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Abstract

Wireless ad-hoc networks (WANET) with multi-hop communication are subject to a

variety of faults and attacks, and detecting the source of any fault is highly important

to maintain the quality of service, confidentiality, and reliability of an entire network

operation. Intermediate byzantine nodes in WANET could subvert the system by altering

sensitive routed information unintentionally due to many reasons such as power depletion,

software bug, malware, and environmental obstacles. This thesis highlights some of the

research studies done in the area of distributed fault detection (DFD) and proposes a

solution to detect Byzantine behavior cooperatively. The present research will focus on

designing a scalable distributed fault detection (DFD) algorithm to detect byzantine nodes

who permanently try to distort or reroute information while relaying a message from one

node to another, complimentary to that, a symmetric distributed cryptography scheme

will be employed to continuously validates the data integrity of a routed message.

The main hypothesis of the research is that if a wireless ad-hoc network is been di-

vided into N number of groups (classes) with relatively equal number of members, each

group of nodes can cooperatively protect the network from every other group. Practically,

each group of nodes will be assigned to a distinct shared key; nodes with similar group

assignment shall guard the integrity of a routing path by incorporating their own secret

message authentication code (MAC) that can be only validated by nodes belonging to the

same group contributing to the same routing path. If a node from Group(i) detects a

tampering event, it should either store and delay a fault report or embed a fault report to

the same routed message and forward it to the Master Node (Destination) if applicable.
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Further report message overhead optimization has been devised to reduce the energy cost.

Moreover, the empirical results have shown that the more reported evidence the master

node can collect, the more accuracy of detection can be reached based on an incremental

stream of evidence that contains information about both healthy and unhealthy nodes; so

that every healthy report type can justify the unhealthy false report. The heuristic sim-

ulation based study considered many different aspects of the system for evaluation such

as detection accuracy, fault model, the optimal number of classes, energy consumption,

the impact of mobility, and network lifetime. The iGraph network simulation tool has

been employed for visualization and graph manipulation, whereas, Python programming

language has been utilized in conjunction to implement and simulate the DFD algorithm

and generate the results.
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Chapter 1

Introduction

A wireless ad hoc network (WANET) is an uncentralized wireless network. The network

is ad hoc because it does not rely on a dedicated infrastructure, such as routers, and

switches in wired networks or access points in managed (infrastructure) wireless networks.

In contrast, each node participates in routing by transmitting data for other nodes, so the

determination of which nodes transmitting data is made dynamically by network connec-

tivity. In addition to the classic routing, ad-hoc networks can use broadcasting to forward

information.

Over the past two decades distributed wireless sensor networks (WSN) have been the

focus of considerable research for both civil and military applications. Sensors are con-

strained in onboard energy supply. Therefore, efficient management of the network is

crucial to extend the life of the system. Failures and disturbance are inevitable in wireless

sensor networks executing in hostile environments and due to their unattended deploy-
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ment. Faulty sensors or data distortion can cause network infrastructure to needlessly

spread erroneous or even totally false information through the entire system. Such events

usually cost additional power consumption of key elements of WSN (e.g. Cluster Heads).

The main aim of this thesis is to explore and propose a distributive algorithm that can

ensure data integrity for large-scale WSN in the presence of uncertainties and disturbances.

The algorithm proposed should be capable of addressing any Wireless Ad Hoc Network

(WANET) that employs multi-hop communication protocol; moreover, it should compli-

ment reducing and isolating the influence of nodes that function incorrectly to tamper, or

inject, or divert critical routed information. See Figure (1.1).

Figure 1.1: Possible Byzantine faults in WSN: A) Message diversion; B) Message

distortion of tempering; C) Flooding attack; D) Routing loop.

A significant threat to WANET is Byzantine attacks where some authenticated nodes

turn into unfaithful network peers. These compromised nodes would be a source of disrup-

tion and confusion to a local or global data aggregator center. Byzantine attacks may, in
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general, refer to various types of Byzantine behaviors [17], [5], the focus in this thesis is on

Byzantine attacks that contribute to faults like data diversion, data falsification, and other

kinds of attacks shown in Figure (1.1). For attacks of this nature, compromised devices are

reprogrammed and then forced to send tampered data to the Master Node to undermine

the inference performance of the network. The Byzantine attackers could unknowingly

mar the performance of wireless systems.
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Chapter 2

Background

2.1 WANET Applications

The decentralized kind of wireless ad-hoc networks makes them fit for a variety of applica-

tions where central nodes cannot be utilized efficiently and may not improve the scalability

of networks compared to decentralized wireless managed networks, although, in many ap-

plications technical and functional limitations to the overall volume of such networks have

been identified. Insignificant configuration and fast deployment make ad hoc networks

suitable for emergency applications like military conflicts and natural disasters. The exis-

tence of dynamic and adaptive routing protocols allows ad hoc networks to be developed

rapidly. Wireless ad-hoc networks can be classified by their application as follow:
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2.1.1 Wireless Sensor Network

Wireless Sensor networks (WSN) is a term used to refer to a heterogeneous system combin-

ing tiny sensors and actuators with general/special-purpose processors. Sensor networks

are assumed to grow to include hundreds or thousands of static, low-power, low-cost, or

mobile nodes.

Sensor networks are useful in different fields, including military, environmental mon-

itoring, natural disaster, surveillance, and information gathering from hostile places. In

addition of WSN monitoring applications, WSN also facilitates remote controlling of phys-

ical environments. Sensors are key players in various applications: measuring humidity,

pressure, brightness, flow, temperature, mechanical stress, and health signs. Areas such

as disaster forecast, environment control, health care, military command & control benefit

greatly from this emerging technology.

WSN is a sub-category of Wireless Ad-Hoc Networks WANET, which make it part of

our study and research. What makes WSN applications a potential candidate for using our

distributive data integrity protocol, is that it highly relies on multi-hop communication to

a focal data gathering node, sometimes called Fusion Center.

2.1.2 MANET and VANET

With the proliferation of inexpensive, miniaturized, and more powerful mobile devices,

mobile ad hoc networks (MANETs) and vehicular ad hoc networks (VANETs) have become

one of the fastest advancing areas of research. This new kind of self-organizing network
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(SON) mixes wireless communication with a high-degree node mobility. Contrary to typical

wired networks, they have no static infrastructure (base stations, centralized management

points, etc.). The overall stance of nodes forms an arbitrary topology. This flexibility in

movement makes them suitable for many applications such as transportation, and military

applications, where the network topology may alter rapidly to reflect a forces operational

movements, and disaster recovery operations, where the existing static infrastructure may

be nonoperational.

Traditional networks use specific nodes to carry out basic functions such as network

management, packet forwarding, and routing. In ad hoc networks, these functions are com-

monly performed distributively by all network nodes. Nodes on MANETs use multi-hop

communication: nodes that are close to each others radio range can communicate through

wireless links, whereas those that are away from each other must rely on intermediate nodes

to function as routers to relay messages. Contrary to fixed Wireless Sensor Nodes, mobile

nodes can move, leave, and join a network; thus, routes required to be updated rapidly

due to the dynamic network topology. For instance, node S can communicate with node

D by using the shortest path S-G-F-D as shown in Figure (2.1) (the dashed lines show the

direct links between the nodes). If node G moves out of range from node S, it has to search

for a different route to node D (S-T-K-F-D). A decent amount of new protocols has been

developed for finding/updating the routes and ensure communication between end points

(but no protocol has been accepted as standard, because of the high contrast in trade-

offs). However, these new routing protocols, based on collaboration between nodes, are

susceptible to new forms of attacks. Unfortunately, many routing protocols for MANETs

do not consider security in design. Mainly because MANET features such as the lack of
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central points, the dynamic topology, and the existence of highly constrained nodes impose

a complex challenge for security.

Figure 2.1: Routing messages using multi-hop communication.

Much study and research have been done to detect attacks against MANET routing

protocols, including researches done on secure routing protocols and intrusion detection

systems (IDSs). Nevertheless, for applied reasons, the presented solutions typically focus on

a few particular security vulnerabilities since devising a complete solution is nontrivial. If

we are to devise more general solutions, we must have a thorough understanding of possible

vulnerabilities and security threats against WANET that explicitly embodies VANET.

Moreover, in the following section, we will further describe some of the commonly used

MANET routing protocols and highlight some of the security threats.
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2.2 Routing in WANET

2.2.1 Proactive routing

This type of protocols maintains current destination and route lookup table by periodically

broadcasting routing tables throughout the network.

1. Respective amount of data for maintenance.

2. Slow reaction on restructuring and failures.

One of the famous proactive protocols is ”Optimized Link State Routing Protocol”

OLSR [7].

Distance vector routing

Distance-vector protocols are functioning by determining the direction and distance to any

link in a network. Direction usually abstracted to what is the next hop address and what

exit channel should be used; whereas distance is a measure of the cost to reach a certain

node in terms of hop counts and other variable information. The cheapest cost route

between any source and destination nodes is the route path with minimum distance. Each

device maintains a vector (table) of minimum distance path to every node. The price cost

of reaching a destination is calculated using dynamic route metrics. For instance, RIP [12]

uses the hop count of the destination while IGRP takes into account other network details

such as node delay and available bandwidth.
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2.2.2 Reactive routing

This kind of protocol identifies a route on demand by flooding the network with Route

Request messages. Here are some of the mostly used reactive protocols.

Ad hoc On-Demand Distance Vector

The Ad hoc On-Demand Distance Vector (AODV) [28] routing protocol designed for use

by non-stationary nodes in an ad-hoc network. It provides rapid adaptation to dynamic

memory overhead, link conditions, low processing, low network utilization, and determines

unicast routes to destinations within the mobile ad-hoc network. It uses destination se-

quence numbers to always guarantee loop freedom (even in the face of abnormal delivery

of routing control packets), evading problems (such as ”counting to infinity”) associated

with classical distance vector protocols.

Dynamic Source Routing

Dynamic Source Routing (DSR) [15] is a routing protocol for wireless mesh networks. It

is similar to AODV in that it builds a route on-demand when a source node seeks one.

However, it leverage source routing instead of depending on the routing table at each

intermediate node.

Determining source routes demand to record the address of each intermediate device

between the source and destination during route path discovery. The registered path

addresses cached by nodes processing the route discovery packets. The discovered paths
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are used to route messages. To achieve source routing, the routed packets must contain

the address of each node the packet visits. This may result in high overhead cost for long

paths or large addresses, like IPv6. To avoid using source routing, DSR optionally defines

a flow id option that allows packets to be routed on a hop-by-hop basis.

2.3 Distributed Fault Detection in Wireless Sensor

Networks

Wireless sensor networks (WSNs) have gained global interest in recent years, especially

with the proliferation in Micro-Electro-Mechanical Systems (MEMS) technology which

has expedited the development of smart miniaturized sensors. These sensors are tiny, with

constrained processing and computing resources, and they are cheap compared to typical

commercial sensors. These sensor nodes can gather information from the surrounding

environment and, based on some decision model; they can compress and transmit the

sensed data to the user.

Unlike traditional networks, a WSN has its design and resource constraints. Resource

constraints include a restricted amount of energy, low bandwidth, limited processing and

storage, short communication range. Design limitations are application dependent and are

based on the monitored environment. The environment plays a major role in determining

the network topology, the size of the network, and the deployment scheme. The size of the

network could vary with the monitored environment. An ad hoc deployment is preferred

over pre-planned deployment when the environment is inaccessible by humans or when
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the network is comprised of hundreds of nodes. For indoor environments, fewer nodes

are required to form a network in a limited space whereas outdoor environments may

demand more nodes to cover a broader area. Obstructions in the environment can also

limit communication between nodes, which in turn affects the network connectivity (or

topology).

2.4 Security Threats in Wireless Ad Hoc Networks

The quick advances in wireless communication and electronics have open a path for the

development of low cost, low power, and multifunctional wireless sensor nodes which consist

of communication, sensing phenomenon, and data processing components. These small

sensor nodes can conveniently be deployed into a designated area to form a wireless network

and perform specific functions. Recently accelerated research in this area, wireless sensor

networks have been applied in various areas, such as environment and habitat monitoring,

activity monitoring, disaster management, and emergency response.

The nature of large, ad-hoc, wireless sensor networks presents significant challenges

in designing security schemes, and the hostility of the targeted environment could act as

a catalyst for transforming nodes from a normal healthy state into a weak faulty state.

A wireless sensor network is a special network which has many constraints compared to

a traditional computer network, thus designing an efficient and scalable distributed fault

detection (DFD) is not an easy task. Here are some of the main challenges that Ad-Hoc

wireless network could impose.
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2.4.1 Wireless Medium

The wireless medium is less secure because of its broadcast and open nature which makes

eavesdropping easier. Moreover, the wireless medium allows an attacker to intercept valid

packets and easily inject malicious ones. Any communication can be intercepted, modified,

or reflected by an attacker. Although this problem is not targeting sensor networks only,

traditional solutions have to be modified and adapted to be applied to sensor networks

efficiently. [24]

2.4.2 Ad-Hoc Deployment

The ad-hoc kind of sensor networks has no specific pre-defined structure. The network

topology is always subject to changes due to node failure, addition, or mobility. Nodes

can be deployed remotely from an airplane, so nothing is known of the topology before

deployment. Since nodes may get corrupted or failed, an ad-hoc network must support

self-configuration. Security schemes such as the one will be proposed in this thesis must

be able to operate within this dynamic environment.

2.4.3 Hostile Environment

One of the challenging factors is the hostile environment in which sensor nodes function.

Constrained nodes could be destructed or captured by attackers. Since nodes could live in a

hostile environment, attackers can physically acquire these devices. Attackers may capture

a node, physically disassemble it, and extract valuable information (e.g. cryptographic
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keys). The highly hostile environment impose a serious challenge for security researchers.

2.4.4 Resource Scarcity

The extreme resource limitations of sensor devices present significant challenges to resource-

hungry security mechanisms, such in the case of using public cryptography, or digital

signature. The hardware constraints require extremely reliable security algorithms in terms

of computational complexity, bandwidth, and memory space; which is not a simple task.

Energy is the most demanded resource for sensor networks. Wireless communication is

especially expensive in terms of power. Thus, security mechanisms must give special effort

to be communication efficient to sustain network life time for a prolonged time. [33]

2.4.5 Immense Scale

Furthermore, the proposed scale of sensor networks presents a serious challenge for secu-

rity mechanisms. Simply networking hundreds of thousands of nodes has proven to be a

delicate task. Applying security over such size of networks is equally challenging. Security

mechanisms must be scalable to very large networks while maintaining high computation

and communication efficiency.

2.4.6 Unattended Operation

Depending on the function of the particular sensor network, the sensor nodes may be left

unattended for extended periods of time. There are three main cautions to unattended
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sensor nodes [33]:

• Exposure to Physical Attacks: The sensor may be deployed in an environment

open to adversaries, inclement weather, and so on. The probability that a sensor

suffers a physical attack in such an environment is therefore much higher than the

conventional PCs, which is located in a secure place and mainly faces attacks from a

network.

• Managed Remotely: Remote management of a sensor network makes it virtually

impossible to detect physical tampering and physical maintenance issues.

• No Central Management Point: A sensor network should be a distributed net-

work without a central management point; this will increase the vitality of the sensor

network. However, if inaccurately designed, it will make the network organization

difficult, inefficient, and fragile.

Perhaps most importantly, the longer that a sensor is left neglected, the more likely

that an adversary has compromised the node.

2.5 Symmetric Cryptography for Confidentiality and

Data Integrity

With the limited computation resources available for wireless ad-hoc networks, we cannot

afford to use asymmetric cryptography and so it is better to use symmetric cryptographic

primitives to construct a distributed fault detection algorithm. [29]
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2.5.1 Data Confidentiality (Encryption)

A sensor network should not expose sensor readings to neighboring networks and intruders.

In many applications (e.g., key distribution) nodes would communicate highly sensitive in-

formation. The conventional approach for keeping sensitive data secret is to cipher the

data with a secret key that only appointed receivers to possess, hence obtaining confiden-

tiality. Given the perceived communication models, secure channels between nodes and

sinks should be setup so that later the network can bootstrap other secure channels as

necessary.

2.5.2 Data Authentication (MAC)

Message authentication is an essential security tool for many applications in sensor net-

works. Since an adversary can easily forge messages, the sent data would be used in any

decision-making process originates from a trusted source need to be ensured by the receiver.

Technically, data authentication enables a receiver to verify that the claimed sender sent

the data.

In the two-way communication scenario, data authentication can be accomplished

through a purely symmetric mechanism; the source and the destination nodes share a

secret key to compute a message authentication code (MAC) of all communicated mes-

sages. When a message with a correct MAC reaches the destined node, the destination

would know that the designated source node must have sent it. This form of authentica-

tion cannot be applied to a broadcast setting, without placing much stronger trust model

between the network nodes. If one sender wants to send valid data to mutually untrusted
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receivers, using a symmetric MAC is insecure; as any one of the receivers knows the MAC

key, and hence, could impersonate the sender and send tampered messages to other re-

ceivers. Hence, typically asymmetric mechanism is used to achieve authenticated broadcast

communication. One of the contributions will be proposed is to construct authenticated

broadcast from symmetric primitives only by using probabilistic key distribution scheme

among the nodes.

2.5.3 MAC Algorithm Performance for Constrained devices

(Lee, et. al, 2010) [18] have studied several MAC algorithms. We have shown that the

memory requirements of the block-cipher-based MACs are slight compared to those of

a hash-based MAC. However, the hash-based MAC has a shorter computation time and

therefore consumes less energy. Besides, when using XXTEA, HMAC could be a better

match than a block cipher MAC, because XXTEA cannot use different operation modes and

has not yet been proven to be secure when combined with a block-cipher MAC. Admittedly,

HMAC uses a significant amount of memory, but this requirement could be reduced if a

more memory-efficient algorithm is used. See Figure [2.2].

2.6 Byzantine Faults in WANET

Distributed wireless systems are subject to a variety of faults and attacks. In this thesis, we

consider general (Byzantine) faults [11], i.e. a defective node who may exhibit irrational be-

havior. In particular, a faulty node may transform its local state from normal into corrupt
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Figure 2.2: Energy consumption of MAC algorithms based on AES-128 on a TelosB

sensor mote.

state and start sending random messages, including specific messages intended to under-

mine the system. Several security attacks, such as censorship, freeloading, misrouting, and

data corruption, can be modeled as Byzantine faults.

2.6.1 Byzantine Problem

According to (Lamport, et al, 1982) [17] reliable computer systems must handle malfunc-

tioning behaviors that provide contradictory information to different parts of the system.

This circumstance can be expressed in terms of a group of generals of the Byzantine army

stationed with their troops around an enemy region. Communicating only by messenger;

the generals must agree upon a common engagement strategy. Still, one or more of them
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may be traitors who will try to mislead the others. The problem is to design an algorithm

to ensure that the loyal generals will reach into an agreement. It is proven that using

only verbal messages; this issue is solvable if and only if more than 2/3 of the generals

are loyal; consequently, a single traitor can puzzle two loyal generals. With unforgeable

written messages, the problem is solvable for any number of generals and possible traitors.

2.6.2 The importance of fault detection

If a practical system can tolerate up to f simultaneous faults, Byzantine Fault Tolerance

(BFT) algorithm cannot become usable with less than 3f + 1 nodes. The corresponding

view of this point is that BFT requires the number of faulty nodes in the system to settle

below 33% at all times, while a correct node can reliably detect faults regardless of the

number of faulty nodes.

Also, fault detection bypasses the agreement required by BFT, and it enables huge

aggregation of state, messages, and processing associated with detection.

Detection systems do not only require fewer resources than BFT, but they also have

some practical advantages that serve distributed systems whether or not they use BFT.

Detection enables a convenient response to faults, In a system that does not use BFT, once

correct nodes obtain evidence of a fault, they can stop communicating with the faulty node

and thus isolate it. Also, correct nodes can initiate recovery, e.g. by creating additional

replicas of any objects affected by the fault, or by alerting a human operator who can

repair the faulty node. Timely repair can also help BFT based systems to stay within their

bound for the number of concurrent faults.
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Detection provides a deterrent. The mere presence of a detection system can reduce

the likelihood of certain faults. For instance, it can discourage censorship in peer to peer

systems by creating a disincentive to cheating since a faulty node risks separation and

removal from the system. Furthermore, if the system maintains a binding from node

identifiers to real world principals, then the owner of a faulty node can be exposed and

held responsible. Reducing the frequency of certain faults also benefits BFT based system,

allowing it to more easily maintain its error bound.

2.7 Literature Review

In this section, the related work on the fault and Byzantine node detection will be briefly

discussed. The primary emphasis in this thesis is to present different distributed and large

scale fault detection techniques and methods.

For the past few years many Researches have proposed different algorithms to detect

hard and soft faults in WANET. Nevertheless, as it is commonly known, there are many

formidable challenges in Wireless Ad-Hoc Networks that made all of the algorithms pro-

posed have a tradeoff between scalability, energy consumption, reliability, and efficiency.

2.7.1 Related optimization algorithms

Other works of literature addressed Graph Coloring problem in dense WSN, some of these

publications emphasize the importance of Graph Coloring applications in WSN [3, 2], the

solution for this NP-Complete Decision Problem can be used to solve critical assignment
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problems for WSN. In [3] (Amdouni, et al, 2011) have proved that the graph coloring is NP-

Complete, and then they represented a 3-hop distributed algorithm that is optimized for

dense networks; and also showed how the coloring algorithm can use regularity properties to

achieve a periodic color pattern with the optimal number of colors. They proposed a Vector

Method that provides the optimal number of colors among all periodic h-hop coloring. The

Vector Method for dense wireless sensor networks will be assessed and evaluated in this

paper to calculate fault detection accuracy.

2.7.2 Distributed Fault Detection in WANET using localized

communication

An early study of securing routing protocol against Byzantine attacks was proposed by

(Awerbuch, Baruch, et al, 2002) [4], the authors have proposed an on-demand routing

protocol for ad hoc wireless networks that exhibit resilience to Byzantine failures generated

by individual or colluding nodes. The authors have used the adaptive probing technique

that detects a faulty link after log(n) faults have occurred; where n is the distance of

the path. The faulty links are then excluded by increasing their weights and by using an

on-demand route discovery protocol that finds a minimum weight path to the destination.

However, the study finds that it is hard to design a scheme that is resistant to a broad

number of adversaries; thus, this technique is only applicable to a MANET with a limited

scale of faulty nodes.

Lee and Choi [19] have introduced a fault detection algorithm in which each sensor node

performs a local comparison between its sensed data with its neighbors data at a specific
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time instant and stores the comparison locally. This process is repeated for a constant c

times, and at each time comparison results are stored in a vector. Then, each sensor node

identifies its fault status by evaluating the data stored in the vector.

In the same manner, in [25, 14, 6] the comparison based soft fault detection algorithms

are discussed. In those approaches, each sensor node compares its sensed data with the

received data from the neighbors and shares the results with them unlike keeping in a local

table [19]. Then, based on majority voting in the neighborhood, each sensor is tagged with

a name likely fault free or likely faulty. Each likely fault free sensor node has identified as

fault free sensor node by some rigid criteria. Finally, the remaining likely fault free or likely

faulty sensor nodes are determined to be fault free or faulty with the help of the known

fault-free sensor nodes or its own tendency value respectively. The major disadvantage of

these distributed approaches is high message complexity of CN , where N is the number of

sensor nodes in WSNs and c is the number of times each sensor node shares message with

the neighbors. Further, all the above comparison based fault detection algorithms depend

on a threshold value. The appropriate choice of the thresholds is an important problem

because; the accuracy of the algorithm depends on the threshold value.

2.7.3 Distributed Fault Detection using statistical learning

In [22], Luo et al. presented the Bayesian framework for finding the faulty sensor nodes

in WSNs. Here, each sensor node sends a query to the sink node to know how much noise

is present in its area. The noise calculation is based on the Bayesian and the Neyman-

Pearson performance criteria. After knowing own regions noise, each sensor node estimates
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the same for the neighbors. This scheme needs multi-hop communication for estimating

its noise which may change during the diagnosis period. Further, multihop communication

adds high traffic in the network, which consumes more energy and makes the algorithm

energy inefficient.

Other literature used statistical techniques for distributed fault detection (DFD), such

as the research proposed by (Panda, et al, 2015) [26]; where each sensor node initially

tests the presence of faulty sensor nodes in its neighbor. If detects any fault, then it tries

to forecast the probable fault status of them. The authors used NeymanPearson (NP)

statistical detection method; where the sensor nodes share the predicted fault status of

the neighbors with them. Then, every sensor node uses a data fusion scheme to infer the

final decision on its fault status. This literature has been compared to [6, 14], and the

comparison result shows that the proposed scheme largely enhance the performance pa-

rameters for large scale sparse sensor networks as compared to that of existing algorithms.

The enhancement measured that there is an 8% improvement in detection accuracy and

34% boost in false alarm rate as compared to the existing algorithms.

2.7.4 Distributed Fault Detection using cryptography primitives

Using security premises to serve Byzantine Fault Tolerant routing also has been a hot re-

search subject recently, (Xu, Jiawei, et al, 2015) [34] has proposed Byzantine Fault-Tolerant

routing for WSN based on Fast Elliptic Curve (ECDSA) algorithm. The authors have ap-

plied Byzantine Fault Tolerant (BFT) protocol on a large scale clustered WSN, where

their experiment reduces the number of rounds proportional to 1/3, which brings the net-
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work load to equilibrium. Moreover, they have used Fast ECDSA public key cryptography

technique to enhance the communication and to secure the BFT algorithms. Although

BFT protocols are proved to be efficient and scalable, they still require more energy and

computational power to converge into an agreement in WSN environment. Also due to

constrained energy that WSN has, it is known that symmetric key based security is favor-

able and more flexible in terms of calculation complexity over public key based security,

but their application varies according to their setup complexity trade-offs.
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Chapter 3

DFD Algorithm

3.1 The Genesis of Self-Policing Ad-Hoc Network Method

Wireless multi-hop networks is a decentralized sort of networks that consist of multiple

wireless nodes acting as routers. The emergence and advancements of fault detection and

discovery are mandatory to isolate the faulty behaviors and rejecting them from spreading.

The discovery and isolation of faulty nodes enhances the ad-hoc network reliability and

quality of service. So far, many failure detection and recovery techniques have been pro-

posed such as route switch and multiple path detection that relies on stop failure model,

where the only way the system would fail is by having a crashed node. Nevertheless, as-

suming that faulty wireless nodes never transmit any messages does limit the area where

the introduced methods can be applied.

Our proposed technique circumvent this by transforming nodes into different types of
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guarding officers. Each node would act as a checkpoint that signs a routed message with

a distinct signature that nobody can identify and validate except officers belonging to the

same unit. By segmenting the network into N number of units we can assign a distinct

secret and shared key for each unit (Class) to use it in special security operations. By

following the proposed self-policing scheme, we can implement a distributed fault detec-

tion algorithm that can identify soft and permanent Byzantine faults with an increasing

accuracy using Symmetric Security scheme; which quite analogical to replacing Digital Sig-

nature, but without applying the expensive setup and installation cost of public security

schemes. One of the most unpredictable Byzantine faults in Wireless Networks is the one

that tampers with sensitive routed information and forward them as genuine and authentic

packets. This sort of arbitrary node behavior make it so difficult to be realized; because of

its unpredictability and lack of common fault patterns.

If we consider an ideal formation of self-policing network scheme for a multi-hop wire-

less network, see Figure 3.1. The Figure depicts a network that has every single node

surrounded by nodes belonging to a different group (Unit). In this case, any message can

be routed through any random path with a perfect alternation of router types.
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Figure 3.1: The notion behind applying Graph Coloring is to be able to make each class

guard the network from every other class

However, assuming that all nodes are original and are not controlled by any intelligent

attacker; let us consider the scenario depicted in the Figure 3.1. The first message will be

sent from Node1 to Node7 through Path1, assuming that self-policing scheme is applied;

every path should consist of nodes with alternating secret shared keys. Each secret key

is only known to nodes that belong to the same group; in the scenario given the network

segmented into three groups. So the journey of the message starts at Node1 and then will

be continued to Node2 that belongs to Group2. Then, using its Group shared key Node2
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will check the integrity of the message if possible, which means if the message has passed

a node that belongs to the same group and been signed (MAC) by this node. Regardless,

Node2 should update the message with a new (16, or 32) bits Message Authentication

Code

updateGroup3HashField16bit ←MAC(message, key3)

The resulted MAC should be stored in a dedicated metadata field reserved for the

corresponding group after done verification. Right after that, the message will arrive into

Node3, which we will assume that it is exhibiting a faulty state and not intelligently

controlled by any external force. The reason of Node3 faulty behavior could be either due

to a power depletion, malware, software bug, hardware fault, or any other environmental

effects. Now Node3 will tamper 1 with the information and route it to Node4.

Now Node4 will repeat the process that Node2 has done, but in this case Node4 will find

the Group2 field already been updated with a Hash MAC; thus, it will run a comparison

task by recalculating the MAC and compare it with the one that has already been sent. In

this case, the MAC comparison will show inequality, hence Node4 will report both Node3

and Node2 as alleged faulty nodes, taking into consideration that Node2 might be the one

who tampered with the message right after it has the data integrity evaluation. Finally,

Node7 which is the main Sink Node that assumed to know all of the keys would also repeat

the verification and update process for the received message; along with processing any

1Note, if we replace Message Authentication Code function with reversible cryptography function, it
will be impossible for an intermediate node to change a single bit in the message without breaking the
key; assuming that a network is segmented into three groups
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accusation list received from the routed path nodes to infer a decision.

In the described scenario we assumed that the network is ordered in an ideal formation,

which is impractical and proven to be an NP-Complete problem (Vertex Coloring Algo-

rithm) [3]. In the next section, we will explain how this problem has been simplified to the

level that will make the DFD algorithm decently scalable and accurate at the same time.

3.2 Distributed graph coloring algorithm as a candi-

date solution

Distributed Graph Coloring Algorithm [3] could facilitate the employment of self-policing

network scheme, which help the network to identify faulty nodes by dividing the wireless

network preferably into two groups (Classes) or more. See Figure 3.2.
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Figure 3.2: The notion behind applying Graph Coloring is to be able to make each class

guard the network from every other class

Using Graph Coloring algorithm will ensure that every communication path will have

the maximum number of variant guarding nodes contributing in protecting the message

integrity; where every routed message can be validated by Nk number of nodes.

C = C1, C2, .., Ck s.t.(k << n)

k, n ∈ Z+

argmin(k) while k > 0
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where k is the number of colors (classes), and n is the number of nodes in a wireless

network, and Nk is the number of nodes belongs to group K.

To leverage Graph Coloring algorithm to improve data integrity of the complete routed

information inside a network, we need to distribute the same unique key for every single

node belongs to class Ci, so that all nodes in that class can calculate and verify their origi-

nated messages using that key. Thus, distributive message authentication code (MAC) will

be used to ensure a high level of security against forgery, and at the same time distributing

the fault detection processes among n number of nodes. However, for our fault detection

algorithm, and according to the Two-General Problem definition [17].

In the literature, both centralized and distributed soft fault detection methods are

available [25, 6, 14]. The centralized algorithms required more communication because

all the sensor nodes send the information to the fusion center to infer fault detection;

whereas in our distributed case, each sensor node gathers fault evidence and inject them

into forwarded packets utilizing its position as a router, which reduces the bootup and

electronic communication overhead. It is evident from the operation of WANETs that

the communication requires much higher energy than computation [25]. According to

(Shebli, et al. 2007) [30], ”The energy consumed for the calculation operation is very

low as compared with the communication energy. The energy needed to transmit 1 KB

over a 100m distance is approximately equivalent to the energy necessary to carry out 3

million instructions at a speed of 100 million instructions per second (MIPS)”. Therefore,

distributed fault detection approach using symmetric data integrity check will be highly

valuable.
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Dis-Advantages of Graph Coloring

Although finding an efficient Graph Coloring algorithm could help us reach into the perfect

alternative group formation we need in self-policing scheme; however, Graph Coloring al-

gorithm is an NP-Complete problem [3] that would not be practical to apply in constrained

wireless networks as in case of WSN.
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3.3 Proposed Distributed Fault Detection Process

We will first define communication and test graphs. A communication graph of a multi-hop

wireless network can be represented as undirected graph G = (V,E), where V represents

the set of sensor nodes in the network and E represents the set of edges connecting sensor

nodes. Two nodes Vi and Vj are said to have an edge in the graph if the distance d(Vi, Vj)

between them is less than l (transmission range). The communication graph can be a test

graph in our fault detection if two nodes with an edge connecting them are compared. If

some of the edges are not involved in the fault detection or ignored based on the previous

test results, a test graph in our fault detection can be a subgraph of the communication

graph. Figure 3.7 shows a randomly generated mesh graph with 100 nodes including a

single Master Node (Cluster Head) at the top left corner of the mesh graph; the Master

Node should be responsible for collecting data from the network or sub-network. Since the

Master Node has a unique function that requires higher amount of energy in contrast to

the other nodes, it could have a permanent power source or a higher capacity of energy

storage.

Distributed Data Validation and Fault Detection Algorithm

To overcome challenges such as (Key Management, Key distribution, Mobility, Deployment

complexity, Key Freshness, Computational and Communication complexity); we designed

an algorithm with best efforts to make it as much scalable, efficient and practical as pos-

sible, by leveraging the natural power of randomness to make it stand in defiance against

installation and key distribution complexity.
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Figure 3.3: Segmenting network into three different groups (classes)

Figure 3.4: Random network deployment after segmentation
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As already mentioned, it is hard to find an efficient algorithm that will organize an

ad-hoc wireless network to an optimal formation to make every single node surrounded by

nodes with different classes; which would be an ideal topology for a self-policing network

model. However, the argument here is that if we segment a wireless network into three

groups or more (K) and shuffle it randomly before deployment, see Figures [3.3][3.4], can

we get an approximately perfect alternation of groups in any single constructed path of

communication. Using statistic we will try to calculate the probability of finding a path

that consist of k number of consecutive nodes that belong to the same group; so if we can

prove that the determined probability can reach into negligible percentage, we can rely on

it as a fact for algorithm operation.

Looking at Figure [3.6], let’s denote the with the following variable names:

N → Network size, the total number of nodes (3.1)

Gn → The number of nodes inside of each group (3.2)

S → The number of segmenting groups (3.3)

k → The number of consecutive nodes belonging to the same group (3.4)

Using the combination function for calculating the probability of selecting k number of

consecutive nodes with the same class would be:

34



Pr(k) = Ck
G
n /Ck

N

Pr(k) = Gn!(N − k)!/N !(Gn − k)!

Gn = N/S

(3.5)

Using equation [3.5] we can calculate the probability of finding k number of consecutive

nodes by applying the following values.

N → 300

S → 3

Gn → N/S=100

From equation [3.5], its notable that the more greater the number of segmentation

groups S was, the more smaller Gn we will gain. Which yields a very small value of

probability of finding k number of consecutive similar node occurrences; and, this means

that the more segmentation we apply to the network will make it almost impossible to

find even three consecutive nodes that belong to the same group if we set our probability

threshold to (<= 0.01). However, increasing the number of segmentation will come with

a cost to our algorithm, as more keys need to be distributed and more hashes need to be

incorporated inside of the routed packets. So an optimization problem need to be solved

using the formula given, to identify the optimal number of classes for any given network

size.
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Figure 3.5: Probability of finding a path consist of nodes belonging to the same group.

Network size N=300, and S=3

From Figure [3.5], we can clearly see that above the possibility of finding three consecu-

tive nodes, the value of probability becomes negligible. At k = 4 the probability calculated

was (0.0118), and at k = 5 the probability calculated was (0.0038).
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Figure 3.6: Probability of finding a path consist of nodes belong to same group

The optimal K number of groups would be approximately determined in the experimen-

tation section later; however, using Equation [3.5] to decrease the probability of successive

equals to a certain extent would be sufficient to determine the best segmentation value S.

For instance, if we want to deploy a WSN that consist of 100 nodes and the optimal number

of classes determined was K = 3, then, the network should be divided into three equal

number of groups. Each group will contain 33 nodes excluding one node that will act as
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the master node or Fusion Center (FC), see Figure 3.7. So a pre-deployment configuration

must be done in advance; so that at least every single node will be updated with a shared

group key that will be entirely secret and hidden from other different groups.

Figure 3.7: Random 10x10 network deployment with 3 different groups (classes)

Now assuming that a Wireless Ad-Hoc network will communicate through a multi-hop

communication protocol, any message sent from an arbitrary source will be carried to the
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destination through intermediate wireless routing nodes. While the message is traveling

from source to destination, it will be parsed, diagnosed and updated if necessary by every

single node to maintain the data integrity, and detect any tampering incident done since

the message visited the last node belonging to the same current node group. As mentioned

eariler, the alternation of classes while relaying the message to the destination will help

protect the message and detect any faulty node as described in Algorithm ??.

3.3.1 Algorithm Stages

Parsing Routed Packet

In this stage, the node should parse four main lists, a latest similar class hash, and the

payload message from the packet. The information that should be processed are:

• hopIDList→ In this list the routing nodes will store their encoded ID’s in the packet

to inform the next routing nodes about the history of contributing routing path since

the creation of a message.

• hopClassList→ In this list every routing node will store its Class number to inform

all of the next contributing routing nodes about the previous class chain. Note that

if the optimal class number was found to be K = 3, then we only need 2 bits to

encode the class type (Group) number.

• accusedByzList→ Any new possible findings of faulty nodes would be recorded and

registered in this list to be reported to the main Master Node.
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• whiteNodeList→ For those healthy nodes who routed message successfully without

applying any distortion to the relayed message, they will be registered into this list

to be reported whenever found. 2

• latestSimilarClassHash→ This variable should parse and store the last hash value

overwritten to the location dedicate for the nodes with corresponding similar group

type.

• message → Payload message.

Figure 3.8: Data integrity calculation and validation process, assuming that the network

is divided into two classes.

2As an extra optimization procedure, each node should retain incremental and non-duplicated records
of white node list, so that there will be no need to resend the same report over and over again to the
Master Node
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Check Packet Integrity

Illustrating a sample packet representation shown in Figure 3.9 that consist of dynamic and

static segments, assuming that K = 2 for the number of classes defined for the Wireless

Ad-Hoc Network. The first part on top of the Figure shows how a node belongs to (Group

1) should calculate the Message Authentication Code for the dynamic packet segment that

belongs to its class (1) post-fixed with C1. Then. after the MAC is calculated it will be

overwritten to the fixed store location for group 1 (HMAC1).

Figure 3.9: Data integrity calculation and validation process, assuming that the network

is divided into two classes.

Now after a node with group 1 has updated the MAC1; the next routing node should

repeat the process of checking the data integrity, and if it is not valid then report all

intermediate nodes including the node that updated MAC1 itself and add them to the

fault accusation list.
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Update Packet Integrity

Updating data integrity for each group should happen right after detecting the tampering

event. So if the calculated MAC1 in Figure [3.9] was not equal to the received MAC1;

then a report should be created followed by updating the corresponding MAC location with

the new locally calculated MAC. However, what if the calculated MAC1 was wrong? The

algorithm should take care of this incident using the continues report and update process,

as we will see in the next section.

3.4 Continues Detection and Update Process

Whether we have a WANET with multi-clusters and multi-cluster heads, or a WANET

with a single cluster head, the algorithm assumes that the nodes should always be able

to report node health information to the single nearest cluster-head that has the property

mentioned in subsection 4.6.1.

The proposed DFD algorithm tries to elicit nodes to guard the network by reporting

other nodes status either as faulty or normal. And, the continuation of this process will

eventually form different intersected paths that rectify previous false detection reports;

especially if we assume that network has mobility 3. So a continues dissemination of nodes

status to the master node will be processed as long as the DFD algorithm is enabled.

3As will be supported in Simulation chapter, one of the advantages of the proposed DFD algorithm
that it strives for mobility; not only that it improves fault detection, but yet, it improve security in case
encryption was applied using the proposed network segmentation scheme
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Figure 3.10: First scene, shows two messages been routed respectively from (source1 and

source2) to the destination. Four faulty nodes has been detected during communication,

and one faulty node has been intersected and reported by two different paths.

From the first scene shown in Figure 3.10, two messages are routed from Src1 and Src2

respectively, the first path painted in red identified two faulty nodes; whereas the second

crossed the same faulty node. Thus it complements the same discovery that node one has

found.

3.4.1 Continues Acquittal

The continues fault detection, acquittal and report process will facilitate the final decision

inference. where we an incremental evidence reports will help removing any previously
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falsely accused nodes; because we are assuming that Byzantine nodes will generate per-

manent faults, thus, any positive health reports about a node will discharge any previous

accusations. For instance in the scenario shown in Figure 3.11, a new routing path high-

lighted in blue have discovered that a previously accused faulty node to be a healthy router;

thus, it has reported this discovery to the master node to drive the online inference system

to be more accurate and precise.

Figure 3.11: Second scene, shows a third message initiated from Src3 constructed a new

relaying path routing a message to Destination; the new path highlighted in blue has

given an acquittal to a node that formerly was tagged as Byzantine node from a path

highlighted in orange 3.10.

44



3.4.2 Report Packet Optimization

Detecting Byzantine faults along a routing path that consist of multiple classes needs an

updated ordered record about every single class the message had traversed through since

its origination. So recording nodes ID’s and Classes for routing nodes is mandatory. This

information will be used along the way by every single node to determine when is the last

time a node belongs to the same class had updated the integrity of the message; and. If

the integrity check was violated, what set of nodes should be accused of a violation.

Here is an example, imagine a message been routed from node 7 to 6, 5, 4, 3, 2, and

1. And this routing path is having the nodes that have been assigned to the following set

of classes respectively [1, 2, 3, 1, 3, 2 , *]. Now if we retrospect the message transmission,

when Node4 received the message, it has to be able to contrive the following tracking

information from reading the metadata added inside of the original packet:

keyClass1 = 0xF8A223CF

hopTrackingIDList = [7, 6, 5, 4]

hopTrackingClassList = [1, 2, 3, 1]

lastStaticMACClass1 = 0xFD12BA65

Since Node4 belongs to Class1, it can validate the MAC as follows:

MACkey1(Message)→ 0xFD12BA65
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From the yield MAC, the message seems to be tampered by one of the routers, hence,

according to the proposed DFD algorithm, Node4 will find it safe to accuse [7, 6, and 5]

with minimum probability of 1/3 of the defendant list is faulty.

About optimization, now the result that Node4 has reached can either be stored locally

and be reported at later suitable time; or it can be embedded into the packet report

metadata and broadcast it to the next adjacent nodes. In the case of WSN, the packet size

is very constrained and it should be wise to buffer the findings and report it individually

at a later time suitable time.

However, in case our network does allow us to add information to the header of the

packet, the algorithm does one further optimization of removing all of the stored tracking

lists once a successful fault detection occurs. So for our illustrated example when the

message gets forwarded to Node3, the tracking should have already been cleared by Node4

at this moment of time. So Node3 should see no tracking information and should start

updating tracking information all over again:

hopTrackingIDList = [3]

hopTrackingClassList = [3]
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3.4.3 Decision Making

The continues dissemination of integrity metadata from every node to the master node will

consolidate the historical evidence set; in which it enables the master node to infer decisions

easily based on negative and positive report frequencies. Inferring decision logic could be

customized based on the combination of the available input and network assumptions, for

instance, let’s consider the following scenarios:

• A scenario (A) assumes that any node reaches a faulty state would have a fault ratio

of 100%. In this case reading a single healthy report about the node (Vi) entails an

absolute discharge for (Vi) from any previous accusations have been charged against

it before.

• A scenario (B) where the fusion center infers decision-based on the frequency of neg-

ative and positive reports. Here a probabilistic model can be built to infer decisions,

for instance, Evidence theory (Dempster−Shafer [35]) can be used to synthesize a

belief function.

3.5 Security Challenges

3.5.1 Node Collusion

In decentralized networks, malicious node collusion poses severe security threats, because

the collusion of Attackers will not only help to achieve a faster convergence rate toward
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their desired objectives, but also provide them with an opportunity to support each other

and distort the default network trust model. However, information exchange among the

Byzantine attackers should be identifiable due to the multi-hop characteristic of a decen-

tralized wireless network, which may accelerate the exposure of attack behaviors.

3.5.2 Probabilistic Byzantine Attack

The next critical problem is when to attack. Selection of attack opportunity will influ-

ence attack gains and risks. If an attacker reports falsified results all the time, such an

attacker will use every attacking opportunity no matter whether attacks work or not. In

consequence, they obtain significant but yet a transient attack performance; as frequent

falsification makes them prone to be detected by defense mechanisms. In practice, an at-

tacker may not misbehave all the time, especially if it is in pursuit of long-term profits.

Nevertheless, an attacker can complicate matters by using a probabilistic attack where

he launches attacks with a certain probability, making it extremely hard to identify a

malicious invader based on communication pattern analysis.

The probabilistic attack can improve stealthiness of attack behaviors, and is easy to be

modeled and analyzed.

3.5.3 Group key secrecy and freshness

It is often desirable to frequently change the key in a cryptography system. And in case of

our algorithm the same desire is maintained. If a foreign attacker wants to forge a message,
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then he has to find both the algorithm suite the system is using and a collision for each

MAC a group will generate for a message. The simplest attack could be made is to find

a collision for only one MAC if the location of the attacker was one hop away from the

message originator.

Although, active attacks are not under the thesis scope; however, if an attacker is

actively trying to forge messages all the time, the DFD algorithm should be able to expose

him and report him as faulty node too. Unless the attacker has been able to extract all

group keys, there is always a chance to identify an invader who tries to corrupt the system.

Key freshness could be applied to our scheme from a central master node that is pre-

deployed with all of the group keys. A master node or any other mandated node could

act as the key manager for a sub-network or an entire network; and this dedicated node

can update group keys periodically. If a network has been divided into three groups then

the key manager need to broadcast only three ciphered key messages to the network so

that corresponding groups only will be able to interpret the new key update message and

execute it.
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Algorithm 1: Distributed Byzantine Fault Detection Algorithm

1 Function Parse Verify Update (packet)

Input : Extract the following parameters from packet:
hopIDList←− packet[′routedHopList′]
hopClassList←− packet[′routedClassList′]
accusedByzList←− packet[′byzNodes′]
whiteNodeList←− packet[′whiteNodes′]
latestSimilarClassHash←− secureUnlock(packet[′latestClassHash′])
message←− packet[′payload′]

2 macHash←−MAC(message, privateClassKey)
3 if current Node is not the Source then
4 if macHash! = latestSimilarClassHash then

/* If the current class MAC is not equal to the last similar class MAC,

then select all of the intermediate nodes and put them in fault accusation

list */

5 byzNode←− augmentAccusationList(hopIDList, hopClassList)
/* Check and clear any redundant accused faulty nodes */

6 byzNode←− clearRedundancy(accusedByzList)
/* Discharge or remove white nodes exist inside of the recent accusation

list */

7 dischargeWhiteAccusedNodes(byzNode, whiteNodeList)

8 else
/* If MAC is equal, then this mean that the payload is still intact. Then

we want to label all of intermediate routing nodes since last similar class

node as white nodes. */

9 newWhiteNodes←− identifyWhiteNodes()
10 updateWhiteNodeList(newWhiteNodes, whiteNodeList)
11 newWhiteNodes←− clearRedundancy(newWhiteNodes)

12 end

13 else
14 return packet ;
15 end

Output: packet←− updatePacket(packet, newWhiteNodes, byzNode)
forwardToNextHop(packet)

16 End Function Parse Verify Update ;
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Chapter 4

Simulation and Experimental Results

4.1 Simulation Tools and Technologies

Figure 4.1: Network and Routing Simulation Tools

Simulating our network has been done using the (The iGraph library package for simulating

complex network research) [8]. Our main simulation and development environment is
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based on Python language, it’s the language that we used to write the DFD algorithm and

implement the wireless multi-hop communication protocol. iGraph and PyCrypto along

with other libraries have been imported to facilitate our implementation.

MatPlotLib and Matlab have been used to analyze the results and generate visualized

graphs.

4.2 Radio Model and Energy Calculation

For our experiments, we used a 400-node network where nodes were randomly distributed

in a triangle network topology with equal distance apart; and, with an Aggregator node

(FC) labeled with the number (0), see Figure (4.3).

Figure 4.2: Radio energy consumption model

Assuming a simple model for the radio hardware energy dissipation as presented in

[13]; where the transmitter consumes energy to run the radio electronics and the power

amplifier, and the receiver consumes energy to run the radio electronics, as shown in Figure

(4.2). For the experiments presented in this thesis, both the free space (d4 power loss) and

the multipath fading ( d2 power loss) channel models were used, depending on the distance
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between the transmitter and receiver. Power control can be used to invert this loss by

appropriately setting the power amplifier, if the distance is less than a threshold d0, the

free space (fs) model is used; otherwise, the multipath (mp) model is used. Thus, to

transmit an l-bit message a distance, the radio will expend

ETx(l, d) = ETx−elec(l) + ETx−amp(l, d)

=

 lEelec + l∈fsd
2, d < d0

lEelec + l∈mpd
4, d ≥ d0


and to receive this message, the radio expends:

ERx(l) = ERx(l) = lEelec

The electronics energy (Eelec), depends on factors such as the digital coding, modulation,

filtering, and spreading of the signal, whereas the amplifier energy, ∈fsd2 or ∈mpd
4, depends

on the distance to the receiver and the acceptable bit-error rate. For the experiments

described in this paper, the communication energy parameters are set as: nJ bit, pJ bit m

, and pJ bit m .
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Figure 4.3: 20x20 Random graph network representation with 1/3 of the total number of

nodes been randomly distributed as Byzantine faulty nodes
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4.3 Network Model

We assume nodes are randomly deployed in the desired area and all nodes have a common

transmission range. The area is assumed to be entirely covered by the nodes. As shown

in Figure (4.3), this square area is entirely covered by wireless network nodes. The dark

circles in the figure represent faulty sensors where it generates random faults represented in

the Fault Model Section [4.4], and all other circles represent healthy nodes with a different

class assignment.

Class assignment is evenly and randomly distributed among a variable number of

classes. In the Figure (4.3), three different classes have been assigned to network nodes

before deployment. In which each class should have a distinct shared key. See Figure [4.3]

for simulation network visualization, although the simulation is showing a network with

mesh-grid topology, but we are assuming to have a triangle based topology, where every

node is situated to have the same distance from all of the other neighbors, see Figure [4.4].

Figure 4.4: Presenting different set of network typologies that can be used for simulation
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4.4 Fault Model

In our simulation, we will assume that all the nodes have the same communication range.

Wireless nodes can be randomly deployed or placed in predefined locations. Nodes with

faulty software and permanent communication faults are to be identified. Nodes which

generate incorrect data or fail in communication intermittently are treated as usable nodes,

and thus are diagnosed as fault-free. Mobile nodes with malware could participate in the

network operation since they are still capable of routing information. Only those nodes

with a permanent fault in communication (including lack of power) are to be identified

from the network.

Here are the random fault models that will be generated from nodes while routing a

message. The algorithm should be able to withhold with any of the following listed faults:

Model # Description Protection Type

1 Tempering with payload HMAC

2 Forge fault report Continues Report Update

3 Clear Tracking Information Continues Report Update

4 Tampering with Tracking Information Continues Report Update

5 Tampering with report information HMAC
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4.5 Mathematical Formulation

In our experimentation we define a limited search space that consist of three variable input:

Xi → Variable number of byzantine nodes (4.1)

Cj → Variable number of classes (4.2)

Mk → Variable number of routed messages (4.3)

(i, j, k) ∈ Z+ (4.4)

We do want to scan for a local maximum solution by running a simulation script. Thus,

an Integer Linear Programming (ILP) formulation has been set in our script as follow:

maximize
A

Accuracy(Xi, Cj,Mk)

subject to (Xi, Cj,Mk) ∈ Z+,

250 � Xi � 0

10 � Cj � 1

250, 000 �Mk � 10

where we need to maximize the accuracy from variant set of input. For a network with

400 nodes, we will change the number of classes within this range [1-10], and inject byzan-

tine nodes within this range [1-250], and finally simulate routing [10-250,000] messages to

study what is the effect of these three variables on the overall detection accuracy of our

algorithm.
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4.6 Results and Analysis using Heuristic Techniques

Encoding and simulating the problem described in the previous section in an optimal man-

ner requires an excessive computational power. We need to study the DFD characteristic

for different sizes of networks, in addition to applying permutation with an unlimited set

of other input variations. Some of the input are (classes, routing, location of a master

node, mobility, etc). So the best effort can be made here is to heuristically try to discover

approximated weights and parameters that will lead into gaining optimal results.

In our experiment we have reduced the size of the search space to the following set of

input for practical reasons:

Classes→ [1− 10]

NumberofByzantineNodes→ [25, 50, 70, 100, 133, 150, 170, 200, 250

OverallSimulatedHopCount→ [10, 100, 1000, ..., 150000, 200000, 250000]

4.6.1 System Assumptions

Here are some important base assumptions that have been used in throughout the simula-

tion:

• The DFD algorithm is designed to detect intermediate routing nodes that have per-

manent soft and hardware faults (Byzantine); so the assumption is that every source
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node originates a message would be only diagnosed whenever it participates in routing

a new message as an intermediate node.

• The routing protocol used will be similar to AODV protocol [28], where a node will

broadcast RREQ and once it receives RREP the routing path with fastest response

rate should have already been entailed. So for our simulation, we are generating

random paths from source to destination adding a Gaussian path shifts to the distance

vector direction.

• The group shared keys should be configured and stored secretly inside of every node

using cryptography premise.

• One or master nodes that collect and report information should have the knowledge of

the group secret keys; for instance in the case of having multi-clusters, the cluster head

should be granted with this knowledge. So, in case a network have been divided into

three separate groups k = 3, then, three keys should already be deployed securely to

every Master Nodes to help them compile the final packet integrity and infer decision.

• The proposed algorithm could be applied to any ad-hoc wireless network, MANET,

VANET, or WSN. In case it has been applied to WSN, then the packet size usually

is limited and does not exceed 200 bytes, so caching and reporting delay mechanism

should be employed.
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4.6.2 Accuracy relation with number of byzantine nodes

In this section, we will discuss the impact of the routing path length toward the overall

Byzantine detection accuracy. Looking at Figure [4.6], evidently the accuracy has a pro-

portional relation with the number of hop counts for the routed message. In the graph

shown [4.6], the number of hop count is the cumulative value of how many nodes the

message had visited before it reached its destination.

The Random Permutation has been used to generate all of the results; the process

can be conceived from the following Algorithm.

Algorithm 2: Generating random network setups, and injecting different set of
byzantine nodes and plotting a graph for each network instance

1 Function GeneratePlots (networkSize = 400)

Input :
classes→ [1− 10]
byzantineNodes→ [25, 50, 70, 100, 133, 150, 170, 200, 250
simulatedHopCount→ [10, 100, 1000, ..., 150000, 200000, 250000]

2 while class in classes do
3 while byz in byzantineCount do
4 while hopCount in simulatedHopCount do
5 continuouslyPlotAccuracy(class, byz, hopCount)
6 end

7 end

8 end

Output: Plotting Accuracy Graph

9 End Function GeneratePlots ;
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Figure 4.5: Accuracy measurement of Distributed Fault Detection (DFD) in network size

of 400 with 50 Byzantine nodes. Using 5 different classes with variant communication

hop length
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Figure 4.6: DFD with 100% accuracy. Graph visualization for the network with 50

detected Byzantine nodes, aided by 3 different class segmentation, and an average

contribution of 37.5 routed message per node. Triangle shape means that are proven to

be healthy

The Figure [4.6] shows a dramatic increase in overall detection accuracy as more reports

are accumulated in the Master node. With the presence of 50 Byzantine nodes, it took an

overall number routed hop count of (15,000) for a wireless network with 400 nodes; which

statistically means that it required an average contribution of routing 37.5 messages per

node to reach a detection accuracy of 100%. In our experiment, Master node has been

placed in the top left corner of the network to gain maximum routing path length.
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Figure 4.7: Accuracy measurement of Distributed Fault Detection (DFD) in network size

of 400 with 133 Byzantine nodes. Using 5 different classes with variant communication

hop length

Increasing the number of Byzantine nodes to (133), which is almost one-third of the

size of the network, will give us another results with degraded accuracy if we compare it

to the same routing hop count with the previous scenario. By looking into Figure [4.7], we

can clearly see that we gained less accuracy at 1.5x104 using 3 segmentation classes. The

accuracy measured was 91.1% at (15,000) routing hop count. And the maximum measured

accuracy was 99.01% at (100,000) routing hop count, which translates into 250 message

contribution per node. However, having 133 is quite exaggerated and considered to be the

worst case scenario.
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Figure 4.8: Accuracy measurement of 91% for the DFD, having 133 byzantine nodes,

with 3 classes, and an average contribution of 37.5 message per node. Normal nodes

highlighted in square shapes are falsely tagged as byzantine by the algorithm
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Results generated have been gathered, and concisely been compiled in Table [4.2].

Notably, we can see that the Message contribution per node is increasing proportionally to

the number of simulated Byzantine nodes; and in contrast the detection accuracy decreases

as the number of Byzantine increases.

Mesh Grid 400 Message Contribution Per Node Accuracy Classes

25 Byzantine 25 100% 2
100 Byzantine 62.5 100% 2
133 Byzantine 75 97% 3
200 Byzantine 250 97% 3
250 Byzantine 375 95% 9

Table 4.1: Simulation results matrix for Distributed Fault Detection Accuracy

4.6.3 Identifying the Sufficient Segmentation Value

Based on our simulation, segmenting a network with 400 nodes into three even groups has

always shown to be effective, at least for our experiment scope and problem search space

defined. Moreover, we can easily validate this finding by using the probability equation

[3.5]. Here is the successive order probability chart for having 400 nodes segmented into

three groups, Figure [[4.9]. From the graph shown, we can see that the maximum cost of

accusation length of a single report could be identified by trapping nodes is four, with a

probability of (0.0118).
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Figure 4.9: Probability of finding a path consist of nodes belonging to the same group.

Network size N=400, and S=3

Figure [4.10] presents an average of accumulated simulation results using 5 group seg-

mentation. Except for the case of having a single group, all of the other group segmentation

[2-5] has shown exceptional progressive performance as the number of routed messages in-

creases. For the case of having a single group, the inference model will have the highest

uncertainty value of 0.5 which has not been projected in the graph, because we fixed the

accuracy range within [80%-100%] to compare which class has provided a constant rapid

increase in precision.

Having more than three groups will come with a cost for our algorithm, as it implies
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that we will have to store more hash values inside of the forwarded packets according to

the number of classes been used. Nevertheless, practically segmenting our network into

a minimum odd number of classes (3), it seems to be the least cost that will make the

proposed DFD algorithm efficiently effective. Read Section [3.3.1] to check the report

packet representation.

Figure 4.10: Heat-map graph visualization that depict the performance of detection using

different number of classes
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Hypothetically speaking, segmenting a Wireless network into three group should be

optimal with the size of 400 nodes. Mainly, because the number of classes should be fully

minimized in our experiment, not only to reduce the cost of report message overhead; but,

also because we need to increase the probability of having multiple pairs of nodes from

the same group (Class) to be presented in any random routing path been discovered. In

contrast, applying the next minimal option of segmenting the network into two groups

would under-fit the system; because it will increase the possibility of generating node

clustering effect 1. To prove our hypothesis a further analysis has been done for two

different network sizes (10x10, 20x20, and 40x40), these networks have 33% of their nodes

simulated as Byzantine nodes. See Figure [4.11] to observe the result of 40x40 network

segmented optimally with three different classes out of 9 other segmentation variation

simulated from 1 to 10.

1Clustering effect, is when the network have multiple nodes belonging to the same group connected to
each other. This effect will make the accusation report precision become lower.
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Figure 4.11: DFD with 95% accuracy. Graph visualization for a network with 1600 nodes

and 533 simulated Byzantine nodes, aided by 3 different class segmentation, and an

average contribution of 42 routed message per node.
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4.6.4 Network lifetime and power consumption

Figure 4.12: Cumulative power consumption for the entire network (400 Nodes / 133 Byz

/ 3 Classes / 68,010 messages)

In the simulation, the power capacity of each node has been assumed to be 1 joule so that

the overall network power capacity would be 400 Joules’. Running the worst case scenario

experiment of having 133 Byzantine nodes, the power consumption of the entire network is

represented in Figure [4.12]. Corresponding to the radio model described in Section [4.2],

the overall power consumption of the network to send 68, 010 messages with an average of

10 hops per message, has taken 116% more power applying the DFD algorithm. Off course,

this measurement does not address the individual power consumption of each node, which

obviously becomes crucial for the nodes surrounding the Master Node which will have the

highest routing contribution percentage; which implies that those nodes will drain most of
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their energy before others.

Figure 4.13: Network lifetime graph (400 Nodes / 133 Byz / 3 Classes / 68,010 messages)

The reverse graph has been plotted for the entire network life time. See Figure [4.13].
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4.6.5 Message Overhead

Figure 4.14: Metadata overhead size graph with average size of 50 bytes per route for a

large network with the following specifications (400 Nodes / 133 Byz / 3 Classes / 68,010

messages)

4.6.6 Algorithm Comparison

In the following table, we will highlight some of the Distributed Byzantine Fault detection

proposed in the literature and try to show their strength and weaknesses along our proposed

DFD algorithm.
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Algorithm
Communication

Complexity

Target
Application

Domain
Advantages Disadvantages

Proposed
DFD

Adding Encoded
Metadata
utilizing

forwarded
messages
whenever
possible

WANET
including

WSN

- Can reach 100%
accuracy even if 33%
or more of the nodes
were faulty.
- Low power
consumption with
symmetric lightweight
key hashing

- Does not include
fault probability in
tests. Assuming
faults are permanent.
- Difficulty to identify
faulty Nodes reside in
the edge of a static
network.

PK DFD
[26]

Extra Local
Message

Exchange
WSN

- High detection
accuracy with less
false alarm

- It is assumed that
all the fault free
sensor nodes
measuring the same
value
- The algorithm is
susceptible to the
degree of neighboring
nodes

JSA [6]
Extra Local

Message
Exchange

WSN
Accuracy is over 97%
even when 25% nodes
are faulty

- Not scalable due to
exchange information
between neighbors
- Focusing on
hardware faults only

Fast
ECDSA

[34]

Extra Local
Message

Exchange
WSN

- Complexity
reduction for message
exchange between
cluster heads.
- Smaller key size
with better security
using ECC

- High computation
from cluster heads to
calculate and validate
Public Key
Cryptography
parameters
- Certification
Authority is required

Table 4.2: Comparison between various Distributed Fault Detection algorithms
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Chapter 5

DFD Algorithm - Simulation Source

Code

5.1 Simulator Code in Github

The source code for the proposed simulation has been publicly posted to the engineering

community for further enhancement and validation proposes.

https://github.com/aelbuni/distributed-byzantine-detection-algorithm

5.2 Sample Experimentation Code

All figure properties can also be manipulated from the source code. Here’s an example:

import numpy as np
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import decisionNodeWithGraph as DN

import randomNetworkGenerator as GEN

import recursiveRandomRouting as DFD

import matplotlib.pyplot as plt

import utility as util

# =============== Initialize parameters ===========

sinkLocation = 0

meshSize = 10

numClasses = 3

numMessages = 900

numberHops = 10

numByzantine = np.floor((meshSize**2)/5) # 1/5 of the entire network size

mobility = False

g = GEN.generate_random_wanet_mesh_graph(meshSize, numClasses, numByzantine, 40, 12, sinkLocation)

byzNodes, healthyNodes, byzListFormat, messageSizeComplexity, routedHopCount, energyConsum, energyConsumWithout = DFD.RecursiveRandomRouting(g, numClasses, meshSize, numberHops, sinkLocation)

for testCommunication in range(0, numMessages):

if mobility:

g = util.random_mobility(g, meshSize**2);

byzNodes2, healthyNodes2, byzListFormat2, messageSizeComplexity2, routedHopCount2, energyConsum2, energyConsumWithout2 = DFD.RecursiveRandomRouting(g, numClasses, meshSize, numberHops, sinkLocation)
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# print "Message" + str(testCommunication) + " : " + str(g.vs[0]["msg"])

byzNodes.extend(byzNodes2)

healthyNodes.extend(healthyNodes2)

byzListFormat.extend(byzListFormat2)

routedHopCount += routedHopCount2

messageSizeComplexity.extend(messageSizeComplexity2)

energyConsum.extend(energyConsum2)

energyConsumWithout.extend(energyConsumWithout2)

# no line highlights (false)

util.plot_save_graph(g, "graph.png", healthyNodes)

DN.result_analysis(g, healthyNodes, byzNodes, routedHopCount, messageSizeComplexity, meshSize, numClasses, energyConsum, energyConsumWithout)
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Chapter 6

Conclusion and Future Work

6.1 Summary and Contributions

Wireless ad-hoc networks promise attainable and valuable solutions to many problems in

different fields. Sensor technology today is advancing relatively fast from research contexts

to industrial application contexts, and with increasing interest in Internet of Things (IoT)

and the rising concern about security, data secrecy, and system reliability; research and

study for providing new distributive and cooperative security schemes come with tremen-

dous value. Most wireless applications, if not all, must be provided with security as an

intrinsic feature. Also, fault tolerance and self-healing capabilities will help boost the

network performance and its service reliability.

The motivation behind this thesis is to design a distributive and cooperative security

scheme for multi-hop communication networks that is suitable to be applied for constrained
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and mobile wireless network. Consequently, the aim was to relax the problem as much as

possible to reduce the cost of implementation, operation, and deployment. Stochastic net-

work segmentation and deployment has been employed to bypass formidable challenges

such as initial key distribution, network self-organization, digital signature, key manage-

ment, the level of security communication overhead, and lastly the data integrity. Here is

a detailed list of the complexity reduction that our algorithm have utilized:

• Initial Key Distribution initial key distribution after deployment is a challenging

problem that can compromise the confidentiality of a network if it does not be handled

correctly. One of the secure techniques is to use public cryptography and rely on

having a centralized certificate authority to grant keys for nodes, which is not suitable

for constrained ad-hoc networks because of its cost. Our technique is based on pre-

grouping and pre-distribution of keys before deployment, which is quite manual; but,

in return it serves the kind of network devices that have limited resources in terms

of energy, computational power, and memory.

• Key Management Special shared permutation function should be stored inside of

each group nodes so that they can use it to derive fresh keys periodically from the

Master key. The frequent update for the group keys will help the network to be more

secure against adversaries and intruders.

• Level of Security One of the advantages of the proposed stochastic deployment

and distributive security scheme, is that if a message authentication code has been

generated using 16bit security level; this means that the overall network level of

security should be the individual group security level multiplied by how many groups
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does the whole network has. So if a network has 3 groups with 16bit MAC algorithm,

then based on probability, an adversary should be required to break the three group’s

MAC with cumulative security of 48bit to be able to forge a message or generate a

collision. Unless the malicious node has been placed right after the originator of the

message of course; so raising the base security level to a sufficient point is a necessary

task.

• Communication Overhead Numerous other DFD algorithms proposed relied on

adding extra local communication to the neighbors to do fault discovery and report-

ing; which, based on our Radio Model it requires energy to boot the transmission

electronics, and to transmit the message wirelessly. Nevertheless, this cost has been

reduced in our proposed research to the level of adding an optimized non-repeated

metadata to the routed messages to report healthy and unhealthy nodes. Also, the

algorithm could be turned on and off depending on network orchestration demands.

• Data Integrity Digital Signature is our of options when we consider Wireless Sensor

Network, for instance, however, new studies have proposed fast public Fast Elliptic

Curve Cryptography (ECSDA) to secure fault tolerance algorithms. Though, it is

known that symmetric key based security is more favorable and flexible in terms of

calculation complexity over public key based security.

The proposed scheme and DFD algorithm have the following contributions:

• The stochastic deployment and network segmentation scheme has simplified many

problems and relaxed them to overcome real world implementation and production
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challenges.

• Proposed a new ground (Self-policing scheme) for stochastic distributive security,

which could be extended to be applied for encryption with an augmented level of

security based on the number of groups.

• Highly compatible with mobility; and yet mobility does increase the DFD accuracy

as it brings nodes from the edge of a network into the center to expose them to be

diagnosed by other neighboring nodes frequently.

• The proposed distributive and the cooperative algorithm have been able to reach

100% of detection accuracy for permanent soft and hard faults; with 37.5 message

contribution per node. The simulated network size was 400 nodes with 100 Byzantine

nodes assuming construction of best effort random paths from source to destination,

which has been inspired from AODV routing protocol.

• The total complexity of the message overhead has been reduced to have an average of

50 bytes overhead size without involving any encoding, local caching or duplication

removal optimization, which can reduce the cost further to at least 30 bytes of average

overhead size. Low security of MAC has been used (16bit), relying on the stochastic

deployment and augmentation of security levels of at least three groups, which should

raise it theoretically to 40bit level of total level of security.
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6.2 Future work

The work presented in this thesis can still have various extensions and directions for future

work. One main extension is to add an isolation mechanism whenever Byzantine node is

found, so a technique such as Exclusion Basis System (EBS) [9] can be utilized to cure the

network of any harmful faulty behavior. Also, lots of enhancements can be made to the

decision-making center, where event based action can be defined and activated; along with

enhancing the inference model, orchestration and adding other feedback testing criteria to

be certain about any reported faults.

A second possible extension is to emulate the algorithm on top of Ad-hoc On-Demand

Distance Vector (AODV) multi-hop routing protocol, as it would be highly suitable ground

for further simulation studies. Moreover, storing and delaying reports and retaining report-

ing records locally to avoid report duplication should be applied to optimize the algorithm

further and make it more efficient.

To summarize, Byzantine behavior that is hard to be identified and tracked seem to

introduce conflicts; however, introducing fault discovery is essential for isolating and fixing

any formidable faults for any ad-hoc wireless network, whether it was mobile, or vehicular,

or a sensor network. The results of this thesis provide a good starting point for a deeper

study of secure data routing protocols.
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