ transforms as a coordinate and not a contravariant

vector, its contraction with the covariant vector pµ does not transform as a scalar. It is,

therefore, the failure of xµ to behave contravariantly which destroys the covariance of the

Fourier kernel. As such, we need a generalization of xµ which does transform properly, we

can then use this generalized “coordinate” to construct a covariant Fourier kernel. The

first step is to introduce Synge’s world function.

2.4.1 Synge’s World-Function

Let M be endowed with a metric gµν and a torsionless metric compatible connection Γµνρ.

Given two points x, x′ ∈ M connected by a geodesic γxx′ Synge’s world function [91] is

defined as

σ(x, x′) ≡ 1

2
(s′ − s)2

, (2.25)

where s′ − s is the arc-length between x and x′ as determined by γxx′ . This definition

makes clear that the world function is symmetric upon interchange of its arguments and

transforms as a scalar with respect to both x and x′.

Let ξµ(λ) be an affine parametrization of γxx′ so that the geodesic can be described by

the Lagrangian

L =
1

2
gµν

dξµ

dλ

dξν

dλ
.

Let λ0 and λ1 satisfy ξ(λ0) = x and ξ(λ1) = x′, then

s′ − s =

∫ s′

s

ds =

∫ s′

s

√
gµνdξµdξν =

∫ λ1

λ0

√
2Ldλ = (λ1 − λ0)

√
2L, (2.26)

the final equality follows by noting that L is constant along an affinely parametrized

geodesic. Substituting this result into the definition of the world function we obtain

σ(x, x′) = L(λ1 − λ0)2 = (λ1 − λ0)

∫ λ1

λ0

Ldλ = (λ1 − λ0)S(x′, λ1;x, λ0), (2.27)

where S is Hamilton’s principle function. The covariant derivatives of σ(x, x′) can now be

calculated by means of the Hamilton-Jacobi equation; taking the covariant derivative at x

we find

σ;µ = σ,µ = (λ1 − λ0)
∂S

∂xµ
= (λ1 − λ0)

∂L

∂ẋµ
= (λ1 − λ0)gµν ẋ

ν , (2.28)
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where ẋµ = dξµ/dλ|λ=λ0 . A short calculation yields the equation of motion

1

2
gµνσ;µσ;ν = σ. (2.29)

Swapping the roles of x and x′ gives similar expressions for the covariant derivative of the

worldfunction at x′

σ;µ′ = −(λ1 − λ0)gµ′ν′ẋ
ν′ (2.30)

1

2
gµ
′ν′σ;µ′σ;ν′ = σ. (2.31)

It should be noted that the indices on a tensor indicate the point at which it is evaluated,

for example gµ′ν′ = gµ′ν′(x
′). We can generate implicit expressions for higher derivatives

of the world function by differentiating eq. (2.29) and eq. (2.31) repeatedly. In particular,

taking one additional derivative we find

σµνσµ = σν σµ
′

ν′σµ′ = σν′ (2.32)

σµν′σµ = σν′ σµ
′

νσµ′ = σν , (2.33)

where we have omitted the semicolon to simplify notation and will continue to do so.

Although these equations were easy to derive they are quite significant. eq. (2.32) demon-

strates that the second order derivative of the world function at x or x′ behaves like a

Kronecker delta when acting on σµ or σµ′ , respectively. On the other hand eq. (2.33)

shows, see Appendix A, that up to a sign the second order mixed derivative of σ behaves

like the parallel propagator when acting on σµ or σν′ .

One can also examine the behavior of the world-function (and its derivatives) as x→ x′ or

vice versa. This is known as the “coincidence limit” and is indicated by square brackets,

[. . .]; e.g. [σ] = 0. Besides this rather obvious one, the most common coincidence limits

are given by

[σµ] = [σµ′ ] = 0 (2.34)

[σµν ] = [σµ′ν′ ] = −[σµν′ ] = gµν . (2.35)

The coincidence limit will not be of great importance so we refer the reader to [91] for a

complete discussion.

The covariant derivatives of σ(x, x′), being the derivatives of a bi–scalar, behave as

contravariant vectors. In particular, σµ(x, x′) transforms as a scalar at x′ and a contravari-

ant vector at x, and vice versa for σµ
′
(x, x′). Therefore, if pµ′ ∈ T ∗x′M then pµ′σ

µ′(x, x′)

18



transforms as a scalar at both x and x′ and so a natural definition of the covariant Fourier

kernel is exp(ipµ′σ
µ′(x, x′)).

Before we continue there are some technical issues regarding the domain of the world-

function which need to be discussed. Fix the point x′ ∈ M. The definition of σ(x, x′)

assumes the existence of a unique geodesic connecting x to x′; a condition which is not,

in general, satisfied for two arbitrary points in M. To ensure the world-function remains

single valued we need to restrict its domain to a “normal convex neighbourhood” of x′,

denoted Cx′ . More specifically, Cx′ is a subset ofM containing x′ such that, given another

point x ∈ Cx′ there exists a unique geodesic, completely contained in Cx′ , connecting x

and x′.2

2.4.2 Van-Vleck Morette Determinant

Consider the change of variables xµ → Y ′µ = σµ
′
(x, x′), where Y ′ ∈ T ∗x′M and g−1Y ′ ∈

Tx′M is the initial velocity vector of the geodesic going from x to x′. It has Jacobian given

by

d4Y ′ =
∣∣∣det

(
σµν

′
(x, x′)

)∣∣∣ d4x

The Van-Vleck Morette determinant [93],[94],[95] is the bi-scalar obtained from this Jaco-

bian through multiplication by the metric determinant, in particular

V(x, x′) ≡
∣∣det

(
σµν

′
(x, x′)

)∣∣
√
g
x′
√
g
x

. (2.36)

It appears naturally in the symplectic measure when we go from the symplectic coordinates

(Y ′, x′) to the end point coordinates (x, x′) as

d4Y ′ ∧ d4x′ = V(x, x′)(
√
gx′d

4x′) ∧ (
√
gxd

4x). (2.37)

Note that the change of coordinates Y ′ → x = expx′(g
−1Y ′) from T ∗x′M to M, is the

translated exponential map, and so the inverse Van-Vleck Morette determinant is the

Jacobian for this transformation:

(
√
gxd

4x) = V−1(x, x′)

(
d4Y ′
√
g
x′

)
, (2.38)

2The existence of such a neighborhood for any x′ ∈M is guaranteed by Whiteheads theorem [92].
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which highlights an important property of the Van-Vleck Morette determinant. If x ∈M
is such that V−1(x, x′) = 0 then a change in Y ′ produces no change in x which is equivalent

to making a change in the geodesic emanating from x′ but no change in the point at which

the geodesic terminates; i.e. x is a caustic3. The reverse situation, where V(x, x′) = 0, is

impossible since one cannot change the terminating point of a geodesic (x) without altering

the geodesics tangent vector at the sourcing point (Y ′). Therefore, while the Van-Vleck

Morette determinant is non-zero for all x ∈M it does diverge at caustics. As a final note

we observe that V(x, x′) satisfies

[V ] = 1. (2.39)

2.4.3 Implementing the Fourier Transform

Heuristically, we expect the covariant Fourier transform to take functions on M and map

them to functions on T ∗x′M. It is natural then to introduce the notation

Mx′ ≡ T ∗x′M, (2.40)

which express that the cotangent plane at x′ acts as a “spacetime” at x′ for the Fourier

transform. To formalize this initial expectation we fix a point x′ ∈M and choose a normal

convex neighborhood Cx′ as the domain of σ(x, x′). The measures on M and Mx′ are

given by

dµ(x) =
√
gxd

4x, dνx′(p) = g
−1/2
x′ d4p,

respectively. Let L2
µ(Cx′) denote the space of all functions onM which are square integrable

with respect to dµ and vanish outside of Cx′ . The covariant Fourier transform (see [96, 97]

for earlier implementation of this object in a different context) is the map, Fx′ , given by

Fx′ : L2
µ(Cx′)→ L2

νx′
(Mx′)

f(x) 7→ f̂x′(p),

where

f̂x′(p) ≡
∫
Cx′

dµ(x)V1/2(x, x′) exp
(
−ipµ′σµ

′
(x, x′)

)
f(x). (2.41)

3Recall that Y ′ is the tangent vector to the geodesic emanating from x′.
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Unless Cx′ = M, the covariant Fourier transform is not surjective and therefore is not

invertible on all of L2
νx′

(Mx′). This difficulty can be circumvented by restricting to the

image of Fx′ , i.e. f̂x′(p) ∈ Fx′(Lνx′ (Cx′)), which allows us to define the inverse Fourier

transform as

F−1
x′ (f̂x′)(x) ≡

∫
Mx′

dνx′(p)V1/2(x, x′) exp (ipµ′σµ′(x, x
′)) f̂x′(p), (2.42)

for x ∈ Cx′ and zero otherwise. Notice that the Fourier transform of a function f̂x′(p) =

Fx′(f(x))(p) depends on the choice of base point x′. One does not, therefore, obtain a

single Fourier transform but rather a continuum as the base point x′ varies throughoutM.

As an initial application of this formalism consider the Fourier representation of δ(x, y),

the delta function on M. Assuming x, y ∈ Cx′ we posit

δ(x, y) ≡
∫
dνx′(p)V1/2(x, x′)V1/2(y, x′) exp

[
ipµ′

(
σµ
′
(x, x′)− σµ′(y, x′)

)]
. (2.43)

This formula is explicitly verified in Appendix B but we note here that the proof depends

crucially on the fact, left implicit in the above formula, that the integral is taken over all

of Mx′ . This formulation of the delta function emphasizes the symmetry between x and

y, but observing that V1/2(x, x′)V1/2(y, x′) can be factored out of the integral allows us to

write

δ(x, y) =

∫
dνx′(p)V(y, x′) exp

[
ipµ′

(
σµ
′
(x, x′)− σµ′(y, x′)

)]
. (2.44)

In the sequel we will be particularly interested in the special case y = x′ for which the

delta function becomes

δ(x, x′) =

∫
dνx′(p) exp

[
ipµ′σ

µ′(x, x′)
]
. (2.45)

A Fourier representation of the delta function onMx′ , denoted δx′(p, q), can be defined by

putting

δx′(p, q) =

∫
Cx′

dµ(x)V(x, x′) exp
[
i (pµ′ − qµ′)σµ

′
(x, x′)

]
. (2.46)

Note that this is not the the usual delta function unless Cx′ = M. It is, however, a

projector under convolution

δx′(p, q) =

∫
Mx′

dνx′(k)δx′(p, k)δx′(k, q), (2.47)

and as such acts as an identity on the image of the Fourier transform, i.e. on Fx′(Lνx′ (Cx′)).
A proof that these properties hold is given in Appendix B. Note that a mathematical

study of a generalized Fourier transformation in the context of non-commutative SU(2)

field theory is presented in [98].
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2.5 Interaction Vertex in Curved Spacetime

Having concluded our development of the covariant Fourier transform we are now prepared

to continue with the programme suggested at the conclusion of Section 2.3.

2.5.1 Implementing Localization

Recall our set-up: An arbitrary process is represented by an oriented graph Γ with local

interactions and relevant amplitude given by

IΓ(xin
e , x

out
−e ) =

∫ ∏
v∈Γ

dµ(zv)
∏

initial e

Ge (xe, ze,t)
∏

final e

Ge (ze,s, x−e)
∏

internal e

Ge (ze,s, ze,t) .

(2.48)

Make locality explicit by extracting a delta function for each edge sourcing or terminating

at a vertex

IΓ(xin
e , x

out
−e ) =

∫ ∏
v∈Γ

dµ(zv)
∏
v,e

dµ(xe)δ(xe, zv)
∏
e∈Γ

Ge (xe, x−e) . (2.49)

Define ĨΓ to be the quantity obtained from IΓ by dropping the vertex integrals and fixing

the zv to be distinct points in spacetime, then eq. (2.43) gives

ĨΓ(xin
e , x

out
−e , zv) =

∫ ∏
v,e

dµ(xe)δ (xe, zv)
∏
e∈Γ

Ge (xe, x−e)

=

∫ ∏
v,e

dµ(xe)d
4pe exp

(
−ipa,eeaµv(zv)σ

µv(xe, zv)
)∏
e∈Γ

Ge (xe, x−e)

=

∫ ∏
v,e

dµ(xe)d
4pe
∏
e∈Γ

Dµe exp(−iSΓ),

where the action SΓ is given by

SΓ = −
∑
e∈Γ

∫ 1

0

dτ
[
Ẋµ
e Pa,ee

a
µ −Ne

(
Pa,ePb,eη

ab +m2
e

)]
+
∑
v,e

pa,ee
a
µvσ

µv(xe, zv). (2.50)

As in the case of flat spacetime we obtain the vertex factor, along with the kinematical

equations of motion, by taking the variation of SΓ. The equations describing the free evo-

lution of a particle were derived earlier (see eqs. (2.17)–(2.19)) and shown to be consistent
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with the geodesic equation. As such, we can focus on variations at the vertices which are

found to be4∑
v,e

[
eaµv(zv)σ

µv(xe, zv)δpa,e + pa,ee
a
µv ,νv(zv)σ

µv(xe, zv)δz
νv
v + pa,ee

a
µv(zv)σ

µv
ν(xe, zv)δx

ν
e

+pa,ee
a
µv(zv)(∂νvσ

µv(xe, zv))δz
νv
v − Pa,e(0)eaν(xe)δx

ν
e

]
.

Setting the variations to zero we obtain the relevant equations of motion

eaµv(zv)σ
µv(xe, zv) = 0 ∀v ∈ Γ, (2.51)

Pa,e(0)eaµ(xe) = pa,e∇xµeσ
a(xe, zv) ∀e ∈ Γ, (2.52)∑

se=v
te=v

pa,e∇zµv σ
a(xe, zv) = 0 ∀v ∈ Γ, , (2.53)

where we have made use of the notation σa(x, x′) = σµ
′
(x, x′)eaµ′(x

′). Note also that

whenever xe and zv appear in the same equation the edge e is assumed to innervate the

vertex v. From eq. (2.28) we see that the first of these equations requires xe = zv, which

is just the locality condition. Taking the coincidence limit on either side of the remaining

equations, making use of eq. (2.35) and multiplying by the inverse tetrad we find

Pa,e(0) = −pa,e and
∑
se=v
te=v

pa,e = 0. (2.54)

These equations should be supplemented with the equation for conservation of momenta

along an edge. As shown in eq. (2.24) the momenta Pe(1) = −P−e(0) at the end of

an edge is related to the initial momenta Pe(0) by parallel transport along e, denoted

Ue ≡ −→exp(
∫
e
dxµωµ). Thus, the equation governing conservation of momentum along an

edge is given by

pa−e + (pe ·Ue)a = 0, (2.55)

where we denote (p·U)b = paUa
b. As in the case of flat spacetime we can use the localization

condition to relate the vertex momenta to a difference in position, although here the

computation is more subtle. Begin with the derivative of the worldfunction evaluated at

the endpoints of the edge e, i.e. σµxe (x−e, xe). Equation eq. (2.30) then allows us to write

σµxe (x−e, xe) = −(s1 − s0)∂sX
µ
e (0)

= −∂sXµ
e (0)

∫ 1

0

Ne(τ)dτ,

4We have assumed that δXe(0) = 0 and δXe(1) = 0 for incoming and outgoing edges respectively.
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where ds = Ndτ is the proper time along the world line. Now use eq. (2.18) to replace

∂sX
µ
e (0) in favour of Pe(0) so that

σµxe (x−e, xe) = −τeP a
e (0)eµa(xe), (2.56)

where τe =
∫
Nedτ . Finally, the localization equation allows us to identify x−e = zte and

xe = zse while our relation between edge and vertex momentum yields Pb,e(0) = −pa,e and

so

σa(zte , zse) = τep
a
e . (2.57)

These localization equations are compatible with the parallel transport equation of mo-

menta along an edge since

σa(zte , zse)Uea
b = −σb(zse , zte); (2.58)

see Appendix A for a proof.

2.5.2 Localization on Loops

Let us examine the localization equations eq. (2.55) for a graph that possesses a loop L.

Assume that L consists of the edges L = e1e2 · · · en, and that ei = (i, i + 1), goes from

vertex i to vertex i+ 1. We denote by Pi the external momenta incoming to vertex i and

by pei = pii+1 the momenta on edge ei starting at vertex i. This is illustrated in Figure

2.2. The localization equations, eq. (2.55), read

pi+1i + pii+1 ·Uii+1 = 0, Pi = pii−1 + pii+1, (2.59)

where i = 1, . . . , n and addition is modulo n. Define Uaa+m ≡ Uaa+1Ua+1a+2 · · ·Ua+m−1a+m

to be the holonomy from a to a+m, so that upon summing the above relation we obtain

Sn ≡ Pn + Pn−1 ·Un−1n + · · ·P1 ·U1n = pn1 ·(1−Hn), (2.60)

where Hn = Un1U12 · · ·Un−1n is the total holonomy around the loop based at the vertex

n. To generalize this relation to an arbitrary base vertex we introduce the momenta

transported from the vertex i

P̂i ≡ Pi ·Uin, (2.61)

so that Sn =
∑n

i=1 P̂i. We immediately obtain pii+1Uii+1 = PiUii+1 + pi−1iUi−1i+1 which

can then be solved iteratively to express pii+1 in terms of the external momenta and pn1 as

pii+1 ·Uin = (P̂i + · · · P̂1) + pn1Hn. (2.62)
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Putting equations eq. (2.60) and eq. (2.62) together we see that the loop momenta pii+1 are

entirely determined by the external momenta, which is related to the fact that in presence

of gravity the total momenta around a loop is no longer conserved.

v1 v2

v3

v4

v5

vn−1

vn

pe1

pe2

pe3

pe4

pen−1

pen

P1 P2

P3

P4

P5

Pn−1

Pn

Figure 2.2: The loop L = e1e2 · · · en

When spacetime is flat Hn = 1 and so, the right hand side of eq. (2.60) vanishes,

total momentum is conserved and the loop momentum is independent of the external

momenta. Consequently, one must integrate over the loop momenta when performing the

path integral, leading to the well known problems with ultraviolet divergences. On the

other hand, when gravity is present the holonomy will differ from the identity allowing,

quite generically, the operator (1−Hn) to be inverted. In this case we can express all the

momenta in terms of the external ones! For a small loop the holonomy approximates to

Ha
b = δab + Ra

bµν∆A
µν + · · · where ∆A is the loop area. The invertibility of (1 − H) is

therefore related to the invertibility of Ra
b(X) for all invertible bivectors X. Thus, in a

fully curved background the only way (generically) to have a non invertible (1−H) is to

consider a loop of zero extension, i.e. with ∆A = 0. It is these loops of zero size that give

rise to divergences in quantum field theory.

In summary, the effect of a gravitational field on an extended loop is to produce a

violation of total momentum conservation. This phenomena is related to the fact that, in
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the present case, loop momenta can be expressed entirely in-terms of the external momenta.

Therefore, if we could argue that quantum gravity requires the expectation value of the

holonomy 〈H〉 to be different from unity for all loops, even those which shrink to an

effective size of zero, this would have a dramatic regulating effect on Feynman integrals,

at least on their semi-classical evaluation. In particular, we could restrict loop integrals to

a finite region of momentum space.

2.5.3 Nonlocal vertex

In the previous section we showed that coupling to a classical gravitational field modifies

the loop propagator by introducing a holonomy (around the loop) into the conservation

of momentum equation. On the other hand, we saw that momentum conservation at the

vertices is unaffected, being identical to the relations derived for flat spacetime.

A pertinent question arises, how do quantum gravity effects alter particle physics am-

plitudes? It is well known that the inclusion of quantum gravity introduces a new mass

scale into the theory, namely the Plank mass. Our question can then be phrased more

formally as follows: Suppose we couple gravity to a Feynman integral and compute, by

some method, the quantum gravity average, how does this evaluation affect the Feynman

integral? It is tempting to assume that the computation, done in any theory of quantum

gravity, will correspond to a mass dependent deformation of the standard integral. Ac-

cording to the philosophy presented here, and assuming that new degrees of freedom do

not appear, this deformation can in turn be entirely reabsorbed into a deformation of the

particle action.

It is natural to assume that this deformation will affect the vertex interaction. Indeed

it was the vertex factor paσ
a(xe, zv) which, as we have seen, determined the localization

condition xe = zv. Such exact localization will certainly be relaxed in a theory of quantum

gravity. We propose, therefore, to modify the vertex interaction as an effective way to

include quantum gravity (de-localizing type) effects.

The simplest such modification is to consider a vertex interaction of the form paσ
a(xe, zv)−

pap
a/2M where M is the quantum gravity mass scale. In the Euclidean formulation of the

theory this amounts to replacing the vertex interaction, δ(x, z), by a Gaussian weight

δM(x, z) =

(
M

2π

) d
2

e−Mσ(x,z). (2.63)
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The equations of motion resulting from this de-localized vertex are readily found to be (c.f.

eq. (2.51) - eq. (2.53))

Mσa(xe, zv) = pae (2.64)

Pa,e(0)eaµ(xe) = pa,e∇xµeσ
a(xe, zv) (2.65)∑

se=v
te=v

[pa,e∇zµv σ
a(xe, zv)] = 0, (2.66)

Observe that the mass scale only enters in the first equation, modifying the locality con-

dition by ensuring that xe and zv are no longer identified. Substituting this into eq. (2.66)

and using that the Synge function satisfies5 σa∇zµσa(x, z) = eaµ(z)σa(x, z) we obtain∑
se=v
te=v

pae = 0, (2.67)

which, as before, is the usual conservation of vertex momenta. Where the modification

becomes apparent is in the relationship between the endpoint momenta P and the vertex

momenta p; from eq. (2.65) we have

P a
e (0) = Mηabeµb (xe)∇xµeσb(xe, zv) = Mηabσµe(xe, zv)e

µe
a (xe). (2.68)

Let Vev denote the parallel propagator from zv to xe, then σµe = −[Vev]
µe
νvσ

νv(xe, zv) and

so

P a
e (0) = −Meaµe(xe)[Vev]

µe
νvσ

νv(xe, zv) (2.69)

= −M [Vev]
a
bσ

b(xe, zv) (2.70)

= −(pe ·Vev)a, (2.71)

where we have made use of the notation [Vev]
a
b = eaµe(xe)[Vev]

µe
νze

νz
b (zv) in the second line.

Remarkably, this implies that the conservation of momenta along edges is modified in a

trivial manner, viz

p−e + pe ·(VseeUeV−ete) = 0. (2.72)

The term in brackets is the full propagator from se to te indicating that the form of this

equation is identical to the one consider for a local vertex, see eq. (2.55). It follows that the

de-localization of the vertex does not affect the momenta conservation equations, either

at the vertex or along the edges. Its only effect is to modify the relationship between

5See eq. (2.33)
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momenta and coordinates, e.g. in a flat spacetime the modification enters through a shift

in proper time

zte − zse = (τe + 1/2M)pe. (2.73)

A more general modification of the vertex that is quadratic, Lorentz invariant and sym-

metric under exchanges of momenta would include an additional term proportional to∑
e,e′ p

a
e′pe,a/2M and would give rise to effects similar to those considered above.
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Chapter 3

Scalar Field Theory in a Curved

Momentum Space

In this Chapter we consider the effect on scalar field theory of explicitly imposing non-

locality via the ”Relative Locality” framework; specifically we derive the action for a ϕ3

theory living in a curved momentum space. Along the way we will utilize some of the tools

derived in the preivous Chapter, namely the notion of a covariant Fourier transform.

3.1 Geometry of Momentum Space

In what follows we take momentum space to be a non-linear manifold P and phase space

the cotangent bundle T ∗P . Spacetime then emerges as cotangent planes to points in

momentum space T ∗pP . We will now embark on a self-contained review of momentum

space geometry; the presentation will be as general as possible, although in later sections

we will be forced to give up some of this generality for the sake of coherence and ease of

calculation.

3.1.1 Combination of Momenta

Conservation of momentum requires that we postulate a rule, ⊕, for combining momenta

and to keep this rule as general as possible we will allow the physics to tell us what

properties are mathematically acceptable. Interaction with a zero momentum object will

produce no change in momenta and so 0 should be an identity for ⊕, in addition, we need
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a method for turning an incoming particle into an outgoing one and so our rule should

have an inverse. We will not, however, assume this rule is linear and so there is no reason

to demand either commutativity or associativity either. Formally, we define our rule as a

C∞ map:

⊕ : P × P → P
(p, q) 7→ p⊕ q,

(3.1)

having identity 0

0⊕ p = p⊕ 0 = p ∀p ∈ P , (3.2)

and inverse 	

(	p)⊕ p = p⊕ (	p) = 0 ∀p ∈ P . (3.3)

Note that we assume a unique inverse; if p, q ∈ P are such that q ⊕ p = p ⊕ q = 0 then

q = 	p.

Equipped with this combination rule we can enforce the conservation of energy and

momentum at each interaction. We will write this as1

Kµ(pI) = 0, (3.4)

where I = 1, 2, . . . runs over the number of particles participating in the interaction. For

example, a process with two incoming particles p, q and one outgoing particle k may have

Kµ = (p⊕ (q 	 k))µ, (3.5)

where we have made use of the obvious notation q 	 k = q ⊕ (	k) and have adopted the

convention that all momenta are taken to be incoming. Observe that (3.5) is just one

of twelve possible choices for K all of which are distinct if ⊕ is neither commutative nor

associative. Differences arising from alternate choices of the conservation law are explored

in detail in [99].

Suppose we are given a generic conservation law p ⊕ (q ⊕ k) = 0. For this to be

meaningful it must be possible to solve for any one of the momenta uniquely in terms

of the other two. To address this issue we introduce left (Lp) and right (Rp) translation

operators

Lp(q) ≡ p⊕ q and Rp(q) ≡ q ⊕ p, (3.6)

1In special relativity Kµ(pI) =
∑
I p

I
µ
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which allow the conservation law to be re-written as

Rq⊕k(p) = Lp(Rk(q)) = Lp(Lq(k)) = 0. (3.7)

The existence of a unique solution for each momenta then reduces to the requirement that

the left and right translation operators be invertible. It is therefore assumed that L−1
p and

R−1
p exist for all p ∈ P and so the solutions of our conservation law are given by

p = 	(q ⊕ k) q = R−1
k (	p) k = L−1

q (	p) , (3.8)

where we have used that L−1
p (0) = R−1

p (0) = 	p, by the uniqueness of the inverse. Note

that we are not assuming the composition law ⊕ is left or right invertible; doing so would

be equivalent to setting L−1
p = L	p and R−1

p = R	p respectively.

3.1.2 Curvature and Torsion

The algebra induced on momentum space by our composition rule determines a connection

on P via

Γµνρ (0) =
∂

∂pµ

∂

∂qν
(p⊕ q)ρ

∣∣∣
p,q=0

. (3.9)

The torsion is the anti-symmetric part of Γµνρ and measures the extent to which the com-

bination rule fails to commute

T µνρ (0) = Γ[µν]
ρ (0) =

∂

∂pµ

∂

∂qν
(p⊕ q − q ⊕ p)ρ

∣∣∣
p,q=0

. (3.10)

Similarly, the curvature of P is a measure of the lack of associativity of the combination

rule

Rβγδ
µ(0) = −2

∂

∂p[β

∂

∂qγ]

∂

∂kδ
(p⊕ (q ⊕ k)− (p⊕ q)⊕ k)µ

∣∣∣
p=q=k=0

. (3.11)

Unlike general relativity the connection Γµνρ is not necessarily metric compatible and so

gµν may fail to be covariantly constant. To measure the extent to which the covariant

derivative of gµν deviates from zero we introduce the non-metricity tensor

Nµνρ = ∇µgνρ = ∂µgνρ − Γνµα g
αρ − Γρµα g

να. (3.12)

Let { µ νρ } denote the standard Levi-Civita connection compatible with the metric gµν .

We can then decompose the full connection Γµνρ in-terms of the Levi-Civita connection, the

torsion and the non-metricity tensor, viz

Γµνρ = { µ νρ }+
1

2
T µνρ −

1

2
gρα (Nµνα +N νµα −Nαµν + Tαµν + Tανµ) , (3.13)
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where T µνρ = T µνα gαρ. Similarly, we can expand the non-metricity tensor in-terms of the

torsion and the symmetric tensor N µν
ρ = Γ

(µν)
ρ − { µ νρ }, the result is

Nµνρ =
1

2
(T µνρ + T µρν)−N νµ

α gαρ −N ρµ
α gαν . (3.14)

3.1.3 Transport Operators

In order to write the locality equations at each vertex we need to introduce transport

operators that arise from the infinitesimal transformation of the addition law. We define

the left transport operator as(
U q
p⊕q
)µ
ν

= (dqLp)
µ
ν =

∂(p⊕ q)ν
∂qµ

, (3.15)

and the right transport operator as(
V q
q⊕p
)µ
ν

= (dqRp)
µ
ν =

∂(q ⊕ p)ν
∂qµ

. (3.16)

Here the notation dpf ≡ (∂pµf(p))dxµ denotes the differential at p of the function f . The

most general form of the transport operators, U q
k and V q

k , from point q to k, can be obtained

from the ones defined above by setting p = R−1
q (k) and p = L−1

q (k) respectively. It will

also be useful to give a name to the derivative of the inverse:

(Ip)µν = (dp	)µν =
∂(	p)ν
∂pµ

. (3.17)

It turns out that these operators are not independent and can be related by

V p
0 = −U	p0 Ip. (3.18)

The proof of this formula is straightforward and requires only the existence of the inverse

	p:

0 =
∂

∂p
(p⊕ (	p))

=
∂

∂k
(k ⊕ (	p))

∣∣∣
k=p

+
∂

∂k
(p⊕ k)

∣∣∣
k=	p

∂ 	 p
∂p

= V p
0 + U	p0 Ip.

By considering equations of the form Lp(L
−1
p (q)) = q and Rp(R

−1
p (q)) = q we can also

derive formulas for the derivatives of L−1
p and R−1

p :

∂L−1
p (q)

∂q
=
(
UL−1

p (q)
q

)−1

,
∂L−1

p (q)

∂p
= −

(
UL−1

p (q)
q

)−1

V p
q , (3.19)
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and

∂R−1
p (q)

∂q
=
(
V R−1

p (q)
q

)−1

,
∂R−1

p (q)

∂p
= −

(
V R−1

p (q)
q

)−1

Up
q . (3.20)

Without demanding certain properties of the composition rule we can not say anything

further. For the sake of completeness we now now present a collection of results that are

applicable if the following conditions on ⊕ are fulfilled:

• Composition rule is left invertible, i.e. L−1
p = L	p:(

U q
p⊕q
)−1

= Up⊕q
q and V 	p	p⊕qI

p = −U q
	p⊕qV

p
q

• Composition rule is right invertible, i.e. R−1
p = R	p:(

V q
q⊕p
)−1

= V q⊕p
q and U	pq	pI

p = −V q
q	pU

p
q

3.1.4 Metric and Distance Function

It is assumed that the metric on momentum space, gµν(p), is known. It is then a standard

result that the distance between two points p0, p1 ∈ P along a path γ(τ) is given by:

Dγ(p0, p1) =

∫ b

a

√
gµν (γ(τ))

dγµ
dτ

dγν
dτ

dτ, (3.21)

where γ(a) = p0 and γ(b) = p1. Of all the paths connecting p0 and p1 geodesics will be

of principle importance, but here we run into trouble. In relative locality, where the non-

metricity tensor does not necessarily vanish, there is more than one viable definition of a

geodesic, so it is not immediately clear what one means by a “geodesic.” This ambiguity is

discussed in Appendix C, where we argue that the most appropriate definition of a geodesic

is a path which extremizes Dγ(p0, p1). We will adopt this convention for the remainder of

the Chapter and note that if γ is a geodesic we write Dγ(p0, p1) = D(p0, p1).

The standard definition of a particles mass is by means of the dispersion relation p2 =

−m2. To account for the geometry of momentum space we deform this relation and assume

that the mass of a particle with momentum p is related to the geodesic distance from p to

the origin, i.e.

D2(p) = −m2, (3.22)

where we have used the simplified notation D(p, 0) = D(p).
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3.2 ϕ3 Scalar Field

We can now utilize the structures introduced above to examine the effects of a delocalized

vertex on ϕ3 scalar field theory.

3.2.1 Modified Feynman Rules

The starting point for our analysis will be the well known generating functional for standard

ϕ3-theory:

Z(J) =

∫
Dϕ exp

(
i

∫
d4x

[
−1

2
∂µϕ∂µϕ−

1

2
m2ϕ2 +

1

3!
gϕ3 + Jϕ

])
. (3.23)

This is the position space representation of Z(J) which is ill-suited for our purposes. Rel-

ative locality treats momentum space as fundamental and so we should Fourier transform

Z(J) so that all integrals are over momenta. Denote by F the Fourier transform of the

argument of the exponential, then2

F = i

∫
d4p

(2π)4

(
−1

2

(
p2 +m2

)
ϕ(p)ϕ(−p) + J(p)ϕ(−p)

)
+ i

(2π)4g

3!

∫
d4p

(2π)4

∫
d4q

(2π)4

∫
d4k

(2π)4
δ(p+ k + q)ϕ(p)ϕ(q)ϕ(k)

Following the standard procedure we extract the interaction terms from Z(J) and re-write

them as functional derivatives with respect to J acting on the remainder of Z(J). We can

then separate out the J dependent terms from the functional by completing the square, in

the end we find

Z(J) = exp

(
−(2π)4g

3!

∫
d4p

∫
d4q

∫
d4kδ(p+ q + k)

δ

δJ(p)

δ

δJ(q)

δ

δJ(k)

)
× exp

(
i

2

∫
d4p

(2π)4
J(p)

(
p2 +m2

)−1
J(−p)

)
×
∫
Dϕ exp

(
− i

2

∫
d4p

(2π)4

(
p2 +m2

)
ϕ(p)ϕ(−p)

)
.

(3.24)

2Normally we would denote the Fourier transformed fields as ϕ̂(p), Ĵ(p) but since we will be regarding

the momentum space representation as fundamental we will drop the hat.
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Having successfully removed all J dependence from the functional integral we can eval-

uate it to obtain some C-number. However, if we insist on the normalization Z(0) = 1 we

can ignore this number and simply impose the normalization by hand. Hence,

Z(J) ∝ exp

(
−(2π)4g

3!

∫
d4p

∫
d4q

∫
d4kδ(p+ q + k)

δ

δJ(p)

δ

δJ(q)

δ

δJ(k)

)
× exp

(
i

2

∫
d4p

(2π)4
J(p)

(
p2 +m2

)−1
J(−p)

)
.

(3.25)

This generating functional can now be expanded as a sum of all possible Feynman diagrams

having E external points, P propagators and V vertices where E = 3V −2P . Each diagram

is then assigned a value by means of the following Feynman rules:

1. To each propagator,
p

=
i

(2π)4(p2 +m2)
;

2. To each external point,
p

= J(p);

3. To each vertex,
q k

p

= −g(2π)4δ(p+ q + k);

4. Integrate over all momenta;

5. Divide by the symmetry factor.

We now consider how these rules are modified in presence of a curved momentum space.

Let us begin with rule 4), integrate over all momenta. This is equivalent to introducing a

measure on momentum space, call it dµ(p). For the time being we will make no assumptions

about the measure other than demanding it reduce to the standard Lebesgue measure in

the limit when momentum space becomes a linear manifold3. Given dµ(p) we define δ(p, q)

to be a delta function compatible with this measure, that is:∫
dµ(p)δ(p, q)f(p) = f(q) (3.26)

for any function f : P → P . Note that this delta function is assumed to be symmetric

upon interchange of its arguments, i.e. δ(p, q) = δ(q, p).

3An obvious choice would be dµ(p) =
√
g(p)d4p.
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In deriving the original Feynman rules we tacitly assumed that the change of variables

p → −p has unit Jacobian. In relative locality the equivalent change of variables is p →
	p which has Jacobian |det(dp	)| = |det(Ip)|.4 A priori this quantity could differ from

unity which amounts to breaking the symmetry associated with flipping the direction of

a propagator. Therefore, diagrams which are related by such a transformation should be

regarded as inequivalent, see Figure 3.1.

p
q

p
q

Figure 3.1: Feynman diagrams related by switching the direction of a propagator are

inequivalent.

Diagrams do, however, still posses a symmetry under relabelling of propagators, for exam-

ple the diagrams shown in Figure 3.2 are equivalent.

p
qk

p
k q

Figure 3.2: Feynman diagrams related by relabelling of propagators are equivalent.

All of this implies that we must propose a different interpretation of the symmetry

factor, rule 5). A bit of thought suggests the following modification: Divide by 2P , where

P is the number of propagators appearing in the diagram, then divide by a factor associated

with any residual symmetries of the diagram. The diagrams in Figures 3.1, 3.2 have no

residual symmetry whereas those in Figure 3.3 have residual symmetry factors of 3! and 2!

respectively, given by relabelling the propagators.

4Note that the assumption of a unique inverse is critical here; it is equivalent to demanding that 	 be

invertible which in turn is necessary to even define this change of variables.
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p

q

k

p

q

k

Figure 3.3: Relabelling the propagators gives a residual symmetry factor of 3! for the left

diagram and 2! for the right.

We turn next to Rule 1), the factor associated with the propagator.5 The propagator

must have a single simple pole at the particles mass which, given the definition of mass in

Relative Locality c.f. eq. (3.22), suggest that we make the following replacement:

p2 +m2 → D2(p) +m2. (3.27)

where D(p), we recall, is the distance of p from the origin as measured by the momentum

space metric g(p).

Rule 2) requires no modification and so we come to rule 3), the factor assigned to a

vertex. What properties should the modified factor posses? First, it should reduce to the

original in the case where momentum space is a linear manifold. Second, it should respect

the statistics of our particles. It is well known that in standard QFT scalar particles obey

Bose statistics. In our case since we modify the addition rule and relax the notion of

locality, we could also relax the bose statistics and investigate non-trivial field statistics.

At present we will take the simplest hypothesis and assume that we have Bose statistics

in the current framework as well. Therefore, the vertex factor must be symmetric upon

interchange of momentum labels. Given that the combination rule is neither associative

nor commutative there are several choices we could make, we will consider three of them

in detail. Assuming all particles are incoming to the vertex the first of these is:

∆1 =
1

6

[
δ(p⊕ (q ⊕ k)) + δ(p⊕ (k ⊕ q)) + δ(q ⊕ (p⊕ k)) + δ(q ⊕ (k ⊕ p))

+ δ(k ⊕ (p⊕ q)) + δ(k ⊕ (q ⊕ p))
]
,

(3.28)

where we have used the simplified notation δ(p, 0) = δ(p). In this option we always assume

that the second and third terms in the sum are grouped together.6 The second choice

5In what follows we will drop all factors of (2π)4.
6Another, nearly equivalent, choice would be to group the first two terms together.
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includes all possible groupings and we write it as:

∆2 =
1

12

∑
K(p,q,k)

δ (K(p, q, k)) , (3.29)

where K(p, q, k) represents a possible ordering of momenta. The final option is similar to

∆1 but we move the grouped factors to the other side of the delta function, this gives

∆3 =
1

6

[
δ(p,	(q ⊕ k)) + δ(p,	(k ⊕ q)) + δ(q,	(p⊕ k)) + δ(q,	(k ⊕ p))

+ δ(k,	(p⊕ q)) + δ(k,	(q ⊕ p))
]
.

(3.30)

The difference between ∆1 and ∆2 is related to the discrepancy between δ(p⊕ q, 0) and

δ(q⊕p, 0) whereas the difference between ∆1 and ∆3 is related to the discrepancy between

δ(p⊕q, 0) and δ(p,	q). To gain some understanding of these discrepancies let us integrate

these delta functions against an arbitrary function f(p), we start with δ(p⊕ q):∫
dµ(p)δ(p⊕ q, 0)f(p) =

∣∣det
(
V 	q0

)∣∣−1
f (	q)) .

The calculation for δ(q ⊕ p) is identical and yields:∫
dµ(p)δ(q ⊕ p, 0)f(p) =

∣∣det
(
U	q0

)∣∣−1
f (	q) .

Obviously these results would be interchanged if we had instead integrated over q. It

remains to consider the value obtained from δ(p,	q):∫
dµ(p)δ(p,	q)f(p) = f(	q).

Note that if we interchanged the roles of p and q in the previous integral we would obtain:∫
dµ(p)δ(q,	p)f(p) = |det (Iq)| f(	q).

We see that the differences between the ∆i is governed by the extent to which the deter-

minant of the left or right transport operator differs from unity.

It still remains to choose which ∆i to use as a vertex factor. To motivate this choice

let us imagine conserving momentum at a “two point vertex”, see figure 3.4.

p q

Figure 3.4: Conserving momentum at a two point vertex.
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Our prescription for conserving momentum should give p = q, i.e.
∫
dµ(q)∆i(p, q) = 1.

Both ∆1 and ∆2 yield a factor of

1

2

∫
dµ(q) (δ(p	 q) + δ(	q ⊕ p)) =

1

2
|det (Ip)|−1

(∣∣det
(
U	p0

)∣∣−1
+
∣∣det

(
V 	p0

)∣∣−1
)
,

whereas ∆3 gives ∫
dµ(q)δ(p, q) = 1.

This strongly suggests that we adopt ∆3 as our vertex factor and we will do so for the

remainder of the Chapter. To keep notation simple we drop the 3 and denote our vertex

factor by −g∆(p, q, k).

In summary, the modified generating functional is expanded as a sum of all Feynamn

diagrams with E external points, P propagators and V vertices, where E = 3V − 2P . For

each such diagram we include all possible orientations of propagator momenta that are

inequivalent under relabelling. A numerical value is then assigned to these diagrams by

means of the following Feynman rules:

1. To each propagator,
p

=
i

D2(p) +m2
;

2. To each external point,
p

= J(p);

3. To each vertex,
q k

p

= −g∆(p, q, k)

4. Integrate over all momenta using the measure dµ(p);

5. Divide by 2P times the residual symmetry factor.

3.2.2 Modified Generating Functional and Action

Having derived a set of Feynman rules we can now write down a generating functional

for our theory. It is a straightforward exercise to see that the generating functional for

ϕ3-theory in relative locality is given by:

ZRL(J) ∝ exp

(
− g

3!

∫
dµ(p)

∫
dµ(q)

∫
dµ(k)∆(p, q, k)

δ

δJ(p)

δ

δJ(q)

δ

δJ(k)

)
× exp

(
i

2

∫
dµ(p)J(p)

(
D2(p) +m2

)−1
J(	p)

)
,

(3.31)
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where the proportionality constant is fixed by demanding ZRL(0) = 1. The functional

derivatives are defined to yield the delta function introduced in the previous section, viz

δ

δJ(p)
J(q) = δ(p, q). (3.32)

To extract an action from this generating functional we need to evaluate the functional

derivatives. This can be done by re-introducing scalar fields ϕ(p) as follows:

ZRL(J) ∝ exp

(
− g

3!

∫
dµ(p)

∫
dµ(q)

∫
dµ(k)∆(p, q, k)

δ

δJ(p)

δ

δJ(q)

δ

δJ(k)

)
× exp

(
i

2

∫
dµ(p)J(p)

(
D2(p) +m2

)−1
J(	p)

)
×
∫
Dϕ exp

(
− i

2

∫
dµ(p)

(
D2(p) +m2

)
ϕ(p)ϕ(	p)

)
,

where we have used that ZRL is only defined up to a numerical factor. We can now bring the

factor containing J into the functional integral and then perform the change of variables

ϕ(p)→ ϕ(p)− J(p)(D2(p) +m2)−1. After some cancellation we find that the argument of

the exponential in the path integral is given by

− i
2

∫
dµ(p)

[
ϕ(p)ϕ(	p)

(
D2(p) +m2

)
− J(p)ϕ(	p)− ϕ(p)J(	p) D2(p) +m2

D2(	p) +m2

+ J(p)J(	p)
((
D2(	p) +m2

)−1 −
(
D2(p) +m2

)−1
) ]
.

The non-linear terms in J will cancel if we demand D2(p) = D2(	p). This requirement

is physically reasonable since D2(p) yields the squared mass of a particle with momentum

p. On the other hand, 	p simply represents a reversal in the direction of a particles

momentum; it turns an incoming particle into an outgoing one and vice versa. This

operation should not alter the mass of the particle and so D2(	p) = −m2 = D2(p). The

term quadratic in J now drops out of the integrand and it becomes a simple matter to

evaluate the functional derivatives appearing in (3.31). In doing so we will make the

assumption | det(Ip)| = 1 as assuming otherwise would make the result untenable. After

we evaluate the functional derivatives we can read off the action as the argument of the

exponential, we find

SRL = −1

2

∫
dµ(p)

(
D2(p) +m2

)
ϕ(p)ϕ(	p)

+
g

3!

∫
dµ(p)

∫
dµ(q)

∫
dµ(k)∆(p, q, k)ϕ(	p)ϕ(	q)ϕ(	k).

(3.33)
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The fields ϕ(p) commute and so the six terms in ∆(p, q, k) collapse to δ(p,	(q⊕ k), which

we can then eliminate by integrating over p to obtain

SRL = −1

2

∫
dµ(p)

(
D2(p) +m2

)
ϕ(p)ϕ(	p)

+
g

3!

∫
dµ(q)

∫
dµ(k)ϕ(q ⊕ k)ϕ(	q)ϕ(	k).

(3.34)

Finally we require that SRL be real valued and so we impose the reality condition

ϕ(	p) = ϕ∗(p); note though that for this prescription to work we also require

	 (p⊕ q) = (	p)⊕ (	q), or 	 (p⊕ q) = (	q)⊕ (	p). (3.35)

The first condition demands that 	 is a morphism while the second that it is an anti-

morphism. These are the two conditions that respect the reality condition. Thus, the final

form of our action is given by

SRL = −1

2

∫
dµ(p)

(
D2(p) +m2

)
ϕ(p)ϕ∗(p)

+
g

3!

∫
dµ(q)

∫
dµ(k)ϕ(q ⊕ k)ϕ∗(q)ϕ∗(k).

(3.36)

One key property of the action is its covariance under momentum space diffeomorphisms.

If one assumes that the integration measure is diffeomorphism invariant, i.e. dµ(f(p)) =

dµ(p) for a diffeomorphism f : P → P , that fixes the identity f(0) = 0, then the Relative

Locality action satisfies

SRL(g,⊕, ϕ) = SRL(gf ,⊕f , ϕf ) (3.37)

where

ϕf (p) ≡ ϕ(f(p)), p⊕f q ≡ f−1(f(p)⊕ f(q)), (3.38)

while gf is the pull backed metric.

3.3 Covariant Fourier Transform

The spacetime properties, specifically locality, of SRL can now be obtained by utilizing the

covariant Fourier transform presented in Section 2.4. Notice that in the present context

it will be p which represents the curved coordinate and so the world-function will depend

on points in momentum space. There is also a possible technical difficulty which should

be addressed, namely that the connection is not metric compatible and so the definition
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of geodesic, which is used to define the world-function, is ambiguous. Fortunately, all the

properties of the world-function which are relevant for the covariant Fourier transform

follow from the fact that the quantity

gµν(γ(τ))
dγµ(τ)

dτ

dγν(τ)

dτ
, (3.39)

is constant along a geodesic, where γ(τ) is some path through momentum space. It can be

shown that this condition holds for our definition of a geodesic, see Appendix C, and so the

results of Section 2.4 can be used without modification. In what follows we will introduce

some additional structures which will be useful in re-writing the Fourier transformed action.

3.3.1 Translated World-Function

The covariant Fourier kernel is given by exp(ixµ
′
σµ′(p, p

′)), where p, p′ ∈ P and x′ ∈ Tp′P .

There is, however, a minor issue with this definition: In the limit where the geometry of

momentum space is trivial we have

exp(ixµ
′
σµ′(p, p

′))→ exp(ixµ(p− p′)µ), (3.40)

and the dependence on the fiducial point p′ persists. This dependence can be eliminated

by introducing a translated version of the world-function and of its derivative at p′:

σR(p, p′) ≡ σ(Rp′(p), p
′), σRµ

′
(p, p′) ≡

(
∇p′µσ(p, p′)

) ∣∣∣
p=Rp′ (p)

. (3.41)

We could have also defined a left translated version of the world-function, σL(p, p′) ≡
σ(Lp′(p), p

′), but we chose σR for the sake of definiteness7. A graphical comparison of

σµ′(p, p
′) and σRµ′(p, p

′) is given in Figure 3.5. It follows that we can use the kernel

exp(ixµ
′
σRµ′(p, p

′)), which is both covariant and limits to exp(ix ·p) in case of flat spacetime,

in place of the one originally introduced in Section 2.4.3.

7The translated world-function could not be introduced in Section 2.4.1 since there was no rule for

combining coordinates on a generic spacetime manifold.
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p′

p
Rp′(p)

σµ′(p, p
′)

σRµ′(p, p
′)

Figure 3.5: Comparing σµ′(p, p
′) and σRµ′(p, p

′). The thick black lines connecting p′ to p and

Rp′(p) represent the unique geodesic interpolating between the two points.

Some of the technical details regarding the domain of definition of the world-function

bear repeating here. Fix the point p′ ∈ P then the definition of σ(p, p′) requires that

p takes values in a convex normal neighborhood of p′, denoted Cp′ Our primary interest,

however, is in the translated world-function σR(p, p′) which will have a domain of definition

given by Dp′ = R−1
p′ (Cp′). It is important to note that even if this domain depends on p′ it

is always a domain centered around the identity, i.e. 0 ∈ Dp′ . See Figure 3.6.

0

p′
R−1
p′

Cp′

Dp′

Figure 3.6: The domain, Cp′, of σ(p, p′) is mapped via R−1
p′ to the domain, Dp′, of σR(p, p′).

The Van-Vleck Morette Determinant will now be defined in-terms of the translated

world-function

V(p, p′) ≡
∣∣det

(
σRµν

′
(p, p′)

)∣∣
√
g
p′
√
g
Rp′ (p)

, (3.42)
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and so

V(0, p′) = 1. (3.43)

We are now prepared to define the full covariant Fourier transform; to help establish

notation it will be beneficial to repeat some of the details presented in Section 2.4. Fix

a point p′ ∈ P and let Mp′ ≡ T ∗p′P ; choose a normal convex neighbourhood Cp′ giving

Dp′ ≡ R−1
p′ (Cp′) as the domain of σR(p, p′). The measure on momentum space, denoted

dµ(p) above, and on the dual spacetime are defined by

dµp′(p) =
√
gRp′ (p)

d4p,

dνp′(x) = g
−1/2
p′ d4x,

respectively. Let L2
µp′

(Dp′) denote the space of all functions on P which are square inte-

grable with respect to dµp′ and vanish outside of Dp′ . The covariant Fourier transform is

then the map, Fp′ , given by

Fp′ : L2
µp′

(Dp′)→ L2
νp′

(Mp′)

f(p) 7→ f̂p′(x),

where

f̂p′(x) ≡
∫
Dp′

dµp′(p)V1/2(p, p′) exp
(
−ixµ′σRµ′(p, p′)

)
f(p). (3.44)

The inverse Fourier transform is now

F−1
p′ (f̂p′)(p) ≡

∫
Mp′

dνp′(x)V1/2(p, p′) exp
(
ixµ

′
σRµ′(p, p

′)
)
f̂p′(x), (3.45)

for p ∈ Dp′ and zero otherwise. We can also obtain the Fourier representation of the delta

function on P

δ(p, q) ≡
∫
dνp′(x)V1/2(p, p′)V1/2(q, p′) exp

[
ixµ

′ (
σRµ′(p, p

′)− σRµ′(q, p′)
)]
, (3.46)

where p, q ∈ Dp′ . Similarly, the Fourier representation of the delta function on Mp′ ,

denoted δp′(x, y), is

δp′(x, y) =

∫
Dp′

dµ(p)V(p, p′) exp
[
iσRµ′(p, p

′)
(
xµ
′ − yµ′

)]
. (3.47)
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3.3.2 Plane waves

In this section we introduce the notion of plane waves which turn out to be an efficient

method for representing the covariant Fourier transform. Formally, we define a plane wave,

based at the point p′ ∈ P , to be the function of p ∈ Dp′ and x ∈Mp′ given by

ep′(p, x) = V1/2(Rp′(p), p
′) exp

(
−ixµ′σRµ′(p, p′)

)
. (3.48)

Recalling the defining differential equation for the world-function, eq. (2.31), a simple

calculation shows that ep′(p, x) is an eigenfunction of the Laplacian on Mp′ ,

gµ
′ν′(p′)

∂

∂xµ′
∂

∂xν′
ep′(p, x) = −gµ′ν′(p′)σRµ′(p, p′)σν′(p, p′)ep′(p, x)

= −2σR(p, p′)ep′(p, x)

= −D2(Rp′(p), p
′)ep′(p, x).

In particular, putting p′ = 0 we find

D2(p)e0(p, x) = −�xe0(p, x); (3.49)

a result which will be important in the sequel since it is D2(p) which appears in the action,

SRL. Returning to the definition of ep′(p, x) we see that the covariant Fourier transform,

its inverse and the delta functions introduced in the previous section can be re-written as

f̂p′(x) =

∫
Dp′

dµp′(p)ep′(p, x)f(p), (3.50)

f(p) =

∫
Mp′

dνp′(x)e∗p′(p, x)f̂p′(x), (3.51)

δ(p, q) =

∫
Mp′

dνp′(x)ep′(p, x)e∗p′(q, x), (3.52)

δp′(x, y) =

∫
Dp′

dµp′(p)e
∗
p′(p, x)ep′(p, y). (3.53)

The advantage of this notation becomes apparent when we attempt to prove the Plancherel

formula, which states that∫
Mp′

dνp′(x)f̂p′(x)f̂ ∗p′(x) =

∫
Dp′

dµp′(p)f(p)f ∗(p), (3.54)

provided δp′ ◦ f̂p′ = f̂p′ , which ensures that f̂p′ is in the image of the Fourier transform.

The proof proceeds as follows, let f̂p′(x) ∈ Fp′(Lµ̂p′ (Dp′)) then∫
dνp′(x)f̂p′(x)f̂ ∗p′(x) =

∫
dνp′(x)dµp′(p)dµp′(q)ep′(p, x)e∗p′(q, x)f(p)f ∗(q)
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=

∫
dµp′(p)dµp′(q)δ(p, q)f(p)f ∗(q)

=

∫
dµp′(p)f(p)f ∗(p),

which is the desired result. A similarly straightforward calculation will also verify our claim

that (3.45) represents the inverse of Fp′ .

Observe that the Fourier transform of a function lives in a particular cotangent space

designated by p′. To understand the relationship between different choices of p′ we define

a transport operator Tp′,q′(x, y) which satisfies

f̂p′(x) ≡
∫
Mq′

dνq′(y)Tp′,q′(x, y)f̂q′(y). (3.55)

In other words, Tp′,q′ maps the Fourier transform in one cotangent space to the Fourier

transform in another. We can derive an explicit expression for the transport operator by

taking the transform of a particular function twice, i.e.

f̂p′(x) =

∫
Dp′

dµp′(p)ep′(p, x)f(p)

=

∫
Dp′∩Dq′

dµp′(p)

∫
Mq′

dνq′(y)ep′(p, x)e∗q′(p, y)f̂q′(x).

In the second line we took the Fourier transform at q′ which requires f(p) to vanish outside

Dq′ and so we obtain the stated domain of integration Dp′ ∩ Dq′ . Comparison with the

definition of Tp′,q′ in (3.55) yields

Tp′,q′(x, y) =

∫
Dp′∩Dq′

dµp′(p)ep′(p, x)e∗q′(p, y). (3.56)

In the limit where p′ = q′ this transport operator is simply the delta function δp′(y, x), in

all other cases Tp′,q′ is a non-local operator.

3.3.3 Star Product

As a final piece of machinery we define a star product on Fp′(L2
µ̂p′

(Dp′)) as follows

(f̂p′ ?p′ ĝp′)(x) ≡
∫
Mp′×Mp′

dνp′(y)dνp′(z)ωp′(x, y, z)f̂p′(y)ĝp′(z),
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where the kernel ωp′(x, y, z) is given by

ωp′(x, y, z) ≡
∫
Dp′×Dp′

dµp′(p)dµp′(q)ep′(p⊕ q, x)e∗p′(p, y)e∗p′(q, z). (3.57)

Note that the star product is defined only on functions living in the same cotangent spaces

Mp′ = T ∗p′P . Let’s take a moment to explore some of the properties this product possesses.

First, the product of two plane waves yields the rather pleasing result (see [100, 101] for

similar properties in quantum gravity)

ep′(p, x) ?p′ ep′(q, x) = ep′(p⊕ q, x).

Second, explicitly computing the star product of two functions, (f̂p′ ?p′ ĝp′)(x), we find(
f̂p′ ?p′ ĝp′

)
(x) =

∫
dµp′(p)dµp′(q)ep′(p⊕ q, x)f(p)g(q), (3.58)

where f(p) and g(p) have Fourier transforms f̂p′ and ĝp′ respectively. Furthermore, since

⊕ is not commutative we can see that ?p′ will also fail to commute. Finally, taking the

convolution product of three functions(
f̂p′ ?p′

(
ĝp′ ?p′ ĥp′

))
(x) =

∫
dµp′(p)dµp′(q)dµp′(k)ep′(p⊕ (q⊕k), x)f(p)g(q)h(k), (3.59)

which demonstrates that the failure of ⊕ to associate propagates a similar failure into ?p′ .

Let us now investigate the relationship between the star product and the standard

point-wise product. Noting that ep′(0, x) = 1 we can integrate (3.58) over x to find∫
dνp′(x)

(
f̂p′ ?p′ ĝp′

)
(x) =

∫
dµp′(p)

∣∣det
(
V 	p0

)∣∣−1
f (	p) g (p) (3.60)

On the other hand, if we compute the integral over the point-wise product fp′(x)g∗p′(x)

the Plancherel theorem will give the same result, less the factor of det(V ). By setting

| det(V p
0 )| = 1 for all p ∈ P it follows that (the integral of) the star product and point-wise

product match.8 In this sense, we can say the star product of two functions is a local

object. Performing a similar computation for the star product of three functions we find∫
dνp′(x)

(
f̂p′ ?p′

(
ĝp′ ?p′ ĥp′

))
(x) =

∫
dµp′(p)dµp′(q)f(p⊕ q)g(	p)h (	q) , (3.61)

where we have also made the change of variables p, q → 	p,	q. A bit of thought should

convince the reader that (3.61) bears little relation to the integral over the point-wise

product of three functions, implying that the star product of three functions is a non-local

object. This concludes the additional technical developments and we are now prepared to

apply our formalism to the action SRL.

8By virtue of (3.18) it follows that |det(Up0 )| = 1 for all p ∈ P as well.
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3.3.4 Action in Spacetime

For ease of notation we will not explicitly display the domain of integration in any integrals

occurring in this section. Comparing the terms appearing in eq. (3.36) with equations (3.60)

and (3.61), and recalling that ϕ(	p) = ϕ∗(p), we can make the following replacements

m2

∫
dµp′(p)ϕ(p)ϕ∗(p) = m2

∫
dνp′(x) (ϕ̂p′ ?p′ ϕ̂p′) (x), (3.62)

and ∫
dµp′(q)dµp′(k)ϕ(q ⊕ k)ϕ∗(q)ϕ∗(k) =

∫
dνp′(x) (ϕ̂p′ ?p′ (ϕ̂p′ ?p′ ϕ̂p′)) (x). (3.63)

As discussed in the previous section, the integral appearing in equation (3.62) is local

whereas the one appearing in equation (3.63) is not.

The D2(p) term is more complex and we can not make the simple replacements used

above. We proceed by taking the covariant Fourier transform of ϕ(p) and ϕ∗(p)∫
dµp′(p)D

2(p)ϕ(p)ϕ∗(p) =

∫
dµp′(p)dνp′(x)dνp′(y)D2(p)e∗p′(p, x)ep′(p, y)ϕ̂p′(x)ϕ̂∗p′(y).

(3.64)

To proceed we would like to use equation (3.49) and exchange D2(p) for derivatives of a

plane wave, but doing so requires a plane wave based at p′ = 0. As such we shift ep′(p, y)

to e0(p, z) by introducing the translation operator Tp′,0(y, z), viz

D2(p)ep′(p, y) =

∫
dν0(z)D2(p)Tp′,0(y, z)e0(p, z) = −

∫
dν0(z)Tp′,0(y, z)�ze0(p, z)

Integrating by parts moves the derivatives onto Tp′,0 which allows us to translate the plane

wave back to p′ by introducing another translation operator

D2(p)ep′(p, y) = −
∫
dν0(z)dνp′(a)ep′(p, a)T0,p′(z, a)�zTp′,0(y, z). (3.65)

We can now substitute this back into (3.64) and integrate over p to obtain the delta function

δp′(a, x), an integration over a then gives∫
dµp′(p)D

2(p)ϕ(p)ϕ∗(p) = −
∫
dνp′(x)dνp′(y)dν0(z)T0,p′(z, x)�zTp′,0(y, z)ϕ̂p′(x)ϕ̂∗p′(y)

= −
∫
dνp′(y)dν0(z) (�zTp′,0(y, z)) ϕ̂0(z)ϕ̂∗p′(y)
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= −
∫
dνp′(y)dν0(z)Tp′,0(y, z)�zϕ̂0(z)ϕ̂∗p′(y).

In the special case p′ = 0 the translation operator becomes a delta function and integrating

over z we obtain the expected (and local) result −
∫
dν0(y)ϕ̂∗0(y)�yϕ̂0(y). On the other

hand, if p′ 6= 0 the transport operator will be de-localized and the overall result non-local.

For ease of notation we will denote (�yϕ̂)p′(y) =
∫
dν0(z)Tp′,0(y, z)�zϕ̂0(z) and so the

D2(p) term can be written as∫
dµp′(p)D

2(p)ϕ(p)ϕ∗(p) = −
∫
dνp′(x) (ϕ̂p′ ?p′ (�ϕ̂)p′) (x), (3.66)

recalling that the integral over the point-wise product of two functions is identical to the

integral over the star product of two functions.

Putting the results of this section together we find that the action for our scalar field

theory, in the spacetime Mp′ , is given by

Sp
′

RL =
1

2

∫
dνp′(x)

[
(ϕ̂p′ ?p′ (�ϕ̂)p′) (x)−m2 (ϕ̂p′ ?p′ ϕ̂p′) (x)

]
(3.67)

+
g

3!

∫
dνp′(x) (ϕ̂p′ ?p′ (ϕ̂p′ ?p′ ϕ̂p′)) (x). (3.68)

Observe that the interaction term is non-local for any choice of p′ and the m2 term is local

for any choice of p′. The kinetic term on the other hand is local for p′ = 0 but non-local for

any other choice of the base point. This shows that if we denote ϕ̂ ≡ ϕ̂0, dν(x) ≡ dν0(x)

and ? ≡ ?0, the relative locality action becomes, simply

SRL =
1

2

∫
dν(x)

[
(ϕ̂�ϕ̂) (x)−m2ϕ̂ϕ̂(x)

]
+
g

3!

∫
dν(x) (ϕ̂ ? (ϕ̂ ? ϕ̂)) (x). (3.69)
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Part II

Interaction Vertex for a Spinning

Particle
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Chapter 4

Interaction Vertex for Classical

Spinning Particle

4.1 Introduction

The framework of Relative Locality represents a radical departure from the usual notions

of spacetime and locality as evidenced by the modifications of the vertex factor discussed

in the previous Chapter. On the other hand, Chapter 2 shows that these modifications are

not apparent in the interactions between scalar particles, even in the presence of a non-

trivial background. However, most particles are not scalars, and we know that internal

structure, such as spin, modifies the vertex factor [6]. To understand the extent to which

this modification affects the locality of interactions we need to develop a worldline formula-

tion of the relativistic spinning particle. This will be done by means of the coadjoint orbit

formalsim and the resulting “Dual Phase Space” model will be central to the remainder of

this thesis.

4.2 Elementary Classical Systems and Their Quanti-

zation

In this section, we discuss the mathematical preliminaries which allow for a classical formu-

lation of the spinning particle. For some readers this might sound paradoxical, since spin is

often viewed as a purely quantum object. However, while there are some phenomena, like
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the relationship between spin and statistics, which are purely quantum, it does not follow

that the relativistic spinning particle has no classical description. What it does mean is

that this description will only be accurate in the limit of large spins.

It is generally true that one can construct a classical realization of any quantum struc-

ture associated with a group G; for spin, the relevant group is the Poincaré group. The

procedure for doing so is called the coadjoint orbit method [102] and is outlined below for

the case of matrix Lie groups a reasonable simplification, as most groups of interest fall

into this category.

Let G ⊂ GL(n,C) be a matrix Lie group and g ⊂ Mat(n,C) its Lie algebra. The

adjoint action of g ∈ G on X ∈ g is then matrix conjugation Ad(g)X = gXg−1, and the

coadjoint action of G on the dual algebra g∗ is obtained by taking the dual of Ad. It

satisfies

〈Ad∗(g)λ,X〉 = 〈λ,Ad(g−1)X〉, (4.1)

where λ ∈ g∗ and 〈, 〉 denotes the natural pairing between g and g∗. Each coadjoint

orbit Oλ = {Ad∗(g)λ | g ∈ G} possesses a natural symplectic structure σλ and the pair

(Oλ, σλ) forms the classical phase space associated with the symmetry group G. To obtain

σλ explicitly, we let Hλ be the isotropy group for some λ ∈ g∗, then the bijection pλ :

G/Hλ → Oλ : [g] → Ad∗(g)λ identifies the homogeneous space G/Hλ with the coadjoint

orbit through λ. A choice of section g : G/Hλ → G allows us to pull back the Maurer-

Cartan form on G to give a symplectic potential on G/Hλ:

θλ = 〈λ, g−1dg〉. (4.2)

The value of θλ depends explicitly on the choice of section. In particular, if h : G/Hλ → Hλ,

the change of section g → gh yields a corresponding variation δθλ = −〈λ, h−1dh〉. Since

Ad∗(Hλ)λ = λ, this sectional dependence disappears when considering the symplectic form

ωλ = dθλ = −〈λ, g−1dg ∧ g−1dg〉, (4.3)

where the Maurer-Cartan equation d(g−1dg) = −g−1dg∧g−1dg has been used. One can now

obtain the symplectic form on Oλ by taking the pullback of ωλ under p−1
λ : σλ = (p−1

λ )∗ωλ.

We can proceed a bit further. Let X̂ denote the extension of the Lie algebra element

X ∈ g to a right invariant vector field over G; then

ωλ(X̂, ·) = 〈Fλ(g), [X, dgg−1]〉 = d〈Fλ, X〉, (4.4)
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where Fλ(g) := Ad∗(g)λ is a generic element of the coadjoint orbit through λ. It follows

that the linear function HX(g) := 〈Fλ(g), X〉 is a Hamiltonian for the group action and

Fλ : G/Hλ → g∗ is its moment map. It follows that the Poisson bracket between two

such functions is the commutator {HX ,HY } = H[X,Y ]. A classical description of some

system is only useful if one can pass to the corresponding quantum version. In the present

context, this transition amounts to finding a map between the coadjoint orbits of a group

and its irreducible representations. The key idea is that a classical phase space corresponds

to a quantum Hilbert space, and a phase space function corresponds to an operator; the

symmetry then restricts the mapping almost uniquely. A formal correspondence between

a classical system and its quantum counterpart is accomplished via geometric quantization

[103], which also forms the basis of the Feynman path integral formulation of quantum

mechanics. If the quantum system is finite dimensional, the corresponding phase space

has to be compact, since the Hilbert space dimension is related to the phase space volume.

Heuristically, the construction proceeds as follows: Let Oλ be a coadjoint orbit of G, and

let X ∈ g be a Lie algebra element; the trace of a group element in a unitary irreducible

representation ρλ : G→ Oλ of highest weight λ is then given by

TrV
(
ρλ(e

iX)
)

=

∫
Dg e

i
~
∫
S1 [〈λ,g−1ġ〉−〈Fλ(g),X〉]dτ , (4.5)

where the path integral is taken over all group valued periodic maps g : S1 → G. This is

just a generalization of the usual Feynman path integral quantization where TreiĤ(p̂,q̂) is

written as

TreiĤ(p̂,q̂) =

∫
DpDqe

i
~
∫
S1 (pq̇−H(p,q))dτ , (4.6)

and the paths are chosen to be periodic. Here the phase space variables are (p, q), with

symplectic potential pdq and Hamiltonian H(p, q). In our case, the phase space variables

are group elements g, with symplectic potential θλ = 〈λ, g−1dg〉 and Hamiltonian HX(g) =

〈Fλ(g), X〉 as discussed above.

This procedure can be reversed, mapping irreducible representations onto coadjoint

orbits. To see this, suppose that ρ : G→ GL(V ) is a unitary irreducible representation of

G over the vector space V . To each normalized vector |Λ〉 ∈ V , we can associate a linear

functional λ ∈ g∗ by defining

λ(X) := ~ 〈Λ| dρ(X) |Λ〉 , (4.7)

where X ∈ g and dρ is the representation of g induced by ρ. Hλ is by definition the

subgroup that acts diagonally on Λ, and so, if h = eiH/~ ∈ Hλ its action is given by

ρ(h) |Λ〉 = ei
λ(H)

~ |Λ〉 . (4.8)
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It follows that the linear functional associated with ρ(g) |Λ〉 is Ad∗(g)λ. If ρ is an irreducible

representation, every vector in V can be represented as a linear combination of elements

ρ(g) |Λ〉 with g ∈ G; therefore the map

V → Oλ, (4.9)

ρ(g) |Λ〉 7→ Fλ(g) (4.10)

identifies rays in V with points in the coadjoint orbits. More explicitly, if we label elements

of Oλ by the operators Xρ(g) := ρ(g) |Λ〉 〈Λ| ρ†(g), then the symplectic form

ωρ := −~TrV (XρdXρ ∧ dXρ) (4.11)

simplifies to ωρ = ~ 〈Λ| ρ(g−1)dρ(g)∧ ρ(g−1)dρ(g) |Λ〉, which is equivalent to the one given

in eq. (4.3).

4.3 Coadjoint Orbits of the Poincaré Group

Although we have presented the coadjoint orbit method in general, we are only interested

in its application to the Poincaré group P = SO(3, 1) o R
4, which is well known to de-

scribe the symmetries of a relativistic spinning particle. In this section, we will review the

construction of these orbits and show that they are characterized by two quantities which

are identified with the particle’s mass and spin.

Let g(Λ, x) be a generic element of the Poincaré group, where Λ ∈ SO(3, 1) is a Lorentz

transformation and x ∈ R4 a translation; the group product is given by (Λ1, x1)(Λ2, x2) =

(Λ1Λ2, x1 +Λ1x2). The generators of translations and Lorentz transformations, which form

a basis for the Lie algebra p, are denoted Pµ and Jµν = −Jνµ, respectively, and satisfy

[Pµ,Jνρ] = ηµνPρ − ηµρPν , [Jµν ,Jρσ] = ηµσJνρ + ηνρJµσ − νµρJνσ − ηνσJµρ.

It is now a straightforward exercise to compute the adjoint action of g(Λ, x) on p, viz.

Ad(g(Λ, x))Pµ = Λν
µPν , Ad(g(Λ, x))Jµν = Λρ

µΛσ
ν (Jρσ + Pρxσ − Pσxρ) . (4.12)

Introduce dual generators P̂ µ and Ĵ µν as a basis for the dual algebra p∗, and let 〈, 〉 be

the natural pairing between p and p∗; then 〈P̂ µ, Pν〉 = δµν and 〈Ĵ µν ,Jρσ〉 = 2δµ[ρδ
ν
σ]. The

coadjoint action is obtained from eq. (4.12) by recalling its definition in terms of the adjoint

action, see eq. (4.1). We find

Ad∗(g(Λ, x))P̂ µ = Λ µ
ν

(
P̂ ν − xρĴ νρ

)
, Ad∗(g(Λ, x))Ĵ µν = Λ µ

ρ Λ ν
σ Ĵ ρσ, (4.13)
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where Λ ν
µ = (Λ−1)νµ. Elements of the dual algebra F ∈ p∗ are parametrized by a vector

mµ and an antisymmetric tensor Mµν , F = (mµ,Mµν). Under the coadjoint action, these

components transform as

mµ
Ad∗(g(Λ,x))−−−−−−−→ pµ = Λ ν

µ mν , (4.14)

Mµν
Ad∗(g(Λ,x))−−−−−−−→ Jµν = (x ∧ p)µν + Λ ρ

µ Λ σ
ν Mρσ, (4.15)

where (A∧B)µν = AµBν −AνBµ. The quantities pµ and Jµν have standard physical inter-

pretations: pµ represents the total linear momentum of the particle, while Jµν represents

the total angular momentum about the origin. Notice that we can split the total angular

momentum as J = L+S, where L = x∧ p is the orbital part and S = (ΛMΛT ) is the spin

angular momenta.

These orbits are characterized by the value of two invariants,1 one of which is p2 = −m2,

with m representing the mass of the particle. If m > 0, the other invariant is w2 = m2s2,

where wµ = 1
2~εµνρσp

νJρσ is the Pauli-Lubanski vector and s is identified with the particle’s

spin. The phase space for a relativistic spinning particle of mass m and spin s is then

Om,s = {(pµ, Jµν) | p2 = −m2 andw2 = m2s2}. (4.16)

An arbitrary element Fm,s ∈ Om,s defines the symplectic form σFm,s , and the symplec-

tic manifold (Om,s, σFm,s) constitutes a complete description of the relativistic spinning

particle.

If, on the other hand, m = 0, then w2 = 0, and since w · p = 0, the Pauli-Lubanski

vector must be proportional to the momentum wµ = spµ; the constant of proportionality

will be the second orbit invariant. Physically, this represents a massless spinning particle

with helicity given by s; the corresponding phase space is denoted (O0,s, σF0,s). There

should be no confusion in denoting the spin and helicity by the same variable s as it will

be clear from context what is being referred to.

4.4 Models of the Classical Spinning Particle

Given a coadjoint orbit of the Poincaré group, eq. (4.16), a model of the relativistic spinning

particle is obtained by making a choice of coordinates on Om,s. There are many viable

options, and the resulting theories can seem disparate, but this is only superficial, as one

1Quantities which remain unchanged by the coadjoint action of P.
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can always find a coordinate transformation between competing models. We demonstrate

this explicitly for two popular coordinatizations, those of Balachandran [43] and Wiegmann

[52], and in the process examine how the standard quantization condition 2s ∈ Z arises.

4.4.1 Homogeneous space

With m > 0, we can choose Fm,s to have components mµ := mδ0
µ and Mµν := 2~sδ1

[µδ
2
ν]

which transform under the coadjoint action of g(Λ, x) as

mδ0
µ −→ pµ = mΛ 0

µ , (4.17)

2sδ1
[µδ

2
ν] −→ Jµν = 2mx[µΛ 0

ν] + 2~sΛ 1
[µ Λ 2

ν] . (4.18)

The phase spaceOm,s is then regarded as a subset of P coordinatized by
{
xµ,Λ 0

µ ,Λ
1
µ ,Λ

2
µ

}
.

In this parametrization the splitting J = L+ S is realized explicitly as

Lµν = m
(
xµΛ 0

ν − xνΛ 0
µ

)
and Sµν = ~s

(
Λ 1
µ Λ 2

ν − Λ 1
ν Λ 2

µ

)
. (4.19)

Comparison with Eqs. (1) and (2) of Ref. [43] shows that this parametrization is identical

to that of Balachandran.

To obtain the symplectic potential θm,s, we first expand the Lie algebra valued one-form

g−1dg in the basis {Pµ,Jµν}

g−1(Λ, x)dg(Λ, x) = −Λ µ
ν dxνPµ +

1

2
ηρσΛρµdΛσνJµν .

Then, with Fm,s as described above, eq. (4.2) gives

θm,s = −mΛ 0
µ dx

µ +
~s
2
ηµν
(
Λ 1
µ dΛ 2

ν − Λ 2
ν dΛ 1

µ

)
. (4.20)

We can now identify pµ = mΛ 0
µ with the momentum conjugate to xµ and write the

symplectic form ωm,s = dθm,s as

ωm,s = dxµ ∧ dpµ + ~sηµνdΛ 1
µ ∧ dΛ 2

ν . (4.21)

Finally, we obtain an action by regarding all coordinates as a function of an auxiliary

parameter τ and integrate the symplectic potential, viz.

S =

∫
dτ

[
pµẋ

µ − ~s
2
ηµν
(

Λ 1
µ Λ̇ 2

ν − Λ 2
ν Λ̇ 1

µ

)]
, (4.22)

where we have dropped an overall minus sign in the action. Note that we still regard pµ as

being derived from the Lorentz transformation Λ 0
µ , which implies that this parametrization

is explicitly on-shell.
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4.4.2 Vector on a sphere

In Ref. [52], Wiegmann parametrizes, in a natural way, the spinning degrees of freedom

by a unit vector nµ orthogonal to the linear momentum pµ. We now explicitly show

that the Wiegmann parametrization is equivalent to Balachandran’s. To see how this

correspondence comes about, we set Aµ = Λ 1
µ and Bµ = Λ 2

µ ; then

ωS
m,s = ~sηµνdAµ ∧ dBν and Sµν = ~s(A ∧B)µν , (4.23)

where ωS
m,s = ωm,s−dx∧dp is the spin component of the symplectic potential. We introduce

the unit momenta uµ = pµ/m and define nµ = εµνρσu
νAρBσ; note that nµ is proportional

to the Pauli-Lubanski vector wµ = msnµ. The set {uµ, nµ, Aµ, Bµ} forms an orthonormal

basis for R4 adapted to the particle’s motion. We can then expand the Minkowski metric

as

ηµν = −uµuν + nµnν + AµAν +BµBν .

If we replace the ηµν appearing in ωS
m,s with the expanded version above, we obtain

ωS
m,s =

~s
2

(A ∧B)µν (duµ ∧ duν − dnµ ∧ dnν) .

We can now make use of the relation (A ∧B)µν = −εµνρσuρnσ to eliminate A and B from

the expressions for ωS
m,s and Sµν and obtain a parametrization given entirely in terms of

uµ and nµ:

ωS
m,s =

~s
2
εµνρσu

µnν (dnρ ∧ dnσ − duρ ∧ duσ) , SS
µν = −~sεµνρσuρnσ, (4.24)

which corresponds to the Wiegmann expressions [52]. The phase space of this model is

coordinatized by {xµ, pµ, nµ} subject to the constraints

p2 = −m2, n2 = 1, p · n = 0, (4.25)

which define the on-shell hypersurface. In the rest frame, uµ = δ0
µ, and the symplectic form

ωS
m,s reduces to

σS = −~s
2
εijkn

idnj ∧ dnk, (4.26)

which is just the area form on a sphere of radius ~s. It follows that we can regard the

two-form eq. (4.24) as a “relativistic generalization” of the symplectic structure on a sphere

and nµ as an S2 vector boosted in the direction of pµ.
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4.4.3 Quantization condition

As presented above, the quantity s, which represents the particle’s spin, is permitted to

assume any real value. Recovering the usual restriction 2s ∈ N one demands that the

symplectic form ω/~ be integral; i.e., the integral of ω/~ over a nontrivial two-cycle is an

integer multiple of 2π. Consider what this means for the model of Sec. 4.4.2 where there

is a single non-trivial two cycle, namely the sphere S2. In the rest frame, the quantization

condition says

1

~

∫
S2

ω = s

∫
S2

1

2
εijkn

idnj ∧ dnk ∈ 2πN.

The quantity under the integral sign is the area form on the two-sphere and evaluates to

4π, which immediately gives the expected result 2s ∈ N.

A more intuitive approach is as follows: Let C denote the worldline of a spinning

particle. Then one can attempt to define an action as the integral over the symplectic

potential, i.e. S =
∫
C θm,s. Unfortunately, this is not well defined, since the symplectic

form is not exact, and so θm,s does not exist globally. Instead, we need to define S as the

integral of ωm,s over some surface of which C is a boundary:

S =

∫
C
θm,s =

∫
S
ωm,s,

where ∂S = C. The choice of S is ambiguous, but if we demand that different surfaces

change S by a multiple of 2π~, then the path integral will be well defined, since it is e
i
~S,

which is the relevant quantity. For the vector on a sphere, C = S1, and so S can be either

the upper or lower half sphere. In the rest frame we have∫
S2
upper

ωS
m,s =

∫
S2

ωS
m,s +

∫
S2
lower

ωS
m,s,

and so we demand that
∫
S2 ω

S
m,s = 2π~, which is the same condition arrived at in the more

formal approach.

4.5 Dual Phase Space Model

The previous section presented a sampling of possible parameterizations for the coadjoint

orbits of the Poincaré group. There are many other options, all of which are equivalent

and can be used interchangeably depending on what aspect of the theory is to be empha-

sized. Presently, our interest is in analyzing the interaction vertex, and so we introduce a

parametrization that is particularly well suited to this task.
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4.5.1 Choosing the coordinates

To define this parametrization, we introduce a length scale λ and an energy scale ε such

that λε = ~; otherwise these scales are arbitrary constants. We recall the parametrization

presented in Sec. 4.4.1 and define variables χµ = λΛ 1
µ and πµ = εsΛ 2

µ so that the

symplectic form [eq. (4.21)] is written as2

ω = dxµ ∧ dpµ + dχµ ∧ dπµ. (4.27)

We now forget that pµ, χµ, and πµ are components of a Lorentz transformation and in-

stead regard them as variables on a classical phase space coordinatized by {xµ, pµ, χµ, πµ}.
It follows from eq. (4.27) that (xµ, pµ) and (χµ, πµ) form pairs of canonically conjugate

variables with Poisson brackets:

{xµ, pν} = δµν , {χµ, πν} = δµν , (4.28)

wiht all others vanishing. From this perspective χµ and πµ span a “dual” phase space,

separate from the standard phase space of xµ and pµ, which encodes information about

the particle’s spin. The internal angular momentum, Sµν , further bears out this duality,

since in these variables it assumes the form [see eq. (4.19)]

Sµν = (χ ∧ π)µν , (4.29)

in direct analogy to orbital angular momentum Lµν = (x ∧ p)µν . It is for this reason that

we have called this formulation the dual phase space model or DPS and view χµ and πµ as

a dual “coordinate” and “momenta,” respectively.

It remains to explicitly impose relations among the phase space variables that were im-

plicit in their origin as Lorentz transformations. These constraints will define the dynamics

of our theory and are given by(
p2 = −m2, π2 = ε2s2

)
, (p · π = 0, p · χ = 0) ,

(
χ2 = λ2, χ · π = 0

)
. (4.30)

We have grouped the constraints in this manner to emphasize the duality mentioned above.

The first pair are mass shell conditions, one in standard phase space p2 = −m2 and

one in dual phase space π2 = ε2s2. In this description, the spin is proportional to the

length of the dual momenta. In the second set, we see that the two phase spaces are not

independent; rather, dual phase space is orthogonal to the canonical momenta. The final

2From now on, we will drop subscripts on the symplectic form.
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two constraints emphasize the dramatic difference between standard phase space and dual

phase space, since in the former x is totally unconstrained, while χ is constrained to live

on a two-sphere.

As presently formulated, DPS assumes m 6= 0; recall that we made this assumption at

the outset of Sec. 4.4.1. This restriction can easily be lifted, as all aspects of the current

formulation, both Poisson brackets and constraints, are well defined in the limit m→ 0.

An important point to emphasize is that this parametrization is invariant under an

SL(2,R) global symmetry, since any transformation of the form

(χµ, πµ)→ (Aχµ +Bπµ, Cχµ +Dπµ), AD −BC = 1 (4.31)

does not alter the Poisson brackets [eq. (4.28)] or the angular momenta [eq. (4.29)]. Part

of this symmetry can be fixed by imposing the orthogonality condition π · χ = 0; the

remaining symmetry consists of a rescaling (χµ, πµ)→ (αχ, α−1π) as well as a rotation

(χµ, πµ)→ (cos θχµ + λ
εs

sin θπµ, cos θπµ − εs
λ

sin θχµ). (4.32)

These demonstrate, respectively, that the choice of scales λ and ε as well as the initial

direction of the dual momenta are immaterial; only the product λε is physically meaningful.

We now assume that a choice of scale and axis has been made.

A brief note before we continue: The parametrization presented in this section is identi-

cal to the one used by Wigner in his description of continuous spin particles [104] (see also

[105] for a classical realization which emphasis the similarity). However, to the authors’

knowledge it has never been used in the context of standard spinning particles.

4.5.2 Action and equations of motion

An action for DPS is obtained by making the appropriate change of variables to eq. (4.22),

and explicitly implementing the constraints eq. (4.30) by means of Lagrange multipliers,

viz.

S =

∫
dτ

[
pµẋ

µ + πµχ̇
µ − N

2
(p2 +m2)− M

2

(
π2

ε2
+
s2χ2

λ2
− 2s2

)
(4.33)

− N1

2

(
s2χ2

λ2
− π2

ε2

)
−N2 (χ · π)−N3 (p · π)−N4 (p · χ)

]
,

where we have combined some of the constraints in anticipation of the upcoming constraint

analysis. Computing the constraint algebra we find, for ms 6= 0, there are two first-class
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constraints,

Φm :=
1

2

(
p2 +m2

)
, Φs :=

1

2

(
π2

ε2
+
s2χ2

λ2

)
− s2, (4.34)

and four second-class constraints,

Φ1 =
1

2

(
s2χ2

λ2
− π2

ε2

)
, Φ2 = χ · π, (4.35)

Φ3 = p · π, Φ4 = p · χ. (4.36)

The latter satisfy the algebra

{Φ1,Φ2} ≈ 2s2, {Φ3,Φ4} ≈ m2,

where ≈ denotes equality on the constraint surface and all other commutators vanish.3

This means that (Φ1,Φ2) form a canonical pair whenever s 6= 0, as do (Φ3,Φ4) when

m 6= 0. Furthermore, when m = 0, the constraints Φ3 and Φ4 become first class, and

so a massless spinning particle is described by four first-class constraints and two second-

class constraints. For completeness, we have included an explicit expression for the Dirac

brackets in Appendix E.

The momentum constraint Φm generates, as usual, the reparametrization invariance

of the worldline δxµ = −Npµ. On the other hand, the spin constraint Φs generates a

U(1) gauge transformation of the χ and π variables. This transformation rotates the dual

variables while preserving their normalization constraints Φi:

δπµ = +

(
s2M

λ2

)
χµ, δχµ = −

(
M

ε2

)
πµ. (4.41)

3The off-shell algebra is a semi-direct product of SL(2,R) with the two-dimensional Heisenberg algebra

H2. The SL(2,R) algebra consists of ~(Φs + s2), ~Φ1 and Φ2:

{Φ1,Φ2} = 2(Φs + s2), {Φs,Φ1} = −2Φ2/~2, {Φs,Φ2} = 2Φ1. (4.37)

These in turn act naturally on Φ3 and Φ4:

{Φs,Φ3} =
Φ4

ε2
, {Φ1,Φ3} =

Φ4

ε2
, {Φ2,Φ3} = Φ3. (4.38)

{Φs,Φ4} = − s
2

λ2
Φ3, {Φ1,Φ4} =

Φ3

λ2
, {Φ2,Φ4} = −Φ4. (4.39)

while together Φ3 and Φ4 satisfy

{Φ3,Φ4} = (m2 − 2Φm). (4.40)
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Massive spinning particle

Let us now assume that m 6= 0; then the constraints Φi, i = 1, . . . , 4 are second class, and so

the associated Lagrange multipliers N1, N2, N3, N4 must vanish. The resulting Hamiltonian

is given by

H = NΦm +MΦs =
N

2

(
p2 +m2

)
+
M

2

(
π2

ε2
+
s2χ2

λ2
− 2s2

)
(4.42)

and defines time evolution in the standard fashion: Ȧ = {H,A}. The equations of motion

are easily integrated; we find

xµ(τ) = Xµ −NPµτ , χµ(τ) = λ

(
Aµ cos

(
Ms

~
τ

)
+Bµ sin

(
Ms

~
τ

))
, (4.43)

where Xµ, Pµ, Aµ, and Bµ are constant vector solutions of P 2 = −m2, A2 = B2 = 1, and

A · P = B · P = 0. The momenta are simply given by

pµ = − ẋµ
N

= Pµ, πµ = −ε
2χ̇µ
M

. (4.44)

This motion is expected, the coordinate xµ evolves like a free particle while the dual

coordinate χµ undergoes oscillatory motion of frequency Ms/~ in the plane orthogonal to

Pµ. Furthermore, the motion is such that both orbital and spin angular momentum are

constants of motion, specifically: Lµν = (X ∧ P )µν and Sµν = ~s(A ∧B)µν .

Massive second order formalism

Further insights into the nature of DPS become apparent when we consider the second-

order formalism which is obtained from eq. (4.33) by integrating out the momenta and

Lagrange multipliers. Only the main results will be presented here, for a more detailed

analysis see Appendix D. We begin by computing the equations of motion for the momenta

and dual momenta which can be solved for pµ and πµ and then substituted back into the

action. We find

S =

∫
dτ

[
ρ

(NÑ −N2
3 )
− M̃

2
(χ2 − λ2)− N

2
m2 +

Ñ

2
ε2s2

]
, (4.45)

where ρ is given by

ρ :=
1

2

[
Ñ(ẋ−N4χ)2 +N(χ̇−N2χ)2 − 2N3(χ̇−N2χ) · (ẋ−N4χ)

]
, (4.46)
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and we have introduced

Ñ =
(M −N1)

ε2
, M̃ =

s2(M +N1)

λ2
. (4.47)

We can now solve for N2 and N4, which amounts to making the replacements

ẋµ −N4χµ −→ Dtxµ := ẋµ −
(ẋ · χ)

χ2
χµ, (4.48)

χ̇µ −N2χµ −→ Dtχµ := χ̇µ −
(χ̇ · χ)

χ2
χµ, (4.49)

where Dt is the time derivative projected orthogonal to χ. It remains to integrate out the

Lagrange multipliers N , Ñ , and N3; after some algebra we obtain the following form for

the action:

S =

∫
dτ

[
α
√
ε2s2(Dtχ)2 −m2(Dtx)2 − 2sεmβ |(Dtx) ∧ (Dtχ)| − M̃

2
(χ2 − λ2)

]
, (4.50)

where |(Dtx)∧ (Dtχ)| =
√

(Dtx ·Dtχ)2 − (Dtx)2(Dtχ)2 is a coupling between the particle

motion and the spin motion, and α, β = ±1 are signs used to define the square roots.

Observe that we cannot integrate out the final Lagrange multiplier, since the variation of

S with respect to M̃ is just the constraint χ2 = λ2. It can be checked that the momenta

px = ∂S/∂ẋ and πχ = ∂S/∂χ̇ satisfy the constraints

p2
x = −m2, π2

χ = ε2s2, πχ · χ = 0, px · πχ = 0, px · χ = 0. (4.51)

Moreover, when evaluated onshell the action simplifies drastically and becomes

S = α

∫
dτ |m|ẋ| − βεs|χ̇|| , (4.52)

where we have defined |ẋ| =
√
−ẋ2 and |χ̇| =

√
χ̇2. As expected, if s = 0 eq. (4.52) reduces

to the action of a relativistic scalar particle.

Massless spinning particle

As mentioned earlier, a massless particle has four first-class constraints, with Φ3 and Φ4

appearing in addition to Φs and Φm, and so the relevant Hamiltonian is given by

H =
N

2
p2 +

M

2

(
π2

ε2
+
s2χ2

λ2
− 2s

)
+
N3

ε
(p · π) +

sN4

λ
(p · χ). (4.53)
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Again, the equations of motion are easily integrated; we find

χµ(τ) = λ

(
Aµ cos

(
Ms

~
τ

)
+Bµ sin

(
Ms

~
τ

)
− N4

Ms
P µ

)
, (4.54)

xµ(τ) = Xµ + τ

(
N2

3 +N2
4

M
−N

)
Pµ +

ε

M

(
N3χ

µ(t) +
N4~
Ms

χ̇µ(t)

) ∣∣∣∣∣
t=τ

t=0

, (4.55)

where Xµ, Pµ, Aµ, and Bµ are constant vector solutions of P 2 = 0, A2 = B2 = 1 and

A · P = B · P = 0. The momenta are given by

pµ = Pµ, πµ(τ) = − ε

M
(εχ̇µ(τ) +N4Pµ) . (4.56)

Apart from a constant offset proportional to Pµ, the evolution of πµ and χµ is identical

to the massive particle. This is not the case for xµ, where, in addition to the expected

linear evolution along Pµ, there is oscillatory motion in the hyperplane orthogonal to Pµ

of frequency Ms/~ and amplitude ~
√
N2

3 +N2
4/M . This latter quantity, we note, is pure

gauge, being a function of only the Lagrange multipliers N3, N4, and M .

4.6 Coupling to Electromagnetism

At this point DPS describes the free propagation of a relativistic spinning particle. Al-

though our goal is to consider interactions between such particles, it is important to show

that DPS can be consistently coupled to electromagnetism. A coupling prescription is said

to be consistent if it leaves the constraint structure invariant, lest the introduction of a

background field fundamentally alter the system dynamics.

At leading order, we have the minimal coupling prescription [34, 36, 56, 106, 107]

pµ → Pµ = pµ + eAµ(x), (4.57)

which modifies the Poisson bracket of Pµ with itself {Pµ, Pν} = −eFµν . Note that the pure

spin constraints Φs, Φ1, and Φ2 are unaffected by this adjustment. We can also include a

higher-order term via the spin-orbit coupling FµνS
µν by making the replacement

Φm =
1

2
(P 2 +m2)→ Φm,g = Φm +

eg

4
FµνS

µν ,

where g is the gyromagnetic ratio and Sµν = (χ ∧ π)µν the spin bivector. These modifica-

tions alter the algebra of constraints which now reads

{Φ3,Φ4} = −
(
P 2 − e

2
F µνSµν

)
= m̃2 − 2Φm,g, (4.58)
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{Φm,g,Φ3} = e(πµK
µ), {Φm,g,Φ4} = e(χµK

µ), (4.59)

where we have introduced an “electromagnetic mass” m̃ and an “acceleration” vector Kµ:

m̃2 := m2 +
e(g + 1)

2
F µνSµν , Kµ := F µνPν −

g

2

(
F µνPν −

1

2
∂µF νρSνρ

)
. (4.60)

This vector enters the commutator

{Φm,g, Pµ} = e
(
Kµ +

g

2
FµνP

ν
)
. (4.61)

One can now check that, for a massive particle, this prescription does not change the

number of degrees of freedom. The theory still possesses two first-class and four second-

class constraints. In particular, Φs remains first class since, the spin sector is unmodified,

while the other first-class constraint is given by

ΦEM := m̃2Φm,g − e(χµKµ)Φ3 + e(πµK
µ)Φ4. (4.62)

The remaining four constraints will be second class, and so the total Hamiltonian is given

by

H := NΦEM +MΦs, (4.63)

and it is straightforward to show that H preserves all constraints. In standard phase space,

the resulting equations of motion are given by

ẋµ = −N
[
m̃2P µ + e(SK)µ

]
, (4.64)

Ṗµ = Ne
[
m̃2
(
Kµ +

g

2
(FP )µ

)
+ e(FSK)µ

]
. (4.65)

where we have denoted (SK)ν = SνρKρ, (FSK)µ = FµνS
νρKρ, etc. The equations of

motion in dual phase space lead to4

Ṡµν = Ne

[
Pµ(SK)ν +

gm̃2

2
(FS)µν − (a↔ b)

]
. (4.67)

In the limit of weak (m̃2 ≈ m2) and constant electromagnetic field, section 4.6 reduces to

the Frenkel-Nyborg equation [18, 12].

4 They are explicitly given by

χ̇µ = −M
ε2
πµ + eN

(
PµKν +

gm̃2

2
Fµν

)
χν , π̇µ =

s2M

λ2
χµ + eN

(
PµKν +

gm̃2

2
Fµν

)
πν . (4.66)
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For a massless particle, we can see that it is impossible to introduce an electromagnetic

field while keeping Φ3 and Φ4 first class, since their commutator involves the vector Kµ.

This means that the minimal coupling prescription for a massless particle is inconsistent it

would change the number of degrees of freedom. This is hardly a surprise, since it is well

known that one cannot give a photon or a graviton an electromagnetic charge.

4.7 Interaction Vertex for Classical Spinning Particle

We now come to the central result of this chapter: the interaction vertex for a relativistic

spinning particle. In general, interactions between classical point particles are governed

by a system of ten equations: conservation of linear momentum (four), and conservation

of total angular momentum (six). The latter is represented in the DPS model by J =

x ∧ p + χ ∧ π and is a constant of motion. For simplicity, we restrict our attention to a

trivalent vertex with one incoming and two outgoing particles, see Fig. 4.1. The particles

have phase space coordinates (xi, pi), (χi, πi), i = 1, 2, 3, and so the conservation equations

are given explicitly by

p1 = p2 + p3, (4.68)

(x1 ∧ p1 + χ1 ∧ π1) = (x2 ∧ p2 + χ2 ∧ π2) + (x3 ∧ p3 + χ3 ∧ π3). (4.69)

The coordinate xi denotes the spacetime location assigned to the interaction by particle

i, and since one assumes that interactions are local in spacetime, we should have that

x1 = x2 = x3 = x. Conservation of orbital angular momentum now follows immediately

from locality and eq. (4.68); to be explicit,

x1 ∧ p1 − x2 ∧ p2 − x3 ∧ p3 = x ∧ (p1 − p2 − p3) = 0. (4.70)

Thus, the system of equations we need to solve reduces to

x1 = x2 = x3 = x, p1 = p2 + p3, (4.71)

χ1 ∧ π1 = χ2 ∧ π2 + χ3 ∧ π3. (4.72)

Eq. (4.71) is standard, expressing the locality of interactions, which as mentioned in the

Introduction, goes hand in hand with the conservation of linear momentum. The sec-

ond equation, which expresses the conservation of spin angular momentum, requires some

additional work to be properly interpreted.
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p1

p2 p3

χ1,π1

χ2,π2 χ3,π3

p1

p2 p3

χ

π1

π2 π3Dual Locality

Figure 4.1: Three particle interaction in DPS, with and without the assumption of dual

locality

4.7.1 Dual locality

We propose that conservation of spin angular momentum [eq. (4.72)] can be understood as

an expression of the “dual locality” of the interaction vertex; i.e., interactions are “local”

in dual phase space. Specifically, we assume that there exists a four-vector χµ such that

χ2 = λ2 and

χ1 = χ2 = χ3 = χ, (4.73)

see Fig. 4.1. It follows from eqs. (4.72) and (4.73) that π1 = π2 + π3 + αχ for some

constant α; contracting both sides with χ, we get αλ2 = χ · (π1− π2− π3); the constraints

χi · πi = χ · πi = 0 then imply χ is orthogonal to πi, and so α = 0. Thus, dual locality plus

conservation of spin angular momentum intimates the conservation of dual momentum

π1 = π2 + π3. (4.74)

This, we note, is an exact analogue of the results in standard phase space, further empha-

sizing the duality of the dual phase space formulation.

To show that dual locality is a viable ansatz, we must demonstrate that it is consistent

with the constraints in eq. (4.30), which need to be satisfied for each particle and are

enumerated below:

i) p1 · χ = 0,

ii) p2 · χ = 0,

iii) χ2 = λ2,

iv) p1 · π1 = 0,

v) p2 · π2 = 0,

vi) p3 · π3 = 0,

vii) χ · π2 = 0,

viii) χ · π3 = 0,

ix) π2
1 = s2

1,

x) π2
2 = s2

2,

xi) π2
3 = s2

3,

xii) π1 = π2 + π3.
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Notice that we have included the conservation of dual momentum in this list, constraint xii,

since it will be convenient to have all restrictions on dual phase space variables collected in

one spot. To proceed, we use the fact that conservation of momenta [eq. (4.71)] implies that

{p1, p2, p3} span a two-plane, denoted p. We introduce {e0, e1} as an orthonormal basis for

p, where it is assumed that e0 is timelike. We can then extend this to an orthonormal basis

for R4 by including two additional vectors {e2, e3}. It will also be convenient to define a

Hodge dual in p, denoted

(q̃)µ := εµνρσe
ν
2e
ρ
3q
σ (4.75)

for q ∈ p.

We now systematically solve the constraints beginning with i-iii which are easily seen

to have the solution

χ = λ(cosφe2 + sinφe3) (4.76)

for some arbitrary angle φ. Constraints iv – vi imply that the dual momenta πi lies in the

hyperplane orthogonal to pi, hence we can expand πi as

πi = αip̃i + Aie2 +Bie3. (4.77)

The Hodge dual of eq. (4.71) implies p̃1 = p̃2 + p̃3, and so projecting constraint xii into the

plane p and using eq. (4.77) gives

(α1 − α2)p̃2 + (α1 − α3)p̃3 = 0. (4.78)

Thus, if p2 and p3 are linearly independent, we get α1 = α2 = α3 = α. On the other

hand, projecting xii orthogonal to p and using eq. (4.77) again requires A1 = A2 +A3 and

B1 = B2 + B3. Constraints vii and viii are then easily solved by setting A2 = −β sinφ,

B2 = β cosφ and A3 = −γ sinφ, B3 = γ cosφ respectively. In summary, we have

π1 = αp̃1 + (β + γ)χ⊥, (4.79)

π2 = αp̃2 + βχ⊥, (4.80)

π3 = αp̃3 + γχ⊥, (4.81)

where χ⊥ = − sinφe2 + cosφe3 is orthogonal to χ. It remains to consider constraints ix –

xi which are seen to give

m2
1α

2 + (β + γ)2 = s2
1, (4.82)
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m2
2α

2 + β2 = s2
2, (4.83)

m2
3α

2 + γ2 = s2
3. (4.84)

Before showing that the above equations possess a consistent solution, we need to recall

some restrictions on the mass and spin of the constituent particles, namely

m2 +m3 ≤ m1, (4.85)

|s2 − s3| ≤ s1 ≤ s2 + s3. (4.86)

The first inequality is well known, and easily derived from momentum conservation [eq. (4.71)].

Eq. (4.86), on the other hand, is a quantum-mechanical result derived by considering the

eigenvalues of the total angular momentum operator in a composite system. Here we will

show that it follows from the assumption of dual locality. We begin by squaring eq. (4.74)

to obtain

s2
1 = s2

2 + s2
3 + 2π2 · π3.

As πi is spacelike, we can apply the Cauchy-Schwartz inequality with impunity:

2|π2 · π3| ≤ 2|π2||π3| = 2s2s3.

Substituting this result into the previous equation gives (s2 − s3)2 ≤ s2
1 ≤ (s2 + s3)2, and

the desired result follows after taking square roots.

With this in mind we return to Eqs. (4.82)–(4.84). The latter two can be used to solve

for β and γ in terms of α and the result substituted into eq. (4.82). After rearranging and

taking the square, we get a consistency condition for α:

(s2
2 −m2

2α
2)(s2

3 −m2
3α

2) = (S2 −M2α2)2, (4.87)

where 2M2 := m2
1 −m2

2 −m2
3 and 2S2 := s2

1 − s2
2 − s2

3. It is not enough to simply solve

this equation for α, since it is immediately obvious from Eqs. (4.82)–(4.84) that α2 ≤ r2
i ,

where ri = si/mi for mi 6= 0. As such, we introduce variables θ2 and θ3 which satisfy

α = r2 cos θ2 = r3 cos θ3, (4.88)

and without loss of generality suppose r3 ≤ r2. Note that we can choose the signs of θ2

and θ3 so that β = s2 sin θ2 and γ = s3 sin θ3. The consistency equation on α now reads

F (θ3) = 0, where

F (θ) := (S2 −M2r2
3 cos2 θ)2 − s2

2s
2
3 sin2 θ

(
1− r23

r22
+
(
r3
r2

sin θ
)2
)
. (4.89)
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It suffices, therefore, to show that F (θ) has a zero in the interval [−π/2, π/2], and so we

note that

F (0) = (S2 −M2r2
3)2 ≥ 0, F (±π/2) = −[(s2 + s3)2 − s2

1][s2
1 − (s2 − s3)2] ≤ 0,

where the second equality follows from eq. (4.86). By the intermediate value theorem,

there exists θ̄ ∈ [0, π/2] such that F (±θ̄) = 0, and so α = r3 cos θ̄ satisfies eq. (4.87).

It follows for massive particles that there are two solutions to the dual locality equations

for which α > 0. These two solutions are related by a change of orientation in the plane

orthogonal to p; if (α, β, γ) is a solution, then (α,−β,−γ) is also a solution. Note that by

parity invariance, (−α,−β,−γ) and (−α, β, γ) are also solutions.

The case where m2 = 0 can be obtained from the above by allowing r2 → ∞ in

eq. (4.89), and one can again obtain a solution for α by using the intermediate value the-

orem. In the remaining case5 m2 = m3 = 0, Eqs (4.83) and (4.84) are solved immediately

as β = ε2s2 and γ = ε3s3 where εi = ±1. We then obtain for α

α2 =
1

m2
1

(
s2

1 − (ε2s2 + ε3s3)2
)
,

where eq. (4.86) implies that ε2ε3 = −1 and we again find four solutions belonging to

two sectors related by parity. This completes our analysis of the three-particle interaction,

showing that dual locality ensures a consistent vertex for any viable combination of spinning

particles.

4.7.2 Universality of dual locality

Having established established dual locality as a sufficient condition to ensure a consistent

three-point vertex we now show its necessity. The key point is that when the spin is

nonzero, we have an additional gauge symmetry in the system which corresponds to a

rotation in the (χ, π) plane; recall eq. (4.41):

Rθ(χµ, πµ) = (cos θχµ + λ
εs

sin θπµ, cos θπµ − εs
λ

sin θχµ). (4.90)

Such a gauge transformation does not change the value of the spin bivector Rθ(χ)∧Rθ(π) =

χ ∧ π. Therefore, if (χi, πi)i=1,2,3 is a solution of eq. (4.72), then (Rθi(χi), Rθi(πi))i=1,2,3

is also a solution for arbitrary θi. This is simply an expression of the gauge symmetry

of the theory. The main claim we now want to prove is that any solution of the spin

5It is impossible to have three massless interacting particles.
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conservation equation [eq. (4.72)] is gauge equivalent to a solution satisfying dual locality.

In other words, if (χi, πi)i=1,2,3 is a solution of eq. (4.72), then there exists (χ′, π′i)i=1,2,3

with π′1 = π′2 + π′3, and θi such that

(χi, πi) = (Rθi(χ
′), Rθi(π

′
i)), for i = 1, 2, 3. (4.91)

Note that in addition to the rotation eq. (4.41), DPS is invariant under the global rescaling

λ→ αλ and ε→ α−1λ. Therefore, we can assume that all λi and εi have been rescaled to

some common values λ and ε.

Suppose that we have a solution to Eqs. (4.71) and (4.72), including all accompanying

constraints. It is always possible to choose χi orthogonal to the plane p. To see why

consider χ2: By construction χ2 · p2 = 0, and so we need only ensure that it is orthogonal

to p3, since then conservation of momentum guarantees that it will be orthogonal to p1 as

well. Hence, if χ2 · p3 6= 0, a gauge rotation with cot θ = λπ2 · p3/(s2χ2 · p3), will ensure

that the new χ2 is orthogonal to p3. A similar argument holds for the other χi, and the

claim is justified, thereby allowing us to write χi = λ(cosφie2 + sinφie3), since χ2
i = λ2.

Now, we contract eq. (4.72) with (p1, p2, p3) to obtain

χ2(p3 · π2) + χ3(p2 · π3) = 0, (4.92)

χ1(p2 · π1)− χ3(p2 · π3) = 0, (4.93)

χ1(p3 · π1)− χ2(p3 · π2) = 0. (4.94)

There are two cases to consider. Either (pi ·πj)i 6=j are all vanishing or they are all nonvan-

ishing. Indeed, if p3 · π2 = 0, the above equations imply that p2 · π3 = p2 · π1 = p3 · π1 = 0,

which in turn, via momentum conservation, yields p1 · π2 = p1 · π3 = 0.

Let us first assume that pi ·πj = 0. As argued above, χi and πi are orthogonal to p and

therefore can be expanded as

χi = λ(cosφie2 + sinφie3), πi = siε(− sinφie2 + cosφie3).

A further gauge transformation with θi = −φi can now be performed to give χi = λe2,

πi = siεe3, which proves the proposition.

In the generic case we have (pi · πj)i 6=j 6= 0. We contract eq. (4.92) with π3 to obtain

π3 ·χ2 = 0; repeating this for the other πi we find that (χi)i=1,2,3 is orthogonal to (πj)i=1,2,3.

With this established, we can return to eq. (4.72), contract with χ1 and then χ2, and

combine the results to eliminate the terms proportional to π1:

0 =
[
(χ1 · χ2)2 − λ4

]
π2 +

[
(χ1 · χ3)(χ1 · χ2)− λ2(χ2 · χ3)

]
π3.
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Note that π2 and π3 cannot be parallel, since then π2 · p3 ∝ π3 · p3 = 0, which is contrary

to the original assumption π2 · p3 6= 0. Hence, the previous equation implies that

|χ1 · χ2| = λ2.

As χi are spacelike vectors which satisfy χ2
i = λ2, the Cauchy-Schwartz inequality im-

plies that χ1 and χ2 are parallel, hence χ1 = ±χ2. We can repeat the above procedure,

contracting eq. (4.72) with χ1 and χ3 to obtain χ1 = ±χ3, and so

ε1χ1 = ε2χ2 = ε3χ3 = χ,

where εi = ±. This is not exactly what we want. All we have to do is perform another

set of gauge transformations by the angle (1 − εi)π/2 to transform (χi, πi) → (εiχi, εiπi).

Note that these gauge transformations do not affect any of the orthogonality properties

established before and so we obtain the dual locality property

χ1 = χ2 = χ3 = χ, π1 = π2 + π3. (4.95)

This completes the proof, showing that a solution to Eqs. (4.71) and (4.72) implies that

dual locality holds, up to a gauge relabeling.

4.7.3 An alternative view of dual locality

The universality of dual locality is an important result further emphasizing the symmetry

between standard and dual phase space. As such, it will be beneficial to see how dual

locality arises from one of the alternative models presented earlier in this Chapter. In

particular, we select the parametrization of Sec. 4.4.2, where spin is represented by a

single vector nµ. Recall that nµ has the interpretation of an S2 vector boosted in the

direction of the particles’ momenta, and the spinning part of angular momentum is given

by Sµν = s∗(n∧u)µν . Consider again a three-particle interaction with one particle incoming

and the other two outgoing. In what follows we will assume m 6= 0.

Interactions, as previously discussed, are governed by the conservation of linear mo-

mentum [eq. (4.71)] and the conservation of spin angular momentum. The latter, after

taking the Hodge dual and making use of eq. (4.71), can be written as

[(r1n1 − r2n2) ∧ p2] + [(r1n1 − r3n2) ∧ p3] = 0, (4.96)
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where ri = si/mi. Let A⊥p denote the projection of a vector A onto the plane orthogonal

to p. Applying this projection to eq. (4.96) yields6

r1n
⊥p

1 = r2n
⊥p

2 = r3n
⊥p

3 . (4.97)

A further condition on the ni is obtained by contracting eq. (4.96) with p̃2 ∧ p̃3, viz.

r1n1 · p̃1 = r2n2 · p̃2 + r3n3 · p̃3. (4.98)

The previous two equations provide a natural method for defining variables χ and πi which

satisfy dual locality, in particular

χ =
λ

|n⊥p

i |
∗ (e0 ∧ e1 ∧ ni) and πi =

εri
λ
∗ (χ ∧ pi ∧ ni).

It follows from eq. (4.97) that χ is independent of i, while eq. (4.98) can be used to show

π1 = π2 + π3. The necessary constraints (i–xi) are also satisfied, as one can easily check.

Note that the above definitions are ambiguous up to a sign, although the same sign must

be chosen for all πi, and so we see again that there are four possible solutions belonging to

two parity-related sectors. In summary, the conservation of angular momentum requires

that the vectors rini be equal when projected into the plane p⊥. The dual position χ is

then the unique (up to a sign) vector of length λ lying in the plane p⊥ which is orthogonal

to rin
⊥p

i . In turn, the dual momenta πi is the unique (up to a sign) vector of length εsi

orthogonal to pi, ni, and χ.

6Assuming p2 and p3 are linearly independent.
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Chapter 5

A Mechanical Model for the

Relativistic Spinning Particle

5.1 Introduction

If one ignores the constraints, the phase space of the ”Dual Phase Space” (DPS) model

is identical to that of two scalar particles which suggests that it can be reformulated as a

composite system. In this Chapter we will formalize this observation and show that the

relativistic spinning particle can be realized as a simple bilocal model that is equivalent to

the original DPS formalism.

5.2 Non-relativistic Two Particle Model

5.2.1 Hamiltonian Formulation

Let’s consider a system comprised of two non-relativistic point particles with masses m1

and m2. The corresponding phase space is parametrized by the position and momenta of

each particle (~x1, ~p1) and (~x2, ~p2) with standard Poisson bracket structure{
xai , p

b
j

}
= δijδ

ab, i, j = 1, 2 and a, b = 1, 2, 3. (5.1)

Let M = m1 + m2 be the total mass of the system and µ = m1m2/M the reduced mass,

then we can introduce:

~X =
m1

M
~x1 +

m2

M
~x2, ∆~x = ~x1 − ~x2, (5.2)

74



where ~X are the coordinates of the center of mass and ∆~x is the relative displacement

between the particles. Momenta conjugate to these coordinates are given by

~P = ~p1 + ~p2, ∆~p =
µ

m1

~p1 −
µ

m2

~p2, (5.3)

respectively. These definitions imply the following non-vanishing Poisson brackets{
Xa, P b

}
= δab,

{
∆xa,∆pb

}
= δab. (5.4)

The coordinates introduced above can also be used to decompose the total angular mo-

mentum of the two particle system as the sum of the total and relative angular momenta

~J := ~x1 × ~p1 + ~x2 + ~p2 (5.5)

= ~X × ~P + ∆~x×∆~p. (5.6)

Note that the second equality shows that ~J = ~L + ~S, where ~L = ~X × ~P is the “external”

angular momentum associated with motion of the system as a whole while ~S = ∆~x×∆~p is

the “internal” angular momentum resulting from the rotation around the center of mass.

This internal rotation represents the spin degrees of freedom.

At this point we have a pair of free non-relativistic particles and it remains to impose

m1

m2
`

~s

Figure 5.1: Two particles connected by rigid rod of length ` and pictured in the center of

mass frame where the total angular momentum has magnitude ~s.

some structure on the system which will make contact with intuitions we have regarding

the nature of spinning particles. Classically, a spinning particle is a rigid object with a
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fixed, non-zero value for its “internal” angular momentum. The former condition can be

implemented by demanding that the two particles are coupled by a rigid rod of length ` and

the latter by setting the magnitude of the angular momentum in the center of mass frame

to be ~s, for some dimensionless constant s. This amounts to imposing the constraints

(∆~x)2 = `2, and (∆~x×∆~p)2 = ~2s2, (5.7)

see Figure 5.1. These constraints satisfy a closed algebra. A Hamiltonian can now be

constructed by adding the constraints in eq. (5.7) to the standard Hamiltonian for a system

of two free particles1

H =
1

2m1

~p 2
1 +

1

2m2

~p 2
2 +

λ1

2

[
(∆~x)2 − `2

]
+
λ2

2

[
(∆~x×∆~p )2 − ~2s2

]
, (5.8)

where λ1 and λ2 are Lagrange multipliers. To ensure that the constraints are stationary

under the evolution defined by H we need to include ∆~x · ∆~p = 0 which allows us to

re-write the full Hamiltonian as

H =
1

2M
~P 2 +

1

2µ
(∆~p )2 +

λ1

2

[
(∆~x)2 − `2

]
+
λ2

2

[
(∆~p )2 − ε2s2

]
+ λ3∆~x ·∆~p, (5.9)

where ε has units of energy and satisfies ε` = ~. No further constraints are required

but due to the second class nature of the constraints imposed, the condition that all the

constraints are preserved under time evolution imposes the following relations between

Lagrange multipliers:

λ2 =
`2

ε2s2
λ1 −

1

µ
and λ3 = 0. (5.10)

The final form of the non-relativistic restricted Hamiltonian is therefore, up to a constant

term ε2s2/2µ, given by

H =
1

2M
~P 2 + λ

[
1

2

(
∆~p

ε

)2

+
s2

2

(
∆~x

`

)2

− s2

]
, (5.11)

where λ = λ1`
2/s2. As one can see from H there is a single first class constraint

`2(∆~p )2 + ε2s2(∆~x)2 = 2~2s2, (5.12)

and two second class constraints

(∆~x) · (∆~p) = 0 and ε2s2(∆~x)2 − `2(∆~p )2 = 0. (5.13)

1A similar model appeared in a different context in [108].

76



The dimension of the reduced phase space is therefore 12 − 1 × 2 − 2 × 1 = 8 for a total

of 4 physical degrees of freedom; as expected for a spinning particle (3 for position and

1 for the spin). The motion of the composite system can be deduced by examining the

Hamiltonian eq. (5.11). The unconstrained part of H indicates that the center of mass

evolves like a free particle, while the single first class constraint is a harmonic oscillator

potential acting on the relative separation, and so the latter will execute periodic motion

with frequency ω ∝ s.

5.2.2 Lagrangian Formulation

It is a straightforward exercise to compute the Lagrangian for this model, beginning with

H as given in eq. (5.9) we put L = ~P · ~̇X + ∆~p ·∆~̇x −H. We can now integrate out the

momenta, after which the Lagrange multiplier λ3 enters quadratically and therefore can

also be integrated without difficulty. One obtains

L =
M

2
~̇X2 +

1

2

µ

(1 + λ2µ)
(Dt∆~x)2 +

λ2

2
ε2s2 − λ1

2

[
(∆~x)2 − `2

]
, (5.14)

where

Dt∆~x := ∆~̇x− (∆~̇x ·∆~x)

(∆~x)2
∆~x, (5.15)

is a covariant time derivative which preserves the constraint (∆~x)2 = `2. It projects the

relative motion ∆~̇x orthogonal to ∆~x. The Lagrange multiplier λ2 doesn’t enter quadrat-

ically but we can still solve for it at the classical level. The solution space possesses two

branches which are labelled by a sign α := sign(1 + λ2µ). Encoding this sign into the spin

by s := α|s|, we see that the Lagrangian can be expressed purely in terms of the configu-

ration variables and is given by L = Ls + λ1
2

[(∆~x)2 − `2]− 1
2
εs
µ

where the spin Lagrangian

is simply

Ls =
M

2
~̇X2 + εs|Dt∆~x|. (5.16)

We see that the inclusion of spin amounts to a modification of the kinetic energy which

is linear in the velocity instead of quadratic. The spin s itself entering as a “stiffness”

parameter multiplying the spin kinetic energy |Dt∆~x|. The final Lagrange multiplier λ1

imposes the constraint (∆~x)2 = `2 which can be solved by introducing new variables ~y

defined implicitly via

∆~x =
`

|~y|
~y. (5.17)
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The Lagrangian eq. (5.16) then becomes

L =
M

2
~̇X2 +

~s
|~y |
|Dt~y | −

1

2

εs

µ
, (5.18)

where Dt~y is the derivative ~̇y projected orthogonally to ~y. It satisfies Dt(ρ~y) = ρDt~y.

Notice that the reduced mass enters only in an overall constant factor.

5.2.3 Quantizing the Non-Relativistic Model

In this section we will quantize the non-relativistic model and show that it reproduces

the expected results for a non-relativistic spinning particle. Start with the Lagrangian

eq. (5.18) and compute the momenta conjugate to ~X and ~y, viz

~PX = M ~̇X, ~Py =
~s

|~y ||Dt~y |
Dt~y. (5.19)

It is straightforward to verify that ~Py satisfies the constraints

~Py · ~y = 0, ~P 2
y −

~2s2

~y2
= 0, (5.20)

and so the Hamiltonian is given as

H =
~P 2
X

2M
+ λ1

(
~Py · ~y

)
+
λ2

2

(
~P 2
y −

~2s2

~y2

)
. (5.21)

The Poisson brackets are standard{
Xi, P

j
X

}
= δji

{
yi, P

j
y

}
= δji (5.22)

and can be used to show that the constraints eq. (5.20) are first class.

The absence of second class constraints in conjunction with eq. (5.22) implies that we

can quantize by making the standard replacements

X̂iΨ = XiΨ, P̂ i
XΨ = −i~ ∂

∂Xi

Ψ, (5.23)

ŷiΨ = yiΨ, P̂ i
yΨ = −i~ ∂

∂yi
Ψ, (5.24)

where Ψ = Ψ( ~X, ~y, t). Observe that the unconstrained part of H acts only on the vari-

ables ~X while the constraints act only on the ~y. This suggests that we separate variables
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Ψ( ~X, ~y, t) = Ψ1( ~X, t)Ψ2(~y), then the condition HΨ = i~∂tΨ splits into three differential

equations

− ~2

2M
∇2
XΨ1 = i~

∂Ψ1

∂t
, (5.25)∑

i

yi
∂Ψ2

∂yi
= 0, (5.26)

∇2
yΨ2 +

s2

~y2
Ψ2 = 0. (5.27)

The first equality is just Schrödinger’s equation for a free particle indicating that the in-

ternal variables continue to evolve as a free particle even in the quantum theory. The

remaining equations correspond to the first class constraints imposed on the internal vari-

ables and are most easily solved by switching to spherical coordinates. Make the replace-

ments ~y = (r sin θ cosφ, r sin θ sinφ, r cos θ) and Ψ2(~y) = ψ(r, θ, φ), then equation eq. (5.26)

becomes

r
∂ψ

∂r
= 0 =⇒ ψ(r, θ, φ) = ψ(θ, φ)

and so ψ doesn’t depend on r. The remaining equation (5.27) now takes the form

∆ψ :=
1

sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

sin2 θ

∂2ψ

∂φ2
= −s2ψ. (5.28)

Here ∆ is the Laplacian on the unit sphere S2 spanned by ∆~x/|∆~x|. It is well known

that the solutions of this equation for functions on the sphere are given by the so called

Spherical Harmonics, which represent integer spins2:

ψ(θ, φ) = Y m
` (θ, φ), ` ∈ N, m = −`,−`+ 1, . . . , `− 1, `, (5.29)

where s2 = `(`+ 1). The “internal” angular momentum (spin) operator is ~̂S = ~̂y× ~̂Py and

one can verify that

Ŝ3Y
m
` = m~Y m

` and S2Y m
` = ~2`(`+ 1)Y m

` , (5.30)

which is precisely the expected result. Overall the total wave function is given by

Ψ(x1, x2) = Ψ1(x1 + x2)Y

(
x1 − x2

|x1 − x2|

)
δ(|x1 − x2| − `). (5.31)

This wave function cannot be split into a product φ1(x1)φ2(x2) showing that the two con-

stituents are fundamentally entangled by the spin constraint. The scalar product between

such functions is simply given by ||Ψ||2 =
∫

R3 d3x|ψ1|2(x)
∫
S2 dn|Y |2(n).

2 As discussed in Appendix F, the most general solution of this equation which is regular for θ ∈ [0, π]

and φ ∈ [0, 2π] are the fermionic spherical harmonics Y m` for ` ∈ N
2 , see [109, 110, 111]. In this case

however the functionals cannot be understood as depending continuously on the sphere variables ∆x.

79



5.3 Relativistic Two Particle Model

The non-relativistic model presented in the previous section captures our intuition of how

a spinning particle should behave, but a truly viable description needs to be relativistic.

We begin by replacing the position and momentum variables with their four-vector coun-

terparts ~xi → xµi and ~pi → pµi , now assumed to be functions of some auxiliary parameter τ .

These have the standard transformation properties under elements of the Poincaré group

(Λ, y)

xi → Λxi + y and pi → Λpi, (5.32)

where Λ is a Lorentz transformation and y a translation. There is also a natural extension

of the Poisson bracket structure in equation eq. (5.1) to

{xµi , pνi } = δijη
µν , i, j = 1, 2, (5.33)

where η = diag(−1, 1, 1, 1). As in the previous section we can introduce “center of mass”3

and relative displacement coordinates. In doing so it will be convenient to specialize to the

case where the particles are of equal mass m1 = m2 = m, whence

Xµ =
1

2
(xµ1 + xµ2) ,

P µ = pµ1 + pµ2 ,

∆xµ = xµ1 − x
µ
2 ,

∆pµ =
1

2
(pµ1 − p

µ
2) .

(5.34)

Surprisingly, the case of unequal masses is significantly more complex than in the non-

relativistic case and since it is not relevant for the bulk of our current analysis we have

relegated its treatment to Appendix G. The variables in eq. (5.34) transform under the

Poincaré group as

X → ΛX + y, P, ∆p, ∆x→ ΛP, Λ∆p, Λ∆x, (5.35)

and one can check that (Xµ, P µ) and (∆xµ,∆pµ) form canonically conjugate pairs. The

total angular momentum ~J = ~L + ~S is generalized to an anti-symmetric tensor Jµν =

Lµν + Sµν with

Lµν = (X ∧ P )µν and Sµν = (∆x ∧∆p)µν , (5.36)

where (A∧B)µν = AµBν−AνBµ. Again Lµν represents the “external” angular momentum

of the system as whole while Sµν represents “internal” rotations.

3The center of mass is not a relativistically invariant quantity, hence the use of inverted commas.
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The relativistic Hamiltonian is a straightforward generalization of the non-relativistic

one, see eq. (5.11), in particular the restricted Hamiltonian is

H =
N

2ε

[
P 2 + 4(m2 + ε2s2)

]
+ Ñ

[
1

2

(
∆p

ε

)2

+
s2

2

(
∆x

`

)2

− s2

]
, (5.37)

where N and Ñ are Lagrange multipliers.

To see how eq. (5.37) comes about return to the non-relativistic Hamiltonian eq. (5.8).

In the relativistic theory the free part becomes two mass shell constraints, recall that we

are assuming particles of equal mass

1

2m
~p 2
i → (p2

i +m)2, i = 1, 2. (5.38)

Each of these defines an evolution that must preserve the other two constraints eq. (5.7),

now written as

(∆x)2 = `2 and (∆x ∧∆p)2 = ~2s2. (5.39)

We can still interpret the first constraint as a rigidity condition, although now it fixes the

spacetime interval between the two particles. Similarly, the second constraint can be seen

as fixing the square of the “internal” angular momentum tensor, see equation eq. (5.36). To

ensure that both constraints are stationary, under the time evolution of each constituent,

we need to include p1 ·∆x = 0 and p2 ·∆x = 0, which then allows us to write the relativistic

Hamiltonian as the following sum of six constraints

H =
N1

2

(
p2

1 +m2
)

+
N2

2
(p2

2 +m2) +
λ1

2

(
(∆x)2 − `2

)
+
λ2

2

(
(∆p)2 − ε2s2

)
+ λ3(p1 ·∆x) + λ4(p2 ·∆x).

(5.40)

No further constraints need to be added but demanding that the existing constraints Pois-

son commute with H imposes the following conditions among the Lagrange multipliers

λ3 = λ4 = 0, N1 = N2, λ2 =
`2

ε2s2
λ1 − (N1 +N2). (5.41)

After making these substitutions in eq. (5.40) we obtain the Hamiltonian presented at

the outset of this section, see eq. (5.37). As can be easily verified, the relativistic model

possesses two first class constraints

ΦM = P 2 + 4(m2 + ε2s2), ΦS = `2(∆p)2 + ε2s2(∆x)2 − 2~2s2, (5.42)
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and four second class constraints

P ·∆x = 0, ∆p ·∆x = 0, P ·∆p = 0, `2(∆p)2 − ε2s2(∆x)2 = 0. (5.43)

Thus, the reduced phase space has dimension 16 − 2 × 2 − 4 × 1 = 8 yielding 4 physical

degrees of freedom, as in the non-relativistic model. Note that the primary constraints

eq. (5.39) are identical to those considered in the previous section if one transforms to the

rest frame of the “center of mass” P = (m,~0) and implements P ·∆x = P ·∆p = 0.

The equations of motion are obtained from Hamilton’s equation Ȧ = {H,A}, we find

dXµ

dτ
= −NP µ,

dP µ

dτ
= 0,

d∆xµ

dτ
= −Ñ`2∆pµ,

d∆pµ

dτ
= Ñε2s2∆xµ,

(5.44)

which are easily integrated to give

Xµ(τ) = Xµ
0 −NτP

µ
0 ,

P µ(τ) = P µ
0 ,

∆xµ(τ) = ` [Aµ cos(Ωτ) +Bµ sin(Ωτ)] ,

∆pµ(τ) = εs [Aµ sin(Ωτ)−Bµ cos(Ωτ)] ,
(5.45)

where Ω = Ñ~s. The constant vectors Aµ, Bµ and P µ
0 satisfy A2 = B2 = 1, P 2

0 =

4(m2 + ε2s2) and A · P0 = B · P0 = A · B = 0. As we can see, the “center of mass”

propagates as a free particle while the relative displacement executes circular motion with

frequency Ω. This result conforms with our intuition about the system since in the original

set-up both particles were free but constrained to rotate with constant “internal” angular

momentum. The angle between p1 and p2, denoted θ, can be computed from

p1 · p2 = −|p1||p2| cosh θ =⇒ cosh θ = 1 +
2ε2s2

m2
. (5.46)

The evolution is pictured in Figure 5.2. In Figure 5.3 we plot the position and momentum

of each particle at τ = 0 projected into the planes defined by {A,B}, {A,P0} and {B,P0}.
Both figures assume X0 = 0. This completes our construction of a bi-local model, its

relation to the relativistic spinning particle will be explored in the subsequent section.

5.4 Re-interpreting the Model

As the analysis in the previous section made apparent, the most natural variables for de-

scribing this two particle system are not the individual coordinates (x1, p1) and (x2, p2) but

rather the “center of mass” (X,P ) and the relative displacement (∆x,∆p). This suggests
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that we could re-interpret the model as a single particle whose trajectory is determined

by (X,P ) but which possesses internal degrees of freedom described by (∆x,∆p). This

re-interpretation is more than just a curiosity, it is an exact realization of the relativistic

spinning particle.

The “Dual Phase Space” Model (DPS) developed in Chapter 4, provides a classical

realization of the relativistic spinning particle by means of the coajoint orbit method [102].

In particular, the naive phase space is parameterized by two pairs of canonically conjugate

four-vectors, (xµ,pµ) which describe the position and linear momentum of the particle and

(χµ,πµ) which encode the internal degrees of freedom associated with the spin. Note that

Aa

Ba

Pa

`/2

Particle 1
Particle 2
C.O.M.
Seperation

Figure 5.2: Particle trajectories plotted over two periods in the hyper-plane defined by the

triplet of orthogonal vectors (A,B, P0).
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x1

x2

B

A

p2

p1

x1x2

P0

A

p2 p1

x1x2

θ

P0

B

p2 p1

Figure 5.3: Projections, at τ = 0, of (x1, p1) and (x2, p2) into the indicated planes. The

angle θ is given in eq. (5.46).

we use bold faced characters to denote quantities originating in the DPS model. The Pois-

son brackets are trivial {pµ,xν} = ηµν and {πµ,χν} = ηµν while transformations under

elements of the Poincaré group (Λ, y) are given by

x→ Λx + y and p, π, χ→ Λp, Λπ, Λχ. (5.47)

The dynamics of DPS are defined by two first class and four second class constraints, given

respectively by

p2 = −M2, λ2π2 + ε2s2χ2 = 2~2s2, (5.48)

p · π = 0, p · χ = 0, π · χ = 0, λ2π2 − ε2s2χ2 = 0, (5.49)

where m and s are the mass and spin of the particle while ε and λ are arbitrary energy

and length scales which satisfy ελ = ~. Comparing DPS to the relativistic two particle

model presented in Section 5.3 shows an exact match under the following identifications

p = P,

π = ∆p,

x = X,

χ = ∆x,

ε = ε,

λ = `,

s = s,

M2 = 4(m2 + s2ε2).
(5.50)

It is particularly interesting to note that the mass of the spinning particle m is larger

than the sum of the constituent masses. A mass defect is the hallmark of a confined

system, but that is not what we have here. Instead there is a mass surplus, indicating

the presence of entanglement4 with the entangled state having a higher energy than the

4In the standard quantum mechanical treatment of two entangled electrons there is a constraint on the

total angular momentum, namely J = 0. Similarly, the entanglement in the bilocal picture is a result of

the spin constraint ΦS , c.f. eq. (5.42).
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sum of its constituents. The extra energy is exactly the energy present in the spin motion;

it is given by ~s/` and can be lowered by having the pairs separate. Consequently, this

constituent picture suggests that massive particles of higher integer spin are unstable and

it is energetically favored to lower the spin towards a spinless particle. A conclusion not

contradicted by nature.

We also see that the limit m→ 0 of massless constituents can be taken without incident,

in which case the entire mass of the spinning particle arises as “entanglement energy” from

the spin constraint. In this limit the particle radius can be expressed as

r =
`

2
=

~s
M
, (5.51)

which scales inversely with the mass in the same manner as the Bohr radius of an atom.

The limit of massless constituent particles also provides a possible resolution to a long

standing problem regarding the center of mass of a spinning particle. The center of mass

of an extended rotating object is not relativistically invariant and any classical model of

spin which views a spinning particle as possessing some non-zero extension encounters this

problem, see [40, 41] for a detailed analysis. In the case of massless constituent particles

this is a moot point since a system of massless particles does not have a center of mass

and one is forced to consider the geometric centroid instead, which is precisely what Xµ is

in the relativistic case.

If we assume physical constituents with positive mass square, the bilocal model can

only describe particles whose mass is greater than its spin, since we have the relationship

M2 =
4~2s2

`2
+ 4m2. (5.52)

If the mass of the constituents are fixed this gives rise to a trajectory which is similar in

spirit but different in details from a Regge trajectory where the mass square is linearly

related to the spin M2 ≥ α′J+β. To go beyond the bound M ≥ 2~s
`

and describe massless

particles M = 0 requires that the constituents be tachyons with m2 = −~2s2/`2.

5.5 Interactions

Given the mapping eq. (5.50) between DPS and the two particle model, results from [62]

can be imported directly and re-interpreted in the two particle picture. For example,

interaction with a background electromagnetic field is achieved via the minimal coupling
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prescription

p1 → p1 +
q

2
A(x1 + x2) p2 → p2 +

q

2
A(x1 + x2),

where q is the total charge of the spinning particle. It follows that each constituent particle

carries half the total charge while the electromagnetic field couples to the center of mass

coordinate Xµ. This formulation also suggests that one could investigate a generalization

of the coupling of electromagnetism to spinning particles where the location of the field

interaction for the constituents 1 and 2 are not the same.

Interactions between spinning particles were a focal point of Chapter 4 with the Chapter

culminating in the formulation of a necessary and sufficient condition for a consistent three-

point vertex. In detail, suppose a vertex has one incoming and two out going particles

with coordinates (xi,pi), (πi,χi), where i = 1, 2, 3 and it is assumed that particle #1 is

incoming. The vertex is governed by conservation of linear and angular momentum along

with the requirement that interactions are local in space-time, i.e. x1 = x2 = x3. It turns

out that consistency is possible if and only if there exists a choice of χ variables such that

the interaction is also local in the dual space. That is one has to impose χ1 = χ2 = χ3, a

condition we referred to as “dual locality”. The conservation equations then become

p1 = p2 + p3 and π1 = π2 + π3, (5.53)

which can be solved by elementary methods. In the two particle picture these notions have

concrete interpretations: Locality plus “dual locality” becomes the condition that interac-

tions are local for each constituent particle, while equation eq. (5.53) implies conservation

of momentum at each particle. This is pictured in Figures 5.4–5.6, where we have used

the notation p
(j)
i to indicate the i-th constituent of particle j, i = 1, 2, j = 1, 2, 3. In

Figure 5.6 each spinning particle is represented by a string of length ` and it is seen that

the interaction splits the incoming strip into two halves. The resulting worldsheet is not

a smooth manifold but a branched 2 dimensional surface. This form of the interaction

vertex is very different from the string inspired interaction which has been explored in the

literature on massless particles [70].

5.6 Quantization and Other Bilocal Models

Before examining the quantization of the relativistic two particle model it is interesting to

note the relationship between DPS and other bilocal models appearing in the literature. A
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Figure 5.4: Three-point interaction ver-

tex.
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Figure 5.5: Detailed view of three-point

interaction vertex

popular model introduced by Takabayasi [66] and known as the “Simple Relativistic Os-

cillator Model” (SROM) is obtained by combining ΦM and ΦS and dropping all remaining

constraints that don’t involve Pµ. In particular,

Φ = ΦM +
4

`2
ΦS, Φ1 = P ·∆p, Φ2 = P ·∆x. (5.54)

For a model to be interpreted as “bilocal” the two constituent particles need a well de-

fined mass which means that the values of p2
i must be specified by the constraints. As

p1, p2 = P/2 ± ∆p we need to specify at least, P 2 + 4(∆p)2 and P · ∆p. The SROM

is therefore a minimally constrained bilocal model that has non-trivial kinematics in the

relative separation.

A similar model has been proposed by Casalbuoni and Longhi [68]. It imposes the

primary constraints P 2 + (∆p)2 + (∆x/α′)2 = 0, where α′ is the inverse string tension,

supplemented by Φ1 = Φ2 = 0 and (∆p · ∆x) = 0. This model is obtained from a

truncation of string theory, by restricting the string motion to excite only one oscillator.

It corresponds to a limit of our model in which m = 0, s = 0 and the separation ` = 0 also

vanish. More precisely the relationship between the string tension and spinning particle

tension is given in the limit s → 0 by `2 ∼ ~α′s2. Our description does not really survive

this limit since we need a non-zero separation length, so this string model is really a

different model. In this limit the vertex of interaction is derived from the string vertex and
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Figure 5.6: Expanded view of three-point interaction vertex.
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has a geometry very different from the vertex we described (c.f. Figure 1 in [70]).

Another class of models arise by setting the total mass M to zero or equivalently fixing

m2 = −4ε2s2, in which case we have tachyonic constituents. We can obtain several versions

of massless higher spin particles, see the discussion by Bengtsson in [70]. The massless case

is special, since M = 0 implies that the constraints

Φ1 = P ·∆p, Φ2 = P ·∆x (5.55)

are first class.

By considering only the constraints ΦM, Φ1 and Φ2 we obtain a theory which describes

a reducible tower of higher spin massless gauge fields. Including ∆p·∆x = 0 and `2(∆p)2 =

ε2s2(∆x)2 makes this tower irreducible and adding ΦS as well gives a single higher spin

massless gauge field. In all these models the issue of the interaction vertex is still open.

5.6.1 Quantizing the Relativistic Model

To quantize the relativistic two particle model we will first obtain a Lagrangian description

as we did in the non-relativistic case. This analysis has already been done for DPS, see

eq. (4.50) in Chapter 4, and since the two models are equivalent we can simply import the

result. We find

Ls = ε

√
s2

y2
(Dτy)2 −M2(DτX)2 − 2ms

|y|
√

(DtX · Dty)2 − (DtX)2(Dty)2, (5.56)

where ε = ± and the sign of s is not fixed. These signs come from defining the square

roots and

∆xµ = `yµ/|y|, DτAµ = Ȧµ − Ȧ · y
y2

yµ, M2 = 4(m2 + ε2s2).

The momenta conjugate to Xµ and yµ, denoted P µ
X and P µ

y respectively, can be obtained

in the standard fashion by varying the action with respect to Ẋ and ẏ respectively. There

is no need to know their exact form, it is sufficient to note that they satisfy the following

constraints

P 2
X = −M2, P 2

y =
s2

|y|2
, Py · y = 0 (5.57)

PX · y = 0, PX · Py = 0. (5.58)
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The first three constraints are first class5 and are strikingly similar to those appearing in

the non-relativistic model, see eq. (5.20). The final two constraints are second class which

will complicate the quantization procedure since we must first implement Dirac brackets

before promoting to commutators. Forgoing some details, we find that the commutator

algebra which takes into account the second class constraints is given by[
X̂µ, X̂ν

]
=

i

M2
Ŝµν ,

[
X̂µ, P̂ ν

X

]
= iηµν ,

[
X̂µ, ŷν

]
=

i

M2
ŷµP̂ ν

X , (5.59)[
X̂µ, P̂ ν

y

]
=

i

M2
P̂ µ
y P̂

ν
X ,

[
ŷµ, P̂ ν

y

]
= i

(
ηµν +

1

M2
P̂ µ
XP̂

ν
X

)
, (5.60)

where Sµν = (y ∧ p)µν is the spin tensor and M2 := −P 2
X . It can be checked directly that

commutators of the second class constraints either vanish directly or are proportional to

the mass-shell constraints (P̂ 2
X + M2) = 0.

Let H = L2(R4 ×R4) be the Hilbert space of square integrable functions Ψ(X, y). An

action of the operators on H which respects the preceding commutation relations can be

defined as follows

X̂µΨ =

(
Xµ +

i

M2
Sµν

∂

∂Xν

)
Ψ, P̂ µ

XΨ=− i ∂

∂Xµ

Ψ, (5.61)

ŷµΨ = PµνyνΨ, P̂ µ
y Ψ =− iPµν ∂

∂yν
Ψ, (5.62)

where

Sµν = −i
(
yµ

∂

∂yν
− yν ∂

∂yµ

)
, Pµν = ηµν −M−2 ∂2

∂Xµ∂Xν

. (5.63)

It is easily verified that the operator identities P̂X · ŷ = P̂X · P̂y = 0 are satisfied and so we

turn our attention to the first class constraints, eq. (5.57). The action of these constraints

on the Hilbert space H yields the following differential equations

�XΨ = M2Ψ, (5.64)

yµ
∂

∂yν
PµνΨ = 0, (5.65)

yµyν
∂2

∂yα∂yβ
PµνPαβΨ = −s2Ψ. (5.66)

Assuming separation of variables Ψ(X, y) = ΨX(X)Ψy(y), eq. (5.64) is just the Klein-

Gordon equation for ΨX(X) which is easily solved in momentum space and ΨX(X) =

5We have the standard Poisson brackets {Xµ, P νX} = ηµν and
{
yµ, P νy

}
= ηµν .
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∫
dkeik·XΨ̃X(k)δ(k2 +m2) is the general solution. It follows that

PµνΨ =

(
ηµν +

1

M2
kµkν

)
Ψ ≡ Pµνk Ψ, (5.67)

where Pµνk is the projection operator onto the hyper-plane orthogonal to kµ. Let us intro-

duce the coordinate yµk = Pµνk yν , then we can assume a further separation of variables for

Ψy(y), namely

Ψy(y) = Ψ0(y · k)Ψyk(yk). (5.68)

We can now express eqs. (5.65)–(5.66) as follows

yµk
∂

∂yµk
Ψyk = 0, (5.69)

�ykΨyk +
s2

y2
k

Ψyk = 0. (5.70)

For kµ timelike the vector yµk takes values in a three dimensional spacelike hyperplane

orthogonal to kµ. As such eqs. (5.69)–(5.70) have the same solution as their non-relativistic

counterparts eqs. (5.26)–(5.27), i.e. Φyk(yk) = Y m
` where Y m

` is a spherical harmonic. As

the Hamiltonian is a sum of the first class constraints this completes the quantization of the

relativistic two-particle model. The solutions are characterized by three quantum numbers

M, ` and m where M ∈ R, ` ∈ N and m = −`,−` + 1, . . . , ` − 1, `; wavefunctions are

written as

ΨM,`,m = Ψ0ΨM
k Y

m
` , (5.71)

where Ψ0 is undetermined.
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Chapter 6

First Order Parameterization of

Spinning Particle

6.1 Introduction

In Chapter 4 we introduced the “Dual Phase Space” (DPS) model as a natural setting

for understanding the relativistic spinning particle. However, one of the challenges with

DPS was the presence of second class constraints, recall that for a massive particle four

of the six defining constraints were of this type. The present Chapter seeks to simplify

the constraint structure of DPS by utilizing spinors to parameterize the spinning degrees

of freedom and thereby resolve all second class constraints. The resulting model provides

valuable insights into the effect of spin on motion through spacetime. To keep the Chapter

self contained we will review some of the results from previous Chapters.

6.2 Overview

As this Chapter is rather technical we include at the outset an overview of the relevant

results. The “Dual Phase Space” model parameterizes the phase space of the relativistic

particle of mass m and spin s in terms of two pairs of canonically conjugate four vectors

(xµ, pµ) and (χµ, πµ). The pair (xµ, pµ) represent the standard position and momentum

of the particle while (χµ, πµ) are “dual” variables which encode the spinning degrees of

freedom. The dynamics of the particle are then determined by a set of six real constraints,

and if the particle is massive four of these are second class. These constraints can be
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presented most straightforwardly by introducing a complex “spin” vector

`µ =
πµ

ε
+ is

χµ

λ
, (6.1)

where λ and ε are fundamental length and energy scales respectively and satisfy λε = ~.

The first class constraints which define mass and spin are simply restrictions on the

length of the momenta and spin vector

p2 +m2 = 0, ``∗ = 2s2. (6.2)

These are then supplemented by additional constraints which form a second class system.

The first result of this Chapter is to construct a purely first class model by using the spinor

formalism to solve the second class constraints. The purpose of such a re-parameterization

is two fold, first it provides greater control over the action while allowing for a better

understanding of the effect of spin on particle dynamics. Secondly, it makes a connection

with the standard Dirac formalism and therefore should permit a description of fermions1.

We find that the general solution to the second class constraints is obtained by setting

` =
|ξ〉〈ξ|p
m

, (6.3)

where ξα = |ξ〉 is a spinor, 〈ξ| = εαβξβ is the transposed spinor, and p is the momenta

represented as a 2×2 hermitian operator. The resulting first order action has two undeter-

mined Lagrange multipliers corresponding to the mass shell and spin constraint. We can

interpret the Lagrange multipliers as generators of two gauge invariant quantities, proper

time τ(t) (dual to the mass shell) and proper angle φ(t) (dual to the spin constraint) and

we show that the action is of the form

S = mτ(t) + 2~sφ(t). (6.4)

The spin velocity |ξ̇〉 can be expressed as a function of two complex coefficients (a, b)

that characterize the spin motion and which are defined by the expansion

|ξ̇〉 = a|ξ〉+
bm

2~s
ẋ|ξ], (6.5)

where |ξ] = 〈ξ|†. The proper time and the proper angle are then explicitly given by

τ̇ = |ẋ|
√

1− |b|2, φ̇ = Im(a). (6.6)

1It was shown in Chapter 5 that, upon quantization, DPS only yields integer spins.
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where |ẋ| ≡
√
−ẋ2. The fact that the action is independent of Re(a) means that it is

invariant under spin rescaling |ξ〉 → α|ξ〉, with α ∈ R+ which is essentially the expression

of Lorentz invariance from the spin point of view. Comparing this to the standard action

for the spinless relativistic particle one notices that the four-velocity is modified by a factor

of the form
√

1− |b|2. This shows that spin motion can be viewed as inducing a Lorentz

contraction of the four-velocity! In addition, one notes that there is a maximal speed of

spin propagation encoded into the causality condition |b| ≤ 1. As shown in Section 6.4.2,

violating this bound would yield a spacelike velocity ẋ2 > 0. Note that the parameter b

measures the propensity of spin to flip along the motion of the particle.

Further analysis reveals an even more stringent restriction on the classical spin motion:

If a relativistic spinning particle has an initial configuration given by (x, ξ) and x′ is in

the future light cone of x , then there is a classical path connecting (x, ξ) and (x′, ξ′)

only if ξ′ ∝ ξ, that is only if the spin state does not evolve under classical motion. It

follows that2 there are trajectories which have ξ̇ 6= 0 but which still satisfy the causality

constraint |b| ≤ 1. These “half-quantum” states are interesting because although they

are not classical they are not exponentially suppressed in the path integral either. This

possibility explains why spin and its motion can only be fully understood as a quantum

object since the boundary between quantum and classical is not as sharply defined as it is

for spacetime motion.

We complete the first order formulation by computing explicitly the commutators

among the position and spin variable and we witness that the presence of spin renders

the position variable non-commutative (as already noticed in [71, 6, 112]). The calculation

is involved but is simplified by considering the symmetries of the symplectic potential/form.

In particular we find that the position coordinates acts a type of boost generator on the

spin variables: {
ξα, xββ̇

}
=
pαβ̇ξβ

m2
. (6.7)

From our analysis we can clearly see two new phenomena associated with spin, the existence

of a spin causality constraint and the possibility of“half-quantum” states, both of which

are not discussed in the literature.

2See Section 6.4.1 for a complete discussion
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6.3 First Class Formalism

In the DPS model the phase space of the relativistic spinning particle is parameterized by

two pairs of canonically conjugate four vectors (xµ, pν) and (χµ, πν) with Poisson brackets

{xµ, pν} = ~ηµν , {χµ, πν} = ~ηµν . (6.8)

The fundamental length and energy scales λ and ε allow for the unification of the “dual”

position χµ and “dual” momenta πµ into a single complex vector

`µ ≡
πµ
ε

+ is
χµ
λ
, {`µ, `∗ν} = 2sηµν . (6.9)

The dynamics of the spinning particle are then characterized by two sets of constraints

with the first being obtained from a simple restriction on the lengths of p and `:

p2 +m2 = 0, ``∗ = 2s2. (6.10)

The remaining constraints are then given by two pairs of orthogonality conditions

p · ` = 0, `2 = 0, (6.11)

and their conjugates.

It is easy to verify that the constraints in eq. (6.10) are first class. However, although

the constraints in eq. (6.11) commute with each other they do not commute with their

conjugates unless m or s vanish. The first major result of this Chapter is to solve this

second class system by means of the spinor formalism leaving us with a purely first class

representation of the relativistic spinning particle.

Let us begin with the null condition `2 = 0, which is solved by noting that any complex

null vector can be represented by a product of spinors ξα, ζ̄α̇, viz

`αα̇ = ξαζ̄α̇, ` = |ξ〉[ζ|. (6.12)

Here and in what follows we will utilize the spinor formalism quite extensively (see [74, 113,

114, 115]). For the readers’ convenience this formalism is described at length in Chapter H,

and we give a short overview here as well.

Denote by χα, α = 0, 1, a two-dimensional complex spinor and χ̄α̇ = (χα)† its complex

conjugate. Indices are raised and lowered with the epsilon tensor εαβ which is the skew

symmetric tensor normalized by ε01 = 1, i.e.

χα = εαβχβ, χα = εαβχ
β, χ̄α̇ = εα̇β̇χ̄β̇, χ̄α̇ = εα̇β̇χ̄

β̇.
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These quantities are represented as bras and kets (see also [116]) via

|χ〉 = χα, 〈χ| = χα, |χ] = χ̄α̇, [χ| = χ̄α̇, (6.13)

with the notation being specifically designed to distinguish a spinor from its conjugate.

Note also that we have adopted a convention in which the epsilon tensor satisfies εαγε
γβ =

δβα. The SL(2,C) invariant contractions between spinors are denoted by a rocket:

〈ζ|ξ〉 := ζαξα, [ζ|ξ] := ζ̄α̇ξ̄
α̇, [ζ|ξ] = −〈ζ|ξ〉∗. (6.14)

Let (σa)αα̇ = (1αα̇, ~σαα̇) be the standard four vector of sigma matrices, and (σ̄a)α̇α ≡
(σa)ββ̇ε

αβεα̇β̇ the same vector but with indices raised. Given a real vector pa we can

construct the two by two hermitian operators pαα̇ := pa(σ
a)αα̇ and p̄ = paσ̄

a as well as

the hermitian pairing 〈ξ|p|ζ] = [ζ|p̄|ξ〉. This completes the brief introduction to the spinor

formalism.

Given the parameterization in eq. (6.12) the remaining second class constraint is equiv-

alent to [ζ|p̄|ξ〉 = 0 which has the general solution [ζ|p̄ ∝ 〈ξ|. The normalization can be

chosen arbitrarily and to keep the spinor dimensionless we put m[ζ| = 〈ξ|p, provided that

m 6= 0. Thus, the general solution of eq. (6.11) is

`αα̇ =
ξαξ

βpβα̇
m

or ` =
|ξ〉〈ξ|p
m

. (6.15)

The first class constraints, eq. (6.10), are expressed in-terms of these new variables as

Φm =
1

2
Tr(pp̄)−m2, Φs =

1

2
〈ξ|p|ξ]−ms. (6.16)

To obtain an action we add these constraints to the symplectic potential Θ = pµdx
µ+πµdχ

µ.

As a one-form on phase space the symplectic potential can be evaluated on the second class

constraints eq. (6.11) and the spin part πµdχ
µ expressed entirely in terms of the spinor

variable ξα, viz

Θ = −1

2
Tr(p̄dx) +

i~
2m

〈ξ|p|ξ]
2ms

p̄αα̇
(
ξαdξ̄α̇ − ξ̄α̇dξα

)
. (6.17)

It is interesting to see that the symplectic structure already depends on a unit of action

through ~ even if it is a classical entity. This expresses mathematically the notion that

spin blurs the sharp distinction between classical and quantum that we are familiar with.

Without loss of generality and up to a redefinition of Lagrange multipliers we can implement

the first class constraints in Θ. It will therefore be convenient to work with the simpler

version

Θm,s = −1

2
Tr(p̄dx) +

i~
2m

p̄αα̇
(
ξαdξ̄α̇ − ξ̄α̇dξα

)
, (6.18)

which summarizes the symplectic structure of the relativistic spinning particle.
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6.4 Classical Action for the Relativistic Spinning Par-

ticle

6.4.1 First Order Action and Half-Quantum States

The action Sm,s =
∫ τ

0
dtLm,s(t) for the relativistic spinning particle has Lagrangian Lm,s =

Θm,s + N
m

Φm + M
m

Φs. Introducing the quantity θ(ξ) := i~
(
|ξ̇〉[ξ| − |ξ〉[ξ̇|

)
we find that the

Lagrangian is expressed explicitly as

Lm,s = − 1

2m
Tr

(
p̄ (mẋ+ θ(ξ)−M |ξ〉[ξ|)− N

2
pp̄

)
− Nm

2
−Ms. (6.19)

The first class constraints Φm and Φs generate time translations (parameterized by α) and

local spin rotations (parameterized by β) respectively. Both of these gauge transformations

leave the Lagrangian invariant and act on the phase space variables as

δ(α,β)N := α̇, δ(α,β)M := β̇, δ(α,β)x :=
αp

m
, δ(α,β)|ξ〉 := − iβ

2~
|ξ〉, (6.20)

while δ(α,β)p = 0 and δ(α,β)θ(ξ) = β̇|ξ〉[ξ|. These transformations can also be used to fix

the Lagrange multipliers N and M to constant values, giving rise to two gauge invariant

observables, the proper time τ and the proper angle φ:

τ(t) =

∫ t

0

dt′N(t′), φ(t) =
1

2~

∫ t

0

dt′M(t′). (6.21)

The appearance of a new type of observable in addition to proper time is one of the most

relevant facts about spin from the perspective of this Chapter.

To obtain the first order action we need to solve the equation of motion for p which is

given by Np = mẋ+ θ(eiφξ). Inserting this into the Lagrangian we find

Lm,s = − 1

4Nm
Tr
[(
mẋ+ θ(eiφξ)

) (
m ˙̄x+ θ̄(eiφξ)

)]
− Nm

2
− 2~sφ̇, (6.22)

where we have used that 2~φ̇ = M . We can further expand Lm,s by means of the identities

Tr
[
ẋθ̄(ξ)

]
= −2~Im

(
〈ξ̇|ẋ|ξ]

)
and Tr

[
θ(ξ)θ̄(ξ)

]
= −2~2|〈ξ|ξ̇〉|2, (6.23)

while also making use of the re-parametrization invariant spinor velocity |∂τξ〉 = ˙|ξ〉/N .

We find

Lm,s =
1

2Ñ
ẋ2 − Ñ

2

(
m2 − |~〈ξ|∂τξ〉|2

)
︸ ︷︷ ︸

Modified Mass−shell

+

Spin Potential︷ ︸︸ ︷
~ Im (〈∂τξ|ẋ|ξ]) + ~φ̇ (〈ξ|ẋ|ξ]− 2s)︸ ︷︷ ︸

Spin Constraint

, (6.24)
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where we have defined Ñ ≡ N/m. Written in this form, the Lagrangian is valid in the

massless limit as well.

As seen above there are three terms which make up the Lagrangian: A modified mass-

shell with effective mass M given by

M2 = m2 − |~〈ξ|∂τξ〉|2, (6.25)

a potential that couples the linear velocity to the spin, and finally the spin constraint

〈ξ|ẋ|ξ] = 2~s. (6.26)

The minus sign appearing in the modified mass-shell, eq. (6.25), imposes a causality con-

straint: At a classical level the linear velocity must be timelike or null, i.e M2 ≥ 0, and so

the spin motion must satisfy

~|〈ξ|∂τξ〉| ≤ m. (6.27)

Therefore, while the component of ẋ along |ξ] is fixed by eq. (6.26), the causality constraint

restricts the spin velocity |〈ξ|ξ̇〉| to be bounded from above. Of course, this is a classical

restriction and can be violated at the quantum level. These are the virtual processes whose

amplitudes will be suppressed in the path integral.

We can extend this analysis to the semi-classical level and see more clearly the delin-

eation between which processes will experience an exponential suppression and those which

will not. Specifically, let us examine the trajectories defined by the classical equations of

motion. For x we find that the evolution is characterized by

mẋ+ θ(ξ) = NP + φ̇|ξ〉[ξ|, (6.28)

where P a is a constant of motion. It follows that the particle will undergo oscillatory

motion, known as Zitterbewegung [82], due to the rotation of the spin, on top of the

standard linear evolution. On the other hand, the equation of motion for ξ reduces to

ξ(τ) = eiφ(τ)ξ(0) which yields an even more stringent restriction on the spin motion than

eq. (6.27), see Section I.1 for more details. In particular, it implies that the spin state can

only change by an internal phase during classical evolution.

Observe that it is possible to violate the restriction on the spin evolution while still satis-

fying both the causality constraint eq. (6.27) and the classical equation of motion eq. (6.28)

for x . Such “half-quantum” states represent trajectories which are not fully classical yet

will not be exponentially suppressed in the path integral. Normally motion is classified
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as either classical, in which case the classical equations of motion are satisfied, or quan-

tum, in which case the classical action is imaginary. Little is known about “half-quantum”

states and they deserve further exploration; it is possible that they represent entanglement.

6.4.2 Second-Order Action

The second order action can be obtained from eq. (6.24) by integrating out Ñ and φ̇. For

Ñ we proceed in the usual fashion by solving its equation of motion,

Ñ2 = − ẋ2

(m2 − |~〈ξ|∂τξ〉|2)
(6.29)

and substituting the result back into Lm,s. The integration over φ, on the other hand,

imposes the spin constraint eq. (6.26). In order to solve it we introduce a spinor ρα, free

of constraints, and which is related to ξ via3

|ξ] = |ρ]

√
2Ns

〈ρ|ẋ|ρ]
. (6.30)

Combining these transformations gives the second order action

S = m

∫ 1

0

dτ

√√√√−ẋ2

(
1−

∣∣∣∣2~sm 〈ρ|ρ̇〉
〈ρ|ẋ|ρ]

∣∣∣∣2
)

+ 2~s
∫ 1

0

dτ

(
Im〈ρ̇|ẋ|ρ]

〈ρ|ẋ|ρ]

)
. (6.31)

As in the first order case, this action is invariant under time translations and spin rotations,

now expressed as

δ(α,β)x = αẋ, δ(α,β)|ρ〉 = α|ρ̇〉+ iβ|ρ〉, (6.32)

where α, β ∈ R. The proper time and proper angle can be identified with the first and

second term of eq. (6.31) respectively, viz.

τ(t) ≡
∫ t

0

dt′

√
−ẋ2

(
1− |2~s〈ρ|ρ̇〉|

2

m2〈ρ|ẋ|ρ]2

)
, (6.33)

φ(t) ≡ Im

∫ t

0

dt′
(
〈ρ̇|ẋ|ρ]

〈ρ|ẋ|ρ]

)
. (6.34)

3We assume that 〈ρ|ẋ|ρ] > 0.
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6.4.3 Decomposing Spin Velocity

The spinors |ρ〉 and ẋ|ρ] form a basis for spinor space provided that 〈ρ|ẋ|ρ] 6= 0. There-

fore, we can expand the spin velocity in this basis by introducing two complex functions

(a(τ), b(τ)), with |b| < 1:

|ρ̇〉 = a|ρ〉+
bm

2~s
ẋ|ρ]. (6.35)

It is straightforward to solve for a and b

a =
〈ρ̇|ẋ|ρ]

〈ρ|ẋ|ρ]
, b =

2~s
m

〈ρ|ρ̇〉
〈ρ|ẋ|ρ]

, (6.36)

from which it follows that

S = m

∫
dτ |ẋ|

√
1− |b|2 + 2~s

∫
dτ Im(a). (6.37)

We see that knowledge of the spin velocity at all times uniquely determines the proper

time and proper angle. In particular, if the spin velocity has a component along ẋ|ρ] the

proper time runs at a slower pace and so
√

1− |b|2 can be viewed as a time contraction

factor due to the spin motion. In the appendix we extend this analysis a bit further and

derive the equations of motion associated with the second order action eq. (6.31).

The action in eq. (6.31) is a special case of the one derived by Lyankhovich et. al. in

[79]. The difference between the two comes from the inclusion of a term in Lyankovich’s

model which allows for the description of continuous spin particles (CSP’s). As DPS is

equivalent to the restricted version of the latter model (as established in this Chaoter) it is

reasonable to assume that there is a generalization of the Dual Phase Space model which

will also permit the inclusion of CSP’s. We explore this possibility more fully in Chapter 7.

6.5 Poisson Brackets

Computing the Poisson algebra is rather tedious but can be simplified somewhat by first

considering the symmetries of the symplectic potential/form. From eq. (6.17) we have that

the symplectic potential is expressed in-terms of the original spinor ξα as

Θ = −1

2
Tr(pdx̄) +

i~
2m

〈ξ|p|ξ]
2ms

(〈ξ|p|dξ]− 〈dξ|p|ξ]) . (6.38)

The symmetry group of Θ is the Poincaré group, which factors as the semi-direct product

of the translation group and the group of left and right rotations. Let the infinitesimal
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generators of right and left rotations be denoted by ρα
β and ρ̄α̇β̇, respectively. Under these

rotations the phase space variables transform in the following manner:

δRρ x = ρx, δRρ p = ρp, δRρ |ξ〉 = ρ|ξ〉, δRα [ξ| = 0, (6.39)

δLρ̄ x = xρ̄, δLρ̄ p = pρ̄, δLρ̄ |ξ〉 = 0, δLρ̄ [ξ| = [ξ|ρ̄. (6.40)

We do not require ρ or ρ̄ to be traceless and so rotations have a non-trivial action on the

epsilon tensor, in particular

δRρ εαβ = ρα
γεγβ + ρβ

γεαγ, δRρ ε
αβ = −εγβργα − εαγργβ, (6.41)

where the second equality follows by demanding invariance of δαβ. Identical results hold

for left rotations of ε̄. Thus, the action of left and right rotations on quantities with raised

indices can be obtained from eqs. (6.39)–(6.40) by adding a minus sign and moving the

rotation matrix to the other side, e.g. δRρ 〈ξ| = −〈ξ|ρ, which implies that the rocket 〈ξ|ξ〉
is SL(2,C) invariant. We can also denote the infinitesimal generator of translations as aαα̇,

which acts only on the positional coordinate x as δax = a. The Hamiltonian vector fields

associated with these transformations are given by

Rρ ≡ −(x̄ρ)α̇α
∂

∂x̄α̇α
+ (ρp)αα̇

∂

∂pαα̇
− (〈ξ|ρ)α

∂

∂ξα
, (6.42)

Vρ̄ ≡ −(ρ̄x̄)α̇α
∂

∂x̄α̇α
+ (pρ̄)αα̇

∂

∂pαα̇
− (ρ̄|ξ])α̇ ∂

∂ξ̄α̇
, (6.43)

Ta ≡ āα̇α
∂

∂x̄α̇α
, (6.44)

respectively. We can now compute the corresponding Hamiltonian by considering the

action of the symplectic form Ω = dΘ, viz.

Ω(Rρ, ·) = dTr(ρJ), Ω(Lρ̄, ·) = dTr(J̄ ρ̄), Ω(Ta, ·) = dTr(āp/2), (6.45)

where

J = −
[
px̄

2
+ i~

p|ξ]〈ξ|
2m

〈ξ|p|ξ]
2ms

]
, J̄ = −

[
x̄p

2
− i~〈ξ|p|ξ]

2ms

|ξ]〈ξ|p
2m

]
. (6.46)

It should be noted that the left and right rotations include left and right dilations. These

are obtained by taking ρ and ρ̄ proportional to the identity; the generators are

D = −1

2
Tr(px̄), R = ~

〈ξ|p|ξ]2

m2s
. (6.47)
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On the other hand, rotations associated with traceless ρ and ρ̄ correspond to left and right

Lorentz transformations.

As noted in eq. (6.45) the Hamiltonians for right rotations, left rotations, and transla-

tions are given by J , J̄ and p/2, respectively. As such, we can write down the following

brackets {
Aα , J

γ
β

}
= δγαAβ,

{
B̄α̇ , J̄

β̇
γ̇

}
= δβ̇ α̇B̄γ̇, (6.48){

Aα , J γ
β

}
=−δαβAγ,

{
B̄α̇ , J̄ β̇γ̇

}
=−δα̇γ̇B̄β̇, (6.49){

xαα̇, pββ̇
}

= 2εαβεα̇β̇,
{
x̄α̇α, pββ̇

}
= 2δαβ δ

α̇
β̇
, (6.50)

where A (respectively B̄) is any quantity with a single undotted (dotted) index and an

unspecified number of dotted (undotted) indices. Note that J commutes with any quantity

possessing only undotted indices and vice versa for J̄ , furthermore since pαα̇, ξα, and ξ̄α̇

are invariant under translations they must commute with pαα̇. Commutators between the

J and J̄ follow from the Jacobi identity{
J β
α , J ρ

γ

}
= δραJ

β
γ − δβγJ ρ

α ,
{
J̄ α̇

β̇
, J̄ γ̇ρ̇

}
= δγ̇

β̇
J̄ α̇ρ̇ − δα̇ρ̇ J̄

γ̇

β̇
,
{
J β
α , J̄ α̇

β̇

}
= 0. (6.51)

Before we continue, it will be convenient to introduce the null “position” vector

∆̄ =
~

2ms

〈ξ|p|ξ]
m
|ξ]〈ξ|, (6.52)

which allow us, c.f. eq. (6.46), to parameterize J and J̄ as

J = −1

2
p(x̄+ i∆̄), J̄ = −1

2

(
x̄− i∆̄

)
p. (6.53)

These expressions can now be inverted to obtain x̄ and ∆̄ in-terms of variables whose

Poisson brackets we already know

x̄ = − 1

m2

(
p̄J + J̄ p̄

)
, ∆̄ =

i

m2

(
p̄J − J̄ p̄

)
. (6.54)

Using these results we can compute the remaining Poisson brackets, as detailed in Appendix

I.3. One finds that x acts as a generator of translations in momentum space while also

rotating the spin variable along an axis determined by p, viz{
x̄α̇α, pββ̇

}
= 2δαβ δ

α̇
β̇
,

{
ξα, x̄β̇β

}
=

1

m2
p̄β̇αξβ. (6.55)
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Furthermore, the position variable itself is observed to be non-commutative, with the

deviation from commutativity being proportional to the spin content. This fundamental

modification to the notion of localization is one of the main features of spin, and has been

exploited in previous works [6]. Explicitly, the x commutation relations read{
x̄α̇α, x̄β̇β

}
=

i~
2ms

〈ξ|p|ξ]
m3

(
p̄α̇β ξ̄β̇ξα − p̄β̇αξ̄α̇ξβ

)
. (6.56)

Last but not least, we witness that the spinor variables behave as creation and annihilation

operators: The holomorphic spinors commute with each other,
{
ξα, ξβ

}
= 0, whereas a

spinor and its conjugate do not{
ξα, ξ̄β̇

}
= − is

~〈ξ|p|ξ]2
(

2〈ξ|p|ξ]p̄β̇α −m2ξαξ̄β̇
)
. (6.57)

This concludes our analysis.
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Chapter 7

Continuous Spin Partilces in deSitter

7.1 Introduction

In quantum field theory, elementary particles form irreducible representations of the Poincaré

group [83] and in four dimensions these irreps fall into four distinct types. Two of these

correspond to the standard massive particle and massless particle of definite helicity while

the other two give rise to tachyons m2 < 0 and the so called continuous spin particle (CSP).

It is well known that the appearance of a tachyon indicates an instablity in the underlying

theory, but CSP’s present a unique unexplored opportunity. In particular, Schuster and

Toro have shown [84, 85, 86] that CSP’s mediate long range forces and therefore provide

for a possible dark matter candidate. However, to fully address this possibility requires an

understanding of how CSP’s couple to gravity, a task which has proven difficult. In this

Chapter we will address this shortcoming by utilizing the Dual Phase Space formalism to

construct a consistent theory of CSP’s in deSitter.

7.2 Continuous Spin Particles in the DPS Model

In Section 4.3 we showed that the coadjoint orbits of the Poincaré group are characterized

by two invariants, the squared momentum p2 which determines the mass, and the square

of the Pauli-Lubanski vector w2 which determines the spin, c.f. the discussion preceding

eq. (4.16). In our treatment of massless particles, p2 = 0, we assumed that w2 = 0 implying

w ∝ p with the constant of proportionality interpreted as the helicity. This is not the most

general scenario though, in fact as shown by Wigner [83], it is possible to have p2 = 0 and
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w2 = ρ2 resulting in the so called continuous spin particle (CSP). At a group theoretic

level, recall that the little group for massless representations of the Poincaré group is

the Euclidean group E(2). This group is infinite dimensional, unless one restricts to the

subspace where the translation generators are trivial. The latter case corresponds to the

usual massless helicity particle, whereas the more general case yields the continuous spin

particle. In this section we will show how to generalize the DPS model to incorporate

CSP’s.

7.2.1 Generalizing the Model

In the Dual Phase Space model, the angular momentum operator is parameterized as

Jµν = (x∧p)µν+(χ∧π)µν , and so the square of the Pauli-Lubanski vector wµ = 1
2
εµνρσp

νJρσ

can be written as

w2 = −p2(χ2π2 − (χ · π)2) + (p · χ)2π2 + (p · π)2χ2 − 2(p · χ)(p · π)(χ · π). (7.1)

In the massless case the first term drops out, and so achieving w2 6= 0 requires at least one

of p · χ or p · π be non-zero. For definiteness let’s put p · χ = λρ and leave the remaining

DPS constraints unaltered, c.f eq. (4.16). The value of w2 is now

w2 = s2ρ2, (7.2)

where we have used that λε = 1. It turns out that this straightforward modification is

sufficient to allow for a description of CSP’s, see [79, 105]. In summary, the generalized

DPS model is represented by the set of six constraints

Φm =
1

2

(
p2 +m2

)
, Φπ =

1

2

(
π2 − s2ε2

)
, Φχ =

1

2

(
χ2 − λ2

)
,

Φχπ = χ · π, Φpπ = p · π, Φpχ = p · χ− λρ,
(7.3)

and it is assumed that ρ = 0 if m 6= 0.

7.2.2 Equations of Motion

It is interesting to note that for a CSP, as for a massive particle, the six constraints eq. (7.3)

split into two first class and four second class, with the former given by

Φm=0, Φs = λ2ρΦπ + εs2Φpχ. (7.4)
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It follows that a CSP has four physical degrees of freedom despite being a massless particle;

recall that a massless helicity particle has only three physical degrees of freedom. It is also

interesting to note that the spin constraint Φs is quite different from the one appearing in

the description of massive and massless helicity particles, c.f. eq. (4.34). This discrepancy

is born out in the equations of motion, which follow from the Hamiltonian H = NΦp+MΦs,

viz.

pµ(τ) = Pµ (7.5)

πµ(τ) = Aµ −Mεs2τPµ (7.6)

χµ(τ) = Bµ +Mλ2ρτAµ −
M2

2
λρs2τ 2Pµ (7.7)

xµ(τ) = Xµ +
(
NPµ +Mεs2Bµ

)
τ +

M2

2
λs2ρτ 2Aµ −

M3

6
s4ρτ 3Pµ, (7.8)

where Pµ, Aµ, Bµ, and Xµ are constant vectors which satisfy A2 = λ2, B2 = ε2s2, P ·A = λρ

and P ·A = A ·B = 0. Strikingly, these equations exhibit no oscillatory motion, something

which is a feature of the massive and massless helicity particles. At this time we have no

intuition for why the behavior of CSP’s is so dramatically different from the other particles

we have considered.

Continuous spin particles can be minimally coupled to an electromagnetic field via

πµ → Πµ ≡ πµ + eAµ(χ). (7.9)

A higher order term can also be included by making the replacement

Π2 − ε2 → Π2 + gFµνL
µν − ε2, (7.10)

where g is a “gyromagnetic ratio” and Lµν = (x ∧ p)µν . Observe that this coupling occurs

entirely in the dual space, as opposed to the case of a massive particle, see Section 4.6,

which has exactly the opposite behavior. The interaction vertex between CSP’s is an

ongoing topic of research and we have yet to find a consistent prescription as was done for

the massive and massless particles in the original DPS model.

7.3 Representations of the deSitter Group

The study of particles in a curved background presents an interesting challenge. Trans-

lations are no longer a symmetry of the underlying spacetime and therefore there is no
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generator which can naturally be identified with the momentum. Consequently, the defini-

tion of “mass” is ambiguous and so the classification of particles into massive and massless

is open for debate. In this Chapter we are principally interested in deSitter which has

symmetry group SO(4, 1) and many of its irreducible representations contract to repre-

sentations of the Poincaré group. We will therefore adopt the convention that an irrep of

SO(4, 1) will have the same physical interpretation as the representation of the Poincaré

group to which it contracts. We begin by examining the irreps of the deSitter group.

Let ηAB = diag(−,+,+,+,+) then SO(4, 1) is the group consisting of 5 × 5 matrices

XA
B satisfying XA

CX
B
DηAB = ηCD. The generators of SO(4, 1) are denoted JAB, where

A,B = 0, 1, . . . , 4; they satisfy the standard algebra

[JAB, JCD] = (ηACJBD − ηADJBC + ηBDJAC − ηACJBD) , (7.11)

and provide a parameterization of the SO(4, 1) Casimirs via

C2 =
1

2
JABJ

AB, C4 = WAW
A, (7.12)

where WA = 1
8
εABCDEJ

BCJDE. The radius of curvature of the manifold underlying

SO(4, 1) will be denoted R > 0.

Let Πq,s denote the unitary irreducible representations of G. The quantities q and s

characterize the representation [117]; they can be thought of as representing “mass” and

“spin” and parametrize the eigenvalues of the Casimirs:

C2 = − [s(s+ 1) + (q + 1)(q − 2)] , (7.13)

C4 = −s(s+ 1)q(q − 1). (7.14)

In what follows, we will ignore representations of SO(4, 1) which do not contract to a

representation of the Poincaré group since such a representation would correspond to a

model without a ready physical interpretation.

There are two classes of representation to consider, the Principle Series and the Discrete

Series [118, 117, 119]. In the former case we put q = 1
2

+ iν where ν ∈ R, so that the

relevant members of the Principle Series satisfy

s = 0, 1, 2, . . . , ν ≥ 0, (7.15)

s =
1

2
,
3

2
,
5

2
, . . . , ν > 0. (7.16)

Define m ≡ ν/R, then a group contraction (R→∞) yields the massive representations of

the Poincaré group, a fact evidenced by the Casimirs

C2 = m2 +
1

R2

(
9

4
− s(s+ 1)

)
−−−→
R→∞

m2 (7.17)
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C4 = s(s+ 1)

(
m2 +

1

4R2

)
−−−→
R→∞

m2s(s+ 1), (7.18)

where Ci = Ci/R
2, i = 2, 4. On the other hand, if we put ν = s = n where 2n ∈ N satisfies

n2 = Rρ for some ρ > 0, a group contraction yields the continuous spin representation of

the Poincaré group [120]. We can see this at the level of the Casimirs as well

C2 =
1

R2

(
9

4
−
√
Rρ

)
−−−→
R→∞

0, (7.19)

C4 = ρ2 +
1

4R2
(5Rρ+ 1) −−−→

R→∞
ρ2, (7.20)

where ρ is the CSP scale, see eq. (7.2) and the preceeding discussion.

The Discrete Series, is defined by

s = 1, 2, 3, . . . , q = s, s− 1, . . . , 0 (7.21)

s =
1

2
,
3

2
, . . . , q = s, s− 1, . . . ,

1

2
, (7.22)

and the relevant members have q = s. These contract to massless representations of the

Poincare group with helicity s; the Casimirs behave as expected

C2 = − 2

R2
(s+ 1)(s− 1) −−−→

R→∞
0, (7.23)

C4 = − 1

R2
s2(s+ 1)(s− 1) −−−→

R→∞
0. (7.24)

7.4 Dual Phase Space Parametrization

To construct a classical model of elementary particles in deSitter we need to examine

the coadjoint orbits of SO(4, 1). Forgoing the details, these are parameterized by the

generators JAB and are uniquely determined by the values of the quadratic and quartic

Casimirs eq. (7.12). The Poisson brackets between the JAB are given by the right hand

side of eq. (7.11). In five dimensions any anti-symmetric tensor can be written as the sum

of two simple bi-vectors, and so JAB admits a dual phase space parameterization

JAB = (S ∧ T )AB + (U ∧ V )AB. (7.25)

We emphasize that no physical interpretation should be attached to the variables S, T, U, V ,

they are simply dynamical quantities which parameterize the classical phase space. It will
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be assumed that S, T and U, V form canonically conjugate pairs so the only non-vanishing

Poisson brackets are {SA, TB} = {UA, VB} = ηAB. Furthermore, since JAB represents

an angular momentum S, U will have units of length while T, V will have units of linear

momentum.

The quadratic and quartic Casimirs can be expressed in-terms of these variables by

substituting eq. (7.25) into eq. (7.12). The value of C2 and C4 can be determined by

introducing ten constraints corresponding to each possible inner product between the vec-

tors S, T, U, V . There is no need to consider the most general version of such constraints,

instead we find that the following are sufficient for our purposes:

S2 = `2, T 2 = −µ2ν2, U2 = λ2(1 + ρR), V 2 = ε2s2, S · T =
√
ρR,

U · V = 0, T · U = 0, T · V = 0, S · U = −`λ
√
ρR, S · V = 0.

(7.26)

The parameters introduced above require some explanation: `, λ have units of length, µ, ε, ρ

have units of mass, ν, s are dimensionless, and `µ = λε = 1. The values of the quadratic

and quartic Casimirs are now given by

C2 = −ν2 + s2, (7.27)

C4 = ν2s2 +Rρ
(
s2 +Rρ

)
. (7.28)

It remains to determine how the particle classification (massive, massless, or continuous

spin) is related to the choice of model parameters. To proceed we will use insights from

the previous section while also demanding two key properties:

1. The degrees of freedom for each model should match its flat space counterpart, i.e.

massive and continuous spin particles will have four and massless helicity three.

2. In the limit of flat spacetime the Casimirs should reduce to their Poincaré values.

Massive Spinning Particle

This is the easiest model to identify and we simply choose

ν = Rm, ρ = 0. (7.29)

The Casimirs are seen to be

C2 = −m2 +
s2

R2
, C4 = m2s2, (7.30)

which have the appropriate limits. From the ten constraints eq. (7.26) one can show

that two are first class and eight second class, so the reduced phase space has dimension

20− 2× 2− 8× 1 = 8, giving four physical degrees of freedom.
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Massless Spinning Particle - Helicity

In the previous section we showed that a massless particle was one which had equal “mass”

and “spin” quantum numbers. In the present context this amounts to setting ν2 = s2. c.f

eq. (7.27). To ensure that the number of degrees of freedom are correct we require ρ = 0,

and so the model is given by

ν2 = s2, ρ = 0, (7.31)

with Casimirs

C2 = 0, C4 =
s4

R2
. (7.32)

It is straightforward to verify that the model has four first class and six second class

constraints, giving the expected three physical degrees of freedom.

Massless Spinning Particle - CSP

A CSP is a massless particle and therefore the choice of ν should be identical to the massless

helicity case. Where a CSP differs is that, in the limit R → ∞, the quartic Casimir will

not vanish and so we must have ρ 6= 0. It follows that the model is defined by

ν2 = s2, ρ 6= 0, (7.33)

with the Casimirs behaving as required

C2 = 0, C4 = ρ2 +
Rρ+ s2

R2
s2. (7.34)

One can verify that there are two first class and eight second class constraints, giving four

physical degrees of freedom.

Observe that a massless helicity particle can be obtained from both the massive and

continuous spin models by setting m = s/R and ρ = 0 respectively. This behavior is

consistent with both intuition and the original DPS model (in the R→∞ limit).

7.5 Four Dimensional Model

The models constructed in the previous section offer little insight into the behavior of

spinning particles in a curved background; recall that the variables S, T, U, V lacked any
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physical interpretation. To address this issue let us split the generators JAB as follows:

JAB −→ Pµ ≡
1

R
J4µ, Jµν , (7.35)

where µ, ν = 0, 1, 2, 3. These satisfy the algebra

{Pµ, Pν} =
1

R2
Jµν , {Pµ, Jνρ} = ηµνPρ − ηµρPν , (7.36)

{Jµν , Jρσ} = ηµρJνσ + ηνσJµρ − ηµσJνρ − ηνρJµσ, (7.37)

which can be seen to reduce to the Poincaré algebra in the the limit R → ∞. There-

fore, we can view Pµ and Jµν as curved generalizations of the Minkowski momentum and

angular momentum, respectively. Taking inspiration from the original DPS model, see

Section 4.5.1, we parameterize Jµν as

Jµν = (X ∧ P )µν + (χ̃ ∧ π̃)µν . (7.38)

Here Xµ is interpreted as a position coordinate, while χ̃µ and π̃µ can be viewed as curved

versions of the dual position and dual momentum. In what follows we will refer to X,P, χ̃, π̃

as “curved DPS” coordinates. It should be noted though that this choice of coordinates is

not unique, any modification having the same R→∞ will have a similar interpretation.

These new coordinates can be related to the variables of the previous section S, T, U, V

by observing that the latter were defined to satisfy JAB = (S ∧ T )AB + (U ∧ V )AB. Com-

parison with eq. (7.35) and eq. (7.38) immediately yields

Pµ =
1

R
(S4Tµ − SµT4 + U4Vµ − UµV4) , (7.39)

(S ∧ T )µν + (U ∧ V )µν = (X ∧ P )µν + (χ̃ ∧ π̃)µν . (7.40)

Without loss of generality1 we assume that S4 6= 0 and solve eq. (7.39) for Tµ

Tµ =
1

S4

(RPµ + T4Sµ − U4Vµ + V4Uµ) . (7.41)

This can now be substituted into eq. (7.40) which strongly suggests that we make the

following identifications

Xµ =
R

S4

Sµ, χ̃µ = Uµ −
U4

S4

Sµ, π̃µ = Vµ −
V4

S4

Sµ. (7.42)

1As we are not interested in cases where Pµ = 0 at least one of S4, T4, U4, V4 must be non-zero and if

it isn’t S4 we can just re-label so it is.

111



The Poisson brackets between the curved DPS variables can now be computed from the

S, T, U, V algebra, we find2

{Xµ, Pν} = ηµν +
1

R2
XµXν , {χ̃µ, π̃ν} = ηµν +

1

R2
XµXν (7.43)

{Pµ, Pν} =
1

R2
[(X ∧ P )µν + (χ̃ ∧ π̃)µν ] , (7.44)

{Pµ, χ̃ν} = − 1

R2
χ̃µXν , {Pµ, π̃ν} = − 1

R2
π̃µXν . (7.45)

It is now possible to re-write the constraints of the previous section eq. (7.26) in-terms of

the curved DPS coordinates and the fourth component of the original variables. Explicitly

writing out these constraints isn’t particularly illuminating but we note that the presence

of S4, T4, U4, and V4 is undesirable and a complete physical model requires that these

dependencies be removed.

Eliminating the four degrees of freedom associated with S4, T4, U4 and V4 can be ac-

complished by solving four of the constraints in eq. (7.26). To maintain consistency of the

model the constraints we choose must form a closed second class subset of the original

ten. Furthermore, the remaining six constraints should, in the limit R→∞, reduce to the

ones used in the original DPS model, see eq. (4.30). This last condition requires that any

Xµ dependence in the remaining constraints be suppressed by some inverse power of R.

Therefore, since Sµ ∼ Xµ we choose to solve the four S-constraints, S2, S · T, S · U , and

S · V , which are easily seen to form a closed, second class set.

7.5.1 Solving the Constraints

Begin by re-writing the S-constraints explicitly as restrictions on S4, T4, U4, V4, viz.

ΦS = S4−
`

σ1/2
, ΦT = T4 +

1

S4σ

(
P ·X +

1

R
(V4X · χ̃− U4X · π̃)−

√
ρR

)
,

ΦU = U4 +
1

S4σ

(
S4

R
X · χ̃+ `λ

√
ρR

)
, ΦV = V4 +

1

Rσ
X · π̃,

(7.46)

where we have introduced σ ≡ 1 +X2/R2. Surprisingly, the corresponding Dirac brackets

between Xµ, χ̃µ, π̃µ, and P µ are identical to their Poisson brackets and so we can strongly

implement the constraints eq. (7.46) without modifying the algebra eqs. (7.43)–(7.45).

2A similar calculation will yield the Poisson brackets between the curved DPS variables and the fourth

components of S, T, U, V .
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The remaining constraints can now be written entirely in-terms of the physical variables

Xµ, P µ, χ̃µ, π̃µ; we begin with those which do not involve P µ:

Φχ̃ = χ̃2 − λ2 − (X · χ̃)2

R2σ
, (7.47)

Φπ̃ = π̃2 − ε2s2 − (X · π̃)2

R2σ
, (7.48)

Φχ̃π̃ = χ̃ · π̃ − X · π̃X · χ̃
R2σ

. (7.49)

As required, to leading order in R−1 these are identical to their flat space counter-

parts, the same will be true for those involving Pµ but the higher order modifications are

significantly more complex. We have

ΦPχ̃ = P · χ̃+
λ
√
ρR

Rσ1/2

(
Φχ̃π̃ −

√
ρR
)
− 1

R2σ

(
P ·XX · χ̃+X · π̃Φχ̃ −X · χ̃Φχ̃π̃ + λ2X · π̃

)
,

ΦP π̃ = P · π̃ − λ
√
ρR

Rσ1/2

(
Φπ̃ + ε2s2

)
− 1

R2σ

(
P ·XX · π̃ +X · π̃Φχ̃π̃ +X · χ̃Φπ̃ − ε2s2X · χ̃

)
,

and the “mass-shell” constraint

ΦP = P 2 +
2λ
√
ρR

Rσ1/2
ΦP π̃ −

1

R2σ

(
−ν2 − ρR + (P ·X)2 + 2P · χ̃X · π̃ − 2P · π̃X · χ̃

)
(7.50)

− λ2ρ

Rσ

(
Φπ̃ + ε2s2

)
+

1

R4σ2

(
(X · χ̃)2π̃2 + (X · π̃)2χ̃2 − 2X · χ̃X · π̃χ̃ · π̃

)
.

This completes the construction of the physical model. Unfortunately, the constraints,

especially those involving Pµ, can’t be easily interpreted as some straightforward modifica-

tion of their flat space counterparts. The main reason for this is that we have not treated

the variables covariantly, instead raising and lowering indices with the Minkowski metric

ηµν .

Unlike the previous two models the first class constraints are not identical in form to

their flat counterparts

Φp +
ε

R2

(
E2Φχ + λ2s2Φπ

)
, (7.51)

λ2ρΦπ − 2εEΦpχ +
1√
Rρ

(
E2

√
R

Φχ + 2ρΦχπ + 2εs2λΦPπ

)
. (7.52)
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7.6 Covariant Model

The first step in implementing a fully covariant model is to express the deSitter metric

in-terms of Xµ. It is easiest to begin with the SA variables, these satisfy S2 = `2 and so

we can write the line element as

ds2 =
R2

`2

(
dSµdSµ + (dS4)2

)
. (7.53)

Making the substitution Sµ = S4X
µ/R and S4 = `/

√
σ we find that the metric gµν and its

inverse gµν , are given by

gµν =
1

σ

(
ηµν −

1

R2σ
XµXν

)
, gµν = σ

(
ηµν +

1

R2
XµXν

)
. (7.54)

Let us now introduce covariant versions of the curved DPS coordinates, whose indices

will be raised and lowered by the above metric. In keeping with standard conventions we

define the position xµ and dual position χµ as contravariant vectors while the momenta pµ

and dual momenta πµ will be covariant. These “covariant DPS” coordinates are defined

in-terms of the curved DPS coordinates via

xµ ≡ Xµ, χµ ≡ σ1/2χ̃µ, πµ = σ1/2gµν π̃
ν , (7.55)

pµ ≡ σgµν

(
P ν − 1

R2σ
(χ̃ ∧ π̃)νρXρ

)
. (7.56)

Observe that these have the same R → ∞ limit as the curved DPS coordinates and

therefore are still interpretable as generalizations of the standard DPS coordinates to a

curved spacetime. The metric and σ can now be written as functions of xµ:

σ = 1 +
1

R2
ηµνx

µxν , gµν =
1

σ

(
ηµν −

1

R2σ
ηµαηνβx

αxβ
)
, (7.57)

gµν = σ

(
ηµν +

1

R2
xµxν

)
. (7.58)

The Christoffel symbols and Riemann curvature tensor are

Γρµν = − 1

R2σ
xα
(
ηαµδ

ρ
ν + ηανδ

ρ
µ

)
, (7.59)

Rσ
ρµν =

1

R2

(
δσµgρν − δσν gρµ

)
, (7.60)

and provide for a succinct expression of the Poisson brackets between the covariant DPS

coordinates, viz.

{xµ, pν} = δµν , {χµ, πν} = δµν , (7.61)
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{pµ, χν} = Γνµρχ
ρ, {pµ, πν} = −Γρµνπρ, (7.62)

{pµ, pν} = Rσ
ρµνχ

ρπσ. (7.63)

The real virtue of the covariant DPS coordinates comes when examining the constraints

of the previous section, now written as

Φχ = gµνχ
µχν − λ2, Φπ = gµνπµπν − ε2s2, Φχπ = χµπµ, (7.64)

Φpχ = χµpµ − λρ, Φpπ = gµνpµπν +

√
ρ

R
ε, (7.65)

Φp = gµνpµpν +
1

R2
(ν2 + ρR). (7.66)

To leading order in R−1 these are obtained from their Minkowski counterparts by making

the replacement η → g, which is precisely the straightforward generalization we sought.

Consequently, we can assign to them the same physical interpretation as in the original

DPS model, see the discussion following eq. (4.30). The corresponding constraint algebra

is tedious to calculate, but in the end we find

{Φχ,Φπ} ' 0, {Φχ,Φχπ} ' 2λ2, (7.67)

{Φπ,Φχπ} ' −2ε2s2, {Φpχ,Φχ} ' 0, (7.68)

{Φpπ,Φχ} ' −2ρλ, {Φp,Φχ} ' 0, (7.69)

{Φpχ,Φπ} ' −2

√
ρ

R
ε, {Φpπ,Φπ} ' 0, (7.70)

{Φp,Φπ} ' 0, {Φpχ,Φχπ} ' ρλ, (7.71)

{Φpπ,Φχπ} '
√
ρ

R
ε, {Φp,Φχπ} ' 0, (7.72)

{Φp,Φpχ} ' −
2λ

R3

√
ρR, {Φp,Φpπ} ' −

2ρεs2

R2
, (7.73)

{Φpχ,Φpπ} '
1

R2
(ν2 + ρR− s2). (7.74)

We are now prepared to write down the complete covariant model for type of particle.

Massive Particle

The massive particle is defined by the following parameter values

ν = Rm, ρ = 0. (7.75)
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The first class constraints are identical in form to the massive DPS model in flat space,

c.f. eq. (4.34)

Φp, ε2s2Φχ + λ2Φπ. (7.76)

The flat space limit is as expected

p2 = −m2, χ2 = λ2s2, π2 = ε2s2, χ · π = 0, p · χ = 0, p · π = 0. (7.77)

Massless Helicity Particle

For the massless helicity particle we have

ν2 = s2, ρ = 0, (7.78)

with first class constraints

Φp, Φp·χ, Φp·π, ε2s2Φχ + λ2Φπ. (7.79)

Again these are identical in form to the flat DPS model, with an exact match appearing

in the flat space limit

p2 = 0, χ2 = λ2, π2 = ε2s2, χ · π = 0, P · χ = 0, P · π = 0. (7.80)

Continuous Spin Particle

A CSP has the same parameter values as a massless particle except ρ 6= 0, in particular

ν2 = s2, ρ 6= 0. (7.81)

Unlike the previous two models the first class constraints are not identical in form to their

flat counterparts

Φp +
1

R2

(
ε2s2Φχ + λ2Φπ

)
, (7.82)

λ2ρ

(
1− 1

Rρ

)
Φπ +

ε2

R
(1− s2)Φχ + 2

√
ρ

R
Φχπ + 2εs2Φpχ −

2λ√
ρR

Φpπ. (7.83)

Despite this discrepancy the constraints do retain the correct flat space limit

p2 = 0, χ2 = λ2s2, π2 = E2, χ · π = 0, p · π = 0, p · χ = λρ. (7.84)

At this time we have no intuition for why the CSP model differs so greatly from the original;

further investigation is required.
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Chapter 8

Conclusion

In this thesis we have explored the relationship between conservation laws and locality.

Chapters 2–3 focused on scalar particles in both a curved spacetime and a curved momen-

tum space. In the former case we found that curvature was not sufficient to introduce

non-local behavior while in the latter all non-locality in the quantum field theory could be

absorbed into the interaction term. The bulk of the thesis, though, was contained in Part

2 where we examined the effect of spin on the interaction vertex. We were motivated by

the possibility that spin could sufficiently modify the vertex factor to introduce non-local

behavior. The speculation was that if locality is violated at some energy scale spin could

retain the remnants of this violation. Although we did not see any non-locality in the inter-

action vertex, we did show in Chapter 5 that spin can be realized as a bilocal model. This

is a rather different kind of non-locality than we expected but it did show that the purely

quantum picture of spin as given by the Dirac equation is incomplete. This was further

emphasized by the results obtained in Chapter 6, where we demonstrated that the motion

of a spinning particle is described by two gauge invariant quantities, the usual proper time

and a proper angle. The latter was then interpreted as the amount of Zitterbewegung

along the particles’ trajectory and contrasted to the notion of a spin transition which was

shown to induce a Lorentz contraction of the proper time. That Chapter also provided

a better understanding of the delineation between a classical understanding of spin, as

developed in the present work, and the usual quantum interpretation, demonstrating that

a rich understanding of spin emerges when we explore its classical realization.

The work presented here is by no means exhaustive and leaves open entire vistas of

future directions. Although we did quantize the DPS model in Chapter 5 we should explore

the quantum field theory obtained by taking the path integral of the DPS action. This
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would give us a better understanding of how the interaction vertex obtained in Chapter 4

is related to the usual vertices appearing in standard quantum field theories. Some of the

surprising effects spin has on the motion of particles, as discussed in Chapter 6, may be

observable although the predicted effects would need to be formalized. The spinoral param-

eterization introduced in that Chapter could also provide a framework for incorporating

fermions into DPS.

One of the least developed ideas presented in this thesis was the incorporation of con-

tinuous spin particles into the Dual Phase Space framework. As shown in Chapter 7, CSP’s

behave much differently than either the massive or massless helicity particle, and we have

no intuition for why that should be. Schuster and Toro [84, 85, 86] have developed a field

theoretic description of CSP’s and it would be interesting to see how our formulation is

related to theirs. Additional study of the curved spacetime formalism developed in Chap-

ter 7 is also warranted. In particular, we would like to explore the equations of motion

for each type of spinning particle with special attention payed to how the behavior of the

dual coordinate χµ differs from flat space. Finally, it is reasonable to assume that a bilocal

version of the curved DPS model can be developed as per Chapter 5, which may provide

a path to quantization.
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(première partie)”. In: Annales Sci.Ecole Norm.Sup. 40 (1923), pp. 325–412.

[8] S. Goudsmit and G.E. Uhlenbeck. “Over Het Roteerende. Electron en de Structuur

der Spectra”. In: Physica 6 (), pp. 273–290.

[9] P. A. M. Dirac. “The Quantum Theory of the Electron”. In: Proceedings of the Royal

Society of London A: Mathematical, Physical and Engineering Sciences 117.778

(1928), pp. 610–624. issn: 0950-1207. doi: 10.1098/rspa.1928.0023.

[10] R. Shankar. Principles of Quantum Mechanics. Springer, 1994.

119

http://dx.doi.org/10.1103/PhysRevD.84.084010
http://arxiv.org/abs/1101.0931
http://arxiv.org/abs/1101.0931
http://dx.doi.org/10.1142/S0218271811020743, 10.1007/s10714-011-1212-8
http://dx.doi.org/10.1142/S0218271811020743, 10.1007/s10714-011-1212-8
http://arxiv.org/abs/1106.0313
http://arxiv.org/abs/1312.5396
http://arxiv.org/abs/hep-th/9610108
http://arxiv.org/abs/hep-th/9610108
http://arxiv.org/abs/1312.3674
http://dx.doi.org/10.1103/PhysRevD.75.105016
http://arxiv.org/abs/hep-th/0701113
http://dx.doi.org/10.1098/rspa.1928.0023


[11] J. J. Sakurai. Modern Quantum Mechanics. Addison Wesley, 1994.

[12] P. Nyborg. “On classical theories of spinning particles”. English. In: Il Nuovo Ci-

mento Series 10 23.1 (1962), pp. 47–62. issn: 0029-6341. doi: 10.1007/BF02733541.

url: http://dx.doi.org/10.1007/BF02733541.
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Appendix A

The Worldfunction and the Parallel

Propagator

In what follows we provided a detailed exploration of the relationship between the world-

function and the parallel propagator. Consider two points in spacetime x, x′ ∈ M joined

by a geodesic γxx′ . The parallel propagator, denoted Uµ
µ′(x, x

′), is the operator which takes

a vector field at x′ and parallel transports along γxx′ to a vector field at x. By definition,

a geodesic is a curve which parallel transports its own tangent vector, i.e. T µ∇µTν = 0,

where T µ = dγµxx′/dτ for some affine parameter τ . In terms of the parallel propagator this

becomes

T µ(x) = Uµ
µ′(x, x

′)T µ
′
(x), T µ

′
(x′) = Uµ′

µ(x, x′)T µ(x). (A.1)

The tangent vectors T µ(x) and T µ
′
(x′) are related to the derivative of the worldfunction

at x and x′ via eq. (2.28) and eq. (2.30), respectively. In particular,

σµ(x, x′) = T µ = Uµ
µ′T

µ′(x′) = −Uµ
µ′σ

µ′(x, x′), (A.2)

with a similar computation holding for σµ
′
. Substituting into eq. (A.1) we find

σµ(x, x′) + Uµ
µ′(x, x

′)σµ
′
(x, x′) = 0, (A.3)

σµ
′
(x, x′) + Uµ′

µ(x, x′)σµ(x, x′) = 0, (A.4)

which justifies the statement made in the text that, when acting on σµ or σµ′ , the second

order mixed derivative of the worldfunction behaves like the parallel propagator (up to

a sign). These equations can be written in the tetrad basis, ea, by making a couple of
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observations. Focusing on eq. (A.3), we have

σµ(x, x′) = ∇xµσ(x, x′) = ∇xµσ(x, x′) =⇒ eaµ(x)σµ(x, x′) = σa(x, x′), (A.5)

Uµ
µ′σ

µ′ = Uµ
µ′e

µ′

a (x′)eaν′(x
′)σν

′
= Uµ

µ′e
µ′

a (x′)σa, (A.6)

with similar results holding for (A.4). Thus, we obtain the form of these equations used in

the text

σa(x, x′) + Ua
b(x, x

′)σb(x, x′) = 0, (A.7)

σa(x, x′) + Ua
b(x, x

′)σb(x′, x) = 0. (A.8)
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Appendix B

Covariant Fourier Representation of

Delta Function

In this appendix we explicitly verify some technical details regarding the covariant Fourier

transform of the delta function. Let us begin with eq. (2.43) which gives the Fourier

representation of δ(x, y); the delta function on M. Assuming x, y ∈ Cx′ and f(x) ∈
L2
νx′

(Cx′) we put

f̃(y) ≡
∫
Cx′

dµ(x)δ(x, y)f(x)

=

∫
Cx′

dµ(x)

∫
dνx′(p)V1/2(x, x′)V1/2(y, x′)

× exp
[
ipµ′

(
σµ
′
(x, x′)− σµ′(y, x′)

)]
f(x), (B.1)

where the second equality follows by using eq. (2.43). The integral over p covers the entire

cotangent spaceMx′ and therefore turns the exponential into δ(σµ′(x, x
′)−σµ′(y, x′)) which

can be decomposed in the standard fashion. To do this we note that the uniqueness of

the geodesic connecting x′ to x and x′ to y implies that σµ′(x, x
′) = σµ′(y, x

′) if an only if

x = y, and so

δ (σµ′(x, x
′)− σµ′(y, x′)) =

√
g
x

|det(σµν′)|
δ(x, y) =

√
gx′V

−1(x, x′)δ(x, y), (B.2)

where the definition of the Van–Vleck Morette determinant along with the indentity

|gx′det(σµν′)| = |det(σµν
′
)| were used in the last equality. Substituting eq. (B.2) into

our expression for f̃(y) and noting that the presence of δ(x, y) allows us to replace all
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occurrences of y with x we find

f̃(y) =

∫
Cx′

dµ(x)δ(x, y)f(x) = f(y), (B.3)

where we used x, y ∈ Cx′ in the second equality. This demonstrates the validity of eq. (2.43)

as a representation of the delta function.

The Fourier representation of δx′(p, q), the “delta function” onMx′ , is given in eq. (2.46).

Unless Cx′ =M this representaion will not correspond to the standard delta function; how-

ever there are at least two important properties it should satisfy:

1. δx′(p, q) is a projector.

2. The image of δx′(p, q) is identical to the image of Fx′ .

To demonstrate the first item, make the change of variables xµ → Y µ′ = σµ
′
(x, x′) in

eq. (2.46) to find

δx′(p, q) =

∫
Σx′

d4Y ′
√
g
x′

exp
[
iY µ′ (pµ′ − qµ′)

]
, (B.4)

where Cx′ → Σx′ under the coordinate change. The convolution product of δx′ with itself

can now be expressed as:∫
Mx′

dνx′(q)δx′(p, q)δx′(q, k) =

∫
Cx′×Cx′

d4Y ′d4Z ′

|gx′ |

(∫
Mx′

dνx′(q)e
iqµ′ (Y

µ′−Zµ′ )

)
× eipµ′Zµ

′

e−ikµ′Y
µ′

=

∫
Cx′×Cx′

d4Y ′d4Z ′
√
g
x′

δ(Y ′, Z ′)eipµ′Z
µ′

e−ikµ′Y
µ′

= δp′(x, z),

which confirms that δx′(p, q) is a projector, i.e. identity onto its image.

For the second item, suppose f̂x′(p) ∈ Fx′(L2
νx′

(Cx′)) so there exists a function f(x) ∈
L2
µ(Cx′) such that

f̂x′(p) =

∫
Cx′

dµ(x)V1/2(x, x′) exp
(
−ipµ′σµ

′
(x, x′)

)
f(x). (B.5)

Evaluating the convolution of δx′ with f̂x′ we find

(δx′ ◦ f̂x′)(q) =

∫
Mx′

dνx′(p)

∫
Cx′

dµ(x)V(x, x′) exp
[
iσµ

′
(x, x′) (pµ′ − qµ′)

]
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×
∫
Cx′

dµ(y)V1/2(y, x′) exp
(
−ipµ′σµ

′
(y, x′)

)
f(y).

=

∫
Cx′

dµ(x)dµ(y)V1/2(x, x′) exp
(
−iqµ′σµ

′
(x, x′)

)
×
∫
Mp′

dνx′(p)V1/2(x, x′)V1/2(y, x′) exp
[
ipµ′

(
σµ
′
(x, x′)− σµ′(y, x′)

)]
f(y)

=

∫
Cx′

dµ(x)dµ(y)V1/2(x, x′) exp
(
−iqµ′σµ

′
(x, x′)

)
δ(x, y)f(y)

=

∫
Cx′

dµ(x)V1/2(x, x′) exp
(
−iqµ′σµ

′
(x, x′)

)
f(x)

= f̂x′(q),

where we have used the Fourier representation of δ(x, y) in going from the third line to the

fourth. This shows that the image of δx′ under convolution is identical with the image of

Fx′ , as required.
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Appendix C

Geodesics in Relative Locality

In this appendix we provide additional details on the definition of a geodesic in Relative

Locality. A geodesic can be defined as a path, p(τ), which parallel transports its own

tangent vector. This requires ṗα∇αṗµ = 0 and so the geodesic equation is given by:

d2pµ
dτ 2

+ Γαβµ
dpα
dτ

dpβ
dτ

= 0. (C.1)

Alternatively, we can define a geodesic as a path which extremizes the distance between two

points on the manifold. In general relativity, where the connection is metric compatible,

these definitions are equivalent. This is not the case in relative locality where the connection

is derived, not from a metric, but from the combination rule ⊕. In choosing between these

definitions we note that the distance function Dγ(p0, p1) is tied to the notion of mass and

features prominently in the structure of relative locality. As such, it is natural to have

a definition of geodesic which extremizes Dγ, and so we make this choice. We will now

present a detailed derivation of the geodesic equation and explore some of its properties.

Following the argument given in [91], suppose we have two points P,Q ∈ P and an

infinity of curves, pµ(u, v) interpolating between P and Q. The parameter v indicates

which curve is being considered while u parametrizes the selected curve. We assume that u

varies between u0 and u1 so that P,Q have coordinates pµ(u0, v) and pµ(u1, v) respectively.

A geodesic is then a curve which gives a stationary value to the following integral for

variations which leave the endpoints fixed1:

I(v) =
1

2

∫ u1

u0

gµν
dpµ
du

dpν
du

du. (C.2)

1Such a curve will also give a stationary value to Dγ so we are justified in considering the simpler

function I(v).
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Introduce the tangent vectors Uµ = ∂pµ/∂u and Vµ = ∂pµ/∂u, where Vµ vanishes at

u = u0, u1. We then define the covariant derivative along the path pµ by

DAµ
du

=
dAµ
du

+ Γαβµ AαUβ and
DAµ
dv

=
dAµ
dv

+ Γαβµ AαVβ, (C.3)

where these definitions are extended to arbitrary tensors in the standard way. A brief

calculation shows that DUµ/dv = DVµ/du, which we will make use of shortly. Demanding

that I(v) be stationary under variations which leave the end–points fixed is equivalent to

the condition: dI(v)/dv = 0 for Vµ arbitrary, except at the end–points. Thus we proceed

by differentiating I(v), making use of the fact that d/dv and D/dv are interchangeable

when applied to a scalar:

dI(v)

dv
=

1

2
(u1 − u0)

∫ u1

u0

(
∇ρgµνVρUµUν + 2gµνUν

DUµ
dv

)
du (C.4)

=
1

2
(u1 − u0)

∫ u1

u0

(
[Nρµν − 2Nµρν ]VρUµUν − 2gµνVµ

DUν
du

)
du. (C.5)

Setting this to zero and expanding DUν/du using (C.3) we find the geodesic equation:

dUα
du

=
1

2
gρα [Nρµν − 2Nµρν ]UµUν − Γµνα UµUν . (C.6)

This result can be simplified using equation (3.14) which gives

[Nρµν − 2Nµρν ]UµUν = 2 [T ρµν +N µν
α gαρ]UµUν .

Substituting this back into (C.6), noting that Γµνρ UµUν = Γ
(µν)
ρ UµUν and using N µν

α =

Γ
(µν)
α − { µ να } we find

dUα
du

=
(
gραT

ρµν − { µ να }
)
UµUν , (C.7)

which is the final form of the geodesic equation.

A particularly useful feature of geodesics in the case of a metric compatible connection

is that the quantity L = gµνUµUν is constant along a geodesic. It turns out that this holds

for our definition as well:

d

du
(gµνUµUν) = ∂ρgµνUρUµUν + 2gµνUν

dUµ
du

=
(
∂ρgβν + 2T βρν − 2gµβ { ρ νµ }

)
UβUνUρ

=
(
∂ρgβν − 2gµβ { ρ νµ }

)
UβUνUρ

= 0.
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This is extremely fortunate because it allows us to relate the distance function D2
p(τ)(P,Q),

c.f. eq. (3.21), directly to the integral I(v), in particular

I =
1

2
D2
p(τ)(P,Q). (C.8)
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Appendix D

Second Order Formulation of DPS

In this appendix we show how the second-order formulation of the DPS action can be

obtained from eq. (4.33) by integrating out the momenta and all Lagrange multipliers.

Begin by rewriting the action as

S =

∫
dτ

[
pµ(ẋµ −N4χ

µ) + πµ(χ̇µ −N2χ
µ)− N

2
(p2 +m2)− Ñ

2
(π2 − ε2s2)−N3(p · π)

−M̃
2

(χ2 − λ2)

]
, (D.1)

where we have introduced

Ñ =
(M −N1)

ε2
, M̃ =

s2(M +N1)

λ2
. (D.2)

The equations of motion for the momenta read

Npµ +N3πµ = (ẋµ −N4χµ), (D.3)

N3pµ + Ñπµ = (χ̇µ −N2χµ), (D.4)

and upon inverting these we obtain

(NÑ −N2
3 )pµ = Ñ(ẋµ −N4χµ)−N3(χ̇µ −N2χµ), (D.5)

(NÑ −N2
3 )πµ = −N3(ẋµ −N4χµ) +N(χ̇µ −N2χµ). (D.6)

Substituting this result into Eq. (D.1), we find

S =

∫
dτ

[
ρ

(NÑ −N2
3 )
− M̃

2
(χ2 − λ2)− N

2
m2 +

Ñ

2
ε2s2

]
, (D.7)
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where ρ is given by

ρ :=
1

2

[
Ñ(ẋ−N4χ)2 +N(χ̇−N2χ)2 − 2N3(χ̇−N2χ) · (ẋ−N4χ)

]
. (D.8)

We can now start integrating out the constraints, beginning by varying Chapter D with

respect to N2 and N4, then

N2χ
2 = χ̇ · χ, N4χ

2 = ẋ · χ. (D.9)

This suggests the notation

Dtxµ := ẋµ −
(ẋ · χ)

χ2
χµ, Dtχµ := χ̇µ −

(χ̇ · χ)

χ2
χµ, (D.10)

where Dt is the time derivative projected orthogonal to χ. We can now compute the

variation with respect to the Lagrange multipliers N, Ñ , and N3; after some algebra we

find

(Dtχ)2 = Ñ2ε2s2 −N2
3m

2, (D.11)

(Dtx)2 = N2
3 ε

2s2 −N2m2, (D.12)

(Dtχ) · (Dtx) = N3Ñε
2s2 −N3Nm

2. (D.13)

To solve for these equations, it will be convenient to define

D := (NÑ −N2
3 )sεm, T := (Ñε2s2 −Nm2), (D.14)

which allow us to rewrite Eqs. (D.11)–(D.13) as

(Dtχ)2 = ÑT + mD
sε
, (Dtχ) · (Dtx) = N3T , (Dtx)2 = NT − sεD

m
. (D.15)

These relations are straightforward to invert, and we find

D = β

√
[(Dtχ) · (Dtx)]2 − (Dtx)2(Dtχ)2 = β |(Dtx) ∧ (Dtχ)| , (D.16)

T = α
√
ε2s2(Dtχ)2 −m2(Dtx)2 − 2βsεm |(Dtx) ∧ (Dtχ)|, (D.17)

where α = ±1 and β = ±1 are signs needed to define the square root. For definiteness, we

choose both signs to be positive from now on. Thus, after integration of N2, N4 and N, Ñ

and N3 the action becomes

S =

∫
dτ

[
α
√
ε2s2(Dtχ)2 −m2(Dtx)2 − 2sεmβ |(Dtx) ∧ (Dtχ)| − M̃

2
(χ2 − λ2)

]
.

(D.18)
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Observe that we cannot integrate out the final Lagrange multiplier, since the variation of

S with respect to M̃ is just the constraint χ2 = λ2. We can, however, obtain expressions

for some of the other Lagrange multipliers, viz.

N =
m(Dtx)2 + sεβ|(Dtx) ∧ (Dtχ)|

mT
, (D.19)

Ñ =
sε(Dtχ)2 −mβ|(Dtx) ∧ (Dtχ)|

sεT
, (D.20)

N3 =
[(Dtx) · (Dtχ)]

T
. (D.21)

The conjugate momenta are now obtained via the standard prescription px = ∂S/∂ẋ and

πχ = ∂S/∂χ̇. We find

px,µ =−m
T

(
mDtxµ +

βsε

|Dtx ∧Dtχ|
[
(Dtx ·Dtχ)Dtχµ − (Dtχ)2Dtxµ

])
, (D.22)

πχ,µ =
sε

T

(
sεDtχµ −

mβ

|Dtx ∧Dtχ|
[
(Dtx ·Dtχ)Dtxµ − (Dtx)2Dtχµ

])
. (D.23)

It can be checked that these momenta satisfy the constraints

p2
x = −m2, π2

χ = ε2s2, πχ · χ = 0, px · πχ = 0, px · χ = 0. (D.24)

The variation of the action with respect to xµ and χµ determines the Lagrange equations

of motion, in particular

ṗx,µ = 0, π̇χ,µ = −(χ · ẋ)px,µ − (χ · χ̇)πχ,µ − M̃χµ. (D.25)

Provided we implement χ2 = λ2, these equations preserve p2
x = −m2 and π2

χ = ε2s2;

demanding that πχ · χ = 0 also be preserved in time determines the Lagrange multiplier

M̃ :

M̃ =
ε2s2

λ2
Ñ . (D.26)

On the other hand, for the remaining two constraints we have

d

dt
(px · χ) = −m

2

T
(Dtx) · (Dtχ),

d

dt
(px · πχ) = m2(χ · ẋ). (D.27)

Therefore, ensuring that these quantities are stationary in time requires that we impose

constraints on the initial conditions, specifically (Dtχ) · (Dtx) = ẋ · χ = 0. These are

equivalent, when χ2 = λ2, to ẋ ·χ = ẋ · χ̇ = 0 which implies that the dual motion is always

orthogonal to the particle velocity. Once these extra constraints are imposed, the action

simplifies to the one quoted in the main text [Eq. (4.52)],

S = α

∫
dτ |m|ẋ| − βεs|χ̇|| , (D.28)

where we have defined |ẋ| =
√
−ẋ2 and |χ̇| =

√
χ̇2.
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Appendix E

Dirac Brackets for DPS

We include here an explicit formulation of the Dirac brackets for DPS. Assuming m 6= 0 a

direct computation gives

{f, g}DB = {f, g}+
1

2s2
({f,Φ1} {Φ2, g} − {f,Φ2} {Φ1, g})

+
1

m2
({f,Φ3} {Φ4, g} − {f,Φ4} {Φ3, g}) .

(E.1)

The commutation relations between the phase space variables are now given by

{xµ, pν}DB = ηµν , {xµ, xν}DB =
1

m2
(χ ∧ π)µν , (E.2)

{xµ, χν}DB =
1

m2
χµpν , {χµ, χν}DB = − 1

2ε2s2
(χ ∧ π)µν , (E.3)

{xµ, πν}DB =
1

m2
πµpν , {πµ, πν}DB = − s2

2λ2
(χ ∧ π)µν , (E.4)

{χµ, πν}DB = ηµν − s

2λ2
χµχν − 1

2ε2s2
πµπν +

1

m2
pµpν . (E.5)

To obtain the brackets for a massless particle let m→∞ in the above relations.
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Appendix F

Fermionic Spherical Harmonics

In this appendix we include a brief discussion on “fermionic spherical harmonics” Y m
` (θ, φ)

which allow for half-integer values of m, `, see [109, 110]. We begin with the standard

differential equation[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
Y (θ, φ) = −λY (θ, φ), (F.1)

which is separable and we make the assumption that λ ≥ 0. Putting Y (θ, φ) = Θ(θ)Φ(φ)

we find

sin θ
d

dθ

(
sin θ

dΘ

dθ

)
+ (λ sin2 θ − κ)Θ = 0 (F.2)

d2Φ

dφ2
= −κΦ (F.3)

where κ is the separation constant. The second equation is straightforward to solve

Φm(φ) = α1e
imφ + α2e

−imφ. (F.4)

where m2 = κ and α1, α2 are integration constants. It is standard to argue that m should

be an integer since φ has period 2π and Φ(φ) must be single valued, however this reasoning

is spurious. It is only the probability density |Φ(φ)| which needs to be single valued since it

is this quantity which has a physical interpretation. Under this less restrictive assumption

we only require that Φm(φ) is periodic and therefore that 2m ∈ N.

Put λ = `(`+1) in equation (F.2) and make the change of variables x = cos θ to obtain

(1− x2)Θ̈− 2xΘ̇ +

(
`(`+ 1)− m2

1− x2

)
Θ = 0, (F.5)
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where a dot indicates a derivative with respect to x. Notice that since λ is assumed to be

non-negative ` is real valued. This is the associated Legendre equation and it’s solution

is well known, namely Θ(x) = β1P
m
` (x) + β2Q

m
` (x) for some constants β1, β2. To have a

normalizable wavefunction it is sufficient to require that Θ(x) be regular on the interval

[−1, 1]; to this end let us examine the behavior of Pm
` (x) and Qm

` (x) as x → 1−. As

eq. (F.2) is invariant under m → −m we can restrict to m ≥ 0 without loss of generality,

we find

Pm
` (x) ∼ (1− x)−m/2 , m 6= 1, 2, . . . (F.6)

Pm
` (x) ∼ (1− x)m/2 , m = 1, 2, . . . , `−m 6= −1,−2, . . . (F.7)

Q0
`(x) ∼ log (1− x) , ` 6= −1,−2, . . . (F.8)

Qm
` (x) ∼ (1− x)−m/2 , m 6= 1

2
,
3

2
, . . . (F.9)

Qm
` (x) ∼ (1− x)m/2 , m =

1

2
,
3

2
, . . . , `−m 6= −1,−2, . . . . (F.10)

It follows that a regular solution is only possible if m is either an integer or half-integer, in

the former case we have Θ(x) = β1P
m
` (x) and in the latter Θ(x) = β2Q

m
` (x). The values

of ` are as yet unrestricted, but we still need to consider regularity of the wavefunction as

x→ −1+, which can be determined from the following relations

Pm
` (−x) = cos((`−m)π)Pm

` (x)− 2

π
sin((`−m)π)Qm

` (x). (F.11)

Qm
` (−x) = − cos((`−m)π)Qm

` (x)− 2

π
sin((`−m)π)Pm

` (x).. (F.12)

When m is an integer/half-integer eqs. (F.6)–(F.10) imply that only Pm
` (x) respectively

Qm
` (x) are finite in the limit x → 1+. Therefore, if the wavefunction is to be regular

as x → −1+ we require that terms containing the other Legendre function vanish from

eq. (F.11)/eq. (F.12). In each case this implies that `−m is an integer and so if m is an

integer/half-integer ` is as well. Furthermore, in each case we have that ` − m ≥ 0 and

since this should be symmetric with respect to m→ −m we also have `+m ≥ 0, combining

these conditions gives −` ≤ m ≤ `. Noting that for m a half-integer Qm
` (x) ∝ P−m` (x) we

can write the most general solution to eq. (F.2) as

Θm
` (x) = βP

ε`|m|
` (x), ` = 0,

1

2
, 1,

3

2
, . . . , m = −`,−`+ 1, . . . , `− 1, ` (F.13)

(F.14)

where ε` = (−1)2`. This result can now be combined with Φm(φ) to obtain the full

solution to eq. (F.1) namely Y m
` (θ, φ) = Θm

` (θ)Φm(φ). When m is an integer these are the
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standard spherical harmonics, however if m is a half-integer we obtain “fermonic” spherical

harmonics which change sign under φ → φ + 2π. As mentioned earlier, a multivalued

wavefunction is acceptable provided that the probability density is single valued and it is

easy to verify that this property holds for “fermonic” spherical harmonics.
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Appendix G

Unequal Massess

This appendix examines the effect of allowing for unequal masses in the relativistic bilocal

model of Section 5.3. In the non-relativistic model the form of the final Hamiltonian was

independent of any mass difference between the constituent particles. This is decidedly

not the case when considering the relativistic setting, as will be explored in the current

appendix. We begin by defining the masses M = m1 +m2 and µ = m1m2/(m1 +m2) and

the four-vector coordinates

Xµ =
m1

M
xµ1 +

m2

M
xµ2 ,

P µ = pµ1 + pµ2 ,

∆xµ = xµ1 − x
µ
2 ,

∆pµ =
µ

m1

pµ1 −
µ

m2

pµ2 ,
(G.1)

which have Poisson brackets {Xµ, P ν} = {∆xµ,∆pν} = ηµν and total angular momenta

J = X ∧ P + ∆x ∧∆p. Generalizing the analysis of Section 5.3, there are two mass-shell

constraints

p2
i +m2

i = 0, i = 1, 2 (G.2)

both of which must leave (∆x)2 = `2 and (∆x∧∆p) = ~2s2 stationary. Again we find that

that the constraints p1 ·∆x = p2 ·∆x = 0 must be included, and noting that p1 = m1

M
P+∆p

and p2 = m2

M
P −∆p the full Hamiltonian can be written as

H = N
2

(
P 2 +M2 + M

µ
(∆p)2

)
+ Ñ

(
(P ·∆p)− ∆m

2µ
(∆p)2

)
+ λ1

2
((∆x)2 − `2)

+λ2
2

((∆p)2 − ε2s2) + (λ3m1 + λ4m2)(P ·∆x) + (λ3 − λ4)(∆p ·∆x), (G.3)

where we have introduced the mass difference ∆m = m1 −m2.
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We see that the four constraints

(P ·∆x) = 0, (∆p ·∆x) = 0, (∆x)2 = `2, (∆p)2 = ε2s2 (G.4)

are identical to the equal mass case, whereas the mass shell and final orthogonality con-

straint are modified. Specifically, define

M2 := M2 +
M

µ
ε2s2, ρ :=

∆m

2µ
ε2s2, (G.5)

then the modified constraints are

P 2 +M2 = 0, (P ·∆p) = ρ. (G.6)

No further constraints need to be added but demanding that the existing constraints Pois-

son commute with H imposes the following conditions among the Lagrange multipliers

λ3 = λ4 = 0, (G.7)(
N
M

µ
− Ñ∆m

2M
+ λ2

)
=
λ1`

2

ε2s2
= Ñ

M2

ρ
. (G.8)

It follows that the reduced Hamiltonian involves two unconstrained Lagrange multipliers

which correspond to the first class constraints

ΦP = P 2 +M2, (G.9)

ΦS =
(∆p)2

ε2
s2 +

(∆x)2

`2
− 2~2s2 +

ρ

M2
[(P ·∆p)− ρ] . (G.10)

There are an additional four second class constraints: a modified one P ·∆p = ρ and three

unmodified

P ·∆x = 0, ∆p ·∆x = 0, ε2s2(∆x)2 − `2(∆p)2 = 0. (G.11)

The key difference from the equal mass case is the fact that P ·∆p 6= 0 which gives rise to

the addtional complexity in the spin cosntraint ΦS.

From these expressions it is clear that the case of continuous spin particles1 [83, 105,

84] can then be obtained in the limit where M→ 0 while keeping ρ fixed. Indeed, in this

limit we recover the constraints

P 2 = 0, P ·∆x = 0, P ·∆p = ρ (G.12)

1The idea of continuous spin particles in the DPS framework will be discussed more fully in Chapter 7.
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together with ε2s2(∆x)2 + `2(∆p)2 = 2~2s2 and ∆p ·∆x = 0, ε2s2(∆x)2 = `2(∆p)2. These

are the constraints for a continuous spin particle.

At the outset of this appendix we put Xµ as the “center of mass” but this choice was

arbitrary. Another option is to look for a definition of X ′ which leads to a vanishing mixing

parameter ρ. Note that in order to keep the canonical algebra, changing X also means

that we are changing ∆p. Lets consider

X ′ = X − ∆m

2µ

ε2s2

M2
P, ∆p′ = ∆p+

∆m

2µ

ε2s2

M2
P, (G.13)

which preserve the canonical algebra by construction and satisfy P ·∆p′ = 0. This change

of coordinates can be seen as a redefinition of the effective spin, which is now given by

ε2s′2 = (∆p′)2, while also rendering the position coordinate X ′ momentum dependent. For

example, imagine coupling the massive spinning particle to an external electromagnetic

field: With a vanishing mixing parameter it is natural to consider the coupling A(X ′),

however when expressed in the CSP frame where the mixing doesn’t vanish this reads

A(X + αP ) and the location of the coupling is now momentum dependent.
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Appendix H

Spinor Formalism

In this appendix we present a brief review of the spinor helicity formalism, see [113, 114,

115]. Let χα be a complex spinor and χ̄α̇ = (χα)† it’s complex conjugate. Indices are raised

and lowered with the epsilon tensor εαβ, which is totally skew symmetric and normalized

by ε01 = 1, i.e.

χα = εαβχβ, χα = εαβχ
β, χ̄α̇ = εα̇β̇χ̄β̇, χ̄α̇ = εα̇β̇χ̄

β̇,

and these quantities are represented as

|χ〉 = χα, 〈χ| = χα, |χ] = χ̄α̇, [χ| = χ̄α̇. (H.1)

so we see that if |ξ〉 is our spinor, the hermitian conjugate spinor is denoted by [ξ| as usual

while |ξ] denotes the same spinor but with indices raised. Note that we adopt a convention

in which the epsilon tensor satisfies εαγε
γβ = δβα. Contractions between spinors are simply

〈ζ|ξ〉 ≡ ζαξα, [ζ|ξ] ≡ ζ̄α̇ξ̄
α̇, [ζ|ξ] = −〈ζ|ξ〉∗. (H.2)

Let (σa)αα̇ = (1αα̇, ~σαα̇) be the standard four vector of sigma matrices, and (σ̄a)α̇α ≡
(σa)ββ̇ε

αβεα̇β̇ the same vector but with indices raised, then the following relations hold

Tr(σaσ̄b) = −2ηab, ηab(σ
a)αα̇(σb)ββ̇ = −2εαβεα̇β̇. (H.3)

Generically, a matrix with an overbar is assumed to have upper indices M̄ α̇α, whereas an

unadorned matrix will have lower indices Mαα̇. In matrix notation we have that M̄ =

εM tε−1 and det(M) = −1
2
Tr(MM̄). Multiplication between a matrix and a spinor is

denoted by juxtaposition

Mαα̇χ̄
α̇ = M |χ], χαMαα̇ = 〈χ|M, M̄ α̇αχα = M̄ |χ〉, χ̄α̇M̄

α̇α = [χ|M̄. (H.4)
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Any vector pµ can be represented as a matrix by contracting it with the vector of sigma

matrices

pµ = −1

2
(σ̄µ)α̇αpαα̇ ⇐⇒ pαα̇ = pµ(σµ)αα̇. (H.5)

It follows from eq. (H.3) that pαα̇p̄
α̇β = −p2δβα and p̄α̇αpαβ̇ = −p2δα̇

β̇
, so that the inner

product of two vectors pµ and qµ is given by

pµq
µ = −1

2
Tr(pq̄).

Let Λµ
νb
ν be a Lorentz transformation, then the action of Λ on a spinor is represented by

matrices (Lα
β, L̄α̇β̇), that is

|ξ〉 → L|ξ〉, 〈ξ| → 〈ξ|L−1, (H.6)

|ξ]→ (L−1)†|ξ], [ξ| → [ξ|L†. (H.7)

The relationship between Λ and (L, L̄) is obtained through

L̄−1σ̄µL = Λµ
ν σ̄

ν , L−1σµL̄ = Λµ
νσ

ν , (H.8)

with the (L, L̄) satisfying

L̄ = (L−1)†, εαα
′
Lα′

β′εβ′β = ([L−1])β
α, εα̇α̇′(L̄)α̇

′

β̇′ε
β̇′β̇ = (L̄−1)β̇ α̇ = (L̄†)β̇ α̇. (H.9)

Observe that the contractions we have introduced above are indeed Lorentz invariant.

Let us now introduce a structure that involves the contraction of two conjugate spinors

along a vector

pα̇αζ̄α̇ξα = [ζ|p̄|ξ〉 = 〈ξ|p|ζ]. (H.10)

Although this contraction is only invariant under Lorentz transformations that fix p, it

does have the advantage of defining a hermitian form

[ζ|p|ξ〉∗ = [ξ|p†|ζ〉 = [ξ|p|ζ〉. (H.11)

Furthermore, if p is a timelike vector p2 + m2 = 0, this contraction defines a norm [ξ|p̄|ξ〉
and in the center of mass frame this norm square is simply given by ±m(|ξ0|2 + |ξ1|2). The

sign of the this scalar product is the sign of the energy ± = sign(p0).

The next thing to consider is the spinorial expression of a bivector. We begin by defining

the rotation matrices

(σµν)α
β ≡ i

4
(σµσ̄ν − σν σ̄µ)α

β, (σ̄µν)α̇β̇ ≡
i

4
(σ̄µσν − σ̄νσµ)α̇β̇, (H.12)
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which can be used to expand the anti-symmetric combination of Pauli matrices

σ
[µ
αα̇σ

ν]

ββ̇
= iεα̇β̇(σµν)αβ − iεαβ(σ̄µν)α̇β̇, (H.13)

σ̄α̇α[µ σ̄
β̇β
ν] = −iεα̇β̇(σµν)αβ + iεαβ(σ̄µν)α̇β̇. (H.14)

The rotation matrices possess self-duality properties

(∗σ)µν = iσµν , (∗σ̄)µν = −iσµν , (H.15)

where (∗M)µν = 1
2
εµνρσMρσ and we have assumed ε0123 = 1. A bi-vector Sµν can be

decomposed into self-dual Sα
β = Sµν(σ

µν)α
β and anti self-dual S̄α̇β̇ = Sµν(σ̄

µν)α̇β̇ parts,

specifically

Sµνσ
µ
αα̇σ

ν
ββ̇

= (iS(αβ)εα̇β̇ − iS̄(α̇β̇)εαβ), (H.16)

(∗S)µνσ
µ
αα̇σ

ν
ββ̇

= −(S(αβ)εα̇β̇ + S̄(α̇β̇)εαβ). (H.17)

With the spinor indices raised the decomposition is the negative of the one presented above.

If the bivector is simple, i.e. Sµν = (χ ∧ π)µν , then we have

Sα
β =

i

2
(χπ̄ − πχ̄)α

β, S̄α̇β̇ =
i

2
(χ̄π − π̄χ)α̇β̇ (H.18)

or

Sαβ = −i(πχ̄)(αβ), S̄α̇β̇ = i(χ̄π)(α̇β̇). (H.19)

In other words we can express the matrix product of two vectors as

(χπ̄)α
β = −(χµπ

µ)δβα − i(χ ∧ π)α
β, (χ̄π)α̇β̇ = −(χµπ

µ)δα̇
β̇
− i(χ ∧ π)α̇β̇. (H.20)

The matrix corresponding to a vector pµ can be expressed explicitly as

pαα̇ =

(
(p0 + p3) (p1 − ip2)

(p1 + ip2) (p0 − p3)

)
, p̄α̇α =

(
(p0 − p3) −(p1 − ip2)

−(p1 + ip2) (p0 + p3)

)
. (H.21)

We see that the bar operator corresponds to parity reversal, that is, if we denote the parity

transformed vector p̃µ ≡ (p0,−pi) then p̄ = p̃ as matrices. We also find that

(χπ̄)α
β = (χµπ

µ)1 + i

(
J3 + iK3 (J1 + iK1)− i(J2 + iK2)

(J1 + iK1) + i(J2 + iK2) −(J3 + iK3)

)
(H.22)

where we have defined

Ki = (χ ∧ π)i0, Ji = εijk(χ ∧ π)jk, (H.23)

as “boost” and “rotation” generators respectively.
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Appendix I

Details on the Spinoral

Parameterization of DPS

This appendix provides extra details for some of the results presented in Chapter 6.

I.1 Classical Spin Motion

We show explictly that the spin state does not evolve during classical motion. The equa-

tions of motion associated with the Lagrangian eq. (6.22) are given by

d

dt
P = 0, (I.1)

d

dt
(〈ξ|P ) = −

(
〈ξ̇|+ 2iφ̇〈ξ|

)
P. (I.2)

where we have defined

P :=
1

N

(
ẋ+ θ(eiφξ)

)
. (I.3)

The first of these implies that Pαα̇ is constant, and inserting this result into the second

equation gives (
〈ξ̇|+ iφ̇〈ξ|

)
C = 0 =⇒ d

dt

(
eiφ〈ξ|

)
= 0. (I.4)

It follows that eiφξ is a constant of motion and so θ(eiφξ) vanishes on-shell.
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I.2 Second Order Equations of Motion

In what follows we derive the equations of motion resulting from the second order ac-

tioneq. (6.31). Begin by defining the momentum pµ conjugate to xµ in the usual manner

pµ = δS/δẋµ, then the equation of motion for x is determined by conservation of momenta

ṗ = 0. As an important aside, the relationship between pαα̇ and δS/δx̄α̇α isn’t quite as

expected, specifically

pαα̇ = (σµ)αα̇pµ = (σµαα̇)
δL

δẋµ
= (σµαα̇)

δL

δ ˙̄xβ̇β
∂ ˙̄xβ̇β

∂ẋµ
= −2

δL

δ ˙̄xα̇α
. (I.5)

Recalling the definitions of a and b from eq. (6.36) we find that the momenta pαα̇ is given

by

−1

2
p = m

ẋ

2|ẋ|
√

1− |b|2 − i~s
〈ρ|ẋ|ρ]

(
|ρ̇〉[ρ| − |ρ〉[ρ̇|

)
(I.6)

− 2~s
〈ρ|ẋ|ρ]

Im(a)|ρ〉[ρ|+ m|b|2√
1− |b|2

|ρ〉|ẋ|[ρ|
〈ρ|ẋ|ρ]

.

It follows from this lengthy expression that

ẋ|ρ] = − |ẋ|√
1− |b|2

(
p̂|ρ] + ib∗|ρ〉

)
,

where p̂ is the unit momenta p̂ = p/m. The spin equations of motion can now be written

in matrix form as

∂τ

(
|ρ〉
p̂|ρ]

)
=

 a− im
2~s

|b|2√
1−|b|2

|ẋ| −mb
2~s

|ẋ|√
1−|b|2

mb∗

2~s
|ẋ|√
1−|b|2

a∗ + im
2~s

|b|2√
1−|b|2

|ẋ|

( |ρ〉
p̂|ρ]

)
.

To simplify the presentation we introduce the notation

ρ =

(
|ρ〉
p̂|ρ]

)
, a0 = Re(a), a1 = − m

2~s
|ẋ|√

1− |b|2
Im(b),

a2 = − m

2~s
|ẋ|√

1− |b|2
Re(b), a3 = Im(a)− m

2~s
|b|2√

1− |b|2
|ẋ|,

and so the spin equations of motion become

∂τρ =

(
a0 + ia3 ia1 + a2

ia1 − a2 a0 − ia3

)
ρ, (I.7)
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= (a01+ i~a · ~σ)ρ, (I.8)

where ~a = (a1, a2, a3). To solve this equation we introduce a vector ξ which satisfies

ρ = e
∫ τ
0 a0(t)dtξ. (I.9)

Eq. (I.8) then implies ∂τξ = i~a · ~σξ, which has the formal solution

ξ = T exp

(
i~σ ·

∫ τ

0

~a(t)dt

)
ξ(0). (I.10)

It is only in the special case where at most one component of ~a is non-zero that we could

obtain an explicit expression for ξ.

I.3 Poisson Brackets

Here we include the explicit derivation of the Poisson brackets between xαα̇, ξα, and ξ̄α̇.

Equations (6.48)–(6.51) together with the expression for x and ∆ in terms of J given by

(6.54) imply that{
(x̄+ i∆̄)α̇α, (x̄+ i∆̄)β̇β

}
=0,

{
(x̄+ i∆̄)α̇α, (x̄− i∆̄)β̇β

}
=

4i

m2
p̄α̇β∆̄β̇α, (I.11){

(x̄− i∆̄)α̇α, (x̄− i∆̄)β̇β
}

=0,
{

(x̄− i∆̄)α̇α, (x̄+ i∆̄)β̇β
}

=− 4i

m2
p̄β̇α∆̄α̇β, (I.12)

which combine to give{
x̄α̇α, x̄β̇β

}
=
{

∆̄α̇α, ∆̄β̇β
}

=
i

m2

(
p̄α̇β∆̄β̇α − p̄β̇α∆̄α̇β

)
, (I.13){

x̄α̇α, ∆̄β̇β
}

= − 1

m2

(
p̄α̇β∆̄β̇α + p̄β̇α∆̄α̇β

)
. (I.14)

Noting that the brackets in eq. (I.13) are anti-symmetric under interchange of (α, α̇) with

(β, β̇) allows us to re-write them in a more revealing form{
x̄α̇α, x̄β̇β

}
=
{

∆̄α̇α, ∆̄β̇β
}

=
i

m2

[
εα̇β̇(p∆̄)(αβ) − εαβ(∆̄p)(α̇β̇)

]
. (I.15)

A further application of eqs. (6.48)–(6.49) to ξ and ξ̄ in conjunction with the decomposition

(6.54) yields {
ξα, x̄β̇β

}
=

1

m2
p̄β̇αξβ,

{
ξ̄α̇, x̄β̇β

}
=

1

m2
p̄α̇β ξ̄β̇, (I.16)
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{
ξα, ∆̄β̇β

}
=− i

m2
p̄β̇αξβ,

{
ξ̄α̇, ∆̄β̇β

}
=

i

m2
p̄α̇β ξ̄β̇. (I.17)

It remains to compute the brackets between ξ and ξ̄. We begin by substituting the definition

of ∆, see eq. (6.52), into eq. (I.17), whence

~
2m2s

〈ξ|p|ξ]
(
ξβ
{
ξα, ξ̄β̇

}
+ ξ̄β̇

{
ξα, ξβ

})
= − i

m2
p̄β̇αξβ +

i

2〈ξ|p|ξ]
ξαξβ ξ̄β̇. (I.18)

Contract either side with ξβ to obtain
{
ξα, ξβ

}
ξβ = 0 which, by virtue of the anti–symmetry

of the bracket, implies {
ξα, ξβ

}
= 0. (I.19)

Upon substituting the above result into eq. (I.18) and contracting with (p|ξ])β we obtain{
ξα, ξ̄β̇

}
= − is

~〈ξ|p|ξ]2
(

2〈ξ|p|ξ]p̄β̇α −m2ξαξ̄β̇
)
. (I.20)

Similar results hold for ξ̄, in particular{
ξ̄α̇, ξ̄β̇

}
= 0,

{
ξ̄α̇, ξβ

}
=

is

~〈ξ|p|ξ]2
(
2〈ξ|p|ξ]p̄α̇β −m2ξβ ξ̄α̇

)
. (I.21)
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Appendix J

Constraint Algebra for the Covariant

DPS Model

In what follows we provide additional details on the computation of the constraint alge-

bra for the covariant DPS model discussed in Chapter 7. The algebra between χ and π

constraints is straighforward to compute

{Φχ,Φπ} = 4Φχπ ' 0 (J.1)

{Φχ,Φχπ} = 2
(
Φχ + λ2s2

)
' 2λ2s2 (J.2)

{Φπ,Φχπ} = −2(Φπ + E2) ' −2E2 (J.3)

For constraints involving p the computation is much more challenging, lets proceed system-

atically by first computing the Poisson brackets of these constraints with the coordinate

vectors χµ, πµ and pµ. In doing so it will be useful to know the Poisson bracket between

pµ and the metric

{pµ, gνρ} =
2ε

R2σ
gνρηµαx

α − gµγΓγνρ, (J.4)

{pµ, gνρ} = − 2ε

R2σ
gνρηµαx

α + gµγΓ
γ
αβg

ανgβρ. (J.5)

Keeping in mind that indices are raised and lowered by the metric and its inverse, we find

{χµ,Φpχ} = −Γµνρχ
νχρ,

{πµ,Φpχ} = −pµ + Γρµνπρχ
ν ,

{pµ,Φpχ} = Γνµρχ
ρpν +Rσ

ρµνπσχ
ρχν ,
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and

{χµ,Φpπ} = pµ − πνΓµνρχρ,
{πµ,Φpπ} = πνπαΓρµν ,

{pµ,Φpπ} = − 2ε

R2σ
pνπ

νηµρx
ρ + gµνΓ

ν
ργp

ρπγ

+Rρ
γµνπρχ

γπν − Γρµνp
νπρ,

and finally

{χµ,Φp} = −2Γµνρχ
ρpν ,

{πµ,Φp} = 2Γρµνp
νpρ,

{pµ,Φp} = − 2ε

R2σ
pνpνηµρx

ρ + gµνΓ
ν
ργp

ρpγ

+ 2Rσ
ρµνπσχ

ρpν .

It is now a tedious but straightforward task to compute the constraint algebra. We find

{Φχ,Φpχ} = 0, (J.6)

{Φπ,Φpχ} = −2Φpπ −
2εf

R
E ' −2εf

R
E, (J.7)

{Φχπ,Φpχ} = −Φpχ +
εf 2

R
λ ' εf 2

R
λ, (J.8)

and

{Φχ,Φpπ} = 2Φpχ −
2εf 2

R
λ ' −2εf 2

R
λ, (J.9)

{Φπ,Φpπ} = 0, (J.10)

{Φχπ,Φpπ} = Φpπ +
εf

R
E ' εf

R
E, (J.11)

and

{Φχ,Φp} = 0, (J.12)

{Φπ,Φp} = 0, (J.13)

{Φχπ,Φp} = 0, (J.14)

and

{Φp,Φpχ} =
2ε

R2

((
Φpπ +

εf

R
E

)(
Φχ + λ2s2

)
− Φχπ

(
Φpχ −

εf 2

R
λ

))
(J.15)
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' 2fs2

R3
λ, (J.16)

{Φp,Φpπ} =
2ε

R2

(
Φχπ

(
Φpπ +

εf

R
E

)
−
(

Φpχ −
εf 2

R
λ

)(
Φπ + E2

))
(J.17)

' 2f 2

R3
E (J.18)

and finally

{Φpχ,Φpπ} = Φp +
ε

R2

(
ιεν2 − (1 + ε)f 2

)
+

ε

R2

(
Φχπ −

(
Φπ + E2

) (
Φχ + λ2s2

))
(J.19)

' ε

R2

(
ιεν2 − s2 − (1 + ε)f 2

)
. (J.20)
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