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Abstract

Blood is a dense suspension of flexible red blood cells. In response to a background flow,

these cells distribute themselves non-uniformly throughout the vessel. As a result, material

properties that are well defined in homogeneous fluids, such as viscosity, are no longer so,

and depend upon the flow geometry along with the particle properties. Using a simple

model that accounts for the steady-state particle distribution in vessel flow, we derive an

expression for the effective viscosity of blood and the suspension flow velocity field in a

pressure-driven tube flow.

We derive the steady-state particle distribution from a conservation equation with con-

vective flux arising from particle deformation in the flow. We then relate the particle

microstructure to the overall flow through a generalized Newtonian stress-tensor, with the

particle volume fraction appearing in the expression for the local viscosity. Comparing

with experimental data, we show that the model quantitatively reproduces the observed

rheology of blood in tube flow.

We reconsider the problem in an alternate geometry corresponding to the flow between

two concentric cylinders. The steady-state particle distribution, suspension velocity field

and the measured effective viscosity are all very different from their counterparts in tube

flow, casting serious doubt upon the practice of using data from a Couette viscometer to

parameterize constitutive models applied to vascular blood flow.

Finally, we calculate the effect of random fluctuations in the particle velocity on the

averaged behaviour of the particle conservation equation. Using a smoothing method for

linear stochastic differential equations, we derive a correction to the free Einstein-Stokes

diffusion coefficient that is due to the interaction of the particles with their neighbours.
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The function of a constructional system is not to recreate experience but rather

to map it . . . A map is schematic, selective, condensed and uniform. And these

characteristics are virtues rather than defects. The map not only summarizes,

classifies and systematizes, it often discloses facts we could hardly learn im-

mediately from our explorations . . . This also suggests the answer not only to

rampant intellectualism but to many another objection against the abstraction,

poverty, artificiality and general unfaithfulness of constructional systems. Let

no one complain that the turnpike is not red like the line on the map, that the

dotted state boundaries are not visible in the fields, or that the city we arrive at

is not a round black dot. Let no one suppose that if a map made according to

one scheme of projection is accurate then maps made according to alternative

schemes are wrong. And let no one accuse the cartographer of reductionism if

his map fails to turn green in the spring.

-Nelson Goodman, The Revision of Philosophy
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Chapter 1

Introduction

1.1 Why Study Blood Flow?

Blood is essential to maintain life. It transports oxygen and nutrients to all parts of the

body, relays chemical signals and moves metabolic waste to the kidneys for elimination.

Yet despite more than 150 years of close study, a concise, predictive model of blood flow

is still lacking.

A quantitative model of blood flow is important not only as it relates to clinical diagnosis

of disease, but as an integral component of models of more complex structures like the

brain. Furthermore, proper design of artificial organs demands a thorough understanding

of blood rheology in order to avoid flow stagnation and clot formation.

In this introductory chapter, we provide some physiological background to give context

to the theoretical model developed in later chapters. We touch upon unexpected flow

behaviours of blood and discuss the role of flow-induced red blood cell structures that

may account for experimental observations. Finally, we conclude with an overview of the

remaining chapters and an outline of the thesis.
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2 Rheology of blood in small vessels

250-500 x 103VariousPlatelets

4-11 x 103Spherical
White Blood Cells

Leucocytes

454-6 x 106Biconcave Disk
Red Blood Cells
Erythrocytes

% 
Volume 
of Blood

Number Density 
(per mm3)

ShapeCell Type

Red 
Blood 
Cells

Plasma

White 
Blood 
Cells & 
Platelets

1

Table 1.1: Blood constituents. Data taken from [15].

1.2 Blood and Vascular Circulation

Blood is a dense suspension of blood cells and platelets. The dominant constituent is red

blood cells which make up 45% by volume of whole blood. By contrast, the remaining

particulate, white blood cells and platelets, occupy less than 1% by volume (Table 1.1).

Under normal flow conditions (i.e. in the absence of a wound or narrow constriction),

the flow of blood is dominated by the interaction of the red blood cells with the vessel

walls and the surrounding medium, called plasma, which is essentially water made slightly

more viscous and dense by the presence of dissolved proteins (Table 1.2). Notice the low

sedimentation rate (∼ 1 cm/hr) of red blood cells in plasma. The flow rate is high and

the vessel length is small in the vasculature of the body, so the red cells have very little

time to sediment, and as a first approximation we may consider red blood cells as neutrally

buoyant.

At rest, red blood cells are biconcave disks roughly 8µm in diameter and 2.5µm across

at their thickest point. The cell membrane is quite flexible so that in flow, the red blood

cell shape is less well defined, resembling a dimpled fluid droplet (Figure 1.1).
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1.03Specific Gravity:3 µm / sSedimentation Rate:

1.2 mN s m-2Viscosity (37°C):1.1Specific Gravity:

1 g / 100 mLInorganic Salts1 x 10-5 N / mMembrane Tension:

7 g / 100 mLProteins94 µm3Volume:

92 g / 100 mLWaterContent:138 µm2Surface Area:

PlasmaRed Blood Cells (Erythrocytes)

Table 1.2: Red blood cells and plasma properties. Data taken from [14] and [15].

10 mµ

1 mµ

8.5 mµ

2.5 mµ

a)

b)

Figure 1.1: The shape of red blood cells. a) At rest the red blood cell is a biconcave

disk. b) In flow, the blood cell looks more like a dimpled fluid droplet [40, 41].
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Figure 1.2: Reynolds number in the vasculature. Redrawn from [76].

Blood flow conditions vary greatly throughout the body, with the tube Reynolds number

decreasing linearly with decreasing vessel diameter (Figure 1.2 and Table 1.3). Here the

Reynolds number is defined in terms of the maximum centerline velocity Vmax, the vessel

radius R, the density of the plasma ρ0 and the plasma (dynamic) viscosity η0 as

Re =
Vmax2Rρ0

η0

.

In the present study, we focus upon the laminar flow regime thereby restricting our

attention to flow in vessels with diameters < 500µm. It is precisely under these conditions

that blood deviates most from the flow behaviour of a Newtonian fluid, giving rise to

observed flow anomalies.
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Reynolds 
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Wall Shear 
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Velocity 
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Internal 
Diameter 

(cm)
Vessel

Table 1.3: Physiology of the circulation. Data taken from [20] and [15].

1.3 Flow Anomalies

A homogeneous isothermal Newtonian fluid is characterized by a constant viscosity, which

is an intrinsic material property of the fluid. The viscosity is a measure of the fluid’s

resistance to flow, and does not change with confining geometry or flow conditions.

Blood is not a homogeneous fluid; it is a suspension. As a result, the viscosity is

no longer a well-defined material property, but rather must be defined as an observed

resistance to flow. Expressed in this way, the apparent viscosity of blood will depend upon

the confining geometry, decreasing with decreasing vessel diameter; i.e., it is easier to move

blood through a narrow vessel. This is the most famous flow oddity associated with blood,

and is called the Fahraeus-Lindqvist effect (Figure 1.3a).

The suspended blood cells accumulate at the axis in response to flow, resulting in a

blunting of the velocity profile near the axis in contrast to the parabolic profile observed

in homogeneous fluids (Figure 1.3b). As we shall discuss in the next chapter, this ac-

cumulation of blood cells along the axis leads to a favorable decrease in the suspension

viscosity. The final flow anomaly we wish to highlight is the decrease in blood viscosity

with increased shear rate, a characteristic called shear-thinning (Figure 1.3c).
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Figure 1.3: Flow anomalies in blood. a) The Fahraeus-Lindqvist effect: the appar-

ent viscosity of blood decreases with decreasing vessel diameter [33]. b) Non-parabolic

velocity profile: The velocity profile for flowing blood is blunted close to the tube axis.

The dashed line shows a parabolic profile with the same volumetric flow rate [39]. c)

Shear-thinning: The apparent viscosity of blood decreases with increasing shear rate

[21].
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1.4 Suspension Microstructure

The microscopic arrangement of the red cells in the vessel flow plays a leading role in

the theoretical development of later chapters. We envision two qualitatively different mi-

crostructures in the flow: an extended network of red blood cell aggregates (Figure 1.4a)

and a tightly packed core of blood cells surrounded by a plasma layer (Figure 1.4b). Shear

gradients in the flow break-up aggregated clusters and individual red cells tend to mi-

grate to regions of lower shear gradients. The background flow rearranges the suspended

particles, and the distribution of particles, in turn, determines the suspension flow field

and observed rheology. The present work will focus upon the behaviour of blood moving

swiftly through narrow vessels where the dominant microstructure is a core of blood cells

accumulated along the vessel axis.

Flow a) b)

Figure 1.4: Red cell microstructure in low and high shear. a) An extended network

of rouleaux at low shear. b) A dense core of red blood cells at high shear [1].
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1.5 Outline of the Thesis

A broad overview of the thesis is presented diagrammatically in Figure 1.5. The flow

induces a rearrangement of the red blood cells, with the red cell volume fraction φ governed

by a conservation equation. The inhomogeneous distribution of particles leads to differences

in the local properties of the suspension. We use a generalized Newtonian shear-stress1

tensor τ (φ) to relate the particle distribution to the overall suspension flow field ~u by

defining a local model viscosity ηφ.

J
t

φ∂ = −∇ ⋅
∂

�

Microscopic 
Particle Distribution

( )u
P

t
ρ τ φ∂ = −∇ + ∇ ⋅

∂

�

Macroscopic Suspension Flow

Figure 1.5: Schematic overview of the thesis. The overall flow ~u is connected to the

microstructure by a local shear-stress tensor τ (φ).

1Also called the extra-stress or deviatoric stress tensor.
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Considering each chapter in more detail:

Chapter 2 - Suspension viscosity

Here we review past work, outlining three popular methods of approach to the modeling

of suspension rheology. We begin with the seminal work of Einstein describing the viscos-

ity of a homogeneous suspension. We then consider layered fluids and core-annular flows.

Finally, following a brief discussion of constitutive models, we close by placing the present

study in the context of past work.

Chapter 3 - Microstructure

Beginning with a qualitative view of low and high shear blood flow, we take advantage

of the resemblance of a red blood cell in flow to an immiscible fluid droplet and use the

results of Chan and Leal [18] to model the blood cell cross-stream migration velocity. The

convective flux of particles toward the axis naturally leads to a characterization of the

particle volume fraction in terms of a conservation equation. With a suitable choice for

the diffusive flux, the steady-state particle distribution is calculated. It is a Gaussian para-

meterized by the initial particle volume fraction φ0 and a dimensionless constant ε, which

acts as a model P éclet number.

Chapter 4 - Overall suspension flow

Using the viscosity expression of Roscoe [75] derived for concentrated homogeneous sus-

pensions, we replace the homogeneous volume fraction φ by our inhomogeneous distrib-

ution function φ (r) thereby arriving at an expression for the local suspension viscosity.

Postulating a generalized Newtonian stress tensor τ = ηφ (r) ∂u
∂r

, we are able to connect

the microscopic particle distribution to the macroscopic flow, calculating the suspension

velocity field and corresponding flow rate from the creeping flow equations solved with non-

constant viscosity. Comparing the suspension flow rate to the flow rate of an analogous

homogeneous fluid, we define an effective viscosity for the flow as measured by a capillary

viscometer.



10 Rheology of blood in small vessels

Chapter 5 - Comparison with experiments

Having described the suspension flow with a minimum of parameters, we proceed to vin-

dicate the model assumptions through comparison with experimental data. Leaving ε as

a fitting parameter, we estimate wall shear-stress from incomplete imaging data. Next,

using experimentally determined flow rates, we fix ε and successfully reconstruct the entire

suspension flow field. Returning to the definition of ε in terms of physical parameters, we

qualitatively reproduce the Fahraeus-Lindqvist effect and shear-thinning. Finally, defining

an empirical diffusion coefficient D (ε, φ0), we successfully predict in vitro and in vivo blood

velocity flow fields from the centerline velocity um, the tube radius R and the hematocrit

φ0 alone.

Chapter 6 - Couette geometry

Couette viscometers are often used to carry out blood rheology experiments. We repeat

our derivation in this new flow geometry and arrive at an essentially different relationship

between physical parameters and the observed rheology, casting doubt upon the practice

of validating in vivo models using Couette data.

Chapter 7 - Mean-field diffusion coefficient

The empirical diffusion coefficient D (ε, φ0) of Chapter 5 is put on a more solid physical

foundation by considering the microscopic velocity fluctuations in the particle conservation

equation and their effect on the mean particle distribution.

Chapter 8 - Concluding remarks

We conclude with a summary of future work – suggesting a simple method for including

inertial effects in the present model.



Chapter 2

Suspension viscosity

Blood is a suspension and it is this feature that leads to its unexpected flow behaviour. To

develop a model for blood rheology and to understand how suspended particles affect the

overall suspension flow, it is important to review successful past models. In this chapter,

we review the classic work of Einstein who showed that in a dilute homogeneous suspension

of hard spheres, the effective viscosity is always increased by the presence of particles. If

we allow inhomogeneities in the particle distribution - in particular, if we consider the tube

flow of a compact core surrounded by a deplete outer layer - we see a dramatic decrease

in the overall viscosity of the flow. The central difficulty in modeling suspension flow is

how to combine the increased viscosity due to the particulate with the decreased viscosity

associated with structured flow, all in a physically consistent fashion.

2.1 Homogeneous suspensions

The study of homogeneous suspensions has a long history beginning with the seminal work

of Einstein showing that the effective viscosity η of a dilute suspension of hard spheres grows

linearly with the volume fraction of particulate φ according to: η = η0

(
1 + 5

2
φ
)
, where η0

is the solvent viscosity. Many ideas appear in this work, developed by others much later,

laying the foundation for a statistical mechanical description of suspension rheology [44].

We present a complete derivation of Einstein’s result due to G. K. Batchelor [6] that relaxes

the restriction to hard-sphere suspensions, and therefore also contains the work of G. I.

11
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Taylor on the viscosity of a suspension of liquid droplets [86]. We go on to generalize these

results to concentrated suspensions using the phenomenological effective-media argument

of Roscoe [75].

2.1.1 Dilute suspensions

Dilute homogeneous suspensions of spheres are the simplest of all suspensions to inves-

tigate. Nevertheless, there are still subtle questions about the meaning of viscosity in a

suspension, which by definition has a discrete distribution of viscosity throughout. Einstein

had the insight to consider energy dissipation in the suspension and ask what viscosity is

required in a homogenized analogous fluid to achieve the same dissipation. We present the

derivation in detail because it serves to illustrate several useful ideas that resurface in later

chapters; specifically the representation of microscopic inhomogeneities by a homogenized

bulk parameter. Furthermore the initial steps of the derivation are closely followed by

Chan and Leal [18] in their work on deformable particle migration (discussed in chapter 3)

that underlies the main results of this dissertation. Finally, in the next chapter we propose

to model a red blood cell as an immiscible fluid droplet and the meaning of some physical

parameters is unclear in that approximation. For example, a fluid drop has a well-defined

viscosity, but what about the internal viscosity of a red blood cell? Is it enough to burst the

cell and measure the viscosity of the contents? Having clear insight into where the internal

viscosity appears in the derivation, and the role it plays in the subsequent development,

will aid in justifying future assumptions.

We begin by considering a small spherical particle suspended in a purely straining flow

eijxj with background pressure P (Figure 2.1). The components of the velocity ui and the

pressure p are given by,

ui = u′i + eijxj,

p = p′ + P,

where u′i and p′ are the perturbations due to the presence of the suspended particle on the

solvent flow and pressure, respectively. The coordinate variables are given by xj with the

origin at the center of the spherical particle and summation over repeated indices implied.
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The components of the rate-of-strain tensor are represented by eij with the usual meaning

eij =
1

2

(
∂uj

∂xi

+
∂ui

∂xj

)
.

Since we are assuming the far-field flow is simple linear shear, the eij are constant and

ejj = 0. Far from the particle, we require that the disturbances vanish, i.e.

lim
|x|→∞

u′i = lim
|x|→∞

p′ = 0.

We explicitly require that the shape of the particle remains spherical, and that departures

from symmetry have negligible effects. We further assume the particle is made of an

incompressible Newtonian fluid with viscosity η̃0. The surface of the particle is at |x| ≡
r = a, with n · u = 0 at the interface. The velocity and the tangential stress1 must be

continuous across the interface, so that

ui = u′i + eijxj = ũi,

εklinlnj

(
Sij − S̃ij

)
= 0, (2.1)

at r = a. Here the tilde indicates functions within the particle, εijk is the alternating

tensor2, n is the outward unit normal at the particle surface and S is the stress tensor

defined below.

Assuming small particle Reynolds number, we have

|eij| a2ρ0

η0

<< 1,

and so both the disturbance flow and the fluid within the particle are characterized by the

creeping flow3 equations,

∇p′ = η0∇2u′,

∇p̃ = η̃0∇2ũ,

1We use S in place of the more traditional σ, reserving σ for the interfacial tension in chapter 3.
2εijk = 0 unless {i, j, k} are all different, and +1(-1) if {i, j, k} are (not) in cyclic order.
3Also called Stokes flow.
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with ∇ · u′ = ∇ · ũ = 0. The solution of the governing equations subject to the boundary

conditions (2.1) can be computed exactly [6], although we shall only require the disturbance

pressure p′ and velocity u′i, namely

p′ = −η0

(
2η0 + 5η̃0

η0 + η̃0

)
a3

r5
eijxixj

u′i = − η̃0

(η0 + η̃0)

a5

r5
eijxj +

(
5η̃0

2 (η0 + η̃0)

a5

r7
− (2η0 + 5η̃0)

2 (η0 + η̃0)

a3

r5

)
ejkxixjxk. (2.2)

We consider a volume of suspension V bounded by a surface A far enough from the

particles that u′i and p′ both vanish at the boundary (Figure 2.1a). The stress tensor in

the fluid is

Sij = −Pδij + 2η0eij + S ′
ij,

where

S ′
ij = −p′δij + η0

(
∂u′j
∂xi

+
∂u′i
∂xj

)
is the contribution to the stress due to the presence of the suspended particles. From a

macroscopic point of view, on length scales very large compared to the length scales of the

suspended particles, we can represent the suspension as a homogeneous fluid with effective

viscosity η. The stress tensor in this representative fluid is

Sij = −Pδij + 2ηeij.

We must find a constraint on η that will allow the effective viscosity to be expressed in

terms of known quantities. Following Einstein [29, 30], we consider the rate of dissipation

of mechanical energy in our suspension and in the macroscopically equivalent homogenized

fluid. To avoid thorny issues of convergence associated with integration over volume, we

consider the work done on the bounding surface at A. By definition, the stress tensor is the

force per unit area acting on a plane of fluid, so that FidA = SijnjdA is the ith component

of the force vector acting on the area element dA. The rate of work done on that element

is uiFidA, and since we assume u′i = 0 at the boundary, we have that the total rate of work

W done on the bounding surface A is (Figure 2.1c),

W =

∫
A

eikxkSijnjdA = eik

∫
A

(
−Pδij + 2η0eij + S ′

ij

)
xknjdA.
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0V
A

V

dA

n

a)

b) c)

Figure 2.1: Energy dissipation in a dilute suspension. a)We bound a suspension

of n identical microscopic particles by a macroscopic surface A. b) The flow around each

particle is purely straining. c) n is the outward unit normal to the area element dA.
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In our analogous homogeneous fluid,

W =

∫
A

eikxkSijnjdA = eik

∫
A

(−Pδij + 2ηeij) xknjdA.

Equating these two expressions, the constraint on η is thus,

2 (η − η0) eik

∫
A

eijxknjdA = eik

∫
A

S ′
ijxknjdA.

Using the divergence theorem, and recalling that the eij are constant, we find∫
A

eijxknjdA =

∫
V

∂ (eijxk)

∂xj

dV = eijδkj

∫
V

dV = eikV,

and the constraint is simplified to read

2 (η − η0) eikeikV = eik

∫
A

S ′
ijxknjdA. (2.3)

The last term eik

∫
A

S ′
ijxknjdA represents the contribution to the energy dissipation due

to the presence of the particles. Applying the divergence theorem to this term, we can

discriminate between contributions from the solvent and contributions from the n identical

particles of individual volume V0,∫
A

S ′
ijxknjdA =

∫
V

∂
(
S ′

ijxk

)
∂xj

dV =

∫
V−nV0

∂
(
S ′

ijxk

)
∂xj

dV + n

∫
V0

∂
(
S ′

ijxk

)
∂xj

dV . (2.4)

The first term in the right-hand side is the volume integral over the solvent, and the second

term is the volume integral over each of n particles with volume V0 = 4
3
πa3. The divergence

of the stress tensor
∂S′ij
∂xj

vanishes by virtue of the governing equations; hence,

∂S ′
ij

∂xj

=
∂

∂xj

(
−p′δij + η0

(
∂u′j
∂xi

+
∂u′i
∂xj

))

= − ∂p′

∂xi

+ η0

(
∂2u′j

∂xj∂xi

+
∂2u′i

∂xj∂xj

)



Suspension viscosity 17

= − ∂p′

∂xi

+ η0

(
∂

∂xi

(
∂u′j
∂xj

)
+

∂2u′i
∂xj∂xj

)
= − ∂p′

∂xi

+ η0
∂2u′i

∂xj∂xj

(
∇ · u′ = 0 ⇔

∂u′j
∂xj

= 0

)
= − ∂p′

∂xi

+ η0
∂2u′i

∂xj∂xj

= 0
(
−∇p′ + η0∇2u′ = 0

)
since the last line is simply the ith component of the creeping flow equations. (Note that

in the line previous we use the fact that the disturbance flow is divergence-free to write
∂uj

∂xj
= 0.)

Re-writing (2.4) using
∂S′ij
∂xj

= 0 and converting the last term back to an integral over

the surface of each particle,∫
A

S ′
ijxknjdA =

∫
V−nV0

S ′
ijδjkdV + n

∫
A0

S ′
ijxknjdA.

We are now able to determine constraint equation (2.3) explicitly:

2 (η − η0) eikeikV = eik

∫
A

S ′
ijxknjdA

= eik

∫
V−nV0

S ′
ikdV + neik

∫
A0

S ′
ijxknjdA

= eik

∫
V−nV0

(
−p′δik + η0

(
∂u′k
∂xi

+
∂u′i
∂xk

))
dV + neik

∫
A0

S ′
ijxknjdA

= eik

∫
V−nV0

(
η0

(
∂u′k
∂xi

+
∂u′i
∂xk

))
dV + neik

∫
A0

S ′
ijxknjdA.

In the last line we have used the fact that eii = 0. From the symmetry in the flow, it is

clear that
∂u′i
∂xk

=
∂u′k
∂xi

, so that with a final application of the divergence theorem, we write

2 (η − η0) eikeikV = neik

∫
A0

(
S ′

ijxknj − 2η0u
′
ink

)
dA,
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where now the integral is over the surface of a single particle only and the negative sign

comes from switching the inward unit normal at the control surface to the outward normal

on the particle surface. We can evaluate this integral explicitly using the disturbance

velocity and pressure (2.2), with the result

2 (η − η0) eikeikV = neik

[
V0

(
2η0 + 5η̃0

η0 + η̃0

)
eik

]
,

or, with φ = nV0

V
,

η = η0

(
1 + φ

(
η0+ 5

2
η̃0

η0+η̃0

))
. (2.5)

In the limit of high internal viscosity, η̃0 →∞, which for undeformable particles is equiv-

alent to considering a suspension of solid spheres, we recover Einstein’s relation,

η = η0

(
1 +

5

2
φ

)
,

(as we should).

The method of Einstein has been extended and generalized by many authors. Of

particular relevence is the work of Jeffery [49] calculating the effective viscosity of a dilute

suspension of ellipsoidal particles. His analysis leads to an expression in analogy with (2.5)

above,

η = η0(1 + bφ),

where b is the shape factor that depends upon the eccentricity of the ellipsoid, decreasing

from 5
2

as the particle becomes more elongated. Considering a solid-like, viscoelastic sphere

in linear shear flow, Goddard and Miller [36] recover Jeffery’s result, but with the shape

factor as a function of the imposed shear rate γ̇ and the shear modulus of the particles

Gp [69],

η = η0(1 + b(γ̇)φ) = η0

1 +

 5
2

(
1− 3

2

η2
0 γ̇2

G2
p

)
(
1 + 9

4

η2
0 γ̇2

G2
p

)
φ

 . (2.6)

Consequently, their calculated effective viscosity exhibits ‘shear-thinning’ dependent upon

particle deformability. We shall return to this point in Chapter 5 when we review experi-

mental data on blood flow.
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One essential point that we wish to emphasize is that microscopically the viscosity

varies from point-to-point in the suspension: η0 in the solvent and η̃0 in the suspended

droplets. Nevertheless, from a macroscopic vantage, this discrete distribution of viscosity

is blurred into an effective material property of the suspension. The interplay between

micro and macro descriptions, the smearing-out of detailed information to derive bulk

(observable) properties, will be a dominant theme in coming chapters. The approximation

of a discrete distribution of a great many particles or molecules by a handful of continuous

parameters is essential in the development of useful models of physical phenomena, but

representing the averaged microscopic dynamics by the field equations of fluid mechanics

comes at the price of neglecting micro-scale fluctuations. We will return to this point in

section 2.3 when we discuss constitutive models, and again in chapter 7 when we consider

the effect of blood cell velocity fluctuations in more detail.

In principle, the approach outlined here can be applied to concentrated suspensions,

with strange shapes and complex interface dynamics [7, 23, 44, 51, 65], but the calcula-

tions are formidable and any constraints or inhomogeneities in the particle distribution

make the calculations virtually intractable. Instead, we follow the phenomenological ap-

proach of Roscoe [75], generalizing the results of Taylor and Einstein, (2.5), to concentrated

suspensions.

2.1.2 Concentrated suspensions

At infinite dilution, in the absence of inter-particle interactions, the effective viscosity of a

suspension of solid spheres obeys Einstein’s relation above,

η ∼ η0

(
1 +

5

2
φ

)
(φ → 0), (2.7)

Roscoe [75] considered a polydisperse4 suspension with a collection of small spheres of

different sizes occupying a volume fraction φ (Figure 2.2). Suppose that to this suspension

one adds some large particles - large enough that from the point of view of the added

particles, the suspension of small particles behaves like a homogeneous fluid with viscosity

η. The large spheres occupy a volume fraction φL, and the total volume fraction occupied

4Polydisperse: Having a wide distribution of particle size. Monodisperse: Having a single particle size.
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Figure 2.2: Concentrated polydisperse suspensions. A small number of large spheres

are added to a suspension of smaller spheres, resulting in an infinitesimal increase in the

volume fraction and a corresponding infinitesimal increase in the effective viscosity.

by the solute φT is then

φT = φ + ∆φ = φ (1− φL) + φL.

since the smaller spheres can only occupy the volume fraction of solvent left available after

the larger spheres have been added. Alternatively, in terms of the change in the total

volume fraction occupied,

∆φ = φL (1− φ) .

If the large spheres are added in a small amount, φL → 0, we write the change in occupied

volume fraction as an infinitesimal

∆φ ≈ dφ = φL (1− φ) .

On the length scale of the large spheres, the suspension of smaller particles appears as

a homogeneous fluid with viscosity η, and we use (2.7) to express the change in viscosity

due to the addition of the larger spheres,

ηT = η + ∆η = η

(
1 +

5

2
φL

)
.

Again, if the large spheres are added in a small amount, φL → 0, the change in viscosity

will be infinitesimal

∆η ≈ dη =
5

2
φLη.
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Polydisperse
Suspension

Monodisperse
Suspension

Aggregates Modeled as a 
Polydisperse Suspension

Figure 2.3: Polydisperse and aggregated monodisperse suspensions. Roscoe [75]

suggested that a concentrated polydisperse suspension could be used as a model of aggre-

gated monodisperse suspension, with different sized aggregates corresponding to a distrib-

ution of particle sizes.

Combining the infinitesimal change in the volume fraction with the resulting infini-

tesimal change in the macroscopic viscosity, we eliminate φL and arrive at a separable

differential equation,
dη

η
=

5

2

dφ

(1− φ)
.

Integration of the differential equation yields an expression for the effective viscosity of

a concentrated polydisperse suspension,

η = η0 (1− φ)−
5
2 , (2.8)

where η0 is the viscosity of the solvent in the total absence of suspended particles. This

result holds for an infinitely disperse suspension, with ever smaller spheres occupying the

space between larger spheres. As a result, the suspension solidifies (η → ∞) when the

volume fraction is unity (φ = 1). The great insight of Roscoe was to suggest that an

infinitely disperse suspension can be used to model aggregated suspensions of monodisperse

spheres, with each aggregate behaving as a larger sphere (Figure 2.3). These aggregates
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will have some solvent trapped between spheres, so φ must be modified to reflect this

effective volume fraction of aggregates. For rigid spheres, closely packed, the trapped

medium accounts for an increase in the effective volume fraction by a factor of 3
√

2
π

. A

suspension of close packed rigid spheres will thus have an effective viscosity given by,

η = η0

(
1− 3

√
2

π
φ

)− 5
2

.

We then expect a monodisperse suspension of spheres to solidify at φ = π
3
√

2
≈ 0.74.

In general, the particles in a concentrated suspension are rarely optimally packed, with

suspension solidification occurring at some lower volume fraction called φmax,

η = η0

(
1− φ

φmax

)− 5
2
. (2.9)

Repeating Roscoe’s derivation for η = η0(1 + Tφ), where T is a function of the internal-

to-external viscosity ratio κ = η̃0

η0
, Pal [68] obtains an implicit expression for the effective

viscosity of a homogeneous suspension of immiscible droplets,

η

η0

[
η
η0

+ 5
2
κ

1 + 5
2
κ

] 3
2

=

(
1− φ

φmax

)− 5
2
φmax

.

In the limit of large internal viscosity, which is the case considered throughout the remain-

der of the dissertation, Pal’s expression reduces to that of Roscoe (2.9). More generally,

empirical expressions are often written with the exponent left free,

η = η0

(
1− φ

φmax

)−T

. (2.10)

The two parameters T and φmax are determined experimentally, and there is a tremendous

amount of scatter among suspensions [50]. As a result, this expression is more useful for

correlating data from a specific suspension rather than as a predictive model, although the

qualitative picture is appealing: Einstein’s linear effective viscosity increase at low volume

fraction and solidification at some maximum packing volume fraction φmax (Figure 2.4).

Clearly, (2.10) cannot tell the whole story. There are essential suspension properties

that are not represented, and lumped in some uncontrolled fashion in the two empirical
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Figure 2.4: Effective viscosity of a concentrated homogeneous suspension. The

effective viscosity increases with increasing particle volume fraction. Near the maximum

particle packing density, the viscosity becomes very large, and the fluid behaves like a solid.

parameters T and φmax. The most obvious restriction is that flowing suspensions are seldom

homogeneous. Shear gradients or wall interactions invariably lead to some inhomogeneous

particle distribution, and the geometry of the flow is an important consideration. In the

next section, we describe an approach that takes account of the inhomogeneous particle

distribution in tube flow by modeling blood as a layered fluid with a viscous core surrounded

by rings of less viscous fluid.

2.2 Multiple-fluid models

At high flow rates, there is an observable striation of blood in tube flow, with a cell-deplete

layer adjacent to the wall and an accumulation of red blood cells along the axis. Many

models of blood rheology therefore take as their foundation this natural structuring of the

flow, modeling the suspension as a layered fluid, with viscosity varying discretely across

the vessel,

η (r) =

{
ηc 0 ≤ r < rc

ηp rc ≤ r ≤ R,

where ηc >> ηp and rc is the width of the core region (Figure 2.5a). Two layer flows of this
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OIL

WATER

WATER

WATER

OIL

cη

( )p cη η≪
cr

R

a)

b)

cr

R

Figure 2.5: Core-annular flows. a) A two-layer fluid, with a high-viscosity core sur-

rounded by a lower-viscosity lubricating layer. b) The reduced overall viscosity of core-

annular flows is exploited by oil companies to move heavy oil great distances with compar-

atively little effort.
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type are often called core-annular flows because looking down the tube, the viscous core is

surrounded by an annulus of less viscous fluid (Figure 2.5a-inset). The viscosity is constant

through each region and we assume both fluids are Newtonian so that we may write the

only non-zero component of the shear-stress tensor5 for the fully developed laminar flow

as

τ = η (r)
∂u

∂r
, (2.11)

where ∂u
∂r

is the gradient in the velocity across the vessel. Here, and henceforth, all physical

quantities are referred to a cylindrical coordinate system (r, θ, z) with the z-axis along

the centerline of the flow. The creeping flow equations in cylindrical geometry, with the

generalized Newtonian stress tensor (2.11) reduce to,

−dP

dz
= −1

r

d

dr

(
rη (r)

du

dr

)
,

where dP
dz

is the pressure drop along the tube. Applying no-slip boundary conditions at the

wall, and requiring that the velocity be continuous across the vessel,

u (R) = 0

|u (0)| < ∞,

two integrations of the governing equation yield the general solution,

u (r) = −1

2

(
dP

dz

) R∫
r

r′dr′

η (r′)
. (2.12)

For the core-annular flow,

u (r) =


1
4

(
dP
dz

)((r2−r2
c)

ηc
+

(r2
c−R2)
ηp

)
0 ≤ r ≤ rc

1
4

(
dP
dz

)((r2−R2)
ηp

)
rc < r ≤ R,

(2.13)

5Shear-stress tensor : The full stress tensor Sij , without the pressure term −pδij . Also called the
extra-stress or deviatoric stress tensor.
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Figure 2.6: Velocity profile of a core-annular flow - Variation in the viscosity

difference. a) The viscosity distribution η(r)
ηc

is shown as a dashed line. Here, the core

viscosity is 10 times higher than in the lubricating layer. Nevertheless, the effective viscosity

of the overall flow is raised by only 6%. The velocity profile is blunt along the axis - varying

very little across the viscous core. b) The viscosity is 5 times higher than in the lubricating

layer, with almost no change from panel a). c) The core viscosity is 2 times larger than

in the lubricating layer, and the velocity profile is beginning to look more parabolic. d)

With constant viscosity across the fluid, the velocity profile is parabolic.
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Figure 2.7: Velocity profile of core-annular flows - Variation in core width.

a) The core extends 25% of the way across the vessel, and the profile is essentially parabolic.

b) The core extends 50% of the way across the vessel. c) The core extends 75% of the way

across the vessel, and the velocity profile is clearly not parabolic. The effective viscosity,

however, is only 34% more than the viscosity in the lubricating layer although the core is

5 times more viscous than the lubricating layer.

as compared to the classical Poiseuille flow of a homogeneous fluid with viscosity η,

uPois. (r) =
1

4

(
dP

dz

)
(r2 −R2)

η
. (2.14)

Sample plots of the core-annular velocity profile are shown in Figures 2.6 and 2.7. Large

deviations of the flow velocity field from the parabolic profile are seen when ηc >> ηp and

rc ≈ R. The volumetric flow rate Q is the integral of the velocity over the cross-sectional

area,

Q = 2π

R∫
0

u (r) rdr. (2.15)

For a homogeneous fluid, using (2.14),

Q = −πR4

8η

(
dP

dz

)
. (2.16)

Equating (2.15) and (2.16) we define the effective viscosity as an experimentally accessible
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parameter that appears in the proportionality constant between the pressure drop and the

flow rate,

− πR4

8ηeff

(
dP

dz

)
= −π

(
dP

dz

) R∫
0

r

R∫
r

r′dr′

η (r′)
dr.

Rearranging, and solving for the effective viscosity, yields

ηeff =
R4

8

 R∫
0

r

R∫
r

r′dr′

η (r′)
dr

−1

. (2.17)

Homogenization of the layered flow is therefore performed via a particular space-averaging

derived from the Poiseuille flow. For the particular choice of η (r) corresponding to core-

annular flow we find

ηeff = ηp

[
1−

(rc

R

)4
(

1− ηp

ηc

)]−1

,

and as ηc →∞ this reduces to

ηeff =
ηp

1−
(

rc

R

)4 .

Consequently, an infinitely viscous core can extend 45% of the way across the tube without

raising the effective viscosity of the flow by more than 5% over the viscosity of the lubri-

cating layer! This astonishing decrease in the viscosity of core-annular flows is exploited

by oil companies to move heavy oil large distances using about as much energy as it would

take to move water (Figure 2.5b).

There are obvious advantages for blood to adopt a core-annular microstructure [78],

and so layered fluid approaches enjoy great popularity in the modeling of blood rheol-

ogy [25, 42, 88]. Layered fluid models cannot be fully predictive, however, since rc is an

unknown empirically determined parameter and a notoriously difficult parameter to char-

acterize consistently. The trouble lies in unambiguously assigning a precise location to the

core interface since in the flow this is an averaged position at best, and variation of particle

density on either side leads to a blurring of the surface, especially at slow to moderate

flow rates. In principle, the flow can be divided into an arbitrary number of layers, but

from a scientific point of view that compounds the uncertainty in the model by replacing
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the unknown constant rc with an unknown discrete distribution of the viscosity: {ri
c, η

i
c}.

While core-annular flow models suggest that microstructure has a dramatic effect on the

suspension rheology, without a description of the mechanism underlying that microstruc-

ture such models are of limited use. What is needed is a viscosity distribution determined

by more fundamental principles used in conjunction with a layered-fluid model.

In the next section, we consider a more general approach than the layered fluid models.

Instead of assuming a generalized Newtonian stress tensor of the form τ = η (r) ∂u
∂r

with η (r)

to be determined, we explore the possibility of developing wholly original (non-Newtonian)

formulations of the stress tensor τ
(

∂u
∂r

)
, called constitutive models, with the hope that these

may explain blood rheology.

2.3 Constitutive models

Implicit in the conservation principles that lay at the foundation of fluid mechanics is the

continuum hypothesis. All matter is composed of molecules and microscopic molecular

trajectories are unimaginably complex. The great miracle of thermodynamics is that for

the most part microscopic details are unimportant, with the majority of physical phenom-

ena being represented by a handful of observable macroscopic quantities such as density,

velocity, temperature, and so on. Formally, we replace the full microscopic dynamics with

averaged parameters, effectively smearing the discrete molecular world into a continuum.

We are then able to enforce certain conservation principles (conservation of momentum,

mass, energy, etc.), but this vast simplification comes at the cost of ignoring microscopic

fluctuations. The result is a set of field equations that are not closed in the sense that the

unknown macroscopic functions are underdetermined by the governing equations. It is by

including the macroscopic effect of the molecular fluctuations that we arrive at the familiar

Navier-Stokes equations of fluid mechanics, through a constitutive model of microscopic

momentum transfer in the form of the shear-stress tensor. The origin of the shear-stress

tensor is best illustrated by example [57].

Consider a simple shear flow between parallel plates. The streamlines of the macroscopic

flow are parallel with the bounding walls and the fluid velocity field is tangent to these

streamlines (Figure 2.8). Molecular fluctuations cause molecules to cross the streamlines,
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along the 
streamline, but n

0⋅ =u n

u
( ) 0∇ ⋅ ≠u n

Microscopic exchange 
of momentum appears 
macroscopically as a 
frictional force acting 

across the streamline.

Figure 2.8: The origin of the stress tensor in the microscopic exchange of mo-

mentum. The white molecules are moving to the right faster than the black molecules.

Microscopic fluctuations transfer faster moving particles to the slower moving fluid below

the streamline and vice versa. The resulting transfer of momentum is manifest on the

macroscopic scale as a slowing down of the fast fluid and a speeding up of the slow fluid.

On the large scale, it seems as though a frictional force is acting across the streamline, and

this frictional force is modeled as the shear-stress tensor τ . Notice that the mean exchange

of particles is zero, since u · n = 0. Redrawn from [57].
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Table 2.1: Popular constitutive models in blood rheology. From [20] and [74].

though on average the movement of mass is balanced in either direction. The kinetic energy

of the molecules is not the same, however, with faster molecules crossing the streamline

from above and slower molecules from below. So although mass is conserved, there is a

flux of momentum downward. The result on the macroscopic scale is an observable slowing

down of the fast moving fluid and a speeding up of the slow moving fluid. This microscopic

momentum transfer is modeled at the continuum level as a frictional force acting across

the streamline, and expressed as the shear-stress tensor τ . The details of how momentum

is transferred in the presence of a shear gradient is captured in the functional form of the

stress tensor, called the constitutive model of the fluid. A sample of popular constitutive

equations used to model blood flow are given in Table 2.1 (see also [2, 28, 70, 73]).

In principle, the constitutive equation must describe some fundamental microscopic

mechanism for momentum transfer that is outside the purview of fluid mechanics and

the continuum representation. This is a tremendously difficult task, and although some

constitutive models that are used to model blood rheology have physical justification [79],

in practice most are nothing more than ad hoc fitting-functions to experimental data [31].
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The problem is the same as in layered fluid models discussed above: after choosing the

form of the constitutive equation based upon semi-empirical reasoning, the investigator

is left to fix a set of model parameters with obscure physical meaning. For example,

parameters are often fixed using instruments that subject homogeneous Newtonian fluids

to a constant shear gradient, but for suspensions in these instruments, the shear gradient

will vary through the fluid. The result is that the relationship of parameters fixed using

such instruments to in vivo blood rheology is unclear6. It is of fundamental importance to

derive a model of blood flow that will encompass the features of flow inhomogeneity present

in layered-fluid models and the details of microscopic momentum transfer contained in the

constitutive equation all the while based upon a sound physical foundation.

2.4 Flow microstructure and local viscosity

In the following chapters, we develop a model that unites the three approaches discussed

above. First, we consider the forces acting on a deformable blood cell in laminar tube

flow, deriving a conservation equation for the red cell volume fraction φ (r). Solving for

the steady-state volume fraction distribution φss (r), we use Roscoe’s expression for the

viscosity of a concentrated suspension to translate the flow microstructure into a continuous

viscosity distribution ηφ (r). Postulating the simplest of all constitutive equations – the

generalized Newtonian stress tensor τ (r) = ηφ (r) ∂u
∂r

– we solve the creeping flow equations

for the overall suspension velocity. The expression is identical to the expression derived

for the layered fluid model, but now with a viscosity distribution calculated directly from

the flow-induced microstructure.

6This point will be taken up again in chapter 6.



Chapter 3

Microstructure

In the previous chapter, considering past work on homogeneous suspensions and layered

flows, it was clear that the microscopic distribution of particles can dramatically decrease

the observed viscosity of a flowing suspension. In the present chapter, we examine the

forces acting on a deformable particle in tube flow, and derive a conservation equation for

the particle distribution function φ (r, t). Solving for the steady-state, we arrive at an ex-

pression for the microscopic particle distribution φss (r) as a function of the flow conditions

and particle properties.

The data of Chien [21] shown in Figure 3.1 suggests that red blood cells adopt two qual-

itatively distinct microstructures in response to flow. At low shear rates (0− 1s−1), the

red cells form extended aggregates called rouleaux. As the shear rate is increased, the

aggregates are broken up so that the average aggregate size decreases and a corresponding

decrease in the apparent viscosity is observed. This is analogous to the mechanism pro-

posed by Casson to describe the rheology of printers’ ink [17], and is often used to justify

the use of Casson’s equation in the modeling of blood flow.

Inspired by Casson’s nonlinear constitutive model, many attempts have been made to

capture the low-shear rheology of blood through a suitable constitutive equation based

on the aggregation and break-up of cell clusters [64, 66, 74, 83]. In the present study,

however, we will be concerned with the high-shear (> 3s−1) behaviour of blood where

cell deformability, and not aggregation, determines the character of the suspension flow.

33



34 Rheology of blood in small vessels

Non-aggregating

Hardened

Normal

Aggregation

Deformation

R
el

at
iv

e 
E

ff
ec

ti
ve

 V
is

co
si

ty

1

10

210

310

210− 110− 1 10 210 310

Shear Rate (sec-1)

Aggregation 
and Break-up

Flow-Induced 
Microstructure

Particle 
Microstructure:

Figure 3.1: Schematic diagram of the relationship between microstructure and

the apparent viscosity. A cartoon of the microstructure is shown in the panels below

the main figure, illustrating the aggregation-dominated regime at low shear and particle

redistribution at high shear.
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Although the shear-rate is not constant across the gap, with regions of low shear near the

centerline, the data of Chien (Figure 3.1) clearly shows that the effect of aggregation in

the low-shear regions has negligible effect on the overall rheology at high averaged shear

rates.

At moderately high shear rates (> 3s−1), red blood cells move away from the walls and

accumulate near the vessel axis. The low viscosity, particle depleted plasma layer lubricates

the flow resulting in an observed decrease in the apparent viscosity. A simplified picture

of the flow microstructure as a function of shear rate is shown in Figure 3.1.

In this chapter, we derive a conservation equation that describes this redistribution

of red blood cells with particular care to include particle deformability as an essential

mechanism.

3.1 Particle Redistribution

Consider an arbitrary control volume V of fixed shape moving with the background fluid

flow. There is some volume fraction of V occupied by particles, called φ. The change in

the total volume occupied by particles is,

∂

∂t

∫
V

φdV =

∫
V

∂φ

∂t
dV = −

∫
S

J · ndS,

where J is the flux of particles across the surface S of the control volume. Using the

divergence theorem, we rewrite this equation as∫
V

[
∂φ

∂t
+∇ · J

]
dV = 0,

and since V is arbitrary and the fields are continuous – so that the du Bois-Reymond

lemma applies – we arrive at the local conservation equation for the volume fraction, viz.

∂φ

∂t
= −∇ · J.

There are two primary mechanisms responsible for the flux of particles across the surface

of the control volume: a convective flux1 Jconv arising from the cross-stream migration of

1Also called the advective flux or transport term.
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a) b) c)

V -V ? V

Figure 3.2: Impossibility of cross-stream migration of a sphere in creeping flow.

a) Consider a movie of a sphere in a unidirectional creeping flow, and suppose there is some

force acting perpendicular to the wall to move the sphere across the flow. b) Reverse the

direction of the velocity by playing the movie backward. The perpendicular force will now

point in the opposite direction. c) But if the film is turned back to front, or the observer

moves to the other side of the screen, the flow is indistinguishable from the flow in panel

a). For the perpendicular force to act both upward and downward, it must be zero. Hence,

there cannot be cross-stream migration of a sphere in creeping Newtonian flow.

red blood cells, and a diffusive flux Jdiff opposing particle packing.

In order to proceed, we require a suitable geometrical representation of the red blood

cells. Their rest shape is difficult to model explicitly, so we make the simplification that

in flow they behave like droplets of immiscible fluid [3, 35, 77, 89]. We can then take

advantage of the work of Chan and Leal [18] who studied the problem of the migration of

a fluid drop in a unidirectional shear flow.

3.1.1 Migration of a Fluid Droplet - Chan & Leal 1979

The streamlines of tube flow are parallel with the bounding walls; a convective flux therefore

requires a mechanism inducing cross-stream migration. A neutrally buoyant hard sphere

in creeping flow will not show any cross-stream migration. The argument, due to F. P.

Bretherton [11] (see also p. 128 of [57]), is straightforward. The creeping Newtonian
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equations for the flow around a sphere are linear in the velocity v and the pressure field

P . If {v, P} is a solution, so too is {−v,−P}. Suppose there is some downward force

acting on the spherical particle, perpendicular to the walls when the flow velocity is v

(Figure 3.2). Reversing the velocity and pressure field by running time backward, the

perpendicular force will seem to act in the opposite direction while the flow velocity is −v.

If the original flow is viewed from the other side of the tube, however, a velocity of −v is

likewise observed, but with the migration force acting downward. We are left to conclude

that the migration force acts upward if we observe the flow from one side of the tube, and

downward if we observe the flow from the other side. This is clearly a contradiction unless

the migration force is zero. Hence, no cross-stream migration is possible for a neutrally

buoyant, rigid spherical particle in the creeping flow of a Newtonian fluid.

Convective flux can only be realized if some term (e.g. nonlinearity) is introduced into

the creeping flow equations to break the symmetry [56]. For example if the Reynolds num-

ber is not small and inertial terms contribute appreciably to the long-term behaviour of

the system, the governing equations contain a symmetry breaking non-linearity of the form

v ·∇v, and the conclusion of Bretherton no longer holds. Indeed, Segre and Silberberg [80]

have observed cross-stream migration due to inertial effects in suspensions of rigid spheres.

The symmetry of the governing equations may likewise be broken by immersing the par-

ticles in a non-Newtonian solvent. In this case, the nonlinearity lies in the constitutive

equation of the fluid.

Here, we are primarily concerned with drift due to deformation of a spherical particle

in creeping flow. Deformation of the particle surface transforms the mathematical model

into a free boundary-value problem in which the location of the deformed surface has to

be determined as part of the solution. The resulting symmetry-breaking condition can be

accommodated by means of a perturbation expansion, assuming that the spherical shape

of the particle is only slightly altered by hydrodynamic interactions with the walls and by

the stretching of the surface by the shear-gradient in the flow. We present in some detail

the work of Chan and Leal [18] deriving an expression for the cross-stream migration of a

deformable drop in tube flow.

Chan and Leal [18] consider the motion of a neutrally buoyant drop in a unidirectional,

quadratic shearing flow at zero Reynolds number. Their analysis is more general than
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Figure 3.3: Coordinate system of Chan and Leal [18].

what we require since we shall restrict ourselves to a Newtonian suspending medium and

a Newtonian fluid droplet. We follow their derivation for a two-dimensional Poiseuille

flow, and their transformation to apply the results in three-dimensional tube flow. The

system is non-dimensionalized using a characteristic velocity Ga, where a is the drop radius

and G is the averaged shear rate in the bulk. The stress tensor in the two fluids is non-

dimensionalized by Gη0 and Gη̃0, where η0 is the viscosity in the medium and η̃0 is the

viscosity inside the fluid drop. The total velocity, pressure and stress distributions in the

two fluids (including the disturbance due to the presence of the drop) are (U, P,S) and(
Ũ, P̃ , S̃

)
, where, again, the tilde denotes a function inside the drop. Finally, we denote

the undisturbed velocity, pressure and stress fields by (V, Q,T).

The coordinate system has its origin at the center of the drop, with x denoting the

vector emanating from the origin, non-dimensionalized with respect to the particle radius

a. In two-dimensional flow, we have only two components of x: x1 is chosen to lie in the

direction of the bulk flow, and x3 is perpendicular to the confining walls. Relative to a

fixed laboratory frame, the drop translates with velocity Ûs, where the subscript s denotes

quantities measured relative to the fixed-frame (Figure 3.3). The bulk flow V, ignoring

the disturbance due to the particle, is written as a general quadratic flow, [see eq. 2.6a on
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p. 135 of [18]]

V =
(
α + βx3 + γx2

3

)
e1 − Ûs. (3.1)

Here, e1 is the unit vector in the x1 direction. For two-dimensional Poiseuille flow, the

velocity field with respect to the laboratory frame is

Vs (s0) = 4Vmaxs0 (1− s0) . (3.2)

The lab coordinate s0 is linearly related to the drop coordinate x via,

s0 = s + x3
a

d
, (3.3)

where s is the location of the drop center, and x3 has been non-dimensionalized, now with

respect to the gap width d. With substitution of (3.3) into (3.2), the coefficients in the

general unidirectional flow are given by [eq. 2.8 on p. 135]2,

α = 4Vmaxs (1− s)

β = 4Vmax (1− 2s) ζ (3.4)

γ = −4Vmaxζ
2,

where ζ = a
d

is the ratio of the particle radius to the gap width d.

The equations of motion of the total flow are

∇ · S = 0 ∇ ·U = 0

∇ · S̃ = 0 ∇ · Ũ = 0,

where

Sij = −Pδij +

(
∂Ui

∂xj

+
∂Uj

∂xi

)

S̃ij = −P̃ δij +

(
∂Ũi

∂xj

+
∂Ũj

∂xi

)
.

2Here, and henceforth, square brackets preceding the equation refer to the equation and page number
in the original paper by Chan and Leal [18].
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The far-field boundary conditions require that the disturbance velocity vanishes and that

there is no slip velocity at the bounding walls,

U → V as r = |x| → ∞

U = Vwe1 − Ûs on the walls,

where Vw is the velocity contribution (α + βx3 + γx2
3) evaluated at the wall.

The droplet surface will be deformed by shear gradients in the flow or hydrodynamic

interactions with the walls. The deformation of the particle surface boundary cannot be

determined independently of the flow, however. Equations of this type are called free-

boundary problems and in general are very difficult to solve. Chan and Leal overcome this

difficulty by considering a perturbation expansion in the deformability of the drop. The

boundary conditions on the surface of the deformed drop are continuity of velocity, no

normal flow and continuity of the stress,

U = Ũ

U · n = Ũ · n = 0

S · n = κS̃ · n +
1

δ

(
1

R1

+
1

R2

)
n. (3.5)

Here κ = η̃0

η0
is the ratio of the internal to external viscosity, R1 and R2 are the principal radii

of curvature of the deformed droplet, and the parameter δ is a dimensionless measure of

the magnitude of viscous forces to drop deformability, expressed in terms of the interfacial

tension σ,

δ =
aη0G

σ
. (3.6)

The deformability is assumed to be small, and the solution to the flow problem is written

as a perturbation expansion in δ.

The particle velocity, expanded in powers of δ, becomes [eq. 2.11 on p. 137]

Ûs = Û(0)
s + δÛ(δ)

s + δ2Û(δδ)
s + ...
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The zero-order term Û
(0)
s is the translational velocity of a perfectly spherical drop, and

from the argument of Bretherton above, we know Û
(0)
s = 0. Similarly, expanding the other

functions in powers of δ,

U = U(0) + δU(δ) + δ2U(δδ) + ...

P = P (0) + δP (δ) + δ2P (δδ) + ...

S = S(0) + δS(δ) + δ2S(δδ) + ... ,

while inside the drop,

Ũ = Ũ(0) + δŨ(δ) + δ2Ũ(δδ) + ...

P̃ =
1

δ
P̃ ( 1

δ ) + P̃ (0) + δP̃ (δ) + ...

S̃ =
1

δ
S̃( 1

δ ) + S̃(0) + δS̃(δ) + ...

The O
(

1
δ

)
terms are required to satisfy (3.5) in the case of a quiescent spherical drop.

The shape of the drop is also expanded as a perturbation series in δ. F (r) is the

parametric droplet surface, with r = |x| and x is non-dimensionalized with respect to the

drop radius a. Consequently, the surface of the undeformed (spherical) drop is given by

F (r) = r − 1 = 0. In general, however, expressed in terms of the deformations f (δn) at

O (δn),

F (r) = r − 1− δf (δ) − δ2f (δδ) − ... = 0. (3.7)

The stress condition (3.5) is then re-written using F (r, δ) to express the outward unit

normal n and the curvature as a series in δ [eq. 2.15 on p. 138],

n =
∇F

|∇F |
= er − δ∇f (δ) − δ2

[
∇f (δδ) +

1

2

(
∇f (δ) · ∇f (δ)

)
er

]
+ ...

1

R1

+
1

R2

= ∇ · n = 2− δ
[
2f (δ) +∇2f (δ)

]
− ...

Any quantity evaluated at the surface is expanded in a Taylor series about r = 1 using

(3.7).

The full solution at each order of δ will therefore determine the cross-stream migration

to that order in δ. To simplify the calculations, Chan and Leal introduce a reciprocal
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theorem that allows the calculation of the cross-stream migration to any order in δ using

only the solution to the problem one order less in δ. We shall only require the migration

velocity to O (δ). With the reciprocal theorem, all that is needed is the solution at δ = 0,

the translation of a spherical drop in a Poiseuille flow.

The complimentary problem, required for the reciprocal theorem, would typically use

a drop of the same shape as in the original problem, but moving in a quiescent fluid.

Using the Taylor expansion above to replace the deformed drop by a sphere with suitably

modified boundary conditions in the original problem, it becomes possible to use a spherical

drop in the complimentary problem as well. The equations of motion for a sphere moving

perpendicular to the bounding walls in a quiescent fluid are

∇ · S̃ = 0 ∇ · u = 0,

where,

tij = −qδij +

(
∂uj

∂xi

+
∂ui

∂xj

)
,

with similar equations governing the flow inside the drop
(
ũ, q̃, S̃

)
. The flow vanishes far

from the drop and at the walls,

u → −e3 as r →∞

u = −e3 on the walls.

(Recall that e3 is the unit vector in the direction perpendicular to the walls). Generalizing

the reciprocal theorem of Lorentz for solenoidal vector fields [62], Chan and Leal derive a

reciprocal relation [eq. 3.11 on p. 141],∫
Ad

[(
S− κS̃

)
· u−

(
S̃− κS̃

)
·U− κS̃ ·

(
U− Ũ

)
− S̃ · u + S̃ ·V

]
· n dA = 0, (3.8)

allowing higher order solutions to be calculated from those of one order lower in δ. The

quiescent terms O
(

1
δ

)
are,

P̃ ( 1
δ ) =

2

κ

S̃
( 1

δ )
ij = −2

κ
δij.
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a)

b)

Figure 3.4: Predicted droplet shape compared to red blood cells in flow. a)

Various blood cells shapes observed in flow through glass tubes [40]. b) Some predicted

droplet shapes from the work of Chan and Leal [18].

The zero-order solutions are still very difficult to calculate exactly. Chan and Leal resort

to the method of reflections [43] to approximate the solution. Assuming the ratio of the

particle radius to the gap width is small, ζ = a
d

<< 1, the solution is expanded as

U(0) = 1U
(0) + 2U

(0) + 3U
(0) + ... ,

where iU
(0) is the ith reflection obeying the boundary conditions alternately at the surface of

the particle and the bounding walls. From the boundary stress condition, the δ-expansion

of the unit normal, and the curvature, the shape of the drop at each order in δ is calculated.

To first-order, with (x1, x3) = (r cos θ, r sin θ) in plane polar coordinates,

f (δ) (θ) = β
16 + 19κ

8 (1 + κ)
sin θ cos θ − γ

10 + 11κ

40 (1 + κ)

(
cos θ − 5 cos θ sin2 θ

)
.

Sample plots of the droplet surface r = 1− δf (δ) (θ) are shown in Figure 3.4. Although

heuristic, the drop shapes bear a plausible resemblance to the shape of red blood cells

observed in flow, suggesting that the eventual representation of a red blood cell by a fluid
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droplet has some justification. Collecting the O(δ) terms in (3.8) [eq. 6.4 on p. 157],

−
∫
Ad

[(
S(δ) − κS̃(δ)

)
· u−

(
t− κt̃

)
·U(δ) − κt̃ ·

(
U(δ) − Ũ(δ)

)]
· erdA =

=
2π (2 + 3κ)

1 + κ

(
Û(δ)

s

)
3
,

where the third reflection of the migration velocity comes from the t ·V term. Rearranging

for the migration velocity, writing the integrand explicitly [eq. 6.6 on p. 157],(
Û(δ)

s

)
3

= − 1 + κ

2π (2 + 3κ)

∫
Ad

{[
−f (δ) ∂

∂r

(
S(0) − κS̃(0)

)
· er+

(
S(0) − κS̃(0)

)
· ∇f (δ) (3.9)

+∇f (δ)
(
2f (δ) +∇2f (δ)

)]
· u +

(
t− κt̃

)
: erer

[
f (δ)

(
∂

∂r
U(0)

)
· er −U(0) · ∇f (δ)

]
+κt̃ · er ·

[
f (δ) ∂

∂r

(
U(0) − Ũ(0)

)]}
dA.

For the two-dimensional flow, the integrand above can be expressed as [eq. 6.7 on p. 158],(
Û(δ)

s

)
3
∼
∫
Ad

[
O
(
ζ2
)

+ O
(
ζ3
)

+ O
(
ζ4
)]

dA,

where the O(ζ2) term is odd in x3, and therefore vanishes. The leading order term is O(ζ3),

proportional to βγ [eq. 6.8 on p. 158],(
Û(δ)

s

)
3

= − βγ

(1 + κ)2 (2 + 3κ)

[
(16 + 19κ) (13− 36κ− 73κ2 − 24κ3)

42 (2 + 3κ) (4 + κ)
+

+
(10 + 11κ) (8− κ + 3κ2)

105

]
e3.

Here, again, the subscript s indicates drop migration relative to the fixed laboratory frame,

and the hat indicates a superposition of this velocity over the bulk fluid flow. With a final

transformation of the two-dimensional flow to full three-dimensional tube flow, the cross-

stream migration is [eq. 6.10 on p. 159],

Ûm = − βγ

(1 + κ)2 (2 + 3κ)

[
3

14

(16 + 19κ) (1− κ− 2κ2)

(2 + 3κ)
+

(10 + 11κ) (8− κ + 3κ2)

140

]
.
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In three-dimensional tube flow, the constants (α, β, γ) are given by,

α = Vmax

(
1− r2

R2

)
β = −2Vmax

ar

R2

γ = −Vmax
a2

R2
,

where r is the radial distance from the tube center and R is the radius of the tube. In

tubular flow, the gap width d and averaged shear rate G must be redefined as,

ζ =
a

2R

G =
Vmax

R
.

Expressing the migration velocity with all the units written explicitly gives the final result

um (r) = δGa[
(
Û

(δ)
s

)
3
] = −2P (κ) V 2

maxη0

σ

(
a
R

)3 ( r
R

)
, (3.10)

where we have abbreviated the dependence on the viscosity ratio κ as

P (κ) =
3

14

(16 + 19κ) (1− κ− 2κ2)

(1 + κ)2 (2 + 3κ)2 +
(10 + 11κ) (8− κ + 3κ2)

140 (1 + κ)2 (2 + 3κ)
.

and replaced Vmax by Vmax

Ga
.

Notice that the migration velocity is linear in the radial coordinate r. It is also clear

that if the shear rate is increased (i.e. Vmax is increased) or the particle deformability is

increased (i.e. σ is decreased), the migration force likewise increases and we would expect

the flow to become layered with a core developing along the axis of the tube. The model

so far appears to be consistent with experimental observation.

The internal viscosity of the droplet η̃0 is a measure of the resistance offered to the

motion of fluid within. The red blood cells, however, do not have a homogeneous internal

structure, and so we must ask what meaning η̃0 can have in the context of a biological

cell. It is not enough to lyse the cell and measure the viscosity of the cell contents. The

relevance of the internal viscosity to the migration velocity comes from the development of
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internal circulation patterns that dissipate energy [86]. The rugged internal architecture

of the cell provides strong resistance to flow of the cytoplasm. It seems appropriate, then,

to model the internal environment of the red blood cell as a highly viscous fluid. Taking

the limit as η̃0 →∞ (or κ = η̃0

η0
→∞), we arrive at3

lim
κ→∞

P (κ) =
11

140
.

With an expression for the migration velocity of a single particle, we write the convective

flux as,

Jconv = φ um (r) er.

Although derived for the motion of a single drop, we use um (r) for the motion of a red

blood cell in an arbitrarily concentrated suspension, treating the surrounding particles as

a smeared-out effective medium. As in the continuum hypothesis, the representation of

the discrete particulate as an effective mean-field comes at the expense of ignoring the

effect of particle-particle interactions on the convective transport of a single particle. We

attempt to compensate for the fine-scale fluctuations arising from interparticle and solvent

collisions by including a diffusive flux, modeled after Fick’s law,

Jdiff = −D∇φ,

where D is the rate of diffusion. The diffusive flux will act in opposition to the tendency of

particles to accumulate along the axis, and in the absence of a convective flux, it will drive

the system toward the homogeneous particle distribution ∇φ = 0. The diffusion coefficient

may be a function of space for inhomogeneous concentrated suspensions, including as it

does restricted motion due to cage effects [24] and asymmetric collisions in the shear flow

[52, 58]. Here we assume that D is constant in space, though it may be dependent upon

the flow rate and the averaged particle packing density φ0. The connection between the

diffusion coefficient and the mean-field approximation underlying the use of um in Jconv

will be explored in more detail in Chapter 7.

3The perturbation expansion of Chan and Leal assumes κ << O
(

1
δ

)
. The limit κ →∞ must therefore

be interpreted as O (1) << κ << O
(

1
δ

)
, with δ → 0.
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3.2 Particle Conservation Equation

In principle the total flux J may contain contributions arising from additional mecha-

nisms, such as the electrostatic repulsion between the vessel walls and the particle surface,

sedimentation, etc., but here we only consider the convective contribution from particle

deformation and the diffusive contribution arising from particle-particle interactions. The

conservation equation for the particle volume fraction then reads,

∂φ

∂t
= −∇ · [φ um (r) er −D∇φ] ,

or in cylindrical coordinates, with um(r) defined in (3.10),

∂φ (r, t)

∂t
= −1

r

∂

∂r

{
r

[
um (r) φ (r, t)−D

∂φ (r, t)

∂r

]}
. (3.11)

Nondimensionalizing time with respect to the rate of diffusion, t̂ = D
R2 t, and the radial

distance by the vessel radius, r̂ = r
R
, the particle conservation equation (3.11) reduces to

∂φ

∂t̂
=

1

r̂

∂

∂r̂

{
r̂

[
2εr̂φ +

∂φ

∂r̂

]}
, (3.12)

where the parameter ε is like a P éclet number, and measures the ratio of the magnitude

of the convective flux to the magnitude of the diffusive flux,

ε = 11
140

V 2
max

σ
η0a
D

(
a
R

)2
. (3.13)

Alternatively, the parameter ε can be thought of as a measure of the inhomogeneity of

the particle distribution, since ε = 0 corresponds to the diffusion dominated regime, and

therefore to a homogeneous particle distribution.

The full, time-dependent solution of the conservation equation can be easily calculated

using a Bessel-Fourier expansion of φ. In this form, however, the qualitative features of

the microstructure are obscured. We choose instead to look at the long-time, steady-state

solution to gain a deeper intuitive feeling for how the flow affects the particle distribution.
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3.2.1 Steady-state Particle Distribution φss (r̂)

The steady-state solution of (3.12) is reached when the convective and diffusive flux balance.

Integrating the right-hand side of (3.12) once, and enforcing zero flux across the axis, we

arrive at the first-order ordinary differential equation,

∂φ

∂r̂
= −2εr̂φ.

The steady-state particle distribution is therefore Gaussian,

φss (r̂) = C0 exp
[
−εr̂2

]
.

The integration constant C0 is determined by enforcing the conservation of the total particle

mass. With the initial particle volume fraction φ0, conservation of the total mass requires

that
1∫

0

r̂φ0dr̂ =
φ0

2
=

1∫
0

r̂φss (r̂) dr̂, (3.14)

or,

C0 =
εφ0

1− e−ε
.

Equation (3.14) tacitly assumes that the packing of particles along the axis can be arbitrar-

ily tight. That is not the case, and while the particle density must certainly be less than 1,

in practice complete packing is rarely achieved. Let φmax be the maximum volume fraction

possible, then (3.14) holds as long as C0 ≤ φmax. If a completely packed core develops

along the axis, extending some distance r̂c from the center line, then the steady-state dis-

tribution will be piece-wise defined. We modify the derivation of the particle distribution

function to account for the impenetrable core by requiring that um (r) vanishes at rc,

um (r̂) 7→ um (r̂)− um (r̂c) ,

and by requiring that φss reach its maximum at r̂ = r̂c (i.e. that ∂φ
∂r̂

is continuous at

r̂ = r̂c). The resulting steady-state particle distribution outside the core is,

φss (r̂) = φmax exp

 r̂∫
r̂c

(um (r̂′)− um (r̂c))

D
dr̂′

 (r̂ ≥ r̂c) .
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Figure 3.5: Steady-state particle distribution. As the flow rate increases ( i.e. as ε

increases), a dense core develops along the axis. For the purposes of illustration, φmax = 1.

Writing the full steady-state distribution with a core as a piece-wise function, we have

φss (r̂) =

{
φmax

φmax exp
[
−ε (r̂ − r̂c)

2] 0 ≤ r̂ ≤ r̂c

r̂c < r̂ ≤ 1.

The location of the core edge r̂c is determined by the conservation of total mass, i.e.

1∫
r̂c

r̂φss (r̂) dr̂ = φmax

1∫
r̂c

r̂ exp
[
−ε (r̂ − r̂c)

2] dr̂

=
φ0 − φmaxr̂

2
c

2
,

although the equation is transcendental and must be solved numerically.

Figure 3.5 illustrates the effect of ε on the steady-state particle distribution. At low

ε, the flow is homogeneous across the vessel. With increase in ε, due to any number

of mechanisms (increase in flow rate, increase in particle deformability, decrease in the

vessel diameter, etc.), the particle distribution becomes more inhomogeneous. Once the

maximum packing density is reached along the axis, a core develops. A core-annular model



50 Rheology of blood in small vessels

Homogeneous Flow

1 0.5 0 0.5 1 1 0.5 0 0.5 1

Radial position r̂

a) b)

1 0.5 0 0.5 1

d)
Core-Annular Flow

1 0.5 0 0.5 11 0.5 0 0.5 1

e) f)

1 0.5 0 0.5 1

c)

Figure 3.6: Density plot of the steady-state particle distribution. The microstruc-

ture is made more obvious by considering the density plot of φ. a) ε = 0.1 - The particles

are distributed homogeneously. (Flow is along the vertical.) b) ε = 0.5 c) ε = 1 d) ε = 5

e) ε = 10 e) ε = 50 - The core-annular flow is fully developed.

Here, and henceforth, plots across the entire tube will be labeled symmetrically along

the horizontal with the axis at r = 0.
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is not appropriate, however, unless ε is very large and the particle density in the depleted

layer vanishes.

The limitation of core-annular flow models is the uncertainty in the measured width of

the core - a very difficult parameter to extract from observations since the edge is not well

defined. Figure 3.6 is a plot of the steady-state particle distribution again, but now as a

density plot. It would seem that the core is thicker in panel f) as compared with panel d).

Assuming a core-annular flow, one would then conclude that the flow illustrated in d) has a

lower apparent viscosity. That conclusion is false, although a layered-fluid model does not

contain enough detail to make the contradiction obvious. By using r̂c to parameterize the

entire flow, layered-fluid models ignore the continuous distribution of particulate outside

the core. A single scalar is too coarse a measure of the complicated underlying mechanism.

In the next chapter, we consider the effect of the steady-state particle distribution φss (r̂)

on the overall suspension flow by deriving a continuous local viscosity distribution in a

generalized Newtonian constitutive equation.



Chapter 4

Overall suspension flow

In the previous chapter we developed a conservation equation governing the particle volume

fraction distribution φ (r̂, t), using a convective flux term from Chan and Leal [18] for

deformable drops in unidirectional creeping flow. Having derived the steady-state particle

distribution φss (r̂), in the present chapter we assume a generalized Newtonian constitutive

equation to calculate the effect of the particle microstructure on the overall suspension

velocity field. Comparing the resulting flow rate with an analogous homogeneous fluid, we

define an effective viscosity for the suspension.

4.1 Suspension flow and the effective viscosity

To connect the particle microstructure with the overall flow, we must decide upon a con-

stitutive equation that relates the microscopic momentum transfer, mediated by the sus-

pended particles, to the macroscopic flow. We are aided by our focus on the steady-state

since in the long-time limit, the particle distribution is constant along the vessel, depend-

ing only upon the radial coordinate r̂. We imagine the suspension as infinitesimally thin

laminae of homogeneous particle distributions rolled concentrically around the axis, and

model momentum transfer between laminae using the simplest expression – the generalized

Newtonian constitutive equation [71],

τ (r̂) = ηφ
∂u

∂r̂
,

52
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where ηφ is the effect of the particle volume fraction on the local viscosity of the suspension.

We leave the form of ηφ undefined for the moment, except to emphasize again that in the

steady-state, ηφ will depend upon the radial distance only: ηφ (r̂). We ignore sedimentation

of the red blood cells, which amounts to assuming the suspension has uniform mass density

ρ0. As we showed in Chapter 2, with a generalized Newtonian stress-tensor the creeping

flow equations reduce to,
dP

dz
=

1

r̂

∂

∂r̂

{
r̂

(
ηφ (r̂)

∂u

∂r̂

)}
.

For constant pressure-driven flow1, the velocity profile is (cf. (2.12)),

u (r̂) = −1

2

(
dP

dz

) 1∫
r̂

r̂1

ηφ (r̂1)
dr̂1. (4.1)

The effective viscosity of blood is often reported in experiments [47]. To make sense

of this data, we must ask what is meant by the effective viscosity of a suspension - after

all, viscosity is a bulk property of homogeneous fluids, while suspensions are necessarily

inhomogeneous. The instruments used to measure blood viscosity often rely upon a linear

relationship between dependent and independent variables, with the viscosity appearing

in the proportionality constant when the measured fluid is homogeneous. For example, in

a capillary viscometer the flow rate Q is measured as a function of the pressure drop ∆P

along the tube of length L . Assuming the fluid is homogeneous, and the flow is laminar,

the effective viscosity is defined by the ratio

ηeff
∆
=

π

8L

∆P

Q
.

The flow rate is the volume of fluid passing through a cross-section of the tube per unit

time, calculated by integrating the velocity of the flow over the cross-sectional area of the

conduit,

Q = 2π

1∫
0

r̂ u (r̂) dr̂. (4.2)

1In Appendix B, the derivation is repeated for a weakly pulsatile driving pressure.



54 Rheology of blood in small vessels

Using the velocity distribution calculated above, and comparing the flow rate to that of an

analogous homogeneous fluid, we define the effective viscosity as (cf. (2.17) on p. 28)

ηeff (ε) =
1

8

 1∫
0

r̂

 1∫
r̂

r̂1

ηφ (r̂1)
dr̂1

 dr̂

−1

. (4.3)

As in core-annular flow, the effective viscosity is a particular kind of averaged local

viscosity - particular to the geometry of the viscometer. That is one of the reasons for

the great variety of blood viscosity values reported in literature. The effective viscosity

is not an intrinsic property of a suspension, but depends upon the underlying flow-induced

microstructure and upon the averaging implicit in the instrument used to make the mea-

surement.2

In order to present explicit plots of ηeff (ε), φss (r̂) and the resulting velocity distribution

u (r̂), we must choose the particular form of ηφ (r̂). One of the most common expressions

is the general expression of Roscoe derived in the context of concentrated homogeneous

suspensions,

ηφ (r̂) = η0

(
1− φss (r̂)/φmax

)−T

. (4.4)

With specific choices of φmax and T , (4.4) reproduces the popular expressions of Roscoe

[75], Brinkman [12], Dientenfass [26], and others [53, 69, 71]. In using the expression above,

we assume that at each radial position r̂, the suspension is a locally homogeneous New-

tonian fluid. The non-Newtonian behaviour of the flow is then a result of the combined

effect of each microscopic lamina on the overall suspension velocity. The choice of Roscoe’s

expression is for illustrative purposes only, and was made largely to remain consistent with

the past work of Phillips et. al [71]. We must emphasize that this choice will not quali-

tatively affect any of the results in the following and in fact any monotonically increasing

function η(φ) would serve as well.

Despite the general form of the local viscosity given by (4.4), certain features of the

model can be made obvious by examining the small ε limit. Consider the velocity profile

2In Chapter 6, we re-derive the particle distribution and velocity field in a concentric-cylinder geometry,
such as one finds in a Couette viscometer, and we find a very different expression for the effective viscosity.
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Figure 4.1: Velocity profile of a concentrated suspension in tube flow. a) The

steady-state particle distribution, with the core developing at ε ≈ 2 (bold). b) The

resulting velocity field, normalized with respect to the centerline velocity of the parabolic

profile (ε = 0). The velocity profile is flattened near the axis even prior to the formation of

the core. For comparison, the velocity field corresponding to ε = 2 is also shown in bold.

(The lowest plot corresponds to ε = 0.1.)

(4.1),

u (r̂) ∼ −1

4

(
dP

dz

)
1

η0 (1− φ0/φmax)
−T

{(
1− r̂2

)
+

εT

2

(φ0/φmax)

(1− φ0/φmax)

(
1− r̂2

)
r̂2 + O

(
ε2
)}

,

as ε → 0. The underlined term represents a correction to the parabolic profile of homo-

geneous Poiseuille flow, and results in a blunt distribution along the axis. For the sake of

illustration, and to make contact with experimental results in the next chapter, we must

choose an explicit value for φmax and T . Red blood cells are quite flexible and several

investigators have reported flow of very concentrated suspensions (φ0 > 0.95). It seems

reasonable, therefore, to set φmax = 1 so that the viscosity stays finite for any physically

accessible hematocrit. The exponent T is more open to interpretation. Experimental ev-

idence suggests that T is around 2, but there is a great deal of variation from data set

to data set [50]. We will choose the value T = 1.8 to remain consistent with the work of

Krieger [53] and Phillips et al. [71].

With an explicit choice for φmax and T , the full velocity profile, with numerically
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Figure 4.2: Effective viscosity of a concentrated suspension in tube flow. As the

particles are redistributed to the axis, the apparent velocity falls. At very high ε, the core

is fully developed and blood flows like a low-viscosity Newtonian fluid.

computed r̂c at high ε, is shown in Figure 4.1, with a comparison to the particle density

distribution φss (r̂). The increased density of particulate near the axis leads to an increase

in the local viscosity and a consequent flattening of the velocity profile, even prior to the

formation of a core.

It is also helpful to look at the small-ε expansion of the effective viscosity. Substituting

(4.4) into (4.3), retaining linear terms in ε, we are able to calculate the effective viscosity

of a nearly homogeneous suspension flow,

ηeff ∼ η0

(
1− φ0/φmax

)−T
{

1− εT

6

(φ0/φmax)

(1− φ0/φmax)
+ O

(
ε2
)}

,

as ε → 0. We see that the effect of the flow (i.e. ε > 0) is to reduce the effective viscosity

(shear-thinning), and that this effect is most pronounced for suspensions near maximal

packing density (φ0 ≈ φmax). In the dilute limit φ0 → 0, we recover Einstein’s relation

with a correction due to the flow,

ηeff ∼ η0

[
1 +

φ0

φmax

T
{

1− ε

6

}]
,
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Figure 4.3: Contrast with the standard picture of blood rheology. a) In the

standard picture, the decrease in the effective viscosity is attributed to the break-up of

red blood cell aggregates, with a constant viscosity reached when only singlet cells remain.

Redrawn from Figure 2.2 on p. 24 of the text by Charm and Kurland [20] (see also [59]) b)

By contrast, here we propose that aggregate break-up plays a role only at very low shear

rates, and that restructuring of the particle distribution in the flow is the major determinant

of flow rheology, with a constant effective viscosity observed when a core-annular flow is

developed.

as ε → 0 and φ0 → 0.

With φmax = 1 and T = 1.8, the full effective viscosity expression plotted as a function

of ε is shown in Figure 4.2. The effective viscosity decreases as ε increases. At about ε = 2,

a core develops along the axis (cf. Figure 3.5, p. 49), and the viscosity decreases more

slowly while the core widens. At large ε, the core-annular flow is fully developed and the

effective viscosity is constant.

The usual view of blood rheology [20, 64] is depicted in Figure 4.3a, redrawn from the

textbook by Charm and Kurland [20]. The viscosity decreases as aggregates of red blood

cells are broken up, with a constant viscosity reached when only singlet red blood cells

remain. The observed layering of the flow is treated as an incidental consideration. In fact,

Charm and Kurland go further when discussing the use of capillary viscometers to study

blood rheology:
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It is possible to express wall shear rate and stress from pressure-velocity mea-

surements in capillary tubes by making the following assumptions:

1. Steady flow.

2. No radial components of velocity.

3. Axial velocity is a function of distance from the axis only.

4. No slippage or marginal layer at the wall.

5. No end effects.

6. Isothermal conditions.

7. Fluid incompressible.

8. No external forces.

...In the absence of a marginal layer, the capillary tube is a perfectly suitable

instrument for blood viscometry. (p. 59 of [20])

Even assuming that a homogeneous cell distribution simplifies the theoretical treatment

somewhat, it is not clear that such measurements have any physiological relevance what-

soever.

Though a popular view, it is simply not supported by experimental observation of blood

flow - suspensions of aggregating and non-aggregating cells behave identically above shear

rates of about 3s−1. An alternative picture (Figure 4.3b) brings the flow microstructure to

the forefront, with a constant viscosity reached when the particles are maximally packed

along the axis, and the core-annular flow is fully developed.

Although cell migration and an inhomogeneous viscosity distribution seems consistent

with observation, the value of the model must be measured by its quantitative agreement

with experimental data. In the next chapter we compare model predictions under a variety

of conditions with available experiments, and for sufficiently low tube Reynolds number,

we find that the model reproduces the observed rheology very well.



Chapter 5

Comparison with experiments

Having fully specified the form of the local viscosity, we will apply the model in two ways.

First, we shall use ε as a free parameter, using the model to reconstruct complete velocity

profile information from a couple of data points, or from the experimental flow rate. Second,

using the physical interpretation of ε afforded by equation (3.13), we shall calculate the

effective interfacial tension and the shear-dependent diffusion rate of red blood cells in tube

flow.

5.1 Fitting of incomplete data

Non-invasive measurement techniques such as magnetic resonance imaging (MRI) are being

used to estimate the wall shear stress in physiological flow. Unfortunately, the spatial

resolution of these techniques is limited, and sub-pixel data estimation is necessary, often

with data near the wall fitted to a paraboloid [67]. With the present model, using ε as a

free parameter, we can reconstruct missing data and estimate the wall shear stress with

far greater precision than is possible with a parabolic fit.

Figure 5.1 shows the velocity profile fitted to two data points half-way between the axis

and the wall (filled circles). These data points and those shown as open circles are taken

from the observed flow of a concentrated suspension of ghost red blood cells through a

narrow glass tube (Figure 5 of [39]). The dashed line is the parabolic fit through the same

two points. The inset shows that a parabolic fitting function underestimates the wall shear

59
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Figure 5.1: Using ε as a fitting parameter-Wall shear stress.

Estimating the wall shear stress from incomplete data. The model parameter ε is

fitted to two points (filled circles) The missing data is shown as open circles. The parabolic

fit (dashed) underestimates the wall shear stress by a factor of 1.6 [Inset].

stress (which is proportional to u′ (r)) by about 160%.

Alternatively, ε can be determined by matching the model to the experimentally deter-

mined flow rate, via (4.2). Since η(r) is a function of ε, so too will u(r). Integrating over

the cross-section of the tube, we obtain the flow-rate as a function of ε, Q(ε). Comparing

Q(ε) to the experimental flow rate Qexp, we are able to determine the choice of ε that will

reproduce the observed flow rate. With ε so determined, we plot u(r; ε), and the velocity

profile is reconstructed exactly (Figure 5.2). Here again the data points (filled circles) are

taken from ghost cell flow through glass tubes (Figure 5 of [39]). Note that u(r; ε) is not fit

to the data points – ε is simply chosen to match the flow rate. The close agreement between

the model and data lends credence to the mathematical form of the velocity function.
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Figure 5.2: Using ε as a fitting parameter-Velocity profiles.

Fitting ε to the experimental flow rate. Given the centerline velocity um, the hema-

tocrit φ0 and the tube radius R the model parameter ε is chosen so that (4.2) matches

the experimental flow rate. Here the velocity data is shown as filled circles and the model

prediction as a solid line. (All data is from [39] for ghost red cells flowing through glass

tubes.)
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Figure 5.3: Comparison with the data of Fahraeus and Lindqvist. The original

data of Fahraeus and Lindqvist [33] is shown as filled circles, with the limiting viscosity

normalized to one. The model parameter ε is proportional to R−2, and the effective

viscosity (4.3) calculated with ε = 0.2R−2 (R measured in mm) is shown as a solid line.

5.2 Semi-qualitative rheology

The Fahraeus-Lindqvist Effect

The definition of ε (3.13) allows the reproduction of the anomalous flow behavior of blood

by fixing various combinations of physical parameters. For example, we see that for a given

experimental set-up, ε ∝ R−2 . Fitting the original data of Fahraeus and Lindqvist [33]

(normalized to unity at large vessel diameter), we can fix the proportionality constant to

their particular experimental set-up,

ε =
0.2

R2
,

with the tube radius R measured in mm. The resulting fit to the experimental data using

the effective viscosity calculated using (4.3) is shown in Figure 5.3 – the decrease in the

observed viscosity is reproduced very well.
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Figure 5.4: Shear-thinning and cell hardening. a) The data of Carr and Cokelet

[16] illustrating the effect of cell hardening on shear-thinning in blood. b) The qualitative

behavior is reproduced by the model. The shear rate is proportional to Vmax and the

‘hardness’ of the blood cells is expressed by the interfacial tension σ. Here, ε = 10−0.5V 2
max

σ
.

For an alternate explanation of the observed behaviour, see the comment following the

next section.

Shear-thinning and the effect of cell hardening

Carr and Cokelet [16] examined the effect of shear rate and cell deformability on the

observed viscosity of blood. A qualitative plot of their results is shown in Figure 5.4a. We

can compare the model prediction with their results by writing ε as a function of the shear

rate (expressed through the centerline velocity Vmax) and the interfacial tension σ,

ε ∝ V 2
max

σ
.

The qualitative behavior is reproduced by the model for nominal choices of Vmax and σ.

The discontinuity in the second derivative of the theoretical plot marks the point where

the core begins to develop in the particle density distribution, an artifact that is amplified

by the logarithmic scale.



64 Rheology of blood in small vessels

0

effη
η

0φ

0

effη
η

0φ

0.1ε =
10ε =

a) b)
11.708 sγ −=ɺ

1170.8 sγ −=ɺ

0.2 0.4 0.6

2

4

6

8

0.2 0.4 0.6 0.8

2

4

6

Figure 5.5: The effect of shear on the volume fraction dependent viscosity. a) A

plot of the effective viscosity as a function of cell volume fraction is sensitive to the shear

rate at which the measurements are made [13]. b) The model reproduces the same trend,

where γ̇ ∝
√

ε. For an alternate explanation of the observed effect, see the text at the end

of this section.

The effect of shear rate on the effective viscosity

In Chapter 2, we remarked that experiments correlating data using Roscoe’s expression

η = η0

(
1− φ

φmax

)−T

produce enormous spread in the characterization of φmax and T .

The problem, as pointed out by Jeffrey and Acrivos [50], is that the form of the viscosity

expression is not rich enough to capture the underlying physical mechanisms responsible for

the observed rheology. The two free parameters represent a collection of physical properties

assembled in some unknown way. For example, the rate of divergence of the measured

viscosity decreases as the shear rate increases. Several investigators therefore propose to

make φmax and T empirical functions of the shear rate, but this is a stopgap solution.

Although some hindsight rationalizations are offered to justify the ad hoc modification of

the fitting function, such as cell shape changes in response to flow [13, 69], or circulation

of a liquid cell membrane [26], the evidence offered in their support is largely indirect.

Calculating the effective viscosity using a spatial average of the local viscosity obviates any

modification of φmax or T .

Shear-thinning is apparent in the plot of the effective viscosity as a function of the
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average cell volume fraction (the hematocrit φ0) at various shear rates (Figure 5.5a). Since

ε is directly related to the square of the shear rate (through Vmax), a plot of ηeff as a

function of φ0 at various values of
√

ε should show the same behavior - as indeed it does,

even with φmax and T fixed (Figure 5.5b).

Pal [69] derives a model exhibiting the same qualitative behaviour shown above in

Figures 5.4 and 5.5. His method follows Roscoe’s approach [75] (outlined in Chapter 2) to

extend to the concentrated regime the work of Goddard and Miller [36] on the rheology of

dilute homogeneous suspensions of viscoelastic spheres (cf. eq. (2.6) on p. 18).

Unfortunately, the approach of Roscoe tacitly assumes a homogeneous distribution of

particles and since there can be no doubt that red blood cells migrate in response to the

background flow, it would seem a spatially uniform model is not appropriate for describing

physiological blood flow. The same can be said of any constitutive equation derived from

a spatially homogeneous distribution of particles, for example the work of Frankel and

Acrivos [34]. Although such models are of great use in the study of the behaviour of a

static distribution of viscoelastic inclusions in a composite material, the marginal layer

and spatial non-uniformity of the particle distribution plays a dominant role in suspension

flow [4]. In summary, past models of blood flow are able to reproduce the cell-deformability

dependent shear-thinning observed experimentally, though the proposed mechanism (cell

elongation) differs from the mechanism proposed in the present model (cell migration),

and experimental evidence suggests that cell migration cannot be ignored in the modeling

of blood flow.

5.3 Predictive rheology

The definition of ε is given in terms of physical parameters and should in principle allow

rheological data to be predicted. There is, however, some difficulty assigning meaning to

the constants Vmax and D, along with the interfacial tension σ.

The migration velocity (3.10) was derived by Chan and Leal in terms of the motion of

a single drop in a unidirectional flow, so the background flow will not be affected by the

motion of the drop. For a concentrated suspension, redistribution of the particles by the

background flow will change the suspension flow geometry in an essential way. For example,
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the maximum flow velocity along the axis um is no longer related to the shear gradient near

the wall via Poiseuille’s law and therefore cannot be identified as Vmax. Nevertheless, in

the vicinity of the wall where drop migration is dominant we can determine the parabolic

contribution to the shear gradient by taking a Taylor expansion of the fluid flow velocity

(4.1) at r = 1, retaining quadratic terms, to find

Vmax =
um

2 η (1)
1∫
0

r′dr′

η(r′)

.

In this way, we are able to connect the centerline velocity um to the mean-field shear

gradient that an individual particle will experience near the wall, and hence calculate the

cross-stream migration velocity. With Vmax expressed in terms of experimentally accessible

quantities, the remaining parameters D and σ are left to fully characterize ε.

Diffusion of an individual particle in a concentrated suspension is enhanced by the

flow (shear-induced diffusion [52, 58]) and constrained by the close-packing of neighboring

particles (cage effects [24]). In general, these contributions will not be uniform across the

vessel, but as a first approximation we consider D as a spatially homogeneous function of ε

(the flow) and φ0 (the average packing fraction). For simplicity1, we assume a polynomial

in ε and φ0. Since ε can be fitted to flow rate data as in Figure 5.2, we will use the data of

Goldsmith and Marlow to determine D (ε, φ0) such that the variance in σ is minimized2.

Considering a second-order polynomial fitting function, we arrive at the empirical diffusion

coefficient

D (ε, φ0) = 1− 3.77 εφ0 + 3.7 ε2φ2
0,

where D0 is the Einstein-Stokes diffusion constant,

D0 =
kT

6πη0a
.

1The form of the fitting function will be discussed in Chapter 7.
2Data is taken from Figure 5 of [39], excluding Figure 5b (right) since the tube Reynolds number is too

large in that experiment. To ensure that the suspension flow is adequately modeled by the creeping flow
equations, we require that the tube Reynolds number um2Rρ0

η0
be less than 0.05. The two fitting parameters

in the polynomial are calculated by determining the minimum of the variance in σ using the FindMinimum

command in MathematicaR©.
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Figure 5.6: The effect of shear and particle packing on the diffusion rate. The

empirical diffusion rate coefficient D (ε, φ0) = 1 − 3.77 εφ0 + 3.7 ε2φ2
0 is dominated by

cage effects at low shear (ε = 0.5) where close packing restricts diffusion. As the shear

rate increases (ε = 2), asymmetric collisions among particles enhance the diffusion rate in

concentrated suspensions.

Here k is Boltzmann’s constant and T is the absolute temperature. Qualitatively, the

diffusion constant D (ε, φ0) behaves as one would hope (Figure 5.6): As the shear rate

increases, shear-induced diffusion overcomes cage effects, increasing the apparent rate of

diffusion. With this choice of D (ε, φ0), the resulting estimate for σ is,

σ = (1.2± 0.1)× 10−4N m−1.

(Determined from the data of five experiments.) That is to say that the red blood cells

behave like deformable droplets with interfacial tension σ = 1.2 × 10−4N m−1. In reality,

red cells are biconcave disks with a cell-membrane tension of about 1 × 10−5N m−1 [32],

an order of magnitude less than the model σ. It is important to note that the internal

architecture of the cell and the membrane itself lend an apparent rigidity opposing cell
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Figure 5.7: Model prediction compared with experimental data. a) In vitro data

of Goldsmith and Turrito The model prediction is shown along with the data for the

flow of ghost red blood cells through glass tubes [41] (A different experiment from that

used to determine D (ε, φ0)). b) In vivo data of Sugii, Nishio and Okamoto The data

is for the flow of rat’s blood through an arteriole [82], with estimated hematocrit φ0 = 0.45.

deformation not found in a simple fluid drop.

Collecting Vmax and D (ε, φ0), we arrive at an implicit nonlinear equation for ε

(cf. (3.13) on p. 47),

ε =
11

140

V 2
max (ε, φ0)

σ

η0a

D (ε, φ0)

( a

R

)2

. (5.1)

Here, σ = 1.2× 10−4N m−1, the nominal plasma viscosity η0 = 1.1× 10−3kg m−1s−1, and

the deformed red cell radius a = 3.5 × 10−6m. The hematocrit φ0, vessel radius R and

centerline velocity um depend upon the details of the particular system under investigation.

To vindicate the simplifications made to develop an expression for D (ε, φ0) and fix σ, we

compare the theoretically predicted velocity profile to experimental data.

The in vitro data of Goldsmith and Turrito (Figure 2 of [41]) for concentrated ghost
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cells in glass tubes is shown in Figure 5.7a. The experimental parameters are φ0 = 0.52,

R = 51.8µm and um = 360µm/s. This is all the information required to estimate the

velocity profile across the tube, and the theoretical prediction fits the data very well.

In vivo data is far more difficult to collect, and human data is scarce. Nonetheless,

making use of the excellent data of Sugii et al. (Figure 7d of [82]) for blood flowing in the

small arterioles of a rat, with R = 12µm, um = 3.1mm/s and estimated rat hematocrit

φ0 = 0.45 [92] and cell radius3 a ≈ 3× 10−6m, we again find good agreement between the

experimental results and the theoretical prediction (Figure 5.7b).

All of the experimental results presented in this chapter were obtained from tube flow.

In the next chapter, we repeat the model derivation in a different flow configuration to

assess the impact the measuring instrument itself has on the experimental characterization

of the effective viscosity of a suspension.

3Based on the fact that the rat blood cell has a volume about 60% that the human red blood cell.



Chapter 6

Couette geometry

The model predictions compare well with the experimental results presented in the previous

chapter for pressure driven suspension flow. The geometry of the flow is a fundamental

consideration in the development of the model - determining the form of the migration

velocity and the choice of the reference coordinate system. In the present chapter, we keep

the same reference coordinate system, but alter the flow geometry to linear shear as found

in a rotating cylinder (Couette) viscometer with narrow gap. In contrast with the above,

the dominant contribution to the migration velocity comes from hydrodynamic interactions

of the deformable particles with the walls. Consequently, the expression for the migration

velocity um is no longer linear in the radial coordinate, but rather a singular function

diverging near the confining walls. The steady-state particle distribution is obviously no

longer Gaussian, and the behavior of the effective viscosity as a function of ε is essentially

different. The conclusion is that the parameterization of in vivo models from viscometer

data is not justifiable.

6.1 Measuring viscosity

Viscosity measurements of homogeneous fluids typically rely on linear experiments, insofar

as the non-linear inertial terms in the Navier-Stokes equations vanish identically or are

negligibly small [10, 43]. There are three main instrument configurations that produce a

linear relationship between the dependent and independent variables, with the viscosity

70
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Figure 6.1: Various viscometers. a) Cone-plate viscometer The rotation speed Ω of a

shallow cone is measured as a function of the applied torque T . b) Capillary viscometer

The flow rate Q is measured as a function of the pressure drop along the tube ∆P . c)

Couette viscometer The torque T acting on the inner cylinder is measured as a function

of the rotation speed Ω of the outer cylinder.

appearing in the proportionality constant: cone-plate viscometers, capillary viscometers,

and Couette (or coaxial cylindrical) viscometers (Figure 6.1). We shall briefly discuss each

instrument. For the capillary and Couette viscometers, we derive the relationship between

dependent and independent variables when the viscosity of the fluid is not constant.

Cone-plate viscometer

For completeness, we shall briefly discuss the cone-plate viscometer, though we shall not

consider the derivation of the particle volume fraction φ nor the local viscosity ηφ in this

geometry. Furthermore, it is not clear how to obtain an expression of the effective viscosity

in the case of variable local particle density.

In this configuration, a cone of radius R rotates at a speed Ω rad s−1 above a flat plate.

The surface of the cone forms a small angle θ (<< 1 rad) with the plate (Figure 6.1a). At

a distance r from the rotation axis, the velocity of a homogeneous fluid is constant across
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the gap,

u (r) = Ωr.

The shear rate γ̇ is γ̇ = u
h
, where h is the width of the gap, and from Figure 6.1a,

γ̇ =
u (r)

h
=

Ωr

r tan θ
≈ Ω

θ
(θ << 1 rad) ,

i.e. the shear rate is constant throughout. (In a structured fluid, this will no longer be

the case, but it is not clear how the derivation can be modified to accommodate a varying

local viscosity). With the shear-stress tensor τr, the total torque T exerted on the fluid by

the cone is,

T =

∫
A

τrrdA,

where the integral is over the surface of the cone dA = 2πrds with ds representing the

distance along the edge of the cone. Since r = s cos θ, for small θ, ds ≈ dr and,

T = 2π

R∫
0

τrr
2dr.

Assuming a Newtonian stress tensor τr = η γ̇ = ηΩ
θ
, the total torque is given by

T =
2πΩ

θ

R∫
0

ηr2dr,

which re-arranges to,

Ω =

(
3θ

2πR3

)
T

η
,

relating the observed rotation speed Ω to the applied torque T , and the fluid viscosity η

appears in the proportionality constant.

Capillary viscometer

In a capillary viscometer the flow rate Q is measured as a function of the pressure drop ∆P

along the tube of length L . The net force acting on the fluid due to the applied pressure

is

Fp = ∆Pπr2.
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Opposing the generated motion is the shear force acting on the surface of the lamina of

fluid at r,

Fτ = τ (2πr) L.

For a steady flow, these forces balance, and1

τ =
∆P

L

r

2
.

Assuming a generalized Newtonian stress tensor τ = ηφ (r) du
dr

,

ηφ (r)
du

dr
=

∆P

L

r

2
,

which is a first-order separable differential equation. Integrating both sides, along with the

boundary condition u (R) = 0,

u∫
0

du = u (r) = −∆P

2L

r∫
0

rdr′

ηφ (r′)
.

In practice, it is more convenient to measure the volumetric outflow of the pipe instead

of the velocity field u (r) itself. The flow rate is the volume of fluid passing through a

cross-section of the tube per unit time, calculated by integrating the velocity of the flow

over the cross-sectional area of the conduit,

Q = −∆P

2L

R∫
0

2πr

 r∫
0

r′dr′

ηφ (r′)

 dr. (6.1)

For a homogeneous fluid with viscosity ηeff ,

Q =

(
πR4

8L

)
∆P

ηeff

.

Comparing with (6.1), we define the effective viscosity of a suspension flowing through a

tube as

ηeff = R4

8

[
R∫
0

r

(
r∫
0

r′dr′

ηφ(r′)

)
dr

]−1

. (6.2)

1From the momentum equations for an axisymmetric flow, we know the pressure drop along a tube is
linear, so where we have formerly written −dP

dz , we now equivalently write ∆P
L to clarify the derivation.
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Couette viscometer

The Couette viscometer is a popular design consisting of two coaxial cylinders: an inner

cylinder of radius R1 and height h inside an outer cylinder of radius R2 (Figure 6.1c). The

test fluid is contained between the two cylinders and multiple experiments can be made

on the same sample. Consequently, this is the instrument of choice for investigations of

viscoelastic and aging effects in complex fluids.

The outer cylinder rotates with a constant speed Ω rad s−1, while the inner cylinder

remains stationary. The torque T acting on the inner cylinder is measured by the angular

deflection about the axis of rotation. If we consider the torque acting on a thin cylinder

of fluid at a distance r from the axis of rotation, then

T = Stress× Surface Area× Length of the Lever Arm

T = τr (2πrh) r,

or, re-arranging for the shear-stress tensor τr,

τr =
T

2πr2h
. (6.3)

We denote by ω the angular velocity of the fluid at r, so that the velocity of the fluid in

the direction of rotation is uθ = ωr, and the shear rate is then given by

∂uθ

∂r
= r

dω

dr
,

Assuming a generalized Newtonian stress tensor τr = ηφ (r) ∂uθ

∂r
= ηφ (r) r dω

dr
, then from

(6.3) it follows that
dω

dr
=

(
T

2πh

)
1

ηφ (r) r3
.

Integrating both sides2,
Ω∫

0

dω =
T

2πh

R2∫
R1

dr

ηφ (r) r3
. (6.4)

2The lower limit of integration for ω corresponds to a stationary inner cylinder - In general, it may rotate
with speed Ω0 rad s−1. If that is the case, then in the following replace Ω with ∆Ω, where ∆Ω = Ω−Ω0.
See Appendix C for details.
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For a homogeneous fluid with constant viscosity ηeff , (6.4) becomes

T =

(
4πhR2

1R
2
2

(R2
2 −R2

1)

)
ηeffΩ. (6.5)

The expression in parentheses is constant for a given instrument, determined by calibration

with a standard fluid. The torque T is then linearly related to the rotation speed Ω and

the proportionality constant is the viscosity ηeff . Comparing (6.4) with (6.5), we define

the effective viscosity of an inhomogeneous suspension as

ηeff = 1
2

[
1

R2
1
− 1

R2
2

] [R2∫
R1

dr
ηφ(r)r3

]−1

. (6.6)

Compare this with the corresponding expression for a capillary viscometer (6.2) - the

spatial averaging implied by the measurement of an effective viscosity is very different for

the two instruments. Of course, for a homogeneous fluid of viscosity η0, both reduce to

ηeff = η0. As we show in the next section, not only is the spatial averaging different, but

ηφ (r), too, has a completely different behavior from ηφ (r) corresponding to a capillary

geometry as derived in Chapter 4.

6.2 Steady-state rheology in a Couette viscometer

Our approach to the calculation of the steady-state particle distribution will be identical

with that followed in Chapters 3 and 4 - We first write an expression for the migration

velocity um and thereby construct a conservation equation for φ that we solve in steady-

state. We assume a generalized Newtonian stress tensor and use the results of the previous

section to define the effective viscosity.

For a Couette viscometer, the radii of the two cylinders are very large compared with

the gap width d. In the derivation of the migration velocity um we are then able to

approximate the flow geometry by a linear shear flow between parallel plates (Figure 6.2).

The migration velocity derived in Chapter 3 applied to unbounded quadratic unidirectional

flow. The cross-stream migration was due to gradients in the shear rate, and was O
(

a3

R3

)
.

Now, in a linear background flow there is no gradient in the shear rate and the cross-

stream migration to leading order is due to hydrodynamic interactions with the walls. The
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Figure 6.2: A Couette viscometer. Two concentric cylinders rotate relative to one

another. The ratio of the rotation speed to the resultant torque acting on the inner

cylinder is determined by the viscosity of a homogeneous fluid. The gap width d is very

small compared with the radii of the cylinders, and so the local flow may be reasonably

modeled as a linear shear flow between parallel plates.

mechanism is different from the mechanism in tube flow, and the velocity correction is

O
(

a4

d4

)
[56]. To simplify the notation, we use the dimensionless variable s = R1

d

(
r

R1
− 1
)

and write the migration velocity as [see eq. 6.13 on p. 159 of [18]],

um (s) =
1

28

V 2
wη0

σ

(a

d

)4
[

1

s2
− 1

(1− s)2 + 2 (1− 2s)

]
.

Note the expression is singular at the walls (s = 0, 1). Defining the convective and diffusive

flux as before, solving the resulting conservation equation at steady-state (with the time

and distance non-dimensionalized with respect to d instead of R), the particle density

distribution is given by

φss
|| (s) = C0 exp

[
−ε̄

(
1

s
+

1

(1− s)
− 2s + 2s2

)]
,

where the subscript ‘||’ denotes the distribution in the parallel-plate geometry, and the

parameter ε̄ is,

ε̄ =
1

28

V 2
max

σ

η0a

D

(a

d

)3

.
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The integration constant C0 is again fixed by imposing the conservation of mass,

R2∫
R1

φ0rdr =
φ0

2

(
R2

2 −R2
1

)
=

R2∫
R1

φss
||

(
R2

d

(
r

R1

− 1

))
rdr,

but it is no longer possible to calculate C0 exactly. A good approximation can be found,

however, and the steady-state particle density distribution is,

φss
|| (s) ≈ φ0e

6
5
ε̄

e−2ε̄ − 2ε̄Ei (2ε̄)
exp

[
−ε̄

(
1

s
+

1

(1− s)
− 2s (1− s)

)]
,

where Ei (z) is the exponential integral,

Ei (z) =

∞∫
1

e−zt

t
dt.

In the dilute limit, where no core has formed, we are able to compare our results with

the theoretical work of Hudson [46] on dilute emulsions (Figure 6.3). His model is more

complicated, including the effects of particle buoyancy and a spatially-varying diffusion co-

efficient. As a result, he must solve for φss numerically. Unfortunately, Hudson’s solutions

for φ are unphysical since they are negative over a portion of the domain. Nevertheless, in

regions where his φ is positive, our results compare well, and both agree with experimental

data [46]. For a concentrated suspension, as in Chapter 4, we must include the possibility

of a maximally packed core along the centerline. The core will begin to form when the

maximum of φss
|| exceeds φmax, i.e. for ε̄ and φ0 such that

e
−23ε̄
10 φ0

e−2ε̄ − 2ε̄Ei (2ε̄)
> φmax.

Dividing the migration velocity into two parts, u<
m (s) for s ≤ 1

2
and u>

m (s) for s ≥ 1
2
, we

require that both vanish at the edge of the core (which has radius rc),

u<
m (s) 7→ u<

m (s)− u<
m

(
1

2
− rc

)

u>
m (s) 7→ u>

m (s)− u>
m

(
1

2
+ rc

)
.
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Figure 6.3: Steady-state particle distribution of a dilute suspension. a) Steady-

state particle distribution with increasing ε̄. The suspension is dilute so that 3 φ0 << φmax,

and no core develops. Notice the boundary layer that forms at the walls for small ε̄. b)

Numerical solutions by Hudson [46] for the same geometry, but with a non-linear diffusion

coefficient. His solutions are parameterized by a P éclet number P0 analogous to ε̄0. Hud-

son’s solutions are unphysical and intersect the horizontal axis; only the positive part is

shown. [Here, ε̄0 = 0.16 and P0 = 1.]
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We are then able to construct the particle distribution for a suspension with a core,

φss
|| (s) =



φmax exp

 s∫
1
2
−rc

u<
m(s′)−u<

m( 1
2
−rc)

D
ds′


φmax

φmax exp

 s∫
1
2
+rc

u>
m(s′)−u>

m( 1
2
+rc)

D
ds′


0 ≤ s ≤ 1

2
− rc

1
2
− rc ≤ s ≤ 1

2
+ rc

1
2

+ rc ≤ s ≤ 1.

Again, the width of the core must be determined by enforcing the conservation of mass,

resulting in a transcendental equation that is solved numerically.

From (6.4) we are able to calculate the flow velocity in the direction of rotation,

uθ (r) = r

(
T

2πh

) r∫
R1

dr′

ηφ (r′) r′3
,

or, more explicitly,

uθ (r) = r


Ω

r∫
R1

dr′

ηφ(r′)r′3

R2∫
R1

dr′

ηφ(r′)r′3

 ,

where now,

ηφ (r) = η0

1−
φss
||

(
R1

h

(
r

R1
− 1
))

φmax

−T

.

The particle distribution and velocity profile of a concentrated suspension (φ0 = 0.45)

are shown in Figure 6.4. The most significant difference between the steady-state particle

distribution in tube and Couette flow is the particle density in the depleted layer near

the walls. For tube flow, the particle density near the wall decreases continuously with

increasing ε. For Couette flow, on the other hand, a boundary layer appears adjacent to the

walls, and a region of pure solvent lubricates the flow for all ε̄ > 0. This singular behavior

of the particle density distribution leads to a sharp decrease in the effective viscosity of

concentrated suspensions, as we shall see. The velocity profile, Figure 6.4b, is linear for
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Figure 6.4: Steady-state particle and velocity distribution of a concentrated

suspension. a) Steady-state particle distribution with increasing ε̄. The suspension is

concentrated enough (φ0 = 0.45) that a core develops along the centerline at high ε̄.

b) Velocity profile in the gap. For very large cylinder radii and small gap, the velocity

profile of a homogeneous fluid is linear. The variable local viscosity due to the particle

microstructure alters the flow field in an essential way, creating an inflection point at the

centerline. (Here the gap width is 0.1% of the inner cylinder radius R1.)
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Figure 6.5: Potential instability in Couette flow of concentrated suspensions. a)

For a comparatively dilute suspension (φ0 = 0.25), the flow is almost linear across the gap,

although an inflection point is apparent at the centerline. b) For a more concentrated

suspension (φ0 = 0.45), the velocity profile along the centerline is flattened. c) For a

concentrated suspension (φ0 = 0.65), the velocity profile is very flat along most of the gap

resembling an unstable shear layer flow.
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Figure 6.6: Effective viscosity of Couette flow. a) The effective viscosity of a Couette

flow as a function of ε̄ at three initial particle concentrations. b) The effective viscosity of

the analogous tube Poiseuille flow.

small ε̄, but as the particles migrate toward the center, the profile becomes flattened with

an inflection point at the centerline.

An inflection point is often a warning sign that the flow may become unstable. Com-

paring the velocity profile at various particle concentrations (Figure 6.5), we see that at

high particle density, even at very low shear rates, the particle migration leads to a flow

profile that resembles an unstable shear-layer configuration3.

Using (6.5), we calculate the effective viscosity of Couette suspension flow (Figure 6.6).

For the sake of comparison, we include the analogous plot for tube Poiseuille flow. There

are three main points of interest. First, the core-annular limiting viscosity is different

depending upon the viscometer. In tube flow, for φ0 = 0.45, the core-annular viscosity is

about 1
2

the zero-shear homogeneous viscosity; in Couette flow, the core-annular viscosity

is only 3
4

of the homogeneous viscosity.

Second, the Newtonian plateau of constant viscosity corresponding to fully developed

core-annular flow occurs at a much lower ε̄ than in the Poiseuille case. Even setting ε̄ = ε

3The migration of particles and the resultant flattening of the velocity profile along the centerline may
help explain the observed instability of suspension Couette flow at low shear rates (see for example [37] or
[61]). Analysis of the Taylor instability in suspension flow is outlined in Appendix C.
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by choosing a gap width d = 2 3

√
2R2a

3
will not emulate suspension Poiseuille flow through

a tube of radius R since the mechanisms of particle migration are so different.

Third, as φ0 increases the effective viscosity of the Couette flow drops sharply, almost

discontinuously, near ε̄ = 0. This is because of the boundary layer in the particle distrib-

ution function. The continuously decreasing particle density near the walls of a Poiseuille

flow does not affect the observed viscosity in the same way. The qualitative behavior of

suspension rheology is essentially different between the two viscometers. Since it is com-

mon practice to parameterize blood constitutive models using viscometer data, in the next

section we consider the tenuous relationship such models have with physiological blood

flow.

6.3 Trouble with constitutive models

For concreteness, we consider the recent work of El-Khatib and Damiano [31], although

the problems that we discuss are not limited to that work, but rather appear anytime

viscometer data is used to fix parameters in a constitutive model of suspension rheology.

Attempting to model pulsatile blood flow in a cylindrical tube, the authors propose a

generalized Newtonian stress-tensor of the form

τ = η

(
∂u

∂r
, φ0

)
∂u

∂r
, (6.7)

that depends upon the local shear rate ∂u
∂r

and the resting cell volume fraction φ0. To fix

the viscosity function η
(

∂u
∂r

, φ0

)
, they use the data of Chien and co-workers [22], obtained

using a Couette viscometer and providing the observed viscosity over a range of shear rates

from 0.01 to 500 s−1. An algebraic fitting function is used, and they obtain (for φ0 = 0.45),

η (γ̇) = 22.16− 17γ̇2

γ̇2 + 8.5
+

110.5

90γ̇2 + 1
, (6.8)

a plot of which is shown in Figure 6.7. This expression for η is substituted into the

generalized stress-tensor, with γ̇ replaced by ∂u
∂r

, and various consequences for blood flow

are inferred from the subsequent analysis.
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Figure 6.7: Parameterization of a constitutive model. The viscosity used by El-

Khatib and Damiano [31] in a generalized Newtonian stress-tensor to model the pulsatile

flow of blood in a vessel. There are two major problems: 1. The effective viscosity is not

related to the local viscosity in a straightforward way. 2. The shear rate for suspension flow

in a Couette viscometer is not constant in general, so the γ̇ along the horizontal axis does

not correspond to the ∂u
∂r

appearing in the momentum conservation equation of tubular

flow.
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As has been pointed out by others [4, 5, 72], there is a deep problem with this ap-

proach – it is a problem of reification, of treating the words ‘viscosity’ and ‘shear rate’ as

though they somehow correspond to intrinsic properties of a suspension. It is clear from

the preceding section that in the data of Chien, the observed viscosity is an effective bulk

parameter that is a particular spatial average of the non-uniform local viscosity. Moreover,

the shear rate γ̇ appearing along the horizontal axis is a measure of the rotation speed of

the outer cylinder γ̇ = ΩR2

h
and has nothing whatsoever to do with the local velocity gradient

in tube flow. That is to say, the η and γ̇ in the fitting function (6.8) are not related to

the η and ∂u
∂r

appearing in the stress-tensor (6.7). The conclusion is that for a suspension,

parameters in a constitutive equation cannot be fixed by bulk macroscopic measurements;

the microscopic suspension properties must be taken into account.

As we have shown in this chapter, using the bulk behaviour of a suspension to charac-

terize model parameters is fraught with difficulties, so in the next chapter, we return to

the empirical diffusion coefficient D (φ0, ε) and attempt to justify its form by considering

the effect of microscopic particle velocity fluctuations on the averaged particle density dis-

tribution. Furthermore, we indicate how D (φ0, ε) could be determined from microscopic

information alone.



Chapter 7

Mean-field diffusion coefficient

In Chapter 5, to make contact with experimental data we chose an empirical expression for

the diffusion coefficient D (ε, φ0) = 1− 3.77 εφ0 +3.7 ε2φ2
0 . As we have seen in Chapter 2,

the microscopic transfer of momentum is represented on a macroscopic scale by the consti-

tutive equation for the shear-stress tensor. In a similar way, microscopic fluctuations in the

particle velocity due to collisions with solvent molecules and other particles are represented

on a macroscopic scale by the diffusion coefficient. Here we shall attempt to justify the

form of D (ε, φ0) by explicitly considering the effect of collision-induced velocity fluctua-

tions on the averaged particle density 〈φ〉. We begin by introducing a fluctuating velocity

field into the conservation equation for φ. We then estimate the conservation equation for

the averaged process 〈φ〉 using a closure scheme due to Bourret [8, 9]. In drawing the con-

nection between the averaged conservation equation and the empirical diffusion coefficient

D (ε, φ0), we conclude with a heuristic approach to the problem which is in the spirit of the

classical treatment of turbulent diffusion [63], although the physical mechanism underlying

the diffusion in our case is much different.

7.1 Stochastic conservation equation for φ

Reconsider the particle conservation equation,

∂φ

∂t
= −∇ · (φu−D0∇φ)

86
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with the diffusion coefficient D0 given by the Einstein-Stokes formula, but now with shear-

induced multi-particle collisions modeled as a zero-mean fluctuation term v (x, t) in the

convective velocity u (x, t), which is a divergence-free field1 of the type

u (x, t) = U (x) + αv (x, t) ,

where U (x) is the mean migration velocity which we identify with the expression derived

by Chan and Leal [18]. If we separate the right-hand side of the conservation equation into

deterministic and random terms, then

∂φ

∂t
= −U · ∇φ + D0∇2φ− αv (x, t) · ∇φ. (7.1)

Or, in more concise notation,

∂φ

∂t
= L0φ + αL1 (t) φ, (7.2)

where L0 = [−U · ∇+ D0∇2] is a deterministic linear operator, while L1 (t) = [−v (x, t) · ∇]

is stochastic, containing as it does the random velocity fluctuations v (t). We are after a

closed deterministic equation governing the evolution of φ. We first consider a system of

ordinary linear stochastic differential equations to illustrate the closure scheme, then with

a Fourier transform we convert our stochastic conservation equation into a form amenable

to approximation.

7.1.1 Bourret’s approximation

For simplicity, consider a system of ordinary linear differential equations with random

coefficients,
dy

dt
= A0y + αA1 (t)y, (7.3)

where A0 is a deterministic (time-invariant) real matrix and A1 (t) is a matrix of zero-

mean, Gaussian distributed real random functions2. The parameter α is small, and is a

1We can be sure that the divergence ∂vj

∂xj
exists in the mean-square sense as long as fluctuations in the

velocity have a non-zero correlation length [27].
2For a discussion of random functions in general, see van Kampen’s book [91]. For a discussion of

stochastic differential equations in particular, see his review article [90].
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measure of the strength of the fluctuations. The trajectory y (t) is a random function of

time since it is characterized by a differential equation with random coefficients. Equa-

tions of this type are called stochastic differential equations, and the solution of the entire

probability distribution of y (t) is usually impossible, so we must resort to methods of ap-

proximation. The most common of these involve exploitation of a small noise amplitude α

and a short correlation time in the fluctuations: 〈A1 (t)A1 (t + τ)〉 = 0 for τ >> τc where

τc is the correlation time of the fluctuations and the angled brackets denote an ensemble

average. Suppose we are interested in only the averaged process 〈y (t)〉, as is often the case

in physical applications. Our goal is to derive from the stochastic equation (7.3) a deter-

ministic evolution equation for 〈y (t)〉. To that end, we introduce the so-called interaction

representation, writing y (t) in terms of an auxiliary function z (t),

y (t) = etA0z (t) ,

so that from (7.3) the differential equation for z (t) is,

dz

dt
= αe−tA0A1 (t) etA0z (t) ,

or simply,
dz

dt
≡ αV (t) z (t) , (7.4)

where we have defined the operator V (t) by

V (t) = e−tA0A1 (t) etA0 .

Solving the auxiliary equation (7.4) iteratively with initial condition z (0), we obtain a

family of integral equations,

z (t) = z (0) + α

t∫
0

V (t′) z (t′) dt′,

z (t) = z (0) + α

t∫
0

V (t′) z (0) dt′ + α2

t∫
0

t′∫
0

V (t′) V (t′′) z (t′′) dt′′dt′.
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Taking the average of the second iterate, and using the fact that the fluctuating term A1 (t)

has zero-mean,

〈z (t)〉 = z (0) + α2

t∫
0

t′∫
0

〈V (t′) V (t′′) z (t′′)〉 dt′′dt′. (7.5)

The cross-correlation term 〈V (t′) V (t′′) z (t′′)〉 couples this equation to an infinite hier-

archy of moment equations for z (t) in terms of the moments of the fluctuations. To make

progress, we adopt the closure scheme of Bourret [90] to arrive at a closed equation for

the evolution of the averaged process 〈z (t)〉 in terms of only the first and second moments

of the fluctuations. First, in the averaged integral equation (7.5) we make the change of

variable τ = t′ − t′′, to obtain

〈z (t)〉 = z (0) + α2

t∫
0

t′∫
0

〈V (t′) V (t′ − τ) z (t′ − τ)〉 dτdt′.

Next, taking the derivative, we arrive at a convolution equation characterizing the

evolution of the averaged process

d

dt
〈z (t)〉 = α2

t∫
0

〈V (t) V (t− τ) z (t− τ)〉 dτ .

The correlation 〈V (t) V (t− τ)〉 is, by assumption, narrowly peaked near τ = 0. As

a consequence, the triple product 〈V (t) V (t− τ) z (t− τ)〉 will also be narrowly peaked

around τ = 0. Provided the magnitude of the noise is small (α << 1), and the correlation

time of the noise is short compared to the other time scales in the problem, the process

z (t− τ) will not significantly change over the interval τ ∈ [0, τc], and we factor the triple

correlation into a product of two correlations [8, 9] with the process z (t− τ) evaluated at

τ = 0,

d

dt
〈z (t)〉 = α2

t∫
0

〈V (t) V (t− τ)〉 〈z (t)〉 dτ . (7.6)
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The averaged process 〈z (t)〉 is independent of τ , and will pass outside the integral to

give

d

dt
〈z (t)〉 = α2

 t∫
0

〈V (t) V (t− τ)〉 dτ

 〈z (t)〉 .

Since the integrand is only correlated (hence non-zero) near τ = 0, van Kampen [90] argues

that the upper limit of integration is immaterial, and can be taken to infinity,

d

dt
〈z (t)〉 = α2

 ∞∫
0

〈V (t) V (t− τ)〉 dτ

 〈z (t)〉 .

This final equation is an evolution for the averaged process 〈z (t)〉 that no longer depends

upon previous values of z (t), and as such is an approximation of the convolution equa-

tion (7.6) by an evolution equation for a Markov process [54]. Re-writing the interaction

representation back in terms of the original function y (t), we get Bourret’s approximation,

d
dt
〈y (t)〉 = A0 〈y (t)〉+ α2

[∞∫
0

〈
A1 (t) eτA0A1 (t− τ)

〉
e−τA0dτ

]
〈y (t)〉 . (7.7)

With more careful statistical arguments [87, 90], it can be shown that the error in-

curred in this approximation is O (α3τ 2
c ), but higher-order corrections are not consistently

calculated using the iteration procedure above – i.e., we must use more sophisticated

cumulant-expansion [90], or projection operator methods [87].

7.1.2 Conservation equation for 〈φ (x, t)〉

The generalization of Bourret’s approximation from a system of ordinary differential equa-

tions to a partial differential equation is straightforward: we replace the matrices A0 and

A1 (t) with the linear operators L0 and L1 (t) and get a result analogous to (7.7), namely

∂

∂t
〈φ (x, t)〉 = L0 〈φ (x, t)〉+ α2

 ∞∫
0

〈
L1 (t) eτL0L1 (t− τ)

〉
e−τL0dτ

 〈φ (x, t)〉 . (7.8)

To estimate the integrand, it is more convenient to work with the Fourier transform of the

averaged equation. Direct evaluation of the transform is difficult, and so we repeat the

derivation above with the Fourier transform of the stochastic conservation equation.
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Since the cross-stream migration of the particle is primarily due to gradients in the

shear rate and its behaviour is essentially unchanged if the walls are removed, we are

justified in taking the Fourier transform of (7.2). We define the Fourier transform F {·} as

F {f (x, t)} = f̂ (k, t) =

∫
R3

e−ik·xf (x, t) dx,

and the transformed stochastic conservation equation, written in terms of the vector com-

ponents with summation over repeated indices implied, is written

∂φ̂

∂t
= −k2D0φ̂−F

{
Uj

∂φ

∂xj

}
− αF

{
vj

∂φ

∂xj

}
.

In an unbounded domain, a product of functions in x-space becomes a convolution in

k-space [48], so that

F
{

vj
∂φ

∂xj

}
= i
(
v̂j ∗ kjφ̂

)
= i

∫
R3

v̂j (k− k′) k′jφ̂ (k′, t) dk′,

F
{

Uj
∂φ

∂xj

}
= i
(
Ûj ∗ kjφ̂

)
= i

∫
R3

Ûj (k− k′) k′jφ̂ (k′, t) dk′,

where a factor of (2π)−3 on the right-hand side has been suppressed to keep the notation

as simple as possible. Introducing the shorthand for the transformed operators,

L̂0φ̂ = −k2D0φ̂− i

∫
R3

Ûj (k− k′) k′jφ̂ (k′, t) dk′,

αL̂1φ̂ = −iα

∫
R3

v̂j (k− k′) k′jφ̂ (k′, t) dk′,

we re-write the Fourier transform of the conservation equation concisely as

∂φ̂

∂t
=
(
L̂0 + αL̂1

)
φ̂, (7.9)

where L̂1 (k, t) is a random operator. As above, we introduce the interaction representation,

writing φ̂ (k, t) in terms of an auxiliary function ĉ (k, t),

φ̂ (k, t) = etL̂0 ĉ (k, t) ,
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so that the differential equation for ĉ (k, t) is simply,

∂ĉ

∂t
≡ αV (t) ĉ (k, t) , (7.10)

where we have defined the operator V (t) by

V (t) = e−tL̂0L̂1 (t) etL̂0 .

Invoking Bourret’s approximation as above, and re-writing the interaction representation

back in terms of the original function φ̂, we find in analogy with (7.7)

d

dt

〈
φ̂ (k, t)

〉
= L̂0

〈
φ̂ (k, t)

〉
+ α2

 ∞∫
0

〈
L̂1 (t) eτL̂0L̂1 (t− τ)

〉
e−τL̂0dτ

〈φ̂ (k, t)
〉

,

The integrand contains two exponentials of the differential operator L̂0, making the inte-

gral difficult to evaluate in general. If, however, the characteristic time scale associated

with L̂0 is long compared with the correlation time of the noise, we can take the leading

order contribution of the exponential: e±τL̂0 ≈ 1. The formal expansion of the exponential

operator introduces secular terms since the time scale of L̂0 depends upon k, and therefore

integration over all of k in the inverse Fourier transform will diverge. Physically, we see

that this divergence is fictitious, and comes from adopting a continuum view of the suspen-

sion. In truth, the wave number cannot be made arbitrarily large since the suspension is

composed of particles with finite spatial extension. We set kmax as the maximum allowable

wave number, which is of the order of the inverse particle radius kmax = O
(

1
a

)
. The size

of the particles therefore sets a restriction upon the maximum allowable noise correlation

time for the expansion of the exponential operator to be valid:

τc <<
∣∣∣L̂−1

0

∣∣∣ ∼ min

∣∣∣∣ a2

D0

,
R3

aεD0

∣∣∣∣ ,
where a2

D0
is the time it takes for a particle to diffuse a distance a and R3

aεD0
is the time it

takes a particle to migrate a distance a carried by um. Another way to view the correlation

time is as a time scale much longer than the time between solvent-particle collisions, but

much shorter than the time it takes for a blood cell itself to move a macroscopic distance.
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With the exponentials approximated by the unit matrix, the integrand is simplified to the

auto-correlation of L̂1 alone,〈
L̂1 (t) eτL̂0L̂1 (t− τ)

〉
e−τL̂0 ≈

〈
L̂1 (t) L̂1 (t− τ)

〉
=

= −
∫∫
R3

k′jk
′′
l 〈v̂j (k− k′, t) v̂l (k

′ − k′′, t− τ)〉 dk′dk′′.

The correlation of the Fourier-transform of the velocity fluctuations can be simplified if we

re-write the complete expression as

〈v̂j (k− k′, t) v̂l (k
′ − k′′, t− τ)〉 =

=

∫∫
R3

e−i(k−k′)·xe−i(k′−k′′)·(x+ξ) 〈vj (x, t) vl (x + ξ, t− τ)〉 dξdx

=

∫∫
R3

e−i(k−k′′)·xe−i(k′−k′′)·ξ 〈vj (x, t) vl (x + ξ, t− τ)〉 dξdx.

We assume that v (x, t) is stationary in space and time (i.e. the first two moments of v are

independent of x and t). The auto-correlation is then a function of the spatial separation

and time difference only,

〈vj (x, t) vl (x + ξ, t− τ)〉 = Γjl (ξ, τ) .

The assumption of stationarity will likewise simplify the auto-correlation of the Fourier

transform of the velocity fluctuations,

〈v̂j (k− k′, t) v̂l (k
′ − k′′, t− τ)〉 =

=

∫
R3

e−i(k−k′′)·xdx

∫
R3

e−i(k′−k′′)·ξΓjl (ξ, τ) dξ


= δ (k− k′′)

∫
R3

e−i(k′−k′′)·ξΓjl (ξ, τ) dξ

≡ δ (k− k′′) Sjl (k
′ − k′′, τ) ,
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where the Fourier transform of the auto-correlation function Sjl (k
′ − k′′, τ) is sometimes

called the power spectrum or the spectral density of the velocity fluctuations [84]. Returning

to the auto-correlation of the operator L̂1, the stationarity assumption results in〈
L̂1 (t) L̂1 (t− τ)

〉
=

= −
∫∫
R3

k′jk
′′
l δ (k− k′′) Sjl (k

′ − k′′, τ) dk′dk′′

= −
∫
R3

k′jklSjl (k
′ − k, τ) dk′.

With a linear change of variable q = k′ − k, we write〈
L̂1 (t) L̂1 (t− τ)

〉
= −

∫
R3

(kj + qj) klSjl (q, τ) dq

〈
L̂1 (t) L̂1 (t− τ)

〉
= −kjkl

∫
R3

Sjl (q, τ) dq− kl

∫
R3

qjSjl (q, τ) dq.

The power spectrum Sjl (q, τ) is an even function of q, so the second term on the right-hand

side is odd in q and will therefore vanish, leaving〈
L̂1 (t) L̂1 (t− τ)

〉
= −kjkl

∫
R3

Sjl (q, τ) dq.

We define the mean-field diffusivity tensor as,

D̃jl ≡
∞∫

0

∫
R3

Sjl (q, τ) dqdτ .

With substitution into the Fourier transform of the transport equation,

d

dt

〈
φ̂ (k, t)

〉
= L̂0

〈
φ̂ (k, t)

〉
− α2kjklD̃jl

〈
φ̂ (k, t)

〉
.

Transforming back into the original x-domain, the full averaged stochastic conservation

equation, to O (α3τ 2
c ), is

∂

∂t
〈φ (x, t)〉 = −∇ ·

(
U (x) 〈φ (x, t)〉 −

(
D01 + α2D̃

)
∇〈φ (x, t)〉

)
, (7.11)
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z

r

Figure 7.1: Anisotropic diffusivity in tube flow. A particle that moves upward (vr > 0)

with collide with particles moving more slowly to the right, thereby resulting in a negative

velocity fluctuation in the z-direction (vz < 0). The converse is true of a particle moving

downward. Therefore, the correlation 〈vz(t)vr(t− τ)〉 < 0.

and
(
D01 + α2D̃

)
is thus a renormalized diffusivity tensor that accounts for the fluctu-

ations in the mean migration velocity due to particle-particle collisions. As in the con-

stitutive equations discussed in Chapter 2, we have replaced the effect of many random,

microscopic fluctuations with an averaged, or mean-field, parameter that emulates their

effect on the macroscopic scale.

In our particular geometry, pressure driven tube flow, we expect the off-diagonal entries

of D̃ to be negative (Figure 7.1). To see this, assume a particle at position r is moving

upward (vr > 0) to position r + dr. There, the neighbouring particles are moving to the

right more slowly, and impact with these slower moving particles results in a negative

velocity fluctuation in the z-direction (vz < 0). The converse is true of a particle moving

downward (vr < 0) to a region of faster moving particles. In that case, impact with

neighbouring particles imparts a positive velocity in the z-direction (vz > 0). In either

case, we expect 〈vrvz〉 < 0. The anisotropic component of the diffusivity tensor then has

the form

α2D̃ =

[
d1 −β

−β d2

]
,

where d1 corresponds to the term dependent upon the vr auto-correlation, d2 corresponds to
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the term dependent upon the vz autocorrelation and d1, d2 and β are all positive constants.

The eigenvalues for the correction matrix are,

λ± =
(d1 + d2)

2
±

√
4β2 + (d1 − d2)

2

2
,

with corresponding eigenvectors,[
λ− − d1

β

]
,

[
λ+ − d1

β

]
.

The projection of α2D̃ on the r-axis is found by first solving the linear equation,

c1

[
λ− − d1

β

]
+ c2

[
λ+ − d1

β

]
=

[
1

0

]
,

to find

c1 = −c2 =
β√

4β2 + (d1 − d2)
2
,

and then forming the linear combination c1λ+ + c2λ− = −β. The projection of the full

diffusivity tensor on the r-axis is thus,

D01 + α2D̃ → D0 + d1 − β,

or, assuming the flow is rapid enough that d1 << β,

D01 + α2D̃ → D0 − β.

To connect the formal expression D0 − β with the physical parameters appearing in the

problem, and the empirical diffusion rate used in Chapter 5, we must examine the origin

of the velocity fluctuations in more detail.

7.2 Connection to the empirical D (ε, φ0)

Fluctuations in the particle velocity arise from collisions with solvent molecules and with

other particles. We assume the rapid collisions with solvent molecules to be adequately
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Figure 7.2: Velocity fluctuations due to particle-particle collisions. The change in

velocity imparted to a particle after an elastic collision is proportional to the difference

in the velocity before collision. The local flow velocity field changes roughly linearly near

a particle, so that the velocity difference between particles scales as the mean shear rate
Vmax

R
multiplied by the particle radius a.

modeled by the Einstein-Stokes diffusion coefficient D0. The collisions with other particles

are due to local gradients in the flow velocity field and happen on a much slower time

scale, though they will carry more momentum. Very near the particle, the flow shear rate

is approximately linear (Figure 7.2). If we assume the collisions are elastic, then the change

in velocity imparted to a particle after collision is proportional to the velocity difference

between particles before collision. The local shear gradient scales as Vmax

R
, so the velocity

difference between particles scales as Vmax

R
a, and we write,√

|〈vrvz〉|2 ∝
Vmax

R
a. (7.12)

Furthermore, the frequency of collisions depends upon the local particle number density.

We therefore expect |〈vrvz〉| to be proportional to φ0,

|〈vrvz〉| ∝ φ0. (7.13)

Combining the square of (7.12) with (7.13), we find

|〈vrvz〉| ∝ V 2
max

( a

R

)2

φ0.
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In terms of ε ∝ V 2
max

D0

(
a
R

)2
, we write the diffusion correction as,

β ∝ |〈vrvz〉| ∝ D0εφ0,

and the diffusion rate in the direction perpendicular to the walls is then,(
D01 + α2D̃

)
→ D0 − β = D0 (1− a1εφ0) ,

with a1 determined from experiments. From the data presented in Chapter 5, we find that

a1 = 3.77. Physically, we can understand the reduction in the rate of diffusion as the effect

of fluctuations in directions other than that of the particle concentration gradient along er.

Fluctuations that carry the particle backward and forward along the tube or tangentially

around the axis will slow the rate at which the particle moves away from the axis.

Finally, we note that the only other k2 correction to the Fourier transform of the aver-

aged conservation equation appears at O (α4τ 3
c ) [87], and it will be positive. As this term

represents the contribution to the diffusion from triple collisions, it will be proportional to

φ2
0. Further corrections will introduce higher powers of k therefore introducing third- and

higher derivatives in the conservation equation. That being said, D0 (1− a1εφ0 + a2ε
2φ2

0)

is the best we can do with the closure scheme described above without fundamentally

changing the form of the conservation equation for 〈φ (x, t)〉. In the next section, we cast

further light upon the preceding derivation by adopting a semi-empirical approach akin to

the classical treatment of turbulent diffusion [55, 63].

7.2.1 Semi-empirical derivation of the diffusion rate correction

As before, we assume the particle velocity is composed of a mean and fluctuating part:

uj = ūj + u′j, where 〈uj〉 = ūj. The particle density distribution φ will subsequently

contain an effect of the fluctuations. We assume this perturbation from the averaged

particle density is small and in a similar way we write: φ = φ̄ + φ′, where 〈φ〉 = φ̄.

Substituting the fluctuating uj and φ in the conservation equation, we have

∂

∂t

(
φ̄ + φ′

)
+

∂

∂xj

[(
ūj + u′j

) (
φ̄ + φ′

)]
= D0

∂2
(
φ̄ + φ′

)
∂xj∂xj

.
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Averaging the equation, using the fact that
〈
u′j
〉

= 〈φ′〉 = 0, we are left with

∂φ̄

∂t
+

∂

∂xj

(
ūjφ̄
)

= D0
∂2φ̄

∂xj∂xj

− ∂

∂xj

〈
u′jφ

′〉 ,

(in analogy with (7.1)). Since u′j ∼ ε a and φ′ ∼ φ0, the correction term ∂
∂xj

〈
u′jφ

′〉 ∼ εφ0

as we showed above. We have no obvious way to evaluate the cross-correlation directly,

but we can identify it as a flux of particles Jj due to the velocity fluctuations, and write

it as,

− ∂

∂xj

〈
u′jφ

′〉 = − ∂

∂xj

Jj.

As in any other phenomenological flux, we can assume the form

Jj = −Kjl
∂φ̄

∂xl

,

where in the study of turbulent diffusion, Kjl is called the eddy diffusivity tensor. In our

case, there is no guarantee that the fluctuations will enhance the rate of diffusion. Indeed,

from the reasoning above, we more properly write

Jj = Kjl
∂φ̄

∂xl

,

with the fluctuations working against the concentration gradient to slow the rate of dif-

fusion. The full conservation equation, including our phenomenological diffusivity tensor,

now reads
∂φ̄

∂t
+

∂

∂xj

(
ūjφ̄
)

= D0
∂2φ̄

∂xj∂xj

− ∂

∂xj

Kjl
∂φ̄

∂xl

,

that compares with (7.11) above. The comparative simplicity of this approach comes at a

price, and in several ways it is inferior to the mean-field analysis of the previous section:

1. The semi-empirical method relies on a linear relationship between the particle distri-

bution function and the perturbation, i.e. φ = φ̄ + φ′. Higher-order corrections, for

example the enhanced diffusion at O(ε2φ2
0), cannot be derived in this way.

2. Parameterization of the cross-correlation
〈
u′jφ

′〉 involves hindsight physical argu-

ments that really come from knowing what answer we want and adjusting the defi-

nition of the diffusivity tensor accordingly. As such, the effect of the fluctuations is

determined from outside the model itself.
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3. The cross-correlation
〈
u′jφ

′〉 expressed as Kjl
∂φ̄
∂xl

can only be determined by fitting

to experimental data - there is no insight into the microscopic mechanism that gives

rise to the enhanced diffusivity Kjl.

The advantage of the mean-field derivation of the diffusion coefficient is that, in principle,

the correction is known once the power spectrum Sjl(q, τ) of the fluctuations is known, and

the power spectrum can be found experimentally or through numerical simulation. The

shear-induced diffusion coefficient could then be estimated from microscopic information

alone.



Chapter 8

Concluding remarks

The present model takes as its foundation the observation that in flow through small

vessels, red blood cells align themselves along the axis. Using the results of Chan and Leal

[18] describing the cross-stream migration of a single deformable droplet in tube flow, we

develop a conservation equation for φ, the volume fraction distribution of red blood cells.

At steady-state the distribution is Gaussian, characterized by the initial volume fraction

φ0 and a model P éclet number ε.

Choosing an empirical function relating φ to the local dynamic viscosity η(r), and

postulating a generalized Newtonian stress-tensor τ(r) = η(r)du
dr

, we solve the creeping

flow equations for the suspension velocity u(r). Equating the suspension flow rate to the

flow rate of a homogeneous fluid we define an effective viscosity for the suspension, as

measured by a capillary viscometer. Comparing with a variety of published data, we find

that although simple, the model is versatile enough to capture the essential behaviour of

blood flow through small tubes at physiological flow rates.

We then turn our attention to the rheology of a suspension in a co-axial cylindrical

geometry, and we find essentially different behaviour from tube flow, casting doubt upon

the practice of parameterizing in vivo models with Couette viscometer data.

Finally, we examine the effect of red blood cell – red blood cell collisions on the macro-

scopic diffusion rate by including a fluctuating velocity term in the conservation equation

for φ. Invoking a closure scheme due to Bourret [8, 9], we find that the fluctuations add

an anti-diffusion term to the macroscopic transport equation and that the form of the

101
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empirical diffusion rate used in Chapter 5 is justified by these microscopic considerations.

The overarching theme of the dissertation is that for a suspension, the microscopic

arrangement of particles in flow has important bearing on the overall rheology. The ad-

vantage of the present formulation lies in the simplicity of the central result - for tube flow,

the particle distribution function can be determined exactly and it is a Gaussian parame-

terized by two variables φ0 and ε. It is this simplicity that allows the physical consequences

of the model to come through unobscured. Furthermore, the modularity of the develop-

ment allows for possible model evolution. If the empirical viscosity term is found lacking,

for example, it can be replaced by a more suitable expression without altering the structure

of the argument. Likewise, additional flux terms including particle settling, electrostatic

interactions with the walls, etc., can be added to the conservation equation at the leisure

of the investigator. The comparison with experimental data in Chapter 5 indicates that

the present approach is worthwhile, although many interesting questions remain awaiting

investigation.

The most restrictive approximation in the steady-state analysis is the assumption of zero

Reynolds number, so we conclude with an outline of how the present model can be modified

to include the effects of particle inertia.

8.1 Including the effect of inertia

As discussed in Chapters 4, the effective viscosity of blood decreases to a Newtonian

plateau as the shear rate is increased, an effect called “shear-thinning.” At very high

shear rates, however, the effective viscosity begins to increase (Figure 8.1). This region of

“shear-thickening” corresponds to an observed decrease in the degree of blunting in the flow

velocity profile (Figure 8.2). It seems reasonable to attribute this high flow-rate rheology

to the effects of inertia on particle motion. We shall briefly outline how inertial effects

are manifest in individual particle motion and how the present work can be modified to

include these effects.

The non-linear momentum transport term in the Navier-Stokes equations will appear in

the derivation of Einstein’s relation η = η0

(
1 + 5

2
φ
)

and in the expression for the migration



Concluding remarks 103

φ

10log γɺ

10log effη

Increase in the effective 
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Figure 8.1: High-Reynolds number rise in the effective viscosity. The effective

viscosity decreases to a plateau where core-annular flow is fully developed. At very high

shear rates, however, a region of shear-thickening is observed. Redrawn after [45] and [81].

velocity um (r). Here we restrict ourselves to small enough Reynolds number that the

overall suspension is still adequately represented by the creeping flow equations.

Lin, Peery and Schowalter [60] have repeated the calculation for the effective viscosity

of a homogeneous suspension as outlined in Chapter 2, but with the inertial term included

in the flow equations. Their result for the observed viscosity increase in the dilute limit is,

η = η0

(
1 + φ

{
5

2
+ 1.34Re

3
2
p

})
, (8.1)

where Rep = Vma2ρ
Rη0

is the particle Reynolds number. In the notation of previous chapters,

we include this correction by making the exponent T depend upon the Reynolds number

in Roscoe’s formula for the effective viscosity of a concentrated suspension,

η = η0

(
1− φ

φmax

)−T (Rep)

,

where T (Rep) = a+bRe
3
2
p and a and b are determined empirically. The expression suggests

the observed shear-thickening, although (8.1) only properly applies to an unbounded ho-
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Figure 8.2: Particle drift away from the axis at high Reynolds number. The

degree of blunting in the velocity profile of blood cell suspensions decreases at elevated

flow rates. The present model fits the low Reynolds number data well (data - white circles,

theory - dashed line). At high flow-rate, the velocity profile becomes more parabolic, and

the theory over-estimates the width of the core region (data - filled circles, theory - solid

line). The present model is reliable for Re < 0.05. Data from [38].
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mogeneous suspension. As before, the particle distribution in the flow will no doubt play

a major role in the observed rheology.

The modification of the migration velocity is straightforward. Provided the Reynolds

number is not too large, the leading-order inertial corrections simply appear additively in

the cross-stream migration velocity [56]. Serge and Silberberg [80] have observed the drift

of rigid particles in a swift flow and have formulated a semi-empirical expression for the

velocity [41],

uSS (r) = 0.2ūRe
( a

R

)3 r

R

(
1− r

r∗

)
,

where ū is the average velocity of the flow, Re is the tube Reynolds number and r∗ is

the equilibrium position the particle drifts toward, roughly r∗ = 0.6 r. The velocity is

quadratic in the radial position, and will tend to not only move particles away from the

walls, but away from the axis as well. Thus, as the Reynolds number increases, the core

is broken down with cells accumulating near r = r∗. As a result, the viscosity is more

uniform across the tube and the velocity profile becomes more parabolic with a consequent

increase in the observed viscosity.



Appendix A

Glossary

A.1 Glossary of Terms

Artery A vessel that moves blood away from the heart and toward the capillaries.

Capillary viscometer An instrument used to measure fluid viscosity. Fluid flows through

a narrow tube, and from the relationship between the pressure drop along the tube

and the flow rate, the viscosity is calculated (see Figure 6.1b on p. 71).

Cone-plate viscometer An instrument used to measure fluid viscosity. A cone with a

very wide cone angle rotates above a flat plate. For a homogeneous Newtonian fluid,

the shear rate across the gap is nearly constant (see Figure 6.1a on p. 71).

Constitutive equation An additional constraint on the relationship between the stress

tensor τ , the hydrostatic pressure P and the fluid velocity field u that accounts for

microscopic momentum transfer that is lost when the fluid behavior is approximated

by the continuum field equations of fluid mechanics (see p. 29).

Core-annular flow A stratified flow with a high-viscosity core surrounded by a low-

viscosity lubricating layer (see Figure 2.5 on p. 24).

Couette viscometer An instrument used to measure fluid viscosity. Two concentric

cylinders with large radius and small gap width rotate relative to one another. For a
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homogeneous Newtonian fluid, the shear rate across the gap is nearly constant (see

Figure 6.1c on p. 71).

Erythrocyte A red blood cell (see Table 1.1 on p. 2).

Hematocrit The resting volume fraction of red blood cells. For healthy adults, the hema-

tocrit lies between 0.4-0.45.

Microstructure Microscopic arrangement of blood cells in the macroscopic flow.

Newtonian fluid A fluid characterized by a stress tensor τ that is directly related to the

deformation tensor through a constant η called the viscosity. For an incompressible

fluid, the constitutive equation for a Newtonian fluid further simplifies to

τ = η
[
∇u + (∇u)†

]
Plasma Watery yellow fluid that suspends the blood cells in whole blood.

Rheology The study of fluid flow properties - viscosity, flow velocity profiles, etc.

Rouleaux An end-to-end stacking of red blood cells (see Figure 1.4a on p. 7).

Serum Plasma with clotting proteins removed.

Thixotropy Time-dependence and hysteresis in the rheological properties of a fluid.

Vein A vessel that moves blood away from the capillaries and toward the heart.

Viscosity Proportionality constant relating the rate of strain to the stress in a Newtonian

fluid. A measure of a fluid’s resistance to flow.



108 Rheology of blood in small vessels

A.2 Glossary of Symbols

A.2.1 Greek

Description

α Dimensionless small parameter.

δ Dimensionless drop deformability.

ε Model P éclet number. Dimensionless measure of the

inhomogeneity in the particle distribution.

γ̇ Shear rate in a Couette viscometer (s−1).

κ Viscosity ratio η̃0/η0
.

φ Blood cell volume fraction distribution.

φ0 Initial volume fraction (Hematocrit ).

φmax Volume fraction at maximum packing [φmax = 1].

φss Steady-state volume fraction distribution.

ηφ Local suspension (dynamic) viscosity (Pa s).

η0 Solvent (Plasma) viscosity [η0 = 1.2 mPa s].

η̃0 Droplet (Blood cell ) interior viscosity (Pa s).

ηeff Effective measured viscosity (Pa s).

ρ Suspension density (kg m−3).

ρ0 Solvent (Plasma) density (kg m−3).

σ Interfacial tension [σ = 1.24 ×10−4 N m−1].

τ Local shear (deviatoric) stress tensor,

formed by removing the pressure term from the full stress tensor S (Pa).

ω Angular frequency of pulsatile pressure.

A.2.2 Arabic

a Deformed red blood cell radius [a = 3.5 ×10−6 m].

D (ε, φ0) Diffusion coefficient.

D0 Einstein-Stokes diffusion constant.

G Average shear rate in tube flow (s−1) [ G = Vmax/R ].
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kT Boltzmann energy [kT = 4.28 ×10−21 J at 37 ◦C].

P Hydrostatic pressure (Pa).

Q Flow rate (m3 s−1).

r Radial position (m).

r̂ Dimensionless radial position [ r̂ = r/R ].

R Tube (Vessel ) radius (m).

Re Tube Reynolds number [ Re = Vmax2Rρ0

η0
].

Rω Strouhal number for pulsatile flow [ Rω = ωR2ρ
η0

].

S The stress tensor (Pa) [S = −P1 + η
[
∇u + (∇u)†

]
].

t Time (s).

t̂ Dimensionless time [ t̂ = D
R2 t ].

T Singularity exponent in the local viscosity [T = 1.8].

u Suspension velocity (m s−1).

um Maximum, centerline suspension velocity (m s−1).

Vmax Maximum, centerline velocity of Poiseuille flow (m s−1).



Appendix B

Pulsatile velocity field

In the arteries of the body, the driving pressure is not constant, but rather pulses with

each beat of the heart. In the small vessels, the amplitude of the pulsations is fairly small

since most of the energy has been absorbed by the elastic walls of the large arteries. We

model this pulsatile driving pressure as,

−dP

dz
= ∆P0 (1 + α sin ωt) (α << 1) .

The time-dependent creeping flow equation then reads,

ρ0
∂u

∂t
= ∆P0 (1 + α sin ωt) +

1

r

∂

∂r

(
rη (r)

∂u

∂r

)
.

Following Leal (p. 106 of [57]), we choose to non-dimensionalize the viscosity, velocity,

distance and time as

η̂ (r̂) =
η (r̂)

η0

û =
η0

∆P0R2
u

r̂ =
r

R

t̂ = t
η0R

2

ρ0

.
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The creeping flow equation in non-dimensionalized form is then written as

∂û

∂t̂
=
(
1 + α sin

[
Rω t̂

])
+

1

r̂

∂

∂r̂

(
r̂η̂ (r̂)

∂û

∂r̂

)
,

where we have defined the dimensionless parameter Rω, sometimes called the Strouhal

number, by the collection of variables

Rω =
ωρ0R

2

η0

.

Dropping the hats, with the understanding that all variables are dimensionless, we write

an analogous complex equation,

∂ũ

∂t
=
(
i + αeiRωt

)
+

1

r

∂

∂r

(
rη (r)

∂ũ

∂r

)
, (B.1)

so that our original solution satisfies the imaginary part of (B.1), i.e. u = =m {ũ}. We

seek a solution of the form

ũ = eiRωtG (r) , (B.2)

valid for long times after the initial transients have died out. The complex equation (B.1),

using the ansatz (B.2), becomes an ordinary differential equation for G (r),

1

r

d

dr

(
rη (r)

dG (r)

dr

)
= iRωG (r) + P̃0,

G (1) = 0

G (0) < ∞

where P̃0 = −
(
ie−iRωt + α

)
is a constant with respect to r. In the small vessels, the

Strouhal number is very small, so we expand G (r) as a perturbation expansion in Rω,

G (r) = G0 (r) + RωG1 (r) + ...

The zero-order equation,
1

r

d

dr

(
rη (r)

dG0 (r)

dr

)
= P̃0,

G0 (1) = 0
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G0 (0) < ∞

is identical to the equation solved in Chapter 4 with constant driving pressure (cf. (4.1)),

G0 (r) = − P̃0

2

1∫
r

r1dr1

η (r1)
.

The first-order equation is,

1

r

d

dr

(
rη (r)

dG1 (r)

dr

)
= iG0 (r) = −iP̃0

2

1∫
r

r1dr1

η (r1)
.

G1 (1) = 0

G1 (0) < ∞

Integrating twice, with application of the boundary conditions, the first-order solution is

obtained,

G1 (r) =
iP̃0

2

1∫
r

r1∫
0

1∫
r2

r2r3dr3dr2dr1

r1η (r1) η (r3)

The long time solution of the complex problem is to O (R2
ω),

ũ = eiRωtG (r)

= eiRωt (G0 + RωG1)

= −eiRωtP̃0

2

 1∫
r

r1dr1

η (r1)

+
ieiRωtP̃0Rω

2

 1∫
r

r1∫
0

1∫
r2

r2r3dr3dr2dr1

r1η (r1) η (r3)

 .

Taking the imaginary part, the long-time solution for the original velocity distribution with

a pulsatile driving pressure is,

u =
1

2

(1 + α sin [Rωt])

 1∫
r

r1dr1

η (r1)

− αRω cos [Rωt]

 1∫
r

r1∫
0

1∫
r2

r2r3dr3dr2dr1

r1η (r1) η (r3)

 .

Or with the units partially restored and dimensionless variables written explicitly,

u (r̂, t) =
P0

2η0

(1 + α sin ωt)

 1∫
r̂

η0 r̂1 dr̂1

ηφ (r̂1)

 −αRω

 1∫
r̂

r̂1∫
0

1∫
r̂2

η2
0 r̂2 r̂3 dr̂3 dr̂2 dr̂1

r̂1 ηφ (r̂1) ηφ (r̂3)

 cos ωt

 .



Appendix C

Stability of suspension Couette flow

Consider a fluid contained between two cylinders: an inner cylinder of radius R1 and height

h inside an outer cylinder of radius R2. The inner cylinder rotates with a constant speed

Ω1rad s−1, while the outer cylinder rotates at Ω2rad s−1 (Figure C.1).

At steady-state, we write the torque T acting on a thin cylinder of fluid at a distance

r from the axis of rotation as

T = Stress× Surface Area× Length of the Lever Arm

T = τr (2πrh) r,

or, re-arranging for the shear-stress tensor τr,

τr =
T

2πr2h
. (C.1)

We denote by ω(r) the angular velocity of the fluid at r, so that the velocity of the

fluid in the direction of rotation is Uθ = ωr, and the shear rate is given by,

dUθ

dr
= r

dω

dr
.

Assuming a generalized Newtonian stress tensor τr = ηφ (r) ∂Uθ

∂r
= ηφ (r) r dω

dr
, then from

(C.1) it follows that
dω

dr
=

(
T

2πh

)
1

ηφ (r) r3
.
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2Ω

1R

2R

1s =

0s =

d

1

1

1
R r

s
d R

 
= − 

 

2 2U Rθ = Ω

1 1U Rθ = Ω

Figure C.1: A Couette viscometer. Two concentric cylinders rotate relative to one

another. The ratio of the rotation speed to the resultant torque acting on the inner

cylinder is determined by the viscosity of a homogeneous fluid. The gap width d is very

small compared with the radii of the cylinders, and so the local background flow of a

homogeneous fluid may be reasonably described by a linear shear flow between parallel

plates.

This is a separable first-order differential equation and using the boundary conditions

ω (R1) = Ω1 and ω (R2) = Ω2, we have

ω (r) = Ω1 +

(Ω2 − Ω1)
r∫

R1

dr′

ηφ(r′)r′3

R2∫
R1

dr′

ηφ(r′)r′3

.

The steady velocity in the direction of rotation is then,

Uθ (r) = r

Ω1 +

(Ω2 − Ω1)
r∫

R1

dr′

ηφ(r′)r′3

R2∫
R1

dr′

ηφ(r′)r′3

 . (C.2)

In cylindrical coordinates the axisymmetric equations of motion with variable viscosity

are,
Dũr

Dt
− ũ2

θ

r
= −1

ρ

∂p̃

∂r
+ ν (r)

[
∇2ũr −

ũr

r2

]
+ 2

∂ũr

∂r

∂ν

∂r
,
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Dũθ

Dt
+

ũθũr

r
= ν (r)

[
∇2ũθ −

ũθ

r2

]
+ r

∂

∂r

(
ũθ

r

)
∂ν

∂r
,

Dũz

Dt
= −1

ρ

∂p̃

∂z
+ ν (r)∇2ũz +

[
∂ũz

∂z
+

∂ũr

∂r

]
∂ν

∂r
,

∂ũr

∂r
+

ũr

r
+

∂ũz

∂z
= 0,

where D
Dt

≡ ∂
∂t

+ ũr
∂
∂r

+ ũz
∂
∂z

, and ∇2 ≡ ∂2

∂r2 + 1
r

∂
∂r

+ ∂2

∂z2 . Following Taylor [85] (see

also [19, 55]), we decompose the velocity and pressure into a background steady-state plus

perturbation:

ũ = U + u′
p̃

ρ
=

P

ρ
+ p′, (C.3)

where Ur = Uz = 0 and Uθ is given by (C.2). To remain consistent with standard notation,

we write: Uθ (r) ≡ V (r), then 1
ρ

dP
dr

= V 2

r
. Substituting (C.3) into the equations of motion,

retaining only linear terms in the perturbation quantities,

∂u′r
∂t

− 2V

r
u′θ = −∂p′

∂r
+ ν (r)

[
∇2u′r −

u′r
r2

]
+ 2

∂u′r
∂r

∂ν

∂r
,

∂u′θ
∂t

+

[
dV

dr
+

V

r

]
u′r = ν (r)

[
∇2u′θ −

u′θ
r2

]
+ r

∂

∂r

(
u′θ
r

)
∂ν

∂r
,

∂u′z
∂t

= −∂p′

∂z
+ ν (r)∇2u′z +

[
∂u′z
∂z

+
∂u′r
∂r

]
∂ν

∂r
,

along with the incompressibility condition

∂u′r
∂r

+
u′r
r

+
∂u′z
∂z

= 0.

We seek solutions of the form

{u′r, u′θ, u′z, p′} = {u (r) , v (r) , w (r) , p (r)} eσt+ikz,

in order to characterize the growth of the normal modes. We assume a narrow gap,
d
dr

+ 1
r
≈ d

dr
, and a stationary marginal state, σ = 0. Under these conditions, the governing

equations reduce to,

ν (r)

[
D2 +

(
2
∂ ln ν (r)

∂r

)
D − k2

]
u +

[
2V

r

]
v = Dp, (C.4)
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ν (r)

[
D2 +

∂ ln ν (r)

∂r
D − k2

]
v − (DV ) u = 0, (C.5)

ν (r)

[
D2 − k2 + ik

∂ ln ν (r)

∂r

]
w +

[
∂ν (r)

∂r
D

]
u = ikp, (C.6)

− ikw = Du, (C.7)

where D ≡ d
dr

(cf. Chandrasekhar [19], eqs. 155-157 and 159 on p. 295). We introduce the

new variable r = sd+R1 where d is the gap width and non-dimensionalize the perturbation

functions,

u 7→ (Ω1d)

(
2Ω1d

2a2

ν0

)
u,

v 7→ (Ω1d) v,

w 7→ (Ω1d) w,

p 7→
(
2Ω2

1d
2
)
.

Likewise, the steady velocity and viscosity functions are nondimensionalized via,

V (r) 7→ Ω1 (µ− 1) d

(1− η)
V̂ (s) ,

ν (r) 7→ ν0ν̂ (s) ,

where µ = Ω2

Ω1
, η = R1

R2
(not to be confused with the dynamic viscosity) and ν0 =

η0

ρ
(1− φ0)

−T - the kinematic viscosity of the homogeneous suspension. Identifying the

dimensionless group,

T ≡ −2Ω2
1 (µ− 1) d4

ν2
0 (1− η)

= −2Ω2
1 (µ− 1) (1− η)3 R4

1

ν2
0η

4
,

called the Taylor number, the governing equations are compactly written as,

D3u = a2Du +
p

ν (r)
, (C.8)
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D2v = −Ta2

[
(DV )

ν̂ (s)

]
u + a2v −

[
∂ ln ν̂ (s)

∂s

]
Dv, (C.9)

Dp = −
[
a4ν̂ (s)

]
u +

[
2a2∂ν̂ (s)

∂s

]
Du +

[
a2ν̂ (s)

]
D2u +

[
(µ− 1) V̂

]
v. (C.10)

where now D ≡ d
ds

. In matrix form,

d

ds



u

Du

D2u

v

Dv

p


=



0 1 0 0 0 0

0 0 1 0 0 0

0 a2 0 0 0 1
ν̂(s)

0 0 0 0 1 0

−T a2DV̂
ν̂(s)

0 0 a2 −∂ν̂(s)
∂s

0

−a4ν̂ (s) 2a2 ∂ν̂(s)
∂s

a2ν̂ (s) (µ− 1) V̂ 0 0





u

Du

D2u

v

Dv

p


.

The steady velocity is written as a function of the variable local viscosity (see (C.2)),

V (r) = r

Ω1 +

∆Ω
r∫

R1

dr′

ηφ(r′)r′3

R2∫
R1

dr′

ηφ(r′)r′3

 .

Non-dimensionalizing, as the gap width vanishes (d → 0 and η → 1),

V̂ (s) =
1

(µ− 1)

1 +

(µ− 1)
s∫
0

ds′

η̂φ(s′)

1∫
0

ds′

η̂φ(s′)

 .

For completeness, we write the derivative as well,

DV̂ (s) =

η̂φ (s)

1∫
0

ds′

η̂φ (s′)

−1

.

To make contact with Chandrasekhar [19] and Kundu [55], we take the derivative of

(C.8),

Dp = ν̂ (s)

{
D4u +

[
∂ ln ν̂ (s)

∂s

]
D3u− a2D2u− a2

[
∂ ln ν̂ (s)

∂s

]
Du

}
,
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With substitution into (C.10), and some rearranging,

D4u =

[
−∂ ln ν̂ (s)

∂s
D3u + 2a2D2u + 3a2∂ ln ν̂ (s)

∂s
Du− a4u

]
+

(µ− 1)

ν̂ (s)
V̂ v.

We are then able to express the full mode equations in terms of u and v alone,

[
D2 − a2

]2
u +

∂ ln ν̂ (s)

∂s

[
D3 − 3a2D

]
u =

(µ− 1)

ν̂ (s)
V̂ v,

[
D2 − a2

]
v +

∂ ln ν̂ (s)

∂s
Dv = −T

a2

ν̂ (s)

(
DV̂

)
u.

In matrix form, the mode equations are

d

ds



u

Du

D2u

D3u

v

Dv


=



0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

−a4 3a2 ∂ ln ν̂(s)
∂s

2a2 −∂ ln ν̂(s)
∂s

(µ−1)V̂
ν̂(s)

0

0 0 0 0 0 1

−T a2DV̂
ν̂(s)

0 0 0 a2 −∂ ln ν̂(s)
∂s





u

Du

D2u

D3u

v

Dv


,

along with the boundary conditions u (0) = u (1) = 0, Du (0) = Du (1) = 0, and v (0) =

v (1) = 0. It remains to find the lowest critical Taylor number for which the eigenvalue a

has positive real part – corresponding to exponential growth of the perturbation modes.
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