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Abstract

Structural data modeling is an important field of research. Structural data are the combi-

nation of latent variables being related to each other. The incorporation of these relations

in modeling and taking advantage of those to have a robust estimation is an open field of

research. There are several approaches that involve these relations such as Markov chain

models or random field frameworks. Random fields specify the relations among random

variables in the context of probability distributions. Markov random fields are generative

models used to represent the prior distribution among random variables. On the other

hand, conditional random fields (CRFs) are known as discriminative models computing

the posterior probability of random variables given observations directly.

CRFs are one of the most powerful frameworks in image modeling. However practical

CRFs typically have edges only between nearby nodes. Utilizing more interactions and

expressive relations among nodes make these methods impractical for large-scale applica-

tions, due to the high computational complexity. Nevertheless, studies have demonstrated

that obtaining long-range interactions in the modeling improves the modeling accuracy and

addresses the short-boundary bias problem to some extent. Recent work has shown that

fully connected CRFs can be tractable by defining specific potential functions. Although

the proposed frameworks present algorithms to efficiently manage the fully connected in-

teractions/relatively dense random fields, there exists the unanswered question that fully

connected interactions are usually useful in modeling. To the best of our knowledge, no

research has been conducted to answer this question and the focus of research was to

introduce a tractable approach to utilize all connectivity interactions.

This research aims to analyze this question and attempts to provide an answer. It

demonstrates that how long-range of connections might be useful. Motivated by the an-

swer of this question, a novel framework to tackle the computational complexity of a fully

connected random fields without requiring specific potential functions is proposed. In-

spired by random graph theory and sampling methods, this thesis introduces a new clique

structure called stochastic cliques. The stochastic cliques specify the range of effective

connections dynamically which converts a conditional random field (CRF) to a randomly-
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connected CRF. The randomly-connected CRF (RCRF) is a marriage between random

graphs and random fields, benefiting from the advantages of fully connected graphs while

maintaining computational tractability. To address the limitations of RCRF, the pro-

posed stochastic clique structure is utilized in a deep structural approach (deep structure

randomly-connected conditional random field (DRCRF)) where various range of connec-

tivities are obtained in a hierarchical framework to maintain the computational complexity

while utilizing long-range interactions.

In this thesis the concept of randomly-connected non-local conditional random fields

is explored to address the smoothness issues of local random fields. To demonstrate the

effectiveness of the proposed approaches, they are compared with state-of-the-art methods

on interactive image segmentation problem. A comprehensive analysis is done via different

datasets with noiseless and noisy situations. The results shows that the proposed method

can compete with state-of-the-art algorithms on the interactive image segmentation prob-

lem.
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Chapter 1

Introduction

Graphical models [84, 170] are one of the most important field of statistical machine learn-

ing which try to encode the statistical computational models dealing with structural data

via a graph representation. The random variables are represented by nodes and the in-

teractions among them are visualized via weighted edges in the graph. Nowadays, several

fields of machine learning such as computer vision [13, 89], speech recognition [53, 129]

and natural language processing [28] utilize graphical models to formulate and solve prob-

lems. Computer vision due to dealing with images is the field with most usage of graphical

models specially random fields [13, 45, 96].

Computer vision applications have been usually proposed to provide a solution to natu-

ral images such as human body images [4, 107] (MRI, OCT) or natural scenes [94, 150] and

man-made objects. The most important intrinsic property of those images is the relations

among pixels in the image, specially when the pixels are close to each other. This property

implies that neighbor pixels should have same color intensity. Due this fact, probabilistic

graphical models have been trying to take advantage of this property and to address various

type of problems [65, 128]. Incorporating different size of interactions is the focus in this

challenge [89] and researchers have been trying to provide more interactions in their models

by introducing tractable approaches. This research aim at stepping toward analyzing those

approaches and answers the question that there is any way to determine how to configure
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the underlying graph representation of a graphical model to produce an optimal model.

Here we restrict our focus to conditional random fields (CRFs) [80, 98] and we study the

effect of long-range non-local connectivity in modeling accuracy. Motivated by the answer

of the question, we propose an efficient framework to address the computational complexity

in the inference step of long-range non-local random field models. In this dissertation, the

idea of randomly-connected non-local conditional random fields is explored to address the

aforementioned issues of local random fields.

1.1 Problem Definition

Probabilistic graphical models are the way to visualize probabilistic models which ease the

understanding of these models, unify and generalize them in the context of graph theory.

Random fields are a type of graphical models utilized to model 2-D problems such as

computer vision applications [89, 96, 185]. Random fields model the problem by taking

advantage of the relations among different pixels in the image. Each pixel or super-pixel is

represented by a random variable in the random field and it models the image by computing

the relations among the random variables. Those relations are expressed as energy over

the random field. Based on the Gibbs theory [45] the energy propagates in the random

field to reach an equilibrium state. The relations among random variables are simulated

by the Gibbs energy and the estimation is obtained by finding the equilibrium over the

random field.

Conventionally, local interactions are applied to define the energy function. This is

because of computational complexity of inference step. The computational complexity is

increased by adding more interactions in the model and it has quadratic relation with the

number of interactions. The ability of the local CRFs1 is limited to model long-range

connections and generally leads to excessive smoothing of object boundaries.

1We use the terms of “random field” and “conditional random field” sometimes in the text interchange-

ably. Although the main focus of this thesis is on CRF models, it is possible to extend all algorithms to

other types of random fields as well.
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In order to improve modeling accuracy and providing the longer-range of connections,

researchers have expanded the local framework to incorporate hierarchical connectivity

and higher-order potentials [43, 65, 94] defined on image regions. Unsupervised image

segmentation usually provides the higher order connectivity structure in the majority of

these frameworks. Although these approaches incorporated higher order connectivity in

modeling, their accuracy is necessarily restricted by the effectiveness of unsupervised image

segmentation.

Global connectivities can prevent smoothness in inference and labeling step. In addi-

tion, fully connected random fields can encode both color contrasts and spatial arrange-

ments of different nodes by edge potentials instead of grid random field (locally random

fields) where the edges only serve the contrast sensitive smoothness. Therefore, new re-

searches have been conducted to address this problem recently [89, 185].

Although the proposed frameworks [89, 185] presented algorithms to manage the fully

connected interactions, there exists a question that fully connected interactions are always

useful in modeling. To the best of our knowledge, no research has been conducted to

answer this question and the focus of researches was to introduce a tractable approach

to utilize all connectivity interactions. Here we aim to take advantage of random graph

theory and model the dense and non-local random fields via a stochastic process. By use

of this approach, the underlying dense graph of random field is modeled by a sparse graph

which addresses the computational complexity of the inference to some extent.

1.2 Challenges and Objective

Despite the fact that several methods and algorithms have been proposed to tackle different

aspects of long-range non-local random fields, it is still considered as an open-field of

research and there are many unanswered questions in this area yet. Although it has been

shown that the long-range non-local random fields can improve the modeling accuracy

compared to local random fields, generating the long-range interactions in the underlying

graph and also managing the computational complexity of the new model are still the big

3



challenges of these approaches:

• Although it has been shown that fully-connected random fields improve modeling

accuracy in several problems, there is no comprehensive answer to the question that

how many connections are needed to have an accurate model.

• Increasing the number of interactions in the random field modeling has a significant

effect on computational complexity, therefore proposing a strategy to make a trade-

off between modeling accuracy and computational complexity is another challenge in

this field.

Several algorithms have been conducted to tackle the aforementioned challenges either

addressing only one aspect or proposing a method to solve them simultaneously. These

methods can be divided in different categories depends on their focus in formulating the

problem which mainly are proposing new penalty functions, reformulating the potential

functions to reduce the computational complexity and applying higher order cliques or

longer-range of connectivities via a less computational complexity burden framework. The

first and second categories usually are associated with some limitations. Here in this

dissertation, our main objective is to tackle the aforementioned challenges via the third

category and we follow these objectives through this thesis:

• As the first objective, we will study whether utilizing larger number of long-range

connectivities always helps to improve the modeling accuracy or not. We will demon-

strate the advantages and disadvantages of longer-range of connectives via different

examples.

• Motivated by those examples, the main objective will be a new representation for

the underlying graph of random fields such that while it utilizes the long-range con-

nectivities it maintains the computational complexity as well.

• It has been shown that hierarchical models have the ability to capture global and

local information in modeling random fields in several problems. As the last objective,
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we aim to take advantage of hierarchical models to obtain more useful information

combined with the achievement of the second objective to model the underlying graph

of random fields more efficiently and accurately.

The proposed methods based on the above objectives will be examined within the

context of interactive object segmentation problem and they will be analyzed in terms of

performance and behavioral in random fields modeling.

1.3 Contribution

The described objectives in this research lead to the following contributions:

• Proposing a new clique structure, stochastic clique, [146] which is the marriage of

random graph theory and random field theory. The stochastic clique structure takes

advantage of long-range connectivities via random graph theory within a stochastic

process. The stochastic process determines which set of cliques are more informative

in the inference step.

• Randomly-connected conditional random field (RCRF) [139, 146]; applying the stochas-

tic clique structure into the random field modeling leads to a new representation for

the long-range non-local random fields which the interactions among nodes are ran-

domly determined and as the result, the structure of underlying graph is random. The

proposed RCRF model creates a random field where only the most useful long-range

and non-local interactions are incorporated in the modeling. The computational

complexity of modeling procedure is maintained while long-range connections are

involved in the modeling using this approach.

• Deep structure randomly-connected conditional random field (DRCRF) [145]; incor-

porating stochastic cliques makes the use of non-local and long-range connectivities

applicable, however there is a limitation to the number of interactions which is mostly

related to the inference algorithm. Although utilizing stochastic cliques decreases the
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number of active cliques in the inference step, inference methods are not capable of

maintains huge number of connectivities in the random field modeling yet. To ad-

dress this problem, we aim to apply a deep structure model which utilizes a subset

of connectivities in each level of hierarchy and it helps the inference method to be

able to handle the inference process easily.

All the described contributions are combined together at the end to work as a unique

framework to model the problem via the context of non-local and long-range random field.

1.4 Thesis Structure

This thesis is organized in six chapters. Chapter 2 introduces graphical models and various

type of random fields. This chapter provides a mathematical definition for random fields

specially discriminative model and conditional random fields. Then, an overview of fully

connected random fields and proposed tractable approaches are presented. In Chapter 3

we analyze the effect of long-range interactions in random field modeling for different

set of simulated examples. Motivated by those examples, we introduce the concept of

stochastic cliques and we propose randomly-connected conditional random field model.

Our proposed deep structure randomly-connected conditional random field is explained

in Chapter 4 and we analyze its behavioral in this chapter. We examine the proposed

methods along with several state-of-the art approaches in Chapter 5 and we evaluate them

in different situations. Finally, thesis is concluded in chapter 6 and future directions for

this dissertation are provided at the end.
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Chapter 2

Background & Related Work

“Graphical models are a marriage between probability theory and graph theory. They provide

a natural tool for dealing with two problems that occur throughout applied mathematics

and engineering – uncertainty and complexity – and in particular they are playing

an increasingly important role in the design and analysis of machine learning algorithms.

Fundamental to the idea of a graphical model is the notion of modularity – a complex

system is built by combining simpler parts. Probability theory provides the glue whereby

the parts are combined, ensuring that the system as a whole is consistent, and providing

ways to interface models to data. The graph theoretic side of graphical models provides

both an intuitively appealing interface by which humans can model highly-interacting sets

of variables as well as a data structure that lends itself naturally to the design of efficient

general-purpose algorithms.”

Michael I. Jordan [74]
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2.1 Graphical Models

Probabilistic graphical models [74, 84, 170] are powerful tools to combine graph theory and

probability theory in a unified formalism for statistical multivariate problems. Probabilistic

graphical models (usually called graphical models) are utilized to represent probabilistic

models in a visual way to make them easier to interpret. There are several probabilistic

models such as hidden Markov models (HMMs) [128], Markov random fields [27, 40, 104],

Kalman filters [40, 175] and Bayesian networks [10, 161] which have been utilized in different

applications. The role of a graphical model is to ease the understanding of these models, to

unify them and to generalize them in the context of graph theory. For instance, HMMs and

Kalman filters can be described with a common graphical model (Figure 2.1). A graphical

model is a natural tool to formulate the variations of these classical models, especially

when a large numbers of interacting variables are being studied together.

Graphical models are the combination of probabilistic models and graph theory. Graph

theory plays an important role as a language to formulate probabilistic models. Further-

more, it is a useful tool to express computational complexity and feasibility when designing

a model. In particular, the running time of an algorithm or the magnitude of an error bound

can often be characterized in terms of structural properties of a graph.

A graph G = (V , E) is formed as a collection of vertices V = {v1, v2, . . . , vm} and the

(a) (b)

Figure 2.1: The graphical model realization of a HMM and a Kalman filter. The difference

between (a) the HMM and (b) the Kalman filter is that the number of states yi is indefinite

in the Kalman filter while it is finite in HMM. xi represents the measurement at time i

where yi is the associated random variable of time i.
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set of edges E ⊆ V × V where each edge is encoded via a pair of vertices {vi, vj} ∈ V (its

two end nodes). The edge eij may be undirected or directed, such that edge (vi → vj) is

different from (vj → vi) in directed graphs.

Each random variable yi of a probabilistic model Y = {y1, y2, · · · , yn} is represented as

a node vi ∈ V . The dependency between two random variables yi and yj is expressed by

the edge eij or eji when it is modeled by a directed graph. The first subscript represents

the starting point (parent node) while the second one shows the ending point (child node).

The edges eij and eji are identical since there is no direction in an undirected graph.

There are causal relations among variables in applications such as temporal problems.

For example when you want to predict the weather condition based on some previous days,

you have a set of random variables yt that are dependent on each other and the condition

of a new day yt+1 is a consequence of previous days y1:t. Therefore, in such applications

the interactions among random variables must be characterized by direct relations, such

that the state of the new day is a child of earlier ones. The directed graphical model is the

target for these types of applications since there are causal interactions among the random

variables. Hidden Markov models [128] and other types of Bayesian networks [161] are

examples of directed graphical models.

Mathematically speaking, a graphical model is a collection of marginal probability

distributions factorized according to the underlying structure of the graph. The key idea

in the graphical model is the factorization that will be explained more in Sections 2.2, 2.3

and 2.4. For a directed graphical model, P (Y ) can be computed based on the chain rule

where each variable is marginalized given its ancestors (parent) variables (nodes):

P (Y ) = P (y1, y2, . . . , yn) = P (y1|y2, . . . , yn) · P (y2|y3, . . . , yn) · . . . · P (yn) (2.1)

the set of all random variables is shown by Y and n = |Y | is the number of random

variables. To reduce the complexity of (2.1), Markov assumption is usually applied. The-

oretically speaking (i.e., statistical definition) Markov assumption refers to the property

of conditional probability distribution of future states of the process depends only on the

present state or the limited number of past states. Based on this definition each random
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variable can be modeled given a specific amount of information from the past:

P (yt+1|Y ) = P (yt+1|yt) (2.2)

here it is assumed the future state of yt+1 only depends on the preset. Incorporating the

Markov assumption (Section 2.3.1), the marginal probability of each variable yi given other

variables can be formulated as

P (yi|Y ) = P (yi|yπ(i)) (2.3)

where random variable yi ∈ Y and yπ(i) ⊂ Y is the set of parental nodes for random variable

yi. In other words, yπ(i) determines the set of random variables that node i is dependent

on. Substituting (2.3) into (2.1), the joint probability distribution of all random variables

can be factorized in the following way

P (y1, y2, . . . , yn) = P (Y ) =
n∏
i=1

P (yi|yπ(i)). (2.4)

There are several applications such as image modeling where no specific causality among

the random variables can be determined. Each pixel or super-pixel (Section 2.4.1) is

modeled by a random variable. Since there does not exist any causal relation among the

pixels (nodes) in the image, it is not possible to specify any direction between two nodes

(i.e., edge direction) or random variables in those applications. Therefore, undirected

graphical models are the best choice of modeling in such applications. Based on the

Markovianity assumption, the probability distribution is factorized via a set of functions

defined via the parent nodes of each random variables and the conditional independence

assumption that will be explained in Section 2.3.1.

The probability distribution of an undirected graphical model is factorized via a set of

functions ψ(yc) : Rd → R+

P (y1, y2, . . . , ym) =
1

Z

∏
c∈C

ψ(yc) (2.5)
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where yc is a sub-set of random variables which are connected based on the Markovianity

property of the graph. Function ψ(·) must be non-negative and it is called potential func-

tion. Parameter Z is a normalization constant to enforce the output value as a probability

(i.e., P (y1, y2, . . . , ym) ∈ [0, 1]), since ψ(·) can be any non-negative arbitrary function. The

normalization constant Z is the summation over all configurations to represent the output

value as a probability.

In summary, there are two most common types of graphical models: Bayesian networks

(or belief network) [11, 161] and Markov networks (or Markov random fields) [14, 45,

172]. The former ones are represented by directed graphs while the latter ones are mostly

visualized via undirected graphs.

Over all mentioned types of network structures, computational complexity is an im-

portant aspect in the graphical model approaches [85]. The goal of modeling usually is

to find the joint distribution P (·) over a some set of random variables. Let us assume

that the variables are binary-valued and there are n variables, therefore, a joint distribu-

tion requires the specification of 2n numbers of different assignments of values. However,

there are some relational structures among random variables and they can be illustrated

in the factorization step (2.5) which reduces the required number of calculations. The

conditional independence property can be utilized to represent such high-dimensional dis-

tributions much more compactly. The marginal probability of each random variable is

only represented by conditioning on its neighbors, therefore, there is no need to compute

all interactions.

2.2 Probabilistic Models

For many applications in machine learning the problem is to predict the value of a vector

Y given the value of a vector X of input features [12]. Most machine learning applications

are divided into classification and regression [11]. In classification applications, Y is single

variable which is expressed by a discrete class label, whereas in a regression problem it

corresponds to one or more continuous variables.
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The goal of probabilistic models is to find P (Y |X). There are two different ap-

proaches [11] to formulate P (Y |X):

• Direct solution to this problem is to represent the conditional distribution using a

parametric model. The model must be trained to find the required parameters based

on training set consisting pairs of {X, Y }. The trained model can be used to predict

Y for a new input vector X. These types of methods are called discriminative models

since they discriminate directly between the different values of Y .

• Joint distribution of P (Y,X) is counted as the second approach. The joint distribu-

tion is utilized to evaluate the conditional probability P (Y |X) implicitly in order to

make predictions of Y for new values of X. This is known as a generative approach

since by sampling from the joint distribution it is possible to generate synthetic ex-

amples of the feature vector X.

The following sections explain these two frameworks with more details.

2.2.1 Generative Models

In the context of probability and statistics, generative models [74, 33] are a type of prob-

abilistic model that can generate synthetic examples randomly given hidden parameters

Y . As mentioned before, a generative model specifies the joint probability distribution

of observation and hidden states (i.e., labels or class) while the conditional probability of

states given observations is formed via Bayes’ rule. Although generative models obtain

the conditional probability of states given observations by use of the joint probability, an

assumption needs to be made to be able to compute the conditional probability. Bayes’

rule states that:

P (Y,X) = P (X|Y )P (Y ) (2.6)

where P (X|Y ) is the likelihood model and P (Y ) is the prior one. The exact computation of

the likelihood models is usually intractable, therefore, a conditional independence assump-

tion [80] is taken into account to make the likelihood model tractable. The conditional
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independence assumption assumes that each observation is independent from other obser-

vations given its state. Mathematically speaking, the likelihood model is approximated as

the product of independent probabilities given the conditional independence assumption,

P (X|Y ) =
N∏
i=1

P (xi|yi), |X| = N. (2.7)

However natural data are usually high dimensional and several dimensions are corre-

lated [40], therefore, the conditional independence assumption on X is not a proper as-

sumption to make. Thus the modeling accuracy of generative models created by this

assumption is lower than discriminative model [12] since the discriminative model provides

a direct conditional probability.

Although generative models have some drawbacks compared to discriminative ap-

proaches in modeling accuracy, they have some advantages as well [164]:

• The generative model can handle missing data since the data are modeled for each

class separately. This model can augment small set of labeled data with a large set

of unlabeled data when the labeled data are expensive.

• A new class of data easily can be incremented to the whole classification problem

since the data are modeled class dependently.

Discriminative models are preferable versus generative ones when dealing with classification

problems, according to the reason asserted by Vapnik [165], the problem should be solved

directly rather than be solved by the general formulation and computing the likelihood

model.

2.2.2 Discriminative Models

Discriminative approaches model the problem as a conditional probability of states Y or un-

seen variables given observations X directly. The common applications of machine learning

are classifications or regressions, therefore, it is more proper to model the problem directly
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(P (Y |X)) rather than using joint probability distribution (i.e., P (Y,X)). As mentioned in

the last section, it is assumed that observations, X, are conditionally independent given

the states, Y , to compute the likelihood model in the generative model. Therefore, the

generalization performance of discriminative models is more than generative ones due the

differences between the model and the true distribution of the data [12], in practice.

Generative models were more common before the advent of the maximum entropy

models (MEM) [80]. The main problem of discriminative models was a way to represent

the parametric form of these models. MEM asserts that the only unbiased distribution

given the incomplete available data is the one that maximizes the conditional entropy of

states given observations. Based on MEM, the probabilistic discriminative models are

usually represented as a factorization of exponential family functions1 [80].

In other words, MEM is based on the Principle of Maximum Entropy [72] stating that

the only unbiased assumption can be made to define a conditional distribution is that the

distribution is as uniform as possible given the available information when information

regarding the probability distribution is incomplete [80].

Two advantages of discriminative models are:

• Discriminative models are faster [84, 164] than generative ones since they predict the

new data point directly instead of an iterative procedure to find probability of the

data point given each class.

• It is expected that discriminative methods have better predictive performance than

generative approaches [84, 164] because discriminative models are trained to predict

the class label rather than the joint distribution of input vectors and targets.

Although our main focus here is the general representation of a graphical model, the

experimental results have been done in the context of discriminative frameworks specially

conditional random fields. Following sections present two well-known graphical models:

1The general formulation of MEM and conditional random fields (discriminative probabilistic models)

is identical which will be explained in Section 2.4.
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Markov random fields (MRFs) known as a generative model and conditional random fields

(CRFs) which are one of the well-know discriminative models.

2.3 Markov Random Fields

Markov random fields (MRFs) or Markov networks [40, 45, 78] are a set of random variables

having the Markov characteristic based on an undirected graph. The foundation of Markov

random field theory came from statistical physics [78]. Each random variable is represented

as a node in an undirected graph and dependencies between random variables are expressed

by an undirected edge.

MRFs are generative models [172] since they are usually utilized to model the prior part

of generative models. They are usually based on the notion of conditional independence

and Gibbs theory; the probability distribution is formulated as a factorization of an energy

function (2.5). The energy function is the combination of feature functions (2.9) specifying

the relations among random variables.

Since these models are not associated with a topological ordering, it is not possible to

apply chain rule to expand P (Y ). Instead a potential function or a factorization is utilized

to formulate P (Y ) upon the maximal cliques. A potential function can be any non-negative

function of its arguments. The joint distribution is then defined to be proportional to the

product of clique potentials. Since exponential functions have non-negative manner, the

potential functions in MRF are usually formulated in the context of exponential equation

which the exponent of the formulation is called energy function. This type of expansion

derives the MRF model to equate with Gibbs distribution [112]. Hammersley-Clifford [57]

has been proved that the Gibbs distribution is equal to the MRF model.

In other words, the conditional independence assumption is characterized by the cliques

on the represented graph. The probability distribution is formulated as a factorization of
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energy function based on clique structures:

P (Y ) =
1

Z
exp(−E(Y, θ)) (2.8)

E(Y, θ) =
∑
c∈C

ψ(yc, θc) (2.9)

where c is a clique template in the set of clique structures C, θ determines the weight of

each potential function ψ(·) to construct energy function E(·) and Z is the normaliza-

tion constant which is the summation over all configurations. Finding the most probable

configuration based on the MRF, is to minimize the energy function E(·).

It is worth to mention that since the proposed framework has been applied within a

conditional random field model, MRFs are not our main focused and we just explained it

in a very short description here.

2.3.1 Clique Structures

Generally, a clique [110] is a subset of vertices vc ⊂ V of graph G(V , E), where V is the

vertex-set and E is the set of edges of the graph G. The sub-set vc is a fully connected

undirected graph:

vc =
{
vi|∀(vi, vj) ∈ vc, vi neighbor vj

}
. (2.10)

Although cliques have a long history in graph theory [50, 55], it is a well-known termi-

nology to define a random field model as well. The connectivity and relation among nodes

in a random field is defined according to the neighborhood size (i.e., Markov order) to have

a tractable inference approach in an undirected graphical model. The number of cliques

and the shape of them are determined by the neighborhood size. Cliques are specified

by their sizes and orientations. The position of a clique in the random field is another

property which characterizes it as well.

The first-order Markov assumption is a common neighborhood size. Each node in

the random field is connected to the nearest four other nodes in the graph. As seen in
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Figure 2.2: Each node vj (red) is the neighbor of node vi (green) via the first-order Markov

assumption. Node vl is not explicitly the neighbor of node vi.

Figure 2.2, the green node vi is in relation with four red nodes such as vj. The relation

between node vi and vl is not considered explicitly in the random field by the first-order

Markov assumption.

Figure 2.3 demonstrates the clique structures for the first-order Markov connectivity.

As seen in Figure 2.3 (b), the connectivity in each orientation is specified by a distinct

clique. Each node neighbors with eight closest nodes based on the second-order Markov

connectivity. Figure 2.4 shows cliques based on the second-order Markov connectivity.

There are two assumptions [32] to merge different cliques into a same category:

• Homogeneous assumption: if the identically oriented cliques are the same in the

whole random field.

• Isotropic assumption: if all orientations of a specific size of clique (i.e., number of

nodes in a clique) are identical.

Our first contribution is to present a new type of clique structure to tackle the compu-

tational complexity of fully connected networks. Inspired by random graph theory [16, 24],

the proposed clique structure takes advantage of a randomness among variables’ interac-

tions to reduce the computational complexity of the inference step.
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(a) (b)

Figure 2.3: Clique structures for the first-order Markov neighbors. (a) shows a four neigh-

borhood connectivity and (b) demonstrates all clique structures related to the first-order

Markov connectivity. There are five different clique structures based on the size and the

orientations of cliques. A clique is a complete graph and based on the definition (3.4), all

nodes in the cliques must be connected to each other. As a result, the maximum size of

a clique is two when the random fields is defined based on four neighborhood size. It is

obvious that if we assume we have maximal clique of greater than 2 ( e.g. 3) there is at

least a node which is not connected to the interested node and, therefore, the maximal

clique is two.

(a) (b)

Figure 2.4: Clique structures corresponding to the second-order Markov neighbors.

(a) shows the second-order Markov neighbor connectivity and (b) demonstrates all possi-

ble clique structures. As seen in (a), the maximal subgraph which all nodes are connected

to the interested node is with four nodes, therefore, the maximal clique is four while the

maximal clique in Figure 2.3 was two.
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2.3.2 Random Graphs

Random graph theory [16, 34, 69, 183] defines graphs based on a probability distribution

which a graph is generated via a probability distribution defined over the graph. This

theory is a marriage between graph theory and probability theory. A random graph is

obtained by starting with n isolated vertices that will be connected at random, iteratively.

There are several studies and approaches to generate a random graph. Gilbert [16]

denoted the graph as G(n, p) such that each edge connectivity is determined independently

based on the probability p. Erdös–Rényi model [24] represents the graph as G(n,m) where

m determines the number of connected edges of the graph. The selection probability is

calculated such that it provides the exact m edges for the graph. The Erdös–Rényi model is

an effective model for extracting the essential behaviors of various graph properties which

are explained in this section. We define a random graph as Gn,p where n is the number of

nodes and p represents the connection probability.

The generated random graph illustrates specific structure [24] based on the range of p2:

• Gn,p is the disjoint union of trees if p = o( 1
n
) where3

f(x) = o
(
g(x)

)
iff |f(x)| < ε|g(x)| ∀x ≥ x0 , ε ∈ R+

• Gn,p contains cycles with different sizes if p ∼ c
n

for 0 < c < 1. All connected

components are either trees or unicyclic components and almost all nodes (n− o(n))

are in components that are trees.

• There is an amazing fact that Gn,p is dramatically different when p < 1
n

from when

p > 1
n
. The largest component has size O(log n) for the former one, while most of the

small components merge to a giant component with the size O(n). The remaining

components are of size O(log n). It is called double jump when p ∼ 1
n

+ µ
n
.

2We are only using these properties and the mathematical backgrounds of them are not the concern of

this thesis, therefore, we accept them as facts.
3It is worth to note that ε is a very small real-value factor, therefore, this case is different from the

second case.
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• Gn,p almost surely becomes connected if p = c logn
n

with c ≥ 1.

• Gn,p is not only almost surely connected, but the degrees of almost all vertices are

asymptotically equal when p ∼ ω(n) logn
n

where ω(n)→∞.

The new proposed clique structure is based on a stochastic approach which takes advantage

of random graph theory. The effect of p on the behavior of the random graph structure is

an interesting property that we want to observe in probabilistic random field models. The

proposed framework is applied on conditional random fields in this thesis.

2.4 Conditional Random Fields

Conditional Random Fields [80, 84, 94, 98] are one of the most effective discriminative tools

developed in the last decade. The idea of CRFs was first proposed by Laffety et al. [98].

CRFs directly model the conditional probability of labels given the measurements, without

specifying any sort of underlying prior model, and they relax the conditional independence

assumption of measurement given label commonly used by generative models.

Formally, let G = (V ; E) be an undirected graph such that yi ∈ Y is indexed by the

vertex vi ∈ V of G. Then (Y ;X) is said to be a conditional random field if, when globally

conditioned on X, each random variable yi obeys Markov property with respect to the

graph G. In other words, P (yi|X;Y/{yi}) = P (yi|X; yNi
) where Y/{yi} is the set of all

nodes inG except node i, Ni is the set of neighbors of node i inG, X are input variables that

are observed, and Y is the set of output variables that we aim to predict. According to the

Hemmersley-Clifford theorem [57, 172] the interesting distribution is a Gibbs distribution

which can be factorized into the following form based on G

P (Y |X) =
1

Z(X)

∏
c∈C

Ψ(Yc, Xc) (2.11)

where Z(X) is the normalization constant and Ψ(·) denotes the potential function of over

clique c. Ψ(·) is a non-negative real-valued function. Based on the principle of Maximum
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Entropy [72, 80] (Section 2.2.2), the optimization of the Lagrange equation [80] constructed

by that assumption leads to the same formulation as (2.11).

The objective function must be optimized to find the best distribution

P (y|X)? = arg max
P (y|X)∈P̄

H(y|X) (2.12)

H(y|X) = −
∑
y

P (y,X) logP (y|X) (2.13)

where P̄ is the set of all possible distributions. The optimization problem is evaluated by

assigning some constraints:

• The feature function, fi, provides arbitrary relations among states and observations.

• P (y|X) ≥ 0 for all y,X.

•
∑

y∈Y P (y|X) = 1.

• E(fi) = Ê(fi)
4.

Finding P (y|X)? (2.12) under these constraints can be formulated as a constrained opti-

mization problem [80]

Λ(P (y|X), ~λ) = H(y|X) +
m∑
i

λi(E(fi)− Ê(fi)) + λm+1

∑
y∈Y

P (y|X)− 1 (2.14)

resulting in

P (y|X)? =
1

Z(X)
exp

( m∑
i=1

λifi(y,X)
)

(2.15)

where λ determines the weight of each feature function in the distribution according to

available training data. λ is calculated in the training step [80]. The derivative of log-

likelihood of the energy function is computed regarding to each λ and the optimal weights

are obtained by a gradient ascent procedure.

4 Ê(fi) is the expected value of fi based on the empirical distribution P̂ (y,X). P̂ (y,X) is obtained

by simply counting how often the different values of the variables occur in the training data. E(fi) is the

expected value of feature fi on the model distribution.
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(2.15) is applicable to non-sequential data where y is only single output variables, and

is the basic equation of Maximum Entropy classification [9]. The general form of a CRF

to model the sequential random variables Y is

P (Y |X) =
1

Z(X)
exp

(
−ψ(Y |X)

)
(2.16)

ψ(·) can be divided into two distinct functions

ψ(Y |X) =
n∑
i=1

ψu(yi, X) +
∑
ϕ∈C

ψp(yϕ, X) (2.17)

here yi ∈ Y is a single state in the set Y = {yi}ni=1, yϕ ∈ Y is the subset of states (clique)

from the set of clique template C (Section 2.3.1), and X = {xj}nj=1 is the set of observations.

The relations among nodes in the random fields are characterized using the concept of clique

structure. Each subset of nodes constructing a clique, are involved in the non-unary feature

functions to represent the relation among the random variables.

Basic CRFs utilize unary and pairwise potentials on local neighborhoods and it is

usually first-order Markov (Fiqure 2.5, Section 2.3.1). Let node vi is in the position of

(k, l) of the graph and |N(i)| = 4 is the number of neighbors. Adjacency CRF can be

formulated based on the clique structures that are single and pairwise cliques

C =
{
Cp(i)

}n
i=1
∪ cs(i) (2.18)

Cp(i) =
{

(ik,l, jk,l−1), (ik,l, jk,l+1), (ik,l, jk−1,l), (ik,l, jk+1,l)
}

(2.19)

where Cp(i) is the set of pairwise cliques corresponding to node vi, and cs(i) expresses

the single clique. The ability of the adjacency CRF is limited to model long-range

inter-node connections and, therefore, generally leads to excessive smoothing of object

boundaries. According to Gibbs distributions [45] energy is distributed in the random field

until it reaches an equilibrium state. Based on the definition of energy in local random

fields, the energy transformation would stop when close nodes have the same state value.

In this situation there is no extra energy in one node that can be transformed to its

neighbors. It means that close nodes have approximately the same label, which makes
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Figure 2.5: Adjacency CRF graphical model; each node i is connected to its local neighbors

corresponding to the first-order Markov.

the boundaries smoother than desire. This is like transforming heat energy through a

metal. Heat propagates through the metal until the whole surface of metal reach to a same

temperature. But in the long-range connections the definition of energy can be changed

such that, a same label is assigned to the random variables with the same characteristics.

In addition to color similarity, the spatial information are incorporated in modeling. In

these models the boundaries are preserved better in optimization step.

However fully connected random fields and global connectivity can model different

relations among data, modeling of long-range or fully connected graph is not tractable.

The computational complexity of long-range connections is the most challenging part of

this problem.

In order to improve modeling accuracy and providing the longer connections range,

researchers have expanded the basic CRF framework [65, 96] to incorporate hierarchical

connectivity and higher-order potentials defined on image regions which will be discussed

in section 2.4.2.
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2.4.1 Local Random Fields

2D CRFs are useful tools in image processing applications [65, 96] due to the image struc-

ture. Pixels are related to their neighbors based on the color intensities and statistical

features. The color intensity changes smoothly in natural images except at image bound-

aries; therefore Gibbs distributions and Markov random fields are appropriate approaches

to model image processing and computer vision problems.

Conventional approaches [65, 174] utilized local neighborhood relations in statistical

modeling such as CRFs, since the computational complexity increases by increasing the

number of connections. In those studies each pixel is represented by a random variable

and each random variable is related to others based on the first-order Markov.

The main role of CRFs in an image modeling problem is to incorporate contextual

information and spatial relations among variables. Kumar and Hebert [94] proposed a dis-

criminative framework based on the CRF to classify the man–made structure from natural

scenes. A logistic classifier was applied as the associative potential while a simple Ising

model was incorporated to extract interaction relations and to penalize every dissimilar

pair of labels by a cost.

Shotton et al. [150] proposed the textonboost method to do object segmentation and

object classification simultaneously. The CRF is utilized to capture the spatial interactions

among neighbor pixels and also improves the segmentation of specific object instances. To

overcome the ambiguities of local appearance of an image patch, they incorporated longer

range information such as the spatial layout of an object and also contextual information

from the surrounding image by 4-connected grid structure of the CRF. The use of CRF

allows them to incorporate texture, layout, color, location, and edge features in a single

unified model. Unary potential functions are provided by use of an adapted Joint Boost

algorithm [163] which is a type of Adaboost classifier.

Modeling based on 4–connected CRFs imposes some issues in modeling accuracy since

the spatial relations are defined at pixel levels and those relations are extracted only based

on four neighboring pixels. On the other hand, incorporating larger connections has a
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big impact on computational complexity [122]. Due to this fact, some studies have been

proposed to incorporate super-pixel [43, 133] instead of pixels as random variables in the

random field. In those approaches, a group of close pixels having the same color or statistics

are obtained as one node in the random field instead of each pixel.

Fulkerson et al. [43] addressed the image class segmentation and localization by for-

mulating the CRF on super-pixels. They obtained super-pixels from a conservative over-

segmentation method. The local redundancies of data are captured by aggregating pixels

into super-pixels and also it allows the model to measure feature statistics. A bag-of-

features classifier was constructed by use of image descriptors such as SIFT. The classifier

merges pixels to a region based on extracted features. Since the selected segmentation

algorithm is an over-segmented type, boundaries are preserved in the output image. The

CRF was utilized to reduce misclassifications that occur near objects’ boundaries. The

unary potentials are defined directly by the probability provided by the SVM classifier

while, the interaction potentials are a combination of dissimilarity distance on color of

super-pixels.

The modeling accuracy of the super-pixel methods is dependent on the accuracy of over-

segmentation algorithm. However, there are some other studies which tried to capture both

local and global relationships and address this issue [65, 96]. Hierarchical algorithm is a

common approach involving global features as well as local features in modeling. The next

section will analyze these methods in more details.

2.4.2 Hierarchical Random Fields

Common CRF approaches are based on the quantization of an image space-pixel [96].

The simplest ones utilize each pixel as a random variable in the random field while more

complex methods use segments or a group of segments [130]. The goal of segment based

representation of pixels as one random variable is to capture global information in order to

improve the classification, localization or segmentation accuracy. However segment based

(superpixel) approach relaxes the computational complexity, the final accuracy relies upon

the initial quantization (superpixel or initial segmentation) over the image space.
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Hierarchical approaches are a way that can compensate the effect of initial quantiza-

tion [96]. Thanks to the structure of random field modeling, different relations can be

incorporated in an unified model. In other words, the local and global interactions can be

involved in modeling, simultaneously. Hierarchical models allow the integration of features

computed at different levels of the quantization hierarchy.

Hierarchical or multi-scale approaches have been utilized for different applications.

Fieguth [38] proposed a multi-scale framework to do the posterior sampling when there

exist sparse measurements. The proposed model takes advantage of multi-scale proper-

ties to relax the computational complexity of computing the covariance matrix. He also

used a hierarchical approach to model the characteristic of a porous media [39] locally and

non-locally to sample a new image.

Besides the multi-scale methods proposed in the context of Markov random fields,

hierarchical methods have been utilized within the context of conditional random field

frameworks as well. The unary and pairwise potentials are computed in different layers.

Each layer is constructed based on a quantization level on observations. The CRF plays

the role of an unification procedure to combine all potential functions. The final step is the

same as common CRFs which is to minimize the energy to find the best state configuration.

He et al. [65] utilized local and global features in a unified hierarchical CRF model to

label different regions in an image. Local features are the result of statistical classifiers,

such as a neural network. The image is divided into non-overlapped patches to extract the

global features. All features are associated with a learned weight in the training step which

determines the impact of that feature on the classification and the decision. Inference and

finding the optimal label configuration has been done in the lower level (fine level) in order

to minimize the proposed energy function.

Ladický et al. [96] applied a hierarchical CRF on object class image segmentation.

Most of the hierarchical approaches follow the same procedure to define hierarchical levels.

The main difference between [65] and [96] is that [96] incorporated additional term in the

energy function that represents the label consistency between different layers. Also the

unary features were provided with the same method as [150].
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Due the weakness of local CRFs, studies have intended to incorporate more global

interactions in modeling. It was mentioned that decision just by local features leads to

mis-classification [43] in some problems. Classification of “sky” and “water” in an image is

a good example for this situation. These two type of objects have the same characteristics

locally while they can be distinct by use of global characteristics. Due to this fact, a

wide variaty of research [89, 169, 185] have been conducted to utilize more interactions in

modeling and the goal is to take the advantage of all interactions. The ultimate goal is to

define a fully connected interactions to acquire an accurate model.

The main challenge of utilizing long-range interactions in random fields is the com-

putational complexity since the model complexity increases exponentially by increasing

the number of connections in the modeling procedure. To make more intuition about the

computational complexity of those models and know how they work, the following sec-

tion explains fully connected random fields generally and reviews some efficient proposed

approaches to tackle this problem.

2.4.3 Fully Connected Random Fields

The general framework of CRFs is identical for different sizes of connectivities and usually

the only difference from a local CRF is the design of interactions among random variables

in the field, therefore the formulation of a fully connected CRF (2.20) is the same as

adjacency CRFs (2.16)

P (Y |X) =
1

Z(X)
exp

(
−ψ(Y |X)

)
(2.20)

where Z(·) is the partition function and ψ(·) is the combination of unary and pairwise

potential functions. The main differences of a fully connected CRF and an adjacency

one as shown in Figure 2.6 are the neighborhood size, the number of cliques and their

structures. Since the graph is fully connected, each node is in the neighborhood set of all

other nodes in the graph,

N(i) =
{
j|j = 1 : n, j 6= i

}
(2.21)
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Figure 2.6: Fully connected conditional random fields; each node is connected to all other

nodes in the random field. The connectivities of node i are only shown for the visualization

purposes. Compared to Figure 2.5 the interested node can be connected to all other nodes

in the random fields.

where |N(i)| = n − 1. Based on the neighborhood size and the clique structure [160],

the number of possible cliques are varied. Different clique structures can be utilized in

fully connected modeling but using only the pairwise clique structures is the most common

approach [89, 185]. The main reason is that the number of cliques increases the computa-

tional complexity of the model in addition to the number of connectivities. Here, without

loss of generality the specified clique structure C is assumed to be pairwise clique

C =
{
Cp(i)

}n
i=1

(2.22)

Cp(i) =
{

(i, j)|j ∈ N(i)
}

(2.23)

The inverse of the covariance matrix among random variables (i.e., with computational

complexity O(N3) [134]) must be evaluated to find the solution and, therefore, the com-

putational complexity of exact inference on a fully connected graph is O(N3).

Due to the high computational complexity of the exact inference, approximation meth-

ods have been proposed to tackle this problem [84, 176]. Mean field inference [84] is one
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of the tractable frameworks performing a message passing algorithm by approximating

each marginal probability. The message passing procedure updates each approximated

marginal distribution until convergence. The computational complexity of single iteration

of updating the marginal distribution for one random variable is O(N) and the complexity

of updating all marginals is O(N2).

The recent method proposed by Krähenbühl and Koltun [89] reduces the computational

complexity of the inference from quadratic to linear by extending the mean field approx-

imation. Their inference is highly efficient since a linear combination of Gaussian kernels

in an arbitrary feature space is defined as pairwise feature function.

2.5 Efficient Inference Approach

Incorporating long range connectivities is a challenging part of random field modeling. The

main advantage of random fields in modeling problems such as image segmentation and im-

age classification is that it facilitates the use of spatial information in the model. Although

utilizing long range connectivities benefits the model, increasing the size of interactions

and spatial relations in the model have a significant impact on computational complexity

of the inference step. There are some approximation techniques [84] to relax the compu-

tational complexity but they are not helpful when the size of image or observation is very

large. There are several methods [89, 186] reformulated the inference problem as filtering

and solved the inference step by fast convolutions. Those algorithms are mainly divided

into two folds based on the convolution implementation to compute the interactions. The

next sections explain those methods in more detail.

2.5.1 Permutohedral Lattice Based Method

Krähenbühl and Koltun [89] proposed a tractable inference procedure by incorporating

specific potential functions. They modeled the multi-class image segmentation by a fully

connected CRF where the edge potentials were obtained using Gaussian kernels. By use
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of these new feature functions, they reformulated the inference procedure as a filtering

problem via a mean-field approximation.

The exact distribution of P (Y |X) is approximated by Q(Y |X). The mean field [84]

approximation computes the distribution Q(Y |X) among all distributions Q minimizing

the KL-divergence of Q and P , D(Q||P ):

D(Q||P ) =
∑
i

Qi ln

(
Qi

Pi

)
. (2.24)

In other words, the product of independent marginals Q(yi|X) over each variable is

computed as an approximation of P (Y |X) via KL-divergence. However mean field approx-

imation relaxes the computational complexity of the inference to O(N2), the computation

is not tractable yet when working with large data (e.g., high resolution images). To ad-

dress the computational complexity of the fully connected random field, the proposed

method [89] utilized a bilateral filtering and a Gaussian smoothness kernel as pairwise fea-

ture functions to be able to model the random field in a Permutohedral lattice which can

compute the convolution in linear time complexity.

The utilized feature function k(·) is the combination of two contrast-sensitive kernel

filters. The first kernel in (2.25) is a bilateral filter which is a nonlinear filter smoothing

while preserves strong edges [121] and the second one is a smoothness kernel to remove

small isolated regions:

k(i, j) = ω(1) exp
(
− ‖ui − uj‖

2θ2
α

− ‖xi − xj‖
2θ2

β

)
+ ω(2) exp

(‖ui − uj‖
2θ2

γ

)
(2.25)

where ui and uj are the coordinates of node i and j in the image; xi and xj are corresponding

features for each node according to the observation. ω(1) and ω(2) are the weights of

each feature function determined by cross validation. Since they used Gaussian kernels

as pairwise feature functions, the message passing procedure can be seen as a filtering

problem. Thanks to a novel data structure (Permutohedral lattice) where reduces the

computational complexity of convolution to linear [1] the convolution can be implemented

efficiently.

30



The feature space is represented with simplices arranged along d+1 axes where d is the

feature space dimension. The procedure is divided into four stages: generating position

vectors, splatting, blurring, and slicing. The position of each sample must be generated and

embedded in the high-dimensional space d + 1. After that we must identify its enclosing

simplex and compute barycentric weights so-called splatting. The third stage is to perform

a regular Gaussian blur within that subspace. To do that, splatted data are convolved by

the kernel [1 2 1] along each lattice direction. Slicing is identical to splatting, except that

it uses the barycentric weights to gather from the lattice points instead of scattering to

them.

The proposed method was examined by a multi-label image segmentation problem.

The actual computational complexity of the proposed method is O(dN) where d is the

dimension of feature space and N is the number of nodes in the random field.

2.5.2 FFT Based Method

Zhang and Chen [185] proposed an alternative method to address the computational com-

plexity of the fully connected CRF. Their approach is similar to [89] in the context of

filtering. The proposed method modifies the inference of the fully connected CRF to a

filtering problem and provides an efficient procedure by doing convolution.

The pairwise feature functions are divided into color contrast and spatial relation:

ψij(yi, yj) = φi,j(ui, uj)ϕi,j(yi, yj, xi, xj) (2.26)

where φi,j(ui, uj) is the spatial relation of node i and j and ϕi,j(yi, yj, xi, xj) is color contrast.

The color contrast term encourages a same label when the colors of nodes i and j (xi

and xj) are similar, and different labels otherwise. The spatial relation represents the

log-likelihood of the spatial distribution of two categories (i.e., the probability that two
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categories co-occur at positions ui and uj):

φi,j(ui, uj) = G(−θ ‖ui − uj‖) (2.27)

ϕi,j(yi, yj, xi, xj) =

G(xi − xj), yi = yj

1− G(xi − xj), otherwise.
(2.28)

There is also a binary labeling function µi(yi) indicating that the node i is labeled by yi

or not:

Vij(yi, yj) = φi,j(ui, uj)ϕi,j(yi, yj, xi, xj)µj(yj). (2.29)

However implementing the feature function computation via convolution is not applicable

because ϕi,j(yi, yj, xi, xj) can take several values. By ignoring the color contrast part of

feature function, the problem can be viewed as the filtering of an image with value of

µi(yi) for the pixel i where the filter is φi,j(ui, uj) depending on the relative position of

ui and uj. Image filtering can be greatly accelerated with fast Fourier transform (FFT),

which reduces the complexity to O(NlogN). Although the convolution is not applicable

by involving the color feature function since there are both spatial and color variations in

the equation, the problem is addressed in [121]. Image filtering on the space and color

dimensions simultaneously has been studied in the context of bilateral filtering. Based on

the proposed idea of [121], if the color value xi of node i is fixed to xc, (2.29), it turns

the original convolution to the convolution of ϕi,j(yi, yj, xc, xj)µj(yj). Therefore, the color

values are discretized into C clusters {Xc} and filtering problem is computed for each xc.

The computational complexity of the proposed method is O(CNlogN) as the convolution

must be applied for every C clusters. However like the previous approach they take the

advantage of down-sampling to reduce the computational complexity.

Both methods used the advantage of the stationary property in image modeling. They

assumed that cliques are stationary and, therefore, potential functions are identical in the

whole random field. Due to this fact, those solutions are not appropriate for non-stationary

problem. The Gaussian feature functions are the second drawback of those methods. It is

only possible to select the feature functions in the form of Gaussian functions to be able

to utilize the mentioned approaches.
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2.5.3 Related Methods

Following the work of Krähenbühl and Koltun [89], new studies have been done on different

aspects of the proposed model in [89]. Vineet et al. [169] presented a new initialization

for this approach. Since the mean field method is sensitive to initialization, they proposed

a hierarchical mean-field approach where labeling from the coarser level is propagated to

the finer level for better initialization. They used a two-level hierarchies which a variable

of the coarser level is the parent of four variables in finer level. The result of inference in

coarser level is an initialization for inference of the finer level.

The permutohedral lattice based dense CRF [89] is restricted to take the pairwise

feature function from a weighted Gaussian kernel with zero mean rescaled with a single

value. This issue was addressed in [169] by learning the mean and the covariance matrix of

general Gaussian mixture model. They added some Gaussian mixture feature functions in

addition to the zero-mean Gaussian one. However they asserted that the reported accuracy

is 0.3% more than [89], their method is slower than permutohedral lattice based dense CRF

since they utilized the Gaussian mixture which must evaluate the filtering step separately

for each of the mixture components in the model.

The other drawback of [89, 169] is that they are restricted to some Gaussian parametric

feature functions. Campbell et al. [21] generalized the pairwise potential to a conditional

non-parametric model learnt from training data and can also be conditioned on the input

data at test time. They applied this procedure in three steps; first, the conditional pairwise

probability densities were learnt from training data conditioned on a test image as feature

function. Secondly, the probability was expressed as a dissimilarity measure between nodes

in the CRF. An efficient approximate embedding technique was applied to find a set of

feature spaces that encode the dissimilarity measure as the Euclidean distance and thus the

desired pairwise potential under a Gaussian kernel in this space for the last step. A similar

approach to [89] was provided in the inference step since the pairwise feature functions

were represented as Gaussian. The permutohedral lattice was provided to do the inference

step with linear computation.

The conditional density probability of pairwise feature functions are estimated directly
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from a set of training data T . For each node i, first the local area (an image patch)

around a particular node i in the test image X is considered and then similar patches in

the training images are found. For each label l the conditional probability

P (yj = l|yi = l;X; T ) (2.30)

for every node j around node i is estimated (i.e., the conditional local density distribution

of the label l). In other words, the kernel density estimation is applied for each label with

the mean of node j. Therefore, they utilized a prior σω to indicate the range of useful

information in the pairwise potential

gwin(i, j) = exp
(−‖ui − uj‖

σω

)
(2.31)

where ui and uj are the pixel positions. To denote the potential function in the form of

dissimilarity measure, the logarithmic value of the conditional density is computed by

d(i, j, I, T ) = − log
(
gwin(i, j) · P (xj = l|xi = l;X; T )

)
. (2.32)

Finding P (xj = l|xi = l;X; T ) has high computational complexity5. An uniform sampling

procedure was applied and C sample points were picked and the dissimilarity was measured

for i ∈ C and all j. The proposed method was applied to the in-painting of binary images,

a collection of handwritten Chinese characters that are occluded by a centered rectangular

region

The authors examined the model accuracy against different parameters. The experi-

mental results demonstrated a noticeable decrease in performance for small windows. There

was also a drop-off in performance with large window sizes. This is to be expected since the

relations among nodes are not valid over very long-range connections. The reported results

imply that adding long-range connections increases the accuracy of model instead of local

5The conditional probability table must be computed to have all conditional probabilities. The table

determines the conditional probability of various configurations, therefore, it is needed to find a lot of

conditional probabilities to fill out the table entities. The number of table entities depends on the number

of labels.
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interactions; however, several problems such as inpainting problem do not need the fully

connected iterations for having the best model. The size of connections and interactions

among nodes is an intrinsic of the problem that must be discovered.

Apart from classification applications of the dense CRF, Ristovski et al. [134] proposed

a new method to handle continuous values and to be useful for regression problems. The

unary potentials (2.33) were formulated as the quadratic relation of prediction of unstruc-

tured models based on observation and output

ψk(yi, X) = −(yi −Rk(X))2 k = 1, . . . , K (2.33)

where the result of feature functions are large when predictions and outputs are similar.

The interaction potential is derived as

ψ(yi, yj, X) = −Kl(Fi, Fj)(yi − yj)2 l = 1, . . . , L (2.34)

where Fi and Fj are feature vector corresponding to node i and j. Kl is some similarity

measures between feature vectors. The probability is approximated under mean-field the-

ory as same as [89]. The independent approximated marginals Qi of the mean-field theory

were expressed as a Gaussian distribution with closed-form mean and variance. Since the

potential functions were represented as Gaussian shapes, fast high-dimensional Gaussian

filtering can be applied by use of permutohedral lattice as well.

The dense CRF approach [89] was also utilized in semantic image segmentations with

objects and attributes [186]. The task is to label each pixel with:

1. An object label such as car or bicycle

2. Visual attribute like wood or metal

3. Surface properties such as shiny or glossy.

The authors used a factorial CRF [77] framework to handle the segmentation and attributes

selection simultaneously. They defined the CRF in an hierarchical framework in which both

objects and attributes are labeled at two levels of pixels and regions.
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The potential functions were formulated as a Gaussian framework to be able to use the

fast convolution framework in the inference step. The multi-class segmentation result was

obtained by the same framework as [89]. The multi-label attribute selection is similar to

the segmentation part except that the random variables take the sub-set of labels instead

of single labels. The attribute labels are assigned by an element of the power-set of the

defined attributes set A = {a1, a2, . . . , am}.

2.6 Deep Conditional Random Fields

In Sections 2.4 and 2.5 we discussed about standard pairwise random field approaches and

the smoothness problem (i.e., short-boundary bias) associated to local random fields which

can be resolved by increasing the number of connectivities and taking advantage of long-

range interactions in the random field modeling. The smoothness drawback of standard

random field models results from the fact that they penalize the assignment of different

labels to neighboring pixels [15, 18]. These types of potential functions penalize the long

object boundaries equivalently which results to smoothen the boundaries.

Parallel to development of long-range connectivities and higher order cliques to address

smoothness issue of standard pairwise random fields, there have been other frameworks

which reformulate the pairwise potentials to resolve this drawback. Jegelka & Bilmes [73]

proposed a cooperative graph cut (Coop-cut) model where instead of penalizing the number

of label discontinuities, they penalized the number of types of label discontinuities. They

observed that the graph cut energy function is improved if the usual cut cost (the sum of

edge weights) is replaced and the cost of the edges is not only based on the sum the edge

weights.

Motivated by the promising results of Coop-cut [73] introduced by Jegelka & Bilmes,

Kohli et al. [82] proposed a deep structure framework to take advantage of the new potential

function in a multi-layered random field to preserve boundaries while allowing for fast MAP

inference. They reformulated the model of [73] in a context of a hierarchical structure via

a transformation of higher order potentials. The proposed Coop-cut framework made
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the MAP inference an NP-hard problem, and the approximation algorithms were utilized

to optimize the model. By use of this new hierarchical framework, they were able to

derive an exact yet practical algorithm for MAP inference. The new potential function

(penalizing the diversity of cuts in the graph) is considered as a higher-order potential

which makes the optimization an NP-hard problem. Kohli et al. transformed the higher-

order potential function into that of a pairwise potential by introducing additional auxiliary

random variables. However the number of auxiliary variables grows exponentially with the

arity of the function and it makes the approach infeasible. Due to this fact, they took

advantage of the inherent structure properties of the data and solved the problem within

a multi-layered structure factor graph.

Deep-structured graphical models have been attracting researchers in the past which

took a different approach to improving inference performance by introducing intermediate

state layers, where there is a dependency of each higher layer on its previously layer, and

inference is carried out in a layer-by-layer manner from bottom to top. Prabhavalkar and

Fosler-Lussier [126] and Peng et al. [123] both introduced multi-layer conditional random

field models where the local factors in linear-chain conditional random fields are replaced by

multi-layer neural networks and trained via back-propagation. Ratajczak et al. [132] intro-

duced a context-specific deep conditional random field model by replacing the local factors

in linear-chain conditional random fields with sum-product networks. Yu et al. [180, 179]

proposed a deep-structured conditional random field model which consists of multiple lay-

ers of simple CRFs where each layer’s input consists of the previous layer’s input and the

resulting marginal probabilities. While such deep-structured graphical models are good

at handling high observational uncertainties such as measurement noise and outliers by

characterizing different information at the different layers, they only implicitly take ad-

vantage of long range relationships and are more limited in this aspect when compared to

fully-connected graphical models.
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2.7 Summary

The proposed dense CRFs formulated the inference of a fully connected CRF as a fast

filtering approach. The message passing stage of the inference step is designed as the

filtering of the whole image by each potential function. They utilized the fast convolutional

procedure to address the computational complexity of the filtering problem which can be

formulated as either I) fast FFT method or II) the permutohedral lattice.

However the main drawback of those approaches is that potential functions must be in

the shape of a Gaussian function to be applicable in convolution procedure. Although some

studies addressed the restriction of the Gaussian function to a non-parametric conditional

probability [21], in the convolution step the potential functions must be reformulated as

the Gaussian function again. This approach limits the well-known advantage of CRFs

which is the ability to select arbitrary feature functions.

Furthermore, those approaches assumed that the problem is spatially stationary since

they used convolution and the potential function is identical in different parts of the im-

age. However there are several problems which are not homogenous and modeling by the

stationary feature functions results to attenuate the accuracy.

Those proposed methods usually used truncated Gaussians and asserted that the ac-

curacy decreases when the standard deviation of Gaussian potential functions are very

large. It means that we do not need fully connected interactions in some problems and the

efficient number of connections depends on the observation and it is problem related.

To address those drawbacks and have a general framework with reasonable computa-

tional complexity in the inference step, we present an efficient Bayesian inference method

in next chapters. Inspired by random graph theory, we propose a new stochastic clique

structure, which allows the computational complexity of the fully connected graph to be

reduced without limiting the CRF with specific feature functions. Based on the provided

flexibility, the new framework preserves the merits of the standard CRF, such that any

arbitrary function can be selected as the potential function. Our proposed method is a

mixture between random graph theory and random fields theory, obtaining the inference
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based on a Bayesian approach which samples cliques of the fully connected random field

while allowing for computational tractability.
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Chapter 3

Randomly-Connected Random Fields

“God may not play dice with the universe, but something strange is going on with the prime

numbers.”

Paul Erdös

The theory of random graphs was founded by Erdös and Rényi in 1960. In mathematics,

random graph is the general term referring to probability distributions over graphs. Ran-

dom graphs may be described simply by a probability distribution, or by a random process

which generates them. The theory of random graphs lies at the intersection between graph

theory and probability theory.
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3.1 Introduction

As we discussed in Chapter 2, random fields configured with local connectivities usually

result with excessive smoothness on image boundaries in application such as image segmen-

tation. The incorporation of long range connectivities and global features have a significant

impact on the accuracy of modeling. However, the main issue with the use of long range

interactions, particularly in the case of fully connected random fields, is the high com-

putational complexity associated with the inference step of the random field, which was

explained in Section 2.4.3. Thanks to the approximation inference algorithms [84, 113, 170],

the computational complexity of inference is decreased to a quadratic, dependent on the

number of connections and the number of nodes (random variable) in the underlying graph

of a random field (i.e., O(N2)) where N is the number of random variables in the random

field. There are several state-of-the-art frameworks [89, 185] (analyzed in Section 2.5) which

tackled this problem by making the stationary assumption among the random variables in

the random field (i.e., by utilizing the Gaussian pairwise potential (2.25)) and obtaining

inference by a filtering and convolutional procedures (Section 2.5.1).

Although the computational complexity of fully connected random fields became tractable

[89, 185] by using Gaussian pairwise potentials as mentioned in Section 2.5, they are asso-

ciated with some limitations (e.g., the potential functions must be formulated by Gaussian

equations). Furthermore, considering the mentioned trend in sections 2.4.2 and 2.4.3 be-

tween the number of random variables’ interactions and modeling accuracy the primarily

focus on this field have been incorporating more interactions in modeling and the only

considered challenge has been reducing the computational complexity of the inference ap-

proximation. To the best of our knowledge, the challenge of determining optimal interac-

tion sizes and configurations has been largely left unexplored. For example, the authors

of [21, 89] proposed how to address the computational complexity of a fully connected ran-

dom field for image segmentation. However the experimental results of [21, 89] illustrated

that the best interaction range is problem dependent.
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3.2 Problem Definition

As we discussed in Section 2.5, a popular approach to image segmentation problems [150]

is to model the framework using random fields and to formulate the problem as Maximum

a Posteriori (MAP) [18, 159]. These methods incorporate prior information regarding

interactions between neighboring pixels into the model.

The most common strategy is to train a unary potential (i.e., ψu(·) at (2.17)) based on

information provided by the user as training data or marked area of the object and the

background as interactive image segmentation as shown in Figure 3.1, and then to intro-

duce pairwise potentials (i.e., ψp(·) at (2.17)), to refine the result of the unary segmentation

which is shown in Figure 3.1. Although successful proposed methods [159, 20] using this

framework reported efficient MAP inference using graph cut [18], they have been restricted

in their ability to handle complex object structures [81] since they utilize local MRF (adja-

cency) models that incorporate pairwise potentials on neighboring pixels [44, 150]. These

structures are limited in their ability to take advantage of long-range connections within

the image and generally result in excessive smoothing of object boundaries [52, 168].

As seen in Figure 3.1, we are motivated to maximize the conditional probability of the

segmentation result given a real image, P (Y |X), as the observation with two objectives

which must be satisfied: I) accurate region segmentation and II) object boundary preser-

vation. The first objective asserts that the intersection of the segmented object and its

ground truth must be maximized, while the second objective enforces the optimization to

preserve the objects’ boundaries as much as possible. The conventional local random field

approaches [65, 174] usually considered only the first objective and maximized the condi-

tional probability P (Y |X). Here in this thesis we are aiming to find the best configuration

of Y maximizing the conditional probability P (Y |X) by considering both objectives at

the same time. Although utilizing non-local and long-range connectivities is the simple

but effective solution to this problem, increasing the number of interactions in the model

increases the computational complexity. Therefore, we are introducing a novel algorithm

to address this issue.

Figure 3.1 demonstrates the problem more intuitively. Here we want to formulate

42



the image segmentation problem within a random field framework and maximize it via a

Maximum a Posteriori (MAP) method. We address the drawbacks of local random fields

(i.e., short-boundary bias problem [82]) by utilizing non-local interactions in the random

field. However to resolve the computational complexity of the produced non-local random

field, we introduce a new clique structure which takes advantage of most useful long-range

cliques instead of utilizing all possible clique structures in the random field model. In other

words, the cliques for each node participating in the inference step are determined by use of

a stochastic approach. To formulate the problem more accurately, the goal is to maximize

the conditional probability of P (Y |X) such that

P (Y |X) =
1

Z(X)
exp

(
−ψ(Y |X)

)
ψ(Y |X) =

n∑
i=1

ψu(yi, X) +
∑
ϕ∈C

ψp(yϕ, X) (3.1)

where C is the set of cliques in the random fields selected based on a stochastic procedure

and are involved in the inference step. Introducing the best set of clique structures C leads

to find the sub-optimal solution easier. For more information regarding the notations

readers are referred to Section 2.4 and (2.16) and (2.17). We are aiming to maximize

the conditional probability of P (Y |X) via a MAP approach (so-called inference and more

details will be provided in Section 3.4) such that the relations among random variables are

modeled by a random field structure that is non-local and the underlying graph structure

is designed by a stochastic algorithm. Therefore, we want to find the best configuration of

Y such that it maximizes the conditional probability of P (Y |X):

Y ∗ = arg max
Y ′

P (Y |X) = arg min
Y ′

( n∑
i=1

ψu(yi, X) +
∑
ϕ∈C

ψp(yϕ, X)
)

(3.2)

where yi is a random variable in the set of Y and yϕ is a subset of random variables from

Y specified by clique ϕ. Here the clique ϕ ∈ C is not a regular clique and it is determined

by a stochastic process which specifies that which sets of two-node cliques can be involved

in the inference process. By use of this approach, the random field can be considered as

a fully connected random field since each possible clique in the random field has a chance
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Figure 3.1: Problem definition flow-diagram. The unary potentials (ψu(·) in (3.1)) are

computed based the user input (seed points) while the pairwise potentials (ψp(·) in (3.1))

are constructed based on the interactions among pixel intensities associated to the selected

random variables in the clique structure and their corresponding states. As seen in the Fig-

ure, the image (a) is the input image which the user determined the regions corresponding

to foreground and background with green and red colors. The Figure (b) shows the result

of unary potential which here is a GMM model specifying each pixel belongs to background

or foreground based the Gaussian models trained on seed points. Compared to the local

random fields, here we optimize the model to satisfy two objectives: I) maximization of

region F1-score and II) maximization of boundary F1-score. To achieve both objectives

we introduce stochastic cliques which takes advantage of long-range connectivities while

maintains the computational complexity by only using informative clique structures.



to be involved in the modeling and non-local interactions are incorporated in the random

field modeling.

In an attempt to improve the modeling accuracy of the local MRF models, frameworks

have been introduced that expand the clique structure to higher-order cliques [66, 83], as

well as to introduce novel and effective penalty functions (i.e., the focus is on ψp(·) in

(3.2)) in place of the standard Gibbs energy function [73] to better handle complex object

structures. For example, in the work by Jegelka & Bilmes [73], the Gibbs energy was

modified within the graph cuts optimization framework [42]. The smoothing issue was

introduced as the short-boundary bias problem, resulting from the fact that penalizing

the assignment of different labels to neighboring pixels leads to smooth segmentations in

the standard pairwise models [15]. Although new potential functions address the short-

boundary bias and overcome boundary smoothness, this approach has some drawbacks

when dealing with situations characterized by background clutter.

There are several inference frameworks that utilize fully-connected random fields for se-

mantic image labeling [21, 131, 186]. By taking advantage of a large number of long-range

connections (i.e., they focused on C in (3.2) however they extracted cliques deterministi-

cally), such methods have been shown to provide superior performance when compared to

those with lower-order connectivities. However the complexity of inference in those initial

inference frameworks using fully-connected conditional random field models limits their

usage to only hundreds of nodes or fewer, as they become computationally intractable be-

yond such scenarios. To address the computational intractability issue of fully-connected

conditional random fields, Krähenbühl and Koltun [89] proposed a tractable inference pro-

cedure by using specific potential functions. In their work, a fully-connected conditional

random field (which we will refer to as FCRF) was presented to model the multi-class

image segmentation problem, with the edge potentials obtained using Gaussian kernels

(they focused on C while they reformulated ψp(·) in (3.2) in a form of Gaussian function).

Based on these new feature functions, they formulated the inference problem as a filtering

problem. However, the proposed methods are associated with a limitation that only spe-

cific potential functions can be used. This limitation restricts the effectiveness of CRFs
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in modeling, as one of the key strengths of CRFs is the ability to utilize arbitrary feature

functions.

Given the respective benefits and limitations of different streams of thought in address-

ing the smoothing issue in image modeling to better handle more complex objects, in this

thesis we are motivated to investigate the marriage of random field theory and random

graph theory to address the computational complexity of inference approximation on fully

connected or long-range random field models. By combination of these two theories, the

clique structure C in (3.1) is reconstructed with the proper number of cliques such that

two mentioned objectives are optimized simultaneously. Before we introduce the proposed

method, two intuitive demonstrations are provided to show the advantages and disadvan-

tages of utilizing long-range interactions:

• As the first demonstration, it is shown in Figure 3.2 that fully connected interactions

of all nodes (i.e., as discussed in Section 2.4.3 and (2.20)) during inference is not

always useful via an experiment on a binary image classification (a binary classifica-

tion is performed on every pixel in a noisy image using increasingly higher numbers

of interactions). Figure 3.3 demonstrates the results based on F1-score which is con-

sistent with the above statement that long-range interactions are not always helpful.

It is possible to draw a rough conclusion such that the effective range of interactions

among random variables is highly dependent on the problem. However long-range

connections and more information may be useful in modeling of several problems.

• Another simulation has been done to demonstrate the beneficial effects of long-range

connections in certain situations. The problem is to classify each pixel of a noisy

image to different classes. In this example, identical objects are distributed in the

image. Since the identical objects are spatially distributed in the image, useful in-

teractions corresponding to each node (pixels) are distributed in the image (i.e., the

nodes with similar observation are distributed in the image). Valuable interactions

are distributed in the whole image, therefore, long-range connectivities may be ben-

eficial. Figure 3.4 shows the observation and the results of a CRF by incorporating

different size of interaction. Figure 3.5 demonstrates the accuracy per number of
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(A) (B)

Figure 3.2: Binary label classification image sample. The objective is to classify a noisy

image to binary value (foreground and background) via (3.2) where the classification proce-

dure results the maximum region F1-Score while maintains the object boundary. (A) shows

the observations X and (B) is the desirable result Y .

connections for this problem. As seen, the accuracy is increasing by adding more

connections and it is consistent with the number of interactions.

As shown in Figures 3.3 and 3.5, problems are divided into two different categories:

1. The accuracy and effectiveness of the random field increases by adding more connec-

tions (e.g. Figure 3.5).

2. The long-range connections are not always effective (e.g. Figure 3.3) and there is a

trade-off between the number of connections and the modeling accuracy.

Motivated by those examples and reported results in [21, 89], in this chapter we propose

a new approach to take advantage of long-range interaction to some extent while maintains

the computational complexity. As seen in Figure 3.1, the proposed framework assumes the

random fields are fully connected random fields and all nodes are considered as neighboring

nodes of other nodes in the random fields. However, a subset of cliques, C, is considered

in the inference step instead of all cliques in the fully connected random. Since the cliques

are specified based on a distribution, this leads us to a new form of fully connected random

fields where the generated cliques are stochastic in nature. To this end, we call this new
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Figure 3.3: The region F1-Score for binary image classification of noisy images (Figure 3.2)

by CRFs with different interaction sizes. The curve shows that the accuracy increases

by adding more interactions and peaking at a specific point that the number of useful

interactions is smaller than the number of all connectivities in the graph. Increasing the

number of connections more than the optimal value attenuates the model accuracy.

type of clique structure as stochastic clique. The proposed approach will be explained and

analyzed in the following section.

3.3 Randomly-Connected Conditional Random Fields

In this section, we explain the concept of the proposed stochastic cliques in more details.

The graph representation is demonstrated and the CRF model is derived via the novel

concept of stochastic cliques structure. Considering the stochastic nature of the underly-

ing clique structures in the new fully connected CRF model we coin the CRF model as

randomly-connected conditional random field or short as RCRF.
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Observation Connection = 9 Connection = 49 Connection = 169

Connection = 441 Connection = 1681 Connection = 5041 Connection = 10201

Figure 3.4: Multi-label image classification. The problem as discussed in Section 3.2 is

to classify a noisy image to multiple labels. The upper left image shows the observation

corrupted by noise and other images are the results of CRFs with different sizes of interac-

tions. The inference step is applied with the same number of iterations in all CRFs. From

left to right and top to bottom the number of interactions is increased in the CRFs model.

As observed by the sequence of the results, the efficacy of the CRFs in classification is

increased by incorporating more interactions in modeling since there are more useful infor-

mation to incorporate into the model. It it worth to note that the similar objects in the

provided observation (image) are distributed in the image such that long-range interactions

most likely have positive effects on the modeling accuracy.
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Figure 3.5: Accuracy of multi-label image classification. The accuracy is increased by

adding more connections. Comparing the results with Figure 3.3 which is an example of

local random fields structure, the performance of the CRF is increased by incorporating

more interactions in the CRF model.

3.3.1 Stochastic Cliques

Randomly-connected conditional random fields (RCRF) are fully connected random fields

in which cliques are defined stochastically. The term fully connected refers to the fact that

each node in the graph can be connected to all other nodes of the graph, however the

cliques for each node are determined based on distribution probabilities, so the number of

pairwise cliques in the graph may not be the same as the number of neighborhood pairs.

The goal is to model P (Y |X), the conditional probability of the state set Y given the

measurement X. The conditional random field (CRF) approach to expressing P (Y |X) is

to write it as (3.1) where the potential function is the combination of unary and pairwise

potential functions (3.1). The pairwise clique structure is the most regular cliques which

is utilized to incorporate as the interactions among variables in the modeling; simplifying

the formulations and relaxing the computational complexity are the main reasons of using
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only pairwise cliques1:

C =
{
Cp(i)

}n
i=1

(3.3)

Cp(i) =
{

(i, j)|j ∈ N(i), 1S{i,j} = 1
}
. (3.4)

However, the formulation can be generalized for other clique structures. Cp(i) for node i

is determined based on a stochastic indicator neighbor function, 1S{i,j} = 1, to distinguish

whether two nodes can construct a clique or not. This function itself is a combination

of probability distributions. For image modeling, this function must consider the spatial

relation among the nodes and must incorporate the observation information into the model;

therefore, the proposed indicator function is the combination of spatially driven and data

driven probabilities:

1S{i,j} =

1 1−
(
P s
i,j ·Qd

i,j

)
≤ γ · U(0, 1)

0 otherwise
(3.5)

1S{i,j} = 1 has two responsibilities:

1. Incorporating the spatial information (P s
i,j); The distance between two nodes in the

underlying graph is utilized as one factor to determine the possibility of the connec-

tivity between them. Here as we are dealing with spatial distances between pixels in

the image, a simple Euclidean distance is utilized to model P s
i,j:

P s
i,j = exp

(−‖ui − uj‖
σ2
p

)
(3.6)

where ui and uj determine the locations of nodes (random variables) i and j in the

underlying graph and σ2
p is a controlling parameter.

2. Involving the data relation among the states (Qd
i,j); The similarity of two nodes

regarding to their associated observations is another factor which is used in the

1Readers are encouraged to study section 2.3.1 for more information about clique structures.
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stochastic indicator neighbor function:

Qd
i,j = exp

(−‖xi − xj‖2

σ2
q

)
. (3.7)

xi encodes the color intensity of node i and σ2
q is a color controlling parameter which

tunes the color similarity measure. It is worth to mention that L2 norm between two

pixels is a popular distance measure and also a simple one that has been utilized in

the literature. This form of equation is selected here to have a simple formulation

and to decrease the complexity of the problem.

The threshold γ in (3.5) determines the sparsity of the graph. The probability distributions

P s
i,j and Qd

i,j are specified based on the problem.

3.3.2 Graph Representation

Graph G(V , E) is the realization of the RCRF where V is the set of nodes of the graph rep-

resenting the states Y = {yi}ni=1, and E is the set of edges of the graph where |E| ≤ n(n+1)
2

.

Corresponding to each vertex in the graph G(·), there is an observation xi ∈ X. The edges

in G(·) are randomly sampled, thus G is a realization of a random graph [24]. According

to the Erdös-Rényi theorem [34] if the probability p′ of the random graph Ĝn,p′ is greater

than logn
n

the graph is connected with a high probability (Section 2.3.2). This property is

important in the inference (i.e., Graph Cut) such that if the graph is not connected the

inference result is trivial. As a result, the proposed graph G(·) is connected, has at least

n − 1 edges even for large values of γ, and satisfies Gibbs distribution [45] properties as

well.

It is worth noting that the value of pij is very small if the random field is constructed

for tackling problems where the number of random variables is large, such as the problem

of image segmentation. As an example, for an image that is n = 400 × 300, pij only

needs to be greater than logn
n

= 9.7460× 10−5 to satisfy the connectedness condition which

corresponds to having 12 neighbors per pixel. As such, the connectedness condition is easily
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Figure 3.6: A visualization of a randomly-connected conditional random field graph. A

connectivity between two nodes is determined based on a distribution; each two nodes

in the graph can be connected according to a probability drawn from this distribution.

There is a measurement xi corresponding to each node yi. The connectivity of each pair

of two nodes yi and yk is distinguished by the edge ei,k. Closer nodes are connected with

a higher probability (black solid edges), whereas two nodes with a greater separation are

less probable to be connected (red dashed edges).

satisfied for the purpose of image segmentation. Furthermore, it is possible to theoretically

illustrate how many connectivities are needed to produce the optimal solution and to find

the maximum number of connectivities which will be discussed in Section 6.2.1 as future

work.

Figure 3.6 demonstrates an example of a RCRF. As seen, each node in the graph

can be connected to all other nodes; However the connectivities of the centered node are

highlighted to improve the visualization. The probability of connecting two nodes as a

clique is different for each pair of nodes as shown in (3.5). Based on P s
i,j, the connectedness

probability of two nodes and the distance between them are inversely related. Nevertheless,

there is a possibility for two distantly separated nodes yi and yk to be connected, as shown

in Figure 3.6, which is how the RCRF takes advantage of the fully connected CRF.

By the amalgamation of random graph theory and random field theory, the proposed
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RCRF might provide the merits of fully connected random fields by sampling the config-

uration of a fully connected random field which leads to a much smaller computational

complexity than that of fully connected random fields. We will compared the proposed

method with state-of-the-art fully connected random fields in Chapter 5.

3.4 Inference

There have been proposed several different approaches to compute inference over a random

field models. Those frameworks can be divided into two distinct folds depends on the type

of the outputs which are needed. In some situations, we need to evaluate the probability

of a configuration of random variables with assigned values while in other situations we

only need to find the best configuration (i.e., with highest probability) considering the

underlying random field model. Finding the best configuration (the latter case) is the

most popular problem [21, 83, 97, 134] such that we mostly care about the best result

given the observation.

The inference methods can also be divided into I) Monte Carlo algorithms and II) varia-

tional algorithms [155]. Monte Carlo methods approximate the optimal result by sampling

from the underlying distribution while variational inference approaches reformulate the

problem to an optimization problem by changing the underlying distribution to a simple

distribution that most closely matches to the original distribution.

Monte Carlo methods [135] iterate through random variables such that in each iteration

they find the marginal distribution of a random variable considering others have fix states

in the random field. This procedure is repeated until no significant change on states is

observed and energy function reaches to optimal state. Gibbs sampling [45] is one of the

most popular Monte Carlo methods known for inferencing on the random fields.

Variational inference [46, 85] utilizes a simpler yet similar distribution compared to the

original one such that it makes the optimization procedure possible in terms of computing

derivatives and also computational complexity. The variational Bayes inference [5] can be

seen as an extension of the EM (expectation-maximization) algorithms [85] from maximum
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a posteriori (MAP) estimation. Belief propagation (BP) [85, 114] is the most well-know

variational inference approaches. The neighboring factors of each random variable makes a

multiplicative contribution to the marginal of the interested random variable (known as a

message) which each message is computed separately due to the tree structure constructed

from the original graph [155]. Mean-field approximation [85], graph cut [71, 167] and

beilef propagation [124, 154] are a subset of variational inference methods with different

functionalities and properties.

In this thesis, we are more interested to take advantage of graph cut approach since

our goal is image segmentation which the number of labels are limited and also finding

the probability of the optimal solution is not important. We model the best configuration

(optimal label set) as a maximum a posteriori problem and the inference of the MAP

problem is solved by minimizing the energy function ψ(·) of the conditional probability

distribution P (Y |X):

Ŷ = arg min
Y ′

ψ(Y ′, X) (3.8)

Ŷ is the suboptimal configuration for states corresponding to observation X, and ψ(·) rep-

resents the energy function. The energy ψ(·) is minimized via formulating the underlying

graph within a graph cut minimization.

3.4.1 Graph Cut

Graph cut [71, 167] formulates the energy minimization problems as finding the maximum-

flow in a graph [19] such that the goal is to find those edge connectivities among nodes in

the graph which can maximize the flow from the source node to the sink one. It is usually

known as st-cut problem [86] which is the dual approach of the maximum flow problem.

A st-cut problem is to partition the vertices of V of graph G(V,E) into two disjoint

sets of S and T such that s ∈ S and t ∈ T and s and t are two terminal nodes. The cost

of the cut is the summation of all edges that go from S to T :

c(S, T ) =
∑

i∈S,j∈T,(i,j)∈E

c(i, j) (3.9)

55



where i is a node in the set S, j is a node in set T and the pair (i, j) encodes an edge

in the graph G(·). c(i, j) is the cost of edge (i, j) in the graph G(·) which the goal of the

st-cut problem is to find a cut with minimum cost. Ford and Fulkerson [41] proved that

the st-cut algorithm is equivalent to maximum-flow from the source to the sink.

It is worth to note that the cut in a graph can be viewed as a binary partitioning of

the graph where the nodes connected to the source are assigned with label “0” and those

are connected to the sink are labeled by “1” (i.e., binary-valued labeling). Thanks to this

intuitive similarity, it is very easy to formulate the image segmentation problem within a

st-cut framework (graph cut).

Efficient global energy minimization algorithms for even the simplest class of discontinuity-

preserving energy functions almost certainly do not exist and finding the global optimal

solution is NP-Hard [20]. Due to this fact, there are several approximation algorithms to

find the sub-optimal solution for the st-cut problem. The expansion move algorithms [86]

are the well-known approximations for st-cut problems. The expansion move methods iter-

ate through the possible labels α and change the label of random variables to find a lower

energy. If the expansion move has lower energy than the current labeling, then it becomes

the current labeling. The algorithm terminates with a labeling that is a local minimum of

the energy with respect to expansion moves and there is no expansion move for any label

with lower energy.

3.5 Example Problem

The proposed stochastic clique structure within a randomly-connected random field is

examined with binary image classification as an example problem. However the compre-

hensive experiments will be conducted in Chapter 5.
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3.5.1 Binary Image Classification

To demonstrate the power of the RCRF we performed experiments on binary classification

datasets. It is worth to note that this experiment is for illustrative purposes and, there-

fore, the proposed method is not compared with other state-of-the-art algorithms. The

first experiment studies the behaviors of local, long-range CRFs and the proposed RCRF

frameworks on binary image classification. The utilized dataset is EnglishHnd, a set of

handwritten characters [30], containing 3410 images grouped into 62 equally sized classes:

10 classes for digits, 26 classes for upper case letters, and 26 classes for lower case letters.

We corrupted the given images with noise, and the goal is to classify the pixels of the noisy

images as foreground and background. Salt & pepper noise at 80% and 90%, and Gaussian

noise at 220% and 300%, where the Gaussian noise percentage is characterised by

% =

(
σ

dynamic range

)
× 100. (3.10)

The images have a size of 480×360; therefore, the total number of pairwise connections

of the fully connected graph is approximately 2.99× 1010. According to the random graph

theory [34] mentioned earlier, the selection probability must be greater than 3.03×10−5 for

the graph to be connected. The experiments were conducted with the selection probability

7×10−4, leading to an expected number of pairwise cliques to be 2.09×107 with an average

of 121 pairwise cliques per node.

To test the effectiveness of the proposed framework, we compared our proposed RCRF

against two other CRFs of different neighborhood sizes. Of the two compared approaches,

the first is a regular CRF with adjacent neighbors (CRF-N3) where each node is connected

to its closest eight neighbours (those within a 3 × 3 block); the second model, CRF-N11,

has a larger neighborhood, where each node is connected to its closest 120 neighbors (those

within an 11 × 11 block). The exact number of pairwise cliques of CRF-N3 is 1.38 × 106

(8 pairwise cliques per node) and of CRF-N11 is 2.07× 107(120 pairwise cliques per node).

All three methods (CRF-N3, CRF-N11 and RCRF) are implemented in Matlab, whereas

the potential calculation was computed in C++ code integrated with Matlab through the
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Figure 3.7: Qualitative results of RCRF; the proposed algorithm is examined based on two

noise types with two strengths. The results clearly show how the RCRF outperforms both

local and non-local CRFs.
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Table 3.1: Quantitative results (F1-score) based on the EnglishHnd dataset [30]. The

proposed framework is examined by two noise types with two different levels. The RCRF

is compared with the regular CRF (CRF-N3) and a CRF with a neighborhood size of 11

(CRF-N11). The per-iteration run time of each method is reported; all methods were run

with an equal number of iterations.

CRF-N3 CRF-N11 RCRF

Salt & Pepper (80%) 0.488 0.872 0.931

Salt & Pepper (90%) 0.235 0.313 0.859

Gaussian (220%) 0.566 0.818 0.895

Gaussian (300%) 0.391 0.646 0.842

Time per Iteration (s) 0.04 3.85 2.70

Mex interface. The average computational time for each iteration of the inference step is

0.04s for CRF-N3 and 3.85s for CRF-N11, a significant difference caused by the change

in degree of connectivity between the two models. In contrast, the average runtime per

iteration for the RCRF configuration is 2.7s. Thus the inference time is decreased, while

the flexibility in edge connectivity, in principle allowing arbitrarily distant connections, is

increased based on this new clique structure.

Table 3.1 shows the F1-score for the RCRF and other CRFs subject to the stated noise.

The ground truth labels are obtained by binarizing the true images. The results show that

the proposed RCRF outperforms the regular CRFs in all cases.

Figure 3.7 shows example results of the EnglishHnd dataset. As seen RCRF can classify

the images even when they are distorted by the high level of the noise (i.e. 300%).

3.6 Summary

In this chapter we proposed a new clique structure, stochastic clique, which determines

the set of cliques incorporated in the inference stochastically. The stochastic cliques are

constructed via a stochastic process such that the useful connectivities in the inference step
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are determined based on a probability distribution. Followed by that direction we propose

a new random field structure which the clique connectivities from the underlying graph are

extracted based on the stochastic cliques to address the computational complexity fo fully

connected random fields. The proposed random field called randomly-connected random

field (RCRF) is the marriage between random graph theory and random field theory such

that the underlying graph of the random field is fully connected while useful cliques involved

in the inference step are much less than the original fully connected random fields.

The performance of the proposed RCRF structure was examined on binary image clas-

sification as an example problem. The results showed the advantages of the proposed

method compared to local random field models.

The inference of the proposed RCRF framework has been done by the graph cut min-

imization. However inference using graph-cuts is NP-hard thus the graph cut solution is

necessarily approximate. Increasing the number of connectivities can make the problem

more complex and might result to poor approximation. In the next chapter we aim to

propose an extended framework that allows for the number of clique formations to scale

without incurring an exponential increase in the computational complexity, while simulta-

neously supporting graph cut in producing solutions that are closer to the optimal solution

than those achieved by RCRF.
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Chapter 4

Deep Randomly-connected

Conditional Random Field

“Look deep into nature, and then you will understand everything better.”

Albert Einstein
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4.1 Introduction

As discussed in chapters 2 and 3, structured inference where the goal is to infer a structured

states output from a structured observation input, is a crucial component for a wide range

of applications such as object recognition [127], image classification [119], natural language

processing [180], gesture recognition [173], handwriting recognition [37], and bioinformatics.

A powerful and commonly-used approach to structured inference is the use of Markov

random field (MRF) and conditional random field (CRF) [98] models. A limitation of such

graphical models is that they utilize unary and pairwise potentials on local neighborhoods

only, and as such can result in smoothed state boundaries as well as prohibit long-range

state boundaries given the limitations of constraint locality. This becomes particularly

problematic in the presence of high observational uncertainties such as measurement noise

and outliers.

Recently there has been significant interest in the application of two types of models

for the purpose of structured inference that help address the issues associated with locally-

connected graphical models: i) fully connected graphical models, and ii) deep-structured

graphical models.

In two previous chapters we focus on fully connected random fields. We proposed the

concept of stochastic clique structure which brings random graph theory and random field

frameworks together to address the computational complexity of fully connected random

fields. The proposed randomly-connected conditional random field benefits the long-range

connectivities and interactions by use of the informative connectivities instead of all inter-

actions in the graph. Utilizing this approach makes the computational complexity more

feasible. Preliminary results demonstrates the potential of the proposed framework in

structural modeling.

Although fully connected random fields address the local random fields’ drawbacks in

excessive smoothing of object boundaries, each fully connected approach (i.e., FCRF or

RCRF) suffers by its own limitations. FCRF frameworks are limited to utilize Gaussian

shape feature functions while RCRF has computational complexity issue when dealing with

large random field yet. The graph cut inference framework is suboptimal and increasing
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the number of connectivities makes it weaker in fining the best solution due the NP-hard

property of the problem. In this chapter we extend the idea of RCRF framework to

boost its modeling accuracy and computational complexity. We explain the notion of deep

structures and propose a deep random fields to address image segmentation problem.

4.2 Deep Structures

Fully-connected graphical models address issues of locally-connected models by assuming

full connectivity amongst all nodes in the graph, thus taking full advantage of long range

relationships to improve inference accuracy. One of the main hurdles in utilizing fully-

connected graphical models is the complexity of inference, which becomes computationally

intractable as the size of the problem scales. Much of recent research in fully-connected

graphical models have revolved around addressing the computational complexity of infer-

ence step. Krähenbühl and Koltun [89, 90] introduced an efficient inference procedure for

fully-connected CRF based on specific potential functions which was previously explained

in Section 2.5.

Nevertheless, while the aforementioned methods (FCRF method and its extensions as

explained in Secion 2.5) significantly reduces the computational complexity of inference

on fully-connected graphical models, they all address the problem similarly by defining

specific potential functions to manage the inference as a filtering approach, thus limiting

the effectiveness of such models as the one merit of such models is to allow for arbitrary

feature function selection.

The proposed RCRF framework is associated with two limitations. First, while the

computational complexity of the inference process is greatly reduced, the computational

complexity of forming stochastic cliques is relatively high, thus resulting in a relatively

higher overall computational complexity compared to the first direction. Second, to re-

duce the computational complexity of forming stochastic cliques, a weak spatial proximity

is imposed when forming the stochastic cliques, in which nodal interactions are formed

with decreasing probability with increasing spatial distance. As such RCRF does not

63



leverage long-range nodal interactions completely. Therefore, an approach allowing for

high inference performance using fully-connected conditional random fields that relaxes

restrictions on potential functions compared to the FCRF, without imposing spatial prox-

imity is highly desired. In this chapter we investigate the feasibility of deep structure to

address the mentioned drawbacks.

Deep-structured graphical models take a different approach to improve the inference

performance by introducing intermediate state layers, where there is a dependency of each

higher layer on its previously layer, and inference is carried out in a layer-by-layer manner

from bottom to top. Prabhavalkar and Fosler-Lussier [125] and Peng et al. [123] both

introduced multi-layer conditional random field models where the local factors in linear-

chain conditional random fields are replaced by multi-layer neural networks and trained

via back-propagation. Ratajczak et al. [134] introduced a context-specific deep conditional

random field model by replacing the local factors in linear-chain conditional random fields

with sum-product networks. Yu et al. [180, 179] proposed a deep-structured conditional

random field model which consists of multiple layers of simple CRFs where each layer’s

input consists of the previous layer’s input and the resulting marginal probabilities. While

such deep-structured graphical models are good at handling high observational uncertain-

ties such as measurement noise and outliers by characterizing different information at the

different layers, they only implicitly take advantage of long range relationships and are

more limited in this aspect when compared to fully-connected graphical models.

While fully-connected and deep-structured graphical models both have their own ben-

efits and limitations, these two types of graphical models have been largely explored inde-

pendently, leaving the unification of these two concepts ripe for exploration. Such a unified

graphical model could yield significant benefits in improving state boundary preservation,

better enable long-range state boundaries, and better handle high observational uncertain-

ties such as measurement noise and outliers. A fundamental challenge with unifying these

two types of graphical models is in dealing with computational complexity, as not only are

all nodes fully-connected within a layer, there are also multiple layers to process due to

the deep structure of the graphical model.
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In this chapter, we investigate the feasibility of unifying fully-connected graphical mod-

els and deep-structured models in a computationally tractable manner for the purpose of

statistical inference. To accomplish this, we propose a deep randomly-connected condi-

tional random field (DRCRF) which extends upon RCRF through the introduction of a

deep structure representation to address the sub-optimality of the utilized graph cut ap-

proach when applied to RCRF. Inference using the model proposed in [147] via graph-cuts

is NP-hard, thus the graph cut solution is necessarily approximate. In contrast, the pro-

posed DRCRF framework leverages a novel deep, multi-layer architecture that allows for

the number of clique formations to scale without incurring an exponential increase in the

computational complexity, while simultaneously supporting graph cut in producing solu-

tions that are closer to the optimal solution than those achieved in [147]. By distributing

the range of stochastic connectivities (i.e., stochastic cliques) in several layers, the compu-

tational complexity of graph cut method and as a result the sub-optimality is addressed

to some extent and as a result the new model can lead to more accurate modeling.

4.3 Deep Randomly-connected Conditional Random

Fields

The main limitation of conventional random field models is in their ability to take advan-

tage of long-range connections within the image and generally result in excessive smoothing

of object boundaries [52, 168]. In an attempt to address this important issue, frameworks

have been introduced that expand the clique structure to higher-order cliques [66, 83], as

well as to introduce novel and effective penalty functions in place of the standard Gibbs

energy function [73] to better handle complex object structures. For example, in the

work by Jegelka & Bilmes [73], the Gibbs energy was modified within the graph cuts op-

timization framework [42]. The smoothing issue was introduced as the short-boundary

bias problem, resulting from the fact that penalizing the assignment of different labels to

neighboring pixels leads to smooth segmentations in the standard pairwise models [15].

Although new potential functions addresses the short-boundary bias and overcome the
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boundary smoothness, this approach has some drawbacks when dealing with situations

characterized by background clutter. Figure 4.1 demonstrates an example of such images.

In these situations, the number of types of label discontinuities is more than usual and

the penalty function has a negative effect. The aforementioned drawback is also encoun-

tered in corrupted and distorted images, as well as images having complex textures. In

these aforementioned situations, there are varying types of discontinuities and there is a

possibility that a background discontinuity and a boundary discontinuity may be grouped

into the same cluster, leading to an incorrect labeling. As a result, image segmentation of

complex object structures remains an open challenge.

More recently, there have been two main streams of approaches that aim at address-

ing the smoothing issue to better handle more complex object structures. One stream is

to introduce inference frameworks that utilize fully-connected random fields for semantic

image labeling. By taking advantage of a large number of long-range connections, such

methods have been shown to provide superior performance when compared to those with

lower-order connectivity. However the complexity of inference in those initial inference

frameworks using fully-connected conditional random field models limits their usage to

only hundreds of nodes or fewer, as they become computationally intractable beyond such

scenarios. To address the computational intractability issue of fully-connected conditional

random fields, Krähenbühl and Koltun [89] proposed a tractable inference procedure by

using specific potential functions. In their work, a fully-connected conditional random field

(which we will refer to as FCRF) was presented to model the multi-class image segmen-

tation problem, with the edge potentials obtained using Gaussian kernels. Based on these

new feature functions, they formulated the inference problem as a filtering problem.

Following [89], Zhang and Chen [185] relaxed the Gaussian assumption to any distri-

bution by using a stationarity constraint. More statistical information was encoded by

different distributions since they showed that the spatial potentials over two pixels depend

only on their relative positions. Campbell et al. [21] generalized the pairwise potentials to

a non-linear dissimilarity measure, such that the pairwise terms are encoded by the density

estimates of the conditional probability, with the probabilities expressed by a dissimilarity

measure. A continuous FCRF was proposed by Ristovski et al. [134], similar to [89], but

66



(a) Image (b) Ground Truth (c) FCRF (d) PD (e) DRCRF

Figure 4.1: Interactive image segmentation: (a) User-specified marked area; (b) Ground

truth segmentation; Segmentation results of (c) FCRF [89], (d) principled deep random

field [82], and (e) DRCRF. A GMM is trained by the user-specified areas corresponding

to the object and background. The blue and the red areas show the background and the

object seeds, respectively. It can be observed that the principled deep random field cannot

find the optimal solution since the number of types of color dissimilarity is more than usual

and the background is very complex. The FCRF cannot find the optimal boundary since

the foreground and background have similar color distributions. The power of the DRCRF

is to select informative clique connectivities in long-range distances. The image is selected

from [3] for illustrative purposes.

targeting the regression problem with continuous outputs. By approximating the inference

on a FCRF model using the aforementioned frameworks, the computational complexity

of inference using a FCRF is reduced from O(N3) to near linear complexity, making it

computationally tractable to solve, but with a corresponding limitation that only specific

potential functions can be used. This limitation restricts the effectiveness of CRFs in

modeling, as one of the key strengths of CRFs is the ability to utilize arbitrary feature

functions.

The second stream introduces inference frameworks that utilize deep random fields for

semantic image labeling [95, 97, 82]. Such approaches leverage deep, multi-layer graphical

architectures to take advantage of higher-order potentials within the model. As such, a

fundamental difference between fully-connected random fields and deep random fields is
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that, while fully-connected random fields consider all possible pairwise connections in the

inference process to enable higher-order connectivity, deep random fields consider only a

subset of connections at each layer but rely on inter-layer connections within the deep

graphical architecture to represent higher-order interactions. For example, Kohli et al. [82]

proposed a deep, multi-layer pairwise model with hidden auxiliary random variables [70]

for representing useful higher-order interactions, and derived an exact yet practical algo-

rithm for MAP inference using this model. The advantage of this deep modeling approach

is that it mitigates the computational tractability problem while allowing for the use of

arbitrary feature functions which allows for greater modeling flexibility. While reported

results [82] demonstrate the superiority of this new deep modeling approach over conven-

tional approaches, and have been shown to provide state-of-the-art performance in image

segmentation, they only implicitly take advantage of long range relationships and are more

limited in this aspect when compared to fully-connected graphical models.

Given the respective benefits and limitations of two different streams of thought in

addressing the smoothing issue to better handle complex objects, in this work we are

motivated to investigate the marriage of fully-connected random fields and deep random

field inference frameworks to achieve computationally tractable inference approaches that

are well suited to the segmentation of complex objects. Here, we propose a new inference

framework based on the concept of deep randomly-connected conditional random fields

(DRCRF), which allows for computational tractability for inference without limiting the

use of specific feature functions. Leveraging the idea of stochastic cliques, first introduced

in [147], we introduce a deep graphical structure consisting of multiple layers of RCRFs

where the clique connectivity is determined randomly to take better advantage of long-

range interactions while maintaining computational tractability.

4.4 DRCRF Methodology

The main benchmark in this thesis is image segmentation, therefore, let us first formulate

the image segmentation problem using a conditional random field (CRF) model. Let X
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denote the set of pixels of image I being segmented and C denote the set of all pairwise

interactions of the CRF model. The posterior probability of P (Y |X) = 1
Z

exp(−ψ(Y,X))

is the factorization of unary and pairwise potential functions where Y is the set of random

variables representing the label of each pixel i ∈ X:

ψ(Y,X) =
∑
i∈X

ψu(yi, X) +
∑
c∈C

ψp(yi, yj, X) (4.1)

where ψu(·) is the unary potential and ψp(·) represents the pairwise interaction between

two nodes i and j. Since the model relies on pairwise interaction, c = {i, j} represents a

pairwise clique, ψp(·) a binary-variable function which is the contrast sensitive prior, and

ψu(yi) the likelihood of pixel i to each class label. The pairwise potential ψp(·) plays the

role of a penalizing function, the cost of assigning different labels to pixels i and j based

on color similarity.

The inference of the Maximum a Posterior (MAP) solution of a CRF model P (Y |X)

can be formulated as minimizing the corresponding energy ψ(·). It has been shown [18]

that the energy function can be minimized by graph cuts in polynomial time when the

penalty function is non-negative for all configurations of i and j. However, the inference of

a high-order random field is NP-hard [82]. As a result, each node i usually interacts with

only 4 or 8 other neighboring nodes, depending on the order of the Markov assumption in

the random field model. In other words, each node i is contributing to at most 8 different

cliques c. Thus, the pairwise potential penalizes the assignment of different labels only to

neighboring pixels, leading to smoothed segmentation results. There has been strong recent

evidence [97, 83, 66] that increasing the number of model interactions can attenuate this

smoothness effect, with the extreme case being fully-connected interactions [131], which

are computationally intractable in general.

Although the framework proposed by Krähenbühl and Koltun [89], along with sub-

sequent frameworks [185, 21] allow the inference of a fully-connected random field to be

computationally tractable, they are limited to the use of specific potential functions which

limit modeling flexibility. Furthermore, it was found in the experimental results conducted

in [89] that classification accuracy peaked when not all possible interactions are involved in
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the inference process. These issues become significantly amplified for deep, fully-connected

conditional random fields, making the combination of fully-connected random fields and

deep random fields intractable using conventional approaches.

We are motivated to tackle the challenge of achieving computational tractability infer-

ence from a different perspective, with the aim of retaining the powerful ability of CRFs

within a deep, fully-connected graphical model to use arbitrary feature functions. We focus

on the graphical structure of the deep, fully-connected conditional random field itself, in

which all possible pairwise cliques between nodes exist. Accounting for all such interac-

tions in a direct manner within a deep, fully-connected conditional random field leads to

an inference problem that is computationally intractable, however studying the problem

from this perspective leads to an interesting idea: What if the pairwise cliques take shape

in a random manner, coming into and out of existence with a certain probability? This

idea of a deep, randomly-connected conditional random field (DRCFR) relates directly to

random graph theory [16], where graph nodes are connected based on some probability dis-

tribution. This new perspective allows us to retain the benefits of long range interactions

and to account for them with arbitrary feature functions within a deep, fully-connected

graphical model, while achieving computational tractability since the probability of clique

formation can now be controlled via the choice of probability distribution.

Furthermore, the proposed deep, randomly-connected conditional random field ap-

proach has significant benefits over the preliminary work on stochastic cliques [147] by

leveraging graph cut, one of the best–known frameworks used for random field inference.

It was shown [54] that graph cut can compute the exact optimal solution in polynomial

time within specific constraints:

1. The problem is a binary labeling problem,

2. The observation values are also binary.

These constraints can be relaxed [71], and it was proved that the exact minimum can also

be found efficiently via graph cuts when ψ(yp, yq) = |yp − yq| and Y is a finite 1D set

where ψ(·, ·) is the pairwise potential and yp is the state for node p. Nevertheless graph
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cut minimization remains an NP-hard problem [167] in general frameworks. Specifically

Zeng et al. [182] proved that on a planar 2D grid, when the foreground is “4-connected”

and the background is “8-connected”, the graph cut problem is NP-hard. Following upon

that proof, it is clear that optimization with the model proposed in [147] by graph cuts is

similarly NP-hard, since the connectivity for each node is varying in the graph and graph

cut necessarily results in an approximation. It has furthermore been demonstrated by

Juan and Boykov [75] that having a better initialization can help graph cut find the best

solution faster and closer to the optimal solution. By introducing a deep fully-connected

conditional random field where each layer acts as an initialization for its successor layer,

such a model supports graph cut in producing solutions that are closer to the optimal

solution than achieved in [147].

4.4.1 Graph Representation

Graph G(V , E) is the realization of the DRCRF where V is the set of nodes of the graph

representing the states Y = {ȳi}ni=1, ȳi = {yti |t = 1, ..., L} and E is the set of edges of the

graph with |E| ≤ L · n(n+1)
2

for L graph layers and n nodes. Corresponding to each set of

vertices ȳi in the graph G(·) is an observation xi ∈ X. The edges in G(·) are randomly

realized via the stochastic indicator function, and thus G(·) is a realization of a random

graph [34]. Based on the Erdös-Rényi theorem [34], if the probability p′ of the random

graph Ĝn,p′ is greater than logn
n

the graph is connected with a high probability. As a result,

the proposed graph G(·) is connected, has at least n− 1 edges in each layer, even for large

values of γ, and satisfies a Gibbs distribution [45].

Figure 4.2 illustrates an example of a DRCRF, where the graph exhibits a deep, multi-

layer structure composed of L layers, with each layer encoding a random field. As shown,

each node in the graph is connected to all other nodes in one layer (the connections of the

centered node in layer L are highlighted in Figure 4.2 to improve the visualization). The

probability of two nodes forming a clique is different for each pair of nodes. According

to P s
i,j, the probability of two nodes forming a clique is inversely proportional to their

distance from each other. However, there is a possibility for two distantly separated nodes

71



Figure 4.2: A realization of a deep randomly-connected conditional random field graph.

Clique formation between two nodes in each layer is determined based on a stochastic

clique indicator (i.e., the cliques can be different from one layer to another). There is a

measurement xi (pixel value) corresponding to each set of nodes ȳi = {yti |t = 1, . . . , L}.
Nodes in closer spatial proximity form cliques with a higher probability (red solid edges,

e.g., between yLi and yLj ), whereas two nodes with a greater separation are less likely to

form cliques (red dashed edges). The probability of clique formation varies in each layer,

where the lower layers are designed to better explore the informative cliques in long-range

interactions while the upper layers are design to exploit more local information. The clique

formations for the center node in the last layer (L) are shown here for illustrative purposes

only.

yLi and yLk to form cliques, as illustrated in Figure 4.2, and as such the DRCRF takes strong

advantage of long-range interactions while significantly reducing inference complexity.

Each layer of G(·) encodes a separate random field where clique formations are deter-

mined by the stochastic clique indicator function. The clique formation probabilities varies

in each layer of the graph: the lower layers are designed to better explore the informative

cliques in long-range interactions, while the upper layers are design to exploit more lo-
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cal information. Therefore, by combining random graph theory and random field theory

within a deep, multi-layer structure, the proposed DRCRF provides the benefits of fully-

connected conditional random fields and deep random fields while enabling computational

tractability for inference.

4.4.2 MAP Inference

The inference of the MAP problem is solved by minimizing the energy function ψ(·) of the

conditional probability of P (Y |X). The goal here is to find the optimal solution Y ∗ which

maximizes the conditional probability P (Y |X). However designing a probability model to

produce an optimal solution is not trivial, therefore, the goal here is to find the approximate

solution Ŷ instead of optimal solution Y ∗ by introducing long-range connectivities to the

random fields:

Ŷ = arg max
Y ′

P (Y ′|X) = arg max
Y ′

[ 1

Z
exp

(
− ψ(Y ′, X)

)]
. (4.2)

Designing a random field with sufficient long-range connectivities to address the short-

boundary bias problem has two issues: I) there is no known optimal energy function

over the random field to address the short-boundary bias issue. II) As mentioned before

increasing the number of connections in the graph increases the computational complexity

which makes the inference more difficult. To relax these two problems, we proposed a deep

structure of randomly connected random field (DRCRF) such that the goal is to find the

solution Ŷ for DRCRF which is close to the optimal solution Y ∗. To this end, the DRCRF

framework is minimized in a way that the result of the last layer of the deep structure

model, Ŷ L, is a suboptimal result close to Y ∗:

min
∥∥∥Ŷ L − Y ∗

∥∥∥ (4.3)

such that

Ŷ L = arg max
Y ′

PL(Y ′|X) (4.4)
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where PL(·) is the conditional probability distribution over the random field of layer L.

The inference for each layer was conducted via a graph cut approach which is subop-

timal. Due to this drawback, we applied a piecewise linear optimization to find the best

approximate for the final segmentation result Ŷ . The energy function associated to each

layer is minimized independently while in each layer the minimized result of the preceding

layer is utilized as the initialization of graph cut approach in the present layer:

Ŷ t = St(Y t, X; Ŷ t−1) (4.5)

where St(Y t, X; Ŷ t−1) is the graph cut approach over random field Y t given the graph

structure at layer t, observation X and the initialization Ŷ t−1. A different extent of con-

nectivities is incorporated into each layer of the framework, such that graph cut can deal

with only a limited number of pairwise connectivities each time.

The final result is approximated by finding the best solution of ψL(·) which is the result

of the last layer:

Ŷ ≡ Ŷ L = SL(Y L, X; Ŷ L−1). (4.6)

In each layer t the energy function ψt(·) is minimized and the next factor, ψt+1(·), will

be minimized by considering the optimal value of ψt(·). By using this approach a good

approximation of ψ(·) is resulted by minimizing each factor of ψt(·) step-by-step.

4.5 DRCRF Layer-wise Analysis

In this section, we study the effects of introducing a deep structure representation into

RCRF on overall modeling accuracy using an example, thus better illustrating the efficacy

of the proposed DRCRF approach. It is worth to mention that this example is for illustra-

tive purposes and comprehensive experiments are provided in Chapter 5. More specifically,

we demonstrate the behaviour at different layers of a DRCRF model for the task of inter-

active image segmentation on noisy images. Figure 4.3(a) and (b) shows the true image

and the noisy image corrupted with 25% Gaussian noise (as explained in Section 3.5.1).
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The unary potential is constructed via a GMM model and based on user’s seed informa-

tion within the context of interactive image segmentation1 as shown in Figure 4.3(c). We

classify the pixels of the image as foreground and background by formulating the problem

via a deep structure randomly-connected random field framework. To show the effect of

long-range connectivity and deep model approach, a 4-layer DRCRF model was utilized to

segment the foreground from the background. Results of each layer of the deep model are

demonstrated in Figure 4.3 (d)–(f). As seen by increasing the number of layers the frame-

work can segment the foreground from the background more accurately. The combination

of layers with extracting different ranges of information allows DRCRF to preserve object

(foreground region) more accurately through layers.

As evident by the example, the first layer of DRCRF segments the main regions belong

to foreground which can be considered as the result of a specific RCRF method. This

result is an initial point for the second layer such that the second layer tries to optimize

the energy from the initial point and gets a better sub-optimal result which preserves more

areas of foreground. The initial point helps the graph cut framework to find a better

direction to the optimal result. This process continues until the fourth layer which results

the best possible distinction of the foreground and the background via DRCRF.

4.6 Summary

We addressed the drawbacks of RCRF method within a deep framework (DRCRF). There

are two main drawbacks associated to the proposed RCRF framework including the expo-

nential computational complexity of graph cut method as function of number of connec-

tivities and the sub-optimality and limitedness of the neighborhood ranges in the RCRF

approach. Here in this chapter, by proposing a new deep framework which applied a

specific range of connectivities in each layer we relaxed the computational complexity of

graph cut approach. By use of DRCRF method, it is possible to take advantage of more

connectivities while it is possible to obtain the optimal result by a graph cut algorithm.

1For more information regarding the interactive image segmentation process, please refer to Chapter 5.
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(a) True Image (b) Noisy Image (c) GMM Result

(d) First Layer (e) Second Layer (f) Third Layer (g) Fourth Layer

Figure 4.3: Interactive image classification result for noisy image. The image (a) is cor-

rupted with 25% Gaussian noise (b). A GMM model is utilized as unary potential as

shown in (c) The results of three different layers of a DCRF model are demonstrated. As

seen by increasing the number of layers the model can segment the foreground from the

background more accurately.
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Results showed that having a deep structure can help the proposed RCRF model to cap-

ture the local and global connectivity interactions though several layers while maintains

computational complexity and optimality at the same time.

Parallel to deep structures on the random field models, deep models specially deep

learning approaches have attracted researchers in the past years for different applications

from classification and segmentation to speech recognition and data analytics. The pro-

posed methods were essentially a revisiting of neural networks with different approach.

The proposed deep learning methods outperformed conventional algorithms in different

applications of computer vision and machine learning.

A deep learning model can be seen as a generative model where it models the joint

distribution of states and observations. This type of model also can be considered as a

fully connected graph which nodes in each layer are connected to the nodes of other layers.

Therefore, it is possible to expand the proposed method on deep learning framework.

In Chapter 6, we discuss how the proposed approach can be applied on deep learning

framework and motivates the future work of this thesis.
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Chapter 5

Experimental Results

“Ideas do not always come in a flash but by diligent trial-and-error experiments that take

time and thought.”

Charles K. Kao
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Figure 5.1: Examples images of the Weizmann dataset [148]. This dataset contains images

with single and two objects.

5.1 Introduction

The performance of the proposed frameworks (i.e., RCRF and DRCRF) explained in Chap-

ters 3 and 4 were compared with that of different state-of-the-art frameworks in the context

of the interactive image segmentation problem within different situations. We consider

noiseless and noisy situations as our main experimental results and we do a comprehensive

analysis to explore the behavioral of the proposed methods in different conditions.

5.1.1 Dataset Description

Natural images from several datasets were used to evaluate the proposed methods includ-

ing images from the Weizmann segmentation evaluation database [148] (examples seen in

Figure 5.1), the complex scene saliency dataset (CSSD) [178] with some examples shown

in Figure 5.2, and the Microsoft research interactive dataset (MRIS) [137] with examples

visualized in Figure 5.3. The Weizmann database actually consists two different datasets:

i) 100 images of single objects, and ii) 100 images of pairs of objects. The CSSD and

MRIS datasets contain 200 and 50 images, respectively. To evaluate performance under

noisy and corrupted situations, the images were also corrupted by white Gaussian noise

with a standard deviation of 25% of the image dynamic range. The segmentation proce-

dure is conducted based on user-specified areas corresponding to the object of interest and

the background.
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Figure 5.2: Image examples and corresponding ground truth for CSSD dataset [178].
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Figure 5.3: Image examples and their ground truth of MRIS dataset [137].
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The objects in the images are mostly natural objects with varied sizes in the images.

The objects are with wide variation in shapes and complexity of the boundaries. For

example, in Figure 5.3 the second image is with complex background while in the third

image the object contains very fine structures and elongated boundaries.

The seed points to trained the unary potentials are annotated manually but they are

the same for all competing algorithms.

5.1.2 Competing Algorithms

The proposed methods are compared against random field frameworks, including both deep

as well as fully-connected random field approaches:

• Pairwise graph cuts (P-GC) [82] finds the MAP solution of a standard pairwise

random field model by graph cuts.

• Cooperative cut (Coop-cut) [73] couples the edges based on the pairwise potential

function and penalizes based on the number of types of label discontinuities.

• Fully-connected CRF (FCRF) [89] performs fast inference on a fully-connected

CRF based on Gaussian potential functions and a permutohedral lattice [1].

• Principled deep random field (PD) [82] undertakes inference using a deep, multi-

layer pairwise model with hidden auxiliary random variables [70] for representing

useful higher-order interactions.

For more information about each method, readers are encouraged to study Sections 2.5

and 2.6
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5.2 Model Configuration

5.2.1 Parameter Description

The parameters of two distributions P s
i,j , Qd

i,j of the proposed methods and the number

of layers for DRCRF were learned via a grid search on a holdout validation set. The 25

images from the Weizmann single object dataset were chosen as the validation set. The

parameters for P-GC, Coop-Cut, PD, are selected as the optimal parameters reported

by the authors [82], based on the validation set and the publicly available source code.

The FCRF was based on the source code that the authors [82] provided publicly as well;

however, their optimal parameters had not produced the best result, consequently the

FCRF parameters were selected based on a grid search optimization using the validation

set.

The same unary potentials are utilized in all methods, and are computed via a Gaussian

mixture model with five components based on the color intensities of the pixels within the

seed regions. The contrast-dependent Potts pairwise potential used is the same for all

methods except FCRF (since it is implemented there via a different approach):

ψp(yi, yj, X) = θ(xi, xj) · ‖yi − yj‖ (5.1)

θ(xi, xj) = 0.05 +
0.95 exp(−0.5 ‖xi − xj‖2)

σ

where the value of σ is assigned by the mean of the color gradients of the image in P-GC,

Coop-Cut, PD but selected as a constant of 0.2 for RCRF and DRCRF. Since FCRF has

a different setup, based on a permutohedral lattice and fast implementation, the utilized

potential function is a type of bilateral filter with different parameters. The standard

deviations of the Gaussian pairwise potential functions (θγ) in (2.25) are set as (3, 3) with

a weight (ω(2)) of 5, while the standard deviations of the bilateral potential function (θα

and θβ) are (20, 20, 0.08) with a weight (ω(1)) of 10, where the first two values show the

spatial standard deviation and the last one is the color standard deviation, based on a

normalized image dynamic range of [0, 1].
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Two-layer and three-layer DRCRF models (DRCRF(2L) and DRCRF(3L)) were uti-

lized for the non-noisy case, where P s
i,j = N (uj|ui, 15) in (3.5) and γ = 5.5% for the first

layer, P s
i,j = N (uj|ui, 10) and γ = 10% as the second layer, and P s

i,j = N (uj|ui, 7) and

γ = 10% as the third layer in the three-layer framework, where ui denotes the location of

node yi in the random field, and N (uj|ui, σs) denotes a Gaussian function with a mean of

ui and a standard deviation of σs. For the noisy case, a four-layer DRCRF model (DR-

CRF(4L)) was utilized to better handle the effects of noise as we discuss in Section 5.3.5;

the first two layers are the same as above, P s
i,j = N (uj|ui, 3) and γ = 80% selected for

the third layer, and a second-order Markov model chosen as the fourth layer. For both

of these DRCRF model configurations, Qd
i,j = N (xj|xi, 0.2) for all layers, where xi is the

color intensity of yi, and N (xj|xi, σx) denotes a Gaussian function having a mean of xi and

a standard deviation of σx.

Based on (3.5), a larger γ gives those nodes having a lower probability a greater chance

to be selected as neighbors. Since P s
i,j is derived via the spatial distance between two nodes

i and j, the left side of the inequality in (3.5) is larger for the nodes which are far from

node i. By increasing γ the likelihood of those nodes being selected is increased, meaning

that longer-range information is incorporated into the model. Based on this explanation, a

smaller γ is utilized in the lower layers to capture the most useful longer-range information,

while a larger γ is selected to incorporate more local information in upper layers.

A graph cut approach was applied to minimize the potential function of the RCRF

and DRCRF frameworks. The graph cut approach is initialized by maximizing the GMM

model (unary potential) result.

5.2.2 Unary Potential

The same unary potential was utilized to evaluate the competing algorithms. A Gaussian

mixture model (GMM) [109] with five components was trained via color intensity of pixels

selected as seed points. To use a GMM approach as unary potential, for each label of

foreground and background a Gaussian probability distribution with five components is

trained based on the corresponding seed points of foreground or background.
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After training the GMM models, the probabilities of a pixel to be assigned as foreground

or background are computed by those trained GMM models for all pixels in the image.

Two computed probabilities are utilized as unary potential in the random field model.

5.3 Quantitative Evaluation

Three different quantitative measures are utilized to analyze the behavior of the compared

methods. The proposed methods were examined with noiseless and noisy images to explore

their behaviors in different situations.

5.3.1 Quantitative Measures

Three different quantitative measures are utilized to analyze the behavior of the compared

methods. Since the underlying problem being evaluated is the image segmentation problem,

one can evaluate the performance of the tested method using the F1-score:

F1 = 2 · Pr ·Re
Pr +Re

(5.2)

s.t.

Pr =
TP

TP + FP
(5.3)

Re =
TP

TP + FN

where TP , FN and FP are the number of true positives, false negatives, and false positives,

respectively. Here, two types of F1-scores are evaluated, described below.

Region F1-score: The conventional region F1-score is evaluated based on the region-

of-interest specified by the ground truth images. The foreground is chosen as the

positive class label while the background is the negative class label:

Region F1-Score = 2 · Prr ·Rer
Prr +Rer

(5.4)
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where Prr and Rer are computed based on the pixel-wise accuracy over the whole

target image. This measure measures the degree to which the evaluated method can

distinguish the background and foreground in terms of their regions.

Boundary F1-score: Boundary preservation accuracy is an important objective in im-

age segmentation. Motivated by [3], the extracted boundary of the ground truth is

taken as the positive class while the other pixels are specified as the negative class:

Boundary F1-Score = 2 · Prb ·Reb
Prb +Reb

(5.5)

here Prb and Reb are computed based on the boundary of the foreground object

in the image. This measure shows how much the boundary of the extracted object

overlaps with that of the ground truth foreground. Similar to [3], a distance tolerance

of 2 pixels is used in the calculation of this evaluation measure, meaning that the

boundary detected by the algorithm is considered to be a true positive if it is within

two pixels of a ground-truth boundary.

Another quantitative measure which is commonly utilized in image segmentation is

Intersection over union (IOU) [35], also known as the Jaccard index. The intersection

of the estimated segmentation result per class and the ground truth, divided by the union,

is reported as a metric:

IOU =
TP

TP + FP + FN
. (5.6)

The IOU measure demonstrates how much the segmented region overlaps with the ground

truth, based on the number of pixels. Since our problem is a binary segmentation, the IOU

metric is just reported based on the class corresponding to the object.

5.3.2 Connectivity Range Effect on RCRF

As the first experiment in this chapter we show the effect of the connectivity range and

the distance from the interested node in the stochastic clique generation for the image
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Figure 5.4: The effect of γ on modeling accuracy. The value of γ determines the expected

number of pairwise cliques such that one of the end-nodes is the interested node. The left

plot, (a), shows the region F1-score while the right plot (b) demonstrates the boundary F1-

score. As seen, the modeling accuracy is increasing when the range of long-distance pairwise

cliques is being increased but to some extent and the range is bounded. However the

number of pairwise connectivities involved in the inference affects the modeling accuracy

observed by the varied accuracy as a function of γ.

segmentation problem. A subset of 30 images from the CSSD dataset [178] was selected

to conduct the experiment. Here the goal is to show how γ can affect the modeling

accuracy. Three different values of γ have been selected to create the underlying graph

of the RCRF based on specific distances from the interested node. By increasing γ, the

number of connectivities of the underlying graph is increased. In other words, the range

of neighborhood structure in the random field is one of the variables in this experiment.

Figure 5.4 demonstrates the region F1-score and boundary F1-score corresponding to

three different γ values with varied distance from the interested node. It is worth to

mention that for distance of 3 (second-order Markov) we assumed that γ = 100% or all

nodes are connected. The results shows three interesting observations:

• Increasing the range of pairwise cliques from local connections to long-range connec-
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tions can improve the modeling accuracy. However there is a bound which determines

the number of connections and the distance from the interested node, as evident by

different ranges of γ.

• As seen, by increasing the range of connectivity from the interested node, γ should

be decreased to maintain better modeling performance. The reasons that can be

provided for that is, when the range of connectivity is increased, the possibility

of utilizing wrong information (non-useful pairwise cliques) is increased, therefore

decreasing γ helps to decrease the possibility of using them in the modeling and

forces a negative effect on the modeling accuracy.

• As stated before, long-range connectivity can address the smoothness boundary issue

(i.e., short boundary bias problem) of local random fields. This is evident by the

result of γ = 2.5% (green curve) in Figure 5.4. As seen, even for distance ≈ 100

where the region F1-score is worse than local connectivities, the boundaries have

been preserved better than a random field with local connectivities as observed by

plot (b) in Figure 5.4.

As expected, the conducted experiment illustrated that long range connectivities help

to address the short boundary bias problem (i.e., smoothness issue) [82]. However it is

important to consider that the range of connectivities must be bounded or the connectivities

must be selected via a guided approach to obtain informative connections or cliques in the

graph. It is worth to mention that the range of connectivities is a problem dependent

factor.

5.3.3 Connectivity Range Effect on DRCRF

The effect of varied ranges of information on DRCRF are examined on 30 images from

the CSSD dataset by a two-layer DRCRF as well. Figure 5.5 plots the boundary F1-score

and IOU as a function of the information ranges in the two layers. In this experiment,

the effect of the selection probability is examined by varying the standard deviation of

Gaussian function utilized as P s
i,j (3.6).
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Figure 5.5: Quantitative analysis of σ on the performance of a two-layer DRCRF. The X

and Y axes represent the σ value in layers one and two. The results are reported based

on 30 images from the CSSD dataset. The plots show that to gain a strong segmentation

result while preserving object boundaries, the first layer of the DRCRF needs to capture

long-range information, while going up through layers, there is no such requirement, and

the range of connectivity can be narrowed down to be limited to local information.

The key strength of DRCRF is that it is able to incorporate longer-range information

more efficiently, leading to a better preservation of object boundaries, and more effectively

addressing the short-boundary bias problem.

As observed in Figure 5.5, to effectively preserve object boundaries while maintaining

object segmentation, it is essential that the first layer captures sufficiently long-range in-

formation, whereas the results are much less sensitive to non-local connectivities in the

second layer.

5.3.4 Noiseless Images

Tables 5.1 and 5.2 show quantitative comparisons of the tested methods in terms of the

region F1-score and the boundary F1-score. The proposed DRCRF is examined based
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Table 5.1: Region F1-score results. The performance of the comparison methods are demon-

strated in a noiseless context for the Weizmann single-object, two-objects, CSSD and MRIS

(Microsoft Research Interactive Segmentation) datasets. The time complexity is reported

by averaging the running time (in seconds) of the methods.
P-GC [82] Coop-cut [73] FCRF [89] PD [82] RCRF DRCRF(2L) DRCRF(3L)

Weizmann S-O 0.8511 0.8600 0.8655 0.8711 0.8651 0.8755 0.8578

Weizmann T-O 0.8515 0.8716 0.8397 0.8840 0.8404 0.8546 0.8711

CSSD 0.8219 0.8286 0.8551 0.8286 0.8268 0.8464 0.8425

MRIS 0.8929 0.8929 0.8717 0.9032 0.8756 0.8720 0.8933

Impl. M-M M-M C++ M-M M-M M-M M-M

Time Complexity (s) 15.51 16.58 0.48 106.86 34.41 77.32 94.37

Table 5.2: Boundary F1-score results. The performance of the comparison methods is

shown for the noise-free context for all datasets.
P-GC [82] Coop-cut [73] FCRF [89] PD [82] RCRF DRCRF(2L) DRCRF(3L)

Weizmann S-O 0.5324 0.5573 0.5770 0.5782 0.5879 0.5857 0.5942

Weizmann T-O 0.7049 0.7408 0.6992 0.7603 0.7132 0.7499 0.7468

CSSD 0.5226 0.5333 0.5212 0.5349 0.5235 0.5232 0.5625

MRIS 0.6441 0.6393 0.5452 0.6389 0.6157 0.5949 0.6290
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Table 5.3: Intersection Over Union (IOU) results. To ensure that the reported F1-scores

are consistent, all methods are evaluated by the IOU measure without noise.
P-GC [82] Coop-cut [73] FCRF [89] PD [82] RCRF DRCRF (2L) DRCRF(3L)

Weizmann S-O 0.7579 0.7706 0.7850 0.7889 0.7850 0.7999 0.7829

Weizmann T-O 0.7606 0.7887 0.7637 0.8083 0.7601 0.7966 0.8009

CSSD 0.7212 0.7301 0.7626 0.7306 0.7328 0.7520 0.7573

MRIS 0.8182 0.8185 0.7912 0.8308 0.7601 0.7966 0.8222

on the DRCRF(2L) and DRCRF(3L) frameworks to obtain better insights about how the

number of layers in the deep, multi-layer structure comprising the DRCRF model influences

the performance of the method. It can be observed that DRCRF performs as well as or

outperforms other competing methods, especially regarding the preservation of boundaries.

Table 5.1 also demonstrates the average running time of each algorithm, from which we

can see that although increasing the number of layers in DRCRF can lead to accuracy

improvements, this comes at additional computational complexity.

It can be observed that DRCRF(2L) and DRCRF(3L) broadly perform similarly to

or better than the competing approaches, typically achieving 1% to 3% improvement

in F1-score, certainly when compared to RCRF and FCRF. For the boundary F1-score,

the proposed DRCRF performs strongly, with the three-layer DRCRF outperforming all

compared approaches for the CSSD and single-object Weizmann databases, and fairly

significantly outperforming FCRF and RCRF in all cases.

5.3.5 Noisy Images

The competing methods are also tested on images corrupted by 25% Gaussian noise, with

results reported in Tables 5.4 and 5.5. Although DRCRF and PD exhibit comparable

F1 performance in the noiseless case, interestingly in the noisy context, particularly in

the boundary assessment of Table 5.5, DRCRF was able to achieve significantly improved

performance, by 10% to 20%, compared to PD and all other tested methods, indicating

that it is able to better capture object boundaries in the presence of noise.
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Table 5.4: Region F1-score results for noisy images. The proposed method outperforms

other methods in almost all datasets.
P-GC [82] Coop-cut [73] FCRF [89] PD [82] RCRF DRCRF(4L)

Weizmann S-O 0.6866 0.6914 0.6586 0.7502 0.6398 0.7203

Weizmann T-O 0.6510 0.6505 0.6718 0.7327 0.6078 0.7347

CSSD 0.5683 0.5683 0.5526 0.5919 0.5024 0.6380

MRIS 0.6034 0.6034 0.5424 0.6149 0.5380 0.6399

Table 5.5: Boundary F1-score results in the presence of noise. The proposed DRCRF can

preserve boundaries more effectively than competing methods.
P-GC [82] Coop-cut [73] FCRF [89] PD [82] RCRF DRCRF(4L)

Weizmann S-O 0.2299 0.2304 0.1797 0.3110 0.2211 0.3910

Weizmann T-O 0.3441 0.3404 0.2610 0.4152 0.2866 0.5406

CSSD 0.1618 0.1617 0.0941 0.1936 0.1738 0.2820

MRIS 0.1570 0.1560 0.0636 0.1694 0.1589 0.2801

To analyze the robustness of the proposed method, all competing algorithms are com-

pared in the context of salt & pepper noise as well. Table 5.7 demonstrates the quantitative

measures for MRIS dataset when corrupted with 10% of salt & pepper noise. The reported

results show that the proposed DRCRF methods are robust to multiple noise types, with

the DRCRF outperforming FCRF and PD in all three of region F1, boundary F1, and IOU,

and outperforming RCRF in both region F1 and boundary F1.

Table 5.6: Intersection Over Union (IOU) results for noisy images.
P-GC [82] Coop-cut [73] FCRF [89] PD [82] RCRF DRCRF(4L)

Weizmann S-O 0.5389 0.5451 0.5170 0.6234 0.5124 0.5967

Weizmann T-O 0.5082 0.5075 0.5387 0.6073 0.4890 0.6338

CSSD 0.4174 0.4174 0.4020 0.4459 0.3850 0.4996

MRIS 0.4507 0.4507 0.4013 0.4696 0.4212 0.5180
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Table 5.7: Quantitative segmentation results for MRIS dataset images corrupted with

10% salt & pepper noise. The proposed method preserves boundaries better than other

competing algorithms.
P-GC [82] Coop-cut [73] FCRF [89] PD [82] RCRF DRCRF(4L)

Region F1-score 0.8454 0.8470 0.8429 0.8732 0.8783 0.8828

Boundary F1-score 0.5343 0.4996 0.3446 0.4391 0.6473 0.6679

Intersection-Over-Union 0.7459 0.7475 0.7493 0.7866 0.8110 0.8062

5.3.6 Performance Comparison on different Noise Powers

Since the databases contain natural RGB images, Gaussian noise is the most common type

of noise utilized to examine the robustness of an algorithm. Gaussian is a good assumption

for processes that are subject to Central Limit Theorem [120]. To allow a comprehensive

analysis, all methods are tested as a function of noise level in the context of the Microsoft

research interactive dataset (MRIS). Figure 5.6 demonstrates the performance of the com-

peting algorithms, with the DRCRF performing very well, particularly under boundary

F1-score.

It worth to mention that PD and P-GC force the segmentation result on the selected

seed pixels to be the same as the user selected labels and because of that they produced

better results in terms of IOU measure after 35% noise.

5.4 Qualitative Evaluation

Example segmentation results for noise-free images are shown in Figure 5.7 (single-object

and two-object Weizmann datasets) and in Figure 5.10 (CSSD and MRIS datasets). It

can be seen that PD and Coop-Cut methods had difficulty in preserving boundaries in the

test cases shown, with either the background being merged with the object or parts of the

object being classified as background. The “reclining girl” and the “Man throws the ball”

in Figure 5.10 (columns (e) and (f)) are good examples in which P-GC, Coop-Cut and
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Figure 5.6: The performance of competing methods based on various noise power. As seen,

the DRCRF outperforms other methods in preserving object boundaries. PD, Coop-Cut

and P-GC perform slightly better in region F1-score after 35% noise because they explicitly

use the seed points label in the final result while others methods only utilize the seed points

to train the unary potential (GMM).

PD could not separate the body from the grass completely (the hands in column (e) and

the legs in column (f)) because of the way in which they formulated the pairwise potential

in the random field. FCRF was able to preserve boundaries better than PD and Coop-

Cut methods in the test cases shown, but also exhibited the introduction of segmentation

artifacts (e.g., missing faces in Figure 5.10(a), large incorrectly segmented patch in the top

right corner of Figure 5.10(f), etc.).

It can be observed that the proposed method is capable of preserving narrow and elon-

gated boundaries, for example the preservation of the tree branches in Figure 5.7(e) and the

airplane tail in Figure 5.7(a). Furthermore, it can be observed that the proposed method

is capable of dealing with scenarios characterized by complex and cluttered backgrounds,

in the starfish image of Figure 5.7(d).

Figure 5.8 demonstrates the airplane example with larger image resolution to see the

results with more details. As seen, P-GC (i.e., which is a local random field) suffers from

strong short boundary biased problem and could only capture the main area of the plane

and assigned the tail as background. Although this problem is less in the Coop-cut’s results,

it also has problem with the regions which contain complex boundaries, as evident by the
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head and tail of the plane. The aforementioned problem is resolved in FCRF as it is a fully

connected random field. However as discussed before, because of long range connectivities

it is prone to introduce segmentation artifacts to the foreground regions. Although the

segmentation result produced by PD is much better than Coop-cut and P-GC results, as

seen PD could not preserve the elongated regions of the plane and also it assigned a part of

background in the tail as foreground. The segmentation results of RCRF and DRCRF(2L)

outperform other results and it can be said that the DRCRF(2L) performed better than

RCRF to preserve boundaries in the image. DRCRF(3L) preserved all parts of the plane

as foreground, but as seen it assigned the part of background in the tail as foreground

region. This can be explained by the fact that DRCRF(3L) uses more local interactions

in the third layer which results to a more smoothness on the segmentation result.

Figure 5.9 is another example to compare different methods. As seen P-GC suffers

from short boundary bias problem very baldly as evident by the bird’s legs, beak and tail.

This problem still presents with the result of Coop-cut and PD with small improvements

in foreground segmentation. FCRF produced a good result however it could not preserve

the bird’s beak. RCRF segmented the bird from background however because of the long-

range connectivities effect it introduced segmentation artifacts to the result. DRCRF(2L)

resolves the artifacts seen in RCRF result and it is considered as the best result from

the competing methods. DRCRF(3L) has the same problem as before as it used local

connectivities in the last layer.

To have more illustrative comparisons, Figure 5.11 and 5.12 demonstrate the segmenta-

tion results of two images from CSSD datasets with higher resolution. As evident, the type

of penalty function that Coop-cut and PD utilized enforced the segmentation procedure

to add some parts of the background into the foreground region while those methods that

utilizing long-range information such as FCRF or RCRF and DRCRF do not have this

problem.

It is an interesting observation that DRCRF(2L) can preserve elongated boundaries

better than DRCRF(3L), whereas DRCRF(3L) performs better when the object has a dense

structure. A possible argument is that DRCRF(2L) has only two layers, but with higher
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Figure 5.7: Example segmentation results produced by the tested methods on the Weiz-

mann dataset [148] without noise. As seen, the proposed method can preserve elongated

boundaries in complex images. Furthermore, the proposed method is capable of dealing

with situations characterized by complex and cluttered backgrounds, as is evident in the

starfish image (d).
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(a) Ground truth (b) P-GC

(c) Coop-cut (d) FCRF

(e) PD (f) RCRF

(g) DRCRF(2L) (h) DRCRF(3L)

Figure 5.8: Airplane example; the segmentation results of different competing methods for

airplane image are demonstrated with higher resolution. As seen each method has some

issues to produce the desirable segmentation result while the proposed methods can result

a good segmentation.
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(a) Ground truth (b) P-GC

(c) Coop-cut (d) FCRF

(e) PD (f) RCRF

(g) DRCRF(2L) (h) DRCRF(3L)

Figure 5.9: The segmentation results of competing methods for the Bird image example.

The subjects of comparison here is bird’s legs, beak and tail. As seen, the long-range

connectivities effect in RCRF introduced segmentation artifacts while DRCRF(2L) can

preserve fine boundaries.
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Figure 5.10: Example segmentation results produced on images from the CSSD and MRIS

datasets without noise. Results demonstrate the effect of long-range connectivities and

deep structure models on improving the modeling accuracy in random field modeling.
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(a) Ground truth (b) P-GC

(c) Coop-cut (d) FCRF

(e) PD (f) RCRF

(g) DRCRF(2L) (h) DRCRF(3L)

Figure 5.11: Segmentation results of different methods for reclining girl.

99



(a) Ground truth (b) P-GC

(c) Coop-cut (d) FCRF

(e) PD (f) RCRF

(g) DRCRF(2L) (h) DRCRF(3L)

Figure 5.12: Segmentation results of different methods; As seen P-GC has short boundary

bias problem andCoop-Cut and PD resulted bad segmentation because of the way they

utilize pairwise connectivities. FCRF could not segment the faces correctly because of uti-

lizing blind long-range connectivities and the similarity of face color with the background.

RCRF and DRCRF(2L) produced the best results.
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(a) Image (b) GT (c) P-GC (d) Coop-Cut (e) FCRF (f) PD (g) RCRF (h) DRCRF(2L) (i) DRCRF(3L)

Figure 5.13: Example segmentation results of objects with elongated boundaries. The

DRCRF methods can preserve elongated boundaries more effectively compared to other

methods. The “tree” image is a good example of the superiority of the proposed method.

σ values, whereas DRCRF(3L) has an extra layer configured with a lower σ. The higher

σ prompts longer-range of connectivities resulting in a better preservation of elongated

boundaries in DRCRF(2L), whereas having the final segmentation results produced based

on a lower σ value, DRCRF(3L) is more powerful when facing objects with dense structure.

In general, DRCRF(3L) results in a better quantitative boundary preservation since most

of the database objects are dense, with relatively few elongated boundaries. Illustrations of

the above explanation can be seen in “tree” (Figure 5.13), in which DRCRF(2L) performs

better than DRCRF(3L) (i.e., due to the elongated boundary), whereas DRCRF(3L) better

segments the dense structures in “snake” (Figure 5.7(c)), “plane” (Figure 5.10(b)), and

“flower” (Figure 5.10(c)).

To provide a better visualization of the methods dealing with the object with elon-

gated boundary, Figure 5.15 demonstrates the segmentation result for “tree” example by

all competing methods. This example is a very complex image segmentation sample where

there are complex background and elongated boundaries together. As seen based on a

complexity of background Coop-cut and PD did not perform reasonably in finding the
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(a) Image (b) Noisy (c) Ground Truth (d) P-GC (e) Coop-Cut (f) FCRF (g) PD (h) RCRF (i) DRCRF(4L)

Figure 5.14: Example segmentation results for images corrupted with 25% Gaussian noise.

This level of noise is selected to examine the extreme robustness of competing methods

dealing with noise. It can be observed that DRCRF is able to preserve boundaries in

complex and noisy situations effectively.

interested object. FCRF could not preserve stem completely and also introduced segmen-

tation artifact into the result. RCRF also could not preserve stem while it produced a good

segmentation. DRCRF(2L) preserved all elongated boundaries, however it introduced arti-

facts in the results as well. The result of DRCRF(3L) is like RCRF with more smoothness

in boundaries which is the effect of the last layer (i.e. local interactions).

The qualitative results of the algorithms when dealing with noisy images are demon-

strated in Figure 5.14. It can be observed that DRCRF is able to achieve strong segmen-

tation results in the presence of noise, where it is able to capture elongated boundaries

(“bird on barbed wire”), fine boundary detail (“cat”, where the cat’s hairs are well cap-

tured), and boundaries around dense objects (“town hall”, where the boundary around

the top of the tower is well captured). The figure makes a compelling argument for the

use of a multi-layer structure, in comparing the DRCRF (multi-layer) results against the

single-layer RCRF model.
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For better visualization of details, Figures 5.16 and 5.17 show the results for two exam-

ple images. As seen in Figures 5.16 and 5.17 DRCRF(4L) outperforms other competing

methods by far in preserving the foreground regions and objects boundaries which demon-

strates the effectiveness of the proposed DRCRF method.

5.5 Summary

In this chapter, we evaluated the proposed method along with other competing algorithms

on several image segmentation datasets. We compared different methods quantitatively

and qualitatively based on region F1-score, boundary F1-score and intersection over union.

All competing methods are evaluated on noisy situations as well. Results showed that

the proposed RCRF and DRCRF methods can result as well as or outperform other

state-of-the-art methods in the interactive segmentation problem. Experimental results

also demonstrated that DRCRF outperforms other competing approaches in presence of

noise on input images. To have a better understanding of the parameters of the proposed

methods, we showed the accuracy as function of the variation of the parameters and the

robustness of competing methods were measured by different noise power which showed

that the proposed DRCRF method is the most robust approach in the presence of noise in

preserving the object boundaries.
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(a) Ground truth (b) P-GC (c) Coop-cut (d) FCRF

(e) PD (f) RCRF (g) DRCRF(2L) (h) DRCRF(3L)

Figure 5.15: Example segmentation results for an object with elongated boundaries; as

seen DRCRF can preserve elongated boundary more accurate than other methods.
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(a) Noisy Image (b) Ground truth (c) P-GC (d) Coop-cut

(e) FCRF (f) PD (g) RCRF (h) DRCRF(4L)

Figure 5.16: Example noisy segmentation of town hall via all competing algorithms. As

seen DRCRF(4L) outperforms other method in noisy case.
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(a) Noisy Image (b) Ground truth

(c) P-GC (d) Coop-cut

(e) FCRF (f) PD

(g) RCRF (h) DRCRF(4L)

Figure 5.17: Segmentation example of a noisy image; It is shown that DRCRF(4L)

outperforms other competing methods in noisy situations.
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Chapter 6

Conclusion & Future Work

“The more you observe life in relation to yourself the more you will see the fact that you

are hardly ever correct when you think about something in the future. The future exists

only in imagination; and that is why, no matter how hard you try to imagine it, you will

not be able to predict the future with total certainty.”

Barry Long
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The goal of this research was to study the effectiveness of a stochastic approach to model

dense random field structures via sparse graph generation to address the computational

complexity of the inference process on dense and complex random fields. To address this

issue we proposed a new clique structure in Chapter 3, stochastic clique, which is related

to random graph theory. In Chapter 4, we showed that combining the proposed stochastic

cliques with a deep structure model improves the modeling accuracy in the interactive

image segmentation problem. This chapter summarizes the main contributions presented

in this thesis and offers some promising directions for future research.

6.1 Thesis Contribution Highlights

Random fields have remained a topic of great interest over the past decades for the pur-

pose of structured inference, especially for problems such as image segmentation. The

local nodal interactions commonly used in such models often suffer the short-boundary

bias problem [82], which are tackled primarily through the incorporation of long-range

nodal interactions. However, the issue of computational tractability as discussed in Chap-

ter 3 becomes a significant issue when incorporating such long-range nodal interactions,

particularly when a large number of long-range nodal interactions (e.g., fully-connected

random fields) are modeled.

Although recent work on fully connected random fields [21, 134, 186] and deep random

fields [82] have been shown to be very promising in addressing these issues, both streams of

approaches face certain limitations which could affect the performance of the inference and

computational tractability. In this thesis we introduced the concept of stochastic cliques

and proposed the randomly-connected conditional random fields (RCRFs), which fuse fully-

connected random fields with the concept random graph theory. To obtain benefits from

long-range interactions while allowing for efficient inference using arbitrary potential func-

tions, we proposed a deep structure randomly-connected CRF which leverages random

graph theory and the concept of stochastic cliques to incorporate into a deep conditional

random field structure to take better advantage of long-range interactions while maintain-
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ing computational tractability. The main contribution of this thesis can be summarized as

follows:

• Stochastic cliques (Chapter 3): We proposed a new type of clique structure

which specifies the set of cliques incorporated in the inference process stochastically.

Intuitively, to formulate the energy function over the underlying conditional random

field framework, the stochastic clique approach samples the most relevant pairwise

clique structures such that minimizing the energy function based on this subset of

pairwise cliques leads to the same result as a fully connected random field (i.e., all

pairwise cliques are incorporated via the energy function). Based on this approach,

a small subset of pairwise cliques are utilized in the energy function and, therefore,

the energy function can be minimized by considering a lesser number of pairwise

relations between nodes, making the optimization process much faster.

• Randomly-connected conditional random fields (Chapter 3): we explored

tackling the problem of computational complexity by constructing a sparse graph

representation stochastically from the fully-connected random field by randomly sam-

pling the most informative nodal interactions and based on the concept of stochastic

cliques. Inspired by random graph theory, active cliques are formed stochastically in

the inference step to represent the fully-connected CRF with a sparse graph model

that provides approximately the same results as the fully-connected CRF. By com-

bining random graph theory with random field theory in such a way, the resulting

sparse graph retains all of the properties of a CRF, and as such can be used in all of

the same structured inference scenarios that CRFs are used for.

• Deep randomly-connected conditional random fields (Chapter 4): We fo-

cused on the graphical structure of the deep, fully-connected conditional random field

itself, in which all possible pairwise cliques between nodes exist. Accounting for all

such interactions in a direct manner within a deep, fully-connected conditional ran-

dom field resulted to an inference problem that is computationally intractable. We

studied the problem from a perspective such that what if the pairwise cliques take
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shape in a random manner, coming into and out of existence with a certain prob-

ability? We proposed the idea of a deep, randomly-connected conditional random

field (DRCFR) which relates directly to random graph theory, where nodes in the

graph are connected based on some probability distribution. This new perspective

allowed us to retain the benefits of long range interactions and to account for them

with arbitrary feature functions within a deep, fully-connected graphical model, while

achieving computational tractability since the probability of clique formation can be

controlled via the choice of probability distribution.

6.1.1 Limitations

The experimental results demonstrated that the proposed methods produce comparable

or even better results compared to state-of-the-art approaches. However there are some

limitations accompanied with the methods which should be considered:

1. Computational Complexity: To generate the associated graph of the RCRF ap-

proach, it is needed to perform the stochastic indicator function for each pair of nodes

in the random field. This process imposes an extra computational complexity to the

model which limits the utilization of very large connections. However it is obvious

that several pairs of connectivities have the same characteristics in applications such

as image segmentation, which it is possible to leverage this property to decrease the

computational complexity of the graph generation. This new idea will be explained

in Section 6.2.2.

2. Stochastic Clique Indicator: In this thesis we utilized very simple functions to

characterize the stochastic indicator function, (3.5), in the model. As explained in

Section 3.3.1 the pixel intensities were utilized to characterized the relations of nodes

(pixels) in the graph. Although the simplicity of this model helped us to analyze the

model easier, utilizing a more sophisticated model to characterize which two nodes

should be connected in the random field would boost the model accuracy of RCRF

approach.
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3. Number of Layers: The experimental results showed that by increasing the

number of layers in DRCRF approach the modeling accuracy is increased for some

problem. However it is obvious that by increasing the number of layers in the model,

the computational complexity and the running-time is increased as result. There-

fore, it needs to consider there is a trade of between the modeling accuracy and

computational complexity for the proposed algorithms.

6.2 Future Work

The proposed methods in this thesis open several new directions as future work. Here we

describe the main topics.

6.2.1 Mathematical Hypothesis

In this work, the inference framework was computed via a graph cuts approach (i.e., s-t

min cut) [18]. Due to the randomness involved in representing the underlying graph of the

fully-connected CRF, two factors should be considered:

1. The graph should be connected as discussed in Section 3.3.2. It is also showed that

the underlying graph of the RCRF is connected with high probability.

2. It is important to show that the nodes in the sparse graph representation of the fully-

connected CRF obtained via the proposed stochastic clique formation process can be

partitioned into approximately the same sets of nodes as the original fully-connected

graph of the fully-connected CRF by the use of s-t minimum cut approach with a

limited variation range on the min cuts values (Minimum Cut), since the goal of

the proposed framework is to address the computational complexity associated with

structured inference using fully connected CRFs without impeding performance.

Karger [76] and Benczur and Karger [6] proposed random sampling techniques for

approximating problems that involve cuts and flows in graphs. They proved that given
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dense graph H and an error parameter ε ≤ 1, there is a sparse graph G which has O(n logn
ε2

)

edges and the value of each cut in G is within (1± ε) times the value of corresponding cut

in H.

As such, this theorem asserts that the upper bound of the sampling probability should

be p ≈ n logn
n2ε2

to obtain a sparse graph with a bounded minimum cut error of ε. This theorem

introduces a trade-off between the computational complexity of the graph and the minimum

cut error, ε. Therefore, it is possible to sparsify a fully connected graph, by specifying a

fixed error rate for the cut accuracy. Using the previous example mentioned of an image in

Section 3.3.2 that is n = 400× 300, to represent a fully connected random field as a sparse

representation via stochastic sparsification with an error parameter of ε = 0.1, the number

of edges in the underlying sparse graph should be less than or equal to n logn
ε2
≈ 1.4034× 108

(or alternatively a random graph generated with a selection probability of p ≤ 0.0097) to

satisfy the minimum condition.

The two aforementioned conditions determine the lower (connectedness condition logn
n

)

and upper (minimum cut condition n logn
n2ε2

) bounds of the probability p considering a limited

error for the result; within which the resulting sparse graph representation obtained via

stochastic clique formation is a good approximation of the fully-connected CRF with a

limited error bound. It should be noted that there is an adjustment between the accuracy

and computational complexity of the sparse graph which should be optimized based on the

application.

As one direction to future work, it is possible to investigate the connection between

Karger’s method and the proposed RCRF approach and to theoretically illustrate the lower

and upper bounds for the number of connectivities in the graph to make sure with high

probability that the result is the near optimum result for the problem.

6.2.2 Connectivity Computation via Abstraction

To construct the sparse graph representation of the fully-connected CRF based on the

stochastic clique structure within the proposed framework, the one-to-one stochastic clique
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Figure 6.1: Nagamochi and Ibaraki theorem [116, 115]: If an edge in the graph is not in

the minimum cut, then its corresponding nodes must be on the same side of the minimum

cut result. It is assumed that the red dashed line is the minimum cut of the graph. In our

example, the edge e is not crossed by the cut; therefore, two blue nodes corresponding to

edge e are in the same side of the cut. As such, the connectivity measures between a node

l and connected nodes that are similar to each other on the opposite side of the cut can be

approximated as the same such that the resulting graph has the same minimum cut value

as the original graph. The proposed abstraction strategy approximates the connectivity

measure F between node l and node i as seen in left graph by the expected value of F

between node l and the set of nodes Xc = {i, j} (denoted by E[F (xl, Xc)]) in the right

graph. In this example after applying the abstraction strategy, F1(·) and F3(·) in the left

graph are replaced by F̂1(·) in the right graph.

indicator function must be called for all nodes in the fully-connected CRF. The computa-

tional complexity of this procedure increases exponentially based on the number of random

variables (e.g., number of pixels in the case of image modeling). However some of these

similarity evaluations are redundant since there can be many similar nodes in the random

field which have the same one-to-one similarity value with other nodes in the random field.

To significantly reduce the computational complexity of computing connectivity measures,

we are inspired by the work of Nagamochi and Ibaraki [116, 115], where it was shown that

if an edge in the graph is not in the minimum cut, then its corresponding nodes must be on

the same side of the minimum cut result. Figure 6.1 demonstrates the aforementioned the-
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orem visually. As such, the connectivity measures between a node l and connected nodes

that are similar to each other on the opposite side of the cut can be approximated as the

same such that the resulting graph has the same minimum cut value as the original graph.

Motivated by this, it is possible to propose an abstraction strategy where we approximate

the one-to-one connectivity measures at significantly reduced computational complexity

when compared to directly computing all connectivity measures.

Instead of computing the one-to-one connectivity measure between a node and all other

nodes, the abstraction strategy computes the expected value of similarity, F (·), of the node

and a group of nodes that are similar to each other:

F (xl, xi)|xi∈Xc ' E
[
F (xl, Xc)

]
(6.1)

F (xl, Xc) =
{
F (xl, xi)|xi ∈ Xc

}
(6.2)

where Xc is the set of nodes in the graph, xi ∈ Xc is a particular node in the group of

similar nodes Xc, and E[·] encodes the expectation function. The value of E
[
F (xl, Xc)

]
is

approximately equal to the actual value of F (xl, xi) since Xc is the combination of nodes

that are similar to each other. Furthermore, even if this approximation does deviate from

the actual value of F (xl, xi), the nodes that are similar to each other are on the same side

of the cut with high probability since they are grouped together as Xc and have zero value

of F (·) between each other while result larger values (greater than zero or zero for exactly

similar ones) of F (·) with outside nodes of Xc. As such computing the expected value

instead of the actual value does not change the relationship amongst the nodes inside the

set Xc and the outside nodes; therefore, the individual final cut edges are not changed

based on the aforementioned theorem. It is worth noting that the intra-edges in the group

of similar nodes have very large connectivity measures such that their corresponding edges

have very low probability to be a cut edge. Therefore, the proposed abstraction strategy

has a very low probability of changing the actual cut edges of the problem.

As shown in the right graph of Figure 6.1, instead of computing the connectivity mea-

sure
{
F1(·), F3(·)

}
between node l and nodes i and j respectively, the abstraction strategy

approximates these functions as F̂1(·), the expected value based on a set of the nodes
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Xc which consists nodes i and j. Using this strategy, only one computation is done to

approximate the connectivity measure between node l and all nodes in the set Xc = {i, j}.

As the second direction for the future work, we are proposing to design a new algorithm

based on the aforementioned discussion to reduce the computational complexity of creating

the underlying graph of RCRF. It will be a great study to analyze the behavior of the

new algorithm and compare it with the proposed approach in running-time and modeling

accuracy.

6.2.3 Graphical Models & Deep Learning Approaches

We proposed a stochastic approach in Chapter 3 to address the computational complexity

of non-local random fields in the inference process. However it is possible to apply this

approach on other dense graphical models to improve feasibility and usage of those methods

in the training and inference steps.

Deep neural networks are the most interested methods in the past decade. It has

been shown that they outperform conventional machine learning algorithms in several

applications. They are a branch of machine learning that has seen a meteoric rise in

popularity due to its powerful abilities to represent and model high-level abstractions in

highly complex data. Deep neural networks have been shown to provide state-of-the-art

performance for a number of complex tasks ranging from speech recognition [29, 61] and

natural language processing [8, 26], to object recognition [63, 92, 102, 151]. However high-

performance computing devices such as GPUs are the first and the foremost requirement

to be able to take advantage of these types of algorithms.

There has been considerable focus in recent years on increasing the performance and

capabilities of deep neural networks via strategies such as deeper architectures [151, 157,

184], network regularization [171, 181], and improvements in activation functions [48, 49,

64]. The reason behind this is that there is no high computational power system available in

real-world applications. The available computing resources are practically limited to low-

power, embedded GPUs and CPUs with limited memory and computing power in different
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applications such as self-driving cars, surveillance cameras, and smartphone applications.

However, the way that neural connections within deep neural networks are formed has

not been an active area in deep neural network research in recent years. Therefore, deep

exploration on different strategies for neural connectivity formation within a deep neural

network may yield promising findings.

The idea of forming neural connections in deep neural networks as random graph real-

izations might help to address this issue. A deep neural network can be synthesized via a

stochastic process with a possibility to specify the size of the network and also the sparsity

of the network. Using the random graph modeling to characterize deep neural networks,

one can then form the neural connections within a deep neural network as a realization

of the random graph by initializing with a set of neurons, and randomly inserting neural

connections between the set of neurons independently with a probability distribution.

Preliminary results [141, 142, 143, 144, 140] have demonstrated the effectiveness and

great potential of this method in the deep learning community. For example, we showed

in [140] that it is possible to take advantage of this approach to utilize a deep neural net-

work as efficient feature extractor. We proposed an efficient learning and extraction of

features [140] via this idea, where sparsely-connected deep neural networks can be formed

via stochastic connectivity between neurons. Moving forward in this field of research, it

is possible to utilize deep neural network (DNN) models in embedded systems [141]. We

presented a new motion detection algorithm that leverages the power of DNNs while main-

taining the low computational complexity needed for near real-time embedded performance

without specialized hardware.

The sparse neural responses can be utilized in different applications such as image

saliency detection [142]. In order to attain low computational complexity, random graph

theory is leveraged to stochastically form the neural connectivity of deep neural networks

such that the resulting deep neural networks are highly sparsely connected yet maintain the

modeling capabilities of traditional densely connected deep neural networks. The neural

responses are extracted from layers of a deep convolutional neural network architecture

and are used to formulate the saliency detection problem.
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Another interesting idea in this venue is to synthesize efficient deep neural networks

in a iterative process [144]. A promising paradigm for achieving this is the concept of

evolutionary deep intelligence, which attempts to mimic biological evolution processes to

synthesize highly-efficient deep neural networks over successive generations. An important

aspect of evolutionary deep intelligence is the genetic encoding scheme used to mimic

heredity, which can have a significant impact on the quality of the offspring deep neural

networks. It is possible to encode the heredity within the context of a stochastic process and

random graph theory where a probabilistic model specifies the connectivity of a synapse

in the network.

Based on the aforementioned ideas, continuing in this direction and applying random

graph theory to model very large dense neural networks via a sparse and with very lesser

number of parameters will help the methods to be applicable on practical real-world ap-

plications when there is no high-performance computing device. Analyzing and having a

comprehensive study on the deep neural network and random graph theory is the third

branch to be considered as future work for this thesis.
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