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Abstract

Early face encoding, as reflected by the N170 ERP component, is sensitive to fixation to the eyes. 

Whether this sensitivity varies with facial expressions of emotion and can also be seen on other 

ERP components such as P1 and EPN, was investigated. Using eye-tracking to manipulate fixation 

on facial features, we found the N170 to be the only eye-sensitive component and this was true for 

fearful, happy and neutral faces. A different effect of fixation to features was seen for the earlier 

P1 that likely reflected general sensitivity to face position. An early effect of emotion (~120 ms) 

for happy faces was seen at occipital sites and was sustained until ~350 ms post-stimulus. For 

fearful faces, an early effect was seen around 80 ms followed by a later effect appearing at ~150 

ms until ~300 ms at lateral posterior sites. Results suggests that in this emotion-irrelevant gender 

discrimination task, processing of fearful and happy expressions occurred early and largely 

independently of the eye-sensitivity indexed by the N170. Processing of the two emotions involved 

different underlying brain networks active at different times.
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1. Introduction

It is generally agreed that the earliest reliable neural signature of face perception is detected 

in the EEG about 170 ms after stimulus presentation, and manifests as a negative ERP 

component (N170) over occipito-temporal electrode sites (e.g., Bentin, Allison, Puce, Perez, 

& McCarthy, 1996; Ganis, Smith, & Schendan, 2012; Jemel et al., 2003; Rossion & Caharel, 

2011; Rossion et al., 2000). This component is thought to reflect encoding of the structure of 

the face (Bentin & Deouell, 2000; Eimer, 2000; Itier & Taylor, 2002; Itier & Taylor, 2004) 

and the bulk of the literature supports the view that it reflects holistic processing, the 

processing of the face into an indecomposable whole (Rossion, 2009). However, two recent 

studies controlling for fixation position using an eye-tracker and a gaze-contingent 

procedure have shown that the N170 is also sensitive to features within the face and in 

particular to the eyes. Larger N170s were indeed reported for fixation on the eyes compared 

to fixation on the mouth of upright faces (de Lissa et al., 2014; Nemrodov, Anderson, 
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Preston, & Itier, 2014; see also Zerouali, Lina, & Jemel, 2013) or compared to fixation on 

the nose, forehead and even nasion (Nemrodov et al., 2014). This finding echoes previous 

reports of larger N170s for eye regions presented in isolation compared to whole upright 

faces (Bentin et al., 1996; Itier, Alain, Sedore, & McIntosh, 2007; Itier, Latinus, & Taylor, 

2006; Itier, Van Roon, & Alain, 2011; Taylor, Edmonds, McCarthy, & Allison, 2001) and 

confirms a special role for eyes in the early processing of the face structure, as also 

suggested by reverse correlation techniques (e.g., Rousselet, Ince, van Rijsbergen, & Schyns, 

2014; Schyns, Jentzsch, Johnson, Schweinberger, & Gosselin, 2003; Schyns, Petro, & 

Smith, 2007; Schyns, Petro, & Smith, 2009). Importantly however, these recent eye-

tracking-EEG studies demonstrated the sensitivity of the N170 to eyes in full faces when the 

face configuration was not altered (configuration is altered with presentation of isolated eyes 

or when portions of faces are revealed as in the reverse correlation technique Bubbles). In 

addition, Nemrodov et al. (2014) showed that this eye sensitivity disappeared in eyeless 

faces, demonstrating it was due to the presence of the eyes at fovea. These findings, along 

with numerous others, led the authors to develop the Lateral Inhibition Face Template and 

Eye Detector (LIFTED) model which proposes that the N170 reflects both the activity of an 

eye detector and the processing of a face as a whole in a complex interplay between 

information at fovea and information in parafovea (Nemrodov et al., 2014). In addition to 

providing a new theoretical account of holistic and featural processing at the neural level, 

this study highlights the importance of controlling for fixation to face features in ERP face 

research.

Whether the N170 is sensitive to facial emotions is still debated. Several studies have 

reported an increased response to fearful faces (e.g., Batty & Taylor, 2003; Blau, Maurer, 

Tottenham, & McCandliss, 2007; Caharel, Courtay, Bernard, & Lalonde, 2005; Leppänen, 

Hietanen, & Koskinen, 2008; Leppänen, Moulson, Vogel-Farley, & Nelson, 2007). However, 

many others have reported no modulation of the N170 by facial emotion (e.g., Ashley, 

Vuilleumier, & Swick, 2004; Balconi & Lucchiari, 2005; Herrmann et al., 2002; Krolak-

Salmon, Fischer, Vighetto, & Mauguière, 2001; Münte et al., 1998; Pourtois, Dan, 

Grandjean, Sander, & Vuilleumier, 2005; Smith, Weinberg, Moran, & Hajcak, 2013, see 

Eimer & Holmes, 2007 and Hinojosa, Mercado, & Carretié, 2015 for reviews). The eye 

region is used most prominently when discriminating fear from other expressions (Smith, 

Cottrell, Gosselin, & Schyns, 2005) and eyes have been shown to convey threat even when 

presented in isolation (Fox & Damjanovic, 2006; Whalen et al., 2004). Recently, it has been 

shown that participants make spontaneous saccades toward the eyes of emotional faces 

presented even for as short as 150 ms (Gamer, Schmitz, Tittgemeyer, & Schilbach, 2013). 

Given that previous ERP studies reporting modulations of the N170 with fearful faces did 

not use an eye-tracker to confirm gaze position, and that the eyes are salient in fearful faces, 

it is possible that the participants made small eye movements toward the eyes or attended the 

eyes more for fearful faces than other expressions. These possible movements to the eyes 

and attentional effects might have driven the N170 modulations with fearful expressions 

reported previously in the literature. The present study tested this hypothesis by 

manipulating fixation to features of facial expressions using a gaze-contingent procedure.

As the use of gaze-contingent procedures is very new in ERP face research, we also aimed to 

investigate more thoroughly the effect of fixation to features, in particular the sensitivity to 
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the eyes, on other ERP components than the N170, namely the preceding P1 and the 

following Early Posterior Negativity (EPN) components. P1 is a positive component 

occurring ~80–120 ms at occipital sites and is known to respond to the low-level 

characteristics of stimuli such as contrast, luminance, color and spatial frequencies (Rossion 

& Jacques, 2007) and is also sensitive to attentional effects (Luck, Woodman, & Vogel, 

2000; Mangun, 1995). However, it is unclear whether the P1 is sensitive to fixation to 

features and especially to eyes, and its sensitivity to emotional expressions has been 

controversial (see Vuilleumier & Pourtois, 2007 for a review). The EPN, beginning at ~150 

ms and largest between ~200 and 350 ms at occipital-temporal sites, is a well-known marker 

of emotion processing with a more negative-going response for threatening faces (i.e., angry 

and fearful faces) compared to happy and neutral expressions (e.g., Rellecke, Palazova, 

Sommer, & Schacht, 2011; Rellecke, Sommer, & Schacht, 2013; Schupp, Junghöfer, Weike, 

& Hamm, 2004). No study to date has investigated whether EPN could be sensitive to 

fixation to facial features bearing emotional significance such as the eyes in fearful faces or 

the mouth in happy faces.

We investigated whether fixation to the eyes of fearful, happy and neutral faces modulates 

P1, N170 and EPN responses. Faces were presented with fixation locations on the left eye, 

right eye, nose and mouth during a gender discrimination task. To ensure correct point of 

gaze, eye-tracking was used with a fixation-contingent stimulus presentation and any trial in 

which gaze deviated by more than 1.4_ of visual angle around that fixation location was 

excluded. To further prevent participants from using anticipatory strategies the fixation-cross 

was always presented in the center of the screen, while faces were moved around to obtain 

fixation on the desired feature, as done in Nemrodov et al. (2014) and de Lissa et al. (2014). 

Given this experimental manipulation we expected an interaction between eye fixation 

location and hemisphere for the P1 amplitude as most of the face was situated in the left 

hemifield when fixation was on the right eye (the eye situated on the right side of the 

participant) and in the right hemifield when fixation was on the left eye (e.g., Luck, Heinze, 

Mangun, & Hillyard, 1990). We also expected to replicate Nemrodov et al.’s findings (2014) 

of a larger N170 response for fixation on the eyes compared to fixation on the nose and 

mouth. Crucially, if attention to the eyes was driving the previously reported N170 increase 

for fearful faces, we expected to see an emotion by fixation interaction with an enhanced 

N170 response for fearful faces only when fixation was on the eyes. Alternatively, if the 

emotional content, processed holistically (Bimler, Skwarek, & Paramei, 2013; Derntl, 

Seidel, Kainz, & Carbon, 2009; McKelvie, 1995), was driving these N170 modulations, we 

expected to see a larger N170 response to fearful faces irrespective of fixation location. 

Finally, the possibility remained that no modulation of the N170 by emotion would be found 

but we expected a modulation of the EPN, a classic marker of emotion, with a more 

negative-going response for fearful compared to happy and neutral faces as reported 

previously. Whether EPN could also respond more to fixation on the eyes of fearful faces 

than to fixation on other facial features was unpredictable although the fact that EPN was 

sensitive to emotion even when eyes were covered (Leppänen et al., 2008) led us to predict 

that fixation on the eyes would not matter at this stage.
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2. Materials and Methods

2.1 Participants

Forty-nine undergraduate students from the University of Waterloo (UW) were recruited and 

received course credit for their participation. All participants reported normal or corrected-

to-normal vision as well as no history of neurological or psychiatric disorder. Informed 

consent was obtained before starting the experiment and the study was approved by the 

Research Ethics Board at UW. Ten participants failed to achieve eye-tracking calibration and 

were therefore not tested. Of the 39 participants tested, 19 were rejected for the following 

reasons. To ensure overt attention to the fixated feature, trials with fixations greater than 1.4° 

of visual angle from the fixation location (see procedure below) were removed. For eleven 

participants, this procedure put the overall number of trials below our cut-of score of 40 

(correct) trials per condition (i.e. less than 50% of the trials), for multiple conditions. These 

11 participants were thus removed1. Five participants were rejected due to too many 

artefacts also resulting in too few trials per condition. Finally, three were rejected due to high 

anxiety scores. Anxiety is known to interact with the processing of emotions like fear (e.g., 

Dugas, Gosselin, & Ladouceur, 2001) therefore only participants with scores in the normal 

range below 43 on the State-Trait Inventory for Cognitive and Somatic Anxiety 

questionnaire (STICSA; Ree, French, MacLeod, & Locke, 2008; Van Dam, Gros, 

Earlywine, & Antony, 2013), were included. The remaining 20 participants (8 females, 18–

23 years, M = 20.06 years) were included in the data analyses.

2.2 Stimuli and Procedure

Photographs of 8 individuals (4 males, 4 females) each with fearful, happy and neutral 

expressions were selected from the MacBrain Face Stimulus Set2 (Tottenham et al., 2009). 

Images were converted to grayscale in Adobe™ Photoshop CS5 and an elliptical mask was 

applied on each picture so hair, ears, and shoulders were not visible. All faces subtended a 

visual angle of 6.30° horizontally and 10.44° vertically, and were presented on a white 

background for an image visual angle of 9.32° horizontally and 13.68° vertically (see Figure 

1). Images did not differ significantly in RMS contrast and pixel intensity between emotions 

(see analyses and result sections below).

For each stimulus, exact coordinates corresponding to 4 feature locations on the face were 

recorded: left eye, right eye, nose and mouth. Fixation-crosses on the nose and mouth were 

aligned with one another along an axis passing through the middle of the nose and face. Eye 

coordinates were determined by placing the cross on the center of the pupil. A unique 

central fixation-cross was used and each face was presented offset so the predetermined 

center of each feature would land on the center of the fixation-cross (Figure 1). No picture 

was presented in the exact same location due to minor variations in the coordinates of each 

feature between the eight identities and the three expressions used.

1Note that this high attrition rate indirectly shows that many participants make many eye movements even with 257ms presentation 
times and that, although tiny, these eye movements are sufficient to put fixation on another facial feature given the size of the stimuli.
2Development of the MacBrain Face Stimulus Set was overseen by Nim Tottenham and supported by the John D. and Catherine T. 
MacArthur Foundation Research Network on Early Experience and Brain Development. Please contact Nim Tottenham at 
tott0006@tc.umn.edu for more information concerning the stimulus set.
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Participants sat in a sound-attenuated Faraday-cage protected booth 70cm from a Viewsonic 

P95f+ CRT 19-inch colour monitor driven by an Intel Quad CPU Q6700 with a refresh rate 

of 75Hz. Participants performed a gender discrimination task using a game controller to 

record their responses. Using the index fingers, one key was pressed for male stimuli, 

another for female stimuli, and key-press side for each gender was counter-balanced across 

participants. Before the experiment started, participants were given an 8 trial practice session 

to introduce them to the experimental procedure. Each trial began with a 0–107ms jittered 

fixation-cross. Participants were instructed to fixate on the black centered fixation-cross to 

initiate the trial and to remain fixated there until the response screen appeared. To ensure 

that participants were fixating on the fixation-cross, a fixation-contingent trigger enforced 

the fixation on the cross for 307ms3. The face stimulus was then presented for 257ms, 

followed by a white screen with a question mark prompting their response. This response 

screen was presented until the participant responded, or for a maximum of 907ms (Figure 2). 

On average it took participants 621ms (118ms S.D.) to respond (RTs were calculated from 

stimulus onset; see Table 1). Participants were instructed to categorize faces by their gender 

as quickly and accurately as possible. After their response, a screen appeared that read 

“BLINK” for 507ms. Participants were instructed to blink during this time to prevent as 

much as possible eye movement artifacts during the first 500ms of trial recording. If the 

participant did not respond, or responded during the “blink” screen, the trial was considered 

a “miss” and was eliminated from further analysis (Table 1).

The block of 96 face trials (3 emotions X 4 fixation locations X 8 identities) was repeated 10 

times with a different trial order (randomized), yielding 80 trials per condition across blocks. 

Participants then completed the 21-item of the trait test from the State-Trait Inventory for 

Cognitive and Somatic Anxiety (STICSA; Ree et al, 2008). The STICSA is a Likert-scale 

assessing cognitive and somatic symptoms of anxiety as they pertain to one’s mood in 

general.

2.3 Electrophysiological Recordings

The EEG recordings were collected continuously at 516Hz by an Active-two Biosemi 

system at 72 recording sites: 66 channels in an electrode-cap under the 10/20 system-

extended and three pairs of additional electrodes. Two pairs of electrodes, situated on the 

outer canthi and infra-orbital ridges, monitored eye movements; one pair was placed over the 

mastoids. A Common Mode Sense (CMS) active-electrode and a Driven Right Leg (DRL) 

passive-electrode acted as a ground during recordings. The electrodes were average-

referenced offline.

2.4 Eye-Tracking Recordings

Eye movements were recorded using a remote Eyelink 1000 eye-tracker from SR Research 

with a sampling rate of 1000Hz. The eye-tracker was calibrated to each participant’s 

dominant eye, but viewing was binocular. If participants spent over 10s before successfully 

fixating on the cross, a drift correction was used. After two drift corrections, a mid-block 

3In practice, it took a bit of time for participants to be correctly fixated on the fixation trigger for a minimum of 307ms, resulting in an 
average of 964ms (1214ms SD) between the first onset of the fixation cross and the onset of the stimulus presentation. When this time 
exceeded 10s, a mid-block calibration was done again.
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recalibration was performed. Calibration was done using a nine-point automated calibration 

accuracy test. Calibration was repeated if the error at any point was more than 1°, or if the 

average for all points was greater than 0.5°. The participants’ head positions were stabilized 

with a head and chin rest to maintain viewing position and distance constant.

2.5 Data Processing and Analyses

Only correctly answered trials were used for analysis. Trials in which a saccadic eye 

movement was recorded beyond 1.4° visual angle (70px) around the fixation-location were 

removed from further analysis (see Figure 1 for interest areas around each fixation location). 

This size ensured that the areas of interest around the features were non-overlapping. This 

step in the pre-processing removed an average of 2.0% (±1.7) of trials across the 20 

participants included in the final sample.

The data were processed offline using the EEGLab (Derlome & Makeig, 2004) and ERPLab 

(http://erpinfor.org/erplab) toolboxes implemented in Matlab (Mathworks, Inc.). Average-

waveform epochs of 500ms were generated (100ms pre-stimulus-onset to 400ms post-

stimulus-onset) and digitally band-pass filtered (0.01–30Hz) using a two-way least-squares 

FIR filter. Trials containing artifacts >±70μV were then rejected (100μV was used for 6 

participants). Trials were then visually inspected and those still containing artefacts were 

rejected. After trial rejection, participants with less than 40 trials in each condition (out of 80 

initial trials) were rejected.

2.5.1 Contrast and Pixel intensity—To evaluate possible influences of low-level 

factors, we measured the mean pixel intensity and root mean squared (RMS) contrast of 

each picture using a home-made Matlab program and compared them across emotions using 

paired sample t-tests, with p-values corrected for multiple comparisons. For each picture, the 

mean RMS contrast and pixel intensity were also calculated for circular areas of 1.4° visual 

angle around each fixation location (Figure 1) and were analyzed using a 3 (emotion) X 4 

(fixation location) repeated measure analysis of variance (ANOVA).

2.5.2 Percent error and mean Reaction Times (RTs)—Repeated measures ANOVA 

were conducted separately for percent errors and mean RTs. For each participant, only RTs 

within 2.5 standard deviations from the mean of each condition were kept in the mean RT 

calculation (Van Selst & Jolicoeur, 1994) which excluded7.67% of the total number of trials. 

Within-subject factors included facial expression (3: fear, happiness, neutral) and fixation 

location (4: left eye, right eye, nose, mouth). Further analyses of the interactions found were 

completed with separate ANOVAs for each fixation location using ANOVAs with one factor 

(emotion, 3 levels).

2.5.3 ERP Analysis—For most participants, the P1 component was maximal at electrodes 

O1 and O2 and was thus measured at these sites between 80 and 130ms post-stimulus-onset 

(peak around 100ms) using automatic peak detection. Careful inspection of the data also 

suggested some emotion differences on P1 at Oz so P1 was also analyzed at Oz separately. 

In contrast to P1, the N170 component was maximal at different electrodes across 

participants, and within a given participant the N170 was often maximal at different 
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electrodes across the two hemispheres. Thus, to best capture that component, the N170 peak 

was measured between 120–200ms at the electrode where it was maximal for each subject 

and for each hemisphere (see Table 2). To measure the time course of the fixation and 

emotion effects, mean amplitudes were also calculated within six 50ms windows starting 

from 50ms to 350ms. Preliminary inspection of the data revealed different effects over two 

electrode clusters at occipital sites (O1, O2 and Oz) and at lateral-posterior sites (CB1/2, 

P9/10, P7/8 and PO7/8). Thus for each time window, separate analyses were conducted over 

these two clusters. Note that the lateral-posterior electrodes are those electrodes where the 

N170 was measured across participants and also included the visual P2 component (peaking 

around 200ms post-face onset) as well as the Early Posterior Negativity (EPN) component 

involved in emotion processing. P2 and EPN are broader components and best measured by 

mean amplitudes.

Repeated measures ANOVAs were conducted using SPSS Statistics 22. Within-subject 

factors included hemisphere (2: left, right), facial expression (3: fear, happiness, neutral) and 

fixation location (4: left eye, right eye, nose, mouth) for P1 and N170 peaks. For mean 

amplitude analyses, an electrode factor was added for occipital sites (3: O1, O2, Oz) and 

lateral-posterior sites (4: CB1/2, P9/10, P7/8, PO7/8). If necessary further analyses of the 

interactions found were completed with separate ANOVAs for each fixation location or each 

emotion. All ANOVAs used Greenhouse-Geisser adjusted degrees of freedom and pair-wise 

comparisons used Bonferroni corrections for multiple comparisons.

3. Results

3.1 Pixel intensity and RMS contrast

Post-hoc paired t-tests confirmed no differences between emotions (p > .05 for all 

comparisons) for mean pixel intensity and mean contrast values.

For mean RMS contrast in areas of 1.4° visual angle around each fixation, the highest 

contrast was seen for the left and right eyes (which did not significantly differ), followed by 

the mouth and then the nose (which did not significantly differ) (effect of fixation location, 

F(1.34, 9.40) = 16.34, p < .001, ηp
2 = .70, all paired comparisons at p-values < .05; see 

Table 3). However, the emotion by fixation interaction (F(2.74, 19.18) = 11.48, p < .001, ηp
2 

= .62) revealed that this specific pattern was significant only for neutral faces (F = 41.71, p 
< .001; all significant fixation location paired comparisons at p < .05). For happy faces a 

larger contrast was seen for the mouth compared to the nose fixation (F = 6.07, p < .05). For 

fearful faces there was an effect of fixation location (F = 5.22, p < .05) however pair-wise 

comparisons were not significant.

The lowest pixel intensity was seen for the left and right eyes (which did not significantly 

differ), followed by the mouth and the nose (which did not significantly differ) (effect of 

fixation location, F(1.77, 12.36) = 42.29, p < .001, ηp
2 = .86, all paired comparisons at p-

values < .01). The emotion by fixation interaction was also significant (F(2.54,17.81) = 6.79, 

p < .05, ηp
2 = .49), due to larger pixel intensity on the mouth for happy compared to fearful 

and neutral faces (p-values < .05).
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3.2 Behavioral Analyses

Participants tended to make more errors for fearful than neutral faces (main effect of 

emotion; F(1.79, 34.04) = 4.76, p < .05, ηp
2 = .20; fearful-neutral paired comparison 

significant at p = .06; see Table 1). Additionally, fewer errors were made during fixation to 

the nose compared to fixation on the left and right eye (main effect of fixation location; 

F(2.31, 43.89) = 3.58, p < .05, ηp
2 = .16; paired comparisons significant at p < .05). No 

differences were seen for miss rates.

Responses were slowest for fearful expressions (main effect of emotion, F(1.71, 32.41) = 

21.57, p < .001, ηp
2 = .53; fearful-neutral and fearful-happy paired comparisons significant 

at p < .001; Table 1) and faster for nose fixation (main effect of fixation location, F(2.62, 

49.77) = 7.42, p < .01, ηp
2 = .28; significantly faster for the nose than the mouth and right 

eye, p < .05). No other effects were seen.

3.3 ERP Analyses

3.3.2 Effects of fixation location and emotion at occipital sites

P1 Peak Amplitude: At O1/2, P1 amplitude was overall largest for fixation to the mouth 

(main effect of fixation, F(2.73, 51.92) = 11.19, p < .001, ηp
2 = .37) (see Fig. 3A). An 

interaction between fixation location and hemisphere was also found (F(2.19, 41.56) = 

18.96, p < .001, ηp
2 = .50) due to eye fixations yielding opposite effects. On the left 

hemisphere, P1 was larger for the mouth and left eye (which did not differ significantly) 

compared to the right eye and the nose fixations (which did not differ) (F = 11.22, p < .001). 

On the right hemisphere, P1 was larger for the mouth and right eye (which did not differ 

significantly) compared to the left eye and nose fixations which did not differ (F = 15.83, p 
< .001; significant paired comparisons right eye-left eye/nose p < .05, mouth-left eye/nose p 
< .001). No effects of emotion or emotion by fixation interaction were seen (Fig. 3B).

P1 at Oz was also larger for fixation to the mouth compared to the left eye, right eye and 

nose which did not differ significantly from each other (main effect of fixation location, 

F(2.66, 50.44) = 10.43, p < .001, ηp
2 = .35; significant paired comparisons with mouth 

fixation at p < .05) (Fig. 3A). However, in contrast to O1 and O2, an effect of emotion was 

found on P1 at Oz due to a reduced positivity for happy compared to fearful and neutral 

expressions (main effect of emotion, F(1.74, 33.13) = 6.68, p < .01, ηp
2 = .26; significant 

happy-fearful paired comparison p < .05, happy-neutral paired comparison p = .06) (see Fig 

3C). Difference waveforms (neutral-fear and neutral-happy) confirmed this localized effect 

of emotion at medial occipital site and revealed that this “happy effect” was in fact largest 

around 130ms (Fig. 3B and 3C map), i.e. in between the P1 and N170 peaks. This effect was 

confirmed statistically with mean amplitude analyzes during the 100–150ms window (see 

below).

Mean Amplitudes over Six Time Windows at occipital sites (O1, O2, Oz): Statistical 

results for these analyses (50–350ms) are reported in Table 4 and visually depicted in 

Figures 3 and 4.
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More positive amplitudes were seen when fixation was to the mouth compared to the other 

facial features between 50 and 150ms, and this effect was strongest at Oz. During that time 

period at O1 and O2, the fixation to one eye yielded opposite effects between the two 

hemispheres, with larger amplitudes for left eye fixation than right eye fixation on the left 

hemisphere and vice versa for the right hemisphere. These effects of fixation were virtually 

identical to those seen on P1 peak (analyzed at O1/2) and disappeared by 150ms. They 

reappeared more weakly between 250–350ms, with larger amplitudes for mouth fixation 

during the last time window (Fig. 3A).

An emotion effect was first seen during the 100–150ms time window with smaller 

amplitudes for happy compared to fearful and neutral expressions (Fig. 3C). An electrode by 

emotion interaction revealed this effect was only seen at O2 and Oz electrodes. This effect of 

emotion mirrors that found on the P1 peak at Oz reported previously. During the 150–200ms 

interval smaller amplitudes were seen for both fearful and happy compared to neutral 

expressions but only for the mouth fixation condition (emotion by fixation interaction). 

Between 200 and 300ms, both fearful and happy expressions elicited smaller amplitudes 

compared to neutral expressions regardless of fixation location. During the 300–350ms 

window this effect of emotion was significant for happy faces only (happy-neutral 

comparison p =.003; happy-fearful p =.067). Thus, happy faces elicited smaller amplitudes 

than neutral faces at occipital sites from 100 until 350ms, as clearly seen on the difference 

waveforms and their topographic maps (Fig. 4, see also Fig. 3B). In contrast fearful faces 

elicited smaller amplitudes than neutral faces a bit later, starting at 150ms and vanishing by 

300ms. Figure 4 also suggests that the effect for fear was mostly lateral (as discussed next) 

and only weakly occipital, while the opposite was found for happy faces.

3.3.3 Effects of fixation location and emotion at lateral-posterior sites (CB1/2, 
P9/10, P7/8, PO7/8)

N170 Peak Amplitude: The N170 amplitude was larger for fixation to the left and right eye 

(which did not differ) compared to fixation to the mouth and nose which did not differ 

significantly (main effect of fixation location, F(2.46, 46.80) = 16.43, p < .0001, ηp
2 = .46; 

all paired comparisons at p-values < .01) (Fig. 5A). No other significant effects were seen 

and in particular no effect of emotion.

P1-to-N170 amplitude: As effects of fixation location were found for P1 at occipital sites, 

we performed peak-to-peak analyses to track possible influences of P1 onto N170 measures 

at these lateral sites. We took the amplitude differences between the P1 and N170 at the 

electrode at which the N170 was largest for each hemisphere and each subject4. Amplitude 

differences were larger in the right compared to the left hemisphere (main effect of 

hemisphere, F(1, 19) = 5.14, p < .05, ηp
2 = 21; significant paired comparison p < .05) and 

were larger during fixation to both the left and right eye (which did not differ) compared to 

the nose and mouth (which did not differ) (main effect of fixation location, F(1.79, 34.07) = 

32.27, p < .001, ηp
2 = .63; significant left eye-nose/mouth and right eye-nose/mouth paired 

comparisons p < .001). This confirmed the fixation location found for the N170 peak. In 

4Note that the P1 had to be re-measured at these lateral posterior sites for this analysis
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addition however, an interaction between fixation location and hemisphere was seen (F(2.64, 

50.22) = 16.42, p < .0001, ηp
2 = .46), due to opposite effects of eye fixation in each 

hemisphere, driven by the P1 (Fig. 5A). On the left hemisphere, the main effect of fixation 

location (F(2.43, 46.27) = 19.4, p < .0001, ηp
2 = .51) was due to larger amplitude differences 

for the left eye compared to all other fixation locations (amplitude for the right eye was also 

larger than for the mouth). On the right hemisphere, the fixation location effect (F(1.87, 

35.67) = 34.31, p < .0001, ηp
2 = .64) was due to amplitudes being larger for both eye 

fixations (which did not differ) compared to both nose and mouth (which did not differ).

Interestingly, in contrast to the lack of emotion effect for N170 peak, there were significant 

interactions between hemisphere and emotion (F(1.91, 36.29) = 4.54, p = .019, ηp
2 = .19) 

and hemisphere, emotion and fixation location (F(4.81, 91.31) = 2.96, p = .017, ηp
2 = .14). 

On the left hemisphere, an emotion by fixation location interaction (F(4.20, 79.71) = 3.15, p 
= .017, ηp

2 = .14) was due to a larger P1-N170 amplitude difference for happy faces 

compared to fearful and neutral faces (significant paired comparisons p < .01) that was seen 

only when fixation was on the mouth (mouth: effect of emotion, F = 10.10, p < .001; 

significant paired comparisons p < .01). There was no effect of emotion when fixation was 

on the left eye (p = .27), right eye (p = .54) or nose (p = .24). On the right hemisphere, the 

P1-N170 amplitude difference was larger for happy compared to neutral expressions 

regardless of fixation location (main effect of emotion, F(1.85, 35.44) = 4.59, p =.019, ηp
2 

= .20; significant happy-neutral paired comparison p < .05, fear-neutral paired comparisons 

borderline at p = .053).

Overall, taking P1 into account revealed interactions between fixation and hemisphere as 

seen for P1 peak, as well as emotion effects not seen on either the P1 (at O1/2 sites) or the 

N170 peaks.

N170-to-P2 amplitude: Amplitude analyses were also performed between the N170 and the 

amplitude recorded at 200ms as visual inspection of the grand average revealed emotion 

effects emerging after the peak of the N170. The N170-P2 difference was defined as the 

subtraction of the peak N170 amplitude (at maximum electrodes picked for each subject) 

from the actual amplitude at 200ms post-stimulus for each subject. This was done to avoid to 

peak the P2 itself which is too broad to be peaked clearly in each participant. Individual 

inspection of the data suggested that for all participants, 200ms was the start or the middle of 

the P2.

The amplitude difference was less positive in the left hemisphere compared to the right 

(main effect of hemisphere, F(1, 19) = 5.34, p < .05, ηp
2 = .22; paired comparison p < .05). 

A main effect of fixation location (F(2.37, 45.03) = 3.07, p < .05, ηp
2 = .14) was due to 

overall smaller amplitude for the mouth compared to the other fixation locations. The 

amplitude difference was also smaller for fearful compared to happy and neutral expressions 

(main effect of emotion, F(1.78, 33.89) = 11.64, p < .001, ηp
2 = .38; significant paired 

comparisons fear-happy and fear-neutral p < .01). This effect of emotion was confirmed by 

the mean amplitude analysis over the time window 150–200ms as reported below.
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Mean Amplitude analyses over Six Time Windows (CB1/2, P7/8, P9/10, 
PO7/8): Statistical results for these analyses (50–350ms) are reported in Table 5 and 

visually depicted in Figures 4, 5 and 6.

A hemisphere by fixation location interaction was seen between 50ms–100ms, due to 

fixation to the eyes yielding opposite effects on each hemisphere, with larger amplitude for 

fixation to the left eye compared to the right eye on the left hemisphere and vice versa for 

the right hemisphere. At 100–150ms, this fixation by hemisphere interaction became 

stronger, with larger amplitude for the left eye fixation compared to all other fixations on the 

left hemisphere, and larger amplitude for the right eye than the other fixations on the right 

hemisphere. These effects between 50 and 150ms were driven by the P1 as clearly seen on 

Fig. 5A, and as also found in the P1-N170 amplitude difference. Between 150–200ms, in 

line with the fixation effect seen for N170, the mean amplitudes were larger for both the left 

and the right eye fixations compared to both the nose and mouth fixations, an effect that was 

most pronounced at P9/P10 and CB1/CB2 sites. No effect of fixation location was seen after 

200ms.

A very early effect of emotion was seen between 50–100ms that was restricted to PO7 and 

P7 (left hemisphere) electrodes, with smaller amplitude for fearful faces compared to both 

happy and neutral faces (Fig. 5B). This effect peaked at ~80ms. This emotion effect for 

fearful faces appeared again later beginning at 150ms and lasting until 300ms, this time at all 

posterior lateral sites (Fig. 5B, Fig. 6). During that time, amplitudes for fearful faces were 

smaller than amplitudes for both happy and neutral faces, with the fearful-neutral difference 

peaking around 180ms (Fig. 5B). Mean amplitudes for happy faces were also significantly 

smaller than for neutral faces between 200–250ms and again later between 300–350ms (Fig. 

6). Interestingly, between 250–350ms the emotion effects were seen only for the left 

hemisphere (P7, PO7, CB1 and P9), as clearly seen on Fig. 4.

4. Discussion

In the present gender categorization task performed on facial expressions of emotion, we 

tested the effect of fixation to facial features on scalp-recorded ERPs between 50–350ms, 

encompassing well-studied components (P1, N170 and EPN). We also tested the idea that 

fixation to fearful eyes might be driving the debated N170 modulation by emotion. Using 

eye-tracking to enforce correct fixation to facial features we found that the P1 and N170 

peaks were sensitive to fixation location but not to emotion. Emotion effects however, were 

seen between these early peaks and later on at posterior sites, mostly medially and 

occipitally for happy expressions, and mostly laterally for fearful expressions. Importantly, 

the emotion effects occurred largely independently of fixation location. We discuss these 

effects and their implications for our understanding of early face and facial emotion 

perception.

4.1 Fixation location and facial emotion influenced gender discrimination

Behavioural performance was impacted by fixation location, with less errors and shorter RTs 

when fixation was on the nose compared to other fixated locations. This result is in line with 

the idea that when the whole face is available, gender discrimination requires holistic 
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processing (Brown & Perrett, 1993; Zhao & Hayward, 2010) which is most efficient around 

the face center of gravity situated close to the nose (e.g., Bindemann, Scheepers, & Burton, 

2009; de Heering et al., 2008). Note that this does not undermine the idea that some face 

parts might convey face gender better than others when presented in isolation, as recently 

reported (Best, Minshew & Strauss, 2010). Most importantly, despite the task being 

emotion-irrelevant, emotion impacted behavioural performance as seen by participants’ 

trend toward larger error rates for fearful compared to neutral faces and longer RTs for 

fearful faces compared to both happy and neutral faces. Similar results have been reported 

by Scheller, Büchel & Gamer (2012) with lower hit rates for fearful and neutral than happy 

faces in a gender categorization task where faces were presented for 2 seconds. This finding 

is sensible given face gender discrimination requires virtually no attention (Reddy, Wilken & 

Koch, 2004), leaving attention resources available to process the emotions as demonstrated 

here. Facial expression categories were processed during the present emotion-irrelevant task 

and impacted gender discrimination.

4.2 Different sensitivity to fixation location for P1 and N170

The P1 component is sensitive to low-level stimuli characteristics such as contrast, 

luminance, color and spatial frequencies (Luck, Woodman, & Vogel, 2000; Rossion and 

Jacques, 2008). When low-level factors are controlled for, P1 does not reliably differ 

between object categories while the N170 does, supporting the view that both components 

reflect distinct stages of visual processing with only the N170 reflecting high level vision 

and face categorization (e.g., Ganis et al., 2012; Jemel et al., 2003; Rossion & Caharel, 

2011; Tarkiainen, Cornelissen, & Salmelin, 2002).

In the present study, a clear fixation effect was seen with larger P1 amplitude for the right 

than for the left eye on the right hemisphere and vice versa for the left hemisphere. In fact, 

analysis of mean amplitudes revealed this effect was seen as early as 50–100ms at occipital 

sites (Fig. 3A) and between 50–150ms at posterior-lateral sites (Fig. 5A). This fixation effect 

was also found on the P1-to-N170 analysis which was driven by the P1. This effect of 

fixation reflects hemifield presentation effects as most of the facial information was in the 

left visual field when fixation was on the right eye and in the right visual field when fixation 

was on the left eye (Fig. 1). This hemifield effect was also reported in three recent studies 

using similar gaze-contingent presentations (de Lissa et al., 2014; Nemrodov et al., 2014; 

Zerouali et al., 2013). In addition, at occipital sites, a delayed and larger P1 response was 

seen when fixation was on the mouth compared to each of the other locations. In fact, this 

effect was seen at occipital sites during the entire epoch (although not significantly between 

150–300ms, Fig. 3A, Table 4) and likely reflected sensitivity to the position of the face on 

the screen. Most of the facial information is in the upper visual field when fixation falls on 

the mouth compared to the eyes or the nose. Interestingly, the P1 recorded to simple 

checkerboards presented in the four visual field quadrants has been shown to vary with ipsi/

contra-lateral presentations but does not vary appreciably between the upper and lower 

visual fields (Clark, Fan, & Hillyard, 1994; Di Russo, Martínez, Sereno, Pitzalis, & Hillyard, 

2002, p101). It is possible that the visual system is more sensitive to the upper visual field 

for meaningful stimuli such as faces which are often seen in that area.
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As predicted, we replicated the finding by Nemrodov et al. (2014) of larger N170 amplitude 

for fixation on the left and right eyes (which did not differ significantly) compared to the 

nose and the mouth which also did not differ significantly (see also de Lissa et al., 2014). 

This effect is not attributable to a simple face position effect as seen for the P1. The N170 

amplitude has been shown to decrease with face eccentricity (Rousselet, Husk, Bennett, & 

Sekuler, 2005), therefore if this N170 amplitude modulation reflected a face position effect 

we would expect to see smaller, rather than larger, N170 amplitude for fixation to the eyes, 

given the more lateral position of the face for these fixation locations compared to the 

midline fixation locations (nose and mouth). Further demonstration that this N170 

modulation reflects a true eye sensitivity was provided by Nemrodov et al. (2014) who 

showed that the same eye fixation locations did not yield these larger N170 amplitudes when 

the eyes were not present in fovea (in eyeless faces), despite the same positions of those 

faces on the screen. This sensitivity of the N170 component to eyes has been shown using 

isolated eye stimuli, with larger N170s to isolated eyes than full faces (e.g., Bentin et al., 

1996; Itier et al., 2006; 2007; 2011) that is seen as early as four years of age (Taylor et al., 

2001). The N170 sensitivity to eyes has also been shown using reverse correlation 

techniques such as the Bubbles technique, which reveals portions of the face, in gender and 

emotion discrimination tasks (e.g., Schyns et al., 2003; 2007; 2009; Rousselet et al., 2014). 

The eye sensitivity within full faces as shown here provides further support to the hypothesis 

of an eye detector during the processing of the face structure (Nemrodov et al., 2014). The 

current study demonstrates that this eye sensitivity is also seen for faces expressing fear and 

happiness and is thus largely facial-expression invariant. While mean pixel intensity and 

contrast did not differ between pictures, local pixel intensity and contrast did. In particular 

higher contrast and lower pixel intensity were seen for the eyes compared to the nose and 

mouth. Therefore the hypothesized eye detector might rely on low-level cues such as local 

contrast and pixel intensity, a possibility that will have to be tested by future studies.

In contrast to the P1 and N170 components, there was no effect of fixation location after 

200ms at lateral posterior sites (where P2 and EPN were seen), as also predicted. This result 

is in line with the idea that the eye sensitivity is specific to the face structural encoding stage 

as indexed by the N170.

4.3 Early and later occipital effects for happy facial expressions

Using stimuli that did not significantly differ in overall mean pixel intensity and contrast, an 

early effect was seen for happy faces at medial occipital site Oz (smaller amplitudes for 

happy than neutral faces) that began around 100ms and peaked around 130ms, i.e. between 
P1 and N170 peaks. After 150ms this effect was seen more broadly including lateral 

occipital sites O1 and O2 and was sustained until 350ms. This effect was seen as a negative 

amplitude difference at occipital sites (happy-neutral difference waves) along with a positive 

counterpart at frontal sites on topographic maps (Fig. 3–4). The effect spread a little to the 

posterior lateral sites between 200–250ms and 300–350ms (Table 5), with a seemingly left-

dominant distribution (Fig. 4, hemisphere interaction only between 300–350ms). The P1-

N170 analysis at lateral sites also revealed a difference between happy and neutral 

expressions which was seen regardless of fixation location on the right hemisphere but was 

seen only for fixation on the mouth on the left hemisphere. The only other time window 
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during which emotion interacted with fixation location was between 150–200ms at occipital 

sites (Table 4), with again a difference between happy and neutral expressions seen only for 

the mouth fixation.

Few studies have focused on the ERPs in response to happy faces and this occipital 

distribution is not often reported. The few studies that have found effects of facial expression 

on the P1 have reported larger P1 for fearful than neutral or happy faces (see Vuilleumier 

and Pourtois, 2007 for review) but typically no difference between happy and neutral faces. 

However, the present data suggest a very localized happy effect at midline site for P1, rather 

than at the classic lateral sites (including O1/2), which might have been missed by most 

previous studies. In an explicit emotion categorization task, Morel et al. (2014) recently 

reported an early happy effect with a larger P1 for happy than neutral faces (i.e. the opposite 

as found here) in the right hemisphere, but this was seen only for highly anxious participants 

and was thus likely the result of attentional demands, rather than emotional effects per se. In 

non-anxious participants, no emotion difference was seen on the lateral P1 (similar to our 

non-anxious sample); medial occipital sites were not analyzed. During a face-decision task 

(categorizing faces as intact or smeared) Schacht and Sommer (2009) reported an enhanced 

negativity for happy compared to neutral (and angry) faces between 128–144ms at parieto 

occipital sites. Their topographic map resembles our present occipital distribution although 

also included parietal areas. Midline sites were not measured in that study. Let’s note that 

although the present happy-neutral difference started on P1, it was maximal after P1, around 

130ms, and no such effect was seen for fearful faces, which makes it unlikely a general 

emotional effect or a simple attentional effect. The data suggest that this effect was specific 

to the processing of happy expressions.

Our occipital effect for happy faces echoes results reported by Halgren et al. (2000) who 

recorded magnetic fields in response to various stimuli including happy and sad faces while 

participants identified repeated faces. Results indicated a midline occipital source in or near 

the calcarine fissure (around areas V1–V2) that discriminated happy from neutral 

expressions between 100–120ms post-stimulus. That source was separate from the more 

lateral and later source that corresponded to the magnetic equivalent of the N170, and was 

also sensitive to more sensory aspects of the stimuli. Halgren et al. (2000) proposed that a 

fast discrimination of diagnostic cues such as the smile, based on luminance and contrast, 

could occur within 100–120ms in those early visual areas and then be relayed rapidly to the 

amygdala by direct V2-amygdala connections. This explanation is possible here given the 

local pixel and contrast differences between emotions seen for the mouth area of our stimuli.

The current findings however, further suggest that this occipital activity is seen all the way 

until at least 350ms. From 150–350ms, it was accompanied by more temporal negativities as 

well as frontal positivities, which suggests changes of the underlying generators with time. 

Overall this “happy effect” appears to recruit different spatio-temporal networks with 

distinctive scalp distributions than the commonly reported rapid processing of fearful faces 

discussed below.
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4.4 Early and later lateral posterior effects for fearful expressions

Early effects of fearful faces have been debated. Most studies have reported no modulation 

of the P1 by emotion (Palermo and Rhodes, 2007; Vuilleumier and Pourtois, 2007) however 

a few have reported enhanced P1 for fearful compared to neutral faces in gender 

discrimination tasks (Pourtois et al., 2005; Wijers et al., 2012), oddball detection tasks 

(Batty and Taylor, 2003), and passive viewing of emotional faces (Smith et al., 2013). The 

current results however, suggest modulations by fearful expression before the P1 and only 

for fearful faces; no effect of fear was seen on the P1 itself, at lateral or medial occipital 

sites. This early effect of fearful expressions was localized to the left hemisphere seen 

clearly at PO7 and to a lesser extent at P7 during the 50–100ms time window, peaking 

around 80ms (Fig. 4–6). It is unclear what this very early modulation represents and it will 

have to be reproduced before any conclusion can be drawn.

After this very early effect, modulations of ERPs by fearful faces were next seen right after 

the N170 component and all the way until 300ms (Table 5, Fig. 4–6). The effect of facial 

emotions on the N170 has been debated with several studies reporting no modulation by 

emotion (see reviews by Eimer & Holmes, 2007 and Hinojosa et al., 2015 and see Rellecke 

et al., 2013) while others did report increased N170 with fearful faces (e.g., Batty and 

Taylor, 2003; Blau et al., 2007; Leppanen et al., 2008). However, previous studies have not 

controlled gaze fixation on the features of facial emotional stimuli. This is important given 

recent reports of spontaneous saccades toward the eyes of fearful expressions even with 

stimuli presented for only 150ms (Gamer et al., 2013). We hypothesized that the early ERP 

modulations of the N170 by fearful faces previously reported might have been driven by 

attention to the eyes. We reasoned that if this was the case, then early ERP responses would 

be larger for fearful than happy or neutral faces when fixation was on the eyes but not when 

fixation was on the nose or mouth. The present results revealed no modulation of the N170 

peak amplitude by emotional faces and no interaction of emotion with fixation location. This 

result is in line with the lack of modulation of the N170 by emotion reported in previous 

gender discrimination tasks (Pourtois et al., 2005; Sato et al., 2001; Wijers et al., 2012; 

Wronka & Walentowski, 2011). The lack of emotion by fixation interaction on the N170 

suggests that the eye sensitivity demonstrated by this component is largely independent of 

facial expression of emotion, as mentioned earlier. Attention to the eyes is thus unlikely the 

reason why previous studies reported early emotional differences.

The effect for fearful faces was mostly seen at lateral posterior sites (and to a lesser extent at 

occipital sites) and emerged ~150ms during the descending part of the N170 toward the P2 

component. It peaked around 180–200ms, and was significantly different from neutral and 

happy faces until 300ms (Fig. 4–6, Table 5). The distribution of this fearful effect across the 

scalp was similar to that reported by Eimer and Holmes (2002, topographic maps of that 

study reported in Eimer and Holmes, 2007), with bilateral posterior-temporal negativities 

along with a fronto-central positivity. Eimer and Holmes (2002) however reported this effect 

starting around 110–120ms, i.e. earlier than in the present study, and suggested the 

involvement of frontal brain areas. In contrast, as most of the present effects were seen at 

posterior sites, we believe that the frontal distribution is mostly the positive counterpart of a 

posterior negativity that is likely coming from posterior visual brain regions. At these lateral 
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posterior sites, this negativity never interacted with fixation location and thus seems to 

reflect activity linked to the processing of fear added onto the normal activity related to 

processing neutral faces, as proposed by other groups (Rellecke et al., 2013; Schacht and 

Sommer, 2009). This added negativity started around the same time as the N170 but was 

seen mostly after the peak, and again did not interact with the fixation location, suggesting it 

was different from the structural encoding reflected by the N170 component.

This “fearful effect” was thus seen right after the N170 until around 300ms and 

encompassed the visual P2 (~200ms) component and the well-known marker of emotion 

processing Early Posterior Negativity –EPN (Rellecke, Sommer, & Schacht, 2012; Rellecke 

et al., 2011; Schupp et al., 2004). Our results are in line with previous reports of emotion 

effects starting around or right after the N170 and lasting 100ms or more (Eimer et al., 2003; 

Eimer and Kiss, 2007; Leppanen et al., 2007; Schupp et al., 2004; Sprengelmeyer and 

Jentzsch, 2006), here until about 300ms. This added negativity related to the processing of 

fear has been suggested to arise from an enhanced processing of emotionally salient stimuli 

in cortical visual areas involved in the perception of emotionally salient stimuli (Schupps et 

al., 2004). The timing of this fear-related process coincides with amygdala activation 

reported in intracranial ERP studies in response to fearful faces ~150–200ms post-stimulus 

(Meletti et al., 2012; Krolak-Salmon, Hénaff, Vighetto, Bertrand, & Mauguière, 2004; 

Pourtois, Spinelli, Seeck, & Vuilleumier, 2010a) as well as in a recent MEG study (Dumas et 

al., 2013). However amygdala activity per se is very unlikely recorded on the scalp with 

EEG and this fear effect is thus more likely the result of the enhancement of the activity of 

perceptual visual areas, such as the fusiform gyrus, by the amygdala. Modulations of the 

fusiform gyrus by the amygdala has indeed been reported by a few intracranial studies 

(Pourtois, Spinelli, Seeck, & Vuilleumier, 2010b) and MEG studies (e.g. Dumas et al., 2013) 

around similar times.

4.5 Conclusion

In this gender discrimination task where facial expressions were task-irrelevant, differential 

effects of fixation location and emotion were seen across various ERP components. A 

sensitivity to face position were seen early, on the P1 component. An eye sensitivity that was 

independent of the emotion expressed by the face was seen on the N170 component, 

possibly reflecting the activity of an eye-detector in the processing of the face structure. The 

N170 peak was not sensitive to emotion, however effects were seen right after the peak. An 

“happy effect” was seen at occipital sites that started around 100ms and lasted until 350ms. 

For fearful faces, an effect was seen around 50–100ms localized to the left hemisphere at 

lateral-posterior sites followed by a later effect bilaterally from 150 to 300ms, although 

stronger on the left hemisphere between 250–350ms. Results suggest that facial emotion 

processing is largely independent from the processing of facial features and face structure 

and that happy and fearful expressions recruit different spatio-temporal networks with 

distinctive scalp distributions. Results also highlight the importance of quantifying neural 

activity around P1 and N170 peaks as emotion effects may be missed by simply measuring 

these commonly studied ERP markers.
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Figure 1. 
Left panel examples of one neutral face presented at each fixation location. Participants 

fixated in the center of the monitor represented here by each rectangle and the face was 

presented offset so that gaze fixated 4 possible face locations: left eye, right eye, nose and 

mouth. Note that eye positions are from a viewer perspective (i.e., left eye is on the left of 

the image). This resulted in the face situated almost entirely in the upper visual field when 

fixation was on the mouth, mostly in the left visual field when fixation was on the right eye, 

and mostly in the right visual field when fixation was on the left eye. Right panel, up: one 

neutral face exemplar with picture size and angular distances between fixation locations 

(averaged across all emotions and face identities). The yellow circles represent the interest 

areas of 1.4° centered on each feature that were used to reject eye gaze deviations in each 

fixation condition (i.e., foveated areas which did not overlap) and to calculate local RMS 

contrast and pixel intensity for each picture. Right panel, bottom: exemplars of fearful, 

happy and neutral expressions used in the present study (from NimStim database).
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Figure 2. 
Trial example with right eye fixation: Participants were tested on 960 trials as follows. First 

the fixation point was displayed on the screen for a jittered amount of time (0–107ms) with a 

fixation trigger of 307ms. Then the grayscale picture was flashed for 257ms, immediately 

followed by a white screen with a question mark for 907ms during which participants 

indicated their response. Lastly, a blink screen appeared for 307ms.
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Figure 3. 
(A) Grand averages featuring the P1 component for neutral faces at O1, O2, and Oz, 

showing effects of fixations with larger amplitudes for mouth fixation and opposite 

hemispheric effects for eye fixations. (B) Difference waveforms generated by subtracting 

ERPs to fearful from ERPs to neutral faces (solid line) and ERPs to happy from ERPs to 

neutral faces (dashed line) at O1, O2 and Oz. A clear difference peak for neutral-happy was 

seen between 100–150ms at Oz and O2 (grey band, peak of the effect around 130ms) and 

was confirmed by mean amplitude analysis at occipital sites during that time window (see 

main text and Table 4). (C) Grand averaged waveforms for fearful, happy and neutral faces 

(across fixation locations) at Oz. The early effect of emotion for happy faces started on the 

P1 peak at Oz. The grey interval (100–150ms) is where the effect emerged, peaking at 

130ms. The red vertical lines represent the limits of the period during which mean 

amplitudes were analyzed (50–350ms). The topographic map shows the voltage distribution 

of the difference between neutral and happy faces at 130ms where the “happy effect” was 

maximal at medial occipital site.
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Figure 4. 
Mean voltage distribution maps of the difference waveforms between fear and neutral (F-N) 

and happy and neutral faces (H-N) across six 50ms time intervals from 50ms to 350ms 

(averaged across fixation location).
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Figure 5. 
(A) Grand averages featuring the N170 component for neutral faces at P9 and P10 as a 

function of fixation location. (B) The early and later effect of emotion for fearful faces at 

temporal-parietal sites. Top: Grand average for fearful, happy and neutral faces (across 

fixation locations) at PO7 site where the effect was maximal. Bottom: Difference waveforms 

generated by subtracting ERPs to neutral from ERPs to fearful faces (solid line) and ERPs to 

neutral from ERPs to happy faces (dashed line) at PO7. The grey intervals (50–100ms) and 

(150–300ms) are where the early and later emotion effects for fear are seen. The maps show 
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the voltage difference between neutral and fearful faces (F-N) across the scalp at the latency 

at which the early (80ms) and late (180ms) effects were largest.
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Figure 6. 
Difference waveforms generated by subtracting neutral from fearful and happy conditions 

(F-N and H-N, averaged across fixation locations) at lateral-posterior (CB1/2, P7/8, PO7/8, 

P9/10). The grey zones highlight the time windows during which the effect for fear was 

significant, an early effect restricted to P7 and PO7 electrodes during 50–100ms and a later 

effect at all lateral posterior sites (150–300ms).
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