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Abstract

As a result of the rapid growth of the volume of electronic data, text compression

and indexing techniques are receiving more and more attention. These two issues

are usually treated as independent problems, but approaches of combining them

have recently attracted the attention of researchers.

In this thesis, we review and test some of the more effective and some of the more

theoretically interesting techniques. Various compression and indexing techniques

are presented, and we also present two compressed text indices. Based on these

techniques, we implement an compressed full-text index, so that compressed texts

can be indexed to support fast queries without decompressing the whole texts. The

experiments show that our index is compact and supports fast search.
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Chapter 1

Introduction

1.1 Motivation and Objectives

Text compression deals with “exploiting redundancies in the text to represent in less

space” [14]. Interest in text compression continues to grow. Text compression saves

computer storage space. It also accelerates data transmission between computers

and reduces the transmission cost. Therefore, storing texts in compressed form

is an attractive and economical choice, and sometimes, mandatory. Besides, text

compression has a wide range of applications in some fields such as information

retrieval, which we will discuss in Chapter 4, and data encryption [37].

Text Indexing deals with “building a data structure that will allow quick search-

ing of the text” [9]. Computers are used mostly for the management and manipula-

tion of textual data. As a result of the rapid growth of the amount of textual data

available in databases and on the World Wide Web, traditional scan-based algo-

rithms that perform sequential search on the entire text collection to find a keyword

1



CHAPTER 1. INTRODUCTION 2

has become insufficient for many applications that require short response time. To

facilitate searching, various indexing techniques have been developed. They usually

pre-process the text and store auxiliary information in some data structures called

indices, which will be used later to enable fast searching.

As the amount of textual data stored in compressed format increases, the prob-

lem of searching through compressed texts arises. The naive solution is to de-

compress the text first and then use a scan-based algorithm to search the result.

However, this costs too much time for large texts. Some researchers therefore fo-

cused on compressed matching problem (i.e. designing algorithms that perform

string matching through compressed text without decompression). Some of the

research are on searching LZ77 compressed texts [24], LZ78 compressed texts [6]

and Huffman coded texts [45, 46]. Although these algorithms improves the query

efficiency, they still rely on a full linear scan on the compressed text and is inef-

ficient over large texts. Thus approaches for combining indexing and compression

techniques to facilitate searching in compressed text are nowadays receiving more

and more attention.

The purpose of this thesis is to design and experiment with techniques for

indexing compressed texts. To be more specific, we aim at designing techniques that

store texts in compressed form, while at the same time the texts are appropriately

indexed so that we can efficiently perform queries on them without decompressing

the whole texts. Various related techniques will also be studied to achieve this goal.
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1.2 Road Map

The rest of the thesis are organized as follows:

• Chapter 2 gives a survey of various text compression algorithms. We also

implement and test a Burrows-Wheeler compression algorithm for future ex-

periments. During our experiments, we compare various techniques so that

our resulting algorithm is both good in compression efficiency, and fast in

compression speed.

• Chapter 3 reviews some text indexing techniques. Two well-know indexing

techniques are studied. They are inverted files and suffix trees. We also give

a survey of various research work to reduce the space cost of suffix trees.

• Chapter 4 is the most substantive contribution. It presents two techniques

to combine compression and indexing techniques, which are SASE and the

opportunistic index. We also design a new MTF method to implement the

opportunistic index. Based on one implementation of the opportunistic index,

we design and implement a technique to index compressed texts, determine

its parameters, and improve its performance by adopting a caching technique.

• Chapter 5 presents some conclusions and suggestions for future work.



Chapter 2

Text Compression

2.1 Introduction

There are two general approaches to compression: statistical coding and dictionary

coding [14]. In statistical coding, we make use of the fact that different symbols

usually occur at different frequencies. We assign shorter codes to symbols that occur

more frequently, and longer codes to less frequently used symbols. In dictionary

coding, we make use of the fact that certain groups of consecutive characters (i.e.

phrases) occur more than once. We assign a code to a certain phrase.

During the past few decades, more and more coding and transformation algo-

rithms have been developed for compression. From the many existing compres-

sion techniques, we will review those that are relevant to our topic, especially the

Burrows-Wheeler Transform [18]. The purpose of this chapter is to design an

algorithm with relatively “simple” methods, that achieves both compression per-

formance close to more complex coders and fast compression speed. This is for our

4



CHAPTER 2. TEXT COMPRESSION 5

future study of combining compression and indexing techniques.

The contents of this chapter are organized as follows. In Section 2.2, we describe

some basic terminology. In Section 2.3, we review some relative compression tech-

niques. Finally, in Section 2.4, we implement and test some compression algorithms

that will be used in further experiments.

2.2 Basic Terminology

Text We use the array T [0, u− 1] to denote a string or text of length u, which is

drawn from a constant-size alphabet Σ. We assume Σ = {0, 1, 2, ..., |Σ| − 1} unless

otherwise specified. We denote the i’th symbol or character of the text T as T [i].

We denote the probability of symbol j in the text as pj. |α| denotes the length of

the string α. In this paper, we all use lg n to denote log2 n.

Entropy We define the zeroth order empirical entropy of the text T , or text en-

tropy, as

H0(T ) =
|Σ|−1∑

i=0

(pi lg
1

pi

) = −
|Σ|−1∑

i=0

(pi lg pi),

where lg denotes the logarithm base 2 and 0 lg 0 is interpreted as 0. An ideal

compressor that uses lg 1
pi

(or − lg pi) bits to code the symbol i can compress the

text T to |T |H0(T ) bits. This is the maximum compression we can achieve using

a uniquely decodable coding scheme in which each alphabet symbol is assigned a

fixed code word.
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We define the k-th order empirical entropy of the text T as

Hk(T ) =
1

|T |
∑

w∈Σk

|wT |H0(wT ),

where wT is the string which is a concatenation of all the single characters immedi-

ately following one of the occurrences of w in T (For example, if T = aabacabbabc

and w = ab, then wT = abc). The value |T |Hk(T ) is a lower bound in bits to the

compression we can achieve using for each character a code that depends on only

the k characters preceding it.

2.3 Compression Techniques

2.3.1 Huffman Coding

One of the oldest and best known compression techniques is Huffman coding [34].

With Huffman coding, we maintain a forest of binary trees representing disjoint

subsets of Σ with weight equal to the sum of probabilities of the elements in the

subset. Initially each symbol corresponds to a tree containing one node. We then

select two trees with lowest weights and make their roots the left and right children

of a new node thus combining the trees into a single tree whose weight is the sum of

the two individual weights. We repeat the above process until a single tree remains.

This is called the Huffman code tree. To form the code for any particular symbol,

we traverse the tree from the root to that symbol, recording 0 for a left branch and

1 for a right branch. This results in a prefix code, that is one in which the code

for no symbol is a prefix of the code for another. This feature makes it possible to



CHAPTER 2. TEXT COMPRESSION 7

encode a string as the concatenation of the codes for its individual symbols.

Huffman coding generates “minimum-redundancy” codes in the sense that the

Huffman code produces the minimum average length prefix codes for the elements

of an alphabet. The length of the code for symbol i is approximately − lg pi. If

each symbol in the alphabet occurs at a probability which is a power of 1/2, the

average code length is exactly equal to the text entropy. It can be shown that the

redundancy of Huffman codes (i.e. the average code length less the entropy), is

bounded by p + lg[2(lg e)/e] = p + 0.086, where p is the probability of the most

likely symbol [14]. As suggested, Huffman codes are used to compress strings. In

this context, they are not optimal as:

1. The fact that they are prefix codes essentially forces the length of a code for

a symbol to be “rounded up”. For example, if Σ = {a, b}, pa = 0.99 and

pb = 0.01, we still use one bit per character.

2. No advantage is taken of higher order effects such as correlations between

characters in a sequence. For example, the phrase “qu” in English texts.

Various methods have been developed to improve Huffman coding. A recent

one is multiple-tables Huffman coding, or MTH, proposed by Wheeler[60]. It is

motivated by the fact that an individual symbol will occur with different frequencies

in various parts of the text. To take the advantage of this fact, Wheeler suggested

using multiple tables. To be more specific, we keep several Huffman coding tables,

and divide the whole text into small segments of the same size. For each segment, we

use the table that is best for it (i.e. that achieves the best compression performance)
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to compress it. One algorithm used in [52] that can generate the multiple coding

tables is described in the following:

1. Divide the symbols in the alphabet into s groups, such that the sum of fre-

quencies of the symbols in each group is roughly equal, where s is the number

of Huffman coding tables we are going to generate.

2. Assign a coding table to each group generated in Step 1. In each coding

table, the symbols that occur in the corresponding group are assigned codes

of constant length l, while those that do not occur are assigned codes of

constant length g, where g > l. For example, we can set l = �lg m�, where

m is the maximum value of the sizes of the groups, and g = �lg |Σ|�. Note

that we do not have to assign actual codes to the symbols at this step, but,

instead, we only need the code lengths for future computation, and thus we

can assign arbitrary constants to g and l, as long as g > l. Now we have an

initial set of coding tables.

3. Divide the original text into small segments of constant size.

4. To each coding table, we assign an array of size |Σ|, whose elements will store

the frequencies of the alphabet symbols, but we initialize the elements of the

arrays to be 0.

5. For each segment, we find the coding table that codes it most efficiently (On

the initial pass, this will be the table corresponding to the alphabet subset

that occurs most often in the segment). We increment the elements of the

array that stores symbol frequencies for the selected coding table according to
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how many times each symbol occurs in that segment. For example, if symbol

i occurs ni times, then we increment the i’th element of that array by ni.

6. Generate Huffman coding tables for each of the groups according to the sym-

bol frequencies associated to the current set of coding tables, which will be

used as the set of coding tables in future iterations.

7. Iterate Step 4-6 up to some constant number of times and return the resulting

set of Huffman coding tables.

After the above steps, we have a set of coding tables. To encoding the original

text, we also need to store a selector for each group to indicate the specific coding

tables we choose to encode it. The sequence of selectors can be encoded with the

move-to-front encoding scheme, which will be further discussed in Section 2.3.4.

2.3.2 Arithmetic Coding

The basic idea of arithmetic coding scheme [62] is to represent a text by an interval

of real number between 0 and 1. Before compressing, a model for alphabet of the

text is built in which each symbol in the alphabet is assigned a range according

to its probability of occurrence, and the range of the text is initialized to [0, 1).

During compressing, we process each symbol in the text sequentially and narrow

the range of the text according to the range assigned to the symbol in the model.

For example, suppose we are going to encode T = abaac with arithmetic coding.

The symbols a, b, c have frequencies of 0.6, 0.2, and 0.2, respectively, and are

therefore assigned ranges of [0, 0.6), [0.6, 0.8), and [0.8, 1.0), respectively. Initially,
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the range of the text is [0, 1). After seeing the first symbol a, the range is narrowed

to [0, 0.6). After seeing the second symbol b, the new range is narrowed to the

fourth one-fifth of the original, since b is assigned a range of [0.6, 0.8). This results

in a new range of [0 + (0.6 − 0) ∗ 0.6, 0.6 + (0.6 − 0) ∗ 0.8) = [0.36, 0.48). Similarly,

the next three symbols in the text narrow the range to [0.36, 0.432), [0.36, 0.4032),

[0.39456, 0.4032), respectively. This way we encode the text as [0.39456, 0.4032).

To decode the text, we first decide that the range [0.39456, 0.4032) is in the range

assigned to symbol a, and therefore the first symbol of the text is a. Then we decide

that it is in the fourth one-fifth of the range assigned to symbol a, and therefore

the second symbol is b. We repeat the process until we have the original text.

Actually, we just need to use any number among the range [0.39456, 0.4032), such

as 0.39457, to encode the text, and we can decode the text by deciding which range

contains the number. However, this means we need to append a end-of-file symbol

to the original text so that we know when we should stop narrowing the range in

the process of decoding.

Theoretically, the number of bits needed to encode a text with arithmetic coding

is the same as the entropy of the text. However, in practice, some factors will make

the coding less efficient. First, we need to add an additional symbol to indicate

the end of the file. Second, for the sake of coding speed, we cannot use infinite-

precision arithmetic. Instead, we usually use integer arithmetic instead, which

makes the computation less accurate. Last, to prevent overflow of the variables

that store the symbol frequencies, we have to adopt some scaling techniques which

will further lower the accuracy. Despite of all these factors, arithmetic coding is
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superior to the original Huffman coding in coding efficiency, although it codes the

texts at a slower speed than the latter since it requires much computation.

2.3.3 Ziv-Lempel Coding

Most practical dictionary coding algorithms belong to a family of algorithms, known

as Ziv-Lempel coding (abbreviated as LZ coding), derived from Ziv and Lempel’s

work [63, 64]. These algorithms are based on the idea of replacing the strings in the

text with a pointer to where they have occurred earlier in the text. This family of

algorithms are generally derived from one of the two different approaches published

in [63] and [64], namely LZ77 and LZ78, respectively. Some variants in the LZ77

family are: LZR [50], LZSS [12], LZB [13] and LZH [16]. Some variants in the LZ78

family are: LZW [59], LZC [54], LZT [55], LZMW [43] and LZJ [36]. LZFG [29] is

based on both LZ77 and LZ78.

One particularly effective variant is that of Welch labeled LZW [59], and is

derived from LZ78. In this algorithm, we first initialize a list of phrases (i.e. dictio-

nary) which contains all the alphabet symbols. Then we parse the input text into

phrases, where each phrase is the longest matching phrase seen previously plus one

symbol. We output the index to the longest matching phrase in the list, and add

the new phrase into the list. The extra symbol is encoded as the first symbol of

the next phrase.
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2.3.4 Move-to-front Coding

Move-to-front coding scheme [15] is based on the move-to-front heuristic for self-

organizing sequential search on variable-length integer coding. In this scheme, the

encoder maintains a word list (denoted as MTF list) that is initialized with all the

words in the text to be compressed using the move to front heuristic: after a word is

used, the number of the words preceding it in the list (which is a integer) is encoded

and appended to the end of the compressed text, and then the word is deleted from

its current position in the list and moved to the front of the list. When encoding the

integers, we should use a variable-length encoding scheme in which small integers

are encoded in fewer bits than larger integers are. One encoding method is to prefix

the binary representation of the integer i with �lg i� 0’s. The decoder maintains

an identical word list using the same heuristic for decoding. The most important

property of this scheme is that a recently used word is near to the front of the

list and therefore has a short code. It was proved that this scheme never performs

much worse than Huffman coding and can perform substantially better [15].

There are many ways to divide texts into words. One simple method is to

classify each symbol as a word, and we will use this method in future experiments.

There are also many variations of the move-to-front schemes to maintain the word

list, and we will introduce those that we need in our experiments. We label the

original move-to-front scheme as MTF. Some variations are (assume the MTF list

starts at position 0):

• MTF1: When we encounter a symbol that is not at the front of the MTF list,

if it is at position 1 of the list, then we move it to the front, otherwise we
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move it to position 1. This scheme is suggested in [10], whose author label

the scheme as MTF1 in [11].

• MTF2: When we encounter a symbol that is not at the front of the MTF list,

if it is at position 1 of the list and the last output code is not 0, then we move

it to the front, otherwise we move it to position 1. This scheme is suggested

and labeled MTF2 in [11]. Actually, in this scheme, a symbol is moved to the

front of the MTF list if and only if we encounter it twice in a row.

• MTF3: Move a symbol to the front of the MTF list if and only if we encounter

it three times in a row. We label the scheme as MTF3.

Other options are clearly the simple exchange with the element ahead of the

one in question and to move half way to the front of the list.

2.3.5 Run-Length Coding

Run-Length Coding, or RLE is a technique to compress a repeating string of sym-

bols. The repeating string is called a run. A simple RLE coding scheme is to

encode a run of symbols into two bytes, namely a count bye which indicates the

length of the run, and a symbol byte which is the symbol in this run. This coding

method is suitable to compress data that contains many runs, such as images, video

and audio. There are many variants of this coding scheme designed to improve the

coding efficiency.

RLE is often combined with other compression algorithms to achieve good com-

pression. Therefore, there are also many variants of the scheme designed for many
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special situations. We will discuss one interesting situation that will be encountered

in our experiments. In this situation, we need to encode texts that contain many

long runs of the symbol 0, and we will only use RLE to encode the runs of 0’s, and

then compress the result with another coding method. Some schemes are:

• RLE1: When we encounter a run of n 0’s in the text (n can be 1 which means

we encounter a single 0), we first output the symbol 0, then we treat the value

n − 1 (since, obviously, n cannot be 0) as a character and output it. If n − 1

is greater than 255, which cannot be stored in one byte, we then divide the

run into more than one sub-runs each of which is of length less than 256, and

encode them.

• RLE2: When we encounter a single 0 in the text, we output it directly. But

when we encounter a run of 0’s whose length is n where n > 1, we first output

two 0’s, then we treat the value n − 2 as a character and output it. If n − 2

is greater than 255, which cannot be stored in one byte, we then divide the

run into more than one sub-runs each of which is of length less than 256, and

encode them.

• RLE3: We append another 256 symbols, namely |Σ|, |Σ|+ 1, ... ,|Σ|+ 255 to

the original alphabet, each of which represents runs of 0’s of length 1, 2, ...,

256, respectively. When we encounter a run of 0’s in the text, we output the

corresponding appended symbol. Again, if we encounter a run of 0’s whose

length is greater than 256, we divide it into more than one sub-runs each of

which is of length less than 256, and encode them.
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• RLE4: This method was proposed by D. Wheeler [25]. In this algorithm, we

increase the size of the alphabet by 1, and use symbol k to represent symbol

k − 1 in the original alphabet, where k > 1. The symbol 0 and 1 are used to

encode the length of runs of 0’s and are given digit weight of 1 and 2. For

example, a sequence of bits x0x1x2...xn (least significant bit first) represents

the length

n−1∑

i=0

(1 + xi)2
i =

n−1∑

i=0

2i +
n−1∑

i=0

xi2
i = (2n − 1) +

n−1∑

i=0

xi2
i

To further improve the coding efficiency, we can omit the most significant bit

in the sequence since the length can never be 0. One efficient way of generating

the coding of the length is to increment the length by one and encode the

result as an ordinary binary number with least significant bit first, ignoring

the most significant bit. In this method, the symbol 0 and 1 indicates the

start of a run, which is terminated by symbols other than these two.

2.3.6 Burrows-Wheeler Compression

Burrows-Wheeler Compression algorithm was first discovered by Wheeler in 1983

and was proposed publicly by Burrows and Wheeler [18] in 1994. The algorithm

achieves speed comparable to Ziv-Lempel coding algorithms, but obtains compres-

sion close to the best statistical modeling techniques. Unlike most other compres-

sion algorithms, this algorithm does not process the input text sequentially, but

instead processes it block by block. The size of the blocks could be arbitrary, and

in some cases, it could be the size of the entire text. Note that the size of the
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block influences both compression efficiency and compression speed: larger block

size improves the compression efficiency but slows down the compression speed. In

practice, we often need to choose moderate block size. To each block, we apply a

reversible transformation to form a new block whose symbols are the same as those

of the original blocks. The transformation is named Burrows-Wheeler transform, or

BWT. The BWT tends to group the same symbols together and therefore produces

a new block that is easier to compress with some fast locally-adaptive algorithms,

such as MTF in combination with Huffman or arithmetic coding. We will first

discuss the algorithms and properties of BWT and then introduce the general steps

for BWT-based algorithms.

The Burrows-Wheeler transform. The BWT consists of two transformations:

a forward transformation which is applied to a block of text before compressing it,

and a backward transformation which performs the inverse operation. To illustrate

the BWT, we give a running example, using the classical text T [0, 10] = mississippi

(an example taken from [25]) as the input text. We assume that the block size is

equal to the size of the text so that we only process the text once. We first describe

the forward transformation processing T [0, u − 1]:

1. Append to the end of T an EOF symbol (denoted by #) smaller than any

other alphabet symbol.

In our example, we get T# = mississippi#.

2. Form a conceptual (u + 1) × (u + 1) matrix M whose elements are symbols,

and whose rows are the cyclic shifts of T#, sorted in lexicographic order.
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#mississippi
i#mississipp
ippi#mississ
issippi#miss
ississippi#m
mississippi#
pi#mississip
ppi#mississi
sippi#missis
sissippi#mis

ssissippi#mi
ssippi#missi

M

mississippi#
ississippi#m
ssissippi#mi
sissippi#mis
issippi#miss
ssippi#missi
sippi#missis
ippi#mississ
ppi#mississi
pi#mississip
i#mississipp
#mississippi

Cyclic Shifts of T#

Figure 2.1: Sorting the cyclic shifts of T# to construct the matrix M for the text
T = mississippi.

Please refer to Figure 2.1 for the processing of our example.

3. Return the last column of M , which is the transformed text L.

In our example, L = ipssm#pissii.

Note that the process of sorting the cyclic shifts of T# is equivalent to the

process of sorting suffixes of T#. This is because the symbol # is smaller than any

other alphabet symbol, and no character occurring after the symbol # is compared.

Therefore, we can adopt algorithms for suffix sorting to perform the forward BWT.

An experimental study of these algorithms can be found in [53].

A few easy-to-prove observations are crucial to design the backward BWT.

Fact 1 The matrix M and the transformed text L constructed by the forward BWT

satisfy the following properties:
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a. The first row of M is always #T .

b. The first column of M (denoted by F ) can be constructed from L by lexico-

graphically sorting the characters in L.

c. For the ith row of M , where i = 0, 1, ..., u, the characters L[i] and F [i] are its

last and first characters, and L[i] precedes F [i] in T#, except the row which

ends with #.

d. For any row cα of M , where c is its first character and α is the rest of the

string, we assume it is the r’th row of M starting with c. Then we have the

row αc is also the r’th row of M ending with c.

We also define a mapping among the rows of M , called Last-to-First mapping,

or LF-mapping [26]. Given a row ending with a certain character c, we assume it

is the i’th row of M , where i = 0, 1, ..., u. When we shift the row one character to

the right to get a string that starts with c, we assume the new string is the j’th

row of M . The LF-mapping shows the correspondence between such rows and we

set LF [i] = j. Assume the first row that starts with c is the k’th row in M , and c

occurs ri times in the prefix L[0, i-1], then according to observation (d) above, we

have

LF [i] = k + ri (2.1)

Now we describe the backward BWT.

1. Construct F by lexicographically sorting the characters in L (see observation

(b) above).
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2. Compute the array C[0...u − 1], storing in C[c] the number of occurrences of

the characters #, 0, 1, ..., c-1 in T#. It’s obvious that C[c] is the position

of the first occurrence of c in F , if c occurs at least once in T#, and we can

make use of the fact to compute C although T is unknown to us by now.

3. Create an array T [0..u − 1] and set its last element to be the L[0](see ob-

servation (a) above). Now we only know the suffix of length 1 of T . Set

s = 0.

4. According to (2.1), we have LF [s] = C[L[s]] + ri, where ri is the number of

times character L[s] occurs in the prefix L[0, s− 1] (set ri to 0 if s = 0). The

character LF [s] occurs before the currently known suffix of T (see observation

(c) above) and we set the value of the corresponding element of T . Now we

set s = LF [s].

5. Repeat Step 4 until all the elements of T are computed. Return T .

The BW-based compression algorithms. Let T bwt denote the output of the

BWT (i.e. the last column L of M). As is seen in the steps of the forward BWT,

the characters in T bwt are sorted according to the characters that appear after them

in T . In other words, they are sorted according to their context. It is well-known

that in most real texts, characters with the same or similar contexts tend to be the

same. Therefore, the same characters tend to be grouped together in T bwt and this

property is good for compression.

The BW-based compression algorithms are usually performed in the following

steps:
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1. Use a move-to-front coder, such as one of the MTF schemes in Section 2.3.4

to encode T bwt. Let Tmtf denote the result. Due to the nice property of T bwt,

Tmtf are dominated by small numbers, especially 0’s.

2. Encode each run of 0’s in Tmtf using one of the run-length coders discussed

in Section 2.3.5. Let T rl denote the result.

3. Encode T rl with one of the statistical coders like Huffman coding or arithmetic

coding.

Manzini [41] shows that there exists a constant gk such that the size of the

compressed result does not exceed 5|T |Hk(T ) + gk lg |T |.

2.4 Implementation

We implemented the compression techniques discussed above and tested these tech-

niques on the well-known Calgary Corpus [61].

2.4.1 Text Compression Without Burrows-Wheeler Trans-

form

We first implemented and tested some algorithms to compress texts without the

BWT. Please refer to Table 2.1 for the results. The column “Huffman” contains

the results of text compression with Huffman coding. The column “MTH” con-

tains the results of text compression with multiple-tables Huffman coding, using

the implementation suggested in [52]. The column “arith” contains the results of
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File Huffman MTH arith LZW
bib 5.239 5.167 5.234 3.872
book1 4.563 4.551 4.546 4.067
book2 4.825 4.708 4.777 4.538
geo 5.693 5.559 5.656 6.153
news 5.230 5.061 5.186 4.939
obj1 6.091 5.605 5.967 6.297
obj2 6.302 6.025 6.071 9.806
paper1 5.035 4.936 4.984 4.693
paper2 4.645 4.646 4.626 4.055
pic 1.664 1.656 1.166 1.095
progc 5.257 5.233 5.235 4.942
progl 4.812 4.623 4.759 3.899
progp 4.913 4.879 4.894 3.773
trans 5.579 5.220 5.492 4.316
Avg. 4.989 4.848 4.900 4.746
Avg. (text) 5.010 4.902 4.973 4.306

Table 2.1: Results of text compression (in bits/symbol) on Calgary Corpus without
Burrows-Wheeler Transform.

text compression with arithmetic coding, and we followed the implementation in

[62]. The column “LZW” contains the results of text compression with LZW, and

our implementation is based on the sample code in [49]. Notice that the compres-

sion efficiency of our implementation for LZW can be further improved with more

complicated techniques. The last row of the table stores the average of the results

of compression on text files from Calgary Corpus (i.e. those except geo, obj1, obj2

and pic), since text compression is our primary concern in this thesis.

From the results, we can see that MTH and arithmetic coding compresses better

than the plain Huffman coding, while MTH outperforms arithmetic coding in most

cases. LZW is more effective on files with many repetitive strings.
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File Huffman MTH arith LZW
bib 2.386 2.361 2.298 2.455
book1 2.780 2.595 2.642 3.095
book2 2.448 2.346 2.300 2.603
geo 5.433 4.678 5.165 6.279
news 2.832 2.733 2.755 3.186
obj1 4.377 4.286 4.295 5.171
obj2 2.875 2.836 2.723 3.105
paper1 2.740 2.721 2.704 3.241
paper2 2.736 2.666 2.682 3.133
pic 1.582 1.567 0.912 1.058
progc 2.763 2.773 2.733 3.179
progl 2.091 2.122 1.929 2.193
progp 2.075 2.111 1.902 2.176
trans 1.911 1.935 1.658 1.899
Avg. 2.788 2.695 2.621 3.055
Avg. (text) 2.476 2.436 2.360 2.716

Table 2.2: Results of text compression (in bits/symbol) on Calgary Corpus pre-
processed with BWT and MTF.

2.4.2 Efficiency of Various Coders On BW-transformed Texts

As mentioned above, performing the BWT and MTF on texts can generate texts

dominated by small numbers, and these resulting texts are easier to compress.

We compressed the resulting texts with the coders used in Section 2.4.1. For the

results, please refer to Table 2.2. It is obvious that the BWT together with MTF

improves the compression performance significantly. We also see that MTH and

arithmetic coding are the best among the four, so we will use only these two in

future experiments.
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File bib book1 book2 geo news obj1 obj2 paper1
frac 0 66.78 49.76 60.81 35.76 57.95 50.63 68.07 58.35
File paper2 pic progc progl progp trans Avg.
frac 0 55.37 87.40 60.35 72.86 74.03 79.24 62.67

Table 2.3: The fraction (in percentage) of symbols encoded as 0 in Tmtf .

2.4.3 Efficiency of Various Run-length Coding Schemes

After performing the move-to-front coding on the BW-transformed text T bwt, there

are many 0’s in the result Tmtf . Table 2.3 shows the fraction of symbols encoded

as 0 in Tmtf . On average, 62.67% symbols in Tmtf are 0’s for the entire Calgary

Corpus. Figure 2.2 shows that the fraction of symbols in Tmtf drops dramatically

as the value of the symbols increase. From these we can infer that if we apply a

run-length coding scheme that encodes the runs of 0’s to Tmtf before we apply the

MTH or arithmetic coding, we may achieve better results.

We tested the four run-length coding schemes designed for such situation in

Section 2.3.5 and Table 2.4 shows the results. From the results, we can see that

both MTH and arithmetic coding compress more efficiently after the run-length

coding. MTH benefits much more than arithmetic coding does. This is because in

MTH, each 0 is encoded by at least 1 bit, while in arithmetic coding, we can use

one bit to encode more than one 0’s. Although arithmetic coding can use 1 bit to

encode a run of 0’s, it still achieves better compression performance after MTF.

This is because in our implementation, we have to use integer arithmetic instead of

infinite-precision arithmetic to achieve acceptable compression speed, and we have

to adopt some scaling techniques to prevent overflow, as mentioned in Section 2.3.2.
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Figure 2.2: Fraction of characters [0,9] in Tmtf .
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File
MTH arith

RLE1 RLE2 RLE3 RLE4 RLE1 RLE2 RLE3 RLE4
bib 2.085 2.069 2.076 1.995 2.100 2.087 2.096 2.031
book1 2.563 2.509 2.474 2.423 2.589 2.548 2.553 2.484
book2 2.184 2.163 2.122 2.064 2.201 2.178 2.179 2.111
geo 4.505 4.445 4.505 4.439 4.850 4.785 4.781 4.767
news 2.649 2.601 2.599 2.515 2.664 2.622 2.641 2.562
obj1 4.115 4.066 4.169 3.986 4.042 3.994 4.006 3.935
obj2 2.584 2.562 2.548 2.473 2.587 2.568 2.568 2.499
paper1 2.658 2.617 2.661 2.532 2.635 2.614 2.644 2.549
paper2 2.591 2.550 2.576 2.466 2.592 2.565 2.585 2.505
pic 0.845 0.845 0.820 0.801 0.838 0.839 0.821 0.802
progc 2.692 2.682 2.726 2.582 2.672 2.645 2.682 2.576
progl 1.883 1.865 1.899 1.771 1.875 1.861 1.881 1.781
progp 1.891 1.888 1.909 1.767 1.857 1.850 1.875 1.764
trans 1.650 1.640 1.643 1.539 1.624 1.624 1.630 1.531
Avg. 2.493 2.464 2.481 2.382 2.509 2.484 2.496 2.421
Avg. (text) 2.285 2.258 2.269 2.165 2.281 2.259 2.277 2.189

Table 2.4: Comparison of compression ratios (in bits/symbol) among BWT-based
compression algorithms with various run-Length coding Schemes.

It is also easy to observe that on this data RLE4 is the best for compression, and

MTH compresses better than arithmetic coding after run-length coding. For this

reason, we always use RLE4 and MTH in future experiments.

2.4.4 Efficiency of Various Move-to-front Coding Schemes

Now we test the efficiency of various move-to-front coding schemes introduced in

Section 2.3.4. The results are shown in Table 2.5. The conclusion is that MTF and

MTF2 are the best among the four. Also, we can see that although the average

performance of MTF is better than MTF2 for the Calgary Corpus, MTF2 is better
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File MTF MTF1 MTF2 MTF3
bib 1.995 2.022 2.021 2.060
book1 2.423 2.391 2.370 2.381
book2 2.064 2.056 2.045 2.064
geo 4.439 4.420 4.419 4.409
news 2.515 2.535 2.535 2.569
obj1 3.986 4.010 4.000 4.054
obj2 2.473 2.524 2.528 2.551
paper1 2.532 2.556 2.555 2.591
paper2 2.466 2.475 2.468 2.499
pic 0.801 0.765 0.759 0.752
progc 2.582 2.613 2.611 2.656
progl 1.771 1.811 1.819 1.861
progp 1.767 1.820 1.846 1.880
trans 1.539 1.607 1.615 1.657
Avg. 2.382 2.400 2.399 2.427
Avg. (text) 2.165 2.189 2.189 2.222

Table 2.5: Comparison of compression ratios (in bits/symbol) among BWT-based
compression algorithms with various move-to-front coding Schemes.

than MTF for some of the files. We will use only MTF and MTF2 in future

experiments.

MTF2 works better with T bwt in the case when we encounter a string which is a

sequence of the same characters separated by a single different character. If we use

MTF, we need to use one non-zero value to encode the different character followed

by another non-zero value which encodes the first character of the second run, but

if we use MTF2, we just need to use one non-zero value to encode that character,

and then we start another run of 0’s. This way we tend to increase the percentage

of 0’s in Tmtf and the average length of runs of 0’s. MTF1 and MTF3 work in a

similar way. Table 2.6 shows the fraction of 0’s and average length of runs of 0’s in
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File
frac. of 0’s avg. length of runs of 0’s

MTF MTF1 MTF2 MTF3 MTF MTF1 MTF2 MTF3
bib 66.78 63.98 63.92 60.53 6.151 6.654 6.696 7.245
book1 49.76 51.43 52.82 51.86 3.768 3.776 3.841 3.905
book2 60.81 60.48 61.22 59.32 5.039 5.194 5.266 5.442
geo 35.76 35.17 35.17 35.54 5.783 6.349 6.365 6.219
news 57.95 54.49 54.44 51.25 4.250 4.712 4.769 5.062
obj1 50.63 47.71 47.63 44.02 4.863 5.471 5.572 6.382
obj2 68.07 63.51 63.00 59.21 6.109 7.224 7.312 8.220
paper1 58.35 54.74 54.58 50.65 4.104 4.365 4.446 4.644
paper2 55.37 53.36 53.93 50.94 4.130 4.279 4.325 4.466
pic 87.40 88.56 88.75 88.82 27.015 27.040 26.941 27.354
progc 60.35 55.89 55.37 51.27 4.147 4.547 4.591 4.791
progl 72.86 68.52 67.71 63.59 5.839 6.497 6.620 7.034
progp 74.03 68.76 67.59 62.82 5.814 6.517 6.618 7.648
trans 79.24 73.18 72.60 67.81 7.041 8.097 8.272 8.757
Avg. 62.67 59.98 59.91 56.97 6.718 7.194 7.260 7.655
Avg. (text) 63.55 60.48 60.42 57.00 5.028 5.464 5.544 5.900

Table 2.6: The fraction (in percentage) of 0’s and average length of runs of 0’s in
Tmtf .

Tmtf for the four move-to-front schemes.

2.4.5 Alphabet Encoding

Most compression programs do not encode the set of characters which actually

occur in the input files. In our case, this means we deal with an alphabet of size

256. However, the actual size of the alphabet may be much smaller. Table 2.7 shows

the actual alphabet size for each file in Calgary Corpus. If we assume the alphabet

size to be 256 for those files of a smaller alphabet, we will build Huffman trees with

more levels in the process of MTH. This way we may assign codes of more bits to
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File bib book1 book2 geo news obj1 obj2
frac 0 81 82 96 256 98 256 256
File paper1 paper2 pic progc progl progp trans
frac 0 95 91 159 92 87 89 99

Table 2.7: The actual size of the alphabet of the files in Calgary Corpus.

some characters that occur in the input file. If we encode the actual alphabet, we

can achieve better compression performance. We encode the actual alphabet by

storing a bitmap of 256 bits which indicates whether the corresponding character

occurs in the input file. To further reduce the overhead, we store the bitmap in two

levels. The first level consists of 16 bits, and the i’th bit indicates whether any of

the characters from (i−1)∗16 to i∗16−1 occurs in the file. If any of them occurs,

we set the corresponding bit in the first level to be 1 and store another 16 bits in

the second level to indicate whether each of the 16 characters occurs. Otherwise

we set the corresponding bit to be 0.

The results are shown in Table 2.8. The columns labeled with “N” shows the

results of encoding the files without alphabet encoding while the columns labeled

with “Y” shows the results of encoding the files with alphabet encoding. It’s clear

that alphabet encoding improves the compression efficiency for files whose actual

alphabet size is smaller than 256.

2.4.6 Final Results

Now we compare our algorithms with other compressors. Table 2.9 shows the

compression results for the following methods:
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File
MTF MTF2

N Y N Y
bib 1.995 1.971 2.021 1.996
book1 2.423 2.420 2.370 2.367
book2 2.064 2.061 2.045 2.042
geo 4.439 4.442 4.419 4.422
news 2.515 2.509 2.535 2.528
obj1 3.986 3.999 4.000 4.013
obj2 2.473 2.474 2.528 2.529
paper1 2.532 2.481 2.555 2.506
paper2 2.466 2.438 2.468 2.439
pic 0.801 0.799 0.759 0.757
progc 2.582 2.521 2.611 2.564
progl 1.771 1.740 1.819 1.781
progp 1.767 1.726 1.846 1.789
trans 1.539 1.513 1.615 1.592
Avg. 2.382 2.364 2.399 2.380
Avg. (text) 2.165 2.138 2.189 2.160

Table 2.8: Comparison of compression ratios (in bits/symbol) between BWT-based
compression algorithms with alphabet encoding and those without it.
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• gzip: standard gzip program with option -9 for maximum compression (this

is an implementation of the LZ77 algorithm [63],

• B97: the best version of Prediction for Partial Marching (PPM) compres-

sion algorithms proposed by Bunton [17], and these algorithms predict with

Markov modeling the probability of a given character based on a given number

of characters that immediately precede it,

• VW98: the switching method which can be used to combine two sequential

universal source coding algorithms, proposed by Volf and Willems [56, 57],

• BW94: the original Burrows-Wheeler compression algorithm [18],

• D00: the best version of BWT-based compression algorithms proposed by

Deorowicz [22],

• BWT: the BWT compression algorithms implemented in this paper with the

original MTF scheme,

• BWT2: the BWT compression algorithms implemented in this paper with

the MTF2 scheme.

From the results we can conclude that the BWT-based algorithms can achieve

compression performance close to that of the best statistical compressors. Although

B97 and VW98 achieve better compression performance, they are computationally

expensive. Besides, we have no idea how to index texts compressed by them. The

compression performance of our implementation is close to the best version of BWT-
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File gzip B97 VW98 BW94 D00 BWT BWT2
bib 2.510 1.786 1.714 2.07 1.896 1.971 1.996
book1 3.250 2.184 2.150 2.49 2.274 2.420 2.367
book2 2.700 1.862 1.820 2.13 1.958 2.061 2.042
geo 5.345 4.458 4.526 4.45 4.152 4.442 4.422
news 3.063 2.285 2.210 2.59 2.409 2.509 2.528
obj1 3.839 3.678 3.607 3.98 3.695 3.999 4.013
obj2 2.628 2.283 2.245 2.64 2.414 2.474 2.529
paper1 2.791 2.250 2.152 2.55 2.403 2.481 2.506
paper2 2.887 2.213 2.136 2.51 2.347 2.438 2.439
pic 0.817 0.781 0.764 0.83 0.717 0.799 0.757
progc 2.678 2.291 2.195 2.58 2.431 2.521 2.564
progl 1.805 1.545 1.482 1.80 1.670 1.740 1.781
progp 1.812 1.531 1.460 1.79 1.672 1.726 1.789
trans 1.611 1.325 1.256 1.57 1.452 1.513 1.592
Avg. 2.695 2.177 2.123 2.43 2.249 2.364 2.380
Avg. (text) 2.511 1.927 1.858 2.21 2.051 2.138 2.160

Table 2.9: Comparison of compression algorithms for Calgary Corpus.

based algorithms that is heavily toned by ad hoc methods and entropy coder that

is very slow.
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Text Indexing

3.1 Introduction

There are two general categories of text indices: word indices and full-text indices

[51]. For word indices, we assume that texts consist of multi-symbol objects or

words. We extract keywords from the texts and organize them in some data struc-

tures that enable fast keyword search. This technique is suitable for many types

of texts that can be easily parsed into a set of words, such as English texts. How-

ever, it is not suitable for biological data or texts in some far eastern languages.

The queries are also restricted to keyword search, or word search if we treat all

the words as keywords. For full-text indices, we treat the text as a single long

string. Then we usually organize the starting positions of the suffixes in some data

structures to enable queries for any substring of the text. This way we can build

an index on each character and queries are not restricted to words. However, such

indices generally require much space, which makes them impractical in many appli-

32
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cations. Therefore, techniques to reduce the space occupancy have attracted much

attention.

The contents of this chapter are organized as follows. In Section 2.2, we describe

some basic terminology. In Section 3.3, we review some indexing techniques, where

we fist review inverted files, and then we review suffix trees and some related data

structures.

3.2 Basic Terminology

Besides the terminology adopted in the previous chapter, we adopt the following

terminology in this chapter:

Machine Model We adopt the standard unit cost RAM model.

Query The queries discussed in this paper mainly deal with searching text for

strings. A query term, or a pattern, is the string to be searched for in the text. We

use P [0..p − 1] to denote a pattern of length p. We are mainly interested in the

following types of queries:

• existential query: An existential query searches for P in text T , and returns

true if P is found in T , and false otherwise.

• counting query: An counting query computes the number of times of occur-

rences of P in T . We use occ to denote the result.

• enumerative query: An enumerative query lists all the positions of occurrences

of P in T .
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3.3 Indexing Techniques

3.3.1 Inverted File

Inverted Files [38] have been the most popular word indices. An inverted file is

a sorted list (index) of keywords, with each keyword having links to the records

containing that keyword in the text [33]. It is obvious from the description that

an inverted file contains two main parts: an index file containing all the keywords,

and a posting file containing the links associated with each keyword.

The general steps to build a inverted file for an text are:

1. Divide the text into records. How to divide the text depends on your ap-

plication. A record can be a fixed-length block of the text, a paragraph or

chapter if the text is a book, or even a document if the text is a collection of

documents.

2. Assign a list of keywords to each record. The keywords can be extracted

manually or automatically from the records. If it is done automatically, we

need to create a set of rules that decide the beginning of an indexable word

or character sequence. We usually also need to create a list of stopwords

(i.e. very common words) that will not be indexed. Stemming is another

usual technique, which enables us to use one keyword to represent a set of

morphologically similar indexing and search terms [30].

3. Compute the set of distinct keywords and store them in the index file. For

each keyword, we compute its inverted list [65], storing the identifiers of the

records containing the value. Store all the inverted lists into the posting file
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and record the starting position and the size of each list (i.e. the number of

occurrences for each keyword) in the index file.

After we build the inverted file, the searching for a keyword are usually per-

formed in two steps:

1. Search for the keyword in the index file.

2. If we find the it, retrieve its corresponding inverted list in the posting file to

get the records containing it.

In order to efficiently search for a keyword in the index file, we organize the

index file in a second index structure, such as a sorted array, a prefix B-tree, or a

hash table [33]. Figure 3.1 illustrates an inverted file implemented using a sorted

array [33], in which keyword search can be performed with a binary search.

Inverted files support keyword query efficiently and is widely used in many text

database systems. However, their support for searching is quite limited. First, it

is obvious that only keywords are searchable in the index. Second, some kinds of

searches are inefficient on inverted files, such as search for phrases, regular expres-

sion searching and approximate string searching. Third, inverted files usually need

a high storage overhead. For example, the size of an inverted file varies from 50% to

300% of the size of the original text, if we treat each word in the text as a keyword

[23].
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Figure 3.1: An inverted file implemented using a sorted array.

3.3.2 Suffix Trees and Related Data Structures

Almost all the practical full-text indices are derived from suffix trees, which were

first discovered by Weiner [58]. For a suffix tree index, we see the text as one long

string. The suffix, or semi-infinite string, is the substring starting from the given

position in the text and continuing to the end of the text. Each suffix has a shortest

prefix that distinguishes it from the other suffixes. A suffix tree is constructed over

the suffixes as a tree-based data structure, which enables us to perform a query by

searching the suffixes of the text. Some of the variants of the suffix tree structure

are suffix trie [58], prefix tree [42], and PAT tree [31].

Among these variants, we only review PAT tree [31]. A PAT tree is a PATRICIA

tree [44] constructed over the suffixes of a text. To build a PAT tree, we need to
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Figure 3.2: PAT tree.

append a special end-of-file symbol # to the end of the text T . We also need to

give a binary encoding for each symbols in Σ∪{#}, which is used to encode suffixes

and query terms. In a PAT tree, the individual bits of the suffixes decide on the

branching. To be more specific, a 0 bit in the suffix causes a branch to the left

subtree, and a 1 bit to the right. Each internal node is labeled with the position

of the first bit that distinguishes suffixes contained in the left sub-tree from those

in the right sub-tree, while each leaf contains a suffix. Figure 3.2 is a PAT tree

constructed over the text T = ababbcab, in which the encoding a = 00, b = 01,

c = 10 and # = 11 is used. Note that the leaves store the starting positions of the

suffixes (the positions are starting from 0) instead of the suffix strings.

The general steps of searching for a pattern P [0, p − 1] with a PAT tree index
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constructed over text T [0, u − 1] are:

1. Encode P in binary. We use B to denote the result.

2. Process the bits of B sequentially. At each pass, we check the bit in B at the

position indicated in the internal node, and move on to the left or right sub-

tree according to whether the bit is 0 or 1, respectively. Repeat the process

until we reach a leaf or we run out of the bits of B.

3. Get the suffix stored in one of the leaves of the sub-tree rooted in the current

node and compare it with P . If their first m characters are the same, then

we return all the positions of the suffixes stored in the leaves of the sub-tree

rooted in the current node as the positions of each occurrence of P in the

text. Otherwise we return that P does not occur in T at all.

It is obvious from the above description that the cost for existential query is

O(p), and counting and enumerative query costs additional O(occ) time to retrieve

all the occurrences. This is very efficient. However, the space occupancy of PAT

tree is between 4u and 5u words for the text [31], which is impractical for many

applications.

Note that it is also possible to build word indices with a suffix tree. All we need

to do restrict the indexing point to the start position of keywords (i.e. construct

suffix tree over the suffixes starting with one of the keywords).

Various techniques have been developed to reduce the space cost of suffix trees.

Some of them are:

1. Suffix Arrays [40, 31]: Manber and Myers and Gonnet et al. independently
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proposed suffix arrays, or PAT arrays. This idea is to organize the suffix offsets

in a sorted list using the suffixes as sort keys instead of organizing them in

a tree. This way it only cost u words or u lg u bits to store a suffix array.

A search for a pattern can be performed over suffix arrays using a binary

search, which costs O(p lg u) time since each comparison requires O(p) time.

To improve the efficiency, Manber and Myers developed a secondary structure

to boost the searching speed to O(p + lg u). This secondary structure stores

some kind of pre-computed longest common prefixes and is stored in two

arrays, each of which costs u lg u bits. They also proposed another auxiliary

structure, which costs u
4
lg u bits, to boost the searching speed to O(p) average

time.

2. Compact PAT trees [21]: A recent line of research has been built upon the idea

of succinct data structures [47]. Jacobson first proposed the idea and method

for representing static data structures such as trees and graphs succinctly

[35] (i.e. close to the theoretical lower bound of the space cost to represent

the structures), while at the same time allows the navigating operations to

be performed efficiently. Based on such ideas, Clark and Munro proposed

the method to represent PAT trees succinctly [21] and achieve the result of

representing the PAT tree at the cost of less than 3.5+lg u+lg lg u+O( lg lg lg u
lg u

)

bits of expected size per index point, while achieving efficient query time.

The representation of the binary tree itself was reduced to the information

theoretic limit of 2 + o(1) bits per node by Munro and Raman [48].

3. Compressed Suffix Arrays [32]: The compressed suffix array structure also
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falls in the framework of succinct data structures. It was motivated by the

observation that there are totally O(2u) possibles distinct strings of fixed

length u on a given alphabet of constant size, therefore there is a canonical

way to represent suffix arrays in O(u) bits. Grossi and Vitter proposed a

method to build a compressed suffix array, which cost O(u) bits and supports

an access to any element of the original suffix array in O(lgε u) time for any

fixed constant 0 < ε < 1 without computing the entire original suffix array,

which allows efficient query.



Chapter 4

Indexing Compressed Texts

4.1 Introduction

Text compression and indexing are usually treated as independent problems. Re-

cently researchers have tried to combine them in order to allow efficient searching

through compressed text. This is motivated by the observation that certain com-

pression and indexing methods have something in common, such as commonality

in some of the ideas, algorithms or data structures used in these methods. We can

exploit such commonality to index compressed texts.

The contents of this chapter are organized as follows. In Section 4.2, we review

some techniques to index compressed texts, namely the techniques used in shrink

and search engine and the opportunistic index. In Section 4.3, we describe some

ideas of implementing the opportunistic index directly. We design a new MTF

method to reduce the space cost of auxiliary information. In Section 4.4, we describe

one practical implementation of the opportunistic index: FM-index. Finally, in

41
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Section 4.5, we implement and test the indexing and searching algorithms of FM-

index, together with some improvements.

4.2 Related Work

4.2.1 Shrink and Search Engine

Shrink and Search Engine [19, 20], or SASE, is a compressed text search engine.

It exploits the fact that both inverted file index and dictionary coding require a

dictionary structure: An inverted file is typically maintained as a dictionary of all

the distinct words or keywords in the text with a linked list of occurrence pointers

associated with each word, while some of the dictionary coding methods such as

LZW introduced in Section 2.3.3 maintain as a dictionary of the words in the text

with a distinct numerical identifier for each word, and replace each word in the text

with the identifier to reduce the redundancy in the text. Hence the dictionary used

in the inverted file can be reused in dictionary coding to integrate both techniques.

It is obvious from the above ideas that the key issue is how to maintain such a

dictionary that can be used both in inverted file index and dictionary coding. In

SASE, three dictionaries are maintained. These are for common words, uncommon

words and literals, respectively. The dictionary for literals consists of several sub-

dictionaries. We assign an identifier to each word in the dictionaries. The identifier

for each common word is 1 byte long, while the identifier for each uncommon word

or literal is two bytes long. The dictionaries are organized as hash tables.

Before compressing and indexing the original text, we process the text off-line
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and compute the compression benefit factor (i.e. the product of a word’s frequency

and the compression gain of replacing it by a single numerical identifier) of each

distinct word in the text, and partition the words into three groups according

to their compression benefit factors. The words in the group with the highest

compression benefit factors are stored in the dictionary for common words, the

words in the group with second highest compression benefit factors are stored in

the dictionary for uncommon words, and the rest are stored in the dictionary for

literals. Then we partition the text into records and process it word by word. For

each word in the text, we replace it with its corresponding identifiers to achieve

dictionary coding at the word granularity. At the same time, for all the occurrences

of a distinct word in a certain block, we record the block number, number of

occurrences and the position of the first occurrence in the corresponding record

for the word in its dictionary. In this way, inverted file index is constructed over

the dictionaries.

Searching for a pattern P with SASE are generally performed in the following

steps:

1. Search for P in the dictionaries.

2. If P is found, then we have the identifier of P and ID’s of the blocks that

contains P . For each block that contains P , we also have how many times P

occurs in the block, and the position of the first occurrence of P in the block.

3. Search the blocks that contains P , staring from the position of the first oc-

currence of P in the block. We only need to compare the identifiers of words

instead of performing string matching. This further reduces the search cost.
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SASE’s are suitable for building word indices for texts consisting of words of

limited distinct values, such as natural English texts. The performance result shows

that SASE archives compression ration comparable to that of Gzip, and supports

efficient keyword query. However, the support for query of SASE are limited to

that of word indices, especially inverted lists.

4.2.2 Opportunistic Index

Opportunistic data structures were proposed by Ferragina and Manzini [26]. They

are called opportunistic because their “space occupancy is decreased when the input

text is compressible and the space reduction is achieved at no significant slowdown

in the query performance” [26]. Opportunistic indices make use of the fact that

the conceptual matrix M stores all the suffixes of T in sorted order, as mentioned

in Section 2.3.6, while, on the other hand, a suffix tree is constructed over all the

suffixes.

An opportunistic index consists of two parts: a compressed representation (de-

noted by Z) of the Burrows-Wheeler transformed string T bwt, and some auxiliary

information. Part of the auxiliary information is stored to enable the following

operation to be executed in constant time: Occ(c, 0, k), which is to compute the

number of occurrences of c in T bwt[0, k]. We first assume that the Occ(c, 0, k) opera-

tion is implemented efficiently in order to introduce the key algorithms for searching

with an opportunistic index, and then we introduce how to organize the auxiliary

information to provide an efficient implementation of Occ(c, 0, k).
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Searching Algorithms Searching for a pattern P [0..p−1] through text T [0..u−1]

with an opportunistic index requires two operations: the operation count which

returns the number of occurrences of P in T if P occurs in T at all, and returns

“pattern not found” otherwise; and the operation locate which returns the position

of a given occurrence of P in T .

The following is the algorithm for the count operation [26]:

Algorithm count(P[0..p-1])

1. c = P[p - 1], i = p - 1;

2. sp = C[c], ep = C[c + 1] - 1;

3. while ((sp <= ep) and (i >= 1) do

4. c = P[i - 1];

5. sp = C[c] + Occ(c, 0, sp - 1);

6. ep = C[c] + Occ(c, 0, ep) - 1;

7. i = i - 1;

8. if (ep < sp) return "pattern not found"

else return "found (ep - sp + 1) occurrences"

During the execution of the above algorithm, the variable sp and ep record the

first and last rows of M prefixed by P [i, p − 1], respectively. To achieve this, we

first initialize them via array C. As mentioned in Section 2.3.6, C[c] is the position

of the first occurrence of c in F , so before iteration, C[c] is the position of the first

occurrence of P [p − 1] in F , and C[c + 1] − 1 is the last since all the characters in

F are sorted in increasing order. In each pass of the while loop, we update sp and

ep in Step 5-6 using the LF-mapping.
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To show the correctness of Step 5-6, we take the updating of sp as an example.

According to (2.1) in Section 2.3.6, Step 5 computes the row in M corresponding

to the first row in M that starts with P [i..p − 1] and ends with P [i − 1], under

the LF-mapping. Assume the above two rows are M [s] = P [i − 1]P [i..p − 1]α and

M [t] = P [i..p−1]αP [i−1], respectively. Because the M [t] is the first row in M that

starts with P [i..p−1] and ends with P [i−1], we have the M [s] is the first row in M

that starts with P [i− 1]P [i..p− 1]. This is true because otherwise, assume we have

another row M [v] = P [i − 1]P [i..p − 1]β such that v < s. Then we have β < α in

lexicographic order, so the M [w] = P [i..p−1]βP [i−1] < M [t] = P [i..p−1]αP [i−1]

in lexicographic order, which is contradictory to the assumption that M [t] is the

first row in M that starts with P [i..p − 1] and ends with P [i − 1].

It is obvious the count operation costs O(p) time.

Now we look into the locate operation. The basic idea is to logically mark parts

of the rows of M , and store the starting positions of the corresponding text suffixes

explicitly in some auxiliary data structures when constructing the index. Then

we use the following algorithm to compute the position of each occurrence of P

(assume that s is a row in M whose prefix is P , and we use pos(s) to denote its

position) [26]:

algorithm locate(s)

1. t = s, v = 0;

2. while row M[t] is not marked do

3. c = L[t];

4. t = C[c] + Occ(c, 0, t) - 1;
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5. v = v + 1;

6. return pos(t) + v;

The above algorithm first checks whether row M [s] is marked. If it is, then we

have the position. Otherwise, in Step 2-5, we find the row before it that is marked.

To be more specific, in Step 3-4, we find the row that corresponds to it under the

LF-mapping, which is prefixed with T [pos[s]− 1..u− 1]. v records how many times

we iterate the above process before we find a marked row t, so in Step 6 we have

the pos(s) = pos(t) + v. Note that in Step 3, we do not have the string L = T bwt.

In order to compute L[t], for each character e in Σ, we compute Occ(e, 0, t−1), and

Occ(e, 0, t). It is obvious that Occ(e, 0, t − 1) �= Occ(e, 0, t) if and only if e = L[t].

This costs O(|Σ|) = O(1) time since Σ is of constant size.

To implement the above algorithm, we need to design a scheme to mark rows.

One approach is to mark the rows corresponding to text positions having the form

1 + iη, where i = 0, 1, ..., u/η. Ferragina and Manzini showed in [27] how to make

use of a Packet B-tree [7] to make it possible to check whether a row is marked in

constant time, when η = Θ(lg2 u), and the additional space cost is O( u
lg u

) bits per

input symbol. Besides, since the loop in the operation is executed at most η times,

the algorithm costs O(lg2 u) time. To list all the occurrences, we simply need to

perform the above operations occ times, which cost O(occ lgu) time, and the space

cost remains the same.

In [27], Ferragina and Manzini also designed another more complicate method to

implement the locate operation in O(lgε u) time, at additional space cost of O( lg lg u
lgε u

)

bits per input symbol.
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Index Structures Now we introduce how to organize the index structures except

the additional information required by the locate operation, in order to implement

the function Occ(c, 0, k), which costs constant time.

The text is compressed with the BW-based algorithm described in [41]. We

logically partition the transformed string T bwt into substrings, or buckets, of length

l each, and denote them by BTi, for i = 0, 1, ..., u/l−1. We denote the corresponding

compressed buckets by BZi, for i = 0, 1, ..., u/l − 1. Then we group each of the

succeeding l buckets into a superbucket, and denote the superbuckets by BSi, for

i = 0, 1, ..., u/l2−1. In the opportunistic index, we store all the BZi’s consecutively.

We assume that each run of 0’s are contained in one bucket, and the case when this

is not true is more complex and is outlined in [26].

From the above we can see that Occ(c, 0, k) equals to the sum of the following

three: the number of occurrences of c in the superbuckets preceding the super-

bucket that contains T bwt[k] (denoted by occ1), the number of occurrences of c in

the buckets preceding the bucket that contains T bwt[k] but existing in the same

superbucket (denoted by occ2), and the number of occurrences of c from the start

of the bucket that contains T bwt[k] till position k (denoted by occ3). To compute

the above three values efficiently, we store some auxiliary information, consisting

of three parts accordingly:

• To compute occ1, we store:

– The two-dimensional array NO[0..u/l2 − 1, 0..|Σ| − 1] that stores in the

entry NO[i, c] the number of occurrences of the character c in all the

superbuckets preceding BSi.
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– The array W [0..u/l2 − 1] that stores in the entry W [i] the position of

the end of the compressed image of superbucket BSi in the index.

• To compute occ2, we store:

– The two-dimensional array NO′[0..u/l − 1, 0..|Σ| − 1] that stores in the

entry NO′[i, c] the number of occurrences of the character c in the buck-

ets preceding bucket BTi, but existing in the same superbucket that

contains BTi. Note that all the values in the array are smaller than or

equal to l2.

– The array W ′[0..u/l − 1] that stores in the entry W ′[i] the starting po-

sition of the compressed image of bucket BTi (i.e. BZi) in the index.

• To compute occ3, we store:

– The array MTF[0..u/l-1] that stores in the entry MTF [i] the state of the

MTF list at the beginning of the coding of BTi. Note that each entry

costs |Σ| lg |Σ| bits, which is of constant size.

– The table S that stores in the entry S[c, j, b, m] the number of occur-

rences of c among the first j characters of the compressed string b, and

m is the state of MTF list at the beginning of the procedure to produce

b.

With the above index structure, we can compute Occ(c, 0, k) in the following

steps in constant time:
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1. Determine the superbucket BSj that contains T bwt[k]. This can be done by

one single computation since j = �k/l2 − 1�. Then we have occ1 = NO[j, c].

2. Determine the bucket BZh that contains T bwt[k]. This can be done by one

single computation since h = �k/l − 1�. Then we have occ2 = NO′[h, c].

3. Retrieve BZj from the index, whose starting position can be determined from

W and W ′. Assume position k is the g’th position in BZh. Then we have

occ3 = S[c, g, BZh, MTF [h]].

4. Sum occ1, occ2 and occ3, and return the result.

In [26], Ferragina and Manzini showed how to choose value for l to make the call

to Occ(c, 0, k) cost constant time, at the additional space cost of O((u/ lg u) lg lg u)

bits. The non-trivial issue in their design is how to choose parameters for the table

S. Assume that the maximum length of the compressed buckets is l′ bits, and

according to [41], l′ = (1 + 2�lg Σ�)l. Then table S has |Σ|l2′|Σ|! = O(l2l′) entries,

and each entry costs O(lg l) bits. We choose l = Θ(lg u) bits so that l′ = c lg u,

where c < 1. Then the size of table S is O(uc lg u lg lg u) bits, which is o(u).

In summary, the overall result is that an enumerative query can be performed

with an opportunistic index in O(p + occ lgε u) time, and the space occupancy is

O(Hk(T ) + lg lg u
lgε u

) bits per symbol (including the compressed text).

However, we note that the above method cannot be implemented directly. One

notable fact is, in the table S, the fourth dimension contains all the possible statuses

of the MTF list, and there are |Σ|! possible statuses. In the above discussion, |Σ|!
is treated as a constant value, but in practice, for a vocabulary of moderate size
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such as English texts, this is overwhelmingly large.

4.3 One Attempt to Implement Opportunistic In-

dex

From the discussion in Section 4.2.2, we know that in most cases it is impossible

to implement that opportunistic index directly (i.e. as its theoretical design). One

notable fact is that there are |Σ|! possible statuses of the MTF list. In this section,

we try to reduce the number of possible statuses of the MTF list by designing some

special MTF scheme. We label the MTF schemes introduced here as MTFk.

In this scheme, we first set a constant number k ≤ Σ. Initially the MTF list

contains all the alphabet symbols in increasing order. When we encounter a symbol

that is not at the front of the MTF list, we move it to the front. Then we move the

k’th symbol in the MTF list (assume that the positions in the MTF list starts at

0) backward, until we encounter a symbol that is greater than it. In other words,

we maintain the MTF list in such a way that the last Σ − k symbols in the list

are in sorted order. For example, Σ = a, b, c, d, e and k = 2. Assume that before

we encounter a symbol (assume it is c), the MTF list is ebacd. Then after when

encounter c, the MTF list is changed to ceabd. Note that when k = Σ, this method

is the same as the original MTF scheme.

Since the last Σ − k symbols in the MTF list are sorted, the MTF list has

P k
|Σ| = O(|Σ|k) possible statuses. Table 4.1 and Figure 4.1 show the compression

ratios for different values of k on the Calgary Corpus. They show that we achieve
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File k = 1 k = 2 k = 3 k = 4 k = 5 k = |Σ|
bib 2.232 2.147 2.085 2.082 2.068 1.971
book1 2.915 2.730 2.655 2.598 2.563 2.420
book2 2.457 2.291 2.212 2.181 2.155 2.061
geo 4.425 4.499 4.509 4.521 4.523 4.442
news 2.836 2.727 2.663 2.628 2.614 2.509
obj1 4.169 4.108 4.063 4.048 4.049 3.999
obj2 2.784 2.662 2.619 2.591 2.578 2.474
paper1 2.779 2.668 2.623 2.601 2.579 2.481
paper2 2.757 2.625 2.573 2.560 2.537 2.438
pic 0.843 0.861 0.868 0.867 0.868 0.799
progc 2.846 2.670 2.639 2.613 2.593 2.521
progl 1.939 1.858 1.826 1.809 1.792 1.740
progp 1.970 1.853 1.818 1.797 1.783 1.726
trans 1.686 1.605 1.565 1.565 1.552 1.513
Avg. 2.617 2.522 2.480 2.462 2.447 2.364
Avg. (text) 2.442 2.317 2.266 2.243 2.224 2.138

Table 4.1: Comparison of compression ratios (in bits/symbol) for different values
of k with MTFk.

better compression performance when the value of k increases. Besides, one notable

fact is, even when k = 1, BWT with MTFk compresses better than gzip (see Table

2.9 for the results of gzip).

MTFk reduces the number of possible statuses of the MTF list, and the compres-

sion it achieves is reasonable, but it still costs too much additional space (mainly

for table S) to build an opportunistic index for a vocabulary of moderate size when

the value k increases. For example, Assume u = 1, 000, 000, 000 and |Σ| = 64. If

we choose c = 1
2
, then after we omit some lower-order items and use |Σ|k as an

upper bound for P k
|Σ|, we estimate the size of table S to be u

1
2 Σk+1. To ensure

that the size of S is reasonable, we must have u
1
2 Σk+1 
 u, which in turn requires
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Figure 4.1: Compression ratio (bits/symbol) as a function of k with MTF4.
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Σk+1 
 u
1
2 . With the above given parameters, it means k < 2. This clearly shows

that our method is not able to reduce the space occupancy of S to an acceptable

level in most cases, although it is suitable for vocabulary of small size such as that

of biological sequences. Besides, there are other considerations for the theoretical

design. For example, the theoretical design requires the size of bucket to be smaller

than a machine word and is not practical. Therefore, we will not use MTFk in

future experiments. However, we still report it in this thesis since it is possible it

might prove to be useful in certain other applications.

4.4 Implementation

Ferragina and Manzini proposed and tested one method to implement the oppor-

tunistic index in [28]. They name the result FM-index. In this section, we base our

implementation mainly on FM-index, though we also include some of our ideas and

go into the details of implementation.

Compression Scheme As what is discussed in the theoretical design of the

opportunistic index, FM-index also encodes the BW-transformed texts bucket by

bucket. The difference is that in the theoretical design, we encode Tmtf with one

statistic coder bucket by bucket, while in FM-index, we encode T bwt with MTF

and one statistic coder bucket by bucket. To be more specific, when constructing

FM-index, after we performed the BWT, we divide T bwt into buckets, and for each

bucket, we perform MTF coding. This method will lower the compression efficiency,

but we will not need to store the status of MTF list at the beginning of each bucket
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as what is required in the theoretical design.

According to the experiments in Section 2.4, we use MTH to encode each bucket

after MTF coding. As for the MTF scheme itself, we will test MTF and MTF2 and

compare the results, since both of them seem promising for compressing texts.

Data Structures for the function occ To implement the function occ, we

store the compressed result as a two-level structure. First, T bwt is partitioned into

superbuckets of size ls. Second, each superbucket is partitioned into buckets of

size lb provided that lb divides ls. As mentioned above, each bucket is individually

encoded with a MTF coder and a MTH coder, such that we can decompress each

compressed bucket to get its corresponding bucket in T bwt without decompressing

the whole text. We also store some auxiliary information so that the index is

organized as the following:

• Header: It contains the starting positions of the three parts following the

header in the FM-index.

• Superbuckets Section: For each superbucket, we store the number of occur-

rences of every alphabet symbol in the previous superbuckets. This section

is implemented as an array, and each entry is also an array itself that corre-

sponds to each superbucket (with the exception of the first superbucket since

there is obviously no superbuckets preceding it), whose entries correspond to

the alphabet symbols.

• Bucket Directory: In this directory, we store the starting positions of each

compressed bucket in the body of FM-index. It is also implemented as an
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array.

• body: It contains the compressed buckets, each of which in turn consists of

two part: a header containing the number of occurrences of each alphabet

symbol from the beginning of the superbuckets but before the current bucket,

and a compressed image of the bucket itself.

With the above structure, we can perform Occ(c, 0, k) in the following steps:

1. Locate the superbucket that contains T bwt[k], and from the superbucket sec-

tion, retrieve the number of occurrences of c in the previous superbuckets.

2. Locate the position of the compressed bucket that contains T bwt[k] from the

bucket directory, and retrieve the compressed bucket with a single disk op-

eration. From its header, retrieve the number of occurrences of c from the

beginning of the superbuckets, to (but not including) the beginning of the

bucket itself.

3. Decompress the compressed image of the bucket to get its corresponding

bucket in T bwt. Then we count the occurrences of c from the beginning of the

bucket to T bwt[k].

4. Sum the above three results and return the result.

Data Structures for the locate operation The key of implementing the locate

operation is to design a scheme to mark the rows. We adopt the simple scheme

used in [28]: only mark the rows of M that ends with a certain character d, and

store their starting positions in T sequentially in an array. With this scheme, to
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check whether row M [i] is marked, we simply compare its last character with d. If

it is, then the corresponding position is the Occ(c, 0, i)’th entry of the array.

This scheme takes advantage of the fact that the occurrences of each character

in most real texts are roughly equally spaced. It highly relies on the structure of the

text and cannot ensure good worst-case performance. However, it greatly reduces

the space overhead since we do not need any other auxiliary information besides the

arrays that stores positions of the marked rows. We can also choose the percentage

of the rows to be marked and choose a symbol d whose frequency is the closest to

it.

Caching In count and locate locations, we will call the function occ many times,

depending on the times of occurrences of the pattern we are searching. This means

that we may decompress some buckets more than once during searching. We design

a caching scheme to take the advantage of this.

In this scheme, we maintain a fixed-size cache in memory that stores the buckets

that have been decompressed. We organize the cache as a double list, and for the

replacement policy, we choose the least recently used (LRU) policy. For each bucket,

we also store a pointer that points to its decompressed result in the cache, and the

pointer is NULL if its decompressed result is not in cache. Then in function occ,

when we need to decompress a bucket, we fist check whether its decompressed result

is stored in the cache. If it is, then we retrieve the result from the cache without

decompressing it.
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Implementation Details During implementation, we also designed some tech-

niques to reduce the space cost and/or to improve the search efficiency. They are

listed in the following:

1. For each number of occurrences stored in the superbucket section, or each

position stored for the marked rows, we use lg u bits to represent it. For

each number of occurrences stored in the header of each compressed bucket,

we use lg ls bits to represent it. Although this means we will have more bit

operations and thus the query will be slowed down, this scheme significantly

reduces the space cost.

2. In the header, we store a bitmap of the characters occurring in the text. Then,

in the superbucket section, we only need to store number of occurrences of the

characters actually appear in the text. This reduces the space cost, and also

speeds up the computation of occ, since if a character c in the pattern does not

occur in the text at all, we can determine from the bitmap that Occ(c, 0, k) =

0. For each superbucket, we also store a bitmap of the characters occurring

in the superbucket, and similarly, this can reduce the space cost and speed up

the computation of Occ. These bitmaps can be organized with the structure

introduced in Section 2.4.5.

3. In the function Occ(c, 0, k), when we need to decompress a bucket, we actu-

ally do not have to decompress the whole bucket. Instead, we just need to

decompress until we reach T bwt[k]. This further speeds up the computation

of Occ. However, when we adopt the caching scheme, we have to decompress

the whole bucket so that we can cache the result.
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Name Size in Bytes Content
world192 2,473,400 1992 CIA world fact book
canterbury 2,821,120 Canterbury corpus
bible 4,047,392 King James Bible
E .coli 4,638,690 DNA sequence
shakespeare 7,648,372 Shakespeare XML database
ohsumed .87 60,303,307 MEDLINE references from 1987
gutenberg 63,035,670 A collection of texts from Project Gutenberg
dblp 127,074,908 The DBLP database
rfc 146,744,697 Internet RFC documents
jdk14 146,963,536 html and java sources in the jdk1.4 documentation

Table 4.2: Files used in our experiments.

4. For step 3 of the locate operation, we check for each character e in Σ whether

Occ(e, 0, k − 1) = Occ(e, 0, k) to compute L[k] in Section 4.2.2 to avoid de-

compressing buckets. However, in our implementation of Occ, we have to

decompress buckets when necessary. Therefore, in our implementation of lo-

cate, we decompress the bucket to compute L[k] in Step 3. Since in Step 4,

we need to decompress the same bucket when Occ is called, we combine these

two steps together so that we just need to decompress the same bucket only

once.

4.5 Performance Results

4.5.1 Large Texts Used in Experiments

We now test the performances of the implementation in Section 4.4 on several input

files. We chose files in table 4.2 to represent different types of input texts, as they
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are of different types of content, format or style. For their sizes and content, please

refer to Table 4.2. The following is a more detailed description:

• world192 : The 1992 CIA world fact book, which is included in the Canterbury

Corpus[8]. It is in the plain-text format.

• canterbury : A tar archive containing the small files of the Canterbury Corpus[8],

which includes both binary files and text files in various formats (plain text,

html, c and list code).

• bible : The King James Bible, which is included in the Canterbury Corpus[8].

It is in the plain-text format.

• E.coli : Complete gnome of the E.coli bacterium, which is included in the

Canterbury Corpus[8].

• shakespeare : A collection of Shakespeare lyrics that have been converted into

XML, from [4].

• ohsumed.87 : MEDLINE references from 1987. MEDLINE is an online med-

ical information database,consisting of titles and/or abstracts from 270 med-

ical journals over a 5-year period (1987-1991). This file is from the TREC-9

document collection used in the TREC-9 filtering track[5].

• gutenberg : A collection of texts from Project Gutenberg[2], which consists of

various literature work and references.

• dblp : The DBLP database[39], which contains bibliographical references for

databases and logical programming research. The underlying data is stored
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in XML.

• rfc : The entire Internet RFC (the Request for Comments) documents, which

is available in [3].

• jdk14 : The concatenation of html and java sources in the jdk1.4 documentation[1].

As for the test sets of patterns to be searched for, we randomly chose 1000

English words of length between 4 and 8 (for E.coli we generated 1000 random

DNA sequences of length between 8 and 15), as in [28].

The following experiments mainly follow the experimental part in [28]. However,

we also test some of our own ideas. All the experiments were run on a Sun Ultra

Enterprise 450 machine, with 4 CPUs and 4 Gb RAM, installed with SunOS 5.8.

4.5.2 Size of Superbuckets

It can be seen from Section 4.2.2 and Section 4.4 that the purpose of superbuckets

is to reduce the auxiliary information stored in buckets (recall that the number

of occurrences for each character costs lg ls bits). If we choose to use smaller

superbuckets, the auxiliary information stored in buckets will cost less space, but

the superbucket section will cost more space. Therefore we try to determine the

appropriate size of superbuckets via experiments.

Table 4.3 and Table 4.4 reports the results of our experiments on bible and

ohsumed.87. In our experiments, we set the bucket size to be 1Kb, and the fraction

of marked rows is 2%. The row labeled MTF shows the results when we use

the original MTF scheme, while the row labeled MTF2 shows the results when
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Superbucket size 2K 4K 8K 16K 32K 64K

MTF

Compression ratio 3.080 2.750 2.623 2.607 2.651 2.730
Ave. count time 2.36 2.65 2.66 2.48 2.61 2.56
Ave. locate time 19.30 21.06 20.50 19.79 19.65 20.24

MTF2

Compression ratio 3.058 2.727 2.601 2.585 2.628 2.708
Ave. count time 2.38 2.40 2.48 2.50 2.51 2.36
Ave. locate time 19.79 19.72 19.85 19.81 19.44 19.52

Superbucket size 128K 256K 512K 1024K 2048K 4096K

MTF

Compression ratio 2.832 2.955 3.108 3.233 3.350 3.500
Ave. count time 2.42 2.28 2.48 2.38 2.52 2.44
Ave. locate time 19.35 19.06 19.97 18.92 18.77 19.97

MTF2

Compression ratio 2.809 2.932 3.085 3.211 3.328 3.477
Ave. count time 2.41 2.51 2.48 2.44 2.47 2.44
Ave. locate time 19.51 19.26 19.23 19.09 19.14 18.83

Table 4.3: Compression ratio (bits/symbol) and average time (milliseconds) for the
count and locate operations as a function of the superbucket size (bytes) for bible.

we use MTF2. From the results we can see that the size of superbuckets does not

significantly influence the efficiency of count and locate, while the compression ratios

change significantly with it. Figure 4.2 clearly shows the change of compression

ratios. From it we can see that our method compresses the best when the size of

superbucket is 16 times as large as that of buckets, no matter whether we adopt

MTF or MTF2. Therefore, in our future experiments, we always ensure that ls :

lb = 16 : 1.

Table 4.5 shows the results of compressing texts with MTF and MTF2 schemes.

The size of superbuckets and buckets are 16Kb and 1Kb, respectively, and the

fraction of marked rows is 2%. From the results, we can see that MTF2 is better

than MTF on most of the input files, so we will therefore use MTF2 in the rest of

our experiments.
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Superbucket size 2K 4K 8K 16K 32K 64K

MTF

Compression ratio 3.440 2.908 2.695 2.649 2.696 2.799
Ave. count time 3.32 3.33 3.36 3.38 3.42 3.25
Ave. locate time 20.14 20.17 20.58 20.51 20.45 21.35

MTF2

Compression ratio 3.413 2.881 2.668 2.623 2.669 2.773
Ave. count time 3.31 3.49 3.33 3.40 3.42 3.45
Ave. locate time 19.78 20.10 19.95 19.89 19.81 19.73

Superbucket size 128K 256K 512K 1024K 2048K 4096K

MTF

Compression ratio 2.931 3.079 3.247 3.411 3.570 3.721
Ave. count time 3.36 3.40 3.38 3.07 3.27 3.31
Ave. locate time 19.96 20.19 19.87 19.78 20.08 20.06

MTF2

Compression ratio 2.904 3.053 3.221 3.384 3.544 3.694
Ave. count time 3.08 3.45 3.54 3.31 3.09 3.48
Ave. locate time 19.65 19.72 19.83 19.59 19.63 19.69

Table 4.4: Compression ratio (bits/symbol) and average time (milliseconds) for
the count and locate operations as a function of the superbucket size (bytes) for
ohsumed.87.

File world192 canterbury bible E.coli shakespeare
MTF 2.714 3.636 2.607 8.003 2.401
MTF2 2.712 3.615 2.585 7.999 2.370

File ohsumed.87 gutenberg dblp rfc jdk14
MTF 2.649 2.921 1.862 2.682 1.369
MTF2 2.623 2.925 1.861 2.680 1.380

Table 4.5: Comparison of the compression ratios (bits/symbol) between two move-
to-front schemes.
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Figure 4.2: Compression ratio (bits/symbol) as a function of the superbucket size.
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bible ohsumed.87
Bucket size 1K 2K 4K 8K 1K 2K 4K 8K
Compression ratio 2.585 2.341 2.198 2.111 2.623 2.335 2.164 2.061
Ave. count time 2.50 3.45 4.90 8.25 3.40 4.14 5.76 9.29
Ave. locate time 19.81 27.74 43.80 75.48 19.89 26.68 41.54 70.62

Table 4.6: Compression ratio (bits/symbol) and average time (milliseconds) for the
count and locate operations as a function of the bucket size (bytes).

4.5.3 Size of Buckets

Size of buckets influences both search time and compression efficiency. Smaller

buckets cost less time to decompress, and therefore they enable more efficient com-

putation of the function Occ. On the other hand, larger buckets improve compres-

sion efficiency by reducing the auxiliary information associated with the buckets,

and making the coding of MTF and MTH more efficient.

Table 4.6, Figure 4.3, Figure 4.4, and Figure 4.5 report the results. We can

see that as the bucket size increases, the execution time for count and locate opera-

tions increase dramatically, while the compression efficiency drops less significantly.

Therefore we choose to use small bucket size, which is 1Kb in our experiments.

4.5.4 Percentage of Marked Rows

It is clear that this parameter introduces a trade-off between compression efficiency

and searching speed: If we choose to mark more rows, then the index we built will

cost more space, but the locate operation will be executed more efficiently.

Table 4.7 reports the results of our experiments on FM-index with different

percentage of marked rows and different bucket sizes. The average time of count
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bible
Bucket size 1Kb 2Kb 4Kb 8Kb

1%
Compression ratio 2.363 2.119 1.975 1.889
Ave. locate time 46.02 66.81 105.04 181.09

2%
Compression ratio 2.585 2.341 2.198 2.111
Ave. locate time 19.81 27.74 43.80 75.48

5%
Compression ratio 3.317 3.073 2.930 2.844
Ave. locate time 6.51 8.92 14.22 24.73

10%
Compression ratio 4.298 4.055 3.911 3.825
Ave. locate time 3.15 4.40 7.00 11.98

ohsumed.87
Bucket size 1Kb 2Kb 4Kb 8Kb

1%
Compression ratio 2.312 2.025 1.853 1.750
Ave. locate time 51.74 70.38 109.41 185.69

2%
Compression ratio 2.623 2.335 2.164 2.061
Ave. locate time 19.89 26.68 41.54 70.62

5%
Compression ratio 3.478 3.191 3.019 2.916
Ave. locate time 6.56 9.32 14.38 24.38

10%
Compression ratio 4.279 3.992 3.820 3.718
Ave. locate time 4.11 5.81 8.99 15.33

Table 4.7: Compression ratio (bits/symbol) and average time (milliseconds) for the
count and locate operations as a function of the bucket size (bytes) and percentage
of marked characters.

operation is not reported since it is not influenced by the percentage of marked

rows. The results suggest that it is preferable to use small buckets. One suitable

choice is to set the size of buckets to be 1Kb, and the fraction of marked rows to

be 2%. We will continue to use this setting in the rest of our experiments.
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4.5.5 More Results

We also test the FM-index on all of our input files in Table 4.2, and Table 4.8

summarizes the results. Among the results, one exception is E.coli, its compression

ratio is 7.999 bits/symbol, much higher than any other files. This is because it has

an alphabet size of 4, and the frequencies of the four alphabet symbols are close to

each other. When we choose to mark 2% of the marked rows, we actually choose

a symbol whose frequency is close to 25%. Although we can use a certain simple

scheme to solve the problem (For example, we only mark part of the rows that end

with the chosen character, such as those corresponding result returned from function

Occ(c, 0, k) is divided by a given constant number), we choose not to further work

on the file. The reason is that BWT is not a suitable method to compress DNA

sequences. From Table 2.9 we see that the compression ratio for E.coli with BWT

is more than 2 bits/symbol, while a simple coding scheme that encode each symbol

with 2 bits (since the alphabet size is 4) only costs 2 bits/symbol. For all the other

files, the results are mostly consistent, although the locate operation on jdk14 is

much worse than others. This is because the occurrences of a given character are

less evenly distributed in jdk14.

4.5.6 Comparisons

First we compare the compression ratio. Table 4.9 lists the results. The row labeled

FM-index shows the results with the FM-index we implemented. The row labeled

BWT shows the results with the BWT compression algorithm we implemented in

Section 2.4, with MTF2 scheme. The row labeled bzip2 shows the results with the
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File world192 canterbury bible E.coli shakespeare
Compression ratio 2.712 3.615 2.585 7.999 2.370

Ave. count time 2.36 3.24 2.50 6.99 2.88
Ave. locate time 33.66 8.26 19.81 1.67 19.61

File ohsumed.87 gutenberg dblp rfc jdk14
Compression ratio 2.623 2.925 1.861 2.680 1.380

Ave. count time 3.40 3.05 3.41 3.23 1.94
Ave. locate time 19.89 11.75 15.87 22.77 43.41

Table 4.8: Compression ratio (bits/symbol) and average time (milliseconds) for the
count and locate operations on different types of input files.

bzip2 program [52], which is an implementation of BWT compression algorithm.

The row labeled gzip shows the results with gzip. We can see that the construction

and decompression speeds of our index are comparable to those of the other schemes,

while the compression ratio is close to and sometimes better than that of gzip.

We also compared the search time of FM-index with other search programs:

grep, zgrep (i.e. grep over gzipped files) and bzgrep(i.e. grep over bizipped files).

These programs use scan-based algorithms. Table 4.10 reports the results. From the

reports we can see that the counting queries can be performed with FM-index very

efficiently. However, the average search time of FM-index is often worse than that of

grep, and sometimes, even worse than that of zgrep. This is because for our choice of

test sets, one pattern may occur many times in a text, so the average search time of

FM-index is not the sum of average time for count and locate operations. Combined

with other results, we can see that FM-index is very efficient for existential and

counting query, but may not be efficient for enumerative query. However, this is

not a serious problem in most applications. First, in most cases, users will not be

able to browse the results in a single screen if there are many occurrences, while
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File world-
192

canter-
bury

bible E.coli shake-
speare

FM-
index

Compression ratio 2.712 3.615 2.585 7.999 2.370
Construction speed 2.76 2.27 2.55 3.16 3.80
Decompression speed 1.04 1.02 1.07 1.28 1.14

BWT

Compression ratio 1.387 1.655 1.559 2.116 1.374
Construction speed 2.37 2.00 2.53 2.75 3.44
Decompression speed 0.99 0.96 1.04 1.27 1.05

bzip2
Compression ratio 1.584 1.619 1.671 2.158 1.539
Construction speed 1.45 0.97 1.17 1.27 1.45
Decompression speed 0.43 0.38 0.56 0.52 0.42

gzip
Compression ratio 2.333 2.088 2.326 2.240 2.212
Construction speed 0.73 4.66 1.43 9.07 0.922
Decompression speed 0.08 0.09 0.08 0.09 0.08

File ohsu-
med.87

guten-
berg

dblp rfc jdk14

FM-
index

Compression ratio 2.623 2.925 1.861 2.680 1.380
Construction speed 4.29 4.85 7.33 5.00 13.82
Decompression speed 1.60 1.69 1.31 1.66 1.23

BWT

Compression ratio 1.406 1.672 0.730 1.244 0.304
Construction speed 3.59 4.18 6.64 4.52 13.10
Decompression speed 1.46 1.55 1.22 1.56 1.17

bzip2
Compression ratio 1.931 2.160 0.957 1.542 0.446
Construction speed 1.22 1.27 1.85 1.11 2.39
Decompression speed 0.45 0.49 0.36 0.39 0.31

gzip
Compression ratio 2.663 2.969 2.623 2.607 0.731
Construction speed 0.70 1.12 0.47 1.50 0.31
Decompression speed 0.09 0.10 0.07 0.08 0.05

Table 4.9: Compression ratio (bits/symbol) and compression/decompression speed
(microseconds/symbol) of the FM-index compared with those of gzip (with option
-9 for maximum compression) and bzip2 (version 1.0.2).
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computing the occurrences that can be listed in a single screen is very fast. Second,

in practical applications, users usually search for more sensible phrases that seldom

occur thousands of times, while a pattern that occurs thousands of times in large

texts such as jdk14 is very common in our test set.

4.5.7 Caching

Table 4.11, Figure 4.6, Figure 4.7 and Figure 4.8 reports the search time and hit

ratios for different cache sizes for bible and ohsumed.87. The average search time

decreases and the hit ratio increases, as the cache size increases. We achieve better

performance with the caching scheme. However, the count operation may not be

improved. This is because in a single count operation, we only call Occ a few times,

while since we need to cache the decompressed results, we have to decompress the

whole bucket when needed. Recall that we only decompress part of a bucket if we

do not implement the caching techniques. From the figures, we can also see that

the improvement of hit ratios and searching efficiency increases less rapidly as the

size of the memory used for caching increases.

We choose the cache size to be 2% of the size of the original text and test our

caching techniques on the other files. The results are reported in Table 4.12. We

can see that the average search speed on each file is improved notably.

4.5.8 Summary

From our experiments, we suggest to use the following parameters:

1. Size of superbuckets: 16Kb,
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File world-
192

canter-
bury

bible E.coli shake-
speare

FM-
index

Compression ratio 2.712 3.615 2.585 7.999 2.370
Ave. count time 2.36 3.24 2.50 6.99 2.88
Ave. locate time 33.66 8.26 19.81 1.67 19.61
Ave. search time 457.81 76.79 498.44 23.58 580.59

zgrep Compression ratio 2.333 2.088 2.326 2.240 2.212
Ave. search time 323.69 341.25 487.39 784.20 894.18

bzgrep
Compression ratio 1.584 1.619 1.671 2.158 1.539
Ave. search time 1033.93 973.85 1666.03 2633.69 3128.41

grep Compression ratio 8.000 8.000 8.000 8.000 8.000
Ave. search time 125.85 118.65 175.33 431.23 388.97

File ohsu-
med.87

guten-
berg

dblp rfc jdk14

FM-
index

Compression ratio 2.623 2.925 1.861 2.680 1.380
Ave. count time 3.40 3.05 3.41 3.23 1.94
Ave. locate time 19.89 11.75 15.87 22.77 43.41
Ave. search time 5184.79 4870.05 20007.00 17712.30 26104.10

zgrep Compression ratio 2.663 2.969 2.623 2.607 0.731
Ave. search time 6830.12 7788.04 12179.80 15528.10 11372.90

bzgrep
Compression ratio 1.931 2.160 0.957 1.542 0.446
Ave. search time 25466.50 28761.00 43026.30 53600.40 41657.60

grep Compression ratio 8.000 8.000 8.000 8.000 8.000
Ave. search time 2707.13 2777.68 6224.82 6828.23 6570.32

Table 4.10: Compression ratio (bits/symbol) and average search time (milliseconds)
of the FM-index compared with other searching tools.
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bible
Cache size 1 2 3 4 5 10
Ave. count time 2.10 2.11 2.14 2.13 2.17 2.22
Ave. locate time 17.45 17.07 17.02 16.81 16.58 16.39
Ave. search time 439.09 429.78 428.56 423.30 417.61 413.09
Hit ratio 19.25 25.80 30.54 34.64 38.35 53.19

ohsumed.87
Cache size 1 2 3 4 5 10
Ave. count time 3.12 2.97 3.10 3.19 3.33 3.26
Ave. locate time 18.12 18.11 18.08 17.71 17.63 17.49
Ave. search time 4726.54 4725.05 4718.06 4623.77 4603.77 4572.39
Hit ratio 26.28 32.95 38.07 42.33 46.01 59.32

Table 4.11: Average search time (milliseconds) and hit ratio (percentage) as a
function of the cache size (percentage of the size of the original file).

File world192 canterbury bible E.coli shakespeare
Ave. count time 2.37 3.10 2.11 7.19 2.93
Ave. locate time 33.21 8.19 17.07 1.57 20.77
Ave. search time 451.84 76.18 429.78 22.84 615.26

Hit ratio 34.81 30.65 25.80 44.85 20.05

File ohsumed.87 gutenberg dblp rfc jdk14
Ave. count time 2.97 3.36 3.65 3.42 2.46
Ave. locate time 18.11 10.95 14.10 20.15 35.28
Ave. search time 4725.05 4547.30 17772.9 15681.5 21218.2

Hit ratio 32.95 50.76 69.91 65.51 95.84

Table 4.12: Average search time (milliseconds) and hit ratio (percentage) on dif-
ferent types of input files when cache size is 2% of the original text.
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Figure 4.6: Average search time (milliseconds) as a function of the cache size (per-
centage) for bible.
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Figure 4.7: Average search time (milliseconds) as a function of the cache size (per-
centage) for ohsumed.87.
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2. Size of buckets: 1kb,

3. Fraction of marked rows in M : 2%,

4. Cache size: 2% of the size of the original text.

This set of parameters prove to be efficient in our experiments, though other choices

may also be suitable.

We also conclude that MTF2 is superior to MTF in most cases.

Our experiments also show that FM-index is compact and supports efficient

query.



Chapter 5

Conclusion

In this thesis, we have studied three topics on text processing: text compression,

text indexing, and techniques to combine text compression and indexing. The

first are usually studied as two independent techniques: one is for reducing the

storage cost for storing texts, the other is for facilitating searching through the

texts. We have given a survey on various compression techniques and implemented

an efficient BWT-based compression algorithm through experiments. We have also

presented two most used indexing techniques: inverted files and suffix trees. The

third technique is motivated by the need to facilitate searching through compressed

texts. We have reviewed the SASE, which is a compressed word index, and the

opportunistic index, which is a compressed full-text index. We also designed a new

MTF scheme when considering the implementation of the opportunistic index.

These studies led to the design and implementation of a method to build indices

for texts that have been compressed with Burrows-Wheelers compression algorithm.

The method is mainly based upon the FM-index proposed and studied in [28], which

80
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is an implementation of the opportunistic index, but we have also tested some of

our ideas. We have determined a set of suitable parameters for the organization

of FM-index, and designed a caching technique to improve the performance. The

FM-index we built achieves compression performance close to, and sometimes better

than, that achieved by gzip, but supports fast query at the same time, especially

existential and counting queries.

Some future development includes:

• Design more efficient methods for marking rows.

• Implement more complex queries, such as regular expression queries and ap-

proximate queries.

• Design more caching techniques, such as caching some search results in mem-

ory for future queries.
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