
Autonomic Resource Management for

a Cluster that Executes Batch Jobs

by

Lik Gan Alex Sung

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2006

c©Lik Gan Alex Sung, 2006

Author’s Declaration for Electronic Submission of a Thesis

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Resource management of large scale clusters is traditionally done manually. Servers are

usually over-provisioned to meet the peak demand of workload. It is widely known that

manual provisioning is error-prone and inefficient. These problems can be addressed by

the use of autonomic clusters that manage their own resources. In those clusters, server

nodes are dynamically allocated based on the system performance goals. In this thesis, we

develop heuristic algorithms for the dynamic provisioning of a cluster that executes batch

jobs with a shared completion deadline.

External factors that may affect the decision to use servers during a certain time period

are modeled as a time-varying cost function. The provisioning goal is ensure that all jobs

are completed on time while minimizing the total cost of server usage. Five resource

provisioning heuristic algorithms which adapt to changing workload are presented. The

merit of these heuristics is evaluated by simulation. In our simulation, the job arrival

rate is time-dependent which captures the typical job profile of a batch environment. Our

results show that heuristics that take into consideration the cost function perform better

than the others.

iii

Acknowledgements

I am very grateful to work under the supervision of Prof. Johnny Wong, whose expert

guidance and experiences helped me navigate through my research. His patience and

insightful comments have facilitated the completion of this thesis. Thanks are given to

Prof. Srinivasan Keshav and Prof. David Taylor for taking time to be the readers of this

thesis.

I would like to thank Michael, Herman and Creamy for bringing pleasant and enjoyable

moments to me during my study. Finally, I would like to thank my parents and family for

their love, support and encouragement.

iv

Contents

1 Introduction 1

1.1 Outline . 5

2 Related work 7

2.1 Provisioning in the full server utility model 7

2.1.1 Provisioning in a data centre . 7

2.1.2 Provisioning in a grid environment 8

2.2 Provisioning in the shared server utility model 9

2.3 A general resource provisioning framework 11

3 Performance measurement of server deployment and removal 13

3.1 Overall approach . 13

3.2 Proof-of concept prototype . 14

3.2.1 Data acquisition engine . 15

3.2.2 Job history database . 15

3.2.3 Objective analyzer . 16

3.2.4 Resource broker . 16

3.2.5 Deployment engine . 16

vi

3.3 Performance measurement . 17

3.4 Remarks . 19

4 Heuristic algorithms for dynamic resource provisioning 21

4.1 Performance model . 21

4.2 Simple heuristic algorithms . 24

4.2.1 Heuristic Algorithm 1: Threshold-responding deployment heuristic

algorithm . 25

4.2.2 Heuristic Algorithm 2: Delayed threshold-responding deployment

heuristic algorithm . 27

4.2.3 Method to determine vs . 27

4.3 Cost-aware resource allocation algorithms 29

4.3.1 Preliminary remarks . 30

4.3.2 Analysis of estimated cost . 30

4.3.3 Heuristic Algorithm 3: Cost-aware deployment heuristic algorithm . 34

4.3.4 Method to compute Ls(p, n) . 35

4.3.5 Heuristic Algorithm 4: Cost-aware deployment heuristic algorithm

with modified Ls . 37

4.3.6 Heuristic Algorithm 5: Cost-aware deployment heuristic algorithm

with modified Ms . 39

5 Performance evaluation 43

5.1 Job processing period . 43

5.1.1 Arrival time profile . 43

5.1.2 Other assumptions . 46

5.2 Pre-computing gs(p) and Ls(p, n) . 46

vii

5.3 Cost functions . 47

5.4 Results and discussions . 48

5.4.1 Number of servers used at each decision point 49

5.4.2 Total cost . 55

5.4.3 Total number of server deployments during a job processing period 57

5.4.4 Scalability . 59

6 Conclusion and future work 63

6.1 Conclusion . 63

6.2 Summary of contributions . 64

6.3 Future work . 64

viii

List of Tables

5.1 Mean inter-arrival time and mean number of arrivals used for the scalability

tests . 60

ix

List of Figures

2.1 Decision cycle of TIO . 12

3.1 The 3 phases of the “autonomic loop” . 14

3.2 Prototype architecture . 15

3.3 Experiment environment . 17

4.1 Job processing period . 23

4.2 Server deployment period . 23

4.3 An example of the number of servers in a cluster throughout a job processing

period . 24

4.4 An example of a cost function throughout a job processing period 25

4.5 An example of an arrival profile . 29

5.1 Job processing period used in experiments 44

5.2 a(x) from x = 0 to x = 57, 600 . 45

5.3 Number of arrivals at different arrival times 46

5.4 Cost functions under consideration . 48

5.5 Percentage of simulation runs having job(s) missing the completion deadline. 50

5.6 Mean number of servers used at each decision point: Heuristic Algorithms

1 and 2 . 50

x

5.7 Mean number of servers used at each decision point: Cost function 1 . . . 52

5.8 Mean number of servers used at each decision point: Cost function 2 . . . 52

5.9 Mean number of servers used at each decision point: Cost function 3 . . . 53

5.10 Mean number of servers used at each decision point: Cost function 4 . . . 54

5.11 Mean number of servers used at each decision point: Cost function 5 . . . 55

5.12 Mean number of jobs at each decision point: Heuristic Algorithm 3 56

5.13 Mean number of jobs at each decision point: Heuristic Algorithm 4 57

5.14 Mean number of jobs at each decision point: Heuristic Algorithm 5 58

5.15 Mean total cost of different heuristic algorithms under different cost functions. 58

5.16 Mean number of deployments of different heuristic algorithms under different

cost functions. 59

5.17 Computation time (minutes) of gs(pmax), ks(q, n, m), Ls(p, n), L′
s(p, n) and

L′′
s(p, n) values . 61

xi

Chapter 1

Introduction

With the decreasing in price but increasing processing power of commodity hardware,

server clusters are widely used to execute computationally intensive jobs. In such clusters,

the workload typically changes with time. Some of the servers may therefore have a low

utilization level, even in the “busy hours”. When this happens, servers are over-provisioned

– keeping enough resources to provide the capacity for the occasional peak demand. Over-

provisioning of servers is not economical due to under-utilization of resources. Manual

dynamic resource allocation may help, but it has the drawback that tuning in resource

allocation is usually done over long time intervals on the order of hours or days. Prompt

reactions to unexpected changes in workload are lacking. Therefore, on-demand provision-

ing has received a lot of attention in recent years.

Many studies have been carried out to investigate the use of dynamic server allocation

for clusters. A summary of these studies is provided in Chapter 2. These studies are mostly

concerned with the processing of interactive jobs (e.g., webpage requests). In general,

jobs to be processed may belong to different classes, e.g., interactive jobs and batch jobs.

Due to the differences in workload and performance requirements, provisioning approaches

1

2 Autonomic Resource Management for a Cluster that Executes Batch Jobs

designed for interactive clusters are not directly applicable for provisioning in a batch

environment. In the relatively few studies that are related to dynamic server allocation

of batch job clusters, the focus was on the allocation framework [8, 21] and on allocation

between multi-institutional grid clusters [26]. Not much is known concerning dynamic

server allocation within a single cluster.

For batch jobs, the resource provisioning goals are usually related to maximizing through-

put and the fraction of jobs meeting their completion deadlines. In contrast, for interactive

jobs, the provisioning goals are often related to maintaining a certain level of the response

time performance and CPU utilization. Therefore, different performance metrics are used.

In addition, batch jobs may not share processors, i.e., a single processor executes only one

job at a time. Jobs are queued at the scheduler until there is a free processor. This is the

default behaviour of popular batch job schedulers, e.g., Condor [10], PBS [22] and LSF

[18].

Processor allocation incurs a cost which may be a function of time. Consider, for

example, a data centre that hosts both web content and batch job processing services, where

each service is hosted on its own cluster and servers can be migrated between clusters. For

the web content hosting services, the data centre may need to pay a penalty if the response

time percentile exceeds the requirements defined in the service level agreement. As is

known, a web content service usually experiences a higher workload during the day and

a lower workload after midnight. We may wish to discourage the allocation of servers to

the batch job cluster in the daytime and allocate more servers to the web content cluster.

Such discouragement can be expressed in terms of the expected penalty cost. On the

other hand, if the batch jobs do not finish before the required completion deadline, a cost

may also be incurred. The allocation is optimal when the cost is minimized. A second

example is that, in some areas of the world, electricity cost fluctuates every hour and it is

Introduction 3

usually cheaper at night [5]. We may wish to save electricity cost (as well as cooling cost

which largely consists of electricity cost) during the day by using more servers at night. In

such an environment, statically provisioning servers for a batch job cluster would miss the

opportunities for savings. It may be desirable to base deployment decisions on the cost

function in addition to the demand of workload.

To realize the on-demand provisioning, the overall system must be able to react to

changes within a relatively short time. With the use of remote boot images [14], operating

system and application installation time can be as short as 5 minutes. In addition, our work

[29] reported in Chapter 3 shows that addition or removal of servers can be accomplished

in less than one minute. Consequently, server migration from one cluster to another is

totally feasible, even if the operating system is rebuilt from scratch. Additionally, for

energy-conscious clusters, servers can be remotely turned on/off or woken-up/suspended

through the network in seconds. There is no need to keep a cluster with full capacity (all

processors running at full speed) when the workload is light. As a result, more effective

resource utilization can be achieved by migrating idle servers to other clusters, or simply

turning off or suspending the idle servers.

Note that batch jobs have long execution times measured in minutes or hours, so the

number of jobs in the system does not change significantly within a short period of time,

say on the order of minutes. As a result, decision points, where resource allocation decisions

are made, can be scheduled at intervals on the order of 10 minutes. At each decision point,

the system must generate a provisioning decision quickly, using the data collected up to

that point, so that the system with more or fewer servers will operate for a sufficiently long

time before the next decision point is reached.

In this thesis, we are interested in automated resource management for a single batch

job cluster hosted in a server farm. Autonomic systems are typically built upon a log-

4 Autonomic Resource Management for a Cluster that Executes Batch Jobs

ical loop of three phases: i) Measure, ii) Decide, and iii) Control. Our focus is on the

allocation algorithms used in the Decide phase of the “autonomic loop”. Specifically, five

new algorithms that determine the number of servers needed in a batch job cluster under

different workloads at different times are developed and evaluated. The results will provide

the needed information for server provisioning decisions (i.e., add or remove servers). A

time-varying cost function for server usage is defined. The merit of our algorithms is mea-

sured by the cost incurred to complete all batch jobs by their completion deadline. Our

investigation is restricted to the case where all batch jobs have a common, shared deadline.

Our algorithms use a feed forward approach based on a predictive model of a system.

This model is used to determine the best allocation of resources. It explores all possible

outcomes probabilistically and uses the expected cost as a guide to optimize provisioning

decisions. The feed forward approach is different from other studies based on a feedback

mechanism [11], which is reactive in nature. Feed forward control has been used to optimize

resource allocation in multi-tier web applications [1, 16, 20]. We are interested in testing

the effectiveness of this approach for resource provisioning in batch job clusters.

In practice, batch job clusters are often equipped with third-party batch job schedulers

that are responsible for dispatching jobs to different nodes of the cluster. For batch jobs

with shared deadlines, the impact of the scheduling algorithm is not significant. For sim-

plicity, we use the first-come-first-served (FCFS) scheduling algorithm in our investigation.

Contrary to reactive approaches used in other studies [2, 23], we use a predictive approach

to estimate the probability of meeting a shared completion deadline for a given number

of servers in the cluster. In general, it is difficult to obtain this probability analytically.

We therefore use simulation. In our simulation, batch job arrivals are characterized by a

job profile and a job’s service time requirement is estimated from job execution history.

Simulation runs are made to pre-compute the probability of meeting the shared deadline,

Introduction 5

which can be used to to make server provisioning decisions at decision points.

This thesis makes the following contributions towards building a batch job cluster that

manages its own resources.

1. New heuristic algorithms are proposed for deciding the number of servers to use in a

cluster at decision points.

2. A time-varying cost function is considered when making resource allocation decisions.

This function models the external factors that affect the number of servers to use in

a cluster.

3. We have included in our model the delay and cost of increasing or decreasing the

number of servers used in the cluster. This is an important factor but omitted in

many of the previous work.

4. An implementation of our algorithms based on FCFS scheduling is shown. The

different performance aspects of our algorithms are validated by simulation.

5. The proposed resource allocation algorithms are applicable to existing batch job

clusters.

1.1 Outline

Chapter 2 discusses related work and organizes it into two categories: provisioning in the

full server utility model and provisioning in the shared server utility model. Chapter 3

shows an architecture and some observations of how dynamic server provisioning can be

achieved in batch job clusters. Chapter 4 presents the design of our algorithms to determine

the number of servers that one should use. In Chapter 5, we present the performance results

6 Autonomic Resource Management for a Cluster that Executes Batch Jobs

of our algorithms in terms of the total cost. The number of instances where deployments

are made and the issue of scalability are also discussed. Finally in Chapter 6, we conclude

our work and give some directions for future research in the area.

Chapter 2

Related work

Previous work in dynamic resource allocation of server clusters can be classified into the

full server utility model and the shared server utility model. In the shared server utility

model, multiple services are hosted on each server. In contrast, in the full server utility

model, each server offers only one service at a time. The work presented in this thesis

belongs to the full server utility model.

2.1 Provisioning in the full server utility model

2.1.1 Provisioning in a data centre

In a data centre that employs the full server utility model, a cluster is dedicated to run one

application, e.g., webpage hosting, for one customer. Different applications and different

customers do not share the same cluster. This model has been implemented in a commercial

product [12] which supports autonomic server provisioning in data centres. This product

realizes a data centre management method [24] which makes use of virtual LANs and SANs

to partition resources into domains called virtual application environments (VAE). Each

7

8 Autonomic Resource Management for a Cluster that Executes Batch Jobs

application is run in its own VAE. Servers are allocated to (or de-allocated from) the VAE

according the monitored server utilization.

In [2], a Service-Level-Agreement-based management system is presented. Response

time data are gathered for each application cluster. Addition or removal of servers is

triggered by the violation of the service level agreement defined in terms of response time.

A dynamic resource allocation algorithm to maintain a target cluster-wide average CPU

utilization in a data centre is presented in [23]. This target is attained by acquiring and

releasing servers in response to changes in load. The algorithm presented assumes a linear

relationship between response time and CPU utilization.

A method to provision databases used in dynamic content web servers is shown in

[27]. In the 3-tier architecture, an autonomic manager tier is interposed between the

application server(s) and the database cluster. The autonomic manager tier virtualizes the

database cluster, so that the application server sees a single database. Per workload query

latency is used as a metric to trigger database allocations. When the latency exceeds the

value specified in the Service Level Agreement, extra replicas of the database serving the

workload are created.

All of the above provisioning methods are concerned with managing interactive job

clusters. For such clusters, the provisioning goal is to provide a target response time

percentile with as few resources as possible; response time and CPU utilization are popular

metrics.

2.1.2 Provisioning in a grid environment

Resource provisioning in a grid environment for workflows that consist of batch jobs with

execution dependencies has been presented in [26]. The objective of that work is to min-

imize the completion time of workflows. Resource provisioning is done by advance reser-

Related work 9

vation at different grid sites in order to minimize the waiting time of batch jobs in the

grid.

Another example of grid provisioning is Cluster-on-Demand (COD), a cluster operating

system framework for mixed-use clusters [8, 21]. COD introduces the concept of a virtual

cluster, which is a functionally isolated group of servers. A key element of COD is a protocol

to resize virtual clusters dynamically by making use of the Sun GridEngine (SGE) [28],

a batch job scheduler for grids. Physical servers can be added to (or removed from) the

virtual cluster by linking to (or delinking from) the SGE. Provisioning decisions are made

by a Virtual Cluster Manager (VCM) based on some pre-specified metrics or policies.

2.2 Provisioning in the shared server utility model

In the shared server utility model, servers are shared among different customer priority

classes. Generally, higher priority class customers require a lower response time percentile.

Each server may run more than one kind of services, e.g., webpage hosting and database

hosting. The services hosted are interactive jobs which share the CPU simultaneously.

Dynamic provisioning systems of this type can be categorized by their provisioning goals:

maintaining the quality of service, maximizing the profit from customers, and minimizing

the electricity cost.

Maintaining the quality of service. The general objective to maintain the quality of

service (QoS) is to deliver better services to higher priority classes of customers without

over-sacrificing low priority classes. A certain amount resources is reserved to the lower

priority classes to avoid over-sacrificing. In [3, 30], algorithms for providing differential

service to customers of different priority classes are presented. These algorithms control,

for each server, the amount of CPU time allocated to each customer. CPU allocation in

10 Autonomic Resource Management for a Cluster that Executes Batch Jobs

[3] is achieved by techniques discussed in [4], which work at kernel level of the operating

system. In contrast, the work reported in [30] is at the level of the operating system API.

In [32], the QoS for different customer requests is maintained by a scheduling algorithm

at the network switch. Servers in the cluster are dynamically partitioned to serve different

requests according to the workload and priority.

Maximizing the profit from customers. In our discussion, profit refers to the amount

of economic benefit gained by the data centre by serving requests in a timely fashion. It is

often defined in the service level agreement (SLA) in terms of response time performance.

SLAs of higher priority classes guarantee a shorter response time, but incur a higher cost

to the customers. For the data centre, revenue is gained by satisfying the SLAs, and a

penalty is paid otherwise. In [25, 31] a decentralized approach that schedules requests

of different priority inside the request queues of each server is discussed. In comparison,

algorithms presented in [15, 17] make use of the network switch or gateway to partition

the cluster resources.

Minimizing the electricity cost. Energy-conscious systems are concerned with saving

electricity by using the smallest possible amount of CPU power. In [6], it was mentioned

that the CPU is the largest consuming component for typical web servers. Energy-saving

can be achieved by directing requests to a minimal active set of servers at the network

switch and keeping idle servers in low-power states [7]. Authors of [9] further refines

the techniques by enabling CPUs to operate at different frequencies, which are linearly

proportional to energy consumption and inversely proportion to the response time of the

system.

As a summary, resource sharing in the shared server utility model is mainly implemented

by two mechanisms: server multiplexing and switch redirection. Server multiplexing refers

Related work 11

to multiplexing server resources (CPU time) among the hosted applications. Kernel mod-

ification is usually required. Switch redirection refers to redirecting different requests to

different logical groups of servers inside a cluster by a network switch.

2.3 A general resource provisioning framework

The IBM Tivoli Intelligent Orchestrator (TIO) [13] is an autonomic engine that orchestrates

resources of a data centre among different application clusters. As described in [19], it

consists of four core components: data acquisition engine, objective analyzer, resource

broker, and deployment engine. The decision cycle of TIO is illustrated in Figure 2.1.

The data acquisition engine collects performance data (e.g., CPU utilization) from the

monitored application cluster. The data is input to the objective analyzer which compares

the data to the service level objective of that application. It also calculates the probability

of breaching (PoB) the service level objective and this probability is reported to the resource

broker. The resource broker makes resource allocation decisions according to the received

PoB values of different application clusters. Finally, server deployment or removal is carried

out by the deployment engine. In TIO, users can implement their own objective analyzer

that estimates PoB using different metrics, e.g., transactions per second in the case of

database clusters.

12 Autonomic Resource Management for a Cluster that Executes Batch Jobs

Resource
Broker

Objective
Analyzer

2. Prob. of
breach

Application server
cluster

Data
Acquisition

Engine

1. Monitored
performance data

Deployment
Engine

3. Deployment
requests

Resource pool
of servers

4. Add/remove servers
to/from the server cluster

Figure 2.1: Decision cycle of TIO

Chapter 3

Performance measurement of server

deployment and removal

3.1 Overall approach

Autonomic systems usually implement a logical loop consisting of three phases: i) Measure,

ii) Decide, and iii) Control (see Figure 3.1). The loop is performed periodically. In this

thesis, we are interested in the Decide phase for a batch job cluster where server nodes can

be dynamically added or removed. In the Measure phase, state information such as the

number of jobs and the number of servers in the system is measured. For the Decide phase,

heuristic algorithms for dynamic resource provisioning are developed. These algorithms

compute the information required for provisioning decisions, using the data obtained in

the Measure phase as input. The algorithms then decide whether to change the number

of servers deployed in the cluster or not. In the Control phase, the system implements the

change, if any.

An important requirement for the Control phase to work properly is that the delay to

13

14 Autonomic Resource Management for a Cluster that Executes Batch Jobs

Figure 3.1: The 3 phases of the “autonomic loop”

add a server to or remove a server from the cluster is not excessive. In this chapter, we

implement a proof-of-concept prototype that supports autonomic resource provisioning and

use this prototype to obtain measurement data regarding the delay in server deployment

or removal.

3.2 Proof-of concept prototype

The architecture of our prototype is based on TIO, as illustrated in Figure 3.2. Our

prototype is capable of provisioning heterogeneous server nodes in a cluster. It extends the

four core components of TIO described in Section 2.3. A fifth component, the job history

database, is added to facilitate implementation. The details of these five components are

described below.

Performance measurement of server deployment and removal 15

Server
Node Broker

Objective Analyzer for
Batch Job Cluster

Prob. of
breach

Job
Scheduler

Collects
• Job arrival rate
• Queue length
• Job history
• Node configurations
• Resource status

Batch Job Cluster Data
Acquisition Engine

Jobs

Batch Job Cluster

Job History
Database

Resource Pool

Controls node
provisioning

Deployment
Engine

Deployment
requests

Server
Node Broker

Objective Analyzer for
Batch Job Cluster

Prob. of
breach

Job
Scheduler

Collects
• Job arrival rate
• Queue length
• Job history
• Node configurations
• Resource status

Batch Job Cluster Data
Acquisition Engine

Jobs

Batch Job Cluster

Job History
Database

Resource Pool

Controls node
provisioning

Deployment
Engine

Deployment
requests

Figure 3.2: Prototype architecture

3.2.1 Data acquisition engine

The data acquisition engine collects data from the cluster. These include job arrival rate,

queue length, job history, configuration of server node and their resource status (e.g.,

processor utilization, memory usage, disk usage and response time). The data acquisition

engine periodically reports the resource status to the objective analyzer and the objective

analyzer stores the data in the job history database.

3.2.2 Job history database

The job history database stores data such as the job submission time, waiting time, pro-

cessing time, completion time, execution server and other job details. These data will be

used as input when there is a need to predict workload parameters such as arrival rate and

service time.

16 Autonomic Resource Management for a Cluster that Executes Batch Jobs

3.2.3 Objective analyzer

The objective analyzer periodically computes the probability of breaching the service level

requirement as a function of the number of servers deployed. This probability of breach

(PoB) is reported to the resource broker. At the objective analyzer, the data in the job

history database are used to estimate the future workload. This estimated workload and

the current performance data reported by the data acquisition engine are used as input to

compute the PoB. For our prototype, the service level requirement is related to completion

of batch jobs before deadline.

3.2.4 Resource broker

The resource broker receives the PoB periodically from the objective analyzer. When

the PoB reported is higher than the threshold defined in reference to the service level

agreement, one or more servers may be deployed. On the other hand, if the PoB is below

the threshold, one or more servers may be removed. The resource broker determines when

the cluster should be allocated more or fewer server nodes.

3.2.5 Deployment engine

The deployment engine carries out the deployment (or removal) of servers as per decisions

by the resource broker. For ease of implementation, we use an existing job scheduler called

the Condor scheduler. One way to deploy (or remove) servers from the cluster is to link

(or delink) the server to the job scheduler. Once the node is linked, the scheduler will

dispatch jobs to the newly linked node according to its scheduling algorithm. When the

node is delinked, the scheduler will stop dispatching jobs to the delinked node.

Performance measurement of server deployment and removal 17

Batch job cluster

Resource Pool
Modified TIO

Performance
data

Job
Scheduler

Job Scheduler
Monitor

Controls server
node provisioning

Workload
Generator

Jobs

Figure 3.3: Experiment environment

3.3 Performance measurement

We have implemented a prototype based on the architecture described above. Our pro-

totype is shown in Figure 3.3. This cluster consists of one server initially. The Condor

scheduler and the data acquisition engine are hosted at this node. There is one other server

in the resource pool. This server can be allocated if required.

The data acquisition engine reports the following data every five seconds to the TIO

server, which runs on a separate machine: number of jobs in queue, job arrival rate,

and service time of completed jobs. Information collected through the Condor scheduler

includes the current queue length, and submission and completion time of all arrived jobs.

Arrival rate and service time are then calculated based on the reported information from

the queries.

An objective analyzer designed for batched jobs with a common completion deadline

was implemented and installed in the TIO server. The resource broker provided by TIO

was modified such that it would understand the probability of breach reported by the

objective analyzer. The deployment engine deploys or removes server nodes by linking or

delinking the nodes to the Condor scheduler.

18 Autonomic Resource Management for a Cluster that Executes Batch Jobs

In our experiment, a workload profile is used to specify the arrival rate of batch jobs as

a function of time. Based on this profile, a load generator creates batch jobs and submits

them to the scheduler. The service requirement of each arriving job is estimated using

data in the job history database. The batch jobs are executed at the cluster according to

the algorithm used by the Condor scheduler.

We used a simple approach to calculate PoB in the objective analyzer. PoB is defined

to be the predicted fraction of jobs missing deadline. The predicted values are obtained

by simulating a batch cluster.

By experimenting with our prototype, we found that the Condor scheduler took about

25 seconds to add a server node, but required about 30 seconds to remove a node. Overhead

is incurred when a server node is added or removed because the server is not able to execute

jobs during this time. Since batch jobs usually have a long run time (much larger than

30 seconds) and the common deadline could be as late as the next morning, an overhead

of 25 to 30 seconds is not significant. In our resource pool, we assume that nodes already

have all the required software pre-installed to process jobs. If the nodes to be added do not

meet the software pre-requisite, additional software should be installed by the deployment

engine before linking the nodes to the scheduler. In practice, different clusters may require

a different set of software or operating system for their nodes. In that case, software or

operating system images are usually prepared for nodes that are shared among the clusters.

Upon server deployment, the images can be loaded to the nodes through the network in

an efficient manner.

Moreover, the Condor scheduler enables checkpointing of jobs. The status of jobs is

automatically monitored and stored in a checkpoint server. Since a server may be migrated

out of the cluster when it is processing a job, checkpointing allows the job to be migrated

to another server without wasting the CPU time invested. For batch job clusters where

Performance measurement of server deployment and removal 19

checkpointing is not available, a server may need to finish the current job before it can be

removed, incurring a higher delay in removal.

3.4 Remarks

The objective of this thesis is to design and evaluate algorithms for autonomic resource

provisioning in a batch job cluster. The prototype provided valuable information on the

delay required to add or remove a processor node. This information will be useful in

algorithm design. However, the prototype is implemented on a cluster of two server nodes.

This is not suitable for scenarios where it is desirable to deploy more than two servers.

For this reason, we will use simulation to investigate the effectiveness of our resource

provisioning algorithms.

Chapter 4

Heuristic algorithms for dynamic

resource provisioning

4.1 Performance model

In this section, we present our algorithms for autonomic resource provisioning in a batch

job cluster.

We first develop a performance model that will be used in our investigation. In this

model, the batch job cluster is assumed to be dynamically configurable with at least pmin ≥

1 and at most pmax servers. These servers are identical and have the same capacity with

respect to processing batch jobs. Each server is assumed to execute only one batch job

at a time. This assumption is consistent with the default behaviour of popular batch job

schedulers, e.g., Condor [10], PBS [22] and LSF [18]. It follows that batch jobs do not

share processors and jobs are queued at the scheduler until there is a free processor.

The operation of the batch cluster is organized in job processing periods. The activities

within a period are illustrated in Figure 4.1. At the beginning of the period (or time 0),

21

22 Autonomic Resource Management for a Cluster that Executes Batch Jobs

the cluster consists of pmin clusters. The time unit corresponds to time interval between

decision points. The decision points therefore occur at time = 1, 2, Submission of

batch jobs happens in the job submission period only. This period starts at time 0 and

ends at time u, the submission deadline. All batch jobs are assumed to have a common

deadline which occurs at time d. This is referred to as the shared deadline. Our objective

is to keep the probability that all jobs are finished by time d not smaller than that specified

by the service level agreement. The issue of how jobs not meeting the deadline are handled

is beyond the scope of this thesis.

Maintaining the service level agreement regarding the completion deadline has a higher

priority than reducing cost. We thus consider a service level agreement that specifies all

jobs are completed on time. Once there is a lack of confidence that all jobs will be finished

on time, servers should be added to the cluster. Note that the cluster cannot have more

than pmax servers. Therefore, no further server can be added when pmax is reached. Since

there is no job arrival after the submission deadline, we expect that some servers can be

removed when the number of jobs in the system is less than the number of servers. In our

model, even when there is no job in the system, the number of servers in the cluster is at

least pmin.

We assume that the arrival rate of jobs is time-dependent during the job submission

period and that the service time of jobs is independent and exponentially distributed.

Three time periods are defined when a server is deployed: “deployment period → usage

period → removal period” (see Figure 4.2). The deployment period (denoted by r1) starts

when a decision is made to add one or more servers. It models the time required to load the

necessary software and configurations in order to add one or more servers to the cluster.

The length of the deployment period is not affected by the number of servers to be added

at the same time. Jobs are not processed by the additional servers during this period. The

Heuristic algorithms for dynamic resource provisioning 23

Batch job submission period

time

Submission
deadline

Completion deadline Start of the
job submission period

0 u d1 2 …

Figure 4.1: Job processing period

Deployment

time

Jobs are processed
only in this period Decision pointDecision point

RemovalUsage

r1 r2

Figure 4.2: Server deployment period

usage period models the time period during which the newly added servers are used to

process jobs. The removal period (denoted by r2) starts when a decision is made to remove

one or more servers. It models the time required to remove the servers from the cluster.

We assume that job checkpointing is enabled, so waiting for the current job to finish before

server removal is not required.

Servers are added or removed during a job processing period. An example of the number

of servers in the cluster throughout a job processing period is shown in Figure 4.3. Once

the deployment period starts, the additional servers are considered part of the cluster until

the end of the removal period.

Each server has an identical cost function ct that gives the instantaneous cost at time

instant t for keeping the server in the cluster. The cost function may be time-varying; an

24 Autonomic Resource Management for a Cluster that Executes Batch Jobs

pmin

d

pmax

Figure 4.3: An example of the number of servers in a cluster throughout a job processing
period

example is depicted in Figure 4.4. A server is considered to be in use from the start of the

deployment period to the end of the removal period (see Figure 4.2). Let pt be the number

of servers used in the cluster at time t. The total cost is given by:

C =

∫ d

0

[ct × pt] dt (4.1)

The merit of our resource provisioning algorithms is evaluated with respect to C.

4.2 Simple heuristic algorithms

We first propose two heuristic algorithm resource provisioning algorithms that do not

take the cost function into account, but aim at finishing all jobs by the deadline. By

comparing the performance of these algorithms with those that take into consideration

Heuristic algorithms for dynamic resource provisioning 25

d

Figure 4.4: An example of a cost function throughout a job processing period

the cost function (to be defined in Section 4.3), the benefits of using cost-function-based

algorithms can be assessed.

4.2.1 Heuristic Algorithm 1: Threshold-responding deployment

heuristic algorithm

This algorithm makes deployment decisions based on an estimated percentage of jobs that

are completed on time. Recall that pt is the number of servers used at time t. Let nt be

the number of jobs at time t. Consider a decision point at time s. Measured data for ns

and ps are obtained at the Measure phase. At the Decide phase, we determine whether

we are confident that all jobs will be finished on time if no change is made to the number

server used. If there is insufficient confidence, extra servers are needed. On the other

hand, servers are removed if we can achieve the required level of confidence by using fewer

servers.

Since our performance model is stochastic in nature, it may not be possible to achieve

26 Autonomic Resource Management for a Cluster that Executes Batch Jobs

a 100% probability that all jobs are completed on time (e.g., with a very small probability,

the service time of a job may be sufficiently long that the deadline is missed even though

execution of this job is started immediately). We therefore use the following condition to

reflect the service level agreement:

Pr[all jobs are finished on time] > y% (4.2)

where y is very close to 100 (in this thesis, we use y = 99.99).

Suppose the same number of servers, say p, is used from time s to time d. A larger ns

would mean a smaller probability that all existing and future jobs are completed before

the shared deadline d. Let gs(p) be the largest value of ns such that this probability is

larger than or equal to y%. gs(p) is obtained as the solution to the following relations:

Pr[nd = 0|ns = gs(p) and pi = p for s ≤ i ≤ d] ≥ y% (4.3)

and

Pr[nd = 0|ns = gs(p) + 1 and pi = p for s ≤ i ≤ d] < y% (4.4)

In general, using more servers means having more processing capacity and should lead

to a higher probability that all jobs are completed on time. We thus expect gs(p) to be a

non-decreasing function of p. At decision point s, let vs be the minimum number of servers

required to achieve a y% confidence in finishing all jobs by time d.

vs = p such that ns ≤ gs(p) and ns > gs(p− 1) (4.5)

At the Decide phase, the decision to change the number of servers from ps to vs. The

algorithm that implements this decision (Heuristic Algorithm 1) is shown below.

Heuristic algorithms for dynamic resource provisioning 27

Algorithm 1 Heuristic Algorithm 1: Threshold-responding deployment heuristic algo-
rithm
Ensure: The number of servers to add or remove. Positive return value means add,

negative means remove, 0 means no change.

1: Determine vs from Equation 4.5.
2: if vs > pmax then
3: vs = pmax

4: else if vs < pmin then
5: vs = pmin

6: end if
7: return vs − ps

4.2.2 Heuristic Algorithm 2: Delayed threshold-responding de-

ployment heuristic algorithm

Heuristic Algorithm 2 is a variant of Heuristic Algorithm 1. The motivation is to minimize

the fluctuation in the number of servers used. This is accomplished by delaying the removal

decision. Specifically, a decision to remove servers is carried out only if the condition for

removal (i.e., vs − ps < 0) is met for two consecutive decision points. This algorithm is

shown in Algorithm 2.

4.2.3 Method to determine vs

We note from the descriptions of Heuristic Algorithms 1 and 2 that we need to determine

vs. vs, as defined in Equation 4.5, is a function of gs(p) and ns. We must therefore first

determine gs(p). This is accomplished by simulating a single queue, multiple server model

with FCFS discipline. The inputs to the simulation are:

• n: number of jobs at time s

• p: number of servers in the cluster when time s is reached

28 Autonomic Resource Management for a Cluster that Executes Batch Jobs

Algorithm 2 Heuristic Algorithm 2: Delayed threshold-responding deployment heuristic
algorithm

Ensure: The number of servers to add or remove. Positive return value means add,
negative means remove, 0 means no change.

1: Determine vs from Equation 4.5.
2: if vs > pmax then
3: vs = pmax

4: else if vs < pmin then
5: vs = pmin

6: end if
7: if vs ≥ ps or (vs−1 < ps−1 and vs < ps) then
8: return vs − ps

9: else
10: return 0
11: end if

• Arrival rate of batch jobs is based on a job profile, which may be time-varying. An

example is given in Figure 4.5, where time 7 represents the submission deadline.

• Service time is exponentially distributed

We run the simulation for a large number of runs from time s to d for different com-

binations of n and p. We assume that each server starts processing a new job at time s.

We collect data for the fraction of runs that all jobs are completed by the deadline. This

fraction (denoted by Qs(p, n)) is used as an estimate for the probability that all jobs are

completed by the deadline. gs(p) then is given by the value of n such that Qs(p, n) ≥ y%

and Qs(p, n + 1) < y% (see Equations 4.3 and 4.4). We use a binary search to obtain the

value of gs(p) at time s. The initial minimum number of jobs to try is 0 and the maximum

number is:

γ = pmax ×
d

mean service time
(4.6)

Heuristic algorithms for dynamic resource provisioning 29

d

Figure 4.5: An example of an arrival profile

For a given p, the complexity to find values of gs(p) for different s is O(d ln γ), where d is

the total number of decision points and γ is given by Equation 4.6.

The above procedure allows us to pre-compute gs(p) for different combinations of p and

s. At the Decide phase, gs(p) can simply be obtained by a table-lookup.

4.3 Cost-aware resource allocation algorithms

In this section, we present two additional heuristic algorithms which aim at minimizing

the total cost (as defined in Equation 4.1) and finishing all jobs on time. This requirement

is again written as Pr[all jobs are finished by the deadline] > y% (y = 99.99). At decision

point s, we need to determine ls, the number of servers that would yield the lowest expected

cost if this number of servers is used from time s to s + 1. The decision is then to change

the number of servers from ps to ls.

30 Autonomic Resource Management for a Cluster that Executes Batch Jobs

4.3.1 Preliminary remarks

The following results are useful in our analysis of estimated cost:

• We note from the discussions in Section 4.2.1 that we can determine, for decision

point s, the value of gs(p), which is the largest value of ns such that Pr[all jobs are

finished by the deadline] > y% (y = 99.99) given that p servers are used from time

s to d.

• Once the submission deadline (at time u) has been reached, there are no more job

arrivals. Some of the servers will be idle if the number of servers is larger than the

number of jobs in the cluster. So, at decision point s, u ≤ s < d, the maximum

number of servers needed (denoted as ws) is not more than ns.
1 Since we must have

at least pmin and cannot have more than pmax servers in the cluster, we can write,

ws = min{pmax, max{pmin, n}} for u ≤ s < d. (4.7)

4.3.2 Analysis of estimated cost

We define an estimated cost which will provide the needed information to determine ls for

s < d− 1, as follows:

Ls(p, n) = estimated cost from s to d given that the values of

ns and ps at decision point s are n and p respectively. (4.8)

In this subsection, we discuss how to find Ls(p, n). Note that ps refers to the number of

servers when time s is reached. Analytic results for ls, where s < d− 1, will be presented

1Note that we may use fewer servers than the maximum number of servers needed.

Heuristic algorithms for dynamic resource provisioning 31

in Sections 4.3.3 when we describe our heuristic algorithms.

Ls(p, n) can be obtained recursively backwards; the base case being s = d− 1.

Base case

For s = d− 1, Ld−1(p, n) has 3 components.

1. The first component is the cost of using ld−1 servers from time d − 1 to d. This is

given by ld−1×
∫ d

d−1
ct dt. For the special case of s = d−1, ld−1 can be determined by

the nd−1. Since there are no more future decision points, we must use enough servers

to ensure that Pr[completing the nd−1 jobs on time] > y%. Note that one server can

finish more than one jobs from time d−1 to d, a smaller number of servers than wd−1

may be sufficient. We thus have:

ld−1 = min{wd−1, α} (4.9)

where α is the solution to the following relations:

nd−1 ≤ gd−1(α) and nd−1 > gd−1(α− 1)

2. The second component refers to the cost associated with removing servers. Each

removed server incurs a cost of
∫ d−1+r2

d−1
ct dt because a server to be removed is not

released until the end of the removal period which has length r2.

3. The third component is the expected penalty of missing the job deadline. Suppose,

for any job, the cost of missing the deadline is P . We assume that P is given by:

P = x× cmax (4.10)

32 Autonomic Resource Management for a Cluster that Executes Batch Jobs

where x is the mean service time, and cmax = maxt=0,...,d ct.

A maximum value of ct is used because the objective is to finish the job by the

deadline, and the use of cmax in Equation 4.10 will ensure that this objective is met.

If P < x × cmax, leaving a job unfinished may incur a lower expected cost than

processing it, which is not practical.

Recall that nd is the number of jobs at deadline d (these jobs have missed the dead-

line). The value of nd, say m, is affected by n, the value of ns at s = d − 1. Let

ks(q, n, m) be the probability that ns+1 = m given that ns = n and q servers are

used from s to s + 1. Note that q may be different from p because servers may be

added or removed at decision point s. For the base case, ld−1 servers are used from

time d − 1 to d. Pr[m jobs missing deadline (or nd = m)] = kd−1(ld−1, n, m). Since

each job incurs a penalty P , the total penalty of m jobs missing the deadline is mP .

Summing over all possible values of m, the expected penalty is:

∞∑
m=0

kd−1(ld−1, n, m)mP (4.11)

Combining the three components discussed above, we have for the base case:

Ld−1(p, n) = ld−1 ×
∫ d

d−1

ct dt + L∗ +
∞∑

m=0

kd−1(ld−1, n, m)mP (4.12)

where

L∗ =

0 if ld−1 ≥ p (i.e., servers are added or no change),

(p− ld−1)×
∫ d−1+r2

d−1
ct dt if ld−1 < p (i.e., servers are removed).

Heuristic algorithms for dynamic resource provisioning 33

Recursive relationship between Ls and Ls+1

We distinguish between two cases: s < u (before submission deadline) and s ≥ u (at or

after submission deadline). Consider case 1. Ls(p, n) can be obtained as follows. Suppose

at decision point s, the number of servers is changed from p to some other value q (no

change if p = q). To characterize q, we note that if n ≥ gs(pmax), we do not have sufficient

confidence that all jobs will be completed on time. We therefore use the maximum number

of processors available; it follows that q = pmax.

On the other hand, if n < gs(pmax), the value of q that yields the minimum Ls(p, n)

will be selected. Define an auxiliary function Ms(p, q, n) which is the estimated cost from

s to d given n jobs at time s and the number of servers used is changed from p to q at time

s. Ms(p, q, n) is the sum of:

1. the cost of using q servers from time s to s + 1,

2. the estimated cost from time s + 1 to d, and

3. the cost associated with adding or removing servers at time s, depending on whether

q > p or q < p.

We thus have

Ms(p, q, n) = q ×
∫ s+1

s

ct dt +
∞∑

m=0

ks(q, n, m)× Ls+1(q, m) + M∗ (4.13)

where

M∗ =

0 if q > p,

(p− q)×
∫ s+r2

s
ct dt if q ≤ p.

34 Autonomic Resource Management for a Cluster that Executes Batch Jobs

The relationship between Ls and Ls+1 can now be written as:

Ls(p, n) =

minq=pmin,...,pmax Ms(p, q, n) if n < gs(pmax),

Ms(p, pmax, n) if n ≥ gs(pmax).

(4.14)

We next consider case 2, i.e., s ≥ u. As discussed in Section 4.3.1, the maximum

number of servers needed after the submission deadline (time u) is ws. Therefore, we use

ws instead of pmax servers if ns ≥ gs(pmax). Hence, for s ≥ u, Ls(p, n) can be written as:

Ls(p, n) =

minq=pmin,...,ws Ms(p, q, n) if n < gs(pmax),

Ms(p, ws, n) if n ≥ gs(pmax).

(4.15)

This completes our analysis of the estimated cost Ls(p, n).

4.3.3 Heuristic Algorithm 3: Cost-aware deployment heuristic

algorithm

The key step of our cost-aware deployment heuristic algorithm is to determine ls for s =

1, . . . , d−1. When s = d−1, analytic results for ld−1 have been presented in Section 4.3.1.

Specifically, ld−1 is given by Equation 4.9.

Consider next the case s < d−1. For a given Ls(p, n), ls can be obtained from Equations

4.14 and 4.15. There are two subcases: s < u and s ≥ u. For s < u,

ls =

q∗ if n < gs(pmax),

pmax if n ≥ gs(pmax)

(4.16)

where M(p, q∗, n) = minq=pmin,...,pmax M(p, q, n).

Heuristic algorithms for dynamic resource provisioning 35

For s ≥ u,

ls =

q∗ if n < gs(pmax),

ws if n ≥ gs(pmax)

(4.17)

where M(p, q∗, n) = minq=pmin,...,ws M(p, q, n).

Once ls has been determined, decision to add or remove servers is made as follows.

1. Add ls − ps servers if ls > ps

2. Remove ps − ls servers if ls < ps

3. Otherwise: no change

This is shown in Algorithm 3.

Algorithm 3 Heuristic Algorithm 3: Cost-aware deployment heuristic algorithm

Ensure: The number of servers to add or remove. Positive return value means add,
negative means remove, 0 means no change.

1: At decision point s, use the measured values of ps and ns (denoted by p and n) as
input to determine ls from Equations 4.9, 4.16 and 4.17.

2: return ls − p

4.3.4 Method to compute Ls(p, n)

In this section, we discuss how we may compute Ls(p, n). Based on the results in Section

4.3.2, Ls(p, n) can be computed backwards from s = d− 1. This computation is shown in

Algorithm 4. We note from Equations 4.12, 4.14 and 4.15 that Ls(p, n) and the auxiliary

function Ms(p, q, n) are expressed in terms of ks(q, n, m). We must therefore first determine

ks(q, n, m). Recall that ks(q, n, m) is the probability that ns+1 = m given that ns = n and

36 Autonomic Resource Management for a Cluster that Executes Batch Jobs

Algorithm 4 Algorithm for computing Ls(p, n)

1: Initialize Ld−1(p, n) for pmin ≤ p ≤ pmax, 0 ≤ n ≤ gd−1(pmax).
2: for s = d− 2 to 1 do
3: for n = 0 to gs(pmax) do
4: for p = pmin to pmax do
5: Compute Ls(p, n) according to Equations 4.12, 4.14 and 4.15.
6: end for
7: end for
8: end for

q servers are used from s to s + 1. ks(q, n, m) can be determined by using the simulation

described in Section 4.2.3. To reduce the amount of computation, we estimate the values

ks(q, n, m) as follows.

• We run the simulation from 1,000 time 0 to d for each different value of q. The

number of jobs at time 0 is set to a large number such that the number of jobs in the

system does not fall below q throughout the simulation. Our experience shows that

a sufficiently large value is given by: pmax× d
mean service time

× 2. From the simulation,

we determine Ds as the largest recorded decrease in number of jobs from s to s + 1

(Ds = 0 if no decrease is recorded) for s = 0, 1, . . . , d− 1.

Let Rs = q + Ds. For ns ≥ Rs, we assume that the number of jobs from time s to

s + 1 is at least q. When this happens, the change in number of jobs from time s to

s+1 is independent of ns. Let δ̃s = ns+1−ns. During the simulation, we collect data

for the probability distribution of δ̃s for s = 0, 1, . . . , d− 1. For n ≥ Rs, we estimate

ks(q, n, n + δ) by Pr[δ̃s = δ].

• For n < Rs, we run a special simulation from time s to time s + 1 with all possible

combinations of decision point s, number of servers q and number of jobs n. For each

combination, data is collected for the probability distribution of ks(q, n, m).

Heuristic algorithms for dynamic resource provisioning 37

The above procedure allows us to pre-compute ks(q, n, m) for all combinations of s, q, n

and m. These results are then used to compute Ls(p, n).

Ls(p, n) is also pre-computed. Once values for ks(q, n, m) are available, the steps out-

lined in Algorithm 4 can be used to compute Ls(p, n).

In our computation of Ls(p, n), the following method is used to improve efficiency. At

the beginning of the job processing period, the number of jobs in the system is expected to

be small. Suppose a number Ks can be found such that Pr[ns > Ks] ≈ 0. Then, instead of

pre-computing all values of Ls(p, n) or L′
s(p, n) from n = 0 to gs(pmax), we can pre-compute

only the values from n = 0 to min{gs(pmax), Ks}, which would save time. Ks can be set to

be the summation of the maximum increase in jobs between every two consecutive decision

points from time 0 to s observed in the simulation to obtain ks(q, n, m).

To compute Ls(p, n), the time complexity is O(dJG), where d is the total number of

decision points from time 0 to the deadline, J = pmax − pmin and G = maxd−1
s=0 gs(pmax).

Note that the amount of computation can be excessive for large values of J and G. In this

regard, we introduce two modified version of Heuristic Algorithm 3, designed to reduce the

amount of computation required. They are referred to as Heuristic Algorithms 4 and 5; it

will be described in the next two sections.

4.3.5 Heuristic Algorithm 4: Cost-aware deployment heuristic

algorithm with modified Ls

Consider the computation of Ls(p, n). The modified version of Heuristic Algorithm 3 is

based on the following observation. Let β be the number of servers used between s and

s + 1 given that ns = n− 1. Intuitively, when ns = n, the number of servers needed (or ls)

should be no less than β. Therefore, in the calculation of Ls(p, n) in Equations 4.14 and

4.15, instead of finding the minimum of Ms(p, q, n) from pmin to pmax servers, we find the

38 Autonomic Resource Management for a Cluster that Executes Batch Jobs

minimum from β to pmax servers. The amount of computation is reduced because fewer

combinations of p and n are needed.

Similar to Equations 4.14 and 4.15, the estimated cost for Heuristic Algorithm 4 (de-

noted by L′
s(p, n)) for the case s < d− 1 can be written as follows:

Case 1: s < u

L′
s(p, n) =

minq=β,...,pmax Ms(p, q, n) if n < gs(pmax),

Ms(p, pmax, n) if n ≥ gs(pmax).

(4.18)

Case 2: s ≥ u

L′
s(p, n) =

minq=β,...,ws Ms(p, q, n) if n < gs(pmax),

Ms(p, ws, n) if n ≥ gs(pmax).

(4.19)

For Heuristic Algorithm 4, let l′s be the number of servers that would yield the lowest

estimated cost if this number of servers is used from time s to s+1. As discussed in Section

4.3.3, the key step of our cost-aware deployment heuristic algorithm is to determine l′s for

s = 1, . . . , d−1. When s = d−1, l′d−1 = ld−1 which is given by Equation 4.9. For s < d−1,

l′s can be obtained by a straightforward modification of Equations 4.16 and 4.17, i.e.,

For s < u,

l′s =

q∗ if n < gs(pmax),

pmax if n ≥ gs(pmax)

(4.20)

where Ms(p, q
∗, n) = minq=β,...,pmax Ms(p, q, n).

Heuristic algorithms for dynamic resource provisioning 39

For s ≥ u,

l′s =

q∗ if n < gs(pmax),

ws if n ≥ gs(pmax)

(4.21)

where Ms(p, q
∗, n) = minq=β,...,ws Ms(p, q, n).

Once l′s has been determined, the decision to add or remove servers is made as follows.

1. Add l′s − ps servers if l′s > ps

2. Remove ps − l′s servers if l′s < ps

3. Otherwise: no change

This is shown in Algorithm 5.

Algorithm 5 Heuristic Algorithm 4: Cost-aware deployment heuristic algorithm with
modified Ls

Ensure: The number of servers to add or remove. Positive return value means add,
negative means remove, 0 means no change.

1: At decision point s, use the measured values of ps and ns (denoted by p and n) as
input to determine l′s from Equations 4.9, 4.20 and 4.21.

2: return l′s − p

4.3.6 Heuristic Algorithm 5: Cost-aware deployment heuristic

algorithm with modified Ms

Consider the computation of Ms(p, q, n). This modified version of Heuristic Algorithm 3 is

based on the following observation. In Ms(p, q, n) (Equation 4.13), since r2 is far shorter

than a decision interval, M∗ may not be significant. Recall that we need to try different

40 Autonomic Resource Management for a Cluster that Executes Batch Jobs

values of p when we estimate Ls, and p is only used in finding M∗. If we set M∗ to be

zero, the complexity of computing Ls can be reduced from O(dJG) given in to O(dG).

We define the new Ms function where M∗ is zero as M ′
s(p, q, n).

M ′
s(p, q, n) = q ×

∫ s+1

s

ct dt +
∞∑

m=0

ks(q, n, m)× Ls+1(q, m) (4.22)

Similar to Equations 4.14 and 4.15, the estimated cost for Heuristic Algorithm 5(de-

noted by L′′
s(p, n)) for the case s < d− 1 can be written as follows:

Case 1: s < u

L′′
s(p, n) =

minq=pmin,...,pmax M ′
s(p, q, n) if n < gs(pmax),

M ′
s(p, pmax, n) if n ≥ gs(pmax).

(4.23)

Case 2: s ≥ u

L′′
s(p, n) =

minq=pmin,...,ws M ′
s(p, q, n) if n < gs(pmax),

M ′
s(p, ws, n) if n ≥ gs(pmax).

(4.24)

For Heuristic Algorithm 5, let l′′s be the number of servers that would yield the lowest

estimated cost if this number of servers is used from time s to s + 1. When s = d − 1,

l′′d−1 = ld−1 which is given by Equation 4.9. For s < d − 1, l′′s can be obtained by a

straightforward modification of Equations 4.16 and 4.17, i.e.,

Heuristic algorithms for dynamic resource provisioning 41

For s < u,

l′′s =

q∗ if n < gs(pmax),

pmax if n ≥ gs(pmax)

(4.25)

where M ′
s(p, q

∗, n) = minq=pmin,...,pmax M ′
s(p, q, n).

For s ≥ u,

l;′s =

q∗ if n < gs(pmax),

ws if n ≥ gs(pmax)

(4.26)

where M ′
s(p, q

∗, n) = minq=pmin,...,ws M ′
s(p, q, n).

Once l′′s has been determined, the decision to add or remove servers is made as follows.

1. Add l′′s − ps servers if l′′s > ps

2. Remove ps − l′′s servers if l′′s < ps

3. Otherwise: no change

This is shown in Algorithm 6.

Algorithm 6 Heuristic Algorithm 5: Cost-aware deployment heuristic algorithm with
modified Ms

Ensure: The number of servers to add or remove. Positive return value means add,
negative means remove, 0 means no change.

1: At decision point s, use the measured values of ps and ns (denoted by p and n) as
input to determine l′′s from Equations 4.9, 4.25 and 4.26.

2: return l′′s − p

Chapter 5

Performance evaluation

In this chapter, the merit of the five heuristic resource provisioning algorithms developed

in the last chapter is evaluated by simulation. Our evaluation is based on the total cost of

executing submitted batch jobs in a processing period, as defined in Equation 4.1.

5.1 Job processing period

In our simulation study, the job processing period under consideration is for a 24-hour

day (see Figure 5.1). Decision points are 15 minutes apart. The time unit is therefore 15

minutes. The job processing period under consideration is for a 24-hour day. This period

starts at 8am (time 0). The submission deadline is set to 12 midnight, i.e., u = 64. The

completion deadline is at 7am the next morning, i.e., d = 92.

5.1.1 Arrival time profile

During the batch job submission period, the job arrival rate is time dependent. More

jobs arrive in the middle of the submission period (time 32) and fewer jobs arrive at the

43

44 Autonomic Resource Management for a Cluster that Executes Batch Jobs

12am 7am8am

Batch job submission period
No batch job
submission

time

Submission
deadline

Completion
deadline

Job submission
begins

Figure 5.1: Job processing period used in experiments

two ends (time 0 and 64). Our approach to generate job arrivals that fit this profile is as

follows.

We first define a quadratic function a(x) given by:

a(x) = 2.0− 1.04167× 10−4x + 1.80845× 10−9x2 (5.1)

a(x) is obtained by linear least squares curve fitting, given the following data points: a(x)

= 2, 0.5 and 2 when x is 0, 28,800 and 57,600, respectively1. This function is depicted in

Figure 5.2. It represents smaller interarrival times at x = 28,800 and larger interarrival

times at the two ends of the submission period (x = 0 and x = 57,600). a(x) will be used

to generate job interarrival times. The algorithm is as follows:

1. Let x be the last generated arrival time, which is initialized to 0.

2. A random variate z for the exponential distribution with mean equals to 480 seconds

is generated.

3. Arrival time of next job is obtained as z × a(x) + x.

128,800 and 57,600 refer to time 32 (u/2) and 64 (u) respectively.

Performance evaluation 45

0

0.5

1

1.5

2

2.5

0 10000 20000 30000 40000 50000

x

a(
x)

Figure 5.2: a(x) from x = 0 to x = 57, 600

4. x is incremented by the z × a(x).

5. Steps 2 to 4 are repeated until the generated arrival time (given by x) is larger than

the submission deadline at 57,600 seconds. This last arrival is discarded and no more

arrivals will be generated from this point on.

All the arrival times are stored in the job arrival profile. As an example, we generated

1,000 streams of job arrivals and collected data for the histogram of the job arrival times

(measured from time 0) for each stream. The average, over all streams, of the collected

data for these histograms is shown in Figure 5.3. For this example, the mean interarrival

time is 394.17 seconds and its standard deviation is 33.69 seconds. The mean number of

arrivals over the job processing period is 145.27 with standard deviation of 12.17.

46 Autonomic Resource Management for a Cluster that Executes Batch Jobs

0

0.5

1

1.5

2

2.5

3

3.5

4

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

Arrival Time

N
um

be
r o

f a
rr

iv
al

s

Figure 5.3: Number of arrivals at different arrival times

5.1.2 Other assumptions

The job service times are generated based on an exponential distribution with mean equal

to 1,200 seconds (or 20 minutes). We assume that first-come-first-served (FCFS) scheduling

is used for the cluster. The reason for using FCFS is convenience in simulation. Other

scheduling disciplines can also be used with our resource provisioning algorithms. In our

experiments, pmin = 1 and the time between resource provisioning decisions is 900 seconds

(or 15 minutes). pmax = 5 unless stated otherwise.

5.2 Pre-computing gs(p) and Ls(p, n)

Our algorithms require that we pre-compute the following parameters:

• gs(p) – the largest value of ns such that the probability of finishing all jobs by the

Performance evaluation 47

deadline is larger than or equal to y%, where y = 99.99 and p servers are used from

time s to d, for s = 0 to d and p = pmin to pmax

• Ls(p, n) – the estimated cost from s to d given that the values of ns and ps at decision

point s are n and p respectively, for s = 1 to d− 1 and p = pmin to pmax. Note that

to get Ls(p, n), we need to first compute ks(q, n, m) – the probability that ns+1 = m

given that ns = n and q servers are used from s to s + 1, for s = 0 to d, q = pmin to

pmax, n = 0 to Rs, and m = 0 to infinity.

Methods to compute these two sets of parameters have been discussed in Sections 4.2.3

and 4.3.6, respectively.

5.3 Cost functions

Cost functions are used to model certain periods of time which we want to discourage the

use of servers by the batch job cluster. Since we don’t limit the shape of the cost function

in the design of our heuristic algorithms, we therefore compare their performance with

respect to different types of cost functions to see how well they can adapt. Although the

cost functions chosen are artificial, they can provide insights in the performance of our

heuristics. The cost functions under consideration are:

1. Uniform – the cost at time t ct is independent of t.

2. Linearly increasing – ct is an increasing function of t.

3. Linearly decreasing – ct is a decreasing function of t.

4. Quadratic-1 – ct is a quadratic function of t with a lower cost in the middle of the

job processing period.

48 Autonomic Resource Management for a Cluster that Executes Batch Jobs

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70 80 90 100
Time

In
st

an
ta

ne
ou

s
co

st

Cost function 1: Uniform Cost function 2: Linearly increasing
Cost function 3: Linearly decreasing Cost function 4: Quadratic-1
Cost function 5: Quadratic-2

Figure 5.4: Cost functions under consideration

5. Quadratic-2 – ct is a quadratic function of t with a higher cost in the middle of the

job processing period.

The cost functions are illustrated in Figure 5.4.

5.4 Results and discussions

Simulation experiments have been performed to evaluate the merit of the five heuristic algo-

rithms. For each experiment, we simulate the events and activities within a job processing

period 1,000 times. The system is empty initially and the number of servers deployed at

time zero is pmin. For each simulation run, results for the following performance measures

are collected.

1. Number of servers used at each decision point, after a decision has been made.

Performance evaluation 49

2. Total cost, as defined in Equation 4.1.

3. Total number of server deployments during a job processing period.

For each experiment, 1,000 simulation runs are performed. Our evaluation of the merit

of the five heuristic algorithms is based on the average value of the above performance

measures over the 1,000 simulation runs.

5.4.1 Number of servers used at each decision point

Results for the number of servers used at each decision point provide insight on how the

different heuristic algorithms adapt to changes in workload. These results also show that

the proposed cost aware resource allocation heuristic algorithms can successfully use fewer

servers during the high cost period while ensuring that all jobs meet their deadline. We

observe no job missing the completion deadline for Heuristic Algorithms 1 and 2. For

Heuristic Algorithms 3, 4 and 5, the percentage of simulation runs having one or more jobs

missing the deadline is shown in Figure 5.5. For most of the runs missing the deadline,

only one job is missed. A relatively higher value is recorded for Cost functions 3 and 5,

where the cost is decreasing at the end. It indicates that the algorithms tries to delay

processing jobs to the end and results in a higher chance of missing job deadline.

As mentioned previously, we use the mean value of the number of servers used at each

decision point over 1,000 simulation runs. The 95% confidence intervals have also been

computed. They are very small (less than 0.1) and are therefore not shown when we

present our results.

50 Autonomic Resource Management for a Cluster that Executes Batch Jobs

0

1

2

3

4

5

6

1 2 3 4 5
Cost function

P
er

ce
nt

ag
e

of
 s

im
ul

at
io

n
ru

ns
 (%

)

Heuristic 3 Heuristic 4 Heuristic 5

Figure 5.5: Percentage of simulation runs having job(s) missing the completion deadline.

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80 90 100
Time

M
ea

n
nu

m
be

r o
f s

er
ve

rs

Heuristic 1 Heuristic 2

Figure 5.6: Mean number of servers used at each decision point: Heuristic Algorithms 1
and 2

Performance evaluation 51

Simple heuristic algorithms – Heuristic Algorithms 1 and 2

We first consider Heuristic Algorithms 1 and 2, described in Algorithms 1 and 2, respec-

tively. The cost function is not taken into consideration in the design of these heuristic

algorithms. As a result, the behaviors of these heuristic algorithms are not affected by the

cost function.

The number of servers used by Heuristic Algorithms 1 and 2 as a function of time is

plotted in Figure 5.6. We observe that these two heuristic algorithms deploy enough servers

at the beginning to ensure that there is sufficient confidence of meeting the deadline for all

jobs. Then, they gradually reduce the number of servers used until all jobs are finished.

We also observe that the two heuristic algorithms have very similar behavior in terms of

the number of servers used at each decision point.

Cost aware resource allocation – Heuristic Algorithms 3, 4 and 5

We next consider Heuristic Algorithms 3, 4 and 5, described in Algorithms 3, 5 and 6,

respectively. Their behaviors with respect to the cost functions under consideration are

discussed below.

Cost function 1: Uniform. The behavior of Heuristic Algorithms 3, 4 and 5 for the

Uniform cost function is shown in Figure 5.7. We observe that the number of servers used

for Heuristic 5 fluctuates a lot. It shows that although M∗ is not significant in Heuristics

3 and 4, it can stabilize the number of servers in the system.

Cost function 2: Linearly increasing. The results shown in Figure 5.8 indicate

that the heuristic algorithms are aware of the fact that cost is an increasing function of time

and use more servers at the beginning. Although the cost is the lowest at the beginning,

the heuristic algorithms do not sharply increase the number of servers. They simply ensure

that servers do not become idle. This is confirmed by the observation that ps, as shown

52 Autonomic Resource Management for a Cluster that Executes Batch Jobs

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80 90 100
Time

M
ea

n
nu

m
be

r o
f s

er
ve

rs

0

2

4

6

8

10

12

C
os

t (
un

it)

Heuristic Algorithm 3 Heuristic Algorithm 4 Heuristic Algorithm 5 Cost function 1

Figure 5.7: Mean number of servers used at each decision point: Cost function 1

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80 90 100
Time

M
ea

n
nu

m
be

r o
f s

er
ve

rs

0

2

4

6

8

10

12

C
os

t (
un

it)

Heuristic Algorithm 3 Heuristic Algorithm 4 Heuristic Algorithm 5 Cost function 2

Figure 5.8: Mean number of servers used at each decision point: Cost function 2

Performance evaluation 53

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80 90 100
Time

M
ea

n
nu

m
be

r o
f s

er
ve

rs

0

2

4

6

8

10

12

C
os

t (
un

it)

Heuristic Algorithm 3 Heuristic Algorithm 4 Heuristic Algorithm 5 Cost function 3

Figure 5.9: Mean number of servers used at each decision point: Cost function 3

in Figure 5.8, is smaller (but not much smaller) than the corresponding ns, as shown in

Figures 5.12, 5.13 and 5.14. After the peak at around time 35, the number of servers begins

to drop until it is close to pmin = 1.

There is a small peak at time 85. This can be explained as follows. The value of

gs(pmax), as shown in Figures 5.12, 5.13 and 5.14, tends to be a decreasing function of s

after the submission deadline (at time 64) has been reached. There is a sudden drop of

gs(pmax) from 9 jobs at s = 84 to 3 jobs at s = 85. For Heuristic Algorithm 3, the mean

number of jobs at time 85 is 0.837 with standard deviation 1.213. Similarly, for Heuristic

Algorithms 4 and 5, the mean number of jobs at time 85 is 0.752 with standard deviation

1.094 and 0.905 with standard deviation 1.152 respectively. As a result, there are some

simulation runs with ns > gs(pmax) = 3 when s = 85. In those cases, additional servers

are deployed, which results in the small peak.

Cost function 3: Linearly decreasing. The results shown in Figure 5.9 indicate

54 Autonomic Resource Management for a Cluster that Executes Batch Jobs

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80 90 100
Time

M
ea

n
nu

m
be

r o
f s

er
ve

rs

0

2

4

6

8

10

12

C
os

t (
un

it)

Heuristic Algorithm 3 Heuristic Algorithm 4 Heuristic Algorithm 5 Cost function 4

Figure 5.10: Mean number of servers used at each decision point: Cost function 4

that the heuristic algorithms avoid the high cost period at the beginning by deferring most

of the server usage to the end of the job processing period. The number of servers used

remains at a low level from 0s to around time 34. Then it gradually increases to pmax = 5

at time 68. This increase is due to the accumulation of jobs in the system and the number

of jobs reaches gs(pmax) at time 68. The gradual increase in the number of servers used

(from time 34 to 68) can be viewed as a supporting evidence that the heuristic algorithms

are attempting to balance between incurring higher cost by adding servers too early and

incurring higher cost when gs(pmax) is reached too early.

As shown in Figures 5.12, 5.13 and 5.14, ns is very close to gs(pmax) at the end of the

job processing period. This is additional evidence that the heuristic algorithms avoid the

high cost period by leaving more jobs to be processed at the end.

Cost function 4: Quadratic-1. The cost is higher at the beginning and near the

completion deadline. As shown in Figure 5.10, the heuristic algorithms use more servers

Performance evaluation 55

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80 90 100
Time

M
ea

n
nu

m
be

r o
f s

er
ve

rs

0

2

4

6

8

10

12

C
os

t (
un

it)

Heuristic Algorithm 3 Heuristic Algorithm 4 Heuristic Algorithm 5 Cost function 5

Figure 5.11: Mean number of servers used at each decision point: Cost function 5

during the low cost period in the middle. They also delay the usage of servers at the

beginning, and avoid the usage of servers near the completion deadline.

Cost function 5: Quadratic-2. From Figure 5.11, the heuristic algorithms try

to process as many jobs as possible from time 0 to 36 by using more servers. Then, they

decide that it is desirable to remove servers during the high cost period in the middle. After

54,900s, the number of servers increases sharply because the number of jobs accumulated

in the system is significant (see Figures 5.12, 5.13 and 5.14).

5.4.2 Total cost

The total cost of the five heuristic algorithms for the five cost functions considered are

shown in Figure 5.15. We also include the cost of static provisioning which is based on the

use of four servers throughout the job processing period. Four is the minimum number of

56 Autonomic Resource Management for a Cluster that Executes Batch Jobs

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70 80 90 100
Time

N
um

be
r o

f j
ob

s

Cost function 1: Uniform Cost function 2: Linearly increasing
Cost function 3: Linearly decreasing Cost function 4: Quadratic-1 -- lower cost in the middle
Cost function 5: Quadratic-2 -- higher cost in the middle gs(pmax)

Figure 5.12: Mean number of jobs at each decision point: Heuristic Algorithm 3

servers required to provide a 99.99% probability that all jobs are finished by the deadline.

The following observations are made from the results in Figure 5.15:

1. The total costs of Heuristic Algorithms 3, 4 and 5 are almost the same. Since

Heuristic Algorithms 4 and 5 are more efficient with respect to computation time,

they are more preferred than Heuristic Algorithm 3.

2. For the cases considered in our experiments, Heuristic Algorithms 3, 4 and 5 are able

to achieve savings of about 15 - 40% and 40 - 60% in the total cost, when compared

to the simple heuristic algorithms (Heuristic Algorithms 1 and 2) and static server

allocation, respectively.

3. Even when a uniform cost function is used, Heuristic Algorithms 3, 4 and 5 perform

better than Heuristic Algorithms 1 and 2; the saving in total cost is around 20%.

Performance evaluation 57

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70 80 90 100
Time

N
um

be
r o

f j
ob

s

Cost function 1: Uniform Cost function 2: Linearly increasing
Cost function 3: Linearly decreasing Cost function 4: Quadratic-1 -- lower cost in the middle
Cost function 5: Quadratic-2 -- higher cost in the middle gs(pmax)

Figure 5.13: Mean number of jobs at each decision point: Heuristic Algorithm 4

5.4.3 Total number of server deployments during a job process-

ing period

The total number of server deployments during a job processing period is a measure of

how frequently servers are added to the cluster. Frequent deployment could result in

excessive overhead. In Figure 5.16, we show the number of deployments for the five heuristic

algorithms. We observe that Heuristic Algorithms 3 and 4 do not change the number of

servers often. For Heuristic Algorithm 5, the number of deployments is more than that of

Heuristic Algorithms 3 and 4 since M∗ is not included in M ′
s(p, q, n) (Equation 4.22). For

cost function 5 (Quadratic-2), server deployment activities happen twice, at the two ends

of the job processing period, resulting in a larger total number of deployments than for

the other cost functions. For Heuristic Algorithms 1 and 2, the delayed removal approach

58 Autonomic Resource Management for a Cluster that Executes Batch Jobs

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70 80 90 100
Time

N
um

be
r o

f j
ob

s

Cost function 1: Uniform Cost function 2: Linearly increasing
Cost function 3: Linearly decreasing Cost function 4: Quadratic-1 -- lower cost in the middle
Cost function 5: Quadratic-2 -- higher cost in the middle gs(pmax)

Figure 5.14: Mean number of jobs at each decision point: Heuristic Algorithm 5

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

1 2 3 4 5
Cost function

M
ea

n
to

ta
l c

os
t (

un
it)

Heuristic 1 Heuristic 2 Heuristic 3 Heuristic 4 Heuristic 5 Static: 4 servers

Figure 5.15: Mean total cost of different heuristic algorithms under different cost functions.

Performance evaluation 59

0

5

10

15

20

25

30

1 2 3 4 5
Cost function

M
ea

n
nu

m
be

r o
f d

ep
lo

ym
en

ts

Heuristic 1 Heuristic 2 Heuristic 3 Heuristic 4 Heuristic 5

Figure 5.16: Mean number of deployments of different heuristic algorithms under different
cost functions.

of Heuristic Algorithm 2 leads to a smaller total number of deployments than Heuristic

Algorithm 1.

5.4.4 Scalability

In autonomic resource provisioning, allocation decisions need to be made quickly at each

decision point. For Heuristics 3, 4 and 5, online computation of Ls(p, n), L′
s(p, n) and

L′′
s(p, n) is not possible when J = pmax−pmin and G = maxd−1

s=0 gs(pmax) are large. We must

therefore pre-compute them so that the data required for making decisions are available

without much delay. To pre-compute Ls(p, n), L′
s(p, n) and L′′

s(p, n), we must first compute

gs(pmax) and ks(q, n, m). The method to compute gs(pmax) is discussed in Sections 4.2.3

and those for ks(q, n, m), Ls(p, n), L′
s(p, n) and L′′

s(p, n) are discussed in Sections 4.3.6.

In this section, we measure the time required to compute Ls(p, n), , L′
s(p, n), L′′

s(p, n),

60 Autonomic Resource Management for a Cluster that Executes Batch Jobs

pmax Mean number of arrivals Mean inter-arrival time (seconds)
5 144.74 393.52
10 291.06 197.51
20 583.12 99.04
30 878.38 65.98

Table 5.1: Mean inter-arrival time and mean number of arrivals used for the scalability
tests

gs(pmax) and ks(q, n, m) for different values of pmax. The results will provide insight into

the scalability of our heuristic algorithms. In the scalability tests, we assume that, when

the pmax increases, the number of arrivals during a job processing period is correspondingly

higher. The mean number of arrivals, over 1,000 arrival streams are shown in Table 5.1.

Note that a larger number of arrivals implies a smaller mean interarrival time. The mean

interarrival times are also shown in Table 5.1.

The time to complete the computation of Ls(p, n), L′
s(p, n), L′′

s(p, n), gs(pmax) and

ks(q, n, m) for pmax = 5, 10, 20 and 30 are shown in Figure 5.17. The computations are

performed (using Java) on a PC equipped with an Intel 630 CPU (3GHz, Hyper-threaded,

2MB Cache, 64-bit and single core), 512MB RAM, and a Fedora Core 3 Linux operating

system. We observe that the time required to compute ks(q, n, m) is significant. This is

because of the large number of simulations required.

Performance evaluation 61

0

50

100

150

200

250

300

350

400

0 5 10 15 20 25 30 35
Maximum number of server in cluster

D
at

a
ge

ne
ra

tio
n

tim
e

(m
in

ut
e)

gs(pmax) ks(q,n,m) Ls(p,n) for Cost Function 1
L's(p,n) for Cost Function 1 L''s(p,n) for Cost Function 1

Figure 5.17: Computation time (minutes) of gs(pmax), ks(q, n, m), Ls(p, n), L′
s(p, n) and

L′′
s(p, n) values

Chapter 6

Conclusion and future work

6.1 Conclusion

In this thesis, we have developed five autonomic resource allocation heuristic algorithms

for batch job clusters. In large scale server clusters, the capabilities to manage their own

resources are useful in reducing over-provisioning, reducing operation cost and enhancing

resource utilization. We show that our heuristic algorithms are effective with respect to

provisioning of server resources in a batch job cluster. The first two heuristic algorithms

(Heuristic Algorithms 1 and 2), which are not cost-aware, are adaptive to current and

future workload. The other three heuristic algorithms (Heuristic Algorithms 3, 4 and 5)

are cost-aware and predictive in future resource usage. They are superior to Heuristic

Algorithms 1 and 2. The total costs of Heuristic Algorithms 3, 4 and 5 are almost the

same. Since Heuristic Algorithms 4 and 5 is more efficient in computation, they are more

preferred than Heuristic Algorithms 3. Heuristic Algorithms 4 is better than Heuristic

Algorithms 5 if we want to minimize the fluctuations in number of servers used during the

job processing period. However Heuristic Algorithms 4 has a higher time complexity than

63

64 Autonomic Resource Management for a Cluster that Executes Batch Jobs

Heuristic Algorithms 5.

6.2 Summary of contributions

We summarize our contributions as follows:

1. We proposed five heuristic algorithms for deciding the number of servers to use in a

cluster at decision points.

2. We have considered various time-varying cost functions when making resource allo-

cation decisions. These functions model the external factors that affect the number

of servers to use in a cluster.

3. We have included in our model the overhead in changing the number of servers used

in the cluster. This overhead is not considered in most of the previous work.

4. We have demonstrated that our cost aware resource allocation heuristic algorithms

outperform static allocation and heuristic algorithms that are not based on cost

considerations.

5. The proposed resource allocation heuristic algorithms are applicable to existing batch

job clusters.

6.3 Future work

Areas for future work include the following.

1. Other heuristics to minimize the total cost. One possible approach is to use a

linear programming formulation. At time s, we determine qs, the number of servers

Conclusion and future work 65

to use at time s. We assume that jobs only arrive and depart at decision points. Let

ms be the mean number of job arrivals between time s − 1 to s. ms = λs where λs

is the average arrival rate from time s− 1 to s. We assume that these jobs arrive at

time s. Let bs be the number of active servers at time s. bs = min{ns + ms, qs}. For

each job at time s, the probability that this job complete service at or before time

s + 1 (under exponential service time distribution) is equal to 1 − e−x. The mean

number of job completion from time s to s + 1 is therefore bs(1 − e−x). We assume

that these completions occur at time s + 1. The objective function to minimize

is: qscs + qs+1cs+1 + . . . + qd−1cd−1 where cs =
∫ s+1

s
ct dt. The constraints are: i)

nj+1 = max{nj +mj−bj(1−e−x), 0} for j = s, s+1, . . . , d−1, and ii) nd = 0, i.e., no

job misses the deadline. This optimization problem is solved at every decision point.

The solution provides the information needed for making provisioning decisions.

2. Batch jobs with different deadline requirement. Our study is based on batch

jobs with a common deadline. Another scenario of interest is that each batch job may

have a different completion deadline. The extension of our heuristic algorithms or

the development of new heuristic algorithms for this scenario should be investigated.

While deadline-based scheduling for batch job clusters have been widely studied, not

much attention has been put on dynamic resource allocation of such systems.

3. Batch jobs with dependencies. We have assumed that batch jobs are independent

in our heuristic algorithms. When jobs are not independent of each other in terms

of execution order, the resource provisioning algorithm may need to consider this

information when predicting future resource usage.

4. Heterogeneous cluster. Autonomic provisioning to a heterogeneous batch job

cluster would be an interesting and challenging topic to explore. First, in addition to

66 Autonomic Resource Management for a Cluster that Executes Batch Jobs

when servers should be allocated (or removed), determining which servers to allocate

(or remove) may not be straightforward. For example, the system needs to differen-

tiate between the benefits of adding one fast server or two slower servers. Secondly,

a server equipped with a faster CPU does not necessarily run all kinds of jobs faster

than another server because of the jobs’ I/O and memory requirements. The added

complexity makes it more difficult to predict the job completion time.

5. Batch job cluster with no check-pointing of jobs. For clusters with no check-

pointing, if we wish to remove a server node, we can either wait until a server node

becomes idle or remove the node even when it is busy running a job. For the former

approach, we need to estimate the waiting time and include it in the removal over-

head. For the latter approach, CPU time is wasted, which may not be desired. Of

interest is an assessment of the relative merit of these two approaches.

Bibliography

[1] Tarek F. Abdelzaher, Kang G. Shin, and Nina Bhatti. Performance guarantees for web

server end-systems: A control-theoretical approach. IEEE Transactions on Parallel

and Distributed Systems, 13(1):80–96, 2002.

[2] Karen Appleby, Sameh Fakhouri, Liana Fong, Germán Goldszmidt, Michael Kalantar,

Srirama Krishnakumar, Donald Pazel, John Pershing, and Benny Rochwerger. Oceano

- SLA based management of a computing utility. In Proceedings of the 7th IFIP/IEEE

International Symposium on Integrated Network Management, pages 855–868, May

2001.

[3] Mohit Aron, Peter Druschel, and Willy Zwaenepoel. Cluster reserves: A mechanism

for resource management in cluster-based network servers. In SIGMETRICS ’00: Pro-

ceedings of the 2000 ACM SIGMETRICS International Conference on Measurement

and Modeling of Computer Systems, pages 90–101, New York, NY, USA, 2000. ACM

Press.

[4] Gaurav Banga, Peter Druschel, and Jeffrey C. Mogul. Resource containers: A new

facility for resource management in server systems. In OSDI ’99: Proceedings of the

Third Symposium on Operating Systems Design and Implementation, pages 45–58,

Berkeley, CA, USA, 1999. USENIX Association.

67

68 Autonomic Resource Management for a Cluster that Executes Batch Jobs

[5] Galen Barbose, Charles Goldman, and Bernie Neenan. Survey of utility experience

with real time pricing, December 2004. Lawrence Berkeley National Laboratory,

LBNL-54238. http://eetd.lbl.gov/ea/ems/reports/54238.pdf.

[6] Pat Bohrer, Elmootazbellah N. Elnozahy, Tom Keller, Michael Kistler, Charles Le-

furgy, Chandler McDowell, and Ram Rajamony. The case for power management in

web servers. pages 261–289, 2002.

[7] Jeffrey S. Chase, Darrell C. Anderson, Prachi N. Thakar, Amin M. Vahdat, and

Ronald P. Doyle. Managing energy and server resources in hosting centers. In SOSP

’01: Proceedings of the Eighteenth ACM Symposium on Operating Systems Principles,

pages 103–116, New York, NY, USA, 2001. ACM Press.

[8] Jeffrey S. Chase, David E. Irwin, Laura E. Grit, Justin D. Moore, and Sara E. Spren-

kle. Dynamic virtual clusters in a grid site manager. In HPDC ’03: Proceedings of

the 12th IEEE International Symposium on High Performance Distributed Computing

(HPDC’03), pages 90–100, Washington, DC, USA, 2003. IEEE Computer Society.

[9] Yiyu Chen, Amitayu Das, Wubi Qin, Anand Sivasubramaniam, Qian Wang, and

Natarajan Gautam. Managing server energy and operational costs in hosting centers.

In SIGMETRICS ’05: Proceedings of the 2005 ACM SIGMETRICS International

Conference on Measurement and Modeling of Computer Systems, pages 303–314, New

York, NY, USA, 2005. ACM Press.

[10] Condor Team, A Resource Manager for High Throughput Computing, Software

Project, The University of Wisconsin, http://www.cs.wisc.edu/condor.

[11] Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and Dawn M. Tilbury. Feedback

Control of Computing Systems. John Wiley & Sons, 2004.

http://eetd.lbl.gov/ea/ems/reports/54238.pdf
http://www.cs.wisc.edu/condor

Conclusion and future work 69

[12] HP Utility Data Center, Hewlett-Packard. http://h71028.www7.hp.com/

enterprise/cache/259007-0-0-225-121.html?jumpid=reg_R1002_USEN.

[13] IBM Tivoli Intelligent Orchestrator, IBM. http://www-306.ibm.com/software/

tivoli/products/intell-orch/.

[14] Intel Preboot Execution Environment (PXE). http://www.intel.com/labs/

manage/wfm/tools/pxesdk20/index.htm.

[15] R. Levy, J. Nagarajarao, G. Pacifici, A. Spreitzer, A. Tantawi, and A. Youssef.

Performance management for cluster based web services. In Proceedings of the 8th

IFIP/IEEE International Symposium on Integrated Network Management, pages 247–

261, March 2003.

[16] Marin Litoiu, Murray Woodside, and Tao Zheng. Hierarchical model-based autonomic

control of software systems. In DEAS ’05: Proceedings of the 2005 Workshop on

Design and Evolution of Autonomic Application Software, pages 1–7, New York, NY,

USA, 2005. ACM Press.

[17] Zhen Liu, Mark S. Squillante, and Joel L. Wolf. On maximizing service-level-

agreement profits. SIGMETRICS Perform. Eval. Rev., 29(3):43–44, 2001.

[18] LSF Administrator’s Guide, Version 4.1, Platform Computing Corporation, February,

2001.

[19] Edson Manoel, Sara Carlstead Brumfield, Kim Converse, Mark DuMont, Leonard

Hand, Gordon Lilly, Morten Moeller, Adam Nemati, and Al Waisanen. Provi-

sioning On Demand: Introducing IBM Tivoli Intelligent ThinkDynamic Orchestra-

tor. IBM International Technical Support Organization, December 2003. http:

//www.redbooks.ibm.com.

http://h71028.www7.hp.com/enterprise/cache/259007-0-0-225-121.html?jumpid=reg_R1002_USEN
http://h71028.www7.hp.com/enterprise/cache/259007-0-0-225-121.html?jumpid=reg_R1002_USEN
http://www-306.ibm.com/software/tivoli/products/intell-orch/
http://www-306.ibm.com/software/tivoli/products/intell-orch/
http://www.intel.com/labs/manage/wfm/tools/pxesdk20/index.htm
http://www.intel.com/labs/manage/wfm/tools/pxesdk20/index.htm
http://www.redbooks.ibm.com
http://www.redbooks.ibm.com

70 Autonomic Resource Management for a Cluster that Executes Batch Jobs

[20] Daniel A. Menascé, Mohamed N. Bennani, and Honglei Ruan. On the use of online an-

alytic performance models, in self-managing and self-organizing computer systems. In

Özalp Babaoglu, Márk Jelasity, Alberto Montresor, Christof Fetzer, Stefano Leonardi,

Aad P. A. van Moorsel, and Maarten van Steen, editors, Self-star Properties in Com-

plex Information Systems, volume 3460 of Lecture Notes in Computer Science, pages

128–142. Springer, 2005.

[21] Justin Moore, David Irwin, Laura Grit, Sara Sprenkle, and Jeff Chase. Managing

mixed-use clusters with cluster-on-demand. Technical report, Duke University, De-

partment of Computer Science, November 2002.

[22] Open-PBS Team, A Batching Queuing System, Software Project, Altair Grid Tech-

nologies, LLC, http://www.openpbs.org.

[23] S. Ranjan, J. Rolia, H. Fu, and E. Knightly. QoS-driven server migration for Internet

data centers. In Proceedings of ACM/IEEE International Workshop on Quality of

Service (IWQoS), pages 3–12, Miami Beach, FL, USA, May 2002.

[24] J. Rolia, S. Singhal, and R. Friedrich. Adaptive internet data centers. In Proceedings

of the International Conference on Advances in Infrastructure for Electronic Business,

Science, and Education on the Internet (SSGRR’00), pages 3–12, L’Aquila, Italy, July

2000.

[25] Kai Shen, Hong Tang, Tao Yang, and Lingkun Chu. Integrated resource management

for cluster-based internet services. SIGOPS Oper. Syst. Rev., 36(SI):225–238, 2002.

[26] Gurmeet Singh, Carl Kesselman, and Ewa Deelman. Performance impact of resource

provisioning on workflows. Technical report, University of Southern California, Com-

puter Science Department, 2005.

http://www.openpbs.org

Conclusion and future work 71

[27] Gokul Soundararajan and Cristiana Amza. Online data migration for autonomic pro-

visioning of databases in dynamic content web servers. In CASCON ’05: Proceedings

of the 2005 conference of the Centre for Advanced Studies on Collaborative research,

pages 268–282. IBM Press, 2005.

[28] Sun GridEngine. http://gridengine.sunsource.net/.

[29] L.G. Alex Sung, Johnny W. Wong, Marin Litoiu, and Gabriel Iszlai. Dynamic pro-

visioning of processor nodes in a grid computing environment. In Proceedings of the

Second International Workshop on Smart Grid Technologies, Dublin, Ireland, June

2006. To appear.

[30] Bhuvan Urgaonkar and Prashant J. Shenoy. Sharc: Managing CPU and network

bandwidth in shared clusters. IEEE Trans. Parallel Distrib. Syst., 15(1):2–17, 2004.

[31] Qi Zhang, Evgenia Smirni, and Gianfranco Ciardo. Profit-driven service differentiation

in transient environments. In 11th IEEE International Symposium on Modeling, Anal-

ysis, and Simulation of Computer and Telecommunications Systems (MASCOTS’03),

pages 230–233, Orlando, FL, USA, October 2003.

[32] Huican Zhu, Hong Tang, and Tao Yang. Demand-driven service differentiation in

cluster-based network servers. In Proceedings of IEEE INFOCOM 2001. Twentieth

Annual Joint Conference of the IEEE Computer and Communications Societies, pages

679–688, Anchorage, AK, USA, April 2001.

http://gridengine.sunsource.net/

	Introduction
	Outline

	Related work
	Provisioning in the full server utility model
	Provisioning in a data centre
	Provisioning in a grid environment

	Provisioning in the shared server utility model
	A general resource provisioning framework

	Performance measurement of server deployment and removal
	Overall approach
	Proof-of concept prototype
	Data acquisition engine
	Job history database
	Objective analyzer
	Resource broker
	Deployment engine

	Performance measurement
	Remarks

	Heuristic algorithms for dynamic resource provisioning
	Performance model
	Simple heuristic algorithms
	Heuristic Algorithm 1: Threshold-responding deployment heuristic algorithm
	Heuristic Algorithm 2: Delayed threshold-responding deployment heuristic algorithm
	Method to determine vs

	Cost-aware resource allocation algorithms
	Preliminary remarks
	Analysis of estimated cost
	Heuristic Algorithm 3: Cost-aware deployment heuristic algorithm
	Method to compute Ls(p,n)
	Heuristic Algorithm 4: Cost-aware deployment heuristic algorithm with modified Ls
	Heuristic Algorithm 5: Cost-aware deployment heuristic algorithm with modified Ms

	Performance evaluation
	Job processing period
	Arrival time profile
	Other assumptions

	Pre-computing gs(p) and Ls(p,n)
	Cost functions
	Results and discussions
	Number of servers used at each decision point
	Total cost
	Total number of server deployments during a job processing period
	Scalability

	Conclusion and future work
	Conclusion
	Summary of contributions
	Future work

