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Abstract

This dissertation explores the plasticity polycrystalline metals, with particular attention paid to aluminum and its 
alloys. Specifically aluminum Al-Mg sheet alloys, which are currently replacing steel parts for panel and some 
structural componentry in the automotive industry. At the forefront of this transition, is the problem of poor 
room-temperature formability of the aluminum sheet when compared to its steel counterparts. A promising solution to 
this has been the use of warm-forming to increase formability, preventing redesign of automotive parts from steel to 
aluminum (Li and Ghosh, 2003). In this thesis, a new constitutive framework and methodology is developed to 
accurately model elevated temperature behaviour of polycrystalline aluminum.

This study describes a picture of the physics behind slip dominated deformation in polycrystalline metals, and the 
mechanical characterization techniques used to determine modeling parameters for crystal plasticity. A review on 
modeling techniques and published work on the versatility of crystal plasticity theory and application is also 
presented. An initial model is then developed for a fully temperature dependent crystal plasticity framework. The 
model employs a generic hardening law to study the effect of temperature on material hardening, and conclusions are 
made on the lack of microstructural correlation between the model and physical behaviour of the material. The same 
framework is then implemented in the well known Marciniak-Kuzynski (1967) based limit strain formulation as an 
application study with Chang and Asaro (1981) type hardening. Temperature dependency is studied and formability is 
predicted for different aluminum alloys. The study reveals that, again, phenomenological-based hardening is only 
satisfactory for predicting elevated-temperature behaviour, and results are very sensitive to model input parameters. 

In the second half of this dissertation, a physical model is carefully developed from fundamental dislocation theories. 
The model is formulated on the basis of accumulation of dislocations as the dominating strengthening mechanism in 
polycrystals, introduces recovery as a thermally activated process leading to temperature dependent softening. The 
model is used to study temperature dependency of slip deformation in pure aluminum, and the correlation between 
physical processes and model parameters. The model is able to capture and predict deformation response, as well as 
suggest explanation to the influence of temperature on microstructural behaviour. Finally, the model is applied to 
study the temperature dependency of microstructural parameters in 5xxx series Al-Mg sheet alloys. Experimental data 
is used to characterized material parameters at warm forming temperatures, and the model is used to predict 
stress-strain response. The model is then used to discuss the effect of temperature on two different alloys and suggests 
explanation on the microstructural causes leading to variation hardening behaviour between the two alloys over the 
temperature range studied. The work then concludes the improvement of model predictability, and the utility of such a 
model in microstructural design. 
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Chapter 1

Introduction
1.1 Motivation

The need for vehicle light weighting to achieve CAFÉ regulations is one of the forefront issues faced by 

automotive manufacturers (NAO Sciences, 2002). Aluminum has been presented as a good solution due to its 

relatively high strength to weight, when compared to steel providing excellent corrosive properties. The 

forecast for aluminum content in vehicles based on historical trends is 550lbs per light vehicle by 2025, far 

above the current content of approximately 350lbs. This increasing trend is driven further by the development 

of new aluminum applications.

Advances in aluminum engineering over the last few decades has led to the invention of a wide number of 

alloys for many applications. Typically, these alloys are labeled as AAxxxx where AA represents “aluminum 

alloy” followed by a 4-digit number corresponding to the major alloying element(s). For example AA5754 is 

a common aluminum alloy in automotive applications such as door panels with major alloying element 

magnesium (for all AA5xxx series alloys). AA6xxx series alloys are another common automotive alloys with 

magnesium and silicon as the major additive elements (Ravichandran and Prasad, 1991). 

Particular to automotive applications, sheet aluminum (as well as extrusions) has been widely used to replace 

steel for vehicle components, including door outers/inners, roof panels, deck lids, etc. Although sheet 

aluminum has significantly improved corrosion resistance and strength to weight properties, it is still 

outperformed in formability compared to steel. This is a significant drawback as vehicle designs are becoming 

more intricate and demands for increased formability are growing. Thus, several methods have been provided 

to improve the formability of aluminum sheet. Controlling the alloying content and alloying elements can 

improve the materials ductility, but at the cost of some desired properties such as strength. The material 

microstructure can also be controlled; however, this requires complex material processing and is difficult to 

control. The simplest way to increase formability is through warm and/or hot forming (Li and Ghosh, 2003, 

2004).
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Figure 1-1 Continuous casting of aluminum sheet. After initial rolling, sheet is hot or cold rolled to final 

dimensions and coiled or cut for distribution1.

The overall objective of this thesis is to develop a thorough 3-dimensional mechanism based material model 

for the thermo-mechanical processing of aluminum alloys. Typical automotive aluminum sheet alloys are 

AA5xxx and AA6xxx; however, this study is not limited to those two grades and other available alloys will 

also be studied. The goal of the model is to predict the material response, which depends greatly on the 

linkage between initial microstructure and microstructure evolution, thermo-mechanical history, and alloy 

chemistry.

A typical manufacturing process for a sheet or panel component on a vehicle starts with continuous casting 

and rolling as shown in Figure 1-1. This process usually includes: roll casting to produce the initial sheet, 

homogenization, cold rolling, heat treating, cold/warm forming, stamping. Additional heat treatments may be 

used, such as intermediate annealing to improve formability, making them expensive for high production 

parts. Another common problem is poor surface finish and fracture limiting formability when compared to 

steel counterparts. Understanding the cause and being able to predict this behaviour using a mechanistic 

model based on the material physics can open an opportunity to improve forming processes and even engineer 

new materials.  

The structure of aluminum can be discussed in terms of crystal structure and microstructure. Crystal structure 

is the position of atoms within the unit cell, while microstructure is the arrangement of phases and defects 

within a material. All aluminum alloys have a face-centered cubic (FCC) crystal structure. Microstructure is 

completely determined by the manufacturing process. In cold rolled aluminum sheet, some microstructural 

aspects tend to be similar, such as texture, grain size, and grain shape; however, different alloying elements 

significantly affect the formation of precipitates and/or secondary phases. In this research, the cold rolled 

state, including any subsequent heat treatments, will be considered as the initial state. 
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In order to optimize properties of the final product, there must be a good understanding of the physics of 

microstructure evolution. Many different methods have been employed to study material behaviour and 

microstructure evolution during production. One such method is experimental trials where differences in 

material responses are measured as process variables are varied. This is time consuming and only allows for 

analysis before and after the process is completed for a limited number of process conditions. The most 

effective method is to develop mathematical models and validate them experimentally. Similarly, there is a 

wide range of mathematical models available; however, due to the complexity of this problem in its entirety, 

the available models are catered to a specific range of conditions and need extensive calibration.

1.2 Objectives

Up to the knowledge of the authors, there is no physically based constitutive model that can be used to 

accurately describe and predict metal forming behaviour at any temperature (up to hot forming at elevated 

temperatures) for polycrystals. In the contributions with coupled thermo-mechanical crystal plasticity models, 

temperature dependence has not been incorporated completely. For example Jain and Agnew (2007) 

employed Asaro and Needleman (1985) framework to model temperature dependence of twinning in HCP 

Magnesium alloys without incorporating components for temperature, such as thermal deformation gradient 

and thermal slip softening. Furthermore, some of the more comprehensive coupled thermo-mechanical crystal 

plasticity models (Clayton, 2005; Lee et al., 1997) consider constant single slip hardening parameters with 

respect to temperature. Thus, for modeling different strain paths, such as uniaxial tension, shear, or 

compression at elevated temperatures, separate experiments need to be completed to calibrate single slip 

hardening parameters to predict each corresponding stress-strain curve. Lastly, it is observed that the 

temperature dependence of elastic coefficients has a considerable effect on the deformation field in some 

warm forming processes, such as spring-back. This phenomenon has not been investigated in regards to 

polycrystal deformation at elevated temperatures.

The goal of this work is to develop a new 3D thermo-elasto-viscoplastic constitutive model based on the 

crystal plasticity framework of Asaro and Needleman (1985) and Rossiter et al., (2010). The model will be 

able to predict the behaviour of aluminum alloys at elevated temperatures up to, recrystallization 

temperatures. The original crystal plasticity formulation will be reformulated to include the effects of 

thermodynamics during deformation. The commercial finite element package LS-DYNA, an in-house Taylor-

type crystal plasticity framework, will be used to implement the new thermo-elasto-viscoplastic constitutive 

model in order to investigate capabilities of the model. 

1.3 Outline of Thesis

This thesis consists of nine chapters. The first chapter presents the introduction and describes the motivation 

for and objective of the thesis. Chapters two and three present general background knowledge of dislocation 

theory, slip deformation, and a literature review of crystal plasticity and its applications. Chapters four 

through seven are published and submitted publications illustrating studies that have been conducted. Chapter 

four develops a new thermo-elasto-viscoplastic crystal plasticity framework along with a general power-law 
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phenomenological hardening implementation as a predictive tool for stress-strain response in new strain-paths 

and temperatures with minimal calibration. Chapter five applies this new model to the application of forming 

limit diagrams (FLDs) and investigates model parameters with a more complex hardening model to better 

capture the effects of temperature on warm forming of aluminum sheet. Chapter six presents the development 

of a new hardening model derived from the physics of dislocation movement, accumulation, and annihilation 

as a primary deformation mechanism. Model parameters can then be related directly to material 

microstructure and determined from experimental data, and accounts for such mechanisms as dislocation 

annihilation via vacancy climb to be able to predict behaviour during dynamic recovery. Finally, chapter 

seven implements the new mechanistic hardening model into the previously derived elasto-visco-plastic 

crystal plasticity framework to predict material behaviour and microstructure evolution of common aluminum 

sheet alloys at high temperatures. The model is then used to relate temperature and alloying to the effect on 

microstructural properties such as the mean-free path of dislocations, and deformation mechanisms such as 

dynamic recovery. Lastly, chapter eight summarizes the thesis with a conclusion of the contribution of this 

projects developed tool for microstructure engineering, and presents some opportunities for future work.
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Chapter 2

Background
2.1 Dislocations

Dislocations are an important subset of defects in crystalline solids; therefore an elementary understanding of 

crystal structure is required. Metals and some non-metals exhibit crystalline atomic structure, where atomic 

arrangement is a periodic repeating pattern in three dimensions. The repeated ‘block’ is what is described as 

the crystal structure. For most pure metals, the structure is quite simple with the most common being body-

centered cubic (BCC) such as ferritic steels, face-centered cubic (FCC) such as aluminum and copper, and 

hexagonal close-packed (HCP) such as magnesium and titanium (Hirth and Lothe, 1982) 

The arrangement of the atoms in the crystal can be described in terms of lattice parameters identifying the 

spacing between atoms. The smallest repeating ‘block’ of atoms is called the unit cell and an entire crystal is 

comprised of perfectly aligned stacks of the unit cell in three dimensions. Positions of planes, directions, and 

point sites in a lattice are expressed by reference to the unit cell and principal axes. For cubic materials, the 

principal axes are the Cartesian axes and the unit cell is a cube. For FCC structures, atoms are located at the 

four outer corners of the unit cell and at all of the centers of the cube faces. 

Although there are many techniques available to directly observe dislocations, the existence of dislocation 

(line defects) was assumed during early studies when unexplained discrepancies arose between the theoretical 

and experimental values of applied shear stress to deform a single crystal. This deformation occurs by the 

sliding of atomic planes, and in a perfect crystal, the rigid movement of all atoms simultaneously. First 

calculations of the required shear stress to impose this deformation were by Frenkel in 1926. The theoretical 

maximum or critical value of shear stress (τth) was found to be many orders of magnitude greater than the 

experimentally obtained values. Orowan (1934), Polanyi (1934), and Taylor (1934) independently were able 

to account for this by the presence of dislocations.

The most useful definition of a dislocation is given in terms of the Burgers circuit. A Burgers circuit is a 

planar closed loop atom-to-atom path. If the circuit encloses a dislocation, it does not close due to an atomic 

mismatch and the vector required to close the circuit is known as the Burgers vector. Two important rules 

regarding edge and screw dislocations are as follows: (i) the Burgers vector of an edge dislocation is 

perpendicular to the line of dislocation and (ii) the Burgers vector of a screw dislocation is parallel to the line 

of dislocation. The two basic dislocation variants are edge and screw dislocations. This simply refers to the 
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relative direction of dislocation line and its Burgers vector. Figure 2-1 depicts these two distinct types of 

dislocation and their direction of propagation. In an edge dislocation, the dislocation propagates along the line 

of the applied shear stress. In a screw dislocation, the atoms ‘twist’ propagating the dislocation line 

perpendicularly to the applied stress. In the example below both types of dislocation yield the same final 

deformation after the dislocation has completely passed through the crystal.

Dislocation 
Line

Shear Stress

b

Shear Stress

b

Dislocation 
Line

Figure 2-1 Edge dislocation propagation (top) and screw dislocation propagation (bottom) through a crystal 

lattice with Burgers vector b. Edge dislocation motion acts parallel to shear stress while screw dislocation 

motion is normal to applied shear stress2.
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Figure 2-2 Burgers circuit around an edge dislocation and screw dislocation3.

In general cases, the burgers vector can have mixed edge and screw components; however, for a single 

dislocation the Burgers vector has a fixed length and direction. Figure 2-2 shows the Burgers circuit for an 

edge and screw dislocation (Hull and Bacon, 2001).

There are two basic modes of dislocation movement: glide and climb. Dislocation glide is when the 

dislocation motion, line, and Burgers vector all shares the same plane. This is also known as conservative 

motion and when many dislocations glide, the results is slip, which is the most dominant manifestation of 

plastic deformation in crystalline solids such as aluminum. Climb, or non-conservative motion, occurs when 

the dislocation motion is out of plane and normal to the Burgers vector. 

Slip planes and slip directions in crystals have discrete forms and usually coincide with the lattice planes and 

lattice lines containing the highest density of atoms. 12 slip directions on 4 slip planes exist in FCC crystals. 

Vector representations of slip directions and slip plane normal are the <110> directions on the {111} planes. 

Thus, FCC crystals have 4 slip planes with 3 slip directions on each, totaling 12 slip systems. 

A characteristic shear stress is required for slip to occur. For example in Figure 2-3 a crystal is deformed 

under tension by an applied force F along the axis of the cylinder. Assuming the cross sectional area to be A, 

the stress developed parallel to the applied force is σ = F /A. This force has a component in the slip direction 

Fcosλ with λ being the angle between F and the slip direction. This force component acts over the slip surface 

with an area A /cosϕ, where angle ϕ is the rotation from F to the slip plane normal. Therefore, the resolved 

shear stress on a given slip plane and given slip direction can be represented as

τ = F
A

cosλcosϕ           (2.1)
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Figure 2-3 Geometry of slip in crystals. In general, (λ + ϕ) ≠ 90˚. The Burgers vector of an edge dislocation 

is perpendicular to the line of dislocation. The Burgers vector of a screw dislocation is parallel to the line of 

dislocation (Hull and Bacon, 2001).

Throughout this work, τ is used to represent the shear stress resolved on to a slip system in this way. 

Furthermore, if a critical force Fc is required to initiate slip, the corresponding shear stress is denoted τc or 

critical resolved shear stress (CRSS). The translation cosλcosϕ from σ to τ is known as the Schmid factor.

Dislocations move by glide at a velocity dependent on the magnitude of the applied shear stress, the purity of 

the crystal, temperature, and the type of dislocation. A method of measuring dislocation velocities developed 

by Johnson and Gilman found that in the range of 10-9 to 10-3 ms-1, the logarithm of the dislocation velocity 

was linearly proportional to the logarithm of applied stress, such that

vdisl ∝ ( τ
τ0 )

n

             (2.2)

where τ is the applied shear stress and τ0 is the shear stress such that vdisl = 1ms-1, and n is a proportionality 

constant. It should be noted that, the above relation is purely empirical, with no implied physical 

interpretation of dislocation motion mechanisms. 

At low temperatures diffusion is extremely difficult and the movement of dislocations is nearly entirely 

restricted to dislocation glide. However, at elevated temperatures where thermally motivated diffusion is 

active, an edge dislocation can move out of its slip plane through a mechanism called dislocation climb. 

Physically, climb is the diffusion individual, or clusters, of vacancies toward or away from the dislocation. 
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The result of dislocation climb is what is known as a jog and only occurs on edge dislocations (Hirth and 

Lothe, 1982).

All of these factors play an important role in work hardening, especially in dislocation dominant materials 

such as aluminum. When dislocations move, interact, and change their distribution or density in the material, 

the glide resistance increases. For almost all metals, this has been used as an improvement to the material by 

increasing the strength through plastic deformation. The first work in realizing the connection between 

dislocation interactions and work hardening was completed by Taylor (1934). Taylor proposed the shear stress  

that is required to move two parallel plane edge dislocations separated by l past each other to be

τ = αμb /l            (2.3)

where α is a constant of order 0.1 related to the strength of obstacles in the matrix, μ is the shear modulus, and 

b is the Burgers vector. The average dislocation spacing l is proportional to the inverse root of the dislocation 

density, i.e. l ≈ ρ−1/2. Taylor extended this to a parabolic relation for stress-strain, which decently fits the 

behavior of many polycrystalline materials; however, single crystals may not behave in the same manner 

(Taylor, 1934). This will be discussed further in section 3.2. 

2.2 Texture

Almost all crystalline materials exhibit some degree of preferred crystallographic orientations or textures. The 

distribution of these orientations within a polycrystalline material is an important property governing the 

anisotropy of the material. Of the various methods used to represent texture, this work will employ pole 

figures and 3x3 orthogonal rotation matrices (Kocks et al., 2001). 

To represent a crystallographic orientation, we use three independent parameters to identify the microtexture 

with respect to a fixed reference frame. These three parameters are known as Euler angles (ϕ1, Φ, ϕ2), which 

describe rotations from the sample frame coordinate axis to the crystal coordinate axis. 

Most cold worked materials develop strong textures during deformation, and specific processes tend to 

produce typical and recognizable textures. Figure 2-4 shows typical cold rolled texture for an FCC metal. 

Texture can further be broken down into frequently occurring texture components. Some of the common 

texture components in cold rolled FCC metals are summarized in Table 2-1 and Figure 2-5. 

Copper, Brass, and S orientations form most of the rolled texture with some small amounts of others present. 

Cube orientation is typical during annealing and appears during recrystallization in aluminum, even though 

the deformed microstructure may exhibit only trace amounts of cube (Brahme, 2005).
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Figure 2-4 {001} (left) and {111} (right) Pole figures for typical FCC rolled texture (Brahme, 2005).

Table 2-1 Common texture components in FCC metals.

(a) (b) (c)

(d) (e)

(111) (111) (111)

(111)(111)

TDTD

TDTDTD

RDRD

RDRDRD

Figure 2-5 {111} Pole figures for computationally generated textures of: (a) Cube component; (b) Goss 

component; (c) Brass component; (d) Copper component; (e) S component (Rossiter et al., 2013). 
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Another method of representing the material texture is to use Bunge Euler space. This is shown in Figure 2-6 

as a series of sections (one square box per section) showing the variation in orientation distribution (OD) 

intensity for fixed values of angle ϕ2. The contours are generated by interpolating between discrete points (as 

with pole figures), and higher intensities correspond to common orientations. The example below shows a 

generic OD in Bunge Euler space where each section represents a slice of the ϕ2 plane and the horizontal and 

vertical axes of each section represent the ϕ1 and Φ angles from 0º to 90º, respectively.

(a) (b) (c)

Copper

Brass

S Cube Goss
!" =

!$

Φ

!$

Φ

!$

Φ

Figure 2-6 Example of orientation distribution in Bunge Euler Space for computationally generated textures  

from Figure 2-5 with (a) all components having equal volume fraction, (b) with high Brass, and (c) without 

Brass (Rossiter et al., 2013).
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Chapter 3

Literature Review
This section will provide comprehensive background on the physics of deformation for aluminum. This 

includes dynamics and kinetics of deformation and how it is affected by temperature as well as previous work 

that has been completed to understand this physics. Subsequently, an in-depth study on the mathematical 

models available to predict the behaviour of aluminum deformation will be presented.

3.1 Basic Phenomena & Terminology

In terms of engineering processing, severe plastic cold working is typically carried out in order to change the 

shape of a metallic work piece. In terms of physical metallurgy, cold deformation is an increase of internal 

stored energy specifically associated with the accumulation of lattice defects. Even more specifically, the 

majority of stored energy in a cold worked metal (in our case aluminum) is in the form of dislocations 

(Orowan, 1934; Taylor, 1934; Polanyi, 1934). Other defects, such as point defects (i.e. vacancies and 

interstitials) or interfaces developed during athermal processes, only contribute a minor portion of the stored 

energy in the metal (Wever, 1924; Swan et al., 1963; Keh and Weissman, 1963). When observing the total 

deformation energy imposed on a metal during plastic straining, as small a fraction as 5-10% of this energy is 

actually stored in the material and most is dissipated as heat. In some cases at high strain rates, this can lead to 

significant temperature increases in the material up to several hundred degrees Celsius. However, the 

resulting build-up of defects in heavily cold worked materials is still great enough to be the driving force for 

non-equilibrium transformation phenomena summarized here as recovery, recrystallization, and grain 

coarsening (Kalisher, 1881; Sorby, 1886, 1887; Stead, 1898; Rosenhain, 1914; Ewing and Rosenhain, 1899, 

1900a, 1900b; Alterthum, 1922; Carpenter and Elam, 1920; Czochralski, 1927; Burgers and Louwerse, 1931). 

The order of dislocation density in most metal alloys ranges from 1010–1011 /m2 in the annealed state to 1012–

1013 /m2 after modest deformation. At low temperatures, dislocation density can be upwards of 1016 /m2 after 

heavy deformation. By taking the inverse of these we can estimate the average spacing between dislocations 

to be 1m for weakly deformed materials and 10 nm for heavily deformed materials. These high dislocation 

densities have a number of effects on the material properties; however, in this work we will focus only on the 

effect of mechanical behavior, such as hardness and strength. 

If one then observes the metal deformation in the meso-scale, the grain shape evolves and becomes distorted 

with cold working. Severe deformation can lead to the formation of new grains through grain refinement, 
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restricting the mobility of dislocations. Often, especially in aluminum alloys, shear bands of high local 

deformation will appear at higher stages of plastic straining. 

For continued cold working of heavily deformed materials, high strength and hardness associated with a 

decrease in ductility and toughness usually requires some method of restoration to the original soft material 

state. In this context, recovery, recrystallization, and grain growth are the most important and effective 

thermodynamic processing methods to return heavily cold-worked materials back to a soft and easily 

formable state (Burke and Turnbull, 1952; Smith, 1948; Beck and Hu, 1966; Haessner, 1978; Humphreys and 

Hatherly, 1995, 2004; Doherty et al., 1997; Doherty, 2005). Thus, the microstructure and mechanical 

properties of crystalline materials, after severe deformation, can be restored to their pre-deformed states 

before any further manufacturing steps. More recently, manufacturing techniques have been improved such 

that the material experiences these thermodynamic softening during plastic deformation, known as warm and 

hot forming.

Recovery involves the thermally activated motion, condensation, and annihilation of point defects. In terms of 

forming, and for the purposes of this work, recovery is specifically the annihilation and rearrangement of 

dislocations within the material (Burgers and Louwerse, 1931; Doherty et al., 1997). During deformation, the 

formation of subgrains with low-angle tilt and twist grain boundaries is pronounced. With continued recovery, 

dislocation annihilation and competitive subgrian growth take place (Humphreys, 1997). Recovery does not, 

however, affect the grain topology of the deformed polycrystal as it does not involve the motion of high-angle 

grain boundaries. Instead, dislocation rearrangement described above occurs within the deformed grain, 

yielding relatively small and continuous changes in hardness essentially due to the gradual decrease in elastic 

distortion (Clareborough et al., 1955). 

The mechanism of recovery overlaps with the onset of recrystallization, which can be characterized by 

discontinuous nucleation phenomena. In most materials (including aluminum) recrystallization nucleation is a 

result of sub-grain growth and a sufficiently high misorientation between the sub-grain and the surrounding 

deformed microstructure (Burgers, 1941; Doherty et al., 1997; Humphreys, 1997; Himmel, 1962). In other 

words, recrystallization describes the mechanism by which the formation and subsequent motion of new high-

angle grain boundaries is concerned. The newly formed boundaries sweep through the inherited deformation 

substructure discontinuously yielding a softer polycrystal microstructure (i.e. with lower dislocation density).

Recrystallization can occur only when there is significant thermal activation (usually at temperatures about 

half of the absolute melting temperature) and sufficient stored energy, and leads to the nucleation and growth 

of new strain-free grains in the deformed matrix (Kolmogorov, 1937). Since this process is discontinuous, 

recrystallized microstructures inherit local strain-free zones. These new strain-free zones are surrounded 

mostly by the sweeping front of new mobile high-angle grain boundaries (Beck and Hu, 1966; Humphreys 

and Hatherly, 1995; Humphreys, 1997; Himmel, 1962; Cahn, 1965, 1966; Kolmogorov, 1937; Johnson and 

Mehl, 1939; Avrami, 1939, 1940; Doherty and Cahn, 1972; Humphreys and Ferry, 1997; Faivre and Doherty 

1979; Bhatia and Cahn, 1978; Srolovitz et al., 1986; Sebald and Gottstein, 2002; Engler et al., 1996; Engler, 

1997; Humphreys, 1992a). During recrystallization, the strength and hardness of the material decreases 
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considerably faster than during recovery, and original ductility prior to forming can be restored. The 

recrystallization temperature, where the first stress-free grains appear, is dependent on the grain size, degree 

of plastic deformation, strain path, and presence of alloying solutes or secondary phase materials. 

Recrystallization is finished when either all of the originally deformed grains are swept by the mobile high-

angle boundaries, or the temperature is lowered below the recrystallization temperature. In the case of the 

former, competitive grain coarsening begins, changing the material strength and further increasing the average 

grain size contributing to decreasing the Hall-Petch effect. Grain growth is also thermodynamically motivated 

and aims towards the reduction of total grain boundary area in the material. The grain growth and recovery 

processes are relatively slow when compared to recrystallization. Recrystallization can occur very rapidly 

after the initial nucleation period, and in most cases can be modeled using sigmoidal-type kinetics (Raabe et 

al., 2014).

Experimental research and phenomenological modeling of metals at elevated temperatures has been widely 

studied, see e.g. (Abedrabbo et al,. 2006).  Experimental studies in the low temperature regime (Park and 

Niewczas, 2008) and warm forming temperature regime show strong thermal influence on the 

dynamic viscoplastic response of metals (Klopp et al., 1985) and strain-rate sensitivity (Li et 

al., 2007). Constitutive models to investigate the thermal elastic-plastic behaviour of metals have been 

developed; see e.g. (Kim et al., 2013; Kabirian et al., 2013; Khan and Baig, 2011; Perzyna, 1988).

3.2 Modeling Deformation

The primary goal of a work hardening theory is a prediction and/or explanation of the stress-strain curve. This 

is linked with the development of dislocations and substructures, and even a simple description of 

substructure requires many model parameters. Thus, any model beginning with the material’s known 

substructure must involve substantial collation of information as just the basic part of the model. On the other 

hand, any theory that starts with the stress-strain curve can at best hope to be in agreement with a very 

rudimentary approximation of substructural features. 

Mahabunphachai and Koc (2010) have reported the effect of temperature on the stress response of aluminum 

and aluminum alloy. Van Den Boogard and Huétink (2006) have used uniaxial tension experiments at 

elevated temperatures to fit a Vegter yield function and Bergstrom hardening model. Experiments revealed 

that local necking occurred far beyond the uniform strain at elevated temperatures and they postulated that 

this was caused by the strain rate sensitivity of AA5754. It was also observed that room temperature necking 

occurs at a slight diagonal across the test specimen, different from observations at elevated temperatures 

where necking orientation is perpendicular to the tensile direction. Li and Ghosh (2003) have studied 

temperature and strain rate effects on 5XXX and 6XXX series aluminum alloys during uniaxial  tension. 

Investigations in the warm forming temperature regime showed a decrease in hardening and increase in strain 

rate sensitivity with increasing temperature. They concluded that the warm formability of strain-

hardenable 5xxx series alloys is superior to that of the 6xxx series precipitation hardened alloys. 
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Macroscopic hardening behaviour at elevated temperatures for aluminum has been studied 

and numerical models have been developed to predict temperature and strain rate dpendent 

material hardening (Abedrabbo et al., 2006; Toros et al., 2008). Experimental studies with AA5754 

show that the temperature dependence of the viscoplastic behaviour and the strain-rate sensitivity 

during uniaxial tension is minimal at temperatures below 100ºC (Abedrabbo et al., 2007; Toros et al., 2010). 

Phenomenological models for warm forming processes (Kurukuri et al., 2009) and high temperature closed 

die forging of aluminum (Ganapathysubramanian and Zabaras, 2002) have been developed to account for 

such behaviour.  

Warm forming leads to decreased flow stress and increased ductility in all sheet alloys, allowing for deeper 

drawing and more stretching without design modifications or material microstructure refinement. Early 

studies on warm forming of aluminum alloys were performed by Dawson (1984) and Beaudoin et al. (1993, 

1994). Palumbo and Tricarico (2007) conducted experimental work on optimizing the warm deep drawing 

process of circular AA5754 sheets. It has been demonstrated that higher uniform temperatures improve 

formability, but the biggest gains can be obtained by applying temperature gradients. In addition, warm 

forming allows one to overcome serrated flow due to dynamic strain aging, the Portevin-Le Chatelier effect 

and Luder’s band formation resulting from interacting solutes and mobile dislocations (Abedrabbo et al. 

2007). Van Den Boogaard et al. (2001) have shown improved formability of AA5754 sheets during deep 

drawing where the cylindrical cup limiting draw ratio could be improved from 2.1 to 2.6 by increasing the 

flange temperature to 2500C. Van Den Boogard and Huétink (2006) used a Bergstrom hardening model to 

predict this behaviour but were unable to accurately capture the flow behaviour at high temperatures (above 

2000C). Kurukuri et al. (2009) applied the Nes (1998) dislocation based model to improve on the work of Van 

Den Boogaard and Huétink (2006) and concluded that, even with the correct description of a yield locus and 

the microstructure based work hardening model, deep-drawing simulations still differed from experimental 

results. This was especially the case for predicting thickness distributions. 

Recent leaps in computational power have allowed the usage of advanced “mechanism” based models such as 

crystal plasticity for the numerical simulation of metal forming. Roters et al. (2010) has presented an excellent 

overview on mechanical constitutive laws, kinematics and mutli-scale methods in crystal plasticity finite-

element modeling, and show that only works based on dislocation theory are capable of including thermal 

effects. Thermodynamical crystal plasticity, where temperature is introduced as a product of plastic work, has 

been used to study texture evolution and strain rate sensitivity of body-centred cubic (BCC) materials (Lee et 

al., 1997; Clayton, 2005). Kok et al. (2002) has developed a rate-dependent crystal plasticity framework based 

on isotropic mechanical threshold stress continuum model. Their model employed the Newton–

Raphson algorithm to perform a minimization process to find the material properties. Thermodynamical  

crystal plasticity coupled with damage for aluminum alloys (Srikanth and Zabaras, 1999) and dislocation-

based crystal plasticity multi-scale modeling has also been developed for metallic single crystals (Groh et al., 

2009; Hansen et al., 2013). Thermal loading in thin film crystals using  various thermodynamics based micro-

mechanical models (Yu et al., 1997; Faghihi et al. 2013) and on the latent hardening of face-centred cubic 

(FCC) polycrystals under complex loading paths (Gerard et al., 2013) have also been reported.  
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A better understanding of the temperature effects on the crystal lattice can be achieved by 

investigating fundamental physical behaviour of the material. It has been shown that thermodynamics is an 

integral part of molecular dynamics and dislocation dynamics (Amodeo and Ghoniem, 1990). Studies also 

show a strong temperature dependence of the elastic behaviour of metallic single crystals (Varshni, 

1970). Kocks (1976) also discussed a non-linear material strain-rate dependence on both temperature and 

crystal elastic moduli. Crystal Plasticity Finite Element Method (CPFEM) has been a valuable tool for 

studying elasto-viscoplastic behaviour of materials. The mechanical response of materials using 2D CPFEM 

has been widely studied (i.e., Kuroda and Tvergaard, 2004, 2007; Hu et al. 2010). However, it has also been 

shown that the 2D CPFEM is inadequate for modeling accurately the state of strain and stress as well as many 

other phenomena in sheet metal forming such as bending and surface roughness (Rossiter et al., 2013). 

3.3 Crystal Plasticity Finite Element  Modeling (CPFEM)

The elastic-plastic deformation response of crystalline materials depends on the loading direction. This 

anisotropic behavior is due to the directional dependence of deformation mechanisms (such as dislocations in 

aluminum polycrystals), and the orientation of the anisotropic elastic tensor. The result of this is that all 

associated mechanical phenomena, including but not limited to, shape change, crystallographic texture, 

strength, strain hardening, deformation-induced surface roughening, and damage are also dependent on 

crystallographic orientation. 

The most important mechanical measure in structural design is the uniaxial stress-strain curve (Roters et al., 

2010). This is a convenient description of plastic deformation as it reduces a six-dimensional yield surface 

and its evolution during loading to a one-dimensional yield curve. An example of this is presented in Figure 

3-1, where the anisotropy of an arbitrary material is shown by analyzing the varying flow stress behaviour in 

the three principle directions. Texture (orientation distribution) and texture evolution during deformation is 

also needed in plasticity theory. Texture can be used to describe the anisotropy of polycrystals by the 

individual tensor behavior of each grain and the interaction of grains at their boundaries. Texture evolution 

and its connection to shear can be explained by the decomposition of the deformation gradient into its skew-

symmetric portion, which describes pure rotation and leads to texture change, and its symmetric portion that 

relates to pure stretching. Plastic shearing thus creates both shape and orientation changes during deformation. 

Given the above, a theory of mechanical properties must include, firstly, crystallographic and anisotropic 

definitions of those physical mechanisms that create shear, and secondly, the orientations of crystals relative 

to applied loadings and reference frame.

Early approaches to describe plastic anisotropy with simple boundary conditions such as Sachs (1928), Taylor 

(1938), Bishop-Hill (1951a,b), or Kröner (1961) formulations were developed by simplifying assumptions of 

strain or stress homogeneity. They were not designed to consider explicitly the mechanical interactions among 

crystals in a polycrystal or for responding to complex internal and external loading boundary conditions.

To overcome these issues, variational methods in the form of finite-element (FE) approximations have gained 

tremendous momentum in the field of plasticity; see e.g Arsinelis et al. (2004). These crystal plasticity finite-
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element (CPFE) models are based on the variational solution of equilibrium between forces and compatibility 

of displacements using a weak form of the principal of virtual work within a finite-volume element. The FE 

model is built by the discretization of the specimen into these elements. The CPFE method employs the 

extensive knowledge gained from experimental and theoretical studies on single crystal deformation and 

dislocation dynamics (Curtin and Miller, 2003; Arsinelis et al., 2004; Vitek et al., 2004) to inform the further 

development of continuum field theories (Zienkiewicz and Taylor, 2005). 

The constitutive framework offered through variational crystal plasticity formulations provides a desirable 

tool for developing comprehensive theories of plasticity that applies the current knowledge of the physics of 

deformation processes to continuum mechanics computational tools with the goal of developing advanced and 

physically based engineering design methods (Roters et al., 2010). The success of CPFE methods can also be 

attributed to the ability to include various constitutive formulations for plastic flow and hardening at an 

elementary shear system level. The constitutive flow rules that have been suggested over the past few decades 

have developed from empirical viscoplastic formulations (Rice, 1971; Asaro and Rice, 1977) to physics-based 

models (Arsenlis et al., 2004; Arsenlis and Parks, 1999, 2002; Evers et al., 2002, 2004a,b; Cheong and Busso, 

2004; Ma and Roters, 2004; Ma et al., 2006a,b). It should be reiterated at this point that the FE method itself 

is not the actual model but the variational solver for the applied constitutive equations that maps the material 

anisotropy of elastic-plastic shear associated with various lattice defects (specifically dislocations in 

aluminum). The first introduction of this method by Pierce et al. (1982) has matured into a wide collection of 

constitutive and numerical formulations to be applied to a very wide variety of crystal-mechanical problems. 

A summary of major contributions using different applications for the CPFEM is presented in Table 3-1.
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Figure 3-1 Flow stress and strain hardening of anisotropic materials are tensor quantities (Roters et al., 2010).

3.3.1 Phenomenological CPFEM

Phenomenological constitutive models use the critical resolved shear stress (CRSS), τα
c  , as the state variable 

for each slip system, α. The slip system shear rate, ·γα, is then formulated as a function of the CRSS and the 

resolved shear stress, τα, such that:

·γα = f (τα, τα
c )            (3.1)

The evolution of the CRSS is expressed as a function of the total accumulated shear, γa, and the shear rate, ·γα, 

as follows:

τα
c = g(γa, ·γα)             (3.2)

Early formulations in this framework were developed by Rice et al. (1971), Hutchinson (1976), and Peirce et 

al. (1982, 1983) for face-centered cubic metallic single crystals. In these works, the kinetic law for single slip 

is written as:

·γα = ·γ0sgn(τα) τα

ταc

1
m

           (3.3)

where ·γ0, and m are material dependent parameters that represent the reference shear rate and slip rate 

sensitivity, respectively. The influence of any slip system, β, on the hardening behaviour of the slip system of 

interest, α, can be represented by the hardening matrix, hαβ, where:

·τα
c = ∑

β
hαβ | ·γβ |             (3.4)

Many empirical hardening models have been proposed to capture the micromechanical interactions between 

slip systems (Chang and Asaro, 1981; Asaro, 1983; Brown et al., 1989; Bassani and Wu, 1991). For instance, 

the following equation presents an exponential hardening law:

hαβ = qαβ h0 (1 − τβ
c

τβ
s )

a

          (3.5)

where h0, τs, and exponent a are hardening parameters. The latent hardening matrix qαβ has a value of 1.0 for 

coplanar systems of α and β, and 1.0-1.4 otherwise. A value other than 1.0 for non-coplanar systems leads to 

an anisotropic-type hardening model. 
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Table 3-1 Applications of the CPFE method (Roters et al., 2010).

Surface roughening, ridging, 
roping, thin film mechanics 

Grain boundary mechanics, Hall–
Petch behavior, grain interaction, 
grain size effects, strain gradient 
effects, non-local formulations, 
interface mechanics, superplasticity
 

Creep, high temperature 
deformation, diffusion mechanisms 
Dislocation-based constitutive 
modeling 

In-grain texture, grain-scale 
mechanics, mesoscale, non-
uniform deformation 

Texture evolution, texture stability, 
in-grain texture formation, 
anisotropy 

Forming, deep drawing, process 
modeling, cup drawing, spring-
back, earing, wire drawing, 
extrusion, anisotropy, design, 
fretting 

Crystal plasticity and 
recrystallization 

Deformation twinning 

Numerical aspects, FE shape 
effects, mesh dependence, 
accuracy, robust integration 
methods, texture discretization 

Damage, fatigue, cyclic loading, 
void growth 

Multiphase mechanics 

Becker (1998), Raabe et al. (2003), Zhao et al. (2004, 2008), Yue (2005), Siska et 
al. (2007)

Becker and Panchanadeeswaran (1995), Mika and Dawson (1998), Acharya and 
Beaudoin (2000), Meissonnier et al. (2001), Barbe et al. (2001), Raabe et al. 
(2001), Evers et al. (2002, 2004a,b), Park et al. (2002), Clarke et al. (2003), Wei 
and Anand (2004), Fu et al. (2004), Diard et al. (2005), Bate and Hutchinson 
(2005), Wei et al. (2006), Murphy et al. (2006), Deka et al. (2006), Ma et al. 
(2006a,b), Counts et al. (2008), Gurtin et al. (2007), Venkatramani et al. (2007), 
Okumura et al. (2007), Gerken and Dawson (2008a,b), Kuroda and Tvergaard 
(2008), Bitzek et al. (2008), Borg et al. (2008), Li et al. (2009)
 
McHugh and Mohrmann (1997), Balasubramanian and Anand (2002), Hasija et 
al. (2003), Bower and Wininger (2004), Venkatramani et al. (2007, 2008), 
Agarwal et al. (2007), Xu et al. (2009) Arsenlis and Parks (1999, 2009), Arsenlis 
and Tang (2003), Arsenlis et al. (2004), Evers et al. (2002, 2004a,b), Cheong and 
Busso (2004), Ma and Roters (2004), Ma et al. (2006a,b), McDowell (2008), Li et 
al. (2009)

Peirce et al. (1982, 1983), Beaudoin et al. (1995), Mika and Dawson (1998), 
Sarma and Dawson (1996a,b), Sarma et al. (1998), Forest (1998), Bhattacharyya 
et al. (2001), Raabe et al. (2001, 2002), Miller and Turner (2001), Sachtleber et 
al. (2002), Kim and Oh (2003), Clarke et al. (2003), Choi (2003), Zaefferer et al. 
(2003), Erieau and Rey (2004), Sarma and Radhakrishnan (2004), Roters et al. 
(2004), Kim et al. (2006), Murphy et al. (2006), daFonseca et al. (2006), You et 
al. (2006), Musienko et al. (2007), Han and Dawson (2007), Zhao et al. (2008), 
Zhang et al. (2009)
 
Asaro and Needleman (1985), Becker (1991), Becker et al. (1991), Bronkhorst et 
al. (1992), Kalidindi et al. (1992), Beaudoin et al. (1996), Bertram et al. (1997), 
Becker and Panchanadeeswaran (1995), Mika and Dawson (1999), Miehe et al. 
(1999), Kalidindi (2001), Balasubramanian and Anand (2002), Van Houtte et al. 
(2002, 2005, 2006), Delannay et al. (2002, 2006, 2009), Raabe et al. (2002, 
2004), Bate and An (2004), Li et al. (2004, 2005), Sarma and Radhakrishnan 
(2004), Anand (2004), Roters et al. (2005), Tang et al. (2006), Tikhovskiy et al. 
(2006, 2007), Lee et al. (2007), Mayeur et al. (2008)

Beaudoin et al. (1993, 1994), Neale (1993), Kalidindi and Schoenfeld (2000), 
Nakamachi et al. (2001, 2007), Zhao et al. (2001, 2004), Xie and Nakamachi 
(2002), Raabe et al. (2002, 2005), Goh et al. (2003), McGarry et al. (2004), 
Raabe and Roters (2004), Tugcu et al. (2004), Delannay et al. (2005, 2006, 2009), 
Li et al. (2005, 2008), Dick and Cailletaud (2006), Tikhovskiy et al. (2006, 2007), 
Chen et al. (2007), Raabe (2007), Ocenasek et al. (2007), Mayeur et al. (2008), Li 
et al. (2008), Zhuang et al. (2008), Zamiri et al. (2009)  

Bate (1999), Raabe and Becker (2000), Raabe (2000, 2002, 2007), Radhakrishnan 
et al. (2002), Takaki et al. (2007), Semiatin et al. (2007), Zambaldi et al. (2007), 
Loge et al. (2008) 

Kalidindi (1998), Staroselsky and Anand (1998, 2003), Marketz et al. (2002, 
2003), Salem et al. (2005)

Miehe (1996), Bachu and Kalidindi (1998), Harewood and McHugh (2006), 
Amirkhizi and Nemat-Nasser (2007), Harewood and McHugh (2007), Kuchnicki 
et al. (2006), Melchior and Delannay (2006), Zhao et al. (2007), Li et al. (2008), 
Ritz and Dawson (2009), Barton et al. (2001), Gerken and Dawson (2008b)

Bruzzi et al. (2001), Turkmen et al. (2002, 2003), Kysar et al. (2005), Sinha and 
Ghosh (2006), Potirniche et al. (2006), Zhang et al. (2007), Cheong et al. (2007), 
Dunne et al. (2007), Liu et al. (2007), Bieler et al. (2009), Kumar et al. (2008), 
Patil et al. (2008), Watanabe et al. (2008), McDowell (2008), Mayama et al. 
(2008), Borg et al. (2008)

Hartig and Mecking (2005), Tjahjanto et al. (2007), Mayeur et al. (2008), Inal et 
al. (2008), Vogler and Clayton (2008) 
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These kinetic formulations are the most widely used in current CPFE models, however they have a severe 

drawback in the sense that the material state is described using only a phenomenological description of the 

critical resolved shear stress τc. This is beneficial in simplifying a complex framework to a single state 

variable, however the model cannot capture directly the effects of lattice defect populations, such as alloying 

particles or dislocation densities.

3.3.2 Physics Based CPFEM

Recently, physically based models for CPFEM have become more prevalent. The physics based models, 

different from the phenomenological constitutive models in crystal plasticity, rely on internal state variables, 

most notably dislocation density. Models dependent on the evolution of dislocation densities to calculate flow 

stress have been proposed by many authors (Arsenlis et al., 2004; Arsenlis and Parks, 2002; Cheong and 

Busso, 2004; Ma et al. 2006a,b; Gao and Huang, 2003). Although dislocations are the most important internal 

variable for plastic deformation, more parameters are required for a full characterization of the material 

microstructure, such as; grain size, grain shape, precipitate morphology, etc. Up to now, only a few of these 

additional parameters have been implemented into dislocation-based CPFEM.

The dependence of flow stress on grain size was first hypothesized by Hall and Petch and their famous 

empirical equation (Hall, 1951; Petch, 1953). Many following studies have since shown the strengthening of a 

material by smaller grain sizes is due to a higher density of heterogeneous plastic deformation that develops 

near grain boundaries. Several explanations are available in literature based on dislocation mechanisms, such 

as mobile dislocation pile-ups at grain boundaries leading to strain gradients at the boundary interfaces, 

increasing the slip resistance (Evers et al., 2002). Furthermore, micro-scale experiments have also shown the 

length-scale dependence of flow stress beyond simple grain size effects. In these experiments non-uniform 

deformation leads to orientation and strain gradients that can be associated with geometrically necessary 

dislocations (GNDs) (Ashby, 1970). It is difficult to be able to incorporate GNDs into phenomenological 

CPFE models, while in dislocation density-based models; this concept can easily be integrated (Nye, 1953).

However, this introduces a new problem where calculation of strain gradients renders the constitutive model 

non-local, as it is now strongly coupled with it’s neighbouring points during the evolution of GNDs. This 

means that strain gradient calculations must converge for neighbouring points at each time increment. In order 

to achieve this, GNDs and statistically-stored dislocations (SSDs) are modelled to increase degrees of 

freedom for every material point, however this solution required additional boundary conditions for 

dislocation density flux (Roters et al., 2010). This increases the difficulty for complex loading cases. 

3.3.3 Saimoto-Van Houtte Constitutive Model

An alternative and more concise approach to the problem of including dislocation physics into a local 

framework was developed by Saimoto and Van Houtte (2011). In this constitutive relation based on crystal 

plasticity, the energy required to generate dislocations required to produce the imposed increment strain is 
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equated to the population of dislocations stored as determined from the flow stress. The amount of new 

dislocations generated can be calculated as follows

Δρcreate = PΔγ
λb

            (3.6)

where, λ (mean slip distance of dislocations) can be approximated as λ = C1τβ. Parameter P is related to 

perimeter geometry of moving dislocations, Δγ is the shear strain increment and b is the burgers vector. 

Statistical annihilation of dislocations is accounted for by multiplying P with annihilation factor 
1
A

. The 

amount of stored energy due to dislocations is calculated using Taylor’s equation

τ = αμb ρ            (3.7)

where α is a parameter related to the strength of obstacles (not to be confused with the superscript xα denoting 

a particular slip system), μ is the shear modulus of elasticity, and ρ is the dislocations density. Using these 

equations they were able to obtain a constitutive relation between flow stress and strain in terms of the 

parameters related to the evolving microstructure and can be approximated experimentally. The relationship is 

as follows:

τ = ( (2 + β )(αμb)2

4b )
1

2 + β

γ
1

2 + β ⋅ CP/A ⋅ ·γm        (3.8)

which can be rearranged to the form of equation (3.3) where the CRSS becomes

τc = CP/A ( (2 + β )(αμb)2

4b )
1

2 + β

γ
1

2 + β         (3.9)

The term CP/A is called the annihilation correction factor and represents the ratio P/A. The procedure for 

determining the material parameters used two curve-fits for aluminum––one for low-strain and another for 

high-strain––where the intersection of the two fits was suggested to be analogous to the stage II (athermal 

hardening) to III (dynamic recovery) transition denoted as τIII (Kocks and Mecking, 2003). Analysis of the 

model and results provided insight into the effect of dynamic recovery in stage III hardening. This model has 

been previously implemented into crystal plasticity (Brahme et al. 2011) and shows good predictability of 

flow stress and forming limit strains (using an M-K type formulation) at room temperature (see Chapter 5 for 

M-K forming limit analysis method). This model in particular could provide a solid foundation for a physics 

based implementation of thermodynamics into a crystal plasticity framework. 
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3.3.4 Recrystallization

New technology improving experimental abilities and numerical techniques have led to a significant increase 

in the theoretical and experimental knowledge of the dynamic recrystallization (DRX) phenomenon in recent 

years; however, modelling of DRX is still a challenging problem. This difficulty is primarily due to the multi-

scale nature of DRX phenomenon. It involves the effects of impurities, precipitation, dislocation motion, 

movement of the grain boundaries, etc. In addition, DRX is widely accepted as a relatively non-deterministic 

due to the concurrence of the grain boundary motion and the complexity of the solutions from dislocation 

based mechanics. One such example is that interactions between grain boundaries during recrystallization can 

have more than one stable state solution (Pond and Casey, 1992). 

Numerous works on recrystallization modelling exists. DRX has been modelled in the past using cellular 

automata (CA) (Hesselbarth and Göbel, 1991; Raabe, 2002, 1999), Monte-Carlo Potts model (Anderson et al., 

1984; Rollett and Raabe, 2001) and other techniques. In the CA models, the state of the entire aggregate is 

updated simultaneously, whereas in Monte Carlo models update of each site occurs randomly. Coupling these 

two approaches is a widely accepted method and is able to provide a better match with experimental data 

(Hesselbarth and Göbel, 1991; Goetz and Seetharaman, 1998; Raabe and Becker, 2000; Rollett and Raabe, 

2001; Ding and Guo, 2001; Hallberg et al., 2010). 

CPFEM coupled with various techniques has been used to model static and dynamic recrystallization 

(Radhakrishnan et al., 1998; Raabe and Becker, 2000; Takaki et al., 2007, 2009; Radhakrishnan and Sarma, 

2008; Takaki and Tomita, 2010; Li et al., 2013). One of the most recent works couples the CA method with 

CPFEM presenting a numerical framework to predict flow stress as well as texture evolution driven by DRX 

during hot deformation of HCP metals (Popova et al. 2015). The model used CPFEM to account for 

microstructural characteristics such as grain size, shape, texture, as well as experimental measurements of 

flow stress and critical resolved shear stress. The CPFEM also calculates state variables for the CA process, 

such as dislocation density, crystal orientation update, and velocity). The cells for CA are represented by the 

finite elements, eliminating the need for mapping from one method to the other. The CA formulation is 

responsible for using the CPFEM state variables to determine the location of nuclei and their growth.

The crystal plasticity formulation used in this model is modified from the Asaro and Needleman (1985) 

formulation for HCP polycrystals. The kinematics of recrystallization can be separated into three parts: the 

critical condition for DRX initiation, nucleation, and growth. 

The onset of DRX starts once the dislocation density reaches a critical threshold ρcrit (Roberts and Ahlblom, 

1978). According to the literature, DRX occurs with subgrain formation at boundaries reaching a critical size. 

Therefore the model incorporates the Takaki et al. (2009) condition for the onset of recrystallization as:

ρcrit = ( 20S ·ε
3bL Mλ2e )

1
3
           (3.10)
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where S is the Read and Shockley (1950) grain boundary energy per unit area, L is the dislocation mean free 

path, M is the grain boundary mobility, and λe = αμb2 is the dislocation line energy.

Cahn (1950) first introduced the idea of recrystallization nuclei as initiators of growth based on dislocation 

density. Brahme et al. (2012) presented a nucleation criterion based on experimental observations, where 

regions containing lower dislocation content surrounded by high dislocation content neighbours were chosen 

as potential nuclei. In this work, the disparity in dislocation density tensor (DDT) between adjacent elements 

is calculated with the Nye’s tensor (Nye, 1953) defined from the spatial gradient of the plastic component of 

the deformation gradient. The model proposed by Popova et al. (2015) instead uses the method of Arsenelis 

and Parks (1999) where the Nye’s tensor is represented by the edge and screw parts of the geometrically 

necessary dislocation densities (GNDs) and calculated using the shear strain  for each slip system as follows:

ρα
GN(e)b = − ∇γα ⋅ mα           (3.11)

ρα
GN(s)b = ∇γα ⋅ nα           (3.12)

where (e) and (s) correspond to edge and screw types of dislocations, respectively. The vector quantity mα 

represents the slip plane normal, and nα = sα × mα where sα is the slip direction. This formulation provides 

more direct information about the individual contribution of a particular slip plane to the total GND density 

due to the local strain gradients. The total GND density can then be calculated by the vector sum of the edge 

and screw components and finally the adjacent grain mismatch can be calculated as the difference in total 

dislocation density.

The kinematics and growth of the recrystallized grains has been found to be a function of the grain boundary 

mobility M and the stored deformation energy ( (Gottstein and Shvindlerman, 1999) such that

v = M(             (3.13)

where v is the grain boundary velocity. The stored deformation energy and mobility can be calculated by:

( = 1
2 ρμb2            (3.14)

M = M0 ⋅ exp ( Hm

kT )           (3.15)

where Hm is the activation enthalpy, k is the Boltzman constant, T is temperature and M0 is an athermal term 

that depends on the grain boundary misorientation.
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Lastly, during recrystallization, the sweeping grain boundaries leave behind strain-free grains. For the 

recrystallized elements, the flow stress needs to be updated from previous values by

σ = αμb ρ            (3.16)

This formulation is used as part of the CPFEM simulation along with the hybrid probabilistic CA method 

described in Popova et al. (2015).  Although results from this work are impressive, the authors mention 

several areas for improvement, such as the inclusion of statistically stored dislocations in the formation. The 

model also ignores the thermodynamic effects of strain hardening before recrystallization, instead the CPFEM 

hardening parameters are calibrated from room temperature experimental data. Coupling this work with a 

thermo-elasto-viscoplastic formulation would provide a tool to predict a wealth of material behaviour from 

flow stress to microstructure evolution for any desired temperature.
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Part I: A Three Dimensional (3D) Thermo-
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FCC Polycrystals

Edward D. Cyr1, Mohsen Mohammadi1, Raja K. Mishra2, Kaan Inal1

1 Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Canada, N2L 3G1

 2 General Motors Research & Development Center, Warren, MI 48090, USA

Abstract

Temperature has significant effect on the mechanical response of metals and alloys. Industrial processes often 

use high temperature forming to fabricate components of complex shape from alloys such as aluminum or 

magnesium that have low room temperature formability. Accurate forming models to integrate warm forming 

in computer aided engineering (CAE) in production environment has been hampered by a lack of constitutive 

relations at elevated temperatures, forcing one to rely on experimental data for such integration. In this 

chapter, a new thermo elasto-viscoplastic (TEV) constitutive relation is developed to model the behaviour of 

face-centred cubic (FCC) polycrystals, especially aluminum alloys, at elevated temperatures. The model takes 

into account the temperature dependence of the single crystal elastic coefficients, single slip hardening 

parameters, thermal softening, rate sensitivity, and the total deformation. The TEV framework has been 

implemented into the commercial finite element code LS-DYNA to study the effects of temperature on metal 

forming. Uniaxial tension simulations at six different temperatures ranging from 25°C to 260°C have been 

performed and calibrated with published experimental results. Equations for the variation of single-slip 

hardening parameters with temperature have been developed for the AA5754 aluminum alloy. Shear test 

simulations at different temperatures have been used to validate the model. The proposed framework for the 

single slip parameters for uniaxial tension accurately predicts the shear stress-shear strain data without the 

need for any further fitting parameter. Temperature dependence of texture evolution, single slip hardening and 

hardening rates, thermal softening, and slip activity in AA5754 sheet alloy during temperatures corresponding 

to warm forming temperatures are investigated. 

Keywords: Cutting and forming; Constitutive behaviour; Crystal plasticity; Elastic-viscoplastic material; 

Finite elements.
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4.1 Background

With the need to form new and complex metallic components for industrial and commercial applications, 

warm forming has become an attractive technology to increase the formability of metals (Li and Ghosh, 

2003). Automotive industries often use high temperature forming to manufacture vehicle parts from 

aluminum and magnesium that have low formability at room temperature. In engineering design and the 

production environment there is a need for constitutive relations at elevated temperatures to accurately model 

warm forming processes using computer-aided engineering (CAE). This lack of technology has forced 

industry to rely on costly experimental data for such integration. Better understanding of warm forming 

significantly improves the usage of metals such as aluminum and magnesium in light-weighting of vehicles. 

Aluminum provides many benefits over steel in automotive applications due to its corrosion resistance and 

high strength to weight ratio. Vehicle weight can be significantly reduced by replacing steel components with 

aluminum, such as door panels, deck lids, roof panels, and bumper beams (Toros et al., 2008). In an effort to 

reduce carbon emissions and improve fuel economy, vehicle weight reduction is one of the simplest solutions. 

In modern vehicles, aluminum AA5754 sheet has been most widely used to replace steel exterior panel 

components (Toros et al., 2008). 

Experimental research and phenomenological modeling of metals at elevated temperatures has been widely 

studied, see e.g. (Abedrabbo et al., 2006). Experimental studies in the low temperature regime (Niewczas and 

Park, 2008) and warm forming temperature regime show strong thermal influence on the dynamic 

viscoplastic response of metals (Klopp et al., 1985) and strain-rate sensitivity (Li et al., 2007). Constitutive 

models to investigate the thermal elastic-plastic behaviour of metals have been developed; see e.g. (Kim et al., 

2013; Kabirian et al., 2013; Khan and Baig, 2011; Perzyna, 1988).  

Mahabunphachai and Koc (2010) have reported the effect of temperature on the stress response of aluminum 

and aluminum alloys. Van Den Boogaard and Huétink (2006) have used uniaxial tension experiments at 

elevated temperatures to fit a Vegter yield function and Bergstrom hardening model. Experiments revealed 

that local necking occurred far beyond the uniform strain at elevated temperatures and they postulated that 

this was caused by the strain rate sensitivity of AA5754. It was also observed that room temperature necking 

occurs at a slight diagonal across the test specimen, different from observations at elevated temperatures 

where necking orientation is perpendicular to the tensile direction. Li and Ghosh (2003) have studied 

temperature and strain rate effects on 5XXX and 6XXX series aluminum alloys during uniaxial tension. 

Investigations in the warm forming temperature regime showed a decrease in hardening and increase in strain 

rate sensitivity with increasing temperature. They concluded that the warm formability of strain-hardenable 

5xxx series alloys is superior to that of the 6xxx series precipitation hardened alloys.

Macroscopic hardening behaviour at elevated temperatures for aluminum has been studied and numerical 

models have been developed to predict temperature and strain rate dependent material hardening (Abedrabbo 

et al., 2006; Toros et al., 2010). Experimental studies with AA5754 show that the temperature dependence of 

the viscoplastic behaviour and the strain-rate sensitivity during uniaxial tension is minimal at temperatures 

below 100ºC (Abedrabbo et al., 2007; Toros et al., 2010). Phenomenological model for warm forming 
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processes (Kurukuri et al., 2009) and high temperature closed die forging of aluminum 

(Ganapathysubramanian and Zabaras, 2002) have been developed that account for such behaviour. 

Warm forming leads to decreased flow stress and increased ductility in Al-Mg sheet alloys, allowing for 

deeper drawing and more stretching without design modifications or material microstructure refinement. 

Early studies on warm forming of aluminum alloys were performed by Dawson (1984) and Beaudoin et al. 

(1993, 1994). Palumbo and Tricarico (2007) conducted experimental work on optimizing the warm deep 

drawing process of circular AA5754 sheets. It has been demonstrated that uniform temperature increase 

improves formability, but the biggest gains can be obtained by applying temperature gradients. In addition, 

warm forming allows one to overcome serrated flow due to dynamic strain aging, the Portevin-Le Chatelier 

effect and Luder’s band formation resulting from interacting solutes and mobile dislocations (Abedrabbo et al. 

2007). Van Den Boogaard et al. (2001) have shown improved formability of AA5754 sheets during deep 

drawing where the cylindrical cup limiting draw ratio could be improved from 2.1 to 2.6 by increasing the 

flange temperature to 2500C. Van Den Boogard and Huétink (2006) used a Bergstrom hardening model to 

predict this behaviour but were unable to accurately capture the flow behaviour at high temperatures (above 

2000C). Kurukuri et al. (2009) applied the NES dislocation based model to improve on the work of Van Den 

Boogaard and Huétink (2006) and concluded that, even with the correct description of a yield locus and the 

microstructure based work hardening model, deep-drawing simulations still differed from experimental 

results. This was especially the case for predicting thickness distributions.

Recent leaps in computational power have allowed the usage of advanced “mechanism” based models such as 

crystal plasticity for the numerical simulation of metal forming. Roters et al. (2010) has presented an excellent 

overview on mechanical constitutive laws, kinematics and mutli-scale methods in crystal plasticity finite-

element modeling, and show that only works based on dislocation theory are capable of including thermal 

effects. Thermodynamical crystal plasticity, where temperature is introduced as a product of plastic work, has 

been used to study texture evolution and strain rate sensitivity of body-centred cubic (BCC) materials (Lee et 

al., 1997; Clayton, 2005). Kok et al. (2002) has developed a rate-dependent crystal plasticity framework based 

on isotropic mechanical threshold stress continuum model. Their model employed the Newton-Raphson 

algorithm to perform a minimization process to find the material properties. Thermodynamical crystal 

plasticity coupled with damage for aluminum alloys (Srikanth and Zabaras, 1999) and dislocation-based 

crystal plasticity multi-scale modeling has also been developed for metallic single crystals (Groh et al., 2009; 

Hansen et al., 2013). Thermal loading in thin film crystals using various thermodynamics based 

micromechanical models (Yu et al., 1997; Faghihi et al. 2013) and on the latent hardening of face-centred 

cubic (FCC) polycrystals under complex loading paths (Gerard et al., 2013) have also been reported. 

Single crystal elastic coefficients are important material properties and the temperature dependences of the 

elastic coefficients for alloys and compounds at different temperatures and pressures have received significant 

amount of interest (i.e., Wang et al., 2005; Bouhemadou et al., 2012). Different experimental methods have 

been used to measure single crystal elastic constants (Hearmon et al., 1946; Yoo et al., 1997). Simmons and 

Wang (1971) summarized the single crystal constants of different metals and aggregates for various 

temperatures including aluminum-magnesium alloys. However, measuring these constants at different 
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temperatures and pressures for alloys of different compositions is both time and money consuming. Thus, 

different computational techniques such as first-principle calculations based on density functional theory have 

been recently employed to calculate the elastic constants of materials (Shang et al., 2007; Kim et al., 2009; Yu 

et al., 2009).

4.2 Approach

Better understanding of the effect of temperature on the crystal lattice can be achieved by investigating the 

fundamental physical behaviour of the material. It has been shown that thermodynamics is an integral part of 

molecular dynamics and dislocation dynamics (Amodeo and Ghoniem, 1990). Studies also show a strong 

temperature dependence of the elastic behaviour of metallic single crystals (Varshni, 1970). Kocks (1976) also 

discussed a non-linear material strain-rate dependence on both temperature and crystal elastic moduli. Crystal 

Plasticity Finite Element Method (CPFEM) has been a valuable tool for studying elasto-viscoplastic 

behaviour of materials. The mechanical response of materials using 2D CPFEM has been widely studied (i.e., 

Kuroda and Tvergaard, 2004, 2007; Hu et al. 2010). However, it has also been shown that the 2D CPFEM is 

inadequate for modeling accurately the state of strain and stress as well as many other phenomena in sheet 

metal forming such as bending and surface roughness (Rossiter et al., 2013).

Up to the knowledge of the authors, there is no physically based constitutive model that can be used to 

accurately describe and predict metal forming behaviour at elevated temperatures for polycrystals. In the 

contributions with coupled thermo-mechanical crystal plasticity models, temperature dependence has not been 

incorporated completely. For example Jain and Agnew (2007) employed Asaro and Needleman (1985) 

framework to model temperature dependence of twinning in HCP Magnesium alloys without incorporating 

components for temperature, such as thermal deformation gradient and thermal slip softening. Furthermore, 

some of the more comprehensive coupled thermo-mechanical crystal plasticity models (Clayton, 2005; Lee et 

al., 1997) consider constant single slip hardening parameters with respect to temperature. Thus, for modeling 

different strain paths, such as uniaxial tension, shear, or compression at elevated temperatures, separate 

experiments need to be completed to calibrate single slip hardening parameters to predict each corresponding 

stress-strain curve. Lastly it is observed that the temperature dependence of elastic coefficients has a 

considerable effect on the deformation field in some warm forming processes, such as spring-back. This 

phenomenon has not been investigated in regards to polycrystal deformation at elevated temperatures.

In this chapter, a new 3D thermo elasto-viscoplastic (TEV) constitutive model based on the work of Asaro 

and Needleman (1985) and Rossiter et al., (2010) is developed to accurately model the behaviour of 

aluminum alloys at elevated temperatures up to the recrystallization temperature. The original crystal 

plasticity formulation has been improved to comprehensively include the effects of temperature. The thermal 

deformation gradient and temperature dependence of elastic coefficients is considered. A new thermal slip-

softening model is developed and employed to control the thermal effect on slip rates. Lastly, three new 

equations are developed to describe the temperature dependence of single-slip hardening parameters. The 

commercial finite element package LS-DYNA is used to implement the new 3D thermo elasto-viscoplastic 

constitutive model in order to investigate the three-dimensional capabilities of the model. Uniaxial tension 

28



simulations for different temperatures between 25ºC and 260ºC are performed and the constitutive model is 

calibrated with existing experimental data for AA5754. The three hardening parameter equations are 

developed from the uniaxial data to predict the variation of slip hardening. Furthermore, simple shear 

simulations are carried out to validate the uniqueness of the identified equations for the single-slip hardening 

determined from uniaxial simulations. 

4.3 Thermo-Elasto-Viscoplastic (TEV) Constitutive Model

The rate-dependent polycrystal plasticity framework developed by Asaro and Needleman (1985) and further 

by Inal et al. (2002) and Rossiter et al. (2010) is used as the basis of this analysis. The constitutive law is 

developed for a FCC single crystal and then is implemented in 3D finite element commercial software. 

4.3.1 Kinematics of Deformation

In order to completely capture the kinematics of deformation for a single crystal under both thermal and 

mechanical loads, the material and the total lattice deformation are decomposed into elastic and rigid body 

rotation, permanent plastic deformation, and thermal deformation. These deformations are shown in Figure 

4-1. 

Figure 4-1 Decomposition of total deformation tensor to plastic, thermal expansion, and elastic - rigid body 

rotation components.

Thus, the total deformation gradient can then be written as

F = F*FθFP            (4.1)

where, FP considers only crystallographic slip and F* embodies elastic deformation and rigid body rotation. 

Thermal deformation, Fθ, consists of the thermal expansion of the material and lattice during transient 

analysis. 
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The spatial velocity gradient in the current configuration then becomes

L = ·FF−1 = L* + Lθ + LP          (4.2)

where,

L* = ·F*F*−1            (4.3)

Lθ = ·F* ( ·FθFθ−1) F*−1           (4.4)

LP = ·F* ·Fθ ( ·FPFP−1) Fθ−1F*−1          (4.5)

The thermal deformation is assumed to be isotropic (Lee et al., 1997), i.e.

·FθFθ−1 = αT
·θ I            (4.6)

where θ is the temperature change measured from the reference state, αT is the coefficient of thermal 

expansion representing change in length per unit current length per unit increment θ, and I is the unit identity 

tensor.

Taking the symmetric and antisymmetric parts of the velocity gradient leads to the elastic, thermal, and plastic 

strain-rates D*, Dθ, and DP, and the rigid lattice rotation and plastic spin W * and WP.

D = D* + Dθ + DP           (4.7)

W = W * + WP             (4.8)

It is assumed that the thermal expansion acts hydrostatically and therefore does not contribute to lattice spin, 

i.e. W θ = 0 . 

Lattice vectors s(α) and m(α) corresponding to slip direction and slip-plane normal are assumed to stretch and 

rotate by

S*
(α) = F*Fθs(α)             (4.9)

M*
(α) = m(α)Fθ−1F*−1           (4.10)

where α represents the 12 slip systems in an FCC crystal. The following symmetric and skew-symmetric 

tensors are calculated for each slip system α

P(α) = 1
2 (S*

(α) ⊗ M*
(α) + M*

(α) ⊗ S*
(α))         (4.11)
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W(α) = 1
2 (S*

(α) ⊗ M*
(α) − M*

(α) ⊗ S*
(α))         (4.12)

The crystal plastic strain-rate and spin can then be written as

DP = ∑
α

P(α)
·γ(α)            (4.13)

WP = ∑
α

W(α)
·γ(α)           (4.14)

where ·γ(α) is the shear-rate on slip system α.

4.3.2 Constitutive Model

Introducing ∇τ as the Jaumann rate of the Kirchoff stress tensor τ (where τ = Jσ), the elastic constitutive 

equation for a single crystal can be written as

 
∇
τ* = ·τ − W *τ + τW * = LD*          (4.15)

where the symmetric tensor L is the tensor of elastic constants. To configure the constitutive equation in terms 

of the Jaumann rate of Cauchy stress (σ = det (F )−1τ), the second order tensor R(α) is introduced as follows

R(α) = LP(α) + W(α)σ − σW(α)          (4.16)

Using (4.7), (4.8), (4.13), (4.14) and (4.16) the constitutive equation can be rewritten as follows

∇σ = LD − ·σ0 − σ t rD           (4.17)

where ·σ0 is a slip-rate dependent viscoplastic-type stress rate defined as 

·σ0 = ∑
α

R(α)
·γ(α)            (4.18)

4.3.3 Temperature Dependency of Elastic Constants

The symmetric anisotropic elastic constants tensor L is well known and it is written as

 .
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For the FCC single crystal, C11 = C22 = C33, C12 = C13 = C23, and C44 = C55 = C66. Therefore, the  tensor can 

be simplified to 3 elastic constants C11, C12 and C44.

Numerous investigations were made during 1950s and 1960s to formulate the temperature dependence of 

elastic constants (i.e., Bornand and Huang (1954), Alers and Waldorf (1961)). Slagle and McKinstry (1967) 

proposed a polynomial equation for the temperature dependence of elastic constants. Subsequently, Watchman 

et al. (1961) proposed an exponential temperature variation for Young’s modulus. Based on the work of Slagle 

and McKinstry (1967) and Watchman et al. (1961), Varshni (1970) postulated two equations to formulate 

temperature dependence of stiffness coefficients Cij.

The following general theoretical model was first proposed by Watchman et al. (1961) and Varshni (1970) in 

order to formulate the temperature dependence of elastic coefficient 

C = C0 − s

(et/T − 1)
           (4.19)

where C, C0, s and t are elastic coefficients and T is temperature in Kelvin. A brief discussion on the origins of 

Equation (33) was first presented by Varshni (1970). It has been derived from work done by Leibfried and 

Ludwig (1961) and Einstein’s model for a harmonic crystal (Girifalco, 2000). The coefficient C0  represents 

the elastic constants at 0 Kelvin, t is related to Einstein characteristic temperature (A. Einstein, 1907; L. 

Girifalco, 2000), and s is another known material constant, which is related to zero-temperature harmonic 

elastic stiffness coefficient (Suzuki et al. 2011). In equation (4.19), the coefficients s and t are defined as 

(Slagle and Mckinstry, 1967)

s = C0Bhv            (4.20)

t = hv /k             (4.21)

Where B is a coefficient related to the type of crystal and h, v and k are material constants. The coefficients  s 

and t are found from measured (or calculated) data rather than equations (4.20) and (4.21).

4.3.3.1 Numerical Implementation

Equation (4.22) represents the tensor form of equation (4.19), and was used by Varshni (1970) to accurately 

predict elastic constants for aluminum to within 0.04% average error over 16 sample temperatures between 0 

and 300K. However, it is acceptable to use this equation to formulate the temperature dependence of alloys 

for most of the temperature range (Varshni, 1970).

Cij = c0
ij −

sij

(etij /θ − 1)
           (4.22)
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where c0
ij, sij and tij are material constants. Table 4-1 contains these material constants for aluminum (Varshni, 

1970) and Figure 4-2 demonstrates the temperature dependence of aluminum using equation (4.22) for 

temperature between 0 and 800 K. 

Figure 4-2 Calculated adiabatic elastic stiffness constants of aluminum obtained from equation (4.22).

Table 4-1 Value of parameters in equation (4.22) (Varshni, 1970).

4.3.4 Shear Rates and Rate Sensitivity

The well-known power-law rule is employed in this model to govern shear slip rates as follows

·γ(α) = ·γ0sgnτ(α)
τ(α)

g(α)

1/m

          (4.23)

where ·γ0 is a reference shear rate assumed to be constant across all slip systems, τ(α) is the resolved shear 

stress on slip system, g(α) is its current hardness, and m is the strain-rate sensitivity. In this framework, the 

slip-rate effect of temperature is embedded in g(α). This is described in further detail in Section 4.3.4.
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The new model employs a power law model for crystallographic slip with a temperature dependent strain rate 

exponent. The temperature dependence of strain-rate sensitivity is accounted for using the formulation 

suggested by Kocks (1976);  

m = 9k θ

b3 μf (μf − ηf )
           (4.24)

where, k is the Boltzmann constant, b is the Burgers vector and θ is temperature in Kelvin. The elastic 

parameters can be related to the classical elastic stiffness parameters from the previous section as μf = C44 

and ηf = C44 + 1/2(C12 − C11).

4.3.5 Proposed thermal softening model

In the current crystal plasticity formulation, slip hardening is due to the accumulation of slip or shear on 

active slip systems. The proposed model employs a thermal softening function to update g(α) by 

g(α) = g0(α)Ts(θ )            (4.25)

where Ts(θ ) represents a thermal softening function (factor) of current temperature θ, and g(α) is the slip 

hardening at reference temperature θ0. Rossiter et al. (2010) proposed a linear model for thermal slip 

softening where at room temperature Ts(θr) = 1, and at melting temperature Ts(θm) = 0,

Ts(θ ) = θm − θ
θm − θr

            (4.26)

Clayton (2005) used a power law type model suggested by Klopp et al. (1985) of the form

Ts(θ ) = ( θ
θ0 )

p

            (4.27)

where p is the thermal softening exponent (p < 0) and θ0 a reference temperature. Klopp et al. (1985) used 

equation (4.27) to predict softening behaviour for pure aluminum and Clayton (2005) for tungsten. 

Lee et al. (1997) suggested an exponential form to represent thermal softening that applies directly to the 

single-slip shear-rate equation, becoming

·γ(α) = ·γ0sgnτ(α)
τ(α)

g(α)

1/m

exp(−λΔθ )         (4.28)

where λ is the thermal softening parameter and Δθ is the total temperature increase. 
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The above equations of thermally induced slip-softening are reasonable representations at temperatures close 

to room temperature; however, they are not applicable at temperatures approaching melting and/or absolute 

zero. Clayton and Klopp’s equations, i.e. equation (4.27), increase to infinity at 0K and do not decay to zero at 

melting temperature. Physically, this implies that the slip system has infinite strength at absolute zero and 

retains some strength as a liquid at melting temperature. The linear model also suggests an increasing slip 

strength to several times that of room temperature at 0K.

Remark 1: Due to the aforementioned issues, a new thermal softening equation is proposed to represent 

thermal softening on the range of absolute zero to melting temperature that can be written as

Ts(θ ) = 1 − ( θ
θm )

p

           (4.29)

where, p is the softening sensitivity index of the temperature effect on slip softening and θm is the material’s 

melting temperature. 

Predictions with the discussed thermal-softening models are presented in Figure 4-3, where thermal softening 

equations are plotted against temperature. The data suggests that behaviour of alloyed aluminum, specifically 

AA5754, is different from that of the pure metal where variations in temperature near ambient show 

significant stress-strain variations. For alloyed AA5754, stress response is not noticeably affected until 

temperatures of approximately 350–400 Kelvin (Abedrabbo et al., 2007). If thermal softening is correctly 

represented by these functions, the corresponding plot should approach unity at cryogenic temperatures and 

decay to zero from ambient to melting temperature. The findings in literature also suggest that the effect of 

thermal softening increases non-linearly with increasing temperature. 

The form of Eq. (4.25) along with Eq. (4.29) is intuitively chosen based on the macroscopic uniaxial stress-

strain data presented by (Abedrabbo et al., 2007) for different temperatures. This is of similar form to the 

work presented by Kocks et al. (1975) in lower scales for the activation energy to overcome glide resistance 

and the mechanical threshold stress theorem (Follansbee and Kocks, 1988). In their work, the resistance to 

dislocation glide was presented using a thermodynamical framework; however, in the present work, this effect 

is described in the hardening equation, where higher temperature leads to easier glide. Finally, it is noted that, 

equation (4.29) is valid in the temperature range that the present analysis is based on for AA5754, i.e. 

0.3θm < θ < 0.5θm. It was shown by Kocks et al. (1975) that the material behaviour is different in different 

temperature regimes and the physics has to capture these effects via different equations in other regions.

Figure 4-4 presents a summary of the effect of the thermal softening sensitivity index, p, on the proposed 

thermal softening equation. When the sensitivity index is unity, the thermal softening equation linearly 

decreases from the absolute zero to melting temperature. An increase in the sensitivity index increases the 

curvature of the softening equation. Physically, this means that a greater sensitivity corresponds to an 

increased resistance to thermal softening with respect to increasing temperature. For higher values, such as 

six, the thermal softening factor, Ts, stays near unity up to 0.5 of homologous temperature, at which point it 
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starts to rapidly decay to zero. In this study, a thermal softening sensitivity index of p = 4.0 provided the best 

results.

The proposed equation (4.29) agrees well with the experimental stress-strain data found in literature. At low 

temperatures (below ambient temperature) the effect of thermal softening is minimal and increases with 

increasing temperature. A thermal softening intensity of p = 4.0 was chosen for this model and can reproduce 

reported experiments, where the effect of temperature on stress response is not significant until temperatures 

near 350–400K for aluminum (Abedrabbo et al., 2006; Toros et al., 2010).

4.3.6 Hardening model 

The evolution of the slip system hardening function g0(α) is defined in rate form ·g0(α) so that;

·g0(α) = ∑
β

h(αβ)
·γ(β)            (4.30)

where h(αβ) are the components of the hardening moduli defined as

h(αβ) = q(αβ)h(β) (no sum on β )         (4.31)

Here h(β) = h(β)(θ ) is a temperature dependent single slip hardening rate, and q(αβ) is the matrix describing the 

latent hardening behaviour.

The components of h(αβ) depend on deformation history and accumulated slip. This formulation considers the 

simple power-law form for single slip hardening (Peirce et al. 1983) modified to include temperature 

dependence;

h(β) = h0 ( h0γa

τ0n
+ 1)

n−1

          (4.32)

where h0 = h0(θ ) is the reference hardening rate, n = n(θ ) is the hardening exponent, and τ0 = τ0(θ ) is the 

reference shear strength. This was considered in phenomenological modeling previously by Abedrabbo et al. 

(2007), where they studied the temperature effects on the flow rule proposed by Wagoner et al. (1988). They 

experimentally showed that the material hardening coefficients varied with temperature and from their flow 

rule developed equations to describe the temperature dependence of hardening parameters for 5xxx series 

aluminum alloys. 
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Figure 4-3 Comparison of thermal slip-softening models.

Figure 4-4 The effect of softening intensity index  on the thermal softening factor  obtained from equation 

(4.29) for proposed model for aluminum with θm = 873K.
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 Remark 2: The difficulty in determining temperature dependence is capturing the correct hardening. In an 

attempt to do this, experimental data was examined for AA5754 over a wide range of temperatures and strain 

rates. The temperature dependence of the material strain-rate sensitivity has been studied extensively and the 

proposed relationship is described previously (see section 4.3.4). For this work, the above relationship for 

strain rate sensitivity will be employed.

In regards to the hardening parameters n, τ0, and h0, temperature dependency was estimated using knowledge 

of related physical phenomenon during elevated temperature forming in conjunction with the available 

experimental data. The hardening exponent, n, can be considered as a rate of dislocation pile-up during 

deformation. The rate of dislocations stored in the material is a result of the plastic deformation and strain-rate 

leading to dislocation production, and the thermally dependent rate of dislocation annihilation.  Dislocation 

annihilation, leading to material softening, is a thermally motivated process. Thus, at increasing temperatures, 

this mechanism competes with dislocation recovery and the rate of dislocation pile-up, n, decreases. The 

experimental data suggests that for AA5754 this is a linear dependence, in the temperature range (25ºC – 

260ºC) studied. 

The second hardening parameter τ0 is related to the initial slip strength, or physically speaking, the 

mechanical stress required on a given slip direction to cause slip or dislocation. In terms of energy, the 

mechanical and thermal inputs contribute to overcoming this “slip activation energy” barrier. If we assume the 

resistance to slip is material dependent and constant for a single material, then if we increase the input from 

thermal energy, the mechanical input may be lessened while still causing slip. Thus, the slip strength in terms 

of energy remains constant, however the contribution required through mechanical stress can be adjusted by 

changing the thermal contribution, i.e. temperature. Experimental data in the warm forming regime suggested 

a linear dependence between the slip strength and temperature. 

The last parameter h0 is related to the mechanism at the transition from elastic to plastic deformation. The 

onset of plastic deformation occurs when the applied mechanical stress overcomes the slip strength. It is 

assumed that the material is initially without dislocations, or at least the dislocation content is insignificant. 

Therefore the initial hardening rate h0 can be considered purely as the rate of dislocation production. The 

initial rate of dislocation annihilation is assumed to be negligible due to the lack of dislocations present in the 

materials. Furthermore, at high temperatures where dislocation annihilation and dynamic recovery are certain 

to be dominant, there is still material hardening that occurs during the initial plastic deformation. This was 

also confirmed by the experimental stress-strain data. The difficulty, however is determining the temperature 

dependence, which is not linear. After examination of the experimental stress-strain data, it was assumed that 

this dependence was exponential with respect to temperature.
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In this formulation the hardening exponent, reference slip strength, and hardening rate are assumed to be 

temperature dependent as follows

n = n̄0 + ψ ( T
Tm )           (4.32)

τ0 = τ̄0 + ϕ ( T
Tm )           (4.33)

h0 = h̄0 exp(χ
T
Tm )           (4.34)

where n̄0, τ̄0, and h̄0, are material constants representing the hardening exponent, mechanical threshold stress 

for slip, and transition hardening rate at zero Kelvin, respectively. Parameters ψ and ϕ describe the linear 

temperature dependence of the hardening exponent and CRSS, respectively, while χ describes an exponential 

temperature dependence for the transition hardening rate. The material temperature θ is normalized using the 

melting temperature θm in Kelvin. These parameters were calibrated using uniaxial tension experiments at 

four different temperatures. The process is described in Section 4.4 for AA5754.

4.4 Finite Element Implementation

In this section, the forward Euler subroutine for implementing the TEV crystal plasticity model in commercial 

explicit finite element software LS-DYNA is summarized. The details of the basic formulation can be found 

in Rossiter et al., (2010). 

4.4.1 Forward Euler Algorithm

This approach employs slip rates  and temperature at time  to compute quantities for time. Known values for 

each subroutine entry are as follows  

F(n+1), F(n), θ(n+1), θ(n), Pα
(n), Wα

(n), σ(n), and Δt.        (4.35)

The time rate of temperature change for the current time-step is updated by

·θ =
θ(n+1) − θ(n)

Δt
             (4.36)

and the thermal deformation for t(n+1) is 

Fθ
(n+1) = eαT

·θIΔtFθ
(n).           (4.37)

Lattice slip plane normal  and slip direction  can then be updated and rotated into the current configuration by 

the following equations
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S*
α(n+1) = F*

(n+1)Fθ
(n+1)Q(n+1)s(α)          (4.38)

M*
α(n+1) = m(α)Q(n+1)(Fθ

(n+1))−1(F*
(n+1))−1.        (4.39)

Unlike in equations (4.9) and (4.10), which is for a single crystal formulation, here the crystal axis must be 

rotated into the lab system using the orientation matrix Q. The orientation matrix is updated using the method 

of Raphanel et al., (2004) and the Euler angles (ϕ1, Φ, and ϕ2) are computed and used to track the evolution 

of the texture of the material in polycrystal calculations (Kocks et al., 2001; Rossiter et al., 2010).

Lastly, the total slip γa, slip hardening h(β), and slip strengths g(α) are updated as follows

γa(n+1) = γa(n) + ∑
α

·γ(α)(n) Δt          (4.40)

h(β)(θ ) = h0 ( h0γa

τ0n
+ 1)

(n−1)

          (4.41)

g(α)(n+1) = g(α)(n) + ∑
β

h(αβ)(n+1)
·γ(β)(n)

Δt 1 − (
θ(n+1)

θm )
p

.     (4.42)

It is noted that total accumulated slip γa is not equal to γ(α), and the coefficients h0, τ0, and n are all functions 

of temperature in this study. 

4.4.2 Construction of Finite Element Model

In this chapter, numerical simulations of uniaxial tension and simple shear are performed for the AA5754 

aluminum alloy sheet. The chemical composition of this alloy is listed in Table 4-2. The thermal expansion 

coefficient for this alloy is 24.1 × 10−6 [1/K ] (Hidnert & Krider, 1952). The three-dimensional (3D) grain 

structure and orientation data are obtained in a voxelized form from serial sectioning as in Schaffer et al. 

(2007). A statistically equivalent data set of the polycrystal structure is created for each simulation as 

explained in the following section, and the microstructure is converted into a 3D mesh for each simulation as 

explained in Sections 4.4.1 and 4.4.2.

Table 4-2 Chemical composition of AA5754 aluminum alloy (wt%).

  Alloy Mg Mn Cr Fe Si Cu Al
  AA5754 3.1 0.25 <0.01 0.24 <0.1 0.02 Balance
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4.4.3 Construction of Microstructure

Synthetic microstructures (both grain morphology and crystallographic orientation) are generated using 

experimental two-dimensional (2D) electron backscatter diffraction (EBSD) maps. Using the 2D maps, a 3D 

statistically equivalent microstructure is built via the so-called microstructure builder. The details of this 

method can be found in (Brahme et al., 2006).

The generated 3D microstructure for uniaxial tension simulations is shown in Figure 4-4. The FE mesh is 

built using a single finite element per grain in an 1800 x 1800 x 1800 cube. The polycrystal aggregate is 

comprised of 5832 grains. It is noted that, the grains are assigned at random and the grain colours have no 

reflection on grain orientations.

 

Figure 4-5 Initial FE per grain microstructure and texture pole figure for uniaxial tension simulation.

The microstructure generated for the simple shear simulations is presented in Figure 4-6. The microstructure 

is comprised of 175 grains and is sampled on a 180x30x30 element grid in x, y, and z directions respectively. 

As in the previous case, the grain colours do not reflect their crystallographic orientation.

Figure 4-6 3D finite element mesh with visible voxelized grains.
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Using the experimentally measured texture, shown in Figure 4-7(a), a statistically equivalent texture is 

generated, i.e. Figure 4-7(b). This generated texture is applied to a 3D finite element mesh constructed for the 

numerical simulations. Once the mesh is built, the boundary conditions are applied as described in Sections 

4.5.1 and 4.54..2 and the numerical model presented in Section 4.4.1 is employed to study the effects of 

temperature on large plastic deformation.

(a)  (b)

Figure 4-7 (a) Measured texture, and (b) statistically equivalent generated texture.

4.5 Results and Discussion

In this section, numerical simulations for uniaxial tension and simple shear are performed with the proposed 

thermo-plasticity constitutive model. As a first step the behaviour of the hardening parameters h0(θ ), τ0(θ ), 

and n(θ ) as a function of temperature are determined (as presented in equations (4.32)-(4.34). Experimental 

data for low strain rate is used from Abedrabbo et al. (2010) to eliminate the temperature effect on strain rate 

sensitivity in the model. For initial simulations, the new model assumes a constant strain rate sensitivity index 

of 0.02. Simulations of simple shear (at different temperatures) are then performed and the predictions are 

compared with available experimental data (Pandey et al. 2013). Parametric studies are presented on thermal 

softening intensity index, p, and its effect on the polycrystal response at various temperatures. Finally, 

analysis on the temperature dependence of elastic constants is also presented. 

It is noted that, deformation mechanisms in “hot” temperatures such as dynamic recrystallization, grain 

boundary sliding, and dynamic recovery are not considered in this constitutive model. These mechanisms for 

most aluminum alloys are active above 250ºC (Doherty et al. 1997 and McQueen et al. 2011). The hot 

deformation of some of these alloys have been studied experimentally and numerically; i.e., Ravichandran 

and Prasad, (1991) and Yan et al. (2012). Van Den Boogaard et al. (2006) modeled warm cup drawing 

behaviour of aluminum sheet 5754 and was able to reasonably fit the flow stress below 200ºC. However, they 

were not able to predict the flow stress behaviour at 200ºC, suggesting a new physics involved with the 

material deformation mechanisms above this temperature. 
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4.5.1 Uniaxial Tension

The finite element (FE) mesh employed in the crystal plasticity numerical analyses is a representative volume 

element (RVE) of AA5754-O sheet, and has dimensions of 1.8mm x 1.8mm x 1.8mm. This corresponds to a 

polycrystal aggregate with 5832 grains and initial grain size of 100 microns. Finally, the model applies quarter 

symmetry boundary conditions and assumes no initial geometric imperfections. 

4.5.1.1 Material Calibration

Four uniaxial tension simulations are completed at 250C, 1480C, 2040C, and 2320C and associated hardening 

parameters are adjusted to fit the macroscopic stress-strain curves to experimental data from Abedrabbo, et al. 

(2007). Subsequently, material constants from the three equations for hardening parameters h0(θ ), τ0(θ ), and 

n(θ ) (presented in Section 4.3.6) are determined. Next, using these equations, new hardening parameters are 

estimated for two new temperatures: one within (177ºC) and one above (260ºC) the calibration data set. 

Figure 4-8 shows the numerical simulation stress-strain curves for uniaxial tension at the calibration 

temperatures plotted with the corresponding experimental data (Abedrabbo, et al., 2007). The material 

properties employed to generate these curves are found in Table 4-3. The numerical simulations provide 

accurate predictions of experimental measurements. With increasing temperature, ductility increases and 

hardening decreases. This is well captured by the model up to the macroscopic failure strain.

Figure 4-8 Experimentally measured and simulation uniaxial stress-strain results.

Table 4-3 shows that the hardening parameters have a strong dependence on temperature. The hardening 

exponent, n, is controlled by the first derivative of macroscopic stress with respect to strain (∂σ /∂γ) and as 

expected decreases with increasing temperature. The reference critical resolved shear strength (CRSS) τ0, 

increases linearly with increasing temperature. Furthermore, due to the nature of the power-law hardening 

43



model, it was also expected that the reference hardening rate, h0, would increase exponentially with 

increasing temperature. 

Table 4-3 Material hardening properties used to generate stress-strain curves in Figure 4-8.

4.5.1.2 Temperature dependence of hardening parameters

From the results summarized in Table 4-3, the constants from equations (4.32)–(4.34) are determined to 

describe the temperature dependence of the power-law hardening parameters and are plotted as solid black 

dots in Figures 4-9 to 4-11. From these equations, the material hardening properties for two new temperatures 

(177ºC and 260ºC) are determined and are represented in Figures 4-9 to 4-11 as open black dots. Equations 

(4.32)–(4.34) are shown as solid lines.

The linear relationship for the hardening exponent, n, presented in equation (4.32) as a function of absolute 

temperature is found to have constants n̄0 = 0.4547 and ψ = − 0.5767. Figure 4-9 shows the fitted values for 

hardening exponent, n, vs. temperature from Table 4-4 as equation (4.32) with the values determined for n̄0 

and ψ above. Predicted values for  at 177ºC and 260ºC using equation (4.32) are truncated after two 

significant digits and provide sufficient accuracy.

The linear relationship for CRSS τ0 presented in equation (4.33) as a function of absolute temperature is 

found to have constants τ̄0 = 17.01 MPa and ϕ = 10.25. Figure 4-10 shows the fitted values for CRSS, τ0, vs. 

temperature from Table 4-4 as well as equation (4.33) with the values determined for τ̄0 and ϕ above. For 

simulations, predicted values for τ0 at 177ºC and 260ºC using equation (4.33) are sufficient with three 

significant digits.

Finally, the constants in the exponential relationship for reference hardening rate h0 in equation (4.34), are 

found to be h̄0 = 128.3 MPa and χ = 9.640. Figure 4-11 shows the fitted values for h0 vs. temperature from 

Table 4-4 as equation (4.34) with above values for h̄0 and χ. Sufficient values predicted for h0 at 177ºC and 

260ºC from equation (4.34) require only two significant digits.
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Figure 4-9 Single slip hardening exponent vs. temperature and equation (4.32).

Figure 4-10 Reference CRSS vs. temperature and equation (4.33).
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Figure 4-11 Reference single slip shear hardening rates vs. temperature using equation (4.34).

4.5.1.3 Model Verification

Due to the form of the employed hardening model, the results showed a strong temperature sensitivity of 

hardening exponent n, reference hardening rate h0, and mild sensitivity of CRSS τ0. Four temperatures are 

required for calibration due to the exponential behaviour of h0. Using the above equations, parameters at two 

new temperatures are determined to predict the behaviour of one internal temperature of 177ºC (with respect 

to the calibration data) and one external temperature of 260ºC, as presented above. These temperatures are 

chosen to test the predictability of the new model within the calibrated temperature range, as well as above 

the calibrated temperature range. Table 4-4 presents the material hardening parameters obtained by curve 

fitting as well as the parameters predicted by the developed temperature dependent hardening equations 

(shaded). 

Table 4-4 Single-slip hardening parameters. Values in white were used in calibration while shaded values 

were predicted from equations (4.32) to (4.34).

46



Using the predicted hardening values for 177ºC and 260ºC presented above, simulations of uniaxial tension 

are carried out and compared to the measured experimental data from Abedrabbo et al. (2007). Results are 

presented in Figure 4-12. It is noted that, the prediction for 177ºC is in very good agreement with the 

experimental results, while the prediction for 260ºC simulation slightly deviates from the experimental results 

after approximately 20% of true strain. This suggests that the deformation mechanisms at 260ºC are different 

than the deformation mechanisms active at 232ºC and below (Doherty et al. 1997). In addition, this can also 

be the effect of non-uniform flow at elevated temperatures and high strains.

Figure 4-13 shows the deformed 3D microstructure after uniaxial tension in two extreme temperatures of 

25ºC and 232ºC. The mesh contour plots show the effective strain level at 20% macroscopic strain. It is clear 

in Figure 4-13 that the deformed shapes are similar for both cases, thus the plots at intermediate temperatures 

need not be presented here. Local hot spots can be seen close to the mesh edges and have slightly higher 

intensities at warmer simulated temperatures. It should be noted that, these local high strain regions could be 

the results of edge effects. The effective strains at failure are clearly different for different temperatures, 

which is not included here.

Prasad and Sasidhara (1997) have shown that for Al 2-5% Mg alloys, dynamic recrystalization is active at hot 

working temperatures above approximately 300–350ºC. They also present a general temperature range of 

40-60% of the homologous temperature where dynamic recovery begins to become an active mechanism 

during deformation. This corresponds to approximately 250ºC–350ºC for AA5754. It should be mentioned 

that, in the power-law hardening model, only thermal softening due to crystallographic slip-strength is 

considered. The presence of other deformation mechanisms (thermally activated) above 250ºC is a possible 

explanation for the difference between the predictions at 260ºC and the experimental data. However, it is 

noted that, the initial yielding and hardening up to 20% true strain is still well captured by the simulation 

results. This suggests that up to this point, thermally induced slip-softening is still the governing thermal 

softening mechanism as the accumulated deformation energy has not yet exceeded a critical value for these 

high temperature mechanisms to initiate (Doherty et al. 1997, McQueen et al. 2011, and Popova et al. 2015).

4.5.2 Simple Shear 

The predominant deformation mode during material failure is shear (Rossiter et al. 2010). Kang et al. (2006) 

experimentally investigated shear localization behaviour in the form of PLC bands in continuous cast (CC) 

and direct chill (DC) cast AA5754 sheets at room temperature. They use a novel set up and samples to capture 

the interaction of PLC bands with shear bands triggering localized necking in uniaxial tension tests. Yoon et 

al. (2005) have used crystal plasticity and a phenomenological yield surface model to predict anisotropic 

behaviour of aluminum due to texture evolution in simple shear, noticing a strong dependence of texture 

evolution on the anisotropic hardening behaviour. In this section, simple shear simulations employing a 

synthetic microstructure are presented using predicted hardening parameters from equations (4.32)–(4.34) and 

compared with normalized shear stress-shear strain data from literature.
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Figure 4-12 Simulated vs. experimental uniaxial tension stress-strain curves using predicted hardening 

values.

25ºC

232ºC

Figure 4-13 Contours of Effective Strain (Von-Mises) at 25ºC and 232ºC. The overall effective strain 

localization appears to have no temperature dependency.
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4.5.2.1 Model Validation

Numerical simulations of simple shear were performed and the predicted microscopic (texture evolution) and 

macroscopic (τ–γ) responses were compared to experimental data presented by Pandey et al. (2013). 

Boundary conditions employed for simple shear in the rolling direction are as follows. The y = 0 plane is 

constrained in the x and y-directions to prevent translation of the model. All nodes in the y = 300µm plane are 

constrained in the y-direction and are prescribed a constant velocity in the x-direction. The z = 0 plane is 

constrained in the z-direction only. All nodes in the z = 300µm plane are constrained to move uniformly in the 

z-direction to satisfy the plane stress assumption. Nodes in the x = 0 and x = 1800µm planes are not 

constrained. 

A 3D finite element mesh was generated for the RVE for AA5754. The EBSD map was used to generate a 

1800µm x 300µm x 300µm statistically equivalent 3D microstructure of 175 grains with average grain size of 

60 microns. The FE model (for shear) shown in Figure 4-6 has 180 elements along the x-axis (RD) and 30 

elements along the y-axis (TD) and z-axis (ND). Figure 4-14 shows the experimental initial texture measured 

by Pandey et al. (2013) and the statistically equivalent texture employed in the numerical analysis. 

 (a) (b)

Figure 4-14 Initial experimental texture (a) and statistically equivalent initial texture (b).

Using the same material properties determined by uniaxial tension using equations (4.32)–(4.34), the shear 

stress-strain curves are calculated for 25ºC, 148ºC, and 232ºC. The predicted shear stress-shear strain 

(normalized) curves as well as the experimental curves at three different temperatures are presented in Figure 

4-15. It can be seen that, without any modification of the material properties, the proposed model provides 

excellent matches with experimental results for all temperatures considered. 

A texture analysis is completed to discuss the effects of texture evolution using TEV model. Final 

experimentally measured pole figures for 25ºC and 232ºC after the shear tests by (Pandey et al., 2013) are 

shown in Figure 4-16. Figure 4-17 shows the predicted pole figures for the deformed specimen at 25ºC and 

232ºC using TEV model. Pandey et al. (2013) experimentally showed that there is no apparent effect of 

temperature or strain rate on the texture evolution of FCC aluminum under simple shear or uniaxial tension. It 

can be seen that, the numerical model also predicts this behaviour and well captures the deformed textures. 

The predicted textures for the intermediate temperatures are also in good agreement with the experimental 

data.

49



Figure 4-15 Normalized shear stress vs. shear strain for experimental (Pandey et al. 2013) and simulated 

AA5754 polycrystal at 25ºC, 150ºC, and 232ºC.

4.5.3 Numerical Analysis

Fringe plots of accumulated shear at 30% shear strain in simple shear tests are presented in Figure 4-18. The 

strain localization during deformation is similar at the three simulated temperatures. At all three temperatures, 

there are visible shear bands that have developed both in the plane of shear (x-y) as well as out of plane of 

shear (x-z). The high temperature simulation shows slightly greater peaks in accumulated shear at localization 

areas; however, the general strain development and strain pattern are not strongly affected by temperature. 

This agrees well with findings from Pandey et al. (2013). All numerical simulations have identical initial 

microstructures and crystal orientations, which are the only facets by which anisotropy is introduced to the 

material. This anisotropy, as well as the texture evolution, controls the local strain development during 

deformation. The experimental and numerical results show that texture evolution is not strongly influenced by 

temperature; therefore the strain localization in the deformed materials should be similar between 25ºC and 

232ºC. 

Presented in Figure 4-19 is a plot of shear stress vs. shear strain under simple shear at 25ºC, 150ºC and 232ºC. 

It is noted that, almost a 50% difference in final developed stress is observed in the simulation results between 

room temperature and 232ºC. Variation in initial yielding shows the reverse behaviour; where at higher 

temperatures the initial stress before yielding is greater. This can be explained by the definition of the CRSS 

(τ0) behaviour with respect to temperature. The numerical analysis presented in Section 4.5.1.3 found a 

positively increasing relationship between CRSS and temperature to accurately capture the yielding in 

uniaxial tension. The result is observed as a minor variation in yield stresses in the simple shear simulations. 
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25ºC  232ºC

Figure 4-16 Pole figures for experimentally measured texture of deformed specimens ( γ / 3 = 0.2) at 25ºC 

and 232ºC from experiment (Pandey et al. 2013).

25ºC   232ºC

Figure 4-17 Pole figures of deformed texture (γ / 3 = 0.2) at 25ºC and 232ºC from CPFEM simulation.
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Figure 4-18 Simulation of simple shear deformation to γ = 0.3 at 25ºC, 150ºC and 232ºC with contours of 

local accumulated shear (γa) and outlined “hot spots” with high local accumulated shear.

Figure 4-19: Macroscopic shear stress-shear strain curves for 25ºC, 150ºC and 232ºC simulations 

corresponding to the contour plots presented above.
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Figure 4-20 Simple shear macroscopic hardening rates for 25ºC, 150ºC and 232ºC.

Figure 4-20 shows the macroscopic hardening rates calculated from the shear stress-shear strain curves 

presented in Figure 4-19. The hardening rates curves are as expected where lower hardening rates correspond 

to higher temperature deformation. It is interesting to note that the hardening rates do not converge, but rather 

remain near parallel at high strain levels.

Lastly, Figure 4-21 presents the averaged single slip (absolute) shear rates for the polycrystal at the three 

simulation temperatures. Highest shear rates and slip activity are developed at 232ºC. Room temperature 

provides the lowest shear rates, and therefore the lowest slip activity. However, the difference between 

average slip activity is extremely small (on the order of 1% variation). This result agrees with the strain 

localization results presented previously, where temperature appears to have little effect on the strain 

localization and accumulation of the material. 

53



Figure 4-21 Simple Shear average single-slip shear rates at 25ºC, 150ºC and 232ºC.

4.5.4 Effect of thermal softening sensitivity index

Thermal softening sensitivity index p, i.e. equation (4.29), determines the sensitivity of the single crystal slip 

strength to an increase in temperature above absolute zero. A low sensitivity index, such as one, yields a linear 

relation between thermal softening and temperature. As the sensitivity index increases, the material becomes 

more resistant to thermal softening with increasing temperature. A large sensitivity index yields a highly non-

linear relation between thermal softening and temperature, where noticeable effects of thermal softening are 

not present until above 50% of the homologous temperature (for example a sensitivity index of six). In this 

study, the thermal softening sensitivity index for AA5754 that provided the best results when compared to 

experimental data was when p was equal to four.

Uniaxial tension simulation stress-strain data at 25ºC, 148ºC, and 232ºC for various softening intensities are 

presented in Figure 4-22. For consistency with experimental results, the simulation data was truncated at the 

experimental failure strains. It can be seen from Figure 4-22 that softening sensitivity indices 4 and 6 yield 

similar results at room temperature, while a sensitivity of 2 lowers the stress response by approximately 50 

MPa at 20% true strain. As temperature increases, a noticeable difference appears between sensitivity indices 

4 and 6. The interesting behaviour to note is that, for all temperatures, a variation in the sensitivity index does 

not affect the hardening behaviour or shape; rather it acts similar to a linear translation of stress. This is made 

clearer by plotting the corresponding hardening rates.
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Figure 4-22 Uniaxial tension average macroscopic stress for varying thermal softening sensitivity.
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Figure 4-23 Uniaxial tension macroscopic hardening rates for varying thermal softening sensitivity. 

Figure 4-23 presents hardening rates for the above softening sensitivity stress-strain plots. Here it is more 

obvious to see the translation of hardening rates between varying sensitivity indices. This is useful for 

modeling the slip governed hardening behaviour as it can be completely captured by the three hardening 

parameters ( h0, τ0, n). The thermal softening sensitivity then softens all slip systems equally according to 

working temperature.
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4.5.5 Elastic Stiffness Parameter Sensitivity

To show the significance of the variation of elastic constants and their effect on the total stress response, a 

sensitivity analysis is completed. It is not expected that the temperature dependence of the elastic stiffness 

significantly affects the results at plasticity dominated high strains. This is demonstrated in Figure 4-24, 

where the difference in stress responses between constant (evaluated at 25ºC) and temperature dependent Cij 

simulations under uniaxial tension converges to zero after approximately 2% true strain. However, the 

simulation shows a noticeable difference between the stress responses during elastic loading and initial 

yielding. The thermally softened elastic stiffness results in a lower initial hardening and lower yielding than 

the constant elastic stiffness simulation. 

Over the range of 25-232ºC, the elastic stiffness for FCC aluminum is not dramatically significant (see Figure 

4-2), therefore another simulation is completed to see the effect of varying Cij parameters to that of other FCC 

materials. Simulations are performed at three temperatures, 25ºC, 148ºC and 232ºC. To investigate the effect 

of the Cij elastic coefficients on the stress response, two different FCC material’s elastic properties are 

simulated and compared with that of aluminum. All other material parameters are left unchanged in these 

simulations. Single crystal elastic moduli for copper and lead were chosen. Copper exhibits approximately 

twice the C11 stiffness constant of aluminum and has similar temperature dependence. Lead has significantly 

lower stiffness constants than aluminum and much higher temperature dependence. This approach is taken 

rather than a simple scaling of elastic parameters to investigate the influence of physical values, since not only 

is the magnitude of the stiffness coefficients important, but also the relative magnitude between C11, C12, C44. 

Elastic stiffness properties used for the sensitivity analysis are listed in table 4-5.

Figure 4-24 Constant Cij vs. temperature variable Cij under uniaxial tension at 232ºC.
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Table 4-5 Elastic stiffness parameters for Al, Cu, and Pb (from Varshni, 1970).

Figures 4-25 to 4-27 present the results from the Cij sensitivity analysis using the three material constants 

described previously up to 5% strain. The simulation results presented below show an average 50% difference 

in stress at initial yielding to 1% strain between aluminum and lead. At higher strains the difference remains 

high at approximately 10% between aluminum and lead at 5% strain at 25ºC, but is decreased at higher 

temperatures with only 3% difference at 232ºC at the same strain. In addition, copper exhibits the highest 

developed stress and the material with the lowest stiffness, lead, experiences the lowest stress. Hardening 

behaviour is similar for all temperatures; however, it is apparent that the stress-strain curves are converging 

with increasing plastic strain. The greatest variation occurs at very low strains, as expected from the previous 

results. It is also important to note that the high temperature dependence of lead is strongly represented by 

these results. The initial yielding in lead is drastically lower than copper and aluminum as the temperature is 

increased, which are relatively similar in regards to their elastic thermal sensitivity.

Previous work has taken little consideration into the effect of elastic stiffness parameters on material 

response; see e.g. Clayton, (2005) and Beyerlin et al. (2013). In some applications, such as bending, elastic 

stiffness is strongly involved in material response. Especially in the fabrication of components, elastic 

recovery in the form of springback after forming––most notably in bending––can severely affect the product 

performance. Springback introduces residual stresses to the material and is undesirable due to the negative 

effects on fatigue performance (Cleveland and Gosh, 2002). Burchitz (2005) studied springback and its 

predictability with regards to elastic modulus and found that a variation in elastic modulus, over yield strength 

and hardening rate, had the greatest effect on springback simulation results in sheet forming of a metal car 

roof. A similar study also found that a variable rather than constant elastic modulus better predicted 

springback experimental results (Kim et al., 2011). In their simulations it was shown that with a 10-20% 

decrease in elastic stiffness the shape of the final product changes considerably.
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Figure 4-25 Uniaxial stress-strain response at 25ºC for elastic constants corresponding to Aluminum, Copper, 

and Lead.

Figure 4-26 Uniaxial stress-strain response at 148ºC for elastic constants corresponding to Aluminum, 

Copper, and Lead.
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Figure 4-27 Uniaxial stress-strain response at 232ºC for elastic constants corresponding to Aluminum, 

Copper, and Lead.

4.6 Conclusions

In this chapter, a new three-dimensional thermo-elasto-viscoplastic (TEV) constitutive relation was developed 

to accurately model the behaviour of FCC polycrystals. The model employs the temperature dependence of 

the single crystal elastic coefficients, single slip hardening parameters, thermal slip-softening, rate sensitivity, 

and thermal deformation. The model was first calibrated using four uniaxial tension simulations and analytical 

equations were developed to represent the temperature dependence of single crystal hardening parameters for 

aluminum AA5754-O sheets. Validation simulations were then completed with simple shear tests. The 

following conclusions can be drawn from this study:

• Numerical equations developed to describe the temperature dependence of slip hardening parameters 

provided excellent hardening behaviour predictability between 25ºC and 232ºC in both uniaxial tension and 

simple shear. Initial hardening up to 20% strain is also well captured for uniaxial tension at 260ºC; however, 

high temperature deformation mechanisms, such as dynamic recrystallization and dynamic recovery, that may 

be present at this high energy state, were not captured by the new model.

• In agreement with findings in literature, the effect of temperature on texture evolution during uniaxial 

tension and simple shear simulations was insignificant. Texture evolution at room temperature was an 

accurate approximation for high temperature texture evolution below dynamic recrystallization and recovery 

temperatures.
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• A new analytical thermal softening parameter was introduced to describe the slip softening behaviour as 

temperature increased. The relation was derived from experimental observation and well predicted the 

softening behaviour of FCC aluminum AA5754 at temperatures up to 232ºC when thermal sensitivity 

parameter was equal to four. 

• Normalized simple shear simulations compared very well with experimental data at 25ºC, 148ºC and 

232ºC, without any further adjustments. The model could therefore be calibrated by a single experiment of 

four tests and then employed in other deformation modes without the need for recalibration.

• Both in uniaxial tension and simple shear, the slip activity and strain localization increased with increasing 

temperature; however, this increase was extremely small, on the order of 1% variation between 25ºC and 

232ºC. 

• A comparison between elastic coefficients of different materials provided evidence that the material 

response depended on both the magnitude of the stiffness constants and the relative ratios between C11,  C12 

and C44.
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Abstract

Industrial processes often use high temperature forming of alloys such as aluminum that have unsatisfactory 

room temperature formability. Accurate forming models to integrate warm forming in production 

environment has been hampered by a lack of constitutive relations at elevated temperatures, forcing one to 

rely on experimental data for such integration. In this chapter, the new thermo elasto-viscoplastic (TEV) 

crystal plasticity constitutive framework developed by Cyr et al. (2015) is implemented in an Marciniak-

Kuczynski (1967) analysis to predict the forming limit diagrams (FLDs) of the AA5754 and AA3003 

aluminum alloys at elevated temperatures. The model takes into account the temperature dependence of the 

single crystal elastic coefficients, single slip hardening parameters, thermal softening, slip rate sensitivity, and 

the total deformation. Temperature dependent hardening parameters have been determined through curve 

fitting the simulated stress-strain response with experiments during uniaxial tension at room and elevated 

temperatures. The calibration of the TEV model for the single slip parameters in uniaxial tension is shown to 

provide accurate predictions of the experimental forming limit diagrams (FLDs) without the need for further 

curve fitting. The effects of elastic constants and thermal softening on FLD prediction are discussed, and 

equations are developed to predict the temperature dependence of single-slip hardening parameters and so-

called initial imperfection parameter employed in the Marciniak-Kuczynski (M-K) analysis. The predictive 

capability of the new model is then demonstrated by FLD simulations for various elevated temperatures.

Keywords: Crystal plasticity; forming limit diagram; temperature; M-K analysis; FCC; aluminum alloys.

61



5.1 Introduction

Light-weight metals such as aluminum can be employed to replace low carbon steels; however, they are 

hindered by relatively poor formability at room temperature. In addition, new vehicle designs put higher 

demands on complex forming geometries and processes, further driving the need to improve the formability 

of aluminum alloys. Particular to automotive applications, sheet metal forming can be significantly improved 

by the process of warm forming (Li and Gosh 2003).

The concept of a forming limit diagram (FLD) as a measure of formability was first introduced by Keeler 

(1965) for the tension-tension domain and extended by Goodwin (1968) to the tension-compression domain. 

It has since been used as a standard tool to study the extent to which metal sheets can be deformed without 

localized necking or fracture. There has been extensive research on experimental FLD analysis since the 

1960’s (Hecker 1975, Ghosh and Hecker 1974) and more recently (Rees 1996, Kim et al. 2003, Banabic and 

Siegert 2004, Yoshida and Kuwabara 2007, Schwindt et al. 2015, Xu et al. 2015). Although the concept of 

experimental determination of FLD is simple, the implementation is difficult and very time consuming. In 

addition, there is a large scatter in experimental data resulting in not very accurate FLDs. To overcome this, 

much effort has been made to develop reliable simulation tools to numerically determine FLDs. 

Early theoretical analysis of localized necking was based on Hill’s criteria for rigid plastic solids (Hill 1952). 

This was not a realistic model for predicting necking in the biaxial strain regime. The first analytical approach 

to determining biaxial straining behaviour was by Marciniak and Kuczynski (1967) now known as the M-K 

approach. This method employed an artificial imperfection in an infinite sheet. Increasing load increases 

strain in the imperfection until the sheet fails, and predicts results for FLDs quite well (Marciniak and 

Kuczynski 1967, Wu et al. 1997). The M-K approach is now well established for sheet necking among 

scientists and engineers and is the method employed in this study. 

The method was later improved in 80’s and 90’s to account for different aspects of forming processes on 

determining FLD (Marciniak et al. 1973, Hutchinson and coworkers 1978a,b,c). Phenomenological models to 

determine FLDs have been widely used and expanded to include many metal forming phenomena, such as 

material anisotropy, strain rate sensitivity, and microstructure (Barlat 1987, 1989). More recently, valuable 

contributions have been made to predict FLD curves with more accurate models (Ganser et al. 2000, 

Knockaert et al. 2002, Butuc et al. 2003, Stoughton and Zhu 2004, Eyckens et al. 2009, 2011, Wu et al. 2009, 

Allwood and Shoulder 2009, Zadpoor et al. 2009, Zhang et al. 2012, Franz et al. 2013, Chung et al. 2014a,b, 

Schindt et al. 2015). This has also been extended to include the effects of temperature on FLDs (Abedrabbo et 

al. 2006a,b, Khan and Baig 2007, Bagheriasl 2012, Li et al. 2013, Ghavam et al. 2014); however, these 

phenomenological models are very arduous to calibrate, requiring many experiments and are only valid for 

monotonic loading. For complex metal forming, this assumption of monotonic loading for predicting limit 

strains is not adequate. Physically based models, such as crystal plasticity, are generally more expensive to 

use. However, the parameters of the physics-based models are linked with microscopic deformation quantities 

and evolve with plastic deformation allowing for non-proportional loading analysis. With the advancement in 

computational power, these models are becoming more reasonable for numerical study (Inal, 2002). 
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Wu et al. (1997) introduced the first M-K and polycrystal model based on a Taylor type crystal plasticity 

formulation. Many recent studies have employed physics-based models for predicting FLDs. It has been well 

documented that phenomena such as initial imperfection, texture, hardening rate, and constitutive model 

affect prediction of FLDs (Wu et al. 1997, Inal et al. 2005, Wen et al. 2005, Neil and Agnew 2009, Signorelli 

et al. 2009, Yang et al. 2010, Serenelli et al. 2011, Chiba et al. 2013, Erinosho et al. 2013). However, none of 

these models address the effects of temperature and warm forming hardening behaviour on the FLD. The 

construction of these theoretical FLDs require an accurate constitutive model, such as the ones presented by 

Cyr et al. (2015) and Clayton (2005).

Warm forming allows for decreased flow stress and increased ductility in aluminum sheet alloys. This can 

yield a deeper draw and more stretching before failure without design modifications or material 

microstructure refinement. Experimental work conducted by Palumbo and Tricarico (2007) investigated 

optimizing the warm deep drawing process of circular AA5754 sheets. They demonstrated that uniform 

temperature increase during deformation improves formability. In addition, forming defects such as dynamic 

strain aging, the Portevin-Le Chatelier (PLC) effect and corresponding Luder’s bands resulting from 

interacting solutes and mobile dislocations can be avoided during deformation above a critical temperature 

(Abedrabbo et al. 2007). Van Den Boogaard et al. (2001) performed experimental work on the improved 

formability of AA5754 sheets during deep drawing where significant improvement in formability can be 

achieved by increasing the working temperature to 2500C. Van Den Boogard et al. (2006) later used a 

Bergstrom model to predict this behaviour but was unable to accurately predict the flow behaviour at high 

temperatures, i.e. above 2000C.

 The strains developed in most forming processes, such as stamping, are far beyond strains recorded in 

uniaxial tension tests (Hosford and Caddell, 2011). Material deformation is uniform before necking and 

stress-strain data is recorded only up to the necking point. Post-necking is non-uniform and stress-strain data 

cannot be recorded by conventional uniaxial tension tests. Post-necking hardening behaviour has been studied 

by Mohammadi et al. (2014) for the purpose of determining a methodology to best predict limit strains for 

forming limit analysis using crystal plasticity. It was reported that, for the aluminum alloy considered in their 

work, the assumption of almost completely saturated stress behaviour for the post-necking regime produced 

forming limit curves that correlated the best with experimental results. At elevated temperatures, however, 

materials generally experience much larger deformation before strain localization than at room temperature. 

There has been some recent work presented on the modeling of warm forming, using both dislocation based 

models and polycrystal plasticity based models. Kurukuri et al. (2009) applied the NES dislocation based 

model to improve on the work of Boogard et al. (2006). The work concluded that even with the correct 

description of a yield locus and the microstructure based work hardening model deep drawing simulations 

still differed from experimental results. Jain and Agnew (2007) described a temperature dependent material 

model developed for AZ31 magnesium alloy and later extended to predict forming limit curves over a 

temperature range of interest (Neil & Agnew, 2009). The model incorporates temperature dependent slip 

softening and hardening parameters, however the temperature dependences of the elastic coefficients and the 
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initial imperfection are neglected. Furthermore, their work did not provide a method by which FLDs can be 

predicted without experimental data at the desired temperature.

A thermo-elasto-viscoplastic crystal plasticity formulation coupled with the well-known Taylor-type 

homogenization scheme is employed in this study to predict the limit strains of aluminum alloys AA5754 and 

AA3003 at various temperatures. The hardening model proposed by Asaro and co-workers (1985) is 

employed and calibrated using uniaxial tension experimental data for both materials at room temperature and 

at elevated temperatures. Forming limit diagrams are generated numerically and are compared with 

experimental data from Palumbo & Tricarico (2007) and Bagheriasl (2012). The effects of temperature on 

groove orientation and imperfection parameter are also studied. Finally, a parametric study of the effects of 

temperature dependent crystal elastic coefficients and thermal softening resistance index on the predicted 

FLDs for AA5754 at elevated temperatures is presented. 

5.2 Thermo-Elasto-Viscoplastic (TEV) Crystal Plasticity Framework

The rate-dependent polycrystal plasticity framework developed by Asaro and Needleman (1985) and further 

by Inal et al. (2002) and Rossiter et al. (2010) is used as the basis of this analysis. The constitutive law is 

developed for a FCC single crystal and then is implemented in 3D finite element commercial software. 

In order to completely capture the kinematics of deformation for a single crystal under both thermal and 

mechanical loads, the material and the total lattice deformation are decomposed into elastic and rigid body 

rotation, permanent plastic deformation, and thermal deformation. These deformations are shown in Figure 

5-1. 

Figure 5-1 Decomposition of total deformation tensor to plastic, thermal expansion, and elastic - rigid body 

rotation components.
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Thus, the total deformation gradient can then be written as

F = F*FθFP            (5.1)

where, FP considers only crystallographic slip and F* embodies elastic deformation and rigid body rotation. 

Thermal deformation, Fθ, consists of the thermal expansion of the material and lattice during transient 

analysis. The spatial velocity gradient in the current configuration then becomes

L = ·F*F*−1 = L* + Lθ + LP          (5.2)

where,

L* = ·F*F*−1            (5.3)

Lθ = ·F* ( ·FθFθ−1) F*−1           (5.4)

LP = ·F* ·Fθ ( ·FPFP−1) Fθ−1F*−1          (5.5)

The thermal deformation is assumed to be isotropic (Lee et al., 1997), i.e.

·FθFθ−1 = αT
·θ I            (5.6)

where θ is the temperature change measured from the reference state, αT is the coefficient of thermal 

expansion representing change in length per unit current length per unit increment θ, and I is the unit identity 

tensor.

Introducing ∇τ as the Jaumann rate of the Kirchoff stress tensor τ, the elastic component of the single crystal 

constitutive law is written as,

 
∇
τ* = ·τ − W *τ + τW * = LD*          (5.7)

where  is the Jaumann rate of Kirchhoff stress tensor  based on the lattice rotations,  is the spin associated 

with rigid lattice rotation,  is the fourth rank tensor of temperature dependent elastic moduli, and  is the elastic 

strain rate. The Jaumann rate of Cauchy stress can be written in similar fashion as,   

∇σ = LD − ·σ0 − σ t rD           (5.8)

where D is the total strain rate and ·σ0 is the slip-rate dependent viscoplastic-type stress rate.
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The temperature dependence of elastic coefficients was studied by Varshni (1970). He proposed a physics-

based model for FCC crystals, which is adopted in this study as follows,

Cij = C0
ij − s

et/T − 1            (5.9)

where Cij and C0
ij are elastic stiffness constants at temperature T and zero Kelvin respectively, t is related to 

Einstein characteristic temperature, and s is another known material constant greater than zero and related to 

zero-temperature harmonic elastic stiffness coefficient (Suzuki et al. 2011). 

The rate-dependent equation for single-slip shear rates is governed by the power law expression defined as,

·γα = ·γ0sgnτα
τα

gα

1/m

           (5.10)

where ·γ0 is the reference shear rate assumed constant for all slip systems, τα is the resolved shear stress on slip 

system α, exponent 1/m is the strain rate sensitivity index, and gα is the temperature dependent hardness of 

the slip system. For the purposes of this study, the reference shearing rate is assumed to be ·γ0 = 0.001 s−1 and 

the slip rate sensitivity is assumed to be m = 0.02. The presence of multi slip due to the resolved shear stress 

on each slip system as well as thermal softening is considered and the rate of strain hardening of the crystal is 

written as,

·gα = ∑
β

hαβ | ·γα |(1 − ( T
Tm )

p

)         (5.11)

where ·gα = f (T, γa) is the single slip hardening rate and gα ∣t=0  is assumed to be temperature dependent by 

τ0(T ). Current temperature T and melting temperature Tm are in Kelvin, exponent p = 4 is used as the thermal 

softening intensity index, and γa is the total accumulated shear on all slip systems. The hardening moduli 

tensor hαβ is written as,

hαβ = qαβhβ(T )      (no sum on β)         (5.12)

Here, qαβ is the matrix describing latent hardening behaviour, and hβ is the temperature dependent single slip-

hardening rate. This study will consider the latent hardening and self-hardening rates to be the same, such that 

q = 1. Asaro and Needleman (1985) considered the current hardness to evolve with total accumulated shear γa 

in the crystal such that,

γa = ∫
t

0 ∑
α

·γα dt           (5.13)
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The single crystal hardening law proposed by Chang and Asaro (1981) is employed in this study. It may also 

be assumed that hardening parameters are functions of temperature, as proposed by Cyr et al. (2015). The 

hardening law is written as,

hβ(T ) = hs(T ) + [h0(T ) − hs(T )] sech2 ( h0(T ) − hs(T )
τs(T ) − τ0(T ) ⋅ γa)     (5.14)

where h0(T ) and hs(T ) are temperature dependent reference and asymptotic hardening rates, respectively, and 

τs(T ) is the temperature dependent shear stress saturation. To capture temperature the dependency hardening, 

parameters h0(T ), hs(T ), τ0(T ), and τs(T ) are assumed functions of temperature such that,

h0 = h̄0 1 − ( T
Th0 )

p q

           (5.15)

hs = h̄s 1 − ( T
Ths )

p q

           (5.16)

τ0 = τ̄0 1 − ( T
Tτ0 )

p q

           (5.17)

τs = τ̄s 1 − ( T
Tτs )

p q

           (5.18)

where the barred parameters correspond to the zero temperature parameters, T is the working temperature and 

exponents p and q are fitting constants and are not necessarily the same for all hardening parameters. The 

terms Ti where i = h0, hs, τ0, τs are the critical temperatures corresponding to a point of sufficient thermal 

activation that slip can occur at zero stress. A benefit of this model is its ability to capture a range of 

hardening rates, including saturation, at high strains. Specific to this paper, the model is better able to predict 

the high strain and saturated hardening behaviour developed at warm forming temperatures than a simple 

power law model.

 Classical Taylor assumptions, (Taylor, 1938), that the deformation of each grain is equivalent to the 

deformation of the polycrystal, are employed to obtain the macroscopic response of the polycrystal. 

Therefore, stress, stress rate, shear rate, and modulus values are a result of averaging over the total number of 

grains.
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5.3 Marciniak and Kuczynski (M–K) Formulation

The Marciniak and Kuczynski (1967) approach is well known and details of the formulation in crystal 

plasticity framework can be found in literature; see e.g. (Wu et al., 1997). For completeness, a brief 

description is provided in this section. Figure 5-2 presents a schematic representation of the M-K model with 

axes orientations such that x1 and x2 are orthotropic directions in the plane of the sheet (rolling direction – 

RD, and transverse direction – TD, respectively) and x3 is aligned with the sheet normal. 

Figure 5-2 Schematic of the sheet metal, the groove, and geometric parameters used for the M-K FLD 

analysis.

An initial grove is present in the sheet with orientation angle equal to ψ1 representing the angle between the 

groove perpendicular and the x1 direction. The material properties inside the groove are denoted with ( )b and 

thus the initial groove imperfection parameter f can be written as,

f = hb(0)
h(0)             (5.19)

where hb(0) and h(0) are the initial thicknesses inside and outside the band, respectively. It is noted that, the 

imperfection parameter represents groove thickness divided by sheet thickness, while the imperfection itself is 

one minus the imperfection parameter (1 − f ). It is proposed that imperfection magnitude will also evolve 

with temperature similar to hardening parameters such that

log(1 − f ) = log(1 − f0) 1 − ( T
Tf )

p q

        (5.20)

where f0 corresponds to the band ratio at zero temperature, and Tf is the critical temperature where failure is 

no longer dependent on the imperfection.
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The M–K formulation assumes a plane stress condition (σ33 = 0) so that,

D22
D11

=
·ε22
·ε11

= ρ = const . ; D12 = 0; Wij = 0       (5.21)

where ·ε11 and ·ε22 are the principal strain rates and Dij and Wij are two components of the strain rate and spin 

tensors respectively. Strain rate corresponding to D33 is calculated from the imposed plane stress conditions. 

Finally, the condition for the onset of necking is determined using ·εb
33 / ·ε33 ≥ 105. The full FLD can then be 

obtained by repeating this process for −0.5 ≤ ρ ≤ 1.0 with the corresponding ψ1 that yields the lowest 

macroscopic strains at the onset of necking.

5.4 Material Properties

This section summarizes the properties of the materials used in this work as well as the calibrated hardening 

parameters for elevated temperatures. Elevated temperature deformation and formability of continuous cast 

aluminum AA5754 and aluminum AA3003 sheets are studied in this investigation.

5.4.1 AA5754

The aluminum-magnesium alloy AA5754 is commonly used in automotive applications and is strengthened 

through work hardening. Chemical composition of AA5754 is presented in Table 5-1.

Table 5-1 Chemical composition of AA5754 aluminum alloy.

Electron Back-Scatter Diffraction (EBSD) analysis is employed to obtain the initial textures. A statistically 

equivalent texture is generated from this data and the {111} stereographic pole figure of the initial texture is 

presented in Figure 5-3 for AA5754. The representative volume employed in this analysis consists of 541 

grains for AA5754 representing a 1.1mm by 0.1mm scan area. The peak intensity is 3.64 times random.
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Figure 5-3 {111} stereographic pole figure calculated using Electron Backscatter Diffraction (EBSD) data 

taken from continuous cast AA5754. The peak intensity is 3.64 times random. 

5.4.2 AA3003

The aluminum-manganese alloy AA3003 is a much softer material that undergoes significant work hardening. 

Chemical composition of AA3003 alloy is presented in Table 5-2. 

Table 5-2 Chemical composition of AA3003 aluminum alloy.

Data from EBSD analysis is used to obtain the initial texture. A statistically equivalent texture is generated 

from this data and the {111} stereographic pole figure of the initial texture is presented in Figure 5-4 for 

AA3003. The representative volume employed in this analysis consists of 1000 grains from a 5.3mm by 

3.36mm scan area. The peak intensity is 3.16 times random. 

Figure 5-4 {111} stereographic pole figure of AA3003 sheet obtained from Electron Backscatter Diffraction 

(EBSD) data. The peak intensity is 3.16 times random. 
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5.5 Model Calibration

The crystal anisotropic elastic constants used for both AA5754 and AA3003 are determined from Varshni’s 

equation (7). Values for C0
ij are normalized to agree with the values employed in the FLD work by 

Mohammadi et al. (2014) at room temperature, considered as C11 = 206 GPa, C12 = 118 GPa and 

C44 = 54 GPa . In equation (5.10), reference plastic shearing rate ·γ0 = 0.001 s−1 and slip rate sensitivity 

parameter m = 0.02 are used for both alloys. It is also assumed that, the latent hardening and self-hardening 

rates are equal such that q = 1 in equation (5.12). Thermal softening resistance parameter in equation (5.11) is 

taken from Cyr et al. (2015) for aluminum materials.

5.5.1 AA5754

The material properties used to generate the simulated stress-strain curves are obtained by curve fitting 

uniaxial stress-strain simulations by crystal plasticity to experimental results (Rossiter et al. 2010) Three 

stress-strain curves at temperatures of 25ºC, 150ºC, and 200ºC for AA5754 are used to analyze the 

temperature dependence of the hardening parameters. Figure 5-5 shows the experimental stress-strain curves 

for AA5754 (Abedrabbo et al. 2007) and corresponding curves obtained from curve fitting using the crystal 

plasticity model. The material properties for AA5754 are listed in Table 5-3. 
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Figure 5-5 Uniaxial stress-strain curves for AA5754 and corresponding fitted curves generated with TEV 

crystal plasticity simulation at different temperatures.
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Table 5-3 Material parameters for Asaro-Lowe hardening law (Harren et al. 1989)  at three temperatures 

using AA5754 texture.

5.5.2 AA3003

The same procedure explained in section 5.4.1.1 is repeated for AA3003 using three stress-strain curves 

(Bagheriasl, 2012) at temperatures 25ºC, 200ºC, and 250ºC. Figure 5-6 shows the experimental stress strain 

curve for AA3003 along with corresponding curves obtained from curve fitting with the crystal plasticity 

simulation using Asaro hardening with TEV crystal plasticity simulation. The material properties employed 

for AA3003 are listed in Table 5-4. 
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Figure 5-6 Uniaxial stress-strain curves for AA3003 at various temperatures and corresponding fitted curves 

generated with TEV crystal plasticity simulation at different temperatures.
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Table 5-4 Material parameters for Asaro hardening law at three fitted simulation temperatures using AA3003 

texture.

5.6 Results and discussion

The initial textures and stress-strain curves generated using the temperature dependent hardening parameters 

τ0(T ), h0(T ), τs(T ) and hs(T ) determined for AA5754 and AA3003 in the previous section are employed in 

the M-K analysis to predict FLDs. The groove orientation ψ1 is determined by changing the groove angle until 

the lowest forming strains are obtained. The lowest limit strains are used in the final FLD plots. 

5.6.1 FLDs

It should be noted that the simulated imperfection parameter f associated with each temperature is different, 

and must be initially calibrated. This parameter is determined for each temperature by fitting the limit strain 

during in-plane plane strain (ε0
11) to the corresponding experimental limit strain. Thus, the experimental limit 

strain for in-plane plane strain is as important as the experimental uniaxial stress-strain curve for the initial 

calibration of the M-K based FLD analysis. It is intuitive that a smaller imperfection yields larger critical 

strain at which sheet necking begins. The effect is greater for ρ ≥ 0.5. The critical groove angle is determined 

by scanning increments of 5º on the range of ψ1 to produce the minimum localization strain. Critical groove 

angle for in-plane plane strain (ρ = 0) is always assumed to be 0º. 

5.6.1.1 AA5754 

As mentioned above, the simulated limit strain for ε0
11 is fit to the experimental data for each temperature by 

varying the initial imperfection. The imperfection parameters obtained for AA5754 are summarized in Table 

5-5. Initial imperfection at room temperature was determined using the methodology of Wu et al. (1997) and 

Mohammadi et al. (2014) for AA5754, and agrees with the findings of approximately f = 0.997 at room 

temperature. The experimental FLD curves in different temperatures are taken from Naka et al. (2001) for 

5xxx aluminum alloys. All experimental data correspond to low strain-rates.

Table 5-5 The imperfection parameter f associated with the simulated temperatures to generate FLDs for 

AA5754.
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Figure 5-7 Predicted FLDs at 25ºC, 150ºC, and 200ºC along with the corresponding experimental FLD data 

(Naka et al. 2001) for AA5754. The groove orientation is allowed to change in order to record the minimum 

limit strains.

The predicted FLDs for the three simulated temperatures between 25ºC and 200ºC are presented in Figure 5-7 

for AA5754. The simulations clearly show that the temperature has a significant effect on the formability of 

aluminum and the FLDs shift towards higher strains. Results agree reasonably well with the experimental 

FLD (Naka et al. 2001) for AA5xxx series aluminum alloys, however there are some differences. The 

simulated FLD curves over-predict the limit strains where the value of minor strain is negative, i.e. for left 

hand side and under-predicts limit strains in the biaxial region for the right hand side. The general behaviour 

of the FLDs are in very good agreement with the experimental FLDs. The negative minor strain region is 

almost linear, which is well captured in the simulated FLDs, as well the decrease in limit strain approaching 

the equi-biaxial region (ρ > 0.6) is predicted satisfactorily. Wu et al. (1997) reported similar trends for the 

formability of AA5754 at room temperature. It has been reported experimentally that in the biaxial regime, 

the orientation of initial failure in aluminum sheets is perpendicular to the major strain axis (Chien et al. 

2004). However, numerical results predicted that the lowest limit strains approaching biaxial tension are 

produced when the initial groove orientation is not perpendicular to the major strain axis. The numerical 

results also under-predict the experimental FLD in the biaxial regime. Thus, a second FLD is simulated and 

presented in Figure 5-8 where the groove orientation is assumed to be fixed at zero degree to agree with the 

experimental observations. The results do increase the numerical FLD closer to the experimental curve in the 

biaxial region; however, the commonly observed drop in formability as ρ > 0.6 for 5xxx series aluminum is 

no longer predicted.

74



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4  0.5

ε 1
1

ε22

Experiment
200C
150C

25C

Figure 5-8 Predicted FLDs at 25ºC, 150ºC, and 200ºC along with the corresponding experimental FLD data 

for AA5754 texture when the groove orientation is fixed at 0º in the biaxial region to predict the limit strains.

Finally, to confirm the need for predicting high temperature hardening behaviour, another forming limit 

diagram is plotted comparing the forming limit curves of AA5754 at 200ºC with and without adjusting for 

temperature dependent hardening. If the forming limit curve can be scaled to fit experimental data simply by 

adjusting the imperfection factor f, then the forming limit curve at 200ºC should predict well the experimental 

data using hardening behaviour determined from the experimental data at 25ºC. As can be seen in Figure 5-9, 

this is not true, thus it is important for the FLD model to accurately capture the temperature dependent 

hardening behaviour to better predict the limit strains at elevated temperatures.

5.6.1.2 AA3003 

The same procedure is used to calculate the FLDs for AA3003. The imperfection parameters employed for 

AA3003 at different temperatures are listed in Table 5-6. It is obvious that, temperature has significant effect 

on the initial imperfection, where the imperfection at 250ºC is in the order of 10−9 compared to 10−3 at room 

temperature. As with AA5754, the imperfection appears to exhibit a somewhat exponential dependence on 

temperature, which is discussed later.
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Figure 5-9 Comparison of FLDs with and without temperature dependent hardening at 200ºC along with the 

corresponding experimental FLD data for AA5754 texture. It is clear that correctly modeling hardening 

behaviour provides closer fit between simulation and experimental data.

Table 5-6 The imperfection parameter f associated with the simulated temperatures to generate FLDs for 

AA3003.

The predicted FLDs for AA3003 are shown in Figure 5-10 at 25ºC, 200ºC and 250ºC along with the 

experimental FLDs reported by Bagheriasl (2012). The predicted FLDs for AA3003 are generally in good 

agreement with the experimental ones. 

Mohammadi et al. (2014) already demonstrated the effect of accurately capturing the post-necking hardening 

on FLD predictions. At high temperatures, the material can withstand almost twice the strain of that at room 

temperature before necking. Thus, measuring strain hardening behaviour from uniaxial tension tests at high 

temperatures will allow the predicted FLDs to better match the experimental FLDs at high temperatures.
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Figure 5-10 Predicted FLDs at 25ºC, 200ºC, and 250ºC along with the corresponding experimental FLD data 

for AA3003. The groove orientation is allowed to change in order of record the minimum limit strains.

5.6.2 Groove Orientations

Simulations have been conducted in 5∘ increments in the ψ1 domain to determine the critical groove 

orientation that yields the minimum localization strains. The scanning range for −0.5 < ρ ≤ 0.0 is from 

0∘ ≤ ψ1 ≤ 30∘, while for 0.0 < ρ ≤ 1.0 the scanning range is from 0∘ ≤ ψ1 ≤ 60∘. This range is determined 

numerically by the highest groove orientation that leads to strain localization, i.e. values above these groove 

orientation angles do not result in necking. The critical groove orientations are not significantly affected by 

the initial imperfection f, however there is a significant effect from the hardening behaviour and texture. As 

determined by Mohammadi et al. (2014), high hardening behaviour, especially post-necking, yields 

unrealistic limit strains in the biaxial region and results in ψ1 = 0 for all values of ρ. To account for this effect, 

stress-strain curves at room temperature were used for curve fitting such that post necking hardening is 

minimized. 

5.6.2.1 AA5754

The predicted groove orientations that produce the limit strains are plotted versus ρ in Figure 5-11 for 

AA5754, indicating groove orientations are not significantly affected by temperature. Here, the critical groove 

angles decrease from ψ1 = 15∘, 20∘, and 25∘ at ρ = − 0.5 to ψ1 = 0∘ at ρ = 0 and increase again to ψ1 = 55∘ 

under equal biaxial tension. The high temperature 200ºC orientations are the most unstable from 0 < ρ < 0.8 

where the critical angle jumps from ψ1 = 0∘ at ρ = 0.3 and ρ = 0.6. 
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Figure 5-11 The critical groove orientation corresponding to lowest predicted limit strain versus loading path, 

ρ, for AA5754.

5.6.2.2 AA3003

AA3003 exhibits a much different response to temperature with respect to critical groove orientation. The 

initial yield stress and hardening of AA3003 greatly decreases with increasing temperature, compared to that 

of AA5754. Groove orientation behaviour at room temperature is similar for the two alloys. However, the 

critical orientations at high temperature for AA3003 is ψ1 = 0∘ for ρ ≥ 0 at 200ºC and ψ1 = 0∘ for all values of 

ρ at 250ºC. 

Figure 5-12 The critical groove orientation corresponding to lowest predicted limit strain versus loading path, 

ρ, for AA3003.
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5.6.3 Effect of Thermal Softening

In this section, the effects of thermal softening resistance on the forming limit diagram and groove orientation 

are investigated. Previous studies have reported the effects of strain-rate sensitivity parameter, hardening 

parameters, and latent hardening on the numerical FLD for aluminum alloys (Wu et al. 1997); however, 

thermal softening has not previously been studied in a crystal plasticity FLD formulation. The thermal 

softening resistance parameter presented in equation (5.11) directly controls the hardening rate of each slip 

system. Due to the form of the hardening model, hardening is equal for all slip systems. The effect of 

softening resistance on the stress strain curve and hardening rates is described in detail in Cyr et al. 2015. For 

aluminum AA5754, a resistance value of p = 4 yields the best match to experimental uniaxial stress strain 

data. 

In Figure 5-13, the numerical FLD is determined for three values of p = 2, 4, and 6 at 200ºC. Materials that 

show low thermal resistance are greatly affected by temperature increase well below melting temperature. For 

example, if thermal resistance is equal to two, the stress-strain curve is strongly affected by small temperature 

changes from room temperature. At the opposite end, if thermal resistance is equal to 6, the stress-strain curve 

remains relatively unchanged until temperature approaches melting point. The numerical stress-strain curve is 

exponentially dependent on the softening resistance parameter. The numerical FLD exhibits the same 

dependence, whereby the increase in limit strain is much less from p = 4 to 6 than from p = 2 to 4. 

Figure 5-13 Effect of thermal softening resistance parameter “ p ” on forming limits for AA5754 at 200ºC.

Figure 5-14 presents the effect of thermal softening resistance on the limiting strain groove orientations. As 

with the limit strains, there is no major difference here. Orientations decrease from ψ1 = 20∘ to zero for 

−0.5 ≤ ρ ≤ 0.0 and increase again to ψ1 = 55∘ in equal biaxial tension. Mohammadi et al. (2014) reported 

that the groove orientations are significantly affected by the post-necking hardening behaviour. Thermal 
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softening resistance does not significantly affect the post-necking behaviour of the stress-strain curve. 

Therefore, the groove orientation independence with respect to thermal softening is expected.  

Figure 5-14 Effect of thermal softening resistance parameter “ p ” on groove orientations resulting in lowest 

limit strains for AA5754 at 200ºC.

5.7 Proposed Method for Predicting FLD up to Warm Forming Regime

In this section, a new method is proposed to predict the FLDs for AA3003 up to 300ºC, above which 

deformation mechanisms not considered in this study may be activated (cross-slip, dislocation climb and 

possibly recrystallization). Using the proposed equations proposed below to model the behaviour of hardening 

parameters and initial imperfection dimensions with respect to temperatures, FLDs are calculated at intervals 

of 25ºC from room temperature to 275ºC. 

5.7.1 Effect of Temperature on Hardening Parameters

From the three simulated FLDs presented in the previous section for AA3003, hardening parameters and 

initial imperfection as a function of temperature are shown in Figures 5-15 and 5-16. To model this behaviour, 

equations (5.15)–(5.18) and (5.20), of similar form to Kocks et al. (1975) on the thermodynamics dependency 

of slip, is employed. This model also shares similarities to the form of the thermal softening relation presented 

by Cyr et al. (2015), where the parameters are exponentially dependent on the ratio of working temperature to 

some critical temperature. The Kocks equation describes glide resistance profiles for plastic slip and is written 

as

ΔG = F0 {1 − ( σ
̂τ )

p

}
q

          (5.22)
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where ΔG is the activation energy required to overcome obstacle strength ̂τ for an applied stress σ. Parameter 

F0 is the activation energy required without the presence of an applied stress on the system. Thus, the 

activation energy ΔG decreases from F0 to 0 as σ is raised from 0 to ̂τ, provided both exponential material 

dependent parameters p and q are positive. The usefulness of this equation comes from the two adjustable 

parameters p and q. Essentially, p describes the shape of the “tail” ( and  describes the shape of the “top” 

(σ ≈ ̂τ).

The proposed equations (5.15)–(5.18) can be related to the Kocks-Mecking model of flow kinetics and the 

mechanical threshold model. The full derivation providing the link between phenomenological flow kinetics 

and crystal plasticity is presented in the Appendix section of this chapter. The below equation (5.23) assumes 

that temperature is related to activation energy, and the energy state at which zero applied stress is required 

corresponds to F0. Furthermore, σ is analogous to the desired parameter and ̂τ represents the barred parameter 

value that the material would theoretically exhibit in the absence of thermal energy, i.e. zero Kelvin. If the 

equation is then rearranged into the form where temperature is the independent variable, it becomes

σ = ̂τ 1 − ( ΔG
F0 )

1/q 1/p

          (5.23)

In this form, the similarity with the proposed equations is evident, where σ is the desired parameter as a 

function of a zero temperature parameter value ̂τ, ΔG is the system free energy, which is linearly proportional 

to temperature, and F0 is the activation energy for zero stress, or when the desired hardening parameter 

theoretically decays to zero. For the hardening parameters employed in this study, the critical temperature is 

not necessarily zero. It is noted that, the exponents p and q in equation (5.23) are not related to the thermal 

softening resistance or latent hardening, but rather they are fitting parameters used to model the behaviour of 

the crystal plasticity hardening parameters and initial imperfection factor.

The hardening parameters for the Asaro model employed in this study and their corresponding fit using 

equations (5.15)–(5.18) are shown in Figures 5-15 and 5-16. This equation is able to provide very good fits to 

the temperature dependence of material hardening parameters. Using these fits, equations (5.15)–(5.18) is also 

able to predict a temperature limit at which each parameter becomes zero. This predicted limit agrees with the 

upper limit of warm forming (300ºC) of AA3003, above which the material experiences almost no work 

hardening (McQueen, 2011). 
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Figure 5-15 Initial hardening rates and saturated hardening rates for Asaro hardening law determined from 

AA3003 at 25ºC, 200ºC, and 250ºC, along with corresponding fits using equation (5.15) and (5.16).

Figure 5-16 Initial slip strength and saturated slip strength from Asaro hardening law determined from 

AA3003 at 25ºC, 200ºC, and 250ºC, along with corresponding fits using equation (5.17) and (5.18).

The values of the model parameters are summarized in Table 5-7. The only parameter found to be constant for 

all fits is parameter. Parameters h̄0, h̄s, τ̄0 and τ̄s are predictably close to the room temperature values, and p 

describes the concavity of the fit. The critical temperatures Ti, related to activation energy F0, is the predicted 

energy condition at which the hardening parameter approaches zero. The value F0 is an empirical coefficient 

representing the energy state where the material strength is lost; however, the model predicts the temperature 

corresponding to this vanishing stress energy is well below melting temperature. Other strengthening 

mechanisms must be present at greater temperatures/energies that this model does not account for. Therefore, 

above these temperatures, the Asaro hardening model as presented is no longer able to capture the physics of 

deformation due to new high temperature mechanisms, such as recovery.
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Table 5-7 Fitting values using equation (5.15)–(5.18) for Asaro hardening parameters and AA3003 texture.

 

5.7.2 Effect of Temperature on Initial Imperfection

The last parameter required for a temperature dependent forming limit diagram is the initial imperfection 

parameter f. In this study, it is shown that increase in temperature significantly affects the imperfection 

parameter f. At 200ºC–250ºC the imperfection decreases to less than 10−5 whereas at room temperature it is 

recorded to be ~ 10−2. This behaviour is predictable since materials that experience lower hardening rates 

initiate localized necking easier than materials with higher hardening rates. 

The imperfection parameter represents the ratio of the groove thickness to the sheet thickness, whereas, the 

imperfection itself can be considered as the difference in thickness between the sheet and groove thickness 

divided by the sheet thickness, or 1 − f . The temperature vs. log(1 − f ) relation is plotted in Figure 5-17. The 

behaviour of the imperfection shows a clear and predictable dependence on temperature. Equation (6.20) 

captures this behaviour with fitting parameters summarized in Table 5-8. 

Figure 5-17 Initial imperfection for AA3003 (from section 6.5), curve fitted using equation (6.20).

Table 5-8 Fitting values using equation (6.20) for initial imperfection and AA3003 texture.
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The limitation to the imperfection parameter is not determined by decaying to zero, such as the hardening 

parameters, rather it is dependent on the numerical stability of the model. Simulations using the imperfection 

parameter and hardening parameters determined from equation (6.20) for 300ºC or above become numerically 

stable and never lead to localization in the groove. These simulations reach extremely high strains, which are 

never observed experimentally, and therefore 275ºC is highest temperature simulated.

5.7.3 FLD Predictions

Using these curves describing the temperature dependence of hardening parameters and initial imperfection, 

the forming limit diagrams can be predicted numerically for any forming temperature below 300ºC. Fig. 5-18 

shows the FLD predicted at 100ºC using parameters predicted using equation (5.15)–(5.18) and (5.20) 

compared with experimental data. The plane strain yielding agrees very closely with the experimental data. 

The overall FLD prediction is quite satisfactory though the model slightly under predicts the experimental 

results away from the plane strain condition. 
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Figure 5-18 Simulated limit strains for AA3003 at 100ºC plotted with experimentally determined limit 

strains. Parameters for the simulation were determined using temperature dependency equations (5.15)–(5.18) 

and (5.20).

From equation (5.15)–(5.18) and (5.20), Figure 5-19 shows the predicted FLD for a range of temperatures 

between 25ºC and 275ºC for AA3003. The limit strains up to 275ºC compare well with available experimental 

data. Formability increases non-linearly above room temperature, and significant gains in formability are not 

apparent until above 100ºC. This also agrees with experimental findings (Bagheriasl, 2012). The simulations 

predict a decrease in formability at each temperature as the strain path approaches equal biaxial tension.
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Figure 5-19 Simulated limit strains for AA3003 at warm forming temperatures. Hardening parameters and 

initial imperfection are determined using equations (5.15)–(5.18) and (5.20) and fitting parameters in Tables 

5-7 and 5-8. 

5.8 Summary and Conclusions

In this paper, a new numerical framework using a thermo elasto-viscoplastic (TEV) crystal plasticity 

formulation in the well-known M-K approach to calculate limit strains of aluminum alloys at elevated 

temperatures is presented. The model is calibrated to capture the formability of AA5754 and AA3003 

aluminum alloys up to 300ºC. The model can take into account the temperature dependence of the single 

crystal elastic coefficients, single slip hardening parameters, thermal softening, slip rate sensitivity, and the 

total deformation. In addition, the new model is calibrated with experimental uniaxial tension curves. 

Temperature dependent hardening parameters are determined through curve fitting stress-strain data from 

uniaxial tension simulations at room temperature and elevated temperatures. Simulations show that the 

proposed model accurately predicts the forming limit diagrams (FLDs) at room temperature and elevated 

temperatures without the need for further curve fitting. It is found that the groove orientation yielding the 

lowest limiting strain in the biaxial regime reduced to ψ1 = 0∘ when forming temperature is increased from 

room temperature to warm forming temperatures for both materials. Furthermore, simulations showed that 

increasing the thermal resistance increases the forming limit curve at a given temperature. 

Finally, a new method for determining the temperature dependence of hardening parameters and the initial 

imperfection is presented. This formulation can be used to accurately predict forming limit curves at any 

temperature between room temperature and 300ºC without the need for any further calibration; including the 

imperfection parameter, f. 
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Abstract

In an effort to improve metal formability and performance, high temperature forming has become a desired 

manufacturing process. Phenomenological plasticity models are widely used in this application, however lack 

any predictive capability concerning microstructure evolution during forming. Crystal plasticity models have 

been adopted in recent decades as an advantageous framework for modeling stress-strain response in a variety 

of loading conditions as well as the microstructural evolution, yet material hardening is formulated on a 

phenomenological basis.  Many hardening models have been developed to understand and predict the 

deformation of metals at warm forming temperatures; however, few have fully integrated thermodynamic 

formulations and none are based on physical deformation mechanisms. Therefore, available crystal plasticity 

hardening models are unable to predict the high-strain behaviour of elevated temperature deformation. 

In slip-dominated deformation, dislocation-dislocation interactions govern the strain-hardening behaviour, 

especially at elevated temperatures. Understanding the thermodynamics is the most important facet in 

predicting temperature dependent deformation. In this study, a new mechanistic constitutive theory for 

plasticity based on Taylor slip analysis and dynamic recovery is formulated from an energy balance between 

dislocation storage, dislocation accumulation, and dislocation recovery due to thermal activation with 

physically motivated hardening parameters that can be experimentally determined. The developed theory is 

used to simulate low-to-high temperature stress-strain behavior of pure aluminum. The temperature 

dependence of thermally activated mechanisms and their equivalent parameters are also presented and 

discussed. Finally, the model is validated with the accurate prediction of uniaxial stress-strain data at a new 

strain-rate and a sensitivity analysis of hardening parameters to the stress-strain response is presented and 

discussed.

Keywords: Polycrystal hardening; dislocation; dynamic recovery; temperature; annihilation.
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6.1 Introduction

Hot deformation processing is a desirable method for shaping in industry due to the ability to refine 

microstructure, which significantly influences the mechanical response and can increase formability (Zhang et 

al., 2004; Li, et al., 2011). The understanding of high temperature deformation behaviour for hot working and 

the constitutive relations describing the material flow are two of the fundamental prerequisites for the 

implementation of forming technology in industry.

Dynamic softening mechanisms, such as dynamic recovery (DRV) often occur in aluminum alloys with high-

stacking fault energies during deformation at elevated temperatures. Numerous reports on the high-

temperature deformation behaviour and dynamic softening of aluminum alloys (and other FCC metals) have 

shown that the mechanisms contributing to softening and microstructure evolution during high-temperature 

deformation are highly sensitive to temperature and strain-rate (Clayton, 2005; Abedrabbro et al., 2007; 

Pandey et al., 2013; Ezatpour et al., 2014). Determination of the effects of temperature and strain rate on high-

temperature deformation in metals has been a topic of discussion for decades (Argon, 1968; Kocks et al., 

1975; Kocks, 1976, 2001; Anand, 1982; Mecking et al., 1986; Kocks & Mecking, 2003; Terentyev et al., 

2015; Kooiman et al., 2015, 2016). Flow stress is the most basic measure for characterizing plastic 

deformation properties of metals and provides a means to determine the energy required to plastically deform 

a metal. The metal then dissipates this energy while undergoing plastic flow by the mechanisms of 

deformation, which can be evaluated with the aid of governing constitutive equations. The improvement of 

these constitutive models over recent decades have given rise to an incredible understanding of material 

behaviour on a fundamental level; however, in many cases at the expense of great complexity and 

subsequently increased difficulty in application.

Plasticity theories are widely used in research and industry covering a broad field of applications ranging 

from crash and extrusion simulations to modeling and optimization of material microstructures. However, 

classical phenomenological plasticity theories fail to predict the mechanical behaviour of micro-components 

and the corresponding material response. The methods of crystal plasticity have been successfully used in 

modeling non-homogeneous mechanical behaviour and has been applied extensively to study both 

heterogeneous plastic deformation and texture evolution (Roters et al. 2010). The material hardening, 

however, usually cannot be linked to any physical processes. These phenomenological models are adequate 

for the intended use of ambient temperature deformation, but are unable to predict material properties from 

experimental data or their temperature and strain dependence. It is essential for the investigation of complex 

deformation features during forming, such as temperature dependent and geometric softening, strain 

localization, and microstructure evolution, etc., that the material hardening models be derived from physical 

deformation mechanics.

In this chapters, a physical theory for temperature dependent strain hardening in FCC polycrystals is 

developed based on dislocation accumulation and recovery. The model is then fit with available pure 

aluminum uniaxial stress-strain data (Kocks, 1976) and temperature dependent hardening parameters are 

identified and investigated. The pre and post necking hardening behaviours are also analyzed. Finally, the 
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resulting temperature dependencies and theory are used to predict the stress-strain curves at a new higher 

strain rate and a parameter sensitivity analysis is completed. 

6.2 Background

Work hardening has always been a topic of great interest for scientists and engineers studying plastic 

deformation in metals. The work-hardening reflects the way in which arrays of stored dislocations, both 

geometrically-necessary and statistically-stored, impede the passage of moving dislocations. Individual 

dislocations act as point obstacles causing short-range interactions, and the collective array, a source of long-

range internal stresses. Following the discovery of dislocations and dislocation theory, many concentrated 

efforts by the scientific community led to the description of the three stages of work hardening in single 

crystals: primary slip (stage I), multiple slip (stage II), and cross slip and recovery (stage III). The first stage is 

only observed in single crystals at low strain where hardening is governed by statistically-stored dislocations. 

Although flow stress theory and strain hardening is derived from single crystals, most metals strained in 

application are polycrystalline. By the addition of hardening particles or in polycrystals, the presence of these 

primary stages vanishes and the geometrically-necessary dislocations dominate. Therefore, the hardening of 

most polycrystalline metals is characterized by yielding, followed by a low-strain high-hardening stage II that 

transitions, often rapidly, into a lower hardening stage III. The theory on the initiation of stage III began with 

the work of Seeger and coworkers (Schoeck and Seeger, 1955; Seeger et al., 1959) which begins because 

cross-slip occurs upon sufficient local pile-up stresses. The model predicts an exponential variation of the 

onset of stage III with temperature, however, was met with controversy (Coulomb and Friedel, 1957). Much 

debate exists on the high-strain transition from a stage III to a stage IV hardening, where the stress-strain 

curve begins to plateau or become nearly linear, however this is typically not observed under uniaxial 

conditions due to localization. 

Single crystal work hardening theories based simply on the concept of hardening stages have been employed 

in crystal plasticity framework and can successfully be tuned to match the polycrystal behavour; however, 

there still exists a significant gap in the connection between physical properties and mechanisms of 

deformation in explaining work hardening through the use of hardening laws. This is even more obvious at 

high temperatures, where conventional stage II to stage III transition broadens and the region of the stress-

strain curve corresponding to each becomes unclear. In addition, the extremely low stage III hardening 

relative to the high stage II cannot be predicted with conventional crystal plasticity hardening models. 

Therefore, a hardening relationship based on the dislocations themselves, rather than the behaviour that 

manifests as multiple “stages” of hardening, must be developed in order to predict temperature dependent 

hardening.

The relationship between material strength  and the square root of total dislocation density  is well known as

σ = σ0 + Mαμb ρ           (6.1)

88



where M is the Taylor factor relating shear and normal stresses in polycrystals (σ = Mτ), α is a measure of the 

strengthening effect of dislocations, μ is the shear modulus and b is Burgers vector (Kuhlmann-Wilsdorf 

1970). Initial material strength σ0 is due greatly to alloying, precipitates, particles, grain size, and existing 

dislocations before any deformation has occurred. The significance of this equation is that all work hardening 

models from earlier theories attributing work hardening to dislocation pile-ups, tangles, jogs, and forest 

dislocations and newer statistical theories and models of decreasing mean free path all predict this 

proportionality of strength and the square root of dislocation density. This equation is also maintained by 

nearly all experimental results (Rodriguez 1996).

Taylor (1934) proposed that strength of a mobile dislocation could be predicted as the shear stress required to 

overcome a stable array of immobile (sessile) ±edge dislocations. The calculated stress was dependent on the 

inter-layer spacing of sessile dislocations. Since the plastic shear strain is related to the motion of dislocation, 

using Taylor’s analysis of shear strain, the stress can be found to be proportional to the square root of the 

strain and exhibited the proportionality as follows

τ
μ γ

= κ b
λ

            (6.2)

where τ and γ are the shear stress and shear strain, respectively, μ is the shear modulus, b is Burgers vector, λ 

is the mean slip distance, and κ is a proportionality constant related to the sessile dislocation array. Taylor was 

able to estimate λ using calculated values of κ from modeled dislocation arrays and compared the magnitude 

with experimental observations (Taylor 1934). In addition, Taylor’s model with parabolic stress-strain 

dependence predicts a constant λ . 

More recent work (Saimoto & Van Houtte 2011) has provided evidence that the mean slip distance can be 

measured directly from the experimental stress-strain curve with a single variable ϕ using the following 

relation:

λ = ϕ
b
2

μ2

τ
∂γ
∂τ |T, ·γ

            (6.3)

Here the hardening term ∂τ /∂γ|T, ·γ is the slope of the shear stress-strain curve, however has previously been 

estimated as θII evaluated from a Stage II type hardening determination of [100] single crystals (Nabarro et al. 

1964, Saimoto 2006). Consequently, the determination of mean slip distance can be a function of τ or γ. Based 

on this assumption, the calculation of λ to produce an incremental strain Δγ is possible.

The Taylor model defines an increment in shear strain Δγ to be equal to NÃb, where N is the volume density 

of slip patches produced by a source of inter-obstacle spacing ℓ on slip patch area Ã, and b is the Burgers 

vector. An increase in dislocation length associated with the slipped area arises from the expanding perimeter 

of the propagating dislocation segment from the source. Dislocation length may also decrease due to 

annihilation interactions with other existing dislocation segments. The slipped area can be approximated as 
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proportional to the square of the mean slip distance λ2 assuming that λ is in the order of the average inter-

obstacle spacing such that λ ≈ ℓ, which is true at low strains. By representing the increment in volume 

density of dislocations as Δρ /λ, one can now describe the incremental change in statistical dislocation density 

per unit area, Δρcreate, due to incremental shear strain as follows:

Δρcreate = P
A

Δγ
λb

            (6.4)

where 
P
A

 is a unit-less parameter for the ratio of the expanding dislocation perimeter P divided by statistical 

annihilation factor A and is temperature dependent. 

An estimation of P is possible through a quantitative analysis of the advance of a dislocation through a 

random array of obstacles (Friedel, 1964; Foreman and Makin, 1966, 1967; Kocks, 1967; Altintas, 1978). The 

analysis can be derived from the Altintas (1978) diagram of randomly dispersed point obstacles, shown in 

Figure 6-1. The algebraic relationships between the interobstacle spacing ℓ = ℓs, dislocation arc radius R, 

height of new sector h (assumed here that h = λ, mean slip distance), which are determined by the strength of 

obstacle parameter such that α ≈ cos ( ψ
2 ). The initial length of the dislocation segment bound by obstacles 

A and C is equal to 2ℓi = 2Rsin(π − ψ ) and the final dislocation length ℓf = 2R(π − ψ ). The ratio  of the 

increase in dislocation length can therefore be calculated as (ℓf − ℓi)/2ℓi. Given ψ /2 = 65∘ corresponding to 

α = 0.4, P for this analysis is approximately 0.2.

Figure 6-1 Geometry of randomly distributed obstacles. (Friedel, 1964).
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If we take the well-known relationship in equation (6.1) between the strength of a polycrystal and the square 

root of the dislocation density, we can obtain

dρ
dτ

= 2τ
(αμb)2             (6.5)

Therefore, for small increments in material strength and a given multiplicity of two, the required stored 

dislocation density must be equal to

Δρstored = 2(τΔτ)
(αμb)2            (6.6)

Finally, we can equate the dislocation density stored due to increasing material strength and the dislocation 

content created necessary to accommodate an incremental shear strain in differential form,

2(2τ∂τ)
(αμb)2

stored

= P
A

∂γ
λb

created

         (6.7)

The above relationship represents the condition where dynamic recovery of dislocations due to 

thermodynamic recovery is not accounted for. The statistical annihilation of dislocation lines 
1
A

 accounts for 

the statistical probability that two oppositely oriented mobile dislocations exist within a threshold proximity 

on a given slip plane and annihilate nearly instantaneously. This is experimentally very difficult to determine; 

however, statistical annihilation of new dislocations has been shown to be very important in order to predict 

the experimental stress-strain curve (Saimoto & Van Houtte, 2011). 

6.3 Work Hardening Model

In all dislocation models, work hardening is a result of mobile dislocations that produce strain being pinned 

and therefore unable to exit through a surface, be absorbed by grain boundaries, or annihilating each other. 

Instead, some fraction of these mobile dislocations are stored in the crystals forming new obstacles to 

continued slip of other dislocations. As discussed previously, this is represented as the dislocation density 

created through shear straining, or Δρcreated. If we now include the mechanisms facilitating recovery, the total 

change in dislocation density can be represented as follows

dρstored = dρcreated − dρrecovered         (6.8)

The first two terms have been described above, while the last term is the change in dislocation density due to 

recovery or rearrangement of previously stored dislocations. The recovery processes are still not well 

understood and various mechanisms have been proposed to describe them. The following proposed 

mechanism for recovery is rationalized from experimental observations in conjunction with accepted theories 

from dislocation mechanics. 
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A crystal with potential number of recovery sites in a differential area on a slip plane can be denoted as ρda 

where ρ is the stored dislocation density. If an average dislocation line length of ℓr is recovered or annihilated, 

the change in total dislocation line length dℓ per volume V is written as

dℓ
V

= ℓr ρda
V

= dρrecovered          (6.9)

The importance of this relationship is the understanding that the probability of a dislocation being recovered 

is directly proportional to the probability that a moving dislocation discovers a recovery site, and therefore the 

dislocation density itself. This can now be linked to the shear increment by the following equation. Assuming 

a slip plane area da in a volume V shears a distance of one Burgers vector, the incremental shear can be 

represented as

dγ = bda
V

            (6.10)

Combining the above two equations, the recovered dislocation density can now be written in terms of the 

shear increment as

dρrecovered = ℓr

b
ρdγ = Ωρdγ          (6.11)

where Ω is called the recovery factor which represents the average length of dislocation that is recovered 

normalized by the Burgers vector for a given shear increment. Finally, we combine this with equations (6.4), 

(6.6) and (6.8) to get the following:

2(2τ∂τ)
(αμb)2

stored

= P
A

∂γ
λb

created

− Ωρ∂γ
recovered

       (6.12)

By integration, one can write: 

[ 2τ2

(αμb)2 ]
τ

τ1

= [ P
A

γ
λb

− Ωργ]
γ

γ1

         (6.13)

The difficulty now becomes the determination of dislocation density ρ. This is achieved implicitly by 

substitution of the Taylor expression from equation (6.1), which allows for a work hardening flow rule to be 

developed based on material parameters and internal state variables given by,

τ = αμb
P
A

γ
λb(2 + Ωγ)           (6.14)
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To this point, the work hardening model assumes that the total dislocation density is approximately equal to 

the statistically stored dislocation density. This assumption is valid if the geometric slip distance λg is 

significantly larger than the slip distance for statistically stored dislocations λs. However, according to Ashby 

(1970), geometrically necessary dislocations begin to dominate if λg < λs as measured from the length of the 

slip lines in work-hardened material. This becomes significant when (i) the recovery of statistically stored 

dislocations is great enough to increase λs approaching λg, and (ii) when microstructural effects at higher 

strains, such as the formation of dislocation cells, reduce λg. Using the Ashby approach, whereby it is assumed 

that the two dislocation densities can be added linearly in stress-strain space, their total contribution to the 

flow stress is given by the following equation:

τ = αμb ρs + ρg           (6.15)

where

ρs = P
A

γ
λb(2 + Ωγ)            (6.16)

According to the definition proposed by Ashby (1970), geometric slip distance λg is characteristic of the 

microstructure as well as the type and distribution of hardening precipitates or particles in the material. In 

general, the density of geometrically necessary dislocations is related to the imposed shear strain and the slip 

distance λg through the relationship given as

ρg = κ
b

γ
λg

            (6.17)

where κ is a proportionality constant related to the microstructure geometry as well as the type and 

distribution of particles (Ashby, 1970).

Finally, the new flow rule follows from the substitution of equations (6.16) and (6.17) into (6.15):

τ = αμb
γ

Λsb(2 + Ωγ) + γ
Λgb

         (6.18)

The capitalized Λs and Λg are material parameters related to the statistical and geometric slip distances such 

that 
1
Λs

= P
A

1
λs

 and 
1

Λg
= κ

λg
. 

It is noted that, work hardening does not explicitly account for time-rate dependence; however, this is 

considered in the determination of the recovery parameter discussed in the following section. The slip 

distance parameters will also have a rate dependence and a temperature dependence and is discussed in 

section 6.4. 

93



6.3.1 Dynamic Recovery

It has been shown in many studies that FCC metals exhibit dynamic recovery – the dynamic annihilation of 

dislocations given sufficient dislocation density and thermal energy – at warm temperatures (Hirth & Lothe, 

1967; Kocks, 1976; Gottstein, 2013). The mechanisms of dynamic recovery can be divided into (i) cross-slip 

and (ii) vacancy climb (Bergström & Hallen, 1982; Hallen, 1985). At low temperatures, well below ambient 

for aluminum, recovery is assumed to be assisted by the mechanism of cross-slip of screw dislocations. At 

ambient temperatures and above, the effects of cross-slip become nearly constant and can be considered 

athermal. However, vacancy climb dominates recovery at higher temperatures. A schematic of the effects of 

cross-slip and vacancy climb as mechanisms of recovery is presented in Figure 6-2.

(Ω
)

Figure 6-2 A schematic representation of recovery mechanisms in two components, at low temperatures 

recovery is assisted by cross-slip and at high temperatures recovery is dominated by vacancy climb.

Vacancy climb – or dislocation climb – may not significantly contribute to the deformation, but is an 

important mechanism in the recovery process (Kocks, 1976). Therefore, following Figure 6-2, it is reasonable 

to assume that dynamic recovery factor can be decomposed into two components as

Ω = Ω0 + Ω( ·γ, T )           (6.17)

where Ω0 is the athermal component and Ω( ·γ, T ) symbolizes a dynamic recovery factor dependent on strain 

rate ·γ and temperature T. In order to derive a theoretical expression for this dependence, a few assumptions 

must be made. Firstly, (i) the remobilization of sessile dislocations occurs primarily at dislocation cell walls 

where dislocation density is maximum. This is supported by high-powered electron microscopy studies 

(Bergrstöm, 1977; Gottstein, 2004; Mompiou et al., 2012). Following this, (ii) the remobilization mechanism 

is a result of vacancy climb of the sessile dislocations. This is favourable due to the supersaturation of 
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vacancy sites quickly achieved during straining, and the exponential increase in vacancy mobility at elevated 

temperatures. (iii) During plastic deformation, these vacancies migrate to dislocation cell walls where they are 

absorbed, facilitating dislocation climb. Lastly, (iv) the diffusion of vacancies is governed by the Einstein 

relationship, such that:

δ = 2Dt            (6.18)

where δ is the average distance moved by the vacancies during a time t, and D is the diffusion coefficient. By 

the assumption of vacancy supersaturation, the diffusion coefficient D can be defined by the Arrhenius 

relationship

D = D0exp (− Qm

RT )           (6.19)

where D0 is a constant related to entropy of diffusion, Qm is the energy of vacancy diffusion, R is the gas 

constant and T is absolute temperature. 

Next we need a relationship for the number of vacancies that will reach the cell walls after some given time t, 

which will be denoted '. This must be proportional to the density of vacancies n0 and the average distance δ 

a vacancy has migrated after some time. Considering that a vacancy can approach the cell walls from either 

direction, the relationship can be written as

' = 2n0δ = 2n0 2Dt           (6.20)

According to the assumptions made previously, the remobilization of sessile dislocations in the cell walls is 

conducted via vacancy climb, therefore it is reasonable that recovery, or Ω( ·γ, T ), is proportional to the 

number of vacancies reaching the cell walls such that

Ω( ·γ, T ) = &n0 2Dt           (6.21)

with & representing a proportionality constant (including the factor of 2 from equation (6.20)). 

Finally, we must determine an expression for the time dependence, t. If the average distance a vacancy travels 

in time t is given by equation (6.18), then an average time can be found for a dislocation to travel a distance δ. 

Therefore, we introduce the concept of average wait time, or the time between successive remobilizations of 

immobile dislocations. As recovery increases, it is expected that the mean wait time between these 

remobilizations will decrease. Letting t̄ denote the average wait time, equation (6.21) can be rewritten as 

Ω( ·γ, T ) = &n0 2Dt̄            (6.22)

Now let us assume, by differentiation of equation (6.11) with respect to time, that the rate of dislocation 

remobilization is 
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dρ
dt

= − Ωρ ·γ            (6.23)

Assuming an initial dislocation content of the unstrained material as ρ0, integration yields

ρ(t) = ρ0exp(−Ω ·γ t)           (6.24)

The average wait time of the immobile dislocations can now be determined by the following:

t̄ =
∫ ∞

0 tρ(t)dt

∫ ∞
0 ρ(t)dt

= 1
Ω ·γ            (6.25)

If we only consider thermal component of the total recovery, then t̄ can be written as

t̄ = 1
Ω( ·γ, T ) ·γ             (6.26)

and can be inserted back into equation (6.22) yielding

Ω( ·γ, T ) = &n0 ( 2D
Ω( ·γ, T ) ·γ )

1/2
          (6.27)

Lastly, solving for Ω( ·γ, T ) and replacing D with its Arrhenius relationship gives

  Ω( ·γ, T ) = (&n0(2D0)1/2)2/3 exp (− Qm

3RT ) ·γ−1/3        

= A0 ( D0
·γ )

1/3
exp (− Qm

3RT )         (6.28)

where A0, which is proportional to (&n0)2/3, is the only unknown parameter. The values of D0, Qm, and R are 

tabulated data, and temperature and strain rate are from experimental conditions.

6.3.2 Determination of hardening parameters

In the presented model, the material hardening depends on experimentally determined parameters relating to 

the evolving microstructure. Parameters λs, λg, 
1
ϕ

 and 
P
A

 are initially assumed to behave independent of 

temperature and are calculated from room temperature experimental data. Recovery represented by Ω is 

determined according to the high-strain hardening behaviour at multiple temperatures to validate the 

temperature dependent equation (6.28). The procedure proposed to obtain these values is described in this 

section.
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Firstly, stress-strain data is fit by a polynomial function (up to 5th or 6th order), and the value of σ0 is first 

assumed as the zero-strain intercept of the polynomial function, as shown in Figure 6-3. From this, the flow 

shear stress τ = σ − σ0
M

 versus the shear strain γ = Mε, where M is the Taylor factor such that M = 3 for this 

analysis, can be plotted. 

The flow stress is related to the retained dislocation density ρ by the strength of obstacle parameter α, and 

therefore can be determined experimentally from the log(τ) vs. log(ρ) plot. However, the difficulty is 

measuring the retained dislocation density, whereby it is challenging to resolve dislocation density from other 

deformation debris (Saimoto, 2006). This leads to an under/over prediction of the dislocation content 

depending on the measuring method chosen (Schafler, 2005). However, an obstacle strength for aluminum of 

approximately 0.35-0.45 has been widely published (Hirth and Lothe, 1967; Saimoto, 2006; Park and 

Niewczas, 2008) and a value of 0.4 is assumed for this study.

For the determination of mean slip distance, it must first be assumed that under ideal conditions, during 

yielding the statistically-stored dislocation mean slip distance is equal to the interobstacle spacing, which is 

equal to the inverse root of retained dislocation density, i.e.

λs = ℓ = ρ−1/2            (6.29)

therefore, allowing the relation ℓ = αμb /τ. From the experimental flow stress, the mean slip distance λs is 

then calculated by equation (6.3) and plotted. The slope of dτ /dγ is calculated as the instantaneous slope of 

the τ vs. γ polynomial. The value of 
1
ϕ

 is then optimized such that the curves of log(λ) and log(ℓ ) plotted 

against log(τ) are equal for the lowest value of τ, as presented in Figure 6-3. For this analysis, the minimum 

value of λs is chosen as the characteristic mean slip distance. This has been hypothesized to correspond to the 

transitional point between stage II and stage III hardening (Saimoto and Van Houtte, 2011). The apparent 

transitional increase in mean slip distance is attributed to the formation of cellular structures and recovery 

mechanisms. In the cell interiors a lack of retained dislocation content increases the mean free path that 

dislocations can propagate before encountering an obstacle. However, the fact that activation work rather than 

a specific flow stress governs thermal activation allows this averaging procedure between cell walls and 

interiors, thus the mean slip distance can be approximated as a constant λmin. This minimum slip distance is 

associated with the statistically-stored dislocations given that, at low strains, the relative slip distances are 

such that λs ≪ λg. 
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Figure 6-3 (left) polynomial fit to experimental stress-strain data of pure aluminum and (right) log(λ) and 

log(ℓ ) jointly plotted vs. log(τ) with ϕ−1 adjusted to match log(λ) and log(ℓ ) at low strains. The dotted 

tangent line depicts the minimum mean slip distance λmin. The experimental stress-strain data is taken from 

Kocks (1976).

Finally, 
P
A

 is determined by examination of the constitutive relations. Upon yielding, equation (6.3) can be 

integrated to the following form 

τ = ( ϕ
λs

bμ2γ)
1/2

           (6.30)

Equating this to the constitutive relation in equation (6.14) yields

ϕbμ2

λs
= P

A
(αμb)2

λsb
1

(2 + Ωγ)           (6.31)

and the small strain assumption upon yielding allows Ωγ ≪ 2; therefore, the above relationship can be 

simplified to

P
A

≈ 2ϕ
α2              (6.32)

Finally, the dynamic recovery Ω and mean slip distance parameter of geometrically-necessary dislocations  Λg 

can be found by error minimization of the stress-strain plot. The recovery factor is first increased to match the 

curvature at the low-strain region of the curve. Subsequently, Λg is adjusted to match the high-strain stage III 

region of the stress-strain curve. Figure 6-4 demonstrates the effect of these parameters on the predicted shear 

stress-strain plot at room temperature. At Ω = 0 the effects of recovery are removed and the curve over-

predicts the strain hardening response upon sufficient dislocation accumulation at approximately 0.05 strain – 

a point related to the stage II-III transition. A recovery factor of Ω = 5.5 provides the best fit to the 

experimental data at room temperature. Values of Λs and Λg are presented in Table 6-1.
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Figure 6-4 Fitted – curve (solid line) and its match with the experimental 99.99% pure aluminum data at 

300K (Kocks 1976). The contribution of individual material hardening parameters and recovery is also 

presented as dashed lines. The geometric sum of the Λs and Λg curves produce the ‘Fit’ curve.

6.3.3 Elevated Temperature

Firstly, it must be considered that measured hardening parameters outlined in the previous section are 

temperature dependent. It has been shown experimentally that these material properties evolve with 

temperature, and strain (Niewczas et al., 2015). For obstacles of atomic dimensions, thermal activation of the 

dislocation is an important process. Foreman and Makin (1966, 1967) completed extensive research on 

dislocation movement through arrays of obstacles, including the effect of temperature. It was proposed that 

the stress required to propagate dislocations passed an obstacle decreased at an exponential rate with respect 

to temperature of the form

( σ
σ0 )

2
3

= 1 − ( T
T0 )

p
p + 1

          (6.33)

where σ0 represents the strength at absolute zero and T0 represents the temperature at which the stress to 

overcome an obstacle becomes vanishingly small, and p is a constant. This realization was attributed to the 

weakening line tension of dislocations; thus, the breaking angle to overcome the obstacle increases. It has also 

been proposed by Diak et al. (1998) that, particularly in aluminum, the dissolution of stacking fault 

tetrahedral at high temperatures – which act as strong obstacles – contributes to the above relationship. 

However, the consensus for aluminum has been that the obstacle strength parameter α undergoes negligible 

change with changing temperature, suggesting that the breaking angle to overcome obstacles is more or less 

constant (Diak et al. 1998; Saimoto 2006; Park and Niewczas 2008; Niewczas et al. 2015).
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More difficult is statistical annihilation parameter and mean slip distance. It seems logical they would evolve 

with temperature and strain, as provided by equation (6.3); however, the interdependence of these parameters 

gives extreme difficulty in understanding the individual temperature and strain dependence. For instance, a 

variation in λ by fitting the geometric factor ϕ is balanced by 
P
A

 from equation (6.32), and therefore the 

product of these terms is a constant. By analysis of equations (6.3) and (6.30)–(6.32), this product is directly 

proportional to τθ as:

P
A

1
λ

= 4τθ
(αμ)2b

            (6.34)

where the minimum mean slip distance λmin is synonymous with the maximum of the product of the flow 

stress and strain hardening rate τθ. 

Decades of research have been conducted on the understanding of the behaviour of dislocation propagation 

and mean slip distance (Taylor 1934; Cottrell and Stokes 1955; Basinski 1959; Foreman and Makin 1967; 

Louat 1978; Diak et al. 1998; Park and Niewczas 2008; Altintas 2011). What has been concluded is that, upon 

initial straining λ is nearly equal to the interobstacle spacing ℓ and increases during deformation to a length 

directly related to cell size. Many relations have been developed to represent this and the effects of 

temperature, with the most accepted presented in equation (6.3). The influence of temperature, however, is not 

well understood and thus far is inversely related to the flow stress and material hardening. It is expected that 

the product of 
1
A

 and 
1
λ

 decreases with increasing temperature. Saimoto (2006) showed that the increase in 
1
A

 

with debris formation following plastic strain is minimal, thus the strain dependence is ignored for this study. 

The mean slip distance λ is defined by its minimum (λmin) and its strain dependence is implicitly strain 

dependent by the mechanism of recovery. 

The overall effect of these parameters, following the assumptions and procedures outlined above, can be 

determined and each hardening parameter can be analyzed with respect to their individual temperature 

dependencies. The most pertinent is the correct determination of the three hardening parameters Λs, Λg and Ω 

ensuring an accurate depiction of temperature dependence. The method outlined in section 6.3.2 ensures that 

this is accomplished. Therefore, in the following section the model will be used to determine parameters Λs, 

Λg and Ω ranging from 200 to 600 Kelvin. Relationships between these parameters are discussed and 

presented graphically to present the temperature dependencies and the model’s predictability. 
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6.4 Results

The analysis presented in this section is based on stress-strain data of 99.99% pure aluminum polycrystals by 

uniaxial tension deformation. The obtained experimental results are from the literature (Kocks 1976) for 

engineering stress and engineering strain in the normal direction and are digitized and converted to true stress 

and logarithmic strain. The data was then translated to reflect the averages of the shear flow stress  τ and shear 

strain γ of all crystallites in a polycrystal through the Taylor factor. The calibration of simulation parameters, 

as described in section 6.3, is completed in this section for the pure aluminum at 100K temperature intervals 

from 200K to 600K. Pure aluminum was chosen due to the availability of data at multiple strain rates as well 

and the absence of alloying solutes and particles that contribute new hardening effects and can mask the true 

behaviour of the dislocation-dislocation interactions. In addition, the pure material is free of heat treatable 

particles, thus the observed thermal effects can be regarded as purely due to the behaviour of the dislocation 

obstacles and slip dominated deformation. It should also be noted that the grain boundaries will have an effect 

on the material strength; however, for this study the grain structure is of adequate size to ignore these effects. 

6.4.1 Stress-Strain Calibration

By section 6.3, the hardening parameters are determined at 200K to 600K and presented in Table 6-1. The 

hardening parameters and their corresponding stress-strain curves are presented in Figure 6-5 along with the 

experimental data at a strain rate of ·ε = 1/min . The obstacle strength parameter α is taken from literature 

data to be equal to 0.4 for all aluminum alloys at room temperature (Saimoto and Van Houtte, 2011) and its 

temperature dependence is assumed to be negligible in the chosen temperature range, as discussed by Kocks 

and Mecking (2003). This also corresponds to a constant approximation for P = 0.2 (see section 6.2). The 

experimental stress-strain data used for commercially pure (99.99%) aluminum is acquired from Kocks 

(1976).

The model captures the hardening behaviour very well, especially at high strain and high temperatures. At 

200K, the experimental curve retains a very high hardening below shear strain γ = 0.05. This could indicate 

an exaggerated stage II-type hardening prolonged by lack of thermal motivation for stage III. Experimental 

stress-strain curves for low temperature aluminum presented by Jobba et al. (2015) also show a tendency 

towards a more linear hardening behaviour as the temperature is decreased below room temperature. This is 

motivated by two contributing factors: (i) low dislocation density and (ii) low thermal activation for vacancy 

climb. At sufficiently low temperatures and strain, the material recovery parameter becomes dependent on 

strain as well as temperature and strain-rate. Upon adequate dislocation accumulation, the dependency falls 

solely on temperature and strain rate. Near and above room temperature this is not observed, likely due to the 

added thermal energy facilitating the onset of dynamic recovery at very low strains.
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Figure 6-5 Experimental (points) and simulated (lines) τ − γ stress-strain curves at 200K to 600K for 

commercially pure aluminum ( ·ε = 1/min). Hardening parameters were determined by the method presented 

in section 6.3 and values presented in Table 6-1.

Table 6-1 Measured hardening parameters of 99.99% pure aluminum at 200K - 600K taken at strain rate of 
·ε = 1/min. The value for τ0 was scaled with shear modulus μ(T ) such that τ0 /μ is constant, as determined 

from Varshni (1970). 

6.4.2 Work Hardening

Essential features of the work hardening of polycrystals are: (i) a rapidly decreasing low-stress component 

affected strongly by initial microstructure, but upon some small amount of strain merges into (ii) a more 

linear decreasing section commonly known as stage III hardening followed by, permitting enough ductility, 

(iii) a saturated hardening level where a new stage IV is present. The concept of a stage IV was explained by 

Sevillano et al. (1980) as a constant hardening component of the stress-strain curve, but was later expanded to 

include further decrease in hardening by new hardening laws. Due to the low hardening levels of stage IV 

(typically θ < τ), it is troublesome to determine hardening mechanism that must compete with structural and 

geometrical instabilities. It has been proposed (Nabarro, 1989) that stage I defines a lower limit of strain 

hardening known as “easy glide” corresponding to a minimum dislocation storage due to the limited 

interaction of dislocations while only one slip system is active. In polycrystalline materials, this is 
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overpowered by the high storage rate of multi-slip in stage II. It is supposedly observed in stage IV, however, 

that the minimum hardening corresponds to the level of stage I hardening, where the athermal storage of 

dislocations is effectively in balance with the dynamic recovery at the end of stage III. 

The work hardening is determined by dτ /dγ of equation (6.15) given as,

dτ
dγ

= αμb
1

2 ρT

dρT

dγ
           (6.35)

where ρT = ρs + ρg. In Figure 6-6, the normalized work hardening is plotted versus the shear stress for each 

generated stress-strain curve. For all temperatures above 200K, there appears to be an obvious transition in 

the hardening rate corresponding to a similar behaviour of stage II, III, and IV hardening. The transitional 

stresses exhibit an inverse relationship with temperature, which is driven by the rapidly decreasing work 

hardening at high temperatures. With the present model, it is difficult to determine a beginning of stage III 

hardening, so the representation of this zone drawn in Figure 6-6 by a dotted line is merely an estimate. 

However, the end of stage III is very pronounced at 300K and above by a sharp kink in the hardening curves. 

This can be attributed as a point of ‘maximum recovery’. The warm temperatures between 300K and 500K 

appear to have similar saturated hardening that is very mildly dependent of temperature, but a significant 

decrease is observed at 600K. The hardening saturation largely depends on the microstructure evolution, 

which is captured by the model in Λg. A significant decrease in the stage IV hardening is suggested by the 

model that the microstructural properties that govern Λg (such as dislocation cells) begin to break down at this 

high temperature, allowing the geometric slip distance to grow such that the hardening behaviour in this 

regime becomes dominated by statistical storage and recovery. At the low temperature extreme, the opposite 

seems to be true. The effects of recovery are not well observed, however still present, and high hardening is 

due to the stable microstructural boundaries. 

6.4.3 Dynamic Recovery

The expression dynamic recovery generally refers to a stage III process where there is a decrease in the 

hardening rate that is strongly dependent on temperature and strain rate. Presented in Figure 6-7 is the 

recovery factor Ω at the five fitted temperatures. To determine the value of material parameter A0 from 

equation (6.28), these values are plotted vs. the exponential of the energy term, with 

Qm = 17,000 cal ⋅ mol−1K−1 as provided by Hallén (1985) to provide a linear relationship with slope equal 

to  A0 ( D0
·ε )

1/3
 and intercept Ω0. Here, the applied strain rate ·ε has been used for simplicity and it is assumed 

to be directly proportional to the shear strain rate by the Taylor factor.
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Figure 6-6 Work hardening versus flow stress of equation (6.35) at the five fitted temperatures. The work 

hardening is normalized by the temperature dependent shear modulus. The dotted line denotes an estimate of 

the τIII transition from stage II to stage III. The dashed line represents the end of the experimental data with 

hardening extrapolated to show the model–predicted stage IV type hardening behaviour where the hardening 

plateaus. 

Figure 6-7 Presents (left) the dynamic recovery factor Ω vs. temperature for pure aluminum and equation 

(6.27) with parameters determined from fitting in (right), the dynamic recovery factor Ω plotted against 

exp (− Qm

3RT ) with, A0 and Ω0 determined from the linear fit.
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The recovery parameters follow a very clear exponential relationship with material constants determined from 

a linear fit of Figure 6-7. The units for A0 are determined from analysis of equation (6.28) and are related to 

the density of vacancies; thus, the recovery parameter Ω is a unit-less parameter. The value plotted for 200K 

is representative of the low temperature recovery mechanism of cross-slip as discussed in section 6.3.1. It is 

clear from the model that at this temperature, the thermal activation of the cross-slip mechanisms has a 

leading role in the recovery process, and recovery due to vacancy climb is nearly negligible. The dynamic 

recovery model presented does not consider the low temperature effect of cross-slip but assumes it to be a 

constant Ω0. At extreme low temperatures the athermal Ω0 becomes temperature dependent; however, Hallén 

(1985) showed experimentally that this effect is not observed in aluminum until below approximately 200K. 

Therefore, it is assumed that Ω0 can be determined as the recovery factor measured at 200K.

Even if the model does not define the spatial distribution of dislocations, our physical picture that during 

straining dislocations are accumulated by storage processes in randomly distributed webs is very successful at 

predicting the data. The results presented are quite promising and show that a model for vacancy climb as the 

dominant mechanism for dynamic recovery is valid for a wide temperature range. This is important in 

predicting temperature dependent behaviour and ultimately warm forming behaviour where the material 

strength is significantly affected by material temperature and strain-rate.

6.4.4 Mean Slip Distance

For this study, the temperature dependence of the geometric-necessary and statistically-stored slip distance 

parameters Λg and Λs were investigated graphically. Systematically it was found that a linear relationship with 

temperature could be drawn with the inverse square-root of the slip distance parameter for statistically-stored 

dislocations, and simple the inverse of the slip distance parameter for the geometrically-necessary dislocation 

density. The difference in these dependencies is not known; however, it is suggested by the results that 

parameter Λs is related to the area swept by the statistically-stored dislocations. This would then allow the 

proposal that both types of dislocation slip distances, Λg and Λs hold the same  inverse temperature 

dependencies. Figure 6-8 demonstrates this relationship, where the inverse of mean slip distance for both 

types decreases with increasing temperature. However, the value at 200K does not necessarily follow this 

pattern. This along with the presented findings for the dynamic recovery factor enhances the notion that 

different mechanisms inhibit the plastic flow below some low threshold temperature. Due to the relative 

magnitudes of the slip-distance parameters, the mean slip distance of geometric dislocations begins to 

dominate the behaviour at 200K, and this is shown as the rapid decrease in the geometric slip-distance 

parameter in Figure 6-8.
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Figure 6-8 The linear dependencies of mean slip distance parameter and temperature at ·ε = 1/min are shown 

with blue (Λg) and orange (Λs) points representing the values determined from fitted data. The dotted lines 

highlight the linearity of the inverse square root of Λs and the inverse of Λg relationships with temperature. At 

200K, the steep increase in 1/Λg alludes to a mechanism activation point, having significant effect on the 

geometric necessary dislocations.

It appears logical that a greater temperature dependency exists on the movement of statistically-stored 

dislocations. They are greatly affected by recovery, a thermodynamically motivated mechanism, and by 

dislocation theory are also dependent on the geometrically-necessary dislocation density (Ashby, 1970). 

However, the exact temperature dependence of mean free path of any type of dislocation is absent from the 

literature. There are many contributions to understanding and modeling dislocation mechanics with respect to 

microstructure and strain rate for a wide veriety of metals and alloys (Svendsen, 2002; Mianroodi et al., 2016; 

Terentyev et al., 2015), but the effect of temperature and thermal contributions directly affecting the 

movement, storage, and recovery in strain hardening has not been addressed. Even the descriptions of 

thermally activated glide of dislocations by Orowan (1940) and dislocation activation area by Kocks et al. 

(1975) along with the most widely accepted phenomenological description of thermally activated flow and 

strain hardening (Kocks and Mecking, 2003) do not present any findings or empirical theories on the 

activation of the slip distance with temperature. Therefore, only speculation on the mechanisms involved in 

these temperature dependencies can be made here.

6.4.5 Strain Rate Dependence

The explicit strain rate dependence is considered in the dynamic recovery formulation, as seen in equation 

(6.28). However, it must also be considered that, the mean slip distance parameters must also exude some rate 

dependence. The corollary between temperature and strain rate––whereby decreasing the deformation 

temperature will induce a similar behaviour as increasing the strain rate––also supports this. Since dislocation 
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movement, recovery through vacancy climb, and annihilation are largely affected by thermodynamics, which 

is rate dependent itself due to diffusional processes, it is obvious that there must be rate dependence 

considered throughout. The uncertainty is predicting what the rate dependence should be for the mean slip 

distance parameters.

The simplest theory, is to assume a strain-rate dependence of the same distinction as with temperature. That is 

to assume that the inverse square-root of the statistically stored and inverse of geometric mean slip distance 

parameters behave in a linear fashion with strain-rate, as well as temperature. Due to diffusional 

considerations, it is also known that increasing strain-rate results in a decrease in mean slip distance of all 

dislocations. With this assumption, the results of increasing strain-rate should manifest as a linear translation 

of Figure 6-8 upward creating a second linear set of points parallel to the low strain-rate data.

As a final measure of the predictability of the recovery model, stress-strain responses for pure aluminum at  
·ε = 100/min strain rate are simulated and compared with experimental data. Initially, a single temperature 

data set is required to fit the new strain rate and then all subsequent temperatures can be predicted by the 

model. This is completed in the following, with room temperature data as the calibrating set.

6.4.6 Model Validation

A validation of the model can be completed for a new data set at a new strain rate. For this study, the available 

data from the work of Kocks (1976) on work hardening of pure aluminum provides data for the currently 

calibrated ·ε = 1/min strain rate in uniaxial tension, and the higher strain rate ·ε = 100/min in uniaxial 

tension. Therefore, the data is consistent and it can be assumed that there are no effects of varying texture or 

microstructure between test samples. 

For calibration of the model at a new strain rate, only one test needs to be completed to determine the mean 

slip distance parameters. The simplest test is at room temperature, or 300K. The hardening parameters are 

determined firstly at this temperature using the procedure outlined in the previous sections. In Figure 6-9 the 

calibrated 100/min slip distance parameters for Λs and Λg are shown as open points. The discussion in section 

6.4.5 predicts that the corresponding points for elevated temperatures fall on the line parallel to the 1/min 

data and passing through this newly calibrated 100/min point. Two methods of verification can be employed: 

one where the elevated temperature parameters are measured and compared with expected results, the other is 

to predict these parameters from Figure 6-8 and compare the simulated and experimental stress-strain curves. 

The first method was chosen for convenience, and the results are presented for the mean slip distance 

parameters in Figure 6-9. The calibrated point at 300K is shown with a dotted line representing the expected 

values drawn parallel to the low strain-rate data. For both the geometrically-necessary and statistically-stored 

slip distance parameters, the results are a very good and match the prediction (dotted line) nearly exactly. 
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Figure 6-9 The vertical translation of slip distance parameters from ·ε = 1/min in blue (from Figure 6-8) to  
·ε = 100/min in orange represents the strain-rate dependence of the mean slip distance parameters. In both 

cases, increasing the strain-rate results in an increase in the inverse slip distance––corresponding to a decrease 

in the mean slip distance of both statistically-stored and geometrically-necessary dislocation types. 

The dynamic recovery factor, as with mean slip distance parameters, need only be calibrated one of two ways. 

The first through the theory outlined in section 6.3.1 and appropriately scaling previously measured low strain 

rate values to the higher strain rate. The second method requires two calibration points to determine the slope 

of the linear plot (Figure 6-10). The second method is simpler; however, it is ideal to have the ability to fit a 

new set of data with a single calibration. Given that the athermal recovery Ω0 is constant with respect to 

temperature and strain rate, the recovery factor for other strain rates can be determined by solving equation 

(6.28) such that

Ω( ·γ100, T ) − Ω0
Ω( ·γ1, T ) − Ω0

= (
·γ1

·γ100 )
1/3

          (6.36)

For an increase in strain rate by 102, the approximate decrease in the thermal component of recovery factor 

due to vacancy climb (Ω − Ω0) is 10−2/3. The low temperature recovery mechanisms embodied in Ω0 as 

cross-slip is assumed to be strain rate independent, especially in the temperature range studied. As shown in 

Figure 6-7, the recovery at 200K is assumed to be purely due to the low temperature cross-slip mechanism. 

Therefore, the measured value at 200K is taken to be Ω0 = 2.5. The one third exponent is derived from the 

determination of average time for a vacancy to remobilize an immobile dislocation, however, the data 

collected suggests a weaker strain rate dependence. An optimized fit reveals the rate sensitivity exponent to be 

equal to 1/5, which corresponds to the Nes and Marthinsen (2002) model for vacancy diffusion in courser 

grained pure FCC metals. Therefore, proper determination of the dynamic recovery factor can be given by

Ω( ·γ, T ) = A0 ( D0
·γ )

1/5
exp (− Qm

3RT )         (6.37)
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In Figure 10 the results for the measured (orange points) and expected decrease in recovery factor (dotted 

line) are presented. The relationship in equation (6.37) proves an accurate predictor of the recovery factor’s 

rate sensitivity, as well as properly capturing the temperature dependence of moderate to high temperatures. It 

is interesting to note, possibly due to the low strength, that the increase in strain rate by a factor of 100 has 

nearly the same effect as decreasing the temperature by 100K. Similarly, the slip parameters Λs and Λg follow 

this trend. Physically, this suggests that the correspondence of temperature and strain rate are such that, for 

example, the deformation response is nearly identical between 400K at ·ε = 1/min and 500K at ·ε = 100/min. 

This indeed does not consider the rate effects on fracture or damage and should not be mistaken as a 

suggestion that failure is also similar for these two conditions. This model is purely for deformation and does 

not consider any form of damage or other mechanisms leading to final failure or fracture.

 

Figure 6-10 The measured low strain rate (blue) and predicted high strain rate (orange) dynamic recovery 

factors for pure aluminum between 300K and 600K. The open point represents the calibrated recovery factor 

used to determine the predicted values (dotted line) at higher temperatures. Although 200K is not shown, the 

recovery factor at both strain rates corresponds to the same Ω0 = 2.5.

Lastly, the predicted shear stress-strain curves for the three elevated temperatures and the calibrated room 

temperature are presented in Figure 6-11. The predictions are very good and reflect the capability of the given 

model. The basis of dislocation and recovery theories that are used to develop the model are fundamental to 

achieving this. The model also presents the significance of both dislocation types–statistical and geometric–on 

determining the stress-strain response. In Figure 6-11, the experimental data provided for 500K and 600K was 

only available to approximately 10% engineering strain, however, the simulation results nonetheless have 

been extrapolated beyond the experimental data to showcase the high strain hardening predictions.
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Figure 6-11 Predicted shear stress-strain curves for the four high strain rate ( ·ε = 100/min) and high 

temperature conditions corresponding to the material parameters shown in Figures 6-9 and 6-10. The 300K 

curve was calibrated to determine the high strain rate properties for the higher three temperatures. 

Experimental curves for 500K and 600K were only available to approximately 10% engineering strain.

6.5 Discussion

Another interesting outcome of this model, is the ability to study the interdependence of these internal 

variables. The most useful has been provided in Figure 6-11 as a plot between the inverse ratios of the mean 

slip distance parameters 1/ Λs and 1/Λg. The plot shows that the slope relating these quantities remains a 

constant over the studied range of temperature and strain rate and manifests as a linear relationship. The data 

at 200K is not shown, however, as expected from Figure 6-8 the ratio does not hold for this low temperature. 

Again this provides further evidence that a thermally activated mechanism is likely made thermodynamically 

unavailable at this low temperature, and the mean slip distance corresponding to geometrical dislocations is 

dramatically decreased. The utility of Figure 6-12 is the predictive ability for determining one slip distance 

parameter, given its counterpart. The presented method can now provide a completely concrete method for 

determining hardening parameters, where the method to determine Λs is outlined in section 6.3 and Λg can be 

determined following Figure 6-12.
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Figure 6-12 A plot of the inverse of geometric slip distance parameter versus the inverse root of statistical slip 

distance parameter. Both fitted ( ·ε = 1/min) and predicted ·ε = 100/min data points fall coincident with the 

dotted line, representing the constant ratio between these two parameters over the studied range of strain rates 

and temperatures. The utility of this diagram is the precise determination of the Λg parameter upon measuring 

Λs by the method outlined in section 6-3.

It has been accepted for decades that the statistically-stored dislocation content is dependent on geometrically-

necessary dislocation accumulation as well as temperature and strain-rate (Ashby, 1970). Thusly, the 

relationship between the two slip distance parameters can be expected. In addition to this, the model also 

predicts the experimentally observed behaviour of the dislocation cellular structure with temperature and 

strain. This is an important mechanism that can influence a number of material properties from crack 

propagation to creep reduction. It is known that; (i) larger cells form at higher deformation temperatures and 

smaller cells at higher strains, (ii) the cell walls are comprised of dislocation tangles, where the dislocation 

density in the cell walls has been reported to be up to five times the average dislocation density, and (iii) cells 

formed at higher temperatures are more distinct––with thinner, well defined cell walls––than cells formed at 

lower temperatures (Staker and Holt, 1972; Thompson, 1977). 

The model presented here is developed on the basis that the statistically stored-dislocations annihilate via 

dynamic recovery at the cell walls, and that the geometrically-necessary dislocations travel through the cell 

interior, accumulating at the cell walls, to accommodate shape change of the material. Therefore, the mean 

slip distance of the statistically-stored dislocations should be representative of an average dislocation density 

and always be less than the slip distance of geometrically-necessary dislocations, which is dependent on the 

cell size. During straining, simultaneous accumulation and recovery at the cell walls eventually reaches an 

equilibrium, whereby the cell walls remain at a relatively constant thickness. At low temperatures, this 

equilibrium may never be reached before failure, while at high temperatures this equilibrium state becomes 

evident. 
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Figure 6-13 represents this very well by plotting the stress from individual dislocation contributions. The form 

of the model affords the ability to distinguish the individual contributions of statistically-stored and 

geometrically-necessary dislocations, which––in nearly every modeling or experimental method––is either 

extremely arduous or impossible. This, however, is easily accomplished with the proposed model. At 300K, 

the stress due to statistically stored dislocations continuously increases, while at 500K a plateau is reached by 

γ = 0.2. The geometric component, at both temperatures, continues to grow indicating that the cell size of the 

substructure continues to increase with increasing strain. If the temperature increases further, Figure 6-12 

predicts that the geometric slip-distance parameter will be infinitely large, which seems unrealistic unless this 

extreme growth in Λg represents a complete instability in the cellular substructure. In other terms, upon 

sufficient thermal energy, cell structures may no longer be stable and therefore no cellular substructure is 

developed to impede further propagation of moving dislocations. These predictions correspond with the so 

called “hot deformation” regime, where new mechanisms become prevalent, such as dynamic 

recrystallization.

Figure 6-13 shows the individual contributions of the statistically-stored and geometrically-necessary 

dislocations according to the model. The plateau behaviour of the statistically-stored contribution represents 

an equilibrium between dislocation storage and recovery, and occurs at lower strains with increasing 

temperature. Solid black curves correspond to the fitted curves for 300K and 500K at ·ε = 1/min and 

hardening parameters shown in Figures 6-9 and 6-10.

For completeness, the sensitivity of each of the material slip distance parameters Λs and Λg and the dynamic 

recovery factor Ω is presented in the following. The plots in Figure 6-14 each show two solid curves 

representing the fitted data at 300K and 500K and strain rate ·ε = 1/min. Each curve then has two dashed 

curves representing the marginal change in the parameter of interest. The degree in variation was arbitrarily 

determined to show similar variation at an arbitrary shear strain γ = 0.8. The slip distance parameter Λs has 

the greatest effect during the low strain region of the stress-strain curve, while the geometric slip distance 

parameter Λg gradually increases and is most noticeable at high strains. This further expresses the plateau 

effect of the statistically-stored dislocations, where the Λs has little effect on the material hardening at high 
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strains. The Λg parameter, however, has a significant effect on hardening at high strains due to the strain 

dependence on the growth of dislocation cells. 

Figure 6-14 The plots show the sensitivity of the material hardening parameters Λs (left) and Λg (right) with 

values denoted at the end of each curve and all other parameters held constant. Solid black curves correspond 

to the fitted curves for 300K and 500K at ·ε = 1/min and hardening parameters shown in Figures 6-9 and 

6-10.

Finally, Figure 6-15 shows the effect of the dynamic recovery factor Ω. At room temperature, the stress-strain 

response is highly sensitive due to the high rate of dislocation storage, while at the higher 500K simulation 

temperature the sensitive decreases dramatically due to the exponential behaviour with temperature. Since the 

recovery acts on the statistically-stored dislocations, the initial deviation reaches an apparent plateau and 

begins to approach parallel to the fitted curve. This is similar to the behaviour of the  Λs parameter above, 

where dislocation accumulation and recovery reach an equilibrium and no longer contribute to the material 

strain hardening. This is most noticeable for the higher temperature simulation. 

Figure 6-15 Relationship between flow stress and the recovery factor Ω sensitivity with values for recovery 

denoted at the end of each curve and all other parameters held constant. Solid black curves correspond to the 

fitted curves for 300K and 500K at ·ε = 1/min and hardening parameters shown in Figures 6-9 and 6-10.
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6.6 Conclusions

In this study, a physical and mechanistic theory is derived based on the thermodynamic and mechanical 

balance between dislocation storage, accumulation, annihilation and recovery for a polycrystalline material. 

The theory is then developed into a new constitutive model and hardening law for simulating flow stress. The 

temperature and strain-rate dependence of hardening parameters embedded in the theory and have been 

calibrated and presented with experimental data. The temperature dependence of the hardening behaviour can 

be summarized by three important material parameters: mean slip distance of statistically-stored Λs, and 

geometrically-necessary Λg, dislocations and the dynamic recovery factor Ω. The following was concluded 

from the study:

• The material hardening parameters can be measured directly from the experimental stress-strain curves 

with the exception of the dynamic recovery factor which must be calibrated.

• The model can predict very well the stress-strain response of a large range of temperatures and at least of 

intermediate strain rates of ·ε = 1/min and ·ε = 100/min .

• Dynamic recovery can be predicted from an Arrhenius-type relationship for the remobilization of immobile 

dislocation by vacancy climb and is temperature and strain-rate dependent.

• The contributions of the material hardening parameters as well as contributions of statistically stored and 

geometrically necessary dislocation densities can be extracted individually and easily using the model. 

• Analysis of the temperature dependence of mean slip distance parameters show graphically an inverse 

square root proportionality of Λs and an inverse proportionality of Λg that is consistent at different 

intermediate strain rates. In addition, the proportionality of these two slip parameters is also constant for all 

studied warm temperatures and strain rates allowing for the prediction of one parameter given the other. 
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Chapter 7

Part IV: Temperature-Dependent Plasticity: 
A New Constitutive Formulation using 
Crystal Plasticity for 5xxx Series Al-Mg 
Aluminum Alloys

Edward D. Cyr1, Abhijit Brahme1, Raj K. Mishra2, Kaan Inal1

1 Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo ON, Canada, 

N2L 3G1
2 General Motors Research & Development Center, Warren MI, 48090, USA

Abstract

Many models have been developed on the deformation phenomena of metals during high temperature 

forming, however none have fully integrated thermodynamic formulations based on deformation mechanisms, 

especially for crystal plasticity. This work presents a crystal plasticity based analysis with a Taylor polycrystal 

averaging scheme of warm forming employing a new microstructure and dislocation based strain hardening 

model (chapter 6) to simulate deformation behaviour or polycrystal Al-Mg aluminum alloys 5754 and 5182 at 

elevated temperatures. The hardening model is derived from and energy balance between dislocation storage, 

dislocation accumulation, and dislocation recovery due to thermal activation. Recovery is based on the 

mechanism of remobilization of immobile dislocations through vacancy climb. The constitutive formulation is 

also extended to include alloying effects due to solute strengthening of Mg. The material hardening properties 

of AA5754 sheet are characterized for a range of temperatures from 25ºC to 260ºC at constant strain rates 

using experimental data obtained from literature. A formulation for the kinematics of dynamic strain aging is 

presented and employed for room temperature simulations. The hardening characterization is then used to 

predict stress-strain behaviour of 5182 sheet over the same temperature range and strain rate. The model 

shows excellent predictability of experimental results. An analysis on the microstructural connection between 

temperature and stress-strain response is presented. The effects of temperature on model parameters is also 

discussed. 

Keywords: Crystal Plasticity, Dislocation, Recovery, Temperature, Dynamic Annihilation
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7.1 Introduction

For decades, mass reduction has been a priority in the automotive sector for improving fuel economy (Green 

& DiCicco, 2000). Many manufacturers have opted for substituting lightweighting aluminum alloys for 

typical steel applications. An application of particular interest in this study is the use of 5xxx series 

aluminum-magnesium sheet alloys in panel components. The difficulty with aluminum sheet, in the 

replacement of panel components, is the lower formability at room temperatures than in steels (Ayres & 

Wenner, 1979). In addition, surface quality of formed parts at room temperature is undesirable due to the 

Lüder’s lines and serrated flow behaviour of Al-Mg sheet alloys (dynamic strain aging/PLC effect) (Robinson 

& Shaw, 1994). However, poor formability and surface finish can be greatly improved by warm forming (Li 

& Ghosh, 2003) without expensive production costs of refining microstructure to achieve the same outcome. 

The elevated temperature corresponds to a decreased flow stress and increased ductility of the sheet, which 

can allow deep drawing and stretch in panels competitive with steels without design modifications. The 

understanding of high temperature deformation behaviour for warm forming and the constitutive relations 

describing the material flow are two of the fundamental prerequisites for the implementation of forming 

technology in industry.

Available research for simulation of warm forming processes focuses only on the effect of elevated 

temperature on the evolution of the flow stress or hardening (Li & Gosh, 2003; Takata et al., 2000; Naka et 

al., 2001; Boogaard et al., 2001), rather than the the effect of elevated temperature on microstructural 

parameters that lead to this behaviour. Confidence in numerical analysis of plasticity of materials depends 

greatly on the accuracy of the constitutive model describing the behaviour of the material (Chung & Shah, 

1992). This is of particular importance when the material exhibits anisotropy, such as rolled sheets. The 

importance of an appropriate material model for predicting even simple monotonic loading strain paths has 

been demonstrated (Brahme et al., 2011). 

The flow stress is the most basic measure for characterizing plastic deformation properties of metals and 

provides a means to determine the energy required to plastically deform a material. The material then 

dissipates this energy while undergoing plastic flow by the mechanisms of deformation, which can be 

evaluated with the aid of governing constitutive equations. The improvement of these constitutive models 

over recent decades have given rise to an incredible understanding of material behaviour on a fundamental 

level; however, in many cases at the expense of great complexity and subsequently increased difficulty in 

application.

Crystal plasticity has been successfully used in modeling non-homogeneous mechanical behaviour and has 

been applied extensively to study both heterogeneous plastic deformation and texture evolution (Roters et al. 

2010). The collectives of crystal plasticity with the finite element method (CPFEM) and Taylor polycrystal 

analysis have proven a very powerful tool for the investigation of such plastic phenomena as the Bauschinger 

effect (Kim et al., 2012), formability (Wu et al., 1997; Inal et al., 2005; Mohammadi et al., 2014), cyclic 

loading (Muhammad et al., 2015; Grilli et al., 2015), surface effects (Rossiter et al., 2013), texture evolution 

(Popova et al., 2015; Knezevic et al., 2013) and high rate deformation (Clayton, 2005), to list a few. However, 
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little physical information is directly involved in the well-established crystal plasticity models as both the 

flow rule and hardening laws are phenomenological fits to the resolved strain rate by simple power law type 

expressions, or require complex calculations of strain gradients to predict dislocation contents (Gerken & 

Dawson, 2008; Elkhodary & Bakr, 2015). The material hardening, however, has not been linked to physical 

processes. Phenomenological models are satisfactory for the intended use of room temperature deformation, 

but are unable to predict material properties from experimental data or their temperature and strain 

dependence. It is essential for the investigation of complex deformation features during forming, such as 

temperature dependent and geometric softening, strain localization, and microstructure evolution, etc., that the 

material hardening models be derived from physical deformation mechanics.

Mechanisms, such as dynamic recovery (DRV) often occur in aluminum alloys with high-stacking fault 

energies during warm forming. Reports on the high-temperature deformation behaviour of aluminum alloys 

have shown that the mechanisms contributing to softening, recovery, and microstructure evolution are not 

well known and highly sensitive to temperature and strain-rate (Abedrabbro et al., 2007; Pandey et al., 2013; 

Ezatpour et al., 2014) and the determination of these effects has been a topic of discussion for decades 

(Argon, 1968; Kocks et al., 1975; Kocks, 1976, 2001; Kocks & Mecking, 1976, 2003). 

In this work, a crystal plasticity based analysis with a Taylor polycrystal averaging scheme of warm forming 

employing a new microstructure and dislocation based strain hardening model (Cyr et al. 2016) to simulate 

deformation behaviour or polycrystal Al-Mg aluminum alloys 5754 and 5182 at elevated temperatures is 

presented. The material hardening properties of AA5754 sheet are characterized for a range of temperatures 

from 25ºC to 260ºC at constant strain rates using experimental data obtained from literature. The available 

experimental data was reported to be at constant low strain rate such that thermal straining effects can be 

neglected. A kinematic formulation to capture dynamic strain aging at room temperature is also implemented 

to accurately represent the temperature dependency of the material hardening. Finally, The hardening 

characterization is used to predict stress-strain behaviour of 5182 sheet over the same temperature range and 

strain rate.

7.2 Constitutive Relations

The well-known framework presented by Asaro and Needleman (1983) and reformulated by Cyr et al. (2015) 

to include thermal effects is employed in this research. The crystal plasticity framework can be condensed to a 

relationship used to update the shear rate on each slip system, denoted by ·γα, based on the currently resolved 

shear stress τα on the slip system α. Details of the single crystal constitutive model employed can be found in 

Inal et al. (2002) and Cyr et al. (2015). For completeness, a brief summary is presented in the following.

The total deformation is assumed to exist in three parts; (i) elastic part due to lattice distortion (including rigid 

rotation), (ii) thermal part due to expansion/contraction of the lattice, and (iii) plastic part as a result of 

dislocation motion and crystallographic slip. The numerical model incorporates 12 distinct slip systems for 

face-centered cubic (FCC) materials as principal deformation mechanisms. The elastic constitutive equation is 

written as:
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∇σij = LijklDkl − ·σ0
ij − σijDkk          (7.1)

where ∇σij is the Jaumann rate of Cauchy stress, Lijkl is the elastic modulus tensor, Dkl is the strain rate tensor, 

and ·σ0
ij is the viscoplastic-type stress rate, which depends on the slip rates.

7.2.1   Kinetics of Slip

The rate-dependent equation for single-slip shear rates is governed by the power law expression defined as,

·γα = ·γ0sgn(τα) τα

ταy

1
m

           (7.2)

where ·γ0 is the reference shear rate assumed constant for all slip systems, τα is the resolved shear stress on slip 

system α, and τα
y  is the temperature dependent slip system strength. The term sgn(τα) denotes the sign of the 

resolved shear stress. Exponent 
1
m

 is not to reflect physical behaviour of a rate sensitivity, but to conveniently 

ensure uniqueness of slip activity, which is spread over all available slip systems. The rate of strain hardening 

of the crystal evolves by,

·τα
y = ∑

β
hαβ

·γα             (7.3)

where ·τα
y  is the single slip hardening rate. The hardening moduli tensor hαβ depends on deformation history 

and accumulated slip and is written as,

hαβ = qαβhβ      (no sum on β)          (7.4)

Here hβ = hβ(T ) is a temperature dependent single slip hardening rate, and qαβ is the matrix describing the 

latent hardening behaviour. Asaro and Needleman (1985) considered the current hardness to evolve with total 

accumulated shear γa in the crystal such that,

γa = ∫
t

0 ∑
α

·γα dt           (7.5)

7.2.2 Material Hardening

The hardening rate is derived from the flow rule equations developed by Cyr et al. 2016 and modified to 

include strengthening effects from solute Mg written as,

τ = αμb ρs + ρg + ρMg.          (7.6)
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The statistically-stored and geometrically-necessary dislocation densities ρs and ρg are determined from their 

respective slip distance parameters Λs and Λg such that,

ρs = γa

Λsb(2 + Ωγa)            (7.7)

ρg = 4γa

Λgb
.            (7.8)

The term ρMg denotes the increase in stored dislocation content and material strength due to the addition  of 

magnesium solute atoms as obstacles. In a similar manner that ρs and ρg have been related to the associated 

slip distance of dislocations, it is assumed that ρMg will also exude a proportionality with the slip distance of 

dislocations impeded by solute atoms. The assumption is also made that this new slip distance parameter ΛMg, 

which is proportional to ρ−1
Mg, does not evolve with strain and is directly related to microstructure. Therefore, 

increasing the concentration of solute Mg in the material will decrease the slip parameter; however, thermo-

mechanical processing that alters the dispersion of solute atoms will affect  the effective slip-distance. Finally, 

equation (7.6) can be re-written in terms of mean slip parameters as

τ = αμb
γa

Λsb(2 + Ωγa) + 4γa

Λgb
+ 1

ΛMgb
        (7.9)

where ρMg = (ΛMgb)−1.

Dynamic recovery factor Ω, derived from the remobilization of sessile dislocations by vacancy climb, follows 

an Arrhenius-type temperature dependency as

Ω = Ω0 + A0 (
·ε

D0 )
1/5

exp (− Qm

3RT )         (7.10)

Here, Ω0 is assumed to be athermal for the studied temperature range and represents recovery due to the 

cross-slip mechanism. A0 is a constant related to the density of vacancies, D0 is the diffusion coefficient, Qm is 

the activation energy of diffusion of vacancies, R is the gas constant and T is temperature. 

Hardening can then be easily determined by the work hardening of the above flow rule as in

hβ = dτ
dγa

= αμb
1

2 ρ
dρ
dγa

          (7.11)
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where ρ is the total dislocation density (ρ = ρs + ρg + ρMg). The new work hardening term dτ/dγa is 

dependent on experimentally determined parameters relating to the evolving microstructure and temperature 

(Cyr et al. 2016b) written as 

dρ
dγa

= 2
Λsb(2 + Ωγa)2 + 4

γab
          (7.12)

7.2.3 Critical Resolved Shear Stress (CRSS)

The crystal plasticity formulation requires an initial CRSS representing the undeformed yield strength of 

individual slip systems, denoted τy0. The developed model presented in this paper was used previously (Cyr et 

al., 2016c) to show that τy0 ≈ 0 for pure aluminum. For aluminum alloys, the initial CRSS is highly 

influenced by the alloying content and grain structure. In the presented model the implied CRSS upon initial 

straining can be determined by evaluating the flow rule in equation (7.9) at zero accumulated strain such that,

τy0 = αμ
b

ΛMg
            (7.13)

Following this, the term ΛMg can now be determined directly from the yield of the experimental stress strain 

curve. 

7.3 Problem Formulation

A Taylor polycrystal averaging scheme is employed in a crystal plasticity framework (Cyr et al., 2015) to 

simulate uniaxial tension for aluminum sheets AA5754-O and AA5182-O. The reported chemical 

composition of these two simulated alloys is presented blow in Table 7-1. This crystal plasticity approach 

provides a fast method to account for grain interactions and morphologies providing more realistic predictions 

of strain partitioning due to the microstructure. 

Table 7-1 Chemical composition of aluminum alloys (wt%).

7.3.1 Stress-Strain Curves and Initial Texture 

The uniaxial tension stress–strain data used for the determination of the material parameters for the presented 

models is obtained from work published by Abedrabbo et al. (2007). They presented true stress–true strain 

data for AA5754-O and AA5182-O over a range from temperatures between 25ºC and 260ºC at constant 

strain rate ·ε = 0.0083 s−1 (0.5/min). This dataset was chosen since the material used for measurements is 
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very similar to the material used to generate the simulated texture. The AA5754-O dataset is used to study 

temperature dependence of the model parameters, followed by testing the predictive capability of the new 

formulation on the AA5182-O data. The stress strain curves for AA5754-O are reproduced in Figure 7-1 

where digitized experimental curves are presented as points and simulated curves are solid lines.

The initial texture used for simulation of both materials is shown in Figures 7-2 and 7-3 in the form of a 

{111} recalculated pole figure (PF) and orientation distribution function (ODF) respectively. The pole figure 

shows that the sheet has a reasonably weak texture with the peak intensity at approximately 1.8 times random. 

Both the pole figure and ODF show presence of mostly Cube with some Brass components. In the ODFs 

Cube intensity is the highest at 3.1 times random while intensity of Brass component is at 1.2 times random.
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Figure 7-1 True stress-true strain curve reproduced from original data published in Abedrabbo et al. (2007), 

with solid lines used for AA5754 data, and dotted lines used for AA5182 data.
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Figure 7-2 (111) and (100) recalculated pole figures of rolled sheet AA5754-O used as input. Axes directions 

X and Y correspond to RD and TD directions, respectively.
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Figure 7-3 ODF sectioning with 15º sections of ϕ2 from 0º to 75º of the input AA5754-O sheet texture. The 

ODF shows strong rotated cube and some copper and brass components, typical of rolled and annealed sheet.

7.4 Results

The simulated uniaxial tension curves at the six different temperatures with the experimental curves are 

presented in Figure 7-4. It is important that the model capture the hardening behaviour along the entire stress-

strain curve to be able to correctly characterize the material parameters. The effective yield strength is a 

contribution of the initial texture, as well as the parameter ΛMg. The initial hardening is most strongly 

influenced by the mean-slip distance of statistically-stored dislocations, while the high-strain hardening is 

governed by geometrically-necessary slip and recovery of the statistically-stored dislocations. The material 

parameters used in these simulations are presented in Table 7-2. These parameters were obtained by the 

methods described in the previous section and in the previous chapter (Cyr et al., 2016). 

Table 7-2 Hardening parameters from 5754-O simulated uniaxial tension tests. Slip distance parameters are in 

units of microns and were calculated from their inverse.
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data plotted as points.

7.4.1 Dynamic Strain Aging

Aluminum alloys of the 5xxx (Al-Mg) series are considered non-heat-treatable alloys, and therefore great 

candidates for warm forming for structural components. Deformed Al-Mg alloys are characterized by 

relatively even distribution of dislocations due to an effect known as solute drag. This prevents re-

arrangement of dislocations into lower energy structures and increases the work hardening rate. In fact, in Al-

Mg systems, the solute drag effect is greater on work hardening than solution strengthening (Park & 

Niewczas, 2008). Lower temperature produces a similar effect, and it has been observed that this temperature 

effect is more sensitive in low solute alloys rather than highly alloyed systems. This reflects competing 

mechanisms of dynamic recovery and solute drag.

In essence, the solute drag effect is the disruption or impedance of dislocation motion due to solute Mg atoms. 

With sufficient energy and dislocation pile-up near solute particles, the dislocations suddenly pass the solute 

obstacle. The diffusion of Mg in the Al matrix facilitates this sudden passage of dislocations. Optimal 

conditions for solute drag to take effect are at sufficiently low temperatures while Mg still remains in solution 

and intermediate strain rates (on the order of 10-4 to 10-2 s-1). At high strain rates, dislocation motion carries 

enough energy to sweep past the Mg obstacles, while at sufficiently low strain rates or high temperatures 

diffusion of Mg prevents drag. In this study, the experimental data falls inside this intermediate strain rate 

range, and the effect of the Mg solute drag can be observed as “jerky flow” at room temperature. Uniaxial 

tension data above this temperature (but below 148ºC) not shown in Figure 7-1 fall nearly coincident with the 

25ºC curve up to 121ºC. Although the increasing recovery should be lowering the stress-strain curves, the 

competing solute drag works to stabilize the work hardening over a significant temperature range. Above this 
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temperature (121ºC) at the given strain rate, the “jerky flow” behaviour ceases and the material flows 

uninhibited by Mg solute atoms.

7.4.1.1 Numerical Implementation

To capture the effects of solute drag in crystal plasticity, the kinetics of the slip formulation must be modified. 

Since this mechanism affects the actual motion of dislocations, and not necessarily the dislocation production 

or recovery, the solute drag effect is connected directly to the shear slip rate equation (7.2). In the current 

formulation, each slip system allows slip as determined by the ratio of the resolved shear stress to the slip 

system strength. From the discussion above, some amount of slip must be stopped until a threshold is reached. 

Over this threshold, slip is allowed to occur at an accelerated rate, resulting in a “jerky flow” behaviour. Thus 

equation (7.2) can be rewritten to show

·γα = ·γ0;     i f
τα

τy
< fc        (7.14)

and

·γα = ·γ1sgn(τα) τα

ταy

1
m

;  i f
τα

τy
≥ fc        (7.15)

where fc < 1 is the critical ratio for slip on a given system α. For this work, it will be assumed that all slip 

systems accept the same critical parameter. The term ·γ1 represents the reference shear rate once slip has been 

allowed to occur. In order to lead to the “jerky flow” behaviour, this ·γ1 parameter must be sufficiently large, 

and decay to ·γ0 as temperature is increased. Similarly, fc will decay to a value sufficiently small as 

temperature is increased such that drag is negligible. 

In Figure 7-5, the effect of solute drag kinetics on the presented crystal plasticity simulation at room 

temperature is presented. For the entire polycrystal simulation, consisting of 1000 crystal orientations, the 

“jerky flow” behaviour can not be observed due to the Taylor averaging of individual crystal; however this 

effect can be seen when the number of crystals is reduced. The jerky flow curve was generated using a sample 

of 10 nearly cube orientations to demonstrate the individual crystal effect. The amplitude of the stress 

oscillations and the frequency are determined by the magnitude of ·γ1 and fc, which are related experimental 

conditions of temperature and strain rate as well as the solute content. The correlation between these 

parameters and experimental conditions are beyond the scope of this work; however, the the best results were 

obtained in the range of 0.7 < fc < 0.9. The main focus of this study is using a fully consistent model to 

predict temperature dependency of microstructural parameters leading to material hardening. In addition, the 

solute drag effect is not apparent in warm forming conditions, so for this study is only considered in the room 

temperature simulations and equation (7.2) is employed for all elevated temperature simulations.
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Figure 7-5 Stress-strain curves with and without the solute drag effect for (a) the simulated polycrystal and 

(b) cube orientation single crystal at room temperature. For simulating solute drag fc = 0.85 and ·γ1/ ·γ0 = 106 

provided the best results.

7.4.2 Temperature Dependency of Material Parameters

Figure 7-6 presents a graphical representation of the slip parameters presented in Table 7-1 for AA5754-O and 

their temperature evolution. The data shows that decreases in hardening at temperatures near room 

temperature are completely governed by recovery. This contradicts findings for pure aluminum in a previous 

study (Cyr et al., 2016) where slip-distance parameters show a temperature dependency in the entire 

temperature range studied. This suggests a strong influence of the material’s alloying in the stabilization of 

microstructural parameters over low to intermediate temperatures. At sufficiently high temperatures; however, 

the slip-distance parameters begin to reclaim their temperature dependency. At the highest simulated 

temperatures, the parameter ΛMg also loses stability and begins to increase. It is believed that this is due to 

diffusion of Mg to high energy regions, such as grain boundaries, effectively reducing the strengthening due 

to dispersed Mg (Niewczas et al., 2015).
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Figure 7-6 Temperature dependency of mean slip distance parameters for simulated AA5754-O.
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Figure 7-7 Temperature dependency of dynamic recovery factor for simulated AA5754-O with exponential 

according to equation (7.10). Fitting constants were determined to be Ω0 = 3.0 and A = 2.9 × 103 and 

activation energy for diffusion Qm taken from Cyr et al., (2016) for aluminum. R is the gas constant.

7.4.3 Mechanical Response of AA5182-O

Due to the similarities of the two materials, it is assumed that both will behave similarly in terms of their 

temperature dependencies. The 5182 alloy has increased yield strength due to higher alloying, which can be 

captured by the ΛMg. Alloy 5182 also experiences somewhat higher hardening than 5754 suggesting a minor 

difference in Λs and Λg between the two alloys. It is also assumed that the experimental preparation for both 

alloys was conducted in a similar fashion, such that their differences in texture and microstructure (grain size 

and shape, etc.) are negligible. Therefore, the same simulated texture, presented in Figures 7-2 and 7-3 will be 

used for 5182. Lastly, the recovery parameter should not significantly vary due to the composition 

similarities. However, the increase in Mg in 5182 may increase recovery by facilitating remobilization of 

immobile dislocations. Athermal recovery Ω0 and the constant A0 should therefore increase.

Presented in Figure 7-8 are the simulated stress-strain curves for 5182 as well as experimental points 

extracted from Abedrabbo et al. (2007). Material hardening constants were initially calibrated to the 

intermediate 148ºC data and 204ºC data. From this, and the predictions gathered from the 5754 simulations, 

the other hardening parameters were extrapolated. The simulated hardening parameters are presented in Table 

7-3. The 5182 data-set did not have stress-strain data for 232ºC.
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Figure 7-8 Simulated stress-strain curves at 25ºC, 148ºC, 177ºC, 204ºC, and 260ºC and experimental data 

plotted as points.

Table 7-3 Hardening parameters from 5182-O simulated uniaxial tension tests. Slip distance parameters are in 

units of microns and were calculated from their inverse.

7.5 Discussion

It should be mentioned that all discussions presented below are based on the unique set of parameters 

obtained from the procedure explained previously and in Cyr et al. (2016). The analysis shows that the 

developed formulation is able to capture the entire stress-strain behaviour very well at all temperatures 

investigated. Here, the determined material parameters will be used to discuss the effects of magnesium 

additions and temperature on the two studies alloys.

7.5.1 Influence of Mg on Temperature Dependency

In Figure 7-9 the temperature dependency is plotted for the three slip-distance parameters for AA5182 with 

AA5754 for comparison. The behaviours of Λs and ΛMg show exact similarity to the results obtained for 

AA5754. The increased Mg content in AA5182 contributes to decreasing mean free path for all dislocations 

types and therefore strengthens the material. With the exception of Λg for AA5182, the mean slip distance is 

very stable over temperatures up to 200ºC, and all thermal softening is developed by dynamic recovery of 

dislocations. Above 200ºC, the model suggests that the microstructure begins to lose its order, allowing for 
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greatly increased dislocation movement. The mean slip distance ΛMg shows that this is most likely due to Mg 

diffusion (Chen et al. 2016). While at low temperatures, the Mg can facilitate the subgrain structures, such as 

cellular formation and development of subgrain boundaries that effectively maintain the dependency of Λs 

and Λg on the distribution of Mg atoms, and less on temperature. At sufficiently high temperatures, where Mg 

can diffuse easily to, for example, grain boundaries, these stabilizing effects of Mg are lost and slip of 

geometrically-necessary and statistically-stored dislocations begin to grow rapidly as the subgrain structures 

are absolved. There is one parameter, however, that argues this idea. For the 4.3 wt% Mg AA5182, Λg is 

never stable and exudes a temperature dependency over the entire temperature range studied. As temperature 

decreases, Λg continues to decrease as well, contributing to increased work hardening of the 5182 alloy. This 

is the most significant difference between these two materials. It is known that higher Mg alloys will increase 

work hardening (Niewczas et al. 2015), however, this model predicts the underlying cause to be the 

increasing strengthening due to geometrically-necessary dislocations. In AA5182, the increased Mg content 

may diffuse to form less random distributions or clustering at lower temperatures weakening the subgrain 

structures and allowing Λg to grow more easily. It is likely this greatly increased work hardening from 

geometrically-necessary dislocations in AA5182 that give way to its high ductility at intermediate 

temperatures, compared to AA5754. 
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Figure 7-9 Temperature dependency of dynamic mean slip-distance parameters for simulated AA5182-O and 

AA5754-O for comparison.

Dynamic recovery presented in Figure 7-10 shows little variation between the two alloys. Increased Mg 

content increases the recovery for AA5182 over the entire temperature range as predicted in the previous 

section. Of the possibly explanations for this behaviour, the most likely is that Mg atoms contribute to the 

remobilization of immobile dislocations in a similar manner to vacancies. Elastic strains due to lattice 

mismatch near Mg solute may also attract vacancies, increasing the Mg diffusion. The effect of Mg, however, 
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must be minimal due to the similarity of recovery factors between the studied alloys and pure aluminum (Cyr 

et al. 2016). 
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Figure 7-10 Temperature dependency of dynamic recovery factor for simulated AA5182-O and AA5754-O 

for comparison with equation (7.10). Fitting constants for AA5182 were determined to be Ω0 = 3.5 and 

A = 3.9 × 103 and activation energy for diffusion Qm taken from Cyr et al., (2016) for aluminum. R is the gas 

constant.

7.5.4 Strain Hardening 

Finally, one can also study the effect of temperature on material behaviour by analyzing the material strain 

hardening. Presented in Figure 7-11 is the normalized strain hardening of the simulated AAA5182 τ − γ 

curves plotted against the normalized shear stress. The essential features of these hardening curves are the 

elastic regions of constant hardening, followed by rapidly decreasing low-stress regions, which are highly 

dependent on initial microstructure, followed by a linear decrease in hardening known as stage III type 

hardening. Finally the hardening begins to saturate with increasing strain and recovery until fracture. It has 

been proposed (Nabarro, 1989) that this region of fracture is related to the point at which the flow stress σ 

surpasses the material strain hardening. 

In Figure 7-11, the most noticeable effect of temperature is a horizontal shift of the hardening curves toward 

the left side of the chart. Even with normalization of τ with the temperature dependent shear modulus μ,  the 

curves migrate left from 148ºC to 260ºC. At 25ºC however, the hardening falls between the 204ºC and 260ºC 

curves due to the solute drag effect. From analysis of the slip-parameters and recovery, the 25ºC curve should 

be furthest to the right and experience the highest hardening, however the solute Mg suppresses this 

hardening behaviour at lower stresses. The hardening of 25ºC then crosses the lower temperature curves at 

sufficient stress and retains a higher work hardening than at elevated temperatures. This is less obvious from 

experimental data, but is very clearly represented in the model. The inset plot of the hardening curves in 

129



Figure 7-11 highlights this point with an arrow marking the transition of the 25ºC curve across the 

intermediate temperature curves.
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Figure 7-11 Normalized work hardening versus flow stress of simulated stress-strain curves for AA5182. The 

inset plot shows with an arrow the transition of the 25ºC hardening curve across the intermediate temperature 

curves due to the solute drag effect.

7.6 Conclusions

In this study, a physically based theory developed previously (Cyr et al., 2016) on the thermodynamic and 

mechanical balance between dislocation storage, accumulation, annihilation and recovery for a polycrystalline 

material is implemented into a temperature dependent crystal plasticity framework to study two Al-Mg alloys. 

The theory is modified to include solution strengthening effects due to Mg additions and written in a rate form 

hardening law for simulating flow stress. The temperature dependence of hardening parameters embedded in 

the theory have been calibrated and presented with experimental data of AA5754-O and AA5182-O from 

25ºC up to 260ºC. The temperature dependence of the hardening behaviour can be summarized by four 

important material parameters: mean slip distance of statistically-stored Λs, geometrically-necessary Λg 

dislocations  and the dynamic recovery factor Ω. The fourth is the newly introduced ΛMg parameter 

representing mean slip of dislocations impeded by solute Mg. The following was concluded from the study:

• There is a unique set of material hardening parameters that can be measured directly from the experimental 

stress-strain curves by the procedure outlined by Cyr et al. (2016) with the new parameter ΛMg determined 

from τy0 = αμ b/ΛMg.
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• The model is able to provide excellent fits to experimental data and good predictions of material hardening 

behaviour and temperature dependency.

• Dynamic recovery can be predicted from an Arrhenius-type relationship for the remobilization of immobile 

dislocation by vacancy climb with minimal calibration.

• The temperature dependency microstructural mechanisms governed by mean slip distance of dislocations is 

highly complex and difficult to determine a single temperature dependency in an alloyed polycrystalline 

system – unlike with pure aluminum (Cyr et al., 2016). However, it can be concluded that Mg additions are 

able to stabilize microstructure at intermediate temperatures (below 175ºC-200ºC)  leaving dynamic 

recovery as the sole mechanisms driving temperature dependence of stress-strain response. 

• Graphical analysis of the temperature dependence of mean slip distance parameters show that above 

approximately 175ºC to 200ºC there is a change in microstructure stability that allows for a sudden increase 

in dislocation mean free path for all types of dislocations. This is attributed to diffusion of solute Mg atoms 

facilitating the weakening of substructures, such as cell walls, and becoming significantly weaker obstacles 

themselves. The may also begin to diffuse to grain boundaries allowing for increased mean slip distance 

within grains.

• To capture the correct hardening response at room temperature, the effect of solute Mg on dynamic strain 

aging/solute drag must be accounted for. Without this effect, the model predicts an unrealistic decrease in 

hardening with decreasing temperature from 148ºC to 25ºC. 
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Chapter 8

Conclusions & Future Work

8.1 Elevated Temperature Behaviour

This thesis presents a focused study on the improvement of modeling temperature dependency and material 

deformation at elevated temperatures. Specifically, aluminum and its alloys are of key interest for warm 

forming processing, and a proper model for predicting elevated temperature behaviour is a requirement for 

computer-aided engineering. The difficulty of this problem is not taken lightly. The literature on this topic 

spans decades, and advancements in computer technology have afforded many recent advancements in 

modeling techniques. Crystal plasticity in particular has been widely received as a highly capably framework 

for studying the effects of microstructure on plastic deformation in metals, however most modeling attempts 

still rely on phenomenological single crystal hardening. This is not sufficient for predicting material 

behaviour, as it ignores thermo-mechanically influenced mechanisms that are the foundation of material 

hardening, such as dislocation mobility and dynamic recovery. In addition, alloying has a significant influence 

on these microstructural parameters. 

8.2 Developed Model

The model motivation and development presented in this thesis begins with a complete temperature 

dependent crystal plasticity framework development. The model initially employs available 

phenomenological hardening laws and attempts to find some physically based temperature dependency of the 

hardening parameters to predicts stress-strain response in varying strain paths and forming limit strains. The 

models are satisfactory but are not excellent predictors of stress-strain response. The lack of a physical basis 

of the hardening models present further difficulty when attempting to predict high-strain behaviour in forming 

limit analysis. Following this work, a new constitutive formulation for hardening in polycrystalline metals is 

derived from a base of physical mechanisms contributing to hardening behaviour. The thermo-mechanical 

balance between dislocation accumulation and recovery forms the basis of the derivation. In pure metals, 

accumulation of two types of dislocations (statistically-stored and geometrically-necessary) are the driving 

forces for work hardening while dynamic recovery governs thermal softening. The model is used to 

characterize hardening behaviour of pure aluminum and is used to accurately predict temperature dependent 

behaviour at a new strain rate. Model also provides some direction towards explaining the temperature 

dependence of microstructural parameters representing the mean slip distance of dislocations, and their 

interdependence. Finally, the constitutive framework is introduced to the previously developed temperature 

dependent crystal plasticity framework to study Al-Mg automotive sheet alloys AA5754 and AA5182. The 
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development of a rate form of the material hardening is modified to include solid solution strengthening due 

to Mg solute atoms. Kinetics of slip deformation to accommodate solute drag is also implemented for room 

temperature simulations. The model is used to characterize hardening behaviour of the AA5754 alloy and then 

used to predict AA5182 stress-strain response after initial calibration using to stress-strain curves. The work 

concludes the following:

• To properly predict the flow stress, a model based on physics and mechanisms of deformation must be 

employed to describe material hardening on a polycrystalline level. 

• The developed temperature dependent crystal plasticity framework (TEV model) is able to capture well the 

texture and texture evolution. The model supports experimental evidence that texture evolution is not 

significantly affected by temperature.

• The hardening behaviour of polycrystalline aluminum can be characterized by a minimum of three 

parameters: (i)  statistically-stored dislocations, (ii) geometrically-necessary dislocations (iii) and dynamic 

recovery. The presented model captures these quantities using the parameters of mean slip distance of 

dislocations Λs and Λg and dynamic recovery factor Ω.

• Strengthening due to alloying must be accounted for, caused by the interruption of dislocation movement 

due to solute atoms or particles. This is captured using a mean slip distance parameter ΛMg representing the 

impedance of dislocations due to solute Mg for Al-Mg alloys and does not evolve with strain.

• There is a unique set of these hardening parameters to describe each mechanical response condition, and 

they can be measured from a slip-distance analysis described in Chapter 6 and 7. In summary, Λs governs 

low-strain hardening rate, Λg affects hardening rate saturation, ΛMg is determined from yield, and recovery 

factor Ω affects the curvature of the stress-strain response. 

• The model is able to capture stress-strain response of polycrystalline aluminum and the two studies 5754 

and 5182 alloys with great precision. 

8.3 Recommendations for Future Work

The work presented in this thesis provides an excellent tool for computer-aided engineering and material 

characterization. Unlike phenomenologically based material models, this could theoretically be used to 

understand material behaviour, rather than to simply fit data for modeling. Future use and development of this 

model should be considered for understanding and predicting behaviour of other alloys and metals where 

warm forming or high-temperature deformation is prescribed. The model can be modified to include effects 

for 6xxx series alloys of particular interest to high-temperature processing, such as extrusion and modeling 

heat affected zones of welded parts.  The model could be used to account for the strain evolution, 

strengthening effects, and temperature dependency of secondary phases or precipitates in the material with the 

implementation of an appropriate Λ parameter. Precipitation would increase strength and hardening by 
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working to decrease the mean free path of mobile dislocation. The model could also be extended to non-cubic 

crystalline materials, such as magnesium alloys, to study microstructural parameters leading to twinning and 

its temperature dependence. 

Finally, this model would be an excellent tool for investigations in strain-rate dependency. Higher strain-rate 

processes are preferable due to increased through-put in manufacturing, therefore advanced models that can 

predict material response where temperature and strain-rate are important process parameters would be 

invaluable. This model provides the basis for a complete temperature and strain-rate dependent model, 

however significant experimental work would be needed to properly develop and model and characterize 

material parameters.
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Appendix

Kinetics of Plastic Flow

The crystal plasticity description of plastic flow on slip system α is governed by the equation

·γα(T ) = ·γ0 ( τα

gα(T ) )
1/m

           (A.1)

where the numerator τα is the resolved stress on slip system α and denominator gα(T ) is the current strength 

of the slip system. The exponent 1/m is the rate sensitivity parameter equal to 0.02 for this study.  ·γ0 is the 

reference slip rate equal to 0.001 s−1 . 

Since the rate dependence of plastic flow is governed by the above equation, it is convenient to find a 

description of the hardening gα(T ) as a function of temperature only. In order to obtain this description, the 

assumption must be made that the strain rate effects can be sufficiently captured by the strain rate sensitivity 

parameter m and the temperature dependence of the strain hardening is taken as some reference strain-rate. It 

is also noted that this model is for low-strain rate deformation, and simulations are carried out at a constant 

strain rate  ·ε ≈ 10−3s−1.

The mechanical threshold stress model (Follansbee and Kocks, 1988, Kocks and Mecking, 2003) presents a 

good phenomenological description of the temperature dependence of the data collected with convincing 

physical basis. The well-known relation between activation energy and temperature/strain rate is given by

ΔG
μb3 = ( kT

μb3 ) ln (
·ε0
·ε )          (A.2)

where μ is the shear modulus, b is the Burger’s vector, T is temperature, k is the Boltzmann constant, ·ε is the 

applied strain rate, and ·ε0 is the reference strain rate equal to 107 s−1 (Kocks and Mecking, 2003). In Kocks’ 

description, a relationship exists through a scaling stress that brings the stress-strain curves of various 

temperatures to unison. This dependence was found systematically and the following relationship was 

concluded.

ΔG = F0 1 − ( σ
σ0 )

p q

          (A.3)

The parameter definitions are described in section 5.6.1 with σ0 = ̂τ. Rearrangement of equation (A.3) yields
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σ = σ0 1 − ( ΔG
F0 )

1/q 1/p

          (A.4)

where arbitrary constants p and q can be substituted as 1/q and 1/p. Substituting the temperature and strain 

rate dependence of ΔG leaves

σ = σ0 1 − ( kT
F0

ln (
·ε0
·ε ))

p q

         (A.5)

where  where is the total activation energy of the system at zero stress. Therefore, at sufficient temperature 

and low strain-rate approaching F0, the flow becomes thermodynamically driven and does not require 

increasing stress. In this paper, recalling that the model is employed with constant and low applied strain-

rates, the term ln( ·ε0 / ·ε) is modeled as a constant. Therefore, at constant strain rates, the Kocks-Mecking 

model is very similar to the model presented in equation (5.15)–(5.18). It is shown here again in its general 

form:

x = x̄ 1 − ( T
Tx )

p q

           (A.6)

where x and x̄ denote the hardening parameters (h0, hs, τ0, τs). Each hardening parameter has a physically 

motivated relation to deformation phenomena, is can be assumed that each parameter may behave according 

to the proposed temperature dependence model, yielding equation (A.6).
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