Continuous-time Quantum Algorithms: Searching and

Adiabatic Computation

Lawrence Mario Ioannou

A thesis
presented to the University of Waterloo
in fulfilment of the
thesis requirement for the degree of
Master of Mathematics
in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2002

(©Lawrence Mario Ioannou 2002



I hereby declare that I am the sole author of this thesis. This is a true copy of the

thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

One of the most important quantum algorithms is Grover’s search algorithm [G96]. Quan-
tum searching can be used to speed up the search for solutions to NP-complete problems
e.g. 3SAT. Even so, the best known quantum algorithms for 3SAT are considered ineffi-

cient.

Soon after Grover’s discovery, Farhi and Gutmann [FG98] devised a “continuous-
time analogue” of quantum searching. More recently Farhi et. al. [FGGS00] proposed a
continuous-time 3SAT algorithm which invokes the adiabatic approximation [M76]. Their
algorithm is difficult to analyze, hence we do not know whether it can solve typical 3SAT

instances faster than Grover’s search algorithm can.

I begin with a review of the discrete- and continuous-time models of quantum com-
putation. I then make precise the notion of “efficient quantum algorithms”, motivating
sufficient conditions for discrete- and continuous-time algorithms to be considered effi-
cient via discussion of standard techniques for discrete-time simulation of continuous-time
algorithms. After reviewing three quantum search algorithms [F00, FG98, G96], I develop
the adiabatic 3SAT algorithm as a natural extension of Farhi and Gutmann’s search algo-
rithm. Along the way, I present the adiabatic search algorithm [vDMVO01] and remark on
its discrete-time simulation. Finally I devise a generalization of the adiabatic algorithm

and prove some lower bounds for various cases of this general framework.
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Preface

Recently, Farhi, Gutmann, Goldstone, and Sipser (FGGS) [FGGS00] proposed a
continuous-time quantum algorithm that solves 3SAT, invoking the adiabatic approxima-
tion [M76]. My work began with the intention of proving that this adiabatic algorithm
does not provide any significant speed-up over Grover’s algorithm on any instances of
3SAT. As time went on, this proved to be a rather lofty goal. 1 was able, however, to

make some noteworthy observations and prove some relevant theorems:

e In chapter 4, I show that it is unclear whether the O(v/N)-time adiabatic search
algorithm [vDMVO01] can be simulated by a discrete-time algorithm using o(NV)

resources via standard discretization methods.

e In chapter 6, I prove that any continuous-time algorithm following FGGS’s adiabatic
paradigm must use initial and final Hamiltonians each with two large mutually-

orthogonal subspaces if its running time is required to be small.

e In chapter 6, I reproduce the optimality proof of Farhi and Gutmann’s search algo-
rithm in the context of a “generalized adiabatic scheme”; because of the constraints

of this scheme, our result is stronger than the original.
In addition to the above, two other features of this work are

e the discussion in chapter 2 of what it means for a quantum algorithm to be “effi-

cient”, and



e the seamless development of FGGS’s adiabatic algorithm from quantum searching.

Chapter 1 gives a concise introduction to quantum mechanics and quantum computa-
tion, where familiarity with linear algebra and tensor product of vector spaces is assumed.
Chapter 2 gives sufficient conditions for discrete-time and continuous-time quantum algo-
rithms to be considered efficient. Chapter 3 reviews three approaches to searching for an
unknown element w € {0,1}"” — two continuous-time algorithms and Grover’s celebrated
discrete-time algorithm. Chapter 4 introduces the adiabatic theorem and adiabatic ap-
proximation and gives the adiabatic version of Farhi and Gutmann’s search algorithm.
Chapter 5 introduces 3SAT, and motivates the proposed adiabatic 3SAT algorithm as
a generalization of Farhi and Gutmann’s search algorithm. In Chapter 6, we cast the

adiabatic 3SAT algorithm in a more general setting and prove some lower bounds.



Chapter 1

Introduction

The theory of quantum computation derives from the basic theory of quantum mechanics.
Properties of quantum mechanical systems are usually described as varying continuously
with the parameter ¢ which corresponds to physical time. If we only care about the
properties at specific points in time, say ¢ = ¢ty and ¢ = ¢1, then it is not beneficial to
bother with the details of the properties at times between ty and t;. This is evidenced
in classical computation theory. A NOT-gate flips a bit-value stored by some physical
medium. Presumably it takes time to flip the bit-value, but we do not care about what
the medium is doing while we are waiting for it to change. Traditionally such matters
are only important to engineers. This viewpoint has led to the conventional paradigm of
quantum computation, where quantum algorithms are expressed as a sequence of discrete

operations and physical time is ignored.

Recently, though, embracing the continuous-time nature of quantum mechanics has
borne fruit. The proposed adiabatic 3SAT algorithm has provided a new paradigm for
designing quantum algorithms. What other interesting continuous-time algorithms might
be waiting to be discovered? This chapter contains a concise overview of quantum me-

chanics followed by a development of both frameworks.
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1.1 Quantum Mechanics in a Nutshell

The following is based on the development of quantum mechanics given in Sakurai’s book

[S85]. See Dirac’s book [D58] for a more rigorous development.

Consider a quantum physical system frozen in time. One axiom of quantum mechanics
is that the (pure) states of a quantum physical system are in one-to-one correspondence
with the unit vectors |¢) of a Hilbert space. Since we will deal only with finite-dimensional
Hilbert spaces throughout this work, we can take “Hilbert space” to mean just a finite-
dimensional, complex vector space endowed with an inner product. We will use only the
usual inner product (i.e. “Euclidean” or “dot-product”). It is conventional to call |i) a
ket. The vector that is dual to |¢) is called a bra and is denoted (i|. Thus the inner
product of two kets, |a) and |b), is expressed in this notation as (a|b), which is (a| - |b)

“on

with the “|-|” reduced to a single vertical line; the can be thought of as regular matrix
multiplication once a basis for the Hilbert space is fixed and (a| and |b) are represented
by a row-matrix and column-matrix respectively. For example, note that (1]1)) = 1 since

|t} is a unit vector.

Suppose that a physical property A of |¢)) may be measured or observed. The result
of such a measurement is a real number (in practice having finite representation dictated
by the precision of the measurement apparatus). Another axiom of quantum mechanics is
that all possible real outcomes of measuring property A form the spectrum of a Hermitian
operator (which we also denote by “A”). For our purposes it is sufficient to assume that all
such physical properties A are in one-to-one correspondence with the Hermitian operators
acting on the Hilbert space, so that any Hermitian operator defines a physical property
that can be measured. Suppose the Hilbert space has dimension N. Since the set of
eigenkets (eigenvectors) of a Hermitian operator may be made into an orthonormal basis

{la;) i =1,2,...,N} for the Hilbert space, |¢)) may be expressed in this orthonormal
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eigenbasis as
N N
P) = ani |ai),  ca; €GC, Z |Cai|2 =
i=1 i=1
where |a;) is an eigenket of A with eigenvalue a;, that is,
A |al> = a |a'z) )
and the orthonormality condition holds:

0 ifj#k,
1 ifj=k.

(ajlar) = 01 =

When property A of |¢) is measured in the laboratory, the measurement aziom dictates
that with probability |c4,|? (1) the result of the measurement is a; and (2) the state im-
mediately after the measurement is |a;). Such physical properties or Hermitian operators,

A, are also called observables. The numbers c,; are called probability amplitudes.

Now allow the physical time parameter ¢ to enter the picture. The quantum physical
system is time dependent and its state is now more properly denoted |i(t)). Suppose
the unit vector |i(tp)) is the state at some initial time ¢;. Another axiom of quantum

mechanics is that, at a later time ¢, the state has evolved via some linear operation U (¢, ty)
from [p(to)) to [6(1)):
[p(t)) = Ult, to) [(to)), > to. (1.1)

The operator U(t,tp) is called the time-evolution operator.

Since | (t)) is to remain a unit vector throughout the evolution, U(t,tp) is required

to be unitary i.e. U(t,to) ' = U(t, to)!, so that

(W) p(t)) = (U(t,to) 11 (t0))) U (£, t0) |9 (to))
= ((t0)| U (t, t0) U (¢, to) [1b(t0))

(
(to)| U (o) "' U (t, t0) [ (to))
(
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where “O!” denotes the object whose matrix representation is the complex conjugate
transpose of the matrix representing the object O. We have used the identities |a)’ = (a|

and (XY)' =vYTXT,
Since 1.1 holds for any initial time %y, we have
Ul(t,to) = U(t, " U(t,t9), for all ¢’ such that ty < t' < t. (1.2)
Another reasonable requirement of the time-evolution operator is that for all ¢ > ¢

im U(t,t) =1, t >t,

t'—t

where [ denotes the identity transformation. Let € > 0 be considered in the limit as €
approaches 0. It turns out [S85] that all of the above requirements are satisfied if the

time-evolution operator satisfies, for all ¢t > ¢,
Ult+et) =1— %H(t)e +2(e),  |IE(e)]] € ole), (1.3)
for a Hermitian operator H(t) called a Hamiltonian, where for a linear operator A
All= max ||A 1.4
|1 A]| <¢|¢>=1” |0 ] (1.4)

(see section 8.1 of the Appendix for definitions and conventional usage of asymptotic

notation). The constant % is Planck’s constant divided by 27. Since
U(t + €, to) = U(t + €, t)U(t, t())

by property 1.2, we get

(1]

U(t + e to) —Ult, to)

€

V(1. 10).

= —ihH(t)U(t,tg) +

Taking the limit as e approaches 0 of both sides of this equation gives the Schréodinger

equation for the time-evolution operator,

ih%U(t,to) = HOU (¢, to).
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Applying each side of the above equation to |1(tg)) and noting that

(%U(t,to)> [9(t0)) = 2 (U(E,10) (o))

gives the more common version of the Schrodinger equation,
.. 0
ihae [9(t) = H(t) [$(2)) .

The Hamiltonian H (¢) is an observable called the total energy operator: the result of
a measurement at time ¢ of the energy of a quantum system is one of the eigenvalues of
H(t). Thus the eigenvalues of H(t) are often called energy eigenvalues. 1t is convenient
to regard the Hamiltonian as being responsible for how the quantum physical system
changes in time, given the initial condition of the system |¢)(tp)). Thus we say that “H (¢)
generates (or induces, or effects) the unitary evolution U(T',0)” or “|4(t)) evolves under

H(t).”

1.2 Quantum Computation in a Nutshell

In quantum computation we usually use a Hilbert space of dimension N = 2", where n is
the number of two-dimensional quantum systems that make up the entire N-dimensional

system. Each two-dimensional quantum system is called a quantum bit, or qubit.

The standard orthonormal basis, or computational basis, for this space is {|z) : z €
{0,1}"}, i.e. the set of N kets labelled by the N classical bit-configurations of an n-
bit classical computer register. In practice, the computational basis is chosen to be
the set of eigenkets of the observable whose measurement is most convenient to carry
out in the given physical scheme used to implement the qubits of the quantum register.
Thus the state of an n-qubit quantum register may be expressed as a unit vector in the

computational basis as

[y = > ela), (1.5)

ze{0,1}"



CHAPTER 1. INTRODUCTION 8

where

> el = (@ly) =

z€{0,1}™
We write “_ " for “Y7 cy13n”. We use the word “state” in place of “ket”.

Our N-dimensional Hilbert space is the n-fold tensor product of the n 2-dimensional
spaces corresponding to the n qubits. For example, consider two qubits, a and b. If
the state space for qubit a is spanned by {|0,),|14)}, and the state space for qubit b is
spanned by {|0p),|1p)}, then the state space for the two qubits is spanned by

{10a) ®105) , 0a) ® (1), [1a) @ |05) , [1a) @ [1p)}-
Writing |01) instead of |0,) ®|1p) is the commonly used shorthand. Similarly, each binary
digit of the label z € {0,1}" in equation 1.5 corresponds to a particular qubit.

The measurement of an observable with N different eigenvalues and set of normalized
eigenstates equal to the computational basis is called a measurement in the computational

basis.

Recall that the quantum mechanical time-evolution operator is unitary. Without loss

of generality, a conventional quantum algorithm involves three elements:

e an initial state |¢p);

e a finite sequence of non-trivial unitary operators, or quantum gates, (U;)j=o1,.. M1,

applied to [1p); and

e 3 measurement in the computational basis on the final state

[Yar) = Upr—1 -+ UrUg |4ho).

The sequence of quantum gates is often called an acyclic quantum gate array or a quantum
network. Because it resembles the Boolean circuit model of classical computation, this

model is sometimes referred to as the circuit model of quantum computation.
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Once a basis for the Hilbert space is fixed, circuit-model quantum algorithms are
easily expressed in the language of matrices, where N x 1 column matrices represent the
state of the n-qubit quantum computer, and unitary matrices represent the quantum
gates U;. A 2F x 2% unitary matrix is considered a k-qubit gate, as it acts non-trivially

on a subspace of dimension at most the dimension of the state space of k qubits.

Though the circuit model of quantum computation effectively “abstracts away” Hamil-
tonians and the Schrodinger equation, we certainly should not forget them altogether!
After all, each gate U; will ultimately be implemented as the evolution induced by some
Hamiltonian H,(t) for some amount of time At; since physical systems do not actually
evolve in discrete stages (at least in our model of quantum mechanics). Thus we have an

equivalent definition of a quantum algorithm:

e an initial state |tg);
e a Hamiltonian H(t), 0 < ¢ <T; and

e a measurement in the computational basis on the final state |¢)(T)), where |1 (t))

satisfies

Slp(t)) =—tH@)|p(t), 0<t<T

[9(0)) = lto)-

We thus distinguish between conventional discrete-time quantum algorithms specified
via quantum gates and continuous-time quantum algorithms specified via Hamiltonians.
Since final measurements are restricted to be in the computational basis, a quantum
algorithm may be denoted (|1o) , (U;);j=o,1,...n—1) or (|1o) , H(t)o<i<7,T) for a discrete-

time or continuous-time algorithm respectively.

In this chapter we have reviewed the basic elements of quantum mechanics and intro-
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duced the discrete-time and continuous-time models of quantum computation.

10



Chapter 2

Efficient Quantum Algorithms

One of the most difficult challenges in computer science is to find an efficient algorithm for
NP-complete problems (see [GJ79]), or to prove that such an algorithm does not exist.
The 3SAT problem, which we define in section 5.1, is an example of an NP-complete
problem. The intended goal of this work was to analyze the proposed adiabatic 3SAT
algorithm to determine whether it is indeed efficient. In this chapter we define what it
means for an algorithm to be efficient. We motivate sufficient conditions for efficiency of

quantum algorithms in both the discrete-time and continuous-time frameworks.

2.1 Definition of “Efficient Algorithm”

In evaluating the efficiency of an algorithm for a certain problem, we estimate the total
number of physical resources required to implement the algorithm as a function of the
size of an instance of the problem. In this work we shall define “problem” as in [GJ79]:
a problem is a general question to be answered, usually possessing several parameters,
or free variables, whose values are left unspecified; a problem is described by giving (1)
a general description of all its free variables and (2) a statement of what properties the

answer, or solution, is required to satisfy. An instance of a problem is obtained by

11
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specifying particular values for all the free variables of the problem. Problem instances
are generally considered to be given as binary encodings. The size of a given instance is
defined as the length of the binary encoding that has the minimum length necessary to
specify the problem instance. Let I denote a particular problem. We assume that there
is exactly one free variable vy of II (with one degree of freedom) that determines the size
of an instance of II. Let Sy denote a suitable (see paragraph with line 2.1 below) “size

function”
S : {all instances of T} — ZT,
where ZT = {1,2,...}. Thus, for all instances I and J of II,
Su(I)=Su(J) < on(I) =ovn(J),

where vy (I) is the specified value of the free variable vy in instance I. Let oy : ZT — Z7

be a strictly increasing function such that
{Su(I) : I is an instance of I} = {op(n) : n € Z7}

(where we assume all instances have nonzero size). Thus, we enumerate all of the instances

of a problem IT by the index n in increasing order of size such that
I1,, = {all instances of II having size or(n)}

(so II; denotes the smallest instances of II, Iy the next largest instances of II, etc.). For
many problems II, and all problems that we consider in this course, vy is identified with

the index variable n.

Suppose that an algorithm for solving instances of a certain problem requires an
amount of total resources (e.g. time, space, energy, experimental precision, amount of
apparatus) equal to (o) on instances of size o. Then, the algorithm is considered efficient
if and only if r(o) € O(poly(c)). When the algorithm is efficient, we also say that it

requires a small amount of physical resources to implement. More generally, the word
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“small” is used to describe any quantity that is in O(poly(c)), where o is the size of the

problem instance.

Evidently, there are many suitable “size functions” Sy. In order to respect the defini-
tion of “efficient”, we only require that any two “size functions” be polynomially related.
Technically, this can be defined as follows. Let Si and Sf; be any two size functions
that, as detailed above, give rise to or(n) and of;(n) respectively. We say that og(n)
and of;(n) (and Sy and SY;) are polynomially related if and only if there exist &k > 0 and
k' > 0 such that

ofi(n) € O((on(n))*) and  ou(n) € O((ofy(n)*). (2.1)

If a quantum algorithm requires a Hilbert space of size N = 2" on a problem instance
of size Q(poly(n)), then it uses a small amount of space. When, precisely, is a quantum

algorithm considered efficient with respect to total resources?

To answer this question properly, we need to make more precise our definition of
“algorithm”. We will consider a (quantum) algorithm Ap for a problem II to be a

uniform family of “instances of Ay”

An={Au,:n=12,...}

” that solves instances of II of size

where A, is the “instance of the algorithm Ap
on(n). By “uniform” we mean that there exists a classical Turing Machine (see chapter
3 in [NCO00]) that, given n, outputs a complete description of Ay, using O(poly(om(n)))
total resources. It will be clear from the presentation that all algorithms we consider

satisfy this uniformity condition. In the case of discrete-time algorithms we have

AH,n = (|¢0(n)> ) (Uj(n))jzo,l,...,M(n)fl) ) n=12...,

but for convenience we will often hide the dependence on n and just write

An = {(1%0) s (Uj)j=o,1,....m-1)}
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with the understanding that we have a family of “algorithm instances” indexed by n.
When referring to an element of an algorithm, for example U; above, we are always
implicitly referring to the family {U;(n)}. We use the analogous convention in the case of
continuous-time algorithms. For example, suppose we have a continuous-time algorithm
Crt = {(|vo) , H(t), T)}; it is understood that the pure running time 7" is a function of n

and, for the purpose of analyzing efficiency, a function of o (n):
T=T(on(n)), n=12....
We also define the function SPACE 4, (n) : ZT — Z* such that
SPACE 4, (n) = {the total number of distinct qubits that Ay, uses}.

For convenience, in the following discussion about the efficiency of algorithms in general,
we shall drop the subscript label which denotes the problem i.e. the subscript “II” above.
That is, we shall speak of a quantum algorithm A assuming that it solves some problem

whose instances are indexed by n.

Before we continue with our discussion of efficiency, here is some notation and con-
ventions that we will use for the rest of this work. If D is an operator, B is a basis for a
complex inner product space, and D acts on spanf3, then let [D]g be the matrix repre-
sentation of D in basis B. If no basis is specified, assume the basis is the computational
basis {|z) : z € {0,1}"}. If A is a matrix of size p X ¢, then sometimes we will write A,.,

to emphasize the size. If A = [ ] is a p X ¢ matrix, and B is an r X s matrix, then

a;j
A ® B is a pr x gs matrix, expressed in block form as,
A®B = [aijB}prxqs ’

Suppose we have an n-qubit quantum register. In labelling each computational basis
state with an n-bit string z,z,_1---21, we establish a natural ordering of the qubits
from right to left where each qubit has an index from 1 to n. We say that k qubits are

adjacent if and only if their indices form a subset of {1,2,...,n} that can be written
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{I+1,I+2,...,]+k} for some I €{1,2,...,n}. When we write

[Dilyk; wots (2.2)

J
=1

J

we mean that D; acts on k; qubits of the quantum register; we assume that we know

which k; qubits, but for convenience we will not assume that these qubits are adjacent.

2.2 Efficient Discrete-Time Algorithms

Suppose a quantum algorithm D = {(|vbo) , (U;);j=12,...,7)} is specified in the discrete-time

picture. The algorithm is efficient if (but not only if)

SPACEp(n) € O(poly(c(n))); (2.3)

the initial state |¢)p) requires only O(poly(o(n))) many total physical resources to

prepare; (2.4)

J € O(poly(o(n))); and (2.5)

each gate U; acts locally on only O(log(c(n))) qubits, i.e. [U;] may be written as

I
[UJ] = ®[Uj,i]2kj,i><2kj,i7 J=12,...,J,
i=1
where k;; € O(log(o(n))) for all . (2.6)

Using the fact A B = (A® 1) (I ® B) for matrices A and B, the algorithm

{(Ito) , (Uj)j=o0,1,..,pa—1)} may be rewritten

(o), (Uji)j=1.2,..7; i=1,2,...1;) }-

What is significant about the size of the unitary matrices? How necessary is condi-

tion 2.67



CHAPTER 2. EFFICIENT QUANTUM ALGORITHMS 16

2.3 Direct Implementation of Gates via Natural Hamilto-

nians

The discrete-time picture of quantum algorithms effectively “abstracts away” the under-
lying inherent continuous-time nature of quantum physical processes (at least, according
to our model of quantum mechanics). Ultimately, any quantum algorithm would be im-
plemented in the laboratory in the continuous-time picture, where it is convenient to
consider Hamiltonians as the generators of unitary operations. In this section, we briefly

consider why the above sufficient conditions 2.5 and 2.6 make sense.

Suppose U is a quantum gate from the discrete-time algorithm D of the previous sec-
tion. If U is to be efficiently implemented, it must be the induced time-evolution of some
Hamiltonian H that can be efficiently prepared in the laboratory. Let us start by looking
at what type of time-independent Hamiltonians ought to be efficiently implemented in

the laboratory.

Up to an initial condition, the Hamiltonian is solely responsible for how a quantum
physical system changes in time. It is reasonable to assume that the amount of informa-
tion contained in the Hamiltonian is proportional to the physical complexity of the system
it governs. Thus, intuition might suggest the rule that the number of resources required
to directly implement a Hamiltonian H is lower-bounded by the minimum number of ma-
trix elements required to describe [H]. Suppose Hgirycture 1S time independent and acts

on a Hilbert space of dimension 9SPACED(n) Suppose [Hgtrycture] has the tensor-product

factorization
J  mj
[HStructure] = Z ®[Hj,i]2kj,i NOLER) (27)
j=1 i=1

with J € O(poly(o(n))), max{k;;} € Ollog(o(n)))

where no [H;;| can be factorized further (with respect to tensor product). Then, em-

ploying our intuitive rule, the number of resources required to implement Hgipycture 1S
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in
J  myj

Q{32325 | = Q(poly(a(n))),

j=1i=1
and so is lower-bounded by a polynomial in o(n).

However, even if the number of matrix elements gave an upper bound on the number of
resources needed to directly implement Hgtyycture, We cannot rely on being able to directly
implement Hamiltonians like Hggpycture for the purposes of implementing quantum gates:
Hamiltonians of this form do not occur in Nature! In fact, most naturally-occurring

Hamiltonians H acting on m qubits are believed to be of the form Hyature where

L

HNa.ture = ZHla Le O(DOIY(m))a (2'8)
=1

where each H; acts on a maximum of 2 qubits (which implies that L € O(poly(m)).
Furthermore, in a typical quantum computer, technology restricts the total Hamiltonian
to act on two or three qubits at a time [SS99]. Thus to guarantee that the unitary gate
U can be efficiently implemented, U should act on at most 2 qubits so that it may be
implemented by a natural Hamiltonian Hyature With few terms, say, L = 3. This seems
inconsistent with condition 6 but in light of the fact that any unitary gate U acting on &

qubits of an m-qubit register can be so decomposed:

ok(2k — 1
U:‘/T‘/T‘—l---‘/la 7"60(%7’7’9),

where each Vj acts on a maximum of two qubits (see sections 4.5.1 and 4.5.2 in [NCO00)).

Moreover, the only two-qubit gate required is the controlled-sign gate (CSIGN),

1 00 0]

010 0
[CSIGN] =

001 0

000 —1

Thus, returning to our generic discrete-time algorithm D, if SPACEp(n) €

O(poly(o(n))) and each Uj; is restricted to acting on only O(log(o(n))) qubits as in
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condition 6, Uj; may be decomposed into only O(poly(o(n))) many CSIGN and one-

qubit gates Uj;; i.e.

it

Uji = Uji; Ujifr;-1) - Ujir,  where Lj; € O(poly(a(n))).

If each Uj;; can be implemented by a simple, naturally-occurring Hamiltonian with O(1)
total physical resources, then conditions 5 and 6 are sound. It remains to show that there
exist physical systems that support Hamiltonians effecting arbitrary one-qubit gates and
the CSIGN gate with O(1) total resources. We merely say that there do exist physical
systems that support the implementation of one-qubit gates and the CSIGN gate via
simple one- and two-qubit (time-varying) Hamiltonians with few terms (see chapter 7 in

INCO0]).

We assume throughout this work that every one-qubit quantum gate that we need
can be implemented exactly. In practice, we would likely be restricted to using a finite
“universal” set of gates. However, it can be shown that there exists a finite “universal” set
G of one-qubit gates such that any one-qubit gate can be implemented to accuracy € with
only O(poly(%)) gates from G. If Y is the ideal one-qubit gate, and Y is the approximation
to Y made from gates in G, then “Y approximates Y to accuracy €’ means HY — ?H <e
To see that O(poly(L)) is sufficiently small, suppose we wish to approximate a network
of M one-qubit gates to overall error §. It suffices that each gate is approximated to
accuracy %. Thus the total number of gates needed will be M’ € O (M . poly(%)); so if
M is small, then M’ will also be small. In fact, M. Solovay (in an unpublished manuscript
in 1995) and Kitaev [K97] independently showed that we only need O(poly(log(2))) gates
from G to approximate any one-qubit gate to accuracy € (see chapter 4 and appendix 3

in [NCO00] for more details).

We note finally that condition 2.6 is too restrictive in that if a SPACEp(n)-qubit
gate U happens to be the induced time-evolution of some easy-to-implement, naturally-
occurring SPACEp(n)-qubit Hamiltonian in some particular physical implementation

scheme, then U can be implemented efficiently. However, since all reasonable imple-
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mentation schemes support very simple natural Hamiltonians (Hyature with L € O(1)),

insisting on condition 2.6 is convenient.

2.4 Efficient Continuous-time Algorithms

So far we have justified the sufficient conditions for how to recognize an efficient discrete-
time algorithm by explaining that each one- and two-qubit gate is directly implemented by
a naturally-occurring Hamiltonian. Thankfully, this does not mean that all continuous-
time algorithms {(|v0), H(t)o<¢<7, T)} must be restricted to only naturally-occurring
Hamiltonians H(t)o<¢<7. There is a wide class of unnatural Hamiltonians whose induced
time-evolution can be “efficiently simulated” or “approximated” by sequences of very
simple, natural Hamiltonians, i.e. sequences of quantum gates each of constant size. Let
U(T,0) be the time-evolution induced by the Hamiltonian in the continuous algorithm
C = {([tho), H(t)o<t<r, T)}. Let D(e) = {([ho), (Uj(€))j=1,2,.,m(¢))} be a discrete-time
algorithm whose “algorithm instances” are indexed by both ¢ > 0 and n. Suppose
further that each Uj(e) is either a one-qubit gate or CSIGN. We say that D efficiently

approzimates (or simulates) C if and only if for all € > 0

I(U(T,0) = Uns(e)(€) - Uns(ep-1(€) -+ - Ui(e) [¢o) || < e

and
10 €0 (poly (T 101 1) ).

Suppose C = {(|1ho) , H(t)o<i<r, T)} is a continuous-time algorithm. We would like
a set of sufficient conditions which, if satisfied, would imply that C is efficient. Since our
definition of efficiency should not change just because we are looking at continuous-time
algorithms, “C is efficient” must mean “C can be implemented in the laboratory with
O(poly(c(n))) total resources.” Thus, the easiest way of stating a sufficient condition

for C to be efficient is “C is efficient if C can be efficiently approximated by an efficient
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discrete-time quantum algorithm.” We seek conditions, analogous to 2.3, 2.4, 2.5, and
2.6, that are more tailored to the continuous-time picture. Clearly, conditions 2.3 and
2.4 carry over into the continuous-time picture unchanged. This section investigates the
analogues of 2.5 and 2.6 in certain cases relevant to quantum searching and adiabatic
quantum computation. For the rest of this section assume that C satisfies conditions 2.3
and 2.4 (with C in place of D). For convenience we will use m instead of SPACE¢(n)

when discussing mathematical details.

2.4.1 Time Independence I: Hamiltonians With Known Diagonaliza-

tions

For this section, we assume that C = {(|¢0), H, T')} where H is time independent. Let

H be unitarily diagonalized by U:
[H] = [UT[D)[U],

where D is diagonal with respect to the computational basis. The associated induced
time-evolution operator can now be decomposed so that the time-dependence of the

evolution is factored out as the induced time-evolution of the diagonal Hamiltonian D:
efth _ UTefiDtU
- 7

where the constant # is suppressed and will be for the rest of this work. Thus, in evaluating
the efficiency of the algorithm C it suffices to check that U can be decomposed into a
small number of one- and two-qubit gates and that e 'PT can be implemented efficiently.
Of course this approach assumes that, given H, the matrices [U] and [D] are available

for all n.

Suppose that
D= > Xa)lz)l.
ze{0,1}™

Under what sufficient condition can e 'P” be implemented efficiently? Such a condition

may be stated in terms of the eigenvalue function A(z):
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e there is available an efficient quantum network C)\(n) that computes A(z).

We briefly show why this condition is sufficient. The operator e '?T puts a phase factor

AT in front of each basis state |z). Let “@” denote “bit-wise sum modulo 27,

of e~
Suppose C) operates on our principal m-qubit register and places the result A(z) into an

ancillary m/'-qubit register like this
Cx: |2)[b) = [2) [b® A(2)),

where the significant digits of A(z) are encoded as an m’-bit binary number, and |b) is

the initial state of the ancillary register. Thus, e P can be implemented in three stages

[Z98], ultimately ignoring the ancillary register:

2|0 = 12} A (2.9)
2) A(2)) = e ) A(2) (2.10)
AT ) N (2)) = e AET ) om’> (2.11)

(see [CEMMO98| for another method of computing eigenvalues into the phase). Steps 2.9
and 2.11 can be done directly and efficiently with the network C). Step 2.10 is just the
transformation

IA) = e AT N

in the ancillary register. If, for some integer p,

m'—1
1 .
A= SN2, Ae o)
=0
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then

efi)\T |>\>
_1( 1 m/—1
e

P 24i=0 /\i2’)T |>\m’—1> Q |>\m’—2> R - ® |)\0>

B L P () L P W P SO (Y LIPS

i m/—1— )‘m’—l i m! —2— )\m’—Q f A
= T e [T T @ [ g
= Ry(—2™ ""PT) [ Apw_1) ® Ry (—2™ "2PT) | Apy_2) ® -+ @ R;(—27PT) |Ao)

- [Ri(—zm’—l—f’:r) ® Ry(—2™ 7 PT) @ @ Rz(—Q_pT)] [A)

where

R;(0) = e 45, 9eR,

and Z is the simple, natural, one-qubit Hamiltonian

Each gate R;(—2'"PT) = R;(—2""PT mod 2) can be carried out in constant time with
respect to T'. Thus step 2.10 can be implemented efficiently, making the simulation of the
diagonal, time-independent Hamiltonian D efficient if we have the network C) computing

[D]’s diagonal entries (eigenvalues) A;.

In summary, we have shown that the algorithm C = {(|¢), H, T)} for time-
independent H is efficient if (along with conditions 2.3 and 2.4)

e H =U'DU for diagonal D, where [U] has the form

J

U] = ®[Uj]2kj x2ki

j=1
where k; € O(log(o(n))) for all j, and we have efficiently computable formulae for
the all the elements of [Uj] for all n; and (2.12)
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e there is an accessible, reversible, efficient quantum network C)\ that computes [D]’s

diagonal entries A(z). (2.13)

Is there some structural condition on D that will guarantee condition 2.137 Suppose

D has the tensor product structure
[D] = [D1] ®@ [D2] @ --- @ [D1],
where each D; acts on a subset S; of the m qubits, and
Di= Y Xslzs)lzs){zsil-
zs,€{0,1}!5il

To evaluate A\(z), we can exploit the structure of D like this

D|Z> = (D1®D2®"'®D1)|Zsl>®|252>®"'®|251>
= Dl|Z51>®D2|Z52>®"'®|ZSI>DI

= >‘51 (ZSI) |Z51> ® >‘52(Z52) |Z52> ®--® >‘51 (ZSI) |Z51>
I

= [H ASi(zSi)] |z)
i=1

so that A(z) can be computed using networks Cg that compute each function Ag,(zs,).
Note that this method is efficient if I is small and if each network C,\Si is efficient. Note
also that if the size of the domain of each Ag; is small, then C), is efficient. Thus, the

algorithm C = {(|¢o), H, T')} is efficient if

e [H] may be decomposed as

1

[H] = ®[Hi]2ki x2ki

1=1

where k; € O(log(o(n))) for all 7; and (2.14)

e efficiently computable formulae for all the elements of [U;] and [D;], such that
[H;] = [UiT][Di][UZ-], are available for all n. (2.15)
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2.4.2 Time Independence II: Small Sums of Efficiently Simulated

Hamiltonians

For this section, it is useful to think of the unitary operator e~'* as a rotation. For
one-qubit gates, this is easy to do, as we now explain. We can write the state of one

qubit as
0 : 0
[4) = cos (§> |0) + €l sin <§> 1), 0<6<m 0<¢<2rm (2.16)

without loss (since global phases produce no measurable effects), and then visualize |1)) as
a unit vector in R® whose tail is at the origin. Letting i, j, k be the mutually-orthogonal
unit vectors in R® along the standard &, ¢, and 2 axes of R® respectively, we visualize |¢))

as

~
0

cos(¢) sin(0)i + sin(¢) sin(h)j + cos(0)k.

The unit sphere, centred at the origin, is often called the Bloch sphere in this setting.
Note that if two states |¢)) and [¢') are orthogonal, then they do not correspond to
perpendicular vectors in the Bloch sphere; for example, |0) and |1) are visualized on the
Bloch sphere as k and —k respectively. Define the Pauli operators I, X, Y, and Z, all

four of which are both unitary and Hermitian:
[1] = , [X1= , Y= , 4l= : (2.17)

Let n = nx; + nyj + nzﬁ be a real unit vector in R?. Define the Hamiltonian

Hy = -(ng X +nyY +n,Z). (2.18)

N —

It can be shown (see exercise 4.6 in [NCO00]) that the action of the operator
— —iHza « .. [
Ra(a) = e~ Ha% = cos (5) I—i-sin (5) (neX + nyY +n,2) (2.19)

is to rotate the Bloch-sphere representation of a qubit state by an angle o about the axis

defined by fi (any one-qubit gate can be written in the form Rj(a) up to global phase;
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see exercise 4.8 in [NC00]). Thus, Rj(a) must have two mutually-orthogonal eigenstates,
whose Bloch-sphere representations are i and —i; call these eigenstates, which are only

defined up to global phase, |+f) and |—i1) respectively. It is easy to verify that

Ra(a) |4h) = T2 |+h)

1
and Hy|+n) = :|:§ |£0) .

Thus, e Ha® ig a rotation in the Bloch sphere about an azis defined by the eigenstates of

Hj. Writing e 'Ha® in its spectral decomposition

o iHaa  _ efia/2|_|_ﬁ>(+ﬁ| + e+ia/2|—fl)(—ﬁ|

= e 2. [ |+ay(+a| + eto—a)(-q| ]

we see that the angle « is actually the magnitude of a relative rephasing of the eigenstates
of e "2 Tn the space of one qubit, the Bloch sphere allows us to visualize this relative
rephasing as a classical rotation. Consider a general Hermitian operator H of rank N

expressed in its spectral decomposition:
N
H = > M)l
i=1

We can easily derive that

N

e =N e TN (A

=1

N
= e MY e NN (N], forany j € {1,2,..., N}
=1

We see that for dimensions higher than 2, e '/ effects multiple relative rephasings whose

magnitudes are determined by the difference between eigenvalues of H. In this case, we
cannot, in any rigorous way, visualize these rephasings as one classical rotation. However,
—iHt

it will become apparent that e superficially behaves like one rotation. We clarify the

analogy as follows. Define the general rotation operator R4(f) to mean “a rotation by
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an angle 0 about an axis A”. Let A = {|\;) : 4 =1,2,..., N} and define the maximum
energy eigenvalue difference of H to be |AH|:

|AH| = max [A; — Ajl. (2.20)
2V}

The unitary operator e '#! behaves like a rotation by an “angle” 8 < |AH|t about an
“axis” defined by A:
e Mt~ RA(0), 0<|AH|t

(the purist can just think in terms of rephasing eigenvectors A by a phase angle of mag-

nitude less than |[AH|?).

Let @ and b be axes through the origin in Euclidean 3-space. We know from common
experience, perhaps from moving furniture about a house, that R;(f) and R;(6) do not

commute for every 6 unless a = b. Thus, for two Hamiltonians H; and Hs with set of

—iHt —iHst

eigenvectors A; and Ag, our above analogy suggests that e and e commute for
all ¢ if and only if A; = As. Recalling that H; and Hy commute if and only if Ay = Ao,

our analogy suggests that
e iitomilat _ o—ilato =il for 9] ¢ & H and Hy commute . (2.21)

In fact, for Hamiltonians Hy, Ho,..., Hj, the following are equivalent (see section 8.2 of

the Appendix for a proof):

. H‘j]:l e Gt = szl e ! for all t > 0 and any permutations 7 and 7/ of

{1,2,...,J} (2.22)
e H; and H; commute for all 7 and j (2.23)
o ¢ i(HitHyt ot Ho)l — o=iHito—itst . o=iHjt o 5]] ¢ > 0. (2.24)

Let us return to our algorithm C = {(|¢»o), H, T')} where, in this section, H is time

independent and is of the form H = E‘j]:l Hj. If the H; commute, then we can implement

the induced time-evolution e '#7" as the right-hand side of equation 2.24 where for each

e T we use the techniques of the last section. If each H ; satisfies the conditions
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e [H;] may be decomposed as
L

[Hjl = Q[ Hjilye, o

i=1
where k;; € O(log(o(n))) for all 4; and

o efficiently computable formulae for all elements of [U; ;] and [D; ;], such that [H; ;] =
[U;,i][Dj,i][iji], are available for all n,

then C can be implemented with O(Jpoly(c(n))) resources; if J € O(poly(c(n))), then C

is efficient.

If the H; do not commute, then by statement 2.22 the operators e T do not com-
mute in general. Recall from classical mechanics that although R;(6) and R;(0) do not

commute for all 8, R;(0) and R;(0) approzimately commute for extremely small angles

—iH 1t —iHst

0. Thus, when H; and Hy do not commute, our analogy suggests that e and e

approximately commute for extremely small “angles” |AH;|t and |AHz| t, that is,

et —ilat o =it =i {6 gufficiently small ¢.

By the equivalence of 23 and 24, this becomes
e (HIHI)E o it —iHat  for sufficiently small ¢.
In fact, one can easily derive the following asymptotic behaviour as € > 0 approaches 0:

6—i(H1—|—H2+---+HJ)e — e—iHlee—iHQE .. e—iHJE + O <€2J2[ma.X ”HJ ”]2) ; (225)
J

more specifically, there exists a constant ¢ (independent of both ¢ and n) such that for

all e < 1/J max; |Hj],

e—i(H1+H2+"'+HJ)€ _ 6—iH166—iH26 .. e—iHJE

< et max | Hj .
J
Recall that for a linear operator A
Al = max |A[y)]

(Yl)=1
= max{|\|: X is an eigenvalue of A}, if A is Hermitian.
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Noting that |AH;| < 2 |H;|, the error term implicitly depends on the size of the “angles”

|AHj| € as we would expect.
Suppose that |1(t)) evolves under H with |1/(0)) = |1po). Ultimately, we would like to
use the approximation

. . ) T
(D)) > (oAt A AN M gsy) - Ap=

For a desired fixed total error bound 0 > 0, we can calculate a sufficiently large M using

the error term in equation 2.25 with ¢ = % as we now explain. From the discussion
above, if
M > TJ max |Hj| (2.26)
J

then the total error incurred is at most M - ¢ (%)2 J?[max; | H,;|]%. Setting this to be at

most § gives
T%.7%[max; | H,|]
]

2
M > c. (2.27)

We assume that, for sufficiently large n, T'J max; |H;| > 1 so that condition 2.27 im-
plies 2.26. We highlight some points about inequality 2.27. Note that the efficiency of

Hi+Hz+-+Hy)

implementing the time-evolution e i( T depends on the pure running time

T; recall that the implementation of the time-evolution e 'P7 could always be done in
constant time with respect to T'. Note also the (implicit) dependence of M on the en-
ergy differences of H;. Intuitively, using Hamiltonians that have larger energy differences
must be more inefficient, since energy is a fundamental physical resource. Here we see
where that inefficiency shows up in the simulation: the larger the energy differences in

the Hamiltonians H;, the more simulation steps required.

We have shown that C is efficient if

e cach H; satisfies conditions for H in 12 and 13; or 14 and 15; and (2.28)

o T'Jmax; [H;| € O(poly(a(n))). (2.29)
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Note that H = E‘j]:l Hj is in principle diagonalizable and hence might be better
viewed not as a sum but as a single-term Hamiltonian to be dealt with as in section 2.4.1.
Whether H is best analyzed as a sum or not as a sum is dependent on the availability of
efficiently computable formulae for elements of [U] and [D] such that [H] = [U][D][U]
for diagonal matrix [D]. Also, equation 2.25 is not optimal: by carefully manipulating
power series expansions, one can obtain [SS99] approximations that have error term
O(e" J"[max; |H,|]") for r = 3,4,5 which lead to M ~ (T"J"[max; |H;|]") 1. Still,
these techniques for simulating the time-evolution of a Hamiltonian are generic; specific
cases may have special structure that can be exploited to achieve a discrete-time algorithm
having input and output the same as the given continuous-time algorithm but requiring
even fewer physical resources than a generic simulation. An example is the case of Farhi

and Gutmann’s continuous-time search algorithm (see the end of section 3.2).

Note that we have come full circle in showing that indeed, under certain conditions,
Hstructure In equation 2.7 can be efficiently implemented in the laboratory as we initially

suspected.

2.4.3 Time-Dependent Hamiltonians

Finally we consider continuous-time algorithms employing a time-dependent Hamiltonian
H(t), 0 <t <T. Let to =0 and tj); = T, and partition the total time interval into M
subintervals

[O,T] = [to,tl) U [tl,tg) J---u [tM_l,tM].

If U(T,0) is the total induced time-evolution operator, then we can write
We approximate each factor above like this:

Uty tj1) e =DM 5 — 1 9 M, (2.30)
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where At; =t; —t;_1. Now let j “auto-increment” with time
j(t) = max{i: t; <t}

and define the Hamiltonian H (t)

Thus H(t) approximates H(t) by a sequence of M time-independent Hamiltonians
(H(tj))j=12...m- Let U(T,0) be the induced time-evolution operator corresponding to

H(t). The next fact [vDMVO01] bounds the error incurred by using H (t) instead of H(t):

o if

‘H(t) - FI(t)H < 6 for all £, then HU(T, 0) — ﬁ(T,o)H < VAT, (2.31)
Below we work out the details for the specific form of time-dependent Hamiltonians
employed by adiabatic quantum algorithms.

Let s(t) be a smooth, nondecreasing, real function of time. Let Hy and H; be two

time-independent Hamiltonians. Let
H(t) = (1 —s(t))Ho + s(t)Hy, s(0)=0, s(T)=1.
Consider approximating H(t) on the interval [t;_1,1;) as above, t;_; <t <t;:
[ =A@ = (5() = (1)) 1Ho — H]

< (s(tj) = s(tj—1)) [Ho — Hi

ds
o (h) - |Ho — Hi|, for some h € (tj_1,t;)
ds

< At — )y -|Hy— H
< ay o {20} 10— i,

where we have used the Mean Value Theorem. Thus in solving for a sufficiently small

= At

time increment At;, we must consider the size of the derivative of s(¢) in general. In the

special case where s(t) = L, it is sufficient to partition the interval [0, 7] into equally-sized

T
intervals of length At = % and thus derive the bound

) T 1 1
H(t)— H H<—-—-H—H — — . |Hy—H|.
|7 - )| < 57 - 7 1Ho— Hil = 57 - |Ho — Hil
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If the total error is to be less than § > 0, then by fact 31 we require

2T |Hop — Hq|

M > >

(2.32)

i((1- 225 Ho+ 22 Hy ) At

H(jAAL T

Each term ¢! e must be approximated using the methods
in the previous section. Recall that those approximation methods require M to be larger
with respect to T, that is, they require M € Q(Tﬁ) for e.g. r = 5. Thus, we have
shown that if Hy and H; both satisfy conditions for H; in 28 and max{|Hy|,|H1|} €
O(poly(c(n))), then the algorithm {(|1p), (1 — ) Ho+ =Hy, T)} is efficient if T €

O(poly(a(n)))-

In this chapter, we have defined what it means for a quantum algorithm to be efficient.
We have given sufficient conditions for discrete- and continuous-time quantum algorithms
to be considered efficient. Throughout the rest of this work we will refer to elements of
this chapter when discussing efficiency or discrete-time simulations of continuous-time

algorithms.



Chapter 3

Searching

The searching problem comes in a number of flavours, of which only one will be considered:
Given a black-boxed quantum network, or oracle, Cy that computes the function f :
{0,1}" — {0, 1} such that

1 if z # w,

f(z) =

0 if z=w,
find w with high probability using a minimal number of queries to C; (we seek an algo-
rithm that works with this minimal number of queries for any w € {0,1}"). Other versions
of the search problem may involve there being more than one solution to f(z) = 0, with
the number of solutions being either known or unknown. Our focus is the case where it
is known that there is only one solution: w. Note that Cy is given as a black box, that is,
the internal workings of C'y are unknown — only queries to Cy are permitted. Each query

to C is assumed to require ©(1) physical resources.

The size of an instance of the black-box search problem can be taken to be n, that is,
OBLACK-BOX SEARCH (1) = n. Thus an efficient algorithm for black-box searching would
require only O(poly(n)) resources. It will be convenient for us to express the resource

requirements of black-box search algorithms in terms of the parameter N = 2". This

32
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reminds us that we are “searching through” N elements (for the problem of “unstructured
database-search” (see section 6.5 in [NCO00]), where we are given a database storing N
elements, the parameter IN more accurately represents the “size” of an instance; the

black-box model hides all the complexity associated with maintaining a database).

If Cy is just a classical operator (which does not handle superpositions of basis states)
and we restrict ourselves to classical computations, then the number of queries needed to
discover w with sufficiently high probability is in Q(NN). However, using a quantum com-
puter and having a quantum network Cy, a solution can be found with high probability

using only O(V/N) queries to Cf and, in fact, O(V/N) total resources.

This chapter reviews three approaches to solving search-like problems using quantum
mechanics. Grover’s algorithm [G96] solves the search problem exactly as stated above
and is a conventional discrete-time quantum algorithm: a sequence of quantum gates
applied to a standard start state. The sequence can be written (G,G,...,G) for a gate
G called the Grover iterate which incorporates the gate Cy. Farhi and Gutmann [FG98]
solved a “continuous-time analogue” of the search problem, where, instead of a black-
boxed quantum network Cf, we are given a black-boxed Hamiltonian H, = E|w)(w|
with £ known and w unknown. The problem is to find another Hamiltonian Hp(t) and
minimize the total time needed to evolve under the total Hamiltonian Hp(t)+ H,, in order
to discover w with high probability. Finally, guided by simple intuition, Fenner [F00]
discovered a Hamiltonian Hpenner that depends on w such that, for a specific |1)y) that is
independent of w, the algorithm {(|’l/)0> , %Hpenner, T)} solves for w with T € O(\/]V)
Fenner’s algorithm is the true continuous-time analogue of Grover’s algorithm, as we

explain shortly.

In each approach, there is a one-to-one correspondence between the computational
basis states and the domain {0, 1}" of f. As well, each algorithm uses an n-qubit principal
quantum register (Grover’s algorithm actually uses one ancillary qubit in addition to the

n-qubit quantum register, but it can be ignored for now). If the instantaneous state of
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the quantum computer expressed in the computational basis is |¢)) = Eiv:_ol ¢, |z), then
the result of a measurement in the computational basis will be w with probability |c,|?
(in general, the result will be the eigenvalue of the eigenket |w); but the observable can
always be chosen so that the eigenvalue of |z) is the real number whose binary expansion
is z, for all z € {0,1}"). Whatever the quantum mechanical solution, clearly its goal
is to make |c,|? as big as possible. If |c,|? is made greater than, say, 3, then the final
measurement results in w with probability greater than . This would render a quantum

algorithm with probability of error less than 5

It is convenient at this point to define the uniform-amplitude superposition state

_ L B
|>=\/— > 2.

z€{0,1}"

This state is used as the initial state in all of the following algorithms. Whatever the
initial state is, it must be easy to prepare, so it may not, for example, depend on knowing
anything about w, since w is unknown by assumption. The state |u) meets this criterion
nicely. The Walsh-Hadamard transform (or just Hadamard transform), denoted W, maps

the computational basis state |0™) to |u), i.e.
|u) = W [07).

The Hadamard transform may be written concisely as

W—\/—_ YooY )™l

ze€{0,1}" ye{0,1}"
or, as a matrix in the computational basis,
®n

where “z e y” denotes “Z?Zl iy fx =zpxy 1 21 and ¥y = YuYn_1---y1, and “Qn”
denotes n-fold tensor product. The description of [W] immediately implies W's efficient
implementation as a quantum gate, since it is explicitly revealed to be the tensor product
of n one-qubit gates. Note W is both unitary and Hermitian, thus W2 = I. The state

|0™) is considered easy to prepare, as is any element of the computational basis.
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3.1 Intuition and Fenner’s Hamiltonian

The simple idea of “making |c,|? big” motivated Fenner [F00] to discover a Hamiltonian
for quantum search. Fenner solves the problem,“Find a time-independent Hamiltonian
(dependent on w) whose induced time-evolution maps |u) sufficiently close to |w) in a

short time.”

Recall that the infinitesimal time evolution governed by Hamiltonian H is [ — iHe
for 0 < € < 1. Thus we can let this simple operator guide our intuition about how a
continuous-time quantum algorithm behaves. We start with an intuitive idea about how
a suitable algorithm might behave at each infinitesimally small time step, and then find

a Hamiltonian H that implements the idea.

One way to pile lots of probability amplitude into |w) is, after each infinitesimally
small period of time €, to subtract amplitude proportional to € - ¢,, from all coefficients
other than ¢, and add amplitude to ¢, proportional to €(}_ vtw ¢.). That is, we seek a

Hamiltonian Hpenner such that

(I — iHpenner€) Zcz |z) = Z(cz —€-cy)lz)+ | cw t € Z ¢, | |w).

z 2w 2#w
It is easy to derive that
_0 0 -1 0 0—
—i
0 0 -1 0 0
[Hpenner) = [i ... i 0 i ... if,
0 0 -1 0 0
—i
_0 ... 0 -1 0 ... 0_

where only the w,;, row and column have nonzero entries. This Hamiltonian can be

written concisely as

HFpenner = Z\/N(|w><u| - |u><w|)
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Fenner proves that the unitary time evolution induced by %H Fenner Maps |u) into
|w) in time T" € O(V N). In fact, he proves that Grover’s algorithm is a “true” simulation

of his algorithm {(|u) , %Hpenner, T)}: there exists a time interval Atg such that

C_i% HpennerAta — G2

where G is the Grover iterate.

3.2 Farhi and Gutmann’s Search Problem

Farhi and Gutmann [FG98] solve a “continuous-time” version of the search problem. In
place of the black box Cf, there is a Hamiltonian H,, = E|w)(w| where w € {0,1}" is
unknown but £ > 0 is known. The goal is to discover w. In the physics laboratory,
this situation corresponds to being given some conditions under which one must perform
an experiment. For example, H,, may describe a magnetic field in which our qubits are
immersed, where we are not allowed to control the electromagnet producing the magnetic
field. To control the time-evolution of the system, the only recourse is to apply some
other conditions to the system in addition to the given conditions. Mathematically, this
corresponds to finding another Hamiltonian Hp(t) to add to H,, for a total effective
Hamiltonian Hp(t) + Hy. The Hamiltonian Hp(t) is called the driving Hamiltonian. We
can restate the problem as “Find Hp(t) such that the algorithm {(|u), Hp(t) + Hy, T)}

solves for w in a minimal time 7T'.”

Farhi and Gutmann found that Hp = H, = FE|u)(u| solves the problem in time
T € O(VN). An outline of the proof follows.

Define the Hamiltonian Hpg as

Hyc = Hy + Hy.
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Let |¢ra(t)) be such that

2 lpa(t)) = —iHpc [Prc(t)), >0

lYra(0))  =lu).
It can be shown that |¢pg(t)) remains in the 2-dimensional subspace span{|w) , |u)} for all
t (we will see a proof of a result of this sort in section 6.2). The Gram-Schmidt procedure

can be used to find an orthonormal basis {|w) , |r)} for this subspace. Analyzing the time

evolution in this basis is relatively easy, so the details are omitted. The result is that

e (0) = ¢ 2 | oos () —isin (22 ) ) o + )10

VN
2E

for some coefficient ¢,(t). Thus, at time ¢ = a measurement in the computational

basis renders w with probability 1.

Farhi and Gutmann also show that the choice Hp(t) = H, is in some sense opti-
mal. This result is the continuous-time analogue of the lower bound of Bennett et al.
[BBBV97]. Since Hp(t) is unrestricted, then it could be chosen such that the Hamil-
tonian Hp(t) + H, induces the unitary operation corresponding to, say, the classical
algorithm which tests O(poly(n)) many elements of {0,1}" to see if one of them is the
solution (see section 8.3 in the Appendix for the details of this algorithm). The resulting
algorithm would solve the search problem in O(poly(n)) time on the few instances where
the solution is in this O(poly(n))-sized subset of {0,1}". Thus the best optimality result
we can hope for would say that no other driving Hamiltonian works faster than H, on
an appreciable fraction of search problem instances. Farhi and Gutmann show that any
algorithm {(|u), Hp(t) + Hy, T)} requires T' € Q(‘/Tﬁ) if it is to work on all instances.

We outline their proof in the following paragraph.

Define the states |1y, (t)) and |¢p(t)) by

D pw(t)) = —i(Hp(t) + Hy) [hu(t)), 0<t<T

[%w(0)) = l¢o)
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and
b lyp(t)) =—iHp(t)|[Yp(t)), 0<t<T

[¥p(0)) = [¢o),
where w is the unique solution to the search problem instance. In order for the algorithm
{(|so) , Hp(t) + Hy, T)} to work on all instances, we require || [t (T)) — [¢p(T)) ||* > €
for some € € O(1) for all but possibly one w € {0,1}". Summing over all instances, we
thus certainly require that

> (™) = [$p(T) [P > (N = 1)e. (3.1)

we{0,1}m

Using straightforward techniques, we can derive the bound

oY W) ~ W) | < 2BVN

we{0,1}n

which upon integrating from t =0 to t =T gives

ST 1w(T) = [¥p(T)) || < 2BVNT.

we{0,1}n
In order to satisfy 3.1, we thus require

VNe

T > :
— 2E  2E\/N

By allowing for algorithms that favour certain instances over others, we can get the
slightly more general result that we hoped for. To do this, we require that || |1, (T")) —
| (T)) ||? > € for only g(N) instances, where 0 < g(N) < N. Then 3.1 becomes

Y Hu(D) = (D) |* = g(N)e

we{0,1}n

and the final bound on T is
g(N)e
2EVN

We can consider a “useful” algorithm to be one that works on all but a small number of

T >

(3.2)

known elements which could be checked one by one after the algorithm completes. For
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such an algorithm we thus require N — g(N) € O(poly(log(N))) which makes the bound

on T sufficiently large.

From the discussion on efficiency in section 2.4, we know that for a sufficiently small
increment of time At, the following approximation is valid:

—i(Hy+Hyp)At —iHu At ,~iH, At

e

~ e

Thus, if the system evolves for total time 7', and At = %, a valid simulation of Farhi

and Gutmann’s search algorithm is given by
W)(T)) ~ (efiHuAtefinAt)M |’LL>,

for sufficiently large M. To implement this simulation, it suffices to be able to simulate
et and e~tHwAl with quantum gates. Noting that e 1At = e EI0OIALY - the

—iH, At

unitary operator e can be efficiently implemented via the technique of section 2.4.1.

But how can e 1HwAl — o—iE[w)(

w|At be simulated without knowing w? Noting that H,,
is diagonal in the computational basis, section 2.4.1 tells us that this operation can be
simulated by a quantum network that has access to a quantum network C'y that computes
the eigenvalues of H,,; such a C) can easily be made out of the oracle C; from the search
problem, provided that the amount of precision needed to store the binary representation
of E is not too large. We assume that £ € O(poly(n)) so that a sufficiently large
M is polynomially related to the pure running time 7. If we put At = n/E in this
simulation scheme, the resulting discrete-time algorithm is precisely Grover’s algorithm
which we look at next. Note, though, that in putting At = 7/E we no longer get a true

simulation i.e. the state vector in Farhi and Gutmann’s search algorithm strays far from

the intermediate states reached in Grover’s algorithm [F00].

3.3 Grover’s Algorithm

From Cy we can construct the following efficient network:

Of : |2) = (=1)Y /@ |2) | for all z € {0,1}".
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To do this, we can either use the technique detailed in section 2.4.1 which requires two
Cy gates and one rotation gate on the ancillary qubit, or we can use just one C; gate
and have the ancillary qubit always in the state (|0) —|1))/v/2. Thus we can assume that
the number of times the gate Oy appears in the final quantum algorithm is equal to the

number of queries our algorithm makes to Cf.

Define the “inversion about mean” operator,

D = 2|u)(u| — L.
Grover’s algorithm:

e start with state |u) = W |0");

”‘éﬁ times; and

e apply the operator DOy approximately

e perform a measurement in the computational basis.

Grover’s algorithm is optimal in the following sense: Any sequence of quantum gates
(applied to an easy-to-prepare start state) that solves the search problem via making
queries to Oy must make (v N) such queries. The proof [BBBV97] is the discrete-time

analogue of the optimality proof outlined in the previous section and is thus omitted.

To gain insight into why Grover’s algorithm works, note first that D applied to a

general state Y-, ¢ 1yn €z |2) gives

Y e+ 2Aa)]le),

z€{0,1}™

where (o) = + > 2e{0,1}n @ (the mean average of the coefficients). To illustrate what the
algorithm does, it suffices to look carefully at how the first application of DO} transforms

|u). After the first time Oy is applied, all basis states have coefficient \/Lﬁ, except |w)

1

L Thus the mean average of the coefficients is TN 6 for some

which has coefficient —

3
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€€ @(N_%). Applying D produces the state

DOsluy = > (—% +2% —2e> |2) + <+% +2% —2e> |w)

22w
- E(e b

Thus, after only one iteration of DOy applied to |u), probability amplitude has been added
to |w) (note the similarity to the intuition behind Fenner’s algorithm). By inspection,
after each iteration of applying DOy, the coefficient of |w) increases by roughly \/Lﬁ
Thus, it is plausible that after O(v/N) iterations, the coefficient of |w) will be in O(1)
(for a different way of looking at the algorithm, see chapter 6 in [NC00]). The operator
G = DOy is the Grover iterate.

Briefly looking back to the simulation of Farhi and Gutmann’s search algorithm

{<|u>, Hrpg, %)}, note that for At = n/E, e”HwA = O; and e~#0A = D),

In this chapter, we have reviewed three quantum algorithms used to search for an
element w € {0,1}". One of the goals of this work is to exhibit a smooth transition from

Farhi and Gutmann’s search algorithm to the proposed adiabatic 3SAT algorithm.



Chapter 4

Adiabatic Quantum Computation

So far, all of the continuous-time quantum algorithms that have been discussed have
used time-independent Hamiltonians. The adiabatic quantum computation paradigm
uses time-varying Hamiltonians which are smooth deformations of one time-independent
Hamiltonian into another time-independent Hamiltonian. In this chapter, we review
the adiabatic theorem of quantum mechanics, the adiabatic approximation, and give an

“adiabatic version” of Farhi and Gutmann’s search algorithm.

4.1 The Adiabatic Theorem in Quantum Physics

The following is based on the presentation of the Adiabatic Theorem given in Messiah’s
book [M76]. Suppose a Hamiltonian H () continuously deforms from an initial value Hy

at time ¢y, into a final value Hy at time ¢, that is
H(to)EHo H(tl)Eﬂl.

An example of such a continuous deformation H(t) is

t—t t—t
Hey (t) = (1 - 0 > Hy + SHy, to<t<t (4.1)
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but, in general, the deformation does not have to be a weighted sum of Hy and H;. The
goal is to analyze the unitary evolution induced by H(t) as a function of the total duration
t1 —tg. A cleaner way to do this analysis is to consider a family of reparametrisations of

H(t) as we now explain.

Imagine that Hy and H; are distinct points in the space of all possible Hamiltonians
and that H(t) traces a curve H between the two points. Introduce the scaled time
parameter s(¢) and the total duration T’

t—to
T

S(t) = TEtl—to.

Hence, reparametrize the curve H by changing the speed along it by a multiplicative

constant, or delay factor, % = %, to get the curve H, defined by

H(s) = H(ty + sT), 0<s<1,
where H describes the same curve as H. Let the momentary unitary evolution induced

by H(t) and H(s) be U(t,ty) and Ur(s(t)) respectively, so
UT(S(t)) = U(tato)a to <t <t.

Simply writing Ur(s) for 0 < s < 1, the unitary evolution may be analyzed as a function
of T'. The adiabatic theorem is a statement about limy_, o, Uy (s), under certain conditions
of H (s), i.e. it considers what happens when the passage along the curve from Hy to Hy
is made infinitely slowly. The “certain conditions” have to do with the eigenspaces and
eigenvalues of H(s). Tt is sufficient here to assume that H(s) has a discrete spectrum of

eigenvalues and that H (s) acts on a Hilbert space of dimension N.

Let “diag(di,ds,...,dy,)” denote the m x m diagonal matrix with element d; in the
ith row (column). Define the eigenvalues \;(s) of H(s) for i = 0,1,... N — 1 such that

for all s

H(s) = UT(s) - diag(Ao(s), A (s), ..., An_1(s)) - U(s) for some U(s)
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and

Xo(s) < Ai(s) < --- < An_a(s).

Let Pj(s) denote the projector onto the eigenspace corresponding to Ai(s) for i =
0,1,...,N —1.

Suppose that the following two conditions hold:

e Xo(s) < Ai(s) < -+ < An_1(s) for all s (4.2)
. d%is) and d25;2(s) are well defined and piecewise continuous for all 4. (4.3)

Then the Adiabatic Theorem says that for all : =0,1,..., N — 1

lim (UT(s)E(o)) = Bi(s) lim Ur(s).

T—o0 T—oo
If |$;(0)) is an eigenstate of Hy, i.e. H(s)|hi(s)) = Xi(s) |i(s)), then
Tim (Ur(s) [¢3(0)) = lim (Ur()P5(0) [6:(0)) )
—00 o0
= | (v2P0) | 14:0)
= P;(s) [lim UT(S)] |:(0))
T—o0
= Fi(s) lim (Ur(s) 1¢:(0))).
T—o0
In other words, in the limit T' — oo, if the state is initially in the sth eigenstate of Hy,
then the state remains in the corresponding ith eigenstate of H(s) throughout the entire

evolution 0 < s < 1. If we only require this to occur for a particular i = iy, then [K50]

we only require less restrictive versions of conditions 4.2 and 4.3:

o Xip 1(5) < Xig(s) < Aigs1(s) for all s (4.4)
. %%(s) and dzl;;%(s) are well defined and piecewise continuous, (4.5)
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where A_;(s) = —oo and Ay (s) = oo.

The ground state of a Hamiltonian H is the eigenstate of H corresponding to the
eigenvalue of H which is less than or equal to all the other eigenvalues of H. In the
case i = ip = 0, when the initial state is the ground state |¢¢(0)) of the initial value
H (0) = Hy of the Hamiltonian, the adiabatic theorem can be illustrated by the following
analogy. Liken the energy of the quantum state to a baby’s level of excitement. Suppose
the baby is rather unexcited, that is, the baby is sleeping in a crib. Now liken the baby’s
surroundings to the Hamiltonian governing the system. The baby is initially sleeping in
the crib in the bedroom (analogous to Hy), and the parent wishes to move the baby’s crib
to the living room (analogous to Hp). The adiabatic theorem applied to this metaphor
says that if the baby is a sufficiently sound sleeper (analogous to condition 4.4), and the
path from the bedroom to the living room is sufficiently smooth (analogous to condition
4.5), then if the parent moves the crib infinitely slowly from the bedroom to the living

room, the baby will not wake.

4.2 The Adiabatic Approximation

Moving the crib infinitely slowly is not a practical solution. Instead we know that it
is sufficient that the crib is moved slowly enough so that the baby remains asleep. In

quantum physics this idea is formalized in the adiabatic approzimation.

Just how slowly does the parent have to move the baby? First we consider what are
the sufficient conditions for the baby to remain asleep. Intuitively they should depend on
the following three things: (1) how sound a sleeper the baby is, (2) how smooth the path
from the bedroom to the living room is, and (3) how fast the baby is moved. As well,
one might expect some sort of tradeoff among these three criteria: for example, the more
sound a sleeper the baby is, then perhaps the less smooth the path from the bedroom
from the living room has to be and the faster one can move the baby. Furthermore,

if we always restrict our attention to paths that are, say, “very smooth” (analogous to
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ensuring that condition 4.5 holds), then all that matter are (1) and (3). Returning to our

mathematical problem, the above intuition is formalized below.

Suppose condition 3 above holds. Revert to the physical time parameter ¢ so that the

set of eigenvalues of H(t) is denoted {\;(¢) : ¢ =0,1,...}, that is,

t—to
T )

Xi(t) = \(

Let |¢i(t)) be an eigenstate of H(t) corresponding to A;(#):

H(t) |pi(8)) = Ai(t) i) to <t <t

Let |1(t)) be the state of the system:

) = HO W), to<i<h

Suppose the system starts in an eigenstate of the initial value of the Hamiltonian, i.e.
|1(t0)) = |pa(to)). Consider the leakage of probability amplitude from the ath eigenstate
into the ith eigenstate, 7 # a. Using time-dependent perturbation theory (see chapter 17
in [M76]), we get an approximation to the probability of finding the final state in the ith
eigenstate:

2

dt| . (4.6)

(0 (] (D) 180 ) | v on iy e
el P ~| [ t Hig )2 )
o (i) =Ad(?))

This integral can be upper-bounded by considering the minimum value of |A;(t) — Ay (?)]
and maximum value of | (¢; ()] (dlg—gt)> |a (t)) | in the interval [tg,?1] and assuming that
these two quantities are approximately constant with respect to time. Thus, barring

exceptions! [M76], we get an approximate bound on the total probability of finding the

'Such an exception may occur if

max E
t

i#a

dH (t) ?

0 01 (22 6 @) LU

0 01 (2 o @)

2
zé max
t

i#a

is a bad approximation.
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final state in some eigenstate other than |¢q(¢1)):

max; Z#a (¢; (1)] (dlit(t)) |ba (t)>‘2
mingzq ¢ |Xi(t) — Aq (t)|4

1= [{pa(t)p(t:))]? <

(where “<” denotes “is less than a quantity which is approximately equal t0”). Noting

that [vDO02]

2|0 () e < 2 ool (%) 10 2
= H%I%(t)) i
< &

we can simplify this bound and get a sufficient condition for ending up in the eigenstate

|pa(t1)) with high probability:

dH() ||
B 1 (4.7)
- < 1. .
ming o |Ai(t) — Ao (t)[*
More precisely, for 0 < e < 1, if
Kal
maxy dt
7 <6

min;£q ¢ |Xi(t) — Aa(t)]

then

{a(t)|1p(t1)))* 21 — €.

Recall the example Hamiltonian He g (1),

t—t t—t
He.g.(t)=(1—t1_fo>ﬂo+ °0H1, to <t <t

Note that
dHey (t) —Ho+ Hy Hy— Hy
d  ti—ty T
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so that in the special case H(t) = Heg., condition 4.7 becomes

|H1 — Hy|
- L T, 4.8
i, ()~ A (O 4
that is, if
|H1 — Hy|
" <T
€-minjzq ¢|Ai () — Ag (t) |2

then

{ba(t)[(E)) 21— e

Since % is the delay factor, we have answered the question “At what (nonzero) speeds

can the parent move the baby to ensure that it likely remains asleep?” in the special case

of H(t) = Hey (t).

4.3 Adiabatic Search

How can the adiabatic approximation result be used to search? In all of the continuous-
time quantum search algorithms looked at so far, the start state is |u) and the final state
is |w). Suppose we seek a Hamiltonian Hag(t), 0 < ¢t < T, that will accomplish searching
for w in the spirit of the adiabatic approximation, starting with state |u). Then we
require that |u) is an eigenstate of Hag(0) and that |w) is an eigenstate of Hag(T). We
also require that |w) be derived from |u) by continuity: that is, we require the existence

of a continuous function Apg(¢) such that, for all ¢, 0 <t < T,
Has(t) [Aas(t)) = Aas(t) [Aas(?))
for some eigenstate |Aas(t)) of Has(t) satisfying

[Aas(0)) = [w)

[Aas(T) = |w).



CHAPTER 4. ADIABATIC QUANTUM COMPUTATION 49

Noting that |u) is an eigenstate of H, = E|u)(u| and |w) is an eigenstate of H,, =

E|w)(w|, we try the following for Has(t):

t t
Has(t) = (1— T) Ho+LH,  0<i<rT

Note that 2H55(T'/2) equals Hpg from Farhi and Gutmann’s search algorithm.

Since condition 4.3 clearly holds for Hag(t), it remains to do an eigenvalue anal-
ysis to see if there is sufficient eigenvalue non-crossing in order to use the adiabatic
approximation to solve for a sufficiently large running time 7'. Luckily, since the induced
unitary evolution is restricted to the subspace span{|u),|w)} as in Farhi and Gutmann’s
continuous-time search algorithm, the eigenvalue problem for Hag(%) is easily solved. The
result is that all but two eigenvalues are 0 for all ¢, with the two nonzero eigenvalues A" (¢)

and A~ () such that

and thus

with

min;( AT(t) = A7 (¢)) = (A+ (%) - (%)) = % (4.10)

Evidently, A*(¢) corresponds to the sought after function \ag(#) since
Has(0) [u) = AT(0) |u) = E |u)

and

Has(T) |w) = AT(T) [w) = E |w).

Inequality 4.9 guarantees that there exists a sufficiently large value of T" such that the

adiabatic approximation is good. Combining equation 4.10 with condition 4.8 and noting
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that |Hy — Ho| < |Hi| + |Ho| < 2E, a sufficiently large value for 7' is T € Q(N/E).
Thus we have an adiabatic search algorithm {(|u), Has(t), T)} with T € ©(N/E).

Assume that £ € O(1) so that minimal overhead is incurred in the simulation of this
algorithm (see section 2.4.2, inequality 2.27). Under this assumption, the pure running
time of this adiabatic search algorithm is 7' € O(N). Using the simulation techniques of
section 2.4, we can show that this adiabatic search algorithm requires O(N ﬁ) resources

to implement, for, say, r = 5.

A pure running time of 7' € Q(N) is significantly larger than the pure running time
in O(v/N) that was found in Farhi and Gutmann’s quantum search algorithm. Can the
adiabatic paradigm be used to achieve a continuous-time algorithm having pure running
time in O(v/N)? The answer is yes [yDMVO01]. To describe the method precisely, we use

the scaled time parameter s(¢). Consider the Hamiltonian

Hyg (t) = (1= s(t))Hu + 5(t) Hu,

where instead of using a constant delay factor % = % we allow % to vary. That is we
define the varying delay factor % = % and the Hamiltonian

f{AS/(S) = Hpg (to + /05 7(s")ds").

Note that s(¢) is no longer a linear function of ¢, that is H,g (t) is not of the form He .
from equation 4.1. We can imagine partitioning the interval [ty, ¢1] into tiny subintervals
and finding a sufficiently large constant delay factor for each subinterval using condition
4.8. In the limit as the length of all of the subintervals goes to 0, this process yields a
time-varying delay factor defined on the entire interval [tg,1]. Equation 4.9 gives the

sufficiently small value of the delay factor % at each point in the evolution:

| Hw — Hu|
(A*(s) = A~ (s))

Using this “form-fitting” delay factor, one recovers the pure running time of Farhi and

N/E?

m(s) > N —4(N —1)(s — s2)’

= ”Hw - Hu”

0<s<1.
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Gutmann’s search algorithm, that is, for £ =1,
1
/ 7(s)ds € O(VN).
0

Thus we have a revised adiabatic search algorithm {(|u), Hyg (t), T)} that requires only

T € ©(VN).

Since s(t) # %, the number of resources needed to simulate this adiabatic algorithm
is not given by the method in section 2.4.3. Because the derivative %(t) = m gets
larger near the endpoints of [0, 7], this method requires that the time steps At; near the
endpoints be smaller causing more overhead. Setting F = 1 for convenience, note that
we require £(0) < 1 and %(T) < 1. We can get a loose upper bound on the number
of required time-steps M by calculating M assuming that Aj = % and % € 0(1)
throughout the entire interval [0,7"]. Under these assumptions, inequality 2.32 gives
M € Q(T?). Thus, using this simulation technique, we could implement the algorithm
{(lu), Hyg(t), T)}, T € O(vV/N), with O(N) resources. A tighter bound on M is likely
achievable. Perhaps there is an altogether better simulation technique for this algorithm.

Or, perhaps the best we can hope for is just to use Grover’s algorithm as a “simulation”.

We leave these issues for future work.

4.4 Adiabatic Searching by Staying in the Ground State

When using the adiabatic paradigm, it is convenient to work with algorithms
{(|sbo), H(t), T)} where |)) is the ground state of H(0) i.e. where the state of the
quantum computer remains in the ground state of the Hamiltonian throughout the entire
evolution. All adiabatic algorithms considered hereafter will be of this type. The adia-
batic search algorithm of the previous section can be converted into such an algorithm

by substituting for H,, and H,, the Hamiltonians

H), = 0lu)(u| + E Y W|z)(z|W
EE2T
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and

H, = Ofw){w| + B |2)(2,
zFWw

where £ > 0. It is easy to verify that the distance between the smallest and next smallest
eigenvalue of the new Hamiltonian (1 — s)H,, + sH,, is the same as the distance between

At (s) and A7 (s).

We have reviewed the adiabatic approximation theory and developed an “adiabatic

version” of Farhi and Gutmann’s search algorithm.



Chapter 5

The Proposed Adiabatic 3SAT
Algorithm

In this chapter, we show a natural progression from the adiabatic search algorithm to the
proposed adiabatic 3SAT algorithm. We also briefly look at the classical intuition behind

the adiabatic 3SAT algorithm in the spirit of Fenner (see section 3.1).

5.1 Definition of 3SAT

A Boolean formula f on the n Boolean variables z1, z3, ..., 2, is said to be in conjunctive

normal form (CNF) if and only if

m K;
f= /\ \/ ajr |, where aj, € {z1,22,..., 20,21, 22,20 }-
j=1 \k=1

il ”

We assume that “Z;” means “the logical negation of z;”, “\/” means “logical OR”, and

“/\” means “logical AND”. Further, f is said to be a 3-CNF formula if and only if K; = 3

for all 7 in the above expression. Each subformula (\/kKi 1 aj7k> is called a clause of f.

93
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I focus on the following special case of 3-CNF Satisfiability (3SAT): Given a 3-CNF

Boolean formula f on n variables z1, zo, ..., z, such that

e the number m of clauses comprising f is in O(poly(n)), and

e there is a unique satisfying Boolean assignment,

find the satisfying assignment (in most texts, “3SAT” is actually the corresponding de-
cision problem (see [GJ79]) which is equivalent in difficulty to what we call “3SAT”).

Recalling the terminology of section 2, m € O(poly(n)) implies that we may take
o3sar(n) = n,

that is, the size of a 3SAT instance is polynomially related to n. Thus an efficient

algorithm for 3SAT must use O(poly(n)) total resources.

Corresponding to the formula f is the Boolean function mapping {0,1}" into {0, 1},
where we employ the natural isomorphism between all truth assignments of the variables
Z1y...,2n and all n-bit binary strings z € {0,1}" (we take 0 to correspond to TRUE
and 1 to correspond to FALSE). Via the obvious abuse of notation, denote this Boolean
function by f(z). This isomorphism will be implicitly invoked throughout the discussion.

For instance, let the unique satisfying assignment be w € {0, 1}".

5.2 From Searching to 3SAT

The above 3SAT problem looks a lot like the search problem. In both cases, there is a
Boolean function f(z) and the goal is to find the only solution to f(z) = 0. The difference
is that, in 3SAT, we have full knowledge about how f(z) computes its output: a quantum
network Cy computing f(z) need not be considered as a black box anymore since we may

use the Boolean formula f to construct Cf.
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Suppose we construct the quantum network Cy and treat it as a black box. Suppose
we then try to solve 3SAT by “searching” for the solution w using a discrete-time quantum
algorithm. From the outset, the optimality of Grover’s algorithm dashes any hopes that
we could find w with fewer queries to C'y than roughly V2", Since each query takes ©(1)
time, any search-type scheme using the black box C; will take time Q(v/2"). Although
Grover’s algorithm is faster than any known classical 3SAT algorithm, the goal is to find

a quantum algorithm that solves 3SAT in time O(poly(n)).

A different approach is to use the structure of the formula f to our advantage and not
treat C'; as a black box. Instead of just asking “Is f satisfied by 27" we can ask “How
satisfied is f by z?” That is, given z, we can quickly calculate how many clauses of f are

violated by z. Thus we define a new function v : {0,1}" — {0,1,...},
v(z) = the number of clauses of f violated by assignment z.

Let C, be a quantum network computing the function v(z). We can think of C, as a
better oracle than Cy. In fact, the query complexity of 3SAT given C, (and given no
other information about the formula f) has been shown [vDMVO01] to be in O(poly(n)):
with O(n3) queries to C,, one can acquire enough information to construct the formula
f. In contrast, one requires O(y/2%) queries to C t to solve 3SAT. Can this apparent extra

power of C, be harnessed in a quantum algorithm?

We can rewrite the Hamiltonian Hy, = Olw){w|+E_, ., |2)(z| used in the adiabatic

search as

H,= Y [,

z€{0,1}"
where f(z) is the function that defines that search problem and we have set £ = 1 for
clarity. We aim to construct a continuous-time adiabatic algorithm {(|u), Hsgar(t), T)}
for 3SAT instances that takes advantage of any extra power that the function v(z) has

over the binary function f(z) corresponding to the 3-CNF formula f. Thus replacing f
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with v above gives a suitable candidate for the final value of the Hamiltonian as

Hysar(T) = > o(2)]2)(z],

z€{0,1}"
whose ground state is indeed |w). Thus Hsgar(7') encodes the function v(z) just like H),
encodes the function f(z) in the search problem. What might be a suitable initial value
H3sa1(0)7 In the adiabatic search algorithm, we used Hy, = Olu){u|+E >, W|z){z|W

which can be rewritten

H),= Y hsparcu(z)W|z)(z|W,
z€{0,1}™

where hsparcn(z) € {0,1} and hsparcu(z) = 0 if and only if z = 0”. Note that,
unlike the function f(z), the codomain of the function v(z) is not restricted to {0,1}
but is {0,1,...}. Using these two ideas, a suitable candidate for the initial value of the

Hamiltonian is

Hisar(0) = Y h(z)W|z)(z|W,
ze{0,1}"

for some function h : {0,1}" — {0,1,...} where h(z) = 0 if and only if z = 0" to
ensure that the ground state of Hzsar(0) is |[u) = W |0). Thus we have a candidate
continuous-time adiabatic algorithm {(|u), Hssar(t), T')} where
Hasar(t) = (1 - %) ZE{%‘;}“ B(2)W [2) (| W + %ZE{ZO:,I}H o(2)2)el,  0<E<T.

Of course, we have not proved that there exists some value of 7" such that this algorithm is
correct since we have not proved that the two smallest eigenvalues of Hsgar(t) never meet
in the interval [to,?;] (see condition 4.4 with i9 = 0). Even if the smallest two eigenvalues
do not meet, they may still come too close to each other for most 3SAT instances. This
proposed adiabatic 3SAT algorithm is just like the adiabatic search algorithm but with
the initial and final Hamiltonian values having more than two energy levels (distinct
energy eigenvalues). It is unclear whether this added complexity helps to solve 3SAT

instances faster than Grover’s algorithm.
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We stress the natural progression from Farhi and Gutmann’s search algorithm (section
3.2), to the first adiabatic search algorithm (section 4.3), to the second adiabatic search
algorithm (section 4.4), to this candidate 3SAT algorithm {(|u) , Hssar(t), T')}. Because
of the connection with Farhi and Gutmann’s search algorithm, we refer to the initial

Hamiltonian H3saT(0) as the driving Hamiltonian.

From the discussion in section 2.4, the time-evolution induced by Hsgar(t) can be
simulated with O([T max, v(z) max, h(z)]"/"=Y) resources, for e.g. r = 5, as long as we
have access to small quantum networks C, and C}, that compute the energy eigenvalue
functions v(z) and h(z). We know that C) is easily constructed given the Boolean formula
f. However, we still do not know how to choose the function h(z) given the 3SAT
instance. This development of the adiabatic 3SAT algorithm is not the one presented in
the original paper [FGGS00] by Farhi, Gutmann, Goldstone, and Sipser (FGGS). Next

we give FGGS’s presentation which specifies h(z).

5.3 FGGS’s Definition of the Proposed Adiabatic 3SAT Al-

gorithm

FGGS define the initial and final Hamiltonian values as sums of operators each acting on
at most three qubits. Let C' be a clause of the Boolean formula f involving the Boolean

variables z;., zj,, and z, or their negations.

First we give FGGS’s definition of the final value Hp of the Hamiltonian. For each
clause C, define the function h¢ : {0,1} x {0,1} x {0,1} — {0,1}

1 if 2, :==a, zj, == b, 2, = ¢ makes C FALSE,
hC’(aa b7 C) =

0 otherwise.
Define the Hamiltonian Hy ¢ for each clause by its action on the computational basis
{0,1}™:
Hr c|z) = ho ((2)ic, (2)jo, (2)ke) |2) z € {0,1}",
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where (z); is the value of the ith bit (from the right) of the basis state label z =
ZpZn—1---21, for 1 = 1,2,...,n. It is clear that each Hr ¢ acts only on three qubits.

The final Hamiltonian is
Hy =) Hrc.
c

It is straightforward to verify that this definition is equivalent to our definition of the

final Hamiltonian i.e. that Hrp = Hssap(T):

Hplz) = > Hpclz)
C

= > he (@ies (2)jos (2)ke) |2)
C

= (Z he ((z)icv (Z)jc7 (Z)k0)> |Z>
C

= v(z)|z), for all z € {0,1}".

Now we define the initial Hamiltonian Hy. Define the operator Z®:
[Z(i)] = [[]on—igon—i @ [Z] & [[]pi-159i-1,

which is the Z operator acting on the ith qubit and the identity operator acting on the
rest of the qubits. Similarly, define W as

WO =M |2 Y2 oy

1/vV2 —1/V2
which is the one-qubit Hadamard gate acting on the 7th qubit and the identity operator

acting on the rest of the qubits. Define the pairwise-commuting one-qubit Hamiltonians

H = W(z‘)% (1-2z0)wo,  i=12..n

For each clause C define the following three-qubit Hamiltonian
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and finally the initial Hamiltonian

c

n .
1=1

where d; is the number of clauses in which the Boolean variable z; appears. The following
sequence of manipulations shows that Hj is of the form of our initial Hamiltonian value

H3sa7(0):
H = idiHI(i)
=1
1 [& .
= WD d (H—Z(Z))
=1

w

Z(1)

— %W (Zd)ﬂ—Zd >« —1)“IZ><ZI‘ 4 (5.1)

=1 ze{0,1}"

- % (Zdi> o W AWw - Y Zd 1) W|z) (| W
i=1

ze{0,1}" z€{0,1}m =1

= X (QZdzl—— ))W|z><z|w

ze{0,1}"

Note that (51, d; (1 — (—1)*)) is 0 if and only if z = 0", and is greater than 0 for any
other z € {0,1}"; thus Hj is Hssa7(0) with

=3 d- () =5 Y d
1=1

i:z;=1

Note that since the d; are easily computable given the Boolean formula f, we can
construct a small quantum network that computes h(z). From f we can also construct
a network computing v(z), the number of clauses of f violated by assignment z. Thus
the time-evolution induced by Hssar(t) is efficiently simulated (with respect to T') by

the techniques of section 2.4.3. Since we are ultimately interested in solving practical
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instances of 3SAT, it is this discrete-time simulation of the continuous-time adiabatic
algorithm {(|u), HssaT, T')} that would ultimately be implemented. The continuous-
time picture is really just a convenient way of looking at things. It is unclear whether
one could actually construct the Hamiltonian Hy in the laboratory just using knowledge

of the formula f in order to implement the proposed adiabatic algorithm directly.

5.4 Intuition and the Proposed Adiabatic 3SAT Algorithm

So far the only intuition we have about how the proposed 3SAT algorithm works is based

in the adiabatic approximation. But what is the algorithm actually doing?

As in section 3.1, we can compute the action of I — iHggare in the computational
basis to get some classical intuition behind the algorithm. For this we need to compute
[H3saT(t)], the matrix of Hzgar with respect to the computational basis {|i) : i € {0,1}"}.
Note that [Hp] is just a diagonal matrix. It is a little trickier to see what [Hj| looks like.

From line 5.1 we can write

1 [ R ,
Hy == di |T—=N ¢ x®
RPOENEY

where

) 01
(XY = [T]gn—igon—i ® Lo ® [[]gi-1y9i-1.

Define M@ to be X without the higher order identity operator:

Thus the matrix of M in block form is

[M(i)]: [0]gi-159i-1 [T]gi-152i-1

R L
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Let = zyz;_1 -+ 21 € {0,1}* and y = y;y;—1---y1 € {0,1}* label a row and column of
the matrix [M®)] respectively. By inspection, the element in the zth row and yth column
of [M®)] is

) 1 if  and y differ only in the ¢th bit,
(| M |y) =
0 otherwise.

Clearly we have,

27— blocks

~

XD] = [[yuions ® [MD] = ding [ MO, [MD],....,[M0)]

2n x 2n
Let # = zpzp_1---21 € {0,1}" and y = ypyn—1---y1 € {0,1}" label a row and column of
the matrix [X (] respectively. Note that on each of the diagonal [M ®]-blocks of [X¥)],
the n — 4 higher-order (leftmost) bits of the matrix element labels z and y are constant.
For an element off of the diagonal blocks, the row and column labels differ in at least one

of these n — ¢ higher-order bits. Therefore

0 1 if z and y differ only in the ¢th bit,
(2] X |y) =

0 otherwise

and

n ) d; if z and y differ only in the ith bit,
(@] > di XD Jy) =
=1

0 otherwise

and finally

(x| Hzsar(t) |y)
%(1—%) Yoy di—i-%v(z) ifz =y,
= _% (1-%)d, if z and y differ only in the ith bit,

0 otherwise.
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With the matrix [Hsgar(t)] calculated, we can take a look at how a general state

> ze{0,1yn C=(t) [2) evolves under the Hamiltonian in small time increments:

<1 — %) % (; d; [, (t) — Cz(t)]> - %U(Z)CZ(t)] ’

where z(V) € {0,1}" differs from z only in the ith bit. Thus |z) exchanges its probability

c(t+e) =ey(t)+e-i

amplitude only with its closest neighbouring basis states (basis states whose labels differ in
exactly one bit-position). The imaginary constant i interferes with the intuition: iterating
the above step would produce powers of i and corresponding sign changes making it hard
to say whether probability amplitude is entering or leaving a basis state |z). Perhaps
iterating this step several times would produce a pattern from which we could derive
some clearer intuition. We leave this for future work. Still, we can make some more
observations. As the algorithm progresses, and ¢/T gets larger, the v(z) term plays
a bigger role. States |z) whose labels violate many clauses exchange more and more
probability amplitude as time progresses. Intuition suggests that it might be better that
such states |z) exchange just as much probability amplitude nearer the beginning of
the algorithm. Now look at the term containing (1 — ¢/7"). Near the beginning of the
algorithm, the quantity ¢, (t) — c,(t) is close to 0, so the term is ineffective. The term
is also ineffective near the end of the algorithm where (1 — ¢/T) is small. However, the
term is certainly useful as it is the one which transfers probability amplitude across basis
states. These two observations suggest that perhaps the algorithm {(|u), Hsgar(t), T)}
would be just as effective with the time-independent Hamiltonian 2H3ga1(7'/2) in place
of Hssar(t). Note that this was the case for the adiabatic search algorithm, where the

adiabaticity did not provide any advantage over Farhi and Gutmann’s search algorithm.

Hogg [HOO] has independently developed a discrete-time quantum algorithm to solve
3SAT. His algorithm is a series of steps with amplitude adjustments varying linearly with
the step and the number of clauses a basis state label violates, a common heuristic used
in classical algorithms — and, as we saw from the intuitive analysis, the same heuristic

that FGGS’s adiabatic algorithm employs. His algorithm involves four free parameters
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that can be chosen arbitrarily. For a particular value of these parameters, his algorithm
has exactly the same form as the discrete-time simulation of FGGS’s algorithm with all

the d; being equal (where we use the discrete-time simulation given in section 2.4).

This chapter motivated the definition of FGGS’s proposed adiabatic 3SAT algorithm
by developing it naturally from the adiabatic search algorithm. We briefly looked at the
classical intuition behind the algorithm, but we could draw no solid conclusions about

how efficient the algorithm is.



Chapter 6

Analysis

Farhi, Gutmann, and Goldstone [FGG00] and others [FGG+01] have run numerical sim-
ulations of the proposed adiabatic algorithm on random instances of EXACT COVER,
an NP-complete problem very similar to 3SAT. Their data suggest that the adiabatic
algorithm may be solving these instances in time O(poly(n)): they can fit a polynomial
curve (poly(n)) to the data points on a graph of pure running time 7'(n) versus input

size n < 20.

The most direct approach to an analysis, as suggested by the adiabatic approximation,
is to compute the two smallest eigenvalues of Hssar(t) for 0 < ¢ < T to see by how much
they differ. For arbitrary 3SAT instances, such a closed-form analysis has not been

possible.

This chapter contains some theorems about the behaviour of adiabatic algorithms of
a certain general form that we define in the next section. We gain some insight into the

limitations of certain adiabatic algorithms.

64
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6.1 A Generalization of the Problem

It is convenient to cast the adiabatic algorithm in a more general notation, thus empha-
sizing some essential elements of its structure. Analyzing the algorithm in this general
framework may produce insights into the limitations and capabilities of certain forms of

Hamiltonians for adiabatic algorithms.

For convenience, define
|z) = W|z), for all z € {0,1}".

We define the Hadamard basis to be {|z) : z € {0,1}"}. Let N = 2".

Note that the functions v(z) and h(z) of the previous section each induce a partition
on {0,1}":

max v(z) max h(z)

U {ze{0,1}":0v(z) =i} = {0,1}" = U {z € {0,117 : h(z) =i},

where the above two unions are disjoint. Each nonempty set in the above unions defines
a basis for an eigenspace of either Hr or H;. We make a straightforward generalization

of this below.

Let p(n) and ¢(n) be two nonnegative integer functions of n. Let P = {P;};—0.1,..p(n)
and @ = {Qk}r=0,1,...q(n) De two partitions of {0,1}", that is, the following two unions

are disjoint:

(n) p(n)
Ue={0,13"=J P
j=0

q
k=0
It will soon be clear that each subset P; defines a basis for some eigenspace of some
Hamiltonian, and likewise for each Q. With this in mind, define the projectors onto
these eigenspaces:

Q=Y. BE,  B=Y )G

ZEQL 2€P;
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Now define the two Hamiltonians Hy and H; in terms of their spectral decompositions,

qn) p(n)
H() = ZFka, H1 = Ejpj,
k=0 7=0
where the two sequences of energy eigenvalues (Ej;);j—o1, . pn) and (Fg)g=o,1,..q(n) ar€

strictly increasing sequences of real numbers. These two Hamiltonians Hy and H; are,
respectively, the generalized versions of the previously-defined initial and final Hamilto-
nians H; and Hp which define H(t)3saT. Assume further that Fy = 0 = Ey and that the
start state |u) = ‘0_”> = W |0™) is a ground state of Hy i.e. 0" € Qo. Note that Hy, like
Hi, is diagonal in the Hadamard basis and H,, like Hp, is diagonal in the computational
basis. So that we have convenient expressions for Hy and H; in these bases, we will also

write

Hy= Y F()E(z and Hi= Y E(2)2){z]

ze{0,1}" ze{0,1}"
for eigenvalue functions FE(z) and F'(z) which are defined by the partitions P and Q and
the sequences (E;) and (F}).

Let s(t) be a smooth, nondecreasing, real function of time ¢ such that
s:10,T] — [0,1],
with s(0) =0 and s(7") = 1, for some final time 7. It is clear that
Heen(t) = (1 —s(t)) Ho + s(t)Hy, 0<t<T,

is a Hamiltonian having suitable form for adiabatic quantum algorithms solving problems
for which Py contains the solutions. Note that HssaT(t) is a special case of Hggn(t).
Note also that Hggn(t) depends on many variables other than ¢ (e.g. n, p(n), g(n), the
partitions P and Q, etc.), but for a less cumbersome notation only the dependence on

time ¢ is regularly explicated.

Let Aggn denote the algorithm {(|u), Hgen(t), T')} for some T'. We assume that we

can easily construct the small quantum networks that compute E(z) and F(z) needed
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for a discrete-time simulation of the time-evolution induced by Hy and H;. We also
require that E;, Fj, € O(poly(n)) so that the energy differences of Hy and H; are small.
This ensures that the complexity of the discrete-time simulation of Aggy is polynomially

related to the pure running time 7.

The “ground eigenspace”, span{|z) : z € Py}, of H; shall be considered the solution
space of a generalized search problem. That is, for every w' € Py, the string w' is a
solution to the problem instance; the goal of the algorithm Aggy is to rotate the initial
state |u) into the subspace span{|w’) : w' € Py} so that a measurement in the computa-
tional basis renders a solution w'. As with 3SAT and BLACK-BOX SEARCH, we shall
treat the parameter n as the size of the generalized search problem. Thus the qualifiers

“exponential” and “polynomial” refer to quantities like 2" and poly(n) respectively.

With the goal of obtaining intuition about the power of FGGS’s adiabatic algorithm,
we consider some simpler adiabatic algorithms obtained from making restrictions on the

general Hamiltonian Hgen(1).

6.2 Trying to Solve 3SAT by Just “Searching with a Better

Oracle”

Consider the following problem: “What is the minimum time 7" needed such that the

Hamiltonian

H,(t) = Hgen(gq(n) :=1,|Qo| := 1;t)

p(n)
= (1—s(t)) | 0707 + 1L Y [2)(2 (t)> B
27#0 j=0

’5

~g>

=(1—8(t))F1(H—|U)(U|)+8(). E 0<t<T,

J

Il
o

(adiabatically) evolves the start state |14 (0)) = |u) to a final state |4 (T")) that is

mostly in the “solution subspace” span{|w') : w' € Py}?” We stress that the proposed
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adiabatic algorithm A4 = {(|u), Ha(t), T)} has not been proved correct for any T since
we have not shown that the smallest two eigenvalues of H 4(t) never meet in the interval
t € [0,T]. Note that A4 can be thought of as FGGS’s proposed 3SAT algorithm but with
H replaced by H/, from the adiabatic search algorithm of section 4.4. Note that A4 can
also be thought of as the continuous-time, adiabatic analogue of Grover’s algorithm but
with the oracle Oy replaced by the oracle O, (hence the title of this section). Below, I

show that A4 requires an exponentially large pure running time 7.

Let [1p4(t)) be the state evolving under H,4(t), that is, we define the initial value

problem

g la@®) = —iHa(t) Wpa(t)), 0<t<T
|14 (0)) =|u).
Let S4 be the subspace

Sa= span{Pj luy: 7=0,1,...,p(n)}.

Noting that Ef(:no) P; =1, we have |u) € Sa. Thus Sa is invariant under H4(t) since

applying H4(t) to an arbitrary vector Zf(:no) ajf?j |u) in S4 gives a vector in S4:

p(n)
HpY ;P |u)
j=0
p(n) R p(n)
= (L= )P — |up(u]) + 5 E;P; | > a; P |u)
7=0 7=0
p(n) p(n) p(n) R
= Y1 —s)Fiaj] Pilu) + [ =3 "(1 = s)Fraj (u] P |u) | [u) + D [sEjaj] Py u)
j=0 J=0 Jj=0
€ Sy

In general, suppose a subspace S of dimension d is invariant under a Hamiltonian H (t) for
all 0 <t < T and that |¢(t)) is the state evolving under H(¢). Then S is invariant under

I —iH(¢t)c for all ¢ and all constants c¢. Let U(T,0) be the total unitary time-evolution
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operator induced by H(t). From equations 1.2 and 1.3 we know that

U(0) = lim Ka(t) (6.1)
where
KMﬂEfiﬁ—ﬂ(Mﬁmﬂ%)%}
i

Thus, if [1(0)) € S, then the sequence (K (%) [1(0)))ar=1,2,... is contained in S. The limit
|1(¢)) of this sequence exists. Because vectors in S are in one-to-one correspondence with
points in C?, S can be viewed as a metric space relative to the norm metric (induced by
the inner product on S). Since C? is closed with respect to this metric, the limit of the
sequence is in S. Thus |¢(¢)) € S for all ¢. Thus the state [¢p4(¢)) remains in S4 for all ¢.

Now proceed with an analysis in the orthonormal basis B4 = {|u;) : j=0,1,...,p(n)}

|uj>51/|g|P Wy, j=0.1,....p(n).

Noting that |u) = \/Lﬁ Z?go) V| Pjl|u;), we can easily compute the outer product form of

for S4, where

H (t) restricted to Sa,

HA(t)|SA

Sa
p(n) p(n)

1
= (1-s@)F H—ﬁ \/|P||Pl|ul (ujl | +s(t ZE|UJ (ujl. (6.2)

§=0 1=0

Suppose [1p4(t)) is expressed in the basis By, as |[14(t)) = f( 0) a;(t) |uj). Clearly, the

goal of the unitary evolution is to make | (ugp|14(T)) |? = | (T)|? of constant order. The
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Schrodinger equation implies

0
aldm) = —iHalha)
p(n) p(n)
= =i | > (wg Halug) lu)(ug] | Y o |ug)
1,j=0 k=0

p(n) [p(n)
= —iy (Z (wHAuj)Oéj) |ur) ,

k=0 \j=0
where the time-dependence notation has been dropped. A straightforward calculation
gives the time derivative of |ag(t)|? as

0
§|040(?5)|2

= ful |¢A><uo|m>*+<uo|m>[(<uo| |¢A>)]
= 2Re({uol 2 fita) - (woh)")

i p(n) p(n) *
= 2Re | (ug] ('LZ (Z ukHAujmj) uk>) . ((UOZakuk)) ]
| = 7=0 k=0

[ p(n)
= 2Re iZ(uoHAuj>aj-a3]

| =0
[p(n)
= 2Im (u0|HA|uj> ajaé
L7=0
p(n)
= 2 (uo| Ha |uj) Im (01001;) [since (uo| Ha |uj) € R]
J=0
p(n)
= 2) (uo| Ha |uj) Im (apar}) [since aa™ € R, for a € (]
Jj=1
_ 7Y |P0 :
= —2(1- Z | Pj|Tm (v 07f) [by expression 6.2] .

Viewing Ep(,n) | P;|Im (ala;‘> as the dot-product of the real vectors v; =

(VIPL VI P2ls -5 4[| Ppmy]) and ve = (Im(apad), Im(apas), - ,Im(aga;(n))) and not-
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ing that |v1| < VN and |v2| < |ayg| < 1, we can employ the Cauchy-Schwarz inequality

|v1 ® va] < |ui] |v2| to get a bound on the absolute value of the above derivative:

0 2 [Pl

— <2F1\ — <t<T.

Do < 2w/ 0 <1<
Noting that a(0) = \/—% and using

T Olag(t))? 78] (1)
T)2 - 02:/ 07dzt</ P dt
B L e T
gives
| Fo| 1

T < 2F ) “2T + —.
| (T)|" < 2Fy N L+

If T is required to be such that |ag(7)|? > ¢ for some constant ¢, then
2n —1/4/27
> VUV
2F /| Py|

Thus if ITAQ\ € w(poly(n)), then the algorithm A4 requires an exponentially large
pure running time 7' and hence the best known discrete-time simulation of 44 requires
exponentially many resources to implement. Suppose rather that W]\;‘ ¢ w (poly(n)).

P, .
Then < nf for some constant ¢, and so % > # In this case, there are enough

N
|Po]
solutions w' € Py so that a good classical randomized algorithm for the problem is to

iterate the following:

e pick an element z € {0,1}" at random;

e compute E(z) and check whether E(z) =0 < z € .

It is clear that the expected number of iterations is O(poly(n)). Thus unless the problem
instance is classically tractable the adiabatic algorithm A4 requires impractically many
resources to implement. Note that if the energy eigenvalue F} were very large, then the
bound on T shrinks, suggesting that using Hamiltonians with large (w(poly(n))) energy
differences might speed up the algorithm A 4. Recall that using such Hamiltonians would

result in an inefficient discrete-time simulation of Ay4.
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Intuitively, the above result says that any adiabatic 3SAT algorithm whose final
Hamiltonian encodes the function v(z) must have a “more complex” driving Hamilto-
nian than H], of the adiabatic search algorithm — if it hopes to use only polynomially

7

many resources (we define “more complex” in the next section).

The result also has an interpretation in the context of Farhi and Gutmann’s search
algorithm from section 3.2. First note that all of the results proved in section 3.2 still
hold for H, and H, replaced with H, and H], respectively. Suppose that f(z) is the
binary function corresponding to the 3-CNF formula f that defines a 3SAT instance, and
that v(z) is the number of clauses of f violated by assignment z. We can use Farhi and
Gutmann’s search algorithm to solve the 3SAT instance in time ©(v/N). If we replace
H), =5, f(2)|z)(z] with }_, v(z)|2)(2] in the search algorithm, can we solve the 3SAT
instance in time O(poly(n))? Our result in this section implies that we cannot. To see
this, note that H},+3_, v(2)|2)(z| has the same form as 2H 4(3) and we can replace H(s)

with 2H 4 (3) in the above analysis without loss.

6.3 Allowing a More General Driving Hamiltonian

What result can we get using the above proof technique if we remove the restrictions
|Qol =1 and g(n) = 17 Let |¢gen(t)) be the state evolving under Hggn(t), that is, we

define the initial value problem

2 lpaux () = —iHaex(t) |[Paex(t)), 0<t<T

lvGEN(0)) = |u).

In this case, we proceed with an analysis in the computational basis {|z) : z € {0,1}"},
since it is not clear that the state [)gpx(f)) remains in a subspace of dimension smaller

than 2. Let K be the index of the largest set Qx:

|QK| Z|Qk| for allk:oalaaq(n)



CHAPTER 6. ANALYSIS 73

As before, we rewrite the Hamiltonian like this:

q(n)

Hepx(t) = (1—s(t) | FkI =) (Fx — Fi,) Qx ZE

k=0

We can easily derive an expression for Hggn in outer-product form: noting that

2) =W z) = 1)*]z)(yl|2) )" ) s
FEY - T
we have, dropping the time-dependence notation,

Hgpn

q(n)
= =9 [ B =YY [ - ) 3 (1= | gy
Ty k=0 2€Q
-I—SZE(Z) z)(z

Suppose |pcen(f)) is expressed in the computational basis as |YPgen(t)) =

Ziv 01 () |2). Clearly, the goal of the wunitary evolution is to make

wer, | (W hcex (T)) 1* = Y yep, o (T)]? of constant order so that we have a good
probability of discovering one of the solutions w’ by performing a measurement in the

computational basis on the final state [¢)grn(T")). The Schrodinger equation implies

0 .
gn |YcEN) = —ZZ (Z (z| Hgn |y) 7y> |z) -
¢ \y
For each solution w' € Py,

- .12
0 *
= 2Re((u'| g lpceN) - (w'[pcex)”)

= QZ '| Hapx ly) Tm ()

= —2(1-s)— ZZFK Fo) | D0 (=00 ) Im (yuy;)

y;éw’ k=0 2€Q
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where the last two lines hold because Im(7y,v;,) = 0. If the strings z € Q) were somehow

“random enough”, we would expect the sums (Z (—1)Z°(w'@y)> to be close to 0. This

ZEQk
would suggest that the derivative is small for an average problem instance. Without going
into statistics about typical problem instances, we can only bound the size of these sums

by |Qk|. Using this bound for every w' € Py and using ‘Z Im(a, o )‘ < VN we get

) o 120] L
% &|7w,| T max Fy, - dim (span{| )z €Qk} ) .
w 0

Integrating from ¢ = 0 to ¢ = T as before, in order to lower-bound by a constant ¢ the
total probability of finding a solution, we require

e VN - |Po|/VN

= 2|Py| - maxy F, - dim (span{|z) : z € Qg } )

Assume that the number of solutions |Py| is small. Thus if the dimension of the space or-
thogonal to the largest eigenspace of Hy is small, then the algorithm {(|u), Hgrn(t), T)}
requires exponential time 7'. In other words, the driving Hamiltonian must have at least
two large, mutually-orthogonal subspaces in order for the algorithm to work quickly. In
general, and in the case of Hgar, the driving Hamiltonian indeed has two large mutually-

orthogonal subspaces.

6.4 Searching with a More Complex Driving Hamiltonian

Consider the following problem: “What is the minimum time 7" needed such that the

Hamiltonian

Hp(t) = Hgex (p(n) := 1,|Py| := 1;t)

(1— st ZF (Z] + s() By ([— |w)(w]), 0<t<T

(adiabatically) evolves the start state |1 (0)) = |u) to a final state [t (T")) that is close to

|w)?” Thus we investigate the power of the driving Hamiltonian Hy when H; is restricted
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to being H,, from our adiabatic search algorithm. The result we get is analogous to the
result of section 6.2. As a corollary to the result, we reproduce the proof of optimality of

Farhi and Gutmann’s search algorithm in the present context.

We perform the analysis in the Hadamard basis {|Z) : z € {0,1}"}. Noting that

ZZ =2)) 7],
we have
(1-s ZF (z] + sE; (H——ZZ 1)vetoy) Iw>(y|>
Letting |4(t)) = >, B-(t) |Z), the Schrodinger equation implies that
%W) = —iHply) = —IZZ z| Hp [y) By |2) -

Instead of bounding the rate at which probability amplitude flows into the solution state

|w), we bound the rate at which it flows out of the start state |u). Noting that (u|¢(t)) =
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50 (t)a

76

D g = w2 |¢><u|¢>*+<u|w>[(<| 1)) | = 2Re(Cul g 1) ()

= 2Re |(ul (—iZZ@wB [9) By |f>> : <<u|2ﬁz |f>)]
L x Yy z

= 2Re (—iZ(O_n\HB@wy)-ﬁg] [since |u) = |07)]
L Y

= 2Im | ) (07| Hp [7) ﬁyﬁa‘]

L Y
= 23 (07| Hp ) Im(B,;) [since (07| Hp [7) € R]

= 23 (07| Hg[y)Im(B,5;) [since Tm(fof35) = 0]

y#0
_ gz< 5L pywe 0“@y>lm(ﬁyﬁ6‘)
y#0
= Sy,
y#0
_ _2:;\1;1 Z(—l)wwlm(ﬂyﬁé) [since Im(SBy55) = 0].

y

Using the Cauchy-Schwarz inequality we get the bound

2E
L 0<t<T

AP
GlOE < T 0<is

Noting that £y(0) = 1 and using

s o = [ AP " |0l
() = o (0)” = [ A e > — [ 2B
gives
2y 2
[Bo(T)I" =1 Noak

In section 8.4 of the Appendix, we prove that the following inequality holds:

| (wlyp(T)) P + [ (ulps(T)) I < 1+ (ulw) |-

(6.3)
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This implies

which implies that the algorithm {(|u), Hp(t), T)} requires exponentially large pure
running time 7" in order to compute w with sufficiently high probability. In our generalized
adiabatic setting, the result effectively bounds the power of any driving Hamiltonian that
is diagonal in the Hadamard basis, in the presence of a final Hamiltonian that encodes the
binary function f(z) that defines the generalized search problem having a unique solution

w e {0,1}", i.e. f(z) =0 if and only if z = w.

As in the last paragraph of section 6.2 we can interpret our result in the context of
Farhi and Gutmann’s search algorithm. Note that the optimality result proved in section
3.2 still holds if we replace H,, and H,, by H] and H], respectively. Thus we have a result
saying that no (unrestricted) driving Hamiltonian can work faster than H], if it must do
so on most problem instances. How is this result affected if we restrict Hp to be diagonal
in the Hadamard basis? To answer this question we need to examine the Hamiltonian
Hy + H,. But note that Hy + H, is of the form 2Hp(3) and we can replace Hp(s)
with 2H B(%) in the above analysis without loss. Thus we get the stronger result that no

(restricted) driving Hamiltonian can outperform H, on even one problem instance.

In sections 6.2 and 6.4, we saw two proposed adiabatic algorithms that provably
require large pure running times. We also gave interpretations of these results in the
context of Farhi and Gutmann’s search algorithm. In section 6.3, we showed that if an
adiabatic algorithm is to require a pure running time 7" in O(poly(n)) then its driving
Hamiltonian must have at least two large, mutually-orthogonal eigenspaces. Note that
combining techniques of section 6.3 and section 6.4, we can get the result (analogous
to the result in section 6.3) which says that if an adiabatic algorithm is to require only

T € O(poly(n)), then its final Hamiltonian must have at least two large, mutually-
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orthogonal eigenspaces. Combining the two results, we have that if an adiabatic algorithm
is to require only T' € O(poly(n)), then both its driving and final Hamiltonians must have

at least two large, mutually-orthogonal eigenspaces.
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Conclusion

In this work we have presented FGGS’s proposed adiabatic 3SAT algorithm [FGGSO00]
as a natural extension of Farhi and Gutmann’s search algorithm [FG98]. Although we
were unable to determine whether the 3SAT algorithm is efficient in general, we did prove
some relevant theorems about the behaviour of adiabatic algorithms by using a simple
derivative-bounding techinique. We close with some known lower bounds and possible

future areas of research.

7.1 Known Lower Bounds

The derivative calculation in section 6.3 certainly allows for the possibility that there
exists functions E(z) and F(z) such that the adiabatic algorithm {(|u), Hgen(t), T)}
solves the generalized search problem in O(poly(n)) time. In fact, it has been shown
[vDMVO01] that when E(z) = F(z) = |2| = )_i", % for all z122---2, € {0,1}", the
distance between the smallest two eigenvalues of Hggn(t) reaches a minimum of % at
s(t) = . Thus, in that case, the algorithm succeeds with high probability if 7 € O(1).

When E(z) = |z| = F(z) for all z, the total Hamiltonian can be written as a sum of n

one-qubit Hamiltonians. This special structure makes the minimum distance between the

79
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smallest two eigenvalues of constant order. If merely E(z) = F(z) for all z, the minimum
distance between the smallest two eigenvalues can be exponentially small. An example
of this is the adiabatic search algorithm with solution w = 0™; the result in section
6.4 implies that regardless of the solution w the algorithm {(|u), Hag(¢), T)} requires
T € Q(VN), hence by the adiabatic approximation the minimum distance between the

two smallest eigenvalues must be O(ﬁ)

The restriction P = Q makes the generalized search problem classically tractable:
the solution is always 0". With regard to 3SAT, P = Q holds only if the given Boolean
formula is satisfied when z; := 0 for all + = 1,2,...,n. It is not so surprising that a
classically tractable problem is quickly solvable by the adiabatic approach. However,
it was also shown [vDMVO01] that there exists a classically tractable generalized search
problem with p(n) = n = ¢(n) where the minimum distance between the smallest two
eigenvalues of Hgpn(t) is exponentially small. Moreover, using a similar technique, it
was shown [vDV02] that there exists a family of 3SAT instances such that the minimum
distance between the smallest two eigenvalues of Hssar(t) is exponentially small. This

particular family of 3SAT instances is classically tractable.

7.2 Future Directions

The following problems may suggest interesting avenues of investigation.

e Ifit exists, find a classically intractable family of 3SAT instances for which FGGS’s

proposed adiabatic 3SAT algorithm requires exponentially large pure running time.

e Do the results of chapter 6 hold for operators other than the Hadamard operator
w?

e Derive the adiabatic approximation theory in the special case H(%) = (1 —
%)WD1W + %Dg with Dy and Dy diagonal. Does this give any further insight
into the behaviour of FGGS’s proposed 3SAT algorithm?
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e Our general adiabatic scheme uses Hamiltonians of the form H(s) = (1—s)Hy+sH].

Consider other paths from Hy to H; that may be easier to analyze.
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Appendix

8.1 Asymptotic Notation

Let n € {0,1,...}, and let f(n) and g(n) be asymptotically nonnegative, real functions
of n i.e. there exists ny > 0 such that n > ny implies that f(n) > 0, and similarly for

g(n). We have the following definitions:

©(g(n)) ={f(n) :  there exist positive constants c;, ¢z, and ng such that

0 <cig(n) < f(n) < cog(n) for all n > np}

O(g(n)) ={f(n):  there exist positive constants ¢ and ng such that

0 < f(n) <cg(n) for all n > ng}

o(g(n)) ={f(n):  for any positive constant ¢ > 0, there exists a constant ng > 0

such that 0 < f(n) < cg(n) for all n > ny}

Qg(n)) ={f(n):  there exist positive constants ¢ and ny such that

0 <cg(n) < f(n) for all n > ng}

82
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w(g(n)) ={f(n):  for any positive constant ¢ > 0, there exists a constant ng > 0

such that 0 < cg(n) < f(n) for all n > ng}.
We also use the following abbreviation:

poly(n) = n* for some constant k.

We use jargon like

‘...the algorithm uses O(poly(n)) time...” to mean that the time is
a function of n, say, T'(n), such that T'(n) € O(poly(n)). When using € > 0 which is
intended to be considered in the limit as € approaches 0, we have the following definitions

(for example):

o(g(e)) ={f(e) :  for any positive constant ¢ > 0, there exists a constant ey > 0

such that 0 < f(€) < cg(e) for all € < ¢},

1 1
@) (g (—)) ={f (;) : there exist positive constants ¢ and €y such that

1 1
0<f <—> <cg (—) for all e < €p}.
€ €

Combining and extending the above definitions, we use the following definitions when ¢;
and go are asymptotically nonnegative functions of n:

1
O(poly(g1(n), g2(n), E)) ={f(n): there exist positive constants c, k, k', k", €q,

gt (n)g5 (n)

and ng such that 0 < f(n) <c¢ o
€

for all n > ng and all € < ¢ }.

8.2 Proof of Equivalence of 22, 23, and 24

The following are equivalent:

o HJJZI e ot = szl e oo for all t > 0 and any permutations 7 and 7' of

{1,2,...,J} (22)
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e H; and H; commute for all 7 and j (23)

° e*i(H1+H2+...+HJ)t — e*iHltefngt .. e*iHl]t for all ¢ Z 0. (24)

That 23 implies 24 is stated in exercise 4.47 in [NC00] and is straightforward to show.
That 24 implies 22 is clear by commutativity of operator addition.

That 22 implies 23 can be shown as follows. For J=2, we have that

T+ (=it)(Hy + Hy) + (—it)?(H? + HZ + H Hy) + i B(n)t"

n=3

=1+ (—it)(H, + Ho) + (—it)>(H? + H? + HyH,) + i C(n)t"

n=3

for all ¢, for operators B(n) and C(n). Differentiating twice with respect to ¢ gives
H\Hy — HyHy = A(t)

for all t where A(t) = 30 ,[B(n) — C(n)]n(n — 1)t"~2. Since the left side of the above
equation is independent of ¢, we must have A(t) = c¢ for all ¢ where ¢ is independent of
t. Since A(0) = 0, we have A(t) = 0 for all ¢. Thus H; and Hs commute. Suppose that

Hy,H>,...,H;_1 commute. If 22 holds, then we can show that H; commutes with Hy

for k=1,2,...,J —1 as follows. In one instance of 22, we certainly have that
J-1 J-1
H p—iHjt | p—iHyt ,—iH st _ H o—iHjt | o—iHt,—iHyt
j=15ik J=Lj#k

for all ¢. Letting Dy (t) denote the operator in parentheses in the above equation, we can

apply D, '(t) on both sides to get
67int67iH‘]t — efiH‘]tefint
for all ¢. It follows that Hy and H; commute by the method used above to show that

H, and Hy commute. Thus Hy and H; commute for all £ = 1,2,...,J — 1. Thus, by

mathematical induction, 22 implies 23.
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8.3 How to Check Polynomially Many Elements Against
the Search Oracle by Controlling the Driving Hamilto-

nian

We give the discrete-time quantum algorithm first, and then explain how it could be
implemented by merely controlling the driving Hamiltonian Hp(¢) in the presence of the

persistent Hamiltonian H,, = E|w)(w|.

Define the unitary operator U; for all ¢ € {0,1}" by its action on the computational

basis states:

fori £ 0"  U;:|0") |0™) + |2)

#) 107) = I2)
|2)
fori=0: Up:|z)

|z), forall z #0",4,

I 1 1 1

|z), forall z € {0,1}".
where we have ignored normalization factors. Note that U; can be decomposed as
U = S182+++ S« Viyy - (S182+ - Syt (8.1)

where |i| denotes the Hamming weight of ¢, the S; are SWAP gates, and Vj acts on n
qubits like this:

Vi [07) s [07) + ‘1’60"—’€>
|1n> — |0n> _ ‘lkon—k>
|z) = |z), forall z € {0,1}" such that z # 0%y, 1%y for any (n — k)-bit string y.
The operator Vj, can be carried out with the following steps [Z02]:

e controlled-NOT on each of the leftmost £ — 1 qubits conditioned on the kth qubit

being 0 and the rightmost n — k qubits being 0
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e controlled-Hadamard gate on the kth qubit condtioned on the leftmost k£ — 1 qubits
being 1 and the rightmost n — k qubits being 0

e repeat first step (it is its own inverse).

From exercises 4.29 and 4.30 in [NCO00], it follows that the above steps may be per-
formed without any ancillary qubits and with O(n?) one- and two-qubit gates. Since, the
SWAP gates are each simple two-qubit unitary operations, U; may be carried out by a

O(poly(n))-sized sequence of one- and two-qubit operations without any ancillary qubits.

Let D; be the gate which maps |0") to |), and |7) to |0™), and leaves other basis states
unchanged. The operator D; can be implemented with no ancillary qubits using the same

“swapping” approach that we used to implement V.

Define the operator Oy as in section 3.3,
Of :|2) = (1)@ |z), (8.2)
where f defines the search problem instance

lif z=w
f(z) = (8.3)

0 otherwise.

The following is the required algorithm:

start with state |0™)

pick any 7 € {0,1}", ¢ # 0", and apply UZ-TOfUi

perform a measurement in the computational basis

if result of measurement is 7 (then either w =14 or w = 0")
apply D; (to reset register to |0™))

pick any j € {0,1}", j # 0", j # i, and apply U}Oij
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perform a measurement in the computational basis

if result of measurement is j then RETURN w = 0", else RETURN w =1

e else (now we know w # 0")
choose a random subset {g(i) : 4 = 1,2,..., M} of {0,1}" with M € O(poly(n))
t t t
apply the operator Ug(M)Ong(M) . Ug(M,l)Ong(M—l) e Ug(l)Ong(l)
perform a measurement in the computational basis

if the result of the measurement is z # 0" then RETURN w = z, else FAIL.

It is clear that the above algorithm requires only O(poly(n)) resources. The first part of
the algorithm, which checks to see if w = 0", is straightforward to verify. Suppose w # 0.
If g(i) # w, then U OUyq) |07) = [07). But if g(i) = w, then U}, O;Uyqsy [0") = |w).
Also if g(i) # j # 0™, then U;(i)Ong(i) |7) = |4), so that if we find the solution along
the way, we keep it right up until the last measurement is performed. This proves the

correctness of the algorithm.

It remains to argue that the above algorithm can be implemented by controlling the
driving Hamiltonian Hp(t). From the discussion in section 3.2, the operation Oy can be
effected by setting Hp(t) = 0 for a period of m/E seconds. To perform U;, we assume
that we know the sequence of natural Hamiltonians (suitable for the given implementation
scheme) implementing U;. The problem is that H,, = E|w)(w| is present. Recall that we
know the energy value E which is also the energy difference |AH,,|. From the discussion
in section 2.4.2, |AH,| can be thought of as the rate of the rotation induced by H,,. We
can effectively “drown out” this rotation by ensuring that |[AHp(t)|| > F when Hp(t) is
not zero. We take the sequence of natural Hamiltonians implementing U; and increase the
energy differences sufficiently in order to perform each desired rotation in a shorter time
interval such that the rotation induced by H,, in that same time interval is negligible.
Note that this viewpoint clarifies the dependence on E of the lower bound 3.2: the only

information we have about the solution w comes from H,, at a fixed “rate” E.
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8.4 Proof of Inequality 6.3

88

Let |u), |w), and |1) be any three unit vectors in a complex inner-product space. Let

) = alu) +blw) +cl|v),  where |[v) € span{|u),|v)}t,

and (v|v) = 1. Suppose (u|w) = re? for 0 <r < 1 and let
‘u'} =e?u)  and ‘w'> = e |w)
so that
0 < (ulw') = (vjw)y =r < 1.

So we get the following inequality:

1 = (@)
= |a® 4+ b]* + |¢|* + 2Re((u|w) a*b)
= Ja|> + [b]> + |¢[* + 2Re({u|w') a*be'?)
= a2 4 b]® + |¢|® + 2rRe(a*be!?)
= |a|?> +10)* + |¢|® + 2rRe(ab e )

|a|? + |b]? + 2rRe(ab*e 7).

v

As well, since |a £ bel?|? > 0, we have another inequality:

T2Re(ab* e ?)

IN

jaf® + [bf?

& |2Re(ab*e )|

IN

jaf® + [bf?.
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Thus

| (wly) [* + | {uly) |”

as required.

ININ AN

W) P+ 1 () P

la (w'|u) + bel’|? 4 |ae ¥ 4+ b (u'|lw) |?

(ar +be?) (a*r + b*e™) + (ae™ +br)(a*e? + b*r)

(la)® + [b* + 2rRe(ab*e ™)) + r((|a)® + [b]*)r + 2Re(ab*e™1?))
14 r((Ja]* + |b|?)r 4+ 2Re(ab*e™'))  [by inequality 8.4]

1+ 7((la]* + |b]*) + 2rRe(ab*e %)) [by inequality 8.5]

1+ 7 [by inequality 8.4]

14 [ {ufw) |
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