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ABSTRACT 

There are remarkable volumes of hydrocarbon resources in low-permeability naturally 

fractured rock masses (NFRs) characterized by naturally occurring discontinuities. Natural 

fractures are one of the most important factors controlling the hydraulic behavior of the rock 

masses and most low-permeability rocks are very strong, stiff, and fractured. Hydraulic 

fracturing in low-permeability hard NFRs has recently gained popularity both in the petroleum 

and mining industries, with different goals. 

A strong understanding of the behavior of natural fractures provides engineers with better insight 

into the hydraulic fracturing technology and development strategies. To gain this knowledge, 

different methodologies and mathematical codes have been introduced to numerically model 

jointed systems. The first step for every model would be generating geometries that realistically 

represent the naturally fractured rock mass. Consequently, generating fabrics with different 

geometric attributes and assessing fabric effects on fluid flow and deformation are points of 

interest in this research. In addition, stress fields play a prominent role in hydraulic and 

mechanical responses of natural fractures, and this forms another core direction of the current 

project.  

This research presents some attempts to simulate and emulate hydraulic fracturing in hard low-

permeability naturally fractured rock masses. In a rock with a hard matrix, only pre-existing 

fractures may re-activate during the process of pressurization and no new fractures are created. 

Analysis may lead to a better physical and empirical explanation for how different fabric patterns 

and deviatoric stress conditions affect the hydro-mechanical behavior of NFRs during injection 

and after shut-in. 

A commercial software, Universal Distinct Element Code (UDECTM), is used to generate NFRs 

in the study. Various geometries have been generated in a two-dimensional framework and 

subjected to biaxial stresses. Among all generated fabrics, three of the primary contributors to the 

study include: Voronoi tessellation, Cross-joints and Cross-cuts. Given stipulated differences in 

in-situ stresses, pore pressure distribution during injection is monitored and shear and normal 

displacements of joints are investigated. Some important concepts such as size of the stimulated 

zone and induced shear events were studied in conjunction with this data collection. 

In order to calibrate numerical emulations with field data, two case studies of waste disposal 

were modeled. The first attempt was to find the closest geometry and subsequently match the 

bottom-hole pressure with the fluid pressure at the injection point. Some success in gaining a 

reasonable and good correspondence indicates that the studies can contribute to greater 

understanding of such complicated subjects and are of essential importance in qualitative and 

semi-quantitative evaluations. 
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CHAPTER 1 INTRODUCTION 

 PROBLEM DEFINITION 1.1

A Naturally Fractured Rock (NFR) is a rock mass containing natural fractures. A joint 

is a type of natural fracture formed predominantly by Mode I fracture (Nelson 2001). In this 

study, the term joint is defined as a plane of discontinuity and it is interchangeably used for 

“natural fracture”. NFR is also called a jointed rock mass in this study. Figure  1.1 shows an 

example of NFRs with two orthogonal sets of natural fractures. Figure  1.2 shows a polygonal 

configuration of natural fractures, which is called a Voronoi tessellation in this study. Natural 

fractures show substantial variations due to their origin, geometry and rock properties. The 

configuration of natural fractures is referred to as geometry or fabric in this work. Different 

authors use the term fabric in slightly different ways. A broad definition of the term is adopted in 

this research, based on the definition introduced by (Twiss and Moores 1992): “The fabric of the 

rock is defined by the geometric organizations of the structures in the rock.” 

 

Figure  1.1. Bedding surface of the Brown Shale, Central Sumatra Basin, Indonesia (Dusseault 2015). 

 

Figure  1.2. Columnar jointed basalts, hexagonal, Giant's Causeway, Ireland (Gillian Finnie 2016). 



2 

 

Large volumes of oil and gas resources are located in low-permeability rock masses which are 

naturally fractured in many cases. A worldwide increase in energy consumption has led to 

attempts to produce energy through unconventional methods and has therefore resulted in the 

introduction of new technologies (Gil et al. 2011). In this way, hydraulic fracturing (HF) has 

been introduced. This covers a wide variety of applications: productivity enhancement (Rahman 

et al. 2002), gas drainage (Wu et al. 2013), heat extraction in geothermal systems (Legarth et al. 

2005), slurried waste injection (Veil and Dusseault 2003) and rock mass property and stress 

management (Economides and Nolte 2013). Hydraulic fracturing leads to changes in the volume 

of the natural fractures and in turn changes in stresses and fluid pressures (Figure  1.3). 

 

Figure  1.3. HF in a NFR generates stress and permeability changes (Dusseault 2011). 

HF is usually performed to create new fractures or open existing natural fractures (joints) by 

tensile or opening mode deformation processes. The term fracture is used for hydraulically 

driven fractures in this study; and the term pre-existing fracture describes a natural fracture. 

Natural fractures have a potential to become hydraulic fractures if they are opened under 

hydraulic pressure. Pre-existing fractures are also referred to as joints, as mentioned above. 

Hydraulic fracturing in naturally fractured rock (NFR) masses has been performed with different 

intentions including jointed igneous rock fracturing at depth to help the extraction of geothermal 

energy; deep slurried solid waste injection; and, development of oil and gas trapped in stiff 

jointed rock masses (Curtis 2002; Dusseault 2015). Historically, the implications of natural 

fractures on hydraulic fracture stimulation of reservoirs have been mostly ignored by the 

petroleum industry, but in recent years, with the advent of shale gas and shale oil development, 

the industry knowledge of naturally fractured reservoirs has increased, and there has been a 

growing interest in better understanding the effects of natural fractures in order to use them to the 

advantage of a hydraulic fracture operation (Nelson 2001). 

An increase in the flow capacity or productivity enhancement is called “stimulation” in the oil 

and gas industry and leads to the concept of “stimulated zone” (Dusseault 2015). The size of the 
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stimulated zone around the injection point shows the lateral distance that the fluid flows. The 

deformation pattern also follows the fluid flow patterns. Thus, the patterns of induced flow and 

deformation are valuable pieces of information for well design or for assessing the degree of 

flow interconnectivity of multiple wells. Figure  1.4 shows a stimulated zone consisting of a 

pressurized zone in the center of a model in which opening is the major deformation mechanism. 

This central area is surrounded by a region in which small-scale shear and dilation occurs and 

causes local (scale no larger than a few meters) stick/slip events. 

 

Figure  1.4. The stimulated zone from HF in a NFR (Dusseault and Jackson 2013). 

It is known that hydraulic fracturing may induce seismicity (Warpinski 2014). Better modeling 

of hydraulically induced seismicity can help predictions about the magnitude and occurrence of 

seismic events. This should aid in design and management of stimulation projects (Rutqvist et al. 

2013a). Consequentially, another focus of this research is about the energy release and potential 

shear events associated with hydraulic fracturing. 

Calibration of numerical models to field data should provide insight into the changes taking 

place in a rock mass. This will allow better project management. In particular, when an 

anomalous event takes place during or after an injection, numerical modeling may help provide 

an explanation for it. Numerical modelling could potentially aid in the design of subsequent 

phases. 

In the context of these applications and potential benefits to design, this thesis presents an 

attempt to answer some interesting and relevant geomechanical questions:  

• How closely can a two-dimensional discrete element scheme represent the real behavior 

of hydraulically induced fractures in jointed rocks? 
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• How do different rock mass fabrics affect the hydraulic fracture treatment? 

• Can shear stresses be relieved in a deviatoric stress field through the process of injection? 

Hydraulic fracturing in naturally fractured rocks is a fully coupled hydro-mechanical1 process. 

This means that the mechanical behavior of natural and hydraulic fractures cannot be evaluated 

separately  from fluid flow effects (Figure  1.5) (Nagel 2013). 

 

Figure  1.5. Hydro-mechanical coupling concept (Zangeneh et al. 2015). 

In order to answer these questions, coupled hydro-mechanical simulations are performed with 

the Universal Distinct Element Code (UDECTM), a two-dimensional Discrete Element Method 

(DEM) numerical code (ITASCA Consulting Group Inc. 2010). The purpose of DEM is to treat a 

naturally fractured rock in a more realistic manner than most continuum models (Jing and 

Stephansson 2007).  

 RESEARCH OBJECTIVES 1.2

This project aims to enhance the understanding of the process of hydraulic fracturing in 

low-permeability naturally fractured competent rocks, and in particular to identify effects of 

different fabric patterns on re-initiation (opening and shearing) of pre-existing fractures and the 

development of induced fracture complexity. Particular emphasis is placed on the relationship 

between the fluid flow and mechanical deformation due to different magnitudes and directions of 

earth stresses as well as the variations in fracture network geometry. The objectives of this thesis 

as well as the potential value of the results are defined as follows: 

• To evaluate the effects of rock mass fabric on fluid flow and deformation of two-

dimensional jointed rock mass models using a discontinuum framework. An 

understanding of the effects of fabric may aid in deciding which HF strategy leads to 

better results. 

• To evaluate the size of the stimulated zone associated with hydraulic fracturing. This will 

                                                 

1 More correctly, it is a thermo-hydro-mechanical-chemical process, which is more complicated to analyze. 
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help set the optimum well spacing, help assess the possible need for an additional upper 

row of wells in a thick reservoir, help evaluate the best spacing of hydraulic fracture sites 

along the wellbore, and help decide on the optimum size and rate of the HF treatment and 

the depth within the reservoir in which the wells be drilled. 

• To evaluate energy release from deviatorically stressed rock masses, considering issues of 

well design optimization and productivity enhancement.  This may provide some insight 

into the magnitude and distribution of induced seismicity during HF and potentially help 

to develop strategies to manage the seismicity.  

• To investigate how in-situ stresses affect the behavior of re-initiated natural fractures. This 

can be used to develop a stress management program to reduce risks and planning more 

effective hydraulic fracturing processes, especially in terms of HF interaction with pre-

existing faults. 

• To calibrate numerical results with real data. Matching numerical results with field data 

may allow the empirical calibration of a DEM model to a particular set of injection 

conditions. 

 SIGNIFICANCE OF THE STUDY 1.3

Hydraulic fracturing may lead to practical stress management possibilities by creating 

opportunities to induce and control stress redistribution, or by protecting locations where high 

stresses pose a threat to operations. These possibilities have applications in petroleum 

engineering as well as mining. Understanding NFRs behavior using a modeling approach can 

help to interpret data and optimize processes in the field, even if the simulations remain semi-

quantitative in nature. A deeper understanding of NFRs behavior should lead to better 

predictions of rock mass response to hydraulic fracturing treatment and induced fracture 

behavior.  

The interaction of hydraulic fractures with natural fractures remains poorly understood, which 

can hinder attempts to optimize hydraulic fracture treatments in different rock mass conditions. 

Natural fractures have the potential to either benefit or negatively affect hydraulic fracture 

stimulation efforts. For example, too many open joints can lead to severe limits in fracture 

propagation, as might be the case in intensely fractured carbonates (Nicol 2013). On the other 

hand, an array of natural fractures that can be opened somewhat by the hydraulic fracturing 

process will almost certainly improve the stimulation results (Johri and Zoback 2013). As such, 

there exists a need for further understanding of hydraulically induced fracture propagation in 

naturally fractured media in order to use the existence of natural fractures in an advantageous 

manner to achieve the goals of the hydraulic fracture operation. 

It is necessary to generate a geometry that is representative of the jointed rock mass for analysis. 

Difficulties arise in quantifying and then mathematically representing a complex natural fracture 



6 

 

system. Representing and determining the complex mechanical deformation mechanisms that are 

greatly influenced by the interaction between individual fractures is also difficult.  

 COMPONENTS AND OUTLINE OF THE THESIS 1.4

This dissertation is prepared as a manuscript based thesis and it is organized as follows: 

• After the general introduction and the description of objectives for this research, 

chapter 2 begins with basic definitions and concepts that are used in this study.  

• Chapter 3 introduces basic definitions in continuum solid and fluid mechanics to 

mathematically formulate engineering problems and solve such problems using 

numerical methods. The use of two-dimensional Distinct Element Methods is 

explained in this chapter and is suggested as an appropriate approach to perform 

analysis according to the defined objectives. 

• Chapter 4 is focused on studying the effects of fabric on deformability and 

permeability of naturally fractured hard rocks under different stress states. To this 

end, this chapter is focused on the explanation of basic definitions and 

preliminary simulations demonstrating the importance of this study.  

• Chapter 5 describes the effects of fabric patterns and stress ratio on the stimulated 

zone. The size of the opened area may be quite different from the size of the 

sheared area under different stress ratios because the numbers of joints that 

undergo shear displacement and the magnitude of such displacements change with 

stress and stress ratio. 

• Chapter 6 introduces the concepts of seismic moment, seismic energy and 

moment magnitude to measure the size of shear events associated with hydraulic 

fracturing in a naturally fractured rock mass. Comparing the energy released by 

fracturing or seismic events indicates their contribution to the total amount of 

released energy. 

• Chapter 7 describes part of a feasibility study to numerically model hydraulic 

fracture injection associated with granular waste disposal processes as an attempt 

to achieve a better empirical understanding of this procedure. Two case studies 

with different locations, geologies and injection strategies are studied. This 

chapter outlines the understandings, challenges and lessons learned from 

numerical modeling of slurried solid waste disposal and provides suggestions for 

future studies. 

• Chapter 8 gathers all conclusions and understandings developed in the current 

study.  
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CHAPTER 2 BACKGROUND 

 BASIC DEFINITIONS AND CONCEPTS 2.1

The term fracture is a collective and general name for any type of discontinuity in rocks. 

Fractures are planes of weakness where shear and tensile strength of discontinuities are 

substantially lower than in the adjacent rock mass (Singhal and Gupta 2010). Fractures are 

categorized into systematic and non-systematic fracture systems: systematic fractures are planar 

with approximately regularly spaced distributions; in contrast, non-systematic fractures are more 

likely to be relatively curved with irregular distributions (Figure  2.1). 

 

Figure  2.1. A schematic diagram of systematic and non-systematic fractures (Sorkhabi 2014). 

Systematic fractures can be divided into three categories: shear fractures, tensile fractures and 

hybrid fractures (Singhal and Gupta 2010). Tensile fractures occur when two fracture surfaces 

are pulled apart under tensile stress. Alternatively, shear fractures occur when the surfaces of a 

fracture slide past each other (Figure  2.2). 

 

Figure  2.2. A schematic diagram of a tensile fracture and a shear fracture. 

To be more exact, three modes of deformation including opening, sliding, and tearing modes, can 

be recognized near a fracture front. These are responsible for fracture propagation, direction and 

segmentation, respectively (Figure  2.3). Mode I or opening mode fracture occurs when the 

displacements of the fracture surface are perpendicular to the fracture plane and therefore the 

pressure in the fracture must exceed the normal stress for the fracture to open. In Mode II 

fracture, the displacements of the fracture surface are in the plane of the fracture and 

Non-systematic fractures 

Systematic fractures 

Bedding planes 

Tensile Fracture Shear Fracture 
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perpendicular to the fracture front. This is also called the in-plane shear mode. The pressure in 

the fracture must reduce the frictional resistance enough so that shear slip can take place. In 

Mode III fracture, the shear displacements of the fracture surfaces are parallel to the fracture 

front, which is also called the out-of-plane mode. This is also governed by a slip criterion, 

usually taken to be the same as for Mode II fracture. There also exists mixed-mode fractures, 

which commonly have out-of-plane propagation components (Wu et al. 2009).  

 

Mode I 

Opening mode 

Mode II 

In-plane shearing 

Mode III 

Out-of-plane shearing 

Figure  2.3. Three modes of fracture deformation (Hudson and Harrison 1997). 

Fractures are perceived as essentially important in rock engineering from scientific, 

technological and economic perspectives. Rock fractures are important features to study in 

various fields of science and engineering because they significantly control the behavior of rock 

masses. For example, in petroleum engineering, fractures represent pathways along which fluids 

- water, oil and gas - can flow through and therefore affect deformation and permeability of the 

rock mass. The literature on fractures is extensive, although much remains to be understood.  

In petroleum engineering, it is important to distinguished between natural fractures (naturally 

occurring) and hydraulic fractures (induced by hydraulic fracturing). Natural fractures are 

discontinuities with low cohesion and tensile strength values. Natural fractures may be format a 

microscale to a macroscale and are found in all types of rocks (igneous, sedimentary and 

metamorphic). Bedding planes and joints are the most noticeable natural rock fractures. 

Bedding planes are surfaces that separate layers of rock. The term joint was initially introduced 

by miners who thought that rocks are “joined” along bedding planes like building bricks 

(Sorkhabi 2014). 

Joints may undergo normal and shear displacement. Although normal and shear displacements 

usually occur together, they are basically different features of mechanical deformation. Normal 

displacement can affect a joint in both its opening and closure mechanisms. Shear displacement 

varies from submillimetric to centimeters in scale, while faults may have larger magnitudes of 

displacement (Sorkhabi 2014). Faults are a type of natural fracture that is predominantly formed 

by Mode II and/or Mode III (Twiss and Moores 1992). 



 

9 

 

A Naturally Fractured Rock (NFR) is a rock mass containing natural fractures or joints. 

Naturally fractured rock masses are generated through tectonic deformations of igneous or 

sedimentary rock, or physical diagenesis of sedimentary rocks. Natural fractures or joints are 

macroscopic planar discontinuities in a rock that are capable of having either positive or negative 

effects on hydraulic fracturing operations (Nelson 2001).  

Forces apply on a deeply buried rock from all sides. These are field stresses or in-situ stresses1. 

There are three types of stresses: compression (σ), tension (σ) and shear stress (τ). Compression 

is considered positive in rock mechanics while tension is signed negative.  

A state of stress at a point in a solid body (rock) can be expressed by the orientations and the 

magnitudes of the principal stresses. The principal stresses are related to three orthogonal planes 

related to x-, y- and z-axes (Cartesian coordinate system or xyz-space) and therefore are 

perpendicular to each other. The principal stresses are always compressive in the earth and are 

defined such that σ3 ≥ σ4 ≥ σ5. As mentioned before, joints are extensional fractures and they 

need tensile stress to form, which seems contrary to the fact that principal stresses are generally 

all compressive. The tensile stresses that existed at the time of formation of the fractures likely 

have resulted from high pressures in the fluids in rock flaws causing tension and creating joints. 

In-situ stresses on a block of rock for a hypothetical stress state are shown in Figure  2.4. 

 

Figure  2.4. In-situ stresses on a block of rock for a hypothetical stress state. 

When a hydraulic fracture induced by high fluid pressure intersects a natural fracture, it may 

initially arrest, but with continued pumping, it either crosses or opens it. As shown in Figure  2.5, 

the hydraulic fracture may cross the natural fracture (Figure  2.5-c) or be captured by it 

(Figure  2.5-b). It may directly leave the natural fracture without opening it (Figure  2.5-e), or it 

may branch into the natural fracture before leaving it (Figure  2.5-f). Additionally, the hydraulic 

                                                 

1 Stress is a measure of the force applied over unit area of a plane. 
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fracture may leave the natural fracture with an offset in the same or in a different orientation 

(Figure  2.5-g) (Thiercelin and Makkhyu 2007).  

 

Figure  2.5. Three types of interaction between a hydraulic fracture and a natural fracture (Thiercelin and 

Makkhyu 2007). 

According to the research of Blanton (Blanton 1982) and Warpinski and Teufel (Warpinski and 

Teufel 1987), pressures, stress gradient and the angle of penetration significantly control local 

fracture behavior, whether during the formation of natural fractures or during active hydraulic 

fracturing. High stress gradients and high angles of approach lead to the crossing of the natural 

fracture pattern, whereas intermediate to low stress gradients and angles of approach can either 

result in an arrest or in offset fracture patterns. It is worth mentioning that their results were 

obtained from analysis of the interaction of a single wing of a hydraulic fracture with a single 

natural fracture (Zhou et al. 2010), but their observations seem valid for natural fracture growth 

as well. In a complex natural fracture system containing bedding planes, several joint sets, and a 

strongly deviatoric stress field, prediction of induced fracture propagation behavior is both 

conceptually and mathematically difficult.   

Zangeneh et al. (2015) used a discrete element method (DEM) to investigate the effects of 

natural fractures on hydraulic fractures. A Voronoi tessellated rock fabric was generated for her 

study to represent a naturally fractured shale gas reservoir. The effect of the angle at which a 

natural fracture intersects a hydraulic fracture was studied. According to her study, at low 

differential stresses and angle of approach, hydraulic fractures will leave natural fractures with 

some offset; under higher differential stresses, hydraulic fractures tend to cross natural fractures 

(Zangeneh et al. 2015). 
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Warpinski (Warpinski 1991) indicated that conventional HF is relatively inefficient for regions 

with high deviatoric stresses and natural fractures and recommended investigation of other 

stimulation techniques. It was found that the presence of natural fractures in an inappropriate 

direction of fracture propagation causes fracture tortuosity which ultimately may cause the 

treatment to fail in its goals. Although adjusting well trajectory and perforation direction can 

minimize the failure probability, the random nature of NFRs is a natural peril that stands as a 

challenge to the treatment efficiency (Hossain et al. 2000).  

An alternative technology is presented by Hossain et al. (2002) for hydraulic stimulation, which 

is known as self-propping. Recently this has been called “shear dilation” treatment. The concept 

of shear dilation of discontinuities was first introduced in the 1970s and this has led to a great 

deal of research concerning the  hydraulic behaviour of natural fractures over the years (Rahman 

et al. 2002). This strategy relies upon the reopening of pre-existing natural fractures instead of 

creating new fractures (East et al. 2011). The mechanism of shear dilation is based on natural 

mismatches and the creation of asperities resulted from shear displacement (Hossain et al. 2002). 

Joint slip and dilation is a major deformation mechanism in NFRs. Injecting pressurized fluid in 

NFRs may first lead to shearing along pre-existing fractures or bedding planes, even at a pressure 

that is below the HF breakdown and propagation pressure. This may take place because as high 

pressure fluid flows into pre-existing fractures during injection, it increases the pore pressure and 

decreases the effective normal stress (Jeffrey et al. 2010a) (Figure  2.6a). 

Shearing of pre-existing fractures before tensile opening (Mode I) is far more likely if there is a 

large difference between the minimum and maximum principal stresses in the ground (the 

deviatoric stresses), such that the rock mass is relatively close to a critical stress state for shear 

slip along preferentially oriented surfaces (Dusseault 2015). This can be explained by the 

Coulomb-slip model (Figure  2.6b). 
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(a) (b) 

Figure  2.6. a) Properly oriented joints will slip before opening during injection. b) Coulomb slip model. 

When the slip criterion is satisfied for the joint, a small shear displacement occurs to relieve the 

shear stresses. It is believed that part of the dilation of natural fractures remains after injection 

because the joint surface is rough at the small scale (Dusseault 2015). This residual displacement 

creates remnant flow channels and changes in the bulk permeability of the rock mass (Min et al. 

2004). Shearing (Mode II) of a joint causes stick/slip events in the stiff rock mass (Mcgarr 2002). 

Joint dilation can also lead to self-propping because of joint surface roughness (Rutledge and 

Phillips 2001). Figure  2.7 shows the joint dilation mechanism. 

 

Figure  2.7. Schematics of  shear dilation of a joint (Rahman et al. 2002). 

Hydraulic fractures tend to propagate perpendicular to the minimum principle stress – >5; this is 

the path of least resistance so the fracture pressure required to open the fracture is the least in that 

direction. However, in the presence of natural fractures, the path of least resistance is often the 

natural fractures which are inevitably not in the same direction as the preference of the hydraulic 

fracture. Somewhat higher pressures are necessary to open a Mode I fracture in a direction that is 

not normal to σ3. The higher pressures may also cause other joints to open and shear so that the 

overall stimulated fracture network becomes more widespread and complex. 

In a NFR with strong joints, wedging also contributes to joint opening because of the rigidity of 

the blocks, and self-propping can occur, leaving residual aperture, as when the pressure is 

relieved, the blocks do not fit perfectly back together because of surface roughness or the 

introduction of a granular proppant. Wedging involves block rotation which more easily opens 

surrounding joints as shown in  
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Figure  2.8. Block rotation redistributes both shear and normal stresses at different locations 

along block interfaces (Dusseault 2015).  

 

 

Figure  2.8. Wedging and block rotation contribute to joint conductivity (Dusseault 2015). 

All mechanisms (Mode I and II, shear dilation, block rotation and wedging) are involved in 

hydraulic fracturing and contribute to mechanical deformation of joints, thus resulting in changes 

in joint conductivity, as shown in Figure  2.9.  

 

Figure  2.9. Deformation mechanisms affect conductivity enhancement during hydraulic fracturing (Dusseault 2015). 

 REVIEW OF NUMERICAL MODELING OF HYDRAULIC FRACTURING 2.2

Modeling of hydraulic fractures started with semi-analytical calculations that assume a planar, 

vertically constrained bi-wing fracture propagating symmetrically away from the injection point 

(Khristianovic and Zheltov 1955)(Geertsma and De Klerk 1969)(Perkins and Kern 

1961)(Nordgren 1972). More recently, interaction of hydraulic fractures with natural fractures 

has been studied theoretically (Potluri et al. 2005), experimentally (Zhou and Xue 2013) and 

analytically (Rahman et al. 2000). Yet, most of these attempts for the most part did not consider 

the mechanical interactions of hydraulic fractures with natural fractures; in other words, it was 

assumed that hydraulic fractures have no effect on in-situ stresses along the natural fractures 

(Sesetty and Ghassemi 2012), and merely have an effect of increasing the leak-off.  

Over time, it has been concluded that conventional modeling with inappropriate physical 
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assumptions cannot reliably represent fluid-driven fracture behavior in a complex natural 

fracture network. Thus, the subject of appropriate numerical modeling has been raised and has 

led to many attempts using finite element methods (Vandamme et al. 1988) or discrete element 

simulations (Vandamme et al. 1988). While conventional modeling methodologies are 

appropriate to find a solution for propagation of a simple bi-wing symmetrical fracture geometry 

in a homogeneous continuum (Perkins and Kern 1961)(Geertsma and De Klerk 1969), more 

sophisticated numerical modeling must be developed to simulate behavior of hydraulic fractures 

in more complicated natural fracture networks (Jeffrey et al. 2010b)(Adachi et al. 2007).  

Numerous mathematical codes have been introduced to the industry to help with fracture 

modeling according to the nature of the problems and available data. Most of these are not 

appropriate to model hydraulic fracturing in naturally fractured rocks because they do not 

genuinely address fracture propagation in a mathematical representation of a naturally fractured 

system. In other words, these programs really only treat the rock mass as a continuum (almost 

invariably linear elastic) and therefore cannot address non-planar propagation, branching, sudden 

direction changes, or shear slip of pre-existing natural fractures (Hofmann et al. 2014). Much 

effort is currently being devoted to progress in this area with methods based on the Discrete 

Fracture Network (DFN) approach (Williams-Stroud et al. 2012), the Extended Finite Element 

Method (XFEM) (Ladubec et al. 2015) and the Discrete Element Method (Nagel et al. 2013). 

Based on the research carried out by Hofmann et al. (2014), the main parameters influencing 

hydraulic fracture network growth are in-situ stresses, natural fracture network characteristics 

and fluid type. It is also mentioned in this work that the number (spacing) of pre-existing joints, 

joint fabric, deviatoric stresses, rock mechanical moduli and fluid viscosity are affecting the 

complexity of the jointed rock mass (Hofmann et al. 2014). Some challenges of modeling NFRs 

are introduced by Dusseault (2015) and listed as follows (Dusseault 2015) 

• The joint fabric at depth is not clear.  

• The initial spatial distribution of open and closed joints, their connectivity and aperture are 

unclear.  

• The shear behaviour of joints is important in generating interconnected flow paths but 

rigorously identifying parameters affecting this behavior is difficult. 

It is not yet clear what methods will be optimum for the modeling of naturally fractured rocks 

subjected to HF. However, DEM has flexibility in its ability to handle large numbers of natural 

fractures in a mathematical formulation based on contact laws. This method is judged to be the 

most suitable one currently available for the modelling of hydraulic fractures as it can 

accommodate natural fractures in various configurations, allowing them to dilate and slide within 

the simulation. The other methods investigated, including all continuum approaches and discrete 

fracture network models, cannot easily handle these aspects. Extensive reviews of numerical 
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methods in geomechanics is provided by (Jing and Hudson 2002). Also, details in fundamentals 

and applications of DEMs is given by (Jing and Stephansson 2007). 

Jing (2003) provided an overview and enhanced understanding about the numerical methods 

used for modeling continuous and discontinuous rock masses that are generally implemented in 

rock mechanics. According to his paper, choosing between the continuum and discrete methods 

depends on many problem-specific factors and mainly on the problem scale and fracture system 

geometry. The discrete approach is most appropriate for moderately jointed rock masses where 

the behavior is governed by the discontinuities or where large scale displacements of individual 

blocks are expected (Jing 2003). Lisjak and Grasseli (2014) reviewed selected discrete element 

and hybrid finite-discrete element modeling techniques for fracturing processes in discontinuous 

rock masses. Their study is complemented with a brief review of applications on laboratory-scale 

models of rock failure processes and on the simulation of damage development around 

underground excavation (Lisjak and Grasselli 2014). 

Hofmann et al. (2015) introduced a new hybrid simulation approach to evaluate the efficiency of 

hydraulic stimulation treatments (Hofmann et al. 2015). PFC2D as a discrete element method 

was used to perform a hydro-mechanical coupling and OpenGeoSys (OGS) as a finite element 

method was used to model thermo-hydraulic coupling. It was concluded in this work that DEM 

is capable of simulating complex tensile and shear fracture development in a naturally fractured 

network, and hybrid finite-discrete element modeling makes it possible to model hydraulic 

fracturing process in extensively jointed (>100,000 joints) rock fabrics and to evaluate the 

efficiency of the process (Hofmann et al. 2015). 

Early studies (Koshelev and Ghassemi 2003) of mechanical interactions of natural and hydraulic 

fractures did not consider fluid flow. Zhang et al. (2010) considered fluid flow in the hydraulic 

fracture intersecting a single natural fracture, but without details of fracture interactions (Jeffrey 

et al. 2010b). Weng et al. (2011) considered multiple natural fractures and their mechanical 

fracture interactions were modeled via the displacement discontinuity method (Weng et al. 

2011). Ghassemi and Sesetty (2012) used a fully hydro-mechanical coupled approach based on 

the boundary element method for modeling an interaction of a hydraulic fracture with natural 

fractures in both equilibrium and non-equilibrium states (Sesetty and Ghassemi 2012). Zangeneh 

et al. (2013) studied transient, hydro-mechanical coupling in a naturally fractured rock mass 

using the DEM approach. Results show that the interactions between hydraulic and natural 

fractures can potentially negatively affect the efficiency of the hydraulic fracturing treatment by 

excessive fluid diversion to natural fractures, impaired proppant transport and restricting the 

extent of the hydraulic fracture stimulated network size (Zangeneh 2013).  

Kezarani and Zhao (2010) established a calibration procedure to find a single set of mechanical 

properties of blocks and contacts. They used UDEC™ for this purpose and they concluded that 

each material/block mechanical property (i.e. block Young’s modulus, Poisson’s ratio, internal 
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friction angel, internal cohesion, and tensile strength) is directly originated from and distinctly 

related to the contact properties (i.e. normal and shear stiffness, friction angle, cohesion, and 

tensile strength) (Kazerani and Zhao 2010). 

McLennan et al. (2010) described a three-dimensional approach to model a hydraulic fracture 

evolution using a DEM commercial program (3DEC™ - three-Dimensional Distinct Element 

Code). This research was intended to study the influence of operational parameters (such as 

injection rate) on the volumetric extent of a domain, the extent of fluid penetration into the 

natural fractures and the change of conductivity in the fracture system. They also used DFN 

(Discrete Fracture Network) models for fluid flow aspects (McLennan et al. 2010). 

Gil et al. (2011) focused their attention on optimizing HF operations via 3DEC™. They carried 

out hydro-mechanical coupled modeling of a naturally fractured rock to investigate the failure 

type and operational parameters that affect the tensile/shear failure ratio. They found that 

injection rate and fluid viscosity affect the amount and type of failure created during fluid 

injection (Gil et al. 2011). 

Damjanac et al. (2010) used UDECTM to present the influence of fluid compressibility on 

hydraulic fracture patterns in a naturally fractured rock. They came to the conclusion that a very 

compressible fluid created a more complex fracture geometry (Damjanac et al. 2010). 

Zhang et al. (2002) studied the deformation and permeability of a naturally fractured rock using a 

Voronoi tessellated rock fabric under loading and unloading. They studied the evolution of 

microcrack growth and the stress condition at which connected fracture networks form (Zhang 

and Sanderson 2002). Riahi et al. (2013) performed a series of sensitivity analysis using a 

discrete element method to evaluate conductivity enhancement of tight hard rocks. Fully coupled 

hydro-mechanical modeling was carried out to study the influence of fracture density, fracture 

length and injection rate on fracture propagation in the naturally fractured rock. This study 

focused on analyzing the geometrical parameters on one specific geometry (Riahi and Damjanac 

2013). 

Ghazvinian (2016) implemented a three-dimensional Voronoi tessellated rock fabric via 3DECTM 

to study the hydro-mechanical response of the generated geometry to single- and multiple-stage 

fluid injection. A series of verification tests were performed to check the suitability of the 

proposed approach. It was observed in this study that the model is able to capture the correct 

mechanics of hydraulic fracture and natural fracture interactions (Ghazvinian and Kalenchuk 

2016). 

Preisig et al. (2015) performed a discrete element model to study joint conductivity enhancement 

in a jointed rock mass. Based on the results presented in this work, “…the opening of a hydraulic 

fracture is accompanied by millimeter-scale shear displacements associated with slip and 

wedging between adjacent blocks” (Preisig et al. 2015). Because of the joint asperities, this may 
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lead to permanent flow channels; however, if the asperities are not rough or strong enough, then 

the millimetre-scale shear displacements are too small to prevent a fully-elastic closure when 

injection stops (Preisig et al. 2015). 

Although numerous types of NFR models have been generated, fabric effects remain poorly 

understood in the research of this discipline. Therefore, this thesis is focused on studying the 

effect of geometry on mechanical and hydraulic behavior of joints subjected to injection. 

Comparing different geometries under identical conditions is the core part of simulations. 

More detailed discussions of the literature are undertaken in subsequent chapters. 

 SUMMARY 2.3

When hydraulic fractures propagate through a formation, interaction with natural fractures in the 

rock mass can affect the local direction in which the fracture will continue to travel. In addition 

to affecting the direction of hydraulic fracture propagation, natural fractures have the potential to 

reactivate (open or shear) during hydraulic fracturing (Hossain et al. 2002). Oftentimes, if 

properly engineered, this initiation of shearing of natural fractures can be highly beneficial to a 

hydraulic fracturing operation as it can widen the zone of stimulation, increasing the efficiency 

of the hydraulic fracture treatment (Gale et al. 2007).  

As fluid is injected into a naturally fractured rock mass, the pressure in the rock mass is 

increased while the effective normal stress acting across the natural fractures in the rock is 

decreased, promoting shear slippage along some of the natural fractures. This process increases 

individual joint conductivity, which is beneficial in enhancing the reservoir permeability (Jeffrey 

et al. 2010b). Shear dilation occurs when fracture fluids have sufficient pressure to penetrate into 

the natural fracture in a rock mass (Warpinski et al. 2009) to lead to shear and a small amount of 

permanent displacement. When the fluid pressure is high enough to overcome the minimum in-

situ stress, the fracture fluid begins to open natural fractures and causes them to propagate, as 

long as fluid pressure remains sufficiently elevated. This physical opening of the fractures is 

known as normal displacement and it also greatly affects the bulk permeability of the rock mass.  

The interaction of natural and hydraulic fractures plays a prominent role in the efficiency of the 

hydraulic fracturing process; therefore, it is of importance to have a quantitative or semi-

quantitative understanding of this phenomenon. The question remains as to which method and 

what software program fits the requirements of the given problem. In this study, the main 

objective is defined as generating jointed rock fabrics and evaluating the coupled hydro-

mechanical process of injection and hydraulic fracture. The determination of an appropriate 

methodology and software program is crucial for ensuring that the main thesis problem is 

analyzed effectively. 
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CHAPTER 3 NUMRICAL MODELING OF HYDRAULIC FRACTURING 

In order to address the question of how numerical models can represent the real behavior 

of NFRs, it is important to select an appropriate modeling method and a suitable software 

application to perform analyses. This chapter explains some basic definitions in continuum solid 

and fluid mechanics, governing equations and numerical methods to solve these equations.  

OVERVIEW 

Equilibrium problems are one of the main categories of engineering problems. 

Engineering problems can be explained as physical processes and they can be mathematically 

formulated using differential equations and boundary conditions. Thus, for any given problem, it 

is important to define a framework and find boundary conditions and governing equations that 

are valid within the framework. After having developed an appropriate set of differential 

equations of a problem, it is then necessary to solve them. Different methods have been 

introduced and numerical techniques are being developed to reach this goal. Finite Element, 

Finite Difference, Boundary Element and Discrete Element are at the top of the list of widely 

used approaches to solve governing equations of a system. Discrete Element Method (DEM) is 

explained in this chapter as the means of addressing goals of achieving a better understanding of 

the role of natural discontinuity fabric in HF. UDECTM is introduced as a qualified DEM code to 

implement the requirements of this study.  

 NOTATION 3.1

There are different standards of notations in mathematics, continuum mechanics and 

numerical methods. Indicial notation, tensor notation and matrix notation are the three common 

standards. Equations in continuum mechanics are mostly expressed by tensor and indicial 

notation; however in numerical methods, equations are given in matrix and indicial notation 

(Belytschko et al. 2000). 

Indicial notation is a method to write scalars, vectors and tensors without having to write the 

entire representation. An important application of indicial notation is to compactly represent sets 

of equations in coordinate systems. A three-dimensional coordinate system using x, y and z is 

represented by x1, x2 and x3, respectively. Using indicial notation x as a coordinate system, a 

vector can be written as xi. Quantities in this study refer to the Cartesian coordinate system and a 

range of three (i.e., 1, 2, 3) is picked for all indices (Mase and Mase 2009). Therefore, 

xi has 3 components (x1, x2 and x3) 

Tij has 32=9 components (T11, T12,…, T33) 

Aijk has 33=27 components  

Cijkl has 34=81 components  
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Consider the Cartesian coordinate system with unit vectors (ê1, ê2, ê3). Any vector û in the 

coordinate system xi has three components and can be written in the form of a linear combination 

of unit vectors: 

û = ukek = u1e1 + u2e2 + u3e3 

No indices are used in tensor notation (Belytschko et al. 2000). Tensors are conventionally 

denoted with boldface letters. Lower case and upper case boldface letters respectively indicate 

tensors of first and higher orders. The Cauchy stress tensor, U, is shown by a lower case Greek 

symbol which is an exception for a second-order tensor (Belytschko et al. 2000). 

Matrix notation is usually used for computational purposes to facilitate components 

manipulations. Components of a vector are shown by a 3×1 columnar matrix and components of 

a second-order tensor are represented by a 3×3 matrix (Belytschko et al. 2000). 

 DEFINITION 3.2

Bodies subjected to forces are generally described by geometry and appropriate variables 

(displacements, strains and stresses), relationships between variables (constitutive relationships), 

governing equations and boundary conditions. For a two-dimensional linear elastic body, the 

following descriptions are valid, and are graphically represented in Figure  3.1. 

 

Figure  3.1. Undeformed (initial) and deformed (current) configurations of a body. Ω is the domain of the initial 

configuration; Ω' is the domain of the current configuration; µ is the boundary of the initial configuration; µ' is the 
boundary of the current configuration; P is a material point in the initial configuration; P' is a material point in the 

current configuration; X is the position vector of a particle in the initial configuration and in the alternative notation 

is given by 

 V = X@e@ = ∑ X@e@		(n[\	is	the	number	of	space	dimensions)ijk@l3  

for	a	two n dimensional	space	n[\ = 2	and	8 = X@e@ =pX@e@4
@l3

 

x is the position vector of a particle in the current configuration; q = 2��� = ∑ 2���(rs�l3  

and u is the displacement vector of a particle in the initial configuration; t(V, ,) = 	��� = ∑ 	���(rs�l3  
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Belytschko defines these terms as follows:(Belytschko et al. 2000): 

• Displacement (u) is a change in a configuration of a body.  

• A configuration is a finite set of coordinates of all particles of a body.  

• Deformation is the transformation of a body from an initial or undeformed 

configuration to a current or deformed configuration, which can be initiated by 

external forces, body forces, etc.  

• The Motion of a body is a function of the initial positions and time. 

6 = u(8, ,)				��	v�	��	�w,����,v0�	��,�,v��				2� = ��(7, ,) ( 3-1) 

where φ(7, ,) is a map between the initial and current configurations and X is the 

position vector of a particle in the initial configuration. The subscript i may be any 

of the numbers 1, 2 and 3, representing the x-, y- and z-axis, respectively, in a 

Cartesian coordinate system. 

 

• Displacement Vector is a vector connecting a particle of a body in the undeformed 

and deformed configurations. The difference between the current and initial 

positions gives displacement 

.(8, ,) = x(8, ,) n x(8, 0) = x(8, ,) n 8    ��				. = 6 n 8 ( 3-2) 

��	v�	��	�w,����,v0�	��,�,v��				� = 2� n 7� = ��(7, ,) n 7� 
• Strain is a relative displacement of particles in a body and is defined as  

C(8, ,) = z6 z8{ n 1 = z. z8{  ( 3-3) 

Figure  3.2 shows displacement and strain for a single body. 

  
(a) (b) 

Figure  3.2. Schematic of a) Displacements; b) Strains. 
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• Velocity is the rate of motion of a material point or the time derivative of a 

displacement. 

1(V, ,) = zu(8, ,) z,{ = z.(8, ,) z,{ = .|  ( 3-4) 

• Acceleration is the rate of change of velocity of a material point or the time 

derivative of a velocity. 

�(8, ,) = z1(8, ,) z,{ = z4.(8, ,) z,4{ = 1|  ( 3-5) 

 CONTINUUM SOLID MECHANICS  3.3

In the sections that follow, the following assumptions are considered: 

• Two-dimensional space; 

• Linear elastic material; 

• Lagrangian system; 

• Constant mass; 

• Initially undeformed system; 

• Static system; 

• Isothermal system. 

3.3.1 FORCE 

Forces are generally categorized as external and internal forces. External forces are 

applied externally and are divided into body forces and traction forces. Traction forces acting on 

a surface may be the consequence of bodies in contact, and these contact forces are a 

fundamental aspect of the mathematical study of particulate media such as jointed rock masses. 

Body forces are applied to all particles over the volume of the body and are a consequence of 

being in a force field such as gravity (Mase and Mase 2009). 

3.3.2 STRESS 

The physical stress is also known as the Cauchy stress and is given by: 

U = � }{  ( 3-6) 
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where A is the current area of a given section and F is the force acting on it (Mase and Mase 

2009). 

Force may be decomposed into two components, normal and parallel to a specified surface. The 

two components, when divided by the area of application, respectively represent the shear and 

normal stresses (Figure  3.3) (Mase and Mase 2009). 

σi = Fi A{ 	and	τ = F� A{  ( 3-7) 

 

Figure  3.3. Decomposition of forces. 

Stress values at a material point change from one orientation to another due to the fact that: 

• there are infinitely many planes that can pass through a point 

• the intensity of the internal forces is a function of the orientation of these planes; or 

in other words, a body would strain in response to applied forces 

Three perpendicular (orthogonal) planes are introduced to find three values of stress vectors (ti) 

at a material point. In a two-dimensional framework, each stress vector can be resolved into two 

components. In a complete description, a given point P in a body has nine components of stress 

related to these orthogonal planes (Mase and Mase 2009). This expression of stress is called the 

stress tensor (>�&) and is defined for a two-dimensional case by:  

,� = >�&�& ( 3-8) 

> = �>33 >34 0>43 >44 00 0 0� 
The first subscript of stress components refers to the plane they belong to and the second 

subscript refers to the direction of that component (Mase and Mase 2009). 

In a two-dimensional Cartesian framework, consider a normal and shear stress acting on a 

surface as shown on Figure  3.4a. Principal stresses can be defined as >3 ≥ >4. 
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(a) (b) 

Figure  3.4. Mohr’s circle representing stresses at a point (Fjaer et al. 2008). 

The angle � between the principal stress directions and the defined plane can be given by 

,�� 2� = 2�>3 n >4 ( 3-9) 

Equation ( 3-9) has two solutions corresponding to two principal axes of stress for which the 

shear stress on the plane is zero. Plotting the corresponding values of shear and normal stresses 

for all angles of planes passing through the point in an equivalued σn-τ axis diagram generates 

the Mohr’s circle (Figure  3.4b). The Mohr’s circle is a helpful tool in the analysis of conditions 

of rock failure (Fjaer et al. 2008) because the shear and normal stresses across any plane through 

a point can be graphically compared to the σn-τ slip condition for a discontinuity (joint or 

bedding plane) at that orientation with respect to the principal stresses. 

3.3.3 STRAIN  

Motion can be described with either Lagrangian or Eulerian coordinates. The Lagrangian 

description of motion is based on tracking a material point from fixed position X through the 

ambient space, while the Eulerian description is based on following physical particles through 

ambient material at a fixed spatial position x. From another aspect, Lagrangian description is 

focused on what is happening to the particles when they move and the Eulerian description is 

focused on the events taking place at specific positions in space. Largangian and Eulerian 

descriptions of motion are respectively referred to as direct and reverse motion problems (Mase 

and Mase 2009). 
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As motion occurs, two neighboring material points must be tracked to measure the local 

deformation in a material. There are Lagrangian and Eulerian measures of deformation 

respectively known as the right Cauchy-Green deformation tensor and the left Cauchy-

Green deformation tensor. Having these definitions of deformation, two measures of strain can 

be given (Mase and Mase 2009).  

The Lagrangian and Eulerian measure of strain are respectively called the Green-Lagrange 

strain tensor and the Almasi-Euler strain tensor. The Green-Lagrange strain tensor is a 

complete definition of strain. The engineering (infinitesimal) definition of strain is an 

approximation of the Green-Lagrange strain tensor if deformations and rotations are small. Most 

problems (e.g., linear elasticity) only address small deformations, hence infinitesimal strain is a 

reasonable measure of strain. On the other hand, the linearized form of the Eulerian measure of 

strain is also equal to engineering strain. This shows that the linear theory of elasticity is an 

approximation (Mase and Mase 2009). The engineering strain is defined as: 

B�& = 12 �z	�,& + z	&,�� ( 3-10) 

��	v�	��	�w,����,v0�	��,�,v��			� = 12 (∇t + (∇t)�) ( 3-11) 

3.3.4 PLANE STATE OF STRAIN  

A plane state of strain refers to the strain state at a point where the all components of 

strain in one direction are zero; i.e., there is a direction at which no change of length or angle 

occurs (Mase and Mase 2009). With the assumption that the negligible strain is oriented in the z- 

direction, the strain and stress tensors for a plane strain case are expressed as: 

B = �B33 B34 0B43 B44 00 0 0� 	���	> = �>33 >34 0>43 >44 00 0 �(>33 + >44)� 
Figure  3.5 shows strain and stress components for a plane strain case.  Plane strain or plane stress 

states are the basic assumptions behind two-dimensional engineering mechanics analysis.  
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(a) (b) 

Figure  3.5. Plane state of strain; a) strain components, b) stress components. 

3.3.5 EQUILIBRIUM 

Consider a continuum of volume V with density ρ surrounded by a surface S under 

surface traction t and volume body force b. If the body is in static equilibrium, the sum of forces 

and moments must equal zero. Mathematically, the balance of forces and moments are given by 

(Belytschko et al. 2000): 

�-(	�� +
�

�9	�	�� = 0
�

 ( 3-12) 

∬ 6 × -(	�� +� ∭ 9	6 × 	�	�� = 0�  (here q is position vector) ( 3-13) 

Substituting the Cauchy Rule1 (,�( = >&��&) and using the Gauss theorem2 

�∬ }�&�&�� =� ∭ ������� ��� � in the equation for force balance will give: 

��z>�&z2& + 9����� = 0
�

 ( 3-14) 

This has to be true for all volume elements, thus: 

>�&,& + 9�� = 0 ( 3-15) 

                                                 

1 Stress on any arbitrary plane n can be expressed in terms of nine components using the Cauchy Rule. 
2 Gauss theorem is used to convert surface integrals to volume integrals and vice versa.  
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These three equations are called the stress equilibrium equations.  

The balance of moments will show that Cauchy stress tensor is symmetric: 

>�& = >&� ( 3-16) 

3.3.6 CONSERVATION LAWS 

Satisfying conservation laws is a prerequisite for a closed system in continuum 

mechanics. These laws dictate that the three quantities of mass, momentum and energy will not 

change over time (Belytschko et al. 2000).  

• Conservation of mass 

The conservation of mass states that the mass of a closed system remains constant over time. The 

mass m(Ω) of a material domain Ω is given by:  

�(Ω) = ¡ 9(8, ,)�Ω¢  ( 3-17) 

where 9(7, ,) is the density. The Lagrangian description of the mass conservation law is 

expressed as: 

¡ 9	�Ω¢ = ¡ 9�	�Ω�¢£  ( 3-18) 

9(8, ,)	¤(8, ,) = 9�(8) ( 3-19) 

Here, ¤(7, ,) is the Jacobian that relates integrals between the current and initial configurations. 

• Conservation of momentum: Linear and angular 

Momentum takes two forms: linear and angular1. Conservation of linear momentum is equivalent 

to Newton’s second law of motion, which relates forces acting on a moving body to its motion. 

Let a domain Ω with boundary Γ be subjected to surface tractions t and body forces ρb (b is a 

force per unit mass and t is a force per unit area). The total external force acting on this 

continuum is given by: 

                                                 

1 Angular momentum (L) is a product of body’s moment of inertia1 (I) and its angular velocity (ωωωω) such that ¥ = ¦.§ 
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�(,) = ¡ -(8, ,)	�Γ +
©

¡ 9	�(8, ,)	�Ω
¢

 ( 3-20) 

The linear momentum (p) is a vector quantity and is given by a product of mass and velocity: 

ª(,) = ¡ 91(8, ,)�Ω
¢

 ( 3-21) 

Using the Cauchy Rule, the divergence or Gauss theorem, and the fact that the material time 

derivative of linear momentum equals the net force, the moment equation is defined by: 

««, ¡ 91�Ω
¢

= ¡ -	�Γ +
©

¡ 9	�	�Ω
¢

 ( 3-22) 

¡ 9«1«, �Ω¢
= ¡(E.U + 9¬)�Ω

¢
 ( 3-23) 

9«1(8, ,)«, = E.  + 9� ( 3-24) 

In problems with no inertial effects (loads are applied slowly and inertial forces are negligible), 

the acceleration term in the momentum equation can be dropped. In such cases, the momentum 

equation will be the same as the stress equilibrium equation	(>�&,& + 9�� = 0). 
• Conservation of energy 

The conservation of energy relates the external and internal energies of the system to the work of 

surface and body forces plus all energies that enter or leave the system. The total amount of 

energy in a closed system remains constant. Energy exists in different forms, which are all 

convertible. The law of conservation of energy states that the rate of change (material time 

derivative) of the total energy in the body equals the rate of work done by applied forces (surface 

and body forces) and heat (energy) sources. According to the conservation of energy, Reynold’s 

transport theorem1, Gauss theorem and the Cauchy Rule, the energy equation is expressed as: 

                                                 

1 Reynold’s transport theorem is used to bring the total derivative inside the integral and convert all surface integrals 
to domain integrals. 
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9«��(®«, = ¯:  n E. ± 
( 3-25) 

where 9��(® is the internal energy per unit volume and q is the heat flux vector. The symbol “:” 

denotes the contraction1 of a pair of repeated indices which appear in the same order. In an 

alternative notation: 

9«��(®«, = >�&«�& n ²&,& ( 3-26) 

where «�& is the rate of deformation or a symmetric component of a velocity gradient (0�,&) and >�& is the Cauchy stress. 

In purely mechanical cases where there is no heat source, the energy equation reduces to 

9«��(®«, = >�&«�& ( 3-27) 

This equation is called the internal energy rate and describes the rate of energy communicated to 

a unit volume of the body in terms of stress and strain. 

3.3.7 CONSTITUTIVE EQUATION (STRESS-STRAIN LAWS) 

Constitutive equations are the equations that describe material behavior under the 

effects of changes in stress, temperature, and other extrinsic factors.  Linear Elasticity is one of 

the classic sets of constitutive equations. All linear elastic materials undergo very small 

deformation changes under loading: these have a linear relationship in terms of the stresses and 

deformations2, and the body returns to the original shape after load removal (reversible strains). 

Linear elasticity is an appropriate approach to model this type of behavior (Belytschko et al. 

2000). 

Stress and strain are the two fundamental concepts of the theory of linear elasticity. The 

generalized Hooke’s law describes the most general linear relation among all components of the 

stress and strain tensors (Mase and Mase 2009):  

                                                 

1 Contraction is the operation of replacing two free indices with dummy index and reduces the rank of a tensor by 
two. 
2 Infinitesimal strain is a good measure of strain in linear elasticity where strains are small. 



 

29 

 

>�& = ��&³´B³´    or      = µ: C ( 3-28) 

where ��&³´ 	 is the elasticity tensor representing the material properties (elastic constants). 

Elasticity tensor is a fourth order tensor and has 81 components. However for the simplest elastic 

case (linear, isotropic), there are only two independent components to the tensor. In this case, the 

elasticity tensor can be defined as:  

¶D�&D³´ + :D�³D&´ + <D�´D&³ ( 3-29) 

where ¶, :	and < are arbitrary scalars and D is Kronecker Delta 

D�& = ·1						���	v = ¸0						���	v ≠ ¸ ( 3-30) 

Substituting this equation in Generalized Hooke’s law yields:  

>�& = (¶D�&D³´ + :D�³D&´ + <D�´D&³)B³´ ( 3-31) 

>�& = ¶B³³D�& + 2:B�& ( 3-32) 

¶ and : are independent material properties known as Lamé’s constants. These constants are 

related to Young’s modulus (E), Poisson’s ratio (ν) and shear modulus (G) as: 

� = :(2: + 3¶): + ¶ 	; 	» = ¶2(: + ¶) 	���	# = :				 ( 3-33) 

3.3.8 GOVERNING EQUATIONS FOR SOLID LINEAR ELASTIC MATERIAL 

Governing equations are defined as partial differential equations (strong form) or integral 

equations (weak form) coupled with boundary conditions. The following are conditions 

governing the behavior of linear elastic isotropic material (Belytschko et al. 2000) 

• Conservation of mass 

• Conservation of momentum 

• Conservation of energy 

• A measure of deformation (strain-deformation equation) 

• A constitutive equation, which describes material behavior (stress-strain law) 
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Having these conditions, field equations for linear isotropic elasticity can be obtained as (Mase 

and Mase 2009): 

• Three equilibrium equations obtained by force (stress) consideration of motion  >�&,& + 9�� = 0 
( 3-34) 

• Six compatibility equations obtained by kinematics considerations of motion 2B�& = 	�,& + 	&,� ( 3-35) 

 

• Six linear elasticity equations in the form of Hooke’s law >�& = ¶�³³D�& + 2:B�& ( 3-36) 

These 15 equations have 6 unknown strains, 6 unknown stresses and 3 unknown displacements. 

These may be combined in three equations with three unknown displacements known as Navier-

Cauchy equations: 

(¶ + :)	³,³� + :	�,&& + 9�� = 0 ( 3-37) 

 NUMERICAL SOLUTIONS 3.4

3.4.1 IMPLICIT AND EXPLICIT ALGORITHMS 

All numerical methods involve transforming governing differential equations into a system 

of algebraic equations. To this end, the problem domains (time and space) are discretized into a finite 

number of sub-domains. Subdivision of a given time interval into a number of smaller subintervals 

(timesteps) is called time discretization. Space discretization is defined as creating a numerical mesh 

consisting of a finite number of computational points  (Demirdzic et al. 2005).  

Numerical approximations for differential equations are usually referred to as being explicit or 

implicit algorithms. An explicit algorithm is an updating scheme that updates the system based 

on its current state. Explicit methods use known parameters to find dependent variables while 

implicit methods are needed to solve algebraic equations (Bui 2010). 

Explicit: 	�¼3 = 	� + �(,�, 	�)∆, 
Implicit: 	�¼3 = 	� + �(,�, 	�¼3)∆, 
The size of ∆, or step size controls the accuracy of the approximate solutions as well as the 

number of calculations. Implicit algorithms are unconditionally stable and can have large ∆,, 
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while explicit schemes tend to be unstable and require a small ∆, that is chosen to be smaller 

than a critical value that is estimated from characteristics of the numerical scheme. Explicit 

algorithms have simple calculations per time step, which are easy to program. Implicit schemes 

on the other hand are difficult, which makes them computationally intensive (Chapra and Canale 

2015).  

3.4.2 FINITE DIFFERENCE SCHEMES 

Finite difference methods (FDMs) are discretization methods for solving differential 

equations using difference equations. Difference equations are derived from Taylor series and 

are categorized as forward, backward and central equations. Difference equations approximate 

the derivatives of functions in the differential equation. Derivatives are approximated by 

differences between the values of the function for a given small increment of the independent 

variable. Therefore, finite difference approximations can be used on a discretized domain1 to 

numerically solve differential equations by replacing derivatives. This gives a large algebraic 

system of equations that can be solved one at a time (explicit) or simultaneously (implicit). 

Forward and central finite difference approximations are explicit algorithms, while backward 

finite difference equations is an implicit method (Chapra and Canale 2015).  

Considering a Taylor series expansion of 	(2) about the point 2 = 2� 
	(2) = p (2 n 2�)(�!

¿
(l� �z(	z2(�À�� 

( 3-38) 

Finite difference approximations of first-order derivatives are as follows: 

Forward difference: Á�Â��Ã� ≈ Â�ÅÆÇÂ�∆�  

Backward difference: Á�Â��Ã� ≈ Â�ÇÂ�ÈÆ∆�  

Central difference: Á�Â��Ã� ≈ Â�ÅÆÇÂ�ÈÆ4∆�  

Figure  3.6 shows a geometric interpretation of finite difference approximations. 

                                                 

1 Domain is partitioned in space and in time 



 

32 

 

 
Figure  3.6. Geometric interpretation of finite difference approximations. 

Central finite difference approximations of second-order derivatives are expressed as: 

�z4	z24�� ≈
	�¼3 n 2	� + 	�Ç3(∆2)4  

( 3-39) 

3.4.3 DISCRETIZATION OF THE DOMAIN 

The process of discretizing a body into a finite number of subdivisions is called meshing. 

The mesh can be generated in different shapes. A triangular mesh is one of the most prevalent 

types of mesh in numerical analysis as triangles can efficiently cover domains with complicated 

geometry. A triangular mesh consists of triangles (elements) connected with their edges and 

corners (nodes). Linear algebraic equations are developed to calculate displacements of each 

node (Fish and Belytschko 2007). 

3.4.3.1 PLANE LINEAR TRIANGULAR ELEMENT 

In a two-dimensional framework, each node has two degrees of freedom (displacements 

in x- and y- directions), while in a three-node linear triangular element, there would be six 

degrees of freedom. Figure  3.7 shows a body discretized into triangle elements and displacement 

vectors for a single three-node linear-displacement triangular element. Triangular elements are 

widely used because the approximation equations are easy to formulate (Fish and Belytschko 

2007). 
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(a) (b) 

Figure  3.7. a) Discretized domain; b) Three-node linear-displacement triangular element. 

3.4.3.2 GOVERNING EQUATIONS OF CONTACTS 

The body is discretized into many elements. Points or edges at which elements meet are known 

as contacts. In a two-dimensional framework, contacts are physically categorized into three 

types: node-to-node contact, node-to-edge contact and edge-to-edge contact (Figure  3.8) 

(Munjiza et al. 2011). 

   

(a) (b) (c) 

Figure  3.8. Physical categories of contact in a two-dimensional framework (Riahi et al. 2010). 

Contact forces have two components of normal (�É) and tangential (��) forces. Contact forces 

control the interpretation of objects while tangential forces control sliding or slipping of the 

contact (Munjiza et al. 2011). The total contact force is given by: 

�% = �� + �É 
( 3-40) 

Consider the three-node triangular element in Figure  3.9. External forces (body forces in the 

domain and tractions on the surface) were applied on the nodes of the element. Here, the traction 

is applied to the edge connecting nodes 2 to 3, but the results can be applied to all nodes.  
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��Ê = ¡ 9���Ω¢  
( 3-41) 

��� = ¡ ∇. σ	�Ω¢ = ¡ σ�&�& 	�Γ ≈ p�>Ë . �Ë�ÌËÍÎÏÍ©  
( 3-42) 

 

  

(a) (b) 

Figure  3.9. a) Three-node triangular element showing nodal displacements, nodal forces and the equivalent element 

body force; b) tractions. 

The total force acting on the nodes of the element is the result of all internal and external forces. 

The result of all external forces applied to the nodes,	��Í�®, is given as: 

��Í�® = p ��Í´ÍÐÍ´ÍÐ = ��Ê + ��� + ��% ( 3-43) 

The strain-displacement and stress-strain equations of a plane triangular element are given as: 

>� = Ñ>��	>ÒÒ	>�ÒÓ and B� = ÑB��	BÒÒ	B�ÒÓ ( 3-44) 

B�� = z	z2 , BÒÒ = z0zÔ , B�Ò = z	zÔ + z0z2 
( 3-45) 

Strain can be defined by nodal displacements of the element. Strain within a linear triangular 

element is constant, and thus so is the stress. Therefore, the linear triangular elements are also 
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known as constant strain elements or constant stress elements. A strain matrix is required to 

compute element matrices such as a stiffness matrix and then the element external force (Fish 

and Belytschko 2007). 

3.4.4 MATHEMATICAL MODELING  

In continuum mechanics, the motion and deformation of a single body are governed by 

the principle of conservation of linear momentum:  

90|� = >�&	,& + 9�� ( 3-46) 

Substituting equation ( 3-32) in ( 3-46) 

90|� = (¶B³³D�& + 2:B�&),& + 9�� ( 3-47) 

zz, �9 z	�z, � = zz2� �¶ z	³z2³� + zz2& Õ: �z	�z2& + z	&z2��Ö + 9�� ( 3-48) 

or in tensor notation: 

zz, �9 z.z,� = E(¶E. .) + E. ×:(E. + (E.)�)Ø + ρ� 
( 3-49) 

This basic system of equations of linear elasticity can be written in integral form as: 

¡ zz, �9 z	�z, � �Ω¢ = ¡ Ú zz2� �¶ z	³z2³� + zz2& Õ: �z	�z2& + z	&z2��ÖÛ . �	��� +¡ 9���Ω¢  
( 3-50) 

This is known as the strong form of the differential equation. 

For a two-dimensional problem, by neglecting the out-of-plane motion, equation ( 3-32) can be 

rewritten as: 

(¶ + 2:)9 z4	�z24 + :9 z4	�zÔ4 + (¶ + :)9 z4	Òz2zÔ + �� = z4	�z,4  
( 3-51) 

(¶ + 2:)9 z4	ÒzÔ4 + :9 z4	Òz24 + (¶ + :)9 z4	�z2zÔ + �Ò = z4	Òz,4  
( 3-52) 
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Employing the central difference approximation for both time and space yields the difference 

equations that follow: 

	��2� , Ô& , ,(¼3� n 2	��2�, Ô&, ,(� + 	��2� , Ô& , ,(Ç3�Δ,4
= �� + (¶ + 2:)9 	��2�¼3, Ô& , ,(� n 2	��2� , Ô& , ,(� + 	��2�Ç3, Ô& , ,(�Δ24
+ :9	��2�, Ô&¼3, ,(� n 2	��2� , Ô& , ,(� + 	��2�, Ô&Ç3, ,(�ΔÔ4
+ (¶ + :)9 	Ò�2�, Ô& , ,(� n 	Ò�2�Ç3, Ô& , ,(� n 	Ò�2� , Ô&Ç3, ,(� + 	Ò�2�Ç3, Ô&Ç3, ,(�∆2∆Ô  

( 3-53) 

	Ò�2� , Ô& , ,(¼3� n 2	Ò�2� , Ô& , ,(� + 	Ò�2�, Ô& , ,(Ç3�Δ,4
= �Ò + (¶ + 2:)9 	Ò�2� , Ô&¼3, ,(� n 2	Ò�2�, Ô& , ,(� + 	Ò�2� , Ô&Ç3, ,(�ΔÔ4
+ :9	Ò�2�¼3, Ô& , ,(� n 2	Ò�2�, Ô& , ,(� + 	Ò�2�Ç3, Ô& , ,(�Δ24
+ (¶ + :)9 	��2�, Ô& , ,(� n 	��2�Ç3, Ô& , ,(� n 	��2�, Ô&Ç3, ,(� + 	��2�Ç3, Ô&Ç3, ,(�∆2∆Ô  

( 3-54) 

Consequently, the components of displacement in x- and y-directions can be explicitly updated 

in a timestepping scheme as: 



 

37 

 

	��2� , Ô& , ,(¼3�= 2	��2� , Ô& , ,(� n 	��2�, Ô& , ,(Ç3� + ��Δ,4
+ (¶ + 2:)Δ,49 	��2�¼3, Ô& , ,(� n 2	��2�, Ô& , ,(� + 	��2�Ç3, Ô&, ,(�Δ24
+ :Δ,49 	��2� , Ô&¼3, ,(� n 2	��2�, Ô& , ,(� + 	��2� , Ô&Ç3, ,(�ΔÔ4
+ (¶ + :)Δ,49 	Ò�2�, Ô& , ,(� n 	Ò�2�Ç3, Ô& , ,(� n 	Ò�2� , Ô&Ç3, ,(� + 	Ò�2�Ç3, Ô&Ç3, ,(�∆2∆Ô  

( 3-55) 

	Ò�2� , Ô& , ,(¼3�= 2	Ò�2�, Ô& , ,(� n 	Ò�2� , Ô& , ,(Ç3� + �ÒΔ,4
+ (¶ + 2:)Δ,49 	Ò�2� , Ô&¼3, ,(� n 2	Ò�2� , Ô& , ,(� + 	Ò�2�, Ô&Ç3, ,(�ΔÔ4
+ :Δ,49 	Ò�2�¼3, Ô& , ,(� n 2	Ò�2� , Ô& , ,(� + 	Ò�2�Ç3, Ô& , ,(�Δ24
+ (¶ + :)Δ,49 	��2�, Ô& , ,(� n 	��2�Ç3, Ô& , ,(� n 	��2� , Ô&Ç3, ,(� + 	��2�Ç3, Ô&Ç3, ,(�∆2∆Ô  

( 3-56) 

Note that, the solving process in DEM involves application of Newton’s second law for blocks 

and a force-displacement law at contacts in a time-marching algorithm that is mostly explicit. 

Therefore, calculation process in DEM follows same type of mathematical procedure.  

 FLUID MECHANICS 3.5

Mathematically, a Newtonian fluid is the simplest fluid in continuum mechanics models 

(Cengel and Cimbala 2006). The basic equations for incompressible Newtonian viscous fluids 

(∇. 1 = Ý) are: 

• Balance equations 

Conservation of mass: 
ÞßÞ® + 9E. 1 = 0	 ( 3-57) 
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Conservation of momentum: 9 Þ1Þ® = E.  + 9� 
( 3-58) 

Conservation of energy: 9 Þ.Þ® = ¯:U n E. ± 
( 3-59) 

• Constitutive equations 

>�& = ��&³´B³´ n +D�& ( 3-60) 

• Governing equations 

9 �z0�z, � + 9 �z(0�0&)z2& � = n z+z2� + zz2& Õ: �z0�z2& + z0&z2��Ö + 9�� ( 3-61) 

In the case of assuming constant values of viscosity (:) and mass density (9) for the fluid, the 

system of equation reduces to the Navier-Stokes equation: 

9«1«, = nE+ + :E41 + 9� 
( 3-62) 

 INITIAL AND BOUNDARY CONDITIONS 3.6

Governing equations are defined as partial differential equations or integral equations 

coupled with boundary conditions. There are different types of initial and boundary conditions 

that should be selected based on the specific problem.  For example, one might specify the 

stresses along a distant boundary to be constant throughout the calculations, or define one of the 

boundaries as a zero displacement boundary.    

 DISCRETE ELEMENT METHODS 3.7

Whether it is in the class of continuum or discontinuum problems, a range of numerical 

methods are available (Munjiza et al. 2011). Discrete Element Methods (DEM) have become a 

widely used numerical method for discontinuous media. DEM permits finite displacement and 

rotations of discrete bodies including complete detachment, which are prerequisites for modeling 

issues such as aperture opening and shear slip during hydraulic fracturing in a discontinuous 

system. For this approach to modeling, the strain and displacement algorithms must be written to 

be able to detect new contacts or loss of contacts during the computations. DEM generally have 

the following features (Wang 1992): 
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• Discrete bodies are defined by explicit geometrical boundaries that may interact with 

other discrete bodies in the simulation only through their contacts;  

• Large rotations and large displacements of blocks are allowed, although the contacts 

between bodies may have a strong cohesion that must be overcome before displacements 

or rotations can take place; 

• New contacts may be formed and existing contacts lost during deformations, and these 

changes are explicitly recognized and tracked as the calculations continue; 

• The solution algorithm is explicit in time, which allows the possibility of large 

deformations and non-linear constitutive behavior for both blocks and joints with little 

extra computational cost (although large simulations are extremely lengthy). 

With the first two features, DEM can describe some important mechanisms like shear slippage, 

and therefore behavior laws such as a cohesion-friction model for shear slip must be specified for 

each contact. The last two attributes in the list above make the model generally applicable for 

discontinuous masses undergoing relative block movements. 

DEM is a Lagrangian numerical method (i.e., discretization follows deformation), which was 

first introduced by Cundall in 1971 (Cundall 1971) and then further developed by others 

including Williams, Hocking and Mustoe (Williams et al. 1985). DEM uses a time-marching 

scheme to solve the equations of motion directly for an assemblage of shapes defined through 

their contacts. In DEM, the equilibrium equations do not need to be assembled into a large global 

matrix to solve the equations of the whole domain for each time step, and thus the problem can 

be solved through a step-by-step procedure using the discretized equations of motion. Thus, 

DEM has two advantages compared to continuum modeling methods: (i) complex problems can 

be run on a PC due to small computer storage memory requirements of this method; (ii) 

displacements of contacts and rotations of blocks can be directly taken into account for each 

timestep with appropriate contact detection algorithms. The global matrix representing complete 

block interconnectivity is never assembled, which makes the calculations computationally 

economic (Zhang and Sanderson 2002). However, the time steps must be small for stability and 

for problems involving large numbers of discrete elements (blocks or shapes), that is, a large 

number of contacts, the number of calculations is large, and execution time for large problems 

may be days to weeks on a PC. 

The fundamental concepts incorporated into DEM models are Newton’s laws of motion, 

constitutive models for contacts in normal and shear displacement, and the timestepping scheme 

that is explained below (Wang 1992): 

• The unbalanced forces on a block at any instant in time will lead to accelerations that 

transfer the block to new coordinates in a small time stem, based on Newton’s laws of 

motion. When these forces are fully balanced for all blocks in the model, the system is at 

rest (equilibrium) or experiencing a constant velocity (no inertial forces). 
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• Interaction forces between blocks result from block movements at contacts according to a 

force-displacement constitutive law stipulated for each contact. 

• Block overlaps are usually negligible relative to block dimensions because of the high 

stiffness of an interpenetrating contact stimulated in the contact laws. 

• Block deformation under applied forces is calculated by discretizing the blocks into 

constant-strain finite elements during the meshing process, and the interior strains can 

thus be calculated for each new state (for each timestep or after a specified number of 

timesteps). 

Each physical process has a domain and a boundary, which in a mathematical formulation are 

implied as differential equations and boundary conditions. The main concept in DEM is that the 

domain of a physical process is represented by the specified assemblage of rigid or deformable 

blocks/bodies/particles interacting at their boundaries (Cundall 1971). The term block may stand 

for individual rock grains or any intact area (or volume in 3D) surrounded by natural fractures or 

specified planes of weakness within the domain.  For example, the deformation of a brick wall, 

even its toppling, can be analyzed in the DEM formulation as a family of blocks defined by their 

contacts. In this case, as in a naturally fractured rock mass, the interface between the bricks is 

called a “contact” and is considered as a joint, which, before it is opened, may be vied as a planar 

contact (a surface-to-surface contact in Figure  3.8). Therefore, in the context of a DEM model, 

the terms contact and joint are to some degree used interchangeably, although when a joint is 

fully opened by a high-pressure fluid during injection, it no longer makes contact with the 

adjacent block.  

Blocks can be generated in different shapes, giving different types of rock fabric, and this may be 

varied to study different cases considered to be reasonable representations of the actual rock 

mass. Thus, it is possible to specify the fabric with any number of explicit patterns that have 

somewhat different characteristics. In the current study, polygonal block models or Voronoi 

tessellated rock fabrics were first considered because they provide a reasonably realistic 

representation of rock macro-structure (Lemos 2012), and are similar to the joint patterns seen in 

some igneous rock bodies such as granites and columnar basalts. However, to fulfill the main 

objective of the research, blocks are generated in other fabrics as well to represent rock masses 

with strong directional structures, such as dominant sets of joints of substantial length. 

On loading of a DEM model, the jointed rock mass is treated as a series of blocks (Figure  3.10) 

with displacement possible only along and across joints. The deformation behavior of the rock 

block system is mainly controlled by relative movements between blocks (Zhang and Sanderson 

2002), but in this work, no provision is made for the generation of a new fracture across any 

block. 
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Figure  3.10. Constitutive law for each contact. �( and �' are joint normal and shear stiffness. � and � are 

joint cohesion and friction angle. (�(, 	() and (�', 	') are components of the force-displacement law in normal 

and shear directions (�, �). Fc is the total contact force and i is the time step at which calculation starts 

(Asgian 1989). 

3.7.1 CONTACT BETWEEN TWO BODIES 

Based on the theory of simple impacts in physics, when two bodies with a certain mass 

and velocity interact, the post-interaction behavior can be explained in terms of initial mass and 

velocity of the bodies and the energy loss during the impact. The energy loss may occur in 

different forms of energy such as mechanical energy and in terms of deformation. Based on the 

material behavior, the deformations can be temporary (elastic state) or permanent (plastic state), 

or some component of each. The force resulting from the contact interaction is used to calculate 

the stresses and strains of the system (Carles 2014). Contact detection and contact interaction are 

the most important aspects of DEM, and there are several algorithms introduced for contact 

detection. Details on this subject can be found in a book by Munjiza (Munjiza 2004). 

3.7.1.1 CONTACT CONSTITUTIVE LAWS 

As previously mentioned, the information about the contacts is essential to compute the 

stresses and strains of a system. Contact constitutive laws govern the mechanical behavior 

(normal and tangential displacements) of two contacting blocks and as a result the mechanical 

behavior of a DEM model (Kazerani and Zhao 2010). Regardless of whether blocks are rigid or 

deformable in themselves, a contact law must be stipulated to define the interaction between 

them. Several contact laws have been introduced so far in the context of particle modeling. 

Soft contact model is the starting point of the DEM. Blocks are considered as rigid bodies. 

Small overlaps are allowed in this model. The interaction force can be computed by a contact 

law and block motions can be defined by dynamic equations (Newton’s second law) (Carles 

2014). 
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For a finite element discretization, each block is deformable and would be discretized into many 

elements. Therefore, contact interaction is studied in a smaller area of impact and gives more 

realistic results (especially under high stress changes, the deformation of real rock blocks is not 

negligible). However, the computational cost increases dramatically with a fine discretization 

because of the large number of bodies and elements involved (Carles 2014). 

The solution process in the DEM involves application of Newton’s second law for blocks and a 

force-displacement law at contacts. A force-displacement law is used to find contact forces from 

known displacements. Newton’s second law gives the motion of the blocks resulting from the 

known forces acting on them (Kazerani and Zhao 2010). 

Force-displacement law 

The law of force-displacement gives a relation between the relative displacement and the 

local contact force exerted on contacts. The contact force is broken down into normal and 

tangential components (Figure  3.11). 

 

Figure  3.11. Normal and tangential forces applied on contacts. 

The Coulomb-slip model is the conventional model used to describe joint slip based on the 

concepts of joint cohesion and friction, effective stress and stress orientation. Figure  3.12a shows 

the concept of a joint that is oriented favorably with respect to the possibility of experiencing 

shear slip in a specified principal stress field value and orientation. The joint is pressurized by 

fluid at pressure p. According to the Coulomb criterion, the conditions for slip are met when � = :(>( n +), in the absence of any bonding (cohesive) resistance. The term (>( n +) is called 

the effective stress. The Coulomb criterion specifies that slip may occur under some combination 

of three processes: a decrease of the total normal stress, an increase of the pore pressure in the 

discontinuity, and an increase of the shear stress. In DEM simulations of hydraulic fracturing, for 

example, before fluid injection the initial stress state is specified so that the model is static and 

stable; thereafter, pressurization associated with injection of a fluid could cause changes in the 

stress such that the slip condition is met for the specified joint (contact) (Figure  3.12b).  The 

effective stress acting over an area gives the effective normal force, Fi. 
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(a) (b) 

Figure  3.12. a) Favorably oriented joint; b) Mohr-Coulomb shear mechanism (Dusseault 2015). 

Normal displacement can be taken as a first approximation to be linearly related to the effective 

normal force such that:  

∆F( = n�(∆	( ( 3-63) 

where ∆Fi is the effective normal force increment, ∆ui is the displacement increment and �( is 

the joint normal stiffness. There is also a threshold value for tensile strength, �(Ðá�, for any 

contact. If the tension exceeds this value, i.e. �( ≤ n�(Ðá�, then �( = 0. In the case that contacts 

undergo compression, blocks may overlap, which is controlled by contact normal stiffness, �( 

(Kazerani and Zhao 2010). Note that in reality, �( can be strongly non-linear, and generally an 

extremely high �( is used to minimize overlap during compression. 

The shear force, Fã, is constrained by a combination of contact cohesion (�) and friction angle 

(∅) such that: 

If, 

|�'| ≤ �	 + �( tan∅ = �'Ðá� ( 3-64) 

then, 

∆Fã = nkã∆uãæ ( 3-65) 

If, 

|Fã| ≥ �'Ðá� ( 3-66) 

then, 
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F' = �vç�	(∆	')	�'Ðá� ( 3-67) 

where ∆	' is the total incremental shear displacement and ∆	'Í is the elastic component of the 

incremental shear displacement (Kazerani and Zhao 2010). Figure  3.13 shows schematics of 

joint mechanical deformation mechanisms. 

 

 

(a) (b) 

Figure  3.13. Joint mechanical deformation in rock. a) Normal and shear stiffness between rocks. b) Constitutive 

behavior in shear and tension (Lisjak and Grasselli 2014). All springs may be non-linear. 

Frictional forces result from the adhesion of sliding/sticking contacts and they are applied in the 

opposite direction of displacements (Luding 2008). The Coulomb friction model is the most 

common model for implementation of friction in the DEM (Carles 2014). The tangential force is 

coupled to the normal force by a Coulomb friction law. Based on the Coulomb friction law, the 

frictional portion of the tangential force is given by (Favier et al. 2009): 

�'Ëè�% = :	�( ( 3-68) 

where : is the friction coefficient (Figure  3.14). Following the Coulomb friction law, the 

tangential contact force is the minimum value between the �'Ëè�% and F'. 

block 
block 

k
n
 

k
s
 co

n
ta

ct
 

co
n
tact 

Bond breakage 

Bond breakage 

U
n
, U

s
 

k
s
 k

n
 

1 1 

F
n

max

 

F
s

max

 

F
n

max

, F
n

max

:
 bond strength 

k
n
, k

s
: contact stiffness 

U
n
, U

s
: displacement 

F
n
, F

s
 

Separation/opening 

Overlap/closure 

Frictional slip/shearing 



 

45 

 

 

Figure  3.14 Coulomb friction law for computing contact tangential force (Favier et al. 2009). 

3.7.2 THE UNIVERSAL DISTINCT ELEMENT CODE (UDECTM) 

According to the solution algorithm used, DEMs can be divided into two groups, explicit 

and implicit formulations. Many of the numerical representations of the explicit DEM are 

implemented with The Universal Distinct Element Code (UDECTM) (Kazerani and Zhao 

2010). UDECTM, developed by the ITASCA Consulting Group, is an implementation of the 

Discrete Element Method for blocks in a two-dimensional framework. UDECTM has the ability to 

perform analysis of fluid flow through the discontinuities of a system of impermeable blocks. 

Flow in discontinuities is modeled as flow between domains. Domains are the regions of space 

between blocks, which are separated by contacts.  

3.7.2.1 Basic definitions in UDEC
TM

 

In the standard configuration of a UDECTM model, a rock mass is represented as a series 

of distinct blocks that can be rigid or deformable. Commonly, rigidity is assumed for solid 

materials in which deformation is negligible. All blocks are rigid by default; they are made 

deformable by discretizing specified blocks into constant-strain finite-difference triangular 

elements (zones) during the meshing process. Joints are represented numerically as contacts or 

interfaces between blocks. Adjacent blocks can touch along an edge segment (edge-edge 

contacts) or at discrete points (corner-corner or corner-edge contacts). Domains are the regions 

of space between blocks, which are separated by contact points. Flow in joints is modeled as 

flow between domains (Batchelor 1967). Figure  3.15 depicts these definitions. 
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Figure  3.15. Schematic of block, contact, zone and domain in UDECTM (ITASCA Consulting Group Inc. 2010). 

3.7.2.2 Mechanical interactions between blocks 

In deformable blocks, point contacts are created at all gridpoints located on the block 

edge in contact with another block. Contact points are updated automatically as block motion 

occurs. UDECTM identifies blocks and their locations through time by tracking the contact 

coordinates. Forces of mechanical interaction between blocks are only applied at contacts 

(Batchelor 1967).  

The law of motion for each block, a force-displacement law for each contact and a continual 

updating of gridpoints’ coordinates in a time-marching algorithm defines the calculation cycle in 

UDEC™. Each timestep starts with updating contact coordinates with known displacements. A 

force-displacement law is used to find contact forces from these known displacements. The 

contact constitutive model chosen for each contact affects the contact’s response to the force. 

Newton’s second law gives the motion of the blocks resulting from the known forces acting on 

them. Velocities and positions of gridpoints are updated. For the deformable blocks, motion is 

calculated at the gridpoints of the triangular constant-strain elements within the blocks. Then, the 

application of the block material constitutive relations gives new stresses within the elements 

(Jing and Stephansson 2007). Figure  3.16 shows the calculation algorithm for one timestep in 

UDECTM. 
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Figure  3.16. Solution algorithm for each timestep in UDECTM (ITASCA Consulting Group Inc. 2010). 

Newton’s second law can be written for the one-dimensional motion of a single mass acted on by 

force  , as: 

 (®)� = �t|�,  
( 3-69) 

where t|  is the velocity, , is time and � denotes mass. 

The equations of motion for gridpoints of zones within the deformable blocks are identical to 

those for the centroids of rigid blocks, except that rotational terms are neglected for gridpoints. 

An explicit central finite difference scheme is used to solve the left-hand side of Newton’s 

second law through time (more details are provided in section 3.4.4). Block velocities and 

displacements are determined by integration over increments in time. In the central difference 

scheme, the equilibrium of the system at time t is considered to calculate the displacement at 

time ,	 + 	∆,/2 (Kazerani and Zhao 2010). 

INITIALIZATION 

• Gridpoint masses computed 

LAW OF MOTION (for each gridpoint) 

• Gridpoint velocities are updated using gravitational 
acceleration and known force sums acting on gridpoints 

• Coordinates of gridpoints updated from velocities 

CONSTITUTIVE RELATION (for each contact) 

• Computes normal and shear displacement increments across contacts 
from strain rates of gridpoints involved in contact 

• Update shear and normal forces from above displacements increments 
using joint constitutive law 

• Add in contact’s contribution to the force sums for gridpoints involved 

in the contact 

CONSTITUTIVE RELATION (for each zone) 

• Update zone stress using constitutive law 
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gridpoint forces  
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�t|�, = t| (®¼∆®/4) n t| (®Ç∆®/4)∆,  
( 3-70) 

re-arranging 

t| (®¼∆®/4) = t| (®Ç∆®/4) +  (®)� ∆, ( 3-71) 

The solution for the nodal point displacements at time ,	 + 	∆,/2 is obtained using the central 

difference approximation for the accelerations with velocities stored at the half-timestep point: 

t| (®¼∆®) = t(®) + t| (®¼∆®/4)∆, ( 3-72) 

Since the force depends on displacement, the force-displacement calculation is done at one time 

instant. For blocks in two dimensions acted on by several forces as well as gravity, the velocity 

equation is (Kazerani and Zhao 2010): 

t| �(®¼∆®/4) = t| �(®¼∆®/4) + ê∑ �(®)� + ëLì∆, ( 3-73) 

where 	| � is the velocity component of the block centroid; 

 ç� is the component of gravitational acceleration (body forces); 

the subscript v denotes the component in a Cartesian coordinate system; and, 

 the superscripts denote time at which the corresponding variable is evaluated. 

The new block location is identified using the updated velocities (Kazerani and Zhao 2010): 

q�(®¼∆®) = q�(®) + t| �(®¼∆®/4)∆, ( 3-74) 

where 2 is the coordinate of the block centroid. 

The deformability of deformable blocks is governed by the assigned constitutive (i.e., stress-

strain) relation. During each timestep, zone strain increments are calculated as: 

∆B�& = 12 (	�,& + 	&,�)∆, ( 3-75) 
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The application of the constitutive relation for deformable blocks (equation ( 3-32)) gives the new 

zone stresses. 

∆>�& = ¶B³³D�& + 2:B�& ( 3-76) 

In summary, each time step produces new block positions that generate new contact forces. In 

determining the forces acting on a gridpoint, the stresses in surrounding zones are accounted for 

by integrating over a surface, S, enclosing the gridpoint: 

 í 	= ¡ >�&�&��Í�î  
( 3-77) 

where Sæ is the surface enclosing the mass of surrounding elements at the gridpoint and nA is the 

unit normal to Sæ. The total force acting on a gridpoint is the result of all external forces applied 

to the gridpoint, plus the contribution from surrounding zones,	Fð. The resultant of all external 

forces applied to the gridpoint,	 , is given as: 

 =  ñ +  % +  ´ ( 3-78) 

where �ñ is calculated from the contribution of the internal stresses in the zones adjacent to the 

gridpoints; �% results from the contact forces; and �´ is the external load. 

The procedure is repeated until either a satisfactory state of equilibrium or one of continuing 

failure results (Kazerani and Zhao 2010). 

3.7.2.3 Momentum balance 

Consider two bodies, denoted by subscripts a and b, that are in contact for a period of 

time (Zhang and Sanderson 2002); based on Newton’s law, the force   acts in opposite 

directions on the two bodies: �átò á =  				���			�Êtò Ê = n 				 
( 3-79) 

combining the equations and integrating: 

¡ �átò á�
� �, = n¡ �Êtò Ê�

� �, ( 3-80) 
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�át| á(�) +�Êt| Ê(�) = �át| á(�) +�Êt| Ê(�)				 ( 3-81) 

According to this equation, the total momentum at the end of the time period is identical to that 

at the beginning (conservation of momentum). 

3.7.2.4 Energy balance 

Assume that a body with initial velocity of t| Ý is brought to a final velocity of t|  in a distance, �, 

by a constant force,  , such that (Zhang and Sanderson 2002): 

�tò =   ( 3-82) 

Using the definition of acceleration and assuming that � is constant: 

12�(t| 4 n t| �4) =  . ó ( 3-83) 

This equation indicates that the work done by the constant force,  , is equal to the change in 

kinetic energy of the body. 

3.7.2.5 Fluid flow 

UDECTM has the ability to perform analysis of fluid flow through the fractures of a 

system of impermeable blocks, which is numerically implemented by a network of domains. 

Flow in joints is modeled as flow between domains. Each domain is assumed to be filled with 

fluid at a uniform pressure in the absence of gravity. Fluid flow is governed by the pressure 

differential between neighboring domains and flow rate can be calculated on the basis of contact 

type (ITASCA Consulting Group Inc. 2010). For a point contact, the flow rate is given by: 

² = n�%∆+ 
( 3-84) 

where �%	is a point contact conductivity factor and ∆+ is the pressure change over a fracture 

length. 

In the case of an edge contact, the cubic law is used for flow in a planar fracture: 

² = n�& 	�5 ∆+w  ( 3-85) 
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where � is the contact hydraulic aperture; w is the contact length defined as the sum of half the 

distance to the nearest contacts to the left and right; �& is the joint conductivity factor; and 
∆ố

 is 

the pressure gradient. Joint conductivity factor is given by: 

�& = 112: ( 3-86) 

where : is fluid dynamic viscosity; and ∆+ is the pressure drop 

∆+ = +4 n +3 + 9)ç(Ô4 n Ô3) ( 3-87) 

where +3 and +4 are domain pressures, 9) is the fluid density, ç is the acceleration of gravity 

and Ô3 and Ô4 are domain y-coordinates. For problems with gravity, the fluid pressure is 

assumed to be linearly changing according to the hydrostatic gradient. This indicates that fluid 

flow may take place even when both domain pressures are zero (Hart 1991). 

Hydraulic aperture is usually given by: 

� = �� +		( ( 3-88) 

where �� is the joint aperture at zero normal stress and un is the joint normal displacement 

(ITASCA Consulting Group Inc. 2010). Figure  3.17 shows the relation between hydraulic 

aperture and joint normal stress. 

 

Figure  3.17. Relation between hydraulic aperture and joint normal stress (ITASCA Consulting Group Inc. 2010). 

New values of aperture for all contacts and volumes of all domains are computed by updating the 

geometry of the system after each time step in the mechanical calculations. Also, flow rates and 

domain pressures should be updated. The new domain pressure after a timestep õ, is given by:  
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+ = +� + $)ö ∆,� n $) ∆��Ð  ( 3-89) 

where  +� is the domain pressure in the preceding timestep; ö is the sum of flow rates into the domain from all surrounding contacts; $) is the fluid bulk modulus; ∆� = �	 n	��, � and �� are the new and old domain volumes, respectively; and	�Ð 	= 	 (�	 +	��)/2.	
Possible changes in domain pressure come partly from domain volume variations, which result 

from the incremental motion of adjacent blocks.  

Using the new domain pressures, the forces exerted by the fluid on the edges of the adjacent 

blocks can be obtained and then can be added to the other forces applied on the block gridpoints 

(i.e., mechanical contact forces and external loads). Consequently, total stresses are obtained for 

inside the blocks and effective normal stress for the contacts (ITASCA Consulting Group Inc. 

2010). This achieves a level of hydro-mechanical coupling that is adequate for modeling jointed 

rock masses where the fluid flux within blocks is negligible. 

3.7.2.6 Numerical damping 

Dynamic systems subjected to driving forces would oscillate forever without damping. 

Natural dynamic systems have some degree of damping in the form of gradual (or very sudden) 

suppression of vibrational energy in the system (Figure  3.18). Damping is used for both static 

and dynamic problems in order to reach a steady-state solution. Damping may occur either in 

contacts or blocks or in both. Part of the rationale for using strong damping in contacts is because 

of energy loss due to slip along contacts and because of internal friction loss in the intact 

material (Hart 1991).  

Static problems need more damping than dynamic ones. Mass-proportional damping or viscous 

damping applies a force to gridpoints of deformable blocks. This force is proportional to the 

(mass) velocity but in the opposite direction. Another damping method is the stiffness-

proportional method, which applies a force to contacts or a stress in zones. This force/stress is 

proportional to the incremental force or stress (Hart 1991). A damping matrix, �, is defined as: 

� = ÷� + ø$ ( 3-90) 

where � is the mass matrix, � is the stiffness matrix, ÷ and ø are the mass and stiffness 

proportional damping constants. 
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Figure  3.18. Concept of damping. 

For quasi-static problems, only mass-proportional damping is generally used in UDECTM. 

UDECTM provides an automated or adaptive damping scheme which does not require user 

specification of damping constants. This scheme adjusts the mass damping constant, ÷, to the 

conditions which occur during solution. The scheme tracks the rate of energy change in the body 

during solution.  

3.7.2.7 Numerical Stability in UDEC
TM

 

Mechanical time step and numerical stability 

The explicit finite difference solution procedure used for the deformable blocks is only 

conditionally stable, therefore the critical timestep should satisfy both of the stability criteria for 

zone deformation and contact displacement. The timestep required for the stability of the zone 

computations is estimated as (Board 1989): 

∆,ñ = 2	�v�	 ù��$� ú
3/4

 ( 3-91) 

where Mi is the mass of node i and Ki is a measure of stiffness of the elements around the node i. 

The timestep required for the stability of the contact displacement is estimated as (Board 1989): 

∆,Ê = �û}�	2	 ù �Ð�(2$Ðá�ú
3/4

 ( 3-92) 

t 

System with damping 

System without damping 
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where �Ð�(is the smallest block mass in the problem and $Ðá� 	is the largest contact stiffness. 

FRAC stands for the fact that a block is in contact with several blocks. This constant is supplied 

by a user and is typically 0.1 (Wang 1992). 

The critical mechanical time step is finally chosen as: 

∆,Ð = min( ∆,ñ , ∆,Ê) ( 3-93) 

Hydraulic time step and numerical stability 

The numerical stability of the fluid flow algorithm, for slowly varying domain areas, 

requires that the time step be limited to (Board 1989): 

∆,Ë = �v� ù }�$) ∑$�ú ( 3-94) 

where the ∑$� is extended to all contacts surrounding the domain with area, }�, and 

$� = ��2��% , �&�5/w� ( 3-95) 

where �% is a contact conductivity factor; 

�& is joint conductivity factor; $) is fluid bulk modulus; 

l is contact length; 

and a is contact aperture;  

For joint contacts (edge-edge), the domain area is the product of joint length and aperture. 

Because the minimum joint aperture is �èÍ', the domain area is always positive, even if the 

blocks are overlapping. 

The minimum value of ∆,Ëis compared to the critical time step determined from the mechanical 

part of the model, ∆,Ð. The minimum defines the critical time step for the coupled hydro-

mechanical analysis. A minimum domain area can be set for computational efficiency. 

Finally, the time step is selected as: 

∆, = min( ∆,Ð, ∆,Ë) ( 3-96) 
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3.7.2.8 Material properties 

There are many choices of constitutive models available in UDECTM for representing 

material behavior of both joints and blocks. However, a problem analysis should always start 

with simple block and joint material models. Two aspects should be considered in choosing an 

appropriate constitutive model (Hudson and Harrison 1997): 

• Known properties of the corresponding material 

• Purpose of the analysis 

The elastic block model and Mohr-Coulomb model are two of the most well-known block 

material models. The elastic, isotropic model is effective for homogenous, isotropic, continuous 

materials that show approximately linear stress-strain behavior. This model is usually applied in 

cases in which slip along discontinuities is the principal mechanism for failure. The Mohr-

Coulomb failure criterion is commonly used for materials that yield under shear loading. The 

yield stress in this model only depends on major and minor principal stresses and the 

intermediate principal stress is assumed to have no influence. This constitutive model is widely 

used in underground mine analysis (Hudson and Harrison 1997). Using a Mohr-Coulomb block 

model, the following material properties are required (Keilich 2009): 

• Density (kg/m3); 

• Young’s Modulus (GPa); 

• Poisson’s Ratio; 

• Bulk Modulus (GPa); 

• Shear Modulus (GPa); 

• Friction angle (˚); 

• Dilation angle (˚); 

• Cohesion (MPa); and 

• Tensile Strength (MPa). 

Typically, rock material properties are obtained either from tests or literature. One reference for 

these parameters could be (Fjaer et al. 2008).  

The types of models available to characterize the physical response of rock discontinuities are 

limited and the Coulomb slip and Barton-Bandis joint models are generally used in rock 

mechanics. The Barton-Bandis failure criterion is a nonlinear empirical equation used to model 

shear strength of rock discontinuities and requires more detailed knowledge of joint behavior. 

Due to the complexity of this criterion, it is always recommended to first perform modeling 

based on the Coulomb-slip joint model to gain better understanding of joint behavior (Hudson 

and Harrison 1997). In the Coulomb-slip model, dilation is governed by a dilation angle, ψ. The 

Coulomb slip joint model is illustrated in Figure  3.19.  
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Figure  3.19. Basic joint behavior model used in UDECTM (ITASCA Consulting Group Inc. 2010). 

3.7.2.9 Joint material properties 

The material properties assigned to joints in a DEM model must represent both the 

stiffness and strength of the real joints. These properties consist of joint friction angle, cohesion, 

dilation angle and tensile strength, as well as joint normal and shear stiffnesses.  Joint properties 

are conventionally derived from tests on real joints (e.g., triaxial and direct shear tests) or from 

published data on materials similar to those being modeled. Stiffness properties (i.e., normal 

stiffness, �( , and shear stiffness, �') are of essential importance. Joint stiffness can play an 

important role in the mechanical response and values must be selected carefully. A good rule of 

thumb is that �( and �' should be kept smaller than ten times the equivalent stiffness of the 

stiffest neighboring zone in blocks adjoining the joint (Hart 1991): 

�(	���	�' 	≤ 10	 ü��2 �$ + 4 3{ #∆þÐ�( �� ( 3-97) 

where $ and # are bulk and shear moduli respectively to the block material, and ∆z�@i is the 

smallest width of the zone neighboring the joint in the normal direction. If the joint stiffnesses 

are greater than 10 times the equivalent stiffness, the solution time of the distinct element model 
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will be significantly longer than for the case in which the ratio is limited to ten, without a 

significant change in the behavior of the system (Hart 1991). 

In order to improve solution efficiency, small values of shear and normal stiffness should be 

selected. Joint normal stiffness can be estimated from: 

	( = >( �({  ( 3-98) 

This displacement should be small compared to a typical zone size. If it is greater than 10% of an 

adjacent zone size for example, then either there is an error in one of the numbers, or the stiffness 

should be increased (Hart 1991). Values for normal and shear stiffnesses for rock joints can 

typically range from roughly 10 to 100 MPa/m for joints with soft clay in-filling to over 100 

GPa/m for tight joints in granite and basalt. Published data on stiffness properties for rock joints 

are limited. Summaries of data can be found in (Kulhawy 1975), (Rosso 1976), and (Bandis et al. 

1983).  

Published strength properties for joints are more readily available than stiffness properties. 

Summaries can be found, for example, in (Jaeger et al. 2007), (Kulhawy 1975), and (Bandis et al. 

1983). Friction angles can vary from less than 10˚ for smooth joints in weak or clayey rock, such 

as tuff, to over 50˚ for rough joints in hard rock, such as granite. Joint cohesion can range from 

zero cohesion to values approaching the compressive strength of the surrounding rock. Dilation 

angles for rock are typically low and less than the friction angle and most values are between 0˚ 

and 20˚ (Hart 1991). 

Scale dependence of joint properties is a major question in rock mechanics. Often, the only way 

to guide the choice of appropriate parameters is through comparison to similar joint properties 

derived from field tests. However, field test observations are extremely limited (Hart 1991). 

Some results are reported by (Kulhawy 1975). 

 SUMMARY 3.8

Rock is a heterogeneous material with natural fractures and other features that make it 

unfeasible to attempt to simulate the exact behavior of the rock and its natural fracture fabric. 

Some level of simplification or homogenization is needed. This study tries to make reasonable 

simulations that still allow the emulation of the behavior of rock masses with natural fractures. 

An “emulation” in this sense is an attempt to capture and model important behavior with less of a 

physical link to the rock mass than in the case of a “simulation”. Results from emulations are 

considered to be more an aspect of “history matching” than a physically correct representation of 

a particular case. To this end, UDECTM was used in carrying out coupled hydro-mechanical 

analyses of models of naturally fractured rock masses being subjected to hydraulic fracture 

injection. 
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There are some advantages and disadvantages in using UDECTM for hydraulic fracture modeling. 

One advantage is that coupled hydro-mechanical analysis can be performed under different 

loadings (fluid pressure or in-situ stresses) via UDECTM. Another merit of using UDECTM is that 

pre-existing natural fractures can be incorporated and undergo large mechanical deformations. 

Furthermore, fracture modes, i.e. shearing and opening, are allowed. While most of the models 

oversimplify the rock mass as an equivalent continuum, UDECTM treats it as a discontinuum. 

From another aspect, UDECTM is a two-dimensional interface, which means that simulations 

may not be ideally close to reality especially in some particular cases. In such problems, three-

dimensional codes may offer a better means of studying the interconnectivity between natural 

and hydraulically-driven fractures and can more closely represent the three-dimensional nature 

of the process. However, generating three-dimensional geometries is computationally demanding 

and requires much more execution time than two-dimensional models, even for modest 

problems. Because generating different fabrics was chosen to be one of the main parts of the 

current study, it was decided to continue with UDECTM.  

UDECTM is not capable of creating new fractures, but can only assist with the opening and 

shearing of pre-existing fractures. However, because the current research is focused on hard low-

permeability naturally fractured rocks such as jointed igneous rock masses or dense shale gas 

rock masses, where there is little tendency to fracture intact rock and generate a new fracture, 

UDEC™ should be adequate to study the effect of different rock fabrics. Hence, that limitation 

would not be an issue for this particular research or for similar studies. 

For the current study, DEM is deemed to be an appropriate approach to modeling the hydraulic 

fracturing process in a naturally fractured rock mass. Despite the fact the models are two-

dimensional, UDECTM sufficiently represents a real medium with the inherent fabric of 

discontinuities, and is computationally efficient. Simulations for the research carried out in this 

thesis have exclusively used UDECTM to study the behavior of a fractured system during 

hydraulic fracturing under different conditions.   

Finally, although it is possible to specify the constitutive behavior of each joint in these DEM 

analyses, or to use a statistical generator to achieve more realistic probabilistic distributions of 

joint properties, or to assign very different properties to different joint sets, it was decided to 

choose one constitutive relationship for all joints so that any probabilistic or uncertainty effects 

would not mask the behavior of the system. It also appears that there is little quantitative material 

in the literature that would allow a rational choice of statistical dispersion coefficients for various 

properties such as joint cohesion and roughness (dilation angle).    

The following simplifying assumptions are made in the formulation of the numerical model. 

• The intact rock blocks are linearly elastic. 

• The dimension of the model perpendicular to the plane of analysis is large enough so that 

a plane strain condition is valid for the two-dimensional model. 
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• Fracture growth and rock deformations occur under equilibrium conditions; hence, quasi-

static analysis is a valid approach. 

• Quasi-static equilibrium is achieved through imposition of large mass and damping ratios 

to the accelerations and velocities calculated in the dynamic model. 

• A large but finite number of joints exist. 

• Joint displacements are small relative to joint dimensions. 

• Jointed rock located at large distances from the perturbed area behaves as an intact rock 

due to presence of confining stresses. 

• The shearing behavior of a joint is governed by Coulomb’s friction law.  

• The opening behavior of a joint is assumed to be elastic and nonlinearly proportional to 

the total normal stress.  Shear displacement and shear dilation are assumed to be 

irreversible. 

• A “closed” rock joint remains somewhat conductive; by imposing a minimum fracture 

aperture, fluid flow may take place through a “closed” joint. 

• Flow in the rock joints can be described by the cubic law, in which flow rate is 

proportional to pressure gradient and cube of the joint aperture.  

• There is no fluid leak-off from the joints into the rock matrix. 

• Steady-state fluid flow is considered in the hydro-mechanically coupled model. 

• Fluid boundary condition is applied such that boundaries are impermeable and fluid flow 

is zero at boundaries of the domain. 

• Fracture propagation is not based on the linear elastic fracture mechanics (LEFM) and 

does not consider fracture toughness. 

• Hydro-mechanical coupling is sequential. The fluid equation is solved first and then the 

solid equations are updated. 

Advantages of the current study are listed below. 

• While most of the models oversimplify the rock mass as an equivalent continuum, 

UDECTM treats it as a discontinuum.  

• UDECTM sufficiently represents a real medium with the inherent fabric of discontinuities, 

and is computationally efficient. 

• Pre-existing natural fractures can be incorporated and undergo large mechanical 

deformations. 

• Fluid injection can be applied either as pressure (Essential) or flux (Natural) boundary 

condition in UDECTM, contrary to many other commercial codes which are deficient in 

applying flux boundary conditions for the fluid model. 

• UDECTM is capable of applying different constitutive models for solid matrix and joints. 

• Joint deformations are allowed in both Mode I (opening) and Mode II (shearing). 

• The model is capable of simulating dilation of the rock mass (as in damage mechanics 

formulations) when shearing deformations along the rock joints are dominant. 
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Limitations of the present research are expressed as follows. 

• UDECTM is a two-dimensional interface, which means that simulations may not be 

ideally close to reality. In such a case, three-dimensional codes may offer a better means 

of studying the interconnectivity between natural and hydraulically-driven fractures and 

can more closely represent the three-dimensional nature of the process. However, 

generating three-dimensional geometries is computationally demanding and requires 

much more execution time than two-dimensional models, even for modest problems. 

• UDECTM is not capable of creating new fractures through intact rock; hydraulic fracture 

propagation is modeled through opening and shearing of pre-existing fractures. However, 

because the current research is focused on hard low-permeability naturally fractured 

rocks such as jointed igneous rock masses or dense shale gas rock masses, where the 

dominant hydraulic fracture propagation mechanism is assumed to be natural fracture 

reactivation, UDEC™ should be adequate to study the effect of different rock fabrics. 

• UDECTM is not capable of simulating permeable rock blocks, therefore no fluid leak-off 

can be simulated from the fracture network into the rock matrix. 

• UDECTM only considers cubic law for the fluid model and other fluid constitutive models 

cannot be applied. 

• Voronoi tessellation is picked as one of the main representatives of naturally fractured 

rock mass in this study. However, it may poorly represent local fracture growth because it 

does not necessarily offer preferred directions for the fracture to grow. 

• Based on the constitutive model and model configuration chosen in chapter 6, there is not 

a strong stress drop (frictional stress) during slippage. Thus, seismic moment and seismic 

energy dissipation have almost equal values, which in turn gives small magnitudes of 

shear events.  

• Due to computational limitations, injection time and injection rate are scaled in chapter 7. 

Although it may not be the most rigorous approach, it is still reasonable and sufficient to 

meet the determined objectives. 

It is worth mentioning that the aforementioned limitations do not significantly affect the 

accomplishments of this study and the final results are considered valid within the context of a 

preliminary study with modest goals. 
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CHAPTER 4 IMPORTANCE OF THE STUDY AND PARAMETRIC 

ANALYSES 

This thesis is focused on studying the effects of rock mass discontinuity fabric on 

deformability and permeability of naturally fractured strong rocks under different stress states 

when subjected to hydraulic injection. Chapter 4 presents a number of basic definitions and 

primary simulations to support the importance of this study in understanding rock mass behavior.  

An assessment is carried out to explore some additional parameter effects in rock masses 

subjected to hydraulic injection. 

OVERVIEW 

In reality, discontinuities act as channels for fluid transmission and therefore must be 

included in the modeling of fluid flow in naturally fractured rock masses. To geometrically 

characterize a NFR, parameters such as orientation, spacing distribution, spatial anisotropy and 

persistency of these natural discontinuities must be specified. All of these considered, and 

perhaps including bedding planes in the case of sedimentary rocks or schistocity in hard rocks, 

these comprise the dominant “fabric” of a rock mass that will govern its behavior (Zhang and 

Sanderson 1995). Fabric is perhaps the most important feature for quantifying mechanical 

(deformation mechanisms) and hydraulic (permeability) responses of NFR to applied changes in 

stress and pressure associated with injection. 

In this work, the effects of joint geometries and properties on deformation and fluid flow are 

investigated. Coupled hydro-mechanical modeling is performed using the Universal Distinct 

Element Code (UDECTM), a Distinct Element Method (DEM) software. Fluid injection with 

steady-state flow through the naturally fractured rock mass has been modeled using simple 

common geometries of NFR. Given different basic components of a natural fracture fabric 

subjected to a hydraulic gradient, flow rates are examined and shear and normal displacements at 

different stress field anisotropy values are investigated.  

Potential applications of these results are in stress management (relief of shear stress) by 

hydraulic fracturing in igneous rock mines and in improving hydraulic fracture treatments in 

arrays of wellbores in oil and gas development in stiff jointed rock masses. In practice, to better 

understand the efficacy of a HF operation, many fabric patterns and fluid parameters should be 

investigated. Results of simulations carried out in a jointed medium represented by a Voronoi 

tessellation are presented, and the effects on HF propagation of joint density and fabric variations 

are studied by adding persistent and non-persistent discontinuities to the initially isotropic 

Voronoi tessellated rock fabric. For some simulations, a through-going fault has been added to 

the DEM model at an angle to the principal stress directions to examine the role of a large 

persistent planar feature but with the same cohesive and frictional properties as the other joints. 

The intensity of fracturing was investigated and it is seen that the number of discontinuities 

inversely affects the area of the injection zone. In other words, the area in which injection fluid 
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flows through joints decreases by increasing the number of discontinuities that can accept flow. 

Better understanding of these factors may have positive economic benefits by helping to interpret 

the consequences of HF operations in practice. 

 NATURALLY FRACTURED ROCK 4.1

Most rocks possess mechanical discontinuities including joints, fractures, faults, shear 

zones, bedding planes, foliation, schistosity, gneissosity, cleavage and other geological 

structures. Natural fractures, interchangeably called joints, are the most common and important 

discontinuities and are usually found in sets, i.e., in groups or families of parallel or sub-parallel 

joints (Figure  4.1). 

 

Figure  4.1. Well-developed joint sets on flagstones at St. Mary’s Chapel, Caithness, Scotland. Not counting bedding 

planes, two orthogonal joint sets are visible (Sorkhabi 2014). 

Discontinuities provide potential flow channels in a naturally fractured rock mass as well as 

potential slip planes (Singhal and Gupta 2010). Deformation is controlled by the geometrical 

characteristics of the NFR, the mechanical and hydraulic properties of joints, the stiffness of the 

rock matrix blocks and the in-situ stress conditions (Zhang and Sanderson 2002).  

The interface between mechanical deformation, fluid pressure and fluid flow is demonstrated in 

Figure  4.2. Fluid pressure applies a force, ��, at contacts, which contributes to the deformation of 

the block. At the same time, the aperture, �, at the interface is controlled by the normal 

displacements, 	(, of the joint. This, together with the fluid pressure gradients, determines the 

flow of fluid in the joint, which, in turn controls the redistribution of fluid pressure in the rock 

mass (ITASCA Consulting Group Inc. 2010).  Modest changes in aperture may have large 

effects on flow because of the high order relationship between aperture and flow capacity in a 

joint. 
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Figure  4.2. Hydro-mechanical coupling: a) Fluid pressure effect; b) Mechanical effect on aperture; c) Fluid flow; d) 

Fluid pressure gradient (ITASCA Consulting Group Inc. 2010). 

Natural fractures are planes of weakness; the shear and tensile strength of these natural fractured 

are generally far lower than for the adjacent rock mass. Fractures are also compliant features 

with normal deformability values far greater than the intact rock, and under suitable pressures, 

natural fractures can also become fully open (non-contacting walls – Mode I fracture) as stresses 

and pressures change. Natural fractures are usually divided into two types: tectonic and non-

tectonic fractures. Tectonic natural fractures are created by processes of deformation (folding, 

faulting), while non-tectonic natural fractures are related to physical diagenesis (loss of porosity, 

organic matter degradation, clay mineral dehydration, mineral changes, pressure and stress 

changes). In the context of the problems to be addressed in this study, the origin of the natural 

fractures is more non-tectonic than tectonic (Nelson 2001), and it is assumed that the natural 

fractures have not undergone previous shear displacement, they are purely Mode I natural 

fractures before any hydraulic injection. However, it is worthwhile to address this in more detail. 

Natural fractures are viewed as closed or nearly-closed planes of weakness with low tensile 

strength that can be opened (Mode I) or sheared (Mode II or III) by stress changes (Wu et al. 

2009).  Because of different resultant properties of the joints, it is of importance to differentiate 

shear fractures from purely tensile ones. The following elements may help in such 

discrimination: 
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• Shear joints (Mode II and III) may exhibit displacement parallel to the plane of the 

joints, which is absent in the case of pure extension (Mode I) joints. 

• Shear joints commonly occur in conjugate sets which may be indicated by a statistical 

analysis showing clustering in two directions separated by 50-60°.  This also indicated 

that they developed in a differential stress field (>3	≠ >4	≠ >5), without which condition 

shear cannot generally occur. 

• Generally, extension joints formed by diagenesis or cooling are more likely to be open 

or partially open, whereas pure shear joints are usually tightly sealed (dilatant shear of 

natural joints may leave some remnant aperture). 

• The current orientation of extensional fractures and the slip direction of shear fractures 

may also provide information on the stress fields at the time of fracture formation and 

therefore help to understand the likely trends of shear and extension fractures. At the 

time of natural fracture formation, the maximum principal compressive stress - >3 - 

bisects the dihedral angle of conjugate Mode II shear fractures and is thus likely to be 

parallel to the orientation of the major set of extensional natural fractures (Mode I). 

Caution must be exercised in assuming that the natural fracture fabric is truly indicative of the 

current stress state. Since the natural fractures were created, changes in the principal stress field 

magnitudes and orientations may have occurred, and pressures changed as well. 

 SIMULATIONS OF BASIC GEOMETRIES 4.2

4.2.1 MODEL GEOMETRIES 

Generating a geometry that is somehow representative of the naturally fractured rock mass is 

important. Difficulties arise as to how to measure and then mathematically represent the complex 

joint system and how to interpret the complex mechanical deformation mechanisms that are 

significantly influenced by the interaction between joints and blocks. The geometry of a naturally 

fractured system is identified by joint orientation, spacing, length, persistency and connectivity, 

as well as the presence of bedding or foliation planes that are weak, as in the case of intensely 

bedded rocks, strongly fissile shale or mica schists.  

In order to understand the behavior of the NFR system and quantify the deformation and 

permeability of the naturally fractured rock mass, it is worthwhile to understand the nature of 

joint plane intersections, using sub-areas that contain only two or three joints. These sub-areas 

may be viewed as the basic components of the NFR that reveal the local mechanisms of 

deformation and fluid flow. Four basic elements of a NFR are identified as follows (Zhang and 

Sanderson 2002) (Figure  4.3) 

• Single through-going joint (Figure  4.3a): in this geometry, the angle with respect to the 

reference axes (often the principal stress directions) can be changed to study how 
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orientation may affect mechanical deformation and therefore how it affects flow-rate 

under given pressure conditions. 

• T-junction joints (Figure  4.3b): this geometry is most usually seen in randomly oriented 

fracture networks. The angle of intersection does not have to be 90° between the joints.  

• Cross-joints (Figure  4.3c): this geometry is often associated with tectonic joints, and 

the intersection angle in that case is usually about 50-60°. (The angle between sets and 

the stochastic variation of sets’ directions, spacings, etc. allows study of hydro-

mechanical impacts of system geometry, although this is a complex exercise.) 

• Stepped joints (Figure  4.3d): a geometry most common in non-tectonic natural fracture 

patterns where there is one strongly dominant set. 

  

(a) (b) 

  

(c) (d) 

Figure  4.3. Simplified geometrical components of a natural fracture network a) single through-going joint; b) T-

junction joints; c) cross- joints; d) stepped joints. 

4.2.2 MODEL INITIAL CONDITIONS 

Numerical simulations carried out with UDECTM were used to model pressurized joints 

with uniform fluid pressure gradients through the joints in x and y directions. Since mechanical 

deformation and fluid flow are interdependent, the hydro-mechanical coupling in UDEC™ is 

implemented to aid in predictions of the rock mass mechanical and hydraulic response to 

hydraulic pressure changes. It is also possible to study the effects of various fabric patterns on 

the distribution of slip and opening of fractures at different stress field anisotropies. A two-

dimensional plane-strain section is generated in UDECTM to represent a NFR 1m × 1m in size, 

subjected to a biaxial in-situ stress state (two principal in-plane compressive stresses). The 

medium is initially dry and then hydraulic gradients of 1 kPa/m are applied in the x and y 

directions. The properties of the rock, the joints and the fluid are listed in  
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Table  4.1.  

 

Table  4.1. Rock, joint and fluid properties. 

Rock properties Joint mechanical properties 

Density 2600 kg/m3 

Bulk modulus 40 GPa 

Shear modulus 24 GPa 

Friction angle 27 Degree 

Cohesion 27 MPa 

Tensile strength 1 MPa 
 

Normal stiffness 100 GPa/m 

Shear stiffness 40 GPa/m 

Friction angle 30 Degree 

Cohesion 0.1 MPa 

Dilation angle 5 Degree 
 

Joint hydraulic properties Fluid properties 

Permeability factor 0.83 × 108 MPa-1 s-1 

Residual hydraulic aperture 1 × 10-4 m 

Aperture at zero normal stress 5 × 10-4 m 
 

Density 1000 kg/m3 

Dynamic viscosity 10-3 Pa·s 
 

At an early stage in this work, it was decided to keep the properties of all joints the same, and to 

deal only with one set of mechanical properties for the intact rock blocks. In nature, one will 

expect variations in joint properties, especially between one set and another. However, this adds 

another level of complexity to the simulations, making interpretation and understanding of 

results more challenging. In future studies, once more insight is generated from these and 

additional simulations, issues of variability of natural properties can be addressed.  

4.2.3 BASIC SIMULATIONS 

In order to assess the importance of geometry, each geometrical component introduced in 

Figure  4.3 was subjected to similar simulations. Figure  4.4 illustrates the displacement vectors 

for each geometry. Pressurization of fluid tended to open pre-existing fractures in Mode I 

(extensional) deformation, but the direction and magnitude of the normal displacement are 

intimately related to the geometry and stress condition.  

  

αααα = 60˚ αααα = 60˚ 

ββββ = -30˚ 

σσσσxx=30 MPa 

σσσσyy=20 MPa 
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(a)  (b) 

  
(c) (d)  

Figure  4.4. Effects of geometry on displacement distribution under anisotropic stress (30,20 MPa), a) single 

joint; b) T-junction joints; c) cross-joints; d) stepped joints. 

Figure  4.5 shows block rotations for all geometries for an initially dry model as well as the 

model after it was subjected to 1 kPa/m fluid pressure gradient. Green fans indicate the direction 

and relative magnitude of block rotation. Comparing block rotations for each geometry indicates 

that each block in these simple models rotates independently as a function of fluid pressure and 

local stress conditions. Similarly oriented joints in different geometries undergo different 

amounts of opening or closure, indicating that geometry highly controls block deformation and 

aperture changes during induced fracturing. Of course, in more complex models with many 

joints, the contacts with adjacent blocks will alter and constrain the directions of block 

movement. 

 Without flow With flow 

(a) 

  

αααα = 60˚ αααα = 60˚ 

θθθθ = -30˚ 

ϕϕϕϕ = -30˚ 

γγγγ = -30˚ 
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(b) 

  

(c) 

  

(d)  

  

Figure  4.5. Effects of geometry on block rotation under anisotropic stress (30,20 MPa) and hydrostatic 

pressure, a) single joint; b) T-junction joints; c) cross-joints; d) stepped joints.  

Figure  4.6 illustrates the flow directions for all geometries under a pressure gradient in the x and 

y directions, respectively shown as ��	and �Ò. Flow direction in a joint oriented at a small angle 

to σMAX remains constant but in those joints inclined at larger angles, opposite flow directions 

under x and y gradients can develop. The situation is even more complicated in terms of flow-

rate magnitude. In the case of the single through-going joint, flow-rate is directly related to the 

angle between the plane of the joint and the direction of σMAX; that is, joints inclined at larger 

angles show more closure and hence sharply lower flow-rates. As stated above, in geometries 

with complex networks, flow-rate response will show more complex behaviour because of the 

complex interacting mechanical deformation mechanisms at work. 

 �2 �Ô 

σσσσxx=30 MPa 

σσσσyy=20 MPa 
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(a) 

  

(b) 

  

(c) 

  

(d) 

  

Figure  4.6. Effects of geometry on flow direction with gradients in the y, then the x direction. a) single joint; 

b) T-junction joints; c) cross joints; d) stepped joints. 

σσσσxx=30 MPa 

σσσσyy=20 MPa 
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Strong hydro-mechanical coupling exists in these systems such that fluid pressure affects the 

mechanical response of the rock mass, which in turn controls the redistribution of the fluid 

pressure through joint conductivity changes arising from joint aperture alterations. As this is a 

very strong response associated with a high order of non-linearity in the relationship between 

joint aperture and conductivity, the need for hydro-mechanical coupling is paramount in 

modelling any system where pressure changes are large enough to generate even modest changes 

in joint aperture (e.g. ±10-15%).   

4.2.3.1 EFFECTS OF JOINT PROPERTIES 

Observation points are selected physical points in a model at which parameters of 

particular interest are being tracked during modelling. Five observation points indicated in 

Figure  4.7 are chosen for the stepped geometry. All following simulations are carried out on the 

same geometry but with different properties. Note that Figure  4.7 also shows the finite element 

discretization of the rock mass, which allows the deformability of the matrix to be included in 

the simulations.   

 

 
Observation points 

Figure  4.7. UDECTM model of the stepped geometry with five observation points. 

4.2.3.2 EFFEFCS OF JOINT STIFFNESS 

On loading, a naturally fractured rock mass is treated as a series of elastic blocks with 

displacement possible along and across natural fractures. The deformation behaviour of the rock 

block system is mainly controlled by relative movements between blocks.  

Different values of fracture stiffness are selected to represent less and more stiff joints. As 

expected, increasing normal and shear stiffness will decrease normal and shear displacement; 

however, keeping the ratio of normal stiffness to shear stiffness constant and equal to 2.5 will 

allow normal displacement to take place substantially more than shear displacement. In this case, 

by increasing the shear and normal stiffness by four times at a constant ratio, opening and 

 
σσσσ

xx
=30 MPa 

σσσσ
yy

=20 MPa 

1 

2 

3 

4 

5 



 

71 

 

shearing displacements change with factors of ×5 and ×2 respectively. Figure  4.8 and Figure  4.9 

show values of normal and shear displacement at the observation points for the stepped joint. 

Observation points 2 and 5 are located on the joints that are orientated similarly; as is the case for 

observation points 1 and 4. These points show similar results under the same stiffness ratio and 

this is true for different values of stiffness. As an example, the middle observation point 

experiences different values of normal stress comparing to other observation points and this 

results in different magnitudes of normal and shear displacements. 

 

Figure  4.8. Effects of joint stiffness on normal displacement under anisotropic stress (30, 20 MPa) and 

hydrostatic pressure for the stepped fracture. 

 

Figure  4.9. Effects of joint stiffness on shear displacement under anisotropic stress (30, 20 MPa) and 

hydrostatic pressure for the stepped fracture. 

 

Figure  4.10. Effects of joint stiffness on flow-rates under anisotropic stress (30, 20 MPa) and hydrostatic 

pressure for the stepped fracture. 
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Flow rates show significant changes with increasing joint stiffness (Figure  4.10). In other words, 

closure of aperture in less stiff fractures leads to a large reduction of fluid flow. In general, flow 

rates developing from a pressure gradient in the y-direction show more dependency on stiffness 

and higher values of flow rate, especially in the stiffer cases. This may be explained as the effect 

of stress state. Since joints tend to reopen more easily if they are oriented parallel to the σMAX 

direction, less closure takes place in the x-direction and this will result in higher flow rates in that 

direction.  

4.2.3.3 EFFECTS OF STRESS RATIO 

In this section, some results related to the effect of stress ratio on deformation and fluid 

flow through the joints are discussed. To alter the differential principal compressive stresses, 

σMAX (σxx = 30 MPa) is kept constant and different values have been selected for σmin. 

Figure  4.11 and Figure  4.12 illustrate joints that have experienced normal and shear 

displacements under differential stress states. As shown in these figures, the aperture increase 

from the normal stress effect is larger than the aperture increase from the shear dilation effect. In 

other words, normal displacements are much larger than shear displacements for the observation 

points studied. Under stronger differential stress, both shearing and opening show an increasing 

trend; however, the changes in aperture are essentially negligible for shear displacement. Those 

observation points located in lateral sections (points # 1, 2, 4, 5) have similar behaviour before 

fluid flow. It can be seen from these figures that the curves related to points 2 and 5 have an 

overlap (same as for points 1 and 4). This may result from the effect of the angle between the 

maximum principal stress and the plane of discontinuity. 

 

Figure  4.11. Effects of stress ratio on normal displacement under anisotropic stress and hydrostatic pressure 

for the stepped joint. 
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Figure  4.12. Effects of stress ratio on shear displacement under anisotropic stress and hydrostatic pressure for 

the stepped joint. 

Figure  4.13 shows flow rates for different stress conditions and indicates that variation of flow 

rate is sensitive to changes in stress state. Flow rate has an increasing trend under higher 

differential stresses. Although changing the initial stress state affects displacements only slightly, 

such changes have very strong impacts on flow rate.  

 

Figure  4.13. Effects of stress ratio on flow-rate under anisotropic stress and hydrostatic pressure for the 

stepped joint. 

 SIMULATIONS OF REPRESENTATIVE GEOMETRIES OF A NATURALLY 4.3

FRACTURED ROCK MASS 

4.3.1 FLOW FROM AN INJECTION POINT IN A BIAXIAL STRESS FIELD IN A 

VORONOI TESSELLATION ROCK FABRIC 

As a first step in the process of model development, the Voronoi tessellation generator 

which is part of the UDECTM software has been used to simulate an isotropic polygonal natural 

fracture fabric. The generated model for this problem is shown in Figure  4.14.  
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Figure  4.14. UDECTM model of a Voronoi tessellated rock fabric. 

The rock mass was subjected to a biaxial in-situ stress state. The UDECTM model is 40m × 40m. 

The medium is initially dry. Fluid was injected at a constant flow rate of 10-4 m3/s/m. In order to 

study the effect of stress ratio, the maximum principal stress (σxx=30 MPa) is kept constant and 

different values have been selected for the minimum principal stress. Properties of rock, joint and 

fluid are listed in Table  4.2.  

Table  4.2. Rock, joint and fluid properties. 

Rock properties Joint mechanical properties 

Density 2700 kg/m3 

Bulk modulus 40 GPa 

Shear modulus 24 GPa 

Friction angle 27 Degree 

Cohesion 27 MPa 

Tensile strength 1 MPa 
 

Normal stiffness 100 GPa/m 

Shear stiffness 40 GPa/m 

Friction angle 30 Degree 

Cohesion 0.1 MPa 

Dilation angle 5 Degree 
 

Joint hydraulic properties Fluid properties 

Permeability factor 0.83 × 108 MPa-1 s-1 

Residual hydraulic aperture 1 × 10-4 m 

Aperture at zero normal stress 5 × 10-4 m 
 

Density 1000 kg/m3 

Dynamic viscosity 10-3 Pa·s 
 

The unbalanced force is calculated continuously during timestepping and the maximum 

unbalanced force can be plotted for any model run. When the maximum unbalanced force or the 

maximum nodal force vector is zero, a steady-state solution is achieved; which never quite 

achieved in numerical analysis. Therefore, the model is considered to be at equilibrium when the 

maximum unbalanced force is small compared to the total applied forces in the problem. The 

Injection point 
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3 

σσσσxx=30 MPa 

σσσσyy=15 MPa 

5 m 5 m 

5 m 



 

75 

 

ratio of the maximum unbalanced force to the total applied forces is used as an asset to check the 

equilibrium. Low values of this ratio shows that forces balance at all gridpoints. The equilibrium 

ratio was set to 10-5 for the current simulations and the convergence condition of the model was 

monitored. As previously stated, equilibrium is obtained when both the unbalanced force ratio 

and the zero displacement conditions are satisfied. Figure  4.15 shows the maximum unbalanced 

force and displacement monitoring plot for one of the observation points indicated in Figure  4.14 

for an anisotropic stress field (15, 30 MPa) in a two-dimensional Voronoi tessellated rock fabric. 

In this research, monitoring plots are available for representative points located to the left, right 

and above the injection point. 

 

Figure  4.15. Ratio of maximum unbalanced force in an anisotropic stress field (15, 30 MPa) in the Voronoi 

tessellated rock fabric.  

Figure  4.16 shows that pore pressure has a maximum value at the injection point (as it should) 

and is mostly horizontally distributed around the injection point. Anisotropy of the pressure is 

the consequence of the differential stress field favoring joint aperture increases in the direction 

normal to >5. The sequence of parallel lines is an expression of magnitude, such that triple lines 

are larger in magnitude than double lines and so on. Fractures that have been hydraulically 

opened are in red. However, fluid distributes far away from the injection point through the model 

because even when closed, the natural fractures have some conductivity.  
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Figure  4.16. Pore pressure propagation around an injection point in the Voronoi tessellated rock fabric during 

HF injection. 

Natural fractures have initial aperture and are not initially fully hydraulically closed. Therefore, 

fluid flows through the joint and fluid pressure exerts force on the surfaces of the joint. The 

effective normal stress acting across the natural fractures decreases and promotes shear slippage, 

which increases joint hydraulic conductivity. When fluid pressure exceeds the value of the stress 

normal to the joint, then it begins to open. This is the hydraulic fracturing condition. As long as 

fluid pressure remains sufficiently elevated, joints get connected one after another and build a 

larger hydraulically connected fracture network.   

On the basis of the principle of minimum work, a fracture plane follows the local fabric in the 

strong rock containing natural fractures because it requires a great deal more energy (work) to 

break the rock block. However, when a natural fracture that is inclined to the orthogonal stress 

field is opened, it also undergoes shear displacement. Figure  4.17 shows the stress condition 

around the intersection of a slipped joint with a cross joint. Such a stress condition makes it 

easier for the fracture to change the propagation path than to continue propagating in the same 

direction. The inset in the figure shows the normal stress distribution across the offset joint due 

to the shear movement of the first opened natural fracture (Dusseault 2013). 

 

Figure  4.17. Local stress effects on fracture propagation in a naturally fractured rock (Dusseault 2013). 
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Figure  4.18 shows that although a hydraulic fracture follows the natural fractures, the global 

orientation of fracture growth remains normal to the minimum principal stress direction. This 

effect can be attributed to the minimization of the global work rather than the local work. 

 

 

Figure  4.18. Global orientation of fracture propagation in the Voronoi tessellated rock fabric.  

Furthermore, blocks located around the injection point rotate slightly and develop aperture that 

increases joint conductivity. Figure  4.19 shows a schematic diagram of block rotation and 

displacement vectors around the injection point. 

   

(a) (b) 

Figure  4.19. a) Block rotation and b) displacement vectors around the pressurized injection point in the 

Voronoi tessellated rock fabric during HF injection. 

4.3.1.1 EFFECT OF STRESS RATIO 

EFFECT OF STRESS RATIO ON PORE PRESSURE DISTRIBUTION 

The next analysis is to evaluate the effect of the stress ratio on flow into the joints by 

changing the differences between the principal compressive stresses. The maximum principal 

stress (σxx=30 MPa) is kept constant and different values have been selected for the minimum 

stress. Figure  4.20 shows the flow direction from the pressurized injection point in the jointed 

rock mass subjected to an isotropic and a differential stress. Given the difference in in-situ 

stresses, the dominant flow is in the horizontal direction for most stress ratios and under the 
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induced pressures joints reopen dominantly parallel with the maximum principal stress. 

However, in approaching the isotropic stress condition, the propagation pattern starts to appear 

more isotropic as well. In the isotropic condition, no explicitly favored path exists for 

hydraulically induced Mode I fractures to propagate. Consequently, the fluid pressure has a 

similar effect all around the injection point, excluding the local small-scale fabric effects 

(locally, the Voronoi fabric may not be isotropic in nature). Similar results are seen for pressure 

diffusion effects, such that greater anisotropy is seen for pore pressure distributions under 

stronger differential stress. Interestingly, branching occurs shortly beyond the injection point 

after one or two segments if the in-situ stresses are close to each other, but much farther away if 

the stresses are strongly deviatoric. Although branching is restrained (suppressed) in most cases 

with larger deviatoric stress, some branching can develop even at smaller stress ratios. Branching 

reaches its highest level in the isotropic stress state, while its propagation distance is the smallest.  
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Figure  4.20. Flow direction in joints during fluid injection from the injection point in various anisotropic stress fields 

in the Voronoi tessellated rock fabric. 

Figure  4.21 shows fluid pressures for three different stress ratios for the same observation points 

around an injection point during injection at the same rate. It can be seen that the maximum fluid 

pressure is in the isotropic stress state and drops sharply under stronger differential stress. This 

can be explained not only from the deviatoric stress view, but also from the magnitude of the 

principal stress. Note that the magnitude of >5 is also the highest at 30 MPa as the isotropic state 

is approached, thus more fluid pressure is needed to open joints. Given the difference in stresses, 

some favorably oriented joints require lower energy levels and can deform at a lower fluid 

pressure (less work). 

 

Figure  4.21. Fluid pressure histories versus number of cycles in the Voronoi tessellated rock fabric. 

Therefore, in order to generate an open fracture network that is approximately isotropic with 

branches in many directions, a much higher pressure is needed. However, when opening a 
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fracture only in one direction in a more strongly deviatoric stress field, a lower pressure is 

required - a pressure that is very close to >5 as the deviatoric ratio gets larger. 

EFFECT OF STRESS RATIO ON JOINT SHEARING AND OPENING 

Figure  4.22 highlights those joints that have experienced normal and shear displacements (above 

a set threshold) during hydraulic injection in an anisotropic stress field. As always, the sequence 

of parallel lines indicates the magnitude of the variable: more lines indicate larger values. As 

shown in this figure, the aperture increase from the normal stress effect is larger than the aperture 

increase from the shear dilation effect. In the figure, normal opening dominantly occurs in the 

plane normal to >5, whereas in the quadrants, there is a large shear effect. There is a continuous 

line of hydraulically opened joints near the injection point followed by single slipped or opened 

natural fractures. Interestingly, fractures that are not opened (Mode I) can undergo slip (Mode 

II). It seems that the orientation of joints with respect to the principal stresses mostly controls the 

deformation mechanism. 

(a) 

 

 

 

(b) 

 

Figure  4.22. a) Normal and b) shear displacements on joints around a pressurized injection point in the 

Voronoi tessellated rock fabric in an anisotropic stress field (30, 15 MPa).  

Figure  4.23 shows maximum joint shear and normal movements under differential stress states. 

It is concluded that there is some critical stress ratio that alters the dominant mechanism, here 

occurring at a stress ratio of about 1.25 (30, ~25 MPa). This is likely to be different depending 

on the fabric of the system and perhaps it is unscalable to a real rock mass. For isotropic or close 

to isotropic stress states, normal displacements are low, however some joints nevertheless 

undergo slippage. Under stronger stress differences, although both shearing and opening show an 

increasing trend, opening seems to be the main deformation mode. 
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Figure  4.23. Maximum value of shear and normal displacements for different stress ratios in the Voronoi 

tessellated rock fabric. 

4.3.1.2 EFFECT OF JOINT DENSITY 

To explore the effect of strong fabric on propagation of hydraulic fractures in a naturally 

fractured rock, different types of fabric models have been studied. In a Voronoi tessellated rock 

fabric, the effect of joint density has been studied by adding persistent and non-persistent 

discontinuities to the system. A fault has been added to the model as a persistent discontinuity, 

which plays the role of a through-going plane, with the same properties as the other limited 

length joints. In another model, the presence of another dominant joint set oriented at an angle to 

the direction of the principal stresses is used to represent non-persistent but oriented 

discontinuities superposed on the randomly oriented Voronoi joints. Figure  4.24 shows 

schematic views of these models, and each of them is 40m × 40m in size. The medium is initially 

dry. Fluid was injected at a constant flow rate of 10-4 m3/s/m at the same injection point. The 

same properties as those listed in Table  4.2 were used for these different fabric models. 

  

(a) (b) 

Figure  4.24. UDECTM model of an injection point in a rock mass containing a Voronoi tessellation with a) 

persistent and b) non-persistent discontinuities. 
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These models were subjected to steady-state flow at which domain volume alterations have a 

negligible influence on pressure change, so the effect of fluid stiffness in the mechanical steps is 

eliminated and the bulk modulus of the water (�)) is not required.  

EFFECTS OF JOINT DENSITY AND STRESS RATIO ON MECHANICAL DEFORMATION 

Pressurized fluid injection causes a combination of tensile opening and shear dilation in 

the vicinity of the wellbore. Shearing induces slippage on pre-existing joints and creates 

permanent flow channels through the process of dilation. For a better demonstration of this 

mechanism, Figure  4.25 was created. It shows joint shear and normal displacements around the 

pressurized injection point near the fault (above a set threshold) (see Figure  4.24a).  

(a)  

 

(b) 

 

Figure  4.25. a) Shear and b) normal displacements on joints around a pressurized injection point in the Voronoi 

tessellated rock fabric with a nearby fault plane. 

It is obvious that a large amount of slip is focused on the fault plane and the greatest shear 

displacement is near the injection point which is a reasonable and expected result. In this 

simulation, slip occurred before the opening of the hydraulic fracture and the slight rotation of 

natural fractures away from the plane is because of stress field modifications associated with the 

fault slip. There is a continuous line of hydraulic fractures near the injection point followed by 

single slipped or opened natural fractures. Interestingly, joints that are not opened can undergo 

slip. It seems that the orientation of joints with the principal stresses mostly controls the 

deformation mechanism, since fluid pressure is almost the same for the corresponding area. 

Figure  4.26 shows maximum values of normal and shear displacements in the Voronoi 

tessellated rock fabric with a nearby fault plane. An increasing trend to joint opening is seen with 

an increase in the stress difference. In the isotropic stress condition, shearing and opening have 

an almost equal share of deformation. Given the stress difference, shear displacement remains 

almost constant though larger than the normal displacement, because of a large amount of slip 

along the fault (which has a constant dilation angle with deformation). After a “critical” stress 
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ratio under higher deviatoric stresses, here about 1.4 (30, 21 MPa), aperture generation due to 

normal stress effects is larger than the aperture generation due to shear stress effects, though the 

differences are modest (~10%). 

 

Figure  4.26. Maximum value of joint shearing and opening vs stress ratio for different Voronoi tessellated 

rock fabric with a nearby fault plane. 

Figure  4.27 shows opened and slipped joints in a medium with non-persistent but strongly 

oriented discontinuities. The strongest shear movement occurs in the discontinuity that cuts the 

injection point, which also undergoes opening. Although the zone of Mode I opening still 

follows an approximately horizontal path, shearing occurs in most of the favorably oriented non-

persistent discontinuities. 

(a) 

 

(b) 

 

Figure  4.27. a) Shear and b) normal displacements on joints around a pressurized injection point in the 

Voronoi tessellated rock fabric with non-persistent discontinuities. 

Figure  4.28 shows maximum values of normal and shear displacements in a Voronoi tessellated 

rock fabric with non-persistent discontinuities. The presence of the dominant joint sets oriented 

at a favourable angle to the direction of the principal stresses for slip to occur makes shearing the 
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dominant deformation mechanism. Additionally, both normal and shear displacements increase 

by increasing the stress ratio. 

 

Figure  4.28. Maximum value of joint shearing and opening vs stress ratio for different Voronoi tessellated 

rock fabric with non-persistent discontinuities. 

EFFECTS OF JOINT DENSITY AND STRESS RATIO ON PORE PRESSURE 

Figure  4.29 depicts pore pressure distribution around the pressurized injection point. It is 

clear that the model containing non-persistent discontinuities has a smaller stimulated area than 

the one with a fault. It is concluded from several realizations that fluid flow and pore pressure 

distributions have similar patterns in most of the anisotropic stress states as in the simple 

Voronoi tessellated rock fabric and propagate normal to the direction of >5. 

(a) 

 

(b) 

 

Figure  4.29. Pore pressure progression around a pressurized injection point in the Voronoi tessellated rock 

fabric with a) persistent and b) non-persistent discontinuities. 

Figure  4.30 indicates maximum pore pressure values for a Voronoi tessellated rock fabric with 

persistent and non-persistent discontinuities under different bi-axial stress states. Although both 

curves have a decreasing trend, higher values are obtained in the non-persistent geometry model. 

This may arise from changes in joint hydraulic aperture. Relatively small changes in hydraulic 

aperture lead to large variations in conductivity and hence also in fluid pressure. Some 
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observation points both close to and far from the injection point have been tracked (Figure  4.31 

and Figure  4.32, respectively) to see whether this is a regional effect. Based on these two figures, 

despite the fact that fluid pressure is decreasing with distance from the injection point, the same 

relative behavior is maintained with larger stress differences. 

 

Figure  4.30. Maximum pore pressure values around a pressurized injection point in the Voronoi tessellated 

rock fabric with a) persistent and b) non-persistent discontinuities. 

 

Figure  4.31. Values of pore pressure for a monitoring plot close to the pressurized injection point in the 

Voronoi tessellated rock fabric with a) persistent and b) non-persistent discontinuities. 

 

Figure  4.32. Values of pore pressure for a monitoring plot far from the pressurized injection point in the 

Voronoi tessellated rock fabric with a) persistent and b) non-persistent discontinuities. 
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4.3.1.3 EFFECTS OF FABRIC ON MECHANICAL AND HYDRAULIC DEFORMATION OF 

JOINTS 

The purpose of the next set of analyses is to evaluate the effect of fabric on flow into the 

joints and on deformation patterns while changing the differential principal compressive stresses. 

Figure  4.33 and Figure  4.34 show normal and shear displacement plots for the region around the 

pressurized injection point in the different Voronoi tessellated rock fabrics subjected to isotropic 

and differential stresses. Both shearing and opening modes show an increasing trend with stress 

differences, while the opening mode has higher values and therefore contributes more to joint 

conductivity enhancement. For isotropic or close-to-isotropic stress states, normal and shear 

displacements are approximately zero though some joints undergo slippage. Overall mechanical 

deformation increases with higher stress differences in all fabrics, however it is more noticeable 

for a fabric with simple Voronoi tessellation.  

 

Figure  4.33. Maximum value of normal displacements vs stress ratio for different Voronoi tessellated rock 

fabrics. 

 

Figure  4.34. Maximum value of shear displacements vs stress ratio for different Voronoi tessellated rock 

fabrics. 

Figure  4.35 shows the stress ratio impact on pore pressure for a jointed system with different 

geometries. Pore pressure has a decreasing trend under higher differential stress for all 

geometries. In addition, it has its maximum value in the simple Voronoi tessellation. Increasing 

the number of discontinuities leads to lower fluid pressure because the same amount of fluid is 

distributed into more spaces and each space would thus have a lower pressure. In other words, 
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the number of discontinuities inversely affects fluid pressure in these DEM models because more 

volume is provided by dilation for the fluid to flow into. 

 

Figure  4.35. Maximum value of pore pressure vs stress ratio for different Voronoi tessellated rock fabrics. 

4.3.2 FLOW FROM AN INJECTION POINT IN A BIAXIAL STRESS FIELD IN A ROCK 

MASS WITH ORIENTED JOINT SETS 

Effects of oriented joint sets in a strong fabric and differential stress fields are studied in 

this section. Hard rocks with dominant joint sets oriented at some angle to the directions of the 

principal stresses are simulated. All simulations are performed in an anisotropic stress field of 

(30, 23 MPa) by keeping one joint set vertical and by changing the inclination of the other. 

Mostly, shear displacements are larger along the joint sets and normal displacements are 

negligible in these simulations so that joint conductivity only increases because of the shearing 

mechanism. Figure  4.36 shows maximum values of shear and normal displacements for different 

realizations. Except for normal (orthogonal) joint sets, in all others shearing is the main mode of 

aperture increase and the major reason for increases in the hydraulic conductivity of the jointed 

network. 

 

Figure  4.36. Maximum values of shear and normal displacements for different oriented joint sets in an 

anisotropic stress field (30, 23 MPa). 

Orientation of joint sets greatly affects fracture propagation paths. In the case of orthogonal joint 

sets (Figure  4.37), fracturing Mode I is the main deformation mechanism. However, by reducing 
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the angle between joint sets, the dominant mechanism switches to Mode II (and Mode III in the 

real world) (Figure  4.38). In these realizations, fractures mostly propagate through the vertical 

joint set. It is to be noted that all values of normal and shear displacements are similarly scaled in 

the range of 1E-4 to 7E-3 m.  

(a) 

 

(b) 

 

Figure  4.37. a) Normal and b) shear displacements around a pressurized injection point in orthogonal joint 

sets. 

   

(15˚, 90 ˚) (45˚, 90 ˚)  (75˚, 90 ˚) 

Figure  4.38. Shear displacement around a pressurized injection point for different orientations of joint sets. 

4.3.3 FLOW FROM AN INJECTION POINT IN A BIAXIAL STRESS FIELD IN A ROCK 

MASS WITH COMPLEX FABRIC 

More complicated geometries have been generated to study the effect of joint density in 

hydraulically pressurizing a rock mass with strong matrix blocks. Figure  4.39 shows several 

UDECTM models for this problem.  
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(a) (b) (c) 

Figure  4.39. UDECTM models for different geometries representing various levels of a) high, b) medium and 

c) low joint density. 

Figure  4.40 indicates that as the joint density of the jointed rock mass increases, pore pressure is 

distributed in a smaller portion of the model. Since injection pressure is the same for all 

simulations, increasing the number of discontinuities leads to a more rapid reduction in pressure 

outward. This is an expected result because more volume is made available for the fluid to flow 

into (constant injection rate). 

   

(a) (b) (c) 

Figure  4.40. Pore pressure distribution in a fully connected geometry with various levels of a) high, b) 

medium and c) low joint density. 

Figure  4.41 and Figure  4.42 demonstrate joint shearing and opening, respectively; mostly 

inclined joints undergo slip whereas tensile opening only occurs in horizontal joints.  
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(a) (b) (c) 

Figure  4.41. Joint shear displacement around a pressurized injection point in a fully connected geometry with 

various levels of a) high, b) medium and c) low joint density. 

   

(a) (b) (c) 

Figure  4.42. Joint normal displacement around a pressurized injection point in a fully connected geometry 

with various levels of a) high, b) medium and c) low joint density. 

Figure  4.43 shows maximum values of joint normal and shear displacements in joint networks 

with different joint densities. It is clear that joint shear and normal displacement decreases by 

increasing the number of discontinuities; however normal displacements are larger than shear 

displacements. Far from the injection point, normal opening mode does not occur but a favorably 

oriented joint can shear. Thus, the slipped area (stimulated area) should be larger than the area 

affected by the opening mode. 
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Figure  4.43. Maximum values of joint normal and shear displacements vs number of contacts in joint 

networks with different joint density. 

 SUMMARY 4.4

These preliminary simulation studies were performed mostly for simple cases to help 

understand the various processes involved. Different simplified basic components of a complex 

naturally fractured rock mass were subjected to hydraulic gradients in two different directions in 

a stress field having different anisotropy values. The following conclusions were obtained: 

• The variations of flow-rate patterns are related to changes in hydraulic aperture and also the 

direction of pressure gradients. A rock mass with strong fabric responds differently if the 

flow gradients are oriented differently.  

• Based on the simulations and comparing displacements and flow-rate results, joint 

displacement and fluid flow (aperture) are shown to be highly sensitive to joint stiffness. 

More closure of aperture in less stiff fractures leads to a strong reduction of fluid flow. A 

rock mass with compliant joints will show a greater change in flow rate than a rock mass 

with stiff fractures when subjected to a pressure gradient change. 

• Changing stress conditions has an insignificant effect on displacement but has a strong 

impact on fluid pressure redistribution or flow-rates. This occurs because relatively small 

changes in hydraulic aperture lead to large variations in conductivity, and hence also in 

flow rates. 

• NFR possesses a number of sources of strong non-linearity, and discrete block 

hydromechanically coupled simulations are needed to understand the effects; even then, 

this understanding is more than likely to remain qualitative because of the various sources 

of parameter and fabric uncertainty. 

The Universal Distinct Element Code (UDECTM) is used to analyze fluid injection with steady-

state flow through the joints in a jointed rock mass. Mechanical behavior of a jointed rock mass 

is studied at different values of stress field anisotropy and based on these simulations, it is 

understood that: 
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• Local natural fracture fabric affects hydraulically induced fracture direction, but the global 

orientation of induced fracture growth remains normal to the minimum principal stress; 

• Pore pressure increases in a uniform pattern all around the injection point in the isotropic 

stress state; however it tends to focus sharply in one orientation under stronger differential 

stress, parallel to σmax; 

• Branching occurs a short distance from the injection point. It is usually suppressed under a 

higher stress ratio and is more highly developed in the isotropic stress state; 

• It seems that there is a critical stress ratio that controls the dominant deformation 

mechanism. 

In general, natural fractures that can be reactivated (Mode I or Mode II motion) by stress changes 

will also have alterable mechanical properties, which will lead to different behaviors in shearing, 

opening, sliding or closing in reaction to stress redistributions. Based on the current study, results 

can be compared for different fabrics to better understand the influence of both intensity of 

discontinuities and stress ratio.  

• Both joint normal and shear displacements drop with an increasing number of 

discontinuities; however, this effect is smaller in models with persistent versus non-

persistent discontinuities. 

• Joint shearing and opening frequency have similar values for models with persistent and 

non-persistent discontinuities. In isotropic or close-to-isotropic conditions, they are almost 

zero in all fabrics and they increase with higher stress difference. However, this is more 

noticeable for a fabric based on a simple Voronoi tessellation. 

• The combined effect of Mode I and II mechanisms causes conductivity enhancements in 

Voronoi tessellated media with persistent and non-persistent discontinuities.  

• The number of discontinuities inversely affects fluid pressure; in other words, the area in 

which injection fluid flows through fractures decreases by increasing the number of 

discontinuities that can accept flow. 

• Lower fluid pressure is obtained under higher differential stress, such that it has the 

maximum value in the isotropic stress state. 

The results of this study should lead to a better understanding of hydraulic fracturing in naturally 

fractured rocks with major effects of the intensity of fractures (number of fractures per volume, 

or area in the case of this two-dimensional DEM), in the geometric nature of the natural 

fractures, in the distribution of fractures with respect to the deviatoric stress field, the magnitude 

of normal and deviatoric stresses and the presence of a single (or several) large through-going 

discontinuities.  For example, the presence of a single large through-going discontinuity (section 

4.3.1.2), clearly showed a focus of shear displacement on the major feature and this can be taken 

as indicative of the possibility of fault re-activation in a real case.   
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These results indicate the importance of natural rock fabric delineation in practical cases, and 

such results will have to be formulated with and calibrated against real data in order to achieve 

engineering utility. A real challenge in the short-term is performing three-dimensional 

simulations and understanding how to interpret them.  

An important point in a practical sense is that in a deviatoric stress condition in a naturally 

fractured rock, even if the fabric itself is isotropic, injection with an increased pressure will 

induce anisotropy in the flow patterns because of the anisotropic dilation and shear of the joints.  

This has implications on well test analyses, especially if õ+ is large enough to start changing the 

apertures of the jointed rock mass.  

Another critical point is that in hydraulic fracturing, it seems likely that different strategies are 

needed for optimizing results and generating a genuine fracture network with high connectivity 

in cases of different rock fabric and different absolute and relative principal stress values.  
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CHAPTER 5 STIMULATED ZONE ASSOCIATED WITH HYDRAULIC 

FRACTURING IN LOW-PERMEABILITY NATURALLY FRACTURED 

ROCKS 

This chapter presents results based on seeking to investigate how fabric patterns and stress 

redistribution affect the nature of the stimulated zone associated with hydraulic fracturing. 

OVERVIEW 

When a Naturally Fractured Rock (NFR) is subjected to hydraulic fracturing (HF) 

stimulation, a volume that is affected by the HF treatment is generated. This volume is referred 

to as the stimulated zone and is characterized by an increase in overall permeability. When 

performing HF stimulations in NFR, understanding the factors that control the size and shape of 

the stimulated zone can aid in optimizing the HF process.  

This research uses the two-dimensional Distinct Element Method (DEM) to investigate the effect 

of rock fabric, in-situ stress state, and injection parameters on the size and shape of a stimulated 

zone. A parametric study of hydro-mechanically coupled HF simulations was conducted using 

UDEC™ software. To determine parameter effects on the stimulated zone, a new method was 

developed to quantitatively assess the stimulated zone using relative displacements. In addition, 

this chapter is focused on understanding the mechanisms leading to the differences in various 

stimulated zone simulations. 

This investigation shows that rock fabric and in-situ stress state are key factors affecting the 

stimulated zone and the pathways of HF propagation. The injection rate does not have a 

substantial effect on the stimulated zone though it does affect the type of deformation that occurs 

within the zone. Joint deformation is affected more by stress ratio under lower injection rates. 

Higher injection rates cause higher fluid pressures and stimulate more joints because the fluid 

has enough pressure to overcome the normal stress, even in unfavorable directions; hence, the 

effect of stress ratio on zone development is reduced at higher injection rates.  In the presence of 

one or more persistent joint sets, there are pre-existing preferential directions for fluid to travel, 

making the stimulated zone pattern and extent more complicated. If a dominant joint set is not 

co-axial with the principal stress orientations, zone extension and shape are substantially affected 

by the angle between the joint set and the principal stresses, especially at lower stress ratios. 

 INTRODUCTION 5.1

In hydraulic fracture (HF) stimulation, a fluid is injected under high pressure into the 

rock mass to intentionally fracture it, usually in order to enhance the hydraulic conductivity of 

the general region around the injection point. As hydraulic conductivity enhancement in a dense, 

low-porosity, naturally fractured rock (NFR) mass arises from mechanical deformation of 

naturally existing discontinuities; it is of interest to study their mechanical deformation during 

injection. These deformations include normal and shear displacements of pre-existing 
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discontinuities (i.e. joints), usually leading to long-term or permanent hydraulic conductivity 

enhancement. 

Note:  In an attempt to be clear, the term “joint” will replace “natural fractures” or “planar 

discontinuities”, to avoid confusion with the term “hydraulic fractures”.  The term 

“permeability” is reserved for a bulk rock mass effect, and the term hydraulic conductivity is 

used for an individual joint or for a subset of the rock mass (an assemblage of joints not 

sufficient to be volume averaged). 

In HF operations, especially in the presence of high deviatoric stresses, the contribution of joint 

shearing (Mode II displacement) to hydraulic conductivity enhancement may be as important as 

direct joint opening (Mode I displacement). This is indirectly supported by the numerous Mode 

II microseismic events resulting from frictional slippage associated with HF (Cipolla et al. 2013). 

Bagheri and Settari studied the effects of Mode I displacement of a single joint on the hydraulic 

conductivity of a naturally fractured rock using coupled geomechanical modeling (Bagheri and 

Settari 2006). Ji et al. developed their study by coupling fracture propagation with hydro-

mechanical simulation (Ji et al. 2009). In the research performed by Nassir, the effect of shearing 

on mechanical and flow properties of rock has been studied (Nassir 2013), and he also 

investigated the critical pore pressure at which shear failure occurs, the orientation of induced 

fractures within the rock formation and the effect of transition from non-HF conditions to HF 

conditions on geomechanics and flow problems. However, the effect of rock fabric on the 

mechanical response of a NFR to HF remains poorly understood in the discipline of 

geomechanics. In this chapter, three different joint patterns are generated to represent different 

NFR macrofabrics, and to explore the effects of these geometries on mechanical deformation and 

fluid flow. The main objective of this work is to study the size and shape of the stimulated zone 

associated with HF under different stress states and NFR fabric conditions. 

5.1.1 NATURALLY FRACTURED ROCK 

Most rocks possess different mechanical discontinuities of various origins referred to as 

joints, fractures, faults, shear zones, bedding planes, schistosity, foliation, cleavage and other 

geological terms (Singhal and Gupta 2010). These different mechanical discontinuities may be 

considered “macrofabric” elements in contrast to “microfabric” elements such as preferred 

mineral alignment, grain/pore assemblages and microfissures. Joints are perhaps the most 

common and most important type of macrofabric element in igneous and sedimentary rocks and 

are usually found in sets (i.e. different groups of parallel or sub-parallel joints). The properties of 

these discontinuities almost always control the deformation and permeability of a NFR (Zhang 

2005) where the matrix block shear strength is far larger than the shear strength of the 

discontinuities themselves. In other words, a NFR is viewed as a medium in which naturally 

occurring discontinuities have a dominant influence on the system’s deformability and 

permeability (Pirayehgar and Dusseault 2014). Discontinuities provide potential flow channels in 

a NFR, as well as potential slip planes (Singhal and Gupta 2010). Deformation is controlled by 
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the geometrical characteristics of the macrofabric elements (joints), the mechanical and hydraulic 

properties of the joints and the in-situ stress conditions. As a result, fluid flow in a jointed system 

is related to the deformation of both the planar discontinuities and rock blocks, through the 

processes of hydro-mechanical coupling (Zhang and Sanderson 2002). 

Joints are planes of weakness with shear and normal strength usually far lower than intact rock 

blocks. Joints and other macrofabric elements are created by deformation and physico-chemical 

diagenesis of different types (Singhal and Gupta 2010). Natural fractures (including joints) are 

categorized into systematic and non-systematic systems; systematic natural fractures are planar 

with approximately regularly spaced distribution and generally insets comprised of many parallel 

or subparallel surfaces while non-systematic natural fractures have an irregular distribution - they 

may be curved and there are no significant sets.  Systematic discontinuities can be further 

divided into three categories based on the kinematic of their origin: shear (Mode II) fractures, 

tensile (Mode I) fractures and hybrid fractures (Singhal and Gupta 2010). To be more exact, 

three modes of deformation, including opening (Mode I), sliding (Mode II) and tearing modes 

(Mode III), can be recognized in natural fractures. These are associated with their formation 

processes and interactions with other discontinuities leading to segmentation, arrest and other 

factors related to their genesis in a natural stress field at depth.   

Creating new induced fractures in NFRs using conventional small-scale HF usually results in 

limited extent induced fractures, limited new surface area generated and thus a limited 

enhancement of flow properties. Large-scale HF with proppants, high injection rates and various 

types of fluids have been developed to achieve greater drainage efficiency within a rock mass 

(Smith and Montgomery 2015). When a HF intersects a natural fracture, it may initially arrest. 

Yet with continued pumping, the HF may cross or open the natural fracture. Fluid diversion into 

the natural fracture system can result in higher propagation pressures, greater fluid leak-off, less 

efficient proppant transport and eventually may decrease the fracture length (or stimulated 

volume) that can be generated (Rahman et al. 2002). Warpinski indicated that conventional HF is 

relatively less efficient in regions with high deviatoric stresses and natural fractures and therefore 

recommended investigation of other stimulation techniques (Warpinski 1991). Hossain et al. 

found that the presence of natural fractures that were misaligned with the direction of fracture 

propagation lead to a tortuous flow path which ultimately caused the treatment to fail the 

intended goals. This was mostly due to the proppant “screen-out” that takes place prematurely in 

tortuous flow path conditions, inhibiting deep penetration of the granular proppant that maintains 

aperture after the HF pressures are allowed to decay. The large-scale natural fabric in a NFR is 

thus potentially both an advantage and a natural peril to the treatment’s efficiency in terms of its 

effect on meeting its rock mass permeability enhancement goals (Hossain et al. 2000).  

An approach to HF has been presented by Hossain et al. (Hossain et al. 2002) for hydraulic 

stimulation that is known by various names such as no-proppant and proppant-free. However, 

recently it has been called the “shear dilation” treatment. Hossain et al. found that under specific 

stimulation pressures, a natural fracture can slip by shear and dilate (known as “shear dilation”), 
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thereby enhancing its conductivity. This enhancement is based on the preservation of remnant 

conductivity from shear displacement occurring because of the mismatch of natural asperities 

that is caused by small shear displacements across a planar surface (Hossain et al. 2002). 

5.1.2 PARAMETERS AFFECTING THE STIMULATED ZONE 

It is useful to predict, at least semi-quantitatively, the nature of stimulated zone generated 

from HF in a NFR for well layouts or treatment designs. Knowing the shape and size of the 

potential stimulated zone can aid in choosing well spacings and perforation cluster placement, as 

well as the volume and rate of the HF treatment (Dusseault 2013). 

Natural stress fields are not isotropic (>3 ≠ >4	≠ >5). This means that there are always differences 

between the principal stresses, so that shear stresses exist throughout the medium. Fluid injection 

raises pore pressures and creates a drop in normal effective stress which can lead to slip of 

appropriately oriented joint surfaces. These joint surfaces are rough and therefore slip generates 

joint aperture through irreversible dilation (normal opening accompanying shear displacement). 

Since the shear stress has been partly relieved by slip, both the slip and the dilation are largely 

irrecoverable, therefore the aperture increase through dilation is permanent. In other words, shear 

displacement of appropriately oriented joints in a NFR mass causes permanent dilated aperture 

known as shear dilation (Rahman et al. 2002). This dilation region may be viewed as a zone of 

enhanced percolation (connectivity plus conductivity). 

Johri and Zoback suggest that three factors control the magnitude of the enhanced percolation 

zone: hydraulic fractures, pre-existing fractures and new fractures (Johri and Zoback 2013). 

Based on their study, the contribution of hydraulic fractures and newly-formed or connected 

fractures is insignificant; hence, stimulating the pre-existing fractures plays a key role in the 

enhancement of conductivity and connectivity around a well. 

 HYDRAULIC FRACTURE SIMULATIONS 5.2

A series of numerical HF simulations are performed using UDECTM, a code based on the 

Distinct Element Method (DEM). When using UDECTM, one assumes that pre-existing joints are 

reinitiated and reopened while no new fractures are created. In other words, the matrix blocks 

remain intact - a robust assumption for HF in a NFR mass with strong blocks and weak joints 

(igneous rocks, low-porosity shale gas and shale oil reservoirs).  

Although blocks are strong and will not fracture, they are treated as deformable bodies.  The 

constitutive model for shearing used for the joint in this study was the Coulomb-slip criterion. 

The UDECTM models are considered to be two-dimensional sections 300m × 300m in size and 

subjected to a biaxial in-situ stress state (Figure  5.1). The medium is initially dry, then water is 

injected at a constant flow rate at the center point of the model. 
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Table  5.1 shows fluid and material properties assumed, including the mechanical properties of 

the joints. These properties have been selected from the software database, which is collected 

from a wide range of real data (ITASCA Consulting Group Inc. 2010). It is possible to stipulate 

different properties for each joint (or each set of a group of joint sets) such that the resultant 

fracture network is probabilistic in nature, which perhaps more closely emulates a real rock 

mass, but because it remains unclear what distributions of properties would be most appropriate, 

joint properties have been assumed to be constant for all joints. Also, in this same manner, it is 

easier to assess the direct influence of joint stiffness and cohesion.  

Table  5.1. Rock, joints and fluid properties (UDEC™ database). 

Rock properties Joint mechanical properties 

Density 2700 kg/m3 

Bulk modulus 27 GPa 

Shear modulus 7 GPa 

Friction angle 30 Degree 

Cohesion 27.2 MPa 

Tensile strength 1.17 MPa 
 

Normal stiffness 10 GPa/m 

Shear stiffness 4 GPa/m 

Friction angle 30 Degree 

Cohesion 0.1 MPa 

Dilation angle 5 Degree 
 

Joint hydraulic properties Fluid properties 

Permeability factor 0.83 × 108 MPa-1 s-1 

Residual hydraulic aperture 1 × 10-4 m 

Aperture at zero normal stress 5 × 10-4 m 
 

Density 1000 kg/m3 

Dynamic viscosity 10-3 Pa·s 
 

Stress ratio is defined as the ratio of maximum to minimum principal stress. Minimum principal 

stress is set to 15 MPa, while maximum principal stress varies in the range of 15 to 30 MPa. A 

stress ratio of 2 is expressed as σ′ σ′��	 = 30 15{ = 2 and so on.  Understanding the impact of the 

stress ratio was the main intention of this study rather than the magnitudes of the stresses. 

Similar simulations run with higher stress magnitudes confirmed that the general behavior of the 

system at higher stresses with similar ratios is comparable; however, results are different in terms 

of the magnitudes of the deformations of the joints (higher stresses lead to smaller aperture 

increases). 

Since rock fabric plays a prominent role in the characteristics of the resultant stimulated zone, 

three different geometries of a NFR mass were comparatively investigated. A major challenge 

when modelling NFRs is determining how best to represent the jointed rock mass. Zhang and 

Sanderson (Zhang and Sanderson 2002) introduced three main types of rock fabric to represent a 

range of common geometries: 

a. A network of randomly oriented polygonal joints (such as cooling joints in columnar 

basalt). This geometry is called Voronoi tessellation (Figure  5.1a). 
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b. Two sets of joints which are generally long, straight and sub-parallel with different 

spacings and which cross-cut one another. This geometry is called cross-joints 

(Figure  5.1b). In Figure  5.1b, one set is inclined at about 120˚ and the other one is 

oriented at about 25˚. 

c. A set of long persistent joints between which are shorter non-persistent joints roughly 

orthogonal to them (often found in flat-lying shales in anisotropic stress fields, no 

tectonics). This geometry is called cross-cuts. Figure  5.1c shows this geometry in which 

one set is inclined at about 120˚ and intersects with some non-persistent joints at different 

angles. 

The implementation of these three types of rock fabric can be seen in Figure  5.1.  

    

(a) (b) (c) 

Figure  5.1. Representative geometries of natural fracture (joint) networks: a) Voronoi tessellation, b) Cross-joints; c) 

Cross-cuts. 

Figure  5.2 shows results plotted as contact force vectors applied on grid points after injection 

under the in-situ stresses of 30 MPa and15 MPa for all three geometries. The model is large 

enough to ensure that the boundary effects are small. The in-situ stress field is defined by two 

orthogonal principal stresses stipulated in the central figure. 

    

(a) (b)  (c) 

Figure  5.2. Gridpoint force vectors for different geometries: a) Voronoi tessellation, b) Cross-joints; c) Cross-cuts. 
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 ASSESSING THE STIMULATED ZONE 5.3

Assessment of the stimulated zone was conducted based on the resultant normal and 

shear displacements of the block contacts during HF in the DEM (Discrete Element Method) 

model simulations. It is also possible to use joint rupture as an alternative criterion for assessing 

the stimulated zone; however, the binary nature of the metric was inadequate to describe partial 

opening of the joints. The joints have the capacity to yield and experience some displacement 

without completely failing. This displacement is important to capture when discussing stimulated 

zone and permeability enhancement along joints that have not experienced full strain-weakening 

failure (resulting in a shear-slip event), yet may have experienced some yield. 

The stimulated zone in the context of this investigation was taken to be the minimum geometric 

area within which all displacement events exceeded a specified threshold. Two different 

stimulated zone geometries were considered for this investigation: elliptical and polygonal, as 

shown in Figure  5.3. The method to characterize the joint geometry area as an idealized ellipse 

was conducted by calculating the minimum bounding ellipse for the set of contacts which 

exceeded the displacement thresholds. In addition, the convex polygonal hull of the same set of 

points was also calculated as it is arguably a more rigorous, but less convenient metric (Fomin et 

al., 2006). 

 

Figure  5.3. Schematic of the stimulated zone outlining the difference between an idealized circular shape and the 

actual polygonal shape. (Fomin et al. 2006) 

The need to specify a displacement threshold when calculating the stimulated zone arises from 

the nature of a NFR. When the stress state of the model changes due to the injection of the 

fracturing fluid, the resultant stress change (generally diminution in normal effective stress) in 

areas not directly penetrated by the fracturing fluid can nonetheless lead to shear displacements 

along the joints and consequent shear dilation behavior. These displacements are often small and 

not necessarily hydraulically connected to the area directly stimulated by the HF fluid. As such, a 
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means to eliminate these peripheral displacement events from the stimulated zone can be 

accomplished by assuming that these displacements are appreciably less than the displacements 

directly associated with the HF process, such that there exists a threshold under which these 

displacement events should not be considered. The determination of this threshold was 

conducted by testing different thresholds over a specified range to see at which point the 

stimulated zone became relatively constant, consequently indicating the peripheral displacements 

as negligible and thus having potential to be excluded in the calculation of the stimulated zone. 

For example, Figure  5.4 and Figure  5.5 show a change in stimulated zone based on normal and 

shear displacements respectively as the displacement thresholds were varied for the Voronoi 

tessellated rock fabric with a stress ratio of 2. When the displacement threshold is increased from 

zero, the stimulated zone decreases rapidly until a threshold is reached at which point the 

stimulated zone remains relatively constant. It was decided that this was a convenient and 

empirical definition of the desired threshold that would eliminate small peripheral displacement 

events from the stimulated zone calculations. Additionally, there is an almost constant stimulated 

zone for the very small magnitude of displacements. However, a common dilation threshold was 

needed for this study for both shear and normal displacement. The use of a common dilation 

threshold also made it is possible to find the dominant deformation mechanism. 

In Figure  5.4, the ideal normal threshold differs based on different simulation parameters. The 

two sets of simulations with the small meshes and small blocks (SM and SB) appear to have the 

same threshold; however, the simulations with the large blocks (LB) appear to require a larger 

threshold. This behavior indicates that the rock mass fabric scale with respect to the scale of the 

induced HF zone has a significant influence on the determination of the required displacement 

thresholds. Similar behavior can be seen in Figure  5.5 when considering shear displacement 

thresholds.  
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Figure  5.4. Polygonal stimulated zone based on normal displacement for various model simulations and flow rates 

and a stress ratio of 2 with Voronoi tessellated rock fabric. SB = Small Block size, LB = Large Block size, SM = 

Small Mesh size. 

Furthermore, from Figure  5.4 and Figure  5.5 one can see that the difference between the refined 

mesh (SM) and the coarsely-discretized mesh (SB) is significant in terms of the resultant 

stimulated zone, despite the similarity in the required thresholds. The implication of this 

discrepancy is that the mesh in DEM modelling needs to be refined sufficiently to allow for mesh 

convergence and representativeness (a scaling issue). As such, the refined SM models are used 

for the remainder of the analysis. 

For the case of the refined mesh for the small block Voronoi tessellated rock fabric, it can be 

seen that a normal displacement threshold of 1.5 mm and a shear displacement threshold of 2.5 

mm would be sufficient for the stimulated zone calculations. (Note that these displacements do 

not necessarily correspond to “real” displacements because the choice of model parameters was 

not made on the basis of “establishing the best fit” to what are considered “realistic” values.  

These are challenging issues to address in future studies.) 
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Figure  5.5. Polygonal stimulated zone based on shear displacement for various model simulations and flow rates and 

a stress ratio of 2. SB = Small Block size, LB = Large Block size, SM = Small Mesh size. 

As the stress ratio increases, one would expect the required aperture threshold to also increase as 

the increased differential stress will facilitate peripheral shear in the non-stimulated zone. 

Consequently, for all stress ratios less than 2 that were investigated, the displacement thresholds 

were marginally less, allowing for the displacement thresholds determined at a large stress ratio 

to be used for all cases with lower stress ratios.  

It is worth noting that the injection flow rates did not appreciably affect the displacement 

thresholds, indicating that the rock fabric has a dominant effect on the required displacement 

thresholds for the calculation of the stimulated zone.  

When considering the stimulated zone assessment, it is convenient to idealize it as an ellipse 

spatially bounding all displacement events. In this study, the Khachiyan algorithm (Todd and 

Yildirim 2007) was implemented to calculate the minimum bounding ellipse for the set of 

spatially distributed contacts in which the displacement thresholds were exceeded. This 

algorithm iteratively generates a series of ellipses which contain all the specified points and are 

uniformly decreasing in area. The resultant minimum bounding ellipse was chosen once the 

relative difference between two successive iterations was identified to be below a specified 

tolerance. In this investigation the tolerance was specified to be 0.1% of the ellipse area as the 

variance due to other parameters was noted to be appreciably larger. 

The use of an elliptical approximation, though useful, tends to overestimate the stimulated zone 

in a non-uniform jointed medium simulation as the shape of the stimulated zone is often irregular 
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and non-elliptical (Fomin et al. 2006), largely because of the fabric geometry. One may also 

approximate the stimulated zone as a convex polygon enclosing the threshold displacement 

events. On average the elliptical enclosure is 44% larger than the polygonal enclosure for the 

Voronoi tessellated rock fabric (Figure  5.6). This relationship between the polygonal and 

elliptical areas is dependent primarily on the rock mass fabric. In addition, when considering an 

idealized elliptical stimulated zone quantitatively, it is prudent to correct for this discrepancy.  

 

Figure  5.6. Comparison of the different stimulated zone geometries for the case of the Voronoi tessellated rock 

fabric. The stimulated zone based on an ellipse is approximately 44% larger than that based on the convex polygon 

hull.  

A series of sensitivity analyses was carried out to study the effect of block size, mesh size and 

model size for the Voronoi tessellation. The results of these analyses show that numerical 

parameters have the capacity to affect the stimulated zone calculations if not considered 

appropriately. Here, the main finding is that it becomes important to have a sufficiently 

converged solution in terms of mesh refinement. Details of this study have been published 

elsewhere (Pirayehgar et al. 2016). 

 PARAMETRIC STUDY 5.4

In order to investigate the influence of parameters that affect the stimulated zone due to 

HF, a parametric study was conducted. Here, the three specified rock fabrics (Voronoi 

tessellation, cross-cuts, and cross-joints) are subject to HF simulations under different stress 

ratios and injection rates. Stress ratios between 0.5 and 2 are considered along with fluid 

injection rates between 5L/s and 15L/s.  
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5.4.1 EFFECT OF ROCK FABRIC 

Positive normal displacement of joints (joint opening) under different stress states can be 

seen in Figure  5.7. For the Voronoi tessellation, isotropic stress causes the induced HF zone to 

propagate radially from the injection point in all directions, while under differential stresses, a 

direction normal to the minimum principal stress is preferred. Figure  5.7b and Figure  5.7c 

indicate that in the presence of strongly oriented fabric, displacements typically occur along the 

joints and joint sets that are inclined to the principle stresses. In the case of strong differential 

stresses, the HF zone will propagate normal to σmin even if the joint sets are not oriented in that 

direction. Therefore, if the joints and the major principle stresses are not similarly oriented, the 

stimulated zone will be more radial or more directional under weaker or stronger deviatoric 

stress states, respectively. In general, an isotropic stress state grants a similar probability of 

growth to all directions, so in the case of the Voronoi tessellation with no preferential 

orientation, the stimulated zone would be radial and in case of cross-joints or cross-cuts, it would 

be directional. However, the HF zone tends to propagate mostly normal to the σmin direction 

under stronger deviatoric stresses. Therefore, for the Voronoi tessellated rock fabric, the more 

one departs from the isotropic stress state, the more directional the stimulated zone becomes. For 

the other fabrics, if there is no dominant joint set parallel to the direction of the maximum 

principal stress, the resultant stimulated zone would form in a more radial manner (Figure  5.10). 

Pressurized fluid injection causes a combination of tensile openings and shear dilations in the 

neighboring zone which induce slippage on pre-existing joints, creating more or larger flow 

channels. Most of the joints around the injection point undergo both normal and shear 

displacements such that mixed mode is the dominant deformation mechanism. However, the 

joints undergo larger openings than shearing for all geometries, which can be observed in 

Figure  5.7 and Figure  5.8. 

Based on Figure  5.7, the cross-joints geometry with two joint sets has the largest joint openings 

under all stress ratios followed by the cross-cuts geometry and then the Voronoi tessellation with 

no dominant jointing orientation. Therefore, the presence of joint set(s) often leads to larger 

normal displacements. 

(a) 

   

100 

m 

100 

m 

100 

m 

1
0
0

 



 

106 
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(c) 
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Figure  5.7. Opening under different stress states for: a) Voronoi tessellation, b) Cross-joints; c) Cross-cuts.  
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(b) 

   

(c) 
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Figure  5.8. Shearing under different stress states: a) Voronoi tessellation, b) Cross-joints; c) Cross-cuts.  

Pore pressure distributions for different rock fabrics under various stress ratios are shown in 

Figure  5.9. Here, it can be seen that pore pressure increases in a uniform pattern around the 

injection point, given an isotropic stress state. However, the pore pressure distribution tends to 

focus sharply in one orientation under stronger differential stress, normal to σmin. This pressure 

distribution shows that differential stress fields can lead to induced flow anisotropy for any set of 

joints, but particularly noticeable for the isotropic models.   
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(b) 

   

(c) 
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Figure  5.9. Pore pressure under different stress states for the representative geometries of natural fracture networks: 

a) Voronoi tessellation, b) Cross-joints; c) Cross-cuts.  

5.4.2 EFFECT OF IN-SITU STRESS 

In-situ stresses are also investigated to study effects that the stress ratio has on a 

stimulated zone. Stress ratios of 1, 1.5 and 2 are considered and subjected to HF simulations. 

Figure  5.10 shows flow directions in joints around the injection point in various stress fields in 

the Voronoi tessellated rock fabric. Arrows with a circle on one end indicate the new opened 

joints; new paths are pressurized as the stress state gets close to the isotropic condition and the 

pattern becomes more radial. Fluid travels farther and flow channels are more laterally developed 

through channels under higher differential stresses. 
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Figure  5.10. Flow direction in joints during fluid injection from the borehole in various anisotropic stress fields in 

the Voronoi tessellated rock fabric. 

Figure  5.11 shows fluid pressure profiles along the center of the model in the σMAX direction for 

all geometries under different stress conditions and selected injection rates (rate#3 ≈ 15 L/s). 

Arrows indicate how far the fluid pressure is distributed laterally and where it starts branching 

until õ+	 → 	0. Additionally, the pressure at which a transition from opened joints to lower 

conductivity “closed” joints starts can be obtained. Figure  5.11(a) shows that in the Voronoi 

tessellation at higher deviatoric stresses, fluid travels farther from the injection point before 

dissipation to formation pressure conditions (zero in this study). In identical geometries but with 

an isotropic stress state, the lateral extent and fluid branching are suppressed, and the injection 

fluid pressure is much higher. 

The abrupt transition point along the pressure profile curves where the slope changes abruptly 

(Figure  5.11) may be viewed as the “hydraulic fracture front” within which HF stimulation has 

occurred and beyond which normal fluid flow through the joints is occurring. The pressure at 

which this sharp slope change occurs is not consistent among simulations. In an isotropic stress 

regime, the pressure at the fracture front is large because of the lack of preferential HF 

propagation direction; a greater hydraulic pressure is required to HFs. Conversely, in the case of 

a strongly deviatoric stress, the preferential fracture propagation direction allows the joints to 

initiate at a lower pressure. The size of the lateral pressurization zone in different fabrics is cross-

joints, Voronoi tessellation and then cross-cuts (from high to low). 

The stimulated zone is now assessed for each simulation using a displacement threshold of 

2.5mm arising from the HF, as discussed above. Also, both polygonal and bounding ellipse area 

estimates were considered.   

New flow paths 

New flow paths 

New flow paths 

New flow paths 
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(b) 

(c) 
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Figure  5.11. Fluid pressure profiles along the horizontal axis under different stress ratios and flow rate #3: a) 

Voronoi tessellation, b) Cross-joints; c) Cross-cuts.  

For the Voronoi fabric at injection rate #1 (5 L/s) and three different stress ratios, the stimulated 

zones are shown in Figure  5.12. Here, the stress ratio appears to have an effect on the stimulated 

zone and as the in-situ stress state becomes more deviatoric, the eccentricity of the ellipse 

increases. In the ideal random geometry and a perfectly isotropic stress state, a circular 

stimulated zone is expected, whereas the strongly oriented joint fabric does lead to stimulated 

zones that are mildly eccentric.  
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The ellipse eccentricity increases as the differential stress increases whereas the area of the 

stimulated zone decreases as the stress ratio becomes closer to 1.0. This suggests that an optimal 

stress regime may exist which will yield a maximum area stimulated zone. In the isotropic state, 

there does not exist a preferential HF propagation direction, but the zone radius is suppressed; in 

highly deviatoric stress fields, the stimulated zone becomes relatively narrow (eccentric) so that 

the stimulated zone is reduced in area.  

Figure  5.12 provides a description of the primary fracture mechanisms contributing to flow 

enhancement. In all cases, the stimulated zone based on normal displacements is the largest of 

the three - this is because joint opening is generally larger than the aperture increase for joint 

shear dilation. Ultimately it is this metric that is most useful as it relates more directly to the flow 

enhancement since permeability (as an averaged quantity) can be directly related to the residual 

apertures, which increase individual joint conductivity. It is likely that most of the shear 

displacements were induced subsequent to the normal displacements, as the normal openings 

facilitated pore pressure penetration to reduce the frictional resistance along the joint interface, 

allowing slip to occur more easily.  

The stimulated zones based on both normal and shear displacements are marginally smaller than 

the stimulated zones based on shear displacement alone. This behavior implies that there are 

some sheared joints near the peripheries of the stimulated zone that were not directly caused by 

extensional opening.  Of course, if a smaller threshold aperture had been assumed as more 

appropriate for the joint dilation, the intensity and area of shear stimulation would have been 

accordingly larger. Microseismic data suggests shear stimulation occurs at substantial distances 

beyond the supposed limit of the opened joints, and in a real case, it is likely that these small 

shear displacements could lead to additional flow enhancement beyond the limit of the opened 

joint network. If these results are to be interpreted in the context of real well behavior, it would 

be useful to further investigate this issue. 
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Figure  5.12. Associated stimulated zones with a determined threshold of 2.5mm for the Voronoi tessellated rock 

fabric, injection rate #1, and various stress ratios. Stimulated zones calculated based on both ellipse and convex hull 

geometries. 

5.4.3 EFFECT OF INJECTION RATE 

The effect of injection rate has been studied for the three representative geometries under 

the three chosen stress ratios. The initial injection rate (rate#1) has been doubled (rate#2) and 

tripled (rate#3), for the same injection time. The injection rates increase by 5L/s intervals: rate#1 

equals 5 L/s, rate#2 equals 10L/s and rate#3 equals 15 L/s. Effects of injection rate on normal and 

shear displacements for the same cases (Voronoi tessellated rock fabric at injection rate #1 and #3 

different stress ratios) were analyzed and are shown in Figure  5.13 and Figure  5.14.  The general 

pattern of normal displacement remains the same as the deformation pattern is globally 

controlled by in-situ stress and the injection rate has local effects on joint behavior.    

 (a) 
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(b)  

   

(c) 

   

 
>′�� >′ÒÒ	 = 30 15{ = 2 

>′�� >′ÒÒ	 = 30 20{ = 1.5 
>′�� >′ÒÒ	 = 30 30{ = 1 

Figure  5.13. Effects of injection rate on normal displacement for the Voronoi tessellated rock fabric and various 

stress ratios: a) rate#1, b) rate#2 and c) rate#3. 

Figure  5.14 shows that, most frequently, joints oriented in the NE-SW direction underwent right-

lateral slip whereas the joints oriented in the NW-SE direction underwent left-lateral slip. 
Locally more joints underwent slip under higher injection rates and generated a larger stimulated 

zone. 

(a) 
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(b) 

   

(c) 
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Figure  5.14. Effects of injection rate on shear displacement for the Voronoi tessellated rock fabric and various stress 

ratios: a) rate#1, b) rate#2 and c) rate#3. 

The cross-sectional pressure profile along the horizontal axis was plotted (Figure  5.15); the top 

of the pyramids are the maximum pore pressure. As expected, the largest pressure occurs with 

the highest injection rate. The steep falling curves show the magnitude of pore pressure around 

the injection point while the pressurized area is almost the same size for all injection rates. 

 Rate#1 Rate#2 Rate#3 

Figure  5.15. Effects of injection rates on shear displacement for the Voronoi tessellated rock fabric and various 

stress ratios: a) rate#1 (5 L/s), b) rate#2 (10 L/s) and c) rate#3 (15 L/s). 
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Similar simulations on the other geometries are reported in Figure  5.16 and Figure  5.17. Higher 

injection rates lead to more normal displacements along the joint set that is oriented closer to the 

direction of σMAX. Joint deformation is affected more by stress ratio under lower injection rates 

than higher ones. Higher injection rates cause higher fluid pressure and stimulated more joints 

because the fluid had enough pressure to counteract the increased confining stresses (see 

Figure  5.1) even in less favorable directions. Injection rates changes in these DEM simulations 

may also act as a proxy for changes in viscosity and future work will address the issue of 

changes in viscosity at constant injection rates.  

(a) 

   

(b) 
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Figure  5.16. Effects of injection rates on shear displacement for the Cross-joints rock fabric and various stress ratios: 

a) rate#1 (5 L/s), b) rate#3(15 L/s).  

(a) 
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Figure  5.17. Effects of injection rate on normal displacement for the Cross-joints rock fabric and various stress 

ratios: a) rate#1 (5 L/s), b) rate#3 (15 L/s).  

 SUMMARY 5.5

In this chapter, a study investigating parameters that affect the stimulated zone associated 

with HF is presented. A means to quantify the stimulated zone area for a simulated HF treatment 

is developed using normal joint displacement as a threshold to specify the zone bounds. Results 

show that rock fabric and in-situ stresses are the primary controls on stimulated zone shape and 

size. Increasing flow rate under the modelling conditions has only a small effect on the resultant 

stimulated zone area at the same stipulated displacement threshold. Based on this study, more 

insight into the response of NFRs to hydraulic stimulations was achieved: 

• Pore pressure distributions show preferential directions under higher differential stresses 

and become more uniformly radial as isotropic stress conditions are approached, except 

when a strongly anisotropic rock fabric dominates the HF propagation paths.  

• Opening pre-existing joints in NFRs by HF also leads to shear slip and dilation affecting 

the flow path, implying that in a real case shear dilation is a mechanism of increasing the 

global permeability in a NFR.  

• Branching may occur a short distance from the injection point; it is usually suppressed 

under a higher stress ratio and is more highly developed in the isotropic stress state, and 

particularly in an isotropic rock fabric.  

•  If the orientation of a joint set does not align normal to σmin, the fractures will propagate 

in a complex manner, generally globally normal to σmin, but with directions modified by 

the strong fabric.   

• In general, with cross-joints and cross-cuts rock fabric, larger average displacements were 

noted than for the isotropic Voronoi tessellation, affecting both the magnitude of the 

deformations and size of the stimulated zone. This is logical because of the much longer 

joint length in the models with strong fabric.   

Blue lines are new hydraulic fractures 
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• Injection rates do not appreciably affect the stimulated zone area or the general trend of 

fracture propagation, but they locally affect rock mass deformation (aperture).  Higher 

injection rates cause higher fluid pressure and larger normal displacements within the 

joints. 
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CHAPTER 6 NUMERICAL INVESTIGATION OF SHEAR/SLIP EVENTS 

ASSOCIATED WITH HYDRAULIC FRACTURING 

A major geomechanical question arising in mining engineering is: Can shear stresses be 

relieved in a deviatoric stress field through the process of injection?  This chapter is focused on 

the magnitude of the shear/slip events associated with hydraulic fracturing in a naturally 

fractured rock mass because such events are evidence of local shear stress release. 

OVERVIEW 

There is concern that hydraulic fracturing (HF) near an existing critically stressed fault 

could trigger slip and generate a seismic event of significance (Zoback and Gorelick 2012). To 

examine this scenario, a mathematical discontinuum model representing a naturally fractured 

rock (NFR) mass containing a fault was created and fault slip response to fluid injection was 

studied.  UDECTM is used as a Discrete Element Method (DEM) approach to define the seismic 

moment and also to assess the influence of injection and slip on further shear slip propagation. In 

most of the simulations, slip and dilation take place along a number of well-oriented joints 

surfaces, so it appears reasonable to assume that in a real case, microseimic emissions would 

accompany each slip event. A moment magnitude scale (Mw) was used to measure the size of the 

shear event in terms of the energy released. Seismic moment is a measure of the total energy 

(work) released during a shear event and is used to measure its magnitude. The injection energy 

is calculated as the total energy required for achieving the hydraulic fracturing; this is viewed as 

energy to open joints against the ambient stress field and much of it is potential stored energy 

that can be released and create discontinuities (work of fracture), deformations (� = � · �) and 

heat and radiated seismic energy. A small amount of the total released energy is transformed to 

radiated seismic energy and another small amount results in tensile fractures. Fracture energy is 

used to calculate the work required to create fracture surfaces. Comparing the energy release by 

fracturing or shear events indicates their contribution to the total amount of released energy or 

total work. The amount of energy associated with the shear-slip event is small compared with the 

overall work done to generate the distortions (i.e. increases in aperture by forcing them open 

against the confining stresses) in the rock mass and in reality much of the energy in slip may be 

lost as heat from the plastic deformation rather than as radiated seismic energy.  

Microseismic monitoring shows the spatial distribution and magnitude of seismicity associated 

with slip of bedding planes and natural and incipient fractures. Work calculations have been 

undertaken to analyze the various sources of energy storage (elastic strain energy) or dissipation 

(slip) and the energy losses from viscous dissipation, all to aid in clarifying HF processes in 

NFRs.  
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 INTRODUCTION 6.1

Due to an increasing demand for energy, low-permeability hydrocarbon-bearing rocks 

such as tight sandstones and shales are regularly stimulated using hydraulic fracturing 

technology (Curtis 2002). Most stiff rocks are naturally fractured, affecting hydraulically 

induced fracture direction locally, but the global orientation of induced fracture growth remains 

normal to the minimum principal stress as a work minimization process. Shearing takes place 

along joint surfaces and may cause shear events along with weakening and softening of the joints 

in stiff rock mass (Pirayehgar and Dusseault 2014).  

There are many studies of earthquakes induced by different processes such as mining, oil 

recovery, waste disposal, geothermal operations, in-situ combustion operations (Nyland and 

Dusseault 1983), water flooding and hydraulic fracturing. (Warpinski et al. 2012). Davies et al. 

carried out a comprehensive review of all published examples of seismic events ≥ 1 since the 

year 1929 (Davies et al. 2013), as shown in Figure  6.1. According to this study, the potential 

causes of induced earthquakes > 1 that have occurred since the year 1929 are as follows: 

• Mine subsidence (M 1.6 - 5.6) 

• Oil and gas field depletion (M 1 - 7.3) 

• Fluid injection for secondary oil recovery (M 1.9 - 5.1) 

• Waste-water disposal (M 2 - 5.3) 

• Solution mining (M 1 - 5.2) 

• Enhanced Geothermal Systems (EGS) operations (M 1 – 4.6) 

• Reservoir impoundment (M 2 – 7.9) 

• Groundwater extraction (M 1 – 5.1) 

• Hydraulic fracturing in low-permeability rocks (M 1 - 4) 

 
Figure  6.1. Frequency vs magnitude for 198 published examples of induced seismicity (Davies et al, 2013). 
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Among all mentioned reasons, hydraulic fracturing generally seems to induce relatively small 

seismic events, usually with negative Richter magnitudes that are hard to detect on surface (Baan 

et al. 2013). Nevertheless, Western Canada has of late been marked with significant HF induced 

seismicity. Recent analyses of long-term seismicity in the Horn River Basin in Northeastern 

British Columbia (BC), a shale gas development area, indicate an increase in the maximum 

seismic magnitude of events from 2.9 to 3.6 ML over a five-year period (Farahbod et al. 2015). 

Hydraulic fracturing operations started in Fall 2013 in Western Alberta (Fox Creek area) induced 

seismic events greater than 4 ML. During the last two years, more than 900 seismic events with a 

magnitude range of 1-4 ML have occurred in BC and Alberta (Novakovic and Atkinson 2015). 

The largest reported seismic events to date  have occurred in Western Alberta and in 

Northeastern BC; however, the maximum magnitude of the events that could potentially be 

triggered is not yet known (Atkinson et al. 2015). 

Hydraulic fracturing may reactivate pre-existing fractures or faults and can therefore cause 

induced seismicity (Warpinski 2014; Rutqvist et al. 2013; Cipolla et al. 2012). When the shear 

stress along the surface of an extensive weak plane such as a fault exceeds its shear strength, it 

will undergo slip. This may be caused by fluid pressure increase during injection in a region with 

high deviatoric stresses, or perhaps during the flow-back period after shut-in. The occurrence of 

slip depends on geometric factors such as length and orientations of planes, stress directions, 

stress magnitudes, the roughness, cohesion and mechanical behavior of the planar features, and 

the poroelastic stress path and shape of the volume affected (e.g. in cases of permeability, 

anisotropy and heterogeneity).  In a simple Mohr-Coulomb model, reduction of effective normal 

stress across a weak plane during injection pressure increase leads to a displacement to relieve 

the excess shear stress. Because this displacement is almost always a “stick-slip” process in real 

geomaterials, slip leads to a burst of seismic energy, called an earthquake (Warpinski et al. 

2012). 

Seismic events caused by anthropogenic fault reactivation such as water flooding or even the 

filling of a hydroelectric power reservoir, are cases of unintentional “triggered seismicity”. It is 

now relatively well-understood that, because all hydraulic fracturing activity will induce seismic 

activity, this constitutes intentional “induced seismicity”. These terms may be used 

interchangeably in the discipline and, as mentioned previously, hydraulic fracturing can be 

associated with fault activation (Maxwell 2013) and not only slip along natural fractures that 

have not experienced slip before stimulation. Davies et al. believe that three mechanisms may 

control fault reactivation (Davies et al. 2013): 

1. Direct injection into the fault or direct connection between hydraulic fractures and 

the fault; 

2. Transmission of fluid through pre-existing fractures or stimulated hydraulic fractures 

into the fault; 

3. Transmission of fluid through a permeable stratum into the region of the fault. 
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Although the majority of seismic events resulting from hydraulic fracturing are very small, there 

appear to be some unequivocal examples of felt earthquakes in the USA (Oklahoma, Md = 2.8) 

(Holland 2011), the UK (Preese Hall, ML = 2.3) (Pater and Baisch 2011), Canada (Horn River 

Basin, ML = 3.8) (BC Oil and Gas Commision (BCOGC) 2012) and (Fox Creek, ML = 4) 

(Novakovic and Atkinson 2015). Among hundreds of thousands of hydraulic fracturing 

treatments, only a few events have been reported to have significantly been felt, with no physical 

damage or injury. Nevertheless, under conditions of high in-situ deviatoric stresses and 

reactivation of critically stressed pre-existing faults (see the aforementioned three mechanisms), 

the expressed magnitude may indeed be as high as 2 to perhaps 4 (Maxwell 2013). 

A microseismic event transfers the potential energy to radiated and non-radiated energy 

(frictional energy loss,	E�, and fracture energy,	E�) (Kanamori 2001). The shear stress on a fault 

plane decreases from the initial value, τ�, to the final value, τ3, when a seismic event happens 

and this is called static stress drop. Static stress drop is one of the most widely used parameters 

in the interpretation of seismic events (Aki 1967); (Scholz 2002). Dynamic stress drop occurs 

during slippage and equals to the frictional stress (Kanamori 2001). Stress drop ranges between 

0.1 to 10 MPa (Ruff 1999). Stress drop is considered to be constant for a plane fault and it 

appears to be about 3 MPa for most events (Kanamori and Anderson 1975). This is a very small 

value. 

Based on the literature, small and large seismic events are similar in terms of their rupture 

physics; and as a result, stress drop should be independent of event size (Aki 1967); (Kanamori 

and Anderson 1975); (Hanks 1977); (Abercrombie 1995); (Ide et al. 2003); (Kanamori and 

Brodsky 2004); (Prieto et al. 2004); (Abercrombie and Rice 2005); (Shearer et al. 2006); 

(Candela et al. 2011). 

A question about stress drop is its dependence upon the seismic moment, �� (Candela et al. 

2011). Stress drop is usually defined by seismic moment and fault dimensions in the presence of 

complicating parameters such as a non-planar geometry (Madariaga 1979). Seismic moment is 

estimated primarily from the observed amplitude of seismic waves (Kanamori 2001) from a 

number of observation points, and then stress drop is obtained from the given seismic moment 

Calculations. However, in this study, the seismic moment needs to be calculated from numerical 

outputs, which may cause some uncertainties in the actual stress drop. In addition, stress drop in 

reality is not constant for the entire fault slip areas, and it should be averaged along the fault. 

However, averaging causes some concerns about the accuracy of the value of stress drop, 

particularly because there are dynamic effects such as a propagating shear stress concentration at 

the tip of the slip plane. So, simplified models are generated to determine seismic moment and 

seismic magnitude and these are to be used quantitatively with a degree of caution. Based on the 

constitutive model and model configuration chosen in this chapter, there is not a strong stress 

drop (frictional stress) during slippage. Small stress drops produce small seismic moments for a 

given sheared area that in turn leads to small moment magnitude or shear events. 
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In this chapter, a numerical method is used to study possible hydraulically induced seismicity 

(including size and strength of potential earthquakes), by varying parameters that may affect 

fault reactivation and joint slip. For example, to explore strong fabric effects on hydraulic 

fracture propagation in a naturally fractured rock, different types of fabric are used in simulations 

under various stress states. Two common geometries of natural fracture networks have been 

studied: first, a network of randomly oriented polygonal joints (Voronoi tessellation), and 

second, two sets of joints (cross-joints) which are long, straight and sub-parallel with different 

inclinations to the maximum principal stresses. Numerical simulations were carried out using 

UDEC™, a two-dimensional numerical DEM code. Coupled hydro-mechanical analysis was 

applied to simulate the mechanical behavior of discontinuities (a fault along with natural 

fractures and induced hydraulic fractures) in the HF/NFR system and to study the potential 

occurrence of shear/slip events. 

 METHODOLOGY 6.2

6.2.1 MOMENT MAGNITUDE SCALE, SEISMIC MOMENT 

Earthquakes result from ground ruptures; the magnitude of an earthquake depends on the 

size of the rupture and the stress drop. The most well-known metric for earthquake magnitude is 

the Richter magnitude scale (Local Magnitude ��). However, this method underestimates large 

earthquake energy releases and is most suitable for small shallow events with ��< 6.5 

(saturation magnitude) (Mccalpin 2009). The Moment Magnitude scale (�)) has been 

introduced for large events and it corresponds with Richter magnitude for events �)<6.5 

(Figure  6.2). 

 

Figure  6.2. Comparison of different magnitude scales (Kanamori 1983). 

4 5 6 7 8 9 10 

4 

5 

6 

7 

8 

9 

Ms 

ML 

Moment Magnitude (Mw) 

O
th

er
 M

ag
n

it
u

d
es

 (
M

) 



 

123 

 

The Moment Magnitude (�)) is a dimensionless number and the subscript “�” stands for 

mechanical work (Hanks and Kanamori 1979). A log scale is used, given as:  

�) = 23 w�ç�� n 6 ( 6-1) 

Here, �� denotes seismic moment with dimensions of energy (�. �) (Hanks and Kanamori 

1979). Seismic moment (��) is the total strain energy released during an earthquake (e.g. 

Zangeneh et al. 2013): 

�� = :}« ( 6-2) 

Here, : is the shear modulus of the faulted rock (shear stiffness of the joints in the current study), 

the } is the shear-stimulated area (area of the fault) and « is the average shear displacement on 

shear-stimulated area. Therefore �� has units of work (� = � · � = : · } · �). 

6.2.2 MOMENT MAGNITUDE SCALE, SEISMIC ENERGY 

The size of an earthquake relates to the amount of radiated energy. The amount of 

radiated energy that takes the form of surface waves is a measure of the potential for man-made 

structure damage. The moment magnitude in terms of the seismic energy radiated by an 

earthquake is given by an empirical relationship developed by Gutenberg and Richter (Warpinski 

et al. 2012). Using the following estimate and replacing it in equation ( 6-1) gives the magnitude-

energy relationship, equation ( 6-4) (Choy et al. 1995) 

Eã = 1.6	 × 10Ç�	�� ( 6-3) 

Mæ = 23 log Eã n 2.9	 ( 6-4) 

where �' is in � ·� and Mæ is unitless.  

�)	and Mæ	are both magnitudes, yet they may not have the same numerical values for the same 

earthquake. �)	and Mæ	are computed from low and high frequency seismic data respectively, 

and they define different physical properties of an earthquake. �), is a static measure of the total 

mechanical work and Mæ	is more of a measure of seismic potential for damage which is mostly 

controlled by the dynamic nature of the rupture (rapid, slow, etc.). In other words, �)	estimates 

earthquake size and Mæ	indicates earthquake strength, therefore both are relevant for studying the 

potential hazardous damage of an earthquake (Bormann and Di 2011).  
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6.2.3 INTENSITY  

Magnitude and intensity are commonly confused terms, both of which can be used to 

represent the severity of an earthquake. Magnitude and intensity are respectively a quantitative 

and subjective description of an earthquake size; however, magnitude is measured based on the 

released energy and seismic techniques while intensity does not have a mathematical basis. 

Intensity describes the effects of an earthquake and it is therefore dependent on factors such as 

distance from the epicenter and other geographical features, the nature and response of 

infrastructure including its sensitivity to excitation and soil and rock properties. Only one 

magnitude exists for an earthquake while many intensities are possible depending on the nature 

of the surface response. Finally, Roman symbols are used for stating intensity whereas Arabic 

numbers are used for magnitude (USGS 2013). 

The most common scale for expressing intensity of an earthquake is the Modified Mercalli 

Intensity (MMI) scale introduced in 1931 by Harry Wood and Frank Neumann, shown in 

Table  6.1. It is based upon a qualitative description of earthquake intensity and empirically based 

on observed effects at the surface. There are 12 different levels ranging from an “unnoticeable 

event”, that is only detectable with instruments (geophones, seismometers, accelerometers), to an 

event with calamitous destruction. Table  6.2 gives a comparison of magnitude and intensity that 

occurs typically at locations near the epicenter of earthquakes (USGS 2013).  The values in the 

table are all approximate as the two methods cannot be explicitly related. 

Table  6.1. Modified Mercalli Intensity Scale (USGS 2013). 

Potential 

hazard 

Mercalli 

Intensity 
Effects 

Instrumental I Not felt except by very few people, under especially favorable conditions. 

Weak II Felt by a few people, especially on upper floors. 

Slight III 
Noticeable indoors and especially on upper floors, but may not be 

recognized as an earthquake. 

Moderate IV 
Felt by many people indoors and a few outdoors. May feel like a heavy 

truck passing by. 

Rather strong V 
Felt by almost everyone. Some people may be awakened from sleep. 

Small objects will be moved and trees and poles may shake. 

Strong VI 

Felt by everyone. It will be difficult for people to remain standing. Some 

heavy furniture may be moved and some plaster from walls may have 

fallen. Chimneys may be slightly damaged. 

Very strong VII 
Slight to moderate damage in well built, ordinary structures with 

considerable damage to poorly built structures. Some walls may fall. 

Destructive VIII 

Little damage in specially built structures with considerable damage to 

ordinary buildings and severe damage to poorly built structures. Some 

walls collapse. 

Violent IX 
Considerable damage to specially built structures with buildings shifted 

off foundations. Ground will noticeably be cracked. Wholesale destruction 
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and landslides may also occur. 

Intense X 

Most masonry and frame structures along with foundations will be 

destroyed. Ground will be extremely cracked. Landslides and wholesale 

destruction will occur. 

Extreme XI 
Total damage. Few, if any, structures will remain standing. Bridges will be 

destroyed. Wide cracks in ground. Waves seen on ground. 

Catastrophic XII Total damage. Waves seen on ground. Objects thrown up into the air. 

 

Table  6.2. Comparing magnitude and intensity of earthquakes (USGS 2013). 

Magnitude 
Typical Maximum 

Modified Mercalli Intensity 

1.0 - 3.0 I 

3.0 - 3.9 II - III 

4.0 - 4.9 IV - V 

5.0 - 5.9 VI - VII 

6.0 - 6.9 VII - IX 

7.0 and higher VIII or higher 

 

 HYDRO-MECHANICAL SIMULATIONS USING UDECTM 6.3

The DEM approach can be used to define an equivalent to the seismic moment and to 

study influences on shear slip propagation. Work calculations were undertaken to look at the 

various sources of energy storage (elastic strain energy) or dissipation (slip), as well as the 

potential energy losses from viscous dissipation. This will help clarify HF processes in NFRs. 

Future developments could include energy calculations to find a relation between the slip that 

can be simulated in these realizations and the MS emissions in the field. Through the use of 

appropriate constitutive laws, it may be possible to monitor an evolving stress field through the 

MS emissions (Dusseault 2013). In this research, the moment for an energy release event is of 

interest, and this might be interpreted as a seismic event with the moment reflecting the 

maximum amount of radiated energy. 

6.3.1 MODEL OPTIONS 

In order to create an energy release event of substantial magnitude, a fault, by definition a 

plane along which displacement has already occurred and which is much larger than the other 

natural fabric elements such as joints and bedding, must be subjected to a sufficient effective 

stress field to generate yield and accompanying slip displacements along the fault. Numerical 

simulations of this displacement are carried out with UDECTM to study the size and strength of 

energy release which might be linked to potential induced shear events. Since mechanical 

deformation and fluid flow are interdependent, hydro-mechanical coupling has been 

implemented to improve predictions of the rock mass hydraulic response to mechanical changes. 

UDECTM is used to study the effects of two different fabric patterns (Voronoi tessellation and 
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cross-joints) on the distribution of slip and opening of joints at different stress field anisotropies. 

A two-dimensional plane-strain section is generated in UDECTM to represent a naturally 

fractured rock mass 40 m × 40 m in size, subjected to a biaxial in-situ stress state. The medium is 

initially dry and then fluid is injected into the borehole at a constant flow rate of 0.0004 m3/s/m. 

Table  6.3includes all fluid and material properties assumed for the rock mass, joints and fault: 

Table  6.3. Rock, joint and fluid properties. 

Rock properties Joint mechanical properties 

Density 2700 kg/m3 

Bulk modulus 40 GPa 

Shear modulus 24 GPa 

Friction angle 27 Degree 

Cohesion 27 MPa 

Tensile strength 1 MPa 
 

Normal stiffness 10 GPa/m 

Shear stiffness 4 GPa/m 

Friction angle 30 Degree 

Cohesion 0.1 MPa 

Dilation angle 5 Degree 
 

Joint hydraulic properties Fluid properties 

Permeability factor 0.83 × 108 MPa-1 s-1 

Residual hydraulic aperture 1 × 10-4 m 

Aperture at zero normal stress 5 × 10-4 m 
 

Density 1000 kg/m3 

Dynamic viscosity 10-3 Pa·s 
 

Figure  6.3(a) and 2(b) respectively represent a network of randomly oriented polygonal joints 

(Voronoi tessellation) and two sets of perpendicular joints (cross-joints) which are long, straight 

and sub-parallel with different inclinations to the maximum principal stresses. Geometrical 

parameters (joint length, spacing, gap, density, etc.), and most of all joint density, significantly 

affect the deformation of NFRs (Xing & Sanderson, 2002).  

  

(a) (b) 

Figure  6.3. UDECTM model in a rock mass containing a) Voronoi tessellation and b) cross-joint sets. 
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The two fabric patterns have approximately the same joint density and almost the same block 

size to minimize the influence of different scale of joint patterns on the results (although such 

scale effects may be worthy of study in themselves). The injection starts with a rate of 0.4 L/s 

followed by a zero rate to study the after shut-in behavior. Results for two different fabrics under 

bi-axial anisotropic stress states were generated. 

6.3.2 EFFECTS OF STRESS RATIO ON ENERGY RELEASE MAGNITUDE IN THE 

VORONOI TESSELLATED ROCK FABRIC 

Joints and intact rock are sensitive to pressure and their failure criteria are functions of 

the effective confining stress; hence, to perform a meaningful numerical modeling representing a 

roughly realistic condition, a reasonable Poisson behavior of a naturally fractured rock mass is 

needed. The Poisson’s ratio of the intact rock has a significant influence on the Poisson’s ratio of 

the whole jointed system, depending on the relative frequency and aperture of the joints. For an 

isotropic elastic rock mass, the ratio of horizontal-to-vertical stress change when a uniform load 

is applied in a plane strain condition is a function of Poisson’s ratio, ν (Pirayehgar and Dusseault 

2014): 

õ>���õ>ÒÒ� = »1 n » ( 6-5) 

The effect of stress ratio (horizontal over vertical stress) on the magnitude of the energy release 

events has been studied and results are shown on Figure  6.4. The maximum principal stress 

(horizontal stress, >��� = 30	���) was kept constant while the minimum principal stress was 

altered to obtain different stress ratios. For larger deviatoric stresses, larger events are created, 

easily explained by larger consequent displacements under higher differential stresses 

(Figure  6.5). As discussed, �)	and �Í (the size and strength of an earthquake or in our case the 

energy release event in the DEM model) may be dissimilar for the same event because they 

represent different properties of an earthquake. In these simulations, they are in fact very close; 

the difference is only about 3%.  

 

Figure  6.4. Magnitude of events vs stress ratio in the Voronoi tessellated rock fabric. 
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Figure  6.5 indicates the absolute values of average normal and shear displacements over the 

whole model after injection under different stress conditions. After injection, the main 

deformation mechanism is closure. Normal displacement has a decreasing trend for higher 

differential stresses and this is fitting as to generate the different stress states, only the vertical 

stress (σmin) is decreased while the horizontal stress (σMAX) is held constant. This would lead to 

smaller applied normal components of stress and therefore smaller normal displacements. In 

contrast, the shear stress is increasing, leading to larger shear displacements.  

 

Figure  6.5. Values of shear and normal displacements vs stress ratio in the Voronoi tessellated rock fabric. 

From the aspect of energy release (work), the estimated magnitude of the earthquake is about -

2.8 (negative values are permitted in quantitative magnitude scales), which, if it were a kilometer 

deep, would be challenging to detect with sensors on the surface, let alone be felt (see Table  6.1). 

The scale of these numerical models is tens of meters in a two-dimensional framework. Events in 

reality might be triggered slip along faults that are hundreds of meters in length and width, so the 

work emissions would be several orders of magnitude larger. To carry out more explicitly 

realistic simulations using DEM models will require addressing the issues of fault scale, more 

distant boundary conditions and the three-dimensionality effects, perhaps by using 3DEC™, the 

three-dimensional version of UDEC™.  

Figure  6.6 shows relationships among earthquake size, joint/fault size, amount of slip and 

seismic moment. According to this figure, joints less than 10 m long generate negligible 

magnitude earthquakes and larger joints are associated with larger stress release (õ> - stress 

drop), larger slip and thus larger earthquakes. Events greater than �� = 6 result from huge faults 

that are tens of kilometers long (Zangeneh et al. 2013) and tens of square kilometers in slip area. 

The fault size here refers to the size of the fault segment that undergoes slip, which is less than 

the size of the fault on which the earthquake occurs. For the current simulations with a fault size 

of around 40 m, the slipped segments are somewhat smaller and the events invariably have 

negative moments and are associated with < 0.1 mm slip (Zoback and Gorelick 2012). In 

Figure  6.4, the average shear displacements ranged from 0.15 to 0.2 mm. 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.8 1 1.2 1.4 1.6 1.8 2 2.2

D
is

p
la

ce
m

en
t 

(m
m

)

Stress ratio

Normal Disp.

Shear Disp.



 

129 

 

 

Figure  6.6. Relations among earthquake scaling parameters (Maxwell 2013). 

6.3.3 EFFECTS OF STRESS RATIO ON SLIP IN CROSS-JOINT ROCK FABRIC 

Effects of fabric and differential stress fields are studied in this section. In order to 

minimize the effect of geometrical parameters, the generated fabric has the same joint density 

and block size as the Voronoi tessellated rock fabric. Also, the joint sets in this model are 

oriented in the dominant average orientations of joints in the tessellated model; in this case, 

cross-joint sets oriented 30 and 120° to the direction of maximum principal stress (Figure  6.3b). 

Figure  6.7 shows the energy release magnitude for both fabrics. Although these plots have 

almost the same trend, cross-joint sets lead to a relatively larger amount of fault rupture and 

accompanying joint slip (�)) and greater energy release (�Í). Interestingly, based on these 

initial results, in a large-scale case the presence of a strongly oriented fabric (e.g. stiff 

sedimentary strata) may lead to larger slip potential than the case of a rock mass with more 

random joints (e.g. a granitic rock mass).  
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(b) 

 

Figure  6.7. Magnitude of a) �) 	and b) �Í 	vs stress ratio for different rock fabrics. 

Figure  6.8 shows normal and shear displacements for different fabrics. The Voronoi tessellated 

rock fabric mostly has larger amounts of normal displacement, whereas in the strongly oriented 

fabric, shearing is about 0.1 mm higher (this is not negligible in the scale of our model). It seems 

that the cross-joint rock fabric has more preferentially oriented joints that can slip over longer 

distances compared to the Voronoi tessellated rock fabric which contains randomly oriented 

joints that terminate after a relatively small distance. The cross-joint rock fabric may also have 

more joints favorably aligned with the stress orientations than in the Voronoi tessellated rock 

fabric. 

(a) 

 

(b) 

 

Figure  6.8. Average a) normal and b) shear displacements vs stress ratio for different rock fabrics. 
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6.3.4 EFFECTS OF FAULT INCLINATION ON SLIP IN THE VORONOI TESSELLATED 

ROCK FABRIC 

Faults with different inclinations to the direction of σMAX are simulated. Figure  6.9 

indicates the magnitude of energy release as a function of the fault inclination. It seems that there 

is a critical fault orientation with regard to the direction of in-situ stress that affects the size of 

the fault rupture as well as the radiated seismic energy. When the fault is inclined with a lower 

angle to the maximum principal stress, it undergoes larger displacements and creates larger 

events. Increasing the fault inclination degree reduces this effect, such that at some point the 

influence of the natural fracture displacement is more significant than the influence of the fault 

slip. Based on Figure  6.9, after 15°, the effect of fault reactivation is subsumed and the natural 

fracture slip dominates the size and strength of the energy release.  

 

Figure  6.9. Magnitude of shear events vs fault inclinations in the Voronoi tessellated rock fabric. 

Based on these preliminary results, the magnitude of the energy release grows substantially for 

the first three inclinations and then decreases somewhat to a constant value. The Magnitude scale 

on these figures is logarithmic, so going from -4.2 to -2.7 represents a large change in energy 

release; according to equation 6 (reformed shape of equation 4), seismic radiated energy is 

proportional to 101.5M. As shown in equation (7), for one unit increase of magnitude, the radiated 

energy increases by a factor of 32 (Warpinski et al. 2012). In the same way, it would be 

increased by a factor of 1000 for two units’ increase of magnitude. So, a -4.2 to -2.7 change in 

magnitude is approximately a 100-fold increase in the amount of energy released. 

w�ç �' =	1.5	�Í + 4.8 	→ 	 �' ∝ 103.�	�î ( 6-6) 

�4�3 = 103.�	(�¼3)103.�	� = 103.� = 32	 ( 6-7) 

6.3.5 EFFECTS OF JOINT INCLINATION ON SLIP IN A CROSS-JOINT ROCK FABRIC 

Cross-joint rock fabric with different inclinations to the σMAX orientation are generated to 

study how this strongly oriented fabric might affect the magnitude of energy release. Simulations 
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are carried out in an anisotropic stress field of (30, 20 MPa) by rotating the perpendicular cross-

joint sets from 0° to σMAX in 15° increments from the previous inclination. Figure  6.10 shows 

magnitudes of energy release events for these simulations. The direction at which fault and joint 

sets are oriented and the angle they make with the principal stresses affect the applied normal 

and shear forces and stresses on the planar structures. Based on the principal of minimum work, 

fractures tend to propagate normal to the minimum principal stress (to minimize � = > · } · �). 

Therefore, the more discontinuities that exist in this direction, the more displacements will occur, 

leading to larger events. It can be observed from Figure  6.10 that the moment magnitude is 

increasing until the 45°-135° cross-joint sets orientations. After this inclination, fault slip 

induction is the dominant reason for the energy release, which is why constant values for the 

earthquake size are noted thereafter. As suggested previously, these small models cannot 

generate any substantial energy release event; all magnitudes are several orders of magnitude 

less that any event that could possibly be “felt”. Any attempt to scale such results to a real case 

will require a much broader set of analyses, but these preliminary results seem to be useful.  

 

Figure  6.10. Magnitude of shear events vs angle of cross-joint sets to the orientation of the σMAX. 

 INJECTION ENERGY 6.4

From another aspect, the injection energy which is considered as the total energy required 

for hydraulic fracturing can be calculated as (Boroumand and Eaton 2012): 

�� = ¡ �ö�, ≈ �(,)ö(,)∆,®�
®Æ  ( 6-8) 

where �(,) is the injection pressure, ö(,) is the injection rate, and ∆, is the total injection time. 

Injection energy is the potential stored energy that can be released and cause discontinuities to 

slip and deform, heat generation from frictional factors, and radiated seismic energy. Only a 

small amount of the total released energy is transformed into radiated seismic energy (�') and it 

can be estimated in units of Joules as (Boroumand and Eaton 2012): 

w�ç3�(�') = 1.5�� + 4.8 
( 6-9) 
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Another amount of the total released energy results in the opening of tensile fractures. Fracture 

energy is used to calculate the work required to create fracture surfaces. The following equation 

has been introduced to calculate the amount of energy needed for joint opening (Dusseault 2013) 

� = � × � ≈ (�Ë n >!	Ð�()	} � ( 6-10) 

Here, �Ë	is the pressure in the fracture and >!Ð�(	is the minimum principal stress, } 	is area of 

the fracture, and w is the mean fracture aperture. Since the hydraulic fracture is very thin and 

planar, the term } × 	� is negligible and only the net stress needs to be considered.  

Therefore, comparing the amount of the energy release by fracturing or energy release slip 

events indicates their contribution to the total amount of released energy or total work. They 

express the same work concept, albeit for shear versus normal displacement. Figure  6.11 

indicates the amount of energy associated with fracturing and energy release events in the 

Voronoi tessellated rock fabric. Values are normalized by the total amount of energy and the unit 

is percentage (%). It can be seen that a small amount of the total released energy is transformed 

into slip energy (which could potentially lead to radiated seismic energy) and another small 

amount results in tensile fractures. The amount of energy associated with the stick-slip process is 

small in comparison with the overall work performed to generate the aperture distortions (i.e. 

increases in aperture by forcing them open) in the rock mass. Much of the energy in slip is lost as 

heat from the plastic deformation rather than as radiated seismic energy (although these 

calculations cannot account for heat). According to Figure  6.11, about 8% of the total injection 

energy transforms to fracture energy and less than 1% is released as the seismic energy. Since 

these are hydro-mechanical models and not thermo-hydro-mechanical models, heat is not 

considered and it is believed that the rest of the energy is consumed for damping the DEM model 

(strong damping is used to stabilize the DEM model, which is actually an inertial model with 

forced damping to generate a quasi-static solution). 

 

Figure  6.11. The amount of energy associated with fracturing and shear events in the Voronoi tessellated rock fabric. 
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Figure  6.12 shows plots corresponding to the amount of energy used for fracturing and 

potentially released as seismic energy for a Voronoi tessellation and for cross-joint sets. As 

discussed before, the role of displacement is negligible regarding the net stress magnitude and 

that is why higher amounts of normal displacement in the Voronoi tessellated model (Figure  6.8) 

do not affect the earthquake size and fracturing energy. However, it may affect the trend of the 

fracture energy as radiated seismic energy directly relates to the seismic moment (work), which 

is a function of the shear displacement. Thus, having an increasing trend and more percentage of 

energy for the cross-joint model is expected and it corresponds with the shear displacement 

behavior of the sets (Figure  6.8). 

(a) 

 

(b) 

 

Figure  6.12. The amount of energy associated with a) fracturing and b) slip events in the Voronoi tessellated and 
cross-joint rock fabrics. 

 SUMMARY 6.5

Moment magnitude can be calculated in terms of energy (�Í) and seismic moment (�)), 

which represent different physical characteristics of a shear event. For the size of model used in 

this study, the energy release magnitudes are in the range -4 to -2, far below any measure of 

intensity such as the Mercalli Intensity scale. Larger simulation models will be required to 

approach the scale of real cases, but in fact, the energy released by hydraulic fracturing is rarely 

large enough to create a shear event that could be felt on the surface by the local population. 

Only in the case of hydraulic fracture activity triggering a critically stressed near-by fault could 

one invoke any possible risk from the hydraulic fracturing operation itself.  (Note that this is not 

necessarily the case for large-scale water injection operations which not only affect volumes 2 to 
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3 orders of magnitude greater, but also involve injection of massive amounts of cold water, 

giving a large thermoelastic effect as well and potentially leading to larger induced slip events.) 

Energy release events resulting from stress and pressure changes induced by the fracturing 

treatment and the shear displacement can be used to calculate moment magnitude, considered 

equivalent to a seismic moment. The increased pressure from the fracturing reduces the normal 

stress along planes of weakness until slip occurs and a fault may reactivate. The size and strength 

of these energy release events can be calculated from seismic moment considerations and this 

provides indications about the total mechanical work and the amount of released “seismic” 

energy. In addition, knowing the seismic moment can help with geological estimates such as 

fault size and accompanying slip. The following are some preliminary observations from the 

simulations of this research: 

• Hydraulic fracturing normally creates small magnitude events that have magnitudes less 

than zero. 

• The size of the shear/slip event depends on the in-situ stress conditions, such that under 

higher differential stresses, larger events are more likely. 

• The amount of seismic energy is small in comparison with the overall work done to 

generate the distortions in the rock mass. 

• Although normal displacement is the main deformation mechanism in all simulations, it 

is mostly shearing that controls the magnitude of the energy release and thus the energy 

dissipation fraction.  
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CHAPTER 7 A DISCRETE ELEMENT METHOD APPROACH TO 

MODEL WASTE INJECTION OPERATIONS 

This chapter presents an attempt to answer the question as to whether DEM numerical 

models could simulate or emulate fracture network creation during solid waste injection, 

followed by pressure falloff from the complex induced fracture network. To this end, two 

different cases were studied to empirically calibrate a jointed rock mass model to emulate 

pressure-time response. 

OVERVIEW 

A feasibility study for numerically modeling deep well slurried solids disposal processes 

to assess the ability of emulating empirical results from such operations was undertaken to 

potentially develop process control aids for field operations management.  Two case studies with 

different locations, geologies, injection strategies, etc. have been analyzed. UDECTM, a two-

dimensional Discrete Element Method software approach, is used to perform emulations of 

pressure-time data. Finding a suitable assumed macro-fabric (geometrical properties of the 

geological system of lithology and discontinuities in the model) for each case was the first goal; 

then, implementing appropriate rock, fracture and flow properties for each case to try and 

achieve a reasonable pressure profile match was tried. Different strategies were adopted to get 

the best match and assess if the fabric and rock parameter assumptions were reasonable. The 

second case study confirmed that the methodology may be applied to a difference fabric system, 

with a different type of rock mass and different type of injection strategies. This chapter outlines 

the challenges and lessons learned from numerical modeling of slurried solid waste disposal 

using injection under hydraulic fracture conditions in complex formations composed of relatively 

ductile shale, siltstone and sandstone strata. For this complex problem, the objective of this DEM 

model approach is to assess if such a method has merit for the simulation of such permeable 

formations, by emulating the pressure-time responses associated with the slurry injection and the 

post-injection pressure fall-off phases.  If such an emulation can be developed and shown to be 

reasonable, then using a properly calibrated model consistently can help in analyzing data and 

understanding the large-scale formation response to many cycles of slurried solid waste 

injection.  Such a capacity does not currently exist in any known history-matching flow software 

that is available.  

 INTRODUCTION 7.1

“Zero discharge” strategies have been embraced by many companies and regulatory 

agencies, both off-shore and on-shore, recommending or requiring that all produced solid waste 

from oil and gas upstream operations should be disposed properly with minimum risk. 

Conventionally, wastes were stockpiled on site (e.g. on a platform, or in a lined pit) for later 

treatment or burial (e.g. in the case of permitted non-hazardous solids), often shipped to a 



 

137 

 

treatment and disposal depot at some distance from the waste generation site. Storage and 

transshipment means multiple re-handling and conveyance episodes, increasing environmental 

risks and operating costs. Off-shore Cuttings Re-Injection (CRI) has been introduced as an 

environmentally safe and cost-effective waste management strategy. This slurried solids 

injection technology offers permanent disposal by injecting a slurry comprising a mixture of 

cuttings and seawater under hydraulic fracture conditions into a suitable deep formation, which is 

usually several hundred meters to a thousand meters below the surface (Bartko et al. 2009). On-

shore, the method has been used to dispose of a wider range of materials (tank bottoms, 

emulsions, produced sand, NORMs, etc.), but generally limited to non-hazardous waste streams 

(Hainey et al. 1999; (Arfie et al. 2005). 

CRI technology is now widely used in the offshore industry. On-shore, large volume disposal of 

various granular upstream oil industry wastes in Indonesia (Marika et al. 2009), Long Beach, 

California (Sipple-Srinivasan et al. 1997), and Alaska (Nadeem et al. 2005) deserve mention.  

Despite cost and environmental advantages, uncertainties remain that present challenges to 

design and operations. Having an engineered process to identify and mitigate potential risks and 

increase operational assurance is important (Guo and Geehan 2004), and because of the 

complexity and evolution of conditions, such a process requires continuous measurements and 

interpretation because of the changing conditions at depth during the many cycles of injection.  

This work is an attempt to assess if the Discrete Element Method has merit for the simulation of 

such complex process of cyclic hydraulic fracturing through emulating pressure-time responses 

associated with injection and post-injection phases in CRI operations. Because solids are always 

being injected over many cycles, large permanent volume changes lead to stress changes at 

depth, and the injectivity of the formation may be altered by the solid particles in the slurry 

(Keck 2002). In early times, processes are dominantly near-wellbore (<30 m), but over years of 

injection cycles, the directly affected zone (the “wastepod”) can become quite large, on the order 

of several hundred meters (Xia 2007).  The processes of injection, fracture propagation, filtration 

of solids, permeability evolution and stress changes interact in complex ways, and the 

injection/fall-off cycles have not proven to be amenable to direct physical understanding and 

mathematical simulation (Xia et al. 2014). Hence, empirical analysis of data is undertaken 

through a distinct element model as an extended feasibility study to provide insights into the 

evolution of the subsurface experiencing the mechanics of waste injection processes. More 

specifically, for operations management, insight into the stress-permeability-injectivity evolution 

of the injection zone at depth with continued injection episodes is needed, so that decisions 

(rates, total volumes, solids content, decay period, etc.) can be made for the next cycles, or for 

the entire project.   

In-situ conditions and real data are used throughout the emulations to empirically analyze the 

process, although the specific physical mechanisms taking place at depth may or may not be 

correctly or fully represented. Hence, the word “emulate” is chosen to describe the procedure, 
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rather than the more widely used word “simulate”. This is to avoid any implication that the 

model used is physically correct in the sense that it represents correctly the physical mechanisms 

taking place during the slurried waste injection process. There is so much uncertainty associated 

with the processes taking place at depth (joint opening, shearing, changes in permeability, 

compressibility, etc.) that a true physics-based simulation is beyond current capabilities; the best 

that can be achieved is thought to be a reasonable “emulation” of an exceedingly complex 

process, and using the results to track, in a comparative and empirical manner, the evolution of 

the injection zone at depth over many injection episodes.   

The first step is generating a model with the most appropriate geometry and applied stresses; 

then, fluid is injected according to the injection scenario. Two different CRI projects have been 

studied: a “Middle East” field and a “North Sea” field. The physical processes are affected by the 

high conductivity of joints which are further opened (dilated) by deformations induced by slurry 

injection under fracture conditions, affecting fluid leak-off rates in ways that remain ill-

understood. Calibration of discrete element models (DEM) to field data of pressure-time 

response curves may provide insight to the changes taking place in the jointed rock mass.   

Thus, numerical emulations of field behavior were carried out to help better understand the 

behavior of the system during and after injection episodes. The geomechanics stress-strain 

relations are solved by coupling with changes in fluid pressure in the joints of the discrete 

element model with the two-dimensional Universal Distinct Element Code (UDECTM). The use 

of DEM treats the rock mass in a more realistic manner than a purely continuum approach as it 

can account in part for the presence of discontinuities that represent planes of weakness and may 

be flow channels already, induced (complex) fracture planes that accommodate the slurry and 

provide flow channels, and opening and dilating joints and bedding planes that represent 

additional fluid pathways that respond in a non-linear manner to fluid pressures and stresses. To 

represent this complexity, fluid flow through  a jointed rock mass under a biaxial (deviatoric) 

stress state is studied. 

Although the process of hydraulic fracturing is considered to be strongly three-dimensional in 

nature, two-dimensional emulations may help to generate better understanding because flow is 

dominantly in two directions (both at 90° to the minimum principal stress direction). So, models 

of reduced dimensionality may nonetheless reflect some of the deformation and flow patterns 

arising because of fluid injection and withdrawal during the process. 

 CASE STUDY A: MIDDLE EAST FIELD 7.2

7.2.1 MODEL GENERATION – CASE A 

The first case study is located in the Middle East and the candidate injection zone is 

sandstone. Based on available information, it was deemed appropriate to assume that the upper 

and lower boundaries are both impermeable. The initial pore pressure for the target zone is 20 
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MPa. The design of the CRI well is shown in Figure  7.1a, and Figure  7.1b shows the schematic 

of the geomodel. 

(a) 

 

(b) 

 

Figure  7.1. CRI operation #1; a) well schematic and b) geology information. 

Hydraulic fracture geometry is characterized by its length, width and height (Figure  7.2). The 

relationship between these three dimensions and fracturing design has been a subject of debate 

among fracturing experts for many years. According to Daneshy (2010): 

• Fracture length is a function of injection volume and it also affects fracture width 

directly, which means greater length leads necessarily to a wider fracture. 

• Fracture length affects slurry volume such that creating greater length needs more 

volume of slurry (if height is constant in a constrained zone and length is doubled, 

volume increases by a factor of four if the rock is impermeable).  
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• Fracture width varies depending on mechanical properties of the formation, fluid 

properties and other fracture dimensions. For instance, wider and shorter fractures are 

created through using higher-viscosity fluids (and higher injection rates). 

• Fracture height is related to the formation thickness and is often considered to be 

constant to simplify the modeling challenges. (This assumption of constant height is 

not met in practice for large-scale CRI operations.) 

 

Figure  7.2. Geometry of a hydraulic fracture. 

For these analyses, it was important to see how far fractures propagate laterally and vertically. In 

other words, estimating height and length of the hydraulic fractures was the primary purpose of 

the study. Known values of in-situ stresses were minimum horizontal stress and vertical stress, 

and a two-dimensional model under this biaxial stress state was developed. A three-dimensional 

model would likely give more realistic results and is highly recommended for future studies, but 

such an approach carries a huge computational burden if similar scales of discretization are 

desired and parametric studies needed. 

Fracture growth is a function of pressure, fluid properties, and injection rate and volume. 

Hydraulically induced fracture orientation is dominantly controlled by principal stresses.  In the 

absence of stress gradients and strong joint fabric, a fracture will propagate as a plane normal to 

the direction of least stress and grow equally in all directions until it reaches some 

heterogeneities in mechanical or flow properties that will suppress or promote growth rate in that 

direction. Under typical slurry injection conditions for ground cuttings, it is usually assumed that 

one cycle of injection results in a single vertical fracture plane that grows both vertically and 

horizontally as long as injection continues.  This assumption is used in the modeling. 

Shut-in periods between injection cycles give the target formation time to dissipate pressures and 

allow the solid waste to be compressed as the effective stresses rise. The larger zone affected by 

the pressures is the disposal domain which contains the smaller compressed waste pod that has a 

complicated shape because induced fracture patterns change as injection cycles continue. The 

differences in pressure response and dissipation behavior after shut-in are proof that the 

Fracture 

height 

Fracture length 

Fracture 

width 
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formation response to waste injection is changing as the result of the increased extent and 

changing shape of the waste pod and associated pressure and stress effects.  

Given that >Ð�( 	= 	>!, and based on experience, literature and inference in the absence of direct 

proof, successive injection cycles would be expected to generate an array of dominantly vertical 

fractures of similar size that are scattered with slightly different angles around the wellbore 

(Moschovidis et al. 2000). Also, solid disposal will increasingly lead to horizontal fracture 

growth over time because the increasing volumetric strains induced by the planes of compressed 

solids will increase the lateral stresses until, locally in the vicinity of the waste pod, >! >	>" 

(Veil and Dusseault 2003). Of course, regionally, at a scale much larger than the disposal 

domain, the original stress condition obtains, so fractures should retain a large vertical 

component even as they develop more horizontal components.   

During the period of shut-in, the induced fractures may be viewed as gradually closing, and 

because fluid is no longer being injected, the flow pattern may be considered to be approaching 

linear flow conditions. This is a feature that helps justify the use of a two-dimensional emulation 

for a complex three-dimensional condition in the ground during pressure leak off in a CRI cycle. 

The Voronoi tessellation generator is a UDECTM feature and it is used to simulate a random rock 

mass fabric of natural existing and incipient fractures by subdividing the rock mass into 

polygonal blocks with an overall (global) isotropic fabric (Figure  7.3). Existing and incipient 

fractures are defined as closed planes of weakness with low tensile strength that can be opened 

(Mode I) or reasonably easily sheared (Mode II) by stress changes. The Voronoi tessellated 

geometry consists of polygonal blocks with a limited area. It is possible to stipulate different 

properties for each joint (or each set of a group of joint sets) such that a probabilistic input is 

achieved, perhaps more closely emulating a real rock mass, but it remains unclear what 

distributions of properties would be most appropriate, so in this work the properties are assumed 

to be the same for all joints (Table  7.1). 

Figure  7.3 shows a two-dimensional vertical section. A stiffness model for contact and a Mohr-

Coulomb constitutive law are applied to represent the block and joint slip and deformation 

behaviour. The contact and Coulomb slip model needs six parameters: normal and shear 

stiffness, friction angle, cohesion, tensile strength and dilation angle. Part of the data required for 

emulations were available (such as large-scale geological information, geophysical borehole 

logs, and injection parameters) and the rest are assumptions made based on the literature and 

experience (such as geometrical and geomechanical properties). Table  7.1 includes material 

properties assumed for the target formation. 
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Figure  7.3. Generated geometries, case A. 

Table  7.1. Rock, joint and fluid properties, case A. 

Rock properties Joint mechanical properties 

Density 2700 kg/m3 

Bulk modulus 38 GPa 

Shear modulus 41 GPa 

Friction angle 30 Degree 

Cohesion 0 MPa 

Tensile strength 0 MPa 
 

Normal stiffness 10 GPa/m 

Shear stiffness 4 GPa/m 

Friction angle 30 Degree 

Cohesion 0.1 MPa 

Dilation angle 5 Degree 
 

Joint hydraulic properties Fluid properties 

Permeability factor 0.83 × 108 MPa-1 s-1 

Residual hydraulic aperture 5 × 10-5 m 

Aperture at zero normal stress 3 × 10-4 m 
 

SW Density  1.03 Mg/m3 

SL Density  1.17 Mg/m3 

Dynamic viscosity 10-3 Pa·s 
 

Flow in the DEM model is generated by the pressure difference between adjacent domains. In a 

steady-state flow analysis, domain volume alterations have negligible influence on pressure 

change, so the effect of fluid stiffness in the mechanical steps is eliminated and the bulk modulus 

of the water (�)) is not required. Because of small values of pressure change in each hydraulic 

step, many fluid steps can be performed for each mechanical step while preserving the accuracy 

of the solution. For transient flow analysis, the numerical stability requirements may be rather 

severe, and may make some analyses time-consuming so as to be impractical for parametric 

comparisons, especially if large contact apertures and very small domain areas are present. 

Furthermore, the fluid filling a joint also increases the apparent joint stiffness by �)/�, thus 

possibly requiring a reduction of the time-step size used in the mechanical equilibrium 

calculations (ITASCA Consulting Group Inc. 2010). 
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At each time step in the mechanical calculation in UDECTM, the geometry of the system is 

updated, giving new values of apertures for all contacts and new volumes of all domains. Flow 

rates are calculated, domain pressures are updated taking into account net flow into each domain 

and changes in domain volume arising from the incremental motion of surrounding blocks 

(ITASCA Consulting Group Inc. 2010). 

Forces are summed at each contact and equilibrium is approximated when the forces  L are 

equilibrated within acceptable accuracy for all j-nodes - (# v)& 	≈	0. Unbalanced forces are 

calculated continuously during time-stepping and the maximum unbalanced force is plotted so 

that equilibrium can be confirmed. Low values of the ratio of maximum unbalanced force show 

that forces balance at all gridpoints but steady-state plastic flow may still be happening, so 

convergence of displacement values to zero at the end of the iterative solution indicates 

equilibrium (ITASCA Consulting Group Inc. 2010). 

7.2.2 INJECTION STRATEGY – CASE A 

The injection strategy for the Middle East field is a single “batch” injection and consists 

of a sea-water pre-flush stage, slurried cutting injection, and a sea-water post-flush stage. 

Optimum cuttings slurry properties for injection are 1.04 – 1.30 SG, while the specific gravity of 

sea-water equals 1.03. The entire volume of slurry is being continuously injected during batch 

pumping (i.e. no shut down of the pumps or decrease in rate during this stage of pumping). 

Generally, these “switches” from pre-flush stage, slurry/slop stage, and into post-flush stage are 

“on the 'fly'”, with no stopping of the pumps, so that momentum is maintained and solids 

settlement or blockages can be avoided. 

Figure  7.4 shows the injection rates for the chosen date of CRI injection. The first two phases of 

injection are considered as steady-state flow, under which pressure or pressure gradient is 

constant over time. The third phase is considered as transient flow with a somewhat varying 

pressure gradient. 

 

Figure  7.4. Injection actual data of the first case study, case A. 

SW: 3 bpm = 7.95 L/s = 0.008 m
3

/s 

SW: 5 bpm = 13.25 L/s = 0.013 m
3

/s 

SL: 7 bpm = 18.55 L/s = 0.018 m
3

/s 
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7.2.3 JOINT MODEL PRESSURE MATCHING – CASE A 

Pressure matching includes two phases: injection and shut-in pressure matching. The first 

step is generating the model with the most appropriate geometry and applied stresses. Then fluid 

is injected according to the injection scenario with three phases of injection (seawater, slurry 

then seawater) with three different rates. Different challenges in this part of the study included 

the problem that injection rates should be adjusted for the two-dimensional model effects, as well 

as the issue of the flow regime changing from steady state (constant rate and conditions) to 

transient flow (pressure changes with all associated volumetric and rate effects). Importantly, the 

area near the injection point undergoes plastic deformations and becomes damaged over time; 

this zone is the waste pod which includes compressed waste and damaged formation, and it has 

different characteristics from the virgin formation or from zones that have not experienced recent 

injection. Although it is important to estimate the extent of the waste pod, it is initially more 

important to be able to generate such a zone in the model, by changing the geometry of the waste 

pod or changing its physical characteristics (or both). One may also choose to model a very early 

injection pressure history in which the formation is more likely virgin and no large waste pod is 

yet created that would dominate system response. In the current study, data from early injection 

cycles were not available, so the waste pod was already of substantial volume (area in the model) 

and this undoubtedly has affected the results.  

To deal with the challenge of converting injection rate to an appropriate value in a two-

dimensional framework, the injection rate should be divided by the missing (constant) dimension 

of the model. Having this in mind, Figure  7.5 shows the best pressure match achieved between 

the real data and numerical results. There is a negligible offset at the first phase of the injection 

when the pressure is rising. This offset reflects the effect of the waste pod. In the case of a virgin 

formation, pressure would increase more abruptly to reach the fracture point of the formation 

because the virgin formation is observed to be much “stiffer” in its response than a formation 

that has been subjected to extensive waste pod growth through numerous injection cycles. This is 

because the compacted solid waste is much softer than the virgin rock, which also may have 

been softened by shearing and dilation.  

It is assumed that pre-existing fractures are open with a uniform initial aperture of 5 × 10-5 m. 

The aperture of each joint is calculated as a function of its orientation relative to the in-situ 

principal stresses. Although the fluid density is changing from seawater to slurry, the real effects 

of the two phases of fluid flow have not been modeled in the current emulations. Because the 

joint conductivity factor ($& 	= 	1/12:) can be applied only once in the system, it is necessary to 

decide which fluid viscosity is dominant in the whole system. In the current case, seawater has 

been injected twice and for a longer time, so it was assumed that seawater is the major fluid in 

the system. 
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Figure  7.5. Matching numerical and real pressure curves, case A. 

The next step was emulating the shut-in condition and matching the fall-off pressure 

“realistically”. The software is not capable of directly modeling the shut-in condition therefore a 

new simulation was developed for the shut-in time response, and it provided a better match for 

the pressure-time curves. Figure  7.5 shows matching numerical results with real data. Note that 

the pressure drop in the numerical results comes from removal of frictional losses, fluid loss to 

the formation and further growth (extension) of the fracture. 

7.2.4 PHYSICAL UNDERSTANDINGS OF THE CRI OPERATION # 1 

The same emulations were carried out for subsequent cycles of injection; here the results 

for three cycles of injection will be discussed. Four square zones with different length of edges 

were assumed around the injection points (Figure  7.6); these are referred to as effective zones, 

and joint displacements are calculated in these effective zones to see how they change with 

distance from the injection point. 

 

Figure  7.6. Effective zones around the injection point, case A. 
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Figure  7.7 shows cumulative amounts of normal and shear displacements inside each effective 

zone plotted against the edge length of the squares for three subsequent cycles of injection and 

shut-in. Cumulative normal displacement has negative values because more closure than opening 

is happening in the corresponding zones.  According to this figure:  

- The cumulative normal displacement is increased by increasing the effective zone size. 

However, higher fluid pressure around the injection point would induce more joints 

opening and in turn more distant joints will undergo closure because the total stress 

increases but the pore pressure at a distance does not, hence the effective stress increases. 

On the other hand, shear displacement is increasing farther from the injection point and 

would affect a larger area as the result of induced additional shear stress from the 

volumetric distortions near the injection well caused by the increase in joint aperture by 

normal opening and shear dilation.  

- Shear displacements of joints are not reversed during the shut-in pressure decline, and 

these irreversible dilational shear displacements likely form persistent flow channels of 

higher fluid conductivity (Figure  7.8).  (This feature of a DEM is considered to be one of 

the major reasons why conventional continuum well-test models fail to achieve realistic 

history matching, whereas the DEM approach seems to give better matches.) 

- Within the same effective square, there is more joint closure during shut-in than during 

injection, which means that the normal joint displacements in the UDEC™ model 

formulation are largely reversible, and opened joints can get back to their original 

apertures after injection and with pressure dissipation. 
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(b) 

 

Figure  7.7. Cumulative a) normal and b) shear displacements vs edge of the effective zones for three cycles of 

injection and Shut-in, case A. 

Figure  7.8 shows right and left lateral displacements during injection and shut-in. It also 

indicates how hydraulic fracturing affects the “overburden”, although there is an impermeable 

layer between formations and no fluid gets into the upper formation in these analyses. It can be 

seen that shear displacement is essentially irreversible and the induced shear-dilation flow 

channels remain connected after shut-in. The direction of right- or left-lateral displacement is a 

function of initial far-field stress orientations, induced stress changes and joint orientations. 

Since in a Voronoi tessellated rock fabric there are joints oriented in all directions, joint shear is 

mostly a function of stress directions, and right- and left-lateral shear movements are 

respectively mostly aligned NW-SE and NE-SW in this emulation. Such information may be 

important for seismic risk studies. For example, if there is a known fault through the process 

zone, and if the original stresses are well-understood, this information could allow prediction of 

the direction of movement, and the magnitude of movement extracted from such emulations 

might even be scaled to possible ranges of magnitude as stick-slip processes develop (Rutqvist et 

al. 2013b).  
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(a) 

 

(b) 

 

Figure  7.8. Right and left lateral shear displacements during a) injection and b) shut-in, case A. 

Figure  7.9 shows cumulative opening and closure for three cycles of injection. Here instead of 

the general term “normal displacement”, “opening” and “closure” are used to differentiate 

between deformation types during injection and shut-in. Not surprisingly, opening is much larger 

during injection, and more joints undergo closure during shut-in than during injection. However, 

results could be interpreted based on the size of the effective area as well; joint openings inside 

the two smallest effective zones disappear during the shut-in, and by increasing the size of the 

studied zone, part of the opening remains. So, farther from the injection point, joints undergo 

both normal and shear displacement and appear to stay open somewhat more even after stopping 

injection. This partially irreversible normal deformation must be also linked to the amount of 

irrecoverable shear deformation taking place in those regions.  So, importantly, not only do fluid 

pressure and joint compressibility effects have impact on overall evolving system 

compressibility and flow potential, the irreversible shear displacements and the resulting 

incomplete normal closure leave an appreciable increase in system fluid conductivity and 

mechanical compliance. The figures showing pore pressure distribution indicate how far the 

pressure is traveling through the formation. 
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(a) 

 

(b) 

 

Figure  7.9. Cumulative a) closure and b) opening vs edge of effective zones for three cycles of injection and shut-in, 

case A. 

With simulated impermeable boundaries on top and bottom of the formation, the vertical fracture 

extension would be no larger than the thickness of the formation (198m), so lateral growth of the 

hydraulic fractures is favored. Figure  7.10 shows x-displacement contours of the model during 

and after injection; the negative sign on the legend is due to the central axis location and the 

displacement relative to that axis. The left side of the injection point undergoes larger 

displacements during both injection and shut-in, likely as the result of local fabric differences 

(although the Voronoi tessellation is globally isotropic, there are appreciable sub-regions with 

non-isotropic fabric). After stopping injection, locations further from the injection point show 

almost the same amount of displacement as during the injection, which means joints in more 

distant regions remain deformed because of the shear displacement mechanisms mentioned 

above.   
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(a) 

 

(b) 

 

Figure  7.10. X-displacement contour during a) injection and b) shut-in, case A. 

Figure  7.11 shows pore pressure distribution along the x-axis during the injection and the shut-in. 

Asymmetry of left and right lateral growth is from local fabric effects. However, this figure gives 

an idea about the length of lateral growth. The trend of the pressure curve is different during 

injection from shut-in because flow channels are already opened and flow-back would allow 

reaching the formation pressure quickly.  
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(a) 

 

(b) 

 

Figure  7.11. Pore pressure profile along x-axis during a) injection and b) shut-in, case A. 

 CASE STUDY B: NORTH SEA FIELD 7.3

In order to help in establishing the utility of this approach to simulating slurry injection 

and shut-in, another case study in a different location with different geology was chosen and the 

same type of studies repeated. 

7.3.1 MODEL GENERATION – CASE B 

The second case is an offshore field located in the North Sea. The injection region 

lithostratigraphy consists of horizontal layers of sandstone, shale and mudstone in a sequence 

called the Hordaland Formation. Hydraulic CRI injection was performed in the mudstone 

formation. This geology is much more complicated to model and analysis might help indicate 

whether DEM can be used for a granular material that appears not to be inherently fractured 
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initially (before the induced fracturing occurs during CRI). Figure  7.12 shows a schematic of the 

formations.  

(a) 

 

(b) 

 

Figure  7.12. CRI operation #2; a) well schematic and b) geology information, case B. 

As before, UDECTM is used to perform coupled hydro-mechanical emulations using a seven-

layer model representing the Hordaland Formation, so the generated geometry is quite different 

from the previous case. Figure  7.13 shows the schematic of the model; each layer has its real 

thickness and 0.5 km length, so the model size is 160m × 500m. 

Table  7.2 shows material properties assumed for the formations. 
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Figure  7.13. Geometries generated by UDECTM, case B. 

Table  7.2. Rock, joint and fluid properties, case B. 

Rock properties Joint mechanical properties 

Density 2700 kg/m3 

Bulk modulus 14 GPa 

Shear modulus 10 GPa 

Friction angle 25 Degree 

Cohesion 25 MPa 

Tensile strength 1 MPa 
 

Normal stiffness 10 GPa/m 

Shear stiffness 4 GPa/m 

Friction angle 30 Degree 

Cohesion 0.1 MPa 

Dilation angle 10 Degree 
 

Joint hydraulic properties Fluid properties 

Permeability factor 0.83 × 108 MPa-1 s-1 

Residual hydraulic aperture 3 × 10-5 m 

Aperture at zero normal stress 1 × 10-4 m 
 

SW density 1.03 Mg/m3 

Slop  density 1.03 Mg/m3 

Dynamic viscosity 10-3 Pa·s 
 

7.3.2 INJECTION STRATEGY – CASE B 

This case study has three phases of injection in each cycle: seawater, slurried cutting or 

slop injection, seawater. Since all three phases of injection have same injection rate and density, 

they can be assumed as one injection in the numerical modeling with steady-state flow. Injection 

rate is 0.0192 m3/s and considering the assumed thickness of 350 m for the missing dimension of 

the formation, the applied injection rate would be 5.3 × 10-5 m3/s/m. Figure  7.14 shows the 

injection rate and bottom-hole pressure for the corresponding calendar date. 

  
  

Injection point 
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Figure  7.14. Injection actual data of the second case study, case B. 

7.3.3 JOINT MODEL PRESSURE MATCHING – CASE B 

The same procedure for modeling was applied: the first step is generating an appropriate 

geometry which gives the best match for the injection phase. After a number of trials, the 

geometry shown in Figure  7.13 was observed to give a good match with the real data for the 

injection stage. Remember that conventional flow models give much poorer fits (see next 

section). 

 
Figure  7.15. Matching numerical and real pressure curves, case B. 

Figure  7.16 indicates how the fluid pressure changes over time for the injection point and four 

monitoring points around it. They all show similar trends, but are somewhat different in terms of 

magnitude. The monitoring point on the right hand side of the injection point has the lowest 

pressure values, which means fluid did not travel much in this direction. 

Real data  

Numerical results 



 

155 

 

 

Figure  7.16. Fluid pressure trends over one cycle operation for five monitoring points, case B. 

7.3.4 INTERPRETATION OF CRI OPERATION # 2 RESULTS 

Before further discussion, key differences between these two cases are noted: 

• Differential stresses in case B are much larger than in case A. The Middle East field 

has in-situ stresses of (29, 40) MPa, while field stresses in the North Sea field are 

(10, 25) MPa. 

• Lithology and thus material properties of these two case studies are different: 

sandstone vs mudstone. 

• Thickness of the injection zone in case B and case A is respectively 20m and 200m. 

• The neighboring layers in the Middle East field are acting as barriers; however, the 

target zone in the North Sea is surrounded by permeable boundaries.  

Hence, it is reasonable to expect different behaviors of fluid flow and deformation in these two 

case studies. 

Figure  7.17 indicates displacement vectors for one cycle of injection. Deformation migrates from 

the injection zone to neighboring layers and then gets supressed as it contacts more distant 

mudstone layers. Since the target zone is too thin to accommodate the volumes being injected by 

pure lateral fracture growth, it is reasonable to observe such fracture transport out-of-zone. Also, 

the neighboring layers of the target zone consist in part of sandstone and therefore they offer 

some accommodation for fluid flow, which is clearly coupled with mechanical deformations. 
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Figure  7.17. Displacement vectors after one cycle of injection. 

Figure  7.18 shows a history of normal and shear displacements over time for the injection point 

and four observation points. It shows that points located on the right and left hand sides of the 

injection point do not undergo large displacements during the cycle. This means that fluid flows 

more vertically than laterally, which would be the expected effect with >Ð�( = >! and a low 

effective stress ratio (10:25 MPa).   
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(b) 

 

Figure  7.18. Normal displacement for five monitoring points during a) injection and b) shut-in, case B. 

Figure  7.19 displays shear displacement during one cycle of operation. Shearing is dominantly 

growing vertically, which reflects the controlling role of principal stresses. More joints undergo 

shear displacement during shut-in both in the injection zone and surrounding layers. Fluid leak-

off after injection seems to be increasing because fluid can more easily enter the surrounding 

sandstone layers, which are more permeable. 
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(b) 

 

Figure  7.19. Joints undergo shear displacement during a) injection and b) shut-in, case B. 

Results for three selected cycles of injection, among dozens analyzed, will be discussed. 

Figure  7.20 delineates defined effective zones around the injection point. Total joint 

displacements are calculated in these zones to see how they change with distance from the 

injection point. Figure  7.21a shows cumulative shear displacement. Total amount of shearing 

during shut-in is larger than during the injection phase, which is discussed in the previous 

section. Figure  7.21b shows cumulative magnitude of normal displacement. There is not much 

difference but this does not necessarily mean that all joints remained open. Joints located around 

the injection point tend to lose their aperture after injection; however, more distant joints 

undergo more permanent normal displacement. Hence, the total amount of normal displacement 

remained almost the same, but the spatial distribution changed. 

 

Figure  7.20. Effective zones around the injection point, case B. 
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(a) 

 

(b) 

 

Figure  7.21. Cumulative a) closure and b) opening vs edge of effective zones for three cycles of injection and shut-

in, case B. 

 UPGRADED MODELING APPROACH – CASE A 7.4

A new approach is introduced to find the best match between the numerical results and 

real data. The same fabric with similar model size as previously were generated for both methods 

(Figure  7.1 and Figure  7.3). The symmetry of the problem allows modelling of only one quarter 

of the space, permitting a scaling up the size of model by four times and giving information 

about a larger area around the injection point, which is always a benefit. Figure  7.22 shows the 

schematic of the generated model and injection points.  

  
(a) (b) 

Figure  7.22. Schematic of the model and injection points. 
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It is understood that the case of symmetrical fracture behavior is approached only in 

homogeneous formations with constant physical parameters and in-situ stress. Here, the 

generated fabric is relatively homogenous in an attempt to maintain the simplicity of the work 

and therefore using symmetry is a robust assumption.   

Transient flow is applied in the upgraded approach, which makes it possible to assign a real 

injection time to the system as opposed to a “scaled” time. Also, the transient flow is 

computationally no more demanding than a series of steady-state approximations. Comparing to 

the first approach, this method has the advantage that it leads to more realistic modeling 

scenarios as a real rate of injection is applied to the system (albeit adjusted for the 3rd 

dimension). 

In UDECTM, injection rates are added up in the case of having multiple rates. Here there are three 

injection phases and injection rates which are determined, so that the first and last injection rates 

are known and the difference will give the injection rate for the second phase. However, in the 

case of having more than three injection phases, it would be challenging to find the right value of 

injection rate for each phase. From another aspect, these simulations are performed in a 2D 

framework and applying real values may not be very realistic, since one dimension is missing. 

There are three main categories of properties that control results: Fluid properties and injection 

strategy, mechanical properties of joints and rock, and the geometry or natural fracture network. 

Changing any of these parameters will affect stress redistribution, which in turn leads to change 

in fracture aperture, and consequent changes in fluid pressure, which is the essence of hydro-

mechanical coupling in a jointed system. An effect of fabric was discussed in the first attempt to 

emulate CRI operations. Effects of geomechanical properties are studied in this upgraded method 

and give more realistic realizations. Having constant fabric, fluid and rock properties leaves only 

changing the joint properties to achieve a better match. The properties of the new modeling 

configuration are listed in Table  7.3. 

Table  7.3. Joint properties for the initial and upgraded models, case A. 

Joint mechanical properties, initial model Joint mechanical properties, upgraded model 

Normal stiffness 10 GPa/m 

Shear stiffness 4 GPa/m 

Friction angle 30 Degree 

Cohesion 0.1 MPa 

Dilation angle 10 Degree 
 

Normal stiffness 10 GPa/m 

Shear stiffness 4 GPa/m 

Friction angle 15 Degree 

Cohesion 0.1 MPa 

Dilation angle 15 Degree 
 

Figure  7.23 shows joints undergoing opening for one cycle of injection. Joints closer to the 

injection point undergo larger amount of displacement than those at farther distances. 

Figure  7.23b indicates that some joints remain open after shut-in and may slip as well, 

representing mix-mode fracturing (normal plus shear opening – or Mode I and Mode II). 
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(a) 

 

(b) 

 

Figure  7.23. Joints undergo opening during a) injection and b) shut-in, case A. 

Figure  7.24 shows joints that experience shear displacement during injection and shut-in for one 

cycle of operation. Although the magnitude of shear displacement is less than the normal 

displacement, the number of joints remaining sheared and dilated after shut-in is larger.  

(a) 
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(b) 

 
Figure  7.24. Joints undergo shearing during a) injection and b) shut-in, case A. 

Figure  7.25 shows pore pressure distribution around the injection point during injection. It 

indicates pressure decreasing over distance from the injection point in a regular manner for a 2-D 

case.  

 

Figure  7.25. Pore pressure distribution around the injection point, case A. 

Figure  7.26 is one of the best realizations obtained from this approach for case A. It does not 

gives a good match for the first phase of injection, which is probably because of the presence of 

the waste pod with different compressibility and permeability characteristics. Generally the 

pressure trend corresponds well with the real data for the later phases of injection and during 

shut-in. 
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Figure  7.26. Matching numerical and real pressure curves using the upgraded approach, case A. 

The waste pod is created over time in the nearwell zone and as it develops, there are changes in 

rock and joint properties within and around the waste pod. The waste pod development and 

growth is only one of the physical reasons for changes in the behavior of the system. Changes 

take place in the total and effective stresses (particularly in σhmin) associated with the volume 

changes, and stress changes take place at a substantially larger scale than the waste pod itself. 

Similarly, alterations in stiffness parameters and conductivity from joint dilation are partially 

permanent. It is too ambitious to attempt to emulate a time history for a process with an unstable 

set of parameters by defining only one initial condition to the model, even though the model is 

fully coupled. It is therefore suggested that in future analyses, redefinition of the model 

configuration should be done during the modeling to implement the changes in the system. This 

approach leads to a type of modeling called “interactive modeling” in this study. 

There are different ideas of how to deal with evolving parameters to find a more realistic model 

and that is why this type of modeling is called “interactive modeling” in this study, as different 

approaches may be tried, all the while being guided by physics and reasonable expectations 

(experience). For example, another idea for upgrading this modeling approach is to apply 

changes of fluid flow capacity in the system by changing fracture apertures within the modeling 

process, between injection phases, which in turn changes the fluid pressure distribution. 

Changing boundary conditions or having a moving boundary conditions is also worth trying.  

Hydraulic fracturing for solid waste emplacement is a long-term and complex injection process 

and no parameter stays constant, so redefining what the model is facing in subsequent steps, 

guided all the time by the real data, is a reasonable strategy.  

 DISCUSSION  7.5

Understanding the response of rock masses to slurried solid waste injection has helped in 

interpreting data and optimizing processes in the field, despite the fact that the emulations shown 

here remain semi-quantitative in nature.  For example, there is no real data about the large-scale 

fabric of natural fractures in the injection formations, and there is an absence of data other than 

the pressure-time-volume responses that are used. If other data would become available, such as 
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deformations (Dusseault and Rothenburg 2002), microseismic behavior and evolution (House et 

al. 1996) (Keck and Withers 1994) over many cycles, or even pressures in several offset wells, 

the emulations would be more rigorous and physically reasonable. But in general, companies 

tend to keep costs of waste disposal operations as low as possible because these activities do not 

generate revenue, so, other than p-Q-t, detailed monitoring data are unavailable. 

The cases herein deal with clastic strata using a randomly jointed medium in a DEM formulation. 

However, technical management of slurried solid waste injection operations in fractured 

carbonate strata, currently occurring in the Middle East, is apparently quite different. The 

response of clastic sequence sediments such as the mudstones, siltstones and poorly consolidated 

fine-grained sandstones in the cases analyzed here, have proven difficult to extrapolate to 

naturally fractured carbonates with strong and stiff matrix blocks (personal communication, 

Bilak 2015). There is nevertheless a strong incentive to develop procedures that can consistently 

and reasonably reliably analyze injection and fall-off in such systems to avoid unexpected 

formation impairment and asset loss during waste disposal. Below, a comparison to standard 

well analysis software results is presented to show that the DEM approach seems to give far 

better results, but more work is needed. Prediction of the life-span of the rock mass around an 

injection well in terms of its ultimate capacity to accept solid and liquid waste safely is a largely 

unknown factor in fractured carbonates. DEM modeling, combined with a history of monitoring 

data and comparison to injection process modeling results in other cases, may help in making 

decisions about well life span and ultimate solids input capacity.     

A conventional flow modeling package (PAN™) was used to provide comparative pressure 

matches for injection and shut-in periods. Figure  7.27 and Figure  7.28 show PAN™-generated 

and real data pressure matching respectively for the Middle East and North Sea fields. The 

injection approach used for each case study is different. In the Middle East field, injection is 

applied with a so-called “Direct Sand” injection approach (into a high-permeability zone) and for 

the North Sea field, the well is completed with a “bottom shale” injection approach (into a low-

permeability zone). As shown in these figures, even with careful calibration, pressure matches 

are not particularly close to the original field pressure curves; although in the Middle East field 

the late time matches well with the shut-in curve. Standard well-test interpretation programs have 

some value as interpretive tools but they must be used consistently and with a great deal of 

caution, interpreted in a relative (comparative) manner rather than in an “absolute” manner. 

UDECTM software provides an additional tool to help understand processes and track the 

evolution of the properties of the process zone and waste pod.  In these examples, reasonable 

matches were achieved for most of the injection periods and for the early shut-in period, which is 

a time of particular interest because of the development of the waste pods and their effects on 

formation behavior. 
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Figure  7.27. PAN pressure match during injection and shut-in for Middle East field. 

 

Figure  7.28. PAN pressure match during injection and shut-in for North Sea field. 

 SUMMARY 7.6

The analysis of pressure data from many cycles of two slurried solid waste injection 

operations has led to some observations. Caution is to be applied to the generalization of some of 

these, as it is recognized that the modeling and curve-fitting are highly empirical in nature, such 

that the term “emulation” is preferred to the term “simulation”. 

• Induced fracture geometry is a function of pressure, fluid properties, volume of injected 

fluid, and injection time; also, it is a function of local lithostratigraphy and in-situ 

stresses; most importantly, local stresses and formation response (e.g. stiffness, leak-off 

response) will change with time and the number of injection cycles. 
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• At typical injection depths (generally 500-2000 m) and conditions, using a number of 

cycles of injection with a pressure dissipation period between each injection cycle, a 

waste pod of emplaced and compacted granular solid waste forms, grows, and makes the 

well response more complicated and difficult to predict because of changes in properties 

and in-situ conditions in a growing region. 

• Fracture growth in the emulations presented for case A is constrained by impermeable 

boundaries with upper and lower formations in order to study mainly lateral fracture 

growth; reduction of such constraints is feasible if this would be deemed to be more 

representative of actual conditions in the ground.   

• The lateral fracture growth can be estimated using the Discrete Element Method software 

modeling shown here, which gives some approximate information about the extent of the 

waste pod and the region of altered properties around the injection well.  

• Both normal and shear displacements are responsible for joint deformations. Near the 

injection point, joints experience larger normal displacements, much of which is 

reversible after shut-in and pressure decay. More distant from the injection point, mostly 

shear displacement happens, and this leads to permanent flow channels (shear is 

irreversible, shear dilation only partly reversible), albeit on smaller effective aperture 

than the normal displacement mode fractures generated during injection.   

• In the DEM model used here, fracture propagation may be asymmetrical due to fabric 

effects. In nature, asymmetrical effects would also be expected to arise because of natural 

and induced heterogeneities, but these cannot be specified at this stage of modeling. 

• Conventional well-test software analysis has proven to be a difficult and somewhat 

unreliable way to assess pressure data and assess evolution of the waste pod and process 

zone; it must be used with caution and careful consistency. Such software has little 

capacity to simulate (or emulate) fracture-dominated and k-evolution behavior (included 

local redistribution of stresses), but the DEM software UDECTM seems to handle these 

effects more easily and to allow a better match to the real data.   

• In particular, these emulations, although limited and without other corroborative data 

available, are considered more realistic than conventional well test approaches because of 

two factors: the explicit inclusion of stresses (hydro-mechanical coupling) and the 

assumption that the system response is dominated by the behavior of a network of natural 

fractures that are planes of weakness and channels for flow compared to the matrix 

blocks.   
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• Because DEM approaches appear more realistic and seem to give substantially better 

matches in these cases, they are likely to lead to a better interpretive tool for the 

evolutionary tracking of slurry injection operations. 

• Although the upgraded method is more realistic at some levels than the first attempt, it 

does not necessarily provide the best approach. In other words, it may always be 

challenging to find the best approach and it changes from problem to problem. It also 

depends on the identified objectives and the required information. 

Different geometries have been created and studied, but the presented geometries were those that 

obtained the best results. Also, a parametric study was carried out on the effects of joint 

conductivity factors, initial and residual aperture and joint stiffnesses. Results presented herein 

are those providing the best match and the rest omitted because of size constraints.  

It is clear that there are no highly appropriate models in this process as the mechanics of 

fracturing is complex both in terms of fluid flow and mechanical deformation; there is no 

effective model that can handle the evolving conditions realistically. Therefore, the question is 

what models are best suited to model soft rock waste injection fracturing? DEM from a coupling 

stand point makes sense, and that is a spark. It is worth introducing UDECTM as a systematic 

analysis program that is able to allow intervention with the system parameters (and perhaps 

boundary conditions, initial lithostratigraphic disposition, and waste pod growth). As parameters 

are changing continuously in a way that we do not understand or are able to measure, we need a 

model that is as rigorous as possible to show compliance with the mechanics that we think are 

happening. This approach is called “interactive modeling” and it involves recalibrating 

(adjusting) a model to implement changes of the system or reasonable introversion to readjust the 

model based on new conditions of the system. It is a reasonable and feasible approach to redefine 

evolving parameters during modeling because the slurry injection episodes alter all properties 

and the initial conditions in a growing zone.  
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CHAPTER 8 DISCUSSION AND CONCLUSIONS 

In analyzing flow and displacement in naturally fractured rocks, there are a number of 

sources of strong non-linearity, but hydro-mechanically coupled discrete block simulations can 

address some of these, and are helpful to understand NFR behavior. However, this understanding 

will likely remain semi-quantitative because of the various sources of parameters and fabric 

uncertainty. Some of the factors playing important roles in controlling the behaviour of natural 

fractures and NFRs include intensity of joints (number of joints per area in the case of this two-

dimensional DEM model), geometric nature of the natural fractures, distribution of natural 

fractures with respect to the deviatoric stress field, the mechanical properties of these fractures, 

the magnitude of normal and differential stresses, and the presence of a single (or several) large 

through-going discontinuities such as asignificant fault.. For example, the presence of a fault, 

explored in Chapter 6, clearly showed a focus of shear displacement on this major feature. This 

can at once be seen as related to the possibility of fault re-activation and perhaps as less 

satisfactory to the implementation of hydraulic fracture stimulation in practice. These results 

indicate the importance of natural rock fabric delineation in practical cases. As such, results will 

have to be formulated and calibrated against real data in order to achieve engineering utility as 

predictive models.  

An important point in a practical sense is that in a deviatoric stress field in a naturally fractured 

rock, even if the fabric itself is isotropic, injection with an increased pressure will induce 

anisotropy in the flow patterns because of the anisotropic dilation and shear of the joints in the 

differential stress field.  This has implications on well test analyses, especially if õ+ is large 

enough to start changing the apertures of the jointed rock mass. This clearly identifies a 

challenge for conventional well test interpretation in jointed rock masses. 

Another important practical point is that in hydraulic fracturing for oil and gas well stimulation, 

it seems likely that different strategies are needed for optimizing results and generating a genuine 

geometry with high connectivity in cases of different rock fabrics and different absolute and 

relative principal stress values.  

Using DEM-based modeling may contribute, among other areas, to the following: 

• Well design: Well direction can be improved with regard to the critical orientation of the 

joints and their orientations with respect to the principal stresses.  

• Hydraulic conductivity of the rock mass: Differential stresses and rock fabrics are two 

of the factors controlling the size of the stimulated zone. Part of the wider range of goals 

of this research on DEM modeling is to study if it is possible to simulate (or emulate) a 

network of hydraulic fractures that can link wells together.  This may have particular 

importance, for example, in the case of vertical or inclined geothermal wells that must be 

explicitly linked together along their lengths.  
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• Post-injection properties: Investigating the effects of remnant displacements after shut-

in on pressure distribution decay can help interpret stimulation interpretation, as well as 

help provide information relevant to jointed rock mass behavior and to solid waste 

injection operations. 

• Microseismic activity:  shear/slip events associated with hydraulic fracturing can be 

explored qualitatively by linking the slip locations to MS emissions. 

 CHAPTER SUMMARIES  8.1

8.1.1 PARAMETRIC STUDIES 

One of the main objectives of the current research is to investigate how in-situ stresses 

affect the behaviour of hydraulically stimulated natural fractures. This objective has been 

addressed in chapters 4, 5 and 6, and based on these studies:  

• Local natural fracture fabric affects hydraulically induced fracture direction, although the 

global orientation of hydraulic fracture growth remains normal to the minimum principal 

stress; 

• Pore pressure distributes laterally under higher differential stresses and it becomes more 

radial closer to isotropic stress conditions. This is more obvious in the case of a more 

subdivided mesh (Voronoi tessellated rock fabric), and it even occurs under pressure 

increase without explicitly opening an hydraulic fracture in a jointed rock mass.  

• Branching occurs at a short distance from the injection point. It is usually suppressed 

under a higher stress ratio and is more highly developed in the isotropic stress state; 

• It is likely that there is a critical stress ratio that controls the dominant deformation 

mechanism. 

In order to evaluate the effects of rock mass fabric on fluid flow and deformation, different 

geometries were generated and following are the understandings based on this work: 

• Both joint normal and shear displacements drop with increasing intensity of 

discontinuities; however, this effect is smaller in models with persistent versus non-

persistent discontinuities.  

• The number of discontinuities inversely affects fluid pressure; in other words, the area in 

which injection fluid flows through joints decreases by increasing the number of 

discontinuities that can accept flow.  

In general, natural fractures that can be reactivated (Mode I or Mode II) by stress changes will 

also have alterable mechanical properties that will lead to different behaviour in shearing, 

opening, sliding or closing in reaction to stress redistributions and injection cycles. In order to 

evaluate the effects of rock mass fabric on fluid flow and deformation, different geometries were 
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generated. Based on this study, results can be compared for different fabrics in terms of intensity 

and persistency: 

• Both joint normal and shear displacements drop with increasing intensity of 

discontinuities; however, this effect is smaller in models with persistent versus non-

persistent discontinuities. 

• The number of discontinuities inversely affects fluid pressure; in other words, the area in 

which injection fluid flows through joints decreases by increasing the number of 

discontinuities that can accept flow. 

8.1.2 STIMULATED ZONE ASSOCIATED WITH HYDRAULIC FRACTURING IN LOW-

PERMEABILITY ROCKS 

Chapter 5 addresses another objective of this study, which is evaluating the size of the 

stimulated zone associated with hydraulic fracturing. Opening pre-existing joints in NFRs by 

hydraulic fracturing will also lead to shear slip and dilation, affecting the flow behavior. This 

implies that in a real case, shear dilatation is a mechanism of increasing permeability in a NFR. 

A means to determine the stimulated area of a HF treatment from UDEC™ was developed in this 

study and more insight into the response of NFRs to hydraulic stimulations was achieved: 

• In the presence of one or more persistent joint sets, there would be a preferential 

direction(s) for fluid to travel, making the stimulation pattern and extent more 

complicated. 

• If a dominant inclination of joints does not match with >Ð�(	orientation, they will grow 

along all directions. Under isotropic stress conditions, there does not exist a preferential 

fracture propagation direction. However, in the presence of naturally existing joint sets, 

the hydraulic fractures will orient preferentially along the existing joint set(s), altering the 

shape of the stimulated zone. 

• Joints undergo larger opening than shearing for all geometries. In the case of cross-joints 

and cross-cuts rock fabrics, larger displacements occur than for a Voronoi tessellated 

rock fabric. Thus strongly oriented joints affect both magnitude of the deformations and 

size of the stimulated area. 

• Injection rate does not change the general trend of fracture propagation but locally affects 

the stimulation. Joint deformation is affected more by stress ratio under lower injection 

rates. Higher injection rates cause higher fluid pressure and stimulate more joints because 

the fluid has enough pressure to overcome the normal stress even in unfavorable 

directions. Therefore, the effect of stress ratio would be less noticeable at high rates than 

at low rates. 
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8.1.3 NUMERICAL INVESTIGATION OF SHEAR/SLIP EVENTS ASSOCIATED WITH 

HYDRAULIC FRACTURING 

Energy release events result from stress and pressure changes induced by the fracturing 

treatment and shear displacements are used to calculate moment magnitude, considered 

equivalent to a seismic moment. The size and strength of these energy release events can be 

calculated from seismic moment considerations and this provides indications about the total 

mechanical work and the amount of released “seismic” energy. Evaluating energy release from 

deviatorically stressed rock masses may provide some insight into the magnitude and distribution 

of induced seismicity during HF and potentially help to develop strategies to manage the 

seismicity. This objective of the thesis is studied in chapter 6 and the following are some 

preliminary observations from these calculations:  

• Hydraulic fracturing normally creates small magnitude slip events that have magnitudes 

less than zero (from the literature). 

• The size of the shear event depends on the in-situ stress conditions, such that under 

higher differential stresses, larger events are more likely. 

• The amount of seismic energy is small relative to the overall work done to generate the 

opening and dilatant distortions in the rock mass. 

• Although normal displacement is the main deformation mechanism in all simulations, it 

is mostly shear displacement that controls the magnitude of the energy release and thus 

the energy dissipation fraction.  

8.1.4 A DISCRETE ELEMENT METHOD APPROACH TO MODEL WASTE INJECTION 

OPERATIONS 

An empirical calibration of numerical results is another objective of the current study, 

which is performed by the modelling and analysis of waste injection operations, as reported in 

chapter 7. Better insight into the changes taking place in a naturally fractured rock mass is 

acquired by the calibration of discrete element models to pressure-time curve field data. This 

study provides the following understandings: 

• Hydraulic fracture geometry is a function of pressure, fluid properties, volume of injected 

fluid and injection time; also, it is a function of local lithostratigraphy and in-situ stresses. 

Most importantly, local stresses and formation response change with time and the number 

of injection cycles. 

• At typical injection depths (generally 500-2000 m) and conditions, subsequent cycles of 

injection with a pressure dissipation time between each cycle allow the waste pod to 

form, grow and this makes the joint responses more complicated to predict. 

• The occurrence of different fall-off rates also indicates the presence of zones with 

different aperture and permeabilities; i.e. multiple flow systems are evident and evolving. 
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• Normal and shear displacements are both responsible for joint deformations; however, 

the magnitude and size of the stimulated zone are also important. Near the injection point, 

joints experience larger normal displacements, much of which is reversible after shut-in 

and pressure decay. Shear displacement occurs most often farther from the injection point 

and this leads to permanent flow channels (shear is irreversible, shear dilation only partly 

reversible).  

• Fracture propagation may be asymmetric due to fabric effects.  

• Conventional well-test software is a difficult and somewhat unreliable way to assess or 

match data and thereby assess the evolution of the waste pod and process zone and must 

be used with caution and careful consistency. Such software has little capacity to simulate 

(or emulate) fracture-dominated and k-evolution behavior (which includes the local 

redistribution of stresses), but UDECTM appears to model these effects somewhat more 

easily and better matches to the real data can be achieved.   

• As DEM approaches become more realistic and give better matches as time moves on, 

they are likely to lead to the development of a better interpretive tool. 

 FURTHER RESEARCH  8.2

8.2.1 THREE-DIMENSIONAL MODELING 

3DEC™ is a more sophisticated analysis tool that can model three-dimensional 

operations in a discrete element mode. It possesses some ability to simulate fluid flow in joints 

with a degree of thermal and mechanical coupling that makes it an appropriate software to cover 

certain parts of this study. However, 3DECTM is computationally laborious and requires 

significantly more running time than UDECTM for large problems, and therefore was not used in 

this study. 

8.2.2 THERMO-HYDRO-MECHANICAL COUPLING 

Since cold water may be injected during the hydraulic fracturing treatment process and 

circulated for long durations after interconnected joint networks are generated, stress 

redistribution effects on joint aperture should be modeled, and in some cases it may be important 

to include aspects of rock weakening through thermoelastic stress transfer and compressive 

yielding. This may especially be the case in geothermal energy development and massive waste 

water injection operations. 

8.2.3 EVALUATING THE ROCK STIFFNESS (BULK ELASTIC PROPERTIES) 

Hydraulic fracturing (HF) is a strong candidate technology to implement stress 

management in several ways. First, rock mass stiffness modification can be achieved by 

introducing more compliant flaws; second, by using HF one may create a permeable network 

that can be used to heat, cool, or change the pore pressure in the affected rock region; third, 
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judicious use of HF in one well within an array of wells may lead to a relief of shear stress at a 

defined scale, reducing the risk of a larger-magnitude stick-slip event; fourth, given an array of 

wells (for geothermal development for example), it may be feasible to operate the wells in such a 

manner as to redistribute or relieve stress deliberately through cyclic injection or deliberate 

rotations among wells in the array. In order to develop a stress management program in a jointed 

rock mass, such as in the fractured rock mass around a mine in igneous rock, stiffness changes 

arising from more compliant flaws should be evaluated as a means of reducing the amount of 

strain energy that can be stored as mining progresses. 

8.2.4 JOINT CONDUCTIVITY 

 Connectivity of joints plays a prominent role in the deformability and permeability of 

naturally fractured rock masses. Joint connectivity is mostly controlled by joint density and 

therefore so are deformation and permeability. Connectivity may be described by a fractal 

dimension and a power law may be used to characterize the relationship between the 

connectivity and joint density which also describes its relationship with deformation and 

permeability. Note that joint density should be considered above a critical value known as the 

percolation threshold for simple flow problems (though this may be affected by hydraulic 

fracture). According to the study by Zhang and Sanderson (1994), the fractal dimension of a 

critical joint cluster is dominated by joint density and is largely independent of other geometrical 

parameters. Therefore, the use of fractal dimensions to make the model less sensitive to 

geometric parameters (orientation and size of joints) is an important area of study. In addition, 

these models could be scale-invariant and provide some ability to generalize results and find 

more universal property behaviors of joints (Zhang and Sanderson 1994). This is a version of up-

scaling, which seems to be an important area to pursue in understanding NFRs. 
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