
Reliable Transport Performance in Mobile Environments

by

Martin McSweeney

A thesis

presented to the University of Waterloo

in ful�lment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2001

 Martin McSweeney 2001

I hereby declare that I am the sole author of this thesis. This is a true copy of the

thesis, including any required �nal revisions, as accepted by my examiners.

I understand that my thesis may be electronically available to the public.

ii

Abstract

Expanding the global Internet to include mobile devices is an exciting area of cur-

rent research. Because of the vast size of the Internet, and because the protocols in

it are already widely deployed, mobile devices must inter-operate with those pro-

tocols. Although most of the incompatiblities with mobiles have been solved, the

protocols that deliver data reliably, and that account for the majority of Internet

traÆc, perform very poorly. A change in location causes a disruption in traÆc, and

disruption is dealt with by algorithms tailored only for stationary hosts.

The Transmission Control Protocol (TCP) is the predominant transport-layer pro-

tocol in the Internet. In this thesis, we look at the performance of TCP in mobile

environments. We provide a complete explanation for poor performance; we con-

duct a large number of experiments, simulations, and analyses that prove and quan-

tify poor performance;and we propose simple and scalable solutions that address

the limitations.

iii

Acknowledgements

Many people contributed in many ways to this thesis.

First, I thank my supervisor, Dr. Jay Black, for motivation, direction, guidance,

and funding. He allowed me to pursue my areas of interest, and I leave with a

wealth of knowledge in those areas.

Next, I thank all the members of the Shoshin research group for making me think,

a little bit deeper, about many topics. Every member has contributed in at least

a small way. A special thanks goes to our sys-admin, and fellow graduate student,

Paul Ward, for accommodating me with the network con�gurations required.

Finally, I thank my parents for their continuing support, and for taking the time

to proof-read the �nal draft.

iv

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 The Internet and Reliable Transport 3

1.3 The Mobile Environment and Network-Layer Mobility 4

1.4 The Problem . 5

1.5 Thesis Contributions and Organization 5

2 Background 7

2.1 Overview . 7

2.2 Mobile IP . 7

2.2.1 Agent-Discovery Mechanisms 9

2.2.2 Movement Detection . 9

2.2.3 Registration . 11

2.2.4 Security . 12

2.3 Transmission Control Protocol . 13

2.3.1 Reliable Transport . 14

2.3.2 Congestion Control . 16

2.3.3 Persist Mode . 18

2.4 Network Tools for Performance Analysis 20

3 TCP Performance with Mobile Receivers 25

3.1 Overview . 25

3.2 The E�ects of Retransmission Timeouts 28

3.2.1 Experiments . 31

v

3.2.2 Results . 32

3.2.3 Discussion . 34

3.3 The E�ects of Congestion Control 35

3.3.1 An Analysis with Experiments 37

3.3.2 An Analysis with Simulations 41

3.4 Chapter Summary . 45

4 TCP Performance with Mobile IP 47

4.1 Overview . 47

4.2 Hando� Times . 48

4.3 Experiments with Mobile IP Hando�s 53

4.4 Results and the Overall Impact of Hando�s 57

4.5 Discussion . 60

4.6 Comparisons to Related Work . 63

4.7 Chapter Summary . 64

5 TCP Enhancements for Wide-Area Mobility 66

5.1 Overview . 66

5.2 Related Work . 69

5.3 Retransmission Caching . 73

5.3.1 Enhancement Overview . 73

5.3.2 Deployment . 74

5.3.3 Experiments . 75

5.3.4 Discussion . 77

5.4 Zero-Window-Size Acknowledgements 77

5.4.1 Enhancement Overview . 77

5.4.2 Deployment . 82

5.4.3 Experiments . 83

5.4.4 Discussion . 85

5.5 Chapter Summary . 86

6 Summary, Conclusions, and Future Work 87

6.1 Summary and Conclusions . 87

vi

6.2 Future Work . 89

Bibliography 91

vii

List of Tables

3.1 Hosts used in the retransmission-timeout experiments 31

3.2 Linux 2.2 retransmission timeouts 32

3.3 AIX 4.3 retransmission timeouts . 33

3.4 FreeBSD 2.2.7 retransmission timeouts 33

3.5 SunOS 5.6 retransmission timeouts 33

3.6 Sequence of events corresponding to Figure 3.5 39

3.7 Sequence of events corresponding to Figure 3.6 39

4.1 ECS and LCS Mobile-IP hando� times 53

4.2 Hosts used in Mobile-IP hando� experiments 55

4.3 Hando� times in the experiments 56

4.4 Linux results . 58

4.5 AIX results . 59

4.6 Linux results with bu�er sizes of 16KB, 32KB, 64KB, and 128KB . 62

5.1 Caching for a Linux sender . 76

5.2 AIX results with zero-window-size acknowledgements 84

viii

List of Figures

2.1 Mobile IP registration . 11

2.2 Sending a zero-window-size acknowledgement 19

2.3 Tcptrace time-sequence graph . 24

2.4 Tcptrace outstanding-data graph 24

3.1 A hando� triggering a retransmission timeout and congestion control 27

3.2 The heartbeat timer of TCP . 29

3.3 Network for analyzing retransmission timeouts 31

3.4 Network for analyzing congestion control 37

3.5 Hando� emulation when transmission rate is maximum 38

3.6 Hando� emulation during slow-start 40

3.7 The e�ects of congestion control . 44

4.1 ECS best-case hando� time . 50

4.2 ECS worst-case hando� time . 51

4.3 LCS best-case hando� time . 52

4.4 LCS worst-case hando� time . 52

4.5 Network con�guration for experiments with Mobile-IP hando�s . . 54

4.6 Calculating idle time . 56

5.1 Micro-mobility and macro-mobility 68

5.2 A situation where M-TCP and Freeze-TCP do not work 79

5.3 Caching a segment for a zero-window-size acknowledgement 80

5.4 Algorithm for caching the oldest unacknowledged segment 81

5.5 A limitation of the zero-window-size acknowledgement scheme . . . 81

ix

5.6 Foreign-agent deployment . 82

x

Chapter 1

Introduction

1.1 Motivation

In the 1990s, growth was explosive in the amount of information on the Internet,

and in the number of users accessing that information. Those growths were fueled

by increasing bandwidths, higher data rates between PCs and Internet Service

Providers (ISPs), and increasing computing power on PCs and web servers. Today,

users can download eÆciently a rich variety of HTML documents, high-resolution

images, and multimedia applications.

In more recent years, there has been massive growth in the demand for high-

quality wireless voice connectivity. Users of cell-phones have grown to expect con-

nectivity at any time and anywhere, and, in many ways, service providers have met

those expectations. The demand for wireless broadband data services, on the other

hand, has been less explosive because of low wireless bandwidths, and because a

true ubiquitous computing infrastructure is not yet deployed. Currently, most wire-

1

CHAPTER 1. INTRODUCTION 2

less devices on the Internet are limited to slow data rates, and to web documents

that are manipulated and down-sized by wireless communication stacks such as the

Wireless Access Protocol (WAP) [3].

A ubiquitous computing infrastructure allows users to access the Internet any-

time, anywhere. Users of mobile devices browse the World-Wide Web (WWW)

and access documents, images, and applications in the same manner as PC users

do today. A change in connectivity is transparent, and the user does not notice

a degradation in network performance while using a mobile device. Increasingly

higher wireless data rates will open the doors for the deployment of this computing

infrastructure.

Expanding the global Internet to include wireless and mobile devices is an ex-

citing area of current research. Because of the vast size of the Internet, and because

the protocols in it are already deployed widely, mobile devices must inter-operate

with those protocols. Although most of the incompatibilities have been solved, the

protocols that deliver data reliably, which generate the majority of Internet traÆc,

perform very poorly when a host is mobile. A change in location causes a disruption

in traÆc, and disruption is dealt with by algorithms tailored only for stationary

hosts.

In this thesis we identify the fundamental challenges for reliable transport in

mobile environments, and we quantify and improve the performance of reliable

transport in mobile environments.

The rest of this chapter provides background and an outline for the rest of the

thesis. Next, we present the Internet architecture and the protocols that deliver

CHAPTER 1. INTRODUCTION 3

data reliably. Section 1.3 presents the mobile environment. In Section 1.4, we

outline the main challenges for delivering data reliably and eÆciently in mobile

environments, and in Section 1.5, we discuss the contributions to current research

and the thesis organization.

1.2 The Internet and Reliable Transport

The Internet is a massive heterogeneous system where the Internet Protocol (IP) [43]

is used to provide host-location and routing services over a variety of link-layer tech-

nologies (e.g. Ethernet, ATM, FDDI).

Every host on the Internet is assigned an IP address. The address is broken into

a network number, or sub-network number, and a host number. When a host sends

a datagram, it addresses the datagram to the IP address of the destination host,

and when a router receives the datagram, a routing-table look-up is performed and

the datagram is forwarded to the appropriate next-hop router. At the destination

network, the datagram is delivered directly to the destination host.

IP provides best-e�ort service; although reliable delivery is attempted, it is not

guaranteed|a datagram can be lost, dropped, or corrupted for a variety of reasons.

Reliability is guaranteed at the layer above IP, the transport layer. A reliable-

transport protocol monitors transmitted datagrams and performs loss-recovery in

the absence of time-sensitive acknowledgments from the receiving host.

The Transmission Control Protocol (TCP) [44, 49] is the dominant reliable-

transport protocol in the Internet. Numerous applications require reliability, in-

cluding HTTP [17], ftp [45], and e-mail [26], and most of those applications use

CHAPTER 1. INTRODUCTION 4

TCP. It is estimated that 83% of all datagrams in the Internet are TCP packets [29].

As well as delivering reliably and eÆciently, TCP also performs congestion control

when the network is limited. This control is a fundamental reason why the Internet

has scaled.

The next section discusses how IP and TCP have been integrated into mobile

environments.

1.3 The Mobile Environment and Network-Layer

Mobility

A mobile environment is one where a host moves from one network to another.

Typically, the environment consists of wireless devices communicating with wireline

base stations. The base stations act as next-hop IP routers, and are typically

organized in a cellular topology with an IP backbone.

The fundamental challenge for network-layer mobility is that hosts are identi�ed

by static IP addresses, not by location. If a host migrates, datagrams destined for

it are delivered incorrectly to the old network.

Mobile IP [37] solves this challenge and is the current protocol supported by

the Internet Engineering Task Force (IETF) [2] standardization body for providing

network-layer mobility. Mobile IP allows a mobile host to move from one network

to another, and still be both identi�able and locatable. Datagrams that reach the

previous network of the mobile are re-directed to the new network.

CHAPTER 1. INTRODUCTION 5

1.4 The Problem

In a wireline network, TCP packets are lost primarily because of congested router

queues. Those types of losses are called congestion-induced. TCP assumes that all

losses are congestion induced.

When losses are movement-induced, or a result of mobility, TCP also assumes

congestion occurred. That incorrect assumption causes TCP to perform very poorly

in mobile environments. Unfortunately, the inherent temporary disconnections in

mobility protocols, including Mobile IP, result in high probabilities that movement-

induced losses occur during mobility.

1.5 Thesis Contributions and Organization

To current research in the area of TCP performance in mobile environments, this

thesis contributes

1. A complete explanation for poor performance;

2. A large number of experiments, simulations, and analyses that prove and

quantify poor performance; and

3. Simple and scalable solutions that can improve performance signi�cantly dur-

ing Mobile IP hando�s.

We focus on the performance of a mobile Internet browser, and we assume mobile

devices act primarily as clients, not servers.

The thesis organization is as follows. In Chapter 2, we present the details of

Mobile IP and TCP, as well as a set of tools that are used to analyze performance.

CHAPTER 1. INTRODUCTION 6

In Chapter 3, we identify the reasons for poor performance in mobile environments,

and we quantify, through experiments and simulations, the e�ects that mobility can

have on TCP. Chapter 4 shows, through experimentation, why TCP performance

is poor with Mobile IP, and Chapter 5 shows how to improve that performance.

The thesis is concluded in Chapter 6.

Chapter 2

Background

2.1 Overview

This chapter presents an overview of the material referenced throughout the thesis.

Mobile IP is presented in Section 2.2, and TCP in Section 2.3. Tools used in later

experiments are presented in Section 2.4. For a more in-depth coverage of these

topics, the reader is referred to Perkins [39] and Stevens [49].

2.2 Mobile IP

In the Internet, stationary hosts, for the most part, maintain IP addresses that

do not change. These static addresses are important for many reasons, including

location and identi�cation. Protocols such as TCP and UDP [41] associate a host

with a single IP address, and work only if the address does not change. For a host

to migrate to a new network, however, and still be locatable, a new IP address must

7

CHAPTER 2. BACKGROUND 8

be acquired.

Mobile IP is a protocol that solves this challenge because it allows a host to

change networks and still be both locatable and identi�able. With Mobile IP, a

mobile host (M) is identi�ed by a �xed IP address on its home network, but located

by a temporary care-of-address on the network where it resides. Datagrams that

reach the home network of a mobile are tunneled, by IP-in-IP encapsulation [36],

to the care-of-address.

In Mobile IP, special routers, or mobility agents, are used to provide mobility

services for a mobile. At a foreign network, a foreign agent (FA) provides a care-

of-address, and operates as the end-point of a tunnel from the home network.

When a foreign agent receives datagrams, it decapsulates them and forwards them

directly to the mobile. At a home network, a home agent (HA) maintains bindings

between home mobiles and care-of-addresses, and intercepts and tunnels datagrams

to foreign agents.

When a mobile migrates into a foreign network, several functions must be per-

formed. First, the mobile must discover the existence of foreign agents in the

network, and must realize that it has migrated. Second, the mobile must commu-

nicate this new location information to its home agent so that the mobility binding

can be updated. Finally, at the home agent, the mobile must be authenticated and

authorized to use mobility services. This entire process is called a hando�.

The rest of this section describes Mobile IP and the above functions in more

detail.

CHAPTER 2. BACKGROUND 9

2.2.1 Agent-Discovery Mechanisms

A mobile uses agent advertisements and agent solicitations to discover and monitor

the presence of mobility agents.

Agent advertisements are ICMP messages [15], similar to ICMP router adver-

tisements [42], that are broadcasted periodically by mobility agents. A mobile

realizes it is near an agent when it receives an advertisement.

Advertisements contain �elds that indicate the address of the sending agent, the

agent's available care-of-addresses, and the advertisement lifetime. The lifetime is

used by a mobile to monitor the presence of an agent. If a lifetime expires before

another advertisement arrives, the mobile concludes that the agent is no longer

reachable. The recommended rate for sending agent advertisements is one per

second, with an advertisement lifetime of three seconds [37].

Agent solicitations are ICMP messages sent from mobiles to mobility agents.

A mobile sends a solicitation when it is searching for an agent. A mobility agent

responds to a solicitation with an agent advertisement.

2.2.2 Movement Detection

Before a mobile can register a new foreign agent with its home agent, it must �rst

realize that it has migrated from one network to another. Perkins [39] de�nes three

primary mechanisms by which a mobile detects migration: Pre�x Matching (PM),

Eager Cell Switching (ECS), and Lazy Cell Switching (LCS). The mechanisms are

based on the arrival of agent advertisements, and on the lifetimes of the advertise-

ments.

CHAPTER 2. BACKGROUND 10

Pre�x Matching

Pre�x Matching requires that mobility agents include a special pre�x-length ex-

tension in the advertisements. Using this extension, a mobile can compare the

network pre�xes between two advertisements: the advertisement from its current

agent, and the advertisement from a di�erent agent. If the pre�xes are identical,

the two foreign agents reside on the same subnet, and the mobile has not migrated.

If di�erent, the mobile can conclude that it is moving into a new network, and can

register the new agent.

The use of this strategy requires that adjacent foreign agents include the exten-

sion, and that care is taken if adjacent agents have the same pre�x-length in their

network addresses. Because of these and other problems [39], Pre�x Matching is

an undesirable choice for movement-detection.

Eager Cell Switching

Eager Cell Switching is the most aggressive strategy. It is based on the concept that

moving entities tend to follow straight-line trajectories, and that changes in trajec-

tory are gradual [39]. With this in mind, a mobile that moves into one network will

continue moving into that network and away from its previous network.

With ECS, a mobile registers an agent immediately when a new advertisement is

received. An advertisement is new if it comes from an agent that the mobile has not

seen before, or at least in the last three seconds, the recommended advertisement

lifetime.

CHAPTER 2. BACKGROUND 11

Lazy Cell Switching

Lazy Cell Switching is based on the lifetime of advertisements. A mobile using LCS

registers an agent only when the lifetime of its current agent expires. Therefore,

LCS is most suitable in situations where a mobile changes directions repeatedly

[39]. LCS assumes that a new advertisement does not necessarily imply that the

mobile will continue moving into the new network.

2.2.3 Registration

After a mobile decides to use the mobility services of a foreign agent, it must

communicate that information to its home agent. The home agent must update

the mobility binding and con�gure a tunnel to the new care-of-address. This process

is called registration.

As shown in Figure 2.1, registration involves the exchange of two messages:

registration requests and registration replies.

2. forwards requests

3. accepts or denies4. forwards reply from HA

1. requests registration

FAM HA
��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

Figure 2.1: Mobile IP registration

A registration-request message is a UDP datagram that originates at a mobile.

The message contains the address of the foreign agent, and the care-of-address the

mobile will use. If the foreign agent is willing to service the mobile, it forwards

the message to the home agent. If the home agent is also willing, it updates the

CHAPTER 2. BACKGROUND 12

mobility binding, con�gures a tunnel, and replies with a registration-reply message.

The reply message indicates whether registration was successful, and indicates how

long the home agent will service the mobile in that location. Upon receiving the

reply message, the foreign agent con�gures the end-point of the tunnel, and forwards

the message to the mobile. After the mobile processes the message, registration and

the hando� are complete.

2.2.4 Security

Users of mobile devices will be required to pay for Internet access, just as household

PC users now pay their local Internet Service Providers. Although the logistics of

servicing mobiles in foreign domains are not yet established formally, the IETF

Mobile IP working group [1] is developing a model to authenticate mobiles to for-

eign agents, authorize services to mobiles in foreign domains, and account for the

services used by mobiles. This is known as the Accounting, Authentication, and

Authorization services (AAA) [19]. The model introduces two new entities into

Mobile IP: the AAAF and the AAAH. The AAAF is a server in a foreign domain

responsible for handling AAA services on behalf of foreign agents in that domain.

The AAAH is a home domain server which authenticates and authorizes mobiles

to AAAFs.

Four secure relationships exist in the AAA model: between the foreign agent

and the AAAF, between the AAAF and the AAAH, between the AAAH and the

mobile, and between the AAAH and home agent. When a mobile node enters a

foreign domain, it must send its credentials to the AAAF via the foreign agent. The

CHAPTER 2. BACKGROUND 13

AAAF veri�es these credentials with the AAAH. If the mobile is authenticated,

the AAAF approves the foreign agent to service the mobile. Because a major

component of the latency involved in performing AAA services is the round-trip

time between the foreign network and the home network, it is proposed that these

services be integrated into the registration process through mobility extensions in

the registration messages [12].

Another important aspect of security is the securing of user payload. If a mobile

expects the same level of security while roaming as it does while at home, the home

agent and the foreign agent must secure the tunnel for the mobile. This approach,

not yet standardized, involves the use of IP security protocols (IPSec) [25] with an

infrastructure for managing security keys.

2.3 Transmission Control Protocol

The Transmission Control Protocol (TCP) o�ers reliable, connection-oriented, and

in-order delivery of data for application-layer programs. It is the predominant

transport layer protocol in the Internet.

TCP is implemented not only to deliver reliably, but also to deliver eÆciently.

Special mechanisms are used to control the rate of transmission and to discover the

limits, or capacity, of the network. TCP respects those limits, and throttles the

transmission rate when congestion occurs.

The rest of this section describes many details of TCP, and is organized into

three parts. First, we discuss the semantics of TCP and how data is delivered

reliably. Second, we discuss the congestion-control mechanisms of TCP, and how

CHAPTER 2. BACKGROUND 14

data is delivered eÆciently when congestion occurs. In the third part, we discuss

a special feature of TCP, called persist mode, that empowers a receiver to throttle

transmission at the sender.

2.3.1 Reliable Transport

For reliable transport, TCP uses a sliding window mechanism. The window, or

send window, slides over a linear representation of the data to transfer. The sender

transmits the data that the window covers, and waits for the receiver to acknowledge

that data. To keep track of transmissions and acknowledgments, TCP breaks the

data into segments, and numbers them sequentially. When an acknowledgment

arrives, the sender shifts the window right, usually by the number of segments that

were acknowledged, and new segments can then be transmitted. Typically, during

data transfer, a receiver acknowledges every other segment.

The size of the send window is equal to the socket-bu�er size at the receiver.

When a receiver sends an acknowledgment, or ACK, it advertises that size. At any

time, the receiver can shrink the send window by advertising a small bu�er.

To transmit data, TCP passes the segments to the network layer, or IP. IP

fragments the segments into sizes that are suitable for transmission across the

network. Those fragments, with TCP and IP headers, can be called either packets

or datagrams. The size of a packet is limited by the maximum transmission unit

(MTU) of the network.

TCP uses two mechanisms to guarantee reliability. The �rst is the duplicate

acknowledgment scheme, or fast-retransmit. When a segment arrives out of order,

CHAPTER 2. BACKGROUND 15

the receiver sends a duplicate acknowledgment for the last segment acknowledged.

When a sender receives three duplicates, it concludes that a segment was lost, and

it retransmits the oldest unacknowledged one.

However, if there are not enough segments in transit to generate three duplicate

acknowledgments, or if more than one segment in a window is lost, the sender must

rely on a di�erent mechanism to recover: retransmission timeouts.

When a segment is transmitted, the sender estimates how long it should wait

for an acknowledgment before concluding that the segment was lost. If an acknowl-

edgment is not received by that estimated time, a retransmission timeout occurs

and the segment is retransmitted. Because a retransmission timeout indicates that

multiple segments may have been lost, and because the sender cannot deduce which

segments were lost, a timeout re-sets all timers and begins retransmitting the entire

send window.

A sender must exercise caution, however, when estimating the time to wait for

an acknowledgement. If the time is too short, a retransmission may be unnecessary

and may add extra load to the network. If too long, on the other hand, the wait

can have a serious impact on eÆciency. To solve this dilemma, a sender calculates

a reasonable timeout value, or RTO, by sampling the round-trip times (RTT) of

the connection. For each send window, a sender calculates the time that elapses

between transmitting a particular segment and receiving the acknowledgement.

The RTO is then a running calculation of a multiple of a smoothed estimate of the

mean round-trip time [44], and of a measure of variance using a smoothed mean

di�erence of the samples [22]. To avoid spurious and unnecessary retransmissions,

CHAPTER 2. BACKGROUND 16

RFC 2988 [35] recommends that senders keep a one-second lower-bound on the

RTO.

If a retransmission from a retransmission timeout is lost, either the network is

very congested and needs relief, or a problem exists at the receiving host. Therefore,

consecutive timeouts are separated exponentially in time until an upper-bound of

64 seconds is reached.

2.3.2 Congestion Control

Congestion occurs when routers are overloaded and cannot keep up with incoming

traÆc. When this happens, routers are forced to drop datagrams. In the wireline

Internet, it is estimated that 99% of all TCP segment losses are due to conges-

tion [22].

Early versions of TCP used reliability schemes that were plagued by unnecessary

retransmissions, and that contributed heavily to network congestion [16]. As the

Internet grew in the 1980's, it was brought to a stand-still several times because of

a series of congestion collapses [31]. In response, a congestion-control scheme [4, 22]

was introduced in 1988. The scheme incorporated two important algorithms into

TCP: slow-start and congestion avoidance.

Slow-Start

At the start of a connection, a sender must determine the capacity of the network.

Although the sender can initially transmit a large burst of segments, few segments

will reach the receiver if the network is congested. Senders are discouraged from

doing this, however, because losses will result in the retransmission of the entire

CHAPTER 2. BACKGROUND 17

burst, and because transmitting a burst of segments when the network is limited is

equivalent to \ pouring gasoline on �re" [22].

In theory, the amount of data a sender can have in transit equals the bandwidth-

delay product of the network. If transmitting at the maximum rate, and a segment

is being placed on the network as another one leaves the network, TCP is said to

be operating at equilibrium. The goal of slow-start is to reach that equilibrium

point|quickly, but without an initial large burst of segments.

Slow-start introduces two new state variables: the congestion window and the

slow-start threshold. The congestion window represents the knowledge of network

capacity, and is used to control the transmission rate. The size of the send window

is modi�ed to become the minimum of the congestion-window size and the receive-

bu�er size. The slow-start threshold acts as a safe upper-bound on slow-start

to avoid a situation where an extremely large burst of segments is inadvertently

transmitted. When slow-start reaches that bound, congestion avoidance takes over.

Initially, a sender possesses little knowledge of capacity, and the congestion win-

dow is set to one segment-size. When that segment is acknowledged, the window

grows to two segment-sizes, and when those are acknowledged, to four segment-

sizes. The exponential growth continues until either the receive-bu�er size is reached

(in which case the sender continues transmitting at that rate), the slow-start thresh-

old is reached, or segment losses occur.

If segment losses occur, the sender can conclude that the capacity of the net-

work is somewhere between half the congestion-window size (or the size at the last

exponential increase), and the congestion-window size. Therefore, when a retrans-

CHAPTER 2. BACKGROUND 18

mission timeout eventually occurs, the sender sets the slow-start threshold to half

the congestion-window size, sets the congestion-window size to one segment-size,

and again invokes slow-start. This time, however, slow-start should end before

losses occur a second time.

After the slow-start threshold is reached, slow-start ends and congestion avoid-

ance begins.

Congestion Avoidance

Because congestion avoidance is invoked when the congestion window is near net-

work capacity, growth of the window becomes much slower. During congestion

avoidance, a sender increases the window linearly. In many TCP implementations,

the window grows by a segment size every other round-trip time, or every time a

full window of segments is acknowledged. When the window reaches network ca-

pacity, a growth should cause only one segment to be lost, and fast-retransmit can

recover that loss quickly. When fast-retransmit is invoked, the slow-start threshold

is again adjusted, but the congestion window drops to only half its current size. In

this way, the long wait for a retransmission timeout is avoided.

2.3.3 Persist Mode

A receiver may want to pause a connection for a variety of reasons. An application-

layer program may stop taking TCP data, for example, or the machine of the

receiver may be slow or overloaded.

A receiver can stop a sender from transmitting by advertising progressively

smaller receive-bu�er sizes. The advertisement of a bu�er of size zero is called a

CHAPTER 2. BACKGROUND 19

zero-window-size acknowledgement, or ZWSA.

Figure 2.2 shows how a receiver closes the send window. In the example, the

window size initially is equal to the receive-bu�er size, or 5 segments, and segments

14 through 18 are transmitted. During normal operation, the acknowledgement for

segment 14 advertises a bu�er of 5 segments, and the left and right edges of the send

window shift right by one segment-size. That would then trigger the transmission

of segment 19. But here, the sender advertises a bu�er of only 4 segments. As a

result, only the left edge of the window is adjusted, and the sender is prevented

from transmitting segment 19. The acknowledgement for segment 16 advertises an

even smaller bu�er, and for segment 18, a bu�er of size zero.

13 14 15 16 17 18 19

WS = 2

initial window size = 5

WS = 4

WS = 0

2012

WS = 0
18

17

16

15

14

segments from sender

receive buffer

SENDER RECEIVER

WS = 4

WS = 2

ACK 18

ACK 16

ACK 14

ACK 18

ACK 16

ACK 14

Figure 2.2: Sending a zero-window-size acknowledgement

When a sender receives a zero-window-size acknowledgement, it enters a state

called persist mode. In persist mode, a sender cannot transmit any data and waits

for an acknowledgement that re-opens the send window. Because acknowledge-

CHAPTER 2. BACKGROUND 20

ments are not delivered reliably, the sender periodically transmits window probes

to generate them [10]. Window probes usually contain one byte of data, at most. a

receiver can send a zero-window-size acknowledgement prematurely, although not

recommended [10, 44], e�ectively invalidating the transmission of in-transit seg-

ments. Because this can confuse a sender, TCP implementations are required to

expect that incorrectly-implemented receivers can send premature zero-window-size

acknowledgements, and are required to recover if a zero-window-size acknowledge-

ment is sent [10, 44]. In some implementations, a premature zero-bu�er advertise-

ment is simply ignored by the sender.

An important feature of persist mode, in many implementations, is that all

acknowledgement timers are frozen. Therefore, while in persist mode, a sender does

not incur retransmission timeouts, and the congestion window is not a�ected. When

an acknowledgement re-opens the send window, the sender resumes transmitting

at the rate existing prior to the zero-window-size acknowledgement.

Chapter 5 discusses persist mode, and premature zero-window-size acknowl-

edgements, in more detail.

2.4 Network Tools for Performance Analysis

Many tools were used in this thesis to analyze transport and network layer perfor-

mance. A few of those tools are presented in this section.

Net�lter

Net�lter [9] is a framework for packet manipulation that is built into Linux 2.4

CHAPTER 2. BACKGROUND 21

kernels.

The framework de�nes hooks at various points in the IP protocol stack. Kernel

modules can register at the hooks and intercept packets at the di�erent stages of

stack traversal. Packets can either originate at the intercepting machine, be des-

tined for the intercepting machine, or be passing through the intercepting machine

(in the case of a router or �rewall).

The user-space tool iptables|a replacement for the Linux ipfwadm and ipchains

�rewall tools|can add and delete rules that a�ect the types of packets for which

the kernel listens. The rules also de�ne the fate of a packet that is intercepted. A

packet can be dropped, usually for security reasons, re-injected back into traver-

sal, or queued for user space. In the latter case, the kernel passes the packet to a

listening user-space process via a Netlink socket. In user space, before re-injecting

the packet, the process can examine and manipulate its contents.

There are many reasons for intercepting and manipulating packets. Packet

manipulation, for example, can be used to control the uplink traÆc rate on a busy

wireless link [27]. An intercepting machine can lie in the path between the wireless

link and the wired network. Using iptables, the kernel on that machine can

be told to listen for traÆc between two hosts: a mobile and a stationary. When

intercepting the traÆc, the advertised bu�er size in the acknowledgements can be

lowered.

In this thesis, we used Net�lter mostly to delay traÆc and to emulate long delay

paths between two networks that are otherwise within milliseconds of each other.

CHAPTER 2. BACKGROUND 22

Test-TCP

Test-TCP [30], or ttcp, is a user-space utility for analyzing network-layer perfor-

mance. Like ftp, ttcp uses TCP to transfer data between two hosts. Unlike ftp,

however, no hard-disk accesses are needed|all data is taken from main memory.

As a result, ttcp is more precise when analyzing network-layer performance.

We used ttcp mostly to generate TCP workload. The utility provides a simple

user interface, and the source code can be modi�ed easily to change data sizes and

bu�er sizes.

Tcpdump, tcptrace, and xplot

Tcpdump [23] is a widely used packet-capture tool for watching traÆc on a link-layer

interface. The interface driver passes a copy of packets to tcpdump. If a packet

matches the criteria given by a user, via command-line parameters, the packet's

header information is displayed. An example execution is as follows:

...

[bear] tcpdump -i eth0 proto TCP and host belle.

tcpdump: listening on eth0

18:29:11.592558 bear.53158 > belle.ftp: P 4627:4667(40) ack 2135 win 27800 (DF)

18:29:11.592984 belle.ftp > bear.53158: P 1:41(40) ack 40 win 9648 (DF)

18:29:11.593064 bear.53158 > belle.ftp: . ack 41 win 27800 (DF)

18:29:11.593276 belle.ftp > bear.53158: P 41:129(88) ack 40 win 9648 (DF)

18:29:11.593338 bear.53158 > belle.ftp: . ack 129 win 27800 (DF)

18:29:11.593494 belle.ftp > bear.53158: P 129:185(56) ack 40 win 9648 (DF)

18:29:11.593548 beard.53158 > belle.ftp: . ack 185 win 27800 (DF)

...

In this example, tcpdump, executed on host bear, is listening on interface eth0,

and is watching TCP traÆc that has a source or destination IP address of belle. The

output includes sequence numbers, acknowledgement numbers, timestamps, and

advertised bu�er sizes. This example is simple, and tcpdump accepts a multitude of

CHAPTER 2. BACKGROUND 23

�ltering arguments to watch di�erent kinds of traÆc, and to produce more verbose

output.

Tcpdump can be used to obtain critical statistics about TCP connections. It can

be used, for example, to monitor round-trip times, to watch retransmissions, and

to observe the size of the congestion window.

Written by Shaun Ostermann at Ohio University, tcptrace [33] is a utility

that can parse tcpdump output and collect those critical statistics. The utility

provides features, for example, to produce graphs that plot, across time, segments

transmitted, segments acknowledged, and round-trip time estimates. The graphs

are viewed in xplot [48].

Figures 2.3 and 2.4 show examples of these graphs. In the �rst �gure, the graph

shows the transmitted and acknowledged segments at the sender. The x-axis repre-

sents time, and the y-axis represents the sequence number space of the connection.

The arrows and diamonds represent the times that particular segments were trans-

mitted. The line below tracks the acknowledgements, and the line above tracks

the receive-bu�er size. The letter \R", seen in the middle of the plot, indicates a

retransmission, and the number \3" indicates a third duplicate acknowledgement.

Figure 2.4 is another graph of the same connection. The y-axis represents the

number of outstanding bytes, and it approximates, in bytes, the congestion-window

size. The initial fast increase near the beginning of the plot is the result of slow-

start; the sudden drop near the middle is the result of the retransmission; and the

gradual rise after that is the result of congestion avoidance.

CHAPTER 2. BACKGROUND 24

998750000

998700000

998650000

 04:15:20 04:15:15 04:15:10

sequence number

time

bear:1083 ==> belle:5001 (time sequence graph)
.

.

.

.

.

.

.

.

3R
.

.

.

.

.

.

.

.

.

.

.

N

Figure 2.3: Tcptrace time-sequence graph

15000

10000

5000

0
 04:15:20 04:15:15 04:15:10

Outstanding Data (bytes)

time

bear:1083 ==> belle:5001 (outstanding data)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

..

Figure 2.4: Tcptrace outstanding-data graph

Chapter 3

TCP Performance with Mobile

Receivers

3.1 Overview

As we mentioned earlier, TCP is tailored for wireline networks. When congestion

occurs and packets are dropped, a sender stops transmitting, waits for a retransmis-

sion timeout, and invokes slow-start. Although congestion degrades throughput,

the reactions of a sender prevent further and more serious degradations because

they allow the network to recover. If senders did not implement congestion control,

network queues would not empty and there would be congestion collapses [31].

Clearly, performance is a�ected negatively if congestion control is invoked when

there is no congestion. The reactions of a sender degrade performance because the

transmission rate is throttled well below the capacity of the network. This is the

case for receivers in mobile environments. A temporary disconnection caused by

25

CHAPTER 3. TCP PERFORMANCE WITH MOBILE RECEIVERS 26

a hando� between two base stations can cause packet losses, and those losses are

interpreted as being congestion-induced.

Previous research indicates two primary reasons for performance degradations

with mobile receivers [13, 18, 28]. First, there is the pause in communication

caused by waiting for a retransmission timeout. Figure 3.1 shows a trace, generated

at the sender, of the acknowledged segments during a connection with a mobile

receiver. In the �gure, the hando� causes packet losses, forcing the sender to wait

for a retransmission timeout. However, the timeout does not occur until long after

the short hando� completes. The time between the hando� completing and the

retransmission timeout occurring is unnecessary, and many round-trip times elapse

during it.

Although the TCP speci�cation states how retransmission timeouts should be

implemented, the length of time a connection can lie idle unnecessarily can be

much worse, or better, than we might expect. Incorrect implementations, program-

ming errors, and deliberate violations of the speci�cation can alter the expected

behavior of a sender [34]. One implementation, for example, might retransmit very

aggressively, resulting in short idle times, while another might have a high lower-

bound on the time to wait for a retransmission timeout, resulting in long idle times.

These behaviors, and the behavior we can expect in general, can be determined by

experimenting with di�erent TCP implementations.

The second primary reason for TCP performance degradations in mobile envi-

ronments is the incorrect invocation of congestion control. The transmission rate

is throttled by slow-start and congestion avoidance, and recovering the old trans-

CHAPTER 3. TCP PERFORMANCE WITH MOBILE RECEIVERS 27

congestion control
handoff
mobile

retransmission timeout

Figure 3.1: A hando� triggering a retransmission timeout and congestion control

mission rate, or bringing the rate to its maximum, is a slow process. During that

process, many segments that could be delivered successfully by the network are not

transmitted and, as a result, many round-trip times are lost unnecessarily. Fig-

ure 3.1 shows how the transmission rate is very low after a retransmission timeout.

The extent to which congestion control impacts a connection depends largely

on the maximum size possible for the congestion window. If the maximum size

is large, congestion control can throttle the sender unnecessarily for a very long

CHAPTER 3. TCP PERFORMANCE WITH MOBILE RECEIVERS 28

time. If small, on the other hand, the congestion window reaches its maximum size

quickly and performance degradations should be less noticeable.

The length and impact of congestion control also depends on the size of the

congestion window when a retransmission timeout occurs. If the window is small

when a retransmission timeout occurs, the slow-start threshold can be set to a very

small value. In such a case, an extremely long time can elapse before the congestion

window reaches its maximum size.

The purpose of this chapter is to determine, through experiments and simula-

tions, the degradations in performance we can expect from retransmission timeouts

and congestion control. Previous research is extended by looking at the behavior

of di�erent TCP implementations, by simulating behavior with di�erent maximum

congestion-window sizes, and by comparing results to an implementation that does

not invoke congestion control. The next section examines retransmission timeouts,

and Section 3.3 examines congestion control.

3.2 The E�ects of Retransmission Timeouts

Several factors combine to determine how long a sender waits before incurring a

retransmission timeout. A dominant factor is the RTO calculation. As discussed

in Section 2.3, the RTO is calculated from round-trip time samples and from the

variance in those samples; it is the sender's estimation of the time to wait for an

acknowledgement before concluding a particular segment was lost. If the round-trip

time is large, the RTO is also large. If the round-trip time is small, the RTO is

limited to the sender's RTO lower-bound.

CHAPTER 3. TCP PERFORMANCE WITH MOBILE RECEIVERS 29

The extent to which the RTO corresponds to the actual time of a retransmission

timeout depends on the heartbeat timer of the sender's TCP implementation. This

timer periodically triggers the kernel interrupts that check for RTO expirations on

unacknowledged segments. If the timer granularity is high, heartbeats are frequent

and timeouts occur close to the set times. However, if the granularity is low,

timeouts may occur hundreds of milliseconds from the set times.

Figure 3.2 illustrates the consequence of an implementation that uses a low-

granularity timer. In this example, the granularity is 500 msecs. The RTO is 1100

msecs, and the timeout is set at time 150 to occur at time 1250. However, the next

heartbeat after time 1250 occurs at time 1500, which is 250 msecs longer than the

set timeout.

0 500 1000 1500 2000

RTO set to
expire at
time 1250

1250

heartbeats

TIME (in msecs)

timeout occurs

Figure 3.2: The heartbeat timer of TCP

TCP implementations are not allowed to set timeouts of less than 2 heart-

beats [10]. If an implementation used a 1-heartbeat timeout, the timeout could

inadvertently occur within a few milliseconds of when it was set.

The number of successive timeouts also inuences the time to wait for a retrans-

mission timeout. The RTO is doubled with each retransmission timeout, and many

successive timeouts can result in very long pauses.

CHAPTER 3. TCP PERFORMANCE WITH MOBILE RECEIVERS 30

The above factors can lead to long and unnecessary communication pauses be-

fore hando�-a�ected TCP connections incur retransmission timeouts. Although

long pauses are bene�cial for congested networks, they can leave connections on

mobiles inactive unnecessarily. A short pause, on the other hand, can cause a

connection to re-start more quickly, but short pauses are discouraged because they

introduce the possibility of unnecessary retransmissions, and because those retrans-

missions can add extra load to an already congested network.

To determine the general behavior of TCP implementations, and to determine

if pauses are long and can a�ect connections recovering from hando�s negatively,

we looked at the retransmission-timeout behavior of four current implementations:

FreeBSD 2.7, SunOS 5.6, AIX 4.3, and Linux 2.2. Those implementations were

chosen because they are used widely in research and because they were readily

available to us.

To construct real Internet scenarios, we analyzed implementation behavior with

di�erent connection round-trip times: 60, 100, 200, 500, and 1000 milliseconds.

Those times were chosen because the inherent characteristics of the Internet cause

round-trip times to uctuate depending on travel distance, time of day, and conges-

tion levels. Using the network utility ping, we found that on-campus RTTs were

within 15msecs, that continental RTTs largely fell in the range between 50 msecs

and 200 msecs, and that oceanic journeys showed RTTs of up to 1000 msecs. As-

suming that mobiles are constrained to the low-bandwidth characteristic of wireless

links, and are subject to the latency involved in mobility mechanisms (IP tunneling

for example), the round-trip time between a mobile and a server is at least tens of

CHAPTER 3. TCP PERFORMANCE WITH MOBILE RECEIVERS 31

milliseconds.

The rest of this section describes those experiments and the results.

3.2.1 Experiments

We used the network con�guration shown in Figure 3.3 and Table 3.1. All of the

servers were, at most, two on-campus IP hops from the receiver, and the base RTT

was 2 msecs. The delayer host was used to delay segments and acknowledgements

by an equal amount in order to reach the targeted round-trip times.

Servers

Delayer Receiver
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

Figure 3.3: Network for analyzing retransmission timeouts

Host OS Architecture Purpose

Linux Server Linux 2.2 Intel i686 TCP sender

Sun Server SunOS 5.6 SPARC sun4u TCP sender

FreeBSD Server FreeBSD 2.2.7 Intel i386 TCP sender

AIX Server AIX 4.3 IBM RS6000 TCP sender

Delayer Linux 2.4 Intel i686 delays TCP traÆc between

server and receiver

Receiver Linux 2.2 Intel i686 TCP receiver

Table 3.1: Hosts used in the retransmission-timeout experiments

Each experiment used ttcp to generate the workload between the server and the

receiver. When the connection sustained a lifetime long enough to ensure that the

CHAPTER 3. TCP PERFORMANCE WITH MOBILE RECEIVERS 32

RTO had stabilized to reect the round-trip time, the IP interface on the receiver

was disabled. This resulted in serial timeouts at the sender. We examined both

the times of initial timeouts, corresponding to the original RTO and calculated

from the time a retransmitted segment was originally transmitted, and the times

of second timeouts, corresponding to the exponential back-o� and calculated from

the time of the initial timeout.

In all, one hundred connections were traced: �ve for each combination of round-

trip time and implementation. The results for each combination were averaged. The

traces were generated using tcpdump, and the receive-bu�er size was 64KB.

3.2.2 Results

The �rst and second timeouts are shown in Tables 3.2, 3.3, 3.4, and 3.5, for

Linux 2.2, AIX 4.3, FreeBSD 2.7, and SunOS 5.6 respectively.

RTT (msecs) First Timeout (msecs) Second Timeout (msecs)

60 193 400

100 196 400

200 312 640

500 680 1380

1000 1340 2680

Table 3.2: Linux 2.2 retransmission timeouts

Of the four implementations, Linux exhibits the most aggressive behavior. Linux 2.2

implementations have a lower-bound of 200 msecs on the RTO and have a heartbeat-

timer granularity of 10 msecs. Because of these, and because Linux does not con-

form to the speci�cation of the RTO calculation, the initial timeouts for small

round-trip time connections occur after 200 msecs. Even with a 500-msec RTT,

CHAPTER 3. TCP PERFORMANCE WITH MOBILE RECEIVERS 33

RTT (msecs) First Timeout (msecs) Second Timeout (msecs)

60 1334 1505

100 1780 1602

200 1860 2000

500 2422 2000

1000 2410 2500

Table 3.3: AIX 4.3 retransmission timeouts

RTT (msecs) First Timeout (msecs) Second Timeout (msecs)

60 1126 2000

100 1621 3000

200 1487 3000

500 1843 2000

1000 2343 2000

Table 3.4: FreeBSD 2.2.7 retransmission timeouts

RTT (msecs) First Timeout (msecs) Second Timeout (msecs)

60 394 799

100 389 800

200 403 840

500 764 1430

1000 1286 2580

Table 3.5: SunOS 5.6 retransmission timeouts

CHAPTER 3. TCP PERFORMANCE WITH MOBILE RECEIVERS 34

the initial timeouts occur after only 680 msecs. Successive timeouts with Linux

are coupled closely to the doubling of the RTO. The SunOS implementation also

exhibits aggressive behavior, and appears to have a timer granularity of 200 msecs.

The AIX implementation, on the other hand, has the most conservative be-

havior. With a small round-trip time connection, initial timeouts occur after 1.3

seconds, growing to 2.4 seconds with larger round-trip time connections. AIX's

timer granularity is 500 msecs.

FreeBSD performs like AIX, but we noticed strange behavior with second time-

outs. With 100 and 200 msec RTTs, the second timeouts occur three seconds after

the �rst timeout. However, with the larger round-trip times, the second timeouts

occur only two seconds later. We did not investigate the reasons for this.

3.2.3 Discussion

These experiments show that timeout behavior is very implementation-dependent,

and is highly variable. Depending on the sender, a connection with a small round-

trip time can be re-started very quickly, or very slowly, by a retransmission time-

out. The behavior of a sender can a�ect the performance on mobiles di�erently.

Linux's \broken" retransmission behavior can cause problems for congested network

queues [34], but can bene�t connections recovering from hando�s: if the hando�

time is short, the connection will re-start very quickly. Other implementations,

however, can leave connections recovering from hando�s idle unacceptably long. If

the amount of data to transmit is small, a long wait can impact the overall transfer

rate greatly.

CHAPTER 3. TCP PERFORMANCE WITH MOBILE RECEIVERS 35

Successive timeouts can cause extremely long communication pauses. If losses

occur at an untimely instant, and if the hando� time is long enough to just miss the

arrival of the �rst retransmission, up to three seconds can elapse before the next

retransmission timeout occurs.

3.3 The E�ects of Congestion Control

If a hando� causes packet losses, the sender will eventually incur a retransmission

timeout. After the timeout, slow-start and congestion avoidance throttle the rate

for a long time at possibly well below the capacity of the network.

The main reason congestion control can last unacceptably long for connections

recovering from hando�s is because of the congestion-avoidance phase. Slow-start

is fast, and it can grow the transmission rate rapidly, but congestion avoidance

grows the congestion window very slowly. In many implementations, that growth

is only one segment-size every other round-trip time. In some cases, we found that

AIX increases the congestion-window size approximately once every four round-trip

times during congestion avoidance.

The length of congestion avoidance, in comparison to the length of slow-start,

depends on the slow-start threshold (ssthresh). The threshold determines when

slow-start ends and congestion avoidance begins, and it is set to half the congestion-

window size when a retransmission timeout occurs. Therefore, even if the trans-

mission rate is near its peak when a hando� occurs, slow-start will recover only

half that rate before congestion avoidance is invoked. If the hando� occurs when

a connection is in the initial slow-start phase, the threshold can be set to a very

CHAPTER 3. TCP PERFORMANCE WITH MOBILE RECEIVERS 36

small value. In such a case, congestion avoidance is invoked early in the recovery

phase. This becomes a serious problem for a sender having a mistaken perception

of congestion.

If the hando� and retransmission timeout occur when the congestion window

is at its maximum size possible, the extent to which congestion control a�ects

performance depends on what that size is. If the maximum size possible is large, a

long time can elapse before the sender is again transmitting at the optimal rate, and

many segments that should have been transmitted are not. If the size is small, on

the other hand, the congestion-window size is recovered quickly, and performance

degradations are less signi�cant.

The rest of this section quanti�es the degradations in performance that are

caused by the incorrect invocation of congestion control. First, through two exper-

iments, we show the e�ects of slow-start and congestion avoidance with a receive-

bu�er size of 13 segments. In one experiment, we emulate a hando� when the

sender reaches the maximum transmission rate. In the other, a hando� is emulated

when the sender is in the initial slow-start phase of the connection. We look at

how the transmission rate is a�ected, and we make comparisons to a mobile-aware

sender.

Second, we simulate congestion control at a sender that uses di�erent receive-

bu�er sizes. We look at the number of round-trip times that an incorrect invocation

of congestion control adds to the lifetime of a connection, and we compare those

results to simulations of a sender that does not invoke congestion avoidance, and

to simulations of a sender that does not invoke any congestion-control mechanisms.

CHAPTER 3. TCP PERFORMANCE WITH MOBILE RECEIVERS 37

In the simulations, we assume that the sender's transmission rate is limited by the

receive-bu�er size, and not by the capacity of the network.

3.3.1 An Analysis with Experiments

The network con�guration we used for the two experiments is shown in Figure 3.4.

Both sender and receiver ran Linux 2.2, and a host was placed between them to de-

lay traÆc and achieve a one-second round-trip time. A hando� was emulated at the

delayer by dropping an entire window of segments. In the �rst experiment, a win-

dow was dropped after the transmission rate peaked, and in the second, the second

window of segments during slow-start was dropped. The workload was generated

using ttcp, the receive-bu�er size was approximately 18KB (or 13 segments), and

the initial slow-start threshold was greater than the receive-bu�er size.

Sender Delayer

Delayed and dropped TCP traffic

Receiver
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

Figure 3.4: Network for analyzing congestion control

Figure 3.5 and Table 3.6 show the events of the �rst experiment. The connec-

tion quickly reaches the maximum transmission rate at time 31.95. The window of

segments transmitted nine seconds later is dropped, emulating the hando�. After

a pause, a retransmission timeout occurs at time 41.36 that re-starts the connec-

tion, and that reduces the slow-start threshold to approximately 9KB. Because of

CHAPTER 3. TCP PERFORMANCE WITH MOBILE RECEIVERS 38

this, slow-start lasts only three round-trip-times and congestion-avoidance lasts 12

round-trip-times. The congestion window recovers its maximum size at time 56.35.

During the 15 round-trip-times after the retransmission timeout, 120 segments are

transmitted and acknowledged|75 less than what would have been transmitted

had no losses happened. Recovering that di�erence adds 5.76 (75 divided by 13)

round-trip times to the lifetime of the connection.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

30 35 40 45 50 55 60

C
on

ge
st

io
n

W
in

do
w

 (
by

te
s)

Time (secs)

timeout
retransmission slow−start

congestion avoidance

congestion window
maximum again

slow−start

disconnection

15 seconds

16.5 seconds

Figure 3.5: Hando� emulation when transmission rate is maximum

The events of the second experiment are shown in Figure 3.6 and Table 3.7.

The window of segments in the second round-trip-time is dropped, emulating the

hando�. Although it is recommended that initial RTO values be 3 seconds [35],

this sender waits an unusually long 6 seconds before incurring a retransmission

CHAPTER 3. TCP PERFORMANCE WITH MOBILE RECEIVERS 39

Time CWIN Event

(secs) (bytes)

28.95 2896 slow-start

31.95 18824 slow-start ends and transmission rate is maximum

39.95 18824 window of segments is dropped

41.36 1448 retransmission timeout and slow-start

42.35 2896 ACK for the retransmission

44.35 8688 slow-start ends and congestion avoidance begins

56.35 15928 congestion avoidance ends

Table 3.6: Sequence of events corresponding to Figure 3.5

timeout. Because the congestion window is small when the timeout occurs, the

slow-start threshold is reduced to only 3KB. As a result, slow-start ends after only

one round-trip-time, and 17 round-trip-times elapse in congestion avoidance before

the transmission rate reaches its maximum. During slow-start and congestion avoid-

ance, only 124 segments are transmitted and acknowledged, adding 9.46 round-trip

times to the connection's lifetime. Note that the dip shown in the congestion win-

dow at time 12.21 does not indicate that the window shrank, but rather illustrates

an implementation detail of Linux which prevents a sender in these circumstances

from transmitting new data until all segment losses are recovered.

Time CWIN Event

(secs) (bytes)

03.72 2896 slow-start

04.72 5792 window of segments is dropped

10.21 1448 retransmission timeout and slow-start

11.21 2896 ACK for retransmission and congestion avoidance begins

29.30 18824 congestion avoidance ends

Table 3.7: Sequence of events corresponding to Figure 3.6

CHAPTER 3. TCP PERFORMANCE WITH MOBILE RECEIVERS 40

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 5 10 15 20 25 30 35

C
on

ge
st

io
n

W
in

do
w

 (
by

te
s)

Time (secs)

slow−start

disconnection

timeout
retransmission

congestion avoidance

24.5 seconds

19 seconds

congestion window
maximum

Figure 3.6: Hando� emulation during slow-start

Even with a small receive-window size of 18KB, these experiments show that

congestion control can continue long after a retransmission timeout, and show that

round-trip times are unnecessarily added to the lifetime of a connection. If senders

are somehow implemented to recognize movement-induced losses, however, slow-

start and congestion avoidance can be avoided and new algorithms can possibly

take their places. One solution is to extend the slow-start phase to bypass the

congestion-avoidance phase [28]. In such a solution, the recovery process would

be quick and degradations in performance would be less noticeable. Caution must

be exercised, however, because adjacent wireless cells can have extremely di�erent

network characteristics.

CHAPTER 3. TCP PERFORMANCE WITH MOBILE RECEIVERS 41

If the sender in our experiments had bypassed congestion avoidance with slow-

start, the results would have been much di�erent. In the �rst experiment, 158

segments instead of 120 would have been transmitted and acknowledged during

the 15 round-trip-times of recovery|a 32% increase in the transmission rate. In

the second experiment, 210 segments instead of 124 segments would have been

acknowledged during recovery|a 70% increase in the transmission rate.

Another solution to quick recovery from hando�s is to resume with the old rate of

transmission once a retransmission timeout re-starts the connection. This solution

bypasses both slow-start and congestion avoidance. A disadvantage, however, is

that a closely-spaced burst of segments is forced into a network that could have

become congested during the hando� [21].

3.3.2 An Analysis with Simulations

In order to simulate properly a sender's behavior during congestion control, and in

order to estimate, given the receive-bu�er size, the number of round-trip times that

an incorrect invocation of congestion control adds to the lifetime of a connection,

a few assumptions must be made:

� a retransmission timeout always occurs when the congestion window is max-

imum, or equal to the receive-bu�er size;

� the slow-start threshold is always half the receive-bu�er size; and

� during congestion avoidance, the sender increases the congestion window by

one segment-size every other round-trip time.

CHAPTER 3. TCP PERFORMANCE WITH MOBILE RECEIVERS 42

With those assumptions in mind, we estimate the added round-trip times by calcu-

lating the number of segments transmitted during slow-start and congestion avoid-

ance, subtracting that sum from the number of segments that could have been

transmitted in the same time frame, and dividing the di�erence by the receive-

bu�er size.

To begin, we calculate the number of segments transmitted during congestion

control. Because slow-start begins at one segment-size, and because the growth

is exponential, the sum of segments transmitted during slow-start is simply the

addition of powers of 2. To calculate the number of segments transmitted during

congestion avoidance, we add all of the segments transmitted between the slow-

start threshold and the receive-bu�er size. Therefore, the number of segments

transmitted during congestion control can be expressed as

n segs cc =

dlog
2
ssthresheX

i=0

2i +
X

i=ssthresh;i<rsize

2i

where rsize is the receive-bu�er size, and ssthresh is approximately half the

receive-bu�er size, or

ssthresh = brsize=2c

To calculate the number of segments that would have been transmitted if no

losses occurred, we must �rst calculate the number of round-trip times that elapse

during congestion control. In slow-start, the number of round-trip times is equal

to the number of exponential increases that occur in the congestion window, and

in congestion avoidance, the number of round-trip times is equal to the slow-start

CHAPTER 3. TCP PERFORMANCE WITH MOBILE RECEIVERS 43

threshold multiplied by two, or simply the receive-bu�er size. Therefore, the num-

ber of round-trip times in congestion control can be expressed as

nrtts = dlog2 ssthreshe + rsize

and the total number of segments that could have been transmitted is then nrtts �

rsize. Therefore, the number of added round-trip times because of an incorrect

invocation of congestion control is calculated by subtracting n segs cc from nrtts�

rsize, and dividing the result by the receive-bu�er size:

added rtts = (nrtts � rsize� n segs cc)=rsize

With minor modi�cations to above equations, we can also calculate the added

round-trip times when congestion avoidance is bypassed, and when both slow-start

and congestion avoidance are bypassed. In the latter scenario, sub-optimal per-

formance occurs only during the initial round-trip time in which the only segment

transmitted is the one from the retransmission timeout.

Figure 3.7 shows the results of simulations with receive-bu�er sizes of up to

256KB. As the bu�er size grows, the number of round-trip times that are lost

because of slow-start and congestion avoidance increases quickly. With a bu�er

size of 256KB, an incorrect invocation of congestion control will add over 70 round-

trip times to the lifetime of a connection. Even with a modest bu�er size of 64KB,

over 20 round-trip times are lost. In the graph, the abrupt increases after bu�ers

sizes that are powers of 2 are due to an extra round-trip time being added to

CHAPTER 3. TCP PERFORMANCE WITH MOBILE RECEIVERS 44

slow-start.

0

10

20

30

40

50

60

70

80

0 50 100 150 200 250

l
o
s
t

r
o
u
n
d
-
t
r
i
p

t
i
m
e
s

receive-buffer size (KB)

normal congestion control
no congestion avoidance

no congestion control

Figure 3.7: The e�ects of congestion control

When congestion avoidance is bypassed by slow-start, the number of lost round-

trip times decreases dramatically. The di�erences are a clear indication that conges-

tion avoidance, and the re-evaluation of the slow-start threshold, a�ect performance

very negatively. When the bu�er size is 64KB, only 5 round-trip times are lost,

and when the size is 256KB, only 7 round-trip times are lost. Those represent

improvements of 75% and 90% respectively over a sender that invokes congestion

avoidance.

When no congestion-control mechanisms are invoked after a retransmission

timeout, the decrease in performance is negligible and only adds one round-trip

CHAPTER 3. TCP PERFORMANCE WITH MOBILE RECEIVERS 45

time at most to a connection's lifetime.

These simulations not only show the dramatic impact on performance when

congestion control is invoked incorrectly, but show that the performance of a TCP

connection can be signi�cantly improved by not reducing the slow-start thresh-

old when losses are movement-induced. If senders are implemented to recognize

movement-induced losses, special mechanisms can be used for re-evaluating the

threshold, and the threshold need not be reduced by the full amount. This is

discussed further in Chapter 6.

Another point worth mentioning is that previous research has shown typical web

transfers to be between 4KB and 64KB [5, 6], and that the full e�ects of congestion

control are realized only if there is a large amount of data to transfer. Therefore, a

typical web transfer that is a�ected by a hando� will end soon after a retransmission

timeout and early into the congestion-control phase, and the e�ects of congestion

control should be negligible. The e�ects should be noticeable, however, during the

transfer of larger �les, such as high-resolution images or multimedia applications.

3.4 Chapter Summary

This chapter has shown that TCP connections can be a�ected very negatively for

a long time after a hando� completes. Retransmission timeouts can cause long

periods of unnecessary inactivity, and congestion control can throttle the transmis-

sion rate for long after a retransmission timeout occurs. One result is very clear:

unnecessary pauses and incorrect invocations of congestion control can add many

round-trip times to the lifetime of a connection. In the next chapter we look at

CHAPTER 3. TCP PERFORMANCE WITH MOBILE RECEIVERS 46

how connections are a�ected by Mobile-IP hando�s.

Chapter 4

TCP Performance with Mobile IP

4.1 Overview

If a TCP connection is a�ected by a hando�, the sender will su�er a long period of

time where the transmission rate is e�ectively halted. During the actual disconnec-

tion, or hando�, any segments that are transmitted will not reach the mobile. After

the hando� completes, transmission is idle until the sender incurs a retransmission

timeout.

The purpose of this chapter is to quantify how long Mobile IP hando�s leave

connections halted, and to examine how that impacts overall transfer rates.

Mobile IP hando�s are inherently long for three reasons. First, mobility agents

send agent advertisements very infrequently. This is to avoid overloading wire-

less links unnecessarily; base stations send advertisements more frequently because

link-layer, or micro, hando�s occur more often [46]. Second, there can be long

propagation delays between the home network and the foreign network. Those de-

47

CHAPTER 4. TCP PERFORMANCE WITH MOBILE IP 48

lays can add a considerable amount of time to the registration process. The third

reason why Mobile IP hando�s are long is because of the registration process itself.

The mobile must be authenticated, tunnels must be con�gured, and routes must

be updated.

The unnecessary wait for a retransmission timeout can also be very long. A

short wait will often be the result of the coincidental occurrence of a retransmission

timeout soon after a hando� completes. However, depending on the RTO calcula-

tion and on the sender implementation, the wait can be extended signi�cantly.

The rest of this chapter is organized as follows. In the next section, we show how

long Mobile IP hando�s are for the best-case, worst-case, and average-case scenario.

In Section 4.3, we describe experiments we ran with Mobile IP. The experiments

quantify how long a connection can lie idle unnecessarily after a hando�. To gain a

strong understanding of the e�ects of hando�s under varying circumstances, we var-

ied round-trip times and sender implementations in the experiments. Sections 4.4

and 4.5 discuss the results and the overall impact of hando�s. The chapter ends

with a discussion of related work, and a summary.

4.2 Hando� Times

A hando� in Mobile IP begins when the mobile migrates out of one network and into

another, and ends when registration is complete at the mobile. For our purposes,

however, we consider the hando� to be complete when the home agent transmits the

registration-reply message. This indicates that the home agent is ready to forward

datagrams to the new location, and the forwarded datagrams will reach the mobile

CHAPTER 4. TCP PERFORMANCE WITH MOBILE IP 49

as long as registration is successful at the other end.

In most cases, the dominant factor in the hando� time is how long it takes for

the mobile to realize that it has migrated, and to realize that it should register a

new care-of-address. As discussed in Section 2.2, one of three movement-detection

mechanisms is used to detect migration and to discover a new foreign agent. In

this section, we look at the hando� times of Eager Cell Switching and Lazy Cell

Switching. The Pre�x Matching strategy is known to have very similar performance

to that of LCS [18].

For each movement-detection mechanism, we consider three scenarios: the best-

case, worst-case, and average-case hando� time. Again, a hando� starts when the

mobile �rst migrates, and ends when the home agent sends the registration reply.

To simplify the results, the following assumptions are made:

� L = the delay for link-layer mobility;

� T = the one-way transit time from the mobile to the home agent;

� C = the software processing time of the request messages and the latency

involved in performing AAA services and tunnel setup; and

� agent advertisements are sent at a rate of one per second, with a three-second

advertisement lifetime.

Eager Cell-Switching Hando� Times

With ECS, the hando� time is dependent largely on how soon an agent adver-

tisement arrives after link-layer movement completes. This is because the mobile

initiates registration the moment it receives that advertisement. Because adver-

tisements are sent once per second, the mobile can receive an advertisement either

CHAPTER 4. TCP PERFORMANCE WITH MOBILE IP 50

immediately after a link-layer switch, or up to a second after the switch (the wait

could be more than one second because the actual transmission times of adver-

tisements are randomized to avoid synchronization and collisions with other agent

advertisements [39]).

Figure 4.1 illustrates the best-case hando� with ECS. Initially, the mobile is

registered with foreign agent FA1. Near time 3:0, however, the mobile migrates

into the domain of a di�erent foreign agent, FA2. Immediately after this, the

mobile receives an advertisement from FA2. Because the mobile is using ECS, a

registration-request message is sent once that advertisement is processed. There-

fore, the fastest possible hando� time is L + T + C.

agent advertisement

agent advertisement

HA M FA1FA2

TIME

agent advertisement

(in seconds)

link−layer
mobilityregistration reply

registration request

agent advertisement
3.0

Figure 4.1: ECS best-case hando� time

At worst, a mobile can wait for 1000 msecs after link-layer movement before

an agent advertisement arrives. Figure 4.2 illustrates this scenario. Therefore, the

ECS worst-case hando� time is approximately 1000 msecs + L+ T + C.

On average, the mobile receives an agent advertisement 500 msecs after link-

layer mobility. The ECS average-case hando� time is approximately 500 msecs +

L + T + C.

CHAPTER 4. TCP PERFORMANCE WITH MOBILE IP 51

agent advertisement

agent advertisement

HA M FA1FA2

TIME

agent advertisement

agent advertisement

agent advertisement

registration request
registration reply

(in seconds)

link−layer
mobility

3.0

4.0

Figure 4.2: ECS worst-case hando� time

Lazy Cell-Switching Hando� Times

With the LCS strategy, the mobile does not change foreign agents until expiry of

the lifetime of the advertisement from its current agent.

Figure 4.3 illustrates the best-case hando� with LCS. At time 2:0, the mobile

receives an agent advertisement from its current agent, FA1. Because the adver-

tisement lifetime is three seconds, the advertisement does not expire until time

5:0|the earliest time the mobile is allowed to begin registration with a new agent.

At time 3:0, immediately before another advertisement arrives, link-layer mobility

begins. At time 5:0, the advertisement from FA1 expires, and the mobile begins

registration with the new foreign agent. Therefore, at best, the LCS hando� time

is approximately 2000 msecs+ T + C.

Figure 4.4 illustrates the worst-case scenario using LCS. Again, the mobile re-

ceives an agent advertisement at time 2:0. However, link-layer mobility begins

immediately after this, leaving the mobile idle until time 5:0. Therefore, the worst-

case hando� time is approximately 3000 msecs + T + C.

In the average-case scenario, link-layer mobility begins approximately 500 msecs

after the last agent advertisement. The mobile can receive datagrams for 500 msecs

CHAPTER 4. TCP PERFORMANCE WITH MOBILE IP 52

agent advertisement

HA M FA1FA2

TIME

agent advertisement

agent advertisement

agent advertisement

agent advertisement

3.0

4.0

5.0

registration reply
registration request

(in seconds)

mobility
link−layer2.0

Figure 4.3: LCS best-case hando� time

agent advertisement

2.0

HA M FA1FA2

TIME

agent advertisement

agent advertisement

agent advertisement

agent advertisement

3.0

4.0

5.0
registration request

(in seconds)
link−layer
mobility

registration reply

Figure 4.4: LCS worst-case hando� time

longer than in the worst-case scenario, but for 500 msecs less than in the best-case

scenario. The approximate average-case hando� time using LCS is 2500 msecs +

T + C.

Summary

Table 4.1 summarizes the hando� times for ECS and LCS. Only in the ECS best-

case does the one-way transit time dominate the equation. In all other scenarios,

the pause caused by the movement-detection mechanism is the dominant factor.

The LCS strategy is plagued by the long wait for the advertisement to expire,

CHAPTER 4. TCP PERFORMANCE WITH MOBILE IP 53

which is 2000 msecs at best.

Switching Best-Case Worst-Case Average-Case

ECS L + T + C 1000msecs+ L + T + C 500msecs+ L+ T + C

LCS 2000msecs+ T + C 3000msecs+ T + C 2500msecs+ T + C

Table 4.1: ECS and LCS Mobile-IP hando� times

4.3 Experiments with Mobile IP Hando�s

Using the ECS and LCS hando� times, and with a Mobile IP implementation

developed by our research group, we ran a series of experiments to quantify how

long those times halt connections, including the time between a hando� and a

retransmission. In each experiment, we used ttcp, with a receive-bu�er size of

18KB, to start a connection between a server and a mobile. Midway through

the connection, we triggered a Mobile IP hando�. If packet losses occurred, we

tracked the retransmission timeouts at the server, and we quanti�ed how long the

connection remained idle unnecessarily after the hando� completed.

Figure 4.5 and Table 4.2 show the network con�guration and the hosts we used

for the experiments. The two servers, Linux and AIX, were chosen for their aggres-

sive and conservative behaviors respectively. The round-trip time between any two

hosts was negligible, and the delayers were in place to emulate round-trip times of

60, 200, 500, and 1000 msecs between the mobile and the servers. Those times were

chosen for the same reasons as given in Section 3.2. For simplicity, we did not vary

the round-trip time during a connection|we are interested in generalizing results

for connections with small round-trip times on average, and for connections with

CHAPTER 4. TCP PERFORMANCE WITH MOBILE IP 54

large round-trip times average. The second delayer emulated a round-trip time of

60 msecs between the home network and the foreign network, and the �rst delayer

delayed packets further to achieve the larger round-trip times. All segments, ac-

knowledgements, and registration messages were delayed by equal amounts at the

delayers (e.g. one-way transit times were symmetric in both directions). Acknowl-

edgements were reverse-tunneled.

Linux Server

AIX Server

HADelayer 1 Delayer 2

FA1

FA2

M
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

Figure 4.5: Network con�guration for experiments with Mobile-IP hando�s

The mobile was connected directly to each foreign network via Ethernet, and

was con�gured to communicate on only one network at a time. Linux bridging

software made that possible. To trigger a hando�, the communicating interface was

disabled, and the other one was enabled. The switch took 10 msecs, approximating

an optimal link-layer switch in a wireless environment.

To emulate the di�erent hando� times, the Mobile IP software on the mobile

was modi�ed. After the mobile switched networks, it was blocked for the amount

of time necessary to achieve the desired hando� scenario. With average-case ECS,

CHAPTER 4. TCP PERFORMANCE WITH MOBILE IP 55

Host OS Architecture Purpose

Linux Server Linux 2.2 Intel i686 TCP sender

AIX Server AIX 4.3 IBM RS6000 TCP sender

Delayer 1 Linux 2.4 Intel i686 delays TCP traÆc between

HA and the TCP server

Delayer 2 Linux 2.4 Intel i686 delays TCP and UDP traÆc

between HA and FAs

HA Linux 2.4 Intel i686 Home Agent

FA1, FA2 Linux 2.2 Intel i686 Foreign Agents

M Linux 2.4 Intel i686 Mobile, TCP receiver

Table 4.2: Hosts used in Mobile-IP hando� experiments

for example, the mobility process was put to sleep for 500 msecs. Once un-blocked,

the mobile immediately broadcasted an agent solicitation, forcing an agent adver-

tisement from the new foreign agent. The latency in this message exchange was

negligible.

Figure 4.3 shows the approximate hando� time for each hando� scenario. The

shortest hando� time, ECS best-case, is 50 msecs. That accounts for link-layer

switch delay, transit time from the mobile to the home agent, and the software

overhead in processing the registration. The other hando� times also include those

delays.

Figure 4.6 shows how we calculated the unnecessary idle times caused by re-

transmission timeouts. After the home agent sent the registration reply message,

we measured the elapsed time before a retransmission arrived. That elapsed time

shows how much sooner the sender should have retransmitted. As shown in the �g-

ure, even though the retransmission timeout can occur before mobility completes,

mobility can complete before the retransmission arrives at the home agent.

CHAPTER 4. TCP PERFORMANCE WITH MOBILE IP 56

Hando� Scenario Hando� Time

(msecs)

ECS Best-Case 50

ECS Average-Case 550

ECS Worst-Case 1050

LCS Best-Case 2050

LCS Average-Case 2550

LCS Worst-Case 3050

Table 4.3: Hando� times in the experiments

Home AgentServer

TIME

(registration−reply message sent)
mobility completes

should have been sent

retransmission timeout

time retransmission

idle time

Figure 4.6: Calculating idle time

To obtain averages for each combination of hando� time, round-trip time, and

server implementation, 10 hando�s were executed per combination. We computed

the average number of round-trip times that elapsed during a hando�, and the

average number of round-trip times that elapsed during the unnecessary idle time.

Although round-trip times are variable during a connection, we believe that com-

puting the averages in this manner reects closely the impact a hando� has on a

connection.

CHAPTER 4. TCP PERFORMANCE WITH MOBILE IP 57

4.4 Results and the Overall Impact of Hando�s

The shortest hando� time had the least e�ect on the connections. When the round-

trip time was greater than 60 msecs, a hando� time of 50 msecs very rarely caused

packet losses. This was because the hando� time was a small fraction of the large

round-trip time, and because the receive-bu�er size was only 18KB. However, when

a connection was a�ected, Linux and AIX reacted very di�erently. When the round-

trip time was 60 msecs, AIX waited an average of 1449 msecs, or 24 round-trip times,

more than it should have before incurring a retransmission timeout. Linux, on the

other hand, waited an average of only 119 msecs, or 2 round-trip times. Combined

with the hando� time, AIX su�ered a loss of approximately 25 round-trip times,

while Linux su�ered a loss of only 3 round-trip times. That large di�erence shows

clearly how the aggressive behavior of Linux can be bene�cial when recovering from

a hando�.

Figures 4.5 and 4.4 show the remaining results for Linux and AIX, respectively.

For each combination of hando� time and round-trip time, the tables show the

average number of timeouts, the average number of lost round-trip times during

the hando�s, and the average number of lost round-trip times after the hando�s

complete (Idle time). The last column of each table shows the total number of lost

round-trip times.

In nearly all cases, the hando� causes packet losses, and the sender incurs at

least one retransmission timeout. As the hando� time increases, so does the number

of retransmission timeouts. In one case, Linux incurs 5 retransmission timeouts on

average.

CHAPTER 4. TCP PERFORMANCE WITH MOBILE IP 58

Hando� RTT Timeouts Hando� time Idle time Total

time per hando� (rtts) (rtts) (rtts)

550 60 2.1 9.16 2.18 11.35

550 200 2 2.7 2.46 5.21

550 500 1 1.1 0.53 1.63

550 1000 1 0.55 0.33 0.88

1050 60 3 17.5 5.68 23.18

1050 200 3 5.25 6.80 12.05

1050 500 2 2.1 2.71 4.81

1050 1000 1 1.05 0.61 1.66

2050 60 4 34.16 16.90 51.07

2050 200 3 10.25 2.35 12.60

2050 500 2 4.1 0.67 4.77

2050 1000 2 2.05 2.28 4.33

2550 60 4 42.5 7.43 49.93

2550 200 3.8 12.75 10.94 23.69

2550 500 2.7 5.1 4.08 9.18

2550 1000 2 2.55 1.77 4.32

3050 60 5 50.83 51.98 102.82

3050 200 4 15.25 11.36 26.61

3050 500 3 6.1 5.12 11.22

3050 1000 2 3.05 1.52 4.57

Table 4.4: Linux results

CHAPTER 4. TCP PERFORMANCE WITH MOBILE IP 59

Hando� RTT Timeouts Hando� time Idle time Total

time per hando� (rtts) (rtts) (rtts)

550 60 1 9.16 21.22 30.38

550 200 1 2.75 6.55 9.30

550 500 1 1.1 3.23 4.33

550 1000 .5 0.55 0.74� 1.29

1050 60 1.1 17.5 8.27 25.77

1050 200 1 5.25 5.68 10.93

1050 500 1 2.1 2.28 4.38

1050 1000 1 1.05 1.75 3.80

2050 60 2 34.16 13.13 47.30

2050 200 1.5 10.25 3.46 13.71

2050 500 1.3 4.1 1.61 5.71

2050 1000 1.1 2.05 0.71 2.76

2550 60 2 42.5 16.75 59.25

2550 200 2 12.75 8.11 20.86

2550 500 1.9 5.1 2.70 7.80

2550 1000 1.3 2.55 0.83 4.38

3050 60 2.8 50.83 41.83 92.67

3050 200 2.4 15.25 8.79 24.05

3050 500 2 6.1 1.78 7.88

3050 1000 2 3.05 1.86 4.91

� only trials with retransmission timeouts are used in the aver-

age

Table 4.5: AIX results

CHAPTER 4. TCP PERFORMANCE WITH MOBILE IP 60

The number of retransmission timeouts also shows the di�erence between Linux

and AIX. While AIX incurs less than two timeouts on average, Linux incurs more

than two on average. Only in a few cases does Linux incur less than two timeouts.

Although Linux does not reduce the slow-start threshold aggressively, some imple-

mentations halve the threshold with each successive retransmission timeout, and

a large number of retransmission timeouts would then have a dramatic impact on

the length of congestion control.

In both implementations, the length of time the sender is idle unnecessarily

varies. At worst, Linux waits over 50 round-trip times after the hando� completes

before incurring a retransmission timeout. Even in the optimal scenarios where the

hando� times are short and the round-trip times are small, the idle period can last

several round-trip times. In some cases, the idle time produces a larger e�ect than

the hando� time. In one case with AIX, for example, 6.55 round-trip times are lost

after a hando�, while only 2.75 round-trip times are lost during the hando�.

The total number of round-trip times lost is large in nearly all scenarios. Even

with a small round-trip time, seconds can elapse before a connection is re-started.

In the worst cases, both implementations lose approximately 100 round-trip times

on a connection. Losing that number of round-trip times can have a devastating

impact on the overall transfer rate.

4.5 Discussion

In general, the impact of these communication pauses on the overall transfer rate

depends on the round-trip time. When a connection has a small round-trip time,

CHAPTER 4. TCP PERFORMANCE WITH MOBILE IP 61

it is expected to have a very high rate of transfer per second. If a hando� occurs,

that rate per second can be lowered signi�cantly, and the connection can last much

longer than expected. The impact is greatest when the amount of data to be

transferred is small.

Connections with large round-trip times, on the other hand, should be a�ected

less noticeably by hando�s. When the average rate of transfer per second is very

low, a hando� has less of an impact on that rate. But, again, if the amount of data

to be transferred is small, the overall transfer rate can drop signi�cantly.

A �nal point worth mentioning is congestion control. Aside from implemen-

tations that re-adjust the slow-start threshold with each successive timeout, the

length of congestion control is independent of the disconnection time. However, if

a large amount of data must be transferred, the e�ects of congestion control can be

much worse than the e�ects of a communication pause. If a connection must trans-

fer a large amount of data, and if a hando� occurs midway through that transfer,

congestion control can throttle the rate for a very long time. Short transfers are

less a�ected because they end soon after a retransmission timeout occurs.

Table 4.6 shows an example of the number of round-trip times lost with Linux

when congestion control is included in the equation. Even with these modest bu�er

sizes, connections lose well over 20 round-trip times, on average, because of a hand-

o�. In most cases, the largest portion of the lost round-trip times is incurred in

congestion control. As mentioned earlier, however, �les transferred on the web are

typically between 4KB and 64KB in size, and those transfers would end long before

congestion control could have a serious e�ect on the overall transfer rate.

CHAPTER 4. TCP PERFORMANCE WITH MOBILE IP 62

Hando� RTT Extra rtts Extra rtts Extra rtts Extra rtts

time 16KB bu�er 32KB bu�er 64KB bu�er 128KB bu�er

550 60 18.41 23.38 32.37 49.36

550 200 12.27 17.24 26.23 43.22

550 500 8.69 13.66 22.65 39.64

550 1000 7.94 12.91 21.9 38.89

1050 60 30.24 35.21 44.2 61.19

1050 200 19.11 24.08 33.07 50.06

1050 500 11.87 16.84 25.83 42.82

1050 1000 8.72 13.69 22.68 39.67

2050 60 58.13 63.1 72.09 89.08

2050 200 19.66 24.63 33.62 50.61

2050 500 11.83 16.8 25.79 42.78

2050 1000 11.39 16.36 25.35 42.34

2550 60 56.99 61.96 70.95 87.94

2550 200 30.75 35.72 44.71 61.7

2550 500 16.24 21.21 30.2 47.19

2550 1000 11.38 16.35 25.34 42.33

3050 60 109.88 114.85 123.84 140.83

3050 200 33.67 38.64 47.63 64.62

3050 500 18.28 23.25 32.24 49.23

3050 1000 11.63 16.6 25.59 42.58

Table 4.6: Linux results with bu�er sizes of 16KB, 32KB, 64KB, and 128KB

CHAPTER 4. TCP PERFORMANCE WITH MOBILE IP 63

4.6 Comparisons to Related Work

In the most relevant research, Fikouras et al [18] also studied the impact of Mobile

IP hando�s on TCP performance. They found that, at worst, the hando� times

with ECS and LCS are approximately 2.6 seconds and 6 seconds respectively. They

also concluded that TCP connections can su�er idle periods after hando�s of ap-

proximately 6.5 seconds with LCS, and 3.4 seconds with ECS. In their experiments,

the round-trip time between the home agent and the mobile was approximately 20

msecs. There was no indication of the round-trip time of the TCP connections.

The results of that study, however, do not reect typical worst cases accurately;

the experiments had several limitations:

� After movement was detected by the mobile, the Linux implementation on

the mobile su�ered a two-second con�guration delay when changing the IP

default route.

� IP datagrams originating at the TCP sender had the don't fragment ag

marked. The TCP retransmission arriving after a completed hando� was

dropped because the tunnel maximum transmission unit (MTU) between the

home agent and the new foreign agent was less than the previous MTU.

This caused an ICMP Datagram Too Big message to be sent to the sender.

The dropped retransmission resulted in yet another timeout at the sender,

increasing the idle period after a hando� signi�cantly.

� The Mobile-IP software on the mobile operated in granularities of one second.

Therefore, an advertisement could be delayed at the mobile for nearly one

second before being processed by the Mobile-IP process.

CHAPTER 4. TCP PERFORMANCE WITH MOBILE IP 64

These limitations would not occur in a real mobile environment. The two-second

con�guration delay on Linux occurs because the kernel ushes the routing cache at

two-second intervals. This delay is eliminated by modifying the �le min delay of the

proc �le-system on Linux. Also, it is unreasonable to assume that a mobile should

detect and respond to events at one-second intervals. The process for mobility

should block when waiting for events, and un-block promptly when an important

event occurs, such as the arrival of an agent advertisement. Regarding the tunnel

MTU problem, this should occur only if adjacent networks have di�erent MTUs. If

adjacent cells did not have identical MTUs, the dropped retransmission for MTU

discovery would become a regular phenomenon. This can have a devastating impact

on the transfer rate of a connection, and would motivate network implementators

to have identical MTUs in adjacent cells.

Our experiments result in a more realistic evaluation of TCP performance with

Mobile IP. In the experiments, there are no unnecessary con�gurations that could

cause long delays in the kernel or Mobile-IP process, and adjacent cells have identi-

cal MTUs. Also, the experiments considered a variety of scenarios by using di�erent

hando� times, round-trip times, and server implementations.

4.7 Chapter Summary

This chapter presented the overall e�ects of Mobile IP hando�s on TCP connections.

In a wide variety of scenarios, we have shown that connections can be a�ected very

negatively by a hando�. Although a connection is halted during an actual hando�,

it will often remain idle long after the hando� completes. That idle period is

CHAPTER 4. TCP PERFORMANCE WITH MOBILE IP 65

unnecessary, and it can lower the overall transfer rate signi�cantly.

In the next chapter, we discuss the future role of Mobile IP and propose solutions

for improving performance after hando�s complete.

Chapter 5

TCP Enhancements for

Wide-Area Mobility

5.1 Overview

Mobile IP is simple and scalable, and is the network-layer-mobility protocol sup-

ported by the IETF. The frequent use of Mobile IP for hando�s, however, has serious

performance implications. Because the hando�s are inherently long, and because

TCP connections can be a�ected very negatively, frequent hando�s can cause very

unpredictable and unreliable performance on mobiles. For those reasons, Mobile

IP should not be used every time a mobile changes locations.

Some of the current research in network-layer mobility focuses on solutions that

very rarely use Mobile IP for hando�s [38, 46, 52]. These solutions, called micro-

mobility solutions, assume that most mobility is con�ned to limited geographic

areas, and that all mobility functions should be handled within those areas. The

66

CHAPTER 5. TCP ENHANCEMENTS FOR WIDE-AREA MOBILITY 67

areas, or wide-area networks, can be as large geographically as a university campus

or a metropolitan city-centre.

Micro-mobility solutions use sophisticated protocols that set up and maintain

mobile-speci�c routes within the wide-area network. In the networks, a foreign

agent is at the root of a hierarchical structure of base stations, customized routers,

and other mobility-support stations. When a mobile moves from one base station

to another, routes are updated quickly and packets in transit are re-directed to the

new base station. The protocols provide fast and lossless hando�s, and avoid the

problems with network-layer hando�s.

When a mobile migrates from one wide-area network to another, however, Mo-

bile IP is needed. The mobile must acquire a new care-of-address and must be

authenticated. Figure 5.1 illustrates the distinction between micro-mobility, which

is mobility within a wide-area network, and macro-mobility, which is mobility be-

tween wide-area networks.

To provide a TCP-lossless hando� in Mobile IP, segments must be cached at

the old location and re-directed to the new location after the hando� completes.

This can be done either by the old foreign agent, or by a mobility-support station

at the edge of the old network. The foreign agent, for example, temporarily caches

segments. If informed that the mobile has moved, the foreign agent forwards the

cached segments, and any subsequent segments, to the new location.

This scheme, however, has two major drawbacks. First, scalability is a problem.

Wide-area networks are large, in part, to optimize transport-layer performance, and

mobility-support stations may be servicing tens of thousands of mobiles. If there are

CHAPTER 5. TCP ENHANCEMENTS FOR WIDE-AREA MOBILITY 68

Wide−Area Network Wide−Area Network

micro−mobility macro−mobility
(Mobile IP)

FA FA

base station

router

��
��
��

��
��
��

��
��
��

��
��
��

Figure 5.1: Micro-mobility and macro-mobility

also tens of thousands of TCP connections, it is almost impossible for those stations

to have suÆcient resources to monitor and cache all of the segments. Furthermore,

the resources used could have been used to meet other requirements, and the overall

performance within the wide-area network can be a�ected.

The second major drawback is that there is no guarantee that the resources used

will justify the performance gained. Regardless of whether segments are cached,

a hando� can often be long enough to cause a sender to incur a retransmission

timeout, and a timeout causes congestion control. And if congestion control is

invoked, a cached window of segments may save only one round-trip time for the

connection. One large bene�t, however, is that by forwarding segments immediately

after a hando�, the long pause caused by a retransmission timeout is eliminated.

In this chapter, we present simple and scalable solutions that can provide the

CHAPTER 5. TCP ENHANCEMENTS FOR WIDE-AREA MOBILITY 69

same bene�ts as described above, but that do not require large data caching. Rather

than trying to prevent retransmission timeouts that are often unavoidable, we cache

only a single segment, and use that segment to re-start a connection as soon as the

hando� completes. This eliminates the communication pauses caused by timeouts,

and can save many round-trip times for a connection.

The rest of the chapter is organized as follows. In the next section, we discuss

work related to improving transport-layer performance in mobile environments. In

Section 5.3, we show how an intermediary host can monitor TCP connections,

cache retransmissions, and forward the retransmissions when hando�s complete.

Section 5.4 shows how we force a sender into persist mode when a hando� is im-

pending and, when the hando� completes, to re-start the connection immediately.

In that scheme, the sender does not incur retransmission timeouts and, in some im-

plementations, congestion control is prevented. Section 5.5 summarizes the chapter.

5.2 Related Work

This section presents related work that involves caching, bu�ering, and manipulat-

ing segments. Most of that work improves performance when hando�s are between

base stations, and it is included here in order to provide a complete picture of pos-

sible solutions. To our knowledge, little work is speci�c to Mobile IP hando�s.

Routing Protocol (1995)

Developed with Snoop [8] at the University of California at Berkeley, Routing Proto-

col [47] provides lossless and low-latency hando�s between base stations. A mobile

CHAPTER 5. TCP ENHANCEMENTS FOR WIDE-AREA MOBILITY 70

is assigned a temporary IP-multicast address by its home agent, and each base sta-

tion within range of the mobile joins that multicast group. Segments destined for

the mobile are encapsulated, either by the home agent or by the sending host (in

the case of Mobile IP route optimization [40]), and sent to the multicast address.

Base stations in the group that are not servicing the mobile bu�er the segments

temporarily. Therefore, when a hando� occurs, the new base station has a copy of

the segments that would have been lost during the hando�.

Routing Protocol has three major drawbacks. First, bu�ering segments at var-

ious base stations presents a scalability problem. If the base stations are servicing

many mobiles, or if the mobiles have large receive bu�ers, bu�ering requires great

storage capacity. Accessing and storing the segments can also be complex.

The second drawback is that multicasting traÆc can degrade performance within

a domain. Unless appropriate care is taken, resources can be used ineÆciently: if a

base station joins the multicast group too soon, resources may be used well ahead

of when they are needed. Also, it is possible that a bu�ering base station never

actually services the mobile, resulting in an unnecessary use of resources.

The third major drawback is that managing the multicast groups is diÆcult

because address management must be handled across the Internet.

DFA Hierarchical Mobility Management (1999)

This management approach [50] is very similar to Routing Protocol, but the multi-

cast group is managed from a domain foreign agent, or DFA, and not from the home

agent or the sending host. The foreign agent administers an aggregation of subnets

and base stations, and forwards segments to the multicast address. Although this

CHAPTER 5. TCP ENHANCEMENTS FOR WIDE-AREA MOBILITY 71

approach eliminates the problems associated with multicasting management across

the Internet, it shows the same ineÆciency and scalability problems of Routing

Protocol.

I-TCP (1995)

I-TCP [7] is a split-connection solution. When a mobile requests a TCP connection,

the base station splits the connection into two separate connections: one between

the server and the base station, and the other between the base station and the

mobile. The base station acknowledges data on behalf of the mobile, and recovers

the losses caused by hando�s. In this way, mobility is shielded from the sender.

A major drawback of I-TCP is that it requires large resources to handle con-

nection states, and the transferring of states between base stations can be complex

and time-consuming. Another drawback is that end-to-end TCP semantics are

compromised; because a base station can acknowledge data that the mobile has

not received, if failure occurs, the base station must terminate or re-set the connec-

tion at the sender.

Hierarchical Mobility Management (1996)

In this scheme [14], the base station servicing a mobile caches unacknowledged seg-

ments. When the mobile migrates, the new base station sends a message to the

old base station, and the old base station forwards the cached segments to the new

location. Although acknowledgements clear the cache, the size of the cache can

quickly grow large during a hando�. This becomes a scalability problem when the

number of mobiles serviced is large also.

CHAPTER 5. TCP ENHANCEMENTS FOR WIDE-AREA MOBILITY 72

M-TCP (1997)

M-TCP [11] is an entirely di�erent approach for improving TCP performance. In

M-TCP, if migration is detected, the base station, on behalf of the mobile, sends

a zero-window-size acknowledgement. This forces the sender into persist mode.

When the hando� completes, the base station, or the mobile, sends an acknowl-

edgement that re-opens the send window. That re-starts the connection quickly

and, in some implementations, prevents congestion control.

Because a sender disregards window sizes in duplicate acknowledgements, how-

ever, the zero-window-size message sent must acknowledge new data. To achieve

this, M-TCP bu�ers acknowledgements, and if migration is detected through the

absence of expected acknowledgements, a bu�ered acknowledgement is changed to

a zero-window-size acknowledgement and forwarded to the sender. To prevent the

sender from stalling, the base station holds back only the last byte of each ac-

knowledgement. When a new acknowledgement arrives, the byte is acknowledged

normally, and the next last byte is bu�ered. Special mechanisms are used to ensure

that the last acknowledgement from a segment burst is not delayed.

M-TCP is a scalable solution and can recover losses quickly. However, breaking

acknowledgements can cause re-packetization delays at the sender and, as we will

show in Section 5.4, trying to exploit persist mode has its own disadvantages.

Freeze-TCP (2000)

Freeze-TCP [20] is similar to M-TCP, but zero-window-size acknowledgements are

sent from the mobile itself. When the mobile senses an impending hando� (by

analyzing base-station signal strength), all acknowledgements are changed to ad-

CHAPTER 5. TCP ENHANCEMENTS FOR WIDE-AREA MOBILITY 73

vertise a zero bu�er. When the hando� completes, the mobile immediately sends

an acknowledgement that re-opens the send window.

Freeze-TCP has an advantage over M-TCP and other solutions, if the IP payload

is encrypted. In Freeze-TCP, however, complexity is moved from the base station

to the mobile. That may be a diÆcult choice for power-conscious manufacturers of

mobile devices.

The solutions we propose in the next two sections overcome some of the limita-

tions of this related work.

5.3 Retransmission Caching

5.3.1 Enhancement Overview

The goal of this enhancement is to cache, during a hando� and at an intermedi-

ary host, the retransmission from a retransmission timeout, and to forward that

retransmission when the hando� completes. As long as the sender incurs an initial

and unsuccessful retransmission timeout, the connection is re-started at the earliest

possible time, and there is no unnecessary pause in communication.

To perform the caching e�ectively, the intermediary host must distinguish be-

tween normal segments and segments from retransmission timeouts. To do this, the

host monitors the highest sequence number seen. If a segment arrives that has a

sequence number less than that, or out-of-order, that segment was either re-ordered

by the network, duplicated by the network (which we assume is very rare), from

a fast-retransmit, or from a retransmission timeout. In all cases, the segment is

CHAPTER 5. TCP ENHANCEMENTS FOR WIDE-AREA MOBILITY 74

cached. The next course of action depends on what arrives next:

1. A higher-sequenced segment arrives. In this case, it is most likely that

the connection is proceeding normally, and the cache is cleared.

2. The same segment arrives. This is a strong indication that the sender

incurred a consecutive retransmission timeout. The cache is maintained, and

the segment is forwarded to the mobile.

3. A mobility-update message arrives. This indicates that the mobile

moved, and that the cached segment likely came from an initial retransmis-

sion timeout. The segment is forwarded to the mobile's new location, the

cache is cleared, and the connection is re-started without waiting for the next

retransmission timeout.

In the latter or third case, if the segment was not from a timeout, or if communica-

tion had already resumed before the mobility-update message arrived, forwarding

the segment will at worst generate a duplicate acknowledgement.

5.3.2 Deployment

This enhancement can be deployed easily at either the home agent or the foreign

agents. Only one segment, at most, needs to be cached for each TCP connection.

CHAPTER 5. TCP ENHANCEMENTS FOR WIDE-AREA MOBILITY 75

Home-Agent Caching

If segments en-route to the mobile pass through the home network, the home agent

can carry out the caching. If a Mobile IP hando� occurs, the home agent can for-

ward a cached segment to the new location immediately after the registration reply

is sent. As long as registration is successful at the foreign network, the segment

should reach the mobile soon after registration completes.

Foreign-Agent Caching

If segments en-route to the mobile do not pass through the home network, as with

Mobile IP route optimization [40], the foreign agent can monitor and cache seg-

ments. This requires, however, that the old foreign agent is noti�ed immediately

of the new location of the mobile.

5.3.3 Experiments

We deployed and experimented with the home-agent caching method. A user-space

process monitored the sequence numbers of segments, and cached the segments from

retransmission timeouts. If a hando� occurred, and if a segment was in the cache,

the cached segment was sent to the new location. If no segment was in the cache,

it was likely that either no losses occurred or the initial retransmission timeout did

not occur.

If caching had been used for the experiments in Section 4.3, the results would

have been much di�erent. Table 5.1 shows the possible performance gains for the

connections to the Linux server. The third column shows the number of round-

trip times lost because of the hando� and because of the unnecessary wait for a

CHAPTER 5. TCP ENHANCEMENTS FOR WIDE-AREA MOBILITY 76

retransmission timeout. The fourth column shows how the lost round-trip times

decrease with caching, and the �fth column shows the savings in round-trip times

and in percentages. The results show that the number of lost round-trip times

can be limited to the length of the hando�, and can be signi�cantly reduced. In a

couple of cases, however, caching had no e�ect because the initial retransmission

timeout had yet to occur.

Hando� RTT No caching Caching Savings

time (rtts) (rtts) (rtts)

550 60 11.35 9.16 2.17 (19%)

550 200 5.21 2.7 2.46 (47 %)

550 500 1.63 1.63 0

550 1000 0.88 0.88 0

1050 60 23.18 17.5 5.68 (25 %)

1050 200 12.05 5.25 6.80 (56 %)

1050 500 4.81 2.1 2.71 (56 %)

1050 1000 1.66 1.05 0.61 (37 %)

2050 60 51.07 34.16 16.90 (33 %)

2050 200 12.60 10.25 2.35 (19 %)

2050 500 4.77 4.1 0.67 (14 %)

2050 1000 4.33 2.05 2.28 (53 %)

2550 60 49.93 42.5 7.43 (15 %)

2550 200 23.69 12.75 10.94 (46 %)

2550 500 9.18 5.1 4.08 (44 %)

2550 1000 4.32 2.55 1.77 (41 %)

3050 60 102.82 50.83 51.98 (51 %)

3050 200 26.61 15.25 11.36 (43 %)

3050 500 11.22 6.1 5.12 (46 %)

3050 1000 4.57 3.05 1.52 (33 %)

Table 5.1: Caching for a Linux sender

CHAPTER 5. TCP ENHANCEMENTS FOR WIDE-AREA MOBILITY 77

5.3.4 Discussion

Caching retransmissions to improve performance is simple and scalable. Only one

segment is cached per TCP connection, and no transfer of states is needed between

agents. Furthermore, as we explained in Section 4.5, web transfers usually involve

small amounts of data, and a connection gains the most bene�t when no unnecessary

pause occurs in communication.

The major limitation with caching retransmissions, however, is that it works

only if the initial timeout occurs before mobility completes. If the timeout does

not occur before then, caching has no bene�t: if a segment other than one from a

retransmission timeout is forwarded, the generated acknowledgement will, at most,

result in the transmission of one new segment, and the long wait for a retrans-

mission timeout will eventually occur anyways. Linux is aggressive, incurs many

timeouts, and can bene�t greatly. But other implementations, such as AIX, are less

aggressive, and consecutive timeouts may often occur. In those implementations,

the caching scheme will have little e�ect. The next section describes a scheme that

can be used when there is no initial retransmission timeout.

5.4 Zero-Window-Size Acknowledgements

5.4.1 Enhancement Overview

To avoid the wait for the initial retransmission timeout, the sender needs acknowl-

edgements for all lost segments. Without bu�ering a large amount of data during

the hando�, and without seriously compromising TCP semantics, this requirement

CHAPTER 5. TCP ENHANCEMENTS FOR WIDE-AREA MOBILITY 78

is impossible. But by sending a premature zero-window-size acknowledgement,

and thereby forcing persist mode, the sender can be tricked into thinking that the

lost segments should never have been transmitted, and therefore should not have

timeouts set. Therefore, after the hando� completes, transmission can resume im-

mediately, and normally, by sending an acknowledgement, new or duplicate. In

this way, the connection is re-started quickly, and the consequences associated with

retransmission timeouts are avoided. This is the strategy adopted by M-TCP and

Freeze-TCP.

The diÆculty with zero-window-size acknowledgements, however, is that they

must be new, not duplicate|a sender disregards the window size in duplicate

acknowledgements. M-TCP overcomes this problem by delaying a part of the last

acknowledgement seen, and Freeze-TCP changes regular acknowledgements to zero-

window-size acknowledgements. In both cases, new data is acknowledged.

But M-TCP and Freeze-TCP do not always work. It is possible that segments

are lost and that no acknowledgement is available for a zero-window-size acknowl-

edgement. This scenario is shown in Figure 5.2 where an intermediary host, as in

M-TCP, bu�ers the last acknowledgement seen. But when the acknowledgement

for segment 18 is bu�ered, no subsequent acknowledgements are expected. There-

fore, to prevent the sender from stalling or waiting, and after a small amount of

time elapses, the host forwards the acknowledgement. As a consequence, the bu�er

is empty when segments 19 through 27 are lost, and the sender eventually incurs

a retransmission timeout. Because of the bursty nature of TCP, we believe this

situation would occur often.

CHAPTER 5. TCP ENHANCEMENTS FOR WIDE-AREA MOBILITY 79

MOBILE

segments 10−18

segments 19−27

ACKs 10−18

disconnection

Sender

LOST

TIME

IH

Figure 5.2: A situation where M-TCP and Freeze-TCP do not work

We propose a scheme that is similar to M-TCP and Freeze-TCP, but that over-

comes their limitation described above. In the scheme, the intermediary host mon-

itors segments and acknowledgements, and caches the oldest unacknowledged seg-

ment. Because the host knows when to expect acknowledgements, it can detect

a hando� by their absences. If an acknowledgement is detected, and if the oldest

unacknowledged segment is in the cache, a zero-window-size acknowledgement is

sent for the segment. The acknowledgement is new, and the sender is forced into

persist mode. When the hando� completes, the intermediary node forwards the

cache to the mobile's new location, and the subsequent acknowledgement re-opens

the send window.

Figure 5.3 shows the bene�t of this solution. As in the previous �gure, segments

19 through 27 are lost during a hando�. This time, however, the intermediary host

has cached segment 19 and, when the hando� is detected, sends a zero-window-size

acknowledgement for it. When the hando� completes, and when the intermediary

host is noti�ed, segment 19 is forwarded to the mobile. The subsequent acknowl-

edgement immediately re-starts the connection.

CHAPTER 5. TCP ENHANCEMENTS FOR WIDE-AREA MOBILITY 80

MOBILE

segments 10−18

segments 19−27

Sender

ACKs 10−18

ACK 19

segment 19

TIME

IH

timeout

cached

cached

ZWSA 19

LOST

segment 20

handoff

Figure 5.3: Caching a segment for a zero-window-size acknowledgement

This trivial algorithm is shown in Figure 5.4. If there are no outstanding ac-

knowledgements, or if the cache is clear, the next segment is cached, and if a cached

segment is acknowledged, the cache is cleared. If a timeout occurs on the cache,

a zero-window-size acknowledgement is sent, and when a mobility-update message

arrives, the cache is forwarded to the mobile.

This scheme is simple, and it will work well in most scenarios. If a hando� occurs

during the arrival of a closely-spaced burst of segments, however, the algorithm can

fail. Figure 5.5 shows how this occurs. Initially, segment 11 is cached, and segments

12 and 13 are forwarded normally. A hando� occurs, and although segment 11

reaches the mobile in time, segments 12 and 13 are lost. Segment 11 is now obsolete

in the cache because segment 12 is the oldest unacknowledged segment. Although

segment 14 is cached because the cache was cleared, it cannot be used for a zero-

CHAPTER 5. TCP ENHANCEMENTS FOR WIDE-AREA MOBILITY 81

If (segment arrived)

cache segment, set timer

Else If (mobility−update message arrived)
forward cache to new location

Else If (timer expired)

Else If (ACK arrived)
If (ACK >= segment cached)

clear cache, re−set timer

send zero−window−size acknowlegment

If (no ACKs expected) OR (cache is clear)

Figure 5.4: Algorithm for caching the oldest unacknowledged segment

window-size acknowledgement because it is not the oldest and unacknowledged.

MOBILE

segment 14

segment 12

segment 13

segment 11

ACK 11
TIME

cached

disconnection

cached

IH

Figure 5.5: A limitation of the zero-window-size acknowledgement scheme

We believe, however, that the situation described here is very rare. In most

cases, this scheme will work because hando�s are more likely to start before or

after, rather than during, the arrival a very closely-spaced burst of segments.

CHAPTER 5. TCP ENHANCEMENTS FOR WIDE-AREA MOBILITY 82

5.4.2 Deployment

This scheme can be deployed easily at foreign agents. A process on the foreign

agent can monitor a connection and cache segments. If a hando� is detected, the

foreign agent sends a zero-window-size acknowledgement. As shown in Figure 5.6, a

messaging protocol can be established between foreign agents, and the new foreign

agent can inform the old foreign agent of the mobile's location.

Wide−Area Network Wide−Area Network

FA1
6 cached segments forward

5 message with cache list

request message4ZWSAs sent2

FA2

3 mobile reconnects

1 mobile disconnets

in new network

�
�
�

�
�
�

�
�
�

�
�
�

Figure 5.6: Foreign-agent deployment

The major limitation of this scheme is that end-to-end semantics are violated.

If the protocol fails for any reason, and if a segment that was cached and used for

a zero-window-size acknowledgement is lost, the TCP connection can enter into a

seemingly in�nite loop where the mobile continually responds to window probes

with acknowledgements that are sequenced less than what the sender expects. In

that case, the connection must be either terminated or re-set.

CHAPTER 5. TCP ENHANCEMENTS FOR WIDE-AREA MOBILITY 83

To ensure that the mobile receives cached segments reliably, the foreign agents

can agree on a simple protocol to deliver them reliably. The old foreign agent,

for example, can keep a copy of a cached segment until the new foreign agent

acknowledges it, and built-in timeouts can trigger retransmissions at the old foreign

agent. And if the old foreign agent fails, the new foreign agent can re-set a frozen

connection on behalf of the mobile.

We have yet to develop the details of the messaging and reliability protocols.

5.4.3 Experiments

We experimented with this solution using the network con�guration in Section 4.3.

A host was placed between the foreign agents and the second delayer in order to

cache the segments and to emulate the message-passing protocol.

The AIX server responded well to the zero-window-size acknowledgements, and

the sender was forced into persist mode at every hando�. Table 5.2, taken from the

results of Section 4.4, shows the performance gains possible with AIX. During the

disconnection and idle time, the number of lost round-trip times when the scheme

is not used is shown in the third column, and when the scheme is used, in the fourth

column. In many cases, this scheme saves over 30% of the disconnection time (or 8

round-trip times), and more than one second, for the connection.

As noted by Go� et al [20], AIX processes premature zero-window-size acknowl-

edgements the same way it processes mature ones, and congestion control is pre-

vented. Because of this, not only does a connection bene�t because it is re-started

quickly, but it also re-starts at the rate of transmission prior to the zero-window-

CHAPTER 5. TCP ENHANCEMENTS FOR WIDE-AREA MOBILITY 84

Hando� RTT Without ZWSAs With ZWSAs Savings

time (rtts) (rtts) (rtts)

550 60 30.38 9.16 21.22 (70 %)

550 200 9.30 2.75 6.55 (70 %)

550 500 4.33 1.1 3.23 (75 %)

550 1000 1.29 0.55 0.74 (57 %)

1050 60 25.77 17.5 8.27 (32 %)

1050 200 10.93 5.25 5.68 (52 %)

1050 500 4.38 2.1 2.28 (52 %)

1050 1000 3.80 1.05 1.75 (46 %)

2050 60 47.30 34.16 13.13 (28 %)

2050 200 13.71 10.25 3.46 (26 %)

2050 500 5.71 4.1 1.61 (28 %)

2050 1000 2.76 2.05 0.71 (26 %)

2550 60 59.25 42.5 16.75 (28 %)

2550 200 20.86 12.75 8.11 (39 %)

2550 500 7.80 5.1 2.70 (35 %)

2550 1000 4.38 2.55 0.83 (19 %)

3050 60 92.67 50.83 41.83 (46 %)

3050 200 24.05 15.25 8.79 (37 %)

3050 500 7.88 6.1 1.78 (23 %)

3050 1000 4.91 3.05 1.86 (38 %)

Table 5.2: AIX results with zero-window-size acknowledgements

CHAPTER 5. TCP ENHANCEMENTS FOR WIDE-AREA MOBILITY 85

size acknowledgement. This essentially obviates most of the devastating e�ects of

hando�s.

Linux, however, reacts very di�erently. Linux disregards premature zero-window-

size acknowledgements and, without it being in persist mode, connections must

rely on a retransmission timeout to resume normally. We found, however, that

attempting to use the scheme with Linux does not degrade performance because

the premature acknowledgements are simply discarded.

In similar experiments, we found that SunOS 5.6 performed like AIX.

5.4.4 Discussion

A sender's reaction to a premature zero-window-size acknowledgement is unpre-

dictable and entirely implementation-dependent. The speci�cation [44] states only

that the sender should not shrink the send window from the right edge. Therefore,

some implementations will respond positively, while others will not respond at all.

If the goal of a solution is to prevent congestion control, however, future TCP

implementations may not respond well. A recent proposal by Handley et al [21]

argues that long pauses in communication invalidate the congestion window. After

a long time in persist mode, for example, the sender has an out-dated estimation

of congestion levels. Therefore, when the connection resumes, the sender should

begin in slow-start, and should have a lower slow-start threshold. Fortunately for

mobiles, this proposal decreases the threshold at a rate slower than retransmission

timeouts do.

Regardless of how particular implementations react to zero-window-size ac-

CHAPTER 5. TCP ENHANCEMENTS FOR WIDE-AREA MOBILITY 86

knowledgements, we found that, in general, sending these acknowledgements has

no negative e�ects. Moreover, some implementations will bene�t, while others will

perform as if one of those acknowledgements was never even sent.

5.5 Chapter Summary

This chapter presented the role of Mobile IP in the future Internet, and provided

a thorough examination of how we can limit the e�ects of Mobile IP hando�s on

TCP connections. The obvious solutions su�er from scalability problems, and do

not necessarily provide enough bene�ts to justify the resources used.

We proposed two solutions that are simple, scalable, and deployed easily. The

solutions require little resources, and the algorithms are trivial. Through exper-

iments and analyses, we showed that TCP performance after a hando� can be

improved signi�cantly, and that many round-trip times can be recovered for a con-

nection.

Chapter 6

Summary, Conclusions, and

Future Work

6.1 Summary and Conclusions

In this thesis, we explained and quanti�ed the negative e�ects of mobility on TCP

connections, and we showed how to limit those e�ects.

There are many reasons for poor TCP performance in mobile environments.

TCP is geared for the characteristics of wired networks, and is tailored only for

environments where congestion is the only cause of segment losses. It can perform

well during congestion, and it can tune the rate of transmission to the uctuations

in network conditions. However, the reasons it performs well during congestion are

the same reasons it performs poorly in mobile environments.

During normal operation, segment losses cause the sender to incur a long pause

in communication, in part, to help relieve congestion. After that pause, a retrans-

87

CHAPTER 6. SUMMARY, CONCLUSIONS, AND FUTURE WORK 88

mission timeout occurs, and congestion control is invoked. In congestion control,

the sender initially transmits at a very low rate, and then probes for more and more

bandwidth by slowly growing that rate.

If the segment losses are the result of a hando�, however, the sender also incurs

a long communication pause, assuming incorrectly that the pause might bene�t the

connection. After the retransmission timeout, the sender grows the transmission

rate slowly, this time assuming that the network is congested and limited. Those

two incorrect assumptions cause TCP performance to be seriously degraded in

mobile environments.

In this thesis, we showed that a communication pause can be long, and can last

long after a hando� completes. With Mobile IP for hando�s, we showed that many

round-trip times can be lost during a pause. The dramatic e�ects of congestion

control were also presented. Congestion control can last unacceptably long and,

if the amount of data to transfer is large, can have a devastating impact on the

overall transfer rate.

To counter these problems, we proposed two solutions that eliminate the commu-

nication pauses, and that can sometimes prevent congestion control. The solutions

involve deploying simple protocols at home agents and foreign agents, and they

require few resources.

In summary, to current research in the area of TCP performance in mobile

environments, this thesis has contributed

1. A complete explanation for poor performance;

2. A large number of experiments, simulations, and analyses that prove and

CHAPTER 6. SUMMARY, CONCLUSIONS, AND FUTURE WORK 89

quantify poor performance; and

3. Simple and scalable solutions that can improve performance signi�cantly dur-

ing Mobile IP hando�s.

The optimal, but improbable, solution for improving performance is to imple-

ment senders who di�erentiate between hando� losses and congestion losses, and to

tune senders for mobility in the same way they are tuned for congestion. If mobility

is detected, for example, the sender can wait for a message that communicates the

end of the hando�. Or, as another example, the sender can be more aggressive

when growing the transmission rate during congestion control.

Although re-implementing TCP for mobility can improve performance signi�-

cantly, a re-implementation is very unlikely to happen in the near future. TCP is

widely deployed, extensively used, and widely agreed upon; changing it would be

a very long process that could result in serious disruptions of the compatibility of

hosts. For at least the next few years, solutions will have to be deployed on the

mobiles and the mobility-support stations themselves.

6.2 Future Work

Opportunities exist for improvements and future work. We aim our work at a more

intensive examination of the retransmission caching solution in Chapter 5, and at

looking at performance with the successor of Mobile IP, Mobile IPv6 [24].

CHAPTER 6. SUMMARY, CONCLUSIONS, AND FUTURE WORK 90

Deployment of Solutions

The solution of caching retransmissions is quite simple, can be deployed easily, and

can eliminate many idle pauses in communication. These reasons justify a closer

look. Retransmission caching works very well for Linux, but that is due, in part,

to the fact that Linux is very aggressive. Our goal is to deploy the solution, and

to test it with exhaustive variants. We intend to look at numerous implementa-

tions, hando� times, and round-trip times and, if the results are positive, deploy

the solution in a real mobile environment. Positive results, however, depend largely

on the portion of implementations that have an aggressive retransmission-timeout

strategy.

TCP Performance with Mobile IPv6

IPv6 incorporates many features that are bene�cial for mobile hosts. One of the

most important is that the triangular routing of Mobile IP is eliminated. In Mobile

IPv6, tunnels are set up and secured at the sending hosts themselves, and a mobile

can deliver a change in address directly to the sending host.

Another important feature is that a mobile does not require the use of a foreign

agent. A mobile can use the Stateless Address-Autocon�guration [51] and Neighbor

Discovery [32] mechanisms of IPv6 in order to acquire a care-of-address on a foreign

network.

These new features provide new performance issues for TCP. We aim to discover

those issues and �nd solutions for them.

Bibliography

[1] IP Routing for Wireless/Mobile Hosts (Mobile IP). IETF Working Group

Charter: http://www.ietf.org/html.charters/mobileip-charter.html.

[2] The Internet Engineering Task Force. http://www.ietf.org.

[3] Wireless Application Protocol (WAP) Forum. http://www.wapforum.org.

[4] M. Allman, editor. TCP Congestion Control. RFC-2581, 1999.

[5] M. Arlitt, R. Friedrich, and T. Jin. Workload Characterization of a Web

Proxy in a Cable Modem Environment. ACM SIGMETRICS Performance

Evaluation Review, 27(2):25{36, September 1999.

[6] M. Arlitt and T.Jin. Workload Characterization of the 1998 World Cup Web

Site. IEEE Network, 14(3):30{37, May/June 2000.

[7] A. Bakre and B.R. Badrinath. I-TCP: Indirect TCP for Mobile Hosts. In

15th International Conference on Distributed Computing Systems, pages

136{143, May 1995.

91

BIBLIOGRAPHY 92

[8] H. Balakrishnan, S. Seshan, and R.H. Katz. Improving Reliable Transport

and Hando� Performance in Cellular Wireless Networks. ACM Wireless

Networks, 1(4):469{481, December 1995.

[9] M. Boucher and R. Russell. The Net�lter Project: Packet Mangling for

Linux 2.3+. http://net�lter.samba.org.

[10] R. Braden, editor. Requirements for Internet Hosts { Communication Layers.

RFC-1122, 1989.

[11] K. Brown and S. Singh. M-TCP: TCP for Mobile Cellular Networks. ACM

Computer Communications Review (CCR), 27(5):19{43, October 1997.

[12] C. Perkins. Mobile IP Joins Forces with AAA. IEEE Personal

Communications, 7(4):59{61, August 2000.

[13] R. Caceres and L. Iftode. Improving the Performance of Reliable Transport

Protocols in Mobile Computing Environments. IEEE Journal on Selected

Areas in Communications, 13(5):850{857, June 1995.

[14] R. Caceres and V. Padmanabham. Fast and Scalable Hando�s for Wireless

Internetworks. In Proceedings of ACM Conference on Mobile Computing and

Networking (Mobicom'96), 1996.

[15] S. Deering, editor. ICMP Router Discovery Messages. RFC-1256, 1991.

[16] K. Fall and S. Floyd. Simulation-Based Comparison of Tahoe, Reno, and

Sack TCP. ACM Computer Communication Review, 26(3):5{21, July 1996.

BIBLIOGRAPHY 93

[17] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leachm, and

T. Berners-Lee. Hyptertext Transfer Protocol { HTTP/1.1. RFC-2616, 1999.

[18] N. A. Fikoura, K. El Malki, S. R. Cvetkovic, and M. Kraner. Performance

Analysis of Mobile IP Hando�s. In Proceedings of 1999 Asia-Paci�c

Microwave Conference, pages 770{773, Singapore, December 1999.

[19] S. Glass, T. Hiller, S. Jacobs, and C. Perkins. Mobile IP Authentication,

Authorization, and Accounting Requirements. RFC-2977, 2000.

[20] T. Go�, J. Moronski, D.S. Phatakd, and V. Gupta. Freeze-TCP: A True

End-to-End TCP Enhancement Mechanism for Mobile Environments. In

Proceedings of the IEEE INFOCOM 2000, pages 1537{1545, Israel, 2000.

[21] M. Handley, J. Padhye, and S. Floyd. TCP Congestion Window Validation.

RFC-2861{experimental, 2000.

[22] V. Jacobson. Congestion Avoidance and Control. In Proceedings of ACM

SIGCOMM '88, pages 314{32, 1988.

[23] V. Jacobson, C. Leresd, and S. McCanne. Tcpdump. Available via

anonymous ftp from ftp.ee.lbl.gov.

[24] D.B. Johnson and C. Perkins. Mobility Support in IPv6. IETF Mobile IP

Internet Draft, 2000.

[25] S. Kent and R. Atkinson. Security Architecture for the Internet Protocol.

RFC-2401, 1998.

BIBLIOGRAPHY 94

[26] J. Klensin, editor. Simple Mail Transfer Protocol. RFC-2821, 2001.

[27] M. Lioy and J.P. Black. Providing Network Services at the Base Station in a

Wireless Networking Environment. Wireless 97. TR Labs, TRIO, IEEE

Canada, 7(4):59{61, July 1997. Calgary, AB Canada.

[28] P. Manzoni, D. Ghosa, and G. Serazzi. Impact of Mobility on TCP/IP: An

Integrated Performance Study. IEEE Journal on Selected Areas in

Communications, 13(5):858{867, June 1995.

[29] S. McCreary and K. Cla�y. Trends in Wide Area IP TraÆc Patterns, A View

From Ames Internet Exchange. 2000.

http://www.caida.org/outreach/papers/AIX0005.

[30] M. Muuss and T. Slattery. TTCP.

http://www.ccci.com/learn/tools/ttcp.tar.

[31] J. Nagle. Congestion Control in IP/TCP Internetworks. RFC-896, 1981.

[32] T. Narten, E. Nordmark, and W. Simpson. Neighbor Discovery for IP

Version 6 (IPv6). RFC-1970, 1996.

[33] S. Ostermann. Tcptrace. http://jarok.cs.ohiou.edu/.

[34] V. Paxson. Automated Packet Trace Analysis of TCP Implementations. In

Proceedings of ACM SIGCOMM '97, Cannes, France, September 1997.

[35] V. Paxson and M. Allman. Computing TCP's Retransmission Timer.

RFC-2988, 2000.

BIBLIOGRAPHY 95

[36] C. Perkins. IP Encapsulation within IP. RFC-2003, 1996.

[37] C. Perkins, editor. IP Mobility Support. RFC-2002, 1996.

[38] C. Perkins. Mobile-IP Local Registration with Hierarchial Foreign Agents.

IETF Mobile IP Internet Draft, February 1996.

[39] C. Perkins. Mobile IP: Design Principles and Practices. Addison Wesley

Longman, Inc., Reading, Massachusetts, 1998.

[40] C. Perkins and D.B. Johnson. Route Optimization in Mobile IP. IETF

Mobile IP Internet Draft, November 2000.

[41] J. Postel. User Datagram Protocol. RFC-768, 1980.

[42] J. Postel. Internet Control Message Protocol. RFC-777, 1981.

[43] J. Postel, editor. Internet Protocol. RFC-791, 1981.

[44] J. Postel. Transmission Control Protocol. RFC-793, 1981.

[45] J. Postel and J. Reynolds. File Transfer Protocol (FTP). RFC-959, 1985.

[46] R. Ramjee, T. La Porta, S. Thuel, K. Varadhan, and S.Y. Wang. HAWAII: A

Domain-Based Approach for Supporting Mobility in Wide-Area Wireless

Networks. In Proceedings of Seventh Annual International Conference on

Network Protocols, ICNP '99, Toronto, ON Canada, November 1999.

[47] S. Seshan, H. Balakrishnan, and R. Katz. Hando�s in Cellular Wireless

Networks: The Daedalus Implementation and Experience. Kluwer Journal on

Wireless Personal Communications, January 1996.

BIBLIOGRAPHY 96

[48] T. Shepard. Xplot. Available from ftp://mercury.lcs.mit.edu/pub/shep/.

[49] W. Stevens. TCP/IP Illustrated, Volume 1: The Protocols. Addison Wesley

Longman, Inc., Reading, Massachusetts, 1994.

[50] C.L. Tan, K.M. Lye, and S. Pink. A Fast Hando� Scheme for Wireless

Networks. Second ACM International Workshop on Wireless Mobile

Multimedia, pages 83{90, August 1999. Seattle, WA USA.

[51] S. Thomson and T. Narten. IPv6 Stateless Address Autocon�guration.

RFC-1971, 1996.

[52] A.G. Valko. Cellular IP: A New Approach to Internet Host Mobility. ACM

Computer Communication Review, pages 50{65, January 1999.

