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Abstract

Over the past decade, there has been an explosion of network data in a vast number of

circumstances, such as the World Wide Web, social networks, gene interactions, economic

networks, etc. Scientific analysis of networks is of significant importance in revealing laws

governing complex systems. Community detection, one of the fundamental problems in

network analysis, discovers the underlying cluster structure of nodes in a network. The

Stochastic Block Model (SBM) is an influential framework for model-based community

detection. In this thesis, we first propose a Continuous-time Stochastic Block Model (CS-

BM). Furthermore, we develop a multistate CSBM and use it to analyze Basketball games.

Finally, we propose a novel variable selection approach by constructing networks among

variables and applying SBM techniques.

Various Stochastic Block Models have been developed for static networks, such as a network

of Facebook users. Theoretical properties of these models have been studied recently.

However, for transactional networks, for example, a network of email users who frequently

send emails to each other, research is relatively limited. Most existing works either do

not take time into account or treat time in a discrete manner (as in discrete-time Markov

chains). In contrast, we propose a Continuous-time Stochastic Block Model (CSBM) for

transactional networks. Transactions between pairs of nodes are modeled as inhomogeneous

Poisson processes, where the rate function of each Poisson process is characterized by the

underlying cluster labels of the corresponding pair of nodes. The CSBM is capable of

not only detecting communities but also capturing how transaction patterns evolve among

communities.
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As an important application, a multistate CSBM is developed and applied to basketball

games. Basketball data analysis has gained enormous attention from enthusiasts and pro-

fessionals from various fields. We advocate that basketball games can be analyzed as

transactional networks. The multistate CSBM models basketball plays as continuous-time

Markov chains. The model clusters players according to their playing styles and perfor-

mance. It also provides cluster-specific estimates of the effectiveness of players at scoring,

rebounding, stealing, etc, and also captures player interaction patterns within and between

clusters. Moreover, the model reveals subtle differences in the offensive strategies of dif-

ferent teams. Applications to NBA basketball games illustrate the performance of the

multistate CSBM.

The SBM framework can also be employed for variable selection. In the past two decades,

variable selection has become one of the central topics in statistical learning and high-

dimensional data analysis. Numerous methods have been successfully developed. In gen-

eral, there are mainly three types of approaches: penalized likelihood methods, variable

screening methods and Bayesian variable selection methods. Nevertheless, in this thesis,

we propose a novel variable selection method: Variable Selection Networks, which is in

a new framework — Variable Selection Ensembles. Given a regression model with p co-

variates, we consider the ensemble of all p(p − 1)/2 submodels with two covariates. We

construct networks with nodes being the p variables and each edge being a measure of the

importance of the pair of variables to which it connects. We show that such networks have

block structures. Variable selection is conducted by applying SBM techniques to these

networks.
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Chapter 1

Introduction

1.1 Networks

We live in a connected world. Overwhelmed by the meteoric rise of the internet and online

social media, we can more vividly feel that the world is connected than we ever did. In fact,

other than the internet and social networks, there are networks everywhere — neurons in

the brain, genes, friendships, epidemics, economic networks, etc. In general, a network is

simply a collection of objects connected to each other in a certain fashion. Mathematically,

a network is a graph G = (V,E), where V is a set of vertices/nodes and E is a set of edges.

A network with n vertices can be represented by an n × n adjacency matrix, A = [Aij],

where Aij = 0 or 1 indicates the absence or presence of the i→ j edge, respectively. Figure

1.1 shows a simple undirected network (Aij = Aji for all i and j) with four vertices and

four edges. The relations between pairs of nodes do not have to be binary-valued. In
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Figure 1.1: A static network

other words, entries of an adjacency matrix can be numbers other than 0 or 1. For real

world networks, discovering their underlying structures and properties is of great interest.

Indeed, researchers from numerous disciplines have paid tremendous attention to this over

a long history.

As early as 1736, the great Leonhard Euler laid the foundation of graph theory by studying

the Seven Bridges of Königsberg. Since then, graph theory has become an important branch

of mathematics. In 1959, mathematicians Paul Erdös and Aflréd Rényi, and Edgar Gilbert

independently introduced the first random graph model, the Erdös-Rényi model (Erdös and

Rényi, 1959; Gilbert, 1959), which assumes that, given a fixed set of nodes, all pairs of nodes

independently form edges with the same probability. In 1967, Stanley Milgram, a social

psychologist, conducted an experiment that studied the degree of connectedness or chains

of acquaintances of people in the United States, which led to the well-known Six Degrees of

Separation. This phenomenon has lately been verified by many experiments. For example,

a study on Microsoft Messenger instant messaging system shows that chains of contacts

between users have an average length 6.6 (Leskovec and Horvitz, 2008). In 1998, Steven

2



Strogatz, an applied mathematician, and his student Duncan Watts show, in their paper

on Nature (Watts and Strogatz, 1998), that many real world networks, including the power

grid of the western U.S., the collaboration graph of film actors, and the neural network of

the worm Caenorhabditis elegans have not only short average path lengths, but also high

clustering coefficients, meaning that two connected neighbors of one node are likely to be

connected or “friends of my friends are my friends”. They introduced the Watts-Strogatz

Model that captures both properties. In 1999, Albert-László Barabási, a physicist, and

his student Réka Albert published their ground-breaking paper on Science (Barabási and

Albert, 1999), showing the phenomenon that degree distributions of real world networks

roughly follow a power law, i.e., the probability that a node has k connections is of the

form P(k) ∼ k−γ. They proposed the Barabási–Albert Model or Preferential Attachment

Model to capture the power law degree distribution.

Meanwhile, statisticians and sociologists have been collaborating for more than a half cen-

tury to develop statistical network models. Social network analysis has already become

an important branch of social science. Long time ago, the phenomenon of high clustering

coefficients, or “high transitivity” called by sociologists, had been investigated, for exam-

ple, by Davis (1970). On the other hand, the preferential attachment is referred as the

“Matthew effect” or “the rich get richer” in Sociology, which had also been studied, for

example, by Price (1976). In the last two decades, numerous types of pervasive and fruitful

statistical network models have been successfully developed and applied to study social be-

haviors and mechanisms. Two of the most influential frameworks are Latent Space Models

and Exponential Random Graph Models. Latent space models assume existence of latent

variables associated with vertices that determine the probabilities of edges among vertices.
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Moreover, edges are usually assumed to be conditionally independent given the latent vari-

ables. There are different types of latent space models depending on the types of latent

spaces and latent variables. For instance, Stochastic Block Models consider the scenario

where the latent space is a discrete space and the latent variables are categorical variables.

Distance models, such as the Latent Space Social Network Model (Hoff et al., 2002), the

Latent Ultrametric model (Schweinberger and Snijders, 2003), assume that vertices can be

projected into a latent metric space with a certain distance measure. They also assume

that the probability of two vertices being connected depends on the distance of the two

vertices in the latent metric space. Another very influential framework is the Exponen-

tial Random Graph Model (ERGM). It considers the following type of probability mass

function of a network A, Pθ(A) = exp(
∑

i θisi(A))/κ(θ), where si(A) can be a statistic of

the network or a covariate, and κ(θ) is the normalization term. The Markov Exponential

Random Graph model, a special ERGM that has been comprehensively studied, assumes

that two edges are conditionally independent given the other edges. Such an assumption

implies that the configurations of statistics in the probability mass function, i.e., Si(A),

must be the number of overall edges, the number of triangles or the number of k-star for

any possible k. An overview of the ERGM can be found in Lusher et al. (2012). Dynamic

networks have also been studied. Network dynamics mostly refer to state changes of edges

or nodes, transactions among nodes, etc. The time scale for dynamics can be discrete or

continuous. Many statistical models treat dynamic networks as Markov chains or Hidden

Markov chains. Snijders (2011) and Kolaczyk (2009) provide helpful reviews of statistical

network models.

The focus of this thesis is on the Stochastic Block Model. This will be reviewed in the

4



next section.

1.2 Community Detection and Stochastic Block Models

In real networks, nodes sometimes fall into different groups or communities, where nodes

in the same community show a similar pattern in terms of forming edges, whereas nodes

from different communities show distinct patterns. For example, in social networks, actors

often have various backgrounds, e.g., students, businessmen, professionals, etc, and people

with different backgrounds often have different social structures; in gene networks, genes

from different units have different biological functions and thus interact with each other in

different ways. Given a network, finding the underlying node communities can help us bet-

ter understand the network structure and reveal network mechanisms. Indeed, community

detection, one of the fundamental problems in network analysis, tries to search for natural

clusters of network nodes. It differs from traditional graph partitioning algorithms in that

the number and size of clusters are not pre-specified, but depend on the network. In fact,

determining the number of communities is still an open problem in community detection

(Saldana et al., 2016; Chen and Lei, 2016; Wang and Bickel, 2016).

There are different types of community detection approaches. Some methods try to con-

duct community detection purely by algorithms, for example, the Hierarchical Clustering

method defines similarity measures for nodes and assembles nodes with high similarity

together. Some methods define certain global criteria and search for the community re-

alization that optimizes them, for example, the modularity (Newman, 2003). Finally,
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model-based methods impose probabilistic assumptions on networks and adopt statistical

inference to conduct community detection. The Stochastic Block Model (SBM) is one of

the most influential model-based community detection frameworks. In the past decade,

many generalizations of the SBM have been developed and their theoretical properties have

been investigated.

Given a single network or static network A, the Stochastic Block Model (Snijders and

Nowicki, 1997) assumes that nodes belong to different blocks/communities, and nodes in

the same block are stochastically equivalent. The distribution of an edge between two

nodes is governed only by the blocks to which the nodes belong. Given the block labels of

all nodes, all edges are independent with each other.

More explicitly, consider a network with n nodes and assume they are from K blocks.

Given the node labels e = {e1, e2, . . . , en}, where ei ∈ {1, 2, . . . , K}, the edges are assumed

to be independent Bernoulli random variables with

P(Aij = 1|ei, ej) = Peiej , (1.1)

where {Pkl : k, l = 1, 2, . . . , K} are K2 parameters. The conditional distribution of the

entire network, given the node labels, is of the form

P(A|e) =
∏

0≤i,j≤n

PAij
eiej

(1− Peiej)1−Aij . (1.2)

Given a network, our goal is to find the “best” label configuration e. It can be obtained by

maximizing the profile likelihood function (Bickel and Chen, 2009), which is the function

6



(1.2) with the estimated probabilities {P̂kl : k, l = 1, 2, . . . , K} plugged in. Finding the op-

timal solution is NP-hard. However, heuristic algorithms are available, for example, a label

switching algorithm (Zhao et al., 2012). We may also use an Expectation-Maximization

algorithm (Snijders and Nowicki, 1997) or spectral clustering algorithms (Jin, 2015; Lei and

Rinaldo, 2015). Note that, all methods above work only when K, the number of clusters,

is given. In practice, K needs to be determined. As mentioned previously, many research

works have been devoted to this problem very recently (Saldana et al., 2016; Chen and

Lei, 2016; Wang and Bickel, 2016).

Many generalizations have been developed for the standard SBM. The Degree-corrected

Stochastic Block Model (Karrer and Newman, 2011) relaxes the strong assumption that

nodes in the same block are exactly stochastically equivalent by adding individual strength

parameters for nodes. Another influential work is the Mixed Membership Stochastic Block

Model (Airoldi et al., 2008), which allows one node to belong to different blocks when

communicating with different nodes. Theoretical proporties of SBMs, such as detection

consistency, have been investigated by Bickel and Chen (2009); Zhao et al. (2012); Jin

(2015); Lei and Rinaldo (2015) and others.

1.3 Expectation-Maximization Algorithm

The expectation-maximization (EM) algorithm (Dempster et al., 1977) is adopted in Chap-

ter 2 and Chapter 3 for model fitting, so we briefly introduce it in this section.

The EM algorithm is widely used for dealing with missing data or latent variables. Suppose
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X is observed data and Z is missing data or latent variables. Let l(X,Z;θ) denote the

complete log-likelihood function of the model and θ denote the parameters. The EM

algorithm iterates over the following two steps:

E-Step Take conditional expectation of l(X,Z;θ) given X under θ̂, the estimated param-

eters from the last step. That is

Q(θ) = E[l(X,Z;θ)|X; θ̂]. (1.3)

M-Step Update parameters by calculating

θ̂(new) = arg max
θ

Q(θ). (1.4)

Example: A classic application of the EM algorithm is to estimate Gaussian Mixture

models. A mixture of K Gaussians is

f(x) =
K∑
k=1

πkN (x;µk, σ
2
k), (1.5)

where {N (x;µk, σ
2
k) : k = 1, 2, . . . , K} are the probability density functions of the Gaussian

components and π = (π1, π2, . . . , πK) are the mixing coefficients with constraints 0 ≤ πk ≤

1 and
∑K

k=1 πk = 1. We can think that a sample from such a mixture of Gaussian is

generated in two steps: first, draw a component label k from {1, 2, . . . , K} with probability

{π1, π2, . . . , πK}, respectively; second, draw a sample from N (x;µk, σ
2
k).

Given N samples from the Gaussian mixture distribution (1.5), denoted by X, the likeli-
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hood function is

L(X;µ,σ2,π) =
N∏
n=1

{ K∑
k=1

πkN (xn;µk, σ
2
k)
}
. (1.6)

The log-likelihood is

lnL(X;µ,σ2,π) =
N∑
n=1

ln
{ K∑
k=1

πkN (xn;µk, σ
2
k)
}
. (1.7)

Clearly, due to the summation inside the logarithm, it is hard to directly maximize the

likelihood over the parameters. The problem can be solved by the EM algorithm.

We introduce latent variables zn = (zn1, zn2, ..., znK), n = 1, 2, ..., N to indicate the compo-

nent labels of the N samples, respectively, such that

znk =


1, if sample n belongs to component k;

0, otherwise.

(1.8)

Assume z1, z2, ...,zN to be i.i.d. multinomial(1,π) random variables, with π = (π1, π2, ..., πK).

The complete distribution function of X and Z is

L(X,Z;µ,σ2,π) = L(X|Z;µ,σ2) · L(Z;π) =
N∏
n=1

K∏
k=1

[
πkN (xn;µk, σ

2
k)
]znk . (1.9)

Note that znk ∈ {0, 1} and
∑K

k=1 znk = 1, which implies that, for a realization of zn, only

one of the entries is 1 and all the others are 0. Therefore, the marginal distribution function

9



of X is given by

∑
Z

L(X,Z;µ,σ2,π) =
∑
Z

N∏
n=1

K∏
k=1

[
πkN (xn;µk, σ

2
k)
]znk =

N∏
n=1

{ K∑
k=1

πkN (xn;µk, σ
2
k)
}
,

(1.10)

which is the same as (1.6).

The conditional distribution of Z given X is

L(Z|X;µ,σ2) =
N∏
n=1

∏K
k=1

[
πkN (xn;µk, σ

2
k)
]znk∑K

k=1 πkN (xn;µk, σ2
k)

. (1.11)

We can see that given X, indicators z1, z2, . . . ,zN are conditionally independent and

E(znk|X) = P(znk = 1|X) =
πkN (xn;µk, σ

2
k)∑K

j=1 πjN (xn;µj, σ2
j )
. (1.12)

Hence, the EM algorithm is as follows:

E-step Take log of the complete likelihood (1.9)

l(X,Z;µ,σ2,π) =
N∑
n=1

K∑
k=1

{
znk
[

lnπk + lnN (xn;µk, σ
2
k)
]}
. (1.13)

Take conditional expectation of the log-likelihood given the observed data, under the pa-

rameters estimated in the last step,

EZ[l(X,Z;µ,σ2,π)|X; µ̂, σ̂2, π̂]

=
N∑
n=1

K∑
k=1

EZ

{
znk
[

lnπk + lnN (xn;µk, σ
2
k)
]
|X; µ̂, σ̂2, π̂

}
10



=
N∑
n=1

K∑
k=1

{
E(znk|X; µ̂, σ̂2, π̂)

[
lnπk + lnN (xn;µk, σ

2
k)
]}

=
N∑
n=1

K∑
k=1

{ π̂kN (xn; µ̂k, σ̂k
2)∑K

j=1 π̂jN (xn; µ̂j, σ̂j
2)

[
lnπk + lnN (xn;µk, σ

2
k)
]}
. (1.14)

M-step Maximize (1.14) over all parameters. Let γ(znk) = P(znk = 1|X; µ̂, σ̂2, π̂) and

Nk =
∑N

n=1 γ(znk). We have the following solutions:

µ̂k
(new) =

∑N
n=1 γ(znk)xn

Nk

, (1.15)

σ̂k
2(new) =

∑N
n=1 γ(znk)(xn − µ̂k)2

Nk

, (1.16)

π̂k
(new) =

Nk

N
. (1.17)

Thanks to the closed-form solutions, we can simply update the parameters by iteratively

operating the M-step.

1.4 Spectral Clustering

Spectral clustering methods are popular for clustering nodes in networks with block struc-

tures (Rohe et al., 2011; Jin, 2015; Lei and Rinaldo, 2015). In Chapter 4, we adopt the

spectral clustering algorithm introduced by Lei and Rinaldo (2015) to conduct variable

selection upon variable selection networks. Therefore, we introduce the algorithm in this

section, with derivations closely following Lei and Rinaldo (2015).
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Consider an undirected network with symmetric adjacency matrix A = [Aij], where Aij is

a random variable for i 6= j and Aii = 0 for all i = 1, 2, . . . , p. Suppose the nodes are from

K underlying clusters. Moreover, given any two nodes i and i′ from cluster k and any two

nodes j and j′ from another cluster l, we have

E(Aij) = E(Ai′j′) := Bkl, (1.18)

where {Bkl : k, l = 1, 2, . . . , K} are parameters. Essentially, the expectation of an edge

is determined by clusters of the nodes to which it connects, so all edges actually fall into

K(K − 1)/2 blocks and the edges in the (k, l) block have the same expectation Bkl.

Let zi = (zi1, zi2, . . . , ziK)T indicate the cluster label of node i, where

zik =


1, if node i belongs to cluster k,

0, otherwise.

Suppose there are p nodes. Define Zp×K = (z1, z2, . . . ,zp)
T and BK×K = [Bkl]. According

to the previous description, we have

E(A) = ZBZT − diag(ZBZT ). (1.19)

Define ∆ = diag(
√
p1,
√
p2, . . . ,

√
pK), where pk is the number of nodes in cluster k, and

we obtain

Q := ZBZT = Z∆−1∆B∆∆−1ZT . (1.20)
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Suppose the eigen-decomposition of ∆B∆ is EDET , then

Q = Z∆−1∆B∆∆−1ZT = Z∆−1EDET∆−1ZT , (1.21)

which can be verified to be the eigen-decomposition of Q, and K eigen-vectors are columns

of Z∆−1E.

Let U = Z∆−1E. It is easy to see that U only has K distinct rows. In fact, suppose node

i is in cluster k, the ith row of U is zTi ∆−1E, which returns the kth row of ∆−1E.

According to (1.19), E(A) and Q are the same except diagonal elements, so the top K

eigenvectors of E(A) should approximately equal to the K eigenvectors of Q, which have

K distinct rows. Furthermore, it is reasonable to expect that the top K eigenvectors of

the observed network A share a similar pattern as that of E(A). Therefore, we obtain the

following spectral clustering algorithm for networks with block structures.

1. Calculate Û ∈ Rp×K , which consists of the leading K eigenvectors of A (ordered in

absolute eigenvalue) .

2. Conduct k-means clustering on the rows of Û , with K clusters.

From the derivation (1.19) to (1.21), we can see that the above algorithm can be applied

to both binary networks and weighted networks with arbitrary valued edges, as long as

E(A) has a block structure.
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1.5 Organization and Summary of Contributions

This thesis considers generalizations and applications of the Stochastic Block Model to

basketball games and variable selection problems.

In Chapter 2, a Continuous-time Stochastic Block Model is proposed for transactional

networks. We first introduce the transactional network, a special type of dynamic network

that records transactions among nodes over a period of time. Our goal is community

detection for the nodes in a transactional network. A natural idea is to generalize the

standard Stochastic Block Model. Indeed, some research works have been devoted to

this recently. However, most existing works either do not take time into account or treat

time in a discrete manner (as in discrete-time Markov chains). In contrast, we propose a

Continuous-time Stochastic Block Model (CSBM). Transaction processes are modeled as

inhomogeneous Poisson processes, where the rate function of a transaction process between

a pair of nodes depends only on the underlying communities of the nodes. Cubic B-splines

are used to model the rate functions. We develop an EM algorithm to fit the CSBM.

Finally, we illustrate the model by a simulation example.

In Chapter 3, a multistate CSBM is developed and applied to analyze basketball games.

We first provide an overview of basketball data analysis, a field growing rapidly in the

past few years. In short, traditional analysis mainly focuses on the box score, which lists

statistics of players and teams of each game, for example, number of field goals made,

number of rebounds, etc. Recently, thanks to much richer real-time data, researchers

have gone beyond the box score. Some researchers consider basketball games as networks

14



and others model basketball plays as stochastic processes. We combine these two ideas

and provide a novel perspective for basketball analysis. In particular, we advocate that

basketball games can be analyzed as transactional networks in the sense that players are

nodes and ball passes are transactions. Our interest is to cluster players into different

groups according to their playing styles. A multistate CSBM is developed for basketball

networks, where each basketball play is modeled as a Markov chain. The transition rate

functions of the Markov chain depend on the latent cluster labels of players. To fit the

multistate CSBM, we develop an EM+ algorithm, which is an EM algorithm followed by

a complementary heuristic algorithm. At the end of this chapter, the model is illustrated

by appealing applications to NBA games. Our paper based on this research project (Xin

et al., 2016) has been accepted by the Annals of Applied Statistics.

In Chapter 4, a novel variable selection method, Variable Selection Networks (VSN), is

proposed. For variable selection, researchers have mainly focused on three types of ap-

proaches in the last two decades: penalized likelihood methods, variable screening meth-

ods and Bayesian variable selection methods. The VSN does not belong to any of these

three categories. Instead, it advocates a different framework, Variable Selection Ensem-

bles (VSE). The main idea of the VSE is to evaluate an ensemble of submodels and use

the aggregate information to select variables. Given p covariates, the VSN considers the

ensemble of all p(p − 1)/2 submodels with two covariates. By treating each variable as

a node and the importance measure of each pair of variables as an edge between them,

such an ensemble of submodels is actually a network. In this chapter, we first construct

variable selection networks for the p < n case and investigate their theoretical properties.

We show that such networks have block structures. Algorithms incorporating Stochastic
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Block Model techniques are developed to conduct variable selection for variable selection

networks. Moreover, for the p ≥ n case, we propose an iterative group screening method to

reduce the number of variables. Finally, the VSN is compared to many state-of-the-art and

newly developed variable selection methods by simulations. The VSN is very competitive

in comparison to existing approaches.

In Chapter 5, we summarize the thesis and discuss future research.
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Chapter 2

A Continuous-time Stochastic Block

Model

2.1 Introduction

This chapter presents a basic Continuous-time Stochastic Block Model and an EM algorithm

to fit the model. This is the first step of our generalization of the standard Stochastic Block

Model (Section 1.2), so we only illustrate the model and the algorithm by a simple simu-

lation example. As such, this chapter is not a standalone project and, unlike Chapters 3

and 4, there is no plan to publish this chapter on its own. Following the foundations built

in this chapter, we will develop a complex multistate Continuous-time Stochastic Block

Model for basketball networks in Chapter 3, where we explicitly illustrate the model using

real basketball data.
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2.1.1 Transactional Networks and Stochastic Block Models

Under certain circumstances, instead of simply observing a connection between each pair

of nodes, we observe a series of transactions, for example, phone calls among a number

of people in a period of time. Such networks are called transactional networks. The

corresponding data, as shown in Table 2.1, simply records senders, recipients and time of

transactions.

Table 2.1: A transactional network

From To Time of transaction

1 4 03/29/2015, 08:27
1 7 03/29/2015, 09:01
3 1 03/30/2015, 17:11
...

...
...

In general, the transactional network is one special kind of longitudinal networks. Lon-

gitudinal networks, which record the evolution of networks over a series of time points,

have been studied by researchers for more than two decades. A typical way to model

longitudinal networks is by discrete or continuous-time Markov chains, for example, the

actor-oriented models (Snijders, 1996). The rate functions of Markov chains are usually

modeled as functions of network statistics. Snijders (2001) provides a brief overview of this

class of models. Recently, inspired by event history analysis (Cook and Lawless, 2007),

Vu et al. (2011) model transactions among nodes as recurrent events, where the intensi-

ty functions are modeled as multiplicative and additive functions of cumulative network

statistics.
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To conduct community detection for transactional networks, many recent works adopt the

SBM framework. Shafiei and Chipman (2010) focus on the number of transactions, but do

not consider the time factor. Ho et al. (2011), and Xu and Hero (2014) study networks at

discrete time points and use State Space Models to describe intertemporal dynamics.

In this Chapter, we propose a Continuous-time Stochastic Block Model (CSBM), which

models transactions over time as inhomogeneous Poisson processes. In the next chapter, we

propose a multistate CSBM for basketball networks, where ball transactions are modeled as

Continuous-time Markov chains. For both CSBM models, the rate functions are governed

by the underlying communities of nodes, and they are fitted by cubic B-splines. EM

algorithms are developed to estimate the CSBMs.

DuBois et al. (2013) have similar ideas to ours, but they focus on generic transactional

networks and parameterize rate/intensity functions using network statistics. Their model

can not be directly applied to the multistate case such as basketball networks. Another

difference is that they use MCMC to fit their model.

2.1.2 Inhomogeneous Poisson Process

We will model transactions in transactional networks as inhomogenous Poisson processes.

Hence, we first look at the distribution of an inhomogeneous Poisson process, often used

in event history analysis (Cook and Lawless, 2007). Figure 2.1 shows a Poisson process

with m events, happening at times t1 < · · · < tm over the interval [t0, tm]. Suppose that

our observation of the process stops at time tm. Let ρ(t) denote the rate function of this
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Figure 2.1: A Poisson process

inhomogeneous Poisson process. The distribution is of the form

L =
m∏
i=1

ρ(ti) · exp
(
−
∫ tm

t0

ρ(u)du
)

(2.1)

=
m∏
i=1

(
ρ(ti) · exp

(
−
∫ ti

ti−1

ρ(u)du
))

(2.2)

=
m∏
i=1

L
(
(ti−1, ti]

)
. (2.3)

The time intervals {(ti−1, ti], i = 1, 2, . . . ,m} are independent. For each time interval

(ti−1, ti], the distribution consists of two parts: the part for the actual event, ρ(ti), and the

part for the the time gap between events, exp
(
−
∫ ti
ti−1

ρ(u)du
)
. The derivation of (2.1) is

as follows, which closely follows the presentation by Cook and Lawless (2007, p. 30).

Let Nt denote the number of events in the time interval [t, t + ∆t). By the definition of

the Poisson process, for a very small ∆t,

P(Nt = 0) = 1− ρ(t)∆t+ o(∆t), (2.4)

P(Nt = 1) = ρ(t)∆t+ o(∆t), (2.5)

P(Nt ≥ 2) = o(∆t). (2.6)

Consider a partition of [T0, T ), say T0 = u0 < u1 < u2 · · · < uR = T . By the “independent
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increment” property of the Poisson process, we have

P([T0, T1)) =
R−1∏
r=0

P([ur, ur+1)) =
R−1∏
r=0

P(Nur)

=
( ∏
Nur=0

[1− ρ(ur)∆ur + o(∆ur)]
)
·
( ∏
Nur=1

[ρ(ur)∆ur + o(∆ur)]
)
·

( ∏
Nur≥2

[o(∆ur)]
)
. (2.7)

Notice that log[1−ρ(t)∆t] = −ρ(t)∆t+o(∆t), so the logarithm of the first product in (2.7)

— the one over Nur = 0 — approaches the Riemann integral, −
∫ T
T0
ρ(t)dt, in the limit.

Thus, dividing ∆ur into each respective term that corresponds to the interval [ur, ur+1)

and taking the limit as R→∞ and consequently as ∆ur = ur+1− ur → 0, we obtain that

the desired distribution is
m∏
i=1

ρ(ti) · exp
[
−
∫ T

T0

ρ(u)du
]
.

Hence, we see that the probability distribution function of the Poisson process consists of

two parts: the first part,
∏m

i=1 ρ(ti), corresponds to all event times; and the second part,

exp
[
−
∫ T
T0
ρ(u)du

]
, corresponds to all time gaps.

2.2 A Continuous-time Stochastic Block Model

In this section, we develop a Continuous-time Stochastic Block Model for transactional

networks. Recall the two principles of the Stochastic Block Model: the nodes in the same

block are stochastically equivalent and all edges are conditionally independent given the
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community labels of the nodes. In transactional networks, we observe transaction processes

between pairs of nodes. Following the principles of the SBM, a Continuous-time SBM is

constructed as follows:

• Assume that nodes belong to K different clusters, and each node only belongs to one

cluster.

• Define K2 rate functions {ρkl(t) : k, l = 1, 2, . . . , K}. The transactions from node i

to j are modeled as an inhomogeneous Poisson process with the rate function being

ρeiej(t), where ei and ej are the cluster labels of i and j, respectively.

• Given the cluster labels of all nodes, transactions are conditionally independent.

2.2.1 Conditional Likelihood

Suppose there are n nodes with cluster labels e = (e1, e2, . . . , en) and the network is

observed over a time period (T0, T ). Let tijh denote the hth time of the transaction from i

to j; tij = {tijh : h = 1, 2, . . . ,mij} denote the transaction time points from i to j, where

mij is the total number of transactions from i to j; and T = {tij : i, j = 1, 2, . . . , n}

denote all transaction times. According to the design, the conditional distribution of such

a transactional network, given the cluster labels of nodes, is

L(T|e) =
∏

1≤i,j≤n

L(tij|ei, ej) (2.8)

:=
∏

1≤i,j≤n

{ mij∏
h=1

ρeiej(tijh) · exp
[
−
∫ T

T0

ρeiej(u)du
]}
, (2.9)
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where we utilize the distribution function of a Poisson process (2.1). For the sake of

simplicity, we define

Lijeiej = L(tij|ei, ej), (2.10)

which is the conditional distribution function of the transaction process from i to j given

their cluster labels. In particular, if we know that cluster labels of i and j are ei = k and

ej = l, respectively, then

Lijkl = L(tij|ei = k, ej = l) =

mij∏
h=1

ρkl(tijh) · exp
[
−
∫ T

T0

ρkl(u)du
]
. (2.11)

We model the rate functions by cubic B-splines such that

ρkl(t) =
P∑
p=1

eβklpBp(t), (2.12)

where {B1(t), B2(t), . . . , BP (t)} are basis functions and β = {βklp : k, l = 1, 2, . . . , K; p =

1, 2, . . . , P} denote coefficients. The parametrization eβklp ensures ρkl(t) ≥ 0.

2.2.2 An EM Algorithm

The cluster labels e = (e1, e2, . . . , en) are latent variables, which are unknown. In this

section, we develop an EM algorithm for the CSBM. The procedure is very similar to the

EM algorithm for Gaussian mixture models (Section 1.3).
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Let zi = (zi1, zi2, . . . , ziK) denote a latent label indicator for node i such that

zik =


1, if node i belongs to cluster k;

0, otherwise.

(2.13)

Assume {zi : i = 1, 2, . . . , n} are marginally i.i.d. multinomial(1,π), with π = (π1, . . . , πK).

Let Z = (z1, z2, . . . ,zn) and Θ = {β,π}. The complete likelihood of the network is

L(T,Z; Θ) = L(T|Z; Θ) · L(Z; Θ)

=
∏

1≤i 6=j≤n

∏
1≤k,l≤K

(Lijkl)zikzjl · L(Z; Θ) (2.14)

=
∏

1≤i 6=j≤n

∏
1≤k,l≤K

{ mij∏
h=1

ρkl(tijh) · exp
[
−
∫ T

T0

ρkl(u)du
]}zikzjl

·
n∏
i=1

K∏
k=1

πzikk .

Note that we assume one node does not communicate with itself. The log-likelihood is

l(T,Z; Θ)

=
∑

1≤i 6=j≤n

∑
1≤k,l≤K

{
zikzjl

[ mij∑
h=1

log ρkl(tijh)−
∫ T

T0

ρkl(u)du
]}

+
n∑
i=1

K∑
k=1

(zik log πk). (2.15)

E-Step Take conditional expectations of latent variables in the log-likelihood given ob-

served time points,

E[l(T,Z; Θ)|T; Θ∗]

=
∑

1≤i 6=j≤n

∑
1≤k,l≤K

{
E(zikzjl|T; Θ∗) ·

[ mij∑
h=1

log ρkl(tijh)−
∫ T

T0

ρkl(u)du
]}
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+
n∑
i=1

K∑
k=1

[
E(zik|T; Θ∗) log πk

]
, (2.16)

where “∗” indicates the parameters estimated from the last step.

The situation now is more difficult than Gaussian mixture models, because the latent

variables {zi : i = 1, 2, . . . , n} here are not conditionally independent due to interac-

tions of nodes. Therefore, it is infeasible to calculate the exact conditional expectations

E(zikzjl|T; Θ∗) and E(zik|T; Θ∗); for example, in order to calculate E(zik|T; Θ∗), we need

to marginalize the cluster labels of all nodes that interact with node i. Instead, we adopt

Gibbs Sampling to sample from L(Z|T; Θ∗) and then use the corresponding sample means

to approximate E(zikzjl|T; Θ∗) and E(zik|T; Θ∗).

Gibbs Sampler Let Z−i = {zj : j 6= i} denote the latent cluster indicators of all players

other than i. The idea of the Gibbs sampler is to draw

z1 ∼ L(z1|Z−1,T; Θ∗),

z2 ∼ L(z2|Z−2,T; Θ∗),

...

zn ∼ L(zn|Z−n,T; Θ∗),

z1 ∼ L(z1|Z−1,T; Θ∗),

z2 ∼ L(z2|Z−2,T; Θ∗),

...

repeatedly until the stationary distribution is reached. Under the current parameter
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estimate Θ∗, the conditional distribution of zi given Z−i and T is

L(zi|Z−i,T; Θ∗) =
L(T,Z; Θ∗)∑
zi
L(T,Z; Θ∗)

, (2.17)

a multinomial distribution which is easy to sample from. More explicitly, suppose

that, at the current step, zjcj = 1 for j 6= i — this means ej = cj for all j 6= i or that

cj is the current group label for node j. Then, the conditional probability of node i

belonging to cluster k is

P(zik = 1|Z−i,T; Θ∗)

= P(ei = k|{ej = cj : j 6= i},T; Θ∗)

=
L(T, e = (c1, c2, . . . , ci−1, k, ci+1, . . . , cn); Θ∗)∑K
l=1 L(T, e = (c1, c2, . . . , ci−1, l, ci+1, . . . , cn); Θ∗)

. (2.18)

M-Step Maximize (2.16) with respect to parameters Θ = {β,π}. It is easy to get the

update equation for π,

π
(new)
k =

∑n
i=1 E(zik|T; Θ∗)∑n

i=1

∑K
l=1 E(zil|T; Θ∗)

=

∑n
i=1 E(zik|T; Θ∗)

n
, (2.19)

where the second equation utilizes the fact that the conditional expectations are conditional

probabilities. However, there is no closed-form solution for β. We use the quasi-Newton

method with L-BFGS-B updates — more specifically, we use the optim function in R and

supply with it the analytic form of the gradient. In general, the EM algorithm can be

trapped in a local solution. We leave the discussion on this issue in the next chapter when
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we apply the EM algorithm to a more complex CSBM.

2.3 A Simulation Example

In this section, the CSBM and the EM algorithm are illustrated by a simulation example.

We generated a transactional network with 20 nodes, which are from two communities

with 10 nodes in each community. Rate functions are piecewise cosine functions:

within group 1

ρ11(t) = (0.4 cos(
2tπ

100
−π)+0.6)I(0 ≤ t ≤ 100)+(0.2 cos(

2tπ

100
−π)+0.4)I(100 ≤ t ≤ 200),

(2.20)

within group 2

ρ22(t) = (0.2 cos(
2tπ

100
−π)+0.4)I(0 ≤ t ≤ 100)+(0.4 cos(

2tπ

100
−π)+0.6)I(100 ≤ t ≤ 200),

(2.21)

and between group 1 and group 2

ρ12(t) = ρ21(t) = 0.1 cos(
2tπ

100
− π) + 0.1. (2.22)

For each pair of nodes, we generated a process of transactions according to the correspond-

ing rate function over the time 0-200. Overall, the generated data has 20 × 19/2 = 190

processes and 11,605 transactions.
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Figure 2.2: Simulation example: fitted rate functions vs. true rate functions

The EM algorithm converges quickly in about 5 iterations and can accurately cluster the

nodes to two groups. We fix the starting points for all coefficients to be 0, while we start

the Gibbs sampling by uniformly generating one label configuration from all configura-

tions. The EM algorithm, when runs for multiple times, starts with pure random label

configurations for the Gibbs sampling. For this simple example, we find that running the

EM algorithm for multiple times yields the same result. Figure 2.2 shows the fitted rate

functions vs. the true rate functions. The functions are fitted very well except small dis-

crepancies at the first peaks of both ρ11(t) (left panel) and ρ22(t) (middle panel), probably

due to our choice of using 11 basis functions for B-splines.

2.4 Summary and Remarks

In this chapter, we have proposed a Continuous-time Stochastic Block Model, a natural

generalization of the standard SBM for transactional networks. Transactions between each
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pair of nodes are modeled as an inhomogeneous Poisson process, with the rate function

depending only on the community labels of the two nodes. We adopt B-splines to fit

the rate functions. An EM algorithm is developed to estimate the model. The CSBM is

illustrated by a simple simulation example.

Here, we make a few important remarks about the EM algorithm.

The underlying communities of nodes are indicated by E(Z|T; Θ), the conditional expecta-

tions/probabilities of the latent variables given transactions. We find that, in the E-step,

the conditional probabilities driving the Gibbs sampler turn out to be fairly close to 0

or 1, that is, in equation (2.18), one of the K terms being summed in the denominator

is significantly larger than the others. The reason is that each node is involved in many

transactions. As far as the likelihood function is concerned, these transactions act as if they

were repeated measurements, which reinforce the assignment of the node to a particular

group.

To help understand the above issue, we take the Gaussian mixture scenario (Section 1.3)

as an illustration. Recall that the conditional probability that point i belongs to cluster k

is given by equation (1.12), copied below,

P (i ∈ cluster k|X;µ,σ) =
πkN (xi;µk, σ

2
k)∑K

l=1 πlN (xi;µl, σ2
l )
,

where X denotes all data points; µ = {µk : k = 1, 2, . . . , K} and σ = {σk : k = 1, 2, . . . , K}

are means and standard deviations of the K Gaussians, respectively. Now if we have re-

peated observations for the random variable i, say {xij : j = 1, 2, . . . ,mi}. The conditional
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probability becomes

P (i ∈ cluster k|X;µ,σ) =
πk
∏mi

j=1N (xij;µk, σ
2
k)∑K

l=1 πl
∏mi

j=1N (xij;µl, σ2
l )
, (2.23)

which is closer to 0 or 1. If the sample size mi is large, the conditional probability (2.23)

would be considerably close to 0 or 1.

For the CSBM, equation (2.18) is similar to (2.23) in terms of structures. In addition, we

expect the number of transactions to be very large in a transactional network, so each node

is involved in many transactions. Hence, the Gibbs sampler (2.17) approximately follows

a multinomial distribution with one entry of the probability vector being 1 and the others

being 0. As a result, the Gibbs sampler converges very quickly to a singular probability

mass. This essentially reduces the EM algorithm to something analogous to a k-means

algorithm: the E-step re-assigns the nodes to different groups and the M-step re-estimates

the parameters. Overall, the EM algorithm converges in just a few iterations.

In the end, we very briefly discuss about the computational complexity of the EM algorithm.

Suppose the number of nodes is n, the number of clusters is k, the number of B-spline basis

functions is p and the length of observation time is t.

First, the computational complexity for calculating the distribution function of an inhomo-

geneous Poisson process (2.1) is dominated by the numerical integration, which is roughly

at least O(tp). The number of events does not matter too much, because the numerical

integration should evaluate much more points (depending on the accuracy level) than the

event points over the time interval .
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Second, for the E-step, the Gibbs sampling certainly costs most time. The computational

complexity for getting one sample from L(Z|T; Θ∗) is approximately n×k×(n−1)×O(tp) =

O(n2ktp). Roughly speaking, n × k means going through all clusters for all nodes; then

given one node with one cluster label, we need to evaluate the distribution functions of its

transactions with all the other n − 1 nodes, and thus the complexity is (n − 1) × O(tp).

As discussed, we do not need too many Gibbs samples in each iteration.

Finally, for the M-step, the most complexity clearly comes from the quasi-Newton method

for updating the coefficients. Based on our experiences, the M-step costs much more time

than the E-step. It is easy to see that the complexity of evaluating the log-likelihood

function (2.16) is O(n2k2tp). The complexity of the quasi-Newton method is certainly

much more than that. It is hard to figure out the exact complexity of the quasi-Newton

method, because it depends on the structure and shape of the log-likelihood function.
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Chapter 3

Basketball Networks

3.1 Introduction

In this chapter, we present an important application of the Continuous-time Stochastic

Model (CSBM). In particular, we construct a multistate CSBM and use it to analyze

basketball games. We first give a brief overview of basketball analytics in Section 3.1.1.

Then we provide a new perspective suggesting that basketball games can be analyzed

as transactional networks in Section 3.1.2. A multistate CSBM together with an EM+

algorithm are developed in Section 3.2. In Section 3.3, applications to NBA games illustrate

that the multistate CSBM can reveal interesting insights of basketball games. We make

some remarks in the end of the chapter.
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3.1.1 An Overview of Basketball Analytics

For decades, basketball data analysis has gained enormous attention from basketball pro-

fessionals and basketball enthusiasts from various fields. The top goal has always been to

better understand how players and teams play, and conduct evaluations more efficiently

and objectively. Over the last few years, the explosion of available data, the growth of

computer power and the developments of statistical models have made complex model-

ing of basketball data possible. A revolution is happening in the field of basketball data

analysis.

The traditional approaches focus on the box score, which lists the statistics of players

and teams of each game, for example, number of field goals attempted, field goals made,

rebounds, blocks, steals, plus-minus(+/−), and other snapshot statistics. By combining

the box score statistics, empirically or through regression analysis, various metrics have

been developed to evaluate player and team performances (Oliver, 2004; Shea and Baker,

2013). However, “there is no Holy Grail of player statistics” (Oliver, 2004). As pointed out

by Shea and Baker (2013), the metrics are either “bottom up” or “top down”. Bottom-

up metrics mostly focus on the individual performance, whereas top-down metrics put

emphasis at the team level. Traditional box score metrics mostly fail to take into account

two important factors of basketball: the interaction of players and the fact that a basketball

play is a real-time process.

Recently, researchers have started to investigate basketball games from these two per-

spectives. By treating player positions (point guard, shooting guard, small forward, power

forward and center) as network nodes and ball passes as network edges, Fewell et al. (2012)
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advocate “Basketball is not a game, but a network”. They illustrate ball transition patterns

of different teams by their basketball networks. Additionally, they quantitatively analyze

basketball games and teams by calculating network properties such as degree centrality,

clustering coefficient, network entropy and flow centrality. However, when building the

networks, Fewell et al. (2012) only consider the cumulative passes of games. Hence, the

networks are not able to capture details of basketball plays. Neither can they describe play-

ers’ individual performances. In 2013, the National Basketball Association(NBA) installed

optical tracking systems (SportVU technology) in all thirty courts to collect real-time data.

The tracking system records the spatial position of the ball and the positions of all players

on the court at any time of the game. It also records all actions of the games. Using such

comprehensive data, Cervone et al. (2016) model the evolution of a basketball play as a

complex stochastic process. Their model reveals both offensive and defensive strategies

of players and teams. Ultimately, the model estimates the expected scores an offensive

team can make at any time of the play. The two approaches above certainly provide more

insights and more accurate evaluations of players, teams and basketball plays.

In the NBA, teams obtain new players through trades, free agency and the annual draft.

There are so many potential players, especially college players, that no scout is able to

keep close track of all of them. Clustering players to a number of groups, according

to their performance and playing styles, can efficiently narrow down the target space.

When searching for players, basketball managers, scouts and coaches always hope that

the new player can quickly fit in the current team. Therefore, how players interact with

teammates is of great importance. This must be taken into account during the clustering

procedure.
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We propose a multistate Continuous-time Stochastic Block Model (CSBM) to address the

problem of player clustering. We model basketball games as transactional networks and a

basketball play as an inhomogeneous continuous-time Markov chain. The CSBM clusters

the players according to their performances on the court. It also effectively reveals the

players’ play styles and the teams’ offensive strategies.

3.1.2 Basketball Networks

We now look at basketball, a team game. Players pass the ball to each other and form

networks, with players as vertices and passing as transactions on edges. A basketball

game is made of basketball plays. Generally, a basketball play starts with inbounding,

rebounding, or stealing the ball. During a play, the team with the ball plays offense and

the other team plays defense. A play ends when the offensive team shoots the ball (scores

or misses but the ball hits the rim), makes a turnover, or the offensive player is fouled

when shooting the ball, etc. In the NBA, the time limit for one play is 24 seconds. Figure

3.1 illustrates one basketball play.

Figure 3.1: A basketball play. The ball is inbounded to player r at time 0; r passes the
ball to i at time t1; i passes the ball to j at time t2; . . .; player i receives the ball at time
tm−1 and passes it to r at time tm; the play ends when player r scores 2 points at time
T < 24 seconds.

In a 48-minute NBA game, a team makes about 90-110 plays. Fewell et al. (2012) mod-

el basketball games as weighted networks by counting the frequencies of ball transitions
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among the starts/ends of plays and the five positions of basketball players (point guard,

shooting guard, small forward, power forward and center). Figure 3.2, which is taken from

Fewell et al. (2012), displays the overall weighted network of 16 NBA games between 16

teams they have studied. The network illustrates play patterns and strategies on a game

Figure 3.2: Weighted basketball network of 16 NBA games between 16 teams (Fewell et al.,
2012). Circles represent the five positions (point guard, shooting guard, small forward,
power forward, and center), and rectangles represent start or end points of a play. The
width of the edge is proportional to the frequency of the corresponding ball transitions.
The most frequent transition directions, which sum up to 60%, are colored red.

level. Fewell et al. (2012) compare the teams by investigating their networks. However,

such a network can not capture any detail of real-time basketball play.

We explore basketball at the play level and take into account time effect. More specifically,

we regard basketball as a transactional network. Table 3.1 illustrates our data. The two

plays in the table are from game 1 of the 2012 NBA eastern conference finals between
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the Miami Heat and the Boston Celtics. We manually collected the data by watching the

videos of the games.

Table 3.1: Two plays from game 1 of the 2012 NBA eastern conference finals between the
Boston Celtics and the Miami Heat. The top three lines show one play for the Boston
Celtics. The ball is inbounded to C#9 (Rajon Rondo) at time 0; Rondo dribbles the ball
and passes it to C#5 (Kevin Garnett) at second 11; Garnett misses a 2-pointer shot at
second 12. Lines 4 to 9 illustrate one play for the Miami Heat.

From To Time(s) Players on the court

Inbound C#9 0 C#9, C#20, C#30, C#34
C#9 C#5 11 C#5, C#9, C#20, C#30, C#34
C#5 Miss 2 12 C#5, C#9, C#20, C#30, C#34

Rebound H#6 0 H#3, H#6, H#15, H#21, H#31
H#6 H#3 7 H#3, H#6, H#15, H#21, H#31
H#3 H#15 8 H#3, H#6, H#15, H#21, H#31
H#15 H#3 9 H#3, H#6, H#15, H#21, H#31
H#3 H#6 12 H#3, H#6, H#15, H#21, H#31
H#6 Miss 3 17 H#3, H#6, H#15, H#21, H#31

In a basketball game, only ten players, five from each team, are on the court at one time.

This means a basketball game is subject to many player substitutions. The last column of

Table 3.1 records the players from the offensive team who are on the court at the events.

Such information is necessary for our model. Note that the player inbounding the ball is

treated as being off the court at the time of that event. For example, in Table 3.1, C#5 is

inbounding the ball and not listed as being on the court.

As indicated earlier and shown in Figure 3.2, there are various ways to start and end a

play. A play mostly starts with one of the three initial actions: inbounding, rebounding

and stealing the ball. However, a play technically may end with about fifteen different
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outcomes. For simplicity, we combine the outcomes to six categories: making a 2-pointer

(Make 2), making a 3-pointer (Make 3), missing a 2-pointer (Miss 2), missing a 3-pointer

(Miss 3), being fouled (Fouled) and making a turnover (TO). Scoring and being fouled at

the same time is simply counted as scoring. Catching an air ball is counted as rebounding.

All possible ways of giving up the possession of the ball such as direct turnover, being out

of bound and offensive foul are regarded as turnover. We do not consider rare events such

as a jump ball. We simply discard the rows corresponding to the rare events.

Although we group events into plays in Table 3.1, the model developed in the next section

will treat each event as an individual occurrence, ignoring which play it belongs to. That

is, the data in Table 3.1 will be seen as 9 isolated events (each with a timestamp), rather

than 3 events in one play and 6 events in another play.

3.2 A Multistate CSBM for Basketball Networks

Our goal is to model the basketball network and cluster players into different groups, so that

players in the same group have similar playing styles, while those in different groups play

the game in more distinct ways. In this section, we propose a multistate Continuous-time

Stochastic Block Model. The main idea is to adopt the Stochastic Block Model framework

and model basketball plays as Continuous-time Markov Chains. An EM algorithm and

a complementary algorithm are developed to fit the model. Although developed with

basketball networks in mind, the model is applicable more broadly.
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3.2.1 Pseudo Conditional Likelihood

During a basketball play (Figure 3.1), an initial action (e.g. inbounding) first transfers

the ball to a player; the ball then moves among the players; finally, a play outcome is

reached (e.g. the attacking team scores a 2-pointer). Hence, the ball moves among three

types of nodes (see Section 3.1.2): a set of nodes S = {inbounding, rebounding, stealing}

that designate different initial states, a total of n nodes that are players themselves, and

a set of nodes A = {Make 2,Miss 2,Make 3,Miss 3,Fouled,TO} that designate different

outcomes. In addition, we assume that there are K blocks, and each player only belongs

to one block. The initial actions and the play outcomes are observable, but the blocks

to which the players belong are not. Again, denote the block labels of the players by

e = {e1, e2, . . . , en}, where ei ∈ {1, 2, . . . , K}. These block labels are latent. Following

the conditional independence assumption of the SBM, the transactions among the nodes

are independent given the block labels of the players. The conditional distribution for the

entire basketball network, which includes all basketball plays, can be written as:

L(T|e) = [∏
s∈S

n∏
i=1

LI(Tsi|e)

]
·

[ ∏
1≤i 6=j≤n

LP (Tij|e)

]
·

[
n∏
i=1

∏
a∈A

LO(Tia|e)

]
. (3.1)

where Tsi denotes the transactions from an initial action s to player i; Tij denotes the

transactions from player i to player j; and Tia denotes the transactions from player i to

an outcome a. The conditional distribution (3.1) contains three natural components: LI ,

the distribution of all transactions from initial actions to players; LP , the distribution of
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all passes among players; and LO, the distribution of all transactions from players to play

outcomes. In the following subsections, we specify the details of these components one by

one.

Transactions from initial actions to players

Define P = {Psk : s ∈ S; k = 1, 2, . . . , K}, where each Psk is the probability that the

basketball moves from initial action s to a player in block k. These probabilities are

subject to the constraint that

K∑
k=1

Psk = 1, for any s ∈ S. (3.2)

Given the block labels of all players, e = {e1, e2, ..., en}, the distribution of the transactions

from initial action s to player i is defined as

LI(Tsi|e) =

msi∏
h=1

Psei · 1
Gsihei∑K

k=1

(
Psk · I(Gsih

k > 0)
) , (3.3)

where msi is the total number of times that a play goes from initial action s to player i.

The quantity, Gsih
k , denotes the total number of “eligible receivers” belonging to block k

for this particular play (from s to i), where “eligible receivers” are those players (including

i here) who are on i’s team and also physically on the basketball court (as opposed to

sitting on the bench) at the hth time that a transaction takes place from initial action s to

player i. In general, we use the notation G4k to indicate the number of “eligible receivers”

in block k at the time of an event indexed by 4. Quantities of this kind will appear a few
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more times in the next few sections.

The definition (3.3) implies that players in the same cluster are stochastically equivalent.

The probability that player i receives the ball from an initial action s is governed by the

block-level probability Psei and individual-level probability 1/Gsih
ei

, where we have assumed

that all eligible receivers in the same cluster have an equal chance to receive the ball. The

individual-level probability is needed in addition to the block-level probability because

there is only one ball at all times and only one player can receive it. The denominator∑K
k=1

(
Psk · I(Gsih

k > 0)
)

is a normalization term, which takes into account the possible

scenario that there may exist blocks without any eligible receivers on the court at the

corresponding event. In such a scenario, the normalization term resales the transition

probabilities, so that the overall probability that the ball goes from an initial action to an

on-court player is equal to one.

Recall that we consider three initial actions: inbounding, rebounding and stealing. While

rebounding and stealing both guarantee a new play, inbounding can start a new play or

happen in the middle of a play. For example, a team may call a time-out in the middle of

a play, and the play is resumed from the stoppage time by inbounding the ball. Another

common situation is when an offensive player is fouled without being awarded free throws,

the play is paused and resumed by inbounding the ball. We treat all inbounding events as

initial actions and account for them in this part (LI) of the probability distribution.
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Transactions among players

Intuitively, in a basketball play, what happens next mostly depends on the current situ-

ation, e.g., who has the ball at the moment, which players are on the court, and so on.

Therefore, we model each basketball play as an inhomogeneous Markov chain. Players

are treated as regular states; initial actions are treated as initial states; and play out-

comes are modeled as absorbing states. We discussed transactions from initial states to

regular states in Section 3.2.1. In this section, we focus on the regular states and con-

struct
∏

1≤i 6=j≤n LP (Tij|e) — the second component in (3.1), the conditional distribution

of transactions among players, given the cluster labels e.

Components of LP (Tij|e) We now derive LP (Tij|e), the conditional distribution of

transactions from player i to j. To start, we revisit the basketball play shown in Figure 3.1

and isolate the segments related to the i→ j process. For simplicity, suppose that player

j is on the court during the entire play. As shown in Figure 3.3, player i first receives the

ball at time t1 and passes it to player j at time t2, so the time period (t1, t2] clearly belongs

to the i → j process. Next, player i gains possession of the ball again at time tm−1 and

the ball is passed to player r 6= j at time tm. Although player i does not make this pass to

player j, he has the potential to do so. Hence, the time period (tm−1, tm) is also related to

the i→ j process. In fact, aside from the time point t2 itself, there is no difference between

the segments (tm−1, tm) and (t1, t2) in terms of being part of the i→ j process — as long

as i has possession of the ball, the segment is related to the i → j process, regardless of

whether i actually passes the ball to j or not at the end of the segment. In Figure 3.3,
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the segments related to the i → j process are highlighted by solid points and segments.

Any solid point indicates an actual pass going from i to j. Any solid segment means that,

during that time period, an i-to-j pass has the potential to happen.

Figure 3.3: Segments of a play that are related to the i → j process. The i → j process
consists of the solid point and the solid segments.

Note that only the segments when player i has the ball and player j is on the court are

counted as part of the i → j process. In contrast, if j leaves the court in the middle of

a play, anything happening afterward does not belong to the i → j process. According

to NBA rules, player substitutions can only take place when certain event occurs and the

game clock stops, meaning that no substitution can take place during any segment.

Given the cluster labels e, we model each i→ j process as pieces of a Poisson process. In

addition, since each play is independent of one another, we can pool together all the “solid

segments” and “solid points” (again, see Figure 3.3) from different plays. Again, we define

K2 rate functions, {ρkl(t) : k, l = 1, 2, . . . , K}, where each ρkl(t) is the rate that the ball

moves from a player in cluster k to a player in cluster l at time t. By equation (2.1), the

distribution of transactions from i to j is

LP (Tij|e) = [
mij∏
h=1

(
ρeiej(tijh) ·

1

Gijh
ej

)]
︸ ︷︷ ︸

LP1 (Tij |e)

·

[
Mi∏
h=1

exp
(
−
∫ tih

t−ih

ρeiej(t) ·
I ihj
Gih
ej

dt
)]

︸ ︷︷ ︸
L̃P2 (Tij |e)

, (3.4)
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where

• mij is the total number of passes from i to j;

• tijh is the time of the hth pass from i to j;

• Gijh
ej

is the number of “eligible receivers” belonging to block ej for the hth pass between

i and j, with “eligible receivers” being those players (excluding i here) who are on

i’s team and also physically on the basketball court at the time of this pass;

• Mi is the total number of times that player i has possession of the ball;

• (t−ih, tih) is the hth time interval in which player i has possession of the ball;

• Gih
ej

is the number of “eligible receivers” belonging to block ej for the hth pass from

player i (regardless of whether j is the recipient or not); and

• the indicator I ihj is defined as

I ihj =


1, if player j is an “eligible receiver” for the hth pass from i;

0, otherwise.

Note that the quantities, Gih
ej

and I ihj , are both constant on any interval (t−ih, tih], since, as

mentioned previously, the rules of the game prevent player substitutions during any such

time interval. In addition, we have defined

LP1(Tij|e) ≡
mij∏
h=1

(
ρeiej(tijh) ·

1

Gijh
ej

)
(3.5)
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but written L̃P2 for the second component (rather than LP2) because it can be simplified

further (more details below) and this here is not the final expression we shall use.

In (3.4), the first term contains information about all passes from i to j, and the second

term contains the information that i does not make a pass to j during all those time gaps

in which i has possession of the ball and j, as a teammate of i, is on the court. The

overall rate function for the i→ j process consists of two distinctive parts. First, the rate

function ρeiej(t) captures the rate of passing the ball at a cluster level. Second, similar to

the fraction in (3.3), the fractions,

1

Gijh
ej

and
I ihj
Gih
ej

,

are the probabilities that player j is the actual receiver of the ball in group ej. As in

Section 3.2.1, we have assumed that all eligible receivers in the same cluster have an equal

chance to receive the ball.

Notice that, if player j is off the court for a particular pass from i or if j is on the opponent

team playing against i, then the fraction I ihj /G
ih
ej

is automatically 0 by the definition

of I ihj . In this way, time intervals (t−ih, tih) in which j is not an “eligible receiver” do

not contribute to the i → j process, as one intuitively would expect. Furthermore, if

Gih
ej

= 0, it means there is no “eligible receiver” in block ej — this can only happen if

player j is not eligible itself, i.e., when I ihj = 0, because otherwise Gih
ej

is at least one

since player j (always) belongs to block ej. We define 0/0 = 0. Finally, all time points,

{tijh : i, j = 1, 2, . . . , n;h = 1, 2, . . . ,mij} and {t−ih, tih : i = 1, 2, . . . , n;h = 1, 2, . . . ,Mi},

take values on the interval [0, 24] (see Section 3.1.2).
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Further simplification of L̃P2 So far, we have derived the (conditional) distribution

of transactions from player i to player j, LP (Tij|e). The conditional independence as-

sumption means the (conditional) distribution of transactions between all pairs of players

is simply

∏
1≤i 6=j≤n

LP (Tij|e) =

[ ∏
1≤i 6=j≤n

LP1(Tij|e)

]
·

[ ∏
1≤i 6=j≤n

L̃P2(Tij|e)

]
.

The second term above can be simplified further. In particular,

∏
1≤i 6=j≤n

L̃P2(Tij|e) =
∏

1≤i 6=j≤n

Mi∏
h=1

exp
(
−
∫ tih

t−ih

ρeiej(t) ·
I ihj
Gih
ej

dt
)

(3.6)

=
n∏
i=1

Mi∏
h=1

∏
j 6=i

exp
(
−
∫ tih

t−ih

ρeiej(t) ·
I ihj
Gih
ej

dt
)

=
n∏
i=1

Mi∏
h=1

exp

[
−
∫ tih

t−ih

∑
j 6=i

(
ρeiej(t) ·

I ihj
Gih
ej

)
dt

]

=
n∏
i=1

Mi∏
h=1

exp

−∫ tih

t−ih

K∑
l=1

∑
j 6=i
ej=l

(
ρeil(t) ·

I ihj
Gih
l

)
dt



=
n∏
i=1

Mi∏
h=1

exp

−∫ tih

t−ih

K∑
l=1

(
ρeil(t) ·

∑
j 6=i
ej=l

I ihj
Gih
l

)
dt

 .

Notice that, on the set ej = l, whenever Gih
l = 0 (i.e., nobody in block l is an eligible

receiver), we must have I ihj = 0 as well (i.e., player j cannot be an eligible receiver, either,
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since ej = l means player j belongs to block l). Therefore,

∑
j 6=i
ej=l

I ihj
Gih
l

= I(Gih
l > 0).

Continuing with (3.6), this means

∏
1≤i 6=j≤n

L̃P2(Tij|e) =

n∏
i=1

Mi∏
h=1

exp

[
−
∫ tih

t−ih

K∑
l=1

(
ρeil(t) · I(Gih

l > 0)
)

dt

]
︸ ︷︷ ︸

LP2 (Ti|e)

. (3.7)

Decomposition of LP (Tij|e) Putting all the pieces together, the conditional distribu-

tion of all transactions among players, given the block labels, is of the form

∏
1≤i 6=j≤n

LP (Tij|e) =

[ ∏
1≤i 6=j≤n

LP1(Tij|e)

]
·

[
n∏
i=1

LP2(Ti|e)

]
. (3.8)

The first component,
∏

i 6=j LP1(Tij|e), contains information about all passes from i to j.

The second component,
∏n

i=1 LP2(Ti|e), contains information about all the time gaps in

which player i has possession of the ball — although, admittedly, denoting all these time

gaps here by Ti is a slight abuse of notation.

In equation (3.7), the indicator I(Gih
l > 0) is important for two reasons. First, if node i is

the only member in group l or if group l is empty, then it is impossible for i to pass the ball

to group l, so intuitively the rate function ρeil(t) should not contribute any information to
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this part of the probability distribution. Indeed, in either situation, we have Gih
l = 0, and

this indicator effectively “annihilates” the contribution of ρeil. Second, we can see from

(3.7) that, overall, player i has a rate of
∑K

l=1

(
ρeil(t) · I(Gih

l > 0)
)

to pass the ball at time

t. Given ρkl(t), when there are fewer groups for player i to pass the ball to, its overall

rate of passing the ball is automatically reduced by this indicator, which agrees with our

intuition about how basketball games are played.

Notice that in (3.4), because of the existence of 1/Gijh
ej

, the rate function from player i to

player j actually also depends on the cluster labels of the other on-court players. Hence,

the likelihood is a pseudo likelihood (Besag, 1975).

Transactions from players to play outcomes

The play outcomes are modeled as absorbing states of the Markov chain. Given a set A of

different play outcomes, we define additional rate functions {ηka(t) : k = 1, 2, . . . , K; a ∈

A}, where ηka(t) is the rate that a play goes from group k to absorbing state a at time

t.

Whenever player i has possession of the ball, there exists a possibility that the ball is

“passed” to an absorbing state, a. Analogous to (3.4), the distribution of transactions

from player i to an absorbing state a can be written as

LO(Tia|e) =

[
mia∏
h=1

ηeia(tiah)

]
·

[
Mi∏
h=1

exp
(
−
∫ tih

t−ih

ηeia(t)dt
)]

, (3.9)

where mia is the total number of times that the ball goes from node i to absorbing state a;
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and tiah is the time of the hth event from i to a — except that we need no longer multiply

the rate function ηeia(·) by an additional individual-level probability (such as 1/Giah
ei

), since

there aren’t multiple options within an absorbing state as there can be multiple players in

a cluster. As in (3.4), the first term contains information about the event times, and the

second term contains the information that player i does not “cause” the play to end in

absorbing state a while in possession of the ball.

Even though being fouled does not always end a play, we still consider being fouled as

an “outcome” and take account of all fouls in this part (LO) of the probability distribu-

tion.

A Markov chain

Here is a brief recapitulation of how we have modeled basketball networks (Sections 3.2.1,

3.2.1 and 3.2.1) conditional on the cluster labels of the players. There are three types

of nodes in the network: special nodes that designate initial actions, regular nodes that

are players themselves, and terminal nodes that designate play outcomes. If we isolate

any two regular nodes, or a regular node and a terminal node, transactions between those

two nodes have been modelled as an inhomogeneous Poisson process. Each basketball play,

however, will consist of a sequence of transactions — typically starting from a special node,

travelling across multiple regular nodes, and ending in a terminal node. Each play is thus

an inhomogeneous, continuous-time Markov chain, of which the players are regular states

and outcomes are absorbing states.
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Nonparametric modeling of rate functions

Again, we model the rate functions nonparametrically by cubic B-splines:

ρkl(t) =
P∑
p=1

eβklpBp(t), for k, l = 1, 2, . . . , K, (3.10)

ηka(t) =
P∑
p=1

eψkapBp(t), for k = 1, 2, . . . , K and a ∈ A, (3.11)

where {B1(t), B2(t), . . . , BP (t)} are basis functions; and β = {βklp : k, l = 1, 2, . . . , K; p =

1, 2, . . . , P}, ψ = {ψkap : k = 1, 2, . . . , K; a ∈ A; p = 1, 2, . . . , P} are coefficients. We use

exponentiated coefficients, eβklp and eψkap , to ensure that all rate functions are nonnega-

tive.

Remarks

A cluster can contain players from different teams, although players from different teams

are not able to pass the ball to each other. The multistate CSBM clusters players according

to their playing styles, and it is very likely that different teams have similar players in terms

of playing styles. For instance, suppose player iA from team A and player iB from team

B both belong to cluster k, and player jA from team A and player jB from team B both

belong to cluster j, then the passing rate from iA to jA at time t is ρkl(t), and so is the

passing rate from iB to jB. The fact that iA can not make a pass to jB does not affect the

estimate of ρkl(t), because the model incorporates indicators for “eligible receivers” of the

ball, i.e., I ihj and Gijh
ej

.
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3.2.2 An EM+ Algorithm

In the same manner as for the basic CSBM in Chapter 2, we introduce latent variables

and adopt the Expectation-Maximization (EM) algorithm to fit the multistate CSBM.

As discussed in 2.4, the EM algorithm converges quickly because it essentially behaves

like the k-means algorithm. It works well for the simple simulation example in Section 2.3.

However, the multistate CSBM is more complex. We have found in our experience that the

EM algorithm alone can sometimes be trapped in various local optima. Running the EM

algorithm with many random starting points helps, but it is quite inefficient. Instead, we

have added a complementary heuristic algorithm to run after the EM algorithm. We refer

to the complementary algorithm as the “Plus algorithm” and call our overall algorithm an

“EM+ algorithm”. Empirically, we have found that the EM+ algorithm often reaches a

nice optimal point with fewer starting points than does the EM algorithm itself.

EM Algorithm

Let zi = (zi1, zi2, . . . , ziK) denote a latent label indicator for node i, such that

zik =


1, if node i belongs to cluster k;

0, otherwise.

(3.12)

Marginally,

z1, z2, ...,zn
iid∼ multinomial(1,π), where π = (π1, . . . , πK).
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We shall use Θ = {P,β,ψ,π} to denote all parameters, and Z = {zi : i = 1, 2, . . . , n} to

denote all latent indicators. The complete likelihood of the multistate CSBM is simply the

joint distribution of (T,Z) viewed as a function of Θ. To simplify our notation as well as

to make more direct references to the models we described in Section 3.2.1, in this section

we will often suppress Θ and still write L(T,Z) instead of L(Θ; T,Z) for the likelihood

function. Hence, the complete likelihood is

L(T,Z) = L(T|Z) · L(Z). (3.13)

The conditional likelihood L(T|Z) is simply a latent-variable-coded version of L(T|e) (3.1),

that is,

L(T|Z) (3.14)

=

[∏
s∈S

n∏
i=1

LI(Tsi|Z)

]
·
[ ∏

1≤i 6=j≤n

LP (Tij|Z)

]
·
[ n∏
i=1

∏
a∈A

LO(Tia|Z)

]

=

[∏
s∈S

n∏
i=1

LI(Tsi|Z)

]
·
[ ∏

1≤i 6=j≤n

LP1(Tij|Z) ·
n∏
i=1

LP2(Ti|Z)

]

·
[ n∏
i=1

∏
a∈A

LO(Tia|Z)

]
,

where the second step above is due to (3.8). More specifically, the components of (3.14)

are simply latent-variable versions of (3.3), (3.5), (3.7) and (3.9):

LI(Tsi|Z) =
K∏
k=1

[ msi∏
h=1

(
Psk ·

1

Gsih
k

)]zik
, (3.15)
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LP1(Tij|Z) =
K∏
k=1

K∏
l=1

[ mij∏
h=1

(
ρkl(tijh) ·

1

Gijh
l

)]zikzjl
, (3.16)

LP2(Ti|Z) =
K∏
k=1

[ Mi∏
h=1

exp
(
−

K∑
l=1

∫ tih

t−ih

ρkl(t) · I(Gih
l > 0)dt

)]zik
, (3.17)

LO(Tia|Z) =
K∏
k=1

[ mia∏
h=1

ηka(tiah) ·
Mi∏
h=1

exp
(
−
∫ tih

t−ih

ηka(t)dt
)]zik

. (3.18)

The marginal likelihood of Z is

L(Z) =
n∏
i=1

K∏
k=1

πzikk . (3.19)

E-step In the E-step, we compute E
(

logL(T,Z)|T; Θ∗
)
, the conditional expectation of

the log-likelihood given the observed network T under the current parameter estimates

(denoted by Θ∗). The conditional expectation is with respect to the latent variables Z.

From (3.15)-(3.18) it is clear (details in the Appendix A.1) that now there are three types

of conditional expectations to evaluate:

• E(zik|T; Θ∗), from logLI(Tsi|Z), logLO(Tia|Z) and logL(Z), respectively;

• E(zikzjl|T; Θ∗), from logLP1(Tij|Z); and

• E
(
zik · I(Gih

l > 0)|T; Θ∗
)
, from logLP2(Ti|Z).

After taking logarithms, the terms involving 1/Gsih
k and 1/Gijh

l in (3.15) and (3.16) are

additive “constants” that depend only on the latent variables Z but contain no information
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about the parameters Θ; they can be omitted for the EM algorithm. The quantity

Gih
l =

∑
j 6=i

(
zjl · I ihj

)

and hence the indicator I(Gih
l > 0) are both functions of the latent variables. Here, we

see more clearly why the further simplification of LP2 — equation (3.7) — is useful. As in

Section 2.2.2, due to the interactions of the players, the latent variables are conditionally

dependent and an exact calculation of the conditional expectations above is NP-hard.

Again, we use a Gibbs sampler to draw samples from L(Z|T; Θ∗), and use the corresponding

sample means to approximate E(zik|T; Θ∗), E(zikzjl|T; Θ∗) and E
(
zik · I(Gih

l > 0)|T; Θ∗
)
.

The Gibbs sampler is the same as the one in Section 2.2.2 except that the distribution

functions are updated.

M-step In the M-step, we update the parameters Θ by maximizing E
(

logL(T,Z)|T; Θ∗
)
.

Same as in Section 2.2.2, we have closed-form solutions for π, the marginal probabilities

of Z:

πk =

∑n
i=1 E(zik|T; Θ∗)∑n

i=1

∑K
l=1 E(zil|T; Θ∗)

=

∑n
i=1 E(zik|T; Θ∗)

n
, (3.20)

for k = 1, 2, . . . , K. Once more, there are no closed-form solutions for β and ψ, the (log)-

coefficients for the rate functions. Following the same approach described in Section 2.2.2,

we use the quasi-Newton method with L-BFGS-B updates. Regarding P, the transition

probabilities from initial states, the exact maximum likelihood estimations require numer-
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ical approaches because of the normalization terms in (3.3). We can use the constrOptim

function in R.

Remarks For the basic CSBM, we have discussed in Section 2.4 that the conditional

probabilities driving the Gibbs sampler are fairly close to 0 or 1, and the Gibbs sampler thus

converges very quickly to a singular probability mass. Hence, the EM algorithm is reduced

to a k-means algorithm and converges in just a few iterations. With the complexity of the

multistate CSBM, the EM algorithm can sometimes be trapped in a local optimum. The

typical way to avoid these traps is to use different starting points, run the EM algorithm for

a few times, and pick the one giving the largest likelihood value. This “standard” procedure

alone could be quite inefficient. Instead, we introduce another heuristic algorithm, which

we refer to as the Plus algorithm, as a complement to the EM algorithm. Sometimes, e.g.,

when the EM solution is already quite good, the Plus algorithm may not find any further

improvement.

The Plus Algorithm

This algorithm is inspired by the heuristic algorithm used by Karrer and Newman (2011)

for the so-called degree-corrected SBM. The main idea is to evaluate all neighbors of

the current labelling configuration and move to the best neighbor no matter whether the

likelihood improves or not. A neighbor of a labelling configuration e = (e1, e2, . . . , en) is

defined as the one with only one entry being different. Thus, if e′ and e are neighbors,

then there exists some 1 ≤ i ≤ n such that ei 6= e′i, but otherwise ej = e′j for all j 6= i.
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Given n nodes and K clusters, one labelling configuration has n(K − 1) neighbors. The

steps of the algorithm are as follows.

1. Start with r = 0.

2. Repeat the following steps until convergence, or for a fixed number of steps.

(a) Given a labelling configuration e(r) and parameter Θ(r) estimated under e(r), cal-

culate the likelihood of all neighboring configurations, using the same parameter

estimate, Θ(r).

(b) Let e(r+1) be the neighbor that gives the largest likelihood.

(c) Re-estimate the parameters using e(r+1), and denote the result by Θ(r+1).

3. Choose the best configuration among e(0), e(1), e(2), ....

We use the result from the EM algorithm as the starting point e(0) to run the Plus

algorithm. The Plus algorithm converges when there exists a set of configurations e1, e2, ..., eq

such that e1 is the best neighbor of e2, e2 is the best neighbor of e3, ..., and eq is the best

neighbor of e1. Often, this happens for q = 2, but sometimes it can happen for q > 2. Note

that, while e(r+1) in step (2b) gives the largest likelihood among all neighbors of e(r), it may

still give a smaller likelihood than does e(r) itself, but the Plus algorithm “accepts” e(r+1)

nonetheless. This is the main reason why the Plus algorithm can help the EM algorithm

avoid local optima. On the other hand, the Plus algorithm itself moves very slowly — in

any given iteration, only one node label is changed, so it is quite inefficient to use it as

a standalone algorithm, but we have found it to work well as a complement to the EM

algorithm.
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3.3 Applications to NBA data

In this section, we apply the multistate Continuous-time Stochastic Block Model to a

few NBA basketball games that we have annotated ourselves. The games are: the 2012

NBA eastern conference finals between the Miami Heat and the Boston Celtics, games 1

and 5; and the 2015 NBA finals between the Cleveland Cavaliers and the Golden State

Warriors, games 2 and 5. For each game, we only consider the first three quarters to avoid

having to deal with garbage time or irregular playing strategies (such as committing fouls

on purpose), which are both common in the last quarter. In Section 3.3.1, we present

some further model simplifications and corresponding adjustments to the EM+ algorithm.

In Sections 3.3.2 and 3.3.3, we present results for 2012 games between the Heat and the

Celtics, and those for the 2015 games between the Cavaliers and the Warriors, respectively.

In Section 3.3.4, we compare the 2012 Miami Heat with the 2015 Cleveland Cavaliers, while

paying special attention to the performance of LeBron James as he played with these two

different teams in those two series.

3.3.1 Model simplifications and adjustments of the EM+ algorithm

In practice, the general model is complex, with K(K+ |A|) rate functions to estimate. For

applications to NBA data, we further simplify the general form by defining

ρkl(t) = λk(t) · Pkl, (3.21)

ηka(t) = λk(t) · Pka, (3.22)
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such that λk(t) is the rate function of the ball leaving a player in group k; Pkl and Pka are

transition probabilities that the ball goes to group l and absorbing state a, respectively.

The transition probabilities are subject to the constraint

K∑
l=1

Pkl +
∑
a∈A

Pka = 1, for any k = 1, 2, . . . , K. (3.23)

By making such simplifications, we assume that, whenever the ball leaves cluster k, the

rates to other clusters and absorbing states are formed by a common rate and proportional-

ity constants. In reality, the transition probabilities may change over time, but we believe

that the simplified model still contains sufficient information to cluster players and reveal

important patterns. The results in the next section provide convincing evidence.

The rate function simplifications lead to modifications in the EM+ algorithm. Now the

K(K+|A|) rate functions reduce to K rate functions and a K×(K+|A|) transition matrix.

We still adopt quasi-Newton for the rate functions, yet we have closed-form solutions for

the transition probabilities (details in Appendix A.3),

Pkl =

∑
1≤i 6=j≤n

(
E[zikzjl|T; Θ∗] ·mij

)
∑n

i=1

∑Mi

h=1

(
E
[
zikI(G−il (tih) > 0)

∣∣∣T; Θ∗
]
·
∫ tih
t−ih

λk(t)dt
)

+ ζk
, (3.24)

Pka =

∑n
i=1

(
E[zik|T; Θ∗] ·mia

)
∑n

i=1

∑Mi

h=1

(
E[zik|T; Θ∗] ·

∫ tih
t−ih

λk(t)dt
)

+ ζk
, (3.25)

for k, l = 1, 2, . . . , K and a ∈ A. The parameter ζk is the Lagrange multiplier, which

can be easily solved by finding the root of
∑K

l=1 Pkl +
∑

a∈A Pka = 1 with the R function
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uniroot.

The marginal probabilities remain unchanged, so the update equation (3.20) still applies.

For the initial probabilities {Psk : s ∈ S; k = 1, 2, . . . , K}, instead of adopting numerical

methods for exact estimations, we use some approximations to save computing time. In

our applications, we pick K = 3 or 4, which are small, so all clusters have players on

the court in most of the time. This fact implies that almost all normalization terms in

(3.3), i.e.,
∑K

k=1

(
Psk · I(Gsih

k > 0)
)

for all s, i and h, are equal to one. Hence, we can

simply approximate (3.3) by ignoring the normalization terms. Such an approximation

yields closed-form solutions for the initial probabilities:

Psk =

∑n
i=1[msiE(zik|T; Θ∗)]∑K

k=1

∑n
i=1[msiE(zik|T; Θ∗)]

, (3.26)

for s ∈ S and k = 1, 2, . . . , K; detailed derivations are given in Appendix A.2.

For this simplified model, all probability parameters including marginal probabilities πk,

initial probabilities Psk and transition probabilities Pkl and Pka have closed-from updates.

Hence, to make the EM+ algorithm more efficient, we partition the parameter set Θ into two

groups: Θfast = {πk, Psk, Pkl, Pka}, consisting of all parameters with closed-form updates,

and Θslow = {λk(t)}, consisting of all parameters that we must update with quasi-Newton.

Instead of updating all Θ only in the M-step of the EM algorithm and Step (2c) of the Plus

algorithm, parameters belonging to Θfast are always updated instantaneously “on the fly”

— meaning that they are updated whenever there is a change in Z or the cluster labels e.

More specifically, Θfast are updated when calculating each likelihood function in the Gibbs

sampler of the EM algorithm and Step (2a) of the plus algorithm.
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We use 15 cubic B-spline basis functions. The EM algorithm is run multiple times from

different random starting points. More explicitly, in the first E-step of each run, the starting

value for label configuration is randomized. For our applications, we find that running the

EM+ algorithm for 2 – 5 times is enough to yield the “best” results.

3.3.2 Miami Heat versus Boston Celtics in 2012

In the 2012 NBA eastern conference finals, eleven players from the Heat and ten players

from the Celtics played in the first three quarters of their 1st and 5th games. We omit two

Celtics players, Ryan Hollins and Marquis Daniels, because they each touched the ball only

once in those quarters. The data, which have been illustrated in Table 3.1, consist of 283

plays (142 for the Heat and 141 for the Celtics) and 1205 transactions (657 for the Heat

and 548 for the Celtics). We fit three different CSBMs — one to the Heat’s transactions

alone, one to the Celtics’ transactions alone, and another one to transactions from both

teams pooled together. In what follows, we discuss in detail our clustering results, initial

probability estimates, fitted rate functions, and transition probability estimates. Given our

data size (11 Heat players and 8 Celtics players), we picked a moderate number of clusters

(K = 3). In practice, since the main purpose of our model is to cluster players and narrow

down the search space for basketball scouts, the choice of K will mostly depend on the size

of the basketball network and how elaborate one wants the clustering results to be.

Clustering results The cluster labels for the players are reported in Table 3.2. Recall

that basketball players play in five different positions: point guard (PG), shooting guard

60



(SG), small forward (SF), power forward (PF) and center (C). Generally speaking, the

heights of the players are PG<SG<SF<PF<C.

Considered separately, players in the two teams are clustered in similar manners. Point

guards are in cluster 1; two perimeter players — {Wade, James} from the Heat and {Allen,

Pierce} from the Celtics — are in cluster 2; and the other players are in cluster 3. Roughly

speaking, players with similar heights and close positions are clustered into the same group.

Point guards certainly play in a different style than those of power forwards and centers.

Shooting guards and small forwards are both perimeter players and often play in similar

styles. In our case, Wade, James, Allen and Pierce are different than the other perimeter

players, because they are stars. They have extraordinary offensive skills, so they can carry

the ball longer and shoot more often. By contrast, the shooting guards and small forwards

in cluster 3 play without the ball for most of the time.

When the two teams are pooled together, only one player (Brandon Bass from the Celtics)

switches from cluster 3 to cluster 2. Actually, he is a “mini” PF, who has a typical PF’s

weight and strength but the height of an SF, so his playing style is in between those of a

typical SF and a typical PF. When compared only with other Celtics players, he is more

similar to those in cluster 3. However, when players from the Heat also are included in

the comparison, he starts to look more similar to LeBron James (a strong SF) and very

different than those in cluster 3 who are on the Heat, e.g., in terms of rebounding, cutting,

post playing, so he is re-clustered into cluster 2.

In our subjective assessment, players in cluster 1 tend to dribble the ball a lot but do not

shoot very often, those in cluster 2 both carry and shoot the ball, whereas those in cluster
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Table 3.2: Clustering results for the 2011-2012 Miami Heat and Boston Celtics (K = 3).
Cluster labels are C1, C2, C3. Three different clustering results are presented (two under
“Alone” and one under “Together”). Player positions are included for reference only; they
are not used by the clustering algorithm.

Alone Together

Team Player Position C1 C2 C3 C1 C2 C3

Heat

Mario Chalmers PG X X
Norris Cole PG X X
Dwyane Wade SG X X
LeBron James SF X X
James Jones SG X X
Shane Battier SF X X
Mike Miller SF X X
Chris Bosh PF X X
Udonis Haslem PF X X
Ronny Turiaf C X X
Joel Anthony C X X

Celtics

Rajon Rondo PG X X
Keyon Dooling PG X X
Ray Allen SG X X
Paul Pierce SF X X
Mickael Pietrus SF X X
Brandon Bass PF X X
Kevin Garnett C X X
Greg Stiemsma C X X
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Table 3.3: Estimated transition probabilities (Psk) from each initial action to clusters C1,
C2, C3, for three different clustering models of the 2011-2012 Miami Heat and Boston
Celtics.

C1 C2 C3

Heat
Inbound 0.716 0.194 0.090
Rebound 0.109 0.375 0.516
Steal 0.333 0.333 0.333

Celtics
Inbound 0.868 0.059 0.073
Rebound 0.188 0.208 0.604
Steal 0.375 0.500 0.125

Together
Inbound 0.793 0.133 0.074
Rebound 0.143 0.357 0.500
Steal 0.364 0.454 0.182

3 are mostly responsible for catching rebounds and shooting, but not so much for carrying

the ball. In what follows, we will see these differences of the three clusters reflected in the

different parameters of the CSBM.

Initial probabilities Table 3.3 displays the estimated transition probabilities from each

initial action to the three clusters. Most inbounds go to point guards, because they usually

are the ones to carry the ball from the back court to the front court. The Heat inbound

more often to cluster 2 than the Celtics do, because LeBron James (in cluster 2) sometimes

plays like a point guard. More than half of the rebounds are caught by cluster 3, the tall

players. For the Celtics, their cluster 1 players catch almost as many rebounds as those in

their cluster 2, because the starting point guard, Rajon Rondo (in cluster 1), is an excellent

rebounder. Regarding steals (a relatively rare event), the three clusters contribute equally

within the Heat but somewhat differently within the Celtics.
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Rate functions Figure 3.4 contains the fitted rate functions {λk(t) : k = 1, 2, 3} for

the ball leaving a player in group k. Overall, these functions are quite different for the

three clusters. For the same cluster, the rate functions from different teams are similar

in general, but have considerable differences at certain time points. Below, we compare

the patterns of the rate functions over four distinct time periods: t ∈ (0, 5), t ∈ (5, 10),

t ∈ (10, 15), and t > 15.

Figure 3.4: Fitted rate functions for the 2011-2012 Miami Heat and Boston Celtics, λ1(t),
λ2(t) and λ3(t), each describing the rate with which the ball leaves a player in cluster 1,
cluster 2 and cluster 3, respectively.

At the beginning of a play, it usually takes about five seconds for a point guard to dribble

the ball from the back court to the front court. Players in cluster 2 sometimes do that

instead of point guards. Therefore, λ1(t) and λ2(t) are low for t ∈ (0, 5). However, for both

teams their λ3(t) has a high and sharp peak around t ≈ 2, because players in cluster 3

often catch rebounds and start new plays by quickly passing the ball to those in the other

two clusters.
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After the ball arrives at the front court, the players spend about 5 seconds to settle down

to their offensive layout. During this time period, i.e., t ∈ (5, 10), the two teams have

different strategies. For the Heat, the point guards usually pass the ball to either James

or Wade and let them handle the ball, so we can see a small peak in the Heat’s λ1(t)

function. For the Celtics, their point guards — especially Rondo — usually continue to

hold the ball and organize the offense, so the Celtics’ λ1(t) function even declines a little

right after t > 5. The two teams’ λ3(t) functions exhibit significant difference over this

time period. For the Heat, their players in cluster 3 mostly play as transit ports, i.e., they

get the ball and pass it out soon. For the Celtics, their players in cluster 3 — especially

Kevin Garnett — have more opportunities to handle the ball. That is why in the right

panel, the Heat’s λ3(t) function has a peak around t ≈ 7, while the Celtics’ λ3(t) has a

local minimum between 5 < t < 6.

For t ∈ (10, 15), if the play still keeps going, players start to pass the ball more frequently

and seek scoring opportunities. This is indicated by higher values in λ1(t) and λ2(t) as

well as a local peak in λ3(t) on t ∈ (10, 15). During this time period, both teams play in a

similar style, and their rate functions almost overlap.

Due to the 24-second time limit for each play, both team increase their offensive pace after

t > 15. However, when time reaches about t ≈ 20, the two teams start to show highly

distinctive playing patterns. For the Heat, all three of their rate functions rise rapidly,

which means that all of their players tend to release the ball quickly, either passing it on

to others or shooting. For the Celtics, their λ2(t) and λ3(t) also rise, but not as much as

those of the Heat. The Celtics appear to play with more patience. An unusual phenomenon
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Table 3.4: Estimated transition probabilities (Pkl and Pka) for the 2011-2012 Miami Heat
and Boston Celtics (K = 3). Rows are originating clusters and columns are receiving
clusters and play outcomes.

C1 C2 C3 Make2 Miss2 Make3 Miss3 Fouled TO

Heat
C1 0 0.564 0.296 0.035 0.014 0 0.042 0.021 0.028
C2 0.188 0.262 0.225 0.103 0.087 0.008 0.032 0.063 0.032
C3 0.226 0.426 0.090 0.052 0.064 0.039 0.064 0.013 0.026

Celtics
C1 0.175 0.332 0.327 0.031 0.083 0.010 0.016 0.005 0.021
C2 0.270 0.066 0.262 0.065 0.172 0.033 0.066 0.041 0.025
C3 0.304 0.177 0.094 0.191 0.149 0 0.014 0.057 0.014

Together
C1 0.119 0.479 0.250 0.032 0.053 0.006 0.026 0.012 0.023
C2 0.220 0.210 0.211 0.097 0.124 0.014 0.039 0.056 0.029
C3 0.262 0.341 0.083 0.110 0.087 0.023 0.045 0.030 0.019

is that, for the Celtics, their rate function λ1(t) actually decreases after t > 17. This is

because the starting point guard, Rajon Rondo (in cluster 1), is not the best jump shooter.

Close to the end of the time limit and against the tough defense from the Heat, he typically

struggles a bit trying to pass or shoot, so the ball stays in his hands for a little longer.

In Appendix A.5, we provide an expanded version of Figure 3.4 which includes 95% confi-

dence bands for these rate functions.

Transition probabilities The estimated transition probabilities for events originating

from the three different clusters are presented in Table 3.4. We will focus on the transition

probabilities of each team alone. When the two teams are pooled together, the estimated

transition probabilities simply appear to be averages of the individual team results.

First, we look at passes among clusters. For the Heat, James and Wade (both in cluster

2) are the absolute key players for the team, so players from both cluster 1 and cluster 3
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tend to pass the ball to them (cluster 2) with very high probabilities (56.4% and 42.6%,

respectively). James and Wade also pass the ball more often to each other than to the

other clusters (26.2% vs. 18.8% and 22.5%, respectively). The two players in cluster 1,

Chalmers and Cole, do not pass to each other in our data because they are never on the

court at the same time during those games. The Celtics, on the other hand, tend to move

the ball more evenly among the three clusters. Their clusters 1 and 2 each has almost

equal probabilities to pass the ball to the other two clusters. Their transition probabilities

are lower within each cluster than between different clusters.

Next, we discuss shooting choices. For the Heat, the overall probabilities of shooting the

ball (sum of Make 2, Miss 2, Make 3, and Miss 3) are 9.1% for cluster 1, 23% for cluster

2, and 21.9% for cluster 3. Meanwhile, the corresponding numbers for the Celtics are

14.0% for cluster 1, 33.6% for cluster 2, and 35.4% for cluster 3. Relatively speaking, when

releasing the ball, the Heat players have lower chances to take a shot than the Celtics players

do, but higher chances to pass the ball to their teammates. This shows the offense of the

Heat involves more interactions among players. For both teams, the respective shooting

probabilities for clusters 2 and 3 are more than twice as high as those for cluster 1. Let

us look into these probabilities in more detail. James and Wade (cluster 2, Heat) shoot

many more 2-pointers than 3-pointers, and incredibly, they score more than half of their

2-pointer shots. Indeed, James and Wade are outstanding at penetration, but not great

3-point shooters. By contrast, Pierce and Allen (cluster 2, Celtics) are better balanced.

They shoot and make more 3-pointers than James and Wade do. In the offensive end,

Pierce has been regarded as one of the most well-rounded players (as of 2012), because of

his ability to score from almost any location. Allen is an extraordinary 3-point shooter —
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actually one of the best in the entire NBA history. Unfortunately, Pierce and Allen miss

many 2-pointers in these two games. For the Heat, both their cluster 1 and cluster 3 shoot

many 3-pointers (almost as many as 2-pointers), since one of their main strategies is for

James and Wade to attract the defense from their opponents while their other players seek

open-shot opportunities (mostly 3-pointers). For the Celtics, their clusters 1 and 3 mostly

shoot 2-pointers, and their main attacking areas are close to the hoop.

Finally, we examine the probabilities of drawing a foul and committing a turnover. Note

that “drawing a foul” means being fouled by the opposing team, often after fooling them

with fake moves. For the Heat, James and Wade draw fouls with much higher probability

than do their teammates in cluster 1 and cluster 3 (6.3% vs. 2.1% and 1.3%). The reason is

that James and Wade are often the ones to penetrate, while their teammates usually play

“catch and shoot”. For the Celtics, players in their cluster 3 have the highest probability of

drawing fouls, because those players — for example, Kevin Garnett — are very aggressive

when playing close to the hoop; players in their cluster 2 are also good at drawing fouls, as

Pierce is a master at doing so. Overall, the Celtics are more capable of drawing fouls, but

they make fewer turnovers than the Heat, because they play at a slower pace and make

fewer passes.

3.3.3 Cleveland Cavaliers versus Golden State Warriors in 2015

We now analyze two games in the 2015 NBA finals between the Cleveland Cavaliers and

the Golden State Warriors — in particular, games 2 and 5. Again, we consider only the

first three quarters. These two games are particularly interesting case-study materials for
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us because there was a fascinating change in the Warriors’ lineup in between. After losing

both games 2 and 3 of the series, Steve Kerr, the head coach of the Warriors, decided

to change their regular lineup to a small lineup, which meant that they stopped playing

centers. This was an unconventional strategy but it successfully turned the series around,

and the Warriors went on to win the championship that year by winning three consecutive

games!

These two teams have very different styles of play. The aforementioned change in the

Warriors’ lineup meant there was a big change in how the two teams played these two

particular games as well. Thus, unlike in the previous section, in this section we simply

fit four CSBMs separately for each team and each game, and no longer fit a pooled model

combining the two teams and the two games together. Overall, there are four data sets.

For game 2, the Cavaliers have eight players, 84 plays and 290 transactions, while the

Warriors have ten players, 75 plays and 307 transactions. For game 5, the Warriors have

ten players, 79 plays and 296 transactions, whereas the Cavaliers have eight players, 81

plays and 291 transactions. As in the previous section, in what follows we give detailed

discussions about the clustering results, initial probability estimates, fitted rate functions,

and transition probability estimates, in that order.

Clustering results The cluster labels of the players for the two games are reported in

Table 3.5. As in the previous section, we set K = 3 here as well.

For the Cavaliers, the results from the two games are similar, except their two shooting

guards — Iman Shumpert and J.R. Smith — switch clusters. It is not surprising that
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Table 3.5: Clustering results for the 2014-2015 Cleveland Cavaliers and Golden State
Warriors (K = 3). Cluster labels are C1, C2, C3. Four different clustering results are
presented (two teams × two games). Player positions are included for reference only; they
are not used by the clustering algorithm.

Game 2 Game 5

Alone Alone

Team Player Position C1 C2 C3 C1 C2 C3

Cavaliers

Matthew Dellavedova PG X X
Iman Shumpert SG X X
J.R. Smith SG X X
LeBron James SF X X
James Jones SF X X
Mike Miller SF X X
Tristan Thompson PF X X
Timofey Mozgov C X X

Warriors

Stephen Curry PG X X
Shaun Livingston PG X X
Klay Thompson SG X X
Leandro Barbosa SG X X
Harrison Barnes SF X X
Andre Iguodala SF X X
Draymond Green PF X X
David Lee PF Did Not Play X
Andrew Bogut C X Did Not Play
Festus Ezeli C X Did Not Play
Marreese Speights C X Did Not Play
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LeBron James is in a cluster by himself. In these two games, he is the only core player

of the Cavaliers since their other two superstars, Kyrie Irving and Kevin Love, are both

absent due to injuries. Without support from other superstar teammates, James has to

take charge of a large amount of ball handling, passing and scoring; he simply does it all.

Indeed, James is one of the most versatile players in the history of the NBA. With James

being the only primary ball handler of the Cavaliers, their cluster 2 consists of secondary

ball handlers: the point guard, Matthew Dellavedova, for both games; and a shooting guard

— Shumpert for game 2 and Smith for game 5. In general, both Shumpert and Smith can

dribble and shoot. Shumpert handles the ball more often than does Smith in game 2, but

their roles are reversed in game 5. Other than Smith (in game 2) and Shumpert (in game

5), their cluster 3 consists of {James Jones, Mike Miller}, both catch-and-shoot players,

and {Tristan Thompson, Timofey Mozgov}, both inside (the paint) players. Overall, the

Cavaliers are a team built around a single key player, LeBron James.

The Warriors, on the other hand, play the two games in fairly different styles. First of

all, the active rosters are different: all three centers — Andrew Bogut, Festus Ezeli and

Marreese Speights — play in game 2 but not in game 5; meanwhile, David Lee does not play

in game 2, but does play in game 5. We already explained the reason behind these changes

in their lineup at the beginning of this section (Section 3.3.3). Beyond the clear change

of rosters, our CSBM reveals more insight into the different playing styles of the Warriors

in these two games. Unlike the Cavaliers, the Warriors have 4 primary ball handlers

and distributors: Stephen Curry (PG), Shaun Livingston (PG), Andre Iguodala (SF) and

Draymond Green (PF). In game 2 under their regular lineup, our model clusters these four

players together. The two shooting guards, Klay Thompson and Leandro Barbosa, are
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Table 3.6: Estimated transition probabilities (Psk) from each initial action to clusters C1,
C2 and C3, for four different clustering models of the 2014-2015 Cleveland Cavaliers and
Golden State Warriors.

C1 C2 C3

Cavaliers
Game 2

Inbound 0.489 0.422 0.089
Rebound 0.265 0.088 0.647
Steal 0.200 0.400 0.400

Cavaliers
Game 5

Inbound 0.500 0.409 0.091
Rebound 0.429 0.107 0.464
Steal 0.286 0.428 0.286

Warriors
Game 2

Inbound 0.767 0.093 0.140
Rebound 0.400 0.160 0.440
Steal 0.714 0.143 0.143

Warriors
Game 5

Inbound 0.660 0.140 0.200
Rebound 0.185 0.296 0.519
Steal 0.250 0 0.750

clustered in one cluster. The three centers together with a small forward, Harrison Barnes,

form the last cluster. In game 5 under their small lineup, our model divides their 4 primary

ball handlers into two clusters — the two point guards, Curry and Livingston, are in one

cluster; the two forwards, Iguodala and Green, are in another. All remaining players are

in a separate cluster. Note that, although both Barnes and Lee are forwards, their roles in

the team are considerably less important than those of Iguodala and Green.

Initial probabilities The estimated transition probabilities from each initial action to

the three clusters are shown in Table 3.6.

For the Cavaliers, the probabilities of the two games are similar, except the rebounds of

LeBron James (the only player in cluster 1). James catches many more rebounds in game
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5 than he does in game 2 (42.9% vs. 26.5%). The reason here is that, with the Warriors

playing the small lineup, James becomes one of the tallest and biggest men on the court,

playing closer to the rim and catching more rebounds. For both games, more than 90%

of the inbounds go to cluster 1 and cluster 2, with cluster 1 receiving slightly more than

cluster 2. Players in cluster 2 contribute more than 40% of the steals in the two games,

while the other two clusters split the remainder.

For the Warriors, recall that their three centers, belonging to cluster 3 in game 2, do not

play in game 5, and their two forwards, Iguodala and Green, belonging to cluster 1 in game

2, become the new cluster 3 in game 5. As a result, their inbound probabilities change

slightly, but their rebound and steal probabilities change dramatically. To get into more

details, their players in cluster 1 have a much higher probability of receiving an inbound

than those in the other two clusters combined, because their cluster 1 contains two point

guards, Curry and Livingston. However, this probability goes down by about 10% from

game 2 (76.7%) to game 5 (66%), whereas those of cluster 2 and cluster 3 each increases

about 5%. These results imply that, when the Warriors switch to their small lineup in game

5, players other than those in cluster 1 also get more opportunities to receive inbounds

and initiate plays. In game 5, due to the absence of centers, who make up cluster 3 and

contribute 44% of the rebounds in game 2, all players start to share their contributions to

catching rebounds as well. In particular, Green and Iguodala (in cluster 3 for game 5) now

catch 51.9% of the rebounds, in contrast to < 40% when they are in cluster 1 for game

2; the contribution of cluster 2 to rebounds increases from 16% in game 2 to 29.6% in

game 5; and finally, without Green and Iguodala (now in cluster 3), the two point guards

that remain in cluster 1 (i.e., Curry and Livingston) also manage to catch 18.5% of the
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Figure 3.5: Fitted rate functions for the 2014-2015 Cavaliers, λ1(t), λ2(t) and λ3(t), each
describing the rates with which the ball leaves a player in cluster 1, cluster 2 and cluster
3, respectively.

rebounds. Regarding steals, the most significant changes are a huge decrease for cluster 1

(71.4% to 25%) and a huge boost for cluster 3 (14.3% to 75%). Once more, this is because

Green and Iguodala have “moved” from cluster 1 to cluster 3; they both are top defenders

who contribute to many steals.

Rate functions The fitted rate functions of the Cavaliers and the Warriors are displayed

in Figure 3.5 and Figure 3.6, respectively.

For the Cavaliers, the rate functions from the two games appear to be generally similar for

each respective cluster, with some small differences. For cluster 1 (James), its rate function

λ1(t) is almost the same in the two games for t < 17 — fairly flat and low. This means

that James plays with almost the same style at the beginning of a play in both games,

keeping the ball in his hands and organizing the offense. Toward the end of a play, James
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Figure 3.6: Fitted rate functions for the 2014-2015 Golden State Warriors, λ1(t), λ2(t) and
λ3(t), each describing the rates with which the ball leaves a player in cluster 1, cluster 2
and cluster 3, respectively.

starts to “heat up” at around t ≈ 17 in game 2, whereas he does so slightly later in game

5, at about t ≈ 19. This is because the small lineup of the Warriors in game 5 move much

more quickly, so they can defend James more effectively in the last few seconds and delay

his offense. For cluster 2, the first big difference appears after t > 7. In game 2, λ2(t)

grows slowly to reach a peak at t ≈ 14; however, in game 5, the same function λ2(t) grows

rapidly after t > 7 and maintains a high level until t ≈ 14. Clearly, players in cluster 2

have increased their offensive pace in game 5. On the one hand, Smith (cluster 2 SG in

game 5) does more quick-release shooting than does Shumpert (cluster 2 SG in game 2).

On the other hand, the higher defensive pressure created by the Warriors’ small lineup

has forced the Cavaliers to move the ball more quickly. For the same reasons, toward the

end of a play, players in cluster 2 also tend to attack the rim or pass the ball slightly

earlier in game 5 (at t ≈ 16) than they do in game 2 (at t ≈ 18). For cluster 3, their

rate function λ3(t) displays a similar pattern in the two games, but the one in game 5 is
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almost entirely dominated by the one in game 2. Players in this cluster are big men and

typically catch-and-shoot players; they are usually not responsible for handling the ball.

They catch rebounds and start a play by passing the ball to their teammates in the other

two clusters. At around t ≈ 12, they get their first chance to touch the ball, when they

either shoot or pass it back to the ball handlers. Their second chance to touch the ball

happens near the end of a play, when they have to shoot rapidly. In game 5, the small

lineup of the Warriors can quickly cover the open shots and “double up” to defend a big

man in the paint, and that forces players in Cavaliers’ cluster 3 to keep the ball in their

hands for a slightly longer period. This is why their λ3(t) is lower in game 5 than in game

2. Overall, the patterns displayed in the Cavaliers’ three rate functions are quite similar in

the two games. The changes mostly can be attributed to the different defensive strategies

used by their opponent.

For the Warriors, though, due to the change in their lineup, their rate functions from the

two games are noticeably different. In game 2 with their regular lineup, their rate functions

(blue solid lines in Figure 3.6) show regular patterns — at the start of a play, λ1(t) and

λ2(t) are relatively low, while λ3(t) has high peaks. This means that, at the start of a

play, players in cluster 1 and cluster 2 tend to handle the ball, whereas those in cluster

3 catch rebounds and pass the ball out more or less immediately. This is the same as

the playing style of the Cavaliers. However, their rate functions have more peaks than

those of the Cavaliers. Moreover, their λ1(t) and λ2(t) in game 2 are, in general, higher

than those of the Cavaliers at the start of a play. These show that the Warriors’ offense

is more flexible — the ball is passed more frequently, so everybody gets chances to touch

it, and no one holds the ball for a very long time. In fact, this has become the Warriors’
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signature team-playing style. However, in game 5, all three of their rate functions show

significant differences. First, the two peaks of λ1(t) occur earlier in game 5 than in game

2. Second, the rapid growth of λ2(t) also appears earlier in game 5 (at t ≈ 17) than in

game 2 (at t ≈ 22). Both differences indicate that, with a small lineup, the Warriors have

increased their offensive pace in game 5. Finally, their λ3(t) changes dramatically between

the two games; in game 5, it is much flatter at the beginning and has a much higher

peak at t ≈ 17. This is certainly because, in game 5, the players making up cluster 3 are

entirely different from the ones in game 2. From Table 3.6, we know that their cluster 3 in

game 5 (Green and Iguodala) catch a larger proportion of rebounds than do their cluster

3 in game 2 (three centers), but instead of immediately passing the ball out, Green and

Iguodala both often dribble and run the play. The peak of λ3(t) at t ≈ 17 in game 5 is

particularly significant, revealing one key offensive strategy of the Warriors’ small lineup,

the so-called “high pick-and-roll”. A typical sequence of this strategy is as follows: Curry

dribbles the ball outside the three-point line, and Green (or Iguodala) comes to set up a

screen (a “human body wall”). Thanks to Curry’s incredible three-point shooting skills,

after he dribbles around the screen both defenders of Curry and of Green (or Iguodala)

usually have to focus on covering Curry together, leaving Green (or Iguodala) wide open,

so Curry can now pass the ball to him. Green (or Iguodala) can then shoot the ball; drive

to the basket directly; or take one or two dribbles, draw another defender, and then pass

the ball to another wide-open teammate, who is usually waiting at the three-point line on

the weakly-defended side. This entire sequence often happens very quickly within three

seconds.

Overall, the estimated rate functions reveal many intricate details of a team’s playing style.
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Table 3.7: Estimated transition probabilities (Pkl and Pka) for the 2014-2015 Cleveland
Cavaliers and Golden State Warriors (K = 3). Rows are originating clusters and columns
are receiving clusters and play outcomes.

C1 C2 C3 Make2 Miss2 Make3 Miss3 Fouled TO

Cavaliers
Game 2

C1 0 0.167 0.430 0.111 0.153 0.014 0.014 0.069 0.042
C2 0.292 0.141 0.259 0.016 0.081 0 0.114 0.032 0.065
C3 0.335 0.160 0.111 0.098 0.123 0.037 0.037 0.062 0.037

Cavaliers
Game 5

C1 0 0.384 0.274 0.123 0.110 0 0.027 0.027 0.055
C2 0.296 0.181 0.261 0.024 0.036 0.059 0.107 0 0.036
C3 0.346 0.198 0.076 0.061 0.122 0.045 0.061 0.061 0.030

Warriors
Game 2

C1 0.357 0.233 0.194 0.037 0.037 0.007 0.060 0.030 0.045
C2 0.380 0 0.120 0.140 0.080 0.100 0.120 0.060 0
C3 0.469 0.226 0 0.061 0.081 0 0.061 0.061 0.041

Warriors
Game 5

C1 0.159 0.276 0.323 0.058 0.058 0.046 0.034 0 0.046
C2 0.151 0.097 0.285 0.151 0.166 0.015 0.015 0.060 0.060
C3 0.330 0.267 0.137 0.064 0.038 0.025 0.038 0.076 0.025

The Cavaliers play around their key superstar, LeBron James, whereas the Warriors share

the ball more evenly. It also can be easily seen that the Warriors have played these two

games quite differently and the Cavaliers have responded with small but clear adjustments

in their playing style as well.

Transition probabilities The estimated transition probabilities of events originating

from the three different clusters are displayed in Table 3.7, for both the Cavaliers and the

Warriors.

For the Cavaliers, the overall probabilities to pass the ball (sum of the first three columns)

for the three respective clusters are {59.7%, 69.2%, 60.6%} in game 2, and {65.8%, 73.8%,

62%} in game 5. Clearly, the Cavaliers make more passes in game 5 than in game 2,
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which is due to the stronger defense by the Warriors’ small lineup. For the same reason,

in game 2 James (the only player in cluster 1) passes more to cluster 3 (shooters and big

men), whereas in game 5 he passes more to cluster 2 (ball handlers). The respective roles

of their cluster 2 and cluster 3 do not change much in the two games — cluster 2 is the

bridge between cluster 1 and cluster 3, making almost an equal proportion of passes to

each of the other two clusters; cluster 3, however, more often passes the ball back to James

(cluster 1). The overall probabilities to shoot the ball (sum of columns 4-7) for the three

respective clusters are {29.2%, 21.1%, 29.5%} in game 2, and {26%, 22.6%, 28.9%} in game

5, which do not change much. When facing the quick defense of the Warriors in game 5,

the Cavaliers have successfully created an almost equal percentage of shots by making more

passes. Regarding the probabilities of being fouled and making turnovers, James (cluster

1) fails to draw as many fouls in game 5 as he does in game 2 (2.7% vs. 6.9%), but he

makes more turnovers (5.5% vs. 4.2%). These can be partly attributed, again, to the

stronger defense by the Warriors’ small lineup, especially the one-on-one defense on James

by Iguodala. Players in cluster 2 are not as aggressive in game 5 as they are in game 2

— although they make fewer turnovers (3.6% vs. 6.5%), they do not draw any fouls at all

(0% vs. 3.2%). The performance of cluster 3 is fairly stable in the two games in terms of

drawing fouls and making turnovers.

For the Warriors, the overall passing probabilities of their three respective clusters are

{78.4%, 50%, 79.5%} in game 2, and {75.8%, 53.3%, 73.4%} in game 5. Despite the

drastic changes in their lineup, these probabilities do not change much. Each of the first

three columns in Table 3.7 contains the probabilities that the corresponding cluster is the

receiver of the ball passed from different clusters. Here, we can easily see that a considerable
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proportion of the passes have shifted from cluster 1 to cluster 3 in game 5. This is because

Green and Iguodala, two of the four primary ball handlers, are now in cluster 3 as opposed

to cluster 1, and they receive many passes. The overall shooting probabilities (sum of

columns 4-7) for their three respective clusters are {14.1%, 44%, 20.3%} in game 2, and

{19.6%, 34.7%, 13.5%} in game 5. In both games, players in cluster 2 are more likely to

shoot than those in the other two clusters. This makes sense because cluster 2 contains two

shooting guards, Klay Thompson and Leandro Barbosa, who both are excellent scorers and

often take on a huge responsibility in shooting the ball. It can also be seen that, in game

5, the probability to shoot has increased for cluster 1 but decreased for cluster 2. This is

because the small lineup gives players in cluster 1 — especially Curry — more open space

and hence better shooting opportunities; by contrast, Klay Thompson (cluster 2), who is

less affected by the change in the lineup, struggles with shooting in game 5. For cluster 3,

we see that Green and Iguodala (cluster 3 in game 5) are less likely to shoot than the centers

(cluster 3 in game 2). With regard to shooting, it is well-known that the Warriors rely on

three-pointers as one of their most important scoring methods. Curry and Thompson are

arguably the best three-point shooting back-court duo in the entire history of the NBA.

From Table 3.7, we can clearly see that the Warriors attempt many more three-pointers

than the Cavaliers do and they also succeed more often. One surprising observation is that

players in their cluster 2 shoot considerably fewer three-pointers in game 5 than they do in

game 2. Indeed, this is another piece of evidence showing the struggle of Klay Thompson

in game 5. There are two significant differences in terms of drawing fouls and making

turnovers: cluster 1 fails to draw any fouls in game 5 versus 3% in game 2; and cluster 2

makes more turnovers in game 5 than in game 2 (6% vs. 0%).
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3.3.4 LeBron James: Miami Heat versus Cleveland Cavaliers

Both the 2011-12 Miami Heat and the 2014-15 Cleveland Cavaliers had LeBron James

on their teams and made him the key player. Thus, it is especially interesting for us to

compare the player structures of these two teams, and to see if there is any difference in how

James has played the game with these different teams. We investigate the first question by

pooling the transactions of the Heat (in their two 2012 games versus the Celtics) and the

transactions of the Cavaliers (in their two 2015 games versus the Warriors), and applying

the CSBM to cluster the players from both teams together. With regard to the second

question, we simply compare the individual results we have obtained earlier for the Heat

(Section 3.3.2) and for the Cavaliers (Section 3.3.3).

For the pooled CSBM, we focus primarily on the clustering results in this section and

forsake any detailed discussions of the rate functions or the transition probabilities. Other

than LeBron James, Mike Miller and James Jones are also on both of these teams. When

playing on different teams, the same player may play in a different style, depending on his

specific role for the team. Hence for James (and likewise for Miller and Jones, too), we

create two separate avatars — one for the games he played on the Heat and another for

the games he played on the Cavaliers — and treat them as two different “players” in the

clustering algorithm. We are especially curious whether the pooled CSBM will cluster the

two avatars of the same player into the same cluster or different clusters.

Table 3.8 displays the clustering results from the pooled CSBM, fitted to all transactions of

the Heat and the Cavaliers in the 4 games we have annotated. With a total of 19 “players”,

we now choose K = 4 instead of K = 3 as we did in the previous two sections; this allows
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Table 3.8: Clustering results for the 2011-2012 Miami Heat and the 2014-2015 Cleveland
Cavaliers together (K = 4). Cluster labels are C1, C2, C3, C4. Players appearing with
two separate avatars for the clustering algorithm are bolded. Player positions are included
for reference only; they are not used by the clustering algorithm.

Together

Team Player Position C1 C2 C3 C4

Heat

Mario Chalmers PG X
Norris Cole PG X
Dwyane Wade SG X
LeBron James SF X
James Jones SG X
Shane Battier SF X
Mike Miller SF X
Chris Bosh PF X
Udonis Haslem PF X
Ronny Turiaf C X
Joel Anthony C X

Cavaliers

Matthew Dellavedova PG X
Iman Shumpert SG X
J.R. Smith SG X
LeBron James SF X
James Jones SF X
Mike Miller SF X
Tristan Thompson PF X
Timofey Mozgov C X
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us to cluster the “players” with a slightly finer resolution.

Our clustering results clearly indicate that the 2011-12 Heat and the 2014-15 Cavaliers

are built in a very similar way. Cluster 1 consists of point guards; cluster 2 consists of

superstars — namely, LeBron James (for both teams) and Dwyane Wade (for the Heat);

cluster 3 consists of the other perimeter players — mostly shooters and perimeter defenders;

and the last cluster is made up of big men — power forwards and centers. It also turns

out that the two avatars of the same player (whether James, Miller or Jones) are always

clustered together. Indeed, both teams are built around LeBron James and their playing

styles are similar, too. James is the primary ball handler and distributor for both teams.

While playing for the Heat, James has Wade as an important helper, but while playing for

the Cavaliers, he is the only superstar. We can imagine that, if Kyrie Irving, the superstar

point guard of the Cavaliers, were not injured, he might have joined James and Wade

in cluster 2. The point guards in these two team are secondary ball handlers and serve

as bridges between the superstars and the other players. Players in cluster 3 are mainly

responsible for playing defense and “catch and shoot”. The big men in cluster 4 are mostly

responsible for catching rebounds and scoring under the rim.

In the rest of this section, we revisit some individual results for the Heat (Section 3.3.2) as

well as for the Cavaliers (Section 3.3.3) in order to compare in more detail the performance

of LeBron James in those two series.

First, recall that our cluster labels (e.g., C1, C2, ...) are arbitrary, and that James has

been clustered into C2 with the 2011-12 Heat but into C1 with the 2014-15 Cavaliers.

Comparing Figure 3.4 (middle panel) and Figure 3.5 (left panel), we find that the Heat’s
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λ2(t) function has more peaks and is higher than the Cavaliers’ λ1(t) function overall.

This shows that, while playing for the Heat, James chooses to pass the ball more often

at the beginning of a play. This is mostly because of the presence of Wade, a superstar

teammate, who interacts with James more frequently than the point guards. Actually, the

“two-man fast break” by James and Wade is one of the Heat’s defining features. Second,

comparing Table 3.3 and Table 3.6, we find that, while playing for the Heat, James and

Wade together receive 19.4% of the inbounds, whereas, while playing for the Cavaliers,

James alone receives a staggering 50% of the inbounds. The Heat mostly let their point

guards carry the ball past the half court, because they always have one of them (either

Chalmers or Cole) on the court. However, with Irving out on injury, the Cavaliers only

play one point guard (Dellavedova) in their lineup, so James has to carry the ball more

than usual. Third, while on the Heat, James and Wade together average a 23% probability

to shoot, but while on the Cavaliers, James alone has an even higher probability to shoot

— 29.2% and 26% respectively in the two games against the Warriors. James is a great

scorer as well as offensive organizer. He can freely switch between these two modes of play

depending on the situations in the game. While playing for the 2011-12 Heat, James has

stronger teammates, so he tends to create more shooting opportunities for others. With

the 2014-15 Cavaliers, however, James must take more shots by himself due to the limited

support from his teammates.

In summary, our analysis using the CSBM shows that the player structure of the 2011-12

Heat and that of the 2014-15 Cavaliers are fairly similar. The CSBM also reveals many

subtle differences in LeBron James’ playing style in the two series.
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3.4 Summary and Remarks

In this chapter, we advocate the concept that basketball games can be analyzed as transac-

tional networks. We have proposed a multistate Continuous-time Stochastic Block Model

to cluster players based on their styles of handling the ball. In particular, we model each

basketball play as an inhomogeneous continuous-time Markov chain, with the transition

rate functions being governed by the players’ cluster memberships. We adopt B-splines

to model the rate functions and develop an EM+ algorithm to estimate model param-

eters. Applications to a number of NBA games between the 2011-12 Miami Heat and

Boston Celtics and between the 2014-15 Cleveland Cavaliers and Golden State Warriors

have yielded compelling evidence that the CSBM framework is of great practical value in

clustering and evaluating basketball players.

As the popularity of basketball analytics appears to be growing in recent years, it is perhaps

helpful for us to summarize the main differences between our work and a few recent works

in this area (e.g., Fewell et al., 2012; Cervone et al., 2016). The key features of our work

are: (i) viewing basketball games from a network perspective, (ii) consideration of time

dynamics, and (iii) clustering of players at an individual level. In what follows, we discuss

how our work differs from a few others in terms of these features; a brief summary is given

in Table 3.9.

Fewell et al. (2012) certainly view basketball games from a network perspective as well, but

they do not take time dynamics into account, and their treatment of players occurs at a

position level rather than an individual level. Specifically, they pre-group players according
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Table 3.9: Summary of differences between our work and others.

Network Time Model
Perspective Dynamics Objective

CSBM yes yes descriptive at individual level
Fewell et al. (2012) yes no descriptive at position level
Cervone et al. (2016) no yes predictive at individual level

(of final point outcome)

to their on-court positions (e.g., point guard, shooting guard, and so on). Whereas our

CSBM describes player differences based on the real-time dynamics of how each basketball

play unfolds, the method developed by Fewell et al. (2012) aims to describe differences

in how each of the five pre-defined positions communicates with each other — and with

various initial and absorbing states — at an aggregate level, aggregated over both all

players holding the same position and all transactions during a certain time period (e.g.,

an entire game). In their work, point guards are always considered together with other

point guards, and any player difference at the individual level is suppressed. While it is

hardly surprising that many players holding the same position often end up being clustered

together by our CSBM, this is certainly not always the case. For example, our analysis

of the two games between the 2014-15 Cleveland Cavaliers and Golden State Warriors

(Section 3.3.3) clearly shows that the distinctive playing style of LeBron James almost calls

for the definition/creation of a new on-court position, for which some long-time basketball

observers have informally suggested the name of “point forward”. Our analysis also shows

that players like Draymond Green (a power forward) and Andre Iguodala (a small forward)

are certainly playing important roles in the game beyond the traditional ones defined by

their respective on-court positions.
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Cervone et al. (2016), on the other hand, do consider time dynamics, but they do not view

basketball games from a network perspective. While they track the movement of the ball

both spatially and over time, they do not view players as nodes and passes as edges. Most

importantly, their objective is fundamentally different from ours. Our goal is to cluster

players according to their individual playing styles as characterized by the rate functions

λk(t) and the transition probabilities Psk, Pkl, and Pka, but theirs is to predict the final

point value of each basketball play/possession as the individual play unfolds. One can say

that their analysis is driven by outcome but ours is driven by style. Although rate functions

for ball passing are components of both models, their structure and role vary considerably.

Our rate functions are smooth functions of clock time, and are used to characterize groups

of players with similar transition rates. Their rate functions are log-linear regressions which

use predictors derived from motion-capture data, forming one component in a hierarchical

model whose ultimate objective is to predict point value. They are not used to cluster

players.
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Chapter 4

Variable Selection Networks

4.1 Introduction

Recent developments of technology have led to an explosion of high dimensional data

in many disciplines, including health science, finance, economics, engineering, etc. The

number of variables can be thousands, tens of thousands or even millions. Nevertheless,

only very few variables are believed to have true influence on the response. Hence, variable

selection becomes a fundamentally important problem. Due to the high dimensionality,

the traditional best subset selection becomes computationally infeasible. A large amount

of research works have been devoted to the high dimensional variable selection over the

past two decades.

In the field of statistics, penalized likelihood methods have gained enormous attention, for

example, the nonnegative garrotte (Breiman, 1995), the LASSO (Tibshirani, 1996), the
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SCAD (Fan and Li, 2001), the elastic net (Zou and Hastie, 2005), the Adaptive LASSO

(Zou, 2006) and the Dantzig selector (Candes and Tao, 2007). Their theoretical proper-

ties, algorithms and generalizations have been extensively studied. Fan and Lv (2010) and

Buhlmann and van de Geer (2011) provide comprehensive overviews of the penalized like-

lihood methods for high dimensional variable selection. During the last few years, many

screening methods have been proposed to handle the more challenging situation of the

ultra-high dimensionality (Fan and Lv, 2008; Wang, 2009; Jin et al., 2014; Cho and Fry-

zlewicz, 2012; Ma et al., 2016). They first employ a variable screening procedure to hugely

reduce the number of variables and then apply a variable cleaning procedure to conduct

variable selection. At the same time, Bayesian variable selection has also become a very

active field. Many recently developed approaches have shown convincing performance, for

example, Narisetty and He (2014), Bondell and Reich (2012) and Johnson and Rossell

(2012). A review of Bayesian Variable Selection can be found in O’Hara and Sillanpaa

(2010).

Inspired by the concept of ensemble learning, Xin and Zhu (2012) propose Variable Selec-

tion Ensemble (VSE), a novel framework for variable selection. Ensemble learning tech-

niques, for instance, boosting, bagging, Random Forest, etc, have been widely adopted for

estimation and classification. They are practically easy to implement and show outstanding

performance. Now for variable selection, given p variables, there are overall 2p submodels.

The main idea of the VSE is to evaluate a number of submodels and incorporate the overall

information to select a final model, where the final model is not necessarily among those

checked submodels. The group of submodels to be evaluated can be chosen stochastically,

for example, Xin and Zhu (2012) and Zhu and Chipman (2006), or systematically, as what
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we will do in this work, where we consider all p(p− 1)/2 submodels containing all pairs of

variables. If each variable is treated as a node, such a VSE is actually a network, namely,

a Variable Selection Network.

We first introduce variable selection networks (VSN) and algorithms for the p < n case in

Section 4.2 to 4.4. In Section 4.2, a VSN with binary (0/1) edges is constructed and its

theoretical properties are established. In Section 4.3, a weighted VSN is briefly discussed.

Three VSN algorithms are proposed in Section 4.4. To handle the p ≥ n scenario, in

Section 4.5, we propose an iterative group screening algorithm. In Section 4.6 and 4.7, the

performance of VSN methods is investigated through simulation studies and illustrated by

an real data example, respectively. Finally, we summarize our work in Section 4.8.

4.2 A Binary Variable Selection Network

We consider the linear regression:

Y = Xβ + ε, (4.1)

whereX is an n×p design matrix, β = (β1, β2, . . . , βp)
T are coefficients and ε = (ε1, . . . , εn)T

are i.i.d. random errors following N(0, σ2).

Given such a linear regression with p covariates, a variable selection network (VSN), rep-

resented by a p× p adjacency matrix A, is defined as a network such that the i–j edge Aij

is a measure of the importance of variables i and j together. In general, the measure can

be any type. We first consider the case that the measure is binary (0/1) valued, where 1
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indicates that at least one of the pair of variables is important and 0 means neither of the

variables are important. In Section 4.3, we discuss a weighted VSN with edges taking an

arbitrary measure.

For the binary VSN, one natural way to evaluate whether variables i and j are important

is to conduct the F-test for the following hypothesis (given p < n):

H0 : βi = βj = 0 vs. H1 : βi 6= 0 or βj 6= 0, (4.2)

where the true model is assumed to be nested within the full model with p variables. We

set Aij = 1 if H0 is rejected; otherwise, Aij = 0. In addition, Aii = 0 for all i = 1, 2, . . . , p.

More explicitly, the test statistic is

TSij =
(RSSH −RSS)/2

RSS/(n− p)
, (4.3)

where RSS is the residual sum of squares of the full model, and RSSH is the residual sum

of squares of the restricted model under the null hypothesis. Choose a significance level α

and let Cα be the 1−α quantile of F (2, n− p), the F distribution with degrees of freedom

2 and n − p. If TSij > Cα, we reject the null hypothesis and set Aij = 1; otherwise,

Aij = 0.

To further explore the test statistic, we introduce some notation. For a set Ω ⊆ {1, 2, 3, . . . , p},

let XΩ denote the matrix with columns {X·ω : ω ∈ Ω} and define X−Ω = X{1,2,...,p}/Ω. Given

a matrix X̃, define S(X̃) to be the linear space spanned by the columns of X̃, which is a sub-

space of the n-dimensional Euclidean space, and define S⊥(X̃) to be the orthogonal comple-
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ment of S(X̃). In addition, define P (X̃) = X̃(X̃T X̃)−1X̃T , which is the projection matrix

to the space S(X̃). Finally, define M(X̃) = I−P (X̃), which is the projection matrix to the

space S⊥(X̃). For simplicity, with a slight abuse of notation, we use MΩ as an abbreviation

for M(X−Ω). In particular, Mij = M(X−ij) = I − P (X−ij) = I −X−ij(XT
−ijX−ij)

−1XT
−ij,

where X−ij = X{1,2,...,p}/{i,j}.

With the above notation, the test statistic (4.3) can be re-written as

TSij =
Y TMijXij(X

T
ijMijXij)

−1XT
ijMijY/2

Y T (In − P (X))Y/(n− p)
. (4.4)

Suppose the true model is covered by the full model, we know that

Y T (In − P (X))Y

σ2
∼ χ2(n− p). (4.5)

To figure out the distribution of the numerator of TSij (4.4) (divided by σ2), note that if

V ∼ N(µ,Σ) is an m-dimensional multivariate normal random variable and Σ is invertible,

then V TΣ−1V ∼ χ2(m,µTΣ−1µ). Since XT
ijMijY is 2-dimensional multivariate normal with

E(XT
ijMijY ) = XT

ijMijXij(βi, βj)
T and var(XT

ijMijY ) = σ2XT
ijMijXij, suppose XT

ijMijXij

is invertible, then

Y TMijXij(X
T
ijMijXij)

−1XT
ijMijY

σ2
∼ χ2(2,Λij), (4.6)

where Λij = 1
σ2 (βi, βj)X

T
ijMijXij(βi, βj)

T is the noncentrality parameter of noncentral chi-

squared distribution.
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Moreover, the numerator and denominator of TSij are independent because of the fact

that XT
ijMij(In − P (X)) = 0, which can be easily verified.

Hence,

TSij ∼
χ2(2,Λij)/2

χ2(n− p)/(n− p)
, (4.7)

with the numerator and denominator being independent. When the null hypothesis is true,

i.e., βi = βj = 0, we have Λij = 0, so

TSij ∼
χ2(2)/2

χ2(n− p)/(n− p)
∼ F (2, n− p); (4.8)

when the null hypothesis is false, i.e., βi 6= 0 or βj 6= 0,

TSij ∼
χ2(2,Λij)/2

χ2(n− p)/(n− p)
∼ F (2, n− p,Λij), (4.9)

where F (2, n−p,Λij) is the noncentral F distribution with degrees of freedom 2 and n−p,

and noncentrality parameter Λij.

The probabilities of edges are as follows:

P(Aij = 1|βi = βj = 0) = P(TSij > Cα|βi = βj = 0)

= P(F (2, n− p) > Cα)

= α (4.10)
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and

P(Aij = 1|βi 6= 0 or βj 6= 0) = P(TSij > Cα|βi 6= 0 or βj 6= 0)

= P(F (2, n− p,Λij) > Cα)

:= αij. (4.11)

All pairs of irrelevant variables have the same probability, α, to form an edge. If at least one

variable is true, the probability to form an edge depends on the noncentrality parameter

Λij. We always have αij ≥ α, because, given any Λ1 ≥ Λ2 ≥ 0,

P(χ2(r,Λ1) > C) ≥ P(χ2(r,Λ2) > C), (4.12)

for any degree of freedom r and any constant C ≥ 0.

4.2.1 Degree Distributions of the Binary VSN

Note that the VSN constructed by the F-test (4.2) is symmetric. Let d(i) denote the degree

of variable i such that

d(i) =
∑
j

Aij. (4.13)

In this section, we investigate asymptotic properties of the node degrees of the binary

VSN, where ‘asymptotic’ refers to the number of samples n going to infinity. The number

of variables p can also, but not necessarily, go to infinity.

The degrees directly depend on the F-tests that build the VSN. Intuitively, on the one
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hand, we want the powers of the tests, i.e., αij, to approach one asymptotically so that

we can effectively detect relevant variables. Clearly, the power of an individual F-test

goes to one as long as the noncentrality parameter goes to infinity. However, for the

VSN, we are dealing with multiple hypothesis tests, and the number of variables p can

go to infinity. Hence, in order to control the overall power, we require the noncentrality

parameters {Λij : βi 6= 0 or βj 6= 0} to go to infinity at a certain rate. On the other hand,

we have to set the significance level α = αn to approach zero at a certain rate, so that we

can avoid selecting irrelevant variables. Overall, in ideal situations, as n → ∞, the edge

probabilities of the binary VSN have the following block structure: the relevant variables

form a block and the irrelevant ones form another block, and the edge probabilities are

approximately

relevant irrelevant

relevant 1 1

irrelevant 1 0 ,

(4.14)

where a relevant variable has a probability tending to one to have an edge with any other

variable and an irrelevant variable has a probability tending to zero to have an edge with

any other irrelevant variable.

Define D = {j : βj 6= 0} as the set of relevant variables and s = |D| as the number of

relevant variables. From the matrix (4.14), we can imagine that the degree of a relevant

variable should asymptotically be close to p, whereas the degree of an irrelevant variable

should asymptotically be close to s. Due to the common sparsity assumption that s� p,

we can successfully detect relevant variables by their degrees.
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In the rest of this section, we will rigorously show that if the noncentrality parameters

approach infinity at an order limn→∞ Λij/ log n = ∞, and the significance level is set as

limn→∞ αnn
2 = ∞ and αn = o(1/p), then with a probability tending to one, we can

successfully separate the relevant variables from the irrelevant ones by cutting the variable

degrees of the VSN from the biggest gap.

Recall that

Λij =
1

σ2
(βi, βj)X

T
ijMijXij(βi, βj)

T . (4.15)

To assure the asymptotic order of {Λij : βi 6= 0 or βj 6= 0}, we impose a set of necessary

conditions:

(A1) ψ = min{|βi| : βi 6= 0} > 0;

(A2) limn→∞mini:βi 6=0X
T
i MiXi/ log n = ∞, where Mi = In − X−i(X

T
−iX−i)

−1XT
−i is the

projection matrix to S⊥(X−i).

The first condition sets a lower bound for nonzero coefficients. This is a typical assumption

in variable selection literature.

The second condition essentially puts a constraint on the collinearity between any relevant

variable i and the other variables. In fact, MiXi is the residual vector obtained by regressing

a relevant variable Xi over all the other variables (i.e., X−i), and XT
i MiXi is simply the

residual sum of squares. The assumption requires the residual sum of squares to grow

faster than log n. In other words, the collinearity of Xi and the other columns is not very

strong. Chen and Chen (2008) adopt a very similar assumption, which is of the same

order. Note that in variable selection literature, a common way to control correlations

96



among variables is to bound the eigenvalues of XTX/n, for example, Zhang and Huang

(2008) and Wasserman and Roeder (2009). From the fact

XT
i MiXi

log n
≥ φ

(XTX

log n

)
, (4.16)

we can see that assumptions (A2) is weaker than bounding the smallest eigenvalue of

XTX/n.

The following lemma establishes the asymptotic order of Λij given the assumptions.

Lemma 1 If assumptions (A1) and (A2) hold, for βi 6= 0 or βj 6= 0, we have

lim
n→∞

Λij

log n
=∞. (4.17)

Furthermore, the next lemma reveals a connection of the asymptotic order of the noncen-

trality parameter, the significance level and the power of the test.

Lemma 2 For βi 6= 0 or βj 6= 0, suppose limn→∞ Λij/log n = ∞, and p < γn for a

constant γ ∈ (0, 1). Let limn→∞ αnn
2 =∞, then 1− αij = o(1/n).

With Lemma 1 and 2, we obtain the main theorem.

Theorem 1 Assume that (A1) and (A2) hold. Suppose p < γn, for a constant γ ∈ (0, 1)

and s < δp for a constant δ ∈ (0, 1). Let limn→∞ αnn
2 = ∞ and αn = o(1/p), then, as

n→∞,

P
(

max
i∈D
|d(i)− (p− 1)| > (1− δ)p

4

)
= o(1) (4.18)
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and

P(max
j 6∈D
|d(j)− s| > (1− δ)p

4
) = o(1). (4.19)

Theorem 1 essentially says that when n→∞, with probabilities tending to 1, the degrees

of relevant variables are close to p− 1 and the degrees of irrelevant variables are around s.

Moreover, it is easy to show the following result:

Corollary 1 Suppose the assumptions of Theorem 1 hold, then, as n→∞,

P
(

max
i1,i2∈D

|d(i1)− d(i2)| > (1− δ)p
2

)
= o(1), (4.20)

P
(

max
j1,j2 6∈D

|d(j1)− d(j2)| > (1− δ)p
2

)
= o(1), (4.21)

P
(

min
i∈D,j 6∈D

|d(i)− d(j)| ≤ (1− δ)p
2

)
= o(1). (4.22)

Corollary 1 states that if we use degree as a distance measure, the minimum distance

between a relevant variable and an irrelevant variable is asymptotically bigger than the

maximum distance between two relevant variable or two irrelevant variables. This implies,

if we order the variables by degrees and cut from the biggest gap of the degrees, we

can successfully separate relevant variables from irrelevant variables, and thus, achieve

variable selection consistency. Mathematically, suppose d(i1) ≤ d(i2) ≤ . . . ≤ d(ip), where

(i1, i2, . . . , ip) is a re-ordering of (1, 2, . . . , p). Let

k = arg max
l

[d(il)− d(il−1)] (4.23)
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and S = {ik, ik+1, . . . , ip}. We have, as n→∞,

P(S = D)→ 1. (4.24)

Recall that D is the set of relevant variables.

Theorem 1 works for the general case where the number of variables p can either grow to

infinity or stay fixed. When p is fixed, and thus s should be fixed too, it is easy to show

that, as n→∞,

d(i)→ p− 1, for i ∈ D; (4.25)

d(j)→ s, for j 6∈ D, (4.26)

where the convergence is in expectation. From the proofs of Theorem 1 (Appendix B.3)

and Lemma 2 (Appendix B.2), we can see that the above results can be achieved under

conditions limn→∞mini,j:i∈D or j∈D Λij/(− logαn) =∞, limn→∞ αnn
2 →∞ and αn = o(1),

which are weaker than those in Theorem 1. In particular, for βi 6= 0 or βj 6= 0, Λij may go

to infinity at a rate smaller than log n.

4.2.2 Correlations among Test Statistics

Cutting from the biggest gap of degrees is simple and theoretically intriguing, but it may

not perform very well in practice, especially when the sample size n is not very big, whereas

the number of variables p is relatively large. We set the significance level of the F-test to

99



be αn = o(1/p) to rule out edges among irrelevant variables so that prevent any irrelevant

variables from having high degrees. However, as a trade-off, some relevant variables may

have fairly low degrees, which could be close to the degrees of irrelevant variables. Besides

the substantial size-power dilemma of statistical hypothesis testing, in our situation, this

practical challenge is also because of the fact that the test statistics {TSij : j 6= i} are

correlated, and thus the Bernoulli random variables {Aij = I(TSij > Cαn) : j 6= i} are

correlated. We discuss the correlations among the test statistics in this section.

First, we look at the test statistics in detail. Recall that

TSij =
Y TMijXij(X

T
ijMijXij)

−1XT
ijMijY/σ

2/2

Y T (In − P (X))Y/σ2/(n− p(X))
. (4.27)

The denominator is the same for all (i, j) pairs. Aside from the constant 1/2, the numerator

of TSij is ||P (MijXij)Y ||2/σ2, where P (MijXij)Y is the projection of Y into the space

S(MijXij). We have shown that ||P (MijXij)Y ||2/σ2 ∼ χ2(2,Λij). In order to see where

the correlation comes from, we decompose the random variable ||P (MijXij)Y ||2/σ2. The

projection matrix P (MijXij) can be decomposed as

P (MijXij) = P (MiXi) + P (MijXj) (4.28)

and

P (MiXi)P (MijXj) = 0. (4.29)
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The proof can be found at the end of the proof of Lemma 1 in the appendix. Hence,

||P (MijXij)Y ||2

σ2
=
||P (MiXi)Y ||2

σ2
+
||P (MijXj)Y ||2

σ2

:= Bi + Cij, (4.30)

where

Bi =
||P (MiXi)Y ||2

σ2
=
Y TMiXi(X

T
i MiXi)

−1XT
i MiY

σ2

∼ χ2
(

1,
β2
iX

T
i MiXi

σ2

)
:= χ2(1,ΛB

i ), (4.31)

because E(XT
i MiY ) = XT

i MiXiβi and var(XT
i MiY ) = σ2XT

i MiXi, and

Cij =
||P (MijXj)Y ||2

σ2
=
Y TMijXj(X

T
j MijXj)

−1XT
j MijY

σ2

∼ χ2
(

1,
(XT

j MijXiβi +XT
j MijXjβj)

2

σ2XT
j MijXj

)
:= χ2(1,ΛC

ij), (4.32)

because E(XT
j MijY ) = XT

j MijXiβi + XT
j MijXjβj and var(XT

j MijY ) = σ2XT
j MijXj.

Moreover, Bi and Cij are independent due to (4.29), so

||P (MijXij)Y ||2

σ2
= Bi + Cij

∼ χ2
(

2,ΛB
i + ΛC

ij

)
, (4.33)
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where we have also obtained a decomposition of the noncentrality parameter:

Λij = ΛB
i + ΛC

ij. (4.34)

Clearly, given a variable i, Bi is a common term for all {TSij : j 6= i}, whereas Cij depends

on both i and j. Therefore, the correlation between two statistics TSij and TSik is induced

by the common term Bi and the correlation between Cij and Cik. Next, we investigate how

such correlations lead to the issue discussed at the beginning of this section. The effects of

correlations on relevant variables and irrelevant variables are explored respectively.

The effect of correlations on relevant variables

We see from the ideal probability matrix (4.14) that, the key to separate a relevant variable

i from irrelevant variables is that i has probabilities tending to one to connect to all

irrelevant variables. Asymptotically, this is guaranteed by the assumptions and the lemmas.

However, when the sample size is finite, the correlations among test statistics may cause

problems.

More explicitly, for the relevant variable i, we require that its probabilities to connect

to irrelevant variables to be αij = 1 − o(1/n) for all j 6∈ D. To obtain such a desired

asymptotic order of αij, by Lemma 2, we need the asymptotic order of the noncentrality

parameter to be lim
n→∞

Λij/ log n→∞, which is guaranteed by assumptions (A1) and (A2),

and Lemma 1. Now we look at the decomposition of Λij in detail. Plugging βi 6= 0 and
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βj = 0 into the decomposition (4.34), we have

Λij = ΛB
i + ΛC

ij

=
β2
iX

T
i MiXi

σ2
+
β2
i (X

T
j MijXi)

2

σ2XT
j MijXj

(4.35)

=
β2
i

σ2
||MiXi||2 +

β2
i

σ2
||P (MijXj)Xi||2. (4.36)

When the sample size is finite, the common term ΛB
i , which is the noncentrality parameter

of Bi, can be small. On the one hand, the coefficient βi can be tiny by the design; on the

other hand, ||MiXi||2 is the residual sum of squares from regressing Xi over the remaining

columns of X. Given a finite sample size n, ||MiXi||2 decreases as the number of variables

p increases. Even when p is much smaller than n, high sample correlations between Xi and

any other columns of X may also result in a small ||MiXi||2.

Furthermore, the term ΛB
i being small often implies that all {ΛC

ij : j 6∈ D} are small, and

thus all {Λij : j 6∈ D} are small. First, if β2
i is small, all {ΛC

ij : j 6∈ D} will be small because

they have β2
i as a common coefficient. Second, note that ||MiXi|| is the L2-norm of the

projection of Xi into S⊥(X−i), an (n− p+ 1)-dimensional space, whereas ||P (MijXj)Xi||

is the L2-norm of the projection of Xi into S(MijXj), a 1-dimensional space. Intuitively,

the second term is often much smaller than the first one unless Xi is highly collinear with

the vector MijXj. Therefore, a small ||MiXi|| implies that many {||P (MijXj)Xi|| : j 6∈ D}

are small.

Overall, when the sample size is finite, for some relevant variable i, the noncentrality

parameters {Λij : j 6∈ D} could be small all together. As a result, the probabilities to
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connect to irrelevant variables, i.e., {αij : j 6∈ D}, may be significantly smaller than one

simultaneously.

The effect of correlations on irrelevant variables

Consider the aforementioned problem that some relevant variables may have small noncen-

trality parameters, and thus small probabilities to connect to irrelevant variable. Can we

increase the significance level of the F-tests to boost such probabilities? More specifically,

can we allow αn to have a much bigger order than o(1/p)? The answer is, because of the

correlations of the test statistics, the room to adjust αn is limited.

For an irrelevant variables i, we have βi = 0, and thus ΛB
i = 0, so the numerator of TSij

(aside the constant 1/2) is

||P (MijXij)Y ||2

σ2
= Bi + Cij, (4.37)

with Bi now following χ2(1). Again, the common random variable Bi is the main source

of the correlations among {TSij : j 6= i}. Clearly, if Bi is big, the irrelevant variable i

will have considerable probabilities to connect to all the other variables. We show that, if

the significance level αn is set to be much bigger than o(1/p), the chance to have a big Bi

over all i 6∈ D is high. Indeed, in the orthogonal design case, where the random variables

{Bi : i 6∈ D} are independent, we can prove the following lemma:

Lemma 3 Suppose the design matrix is orthogonal. If s < δp for a constant δ ∈ (0, 1)

and, as n → ∞, n − p → ∞ and αcnp → ∞ for a constant c > 2, then with a probability
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tending to one, there exists an irrelevant variable that connects to all the other variables.

The lemma says that we must not allow αn to have a bigger order than 1/pc0 , for any

c0 < 1/2. Otherwise, asymptotically, the binary VSN fails for sure in terms of variable

selection consistency, because the irrelevant variable who connects to all the other variables

will always be selected as a relevant variable. Setting αn in between o(1/p) and 1/pc0 may

not result in a complete failure of the VSN. However, some irrelevant variables could

connect to many, although not all, other irrelevant variables, which distorts the desired

degree distributions, thus increasing difficulty for correct variable selection. Therefore, we

should keep αn = o(1/p).

Remarks

In summary, we must keep αn = o(1/p) to control false discovery, but as a trade-off, if any

relevant variables have small coefficient or are correlated with any other variables, true or

irrelevant ones, they could have considerably small probabilities to connect to irrelevant

variables. We name such relevant variables as weak relevant variables ; in contrast, the

relevant variables who have probabilities close to one to connect to irrelevant variables

are called strong variables. In practice, the probability matrix, compared to the ideal one
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(4.14), would approximately look like

strong weak irrelevant

strong 1 1 1

weak 1 ρ1 ρ2

irrelevant 1 ρT2 0 ,

(4.38)

where ρ1 and ρ2 represent block matrices whose elements are mostly in between 0 and

1.

Suppose there are s1 strong variables and s2 weak variables. Strong variables still have

degrees close to p − 1. Irrelevant variables now have degrees between s1 and s1 + s2. A

further difficulty is that weak variables may have degrees distributing all over the interval

(s1, p−1). Moreover, the numbers s1 and s2, and entries of ρ1 and ρ2 depend on the choice

of αn. Actually, as αn decreases, some strong variables become weak ones, so s1 decreases,

whereas s2 increases; meanwhile, entries of ρ1 and ρ2 become smaller. As a result, the

very weak variables become closer to irrelevant variables in terms of degrees.

Consequently, simply cutting from the biggest gap of degrees may not work very well in

practice. In addition, although αn should be at an order of o(1/p) in theory, it is not

obvious what αn yields the best probability matrix (4.38) in practice. Hence, instead of

fixing one value for αn, we should try various values for it. We will address these issues in

Section 4.4.
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4.3 A Weighted Variable Selection Network

To build the binary VSN, we set a critical value Cαn and conduct the F-tests. The binary

VSN has been shown to have nice theoretical asymptotic properties. However, as discussed

in Section 4.2.2, setting the critical value involves trade-offs. In fact, we can skip the

thresholding procedure by directly considering a weighted VSN, W = [Wij]p×p, with the

(i, j) entry Wij being the numerator of TSij, the test statistic for the hypothesis test (5.1).

The denominator can be ignored because it is the same for all pairs of variables, so that it

does not affect any clustering procedure. More explicitly,

Wij = Y TMijXij(X
T
ijMijXij)

−1XT
ijMijY (4.39)

and

E(Wij) =


2σ2 + ||MijXiβi +MijXjβj||2, if βi 6= 0 and βj 6= 0;

2σ2 + β2
i (||MiXi||2 + ||P (MijXj)Xi||2), if βi 6= 0 but βj = 0;

2σ2, if βi = 0 and βj = 0.

(4.40)

As previously discussed, ||P (MijXj)Xi||2 is usually much smaller than ||MiXi||2, so its

effect is small. Besides the parts {||P (MijXj)Xi||2 : i ∈ D, j 6∈ D}, the weighted VSN has

a block structure where each relevant variable belongs to one cluster individually and all

irrelevant variables belong to one cluster all together.

For the weighted VSN, cutting from the biggest gap of the degrees does not work well,
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and it is hard to establish a nice theoretical result as Theorem 1. The main reason is that

the scale of weighted edges is beyond control. In fact, the weighted edges of all relevant

variables go to infinity, in expectation, as the sample size goes to infinity. That means,

the degrees of all variables go to infinity. Consequently, strong relevant variables usually

have explosive degrees while weak relevant variables may have degrees close to irrelevant

variables. Therefore, cutting from the biggest gap of degrees usually results in missing weak

relevant variables. Although we can not prove any theoretical property for the weighted

VSN, it is still useful in practice. We propose a variable selection algorithm for the weighted

VSN in Section 4.4 and it is shown to be effective by simulations.

4.4 Variable Selection Network Algorithms

For the binary VSN, we have shown that, with mild conditions, variable selection con-

sistency can be achieved simply by separating the variables (ordered by degrees) at the

biggest gap of the degrees (4.13) and selecting the ones with bigger degrees. However, two

reasons motivate us to go beyond this easy gap-cutting approach. On the one hand, as

discussed in Section 4.2.2, due to the dependence of the test statistics, the block structure

of a binary VSN is more complex in practice, so the gap-cutting approach may not yield

the best result. On the other hand, for the weighted VSN, the scale of the degrees is un-

bounded, so that separating from the biggest gap of degrees does not work well. Therefore,

we adopt the spectral clustering method described in Section 1.4 to obtain more flexible

clustering results of VSNs. We can see, from derivations (1.19) to (1.21), that the spectral

clustering approach works as long as E(A) has a block structure, so it can be used for both
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the binary VSN and the weighted VSN.

Spectral clustering can cluster variables to any number of clusters. However, how to choose

K, the number of clusters, is a challenge in practice. In general, strong variables still form

a cluster, yet we do not know how many clusters weak variables and irrelevant variables

form. Weak relevant variables can be either close to strong relevant variables or irrelevant

variables. Meanwhile, irrelevant variables themselves may also separate to more than

one clusters. Therefore, when applying spectral clustering, fixing one K is not the best

option.

As discussed at the end of Section 4.2.2, when considering the binary VSN, we should

not fix only one significance level αn either. Consequently, we propose to try a series of

αn and a series of K; conduct variable selection under each setting; and then adopt EBIC

(Chen and Chen, 2008) to choose the final model. The EBIC of a submodel A is calculated

as

EBIC(A) = log
{ 1

n
||In − P (XA)Y ||22

}
+
|A|
n
{log(n) + 2 log(p)}. (4.41)

We adopt EBIC instead of BIC because our simulations in Section 4.6 mainly deal with

p ≥ n scenarios.

In this section, we first introduce three variable selection algorithms for the p < n case,

and in the next section, we propose a screening procedure for the p ≥ n case to reduce the

number of variables.

VSN Algorithm 1 Binary VSN with degree gap-cutting
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1. Input a series of significance levels, αn1 > αn2 > ... > αna.

2. Under each significance level αi, i = 1, 2, ..., a, construct a binary VSN Ai, according

to the procedure described in Section 4.2.

3. For each Ai, calculate the degrees of all variables and cut from the biggest gap. The

variables with higher degrees are recorded as a set Si.

4. Output the model over {S1,S2, ...,Sa} with the smallest EBIC.

The setting of the significance levels αn1 > αn2 > ... > αna is quite flexible. We simply

let the biggest one αn1 = 0.1 or 0.05, while the smallest one αna is chosen in a way that,

under such a significance level, only very few pairs of variables are significant by the F-test.

In regard to a, the length of the series, it should be bigger than the presumed number of

relevant variables. For high-dimensional variable selection, the number of relevant variables

is usually assumed to be at the same order of log(p) or n/ log(p), or smaller than
√
n.

Making the series too long does not improve the performance. Distances between the

numbers do not have to be equal. In our simulation study, p = 50, 500 or 1000 and

n = 100 or 200, so we set the series to be (e−3, e−4, ...e−25). We find that moderate changes

to the series will not affect the algorithm much.

VSN Algorithm 2 Weighted VSN with spectral clustering

1. Construct a weighted VSN according to the procedure in Section 4.3.

2. Input a series of numbers of clusters, K1 < K2 < ... < Kc.

3. For each number of cluster Ki, i = 1, 2, ..., c, apply the spectral clustering method in
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Section 1.4 and obtain clustering results C1, C2, ..., Cc, respectively.

4. For each Ci, i = 1, 2, ..., c, set the cluster with the lowest average degree as irrelevant

variables and select the rest as relevant variables, denoted as Si

5. Output the model over {S1,S2, ...,Ss} with the smallest EBIC.

To set the numbers of clusters K1 < K2 < ... < Kc, we only need to pick the biggest one Kc

and set the series to be 2, 3, ..., Kc. The safe choice of Kc is a number that is bigger than the

presumed number of relevant variables, e.g., log(p), n/ log(p) or
√
n. Practically speaking,

when K is big enough, keeping increasing it results in more variables being selected in Step

4, since it is the cluster of irrelevant variables that keeps splitting. Therefore, as far as we

observe that the selected model in Step 4 is large enough, we can stop at the corresponding

K. In our simulations, we set Kc = 10.

VSN Algorithm 3 Binary VSN with spectral clustering

1. Input a series of significance levels, αn1 > αn2 > ... > αna.

2. Under each significance level αi, i = 1, 2, ..., a, construct a binary VSN Ai, according

to the procedure described in Section 4.2.

3. For eachAi, input a series numbers of clusters Ki1 < Ki2 < ... < Kici , apply the spec-

tral clustering method in Section 1.4 and obtain ci clustering results Ci1, Ci2, ..., Cici ,

respectively.

4. For each Cij, i = 1, 2, ..., a, j = 1, 2, ..., ci, set the cluster with the lowest average

degree as irrelevant variables and select the rest as relevant variables, denoted as Sij.
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5. Output the model over {Sij : i = 1, 2, ..., a; j = 1, 2, ..., ci} with the smallest EBIC.

We can follow the same rules described after Algorithm 1 to set αn1 > αn2 > ... > αns.

For each i = 1, 2, ..., s, we also only need to pick a maximum number of clusters Kici

and set (Ki1, Ki2, ..., Kici) = (2, 3, ..., Kici). However, the numbers Kici , i = 1, 2, ..., s,

can not be the same. First, for a binary VSN or an adjacency matrix with 0/1 valued

entries, the maximum number of possible clusters from the pure mathematical point of

view, is generally much smaller than the number of nodes, especially when there are a

lot of 0’s; in contrast, for a weighted VSN with real-valued entries, the maximum number

of possible clusters is usually equal to the number of nodes. In addition, for the binary

VSNs constructed under different significance levels, the maximum numbers of possible

clusters are usually different. As the significance level decreases, the number of edges

in the corresponding binary VSN decreases too. Consequently, the maximum number of

possible clusters becomes smaller. Roughly, we have K1c1 ≥ K2c2 ≥ ... ≥ Kscs . We set

K1c1 according to the discussion after Algorithm 2, and use it as the universal maximum

number of clusters. For each of the rest i = 2, 3, ..., s, we attempt one by one from two

clusters to K1c1 clusters, and stop when hitting the maximum possible cluster number of

the corresponding binary VSN Ai.

4.5 An Iterative Group Screening Algorithm

So far, all our discussions are on the p < n scenario. For the p ≥ n case, we can not

conduct F-test, thus can not construct VSNs. In this section, we propose an iterative group
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screening procedure to reduce the number of variables. When facing the p ≥ n situation,

we first adopt the screening algorithm to reduce the number of variables to p < n, and

then apply the VSN algorithms in Section 4.4 to conduct variable cleaning.

Screening Algorithm

1. Input a pair of parameters u and r, where u is the number of variables being selected

in each iteration and r is the number of iterations. Let the selected variable set

S = Ø.

2. For each i /∈ S, calculate the partial correlation of Y and Xi given S, i.e.,

pcor(Y,Xi|S) =
cov
((

In − P (XS)
)
Y,
(
In − P (XS)

)
Xi

)
√

var
((

In − P (XS)
)
Y
)
· var

((
In − P (XS)

)
Xi

) . (4.42)

When S = Ø, the partial correlation reduces to the regular correlation.

3. Pick the u variables with the highest partial correlations calculated in the last step,

and add them into S.

4. Repeat Step 2 – 3 for r − 1 more times.

5. Output S.

The algorithm is inspired by the Iterative Sure Independence Screening (ISIS) (Fan and

Lv, 2008). In each iteration, ISIS selects a group of variables by a variable selection

method, e.g., SCAD, Lasso, etc, then updates the response as the residuals of regressing

Y over the currently selected set of variables, i.e., Ynew =
(
In − P (XS)

)
Y . In contrast,
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we simply select a fixed number of variables in each iteration by the partial correlations.

According to a study of Gaussian graphical model (Buhlmann et al., 2010), partial cor-

relation can better reflect the connection between the response and a variable than reg-

ular correlation. Empirically, we also find in our experience that, the partial correlation

pcor(Y,Xi|S) works better than the correlation of the residuals/updated response and Xi,

i.e., cor
((

In − P (XS)
)
Y,Xi

)
= cor(Ynew, Xi).

In each iteration, the partial correlation structure of the response and the remaining vari-

ables changes according to the selected set S. It is important to select a group of variables

in each iteration instead of selecting only one variable because of two reasons: first, in each

iteration, a number of variables with top influence are selected instead of the single one

with the biggest influence, which eliminates the effects of such a group of variables more

thoroughly; second, group selection avoids updating the selected variable set for too many

times, which may “distort” the partial correlation structure unexpectedly, especially when

the marginal correlation structure of the variables is already complex. On the contrary,

given the number of iterations, we clearly should not select too many variables in each

iteration, because many irrelevant variables would be chosen.

In our case, the main purpose of the screening procedure is to reduce the number of variables

to be smaller than the sample size. We do not require any order of the selected variables, as

long as that, by the end of the iterations, all relevant variables are included. In contrast,

some advanced screening algorithms, such as the tilted correlation screening (Cho and

Fryzlewicz, 2012) and the quantile partial correlation screening (Ma et al., 2016), require

an accurate order of variables in the sense that all relevant variables should be selected

114



ahead of any irrelevant ones.

The choice of two tuning parameters u and r depends on the sample size and the sparsity

of the true model. As mentioned previously, for high-dimensional variable selection, one

usually assumes the number of relevant variables is at the same order of log(p) or n/ log(p),

or smaller than
√
n. We first choose an overall number for u × r, which should be bigger

than the presumed number of relevant variables, and then set u and r. We have discussed

above that u should not be too small or too big. Empirically, we suggest setting u ≈ r. In

our simulation study, p = 50, 500 or 1000; and n = 100 or 200. Hence, we decide to choose

20 variables in the screening step, and set u = 5 and r = 4. In fact, in our simulations, the

numbers of relevant variables vary between 3 to 5, which means we choose about 4 to 7

times as many variables in the screening procedure as the relevant ones. According to the

simulations, when the sample size n = 200 and the correlations of variables are moderate,

varying u and r does not change the results much. When the sample size n = 100, or the

correlations are strong, varying u and r may lead to mild changes in the results, but does

not invalidate any conclusions. Relatively speaking, smaller u × r (still bigger than the

number of relevant variables) usually leads to better final selection results; and conversely,

bigger u× r leads to slightly worse final selection results.

4.6 Simulation Study

In this section, we demonstrate the performance of the variable selection network algo-

rithms by various simulations.
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4.6.1 Simulation models

First, we consider two models that are originally from Section 4.2.2 of Fan and Lv (2008)

and have been adopted by many following works, for example, Cho and Fryzlewicz (2012)

and Ma et al. (2016). The first model considers a difficult situation where one relevant

variable is marginally uncorrelated with the response; while in addition to that, the second

model further considers a weak signal. Both models are studied under moderate and

extremely high correlations, respectively.

(a) A linear regression model:

Y = βX1 + βX2 + βX3 − 3βX4
√
ρ+ ε, (4.43)

where ε ∼ N(0, In) and each row of the p predictors (Xi,1, ..., Xi,p), i = 1, 2, ..., n

are generated independently from a multivariate normal distribution Np(0,Σ). The

covariance matrix Σ is designed in the following way: the (i, j) entry Σij = ρ for all

i 6= j, except Σ4i = Σj4 =
√
ρ, and Σii = 1 for all i = 1, ..., n. Such a design implies

that X4 is marginally uncorrelated with Y at the population level.

(b) A more complicated model than (a):

Y = βX1 + βX2 + βX3 − 3βX4
√
ρ+ 0.25βX5 + ε, (4.44)

where the settings are the same as those of model (a) except Σ5i = Σj5 = 0. The

relevant variable X5 is uncorrelated with any Xi, but it has much smaller coefficients,
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and thus is a weak signal.

Following Cho and Fryzlewicz (2012) and Ma et al. (2016), we let β = 2.5, ρ = 0.5 and

0.95. For each model, we run 200 replicates.

The next five models are taken from Narisetty and He (2014). They study scenarios

where p = n, p > n and p < n. Moreover, they also consider weak signals and high

correlations.

(c) A linear regression model:

Y = β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + ε, (4.45)

where ε ∼ Nn(0, In) and the rows of p predictors {(Xi,1, ..., Xi,p), i = 1, 2, ..., n}

are independently generated from a multivariate normal distribution Nn(0,Σ) with

Σij = 0.25 for all i 6= j and Σii = 1 for all i. The coefficients of the relevant variables

are (β1, β2, β3, β4, β5) = (0.6, 1.2, 1.8, 2.4, 3.0).

In the first case, two settings p = n = 100 and p = n = 200 are considered.

(d) A p > n scenario, where the model settings are the same as those of (c), but (n, p) =

(100, 500) and (n, p) = (200, 1000).

(e) The coefficients in (c) are set to (β1, β2, β3, β4, β5) = (0.6, 0.6, 0.6, 0.6, 0.6), so that

all signals are weak. The other settings are the same as those in (c), while (n, p) =

(100, 500).

(f) High correlations, where Σ is set as Σij = Σji = 0.5 for all i ≤ 5 and j ≥ 6,
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and Σij = Σji = 0.75 for all i ≥ 6, j ≥ 6. This means the correlation of one

relevant variable and one irrelevant variable is increased to 0.5; the correlation of two

irrelevant variables is increased to 0.75; whereas the correlation of any two relevant

variables remains 0.25. Again, all the other settings are the same as those in (c), and

(n, p) = (100, 500).

(g) A totally different model than the above four ones, which studies the traditional

p < n case with (n, p) = (100, 50) and (200, 50). Three of the 50 variables are active

ones with coefficients drawn from the uniform distribution U(0, 3). The covariates

are multivariate normal with the covariance matrix generated from the Wishart dis-

tribution centered at the identity matrix with p degree of freedom.

Same as Narisetty and He (2014), we run 500 replicates for the p ≤ n cases and 200

replicates for the p > n cases.

For all models (a) – (g), we first apply the iterative group screening algorithm from Section

4.5 to reduce the number of variables (even for model (g) with p < n), and then implement

the three variable selection network algorithms from Section 4.4. Regarding tuning param-

eters, as discussed in Section 4.4 and 4.5, we set the screening parameters (u, r) = (5, 4);

the series of significance levels (αn1, αn2, ..., αns) = (e−3, e−4, ..., e−25) for Algorithm 1 and 3;

the series of cluster numbers (K1, K2, ..., Kc) = (2, 3, ..., 10) for Algorithm 2; and K1c1 = 10

for Algorithm 3.

In result tables, the VSN algorithms 1, 2 and 3 are denoted as VSN.bg (“biggest gap”),

VSN.sc (“spectral clustering”) and VSN.2d, respectively. Algorithm 3 is named VSN.2d

because it is “2-dimensional” in the sense that both the significance level and the number

118



of clusters vary.

For Model (g), we also implement the VSN algorithms directly without the screening

procedure, and the algorithms are denoted as VSN0.bg, VSN0.sc and VSN0.2d, respec-

tively.

4.6.2 Simulation results

For Model (a) and (b), Cho and Fryzlewicz (2012) use them to compare the Tilted Cor-

relation Screening methods (TCS) to traditional Forward Selection, Forward Regression

(Wang, 2009), LASSO (Tibshirani, 1996), ISIS (Fan and Lv, 2008), PC-Simple algorithm

(Buhlmann et al., 2010), MC+ algorithm (Zhang, 2010), SCAD (Fan and Li, 2001) and

Forward-Lasso Adaptive Shrinkage (FLASH) (Radchenko and James, 2011); meanwhile,

Ma et al. (2016) use them to evaluate the Quantile Partial Correlation Screening (QPCS),

the Quantile Tilted Correlation Screening (QTCS) and the Quantile Forward Regression

(QFR).

Results for Model (a) and (b) are presented in Table 4.1 and 4.2. The performance of the

models are evaluated by the number of false positive selections (FP, the average number of

irrelevant variables incorrectly detected as relevant), the number of false negative selections

(FN, the average number of relevant variables incorrectly detected as irrelevant), and

the sum of FP and FN. Results other than those of the VSN methods are copied from

Cho and Fryzlewicz (2012) and Ma et al. (2016). For the quantile screening methods,

after the screening procedure, Ma et al. (2016) employ three criteria for the final variable
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selection/cleaning: EBIC1, EBIC2 and Lasso. For these two examples, we only report the

results of Quantile Screening methods followed by EBIC2, because the results of the other

two criteria are much worse and not comparable.

Table 4.1: Simulation results for Model (a)

ρ = 0.5 ρ = 0.95

Method FP FN FP+FN FP FN FP+FN

n = 100, p = 1000
VSN.bg 0.095 0.005 0.100 0.560 2.005 2.565
VSN.sc 0.130 0.005 0.135 1.270 1.575 2.845
VSN.2d 0.065 0 0.065 0.840 1.600 2.440
TCS1 0.71 0 0.71 0.39 1.43 1.82
TCS2 2.40 0 2.40 0.76 3.64 4.40
FR 22.41 0 22.41 19.84 1.89 21.73
FS 27.86 1.00 28.86 7.14 2.05 9.19
LASSO 58.73 1.00 59.73 28.37 1.54 29.91
ISIS 1.21 3.21 4.42 1.45 3.71 5.16
PCS 2.33 1.65 3.98 1.42 3.58 5.00
MC+ 27.94 0.60 28.54 49.58 1.70 51.28
SCAD 111.00 1.00 112.00 46.68 2.07 48.75
FLASH 26.18 1.00 27.18 12.88 1.61 14.49

n = 200, p = 1000
VSN.bg 0.015 0 0.015 1.380 0.350 1.730
VSN.sc 0.015 0 0.015 1.915 0.265 2.180
VSN.2d 0.015 0 0.015 0.715 0.120 0.835
QPCS.EBIC2 0.145 0 0.145 0.145 0.020 0.165
QTCS.EBIC2 0.740 0 0.740 1.895 0.800 2.695
QFR.EBIC2 1.220 0 1.220 2.680 1.530 4.210

Now we look at the results of Model (a) – Table 4.1. First of all, VSN methods can

successfully detect the marginally uncorrelated variable X4 most of the time. When the

correlations among the variables are moderate, e.g., ρ = 0.5, all three VSN methods

significantly outperform the other methods in terms of FP and FP+FN. VSN.bg and
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VSN.sc each incorrectly selects one irrelevant variable over the 200 replicates. When the

correlations among the variables are at a very high level, e.g., ρ = 0.95, VSN methods still

achieve the best FP+FN after TCS1 and QPCS.EBIC2. Although, in terms of FP or FN

individually, VSN methods are outperformed by many other methods, they still manage

to keep a relatively nice balance between FP and FN. High correlation is a challenge for

VSN methods, because it may violate Assumption (A2). As a result, some irrelevant

variables, which have high correlations with strong relevant variables, can be detected as

relevant ones. Moreover, such strong irrelevant variables can sometimes overshadow weak

relevant variables. Finally, VSN.2d, as a “2-dimensional” method, performs better than

two “1-dimensional” methods VSN.bg and VSN.sc in most categories.

For Model (b), the results are displayed in Table 4.2. VSN methods can detect the weak

signal X5 most of the time. The results show very similar patterns as those in Table

4.1. Again, when ρ = 0.5, VSN methods stand out in FP and FP+FN . Some other

methods, such as TCS1 and FR, achieve lower FN values at the cost of higher FP values.

When ρ = 0.95, VSN methods still remain in the top following TCS1 and QPCS.EBIC2 in

terms of FP+FN. Once more, VSN.2d is more superior than VSN.bg and VSN.sc in most

categories.

Through Model (c) – (g), Narisetty and He (2014) compare BASAD, Bayesian Variable

Selection with Shrinking and Diffusing Priors, to three other Bayesian variable selection

methods: piMOM (Johnson and Rossell, 2012), the nonlocal prior method; BCR.Joint

(Bondell and Reich, 2012), the Bayesian joint credible region method; and SpikeSlab

(Ishwaran and Rao, 2005), the spike and slab method. In addition, they also compare
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Table 4.2: Simulation results for Model (b)

ρ = 0.5 ρ = 0.95

Method FP FN FP+FN FP FN FP+FN

n=100,p=1000
VSN.bg 0.060 0.195 0.255 0.575 2.780 3.355
VSN.sc 0.090 0.170 0.260 0.825 2.305 3.130
VSN.2d 0.015 0.095 0.110 0.635 2.430 3.065
TCS1 0.85 0.03 0.88 0.05 2.76 2.81
TCS2 3.31 0.11 3.42 0.05 3.96 4.01
FR 30.20 0.01 30.21 26.08 1.75 27.83
FS 29.06 1.15 30.21 4.50 2.32 6.82
LASSO 56.92 1.05 57.97 28.74 1.56 30.30
ISIS 1.23 4.23 5.46 1.03 4.10 5.13
PCS 2.31 2.42 4.73 1.01 3.77 4.78
MC+ 32.56 0.79 33.35 35.82 1.86 37.68
SCAD 112.30 1.02 113.30 43.73 2.11 45.84
FLASH 27.04 1.19 28.23 12.78 1.83 14.61

n=200,p=1000
VSN.bg 0.010 0 0.010 1.830 0.395 2.225
VSN.sc 0.005 0 0.005 2.020 0.390 2.410
VSN.2d 0.010 0 0.010 0.735 0.115 0.850
QPCS.EBIC2 0.115 0 0.115 0.250 0.035 0.285
QTCS.EBIC2 0.740 0 0.740 1.755 0.925 2.680
QFR.EBIC2 1.390 0.005 1.395 2.555 1.745 4.300

BASAD to three regularization methods: LASSO, Elastic Net (Zou and Hastie, 2005) and

SCAD.

The results of Model (c) – (g) are presented in Table 4.3 – 4.7. Four evaluating criteria are

reported: Z = t, the proportion of exact selection; Z ⊃ t, the proportion of including the

true model; FDR, false discovery rate, the proportion of falsely selected irrelevant variables

over all irrelevant variables; and MSPE, the average mean squared prediction error based
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on n new observations. Results of all the other methods are taken from Narisetty and He

(2014).

Table 4.3 displays results of Model (c), which examines the situation of n = p, where the

five non-zero coefficients vary from 0.6 to 3.0 and the correlations among the variables are

mild, i.e., Σij = 0.25 for i 6= j. When the sample size is big, e.g., n = 200, VSN methods

stand out in almost all categories. In particular, they have much higher proportions to

select the exact true model and much smaller FDR than the other methods. The only

shortcoming is that VSN.bg has a slightly bigger MSPE than BASAD and piMOM. When

the sample size is small, e.g., n = 100, although VSN methods do not outperform the

rest as when n = 200, they still achieve high proportions for both Z = t and Z ⊃ t,

which are comparable to those of BASAD and piMOM. In contrast, methods such as

BASAD.BIC, BCR.Joint, Lasso.BIC, EN.BIC and SCAD.BIC have higher proportions of

Z ⊃ t but smaller proportions of Z = t and relatively high FDR, which means they are

likely to overfit the model. In regard to FDR, VSN methods are clearly superior to the

other methods. On the one hand, it is due to the screening procedure, which eliminates

most irrelevant variables. On the other hand, because of employing EBIC as a criterion,

VSN methods tend to select models with small sizes. We will talk more about this issue in

the discussion of Model (g). Finally, regarding MSPE, VSN methods are also among the

best. Once more, VSN.2d clearly performs better than VSN.bg and VSN.sc.

Model (d) examines the p > n scenario, where the other model settings are the same as

Model (c). The results are displayed in Table 4.4. The method piMOM can only deal with

the p ≤ n case, so can not join the competition. With more variables, all methods are not
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Table 4.3: Simulation results for Model (c)

(n, p) = (200, 200) (n, p) = (100, 100)

Method Z = t Z ⊃ t FDR MSPE Z = t Z ⊃ t FDR MSPE

VSN.bg 0.986 1.000 < 0.001 1.042 0.818 0.862 < 0.001 1.092
VSN.sc 0.986 1.000 < 0.001 1.025 0.810 0.852 < 0.001 1.110
VSN.2d 0.988 1.000 < 0.001 1.023 0.876 0.908 < 0.001 1.092
BASAD 0.944 1.000 0.009 1.037 0.866 0.954 0.015 1.092
BASAD.BIC 0.090 1.000 0.187 1.087 0.066 0.996 0.256 1.203
piMOM 0.900 1.000 0.018 1.038 0.836 0.982 0.030 1.083
BCR.Joint 0.594 0.994 0.102 1.064 0.442 0.940 0.157 1.165
SpikeSlab 0.008 0.236 0.501 1.530 0.005 0.216 0.502 1.660
Lasso.BIC 0.014 1.000 0.422 1.101 0.010 0.992 0.430 1.195
EN.BIC 0.492 1.000 0.113 1.056 0.398 0.982 0.154 1.134
SCAD.BIC 0.844 1.000 0.029 1.040 0.356 0.990 0.160 1.157

as good as they are for Model (c), yet the patterns of the results are similar to those of

Table 4.3. In this case, VSN.2d surpasses BASAD in all categories. Meanwhile, VSN.bg

and VSN.sc remain among the best ones. Again, BASAD.BIC, Lasso.BIC, EN.BIC and

SCAD.BIC gain high Z ⊃ t at the cost of overfitting.

Model (e) studies a more challenging situation where all signals are weak, i.e., all five non-

zero coefficients are set to be 0.6. From Table 4.5, we see that all methods have difficulty

finding the true model. However, compared to the other ones, VSN methods handle the

challenge of weak signal well. They outperform the other methods in terms of Z = t, FDR

and MSPE, while still keep fairly high proportions of Z ⊃ t. Once again, VSN.2d performs

better than VSN.bg and VSN.sc. Lasso.BIC achieves the highest proportion of Z ⊃ t by

serious overfitting, with a proportion of Z = t being zero.

Table 4.6 presents the results of Model (f), which examines the scenario of high correlations.
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Table 4.4: Simulation results for Model (d)

(n, p) = (200, 1000) (n, p) = (100, 500)

Method Z = t Z ⊃ t FDR MSPE Z = t Z ⊃ t FDR MSPE

VSN.bg 0.955 0.990 < 0.001 1.025 0.715 0.750 < 0.001 1.134
VSN.sc 0.965 0.985 < 0.001 1.033 0.715 0.740 < 0.001 1.156
VSN.2d 0.975 0.995 < 0.001 1.035 0.770 0.800 < 0.001 1.130
BASAD 0.930 0.950 0.000 1.054 0.730 0.775 0.011 1.130
BASAD.BIC 0.720 0.990 0.046 1.060 0.190 0.915 0.146 1.168
BCR.Joint 0.090 0.250 0.176 1.324 0.070 0.305 0.268 1.592
SpikeSlab 0.000 0.050 0.574 1.933 0.000 0.040 0.626 3.351
Lasso.BIC 0.020 1.000 0.430 1.127 0.005 0.845 0.466 1.280
EN.BIC 0.325 1.000 0.177 1.077 0.135 0.835 0.283 1.223
SCAD.BIC 0.650 1.000 0.091 1.063 0.045 0.980 0.328 1.260

Each pair of relevant variables still has correlation 0.25, but each relevant variable and

each irrelevant variable have correlation 0.50, and each pair of irrelevant variables has

correlation 0.75. BASAD clearly stands out in terms of Z = t, Z ⊃ t and MSPE, because,

according to Narisetty and He (2014), it works similar to the L0 penalty, so can tolerate

high correlations better. VSN methods can be affected by strong correlations, because,

as mentioned in the discussion of Model (a), strong correlations may violate Assumption

(A2). Despite that, VSN methods still perform well in this situation. Especially, VSN.2d

is very close to BASAD. In contrast, most of the other methods are broken by the high

correlations.

Combining these results with those of Model (a) and (b), we conclude that VSN meth-

ods can accommodate high correlations relatively well. They have no problem handling

moderate level correlations, e.g., around 0.5. When the correlation is extremely high, e.g.,

up to 0.75 or 0.95, VSN methods are still competitive with, although not as good as, the
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Table 4.5: Simulation results for Model (e)

(n, p) = (100, 500)

Method Z = t Z ⊃ t FDR MSPE

VSN.bg 0.265 0.320 < 0.001 1.496
VSN.sc 0.275 0.340 < 0.001 1.495
VSN.2d 0.310 0.350 < 0.001 1.480
BASAD 0.185 0.195 0.066 2.319
BASAD.BIC 0.160 0.375 0.193 1.521
BCR.Joint 0.030 0.315 0.447 1.501
SpikeSlab 0.000 0.000 0.857 2.466
Lasso.BIC 0.000 0.520 0.561 1.555
EN.BIC 0.040 0.345 0.478 1.552
SCAD.BIC 0.045 0.340 0.464 1.561

best-performing methods such as TCS1, QPCS.EBIC2 and BASAD.

Finally, Model (g) studies the traditional p < n situation and the results are shown in

Table 4.7. For VSN methods, we report two sets of results, with and without the screening

procedure, respectively. The ones without screening are denoted by VSN0. With screen-

ing, VSN methods outperform all the other methods in almost all categories. Without

screening, VSN0.bg and VSN0.2d remain competitive with the best-performed methods

BASAD and piMOM in terms of Z = t, Z ⊃ t and FDR. However, the MSPE values of

VSN0.bg and VSN0.2d are much worse than the rest. This is because, compared to the

other methods, VSN0.bg and VSN0.2d are more likely to choose undersized model so that

they tend to miss more relevant variables. Although the average false negative number is

not reported in Table 4.7, we can see it being big from the small FDR. Since Model (g) only

has three relevant variables, missing some of them can result in huge prediction errors. Now

we look at the results of VSN0.sc. Comparing to VSN.sc, now without the pre-screening,
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Table 4.6: Simulation results for Model (f)

(n, p) = (100, 500)

Method Z = t Z ⊃ t FDR MSPE

VSN.bg 0.295 0.350 < 0.001 1.339
VSN.sc 0.295 0.355 < 0.001 1.316
VSN.2d 0.425 0.455 < 0.001 1.278
BASAD 0.505 0.530 0.012 1.190
BASAD.BIC 0.165 0.815 0.179 1.210
BCR.Joint 0.000 0.000 0.515 2.212
SpikeSlab 0.000 0.000 0.995 10.297
Lasso.BIC 0.000 0.015 0.869 8.579
EN.BIC 0.000 0.000 0.898 8.360
SCAD.BIC 0.000 0.000 0.899 8.739

the performance of VSN0.sc drops dramatically in regard to Z = t, Z ⊃ t and MSPE.

Recall that Algorithm 2 works on the original weighted network of test statistics without

any thresholding. When all variables are included in the network, what usually happens

is that some extremely weak irrelevant variables would form the cluster with the lowest

degree. This implies, instead of the relevant variables standing out, it is more likely that

the extremely weak variables step back. Due to the design, Algorithm 2 selects all vari-

ables other than the cluster with lowest degree as relevant variables. Therefore, without

the pre-screening procedure, Algorithm 2, i.e., VSN0.sc, tends to overfit the model. This

can also be seen from its high FDR. Overall, this simulation shows that, for the p < n

case, Algorithm 1 (VSN0.bg) and 3 (VSN0.2d) perform very well without the screening

procedure, whereas Algorithm 2 (VSN0.sc) has problems. The screening can significantly

improve the performance of Algorithm 2, and boost the performance of Algorithm 1 and

3 as well.
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Table 4.7: Simulation results for Model (g)

(n, p) = (200, 50) (n, p) = (100, 50)

Method Z = t Z ⊃ t FDR MSPE Z = t Z ⊃ t FDR MSPE

VSN.bg 0.938 0.948 < 0.001 1.017 0.924 0.940 < 0.001 1.039
VSN.sc 0.820 0.900 0.006 1.029 0.802 0.894 0.006 1.071
VSN.2d 0.938 0.948 < 0.001 1.018 0.928 0.944 < 0.001 1.033
VSN0.bg 0.790 0.796 < 0.001 1.740 0.672 0.678 < 0.001 2.902
VSN0.sc 0.102 0.838 0.220 1.180 0.094 0.736 0.200 2.039
VSN0.2d 0.886 0.910 0.002 1.025 0.808 0.870 0.004 1.117
BASAD 0.738 0.784 0.017 1.029 0.654 0.714 0.026 1.086
BASAD.BIC 0.338 0.842 0.193 1.055 0.208 0.778 0.267 1.151
piMOM 0.694 0.740 0.020 1.036 0.656 0.708 0.021 1.066
BCR.Joint 0.484 0.770 0.133 1.045 0.336 0.650 0.216 1.124
SpikeSlab 0.038 0.900 0.629 1.121 0.064 0.846 0.567 1.226
Lasso.BIC 0.082 0.752 0.378 1.059 0.076 0.744 0.397 1.152
EN.BIC 0.428 0.748 0.165 1.039 0.378 0.742 0.194 1.110
SCAD.BIC 0.358 0.812 0.193 1.046 0.186 0.772 0.284 1.147

In summary, through the simulation study, VSN methods have been proven to be powerful.

They outperform many state-of-the-art methods, and are very competitive with the latest

and advanced screening based approaches and Bayesian variable selection approaches. VSN

methods are able to accommodate high-dimensionality, weak signals and moderate to high

level correlations. They are superior in terms of choosing the exact true model, and

they always maintain a nice balance between false positive and false negative selections.

Occasionally, some VSN methods may underfit the model.
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4.7 A Real Data Application

In this section, we apply the VSN methods to the Communities and Crime Unnormalized

Data Set from the UCI Machine Learning Repository. The data records information about

communities in the U.S., which combines the socio-economic data from the 1990 U.S.

Census, the law enforcement data from the 1990 U.S. Law Enforcement Management and

Admin Stats survey, and crime data from the 1995 U.S. FBI UCR. Details of this data set

can be found on the web page:

https://archive.ics.uci.edu/ml/datasets/Communities+and+Crime+Unnormalized.

The original data set consists of 2215 rows and 147 columns, including 125 predictive

variables, 4 non-predictive variables and 18 potential response variables. First, we delete

columns with 5 or more missing values and then delete rows with missing values. Sec-

ond, we delete two columns “OwnOccQrange” and “RentQrange” which turn out to be

linearly dependent on other variables. In the end, the final data contains 2206 rows and

113 columns, including 100 numeric predictive variables, 1 categorical predictive variable

(state), 2 non-predictive variables and 10 potential response variables.

The goal of this application is to investigate what attributes of communities are statistically

related to numbers of murders in communities. We use “murdPerPop”, number of murders

per 100K population, as our response variable and the 100 numeric predictive variables as

predictors.

Although this is a p < n scenario, we still apply the group iterative screening algorithm to

the variables first, because as shown in simulation Model (g), the screening procedure can
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improve the performance of the VSN methods. The sample size n = 2215, so we pick the

parameters for the screening algorithm to be u = r = 7, such that u × r ≈
√
n. Then we

apply the three VSN methods to the 49 screened variables. We set the series of significance

levels to be (e−3, e−4, . . . , e−35) and the series of numbers of clusters to be (2, 3, 4, . . . , 25).

The two series are longer than those used in the simulation study because we now have

more variables and more samples.

The variables selected by the three VSN methods are presented in Table 4.8, respectively.

The variables are ordered by their degrees in the weighted VSN (Section 4.3), i.e.,
∑p

j=1Wij,

from largest to smallest. For the sake of a clearer view with smaller magnitude, we present∑p
j=1 TSij (sum of test statistics), which is a rescaling of the weighted degree (divided by

a common constant), in the degree column.

Over all 100 variables, VSN.bg selects 15; VSN.sc selects 12 and VSN.2d selects 7. All

three methods choose the top same 6 variables, which means they are very important.

For the other variables, VSN.bg and VSN.sc have some overlap, while VSN.2d identifies

just one additional variable. We can see that VSN.sc and VSN.2d select some variables

with smaller degrees but exclude some variables with larger degrees. This property may

be due to the ability of spectral clustering to consider more complex network structures

beside degrees. One interesting result is that, although VSN.2d selects fewest variables, it

discovers “percentage of males who are divorced” which is not in the lists of VSN.bg and

VSN.sc.
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Table 4.8: Variables selected for the communities and crime data by the VSN methods.

Attributes of communities Degrees VSN.bg VSN.sc VSN.2d

Percentage of vacant housing boarded up 713.13 X X X
Percentage of African American 335.28 X X X
Percentage of Caucasian 281.71 X X X
Number of people under poverty 251.98 X X X
Population per square mile 215.41 X X X
Percentage of people not speaking English well 191.10 X X X
Percentage of officers assigned to drug units 189.51 X
Percentage of households with wage or salary 180.80 X
Number of vacant households 179.76 X
Number of homeless people 176.83 X
Average number of persons per owner occupied household 174.11 X X
Percentage of population between 12-29 in age 172.94 X X
Percentage of vacant housing over 6 months 169.44 X X
Percentage of housing without plumbing facilities 166.19 X
Average number of people per family 162.44 X X
Percentage of people who speak only English 147.04 X
Percentage of males who are divorced 137.41 X
Percentage of housing with less than 3 bedrooms 121.84 X

4.8 Summary

In this chapter, we have proposed Variable Selection Networks, a novel variable selection

method within the framework of Variable Selection Ensembles (Xin and Zhu, 2012). By

considering the ensemble of all pairs of variables, we construct variable selection networks

(VSN). For the p < n case, edges of a VSN are determined by the F-tests for the binary VSN

or the F-test statistics for the weighted VSN. We show that, for a VSN, the edges’ distri-

butions have a block structure. Furthermore, for the binary VSN, we establish theoretical

properties such as the asymptotic degree distributions and variable selection consistency,

and we also investigate the correlations among the edges. Incorporating both theoreti-
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cal and practical perspectives, we propose three VSN algorithms for the p < n scenario.

To handle the high-dimensional p ≥ n scenario, we introduce an iterative group screening

algorithm, which can reduce the number of variables while keep relevant variables. Simula-

tions show that the VSN algorithms’ performance is outstanding when compared to many

state-of-the-art methods, latest screening based methods and various Bayesian variable

selection methods. In the end, the VSN methods are applied to a real data example.
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Chapter 5

Summary and Future Research

5.1 Summary of the Thesis

This thesis considers generalizations and applications of the Stochastic Block Model.

In Chapter 2, we generalize the standard SBM to a Continuous-time Stochastic Block

Model (CSBM) to conduct community detection for transactional networks. The CSBM

differs from many existing methods in that it considers time to be continuous. Transactions

between each pair of nodes are modeled as an inhomogeneous Poisson process, with the

rate function depending only on the community labels of the two nodes. We use cubic

B-splines to model the rate functions. An EM algorithm is developed to fit the CSBM.

In the E-step, due to the complexity of the model, Gibbs sampling is adopted to generate

samples from the conditional distribution and estimate the conditional means. A simple

simulation example shows that the CSBM and the EM algorithm work well.
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In Chapter 3, we develop a multistate Continuous-time Stochastic Block Model and apply it

to basketball games. First of all, we provide a new perspective that basketball games can be

analyzed as transactional networks, with players being nodes and ball passes among players

being transactions. Additionally, initial actions of basketball plays and play outcomes are

considered as special nodes of basketball networks. A multistate CSBM is proposed to

cluster players based on their styles of handling the ball. In particular, each basketball play,

in which the ball travels through different type of nodes, is modeled as an inhomogeneous

continuous-time Markov chain. The transition rate functions are governed by the players’

underlying cluster memberships. We adopt B-splines to model the rate functions and

develop an EM+ algorithm to estimate the model parameters. The multistate CSBM is

applied to a number of NBA games between the 2011-12 Miami Heat and Boston Celtics

and between the 2014-15 Cleveland Cavaliers and Golden State Warriors. The clustering

results are consistent with common understanding of the players in these games. Moreover,

the estimated transition rate functions and transition probabilities reveal insightful details

in offensive strategies of these teams. Overall, the multistate CSBM is shown to be of great

practical value in clustering and evaluating basketball players. Although we have been

focusing on basketball in the thesis, the multistate CSBM provides a general framework

for modeling any transactional network similar to the basketball network, which has one

object moving among the nodes.

In Chapter 4, we propose Variable Selection Networks, a novel variable selection method

within the framework of Variable Selection Ensemble. This method is fundamentally d-

ifferent than variable selection methods such as penalized likelihood methods, variable

screening methods and Bayesian variable selection methods. Variable selection networks
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(VSNs) are constructed by considering all pairs of variables, with each variable being

a node and each edge being a measure of the importance of the corresponding pair of

nodes. Such VSN are shown to have block structures, so that techniques of the Stochastic

Block Model can be utilized to analyze them. For the p < n case, we first consider a

binary VSN, with the (i, j) edge being determined by the F-test for the hypothesis test

H0 : βi = βj = 0 vs. H1 : βi 6= 0 or βj 6= 0, i.e., the edge is 1 if the hypothesis is rejected

or 0 otherwise. We establish that, under mild conditions and with a proper significance

level of the F-test, variable selection consistency can be achieved by simply cutting from

the biggest gap of node degrees of the VSN and selecting variables with higher degrees.

Despite the sound theoretical properties, we demonstrate that the correlations among test

statistics cause practical challenges. Beside the binary VSN, a weighted VSN is construct-

ed as well. To overcome the practical challenges and to utilize the weighted VSN, we

propose three VSN algorithms which incorporate the EBIC by Chen and Chen (2008) for

high-dimensional variable selection and the spectral clustering algorithm for the Stochastic

Block Model by Lei and Rinaldo (2015). For the p > n scenario, we propose an iterative

group screening algorithm to reduce the number of variables while retaining relevant vari-

ables. Essentially, when p > n, we first apply the screening algorithm to reduce the number

of variables to be smaller than n , and then apply VSN algorithms for variable selection.

Comprehensive simulations illustrate the performances of VSN algorithms under difficult

situations such as extremely high correlations among variables, weak signals, variables

marginally uncorrelated with responses, etc. Overall, the VSN algorithms are shown to

be able to accommodate these tough situations. They perform outstandingly compared

to many state-of-the-art methods, latest screening based methods and various Bayesian
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variable selection methods. In particular, they are superior in terms of choosing the exact

true model and always maintain a nice balance between false positive and false negative

selections.

5.2 Future Research

5.2.1 Continuous-time Stochastic Block Models

For the Stochastic Block Model, an open problem is to evaluate goodness-of-fit of the model,

including determining the number of communities. For generic networks, considerable

attention has been devoted to this problem very recently. Wang and Bickel (2016) consider

an approach based on the log-likelihood ratio statistic and propose a penalized likelihood

model selection criterion that is asymptotically consistent in terms of selecting the true

number of clusters. Saldana et al. (2016) propose a composite likelihood BIC criterion.

Lei (2016) investigates the residual matrix obtained by substracting the estimated block

mean effect from the original adjacency matrix and proposed a goodness-of-fit test based

on the largest singular value of the residual matrix. Chen and Lei (2016) develop a network

cross-validation method to determine the number of communities. Naturally, we would like

to develop a goodness-of-fit test or criterion for Continuous-time Stochastic Block Models.

One possible direction is to learn from likelihood based methods such as Wang and Bickel

(2016) and Saldana et al. (2016).

In addition, we will consider more complicated parametrizations of rate functions. Network
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statistics can be used as covariates when modeling the rate functions, for example, DuBois

et al. (2013) and Vu et al. (2011). External information can also be incorporated into

the rate functions. Moreover, as in event history analysis (Cook and Lawless, 2007), we

can consider intensity functions instead of rate functions, with historical information being

taken into account.

5.2.2 Basketball Networks

We need to find more and richer basketball data, and construct more complex multistate

CSBMs. The lack of data restrains us from applying the model to more games. The

manually collected data contains limited information. If we had access to optical tracking

data (Cervone et al., 2016), we could incorporate more details into the rate functions, for

instance, players’ spatial positions, defensive levels, etc. We believe that, with richer data,

the CSBM framework would be of even greater practical value in clustering and evaluating

basketball players.

Intuitively, players have individual features. For example, even being clustered in the

same cluster, a star player should be different with a regular player. Hence, we may add

individual level parameters, such as in the Degree Corrected Stochastic Blockmodel (Karrer

and Newman, 2011).

An interesting problem is to detect whether there is a change of strategy for a team in

a game or between games (when facing different opponents). In Section 3.3.3, for each

team, we analyzed the two games separately and, by comparing the results, we found that
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the Warriors changed strategy while the Cavaliers did not change much. Following this

direction, we may develop some statistical test to test changes. A difficulty is that, because

of the potential cluster or player differences, the model for two games together and the

combined model from fitting two games separately are not nested models.

5.2.3 Variable Selection Networks

First, in a broad sense, the Variable Selection Networks (VSN) framework can be viewed

as a “pairwise variable screening” procedure, because the VSN considers all pairs of vari-

ables. In contrast, the Sure Independence Screening (SIS)(Fan and Lv, 2008) or marginal

screening considers all variables individually. Following this direction, the VSN can be

seen as an extension of the SIS. By far, all screening methods only focus on individual

screening. Further exploring the concept of pairwise variable screening is part of the future

work.

Second, for the binary VSN, we prove that, with mild conditions, variable selection con-

sistency can be achieved simply by separating the variables (ordered by degrees) from the

biggest gap of the degrees (4.13) and selecting the ones with bigger degrees. The corre-

sponding Algorithm 1 shows convincing results in simulations. However, such a simple

gap-cutting algorithm is not very flexible when dealing with more complex binary VSNs in

practice. Moreover, it is not able to handle the weighted VSN, whose scale of the degrees is

unbounded. Therefore, we apply a spectral clustering method to VSNs. Simulations show

that Algorithm 2, weighted VSN with spectral clustering, is as powerful as Algorithm

1; meanwhile, Algorithm 3, binary VSN with spectral clustering, is clearly superior to
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Algorithm 1. Establishing theoretical properties of the spectral clustering for VSNs, i.e.,

Algorithm 2 and 3, is of great interest and worth investigation in the future.

Lei and Rinaldo (2015) prove the clustering consistency of the spectral clustering for the

Stochastic Block Model, given K, the number of clusters, is known. More explicitly, for

the spectral clustering method in Section 1.4, to assure the performance of the algorithm,

or to have any clustering consistency, it is required that the distance between Û and U

not be large. Indeed, Lei and Rinaldo (2015) show that

||Û −U ||F ≤
2
√

2K

γp
||A−Q||, (5.1)

where || · ||F and || · || denote the Frobenius norm and the spectral norm of a matrix,

respectively; γp is the smallest nonzero eigenvalue (in absolute value) of Q. In addition,

with extra settings of the Stochastic Block Model: Aij’s are Bernoulli random variables and

edges are independent given cluster labels, the authors prove that assuming pmaxklBkl =

dn ≥ c0 log p, there exists a constant C = C(c0), such that

||A−Q|| ≤ C
√
dp (5.2)

with probability at least 1− n−1.

Finally, they prove the result

n∑
k=1

|Sk|
pk
≤ c−1(2 + δ)

Kdp
γ2
p

, (5.3)
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where |Sk| is the number of mis-clustered nodes in cluster k; and δ is from the (1 + δ)-

approximate k-means clustering (Kumar et al., 2004). Lei and Rinaldo (2015) use the

(1 + δ)-approximate because it can find an approximate solution which is within (1 + δ)

fraction of the optimal solution in linear time, whereas finding the exact optimal solution

of k-means is NP-hard.

The inequality (5.3) provides an upper bound for the sum of fractions of mis-clustered

nodes in all clusters. Lei and Rinaldo (2015) argue that in many cases, the term on the

right hand side goes to zero as p → ∞, so the fractions of mis-clustered nodes vanish. In

other words, clustering consistency is achieved on a proportion level.

For the binary VSN, proving cluster consistency is much harder. First of all, we obviously

need some lower bounds on the elements of ρ2 in (4.38) to make weak relevant variables

separable from irrelevant ones. Second, the proof of (5.2) relies on the independence of the

elements of A, but as discussed in Section 4.2.2, they are not independent for the VSN.

Constraints on the correlations are needed in order to bound ||A −Q||. Finally, we need

homogeneity assumptions on each row of ρ2 in (4.38). We do not want irrelevant variables

to form too many clusters. Otherwise, the number of clusters K becomes large, so the

bound in the inequality (5.1) becomes loose.

Theoretical proof is even more challenging for the weighted VSN. It is harder to find a

bound as (5.2), since the weighted edges are unbounded. Note that by far all theoretical

results regarding the Stochastic Block Model are built upon binary networks.

Despite the difficulties just outlined, unlike spectral clustering for the Stochastic Block

Model, which hopes to exactly recover all clusters, our goal is slightly easier, where we
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only need to separate relevant variables from irrelevant ones. We succeed as long as the

irrelevant variables are clustered together so that they can be separated from relevant

variables. Hence, we may not need a result as comprehensive as (5.3). In this sense,

achieving variable selection consistency results may still be possible.
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Appendix A

Some Details for the EM Algorithm

in Section 3.2.2

A.1 The Conditional Expectation E[logL(T,Z)|T; Θ∗]

First, by (3.1), we have

E[logL(T,Z)|T; Θ∗] (A.1)

= E[logL(T|Z) + logL(Z)|T; Θ∗]

= E
[∑
s∈S

n∑
i=1

logLI(Tsi|Z) +
∑

1≤i 6=j≤n

logLP1(Tij|Z)

+
n∑
i=1

logLP2(Ti|Z) +
n∑
i=1

∑
a∈A

logLO(Tia|Z) + logL(Z)
∣∣∣T; Θ∗

]
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Now, we plug in (3.15), (3.16), (3.17), (3.18) and (3.19), and the respective terms in (A.1)

are as follows. The LI part is equal to

∑
s∈S

n∑
i=1

E
[

logLI(Tsi|Z)
∣∣∣T; Θ∗

]
(A.2)

=
∑
s∈S

n∑
i=1

E
[

log
K∏
k=1

( msi∏
h=1

(
Psk ·

1

Gsih
k

))zik∣∣∣T; Θ∗
]

=
∑
s∈S

n∑
i=1

K∑
k=1

E
[
zik ·

msi∑
h=1

(
logPsk − logGsih

k

)∣∣∣T; Θ∗
]

=
∑
s∈S

n∑
i=1

K∑
k=1

(
E[zik|T; Θ∗] ·msi logPsk

)
−
∑
s∈S

n∑
i=1

K∑
k=1

E
[
zik ·

msi∑
h=1

logGsih
k

∣∣∣T; Θ∗
]
.

The LP1 part is equal to

∑
1≤i 6=j≤n

E
[

logLP1(Tij|Z)
∣∣∣T; Θ∗

]
(A.3)

=
∑

1≤i 6=j≤n

E
[

log
K∏
k=1

K∏
l=1

( mij∏
h=1

(
ρkl(tijh) ·

1

Gijh
l

))zikzjl∣∣∣T; Θ∗
]

=
∑

1≤i 6=j≤n

E
[ K∑
k=1

K∑
l=1

(
zikzjl ·

mij∑
h=1

(
log ρkl(tijh)− logGijh

l

))∣∣∣T; Θ∗
]

=
∑

1≤i 6=j≤n

K∑
k=1

K∑
l=1

(
E[zikzjl|T; Θ∗] ·

mij∑
h=1

log ρkl(tijh)
)

−
∑

1≤i 6=j≤n

K∑
k=1

K∑
l=1

E
[
zikzjl ·

mij∑
h=1

logGijh
l

∣∣∣T; Θ∗
]
.
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The LP2 part is equal to

n∑
i=1

E
[

logLP2(Ti|Z)
∣∣∣T; Θ∗

]
(A.4)

=
n∑
i=1

E
[

log
K∏
k=1

( Mi∏
h=1

exp
(
−

K∑
l=1

∫ tih

t−ih

ρkl(t) · I(Gih
l > 0)dt

))zik∣∣∣T; Θ∗
]

=
n∑
i=1

K∑
k=1

E
[
zik

Mi∑
h=1

(
−

K∑
l=1

∫ tih

t−ih

ρkl(t) · I(Gih
l > 0)dt

)∣∣∣T; Θ∗
]

= −
n∑
i=1

K∑
k=1

Mi∑
h=1

K∑
l=1

E
[
zik

∫ tih

t−ih

ρkl(t) · I(Gih
l > 0)dt

∣∣∣T; Θ∗
]

= −
n∑
i=1

K∑
k=1

K∑
l=1

Mi∑
h=1

(
E
[
zikI(Gih

l > 0)
∣∣∣T; Θ∗

]
·
∫ tih

t−ih

ρkl(t)dt
)
,

where we have pulled the indicator term I(Gih
l > 0) out of the integral in the last step of

(A.4) because the quantity Gih
l is a constant on any (t−ih, tih], as no player substitution can

happen during that time. Finally, the LO part is equal to

n∑
i=1

∑
a∈A

E
[

logLO(Tia|Z)
∣∣∣T; Θ∗

]
(A.5)

=
n∑
i=1

∑
a∈A

E
[

log
K∏
k=1

( mia∏
h=1

ηka(tiah) ·
Mi∏
h=1

exp
(
−
∫ tih

t−ih

ηka(t)dt
))zik∣∣∣T; Θ∗

]
=

n∑
i=1

∑
a∈A

K∑
k=1

E
[
zik

( mia∑
h=1

log ηka(tiah)−
Mi∑
h=1

∫ tih

t−ih

ηka(t)dt
)∣∣∣T; Θ∗

]
=

n∑
i=1

∑
a∈A

K∑
k=1

(
E[zik|T; Θ∗] ·

( mia∑
h=1

log ηka(tiah)−
Mi∑
h=1

∫ tih

t−ih

ηka(t)dt
))

,
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and the L(Z) part is equal to

E
[

logL(Z)|T; Θ∗
]

= E
[

log
n∏
i=1

K∏
k=1

πzikk |T; Θ∗
]

(A.6)

=
n∑
i=1

K∑
k=1

(
E[zik|T; Θ∗] · log πk

)
.

A.2 Analytic Updates of Marginal Probabilities and

Initial Probabilities

In the conditional expectation of the log-likelihood (A.1), the term that contains P, the

transition probabilities from initial actions to players in different groups, appears in (A.2).

It is ∑
s∈S

n∑
i=1

K∑
k=1

(
E[zik|T; Θ∗] ·msi logPsk

)
(A.7)

but there is a constraint
K∑
k=1

Psk = 1 for any s ∈ S. (A.8)

Introducing Lagrange multipliers ζs, for each s ∈ S, we get

∑
s∈S

[ n∑
i=1

K∑
k=1

(
E[zik|T; Θ∗] ·msi logPsk

)
− ζs

( K∑
k=1

Psk − 1
)]
. (A.9)

Differentiating with respect to each Psk and setting the the derivatives to zero, we get

∑n
i=1

(
E[zik|T; Θ∗] ·msi

)
Psk

− ζs = 0, for s ∈ S and k = 1, 2, . . . , K. (A.10)
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The constraint (A.8) implies

ζs =
K∑
k=1

n∑
i=1

(
E[zik|T; Θ∗] ·msi

)
. (A.11)

Hence, we obtain the updating equation (3.26):

Psk =

∑n
i=1

(
E[zik|T; Θ∗] ·msi

)∑K
k=1

∑n
i=1

(
E[zik|T; Θ∗] ·msi

) . (A.12)

The updating equation (3.20) for (π1, π2, . . . , πK) can be derived in a similar manner; the

actual derivation is omitted.

A.3 E[logL(T,Z)|T; Θ∗] under Model Simplifications (3.21)-

(3.22)

In Section 5, we introduced further simplifications to our Continuous-time SBM, namely

(3.21) and (3.22), before applying it to analyze basketball games. Here, we provide details

about the changes to some of the components (A.2)-(A.6) for E[logL(T,Z)|T; Θ∗] as a

result of these simplifications. The components (A.2) and (A.6) do not involve any rate

functions, so they remain the same; whereas the components (A.3)-(A.5) now become

∑
1≤i 6=j≤n

E
[

logLP1(Tij|Z)
∣∣∣T; Θ∗

]
(A.13)

=
∑

1≤i 6=j≤n

K∑
k=1

K∑
l=1

(
E[zikzjl|T; Θ∗] ·

( mij∑
h=1

log λk(tijh) +mij logPkl
))
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−
∑

1≤i 6=j≤n

K∑
k=1

K∑
l=1

E
[
zikzjl ·

mij∑
h=1

logGijh
l

∣∣∣T; Θ∗
]
,

n∑
i=1

E
[

logLP2(Ti|Z)
∣∣∣T; Θ∗

]
(A.14)

= −
n∑
i=1

K∑
k=1

K∑
l=1

Mi∑
h=1

(
E
[
zikI(Gih

l > 0)
∣∣∣T; Θ∗

]
· Pkl ·

∫ tih

t−ih

λk(t)dt
)
,

and

n∑
i=1

∑
a∈A

E
[

logLO(Tia|Z)
∣∣∣T; Θ∗

]
=

n∑
i=1

∑
a∈A

K∑
k=1

(
E[zik|T; Θ∗]·

( mia∑
h=1

log λk(tiah) +mia logPka − Pka ·
Mi∑
h=1

∫ tih

t−ih

λk(t)dt
))
. (A.15)

A.4 Analytic Updates of Transition Probabilities un-

der Model Simplifications (3.21)-(3.22)

Recall that, under model simplifications (3.21)-(3.22), the constraint on these transition

probabilities is given by (3.23):

K∑
l=1

Pkl +
∑
a∈A

Pka = 1, for any k = 1, 2, . . . , K. (A.16)
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Again, we introduce Lagrange multiplier ζk for k = 1, 2, . . . , K. Combining the terms

from (A.13)-(A.15) that involve these transition probabilities with the constraint above,

we obtain the Lagrangian function,

∑
1≤i 6=j≤n

K∑
k=1

K∑
l=1

(
E[zikzjl|T; Θ∗] ·mij · logPkl

)
(A.17)

−
n∑
i=1

K∑
k=1

K∑
l=1

Mi∑
h=1

(
E
[
zikI(Gih

l > 0)
∣∣∣T; Θ∗

]
· Pkl ·

∫ tih

t−ih

λk(t)dt
)

+
n∑
i=1

∑
a∈A

K∑
k=1

(
E[zik|T; Θ∗] ·

(
mia · logPka − Pka ·

Mi∑
h=1

∫ tih

t−ih

λk(t)dt
))

−
K∑
k=1

ζk ·
( K∑

l=1

Pkl +
∑
a∈A

Pka − 1

)
.

Differentiating with respect to each Pkl, Pka and setting the the derivatives to zero, we

get

∑
1≤i 6=j≤n

(
E[zikzjl|T; Θ∗] ·mij

)
Pkl

(A.18)

−
n∑
i=1

Mi∑
h=1

(
E
[
zikI(Gih

l > 0)
∣∣∣T; Θ∗

]
·
∫ tih

t−ih

λk(t)dt
)
− ζk = 0,

and

∑n
i=1

(
E[zik|T; Θ∗] ·mia

)
Pka

−
n∑
i=1

Mi∑
h=1

(
E[zik|T; Θ∗] ·

∫ tih

t−ih

λk(t)dt
)
− ζk = 0, (A.19)
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from which we can solve for the transition probabilities:

Pkl =

∑
1≤i 6=j≤n

(
E[zikzjl|T; Θ∗] ·mij

)
∑n

i=1

∑Mi

h=1

(
E
[
zikI(Gih

l > 0)
∣∣∣T; Θ∗

]
·
∫ tih
t−ih

λk(t)dt
)

+ ζk
(A.20)

Pka =

∑n
i=1

(
E[zik|T; Θ∗] ·mia

)
∑n

i=1

∑Mi

h=1

(
E[zik|T; Θ∗] ·

∫ tih
t−ih

λk(t)dt
)

+ ζk
(A.21)

for k, l = 1, 2, . . . , K and a ∈ A. Each Lagrange multiplier ζk can be solved numerically

as the (univariate) root to the equation
∑K

l=1 Pkl +
∑

a∈A Pka = 1 for each k. We do this

with the R function uniroot.

A.5 Confidence Bands for Estimated Rate Functions

It is possible to obtain confidence bands for the estimated rate functions conditional on the

cluster labels by calculating the pointwise standard errors using the observed Fisher infor-

mation matrix and the standard Delta method. As an example, rate functions displayed

on top of each other in Figure 3.4 (to facilitate side-by-side comparison in Section 3.3.2)

are now displayed individually in Figure A.1 with their respective 95% confidence bands.

In all panels of Figure A.1, we can see that, as t→ 24, the confidence intervals invariably

widen. This is because there are fewer transactions as the time approaches the end limit for

each play, since many plays end before reaching the full 24-second limit. Elsewhere, these

confidence intervals are narrow enough to suggest that features identified in Figure 3.4 and

discussed in Section 3.3.2 are unlikely to be merely artifacts due to noise in the data.

158



Figure A.1: Rate functions displayed on top of each other in Figure 3.4 are displayed here
individually with 95% pointwise confidence bands.
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Appendix B

Proofs for Section 4.2

B.1 Proof of Lemma 1

First, it is easy to show

S(X−i) = S(X−ij) + S(MijXj), (B.1)

where MijXj is the projection of Xj into the space S⊥(X−ij). In fact, the column vector

Xj can be decomposed as

Xj = P (X−ij)Xj + (In − P (X−ij))Xj

= P (X−ij)Xj +MijXj. (B.2)
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On the one hand, P (X−ij)Xj ∈ S(X−ij), so S(Xj) ⊆ S(X−ij) +S(MijXj), and thus,

S(X−i) ⊆ S(X−ij) + S(Xj)

⊆ S(X−ij) + S(MijXj). (B.3)

On the other hand, MijXj = Xj − P (X−ij)Xj ∈ S(Xj) + S(X−ij), then,

S(X−ij) + S(MijXj) ⊆ S(X−ij) + S(Xj)

⊆ S(X−i). (B.4)

Hence, combining (B.3) and (B.4) yields (B.1).

Second, clearly S(X−ij) and S(MijXj) are orthogonal subspaces of S(X−i), so

P (X−i) = P (X−ij) + P (MijXj) and P (X−ij)P (MijXj) = 0. (B.5)

Then,

In − P (X−i) = In − P (X−ij)− P (MijXj), (B.6)

which is

Mi = Mij − P (MijXj), (B.7)

and

MiP (MijXj) = 0. (B.8)

161



Due to (B.7),

MijXij = (Mi + P (MijXj))Xij (B.9)

= (Mi + P (MijXj))(Xi Xj) (B.10)

= (MiXi + P (MijXj)Xi MiXj + P (MijXj)Xj) (B.11)

= (MiXi + P (MijXj)Xi MijXj), (B.12)

where the third equation is because MiXj = 0 and P (MijXj)Xj = MijXj, which can be

easily proven. Finally, the noncentrality parameter

Λij =
1

σ2
(βi, βj)X

T
ijMijXij(βi, βj)

T

(Mij is an idempotent matrix and is symmetric)

=
1

σ2
(βi, βj)X

T
ijM

T
ijMijXij(βi, βj)

T

=
1

σ2
||MijXijβ||2 (B.13)

=
1

σ2
||MiXiβi + P (MijXj)Xiβi +MijXjβj||2 (B.14)

=
1

σ2

(
||MiXiβi||2 + ||P (MijXj)Xiβi +MijXjβj||2

)
(B.15)

≥ 1

σ2
||MiXiβi||2, (B.16)

where ||·|| denotes the L2-norm of a vector. The last equation holds becauseXT
i MiP (MijXj)=0

and XT
i MiMijXj = 0, which is due to (B.8).
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Finally, utilize assumptions (A1) and (A2), for any i that βi 6= 0, as n→∞,

Λij

log n
≥ ||MiXiβi||2

σ2 log n
=
β2
iX

T
i MiXi

σ2 log n
≥ ψ2XT

i MiXi

σ2 log n
→∞. (B.17)

We now show a side result that is used in Section 4.2.2. From (B.12), we have

S(MijXij) = S(MiXi) + S(MijXj). (B.18)

In addition, the subspaces S(MiXi) and S(MijXj) are orthogonal because of (B.8). There-

fore, the projection matrix P (MijXij) can be written as

P (MijXij) = P (MiXi) + P (MijXj), (B.19)

and

P (MiXi)P (MijXj) = 0. (B.20)

B.2 Proof of Lemma 2

Recall that,

αij = P
(
F (2, n− p,Λij) > Cαn

)
, (B.21)

where Cαn is the 1− αn quantile of F (2, n− p).
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Suppose q(α, k) is the 1− α quantile of χ2(k), i.e.,

P(χ2(k) > q(α, k)) = α.

We will prove the Lemma in two steps.

Step 1: we show that if lim
n→∞

αnn
2 = ∞, when n − p is big enough, we have Cαn <

q(αn/2, 2).

By the definition of Cαn ,

P
(
F (2, n− p) > Cαn

)
= αn. (B.22)

We will show, for big enough n− p,

P
(
F (2, n− p) > q

(αn
2
, 2
))

< αn, (B.23)

which implies that Cαn < q(αn/2, 2).

In fact,

P
(
F (2, n− p) > q

(αn
2
, 2
))

(B.24)

= P
( χ2(2)/2

χ2(n− p)/(n− p)
> q
(αn

2
, 2
))

(B.25)

= P
( χ2(2)/2

χ2(n− p)/(n− p)
> q
(αn

2
, 2
)∣∣∣χ2(n− p)

n− p
>

1

2

)
·P
(χ2(n− p)

n− p
>

1

2

)
(B.26)

+ P
( χ2(2)/2

χ2(n− p)/(n− p)
> q
(αn

2
, 2
)∣∣∣χ2(n− p)

n− p
≤ 1

2

)
·P
(χ2(n− p)

n− p
≤ 1

2

)
(B.27)

< P
(
χ2(2) > q

(αn
2
, 2
))

+ P
(χ2(n− p)

n− p
≤ 1

2

)
. (B.28)
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By definition, the first term P
(
χ2(2) > q

(
αn
2
, 2
))

= αn
2

.

Now we look at the second term

P
(χ2(n− p)

n− p
≤ 1

2

)
= P

(√n− p
2

(χ2(n− p)
n− p

− 1
)
≤ −

√
n− p

8

)
. (B.29)

The nonuniform Berry-Esséen bound (Michel, 1981; Chen and Shao, 2001) is a standard

bound for the convergence rate of the Central Limit Theorem. It states that for all n ∈

N, i.i.d. random variables X1, X2, · · · , Xn with mean µ and variance σ2, and E|Xi|3 <

∞, ∣∣∣P(√n
σ

(∑n
i=1 Xi

n
− µ

)
< x

)
− Φ(x)

∣∣∣ ≤ C√
n(1 + |x|3)

, (B.30)

where Φ(x) is the CDF of the standard normal distribution, and C is a constant. Applying

the bound to (B.29), we have

∣∣∣P(√n− p
2

(χ2(n− p)
n− p

− 1
)
≤ −

√
n− p

8

)
− Φ(−

√
n− p

8
)
∣∣∣ (B.31)

≤ 16
√

2C
√
n− p(16

√
2 + (n− p) 3

2 )
(B.32)

<
16
√

2C

(n− p)2
(B.33)

<
16
√

2C

(1− γ)2n2
, (B.34)

where the last inequality is due to the settings p < γn.
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Therefore,

P
(χ2(n− p)

n− p
≤ 1

2

)
= P

(√n− p
2

(χ2(n− p)
n− p

− 1
)
≤ −

√
n− p

8

)
(B.35)

< Φ
(
−
√
n− p

8

)
+

16
√

2C

(1− γ)2n2
(B.36)

= 1− Φ
(√n− p

8

)
+

16
√

2C

(1− γ)2n2
. (B.37)

Apply the standard tail bound for N(0, 1): 1− Φ(x) ≤ x−1e−x
2/2

P
(χ2(n− p)

n− p
≤ 1

2

)
<

√
8

n− p
exp

(
− n− p

16

)
+

16
√

2C

(1− γ)2n2
. (B.38)

Again, due to the settings p < γn and αnn
2 →∞, for big enough n,

P
(χ2(n− p)

n− p
≤ 1

2

)
< exp

(
− (1− γ)n

16

)
+

16
√

2C

(1− γ)2n2
(B.39)

<
αn
2
. (B.40)

Finally, according to (B.28),

P
(
F (2, n− p) > q

(αn
2
, 2
))

(B.41)

< P
(
χ2(2) > q

(αn
2
, 2
))

+ P
(χ2(n− p)

n− p
≤ 1

2

)
(B.42)

<
αn
2

+
αn
2

(B.43)

= αn, (B.44)
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which completes the proof of Step 1.

Step 2: we prove the conclusion of the Lemma. In step 1, we have shown that, when n−p

is big enough, Cαn < q(αn/2, 2), so

1− αij = P
(
F (2, n− p,Λij) ≤ Cαn

)
(B.45)

< P
(
F (2, n− p,Λij) ≤ q(

αn
2
, 2)
)
. (B.46)

Meanwhile,

P
(
F (2, n− p,Λij) ≤ q

(αn
2
, 2
))

(B.47)

= P
( χ2(2,Λij)/2

χ2(n− p)/(n− p)
≤ q
(αn

2
, 2
))

(B.48)

= P
( χ2(2,Λij)/2

χ2(n− p)/(n− p)
≤ q
(αn

2
, 2
)∣∣∣χ2(n− p)

n− p
<

3

2

)
·P
(χ2(n− p)

n− p
<

3

2

)
(B.49)

+ P
( χ2(2,Λij)/2

χ2(n− p)/(n− p)
≤ q
(αn

2
, 2
)∣∣∣χ2(n− p)

n− p
≥ 3

2

)
·P
(χ2(n− p)

n− p
≥ 3

2

)
(B.50)

< P
(
χ2(2,Λij) ≤ 3q

(αn
2
, 2
))

+ P
(χ2(n− p)

n− p
≥ 3

2

)
. (B.51)

We will show that both terms in the last line above are o( 1
n
), so 1 − αij = o( 1

n
), which

completes the proof of the lemma.

We first look at the second term,

P
(χ2(n− p)

n− p
≥ 3

2

)
= P

(√n− p
2

(χ2(n− p)
n− p

− 1
)
≥
√
n− p

8

)
. (B.52)
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Following very similar arguments from (B.29) to (B.39), we obtain

P
(χ2(n− p)

n− p
≥ 3

2

)
< exp

(
− (1− γ)n

16

)
+

16
√

2C

(1− γ)2n2
= o(

1

n
). (B.53)

To investigate the first term P
(
χ2(2,Λij) ≤ 3q

(
αn
2
, 2
))

, we utilize an upper bound of

q(α, k), i.e., the 1 − α quantile of χ2(k), given by Laurent and Massart (2000): for any

α ∈ (0, 1) and integer k > 0,

q(α, k) ≤ k + 2 log
( 1

α

)
+ 2

√
k log

( 1

α

)
. (B.54)

Also note that for any x > 0, Λ > 0 and two integers k2 > k1 > 0,

P(χ2(k2,Λ) ≤ x) < P(χ2(k1,Λ) ≤ x). (B.55)

Hence,

P
(
χ2(2,Λij) ≤ 3q

(αn
2
, 2
))

(B.56)

≤ P
(
χ2(2,Λij) ≤ 6 + 6 log

( 2

αn

)
+ 6

√
2 log

( 2

αn

))
(B.57)

< P
(
χ2(1,Λij) ≤ 6 + 6 log

( 2

αn

)
+ 6

√
2 log

( 2

αn

))
(B.58)

= P
(
|N(
√

Λij, 1)| ≤

√
6 + 6 log

( 2

αn

)
+ 6

√
2 log

( 2

αn

))
(B.59)

< P
(
N(
√

Λij, 1) ≤

√
6 + 6 log

( 2

αn

)
+ 6

√
2 log

( 2

αn

))
(B.60)
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= P
(
N(0, 1) ≤

√
6 + 6 log

( 2

αn

)
+ 6

√
2 log

( 2

αn

)
−
√

Λij

)
. (B.61)

Since αnn
2 →∞, when n is big enough, we have αnn

2 ≥ 2, i.e. 2
αn
≤ n2. Therefore,

√
6 + 6 log

( 2

αn

)
+ 6

√
2 log

( 2

αn

)
≤
√

6 + 12 log n+ 12
√

log n. (B.62)

Due to the assumption Λij/ log n→∞, it is easy to see that, for large enough n,

√
6 + 12 log n+ 12

√
log n−

√
Λij < −

√
Λij

2
. (B.63)

Consequently, as n→∞

P
(
χ2(2,Λij) ≤ 3q

(αn
2
, 2
))

< P
(
N(0, 1) ≤ −

√
Λij

2

)
(B.64)

= 1− Φ
(√Λij

2

)
(B.65)

≤ 2√
Λij

exp
(
− Λij

8

)
(B.66)

≤ 2√
Λij

· 1

n
(B.67)

= o(
1

n
). (B.68)

Therefore, both terms in (B.51) are o( 1
n
), which implies 1− αij = o( 1

n
).
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B.3 Proof of Theorem 1

For a relevant variable i, i.e., i ∈ D, due to Lemma 1 and 2, we have 1 − αij = o( 1
n
), for

all j 6= i, so

E
(
|p− 1− d(i)|

)
= p− 1−

∑
k 6=i

E(Aik)

=
∑
k 6=i

(1− αik)

= o
(p− 1

n

)
(B.69)

= o(1). (B.70)

According to Markov inequality,

P
(
|d(i)− (p− 1)| > (1− δ)p

4

)
≤ 4 · E(|d(i)− (p− 1)|)

(1− δ)p
= o
(1

p

)
. (B.71)

Therefore,

P
(

max
i∈D
|d(i)− (p− 1)| > (1− δ)p

4

)
≤ o
(s
p

)
= o(1). (B.72)

For an irrelevant variable j, i.e., j 6∈ D, also due to Lemma 1 and 2, we have 1−αjk = o( 1
n
),

for all k ∈ D; and we let αn = o(1
p
), so

E
(
|d(j)− s|

)
= s−

∑
k 6=j

E(Ajk) +
∑

k 6=j,k 6∈D

E(Ajk)

=
∑
k∈D

(1− αjk) +
∑

k 6=j,k 6∈D

αn
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= o
( s
n

)
+ o
(p− s− 1

p

)
(B.73)

= o(1). (B.74)

Again, according to Markov inequality,

P(|d(j)− s| > (1− δ)p
4

) ≤ 4 · E(|d(j)− s|)
(1− δ)p

= o
(1

p

)
. (B.75)

Therefore,

P(max
j 6∈D
|d(j)− s| > (1− δ)p

4
) ≤ o

(p− s
p

)
= o(1). (B.76)

B.4 Proof of Lemma 3

P(Aij = 1) = P(TSij > Cαn) (B.77)

= P
( (Bi + Cij)/2

Y T (In − P )Y/σ2/(n− p)
> Cαn

)
(B.78)

= P
( (Bi + Cij)

Y T (In − P )Y/σ2/(n− p)
> 2Cαn

)
. (B.79)

We will show that, if n− p→∞ and αcnp→∞, for a constant c > 2, we have

P
(

max
i 6∈D

Bi

Y T (In − P )Y/σ2/(n− p)
> 2Cαn

)
→ 1. (B.80)
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Therefore, there exists at least one irrelevant variable, say k, that

P
( Bk

Y T (In − P )Y/σ2/(n− p)
> 2Cαn

)
→ 1. (B.81)

Since Ckj ≥ 0, for all j 6= k, we obtain

P
(

min
j 6=k

TSkj > Cαn

)
= P

(
min
j 6=k

Bk + Ckj
Y T (In − P )Y/σ2/(n− p)

> 2Cαn

)
→ 1, (B.82)

which implies that the irrelevant variable k has a probability tending to 1 to connect to all

the other variables.

Now we prove (B.80).

Let G = Y T (In − P )Y/σ2, so G ∼ χ2(n− p), and G and Bi are independent for all i 6∈ D.

Then,

P
(

max
i 6∈D

Bi

Y T (In − P )Y/σ2/(n− p)
≤ 2Cαn

)
(B.83)

= P
(

max
i 6∈D

Bi

G/(n− p)
≤ 2Cαn

)
(B.84)

= P
(

max
i 6∈D

Bi

G/(n− p)
≤ 2Cαn

∣∣ G

n− p
<

√
c1

2

)
·P
( G

n− p
<

√
c1

2

)
(B.85)

+ P
(

max
i 6∈D

Bi

G/(n− p)
≥ 2Cαn

∣∣ G

n− p
≥
√
c1

2

)
·P
( G

n− p
≥
√
c1

2

)
(B.86)

< P(max
i 6∈D

Bi ≤
√

2c1Cαn) + P
( G

n− p
≥
√
c1

2

)
. (B.87)

The constant c1 ∈ (2, c), where c > 2 is the constant in the condition that lets lim
n→∞

αcnp =

∞.
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We first look at the second term. According to the law of large numbers, G
n−p

a.s.−−→ 1, since√
c1
2
> 1, we have, as n− p→∞,

P
( G

n− p
≥
√
c1

2

)
→ 0. (B.88)

Now we look at the first term. When the design matrix is orthogonal, we haveXT
i MiMkXk =

XT
i Xk = 0 for all i and k, which implies P (MiXi)P (MkXk) = 0. Recall that Bi =

||P (MiXi)Y ||2/σ2, so {Bi : i 6∈ D} are independent χ2(1). Hence,

P(max
i 6∈D

Bi ≤
√

2c1Cαn) = P(Bi ≤
√

2c1Cαn)p−s < P(Bi ≤
√

2c1Cαn)(1−δ)p, (B.89)

where the last inequality is due to the assumption that s < δp for a constant δ ∈ (0, 1).

It is easy to see that if αn 6→ 0, which means αn is bounded in between 0 and 1, so p→∞

and P(Bi ≤
√

2c1Cαn)(1−δ)p → 0.

From now on, we consider the case where αn → 0.

We have shown in the proof of Lemma 2 that if αnn
2 → ∞ and n − p → ∞, we have,

for big enough n, Cαn < q(αn/2, 2), where q(αn/2, 2) is the 1 − αn/2 quantile of χ2(2).

Applying the upper bound of chi-squared quantile (B.54), we obtain that

P(Bi ≤
√

2c1Cαn)(1−δ)p (B.90)

< P
(
Bi ≤

√
2c1q(

αn
2
, 2)
)(1−δ)p

(B.91)

≤ P
(
Bi ≤

√
2c1

(
2 + 2 log

2

αn
+ 2

√
2 log

2

αn

))(1−δ)p
(B.92)
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= P
(
Bi ≤ 2

√
2c1

(
1 + log

2

αn
+

√
2 log

2

αn

))(1−δ)p
(B.93)

< P
(
Bi ≤ 2

√
2c1 ·

√
c1

2
log

2

αn

)(1−δ)p
(B.94)

= P
(
Bi ≤ 2c1 log

2

αn

)(1−δ)p
, (B.95)

where the last inequality is true because
√

c1
2
> 1, and thus for small enough αn,

1 + log
2

αn
+

√
2 log

2

αn
<

√
c1

2
log

2

αn
. (B.96)

Applying Bi ∼ χ2(1), and the standard lower bound for the tail of N(0, 1): 1 − Φ(x) ≥
1√
2π

x
x2+1

exp(−x2

2
), we get

P
(
Bi ≤ 2c1 log

2

αn

)(1−δ)p
(B.97)

= P
(
χ2(1) ≤ 2c1 log

2

αn

)(1−δ)p
(B.98)

= P
(
|N(0, 1)| ≤

√
2c1 log

2

αn

)(1−δ)p
(B.99)

= P
(

2Φ
(√

2c1 log
2

αn

)
− 1
)(1−δ)p

(B.100)

≤
(

1− 2√
2π
·

√
2c1 log 2

αn

2c1 log 2
αn

+ 1
exp

(
− c1 log

2

αn

))(1−δ)p
. (B.101)

For simplicity, let Ln =
√

2c1 log 2
αn
/(2c1 log 2

αn
+ 1), then

(
1− 2√

2π
·

√
2c1 log 2

αn

2c1 log 2
αn

+ 1
exp

(
− c1 log

2

αn

))(1−δ)p
(B.102)
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=
(

1− 2√
2π
· Ln exp

(
− c1 log

2

αn

))(1−δ)p
(B.103)

=
(

1− 2√
2π
· Ln

(αn
2

)c1)(1−δ)p
. (B.104)

Let C = 21−c1√
2π

,

(
1− 2√

2π
· Ln

(αn
2

)c1)(1−δ)p
(B.105)

=
(

1− CLnαc1n
)(1−δ)p

(B.106)

=
(

1− CLnαc1n
) 1

Lnα
c1
n
·Lnα

c1
n (1−δ)p

. (B.107)

Since as αn → 0, we have Ln → 0 and αc1n → 0, so

(
1− CLnαc1n

) 1

Lnα
c1
n → e−C . (B.108)

Now we show that when lim
n→∞

αcnp =∞,

Lnα
c1
n (1− δ)p =

√
2c1 log 2

αn

2c1 log 2
αn

+ 1
αc1n (1− δ)p→∞. (B.109)

In fact, √
2c1 log 2

αn

2c1 log 2
αn

+ 1
αc1n (1− δ)p =

√
2c1 log 2

αn

2c1 log 2
αn

+ 1
αc1−cn · αcn(1− δ)p. (B.110)
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Since c1 < c, and 1
αn
→∞, clearly,

√
2c1 log 2

αn

2c1 log 2
αn

+ 1
αc1−cn =

√
2c1 log 2

αn

2c1 log 2
αn

+ 1

( 1

αn

)c−c1 →∞, (B.111)

because ( 1
αn

)c−c1 goes to infinity in a polynomial rate of 1
αn

, while

√
2c1 log 2

αn

2c1 log 2
αn

+ 1
≈ 1√

2c1 log 2
αn

, (B.112)

which goes to zero in a rate of
√

log 1
αn

.

Together with the assumption that lim
n→∞

αcnp =∞, (B.109) is proven.

Hence, due to (B.108) and (B.109), we have shown that the first term of (B.87)

P(max
i 6∈D

Bi ≤
√

2c1Cαn) = P(Bi ≤
√

2c1Cαn)(1−δ)p (B.113)

<
(

1− CLnαc1n
) 1

Lnα
c1
n
·Lnα

c1
n (1−δ)p

(B.114)

→ (e−C)∞ = 0. (B.115)

Finally, combining (B.87) and (B.88), we have proven (B.80)

P
(

max
i 6∈D

Bi

Y T (In − P )Y/σ2/(n− p)
≤ 2Cαn

)
→ 0, (B.116)

which completes the entire proof of Lemma 3.
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