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Abstract 

 

Boredom proneness has been associated with a raft of negative cognitive, affective, and behavioural 

consequences. Research has sought to better understand boredom proneness from both cognitive 

and affective perspectives; however, an explanation of its underlying processes is still lacking. First, 

this thesis explored cognitive and affective factors related to boredom to assess the degree to which 

levels of self-control could explain these relationships. Next, boredom proneness and self-control 

were assessed in individuals who had sustained varying degrees of traumatic brain injury (TBI) to 

explore whether a link exists between boredom proneness, self-control, and head injury severity. 

Finally, the neural underpinnings of state boredom were explored in healthy controls and a small 

sample of TBI patients, using functional magnetic resonance imaging. Study 1 showed that boredom 

proneness was associated with spontaneous mind-wandering, increased depression and hostility, 

with individual levels of self-control driving these relationships. Study 2 showed that boredom 

proneness increases as a function of head injury severity. Finally, Study 3 showed recruitment of 

large-scale default mode network regions (DMN) associated with boredom, with concurrent 

downregulation of the anterior insula, an area important for switching between default and executive 

networks. In the TBI patients, results were heterogeneous, with individual patients displaying 

opposing patterns of activation within and between conditions. Collectively, these results offer 

insights into the mechanisms of boredom proneness and self-control. Results are discussed in terms 

of a current definition of boredom which suggests the state represents disengagement from one’s 

environment despite a motivation to engage – an experience that is negatively valenced, and likely 

represents failures of cognitive and affective self-regulation. 

 

 

Keywords: boredom proneness, mind-wandering, depression, aggression, self-control, traumatic brain 

injury 
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Chapter 1: Introduction 

The tendency to experience boredom, a state of disengagement from one’s environment, on 

a regular basis has been associated with a raft of negative cognitive, affective, and behavioural 

consequences. While the antecedents of boredom and the underlying mechanisms common to those 

who chronically experience the state remain unknown, there is general agreement that boredom is 

negatively valenced (Eastwood, Frischen, Fenske, & Smilek, 2012). Furthermore, research has 

shown that those high in boredom proneness demonstrate an increased propensity to take risks, 

engage in substance abuse and problem gambling, and tend to have poor outcomes in achievement 

settings (Joireman, Anderson & Strathman, 2003; Kass & Vodanovich, 1990; Mercer & Eastwood, 

2010; Pekrun et al., 2014). 

One prominent model of boredom suggests that the experience represents a disengaged 

attentional state (Eastwood et al., 2012). Research has consistently shown that those high in 

boredom proneness also exhibit difficulties in sustaining attention and show strong positive 

correlations with attention-related cognitive errors, lapses in attention, and symptoms of attention-

deficit hyperactivity disorder (ADHD; Carriere, Cheyne, & Smilek, 2008; Cheyne, Carriere, & 

Smilek, 2006; Damrad-Frye & Liard, 1989; Hamilton, 1981; Malkovsky, Merrifield, Goldberg & 

Danckert, 2012). 

Boredom proneness has also been associated with a broad range of negatively valenced 

affective states and syndromes, most notably, depression (Farmer & Sundberg, 1986; Goldberg, 

Eastwood, LaGuardia & Danckert, 2011). Research has also shown strong associations between 

boredom and difficulties dealing with and expressing anger (Dahlen, Martin, Regan & Kuhlman, 

2004), and exhibiting aggressive tendencies such as physical and verbal aggression and hostility 

(Fahlman, Mercer-Lynn, Flora & Eastwood, 2013; Rupp & Vodanovich, 1997). In this context, one 



2 

could consider depression and aggression to represent internalized and externalized affective 

dysregulation respectively (Dahlen et al., 2004; Fahlman et al., 2013; Rupp & Vodanovich, 1997). 

The cognitive and affective dysregulation common to boredom proneness begs the question 

of a possible common mechanism underlying these relationships. The capacity for effective self-

regulation in the pursuit of goals represents one possible mechanism underlying the cognitive and 

affective correlates of boredom proneness. That is, the bored individual wants to be engaged with 

their environment in some meaningful and satisfying way (Van Tilburg & Igou, 2011a; Van Tilburg 

& Igou, 2011b), but all attempts to do so fail. That failure, which in turn leads to the cognitive and 

affective consequences of boredom, may result from impoverished self-regulatory skills (Denson et 

al., 2011; Fahlman at el., 2013; Rehm, 1977; Stark, Reynolds & Kaslow, 1987). Indeed, recent 

research has reported a strong negative relationship between boredom proneness and individual 

levels of self-control, as well as demonstrating specific relationships with distinct self-regulatory 

profiles (Struk, Scholer, & Danckert, 2015). In other words, the more adept one is at controlling 

one’s own thoughts, emotions, and actions, the more effective they will be in goal pursuit and the 

less likely they are to be boredom prone. 

Without a better understanding of the underlying psychology of boredom proneness, and a 

pragmatic explanation of how this trait manifests, it is difficult to suggest potential options for 

alleviation. This is an important issue given that many clinical syndromes are accompanied by 

elevated self-reported levels of boredom. As previously mentioned, boredom proneness and 

depression are strongly correlated in healthy adults – and these relationships are exacerbated as a 

function of traumatic brain injury (TBI; Goldberg & Danckert, 2013; Seel et al., 2003; Kreutzer, Seel 

& Gourley, 2001). A persistent state of disengagement – characteristic of boredom – can make the 

rehabilitation process more difficult than it already is (Seel & Kreutzer, 2003). The suite of deficits 

common to TBI patients – the so-called dysexecutive syndrome – can in part be thought of as a 

http://psp.sagepub.com/search?author1=Thomas+F.+Denson&sortspec=date&submit=Submit
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consequence of impoverished self-control (Arciniegas & Wortzel, 2014; Bailey et al., 2015; Depue et 

al., 2014; Ham et al., 2014; McDonald et al., 2010; McDonald, Saad & James, 2011; Reeves & 

Panguluri, 2011; Swick, Honzel, Larsen & Ashley, 2013). 

The broad objective of this thesis was to examine the cognitive and affective relationships 

with boredom proneness through a lens of self-control. Can individual differences in levels of self-

control explain the existing relationships between boredom proneness and attentional and affective 

dysregulation? This was done through surveys of healthy and brain damaged individuals, and a 

functional neuroimaging study in these same populations. This body of work represents a first step 

towards building a more comprehensive understanding of boredom proneness both in healthy 

individuals and as a consequence of TBI by examining the cognitive, affective, and neural 

underpinnings of boredom. 

Study 1 sought to investigate the relationship between cognitive and affective measures 

related to boredom proneness, and to better understand the degree to which individual levels of self-

control can account for these relationships. Study 2 built on this work by assessing the same 

measures of cognition and affect as they relate to boredom proneness in individuals with varying 

degrees of traumatic head injury. Finally, Study 3 utilized resting state functional magnetic resonance 

imaging (fMRI) to examine the relationship between boredom and activity in the default mode 

network (DMN) in a sample of healthy controls, as well as a small TBI sample. The brain regions 

that comprise the DMN have been implicated in ‘off-task’ processing – that is, they represent brain 

activity when there is no external task to engage with. As such, one might expect to see DMN 

activity when people are disengaged from an external event. The findings are discussed in terms of a 

current model of boredom which suggests the state represents disengagement from one’s 

environment despite a motivation for the opposite – a disengagement that is strongly negatively 

valenced and likely represents a failure of self-control (Eastwood et al., 2012). 
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Chapter 2: Cognitive and affective predictors of boredom proneness1 

2.1 Introduction 

Boredom is a ubiquitous human experience characterized by a failure to engage with one’s 

environment – a failure that is negatively valenced (Eastwood et al., 2012). Higher levels of boredom 

proneness can negatively impact attentional capacities, emotional well-being, and have been 

associated with problematic behavioural consequences. For instance, high boredom-prone 

individuals are more likely to engage in addictive behaviours such as substance abuse and problem 

gambling (e.g., Mercer & Eastwood, 2010), impulsive and higher risk-taking behaviours (Joireman, 

Anderson & Strathman, 2003; Kass & Vodanovich, 1990), and tend to have poorer outcomes 

associated with achievement settings (Pekrun et al., 2014). 

 
The propensity to experience boredom regularly – that is, trait boredom proneness – has 

been associated with poor sustained attention, increased attentional lapses, attention-related 

cognitive errors, and mind-wandering (Cheyne, Carriere & Smilek, 2006; Carriere, Cheyne & Smilek, 

2008). Similarly, research has shown that high boredom proneness was associated with poor 

performance on measures of sustained attention, with individuals who scored high on boredom 

proneness also demonstrating increased adult symptoms of attention deficit-hyperactivity disorder 

(ADHD; Malkovsky et al., 2012). Similarly, Gerritsen and colleagues (2014) found that boredom was 

associated with inattention, hyperactivity, and executive dysfunction. Taken together, this suggests 

that boredom proneness is associated with dysregulation of attentional control (Eastwood et al., 

2012). 

 
While research has demonstrated a clear link between boredom proneness and cognitive 

difficulties, it has also been associated with negative affective consequences. High boredom 

                                                                 
1 A version of this chapter has been published as Isacescu, J., Struk, A.A., & Danckert, J. (2016). Cognitive 
and affective predictors of boredom proneness. Cognition & Emotion. DOI: 10.1080/02699931.2016.1259995. 
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proneness is associated with feelings of dissatisfaction, frustration, and anger (Dahlen et al., 

2004; Goldberg et al., 2011; Cheyne, Carriere & Smilek, 2008; Fahlman et al., 2013). Perhaps 

the most commonly demonstrated relationship between boredom proneness and affect is with 

depression (Farmer & Sundberg, 1986; Goldberg et al., 2011). It may be the case that the 

persistent disengagement from one’s environment – characteristic of boredom – in turn leads to 

feelings of sadness, helplessness, and in more extreme cases, depressive episodes (Smallwood, 

Fitzgerald, Miles & Phillips, 2009). At least one study provides tentative support for this 

contention. Using structural equation modelling, these authors suggested that lapses in attention 

(i.e., disengagement from one’s task or environment) do indeed lead to elevated levels of both 

boredom and depression (Cheyne, Carriere & Smilek, 2006; Carriere, Cheyne & Smilek, 2008). 

That is, being disengaged from one’s environment may be a precursor to both boredom and 

depression. 

 
Boredom proneness has also been related to inappropriate expression of anger, and deficits 

in controlling aggressive feelings (Dahlen et al., 2004). When controlling for sensation seeking and 

impulsivity, research has demonstrated a strong association between boredom proneness and 

various measures of aggression including physical and verbal aggression, anger, and hostility 

(Fahlman et al., 2013; Rupp & Vodanovich, 1997). Collectively, these studies suggest that boredom 

proneness is associated with a difficulty in self-regulating negative affect. 

 
Research has shown that individuals with high self-control (i.e., the capacity to self-regulate 

one’s cognitions, affect, and behaviours; Tangney, Baumeister & Boone, 2004) show a marked 

reduction in measures of impulsivity, engage in less risky behaviours such as substance abuse and 

gambling, and experience reduced negative affective states, such as depression (Rehm, 1977) and 

aggression (Denson et al., 2011). Recent research showed that those low in general measures of self-

http://psp.sagepub.com/search?author1=Thomas+F.+Denson&sortspec=date&submit=Submit
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control tended to exhibit higher boredom proneness (Struk, Scholer, & Danckert, 2015). In other 

words, those with high self-control represent a kind of mirror-symmetric presentation to what is 

commonly observed in high boredom-prone individuals (Dahlen et al., 2004; Farmer & Sundberg, 

1986). Research on the development of self-control has shown that as we age, our levels of self-

control increase (Anderson et al., 2001). With an increase in self-control over time, one would 

expect to see a decline in boredom proneness; indeed studies have reported such a decrease in 

boredom proneness for older adults, relative to their younger counterparts (Vodanovich & Kass, 

1990). 

 
The current chapter aimed to replicate findings pertaining to boredom proneness and self-

control, and to extend our understanding of boredom proneness by further exploring the relation 

between boredom proneness and measures of cognitive and affective dysregulation. With respect to 

cognitive dysregulation mind-wandering was chosen as the construct of interest as this represents a 

kind of ‘lapse’ in attention. Mind-wandering can be divided into deliberate (i.e., intentionally allowing 

one’s thoughts to shift from a current task to something else) and spontaneous mind-wandering (i.e., 

unintentional ‘off-task’ processing; Seli, Carriere & Smilek, 2015). The distinction is not trivial. If 

boredom proneness is more strongly associated with spontaneous mind-wandering, it would lend 

support to the notion that this trait is more strongly linked to a failure to self-regulate cognition; 

however, if boredom proneness is related to both spontaneous and deliberate mind-wandering 

equally, a self-regulatory explanation for boredom proneness may not be appropriate. To date no 

study has examined the relationship between boredom proneness and deliberate or spontaneous 

mind-wandering. Regarding affect, depression and aggression were chosen as the constructs of 

interest to better understand which of these constructs best explain boredom proneness. 

 
A large undergraduate sample was surveyed on measures of boredom proneness, self-

control, mind-wandering, depression, and aggression to better understand how boredom 

http://psycnet.apa.org.proxy.lib.uwaterloo.ca/index.cfm?fa=search.searchResults&latSearchType=a&term=Vodanovich,%20Stephen%20J.
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proneness is related to these constructs; to assess the degree to which cognitive and affective 

measures can predict boredom proneness; and to assess the role self-control plays in these 

relationships. It was considered important to first account for any potential influence of age, even 

in an undergraduate sample with a relatively restricted range. Thus, the first prediction was that 

boredom proneness would decrease as individuals age (Prediction 1; Vodanovich & Kass, 1990). 

Next, a replication of previous findings such that boredom proneness is negatively related to self-

control was explored (Struk, Scholer, & Danckert, 2015). Given that spontaneous mind-wandering 

is indicative of poor cognitive control, it was predicted that boredom proneness would relate most 

strongly to this subtype of mind-wandering and would show little, if any, relationship to deliberate 

mind-wandering (Prediction 2). With respect to affective correlates, positive associations were 

expected between boredom proneness and the measures of depression and aggression (Prediction 

3). These two affective states were chosen as depression is possibly the strongest and most reliable 

affective correlate of boredom in the literature and together, depression and aggression represent 

internalized vs. externalized affective dysregulation respectively (Dahlen et al., 2004; Fahlman et al., 

2013; Rupp & Vodanovich, 1997). With respect to the aggression sub-scales physical and verbal 

aggression, anger, hostility), any directional hypothesis concerning specific subscales were 

considered speculative. It was expected that levels of self-control would operate as a negative 

predictor of boredom proneness (Prediction 4), whereas the cognitive and affective indicators of 

dysregulation would positively predict boredom proneness (Prediction 5). Finally, regarding the 

role of self-control, it was expected that self-control would account for a significant portion of 

covariance in these relationships (Prediction 6). 
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2.2 Method 

Participants 

The current sample was recruited in the Fall semester of 2013 to participate online using the 

University of Waterloo’s Research Experiences Group in which undergraduate students participate 

for course credit. The initial sample was comprised of 3,555 individuals; only those participants who 

reported no prior history of head injury (with or without a loss of consciousness), or neurological or 

psychiatric illness were included in the study leading to a final sample of 1,928 participants (1,400 

females; M age = 19.64 years; SD = 1.88; range 15-30 years). Participants gave informed consent 

prior to completing the questionnaires. The study was approved by the University of Waterloo’s 

Office of Research Ethics. Procedures for determining the sample size and data exclusions, as well 

as all manipulations and measures used in the study are presented in Appendix A. 

 

Self-report measures 

SBPS - Shortened Boredom Proneness Scale 

The SBPS is an 8-item questionnaire designed to assess trait propensity for experiencing 

boredom (Struk, Carriere, Cheyne, & Danckert, 2015; Appendix B). The SBPS includes items such 

as “I find it hard to entertain myself” measured on a 7-point Likert scale from 1 ‘Strongly disagree’ 

to 7 ‘Strongly agree’. 

 

BSCS - Brief Self-Control Scale 

The BSCS is a 13-item scale that measures the level of self-control one has over one’s 

cognitions, emotions, and behaviours (Tangney, Baumeister & Boone, 2004; Appendix B). It 

includes items such as “I am good at resisting temptation” measured on a 5-point Likert scale from 

1 ‘Not at all’ to 5 ‘Very much’. 
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MW - Mind-Wandering 

The MW scale is an 8-item measure of the propensity with which an individual allows 

his/her mind to wander from topic to topic (Carriere, Seli & Smilek, 2013; Appendix B). The scale is 

split into deliberate (MW-D) and spontaneous (MW-S) subscales, each with 4 items measured on a 

7-point Likert scale from 1 ‘Extremely inaccurate’ to 7 ‘Extremely accurate’. The MW-D scale 

includes items such as “I allow my thoughts to wander on purpose,” whereas the MW-S scale 

includes items such as “It feels like I don’t have control over when my mind wanders.” 

 

DASS - Depression, Anxiety and Stress Scale 

The DASS is a 42-item questionnaire designed to measure an individual’s general level of 

depression, anxiety, and stress (Lovibond & Lovibond, 1995; Appendix B). The current study only 

made use of the Depression sub-scale which includes 14 items such as “I felt that life was 

meaningless” measured on a 4-point Likert scale from 0 ‘Did not apply to me at all’ to 3 ‘Applied to 

me very much, or most of the time’. 

 

BPAQ - Buss-Perry Aggression Questionnaire 

The BPAQ is a 27-item measure of an individual’s level of aggression. The scale subdivides 

aggression into four domains: 1) physical aggression; 2) verbal aggression; 3) anger; and 4) hostility 

(Buss & Perry, 1992; Appendix B). This scale includes items such as “Once in a while I can't control 

the urge to strike another person;” “I have threatened people I know;” “When frustrated, I let my 

irritation show;” and “When people are especially nice, I wonder what they want,” respectively. It is 

measured on a 7-point Likert scale from 1 ‘Extremely uncharacteristic of me’ to 7 ‘Extremely 

characteristic of me.’ 
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Data Analyses 

Statistical analyses were conducted using SPSS Statistics 20 (Armonk, NY). First, possible 

gender differences and age effects on boredom proneness were examined. Second, while controlling 

for age, partial correlational analyses were performed to examine the direction and strength of any  

relations between boredom proneness and self-control, mind-wandering, depression, and aggression. 

Third, to assess the degree to which the cognitive and affective measures predicted levels of 

boredom proneness, a hierarchical regression analysis was conducted. Fourth, to assess the degree to 

which self-control accounts for the relationships between boredom proneness and the measures of 

cognition and affect, partial correlational analyses were once again calculated, this time controlling 

for age and levels of self-control. 

 

2.3 Results 

 

Descriptive and difference statistics are presented in Table 2.1. 
 
 

Table 2.1. Means and standard deviations for all study variables, and within sample differences. 
  Sample (N = 1928)   

 Women (n=1,400) Men (n=528)  

 M SD M SD t 

Age 19.56 1.85 19.84 1.97 -2.89* 
Boredom Proneness 23.21 8.65 25.51 9.13 -5.00** 
Self-Control 39.76 8.60 38.52 8.58 2.83* 

Deliberate Mind-Wandering 17.91 5.80 18.20 5.72 -0.99 
Spontaneous Mind-Wandering 16.93 5.57 16.67 5.80 0.88 

Depression 11.58 4.42 11.91 4.68 -1.40 
Overall Aggression 80.94 28.83 89.49 27.37 -5.99** 

Physical Aggression 17.19 8.06 21.52 8.33 -10.26** 
Verbal Aggression 20.29 7.70 23.43 7.73 -7.93** 
Anger 19.07 8.16 19.30 7.85 -0.56 
Hostility 24.39 11.28 25.32 11.00 -1.65  

* p < 0.01; ** p < 0.001. 
 
 
 

Women were significantly younger than men in this sample, and reported significantly lower 

 
levels of boredom proneness relative to men. Women also reported significantly higher levels of 
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self-control relative to men. Overall levels of aggression were higher in men, as were reports of 

physical and verbal aggression, relative to women. There were no significant gender differences in 

reports of deliberate or spontaneous mind-wandering, depression, anger, or hostility (Table 2.1).  

A linear regression analysis was employed to determine whether boredom proneness 

changed as a function of age, while controlling for the effect of gender22. Results indicated that age 

was a significant negative predictor of boredom proneness (F(2, 1922) = 16.75, p < .001), indicating 

that as one ages, boredom scores tend to decline (β = -.06, t = -2.67, p = .008). This age effect 

continued to be significant even when the age range was further restricted from 17-22 years (β = - 

 
.32, t = -2.20, p = .03), in line with Prediction 1. 

 
Controlling for age, boredom proneness was negatively correlated with self-control (Table 

2.2). Boredom was positively correlated with both deliberate and spontaneous mind-wandering, 

indicating that mind-wandering of both kinds was more prevalent in those high in boredom 

proneness. Directly contrasting these two correlations using z-scores for dependent correlations 

(DeCoster, 2007) demonstrated that the correlation between spontaneous mind-wandering and 

boredom was significantly larger than the same relationship seen for deliberate mind-wandering (z = 

9.98, p < .001), in line with Prediction 2. 

 

Table 2.2. Partial correlations for all variables, controlling for age. 
  1 2 3 4 5 6 7 8 9 10 

1 Boredom Proneness (.88) -.542 .200 .426 .574 .429 .263 .262 .336 .475 

2 Self-Control  (.84) -.263 -.469 -.408 -.426 -.287 -.289 -.350 -.419 

3 Deliberate Mind-Wandering   (.88) .422 .116 .143 .117 .095 .104 .135 

4 Spontaneous Mind-Wandering    (.87) .346 .283 .154 .171 .228 .324 

5 Depression     (.89) .426 .202 .250 .337 .520 

6 Overall Aggression      (.93) .741 .811 .857 .817 

7 Physical Aggression       (.83) .528 .519 .406 

8 Verbal Aggression        (.80) .675 .494 

9 Anger         (.83) .611 

10 Hostility          (.90) 
 

Chronbach’s α levels are presented on the main diagonal in parentheses. All coefficients are significant (p <.001). 

                                                                 
2 To control for gender, the variable was dummy coded and an unweighted effects code was computed as a 
ratio between females and males, and then collapsed to assess the effect of age. 
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Regarding affect, significant positive correlations between boredom proneness and all 

measures were observed, in line with Prediction 3 (r values ranging from .26 to .57; Table 2.2). 

Directly contrasting aggression sub-scores and boredom proneness using the DeCoster method 

indicated that the relationship between boredom proneness and hostility was significantly 

stronger than the correlations observed for boredom proneness and physical aggression (z = -

9.51, p < .001), verbal aggression (z = -10.32, p < .001), and anger (z = -7.76, p < .001). The next 

largest correlation between boredom and subscales of aggression was observed with anger, which 

was significantly larger relative to the correlations with physical (z = 3.47, p < .001) and verbal 

aggression (z = 4.26, p 

 
< .001). The correlations between boredom and physical and verbal aggression did not 

differ significantly from one another. 

 
To assess the degree to which boredom proneness is predicted by cognitive and 

affective measures, a hierarchical regression analysis was conducted (Table 2.3). 

 

Table 2.3. Hierarchical regression analysis statistics for boredom proneness, controlling for 
gender and age. 

 
      CI (95%)for B  

sr2(%)  B SE β t p LB UB sr 
   

1 Gender 1.17 .232 .118 5.062 .000 .719 1.628 .117 .014 (1.37) 

Age -.303 .109 -.065 -2.774 .006 -.517 -.089 -.064 .004 (0.41) 

2 Self-Control -.279 .022 -.272 -12.971 .000 -.321 -.237 -.219 .048 (4.80) 

Deliberate Mind-Wandering .017 .029 .011 .593 .553 -.040 .074 .010 .000 (0.01) 

Spontaneous Mind-Wandering .208 .033 .132 6.272 .000 .143 .273 .106 .011 (1.12) 

Depression .677 .041 .344 16.563 .000 .597 .757 .280 .078 (7.84) 

Physical Aggression .031 .023 .029 1.371 .171 -.014 .076 .023 .001 (0.05) 

Verbal Aggression -.039 .028 -.034 -1.396 .163 -.094 .016 -.024 .001 (0.06) 

Anger .026 .029 .024 .894 .371 -.031 .084 .015 .000 (0.02) 

Hostility .100 .019 .126 5.152 .000 .062 .138 .087 .008 (0.76) 
 
DV = Boredom Proneness; B = unstandardized beta coefficient; SE = standard error of unstandardized 
beta coefficient; ß = standardized beta coefficient; t = t-score; p = significance value; CI = confidence 

interval; LB/UB = lower/upper bounds; sr = semi-partial correlation; sr2(%) = squared semi-partial 
correlation (unique variance). 
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The first step of the regression was used to control for gender and age effects, which 

accounted for ~2% of the total variance in the model (R2 = .02, SE = 8.81, p < .001); the second 

step included all cognitive and affective measures of interest, which accounted for an additional 

46% of variance (∆R= .46, SE= 6.42, p < .001). Results showed that self-control was the sole 

significant negative predictor of boredom proneness, in line with Prediction 4. Spontaneous mind-

wandering was a significant positive predictor of boredom proneness (Prediction 5), whereas 

deliberate mind-wandering did not reach significance, and failed to improve the fit of the model. 

Regarding affect, depression and hostility were significant positive predictors of boredom proneness 

(also evidence for Prediction 5), whereas physical aggression, verbal aggression and anger did not 

significantly predict boredom proneness and failed to improve the fit of the model. The overall 

model fit was significant (F(10,1827) = 167.92, p < .001), with a total of 47.7% of the variance 

explained (adjusted R2  = 0.477). 

Finally, to assess the degree to which self-control accounts for the relationships between 

boredom and all measures of mind-wandering, depression, and aggression, partial correlations were 

conducted controlling for age and self-control. All relationships remained significant (Table 2.4); but 

decreased in magnitude across the board (Prediction 6; Table 2.5). To illustrate this decrease when 

taking self-control into account, coefficient difference scores were computed for each r-value and 

are presented as percentage decreases in Table 2.5 and Figure 2.1. These decreases provide a rough 

indication of the proportion of the relationship between boredom proneness and each variable that 

can be accounted for by age and levels of self-control. 
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Table 2.4. Partial correlations for all variables controlling for age and self-control. 
  1 2 3 4 5 6 7 8 9 
           

1 Boredom Proneness (.88) .071** .232*** .461*** .261*** .133*** .131*** .185*** .325*** 

2 Deliberate Mind-Wandering  (.88) .351*** .009 .035 .045* .021 .013 .029 

3 Spontaneous Mind-Wandering   (.87) .192*** .104*** .023 .042 .077** .159*** 

4 Depression    (.89) .305*** .097*** .151*** .228*** .421*** 

5 Overall Aggression     (.93) .714*** .794*** .836*** .778*** 

6 Physical Aggression      (.83) .486*** .466*** .328*** 

7 Verbal Aggression       (.80) .640*** .429*** 

8 Anger        (.83) .545*** 

9 Hostility         (.90)  
* p < 0.05; **0.01; ***0.001. 

 
 
 
 
 

Table 2.5. Partial correlations between boredom proneness and all 
measures controlling for age, and age and self-control.  

 Boredom Proneness  

 C: Age C: Age + Self-Control % Change 

Deliberate Mind-Wandering .200 .071 64.5 
Spontaneous Mind-Wandering .426 .232 45.5 

Depression .574 .461 19.7 
Total Aggression .429 .261 39.2 

Physical Aggression .263 .133 49.4 
Verbal Aggression .262 .131 50.0 

Anger .336 .185 44.9 
Hostility .475 .325 31.6  
Table 2.5. C = Control variable. All coefficients are significant (p <.001). 
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Figure 2.1 Changes in correlation coefficients between boredom and all 
other measures when controlling for age alone (black bars) or age and self-
control (white bars). 

 

 

Taking into account both age and self-control led to dramatic reductions in the magnitude of 

initial coefficients. Regarding mind-wandering, the strength of both relationships was reduced; 

boredom proneness and deliberate mind-wandering was reduced by 64.5% and boredom proneness 

and spontaneous mind-wandering was reduced by 45.5%. Similarly, for the measures of affect, 

boredom and depression’s relationship was reduced by ~20%, and regarding aggression sub-scores, 

observed decreases ranged from 31% (hostility) to 49% (physical aggression). When controlling for 

age alone, the relationships between boredom proneness and measures of cognition and affect were 

moderate in strength; however, when parsing out the influence of self-control, there was a large shift 

in how these variables related to each other. The strength of every relationship was decreased by a 

factor of at least 20%, a substantial decrease across the board. These results suggest that a large 
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proportion of how cognition and affect relate to boredom proneness can be accounted for by 

varying levels of self-control. 

 

2.4 Discussion 

This study sought to better understand boredom proneness by exploring the role played by 

self-control in the cognitive and affective contributors to this trait. In line with previous findings, 

gender and age differences were observed, with women reporting lower levels of boredom 

proneness relative to men, and younger people reporting higher boredom proneness relative to older 

adults (Vodanovich & Kass, 1990). Age was found to be a significant negative predictor of boredom 

proneness despite the restricted range of the sample (15 years), and remained significant when this 

age range was further restricted to just 5 years (17-22 y.o.a.). The tantalizing, although admittedly 

speculative, hypothesis is that levels of boredom proneness follow to some extent the degree of 

frontal cortical maturation (Hamilton, 1983). This would be consistent with the role of self-control 

as a negative predictor of boredom proneness (Table 2.3); as frontal cortex matures in the late teens 

and early twenties, one expects concomitant improvements in executive functions that in part may 

result in higher levels of self-control (Anderson et al., 2001; Poletti, 2009). Similarly, frontal 

maturation is related to increased levels of attentional control perhaps making it easier for people to 

engage with their environment, leading to lower levels of boredom proneness (Keating, 2012). 

Future research using structural and functional neuroimaging techniques may help address these 

hypotheses by examining changes in brain structure (e.g., cortical thickness, grey/white matter ratios; 

white matter connectivity) and activity (e.g., functional connectivity) as a function of age and self-

reported levels of boredom proneness. 

 
Regarding self-report measures of cognition, correlational analyses indicated that boredom 

proneness was most strongly related to spontaneous mind-wandering (Table 2.2). This is consistent 
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with previous accounts relating boredom proneness to increased difficulties with sustained or 

directed attention (Eastwood et al., 2012; Malkovsky et al., 2012). Furthermore, hierarchical 

regression indicated that only spontaneous mind-wandering acted as a significant, positive 

predictor of boredom proneness (Table 2.3). These findings lend support to the notion that a 

failure to self-regulate attention is strongly related to boredom proneness. It would be worthwhile 

for future research to pursue the possibility that deliberate mind-wandering, by virtue of successful 

engagement with one’s own thoughts, may act to prevent boredom proneness. 

 
With respect to affective measures, correlational analyses indicated that depression and all 

subscales of aggression were positively correlated with boredom proneness, replicating previous 

findings (Table 2.2; Dahlen et al., 2004; Rupp & Vodanovich, 1997). The regression analysis similarly 

replicated previous findings that showed levels of depression to be a significant positive predictor of 

boredom proneness (Table 2.3; Goldberg et al., 2011). Interestingly, when examining the subscales 

of aggression, it was shown that only hostility significantly predicted boredom proneness. Both 

affective states, depression and hostility, would make it difficult to engage with the environment, 

albeit for potentially different reasons. For the depressed individual, the failure to satisfy the need 

for external stimulation may result in feelings of helplessness that in turn impede their ability to 

engage with their environment. On the other hand, increased levels of hostility may be related to a 

higher tendency to discount, or devalue, potential options for engagement – options that may 

otherwise alleviate boredom (Stein & Madden, 2013; note: such ‘discounting’ behavior may also be 

evident in depressed individuals; see Dennhardt & Murphy, 2011). Indeed, research on boredom and 

discounting has shown that high boredom-prone individuals will readily discount rewards that are 

not immediate (Smits et al., 2013). To discount an option before considering it entirely is in essence 

antagonistic, and may explain why hostility is a strong positive predictor of boredom proneness. 

Clearly, further research is needed to fully explore these hypotheses. 
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Interestingly, self-control was the only construct negatively correlated with boredom 

proneness (Table 2.2); the regression analysis indicated that it was also the only negative predictor of 

boredom proneness (Table 2.3), replicating previous work (Struk, Scholer, & Danckert, 2015). 

Furthermore, results showed that individual levels of self-control can partially explain the observed 

relationships between boredom proneness and measures of cognition and affect. This provides 

evidence to support the notion that both the cognitive and affective components associated with 

trait boredom can be explained by failures of self-regulatory control. The results here reflect the 

relationships between self-control and trait propensity to experience boredom. It may also be the 

case that the intensity and duration of states of boredom are also related to levels of self-control and 

self-regulatory capacity. Further research on state boredom is needed to address this possibility. 

 
This work is not without limitations. First, correlational analyses do not allow us to infer 

causation. An experimental manipulation using tasks known to require self-control (e.g., Stroop or 

Go/No-go tasks) would go some way to addressing whether or not low levels of self-control and 

high levels of boredom proneness have explicit behavioural consequences. Mood inductions may 

also help address questions concerning the consequences of state boredom for cognitive and 

behavioural control. Second, the cognitive and affective constructs measured here are unlikely to 

function in a unidirectional manner. Instead, boredom, depression and aggression likely interact in 

dynamic ways. It is entirely plausible that the propensity to experience boredom may lead to feelings 

of depression and vice versa. Finally, the use of a general measure of self-control is associated with 

inherent limitations; it is not possible with this measure to separately parse out the cognitive, 

affective, and behavioural aspects of self-control. Future research could utilize more directed 

measures of self-control that specifically address distinct regulatory modes or foci. 

 
The current findings underline the dynamic interplay between cognitive and affective 

components of boredom proneness. This is not to suggest that the chosen measures are the only 
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factors that can contribute to boredom proneness; for instance, research has demonstrated that 

motivation and sensation seeking can play an important role in engaging with one’s 

environment (Dahlen et al., 2004). While motivation or sensation seeking were not assessed 

directly here, the SBPS assesses an individual’s need for external stimulation (Struk et al., 2015); 

presumably, individuals high in boredom proneness are motivated to engage with their 

environments, but when they attempt to do so, they fail. With respect to sensation seeking, 

research has shown that peak sensation seeking behaviour occurs in mid-adolescence, tapering 

off after the age of 15, and is strongly related to immature capacities for self-control. As such, 

the current sample, with a mean age of 20, is beyond that peak age for sensation seeking 

(Steinberg et al., 2008). Taken together, the current findings suggest that boredom proneness is 

strongly related to both cognitive and affective dysregulation, and illustrate that differing levels 

of self-control can explain a substantial proportion of variance in the relationships between 

boredom proneness, cognition, and affect. 
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Chapter 3: Exploring the relationship between boredom proneness and self‑control in 

traumatic brain injury (TBI)3 

 

3.1 Introduction 

As shown in the previous chapter, boredom proneness is associated with cognitive and 

affective dysregulation. More specifically, boredom proneness was strongly correlated to 

spontaneous mind-wandering and self-control on one hand, and to negative affective states such as 

depression and aggression, especially hostility, on the other. It was also found that self-control 

tempered the relationship between boredom proneness and spontaneous mind-wandering (i.e., those 

who exhibited low levels of self-control experienced the highest levels of boredom proneness and 

spontaneous mind-wandering, whereas individuals with high self-control exhibited the lowest 

boredom proneness scores and spontaneous-mind wandering (Chapter 2; Isacescu, Struk & 

Danckert, 2016). These findings suggest that one common factor underlying higher levels of 

boredom proneness relates to individual levels of self-control or self-regulation (Isacescu, Struk & 

Danckert, 2016; Struk, Scholer & Danckert, 2015; see also Elpidorou, 2014). The raft of negative 

impacts associated with high boredom proneness can also be recast as failures of self-control. That is, 

increases in impulsivity, risk taking and addictive behaviours ranging from substance abuse to 

problem gambling, all reflect, at least to some degree, failures of self-control or self-regulation 

(Fahlman at el., 2013; Stark, Reynolds & Kaslow, 1987). Such failures of self-control are also 

prominent in individuals who have suffered from traumatic brain injury (TBI; Arciniegas & Wortzel, 

2014; Bailey et al., 2015; Depue et al., 2014; Ham et al., 2014; McDonald et al., 2010; McDonald, 

Saad & James, 2011; Reeves & Panguluri, 2011; Swick et al., 2013).  

                                                                 
3 A version of this chapter has been published as Isacescu, J. & Danckert, J. (2016). Exploring the relationship 

between boredom proneness and self‑control in traumatic brain injury (TBI). Experimental Brain Research, DOI 
10.1007/s00221-016-4674-9. 
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There is some evidence to suggest that boredom levels are elevated following TBI (Seel & 

Kreutzer, 2003); however, these authors did not address the distinction between state and trait 

boredom. It is plausible that the tendency to experience boredom may be a consequence of 

increased difficulties in sustaining attention – a commonly observed deficit following TBI and a 

prominent factor related to boredom proneness (Dockree et al., 2004; Dockree et al., 2006; Drew et 

al., 2007; Konrad et al., 2011; O'Keeffe, Dockree, Moloney, Carton & Robertson, 2007; Whyte et al., 

1996; Malkovsky et al., 2012). Alternatively, increases in the propensity to experience boredom, as 

well as the challenges TBI individuals face with sustaining attention, may both reflect failures of self-

control. The current study represents a first step in addressing this hypothesis. 

Acceleration-deceleration injuries – the most common causes of TBI – affect the 

orbitofrontal cortex (OFC), a region of the brain known to represent the reward value of choices 

and decisions to act (Berlin, Rolls, & Kischka, 2004; Elliott, Newman, Longe & Deakin, 2003; 

Gottfried, O'Doherty & Dolan, 2003; O'Doherty, Kringelbach, Rolls, Hornak & Andrews, 2001; 

Rule, Shimamura, & Knight, 2002; Wallis, 2007). Accurately representing the reward value of a given 

stimulus or action choice is a vital component in regulating goal pursuit (Kruglanski, 2003; Mischel, 

Shoda & Rodriguez, 1989). In Chapter 2, age functioned as a significant negative predictor of 

boredom proneness (Isacescu, Struk & Danckert, 2016). This was true even when the age range was 

dramatically restricted to only include participants aged 17-22 years. Even in such a narrow age 

range, older participants demonstrated lower levels of trait boredom. This age range represents a 

critical period of neurodevelopment in which late maturation of the frontal association cortices – 

including the OFC – occurs (Gogtay et al., 2004). Furthermore, the effect of age on boredom 

proneness was also tempered by self-control – as we age, we attain higher levels of self-control that 

in turn enable us to stave off boredom. Injury to the OFC, as often occurs following TBI, may 
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interfere with that relationship, leading to impoverished self-control and increased levels of boredom 

proneness. 

Individuals suffering from TBI experience more than just the cognitive sequelae of poor 

sustained attention (Andersson, Gundersen & Finset, 1999; de Sousa, McDonald & Rushby, 2012; 

Ganesalingam, Yeates, Sanson & Anderson, 2007; Jorge & Arciniegas, 2014; Juengst, Arenth, Raina, 

McCue & Skidmore, 2014; Konrad et al., 2011; Lange, Iverson & Rose, 2011; Rosenberg, 

McDonald, Dethier, Kessels & Westbrook, 2014; Sigurdardottir, Andelic, Roe & Schanke, 2014). 

Affective dysregulation is also prominent in TBI with elevated levels of depression, increases in 

aggression, and difficulties with expressing feelings of anger and frustration, as well as reports of 

increased levels of hostility (Arciniegas & Wortzel, 2014; Hanks et al., 1999). A common cause for 

such cognitive and affective dysregulation may be explained by failures of self-control and poor 

self-regulation in the pursuit of goals. 

In this study, self-report measures of cognition and affect in TBI individuals were employed 

to examine how these measures relate to boredom proneness and self-control. Past research has 

shown that boredom and depression are more strongly correlated in TBI individuals (Goldberg & 

Danckert, 2013). It may be the case that the same exaggeration of relations is evident in TBI for 

cognitive (i.e., mind-wandering and self-control) and affective (i.e., aggression) measures as they 

relate to boredom proneness. It was predicted that boredom proneness would be higher in 

participants who had suffered moderate to severe TBI when contrasted with those who had 

suffered mild TBI (i.e., concussion) or healthy controls. It was also predicted that the moderate to 

severe TBI group would demonstrate the lowest levels of self-control, and that the relationships 

between boredom and cognitive and affective measures would be strongest in this group. 
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3.2 Methods 

Participants 

 

The current investigation was comprised of three groups of participants: healthy controls, 

free of neurological and/or psychiatric disorders, with no history of previous head injury; concussed 

participants, with a history of head injury with or without a loss of consciousness; and, individuals 

who have sustained a TBI (Table 3.1; For details regarding Participant Recruitment, see Appendix 

A). All participants gave informed consent prior to completing the questionnaires with one 

exception. One TBI participant gave assent to participate via permission of their primary care giver 

 
(Power of Attorney). This study was approved by the University of Waterloo’s Office of Research 

 

Ethics (ORE) and the Tri-Hospital Research Ethics Board (THREB). 
 
 
 
 

Table 3.1. Participant Demographics 
  Healthy Controls Concussed TBI 

N (male %) 1928 (27.4%) 340 (38.5%) 35 (74.2%) 
Age (SD) 19.64 (1.88) 20.10 (2.67) 43 (13.97) 

Education (Myrs) 14 14 10 
MoCa (M) - - 23.9 
Head Injury (HI) Index (%)    

0 = No HI 1928 (100%) .  

1 = HI no LOC  194 (57.1%)  

2 = HI LOC <1min  82 (24.1%)  

3 = HI LOC 1-5min  40 (11.8%)  

4 = HI LOC 6-15min  11 (3.2%)  

5 = HI LOC 16-30min  2 (.05%)  

6 = HI LOC 30+min  11 (3.2%)  

GCS N/A N/A  

Mild (13-15) (n, %)   7 (20%) 
Moderate (7-12) (n, %)   7 (20%) 
Severe (3-6) (n, %)   18 (51.4%)  
*MoCa = Montreal Cognitive Assessment; LOC = Loss of consciousness; GCS = Glasgow Coma 
Scale; MVA = Motor vehicle accident; HI=Head Injury Index. 
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Self-Report Measures 

All but the DASS scale used in study one (SPBS, BSCS, MW, BPAQ, see Section 2.2) were 

also employed here, with two additional questionnaires included for the TBI group outlined below. 

 

GCS - Glasgow Coma Scale 

The GCS is a neurological scale that assesses consciousness following a head injury, focusing 

on three elements: 1) responsiveness of the eyes; 2) verbal ability; and 3) motor ability (Teasdale & 

Jennett, 1974; Appendix B). It is scored on a scale from 3-15, with ranges 3-6 indicating deep 

unconsciousness (severe brain injury); 7-12 (moderate brain injury) and 13-15 (mild brain injury). 

 

MoCa - Montreal Cognitive Assessment 

The MoCa is a 30-point cognitive assessment tool that tests several cognitive domains: 

short-term memory, visuospatial abilities, multiple aspects of executive functioning, sustained 

attention, and orientation in time and place (Nasreddine, et al., 2005; Appendix B). 

 

Data Analyses 

These data were analyzed in a series of steps. First, independent samples t-tests were 

conducted to assess differences across measures between groups; controls and concussed were well 

matched for age, but the TBI group was significantly older. To address this, a subset of age-matched 

was extracted from the larger control sample, and was used for comparisons with the TBI group. 

Second, correlational analyses were conducted to assess the degree to which boredom proneness 

related to all measures of cognitive and emotional functioning in each group; again, age-matched 

https://en.wikipedia.org/wiki/Neurology
https://en.wikipedia.org/wiki/Neurology
https://en.wikipedia.org/wiki/Bryan_J._Jennett
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controls4 and concussed participants were compared directly, and the same relationships were 

examined separately in the TBI group contrasted with a subset of age-matched controls5. Third, 

multiple regression analyses were conducted: 1) to assess whether the presence and severity of TBI6 

would predict levels of a) boredom proneness, and b) self-control. Fourth, to assess differences in 

boredom proneness and self-control reports as a function of head injury severity, head injury groups 

were contrasted (i.e., Controls v. Concussed; Controls v. TBI; Concussed v. TBI7). Finally, to assess 

the degree to which self-control, mind-wandering, and aggression measures predicted boredom 

proneness in concussed and TBI participants, two multiple linear regression models were conducted, 

controlling for age and gender. 

 

3.3 Results 

 

Table 3.2 shows the descriptive statistics for the healthy controls and concussed groups on 

all measures, whereas Table 3.3 shows the descriptive statistics for the TBI participants and their 

age-matched healthy controls. 

 

 

 

 

                                                                 
4 Given that the TBI sample was so small, direct comparisons to the subset of age-matched controls raised 
concerns regarding statistical power; to address this, Monte Carlo simulations were run (10,000 iterations for 
an n of 35) to derive 95% Confidence Intervals for each coefficient (Cohen, Cohen, West & Aiken, 2003). 
5 To determine which relationships were strongest within a group, correlations were contrasted using z-scores 
and the DeCoster test for dependent measures (DeCoster, 2007) with Bonferroni corrections made for the 
number of comparisons within each group (p=0.05/7; p=0.007). 
6 Head Injury was dummy coded: 0 = No Head Injury to 6 = Head Injury with LOC 30+min; all TBI 
participants with medical diagnoses received a score of 7 (Table 1). 
7 Again, using the dummy code, the controls (0) were used as the reference group for the first two contrasts, 
and the concussed group (1-6) were used as a reference group for the final contrast with the TBI participants 
(7). 
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Table 3.2. Descriptive statistics for healthy controls (HC) and Concussed groups. 

  HC  Concussed   

 N M (SD) N M (SD) t p 

Age 1928 19.64 (1.88) 340 20.10 (2.27) -3.59 0.000 
SBPS 1923 23.84 (8.84) 338 25.35 (9.95) -2.61 0.009 
BSCS 1925 39.42 (8.61) 339 38.04 (8.83) 2.67 0.008 

MWD 1916 17.99 (5.78) 333 18.14 (5.72) -0.42 0.674 
MWS 1899 16.86 (5.63) 331 17.59 (5.79) -2.14 0.033 
BPAQ 1907 79.58 (27.69) 336 87.35 (29.83) -4.45 0.000 

PA 1917 23.13 (10.18) 337 27.18 (12.07) -5.82 0.000 
VA 1919 16.398 (6.25) 338 17.89 (6.54) -3.89 0.000 

A 1919 15.41 (6.97) 337 16.60 (7.92) -2.596 0.010 
H 1915 24.64 (11.21) 338 25.88 (11.03) -1.89 0.059  

* t-tests are 2-tailed, independent samples t-tests with unequal variances assumed. SBPS=Short 
Boredom Proneness Scale; BSCS=Brief Self Control Scale; MWD=Mind-Wandering – Deliberate; 
MWS=Mind-Wandering – Spontaneous; BPAQ=Buss-Perry Aggression Questionnaire; PA=Physical 
Aggression; VA=Verbal Aggression; A=Anger; H=Hostility (these last four measures are subscales of 
the BPAQ). 

 

 

Independent samples t-tests contrasting the HCs with the Concussed group indicated that 

the concussed participants had significantly higher levels of boredom proneness, spontaneous 

mind-wandering and aggression (with all but the hostility subscale reaching significance, the latter 

scale approaching significance; Table 3.2). In addition, concussed participants demonstrated 

significantly lower levels of self-control (Table 3.2). 

 

 

Table 3.3. Descriptive statistics for age-matched healthy controls (am-HC) and TBI groups. 

   am-HC  TBI    

  N M (SD) N M (SD) t p  

 Age 36 39.86 (7.63) 33 43.00 (13.97) -1.14 0.246  

 Boredom Proneness 36 17.69 (6.16) 35 32.17 (6.82) -9.38 0.000  

 Self-Control 36 43.78 (9.59) 34 41.79 (10.08) 0.843 0.402  

 Deliberate Mind-Wandering 36 14.94 (5.45) 35 14.51 (6.47) 0.302 0.763  

 Spontaneous Mind-Wandering 36 13.42 (6.34) 35 18.77 (6.96) -3.39 0.001  

 Aggression (Total) 36 62.81 (23.05) 34 94.44 (33.25) -4.60 0.000  

 Physical Aggression 36 17.56 (6.81) 34 24.94 (13.28) -2.90 0.006  

 Verbal Aggression 36 12.89 (6.54) 35 18.82 (7.26) -3.62 0.001  

 Anger 36 14.75 (7.51) 35 22.63 (9.68) -3.82 0.000  

 Hostility 36 17.50 (9.68) 35 27.00 (13.89) -3.41 0.001   
* t-tests are 2-tailed, independent samples t-tests with unequal variances assumed. 
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Similar differences were seen when contrasting the TBI group with their age-matched 

controls (Table 3.3). Here the TBI participants demonstrated significantly higher levels of boredom 

proneness, spontaneous mind-wandering, and aggression (for these comparisons all subscales of the 

BPAQ were significantly higher in the TBI group; Table 3.3). 

 
Next, partial correlations were conducted, controlling for age for the healthy controls and 

concussed groups (Table 3.4) and the TBI and age-matched healthy controls (Table 3.5). 

 

 

Table 3.4. Partial correlations: Cognitive and affective measures for Healthy Controls (upper 
diagonal) and Concussed individuals (lower diagonal).  

  1. 2. 3. 4. 5. 6. 7. 8. 

1. SBPS  -.536*** .199*** .424*** .297*** .199*** .342*** .468*** 
   (-.727/-.265) (.112/.480) (.132/.651) (-.010/.568) (-.124/.481) (.030/.590) (.184/.680) 

2. BSCS -.504***  -.263*** -.473*** -.322*** -.216*** -.345*** -.412*** 

    (-.529/-.050) (-.685/-.189) (-.573/-.013) (-.494/-.105) (-.591/-.037) (-.641/-.102) 
3. MWD .103*** -.183**  .419*** .112*** .087 .109*** .131*** 

     (.123/.649) (-.208/.407) (-.222/.387) (-.214/.406) (-.192/.419) 
4. MWS .475*** -.468*** .348***  .179*** .122*** .224*** .320*** 

      (.133/.462) (-.201/.421) (-.095/.496) (.012/.569) 
5. PA .251*** -.298*** .156** .154**  .455*** .586*** .468*** 

       (.165/.672) (.330/.759) (.182/.682) 
6. VA .155*** -.227*** .083 .148** .507***  .571*** .395*** 

        (.316/.750) (.095/.627) 
7. A .318*** -.325*** .102† .314*** .522*** .578***  .595*** 

         (.349/.765) 
8. H .459*** -.375*** .144** .345*** .383*** .382*** .563***   

*=p<0.05; **=p<0.01 ***=p<0.001. †=approached significance with p value = 0.061. Abbreviations as for 
Table 3.2. Lower and upper bound 95% confidence intervals derived from Monte Carlo simulations (10,000 
iterations; n=35; Cohen, Cohen, Aiken & West, 2003), shown in parentheses. 

 
 

 

Table 3.5. Partial correlations: Cognitive and affective measures for age-
matched HC (upper diagonal) and TBI participants (lower diagonal).  
  1.  2. 3. 4. 5.  6.  7.  8. 

1. SBPS   -.381* .117 .326† -.141 -.097 .104  .048 
2. BSCS -.536 **  -.196 -.700*** -.027 -.092 -.141 -.332† 
3. MWD .184  -.260  .351* .227  -.162 .285† .174 
4. MWS .309† -.320 † .209  -.006 -.156 .067  .325† 

5. PA .466 ** -.528 ** .243 .223   .445 ** .518*** .255 
6. VA .283  -.361 -.021 .354 .381 *   .521 *** .458 ** 
7. A .419 * -.594 *** -.056 .440 * .719 *** .647 ***   .500 ** 
8. H .277  -.560 ** -.018 .091 .385 * .326 † .359 *   

*=p<0.05; **=p<0.01 ***=p<0.001. †=approached significance with p values 
between 0.056 and 0.096. Abbreviations as for Table 3.2. 
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As was the case for healthy controls in Study 1, correlations in the Concussed group showed 

that higher levels of boredom proneness were associated with lower levels of self-control, higher 

levels of mind-wandering (particularly spontaneous mind-wandering) and higher levels of 

aggression (particularly the hostility and anger subscales; Table 3.2). An almost identical pattern of 

strength of relationships was observed to that seen in HCs from Study 1. That is, a stronger 

relationship between boredom and spontaneous vs. deliberate mind-wandering (Z=-6.475, 

p<0.001); stronger relationship between boredom and hostility vs. all other measures of aggression 

(all Zs>3.768, all ps<0.001); stronger relationship between boredom and anger vs. verbal aggression 

(Z=3.362, p<0.001). The relationship between boredom and either physical or verbal aggression 

was not significantly different. In further support for the similarity of relationships in each group, 

DeCoster comparisons for independent samples found no significant differences between the 

groups in the relationships between boredom proneness and either spontaneous mind-wandering, 

self-control or hostility (i.e., the three most prominent relationships seen within each group). 

 
Given the relatively small samples sizes for the TBI group and their age-matched controls, 

comparisons within each group did not highlight any significant differences in the relationships 

observed between boredom proneness and all other measures. Independent samples contrasts 

revealed that the relationship between boredom proneness and self-control although nominally 

higher in the TBI group, was not significantly different. However, the relationship between boredom 

proneness and physical aggression was significantly stronger in the TBI group (Z=-2.607, p=0.009). 

In addition, the relationships between self-control and both anger (Z=2.184, p=0.0289) and physical 

aggression (Z=2.258, p=0.023) were significantly stronger in the TBI group. 

 
Next, regression analyses were used to address several key questions. First, does head injury 

(i.e., presence and severity) predict levels of boredom proneness? Using boredom proneness as the 

dependent measure the first step in the hierarchical regression was to enter age (β=-0.042, p=0.05) 
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and gender8 (β=-0.123, p=0.001) as control variables, which accounted for ~2% of the variance in 

the model (r2=0.016; Table 3.6). Note that both age and gender were negative predictors of boredom 

proneness. 

 
 

Table 3.6. Head Injury as a predictor of Boredom Proneness. 

  β t p 95.0% CI (LB) 95.0% CI (UB) 
       

1 Age -.042 -2.063 .039 -.155 -.004 
 Gender -.123 -5.971 .000 -2.283 -1.154 

2 Head Injury .108 4.920 .000 1.406 3.269  
*DV: Boredom Proneness; CI = Confidence Interval; LB = Lower 
Bound; UB = Upper Bound. 

 
 
 
 

When Head Injury was entered in the second step of the regression, it functioned as a significant 

positive predictor of boredom proneness (β=0.108, p=0.001, r2=0.025). 

 
To explore the effects of head injury further, specific contrasts were conducted between the 

head injury groups. This analysis indicated that when controlling for age and gender, participants 

who experienced a concussion reported significantly higher levels of boredom proneness relative to 

healthy controls (β=0.052, p=0.012). Similarly, relative to both healthy controls (β=0.163, p=0.001) 

and concussed participants (β=0.146, p=0.001), TBI participants reported significantly higher levels 

of boredom proneness. The model fit in all instances was significant (Table 3.7). 

 

Table 3.7. Head Injury subgroups as predictors of Boredom Proneness. 

  β t p 95.0% CI (LB) 95.0% CI (UB) 

1 Age -.042 -2.063 .039 -.155 -.004 

2 

Gender -.123 -5.971 .000 -2.283 -1.154 

Concussed (v Controls) .052 2.528 .012 .294 2.331 

 TBI (v Controls) .163 6.595 .000 8.809 16.264 

 TBI (v Concussed) .146 5.837 .000 7.453 14.994  
DV: Boredom Proneness; CI = Confidence Interval; LB = Lower Bound; UB = Upper 
Bound 

                                                                 
8 The ratio of men to women was skewed by the number of women in this sample and thus, a weighted 
effects code was computed to account for this discrepancy prior to including the gender variable in any 
regression analysis. 
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  Next, the same analyses were run with self-control as the dependent measure. Once again, 

the first step in the model controlled for age (β=0.098, p=0.001) and gender (β=0.07, p=0.001) 

which accounted for a little over 1% of the variance (r2=0.014). Note, as opposed to boredom 

proneness, these variables now act as positive predictors of self-control (Table 3.8). 

 

Table 3.8. Head Injury as a predictor of Self-Control 
 

  β t p 95.0% CI (LB) 95.0% CI (UB) 
       

1 Age .098 4.753 .000 .104 .250 
 Gender .070 3.399 .001 .399 1.488 

2 Head Injury -.054 -2.444 .015 -2.029 -.233  
*DV: Self-Control; CI = Confidence Interval; LB = Lower Bound; UB = Upper 
Bound. 

 
 

When head injury was entered in the second step of the regression, it functioned as a significant 

negative predictor (β=-0.054, p=0.015) of self-control. 

 
Further examination of the effect of head injury severity on self-control (Table 3.9), 

indicated that individuals with concussions reported significantly lower levels of self-control (β=-

0.05, p=0.016), relative to controls. 

 

 

Table 3.9. Head Injury subgroups as predictors of Self-Control. 
  β t p 95.0% CI (LB) 95.0% CI (UB) 

1 Age .098 4.753 .000 .104 .250 
 Gender .070 3.399 .001 .399 1.488 

2 Concussed (v. Controls) -.050 -2.411 .016 -2.204 -.227 
 TBI (v. Controls) -.020 -.815 .415 -5.227 2.158 
 TBI (v. Concussed) -.004 -.168 .867 -4.052 3.414  

*DV: Self-Control; CI = Confidence Interval; LB = Lower Bound; UB = Upper 
Bound. 

 
 

 

Surprisingly, no difference was seen between the healthy controls and the TBI participants with 

respect to self-control. Similarly, there was no difference between the Concussed and TBI groups. 
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Finally, the cognitive and affective predictors of boredom proneness were investigated in the 

head injury subgroups. To do this, two linear regression analyses were conducted; in the same 

manner as in previous analyses, age and gender effects were controlled for, but in this case neither 

variable reached statistical significance nor improved the fit of the models and were thus removed 

from further analysis. In the main analyses, measures of self-control, mind-wandering, and 

aggression were included. Results for the concussed group are presented in Table 3.10; for the TBI 

group, see Table 3.11. 

 

Table 3.10. Cognitive and affective predictors of Boredom Proneness in individuals with 
Concussion.  
 β t p 95.0% CI (LB) 95.0% CI (UB) 

Self-Control -.331 -6.172 .000 -.487 -.252 
Mind-Wandering (Deliberate) -.069 -1.456 .146 -.279 .042 

Mind-Wandering (Spontaneous) .235 4.259 .000 .213 .580 
Physical Aggression .040 .725 .469 -.057 .124 
Verbal Aggression -.059 -1.030 .304 -.263 .082 
Anger .011 .170 .865 -.145 .172 
Hostility .254 4.514 .000 .129 .328  
*DV: Boredom Proneness; CI = Confidence Interval; LB = Lower Bound; UB = Upper Bound. 

 
 

For the concussed group (Table 3.10), as in the healthy controls presented in Study 1, three 

significant predictors of boredom proneness emerged: self-control, spontaneous mind-wandering, 

and hostility. While increases in spontaneous mind-wandering and hostility predicted increases in 

boredom proneness, increases in self-control negatively predicted boredom proneness. Together, 

these measures accounted for 39.4% of variance in the model (R2=0.394, p < 0001.). 

 

 

Table 3.11. Cognitive and affective predictors of Boredom Proneness in individuals with TBI. 
 

 β t p 95.0% CI (LB) 95.0% CI (UB) 
      

Self-Control -.287 -1.540 .134 -.458 .064 
Spontaneous Mind-Wandering .137 .807 .426 -.206 .474 
Physical Aggression .300 1.748 .091 -.026 .336  

*DV: Boredom Proneness; CI = Confidence Interval; LB = Lower Bound; UB = Upper Bound. 
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For the TBI group, the results were less clear; overall the model was significant, and 

explained a total of 30.4% of the variance in boredom proneness scores, but no specific 

predictor reached statistical significance independently (Table 3.11). 

 

3.4 Discussion 

 
This study examined the relationship between boredom proneness and self-control as a 

consequence of traumatic brain injury of varying degrees of severity. The relatively large sample sizes 

in the control and concussed groups yielded significant correlations with boredom proneness and all 

other measures. A similar pattern of correlations were observed in the Concussed group (Table 3.4), 

relative to those seen in the healthy sample presented in Study 1 (Table 2.2). Although the 

Concussed group reported higher levels of boredom proneness, the strength of the relationships 

between boredom proneness and measures of cognition and affect were not significantly different in 

this group. 

 
For the first time, a significant rise in boredom proneness as a function of head injury has 

been demonstrated (Tables 3.2 and 3.3). Head injury operated as a significant positive predictor of 

boredom across the three groups (Table 3.6 and 3.7), with Concussed participants demonstrating 

slightly higher levels of boredom proneness than healthy controls, and TBI participants exhibiting 

the highest levels, even relative to their age-matched controls (Tables 3.2 and 3.3). In addition, TBI 

participants showed a significant positive correlation between boredom proneness and physical 

aggression (Table 3.5) not seen in any other group. The regression models showed that presence and 

severity of head injury, as well as self-control, operated as significant predictors of boredom 

proneness. This suggests that individuals who have suffered more severe head injuries and who 

demonstrate lower levels of self-control are more prone to the experience of boredom.   
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The results with respect to self-control as a function of head injury were somewhat mixed. 

The Concussed participants reported lower levels of self-control relative to HCs; however, the TBI 

participants did not show lower levels of self-control relative to age-matched HCs. Both TBI and 

age-matched control groups had higher levels of self-control relative to the larger healthy control 

sample, probably reflective of the influence of age (i.e., levels of self-control increase with age). 

Correlational analyses showed that the nature of the relationships between self-control and the other 

measures of interest did not differ between control and concussed participants. In the TBI group, 

results showed that the strength of coefficients was strongest between self-control and measures of 

aggression (specifically, physical aggression and anger). It may be the case that failures of inhibitory 

control – a common consequence of TBI – lead this group to express their dissatisfaction with their 

environment in more direct physical ways. Regression analyses directly contrasting groups showed 

that the only subgroup which reached statistical significance was the controls v. Concussed group 

contrast (Table 3.9). The TBI group did not differ significantly from controls or from the 

Concussed group. There are a few plausible reasons for this: first, the TBI sample is small and 

variability of responses is high in this population. Second, the TBI sample is older and report 

generally higher levels of self-control than seen in the younger sample of healthy controls (Tables 

3.2 and 3.3). Finally, it is also possible that individuals with TBI over-reported levels of self-control 

 
(insight into one’s own behaviour is commonly diminished in this group). 

 
With respect to the cognitive and affective predictors of boredom proneness in the 

concussed and TBI samples, results were somewhat mixed. In the concussed group, results 

mirrored what was observed in the healthy controls of Study 1 with self-control, spontaneous mind-

wandering, and hostility all significant predictors of boredom proneness (Isacescu, Struk & 

Danckert, 2016). On the other hand, for the TBI group, while the model itself was significant, no 
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individual predictor reached statistical significance independently. It is plausible that the dynamics 

between these variables of cognition and affect are even more variable among individuals with TBI 

– the influence of self-control varies even in control populations – and, heterogeneity of data is very 

common in TBI populations. More research is needed to elucidate the possible mechanisms through 

which cognitive and affective traits interact to predict boredom proneness in TBI. The current 

results highlight that boredom proneness is associated with failures of self-control and this is 

exacerbated in individuals who have suffered varying levels of TBI. The failure to fully engage with a 

task or environment in this population is likely to have serious consequences for an individual’s 

ability to re-establish independence and to benefit from rehabilitation programs. 

 
There are several key limitations to the current study that warrant mention. First, the TBI 

group did not differ from their age-matched controls in terms of self-reported levels of self-control. 

This highlights the challenge of self-report measures in a TBI population (Sherer et al., 2014). That 

is, individuals with TBI often lack insight into their condition and abilities making their self-reports 

(for all measures used here) somewhat unreliable. Using care-giver responses will overcome this to 

some extent. Nevertheless, even if a lack of insight (or the effects of desirability – making responses 

that put one in a positive light; Dyer, Bell, McCann & Rauch, 2006) influenced reports of levels of 

self-control, they cannot explain some of the other results. That is, desirability or a lack of insight 

would presumably lead to under-reporting of levels of physical aggression that were highest in the 

TBI group. Similarly, group membership (i.e., the presence and severity of a head injury) is not 

susceptible to these problems and accounted for over half the variance in the model with age-

matched controls. 

 
Additionally, age-matched controls for the TBI group were not matched on gender (quite 

the opposite). The findings here and in Study 1 suggest that while gender does impact upon 

boredom proneness (with males more prone to the experience than females); this effect is typically 
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small, accounting for only 1-2% of the variance in the model. Nevertheless, this discrepancy was 

taken into account using weighted effects codes computed. A much bigger contributor, evident 

when controlling for gender, are levels of self-control which was true in the current samples; while 

it would have been ideal to match on gender as well, it seems unlikely that it has skewed the results 

dramatically. Finally, it was not possible to control for general levels of cognitive functioning in 

the regression analyses as a measure of this (i.e., the MoCA) was only obtained for the TBI 

sample. When assessing the relationship of participant MoCa scores to boredom proneness in this 

group, analyses failed to reach significance (correlations as well as regressions). This is important 

for the TBI group especially, given that a lower cognitive functioning score could suggest that 

cognitive deficits may contribute in some way to elevated levels of boredom proneness. 

 
Perhaps what is warranted as a next step in exploring the consequences of brain injury for 

boredom proneness is to develop behavioural assays of the experience – objective measures that 

distinguish between those high vs. low in boredom proneness. In the past, sustained attention tasks 

have been used to demonstrate that high boredom prone individuals perform more poorly than their 

low boredom counterparts (Malkovsky et al., 2012). This behavior is similar to what is seen in TBI 

individuals (Robertson, Manly, Andrade, Baddeley & Yiend, 1997; Dockree et al., 2004, Dockree et 

al., 2006; O’Keeffe et al., 2007). While this shows that attention deficits are characteristic of both 

 
TBI and healthy individuals highly susceptible to boredom, they do not provide any direct metric of 

boredom proneness. The proposed cornerstone of boredom proneness – a disengagement from 

one’s environment – may manifest as a failure to persist in performing a challenging task. One 

possibility for future research then would be to employ variants of tasks such as foraging to examine 

the extent to which high and low boredom prone individuals (and individuals with TBI) engage with 

a variable and challenging task environment. 
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Chapter 4: Exploring the neural networks associated with boredom in healthy controls 

and TBI participants. 

 
4.1 Introduction 

 
The first two studies of this thesis explored the relationship between boredom proneness 

and cognitive and affective measures as they relate to different levels of self-control. The results 

support the notion that boredom proneness is related to lower levels of self-control reflective of 

failures of self-regulation affecting both cognitive and affective domains (Eastwood et al., 2012; 

Isacescu, Struk & Danckert, 2016; Isacescu & Danckert, 2016; Struk, Scholer & Danckert, 2015). 

Interestingly, age operated as a significant negative predictor of boredom even when a very narrow 

age range (17 – 22 y.o.a) was explored (Study 1; Isacescu, Struk & Danckert, 2016). This hints at the 

possibility that frontal cortical maturation leads to decreased levels of boredom proneness. Finally, 

boredom proneness was increased as a function of head injury (Study 2; Isacescu & Danckert, 2016), 

supporting the notion that the integrity of frontal cortex – compromised in TBI – is important in 

staving off the experience of boredom. 

 
The findings presented thus far underscore the relationship between boredom proneness 

and dysregulation of attentional control. As mentioned in Chapter 2, this relationship has been 

repeatedly demonstrated across a range of studies showing that boredom proneness is associated 

with poor sustained attention, increased attentional lapses, attention-related cognitive errors 

(Bench and Lench 2013; Cheyne, Solman, Carriere & Smilek, 2009; Cheyne, Carriere & Smilek, 

2006; Carriere, Cheyne & Smilek, 2008; Malkovsky, et al. 2012), spontaneous mind-wandering 

(Isacescu, Struk & Danckert, 2016), and adult symptoms of ADHD (Malkovsky et al, 2012). 

Imaging research exploring disengaged attentional states, such as off-task processing and 

spontaneous mind-wandering, have shown neural activation within a network of brain regions 
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known collectively as the default mode network (DMN; Binder et al. 1999; Bonnelle et al., 2011; 

Buckner et al., 2008; Christoff , 2011; Christoff, Gordon, Smallwood, Smith & Schooler, 2009; 

Gusnard & Raichle 2001; Mason et al., 2007; Schooler et al., 2011, Weissman, Roberts, Visscher, & 

Walforff, 2006). A highly-interconnected set of brain regions, the DMN supports internally-

focused thinking (i.e., thinking to oneself, imagining past events, thinking of the future) and is 

activated when there is no external task or stimulus for the individual to engage with (Buckner, 

Andrews‐Hanna & Schacter, 2008; Gusnard, Akbudak, Shulman & Raichle, 2001; Mason et al., 

2007). Structurally, the main hubs of the DMN include the posterior cingulate cortex and 

precuneus, ventromedial prefrontal cortex and medial, lateral, and inferior parietal cortices 

(Buckner, Andrews‐Hanna & Schacter, 2008). In healthy participants, DMN activation has been 

shown to increase when at rest or during mind-wandering, and to decrease when one is engaged in 

an externally-focused task (Greicius, Krasnow, Reiss & Menon, 2003; Mason et al. 2007; Weissman 

et al. 2006; Gusnard & Raichle 2001). 

Research exploring the neural underpinnings of boredom is in its infancy. While imaging 

studies have assessed boredom levels in passing, few have made it the primary focus. For instance, 

Ulrich and colleagues assessed the neural networks of an experimentally induced state of “flow” – a 

state one might consider to be the opposite of boredom, in which the individual is deeply engaged 

in an activity to the point that all else fades away (Csikszentmihalyi, 1996; Nakamura & 

Csikszentmihalyi, 2014). In their experiment, participants had to perform mental arithmetic tasks 

(i.e., summing two or more numbers) of varying levels of difficulty: the task with the lowest degree 

of difficulty was considered “boring” and was used as a control relative to an adaptive “flow” 

condition in which difficulty levels were adjusted according to a participant’s performance (Ulrich, 

Keller, Hoenig, Waller & Gron, 2014). They found that, relative to the boring condition, the state of 

flow was associated with a decrease in DMN activation, specifically in medial prefrontal cortex and 
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the amygdala. Relatively speaking, posterior portions of the DMN were more active during the 

boring condition (Ulrich et al., 2014). In a more recent study, the state of boredom was more 

directly assessed via a mood induction and was contrasted with a resting state, an induction of 

interest/engagement, and a sustained attention task (Danckert & Merrifield, 2016). Results showed 

that when people were bored activity was evident in the posterior cingulate and adjacent precuneus, 

middle and superior temporal gyri – in other words, posterior portions of the DMN. Interestingly, 

anticorrelated activity was observed in the anterior insula during the boredom mood induction. No 

such activity was evident for the resting state scan (Danckert & Merrifield, 2016). 

A host of imaging research has been conducted to better understand the neurocognitive 

consequences of TBI, with results indicating that TBI survivors are left with pervasive structural 

damage to the neocortex and white matter connective tissue (Hulkower, Poliak, Rosenbaum, 

Zimmerman & Lipton, 2013; Kraus et al., 2007; Liu, Maldjian, Bagley, Sinson & Grossman, 1999; 

Mayer, Bellgowan & Hanlon, 2015; Peduzzi, Eleftheriou & Novack, 2001; Scheid, Preul, Gruber, 

Wiggins & Von Cramon, 2003; Sharp, Scott & Leech, 2014; Smith & Meaney, 2000). The 

consequences from such diffuse damage can range from difficulties with concentration (Drew et al., 

2007; Kim et al., 2007), orienting attention (Nicholl & LaFrance, 2009; Rabinowitz & Levin, 2014; 

Rao & Lyketsos, 2000; Riggio, 2010), disinhibition (poor control of both emotions and cognitions; 

Fischer et al., 2014; Hart et al., 2011; Jorge & Arciniegas, 2014; Kim, 2002; Konrad et al., 2014; 

Wood & Thomas, 2013), and as shown in Study 2, increased levels of boredom proneness (Isacescu 

& Danckert, 2016). Studies investigating the integrity of connectivity between brain regions after 

TBI have implicated the involvement of the DMN in attentional tasks, and suggest that network 

connectivity of the DMN in TBI can predict sustained attention deficits. That is, those individuals 

with more damage present to tracts that connect the DMN (to each other and to other parts of the 

brain), present with greater impairments of sustained attention (Bonelle et al., 2011). 
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Downregulation of the DMN is typically accompanied by upregulation of the salience and central 

executive networks (i.e., cortical areas typically involved in change detection such as the anterior 

cingulate cortex (ACC), presupplementary motor areas (preSMA) and anterior insula (AI); Bucknor 

et al., 2008). One study investigating the structural integrity of salience networks in TBI, 

demonstrated a failure to deactivate the DMN during tasks that required sustained attention and 

would presumably also require upregulation of the central executive and salience networks. In other 

words, TBI patients exhibited impaired co-ordination of large scale neural networks (Bonnelle et al., 

2012). This failure to downregulate the DMN may be in part responsible for the inefficient cognitive 

control evident in TBI (Bonnelle et al., 2012). 

The aim of the current study was two-fold: first, to replicate previous findings concerning 

the neural networks associated with state boredom in healthy adults and second, to extend this 

investigation to include individuals with TBI. A total of 13 controls and four TBI participants99 were 

scanned in a series of conditions: a boredom mood induction, a resting state scan, a video intended 

to induce a state of ‘interest’, and a sustained attention task (i.e., using the same scanning protocol as 

in Danckert & Merrifield, 2016; see Methods). The interest mood induction was intended as a kind 

of ‘opposite’ state to boredom and the sustained attention task was included to determine whether 

the neural underpinnings of a disengaged attentional state would be broadly similar across this and 

the boredom mood induction. As already mentioned, previous research has shown an increase in 

DMN activation in TBI individuals while performing sustained attention tasks and during resting 

states (Bonnelle et al., 2011; Bonnelle et al., 2012), however the neural underpinnings of boredom in 

this population have not yet been explored. If TBI individuals upregulate the DMN (or, have 

trouble downregulating it, as other researchers have found), it is plausible that the same can be 

                                                                 
9 An extremely conservative approach was taken with respect to selection of individuals with TBI to 
participate in the fMRI portion of this research. In study 2, there was a TBI sample of 35 and while most of 
them were interested in participating, a total of 31 were excluded due to a wide range of reasons (Appendix 
A). 
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expected for the boredom mood induction. For instance, in healthy controls, DMN structures 

showed correlated activation when participants were bored – with anticorrelated activation present 

in the anterior insula (Danckert & Merrifield, 2016). It is plausible then, that the TBI participants 

will show greater activity in the DMN when bored than is observed in healthy controls. It is also 

possible that, unlike controls, individuals with TBI may fail to downregulate the salience network. 

That is, where activity in the anterior insular is anticorrelated with the DMN in healthy controls, it 

may show the opposite pattern in TBI. 

 
4.2 Method 

 
Participants 

 
This study was conducted with neurologically healthy participants and individuals who had 

sustained a traumatic brain injury (TBI). Healthy and TBI participants were recruited from the 

Kitchener-Waterloo community (for recruitment details see Appendix A). All control participants 

were free of neurological and/or psychiatric disorders, with no history of previous head injury and 

reported having normal or corrected to normal vision and hearing. The control sample was 

comprised of 15 healthy adults (9 women, all right handed) and ranged in age from 21-61 (Mage = 

29.33, SD = 11.64). The TBI sample was a subset of the sample studied in Study 2 who agreed to 

participate in this follow-up fMRI investigation. The sample was comprised of four adults (all male, 

all right handed) and ranged in age from 26-59 (Mage=40.5, SD = 15.33)1010. This project was 

reviewed by and received ethics clearance through the University of Waterloo Research Ethics 

Committee and the Tri-Hospital Research Ethics Board (THREB). 

 

                                                                 
10 From the initial 35 individuals who participated in Study 2, a subset agreed to participate in this fMRI 
follow-up study. An extremely conservative approach was taken with respect to inclusion criteria for TBI 
participants in this investigation (Appendix A). 
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Data from two control participants were not included in the fMRI analyses for the 

following reasons: data from one participant was removed due to excessive motion; data from a 

second participant was discarded as preliminary analyses failed to illuminate any significant regions 

of activation across all four conditions11. Therefore, the following results are based on the remaining 

control sample of 13 participants (Mage= 30.13, SD = 12.29; 8 females, all right-handed) and four 

TBI participants. 

 

Self-Report Measures 

The SBPS and MW scales, used in the first two studies, were employed here as trait 

measures of boredom proneness and mind-wandering. In addition, retrospective state measures of 

boredom and mind-wandering were taken after each functional scan. That is, following each scan 

participants were asked two questions: ‘How bored are you right now?’ and “While [watching the 

video/resting with your eyes open/completing the Starry Night task], how much did your mind 

wander?” Each question was accompanied by a visual Likert scale ranging from 0 (not at all) to 9 

(extremely) presented onscreen. The questions were posed verbally by the experimenter through the 

scanner’s intercom with participants’ responses recorded manually. 

 

fMRI 

 
Four scans were completed by each participant; two conditions involved videos intended to 

induce either boredom or a state of interest, a third scan required participants to perform a sustained 

attention task, and the final scan consisted of a standard resting state session (see below). 

 

 

                                                                 
11 Any speculation as to why this happened was deemed impossible to validate. Several attempts to run the 
single-subject ICA on this data set found the same (lack of) result suggesting it was not a computer glitch. 
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Boredom Mood Induction 

To induce a state of boredom, a video that portrayed two men hanging clothes on a drying 

rack, occasionally asking each other for a clothes pin was presented for 8 minutes. In prior work, at a 

variety of durations (from 171 to 341s), this video has been shown to reliably induce intense feelings 

of boredom (Merrifield & Danckert, 2014). The 8-minute version of the video used here was 

constructed by looping a shorter 240s version once (Figure 4.1). 

 

Interest Mood Induction 

To induce a state of interest/engagement, an excerpt from the British Broadcasting 

Company’s (BBC) documentary film, Planet Earth (Fothergill et al., 2007) depicting exotic animals, 

landscapes, and vegetation was used. Prior research has shown that this clip elicits a strong state of 

interest (Merrifield & Danckert, 2014). An 8-minute version of this movie was used here (Figure 

4.1). 

 

Resting State Scan 

Participants were presented with a visual display consisting of a grey background with a 

centrally located black fixation cross for 8 minutes. They were instructed to relax with eyes open and 

remain as still as possible for the duration of the scan. 

 

Sustained Attention: the Starry Night Task 

Participants were presented with a visual display consisting of a black background with 

~250 white target dots (approximately 0.5° of visual angle, maximal contrast) randomly distributed 

onscreen, intended to represent a starry night sky (Rizzo & Robin, 1990; Figure 4.1). At 

pseudorandom temporal intervals a ‘star’ could either appear or disappear with participants asked to 
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press a button when they detected either event type. Appearances and disappearances were equally 

likely, and occurred with an ISI ranging from 2000ms to 7000ms (Figure 4.1). Parameters for each 

event were as follows: if the number of stars on-screen was between 248 and 252, a random event 

occurred (i.e., appearance or disappearance); if the number of stars on the screen was 247, an 

appearance event occurred; and if the number of stars on-screen was 253, a disappearance event 

occurred. These rules ensured that the number of stars on the screen at any one time ranged 

between 247 and 253 (i.e., 250 +/-3). Participants were presented with 160 trails (80 Appearances, 

80 Disappearances) over a span of 8 minutes. 

 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.1. Boredom, Interest, Resting State and Starry Night Scanning Conditions. 
 
 

 

Apparatus 
 

All stimuli were presented on an Avotec Silent VisionTM (Model SV-7021) fibre-optic visual 

presentation system with binocular projection glasses controlled by a computer-running E-Prime 

software (version 1.1, Psychology Software Tools, Pittsburgh, PA) synchronized to trigger-pulses 

from the magnet. 

 
Procedure 

 
Participants first underwent an anatomical scan prior to the four functional runs: 1) 

boredom mood induction, 2) interest mood induction, 3) resting state, and 4) the Starry Night task. 

The four functional runs occurred in random order. During the boredom and interest mood 
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induction scans, participants were instructed to watch the video and to remain still; during the 

resting state scan, participants were instructed to keep their eyes open, relax, and remain still; finally, 

during the Starry Night scan, participants were instructed to respond, via button press, as quickly 

and accurately as possible, to the appearance or disappearance of a ‘star’ while maintaining their gaze 

at fixation. 

 
Following each functional run, participants were asked how bored they were and how much their 

minds had wandered on a scale of 0 (not at all) to 9 (extremely). After exiting the MRI scanner, 

participants completed the SBPS and Mind-Wandering questionnaires. The experiment lasted 

approximately 50 minutes. 

 

fMRI Data Acquisition 

At the beginning of the session, a whole-brain T1-weighted anatomical image was collected 

for each participant (TR = 7.5 ms; TE = 3.4 ms; voxel size, 1 x 1 x 1 mm3; FOV, 240 x 240 mm2; 

150 slices; no gap; flip angle, 8°). 

 
Functional data were collected using gradient echo-planar T2*-weighted images acquired on 

a Philips 1.5 Tesla machine (TR = 2000 ms; TE = 40 ms; slice thickness = 5 mm with no gap, 26 

slices; FOV = 220 x 220 mm2; voxel size = 2.75 x 2.75 x 5 mm3; flip angle = 90°). An experimental 

run consisted of 26 slices/volume and 240 volumes (8 minutes). 

 

fMRI Preprocessing and Statistical Analyses 

All MRI data preprocessing and analyses were completed using Brain Voyager QX (version 

2.1, Brain Innovation B.V., Maastricht, the Netherlands). First, each participant’s anatomical data 

was transformed into standard stereotaxic space (Talairach & Tournoux, 1988) and co-registered to 

their functional data. All functional runs were visually inspected for motion artefacts by playing a 
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virtual movie of each volume in sequence (Culham, 2003). Next, preprocessing of all functional data 

was completed using the following procedures: slice-time correction, linear trend removal, and three 

cycles of temporal high pass filtering. For all 17 participants, trilinear/sinc interpolation was used to 

correct for motion artefacts in functional runs. Spatial smoothing using a Gaussian kernel (4 mm 

Full Width Half Maximum) was applied (Mason et al., 2007). Finally, segmentation of the cortical 

sheet was carried out and cortex-based volumetric time course (VTC) masks were created for each 

participant prior to carrying out the Independent Components Analyses (ICA). 

 
Blood oxygenation level dependent (BOLD) signals from each functional run were analyzed 

using independent components analysis (ICA) to examine network connectivity (DeMartino et al., 

2007; Esposito et al., 2005). ICA allows for the identification of sets of voxels with similar spatial 

patterns in different participants, even if the voxels are distributed in different parts of the brain, are 

influenced by different sources of noise, and have different time courses in different participants. In 

this way, temporal and spatial properties can be used to identify task-unrelated noise and 

components that reflect functional networks in the brain (Beckmann, DeLuca, Devlin, & Smith 

2005). In addition, ICA identifies distinct functional networks without relying on a priori hypotheses 

regarding network anatomy. Functional data was analyzed using the following ICA procedure. 

 
First, single-subject ICAs were conducted for each participant using the fastICA algorithm, 

once for each of the four scanning conditions (Hyvarienen, Hoyer, & Inki, 2001). Next, 30 

Independent Components (ICs; spatial maps) were extracted for each participant, per condition. 

Individual IC ‘fingerprints’ were then visually inspected to determine which of these components 

related to BOLD responses. A fingerprint characterizes each IC along eleven temporal and spatial 

features, enabling the classification of ICs as related to BOLD responses, motion artefacts, 

vasculature, etc. (DeMartino et al., 2007). 
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Next, for the controls and then TBI participants separately, group-level ICAs were 

conducted using the self-organizing group ICA algorithm (sogICA), once for each scanning 

condition (DeMartino et al, 2007; Esposito et al., 2005). For each condition, all single-subject IC 

maps for a particular functional run were clustered at the group level (e.g., for the boredom sogICA, 

the 30 components extracted for each participant from the boredom functional run were clustered), 

matching the most similar spatial patterns across participants. From this, 30 group-averaged clusters 

were extracted and an average spatial map was computed and assumed to be representative for the 

cluster. The consistency of the clusters across participants was expressed in terms of a similarity 

mean (s), which is defined as the average of the pair-wise spatial correlations between the 

constituting single-subject IC maps and is based on a hierarchical clustering procedure. That is, the 

sogICA algorithm converted similarity measures to Euclidean distances and these were used to fill a 

matrix of distances. Based on this distance matrix, a supervised hierarchical clustering procedure was 

run, with the supervising constraint consisting of accepting only one component per participant in 

each cluster formed by the hierarchical procedure. Each of the spatial maps was then visually 

inspected to identify any major network components. Potential networks and network components 

were then examined to determine whether they corresponded to BOLD responses, by examining 

their single-subject maps and fingerprints and only clusters of 100 contiguous voxels and above were 

considered meaningful. Clusters that were identified as artifacts through this procedure were 

eliminated from further exploration. 
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4.3 Results 

Self-report measures 

 

Control Participants 
 

Trait Measures 

 

Boredom Proneness 

 

Control participants’ mean score on the SBPS was 22.33 (SD=7.34, range=10-33), which is 

on par with the SBPS scores obtained in the larger pool of control participants described in 

Chapters 2 and 3 (M = 23.84, SD = 8.84, n = 1928; t-difference = -.74, p =.76). 

 

Mind-Wandering 

Control participants’ mean score on the deliberate mind-wandering scale was 21.00 

(SD=1.95, range=7-17), relative to M= 17.99 (SD = 5.78; range = 4-28) of the larger control group 

(t-difference = 5.41, p = .99). Regarding spontaneous mind-wandering, controls had a mean of 15.08 

(SD = 4.81, range 8-26), relative to the larger sample that scored M = 16.86 (SD = 7.72, range = 4-

28), t-difference = -1.33, p = .11). 

 

State Measures 

Boredom Probes 

Control participants reported feeling most bored in the boredom (M = 6.85, SD = 1.82; 

Figure 4.2) and resting state conditions (M = 7.54, SD = 1.71), which did not differ significantly 

from each other (t = -1.74, p = .108). Both conditions were significantly more boring than the 

interest condition (M = 5.15, SD = 2.34; t = 2.48, p = .029 and t = 3.48, p = .005, respectively) and 

the Starry Night task (M = 4.69, SD = 2.53; t = 3.542, p =.004 and t = 4.258, p = .001, respectively). 
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Boredom levels across the Interest and Starry Night conditions did not differ from each other (t 

=.43, p=.676). 

 

Mind-Wandering Probes 

A similar pattern emerged with respect to the mind-wandering probes: participants mind-

wandered the most during the boredom (M = 6.23, SD = 2.35; Figure 4.2) and resting state (M = 

6.92, SD = 1.66) scans. Again, these two conditions did not differ significantly from each other (t = 

-.987, p = .343). Participants mind-wandered significantly less in the Interest and Starry Night 

conditions relative to the boredom condition (t = 3.811, p = .002; t = 2.509, p =.027, respectively), 

and significantly less than the resting state (t = 4.251, p = .001 and t = 4.530, p = .001, respectively). 

Participants mind-wandered the least during the Starry Night task (M = 4.15, SD = 2.38), followed 

by the Interest condition (M = 4.54, SD = 2.18), but these two conditions did not differ significantly 

from each other (t = .540, p=.599). 
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Figure 4.2. Controls’ (upper panel) and TBI (lower panel) boredom (white bars) 
and mind-wandering (black bars) ratings between scanning conditions. Error 
bars represent SE +/-1. 

 

 

TBI Participants 

Statistics regarding trait and state measures are presented here for the sake of comparison 

with controls, but should be taken with some caution given the extremely small sample size. 

 

Trait Measures 

Boredom Proneness 

For the TBI group, mean SBPS score was 22.00 (SD = 8.04, range = 16-33). SBPS score 

observed here are lower than those observed for the larger TBI sample described in Study 2 (M = 

32.17, SD = 6.82, range = 14-50); however, this difference was not statistically significant probably 
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due to the large range of scores in this small sample: t-difference = -2.77, p = .45). The two samples 

were similar in age (MAge = 40.50, SD = 15.33); Study 2 MAge = 43 (SD = 13.97). 

Mind-Wandering 

The TBI group had a Deliberate MW mean of 15.00 (SD = 5.83, range = 9-20), relative to 

the larger TBI sample in Study 2 (M = 14.51, SD = 6.47, range = 4-27); and spontaneous M = 16.25 

(SD = 8.65, range = 4-24), relative to the larger sample of mean of 18.77 (SD = 6.96; range = 4-28). 

 

MoCa and GCS 

The TBI group showed similar scores on the GCS (M = 6.25; SD = 5.85) relative to the 

larger TBI group from Study 2 (M = 5.72, SD = 4.50; t-difference = .175, p = .547). Scores on the 

MoCa were relatively high for this subsample (M = 27, SD = 1.41), compared to the larger group 

from Study 2 (M = 23.06, SD = 3.99; t-difference = 4.038, p = .998). Although these scores do not 

differ statistically, the four individuals selected here represent a high functioning subset of the larger 

sample in Study 2. 

 

State Measures 

Boredom Probes 

TBI participants reported feeling most bored in the boredom (M = 7.75, SD = 1.23; Figure 

4.2) and resting state conditions (M = 6.50, SD = 3.79), which did not differ significantly from each 

other (t = .95, p = .412). The boredom condition approached significance relative to the interest 

condition (M = 4.50, SD = 3.32; t = 2.93, p = .061), whereas the rest condition was not significantly 

different from interest (t = 1.63, p = .201). Participants found the Starry Night condition (M = 3.75, 

SD = 1.26) the least boring, differing significantly from the boredom condition (t = 3.542, p =.004), 

whereas the difference in levels of boredom between the resting state and Starry Night conditions 
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was not significantly different (t = 1.92, p = .151). Boredom levels between the Interest and Starry 

Night conditions also did not differ significantly from each other (t = .52, p =.638). 

 

Mind-Wandering Probes 

A similar pattern emerged with respect to the mind-wandering probes: TBI participants 

mind-wandered the most during the boredom (M = 6.25, SD = .96; Figure 4.2) and resting state 

(M= 6.50, SD = 2.52) scans. Again, these two conditions did not differ significantly from each other 

(t = -.293, p = .789). Participants mind-wandered the least during the Starry Night task (M = 2.75, 

SD = 3.10), which approached statistical significance relative to the boredom condition (t = 2.782, p 

=.069), was significantly lower than the rest condition (t = 3.174, p = .05), as well as the interest 

condition (t = 7.00, p = .006). The boredom and interest conditions did not differ significantly from 

each other (t = 1.698, p = .188), and neither did the interest and resting conditions (t = 1.852, p 

=.161). 

 

Behavioural Data 

 

To assess performance on the Starry Night task, mean reaction times within and between 

groups were compared, and accuracy proportions and sensitivity ratings (d’; proportion of Hit rate – 

proportion of False alarms; Swets, 1964) were calculated for both groups12. Results are presented in 

Table 4.1. Once again, caution must be taken in interpreting these results given the small sample 

sizes. 

 

 

 

                                                                 
12 Anticipatory responses (<150ms) and abnormally slow responses (>2000ms) were removed from the above 
analyses. 
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Table 4.1 Control and TBI Behavioural Data 

 Controls TBI    

 M SD M SD t p 

Reaction Time (ms) A 526.5 102.51 457.39 60.47 1.60 .143 
D 550.16 115.04 444.71 52.19 2.43 .03 

Accuracy (prop. correct) A .56 .19 .67 .18 -1.02 .328 
D .48 .14 .72 .08 -3.12 .002 

Sensitivity (d’) A 2.06 .61 2.45 .43 -1.17 .204 
D 1.88 .44 2.52 .72 -2.14 .167  

Note: A = Appearances; D = Disappearances 
 
 
 

Reaction Time 

Control participants were faster to detect appearance events relative to disappearance events, 

but the difference was not statistically significant (t = -1.315, p =.218; Table 4.1). TBI participants’ 

results were in the opposite direction: they were faster to detect disappearances than appearances, 

but the difference was not statistically significant (t = .413, p = .707. Overall, the TBI group had 

shorter RTs for both appearances and disappearances; the difference between control and TBI RTs 

was significant for disappearances, but did not reach statistical significance for appearances. 

 
Accuracy 

Control participants were numerically more accurate in detecting appearance events relative 

to disappearance events, but the difference did not reach statistical significance (t = 1.458, p = .176. 

The TBI group showed the opposite pattern, with accuracy scores being the highest for 

disappearance relative to appearance events, however this difference did not reach statistical 

significance (t = -.521, p = .638). Between groups, TBI participants were more accurate in detecting 

both types of targets: while the proportions for appearance events did not differ significantly, the 

proportion of accurately detected disappearance events did. 
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Sensitivity 

Control participants were numerically more sensitive to detecting appearance events relative 

to disappearance events, although they were not significantly different (t =1.096, p = .299). The TBI 

group’s results showed a similar pattern to that seen above in the RT data: they were numerically 

more sensitive to detecting disappearance events relative to appearance events, although this 

difference was not statistically significant either (t = -.23, p = .833). Contrasting groups, TBIs 

showed numerically higher sensitivity ratings for both appearances and disappearances relative to 

controls: for appearances, this difference was not statistically significant; and for disappearances, the 

difference in sensitivity between controls and TBI was not significant either. 

 

fMRI 

Control Participants 

Three independent component (IC) clusters corresponding to BOLD signals were identified 

for each of the Boredom, Resting State, Starry Night and Interest scans. Spatial patterns for these 

clusters were consistent across the majority of participants (Figures 4.3 and 4.4; Tables 4.2 – 4.5). All 

four scanning conditions revealed a cluster containing regions associated with DMN structures, a 

cluster comprised of visual network structures, and a third cluster comprised of (mainly) executive 

network structures, although these clusters were not consistent across conditions. Regarding the 

DMN cluster, a large, bilateral region of activation in the posterior cingulate and adjacent precuneus 

was observed. Smaller regions of activation in superior and inferior regions of parietal cortex were 

also evident, along with bilateral medial prefrontal gyrus (Tables 4.2-4.5, Figure 4.3). Anticorrelated 

activation was also observed in this cluster, mainly in dorsal portions of frontal cortex and less 

consistently in the parietal cortices, across all functional runs (Figure 4.3). It was also observed that 

bilateral insular cortex was anticorrelated in the boredom, resting state, and in the Starry Night task, 
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and correlated for the Interest condition1313 (no insular activation was observed for the Starry Night 

scan; Figure 4.4). All four conditions also revealed a cluster comprised of activation of visual 

networks: these clusters revealed bilateral activation of the occipital lobe, including the cuneus and 

adjacent lingual gyri (Tables 4.2-4.5). The third cluster observed for each functional scan, albeit more 

inconsistently across conditions, was comprised mainly of bilateral frontal regions with smaller, 

unilateral parietal, temporal, and occipital regions (e.g., in the boredom scan regions comprised 

superior frontal gyrus, superior parietal lobule and occipital cortex, in the interest and resting state 

scans clusters involved central executive regions, and in the Starry Night scan clusters included 

prefrontal and middle temporal gyrus). Details pertaining to each cluster and each condition are 

presented in Tables 4.2 to 4.5. 

                                                                 
13 As depicted in Figure 4.4, for the interest condition, insular activation was largest in the L hemisphere, 
about 4 times the size of activation in the R hemisphere. 
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Figure 4.3. Controls: Network activation patterns observed in all four scanning conditions. 
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Figure 4.4. Controls: Insular activation observed during each scanning condition. 
 
 
 
 

 

Table 4.2. Independent component (IC) clusters corresponding to the Boredom scan for the Control group 

    Centroid  Size  

Network Polarity Region BA x y z (voxels) Similarity M 

Visual Correlated Cuneus/LG 19/18 0 -69 4 24650 0.29 

Default Correlated PCC 23 -3 -53 19 3234 0.19 

 Correlated IPL 40 -39 -37 40 887  

 Anticorrelated R SFG 8 20 57 10 841  

 Anticorrelated Insula 13 35 1 2 912  

 Anticorrelated MFG 46 32 30 37 328  

 Anticorrelated mPFC 10 0 9 45 1628  

 Anticorrelated mPFC 9 39 31 31 635  

Executive/Visual Correlated MOG 19 36 -69 7 7900 .21 

 Correlated SPL 7 -27 -61 49 3135  

 Anticorrelated SFG 8    328   
Note: IPL=inferior parietal lobule; LG = lingual gyrus; MFG = middle frontal gyrus; mPFC = medial prefrontal 
cortex; PCC=posterior cingulate cortex; SFG = superior frontal gyrus; SPL = superior parietal gyrus. Neural 
activation is bilateral unless otherwise indicated. 
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Table 4.3. Independent component (IC) clusters corresponding to the Interest scan for the Control group 

     Centroid  Size  

Network Polarity Region BA x y z (voxels) Similarity M 

Visual Anticorrelated MOG, LG 19/18 30 -85 -1 3636 0.29 
Default Correlated SPL 7 30 -71 35 2607 0.16 

 Correlated Precuneus 31 -1 -59 30 1136  

 Correlated Insula 13 13 0 11 900  

 Correlated MFG 46 38 41 13 809  

 Correlated IPL 40 50 -45 28 474  

 Correlated R mPFC 10 4 44 27 455  

 Correlated R Precentral Gyrus 4 53 -7 18 333  

 Anticorrelated R Transverse Temporal Gyrus 41 53 -8 8 1652  

Executive Correlated R mPFC 9 5 45 29 917 0.16 

 Correlated mPFC 10 2 51 14 301  

 Anticorrelated SPL 7 -24 -48 54 564   
Note: MOG = middle occipital gyrus 

 
 
 
 
 

 

Table 4.4. Independent component (IC) clusters corresponding to the Resting state scan for the Control group. 

     Centroid  Size  

System Polarity Region BA x y z (voxels) Similarity M 

Visual Correlated Cuneus/LG 19/18 0 -72 -1 15892 0.22 
Default Correlated PCC 23 0 -56 13 4500 0.22 

 Anticorrelated MFG 46 41 38 20 2928  

 Anticorrelated R IPL 40 50 -37 45 583  

 Anticorrelated R IFG 44 52 8 19 541  

 Anticorrelated R MTG 21 57 -50 -8 405  

 Anticorrelated Insula 13 -34 19 5 376  

Executive Correlated mPFC 9 3 50 17 5488 0.15 

 Correlated MFG 46 -28 33 39 701   
Note: IFG =inferior frontal gyrus; MTG = middle temporal gyrus 
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Table 4.5. Independent component (IC) clusters corresponding to the Starry Night scan for the Control group. 
 

    Centroid Size  

Network Polarity Region BA x y z (voxels) Similarity M 

Visual Correlated Cuneus/LG 18/19 0 -60 -3 15137 0.25 

Default Correlated PCC/Precuneus 23, 31, 7 -3 -53 25 10780 0.24 

 Correlated L Angular Gyrus 39 -46 -66 30 1428  

 Anticorrelated R IFG 11 50 6 28 491  

 Correlated STG 22 53 -58 18 486  

Executive Anticorrelated MTG 21 -60 -36 1 995 0.20 

 Correlated mPFC 11 -4 41 -12 828  

 Correlated IFG 47 21 23 -16 467  
 

Note: IFG = Inferior Frontal Gyrus; STG = Superior Temporal Gyrus 
 

 

TBI Participants 

First, a group-level ICA was conducted for the TBI participants (DeMartino et al., 2007). 

Contrary to controls, IC clusters and spatial patterns for those clusters were heterogeneous across 

conditions in the four TBI participants, likely due to individual differences not evident in controls. Relative 

to the large areas of activation evident in the control sample (Figures 4.3 and 4.4), the TBI group 

demonstrated many more regions of activations of much smaller volumes across conditions at the same 

threshold (Figures 4.5). For instance, the largest clusters in the control data showed contiguous regions of 

activation ranging from 2500-24000 voxels; contiguous regions of activation in the TBI brains across 

conditions were much smaller, ranging from a few hundred to ~1000 voxels in size (contrast Figures 4.3 

and 4.5). 
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Figure 4.5. TBIs: BOLD network activation patterns observed for each scanning condition. 
 
 

 

Given the heterogeneous nature of TBI injuries, and the small sample size, each individual’s 

single-subject ICAs were inspected separately to determine whether or not this ‘patchy’ pattern of 

activation observed at the group level was evident at the individual level. Below, results are reported 

descriptively (but not exhaustively), focusing on two major posterior components of the DMN 

evident in the controls: the PCC and the precuneus (Figure 4.6) as well as the insular 

 
cortex. Individual neural activation patterns are presented in Figures 4.7-4.10 for each scanning 

condition14. 

 
 
 
 
 
 
 
 
 
 
 

 

                                                                 
14 At the same threshold of activation used in the control sample, individual TBI participants still presented 
with a far higher number of active regions of generally smaller size. For example, TBI participant 1 
demonstrated 54 regions of activity in the boredom scan, where only 11 regions were active for the control 
group. For this reason, I have chosen not to present exhaustive tables of active regions per TBI participant. 
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Figure 4.6. Posterior Cingulate Cortex (green) and Precuneus (orange). 
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Figure 4.7. Boredom: Individual TBI participants’ network activation patterns. 
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In the boredom condition (Figure 4.7), the TBI participants showed differential neural activation 

patterns in DMN regions. The PCC was anticorrelated in participant 1 (2035 voxels), and not 

evident in any other participant. The precuneus was anticorrelated in participants 1 (2274 voxels) & 

3 (293 voxels), and in the former the region of activation is 7x larger than the activation seen in 

participant 3. Pertaining to the insula, only participant 3 showed a very small (115 voxels; L 

hemisphere) region of anticorrelated activation; participants 1, 2 and 4 displayed no insular 

activation (or deactivation) in the boredom condition. 
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Figure 4.8. Interest: Individual TBI participants’ network activation patterns
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In the interest condition (Figure 4.8), the PCC showed correlated activation in participant 2 

(319 voxels), anticorrelated activation in participants 1 (276 voxels) and 3 (318 voxels), and no 

activation in participant 4. The precuneus showed equally heterogeneous activation patterns: 

participants 1 (2853 voxels) and 3 (3518 voxels) displayed anticorrelated activation, whereas 

participant 2 showed both correlated (1209 voxels; L hemisphere) and bilateral anticorrelated (722 

voxels) activations in distinct subregions of the precuneus. No precuneus activation (or deactivation) 

was observed in participant 4. No insular activation (or deactivation) was observed for any of the 

participants in this condition. 
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Figure 4.9. Resting State: Individual TBI participants’ network activation patterns. 
 

 

In the resting state condition (Figure 4.9), activation patterns for the TBI participants more 

closely resembled those of controls (Figure 4.3). Participant 1 was the only TBI individual to show 

correlated activation in the PCC (345 voxels), whereas for the precuneus large areas of correlated 
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activation were observed in all but participant 4 (ranging from 1438 voxels in participant 2 to 6702 

voxels in participant 1). No insular activation (or deactivation) was observed for any of the 

participants in this condition. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.10. Starry Night: TBI participants’ network activation patterns. 
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Finally, in the Starry Night condition (Figure 4.10), again there were notable differences 

between TBI participants. No activation (or deactivation) of the PCC was observed in any of the 

participants. Regarding the precuneus, correlated activation was observed in participant 1 (121 

voxels) and 3 (3984 voxels), and participant 4 showed anticorrelated activation (100 voxels). 

Participant 2 showed both correlated activation (254 voxels; R hemisphere) and anticorrelated (2458; 

L hemisphere) in distinct subregions of the precuneus. No insular activation (or deactivation) was 

observed for any of the participants in this condition. 

 

4.4 Discussion 

The aims of this study were twofold: first, to replicate previous findings concerning the 

neural networks associated with state boredom in healthy adults; and second, to extend this 

investigation to include individuals with TBI. While bored, control participants exhibited correlated 

activation in DMN regions including the PCC, precuneus, and medial prefrontal cortex, with 

concurrent anticorrelated regions including the anterior insula. These results replicate those 

observed in a previous investigation (Danckert & Merrifield, 2016). When exploring the patterns 

seen in the other conditions there were some notable differences between the two studies. For 

instance, in the previous study, anticorrelated insular activation of approximately equal magnitudes 

was observed in the Boredom and Starry Night Scan, with no insular activation (or deactivation) in 

the resting state scan. Here, the largest anticorrelated insular region was observed in the boredom 

scan (912 voxels), followed by the resting state (376 voxels), and Starry Night conditions (77 

voxels15). The interest condition here revealed correlated insular activation (900 voxels), in the 

opposite direction, but of roughly equal magnitude as that seen in the boredom scan. The 

widespread activation in DMN regions across conditions suggests that this network is strongly 

                                                                 
15 Insular activation for the Starry Night task was not included in Table 4.5 as it was below a threshold set for 
meaningful activation. That threshold was a contiguous cluster of 100 voxels. 
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involved in the experience of boredom, whereas the differential insular activations suggest potential 

varying levels of disengagement across conditions. 

In TBI participants, results of the group analysis were heterogeneous. Overall, there was not 

the same level of consistency in the large scale networks that were evident in the healthy brain. 

Instead, numerous, very small regions of activation that spanned most of the brain were observed 

across all conditions (Figure 4.5). When viewed at the individual level, regions of activation were 

more robust in terms of the magnitude of activations (i.e., the size of contiguous clusters were 

larger at the individual level), but continued to exhibit considerable heterogeneity in terms of the 

precise regions activated and the direction of that activation. For example, although all TBI 

participants showed activation of DMN regions, the precise locations of those activations and 

whether they exhibited correlated or anti-correlated activity varied widely (Figures 4.7-4.10). This 

level of heterogeneity was evident in all conditions with the possible exception of the resting state 

scan. Here, individual TBI activation patterns more closely resembled those of controls, exhibiting 

large-scale network connectivity in posterior regions of the DMN (Figure 4.9). 

 
Both control and TBI participants reported being significantly more bored during the 

boredom and resting state scans, relative to the interest mood induction and sustained attention task. 

In a similar fashion, mind-wandering was highest during the boredom and resting state scans, 

relative to the interest and sustained attention task. This positive correlation is in line with what was 

observed in Studies 1 and 2 of the relationship between boredom and mind-wandering. Despite 

reporting lower boredom and mind-wandering during the sustained attention task, when behavioural 

data was examined, data showed that controls performed more poorly than the TBI participants. 

TBI participants in this investigation were more accurate in detecting appearing and disappearing 

stimuli, and their sensitivity measures were higher than those for controls (Table 4.1). The Starry 

Night represents a difficult vigilance task in which attentional capacities are taxed as stimuli are small 
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and difficult to detect. However, for healthy adults to take between 500-600ms per target is slow 

relative to other published work using this task (e.g., Deouell, Sacher & Soroker, 2005 demonstrate 

typical RTs around 350-450ms). While performing tasks in the magnet may add some amount of 

non-specific processing time simply due to the unusual nature of the environment, this would not 

explain the difference between controls and TBI individuals seen here. It is plausible that the 

difference in reaction times between controls and TBI participants can be attributed to motivation: 

TBI participants were potentially more motivated to perform well related to a phenomenon known 

as ‘diagnosis threat’ (Ozen & Fernandes, 2011). That is, TBI participants are motivated to perform 

as well as possible to avoid any diagnosis of impairment. Clearly, more research with a larger sample 

of TBI participants is warranted and perhaps some external motivation for controls to ensure 

optimal performance. 

 
In healthy brains, when one is unengaged with external stimuli and engaged with internally-

generated thoughts, DMN structures have been shown to become active while regions responsible 

for executive functions deactivate (Greicius et al., 2003; Mason et al., 2007; Sherman et al., 2014). 

 
The fact that large-scale correlated activation in DMN regions with simultaneous anticorrelated 

executive network regions were observed in the most boring conditions is perhaps not surprising. 

Of note is that similar large-scale DMN regions were found in the Starry Night condition, the 

condition in which participants reported being bored the least. Had participants been as engaged in 

the task as they reported having been, one would expect to see more executive or attentional 

network activation – instead, at the group level for controls, the Starry Night condition showed large 

DMN network activation, similar to the scope of contiguous voxels observed in the resting state 

scan. So while this condition was rated the least boring it may nonetheless have been insufficiently 

engaging to demonstrate upregulation of attentional and executive control networks. 
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One of the more interesting findings in this investigation pertains to the differential insular 

cortex activation across conditions. The insular cortex has been thought to be essential in switching 

between internally and externally generated cognition, playing a crucial part in recruiting brain 

networks necessary for these functions (Gao & Lin, 2012; Menon & Uddin, 2010; Seeley, et al., 

2007; Spreng, Sepulcre, Turner, Stevens, & Schacter, 2013; Sridharan, Levitin, & Menon, 2008). 

Furthermore, the insula has been implicated in switching between executive and default-mode 

networks in the presence of salient stimuli (Menon & Uddin, 2010). In controls, bilateral 

anticorrelated activation of the insular cortex with concurrent activation of DMN structures were 

observed in the boredom, resting state, and minimally in the sustained attention task. Intriguingly, 

the area of insular activation observed in the boredom induction was more than double that seen in 

the resting state, and more than 10 times the area activated in the sustained attention task. In the 

interest condition, activation of the insula was of a comparable size to the boredom condition, but 

in the opposite direction. The deactivation of the insular during the boredom and resting state 

scans may be unsurprising given that both conditions involve little (boring movie) to nothing 

(resting state fixation screen) for the participant to engage with – in other words, there is nothing 

salient to respond to. On the other hand, the Starry Night task, where participants ought to have 

been engaged with the demands of the task, showed minimal insular activation. Given that 

participants reported less boredom in the sustained attention task, a minimally deactivated insula 

might reflect successful engagement, although not to the degree of engagement observed in the 

interest condition. Here, the dynamic and changing nature of the interesting video provided ample 

content to engage with leading to prominent insular and executive network activations. 

 
The original study examining the networks of brain activity associated with boredom found 

no insular activity in the resting state scan, and comparable deactivation of the insular in the 

boredom and Starry Night conditions (Danckert & Merrifield, 2016). It is plausible that the 
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differences observed between these two samples could be attributed to sex. A recent meta-analysis 

investigating insular activation with respect to affective processing has shown differential activation 

and lateralization between the sexes. For instance, women tend to activate bilateral anterior insula 

and the left mid and posterior insula when presented with emotional stimuli, whereas males 

primarily activate the left anterior/mid-insula and right posterior insula (Duerden, Arsalidou, Lee 

& Taylor, 2013). The current sample tested here was largely comprised of women (8:5), whereas 

the previous study predominantly involved males (8:2; Danckert & Merrifield, 2016). Perhaps the 

discrepancy in insular activation while bored between these two samples is reflective of differences 

in how men and women respond to boredom. As seen in Studies 1 and 2, sex differences were also 

observed with respect to boredom proneness – with women exhibiting lower levels of boredom 

proneness. Perhaps one of the key differences in the experience of boredom between women and 

men pertains to the way in which the insular cortex is recruited during monotonous experiences. 

Clearly, more research is necessary to investigate this hypothesis. 

 
With respect to individual activation patterns in TBI patients, results were quite 

heterogeneous. The TBI group showed a large degree of variation with respect to number and size 

of regions activated relative to the control sample. Furthermore, individual data also showed 

dramatic differences in which regions showed correlated or anticorrelated activity across conditions, 

true of all but the resting state, which most closely resembled the pattern observed for the control 

group. Regarding insular activation, only one TBI patient showed any activation – anticorrelation 

within a small portion (115 voxels) of the left insular cortex – during the boredom mood induction. 

Relative to controls, where robust deactivation of the insular cortex in the boredom induction and 

activation in interest condition, very little evidence for either was observed in the TBI patients. 

Clearly, more research is needed to better understand the role the insular cortex plays in boredom in 

TBI. Collectively, these results suggest that analyzing TBI participants at the group level might prove 
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problematic given the heterogeneity of TBIs with respect to neuropathology. Such heterogeneity in 

imaging data for TBI patients is reported often in a variety of other paradigms (Chiou, Genova 

 
& Chiaravalloti , 2015; Zhang, Puvenna & Janigro, 2016). The injuries themselves tend to be 

heterogeneous, with such variance only compounded by variability in patterns and capacity for 

recovery (Andruszkow et al., 2014; Carney et al, 1999; Cassidy et al., 2014; Di Battista, Godfrey, Soo, 

Catroppa & Anderson, 2014; Kim et al, 2007; Nicholl & LaFrance, 2009) 

This investigation sought to replicate previous findings concerning the neural networks 

associated with state boredom in healthy adults, and to extend this investigation to include 

individuals with TBI. Regarding the first aim, data largely replicated previous findings that large-scale 

DMN regions are activated during a boredom induction task, a resting state, as well as a sustained 

attention task. In these conditions, regions within the DMN showed widespread activation that 

coincided with deactivation of executive regions including the insular cortex, most prominently in 

the boredom induction. Regarding the second aim, this investigation represents the first steps in 

assessing the neural underpinnings of boredom in TBI. Results were largely heterogeneous across 

participants with DMN activation differing not only between conditions, but between patients as 

well, highlighting the difficulty in assessing functional neural networks in this population. Future 

investigations, perhaps utilizing an event-related design and a larger patient sample could better 

elucidate the temporal dynamics of how DMN structures activate in conjunction with executive 

regions over time, and how these de/activation patterns differ as a function of head injury. 

 
 
 
 
 
 
 
 

 

 

https://www-ncbi-nlm-nih-gov.proxy.lib.uwaterloo.ca/pubmed/?term=Chiou%20KS%5BAuthor%5D&cauthor=true&cauthor_uid=26699142
https://www-ncbi-nlm-nih-gov.proxy.lib.uwaterloo.ca/pubmed/?term=Chiou%20KS%5BAuthor%5D&cauthor=true&cauthor_uid=26699142
https://www-ncbi-nlm-nih-gov.proxy.lib.uwaterloo.ca/pubmed/?term=Chiaravalloti%20ND%5BAuthor%5D&cauthor=true&cauthor_uid=26699142
https://www-ncbi-nlm-nih-gov.proxy.lib.uwaterloo.ca/pubmed?term=Zhang%20J%5BAuthor%5D&cauthor=true&cauthor_uid=26583183
https://www-ncbi-nlm-nih-gov.proxy.lib.uwaterloo.ca/pubmed?term=Janigro%20D%5BAuthor%5D&cauthor=true&cauthor_uid=26583183
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Chapter 5: General Discussion 

Boredom proneness is a ubiquitous human experience that has the potential to 

impact one's cognitions, affect, and behaviour. The work presented in this thesis examined 

the cognitive and affective components of boredom through a lens of self-control, to better 

understand the underlying process that makes boredom proneness such a pervasive 

problem. This line of investigation is especially important in individuals who have suffered 

from traumatic brain injuries in whom boredom is likely to represent a serious impediment 

to rehabilitation. 

Study 1 explored a series of cognitive and affective factors shown to be involved in 

boredom proneness, and sought to better understand the degree to which individual levels 

of self-control influence the relationships between these factors. Results showed that in 

healthy individuals, boredom proneness was strongly positively correlated with spontaneous 

mind-wandering, depression, and hostility, which in turn all acted as significant positive 

predictors of boredom proneness. Deliberate mind-wandering, on the other hand, did not 

significantly predict boredom proneness scores, hinting at an underlying problem with lack 

of control over one’s own cognitions. That is, the less control one has over one’s own 

cognitions (i.e., the more spontaneous mind-wandering one experiences), the more likely 

one is be boredom prone. Albeit speculative, it may be the case that, deliberate mind-

wandering represents coping mechanism to avoid boredom. That is, by deliberately engaging 

with one’s own cognitions, one prevents boredom proneness. Indeed, individual differences 

in self-reported levels of self-control functioned as the only negative predictor of boredom 

proneness; and, when individual levels of self-control were taken into account there was a 

substantial drop in the magnitude of the relationships observed between boredom and the 

cognitive and affective predictors of the trait – a drop of between ~20 and 65%. 
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Collectively, these results suggest that the more adept one is at controlling one’s own 

thoughts, emotions, and actions in general, the more effective they will be in goal pursuit 

and the less likely they are to be boredom prone. 

Study 2 built on this work by extending the investigation to include individuals who 

have sustained varying levels of TBI. The hallmark of pathology in TBI pertains to extensive 

axonal injury, severing vital connections throughout the brain. As a result of such pervasive 

damage, TBI patients experience a host of cognitive and affective dysfunctions post-injury. 

In this investigation, results showed, for the first time, that boredom proneness also 

increases as a function of head injury. That is, relative to healthy controls, individuals with a 

past history of concussion showed elevated levels of boredom proneness, with TBI patients 

demonstrating the highest levels of boredom proneness relative to both groups. Results 

pertaining to individual levels of self-control were more variable. For instance, while 

individuals with a history of concussion reported lower levels of self-control relative to 

controls, TBI reports did not follow suit. That is, the most impaired individuals reported 

having more self-control than individuals with less brain damage (i.e., concussion). This may 

reflect differences in age (i.e., the TBI group were in general older than either the controls or 

concussed group) or may be reflective of differences in insight. That is, given what is known 

in the literature about the difficulties TBI patients face with various aspects of self-

regulation, perhaps it is the case that individuals with the most severe head injuries lack the 

most insight into their own deficits, which may partially explain the discrepancies in self-

reported levels of self-control. Indeed, a lack of insight has been reported often in the TBI 

literature (McAvinue, O'Keeffe, McMackin& Robertson, 2005; O’Callaghan, McAllister & 

Wilson, 2012; O’Keeffe, Dockree & Robertson, 2004; O’Keeffe et al., 2007; Prigatano, 

1996), rendering self-report data difficult to interpret in this population. There may also be 
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demand characteristics at play. Patients may be motivated to present themselves in a positive 

light. While this might explain the self-control data it would fail to capture the self-reports of 

levels of boredom proneness if one assumes that it is always desirable to report low levels of 

any kind of negative affective state. Despite this, investigations on the impact of boredom 

proneness in this demographic is of vital importance as disengagement from one’s 

environment is likely to undermine any efforts a patient invests into one’s own 

rehabilitation, especially if insight into one’s own deficits is lacking. Therefore, this line of 

investigation ought to be addressed in future research studies, where more objective metrics 

of self-control can be employed (e.g., using tasks such as the Stroop or go/no-go tasks), or 

with the addition of care-giver/spousal reports that could corroborate (or not) the patient 

data. 

Finally, Study 3 examined the relationship between boredom and activity in the 

DMN in a sample of healthy controls, and a small sample of TBI patients. The DMN is a set 

of brain regions that have been consistently linked off-task processing and internally 

generated cognitions (Binder et al., 1999; Buckner et al., 2008; Christoff, 2011; Christoff et 

al., 2009; Gusnard & Raichle, 2001; Mason et al., 2007; Schooler et al., 2011). In healthy 

controls, consistent large-scale activation of the DMN was observed in a series of boring 

tasks, except the interest scan in which the DMN exhibited smaller-scale activation patterns. 

Even the sustained attention task, a task in which participants ought to be engaged with 

onscreen stimuli showed systematic DMN activation in controls. It could be the case the 

difficult nature of this attentional task, in which changes are very small and difficult to 

detect, despite requiring participants to engage, fails to provide enough content for 

participants to engage with. Given that these regions are implicated in states of 

disengagement and mind-wandering, this finding is in line with those of Studies 1 and 2, 
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suggesting that individuals who tend to engage in more mind-wandering and have difficulty 

sustaining their attention when bored. In addition, bilateral activation in the insular cortex 

was observed to be anticorrelated with DMN activity during the boredom, resting state, and 

sustained attention scans, whereas in the interest condition showed correlated insular 

activation. These findings could be indicative of boredom interfering with the normal 

function of the insula which is to switch between the DMN and executive networks when 

attention is required to be directed externally (Gao & Lin, 2012; Menon & Uddin, 2010; 

Seeley et al., 2007; Spreng et al., 2012; Sridharan et al., 2008). Regarding the sustained 

attention task, had participants engaged with the task, one would expect insular activation, 

not deactivation to occur; however, as mentioned previously, it is plausible that the 

monotonous nature of the task renders it difficult to engage with. In TBI patients, results 

were much more heterogeneous. DMN structures were observed to be active (and inactive) 

for patients between conditions, albeit inconsistently so. For instance, in the boredom 

condition, while some patients showed activation of DMN structures, other showed 

deactivation of the same regions. The only condition in which activation patterns of TBI 

individuals resembled those of controls was the resting state scan. This level of heterogeneity 

was evident in all scanning conditions and highlights the difficulty of imaging a very 

heterogeneous sample of individuals. 

This body of work is not without limitations. In studies 1 and 2, correlational 

analyses were utilized and the results do not allow one to infer causation. Utilizing 

experimental manipulations that require self-control on the part of the participant may shed 

some light on whether or not low levels of self-control and high levels of boredom 

proneness have explicit behavioural consequences. For instance, Go/No Go tasks that 

require participants to inhibit responses (Robertson, Manly, Andrade, Baddeley & Yiend, 
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1997) may shed light on behavioural tendencies of those prone to boredom prone: it is 

possible that high boredom prone individuals struggle to inhibit responses and make more 

errors relative to individuals who are not chronically bored (Hunter & Eastwood, 2016; 

Malkovsky et al., 2012). Second, the cognitive and affective constructs measured throughout 

this thesis are unlikely to function in a unidirectional manner. Instead, boredom proneness 

and measures of cognition and affect likely interact in dynamic ways. For instance, it is 

possible that the propensity to experience boredom may lead to attentional difficulties, as 

well as negative affective states. Furthermore, the controls in study 3 were not matched on 

sex (quite the opposite) with the control sample of the previous imaging study. This 

difference in ratio between women and men could explain the differential insular activation 

patterns observed in the two studies. This shortcoming provides an opportunity for future 

investigations to assess sex differences of cognitive and affective contributors to boredom 

proneness more directly. Finally, the use of a general measure of self-control is associated 

with inherent limitations; it is not possible with this measure to separately parse out the 

cognitive, affective, and behavioural aspects of self-control, nor does it provide any 

information pertaining to how high levels of self-control are achieved. It could be the case 

that individuals who exhibit high levels of self-control also exhibit differing neural patterns 

relative to individuals with poor self-control. Future research could address these potential 

differences by using self-control measures specifically designed to assess the cognitive, 

affective, and behavioural subcomponents of self-regulation, experience sampling in fMRI, 

caregiver reports in TBI to account for self-control discrepancies, or a longitudinal approach 

investigating the developmental trajectories of self-control and boredom proneness across 

the lifespan. 
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Despite the above shortcomings, data presented in this thesis provide new insights 

to understanding boredom proneness. Collectively, these data suggest that boredom 

proneness is strongly related to dysregulation of cognition and affect, and that individual 

levels of self-control can account for a significant proportion of variance in these 

relationships. That is, the higher an individual’s capacity to regulate one’s own cognitions, 

emotions, and behaviours, the less prone the individual is to boredom. The same 

relationships held true in a sample of individuals with varying degrees of head injury, and for 

the first time, empirical data has focused on exploring the problem of boredom proneness in 

this population. Results suggest that the presence and severity of head injury will likely be 

associated with increased susceptibility to disengage from one’s environment, further 

complicating a patient’s road to recovery. This work represents some of the first steps 

towards better understanding the underlying mechanisms in boredom proneness in healthy 

and traumatic brain injured people, and suggests that, in general, boredom proneness is 

associated with difficulties in regulating one’s own cognitions, emotions, and behaviours. 
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Appendix A: Participant Recruitment 
 

 

Study 1 
Time and Place:  

Fall of 2013; University of Waterloo 

 

Procedure: 
Using the University of Waterloo’s Research Experiences Group (REG), undergraduate 
students participate for course credit by completing surveys online. 

 

Inclusion Criteria: 
Completed all Questionnaires. 

 

Exclusion Criteria:  
History of head injury, with or without loss of consciousness (LOC). 
Diagnosis of neurological/psychiatric condition(s), with or without medication(s). 

 

Initial participants: 3555  
Did not complete all questionnaires: 1079 History of 
head injury, with or without LOC: 355  
Diagnosis of neurological/psychiatric condition(s), with or without medication(s): 193 
Final sample: 1928 

 

 

Study 2 
Time and Place:  

Summer of 2014; University of Waterloo & Kitchener Waterloo community 

 

Procedure: 
Controls & Concussed: Using the University of Waterloo’s Research Experiences Group  
(REG), undergraduate students participate for course credit by completing surveys online. 
TBI: Participants recruited from local outreach community centers; completed 
questionnaires in person. 

 

Initial Control participants: 3555 
Did not complete all questionnaires: 1079 History of 
head injury, with or without LOC: 355 
Diagnosis of neurological/psychiatric condition(s), with or without medication(s): 193  
Final sample: 1928 

 

Initial Concussed participants: 355 
Did not complete all questionnaires: 15  
Final sample: 340 

 

Initial TBI participants: 36 
Did not complete all questionnaires: 1 
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Final sample: 35 

 

Study 3  
Time and Place: 

June – December, 2015; Grand River Hospital 

 

Procedure:  
Controls: Participants recruited from Kitchener-Waterloo community. 
TBI: Participants from Study 2 who agreed to participate in fMRI follow-up were contacted. 

 

Exclusion Criteria:  
MRI Screening form (see Appendix C) 

 

Initial Control participants: 20 
Time conflict: 2  
Changed their mind: 3 
Final sample: 15 

 

Initial TBI participants: 36  
Metal implants: 13 
Spinal cord stimulator: 1  
Claustrophobia: 3 
Hemiparesis: 2  
Vision impairment: 8 
Could not be reached: 2  
Changed their mind: 2 
Final sample: 5 
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Appendix B: Questionnaires 

 

Short Boredom Proneness Scale 

 

SBPS (Struk, Carriere, Cheyne, & Danckert, 2015) 
 
 
 
 

 

Instructions: 

 

The following are some statements that may or may not describe you, in general, on a typical day. 
Please rate each statement using the 7-point scale above by circling the number that corresponds 
to how much you do or do not feel like the sentence describes you. Remember to rate each 
statement based on how much it describes you in general. 

 
1 2 3 4 5 6 7 

Strongly Disagree Somewhat Neutral Somewhat Agree Strongly 
Disagree  Disagree  Agree  Agree 

 
 
 
 

1. I often find myself at ‘loose ends’, not knowing what to do. 1 2 3 4 5 6 7 

2. I find it hard to entertain myself. 1 2 3 4 5 6 7 
3. Many things I have to do are repetitive and monotonous. 1 2 3 4 5 6 7 
4. It takes more stimulation to get me going than most people. 1 2 3 4 5 6 7 
5. I don’t feel motivated by most things I do. 1 2 3 4 5 6 7 

6. In most situations, it is hard for me to find something to do or see to 1 2 3 4 5 6 7 
 keep me interested.        

7. Much of the time I just sit around doing nothing. 1 2 3 4 5 6 7 
8. Unless I am doing something exciting, even dangerous, I feel half- 1 2 3 4 5 6 7 

 dead and dull.        
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Brief Self-Control Scale 

 

BSCS (Tangney, Baumeister & Boone, 2004) 

 

Instructions: Using the scale provided, please indicate how much each of the following 
statements reflects how you typically are. 

 
 
 
 

1 2 3 4 5 

Not at all  Neutral  Very much 
 
 
 
 

1. I am good at resisting temptation. 1 2 3 4 5 

2. I have a hard time breaking bad habits. 1 2 3 4 5 
3. I am lazy. 1 2 3 4 5 
4. I say inappropriate things. 1 2 3 4 5 
5. I do certain things that are bad for me, if they are fun. 1 2 3 4 5 
6. I refuse things that are bad for me. 1 2 3 4 5 
7. I wish I had more self-discipline. 1 2 3 4 5 
8. People would say that I have iron self-discipline. 1 2 3 4 5 
9. Pleasure and fun sometimes keep me from getting work done. 1 2 3 4 5 
10. I have trouble concentrating. 1 2 3 4 5 
11. I am able to work effectively toward long-term goals. 1 2 3 4 5 
12. Sometimes I can’t stop myself from doing something, even if I know it is wrong. 1 2 3 4 5 
13. I often act without thinking through all the alternatives. 1 2 3 4 5 
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Depression, Anxiety and Stress Scale 

 

DAAS (Lovibond & Lovibond, 1995) 
 

Instructions: 

 

Please read each statement and circle a number 0, 1, 2, or 3 which indicates how much the 
statement applied to you over the past week. There are no right or wrong answers. Do not spend too 
much time on any statement. 

 

The rating scale is as follows: 
0 Did not apply to me at all  
1 Applied to me to some degree, or some of the time 
2 Applied to me to a considerable degree, or a good part of 
time 3 Applied to me very much, or most of the time 

 

1. I found myself getting upset by quite trivial things. 0 1 2 3 

2. I was aware of dryness of my mouth. 0 1 2 3 
3. I couldn't seem to experience any positive feeling at all. 0 1 2 3 
4. I experienced breathing difficulty (eg, excessively rapid breathing, 0 1 2 3 

 breathlessness in the absence of physical exertion).     

5. I just couldn't seem to get going. 0 1 2 3 
6. I tended to over-react to situations. 0 1 2 3 
7. I had a feeling of shakiness (eg, legs going to give way). 0 1 2 3 
8. I found it difficult to relax. 0 1 2 3 
9. I found myself in situations that made me so anxious I was relieved when 0 1 2 3 

 they ended.     

10. I felt that I had nothing to look forward to. 0 1 2 3 
11. I found myself getting upset rather easily. 0 1 2 3 
12. I felt that I was using a lot of nervous energy. 0 1 2 3 
13. I felt sad and depressed. 0 1 2 3 
14. I found myself getting impatient when I was delayed in any way (eg, lifts, 0 1 2 3 

 traffic lights, being kept waiting).     

15. I had a feeling of faintness. 0 1 2 3 
16. I felt that I had lost interest in just about everything. 0 1 2 3 
17. I felt I wasn’t worth much as a person. 0 1 2 3 
18. I felt that I was rather touchy. 0 1 2 3 
19. I perspired noticeably (eg, sweaty hands). 0 1 2 3 
20. I felt scared without any good reason. 0 1 2 3 
21. I felt that life wasn’t worthwhile. 0 1 2 3 
22. I found it hard to wind down. 0 1 2 3 
23. I had difficulty in swallowing. 0 1 2 3 
24. I couldn’t seem to get any enjoyment out of the things I did. 0 1 2 3 
25. I was aware of the action of my heart in the absence of physical exertion 0 1 2 3 

 (eg, send of heart rate increase, heart missing a beat).     

26. I felt down-hearted and blue. 0 1 2 3 
27. I found that I was very irritable. 0 1 2 3 
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28. I felt I was close to panic. 0 1 2 3 

29. I found it hard to calm down after something upset me. 0 1 2 3 
30. I feared that I would be “thrown” by some trivial but unfamiliar task. 0 1 2 3 
31. I was unable to become enthusiastic about anything. 0 1 2 3 
32. I found it difficult to tolerate interruptions to what I was doing. 0 1 2 3 
33. I was in a state of nervous tension. 0 1 2 3 
34. I felt I was pretty worthless. 0 1 2 3 
35. I was intolerant of anything that kept me from getting on with what I was 0 1 2 3 

 doing.     

36. I felt terrified. 0 1 2 3 
37. I could see nothing in the future to be hopeful about. 0 1 2 3 
38. I felt that life was meaningless. 0 1 2 3 
39. I found myself getting agitated. 0 1 2 3 
40. I was worried about situations in which I might panic and make a fool of 0 1 2 3 

 myself.     

41. I experienced trembling (eg, in the hands). 0 1 2 3 
42. I found it difficult to work up the initiative to do things. 0 1 2 3 
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Mind-Wandering 

 

MW (Carriere, Seli & Smilek, 2013) 
 
 
 
 

Instructions: For the following statements please select the answer that most accurately reflects 
your everyday mind-wandering. 

 

 

  1 2 3  4 5   6     7    

  Extremely Inaccurate Somewhat  Neutral Somewha Accurate  Extremely  

       t            

  Inaccurate  Inaccurate   Accurate      Accurate   

                

 1. I allow my thoughts to wander on purpose.    1  2 3 4 5  6 7  
2. I enjoy mind-wandering.     1 2 3 4 5 6 7  

 3. I find mind-wandering is a good way to cope with boredom.  1  2 3 4 5  6 7  
4. I allow myself to get absorbed in pleasant fantasy.  1 2 3 4 5 6 7  

 5. I find my thoughts wandering spontaneously.    1  2 3 4 5  6 7  
6. When I mind-wander my thoughts tend to be pulled from topic to 1 2 3 4 5 6 7  

  topic.                 

 7. It feels like I don’t have control over when my mind wanders.  1  2 3 4 5  6 7  
8. I mind wander even when I’m supposed to be doing something else. 1 2 3 4 5 6 7  
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Buss-Perry Aggression Questionnaire 

 

BPAQ (Buss & Perry, 1992) 
 

 

Instructions: 

 

Please rate each of the following items in terms of how characteristic they are of you. Use 
the following scale for answering these items. 

 

 1 2  3 4  5   6     7   

Extremely Uncharacteristic  Somewhat Neutral  Somewhat Characteristic  Extremely  
Uncharacteristic  Uncharacteristic   Characteristic      Characteristic 

            

1. Once in a while I can't control the urge to strike another person.  1  2 3 4 5  6 7 
2. Given enough provocation, I may hit another person.  1 2 3 4 5 6 7 
3. If somebody hits me, I hit back.      1  2 3 4 5  6 7 
4. I get into fights a little more than the average person.  1 2 3 4 5 6 7 
5. If I have to resort to violence to protect my rights, I will.  1  2 3 4 5  6 7 
6. There are people who pushed me so far that we came to blows. 1 2 3 4 5 6 7 
7. I can think of no good reason for ever hitting a person.   1  2 3 4 5  6 7 
8. I have threatened people I know.    1 2 3 4 5 6 7 
9. I have become so mad that I have broken things.   1  2 3 4 5  6 7 
10. I tell my friends openly when I disagree with them.  1 2 3 4 5 6 7 
11. I often find myself disagreeing with people.     1  2 3 4 5  6 7 
12. When people annoy me, I may tell them what I think of them. 1 2 3 4 5 6 7 
13. I can't help getting into arguments when people disagree with me.  1  2 3 4 5  6 7 
14. My friends say that I'm somewhat argumentative.  1 2 3 4 5 6 7 
15. I flare up quickly but get over it quickly.     1  2 3 4 5  6 7 
16. When frustrated, I let my irritation show.    1 2 3 4 5 6 7 
17. I sometimes feel like a powder keg ready to explode.   1  2 3 4 5  6 7 
18. I am an even-tempered person.     1 2 3 4 5 6 7 
19. Some of my friends think I'm a hothead.     1  2 3 4 5  6 7 
20. Sometimes I fly off the handle for no good reason.  1 2 3 4 5 6 7 
21. I have trouble controlling my temper.     1  2 3 4 5  6 7 
22. I am sometimes eaten up with jealousy.    1 2 3 4 5 6 7 
23. At times I feel I have gotten a raw deal out of life.   1  2 3 4 5  6 7 
24. Other people always seem to get the breaks.    1 2 3 4 5 6 7 
25. I wonder why sometimes I feel so bitter about things.   1  2 3 4 5  6 7 
26. I know that "friends" talk about me behind my back.  1 2 3 4 5 6 7 
27. I am suspicious of overly friendly strangers.     1  2 3 4 5  6 7 
28. I sometimes feel that people are laughing at me behind me back. 1 2 3 4 5 6 7 
29. When people are especially nice, I wonder what they want.  1  2 3 4 5  6 7 
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Montreal Cognitive Assessment 

 

(Nasreddine, et al., 2005) 
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                                                           Glasgow Coma Scale 

 

                                                        GCS (Teasdale & Jennett, 1974) 
 

 
                      
  The results of the three tests are added up to determine the patient’s overall condition 

 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

                  

Test Score  Condition 

Eye Opening 

4  The patient can open his eyes spontaneously 

3  The patient can open his eyes on verbal command 

2  The patient open his eyes only in response to painful stimuli 

1  The patient does not open his eyes in response to any stimulus 

Best Verbal 
Response 

5  The patient is oriented and can speak coherently 

4  The patient is disoriented but can speak coherently 

3  The patient uses inappropriate words or incoherent language 

2  The patient makes no verbal response at all 

1  The patient gives no verbal response at all 

Best Motor 
Response 

6  The patient can move his arms and legs in response to verbal commands 

2-5  The patient shows movement in response to a variety of stimuli, including pain 

1  The patient shows no movement in response to stimuli 

Total Score  Scale 

13-15  Mild Head Injury 

9-12  Moderate Head Injury 

3-8  Severe Head Injury 

https://en.wikipedia.org/wiki/Bryan_J._Jennett
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Appendix C: MRI Screening Form 
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