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Abstract

This work presents a new hybrid symbolic-numeric method for fast and accurate
evaluation of multiple integrals, effective both in high dimensions and with high ac-
curacy. In two dimensions, the thesis presents an adaptive two-phase algorithm
for double integration of continuous functions over general regions using Frederick
W. Chapman’s recently developed Geddes series expansions to approximate the
integrand. These results are extended to higher dimensions using a novel Decon-
struction/Approximation/Reconstruction Technique (DART), which facilitates the
dimensional reduction of families of integrands with special structure over hyper-
rectangular regions.

The thesis describes a Maple implementation of these new methods and presents
empirical results and conclusions from extensive testing. Various alternatives for
implementation are discussed, and the new methods are compared with existing
numerical and symbolic methods for multiple integration. The thesis concludes
that for some frequently encountered families of integrands, DART breaks the curse
of dimensionality that afflicts numerical integration.
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Chapter 1

Introduction

Let us start with the formal specification of the problem of approximating multiple
integrals and a discussion of its current importance in several sciences. This chapter
also introduces the motivation for investigating a new method to calculate such
integrals.

1.1 Approximation of Multiple Integrals

The problem of approximating definite integrals in one dimension is also known as
quadrature. The term comes from the division of the area under the curve and
within the integration interval into rectangles, such that the sum of their areas will
be an approximation of the value of the integral. For definite integrals in multiple
dimensions, some authors extend the terminology from one dimension, while others
choose the term cubature instead.

Without loss of generality, we can assume that the integral has constant limits
in every dimension. As we will see in Chapter 6, any iterated definite integral with
variable limits of integration can be reduced to the following standard form via
simple linear changes of variables:

1) =  fx)dx (L1)

[0,1)¢

1 1
:/ / f(:z;hxg,...,xd)dq;d...dedxl.
0 0
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The region of integration [0, 1]¢ is known as the unit hypercube of dimension d
or the unit d-cube.

1.2 Applications of Multiple Integration

The number of application areas where multiple integration arises is very large.
Trying to list them all would take a lot of space and would certainly miss several
areas. However, it is relevant to mention some areas where the method proposed
here can be superior to other methods for certain important classes of multiple
integrals.

As we will see in the next chapter, there are various methods to evaluate multiple
definite integrals. In most of the cases the problems only have a small number of
variables and existing methods are usually sufficient. Nonetheless, there are several
problems that present a considerable challenge for current algorithms: for example,
integrals in high dimensions (say more than 20) and integrands with singularities.

There are several important application areas where the multiple integrals to
be calculated involve a large number of variables, sometimes associated to degrees
of freedom. In these cases, the current methods do not fulfill the expectations.
The list of applications of these problems includes among others: finance, atomic
physics, quantum chemistry, statistical mechanics, and Bayesian statistics.

1.3 Motivation

During the last few decades, mathematicians and other scientists interested in nu-
merical integration have been confronted with the large amounts of computer re-
sources that could be needed to evaluate multiple integrals. The increase in the
dimension causes an exponential growth in the number of integrand evaluations re-
quired to give an answer of specified precision. This growth is known as the curse
of dimensionality for numerical integration.

In several areas of mathematics it is common to find that some methods are
better suited to certain families of problems than others. This is certainly the case
in numerical integration: there is no satisfactory solution that works well for all
integrands. Various methods have been developed for this problem, but no single
method is found to be the best for all cases. Here, we do not intend to develop
a new method that will be the panacea for every multidimensional integral, but
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rather propose a new method which we believe is superior to other methods for
certain important classes of multiple integrals. Furthermore, we aspire to break the
curse of dimensionality in multiple integration for some of these problems.

Recently during his graduate studies, Chapman developed the theory of multi-
variate approximation via natural tensor product series [5, 6, 7], and named such
series expansions Geddes series in honour of his thesis supervisor. Continuing this
work, we use the Geddes series to approximate integrands in multiple dimensions
[8]. The motivation for this is that having a new way to approximate functions
available, it is natural to try to use this approximation for calculating definite
integrals.

There are two main advantages of the approximation by Geddes series. The first
one is that the approximation is represented using basis functions with only half as
many variables as the original function. This is quite different from other methods
that rather choose to do a subdivision of the integration region in order to obtain
the required accuracy. The second advantage is that because these basis functions
belong to the same family as the original function (e.g., exponential, trigonometric,
rational, or polynomial functions), the Geddes series achieves in several cases a
faster convergence or gives an exact expansion after just a few terms.

In this way, we obtain a hybrid symbolic-numeric method to approximate an
integral by evaluating a finite number of integrals of half the original dimension.
Experiments show that when 10 digits of precision are required the number of new
integrals is usually less than 15.

This method exploits the possibility of symmetrizing the integrand. In two
dimensions, this symmetrization is very simple, but in higher dimensions it could
become quite complex. Nonetheless, for several important classes of integrands we
are able to use simple changes of variables to obtain the symmetry we require. In
most cases, obtaining results with relatively high precision is possible and easy.

Before getting down to business, here is an outline of the rest of this document.
Chapter 2 is a survey of the methods that are currently available for computing
definite integrals in multiple dimensions. Chapter 3 includes the terminology and
definitions that are relevant to natural tensor product series approximations. This
provides enough background to continue to Chapter 4 and present our integration
method in two dimensions for arbitrary continuous functions over very general
regions of integration. The method goes along with some considerations required
for a reliable and fast implementation: i.e. inherent properties of the series for
symmetric functions allow a fast implementation of the algorithm using simple
linear algebra. Chapter 5 presents the experimentation and results relevant to the
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two-dimensional problem. In Chapter 6, we introduce DART, which is the extension
of the method to integrals in more than two dimensions for certain families of
integrands over hyperrectangular regions. Chapter 7 presents the corresponding
experimentation and results for DART. Both Chapters 5 and 7 include sections
with the details of possible future work for each case. Finally, the last chapter
states the general conclusions of this work.



Chapter 2

Traditional Methods of
Integration

In one dimension, there are several good methods for numerical integration. Among
the most common methods are Clenshaw-Curtis, Newton-Cotes and Gaussian quad-
ratures. Yet, even in one dimension we find that some methods are better suited for
certain families of problems than others. For example, some methods are better at
handling singularities than others. In general, it is not difficult to find a method that
calculates the value of the integral with the required accuracy. In two dimensions,
there are also a number of methods available which usually are direct extensions of
the methods in one dimension.

There are two main factors that make integrals in multiple dimensions much
harder to approximate than in one or two dimensions. The first one is that the
geometry of the region over which the integration takes place can be very complex.
The second factor is the occurrence of singularities. Handling singularities in one
dimension is already hard to solve, let alone in higher dimensions.

This chapter will describe a number of specific methods for the calculation of
multiple integrals. The techniques used in these methods are either numerical,
symbolic, or a hybrid of the two.

2.1 Quadrature Formulas

The most basic technique to approximate definite integrals uses a quadrature for-
mula that involves the values of the integrand at certain points. Product formulas
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extend the quadrature formulas used for one-dimensional integrals to higher di-
mensions. When the dimension is not very high, these can be used to calculate
integrals efficiently. However, the number of sampling points grows exponentially
with the dimension. For some specific cases such as polynomial and trigonometric
integrands, there are non-product formulas with less than an exponential number of
evaluations. Stroud provides a comprehensive list of both product and non-product
formulas for a wide variety of regions [27].

2.2 Globally Adaptive Methods

When the estimated error of the quadrature formula is greater than the accuracy
required, a more comprehensive approach must be used.

Globally adaptive methods were originally proposed by van Dooren and de
Ridder [10]. The most popular implementations are ADAPT [16] and DCUHRE
[1, 2], the latter being an evolution of the former. The main idea of these algorithms
is to iteratively divide the integration region into sub-regions until the desired
accuracy is achieved. At each iteration, quadrature formulas are used to estimate
the value of the integral over the subregions. If the estimated accuracy is not good
enough, the subregion with highest estimated error is chosen to be divided next.

2.3 Monte Carlo Methods

Monte Carlo methods for numerical multiple integration have been around for many
years [17, 22]. The idea behind it is very simple: we choose n uniformly distributed
random points in the integration region R; the integral is then estimated by aver-
aging the values at such points and multiplying by the volume of R. If the volume
of R is not known, we can choose a simple region S (like a hyperrectangle) which
contains the region R and generate random points directly inside of S, discarding
those points which lie outside of R. The known volume of S times the fraction of
random points lying inside of R estimates the volume of R.

The convergence rate of O(n~'/?) for such a method is at the same time its
great advantage and sad drawback. Because the convergence is independent of
the dimension, the method works better with integrals in higher dimensions than
deterministic methods. At the same time, this convergence is very slow, and thus
the precision achieved within a reasonable amount of computation time is very low.
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Nevertheless, these algorithms are particularly popular in statistical sciences where
high precision is not necessary.

2.4 Quasi Monte Carlo Methods

These methods aim to improve the convergence rate of the Monte Carlo method by
using quasi-random numbers with specific distributions. The first person to propose
this method was Richtmyer in 1952 [24]. Later on, Korobov develop some methods
of this type under the name of number-theoretic algorithms [20]. Eventually, a class
of quasi Monte Carlo methods known as lattice rules became very popular. A very
comprehensive study of lattice rules is given by Sloan [25]. These lattice rules are
only a good choice for smooth one-periodic integrands over a hypercube.

Quasi Monte Carlo methods have been receiving some significant attention dur-
ing the last decade [19, 21, 23]. Several authors investigate a single problem and
try to determine the quasi-random sequence of sample points that is better suited
for a specific problem or family of problems.

2.5 Dimensionality Reducing Expansions

He [18] presents analytical methods which reduce the dimension of the integral by
one. This reduction is achieved by replacing the original region of integration with
its boundary. The resulting dimensionality reducing expansions for multiple inte-
gration are derived using a multidimensional version of integration by parts, and
thus require partial derivatives of the original integrand. This method is mostly
used to create boundary type quadrature formulas (quadrature formulas which
sample the integrand only on the boundary of the region) and in the evaluation of
oscillatory integrals. However, the tensor product methods presented in upcoming
chapters have a significant advantage over dimensionality reducing expansions: ten-
sor product methods reduce the dimension geometrically by a factor of two, rather
than arithmetically by only one dimension.

2.6 Comparison of Numerical Methods

Most of these numerical methods have been implemented in various numerical soft-
ware packages such as the NAG library. In a survey of numerical integration meth-
ods, Smyth [26] recommends using globally adaptive methods for at most 10 to 15
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dimensions. In some cases, quasi Monte Carlo methods start outperforming other
methods at dimensions between 10 and 20. For a more specific set of cases, this
superiority is maintained to higher dimensions. Beyond those dimensions, the con-
ventional wisdom is that Monte Carlo methods are the only practical numerical
methods. In the next section we consider alternatives to numerical methods for
integration.

2.7 Symbolic Methods

The use of computer algebra systems such as Maple has permitted further improve-
ments in numerical integration. The main advantages are found when dealing with
singularities and unbounded regions in one dimension [11, 12]. These techniques
include using a change of variables to make the limits of integration bounded, and
approximating the integrand by a series near singularities. Maple uses both of these
techniques.

Although the computation of a multiple integral is sometimes possible by iter-
ated one-dimensional symbolic integration, in most cases it is necessary to revert
to one-dimensional numerical quadrature rules for at least some of the levels of
integration. Applying nested one-dimensional quadrature rules brings us back to
the curse of dimensionality. On the other hand, the application of iterated one-
dimensional integration can be faster than a purely numerical method when some
levels of integration can be performed symbolically.



Chapter 3

Terminology and Notation

The first part of this chapter introduces the concepts required to construct the Ged-
des series: tensor products and the splitting operator. The second part describes
the algorithm to create the Geddes series that are used to approximate our inte-
grands. For a complete and more formal description of the material in this chapter,
see Chapman [7].

3.1 Tensor Products

In two variables, a tensor product is a finite sum of terms, such that each term
is the product of two univariate functions:

Sn(2,y) = Zgi(m) hi(y).

Example 1 In elementary mathematics, we can find several bivariate functions
and families of functions that can be expressed as tensor products:

e(@Hy) — Ty

cos(z + y) = cos(z) cos(y) — sin(z) sin(y)
(z+y)?=2*+2zy+ 9>

The minimum number of terms among all the equivalent representations of the
tensor product is known as the rank of the tensor product. We also say that a tensor
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product is natural when the factors of each term can be derived from the original
function by a finite linear combination of linear functionals. The Geddes series
is an approximation or representation of a function as a natural tensor product.

3.2 The Splitting Operator

The key tool for the generation of the Geddes series is the splitting operator: given
a continuous bivariate function f and a limit point (a,b) of the domain of f, we
define the splitting operator at the point (a,b) via

enften = (i (T )) e

The point (a, b) is called a splitting point. When f(a,b) # 0, we can evaluate the
limits in equation (3.1) using the continuity of f to express the splitting operator
as

f(z,0) - f(a,y)
fla,b)

Two important properties of Y, f(z,y) when f(a,b) # 0 are:

Tap f(r,y) = (3.2)

® Y(upf(x,y) interpolates f(x,y) on the lines x = a and y = b. Therefore
T(a,b)f(a’v y) = f(a’y) and T(aﬁ)f(‘r’ b) = f(ZL’, b)

e If there is a value T such that f(Z,y) = 0, then Y, f(Z,y) = 0 as well.
Likewise for a i such that f(z,7) = 0.

The proof of these two properties is trivial from equation (3.2). The combination
of these two properties is what allows us to generate a Geddes series approximation.
This series is generated simply by iterating the splitting operator while varying the
choice of splitting point.

3.3 Geddes Series Expansions

Not every bivariate function f can be expressed as a tensor product of finite rank
as in Example 1; however, if the approximation is required only within a compact
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rectangle R where f is continuous, we can approximate f by a natural tensor
product s,(x,y) of rank n. We write

f($7 y) = Sn(xa y) + Tn(l’, y)
sn(2,y) = Zci 9i(z) hi(y) = ZE(%CU) (3.3)
i=1 =1
where r, is the remainder of the approximation, the ¢; are the terms of the tensor
product s, and the coefficients ¢; are real constants and can be associated to either
g; or h;. We call |r,| the error function.

Given a bivariate function f and a maximum allowable absolute error §, the fol-
lowing algorithm generates a Geddes series expansion of f with maximum absolute
error . (Assume that the norms ||r;|| are calculated only in the region R.)

1. Initialization:
Let ro = f and sy = 0.

2. For i from 1 to n, and while ||r;_4|| > 0, choose a splitting point (a;,b;) € R
such that |r;_1(a;, b;)| = ||7i-1]|, and let

ti = T(aupo)Ti-1
S; — Si—1 + Zfl'

TP =Ti-1 — b

3. Return s, as an approximation of f within R with uniform error ||r,|| < 6.

We call the resulting natural tensor product series s, the Geddes series ex-
pansion of f to n terms with respect to the splitting points {(a;, b;)}1 ;.

The uniform convergence of the corresponding infinite series still needs to be
formally proven in the general case. Based on much experimental evidence and
some formal proofs for specific cases, we believe that for any continuous function
f, the remainder 7, converges uniformly to zero when n — oo, and therefore s,
converges uniformly to f on R. A simple way to see this is to note that the series
s, interpolates the function f on the lines x = a; and y = b; of the two-dimensional
grid generated by the splitting points. The remainder r,, therefore vanishes on the
boundary of each cell in the resulting n x n grid. By adaptively choosing well-
distributed splitting points we can cover the whole region R with small grid cells,
and thus make r, as close to zero as we want inside these grid cells by uniform
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continuity of r,. Figure 3.1 illustrates the lines, intersection points, and splitting
points of a rectangular grid of order n; the splitting points are circled®,

b. o ’ ’ ¢ 0
bn-1 ¢ ¢ ¢ & ®
bz ¢ ¢ > ¢ ®
bz ¢ N\ \ 4 \ d \ d
by (& * ® * *

ay as as s An_1 (479

Figure 3.1: The Geometry of a Rectangular Grid of Order n

Notice that in step 2, we have
ric1(ai, bi)| = [[ricall o > 6 >0,

and thus r;_1(a;,b;) # 0. By the above interpolation properties, this implies that
a; # aj, b; # b;, when i # j, and allows the use of (3.2).

The following example illustrates the particular form of the Geddes series ex-
pansion.

Example 2 Consider the following function defined on [0,1] x [0, 1]:
f(z,y) = S cos(z +vy).

The Geddes series to three terms is as follows, where the splitting points are of the

'Figure courtesy of Frederick W. Chapman



CHAPTER 3. TERMINOLOGY AND NOTATION 13

form (a,a) fora=1, 0, 0.616336:

3

ss(z,y) = cigi(x) ha(y)

i=1
where

¢ = —0.884017,
g1(z) = ¢* cos(z + 1),
hi(y) = e cos(y + 1);

co = 0.794868,
g2(x) = cos(x) + 0.477636 ¢* cos(z + 1),
ha(y) = cos(y) + 0.477636 ¢¥” cos(y + 1);

3 = —9.83284,
gs(x) = 2307 cos(z 4 0.616336) — 0.356576 ¢ cos(z + 1) — 0.623342 cos(x),
ha(y) = e®379870% cos(y + 0.616336) — 0.356576 ¥ cos(y + 1) — 0.623342 cos(y).

The algorithm for generating Geddes series here presented is what we will use
and further develop in the upcoming chapters to approximate the integrands.



Chapter 4

Integration in Two Dimensions

Now that we have a Geddes series to approximate a continuous function f within a
compact rectangle R = [a, b] X [¢, d], we can use it to calculate the definite integral

b pd

1= [ ey
b pd

In:/ / Sn(l’,y)dydl’

The idea is that I ~ I, since f ~ s, on R.

using

Let us remember that the main goal we pursue here is the reduction of the
dimension of the integrals. We go from calculating one integral in two dimensions
to calculating 2n integrals in one dimension using equation (3.3):

[n:/ab/cdsn(x,y)dyd:r:zn:(ci /abgi@)dzv /cdhi(y)dy).

=1

With the concepts from Chapter 3 in mind, we can see how the algorithm will
work. The first thing that requires our attention is how to meet the conditions that
guarantee the success of the approximation. Let us assume that a double integral
has been transformed to be over the unit square [0,1]>. The following conditions
will guarantee that our algorithm will work:

e [ is continuous in the closed region [0,1]?, which implies that the infinity
norm of the integrand in [0, 1]? is finite: || f]]o < oo.

14
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e The one-dimensional integrals

/Olf(ac,a) dx and /Olf(a,y) dy

can be computed (numerically or symbolically) for any value a € [0, 1].

A simplistic implementation of the algorithm can lead to excessive running
times. In this chapter, we will see how a smart implementation of the algorithm
dramatically improves the performance. We start by showing how to prepare the
integral to meet the requirements of the main algorithm. We continue with a
discussion of the evolution of the algorithm, justifying the decisions made in order
to get to the final two-phase algorithm, which is fully explained in the remainder
of the chapter.

Although some discussion of the performance of the algorithm is mentioned in
this chapter, the final discussion is left to Chapter 5 since an important part of it
is based on the empirical observations presented there.

4.1 Preparation of the Integral

Before the integral is passed to the approximation algorithm two important con-
ditions must be met: the integrand must be symmetric and the integration limits
in both variables must be the constants 0 and 1. Let us begin with the latter
condition.

We can use a simple change of variables to convert any iterated integral with
non-constant limits to a new one with the desired constant limits. The change of
variables

y=c(x)- (1—t)+d(z)-t
r=a-(1—s)+b-s

will transform the integral as follows:

/ab/jj)f(x’y)dydﬂf = /01/01 f(s,t)dt ds.

Once we have an integral over the unit square [0, 1]%, we need to guarantee that
the integrand is symmetric. We say that a function is symmetric if f(x,y) =
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f(y,z) and anti-symmetric if f(z,y) = —f(y,z). We can express any bivariate
function as a sum f = fg + f4 of a symmetric part fs and an anti-symmetric part
fa given by

flz,y) + fy, z)
2

f(x,y) B f(y>$)
5 .

fs(z,y) =

and fa(z,y) =

From Fubini’s theorem we know that we can directly interchange the order of
integration in an iterated integral with constant limits of integration. Applied to
our particular case, we have

KA%@@@M_KAV@MM@_KAV%MWM

This allows us to conclude that

/o1 /01 f(.y)dydz = /01 /01 fs(x,y) dy du.

Example 3 Consider the double integral

1 11—z
/ / " cos(z + y) dy da.
o Jo

Applying the change of variables to transform into an integral over the unit square,
we obtain

1 1
/ / (1—5)e” 0= cos(s + ¢ — st) dt ds;
o Jo

and then applying symmetrization, yields the new problem:

11
1 2 242 2 242

/ / §COS(S +t—st) (es =1 — 5) 4 e 70701 —t)) dt ds.

o Jo

The Geddes series for the integrand was computed to 3 terms, where the splitting
points were of the form (a,a) for a = 0, 1, 0.434450. Then the series was inte-
grated (applying one-dimensional quadratures) yielding the following estimate for
the original double integral: 0.385433. This result agrees with the correct value
of the integral to 5 significant digits. By using more than 3 terms in the series
approximation, more accuracy can be obtained.

With these two transformations available, we can assume that the double inte-
grals are always calculated over the unit square, with symmetric integrands.
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4.2 Evolution of Prototypes

The main characteristic of our integration algorithm is the division of the process
into two phases. This strategy came as a result from analysis performed with a
series of implemented prototypes. They allowed us to understand the behaviour of
the Geddes series for a heterogeneous set of functions.

Early versions of the prototypes were developed by Chapman [6]. He had iden-
tified two different approaches to construct the Geddes series expansion of the
function distinguished by the strategy used to choose the splitting points. One
option is to build the approximation by always choosing the same splitting point,
thus requiring the use of equation (3.1). Another option is to build the approxima-
tion by choosing distinct splitting points, thus allowing the use of equation (3.2).
Both types of expansion with their characteristics are explained in Chapman’s PhD
thesis [7]. It is our belief that for the purpose of integration the excessive use of
limits in the calculation indicates that the first is not a practical choice. So, let us
continue explaining the second option which is the one that evolved into what is
presented in this work.

The second option is based on the algorithm presented in Section 3.3. The
splitting points will always be different because once the point (a,b) is chosen, the
remainder vanishes on its vertical and horizontal lines, x = a and y = b, preventing
subsequent splitting points from being chosen on these lines. The first and obvious
advantage is that we can use the simplified form, equation (3.2), to compute the
terms of the series. However, a bigger advantage derives from the fact that if the
integrand is symmetric, we can find a set of splitting points that generates a series
expansion that is also symmetric. As we will soon see, the benefits of this symmetry
are more than what one would initially expect.

Although the algorithm for generating the series may seem very simple, some is-
sues arise for its adequate implementation. The number of splitting points required
to obtain an approximation of the function at a given precision is what drives the
performance of the algorithm. This number depends specifically on the integrand
and should make an attempt to minimize the number of splitting points. This is
exactly the intent of using the infinity norm for choosing the splitting points.

Finding the splitting point (a;, b;) where the error |r;_;| attains its infinity norm,
|7i-1lo, leads to some complications. The estimation of the norm in two dimen-
sions requires an expensive two-dimensional sampling of the remainder r,. This
estimation becomes even more expensive after each iteration because the complex-
ity of the remainder r, grows cubically in the number of iterations n. What can
we do about it?
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If the function to approximate is smooth enough, a very practical solution comes
from performing a discretization of the function. Having a discrete representation,
makes it very simple to calculate and store the values of the remainder. Of course,
a discrete representation of the series is not convenient for obtaining a value of the
integral for which we can determine its precision. However, experimentation with
various families of functions showed that the list of splitting points generated this
way is nearly identical to the one that is obtained using a continuous representation,
and at a significantly lower computational cost. More about this will be discussed
in the last section of the chapter as this became the gist of the first phase in our
new algorithm.

4.3 Symmetry Considerations

Chapman had observed that after some small number of iterations, the series starts
behaving well, namely convergence became essentially monotonic. Once this point
was reached, the maximum error throughout the unit square [0,1]? was almost
always attained on the diagonal line y = x. This property is a consequence of
the symmetry of the integrand and provided the first important benefit: after a
certain number of iterations it is not necessary to sample on the whole unit square
to estimate the norm of the remainder. This behaviour was quite consistent for
various families of functions and led to the formulation of an important strategy
for the algorithm: try to choose the splitting points on the diagonal as much as
possible.

When the splitting operator is applied to a symmetric remainder r;_; at a point
(a;, a;), the result is a tensor product term that is also symmetric: ¢g; = h; in
equation (3.3). Therefore, both the series s, and the final remainder r, will be
symmetric if the original function f is symmetric and all the splitting points lie on
the diagonal.

Unfortunately we cannot always choose splitting points on the diagonal for two
main reasons. First, we could have an integrand that is zero on y = x, but non-zero
in other areas of the unit square, thus, forcing the selection of off-diagonal splitting
points. For instance, the function

Toy L _y-w
2—224+y*  2—y*+a?

flz,y) =

is zero on the diagonal, but not anywhere else within the unit square. Secondly,
it could happen that at some point throughout the process the remainder becomes
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very close to zero on the diagonal but it is still quite big off the diagonal. As it was
previously mentioned, it is a safe assumption to say that this will not occur once
the series starts converging monotonically.

The solution for keeping the symmetry is to do the splitting at off-diagonal
points in pairwise fashion. Let us remember that ||7;_1|| , < ¢ is the termination
criterion for the algorithm. If at iteration i, |r;_1(a,a)| < ¢ for all a € [0,1], but
there exists a point (a,b) such that a # b and |r;_1(a,b)| > 9, then we do two
consecutive splits at points (a, b) and (b, a). Assuming that r;_1(x,y) is symmetric,
and 7;_1(a,a) = r;_1(b,b) = 0, the sum of the two terms generated by the splits,
t; + t;y1, is also symmetric:

. rio1(2,0) - ri1(a,y)
ri_l(a,b)
TP =Tio1 — b

ri(z,a)-ri(b,y)

tipa(x,y) = ri(b.a)
B [m_l(b, a) — %]
— ri—l(fi‘,iii('b":ia—)l(b, y) (because r;_1(a,a) = r;_1(b,b) = 0)
e+t = STt B C

The second benefit of symmetry is that although the series can become very
large and complex, it can be represented in a very practical way. As we saw in
Example 2, the series (3.3) resulting from our algorithm has the following algebraic

form: ' .
Sn(xa y) = Z (Ci : (Z ki,j f((L', b])) ’ (Z li,j f(ajay))> (41)
i=1 j=1 j=1

where ¢;, k; j,1; ; # 0 are real-valued coefficients, and (a;, b;) is the splitting point
used to generate the tensor product term in the i-th iteration. The factors in the
terms of the series are linear combinations of the cross-sections {f(z,b;)}?; and
{f(a;,y)}, of the original function f(z,y). Although a; = b; does not always hold
for specific i, notice that {a;}; = {b;};.
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Equation (4.1) can be represented using matrices and vectors as

where

e V(z) is the column vector of dimension n whose elements are the univariate
functions f(z,a;).

e D is an n X n diagonal matrix whose diagonal elements correspond to the
coefficients ¢; = 1/r;_1(a;, b;).

e P is an nxn permutation matrix that allows the coefficients k; ; to be obtained
from the coefficients [; ; via [k; ;] = P - [l;]. The matrix P is symmetric and
block-diagonal. Each on-diagonal splitting point (a,a) generates a diagonal
block of the form [1], and each pair of off-diagonal splitting points (a, b) and

(b,a) generates a diagonal block of the form 01 . If there are no off-

10
diagonal splitting points, then P is the identity matrix.

e L =[l;;] is an n x n unit lower triangular matrix.

Example 4 Let us assume that during the tensor product series approximation of a
function f(x,y) in [0,1]?, the splitting points are: (0,1), (1,0), (0.3,0.3), (0.6,0.6),
(0.1,0.1). After the 5-th iteration, the elements of equation (4.2) will have the
following form.:

f(z,0) 1 0 0 0 O
f(x, 1) 0o 1 0 0 0

V(l’) = f(ﬂ?, 0 3) s L= l3’1 l372 1 0 0 ,
f(JJ, 06) l4,1 l472 l473 1 0
f(z,0.1) ls1 lsa sz lsa 1
01000 cc 00 0 O
100 00 0 g 0 0 O
P=({001O0O0|, D=]0 0 ¢ 0 0
00010 0 0 0 ¢ O
0 00O0T1 0 0 0 0 c5

This representation reduces the cost of handling what can become extremely
complex expressions for r, and s,. The direct benefits are:
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e The cost of evaluating s,, and r, is reduced from O(n?) to O(n) evaluations
of the original function f.

e Having only matrix-vector multiplications makes the computation highly ef-
ficient, by avoiding unnecessary symbolic multiplication and sum of expres-
sions.

e We only need to perform n one-dimensional integrations of cross-sections of
the original function f(x,a;) fori=1,2,... n.

4.4 A Two-Phase Algorithm

As stated in the previous section, the series expansion exhibits a particular be-
haviour after a few splits. This is the reason why the process is divided into two
phases. Let us start listing the differences between these two phases, so we can
choose the best approach to use in each phase.

At the beginning of the process:

e The expression that represents the remainder is relatively simple. As a con-
sequence, evaluating the remainder at a given point is relatively inexpensive.

e The qualitative behaviour of the remainder cannot be determined directly.
Therefore, determining its norm may require a considerable amount of sam-

pling.

e The remainder may or may not be wavy.

Once the uniform error ||7;_1 || starts decreasing monotonically we observe that
the remainder exhibits a very particular numerical behaviour. Figures 4.1 and 4.2
show a typical case of what the remainder usually looks like after this point.

By the interpolation theory in Chapman [7], the remainder always vanishes
along the lines of the grid generated by the splitting points. The following are
additional characteristics of the remainder once monotonic convergence starts:

e The remainder in most cases has constant sign inside each grid cell.

e These signs usually alternate in adjacent grid cells resulting in a checkerboard
pattern.
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Figure 4.1: Remainder of exp (sin (ﬁ—”x) sin (ﬁ—”y)) after 5 Splits
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Figure 4.2: Contour Lines for the Remainder of exp <sin (%) sin <%>) after 5
Splits
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e In general, the maximum error over the entire unit square occurs in one of
the grid cells along the diagonal.

e The error on the diagonal, |r;(z, x)|, looks like smooth hills with their crests
near the midpoint between adjacent splitting points. See Figure 4.3.

0.018 A 8
0.016 A
0.014 A
0.012 A

0.014
0.008 -
0.006
0.004
0.002 A

Figure 4.3: Error on the Diagonal for cos(2 7z sin(my)) 4 cos(2 7y sin(w x)) after 7
Splits

Based on all these empirical observations and conclusions, we therefore split
the process into two phases, which we call the confinement phase and the con-
vergence phase. Each phase uses a method that we consider gives the best
performance without affecting accuracy. Let us point out what happens in each
phase.

4.4.1 The Confinement Phase

What we are actually doing in this phase is confining the location (a;,b;) of the
maximum error ||r;_1||,, to the diagonal y = x. After several experiments and a
few prototypes, we arrived at the following conclusions:
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e We should select splitting points (a;, b;) on the diagonal y = x, unless the
function becomes numerically zero on the diagonal. Only in this case do we
look at the rest of the unit square to select an off-diagonal splitting point.

e In order to preserve the symmetry of the remainder, off-diagonal splitting
points must be chosen in symmetric pairs: selecting the point (a,b) as a
splitting point implies that the next splitting point must be (b, a).

e The criterion for deciding when the first phase is over will be based on the
norm of the integrand. Achieving 1/100th of the initial norm has proven
to be a good threshold for switching to the convergence phase (||rgll,, <
| fll. /100). The number of splitting points required to obtain such a thresh-
old depends on the qualitative behaviour of the function f.

e Discrete sampling is the cheapest way to estimate ||f|| and ||ry|, in the
unit square. At the same time, a discrete representation of f in the form of a
matrix of sample values at the intersection points of a grid can be iteratively
transformed into a discrete representation of the subsequent remainders when
the splitting points are selected from the grid.

The way in which the remainder is updated at every iteration deserves some
detail. With the sample values of the initial function stored in a matrix, the op-
erations to calculate a new term and update the remainder become simple linear
algebra. The simple update operations that take place are known as rank-one and
rank-two updates, and they are particular cases of Schur complements.

If we have sample values of f on a uniform grid stored in a k x k symmetric
matrix F = [f;;], and a splitting point (a,b) whose function evaluation f(a,b)
is stored in the element f;;, the new matrix that represents the remainder after
splitting is defined as

Ry =F —u;-vi/fij,

where u; and v; are respectively the j-th column vector and i-th row vector of
F. When (a,b) is located on the diagonal, the operation is a particular case of a
rank-one update of F; and when (a,b) is located off-diagonal, two consecutive
operations on elements [i, j] and [j,4] correspond to a particular case of a rank-
two update of F. The rank-one update can be seen as the discrete version of
the splitting operator: vectors u; and v; correspond to the univariate functions
and f;; = f(a,b) to the denominator in equation (3.2). The new matrix R, is also
symmetric and has zeros in row ¢ and column j.
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The discretization of f may potentially introduce some error in our process on
two fronts: the number of candidates for splitting points is now finite, and the
estimated norms can be smaller than the true norm. Therefore the density of the
sampling plays an important role in the appropriate selection of the initial splitting
points.

Density is also important in guaranteeing that there will be enough points to
split while in the confinement phase: every new splitting point reduces the number
of sampling points that are used to estimate ||r,||s. On the other hand, the bigger
the sampling grid, the more expensive the confinement phase becomes. Conse-
quently, it is important to find some middle ground, that is a grid not too big that
allows an acceptable number of splitting points to be chosen while the number of
remaining points allows an adequate estimation of ||r,||so-

In practice, an initial grid of 25 x 25 sample points is being used in the author’s
Maple implementation. If the number of non-zero rows/columns falls below 15
while the ||f]|/100 threshold has not been reached, the grid is expanded by a
factor of 2 in order to allow more splitting points to be chosen. From analysis that
takes place in Chapter 5, we postulate that more than one expansion would almost
never be necessary for practical problems. If it happens, perhaps this method is
not the best choice for the problem, or the problem may be exceptionally difficult.

The discretization of the function according to the parameters indicated above
does not adversely affect the general performance of the algorithm. We have found
that the number of terms generated without discretization is almost always the
same and not necessarily less. Simultaneously, the matrix-vector representation
as in equation (4.2) is accordingly updated for use in the next phase. The role
of ||f]le is to help in the estimation of the progress, and an approximation of it
does not meaningfully affect the final result. Finally, the list of splitting points
generated should be enough to lead the series towards the monotone convergence
of the upcoming phase.

The result of the confinement phase is a list of splitting points (in appropriate
order) that make the series start having essentially monotonic convergence. The
matrix used in the discretization is not needed anymore and can be discarded.

4.4.2 The Convergence Phase

As it was mentioned before, an important assumption is made: during the conver-
gence phase, the mazimum error will occur on the diagonal, very near the midpoint
of adjacent splitting points. These midpoints constitute the new set of sample points
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used to estimate the norm of the remainder during the convergence phase. Again,
extensive experimentation has supported the fairness of such an assumption and
the norm estimation based on it results in a significant reduction in the running
time.

There are two cases in which extra points should be added as sample points.
It is very likely that the end points of the diagonal, (0,0) and (1,1), are chosen
as splitting points during the confinement phase. In forthcoming discussions we
will refer to a zero exception when the point (0,0) is not chosen as a splitting
point in the confinement phase, and a one exception when the point (1,1) is not
chosen as a splitting point in the confinement phase. If either of these points have
not been chosen during the confinement phase, then we add them to the set of
midpoints as candidates for the next splitting point. In total, at iteration n only
O(n) evaluations of the remainder are taken to estimate the norm of the remainder
in the convergence phase.

It is during this phase that the benefits of the linear algebra representation
of the series play a substantial role in the performance of the algorithm. From
equation (4.1) one can see that evaluating the remainder at a single point could
involve O(n) integrand evaluations and O(n?) linear algebra operations; therefore,
each iteration would have a computational cost of O(n?). Fortunately, the sets of
sample points are almost equal for two consecutive iterations since at each iteration
we remove one of the sample points to use it as the new splitting point, and add
at most two new midpoints. When the new splitting point is (0,0) or (1,1) no
new sample points are required. Moreover, each iteration inevitably incurs a cost
of O(n?) floating-point operations when computing the new row of matrix L, and
this new row can be used to compute the values t,(m;, m;) for all the sample
points {m;} that come from iteration n — 1 in O(n?) time as well. With these
values calculated, previously cached evaluations of the remainder, r,,_1(m;, m;), are
converted to evaluations of the new remainder r,,(m;, m;). Evaluating the remainder
at the two new sample points still requires O(n) integrand evaluations and O(n?)
floating-point operations.

The process of producing the new entries in matrices L, D, P, and vector V(x)
at iteration n can also benefit greatly from caching. For the new splitting point a,,,
the values f(a;,a,) for 1 < i < n — 1, that constitute V(a,) in the computation
of the new row in L, have already been computed in previous iterations. Since
a, was a sample point until iteration n — 1, it follows that r,(a,,a,) must have
been calculated by means of evaluations of f(a;,a,). Therefore, saving the values
of f(ai, m;) for every combination of splitting points {a;} and sample points {m,}
minimizes the number of integrand evaluations required at every iteration.
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These caching strategies increase the memory used by about a factor of 3, but
they guarantee that no integrand evaluation happens more than once, and reduce
the running time at each iteration from O(n?) to O(n?). In total, at iteration n
the algorithm performs O(n) integrand evaluations and O(n?) elementary floating-
point operations. The space used to store the cached values is similar to the space
used to store the matrix representation of s,: O(n?).

Lastly, we should discuss the stopping criterion of the convergence phase. From
previous chapters we know that the error criterion used to stop the process is
of the form ||r,|lee < &, which corresponds to the absolute error of the function
approximation. Therefore the required accuracy of the integral computation should
be somehow expressed in similar terms. Let us see how this is done.

In the case of the integral, the value calculated using the Geddes series expansion
has an absolute error that is also bounded by the norm of the remainder in the unit

square:
1 1 1 1
1| = / / f(x,y)dydx—/ / sulz,y) dy du
0 0 0 0
1 1
= / / f(x,y) — su(z,y) dy dzx
0 0
1 1 1 1
_ / / ral,y) dy di| < / / ra(e, )| dy do
0 0 0 0
1 1
s/ / ralloo dy dz = [[7a]|o.
0 0

From the estimate of the norm ||r,||, estimates of the absolute and relative errors
can be provided for the integral computation.

One important thing to notice is that the value |I — I,,| = ‘fol fol ro(z,y) dy dz

is expected to be much smaller than ||r,||« during the convergence phase. This
happens because of the intrinsic form of the remainder: the hills and valleys seem
to be evenly distributed above and below zero and thus the remainder’s integral is
considerably smaller in magnitude than its norm. Two consequences derive from
this fact. The good thing is that an estimate based on the remainder’s norm com-
pensates for other approximations that take place in the algorithm. On the negative
side, if the difference is quite large, there could be some extra terms generated after
the required accuracy is achieved thus causing unnecesary work.

It is usually in terms of the relative error that e, the requested accuracy of the
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approximation, is specified. The relative error of I,, should satisfy

|I_]n|
i

E.

Assuming that in this phase I,, has at least one digit of accuracy, we can replace
the denominator |I| by |I,,| and use the bound |I — I,,| < ||rn]|oo to obtain the
estimated relative error of I,,:

I_In n|loo
Est(' '):”T" <e (4.3)

When a function has such a form that |I,,| < ||f||«, €.g. the integral is 0 or
very close to 0, the number of digits used in the computation may not be enough
to properly handle cancellation problems when adding terms. In such case, one
must abandon a pure relative error criterion and switch to an absolute error crite-
rion. However, one can do better than aiming to achieve simply ||r,||-c < €. By
adding some number G of additional guard digits in the underlying floating-point
environment, inequality (4.3) can be replaced by

|17 | o

L NLLAL 4.4
e x 7 = (4.4)

where 7 is a small constant usually related to the number of guard digits G. For
example, v = 107¢.

Combining (4.3) and (4.4), we obtain the complete stopping criterion for the
algorithm:
[rnlloe < & max(|1n], [|flloc > 7). (4.5)

Notice that this criterion prevents the algorithm from running forever when the
value of the integral is 0. Notice also that if |I,,| is comparable in magnitude with
[|f]leo the stopping criterion can be safely replaced with ||7,]|c0 < € || f]]oo-

With the full generation of the series completed, we can proceed to integrate
the series.

4.4.3 Integration of the Series

Once we have the Geddes series expansion of the integrand, the value of the integral
is computed by integrating the n functions in V(z), and doing the matrix/vector
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multiplications in equation (4.2). These n one-dimensional integrals can be com-
puted in two different ways: either numerically or symbolically.

Quadrature algorithms are in general very efficient and quite powerful. This is
therefore the first option. As it was mentioned in Chapter 2, Maple takes advantage
of the symbolic engine to handle various types of singularities before integrating
numerically.

The second option is to take advantage of the symbolic integrator to integrate
f(x,y) with respect to one of the variables:

fH(@) = / f(z,y) dy.

The new function f* can be evaluated at the n coordinates {a;}"; = {b;}; of the
splitting points to obtain the values of the one-dimensional integrals.

Although symbolic integration sounds very convenient, in practice, the function
f* may be difficult to compute and its algebraic representation could be quite more
complicated than f. For instance, consider the functions:

oo (i)

@+ Dy + 1)

fol.y) =exp( -1 )

xy +1

Both functions are analytic in [0, 1]2. However, the integral f; yields a relatively
large function that involves the exponential integral function, and the integral f3
cannot even be calculated in Maple 9.

In some cases it is difficult to predict which method is faster. Numeric integra-
tion is better for most practical cases. Symbolic integration is only worth trying
when the number of terms of the series is very large. This is likely to happen for
two reasons: the integrand itself is very difficult to approximate, or the precision
required in the integration is very high (e.g. software floating-point precision).

This concludes the presentation of the two-dimensional integration algorithm.
What lies ahead are the results of experimentation with the algorithm and an
extension of the algorithm to higher dimensions.



Chapter 5

Results in Two Dimensions

The algorithm used to tabulate the data in this chapter has evolved through sev-
eral prototypes. Most of the implementation decisions are empirical and extensive
experimentation is used to judge its correctness.

The implementation of the algorithm was done in Maple 9 because of its suit-
ability for performing symbolic mathematics as well as arbitrary precision numer-
ical computation. Most of the linear algebra computation is done directly by
NAG/BLAS routines, which are known to be highly optimized. Maple also al-
lows an implementation of the algorithm that performs in software floating-point
precision.

The following NAG routines were used in the implementation of the algorithms:
e f06phf. Multiplies a real triangular packed matrix by a vector in place.

e fO6eaf. Computes the dot product of two real vectors.

e f06pdf. Multiplies a real symmetric band matrix by a vector in place.

e fO6yaf. Multiplies two real rectangular matrices®.

The tests were run on a computer with Intel Pentium 4 processor at 2.02 GHz,
with 0.98 GB of RAM, and running Microsoft Windows XP with Service Pack 1.
The maximum number of digits that Maple can use to represent numbers in hard-
ware floating-point is given by the command evalhf (Digits) and its value is 14.

LAt the time of implementation of these algorithms the routines f06pqf and f06psf were not
available to Maple. They are a better choice to use instead of £06yaf since they directly compute
rank updates.

30
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5.1 The Suite of Test Integrands

The experimentation took place using 41 different test integrands that included
exponential, trigonometric, logarithmic and polynomial functions. Most of them
came from the suite of test integrands previously used by Chapman in his thesis
proposal [6]. This is the complete list of functions:

fir(x,y) =cos(kmzy) for 1 <k <7
Jfs(,y) = sin(r zy)
folw,y) =sin@ma(l—z)y (1-y))
fio(z,y) =sin@ra (1 —2) y (1 -y) (v —y)?)
fii13(z,y) = cos(km (x —y)?) for 0 < k < 2
4 4
fra(z,y) = exp (sin (1 _:TI) sin <%>)
fis(z,y) = In(1 + zy)
fre—17(x,y) = cos(kmxsin(ry)) + cos(kmysin(rz)) for 1 <k <2
1—zy
fis(z,y) = a2
fro—o1(z,y) = cos(kmxy?) cos(kmya?) for 1 <k <3
 r—y y—
f22(xvy)_ 2—x2+y2 +2—y2+$2
fas(w,y) = eV e
1 — 22 1—g?
foa(z,y) = exp (1 +y2) + exp (1 +x2)
f25(x>y) =10""Y
fos(w,y) = 10710
for(z,y) = \/E(Hy)ﬁwhere ¢ is the machine epsilon.
(z,y)

fo(z,y) = sin(z + y)
fa1(z,y) = " Y cos(z + y)
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fa2(z,y) = cos(m/3 +z +y)
fas(x,y) = cos(m/3+ 5z +5y)
faas6(z,y) = (v +y)*F for 1 <k <3
far(a,y) = €Y cos(x + )
fas(x,y) = sin(z y)
fao(x,y) =sin(zy)+x+vy
fuo(r,y) =1 +x+y) >
fu(z,y)=1+5z+5y)~°

Function fo; deserves extra attention as there is a justification for the use of
the machine epsilon? in its definition. It was specifically designed by Chapman
to test the algorithm to its limits and was expected to be extremely difficult to
integrate [6]. Its norm is 1, located at (0,0), but it decreases exceptionally fast to
the numerical zero on the family of lines x + y = ¢ as ¢ increases from 0 to 2. In
fact, the function is also hard to integrate when using other numerical or symbolic
methods. Since we can always add guard digits in a floating-point environment of
arbitrary precision, the value € appearing in fo7 is calculated based on the target
accuracy and will differ from the machine epsilon of the floating-point system in
which extended-precision calculations take place; otherwise, one would not be able
to obtain a correct result with standard numerical methods.

For all the tests here presented, the integral computed is

/Ol/ﬂlﬂx,y)dyda:

where f(x,y) is taken from the list above. Notice that seven functions, f3p_ss, are
already tensor products of finite rank.

5.2 Results and Analysis

The experimentation done during the development of this work was quite thorough
and adds to the experimentation by Chapman [6]. Throughout the various iter-
ations of the algorithm the data collected was analyzed and used as feedback to

?In a floating point computational system, the machine epsilon ¢ is the smallest positive
number such that 1 + £ does not round to 1.
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make further improvements. This section only presents the results, analysis and
conclusions that have more significance to the project. What may look repetitive
and does not contribute to a better understanding of the results is avoided for the
sake of space. Instead, what reflects the typical behaviour is presented along with
references and discussions of the odd cases that were observed.

Before we look at the results, let us make a couple of assumptions that will
help in the understanding of the material. First, we shall use the initials TPA to
refer to the Tensor Product Algorithm that approximates the two-dimensional
integrals. This term will be used in this and subsequent chapters.

Additionally we will be referring to two types of errors: estimated and actual.
When not specified, we shall assume the error is actual. Both terms error estimate
and estimated error can be used interchangeably and refer to the estimation of
the relative error in TPA which is an upper bound of the actual relative errors.
Likewise, when not specified whether the error is absolute or relative, we shall
assume it is relative.

We will also assume that the requested accuracy is always represented as 5 x
10~P for different values of the number of significant digits D. In theory, the
accuracy is not a discrete quantity but here we can assume so for practical reasons.
Another reason is that the machine epsilon of the floating-point system is usually
expressed in this form.

5.2.1 Integration of Various Functions

Let us begin with the analysis of the results obtained with various types of functions
at a fixed accuracy. The results using TPA are compared to the results given by the
adaptive routine DCUHRE. Maple has an implementation in C of DCUHRE. Table
5.1 shows the results of these experiments. Only 26 functions of the 41 in the test
suite are listed in the table. The functions omitted have a behaviour very similar
to at least one function that is included, e.g. functions that are tensor products of
finite rank converge very quickly due to the implicit nature of the algorithm. In the
table the column Est. RelErr corresponds to the estimated relative error, calculated
as in equation (4.3). The column N. Pts indicates the number of splitting points
(series terms) generated in the series expansion. The column Actual RelErr shows
the relative error calculated with respect to DCUHRE.

The accuracy requested was ¢ = 5 x 1071 for TPA and ¢ = 5 x 1074 for
DCUHRE. The difference allows a good calculation of the actual error of the result
given by TPA.
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‘ Fen | Time | Result ‘ Est. RelErr ‘ N. Pts | Actual RelErr
fi 0.360 | 0.58948987223608 | 1.7 x 10~ 7 4.3 x 1075
fa 0.291 | 0.22570583339509 | 3.0 x 10~ 9 9.0 x 10714
f5 0.400 | 0.10402143283825 | 6.9 x 10~ 14 1.1 x 10713
fe 0.471 | 0.080534202916293 | 1.3 x 10~ 16 3.5 x 1071
fs 0.260 | 0.52466306757532 | 1.5 x 1072 7 1.1 x 1071°
fo 0.110 | 0.57355191766630 | 1.8 x 10~ 5 7.9 x 10713
fio | 0.341 | 0.069551393138889 | 8.0 x 10~ 15 2.6 x 10713
fi2 | 0.330 | 0.48825340607531 | 1.0 x 10~ 17 6.3 x 1071
fiz | 0.391 | 0.35045604941309 | 9.4 x 10712 23 1.7 x 1074
fia 1 0.270 1.1714604745107 | 8.7 x 10~ 9 5.3 x 10714
fis | 0.221 | 0.20876139454396 | 1.8 x 10~ 8 2.1 x 10713
fir 1 0.701 | 0.24165176672906 | 3.2 x 10710 15 1.0 x 10713
fis | 0.100 | 0.50869831592917 | 7.8 x 10714 10 7.9 x 1071
fi9 | 0.410 1.4959313336629 | 9.2 x 10~'3 9 1.9 x 1074
foo | 0.531 | 0.97650681215071 | 2.9 x 10712 11 3.0x 107
fao | 0.230 | 0.094224075145608 | 4.0 x 107! 11 4.1 x 107
fos | 0.331 |  1.7230554135927 | 5.7 x 10712 9| 6.2x 101
faa | 0.360 3.4920353042749 | 5.1 x 10712 7 5.2 x 10714
fas | 0.581 | 0.16128972668362 | 6.2 x 10~ 16 4.5 x 1071
for | 1.292 | 0.20256880553389 | 1.1 x 107! 34 1.9 x 1074
fos | 3.415 1.1176057514718 | 3.3 x 1071 33 2.9 x 10714
fao | 9.344 | 1.0712799262960 | 1.0 x 1010 48 9.7 x 1071
fa1 | 0.080 1.0720695615353 | 1.9 x 1013 2 1.6 x 10~
faa | 0.040 2.0666666666667 | 8.4 x 10713 5 1.6 x 1074
fae | 0.150 90.010989011673 | 1.1 x 1079 9 7.6 x 10712
fio | 0.090 | 0.16666666666659 | 2.0 x 1071 8 4.6 x 10713

Table 5.1: Results and Errors of Integrals in Two Dimensions

34
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The current implementation of TPA uses |[r,|[cc < 15 ||f]lcc as the stopping
criterion for the convergence phase. Two design-related reasons led us to use only
[|flleo and not consider |I,,| as in (4.5). The first reason is modularity: the proce-
dure that generates the series is separate from the one-dimensional integration in
order to allow the former to be used to approximate a function for any other pur-
pose. The second reason will become more evident in upcoming chapters: in higher
dimensions, estimating |I,,| during the convergence phase increases the space usage
of the algorithm. The factor of 1/10 that accompanies € intends to compensate for
not considering |/,,| in the stopping criterion. Nonetheless, the estimated relative
error is still computed at the end of the convergence phase for comparison.

While working in hardware floating-point precision, the TPA algorithm uses as
many digits as the computer itself allows. This is a practical choice because there
is no extra computational cost incurred by the algorithm. As a consequence, the
farther the required precision is from the hardware floating-point threshold, the
more guard digits that are effective. The value calculated by TPA is shown with all
the digits used throughout the computation to show that in most cases the actual
relative error is much smaller than the estimated error.

The following is a list of observations and conclusions from running these types
of tests:

e We can see that all the approximations have actual errors that are over 1,000
times smaller than the required accuracy € = 5 x 107!°. This is an indication
that we are generating more terms than necessary.

e There is no actual bound on the number of splitting points required to ap-
proximate any function. For example, replacing the constant 3 in function
fas by a higher value yields a new function that is harder to approximate,
f29. Basically, more oscillations are introduced in the integration region. As
a consequence, the number of terms required to reach ¢ = 5 x 107!Y when
integrating fog increases from 33 to 48.

e In functions f3g and f4; the ratio between || f|| and I,, starts being significant
and this causes the adjustment of € (to £/10) to also start falling short by
giving an error estimate that does not meet the required accuracy. Despite
this, the actual relative error is by far acceptable. When ¢ is not divided by
10 the results still meet the required precision. However, then about 50% of
the functions report an estimated relative error greater than e, which could
be misleading.
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e On average, running times get cut to under 30% by the introduction of the
matrix-vector representation of the Geddes series as in equation (4.2). This
is proof of how important efficient representations and linear algebra compu-
tations are in the performance of the algorithm.

e We expect the algorithm to be further improved and an implementation in
a compiled language such as C will improve the performance. More on this
topic is discussed towards the end of this chapter.

5.2.2 Inside the Series Generation Algorithm

Now that we have a general idea of what the algorithm generally produces, let us
take a closer look at what happens during the generation of the series. Let us re-
member that the criterion to switch from the confinement phase to the convergence
phase is estimating that ||r,||e < ||f]]00/100.

Table 5.2 presents the progress of the algorithm for the function fy(x,y) =
cos(4dmzy). The column Ph indicates the phase in which the splitting point was
selected, 1 for the confinement phase and 2 for the convergence phase. The midpoint
norm is defined as Est(||r,||o) = mzax(]rn(mi, m;)|) where m; is each one of the mid-

points on the diagonal. The function’s error estimate is given by Est(||7n]|00) /|| f]]o0s
the integral’s error estimate by Est(||rs||e)/|[n]|co, and the integral’s actual error
by |I — I,|/|I].- The last column, midpoint-norm accuracy, corresponds to the ra-
tio Est(||7n]]e0)/||7n(x, 2)||co, Where ||r,(x, 2)||« is calculated via Maple’s function
numapprox [infnorm]. This number shows how well the value at the midpoints
represent the norm of the remainder on the diagonal.

Function f; is one of the functions with more splitting points generated in the
first phase, thus the beginning of the convergence phase was later than average.
Because ||fi||co = 1 the values for the function’s error estimate also correspond to
the midpoint estimate of ||r,||oo-

The numbers in the last column of Table 5.2 indicate that for f, the norm
estimation via midpoint sampling is notably good. Other functions experience
occasional low estimations, yet the average accuracy for the 41 problems is suitably
high: 89%. Because the actual relative error is usually much smaller than the
estimate (at least one digit more of accuracy), a poor estimate of ||r,||o can still
be trusted to estimate the relative error of the integral.

The graphic in Figure 5.1 shows a comparison of the three columns with rel-
ative errors from Table 5.2. The values are converted into digits of accuracy via
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Splitting Function’s Integral’s Integral’s Midpoint-Norm
Coord. | Ph | Error Est. Error Est. | Actual Error Accuracy
1 0 1| 2.0x10%| 2.0 x 10" 7.4 x 10% -
2 0.500 1 1.9 x 10%° | 3.9 x 10" 3.2 x 10% -
3 0.875 1| 20x10%| 50x10°| 6.7x 107 -
4 0.292 1 1.0 x 10 | 9.1 x 10° | 5.9 x 10792 -
5 0.708 | 1] 2.6x10%| 2.1x10"| 6.1 x 107" -
6 1 111.6x107914x107°| 2.5x%x 1079 -
7 0.958 1158x107%149x%x107%2| 6.2x 107%™ 89.9%
8 0.396 2114x107%[1.2x107% | 5.0x107% 99.8%
9 0.792 2144x107% | 3.7x107% | 1.7x107°7 95.2 %
10 0.146 2131x107%|26x107% | 87x107% 84.3 %
11 0.979 2114x107% [ 1.2x107°7 | 1.1 x 1079 97.3%
12 0.604 2182x1071[69x1071% | 3.1x10713 99.9 %
13 0917 2152x1071¥|43x10712| 3.8x 10~ 98.7 %

Table 5.2: Progress of the Approximation for fy

—log,o(Err /5). The reason for using f; as the first example is because this func-
tion shows a nice monotonic convergence after some struggle during the confinement
phase. Functions f;_7 all have a similar algebraic form and their graphics look very
similar as well. You could say that the constant k£ in the definition of these func-
tions determines how long the confinement phase will be: the more oscillatations,
the more iterations we need.

Before deriving more conclusions, let us look at the corresponding plots for two
other functions, fo7 and fs¢, in Figures 5.2 and 5.3. Each of these two functions
exhibits a somehow particular behaviour.

It had been mentioned that for(x,y) = \/E(Hy)G is a function whose integral
is, by nature, hard to approximate. Nonetheless a generally uniform convergence
is noticeable right from the beginning. We can also see that if we had a better
estimation criterion for |I — I,,|, we could have stopped the process after about 24
iterations, rather than 34. Even though the accuracy of the midpoint estimation is
above average for this function, steps back cannot be avoided and they make the
convergence rate relatively low.

Function f3(z,y) = (x + y)'? is a case where the error estimate of the in-
tegral does not meet the required accuracy while the actual relative error is still
good. This happens because [ is much smaller than ||f||. As it was explained

in Chapter 4, this becomes a problem when the number of guard digits used in



CHAPTER 5. RESULTS IN TWO DIMENSIONS
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Figure 5.1: Comparison of Relative Error Estimates for fy
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Digits of Accuracy
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Figure 5.3: Comparison of Relative Error Estimates for fsg

the computation is small and does not compensate for such a difference. The con-
sequence is the emergence of the well known cancellation problem that arises in
floating-point computation whenever the value of a sum is much smaller than the
magnitudes of the terms being added.

The graphics here presented are just a sample of the odd cases. In general, the
graphics generated for all the test functions display error estimates that converge
in a fairly monotonic way. On the other hand, the progress of the actual relative
error is more uneven than the estimates. Based on the plots of the functions in the
test suite we can draw the following important conclusions:

e Every function in our test suite has a point after which it starts converging.
Usually the convergence starts early in the process.

e The convergence exhibits a linear relationship with respect to the number
of terms generated. The only exception is seen in functions that are tensor
products. These functions may have a sudden increase in accuracy when the
last term is generated, since in that case the remainder is theoretically zero.

e The only functions that do not start converging immediately are oscillatory.
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In general, we could say that each function has its own signature. However, they
all behave according to what can be seen as a common pattern: no progress during
some iterations followed directly by a nearly linear convergence. This is exactly the
justification for separating the algorithm into two phases.

Let us finish the discussion of this segment of the tests with some statistics
related to how the splitting points are selected:

e The average number of terms for all the 41 approximations is 12 terms.
e About 40% of the points are selected in the confinement phase.

e The nine functions that are tensor products required at most as many terms
as their rank. The only one that used fewer terms than its rank was fzq:
its rank is 13 and the algorithm gave an approximation accurate to 10 digits
after only 9 terms. See Figure 5.3. This illustrates that TPA can be used to
“economize” a tensor product by lowering its rank.

e There were only two functions that required off-diagonal splitting points:
fio and fao. The reason is because the functions vanish on the diagonal,
f(xz,z) = 0. After choosing an initial pair of off-diagonal points the rest of
the points can be selected from the diagonal.

e The end points of the diagonal, (0,0) and (1, 1), are usually chosen during the
first phase. Excluding the functions that already vanish on the boundary, thus
f(z,0) = f(0,y) =0 or f(x,1) = f(1,y) =0, there were nine functions that
did not have (0,0) or (1,1) chosen as splitting points during the confinement
phase. For three of those functions those points were never chosen, but the
functions were tensor products of rank two so there was no time or need to
choose them. In the other six cases the missing end points were always chosen
early during the convergence phase.

5.2.3 Evaluating Integrals with High Precision

Now that we have presented the behaviour of the algorithm from an inside point
of view, we will consider the results obtained from running the TPA algorithm at
various accuracy tolerances.

To go further than hardware floating-point precision, we require a powerful and
effective software floating-point environment. One important advantage that Maple
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has is the availability of special linear algebra routines that allow software floating-
point computations to be performed using the efficient NAG library routines. An-
other advantage is that Maple—as most mathematics software—has better tools
to compute the approximation of an integral in one dimension than in multiple
dimensions. These two facts combined make TPA a very powerful tool to compute
two-dimensional definite integrals at software floating-point precisions.

The numerical methods that Maple has available to compute multiple definite
integrals (DCUHRE and Monte Carlo) only work in hardware floating-point pre-
cision. For software floating-point precision, Maple may combine symbolic and
numerical methods to try to give an answer, but the limitations are evident.

Once Maple is working in software floating-point precision, a few extra guard
digits do not make a significant difference in the performance of the algorithm.
Therefore, we decide to always use 4 guard digits of additional precision for the
software floating-point computations.

Let us consider function f;y whose exact integral is

1 1
/ / sin(8rx(1 —x)y (1 —y)(x —y)?) dy dz

o Jo
= 0.069551393138907990172712979644869005563.

This value was symbolically computed using Maple with 34 digits of precision via
a Maclaurin series expansion of sin(z). Table 5.3 presents the results of using the
TPA algorithm at various accuracy tolerances.

The first thing we care to know is if the values of the approximations are correct
and the series continues converging at higher precisions. The answer for all but one
of the 41 functions in the test suite is yes. Again, the problematic function is fo7.
The one dimensional integrations that took place while approximating the integral
of fo7 with TPA in software floating-point precision gave incorrect results, causing
TPA to produce an incorrect result as well. In any other case, TPA provides a result
that can be confirmed to be correct and the error estimate of the approximation is
also within bounds.

Figures 5.4 and 5.5 illustrate the effect of the accuracy on the number of terms
(splitting points) generated and on the time respectively. It was previously indi-
cated that the relationship between the number of terms and the precision is linear
during the convergence phase. In Figure 5.4 we can confirm that this assertion still
holds in software floating-point precision.

The number of guard digits becomes the main issue when approaching the hard-
ware floating-point threshold. Let us recall that experiments took place in a com-



‘ Req. Acc. ‘ Time ‘ Result ‘ Est. RelErr ‘ N. Pts ] Actual RelErr ‘
5x 10719 0.330 0.069551393138889 | 8.04 x 10~ 15 273 x10°13
5x 107" | 0.291 0.069551393138909 | 8.34 x 10~12 17| 145 x 10~
5x 10712 | 0.470 0.069551393138908 | 2.10 x 10~13 18| 1.41 x 10716
5x 10713 | 0.421 0.069551393138908 | 1.45 x 10~13 19| 1.41x10°16
5x 107" | 3.655 0.06955139313890799018 | 8.01 x 10~1° 19| 1.05x10°%
5x 1071 | 3.725 0.069551393138907990186 | 8.05 x 10716 21| 1.91x1071
5x 10716 | 4.036 0.0695513931389079901727 | 2.61 x 10~17 23| 1.87 x 1072
5x 10717 | 3.866 0.06955139313890799017273 | 5.15 x 1018 24 | 2.45 x 10722
5x 10718 | 4.476 0.069551393138907990172709 | 1.29 x 10~19 25| 5.72x 1072
5x 10719 | 4.637 0.0695513931389079901727097 | 1.29 x 10~ 25 | 4.72 x 1072
5x 10720 | 5.297 0.06955139313890799017271229 | 1.13 x 10720 26| 9.92 x 107
5x 1072 | 6.359 0.069551393138907990172712988 | 3.86 x 10722 29 | 1.20 x 1072
5x 10722 | 6.079 0.0695513931389079901727129792 | 7.63 x 10~2° 31| 6.40 x 10727
5x 10723 | 6.419 0.06955139313890799017271297969 | 6.54 x 10~2° 31| 6.49 x 10~28
5x 107 | 7.361 0.069551393138907990172712979651 | 6.56 x 102 31| 8.82x 1072
5x 1072 | 7.240 0.0695513931389079901727129796449 | 6.66 x 1026 33| 4.46 x 1073
5x 10726 | 7.031 0.06955139313890799017271297964491 | 3.31 x 1028 35| 5.89 x 1073
5x 10727 | 7.000 0.069551393138907990172712979644869 | 3.36 x 1028 35| 8.00x 1073
5x 10728 | 8.652 0.0695513931389079901727129796448700 | 1.21 x 1028 36 | 1.43 x 10732
5x 10729 | 11.367 | 0.06955139313890799017271297964486901 | 6.28 x 1032 38 | 6.38 x 1073°
5 x 10739 | 14.220 | 0.069551393138907990172712979644869007 | 6.28 x 1032 38 | 2.07 x 1073

Table 5.3: Integral of f1y Calculated at Different Precisions
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Figure 5.4: Number of Terms vs. Accuracy for fig
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Figure 5.5: Time vs. Accuracy for fio
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puter that does hardware floating-point computation with approximately 14 digits.
When the accuracy requested was € = 5 x 10713 there was one guard digit available
to use without switching into Maple’s software floating-point computation. The
first adverse consequence is that although the actual error was below the required
tolerance e, the cases where the estimated error was greater than ¢ became less
rare. This means that the estimation of the error was affected by the lack of guard
digits.

The second consequence of using few guard digits is numerical cancellation prob-
lems. The process stops converging because the limits of the current working pre-
cision are reached, and after that, achieving the target absolute error becomes a
matter of luck. Functions fs5_g exhibit this problem when computed at ¢ = 5x 10712,
When € = 5 x 107!3, the number of affected functions increases to 18 out of the 41
functions. The way that TPA handles these cases is by remembering the iteration
when the lowest estimated error occurs throughout the convergence phase. If it
is detected that the norm has not improved in the last five iterations, the process
is stopped and the last five terms are ignored in the approximation. For now, a
value of five for this threshold seems to be a fair choice since the longest sequence
of no improvement was four and it happened with function fo9. No-improvement
sequences of three only occurred with three functions: fig, for and fog.

In the cases where this numerical divergence happened, the approximation
still achieved the requested accuracy. Nonetheless, it is recommended to use the
algorithm with at least two guard digits in all cases. Requested accuracies of
e =5 x 107" and larger, or ¢ = 5 x 10~ and smaller did not exhibit any diver-
gence problem with any of the test functions.

In general, the lack of enough guard digits affects the convergence of the algo-
rithm and causes a poorer estimation of the error because of the round-off errors
that are introduced. Yet, this is a problem that affects all numerical computations,
and not only TPA. It is always dangerous to do computations with only one or no
guard digits.

Being able to go to such high accuracy and still obtain correct results is a proof
that the criterion of using splitting points on the diagonal as much as possible works
remarkably well.

5.3 Performance of the Algorithm

With the experimental data tabulated we can now proceed with the asymptotic
analysis of the running time of the algorithm. This analysis is different for each
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stage of the algorithm: confinement phase, convergence phase and integration. The
reason is because it is based on the generalization of two important conclusions
from the previous section:

1. There is an upper bound (named k; below) on the number of terms required
before monotonic convergence of the series begins. This is the expected num-
ber of terms generated in the confinement phase.

2. The convergence rate, which is a ratio between accuracy and the number of
terms generated in the convergence phase, seems to be nearly constant.

In general, most of the computation in the algorithm falls into one of the follow-
ing three categories: integrand evaluations, linear algebra operations on matrices
and vectors, and one-dimensional integration. These classifications make the run-
ning time of the algorithm depend on several parameters. Let us define those
parameters and other relevant variables that will help in the analysis of the com-
putational cost of TPA:

e D is the number of digits of accuracy requested for the approximation.

e m is the size of the sample grid generated in the confinement phase. In our
case m is 25.

m’ < 'm is the minimum size of nonzero rows/columns of the grid that allow
a good estimation of the norm of the remainder.

n is the total number of terms required in order to achieve D digits of accuracy.

e For a given function we define the following parameters:

— ¢ is the cost of one function evaluation.
— If the function is a tensor product, r is its rank.

— ki is a constant representing the number of splitting points needed to
take the Geddes series into convergence.

— ko is a constant representing the convergence rate of the Geddes series
when the function is not a tensor product. From the experimentation
presented in this chapter, we can assume that such a constant exists and
can be defined as

B n — k’l

ky = ———. (5.1)
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— ¢re(D, ¢) is the average cost of the univariate integration of a cross-
section of the function, which can significantly vary from one cross-
section to another. For a given univariate function, the cost depends
on the method used, the required accuracy D, and the integrand evalu-
ation cost c.

For example, if we consider an implementation by Gentleman of Clenshaw-
Curtis quadrature [13, 14|, which is the default one-dimensional integra-
tion method in Maple, this cost is usually cr(D,c) ~ kc10P/3 for
analytic integrands.

Constants k; and ky are associated with the maximum error criterion for select-
ing splitting points and their existence is just an empirical assumption. Based on
the experimentation done, there is no evidence of a function that would not fit this
generalization. Nevertheless, it is indeed possible that other selection criteria would
yield different values for such parameters, but there is no evidence either that they
would significantly improve the performance of the algorithm.

Let us recall what operations happen in the confinement phase. It begins with
O(m?) integrand evaluations. Then at each iteration there is a rank one or rank two
update that performs O(m?) elementary floating-point operations®, and the norm
estimation that is usually O(m), or if zero is detected on the diagonal, O(m?).

There is however a relationship between k; and m: m > k; + m’. Let us
assume we know k; and can therefore deduce the value of m. Then, the cost of
the linear algebra operations can be expressed in terms of ki: O(ky m?) = O(k3).
After adding the cost of integrand evaluations, we conclude that the cost of the
computation during the confinement phase is

Cenk = O(c k% + k’13)'

Because the only structure needed in this phase is a matrix, we know the space
required is
SCNF — O(k12)

The time and space complexity of each iteration during the convergence phase
was mostly analyzed in Chapter 4. The generation of the k-th term requires O(k)
integrand evaluations and O(k?) floating-point operations. Adding the costs for all

3Elementary floating-point operations usually refer to the basic arithmetic operations, and
they are performed directly by the processor when working in hardware floating point precision.
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n iterations, we determine the computational cost of the convergence phase to be:
Cony = O (0’ +¢n?). (5.2)
The space used in the convergence phase is
Sceny = O (nQ) )
The total cost of the univariate integration is
Cint = O(n e (D, ¢) +n?).

Finally, the partial costs are combined, and simplified to yield the total computa-
tional cost of TPA:

Crpa = Conr + Cony + Cine
= O(necr(D,c) +cn® +n?). (5.3)

where n = D ko + ky. If the integrand is a tensor product, k; = 0, n can be replaced
by r, and (5.3) is simplified to

Crpa = O(r crm(D, ) + cr? +17).

The constants k; and ko are usually small. For example, function fi3 has the
largest value of kq, about 9; and the values of ks for the test functions that are
not tensor products range from about 0.5 to 5. On the other hand, the parameters
¢ and ¢ (D, ¢) can be relatively large and have a more significant impact on the
computational cost of the algorithm. After substituting n from equation (5.1) in
(5.3), constants k; and ko are discarded and we obtain an expression in terms of
the requested accuracy:

Crpa = O(Dcp(D,c) + cD? + D3).

Some observations can be made based on the implementation done with this
work which we consider to be quite efficient. After tracing the times for the three
different types of operations that take place, we can see that nearly all the processing
time is spent in evaluations of the integrand, which is what we would hope for.
The computation that comes second in time consumption is the linear algebra
operations, but its time is very small compared to integrand evaluations.
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5.4 Future Modifications to the Algorithm

The aim of this final section is to give additional information to those who want
to implement a new version of TPA. It contains some things that we tried and
did not find helpful, and other things that, although promising, did not get to
be implemented. Basically, better performance could be obtained by decreasing
the number of terms needed to obtain a given accuracy, cutting the costs of the
operations involved, or finding a faster way to estimate the norm of the remainder.

5.4.1 What We Tried with No Positive Results

The following modifications to the algorithm took place at some point throughout
our experimentation. Unfortunately, they do not bring clear improvements to the
performance, and rather confirm the postulates of the two phases identified in the
Geddes series expansion.

e Off-diagonal points in the convergence phase. During the convergence phase,
the norm of the remainder is occasionally smaller on the diagonal than over
the unit square. Allowing the algorithm to sample the whole unit square and
select off-diagonal splitting points during this phase rarely produced series
with one term less and never with two terms less.

e Numerical approximation of infinity norm. The hills and valleys of the remain-
der did not always have the nice shape illustrated by the figures in Chapter 4.
Negative and positive hills within the same cell and asymmetric hills are the
causes of a poor norm estimation when using midpoints. This is the reason
for comparing the performance between the midpoint approximation and the
true norm via numapprox[infnorm]. As it was explained before, the num-
ber of terms did not consistently decrease whereas the excess in the cost was
evident. The rare cases where using the numerical norm generated one term
less happened because the stopping criteria had been missed by very little.
Besides, this extra term provided more accuracy to the result.

e Tuning the parameters in the confinement phase. These parameters include
the threshold for switching to the convergence phase, and the initial size and
minimum size of the sample grid as described in Chapter 4.

— Increasing the initial size of the sample grid to 40 also increases signifi-
cantly the times (about 65%) and yields only occasional small differences
in the number of terms.



CHAPTER 5. RESULTS IN TWO DIMENSIONS 49

— Although decreasing the initial size of the sample grid improves the per-
formance of the algorithm (about 10%), the quality of the estimation of
|| f||oo may not be as good as before.

— Decreasing the threshold forces the selection of more splitting points in
the confinement phase, which implies either having a bigger initial grid or
expanding it. Either choice increases the running time of the algorithm
and the difference in the total number of terms—if any—is small.

— Increasing the threshold allows switching to the convergence phase sooner.
However, it also brings about a remainder that does not exhibit the
smoothly oscillating behaviour we require to properly use the midpoint
estimation. On top of that, the improvement in performance is so subtle
that it is not worth the risk.

5.4.2 What We Did Not Try and Could Bring Positive Re-

sults

There are still a significant number of things to be tried and experimented that
could bring improvements to the algorithm here presented. In some cases we can
predict that the results will be positive, whereas in other cases such an affirmation
is uncertain.

The following are some possible improvements to the current TPA:

Use better estimation of the errors. Being able to compute the estimated
value of the remainder’s integral may allow time savings in the generation of
the series. We are using a bound on the absolute error as estimation, but
as we have seen in this chapter, we are usually generating more terms than
necessary for the approximation.

Modify the criterion to detect cancellation problems. Add a condition to
check that the divergence is detected when the norm is indeed close to the
limits of floating-point zero. Then, the algorithm could automatically increase
the number of guard digits in the computation, even if it has to pass from a
hardware to a software floating-point precision environment.

Improve the stopping criterion. Currently and due to reasons previously men-
tioned, the stopping criterion of the convergence phase is based on the func-
tion’s norm. However, when it is known that the series will be integrated, this
criterion should be reformulated to reflect (4.5). Both cases can be handled
at the same time by allowing the specification of different stopping criteria.
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e The sample points of the confinement phase can be quasi-randomly generated.
That is, instead of having an evenly distributed grid, the points of the grid
can be generated with a nearly even distribution of distances. When the
sample points are known beforehand, a function can be constructed to make
the algorithm believe the integrand is zero in the whole unit square, and
therefore an incorrect result would be produced.

e The one-dimensional integration could be smarter in finding whether symbolic
integration is faster than numerical, or the other way around. For example,
let us assume the algorithm calculates the first integral numerically and finds
that it takes such a significant amount of time that symbolic integration is
worth trying. Then, we can determine a maximum amount of time that the
symbolic integration can take if it is to calculate the values of the remaining
integrals.

Unfortunately, cases where this strategy would work could be rare, i.e. for
integrals of the form cos(k wxy) when k is large, say k > 20, using symbolic
integration is slightly faster than using numerical one-dimensional integration.

e Try to determine conditions under which the confinement phase is expected
to be longer. So far, all we can say is that it occurs with some oscillatory
integrands.

e Finally, it is yet to be seen how the algorithm performs when implemented
in a compiled language such as C. The times for the algorithm when run in
Maple are very reasonable, but they could be improved.

Once the performance of TPA is taken care of, we can proceed to find ways
to enhance it to handle other types of problems. In the next two chapters, we
present an algorithm that uses TPA to compute integrals in higher dimensions.
This approach is by no means the only way to extend TPA to integrals in higher
dimensions and other ways can be investigated. For example, another path to take
is to explore the possibilities of handling singularities with Geddes series expansions.



Chapter 6

Integration in Higher Dimensions

In higher dimensions, a method based on dimensional reduction of a family of
integrals is developed. In this chapter, we present the results of exploring the use
of the tensor product integration in more than two dimensions. The reduction of
the number of variables in the functions to be integrated is what motivates us to
use this approximation technique in higher dimensions, with the goal of breaking
of the curse of dimensionality in numerical integration.

Two different approaches are discussed. The first path we will follow is to
extend Geddes series expansion to functions that exhibit some sort of symmetries.
The discussion is limited as there are many issues to deal with, and during the
development of the work presented in this dissertation an alternate, quite powerful
technique was found. This second technique becomes the main focus of this chapter,
and results of its implementation are summarized in next chapter.

For integrals in more than two dimensions, we still want to create an approxima-
tion of the integrand by a tensor product series such that the number of variables
in the new functions is cut in half. The main concern is how to guarantee the sym-
metry that is so crucial to the method. As we saw in the previous two chapters, it
is this symmetry of the integrand which makes the computation much faster.

We will be discussing a novel approach which allows us to exploit our two-
dimensional approximation techniques in high-dimensional integration problems.

6.1 Pursuing Symmetry in Any Dimension

In Chapter 4, the preparation of the integral for integration in two dimensions
involved two steps: applying a linear change of variables to obtain a new equivalent

o1
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integral over the unit square, and replacing the integrand with its symmetric part.
The corresponding changes in higher dimensions are similar and are presented in
this section.

We can convert an iterated integral with variable limits of integration

b1 b2($1) bd(wl,...,wdfl)
/ / / f(x1, 20, ..., xq)deyg - - - drodry
al az(z1) ag(x1,..sTg—1)

to an integral with constant limits of integration

1 1 1
/ / / f(sl,SQ,...,Sd)de-"d82d81
0 0 0

by iteratively applying the one-dimensional linear change of variable

xp = ag(x1, ..., 1) (1 — sg) + bp(x1, ..., Tp_1) Sk

from k = d down to k = 1.! Since, the new region of integration [0, 1] is symmetric,
we can proceed to attempt the symmetrization of the new integrand f.

The conversion of a general multivariate integrand to its symmetric form can be
very simple in theory but it generates much larger expressions. We can obtain the
symmetrization of a function f(xy,...,z4) by averaging the expressions generated
from all the possible permutations of the variables. The problem is that in d
dimensions, there are d! possible permutations. The fully symmetrized form is

1
fs(x1,...,2q) = a Z f (%(1), e ,l’a(d)) )

ocESy
where Sy represents the set of all d! permutations of 1,...,d. The number of terms
in fs(zq,...,x4) will be very large for even modest values of d.

Having constant limits of integration in integrals with many variables is not rare,
whereas obtaining a symmetric integrand in high dimensions is most unlikely. This
is why it is wise to pursue alternate ways of symmetrization. In the next section
we present a novel way of obtaining the symmetry we need for any dimension in
certain families of functions.

!The order in which these transformations take place is important. Applying the transforma-
tions in increasing order of k will instead involve quadratic cost compared to the linear cost of
the decreasing order.
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6.2 General Description of DART

While trying to find fast and efficient ways to evaluate multiple integrals of functions
with special structure in higher dimensions, Frederick W. Chapman came up with
an idea that eventually evolved into the very powerful method that is presented here.
We call this new method of multivariate approximation and multiple integration
the Deconstruction/Approximation/Reconstruction Technique (DART).

This method exploits the fact that the high-dimensional integrals arising in ac-
tual applications frequently fit certain patterns. Multivariate functions constructed
from a sum or a product of univariate functions can be very common. We will see
that we do not even need to have the original function be symmetric.

In few words, the goal is to find a change of variables that converts an integrand
f(x1,29,...,24) in d > 2 variables into a symmetric bivariate function v(s,t),
generate the corresponding Geddes series approximation s,(s,t), transform this
to a series S,(x1,22,...,x4) in d variables, and then integrate. First, we use an
example to illustrate the steps of the method, and then we will formulate the more
general method.

Example 5 (Ridge Function) Let us assume that a function f(xy,za,...,24) in
d = 2k dimensions, can be rewritten as

flz1,29,...,xq) =u(ay 1 + agxs + -+ + agxq),

with a; > 0. We need to calculate the integral of f over the unit d-cube [0,1])%; thus,
T; € [0, 1]

We start with a deconstruction of the original function into a symmetric bi-
variate function by making a change of variables. We can split the sum into two
groups, each containing k variables, and let

a1 T+ ag o+ -+ apx
P! 2 T2 k Tk (6.1)

C
Akl Thl + Qg2 Tiq + -0+ Qop Tog

)

where

clzg a;, Cy = E a;, ¢ = max (c1,¢2),
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to obtain

flz1, 20, ... xq) = ulay &y + ag g + -+ - + agg Tox)
u(c-(s+ 1))
v

(s,t).

Notice that the resulting function v(s,t) is symmetric.

Since all x; are in [0,1], in the best case we would have ¢; = ¢y and therefore
both s and t will also be in [0,1]. Otherwise, ¢; # co and only one of them will

be in [0,1], while the other will be in [0, %162)] C [0,1]. We now compute an

approximation of the symmetric bivariate function v(s,t) in [0, 1] with our Geddes
series approximation algorithm.

Once we have a Geddes series expansion of v(s,t) in [0,1]%, we can substitute s
and t using equations (6.1) to obtain a multivariate series expansion in the original
variables x; (reconstruction). The series approximation will be valid over the unit
d-cube [0,1]%.  Finally, we just need to do the same process recursively for both
factors in each term until we have only one variable in each factor. Then, we
can use a standard quadrature method to evaluate the resulting one-dimensional
integrals.

This process looks indeed very simple, and the idea can be generalized to a
larger family of problems that fit certain function patterns. The following are other
types of functions where the same approach can be used:

1. The case where a; = 1 for all 7 and d is even is already included in the example
given. In this case the function f is symmetric and ¢; = ¢y = ¢ = k.

2. If d is odd, we still can split the sum into two groups of |d/2] and [d/2]
terms.

3. A slightly more complex case happens when {a;} can be negative. The solu-
tion in such case is to add offset values, 01,05, > 0, to the numerators of the
fractions that will make the numerators always positive

k
01+ D iy i T
c

2k
p_ %2 + D i1 Gi T
C Y
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and adjust ¢; and ¢y accordingly:

k 2k
01:Z|(IZ‘|, Cy = Z |az|
i=1

i=k+1

4. If in case 1, instead of a sum of variables we have a product of variables,
flz1,2e,. .., 2q) = u(x122 - - - 24), Some simplification is possible: ¢ = 1.

5. If in cases 1 and 4, instead of the single variables we have squares of variables,
or any other power, the method would not change at all.

6. Finally, if instead of a power we have any univariate function whose range is
known, the method can still be applied, and that is what we will see next.

Now that we know that there are more cases where DART can be used, we
provide a general and complete description of the method. We start with the same
function

f(xh'rQa"';xd)

of d variables to be approximated (integrated) in the hyperrectangle [aj,bi] X
[ag, bo] X - X [ag, by]; thus z; € [a;, b;].

6.2.1 Pattern Recognition and Symmetrization

The first thing we do is detect a pattern in the integrand that allows the definition
of a second analogue function, with the same number of variables, but symmetric.
We should keep in mind that although this new function is symmetric, its domain
may not necessarily be.

Let us assume that f can be expressed in terms of a univariate function u as

fzy, 2, .. xq) = u(gr(z1) & ga(x2) & -+ - & ga(q)), (6.2)

where & denotes either + or x.

Let us call each g; a template function and define:

G = {gi g:1
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which is the set of all different univariate template functions identified in f. The
size of G is clearly bounded by 1 < |G| < d. Let us further assume that for each
template function g € G, we can algorithmically find its range:

Ry(a.b) = | min (g()). max (g(x)

This allows us to compute the d ranges of g;(z;).

The variables of the new symmetric function are defined as

yi = gi(zi).
Thus, we can write
f(x17x27"'7xd) = u(yl&yQ& &Z/d)
:a(ylvy%'” 7yd)-

For each y;, 1 <i < d, we calculate its corresponding range

[a’yw byz] = Rgz' (aiv b%)

The function u is symmetric and can be transformed into a bivariate symmetric
function to be approximated by the Geddes series expansion. However, it is more
practical to use u(y; &y2 & - -+ &yq) throughout the recursion. The following are
the three steps that constitute the recursion and give the name to the method.

6.2.2 First Step: Deconstruction

The goal is to approximate u(y; & y2 & - - - & yq), with y; € [ay,, by,], using a Geddes
series expansion such that the variables y; are separated into two groups. In this
first step, we transform u into a function v:

u(yy &y & -+ &yq) = v(s, t), (6.3)

where v is a bivariate symmetric function and s,t € [0, 1].

We start by partitioning the d operands y; from equation (6.3) into two groups
such that
w1 &wy =y &y & -+ &y,
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and the number of operands in w; and w, differs at most by one. Since we know
the ranges of y; we can use interval arithmetic to calculate the ranges of w; and
wy, which we represent as [y, , by, | and [a,, by, ] respectively.

At this point we have a function that is symmetric, u(w; & ws), but unfortu-
nately the ranges of w; and wy are not necessarily the same. However, we can
define a transformation of variables that maps the rectangle [ay,, bw,] X [Guwy, buw,]
to a region that is contained in [0, 1]%.

Consider the symmetric square defined by [min(a.,, , @, ), max (b, , by, )]?, which
contains [y, , by, | X [@w,, by,]. The following symmetric change of variables maps
this square into [0, 1]%:

wi, — O

(6.4)

w2 — O

where

0 = min(ay, , Gy, )

¢ = max(by, , by,) — 0.

The constant o shifts the bottom left corner of the square to (0,0) and the constant ¢
scales it to occupy the whole unit square. This transformation yields the symmetric

function
u(wy &wy) =u((cs+0)& (et +0)) =v(s,t) (6.5)

which is what we pass to the approximation algorithm.

Notice that this transformation is not as efficient as the one given in Example
5. This brings up the hidden cost of DART: we could be approximating u in a
larger region than is necessary. We call this hidden cost domain inflation. It
means that there is a waste of approximation space in a region outside of the
integration limits. In the worst case, the function u may not even be defined
outside of [ay,, by, ] & [Guwy, bu,]. This is why we should try to create a partition
and a transformation that minimize the amount of unused approximation space.
In the next section we will show that when & is the 4+ operator, this optimization
is possible.
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6.2.3 Second Step: Approximation

The difficult part of the process is over. We can now compute the approximation
sn(s,t) of v(s,t) in [0,1]* using our Geddes series expansion algorithm for two
dimensions.

6.2.4 Third Step: Reconstruction

Within the Geddes series expansion s, (s, t) of v(s,t) on [0, 1]?, we substitute s and
t back to obtain a series expansion in the variables y;. If the series has n terms, we
will have either n (if wy = wy) or 2n different univariate functions that will become
the new u functions for the next level of the recursion. These new functions have

either |d/2] or [d/2] variables.

The recursive steps continue until we obtain functions with only one variable y;.
Then, we can easily compute the values of the integrals over [a;, b;] after substituting

Yi = gi(w;).
Notice that the role that each y; plays is to avoid the substitutions of g; and the
calculation of R, (a;,b;) at every level of the recursion.

6.2.5 Integration

The values of the one-dimensional integrals can be computed either numerically or
symbolically. The considerations discussed in Chapter 4 for the two-dimensional
integration also apply here. However, the potential for savings by using symbolic
integration in DART is more considerable. All the univariate functions that we
need to integrate have the form:

h(zi) = u(k & g(x:)), (6.6)
where k is a real value introduced during the approximation step and ¢ is a template

function.

Because of the particular form of the function in (6.6), we can take advantage
of Maple’s symbolic integration again and obtain only |G| < d integrated functions
of the form

Bz a,b) / u(z & g(:)) das (6.7)
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We compute these integrals in closed form and then evaluate them for various values

of z =k.

There are special cases that contribute to alleviate the cost of the symbolic one-
dimensional integration. First, when the number of different template functions in
the original integrand is small or even just one. On top of that, the integration
limits, [a;,b;], can be the same for some or all the variables associated with the
same template function.

With the values of the one-dimensional integrals calculated, the process returns
up the recursion tree. Just as in the two-dimensional algorithm, appropriate linear
algebra operations take place to compute the approximated values of each integral
until the result of the original integral is obtained.

6.3 Considerations for an Efficient Implementa-
tion

Even though DART is recursive, the number of terms generated in the approxima-
tions can be large enough to demand the algorithm to be as efficient as possible. In
fact, thanks to the use of the variables y; the manipulation of the original function
throughout the recursion is simpler and more efficient. Additionally, having the
option to choose between symbolic or numerical one-dimensional integration is an
advantage that can be significant.

Besides these two aspects we just mentioned, there are two more important
areas in DART that can be improved: the optimal partition of the variables, and
the caching of approximations and partial results. Let us discuss them.

6.3.1 Optimal Partition of Variables

The optimal partition of variables is important for reasons previously mentioned:
extra work on approximation and the risk of using undefined values for u. However,
as we will see, a good partition has also a direct effect on the performance of DART
as it contributes to the reuse of computations during the process.

When thinking of how to optimize the partition of variables, we need to consider
the cases for each operand individually. Let us start with addition.
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For the case of a sum of variables, the transformations (6.4) can be generalized
as:

w1 — 01

(6.8)

c
Wa — 02

C

where

01 = Ay
Oy = an
¢ = max(by, — Quy, by — Ay )-
This means that the shifting does not have to happen symmetrically, and we can
directly map the point (ay,,ay,) to (0,0). After substitution in u(w; + we) we

obtain
u(wy +wa) =u(c- (s+t) —o1 —o02) = v(s, 1),

which is still symmetric. The original region, [a.,, bw,| X [@Gw,, bw,], is mapped to
either [0,0] x [0, 1] or [0,1] x [0,b] with b < 1 and therefore the transformation is
optimal for any rectangle.

These new formulas are consistent with the ones used in Example 5, where we
assumed that z; € [0,1]. The partition

wy =a1x1+ayxe+ -+ apTr

W2 = Af41 Tht1 T Q42 Ty + -+ G2k Tog
with a; > 0 therefore yields

01 = 03 = Qyy, = Uy, = 0

k
bwl = § a; = C
i=1
2k
by, = E a; = Co
i=k+1

¢ = max(by, — Ay, by, — Ay,) = max(cy, ),

which is consistent as claimed.
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The second part of the optimization is finding a partition that minimizes |(b,,, —
Ay, ) — (bwy — Gu,)|; this is, the difference between the lengths of the two intervals.
In the best case |by, — Gu,| = |bw, — @u,| because then there will be no waste in
the approximation region. Unfortunately this may not always be possible. For
example, when we have only two variables, say u(y; + y2), we have no other option
but to use the region [ay,, by, ] X [ay,,by,] whether it is a square or not.

When there are more than two variables, several different partitions of y; +
Yo + - -+ + yq are possible. In this case, the optimal partition is calculated with the
following algorithm:

1. Sort the variables by decreasing order on the lengths of their ranges. Arrange
variables with identical range such that those representing the same function
g; and original range of x; are adjacent.

2. Make W1 = Wy = 0.

3. Select the partition with longest current range and add the next y variable
to that partition.

4. Take the next y variable and add it to the other partition.

5. Update ranges of w; and wy appropriately by adding the ranges of the two y
variables.

6. Continue with step 3 until there are zero or one variables left.

7. If there is one variable left (d is odd), add it to the partition with shortest
current range and update its range.

8. Return partitions w; and wy along with their ranges.

The algorithm runs in O(dlogd) time. This additional cost does not affect the
general running time because the series expansion takes O(n?) time already. For an
even better performance we could do Step 1 for the first partition only, and make
sure that the order of the variables after each partition is preserved for the next
level of recursion.

The importance of finding a symmetric partition—when possible—goes beyond
the waste on the approximation region. One of the additional benefits is related to
the next implementation topic: caching. The probability of reusing approximations
and integrals is increased when the partition is symmetric either to the level of
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variables 1;, or when considering the expression in terms of the original variables
Z;.

There is one more benefit of symmetric partitions that although smaller, is worth
mentioning. Recall that the function we are approximating can be different than
the function we need to integrate because variables y; have been used to represent
gi(z;). This means that in the linear algebra representation of the series, as in (4.2),
the integration of V(z) can be different than the integration of V(y). When they
are the same we only need to multiply the matrix L by one vector instead of two.
The detection of symmetry for this purpose can easily be added to the loop of the
partition algorithm.

This concludes the discussion of the variable partitioning for sums. We now
consider what happens when we partition a product of the variables v;.

For the case of a product, the transformations (6.4) can also be modified and
have a more general form:

wy
s=— —o. 6.9
- (69)
t:%— ;
Co

thus
u(wiwe) =u(cy - (s+0)-co- (t+0)) =v(s,t).

In this case the operation that does not have be done symmetrically is scaling.
Shifting of the original region, however, must still be done symmetrically.

Unfortunately, at the time of writing this dissertation optimal formulas for ¢y,
¢ and o had not been developed and the general form of the substitutions as in
equations (6.4) was used. Initial work on this indicated several different cases need
to be handled when the ranges of w; or ws include both positive and negative
values.

The optimal partition of a product of variables is also more difficult to predict
unless we know something else about them, e.g. the ranges of all y; variables are
non-negative. The reason is because computing the product of two intervals requires
the checking of four different numeric multiplications, which translates into a large
number of combinations to try when several intervals are multiplied in sequence.
In addition, the optimal partition needs to consider not only the length of intervals
[y s by | a0d [@yy, by, but also the distance of points (@, w,) and (by,, by,) to
the diagonal y = x.
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Nonetheless, the partitioning algorithm for a sum can be extended to a product
and it does help in finding symmetric partitions, which is also very important. This
is, therefore, the current choice of implementation.

In conclusion, when the operation identified in the pattern is a product, an
algorithm to determine the optimal partition may exist but is not yet available.

6.3.2 Caching vs. Space

A great advantage of DART is that when the integrand has symmetries associated
with the sum or product, the possibilities of reusing computations can be very high.
From a multi-dimensional point of view, the two areas where computation time is
spent are approximations and integrations.

The bivariate functions deconstructed in DART always have the following form
v(s,t) =u(k & (c15+ 01) & (cat + 09)),

where k is a constant (possibly zero) introduced at higher levels of the recursion,
and ¢, ¢9, 01, and o0y come from the (wi,wsy) to (s,t) transformations. Caching
the result of an approximation implies storing the list of n splitting points and
matrices L, D, and P. Matrices D and P can be stored in one or two vectors,
but matrix L has at least (n? — n)/2 values to be stored. Therefore the cost of
caching approximations is very high, O(n?) per approximation, which makes it
recommendable only when strictly necessary.

On the other hand, caching values of integrals is much cheaper in terms of space.
In this case, it is the search key that takes space, as we need to include in it the
list of template functions g;, and corresponding ranges [a;, b;] adequately sorted.
Therefore the cost of caching integral results is O(d) per integral.

6.4 How DART can be Extended

The power of DART relies on how many different template functions can be iden-
tified. At the time of writing this thesis, the following template functions were
supported by the author’s Maple implementation:

e g(r) = ca® where k is a non-negative integer, and c is any nonzero real
number.
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g(x) = c|x—d|, where ¢ is any nonzero real number and d is any real number.

g(z) = ¢ (x—d)?, where c is any nonzero real number and d is any real number.

g(z) = (c+ (z — d)*)~!, where ¢ is any nonzero real number and d is any real
number.

g(x) = cos(¢(x)) and g(z) = sin(¢)(z)). We can assume that g(z) € [—1,1]
for any range of ¢ (x).

The first and more important way how DART can be extended is by adding
support for more template functions. This, however, depends on the power of the
symbolic engine.

The current implementation of DART supports the addition of template func-
tions by the user at any time. Support for a new template function is done by
providing a pattern detection routine. The arguments to the routine are a uni-
variate expression representing g(x) and an interval [a,b] representing the range
of x. The routine will do a pattern matching to determine if it can compute the
range of g(z), which is then returned. As can be seen, a routine like this is not
very complicated to code and multiplies the power of DART as every new pattern
detection routine is considered together with existing ones.

Other possible extensions to DART include:

e Add a mechanism to detect at which level a traditional numerical multiple
integration method is less expensive than recursive tensor product based ap-
proximations and use it then.

e Extend the template functions to accept multivariate functions. This is pos-
sible without very much difficulty as long as each variable in f is part of only
one template function g.

e Investigate if there are cases where another operator (or function) besides
addition and multiplication is necessary.

Let us finish the section and the chapter with a short remark about ridge

functions, which we encountered earlier in Example 5. Univariate functions of a
linear combination of the variables have the form

d
f(x1,2,...,0q) = u (Z%%) ,a; €R
i=1
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and are known as ridge functions. It has been proved that every continuous func-
tion on a compact subset of Euclidean space can be uniformly approximated by a
finite sum of ridge functions [9]. Therefore, this special class of integrands can be
used to develop a very general method for multiple integration that would combine
approximation by ridge functions and approximation by Geddes series expansions.



Chapter 7

Results in Higher Dimensions

Consistent with the implementation of TPA in two dimensions, the implementa-
tion of DART was done in Maple 9. The computing environment used for the
implementation and testing presented in this chapter was the same as described in
Chapter 5.

For the tests in this chapter, we do not consider the behaviour of the algorithm at
various precisions. We rather focus on testing various dimensions for the integration
and fix the accuracy requested at a value of € = 5 x 10710,

From a general point of view, DART is quite different than TPA as DART
involves recursion and pattern matching routines. Nonetheless, since both use ap-
proximations by Geddes series a common procedure is used to generate them.

7.1 The Suite of Test Integrands

Some authors have compiled suites of multidimensional test problems from various
application areas. Our test integrands are based on a very comprehensive list given
by Burkardt [3]. It includes a set of functions originally given by Genz [15] in 1984
and widely used to test multidimensional integrals since. Continuous functions that
fit DART’s patterns were selected, and some other integrals of particular interest
for testing DART were added. Table 7.1 shows the various families of integrands
that were ultimately selected for the tests.

We will refer to a family of functions with the uppercase letter F', and to a
specific function that is an instance of a family with the lowercase letter f.

66
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Table 7.1: Families of Integrands Tested with DART

The first five of the six families given by Genz [15] are represented by Fg to
Fi9, and they respectively correspond to: oscillatory, product peak, corner peak,
Gaussian, and continuous integrands. The sixth family is discontinuous integrands,
which is the reason why we cannot consider it for DART. In these families, the
parameters a; are meant to drive the hardness of the problem: the larger the value
> |a;|, the more difficult to approximate.

At a given dimension d, random values were generated for the constants a;, b;,
and ¢;. These values were uniformly chosen in the following manner: for a; from
{1/5,2/5,3/5,4/5,1}, for b; from {—5, —4,—3,—-2,—1,1,2,3,4,5}, and for ¢; from
{1,2,3,4,5}. Although there is no reason to believe that such a distribution of
values is common in actual applications, there is no reason to assume that they
will rarely happen either. On the other hand, having so few possible values for
these constants promotes the use of series expansions and integrals that have been
cached. Therefore, let us interpret the integrands as mere examples and not a fully
representative sample of the family.
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7.2 Results and Analysis

The following characteristics apply to the computations with DART here presented:

e The requested accuracy was € = 5 x 1071°. However, DART uses 14 digits to
do the computations, because that is the limit of the hardware floating-point
computation in the machine used to run the tests.

e The dimensions considered were chosen from a representative set of 4, 6, 8,
12, 15, 16, 32, 64, 128, 256, and 512.

e The integration region was always the unit d-cube: x; € [0,1] forall 1 <i <d.

e Two sets of 512 random numbers were generated to be used as coefficients
a;, b;, and ¢; in the integrands. The lists of such coefficients are included in
Appendix A.

The current DART implementation was written to accept three additional bool-
ean arguments that indicate whether: symbolic or numerical one-dimensional inte-
gration should be used, caching of approximations (Geddes series expansions) takes
place or not, and caching of integral values takes place or not. On average, the best
results were obtained by using numerical one-dimensional integration and caching
of both approximations and integrals. This is, therefore, our base configuration as
some variations are analyzed with respect to it.

Tests were run independently for each algorithm in increasing order of dimension
while reasonable computation times were obtained (usually up to a few minutes).
This criterion provided 212 integrands from our 24 test families listed in Table 7.1,
on which the analysis takes place. Table 7.2 lists the results for each family at the
highest dimension tested. For each family of integrands we can observe how many
dimensions DART can handle in reasonable time, and what the results are when
we bring DART to its limits.

First, let us analyze the accuracy of the results obtained. Then we will proceed
to consider what happens when DART is run with no caching of approximations
or integrals, and when symbolic one-dimensional integration is used. We will see
how approximation caching and one-dimensional symbolic integration do not seem
to bring the advantages that in theory they may promise.



Family | Dimension | Time | Result | Estimated RelErr | Actual RelErr | [L,]/][f]ls |
1 128 | 24.376 4.1066666666652 x 109 5.0 x 10713 3.6 x10713 [ 2.5 x 1070
2 64 | 71.453 3.5315626666783 x 10°7 1.8 x 10710 3.3x 10712 | 3.3x 10792
3 32| 31.202 3.3706666669082 x 10° 1.1 x 10710 7.2x 1071 | 3.2x 107%™
4 16 | 19.920 2.1089523806122 x 10 1.1 x 1079 1.6 x 1071 | 1.3 x10°™
5 32 | 49.703 3.1000000000006 x 10°t 5.9 x 10713 1.9x 10718 | 1.2 x 10792
6 16 | 21.266 | —1.9250000000003 x 10° 5.5 x 10712 1.6 x 1078 | 9.8 x 107"
7 512 | 37.921 | —1.8045810938095 x 10~ 2.6 x 10797 3.1x10719| 1.8 x 107!
8 64 | 39.063 1.4835075898465 x 10~ 7.3 x 10712 3.1x10712| 1.5 x 107
9 512 | 23.566 | 1.6420395247860 x 10~1%° 3.7 x 10711 1.1x107" | 3.7x 1071

10 16 | 23.204 6.5121417560075 x 10~ 2.1 x 10~ 9.9 x 107" | 6.5 x 10~
11 512 5.968 1.1705480620246 x 10~ 1.2x 1071 3.6 x 10712 | 1.2x 107!
12 512 3.531 2.6447104633969 x 10733 5.0 x 10713 74x10712 | 2.6 x 1073
13 512 1.078 7.9638759332326 x 10°7 5.0 x 10713 8.1x107 | 53 x 1075
14 512 1.937 2.3352393763894 x 10'%° 5.0 x 10713 7.2x 10712 | 1.0 x 107192
15 256 4.391 9.9191983800595 x 10* 5.0 x 10713 1.1 x 1071 | 1.2 x 107122
16 256 | 165.248 9.9999999999998 x 10~ 7.8 x 10711 2.0x 107" | 3.7x 107"
17 64 | 147.046 3.4940406596282 x 10 6.9 x 1071 2.8x 10712 | 84 x 1079
18 16 | 30.373 5.9973550251138 x 10792 3.5 x 10710 1.5 x 107" | 6.0 x 10792
19 128 | 99.455 4.9999927298117 x 10791 5.9 x 10712 6.4x 10713 | 6.7 x 1070
20 512 0.656 | 3.8603169217883 x 10101 5.0 x 10713 1.1 x 1072 | 3.9 x 1071
21 128 1.094 | —1.3386244933718 x 10-2%3 3.7 x 10710 1.4 %1072 | 1.3 x 10723
22 32| 92.611 —5.6249710525974 x 10! 3.6 x 10708 9.8 x 10712 | 5.7 x 10792
23 256 | 51.202 1.3943511931729 x 1027 3.2 x 1079 3.1x107% | 1.0x 107"
24 128 | 80.763 5.1733847587873 x 1046 9.6 x 10792 44 x107% | 4.8x107™

Table 7.2: Highest Dimensions Achieved for the Suite of Integrands
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7.2.1 Accuracy

From Table 7.2 we can observe that the results obtained are prominent. In most
cases the integrals were correctly approximated at relatively high dimensions. How-
ever some results cause a couple of concerns with respect to accuracy.

The following is the description of how the values in the table are calculated:

e Estimated RelErr: The error estimate provided by DART. It is calculated as
the minimum of all the relative errors for every integration throughout the
whole process. The relative error estimate in each integration is calculated
the same way as TPA: based on the estimated absolute error on the diagonal.

e Actual RelErr: The actual relative error calculated by comparison with other
results symbolically computed in Maple.
In order to obtain a more accurate value of the integral, various symbolic
methods were used. There was no single way that could provide results for
all integrands at accuracies of at least 5 x 10~ and with a reasonable running
time. Symbolic integration, expansion by Maclaurin series, and (in the worst
cases) specific optimized formulas for the integrand were the techniques used
for the computation of the integrals. In most cases, values were computed
in software floating-point with a precision of 32 digits. One exception is fi7,
which needed over 50 digits to give a result with 15 digits of accuracy with
d = 64 dimensions!

e |1,|/||f|lso: The ratio in percentage between the value of the integral produced
by DART and the estimated infinity norm of the integrand.

The main issue we care about is the error of the result. We would like to obtain a
result that satisfies the requested accuracy; or if it is not satisfied, a correct estimate
that can tell us the guaranteed accuracy. In TPA the accuracy is mainly affected by
the one-dimensional integration, the lack of guard digits, and the approximations
while generating the series. In DART the effect of such factors gets multiplied by
the effect of the dimension, and makes accuracy more difficult to estimate.

Let us start our analysis by observing that the actual relative error provided by
DART was correct for all functions except fig, foz and foy. These three functions
have a very small |I,,|/||f||o ratio, thus the integral is much smaller than the
values used to compute it and the number of guard digits does not compensate
such a difference. We shall, however, notice that although other functions have a
similar or smaller ratio, they did not get affected because they are tensor products,
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e.g. fii_15 and fop_o1. In general, we can affirm that the accuracy of the results
given by DART is quite good.

The second concern is the quality of the relative error estimate. Two cases
should be brought to our attention: the case where the estimated error is greater
than the requested maximum error but the actual error is not (e.g. fy, f7, and fa2),
and the case where the error estimate reported is below the actual error (e.g. fio,

J12, f13, fia, and f20)~

In the case of f, and f;, the value of the integral is just on the limit where the
number of guard digits is not enough to obtain the requested accuracy because of a
small |1,]/]|f||e ratio. Luckily, in these cases the actual accuracy was better than
the requested. The problem with function fso is similar but it occurs at a lower
level in the recursion with integrals that do not contribute very much to the final
result. This case calls for a better method to estimate absolute and relative errors.

Another cause for giving an error estimate that is too large is doing the approx-
imation in a larger region when we generate the bivariate function to be approxi-
mated in the deconstruction step. For example, let us assume that the region where
the approximation is required is [0, 1] x [0, 0.25], and the function to approximate is
(s+1t)2. The infinity norm of the function restricted to the approximation region is
(14 0.25)? = 1.5625; however, the whole unit square is considered for the approx-
imation and the infinity norm is 4 instead. It is this latter value which is used in
the stopping criterion and to estimate the relative error when we could have used
a more adequate smaller value. In this case the difference is not very big, but in
other cases such as f5 and fg it can easily be.

The case where the error estimate reported is below the actual error is per-
haps more complicated to study. A precise explanation is not currently available,
but it should not come as a surprise that errors can be more common in DART
than in TPA. In some cases, such incorrectness may be due to the significant num-
ber of sums, which may cause the occurrence of cancellation problems and their
propagation.

7.2.2 Caching

Usually caching involves a trade-off between time and space. In our case, we can
assume that the first priority is perhaps time. It is totally predictable that with
integral caching the cost in space is low compared to the profit on speed up, and
there is no need to focus very much on this aspect. Caching of approximations,
however, is more a concern and will receive more attention in this discussion.
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Some statistics were recorded while running the algorithm in order to allow a
better understanding of the internal behaviour of DART. Table 7.3 shows those
metrics that are relevant to caching for the same list of integrands from Table 7.2.

The following is the description of the columns in the table:

e Memory: The number of megabytes allocated by Maple to compute the inte-
gral. This is obtained via the Maple command kernelopts(bytesalloc).

e Approximations, Cached and Usage: The number of approximations with
Geddes series expansions that were cached and its usage ratio (the number
of times an approximation was found in the cache / total number of approx-
imations cached).

e Integrals, Cached and Usage: The number of multidimensional integrals whose
values were cached and its usage ratio (the number of times an integral was
found in the cache / total number of integrals cached).

e Integrals, 1-Dimension: The total number of one-dimensional numerical inte-
grations performed.

e Number of Terms: The number of terms generated in the Geddes series.

Total: Total number of terms in all approximations.

Average: Average number of terms per approximation
— Min: Minimum number of terms among all approximations.

— Max: Maximum number of terms among all approximations.

The current implementation of DART takes advantage of the very particular
pattern of the integrands, and stores the expression in a way that is independent
of the variable names. This is what allows the use of previously computed approxi-
mations and integrals as much as possible. For example, if the original integrand is
the function with four variables cos(x y z w) and the integration limits are identical
for all four variables, say for the region [0,1]%, at some point we need to integrate
cos(zy) and cos(zw). We can see that computing only one of the two-dimensional
integrals is enough because both integrals give the same result. Therefore, for
caching matters it is important to refer to each variable as the range of its integra-
tion limits rather than its own name.

When using both approximation and integral caching, the overall usage ratio of
approximation and integral caching was 0.576 and 1.123 respectively. This means
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Table 7.3: Internal Statistics for the Integrands from Table 7.2
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that among the 212 integrands, the number of times when integrals were found in
caching exceeded the total number of integrals cached by a factor of 1.123. This
second ratio clearly shows the significance of integral caching.

Deactivation of approximation caching translated into an average increase of
51% in the running time. As expected, time increases in those functions that used
caching approximations the most. However, the use of memory did not always
decrease; in fact, there was an average increase of 0.6%.

The reason why space does not decrease as theory would suggest can be found
in the way Maple manages memory. Memory is not deallocated by the user, and
some objects may be unnecessarily kept in memory until garbage collection takes
place. On top of this, more memory gets used when computing the cachable ap-
proximations which is reflected in an increase of the space used. Although the
current implementation tries to minimize of the amount of memory that is left un-
referenced in Maple so these unwanted effects do not occur, an optimal point is not
always possible and the consequences become evident.

Basically, the ratio of approximation caching usage of a function directly relates
to the ratio of series terms that need to be re-computed, and the number of these
additional terms, in turn, is what drives the increase in the running time. On the
other hand, there are some integrals for which the algorithm caches a large number
of approximations that are never used, e.g. fs, f7, and fi7. These integrals are the
best candidates for not caching because both the running time and space can be
less than when using caching. This leads us to find some criteria that would help
us decide whether approximation caching should be done or not.

Basically, caching of approximations is useful when the integrand has a symmet-
ric partition (including ranges) in the deconstruction step, but it is not symmetric
when the original z; variables are considered. Let us consider, for instance, family
Fyy = (7/2)%sin (Hle :cf) The partition in the deconstruction step is done with
respect to a product of positive powers. What is convenient is that if z; € [0, 1]
for all 1 < i < d, the range of z{" is always [0, 1] as well. When the exponents ¢;
are very different, the possibility of reusing integrals in DART is low (see also fa1).
However, once the variables y; come to replace z3*, the list of variables to partition
is fully symmetric, even if d is odd. One can easily guess that the probability of
this happening will be higher when the deconstruction is product-based rather than
sum-based. This is why among our test integrands, fs; and foy have the highest
approximation caching usage.

On the other hand, cases where the partition takes place over a sum of univariate
functions can also have good use of approximation caching, again, provided the
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integrals are not symmetric. This is more likely to happen when the number of
template functions is relatively small compared to the dimension of the integral.

The following rule can be used to know whether a symmetric integral in d
dimensions will have approximations repeated or not. If

flz1,2e,...,2q) = u (Zg(mﬁ) ,

x; € [a,b], and d € {2%,3 x 28 5 x 2%} for k > 0, then the usage of approximation
caching is 0 and it should not be used. This happens because the deconstruction
step will generate symmetric partitions at all the levels (except perhaps the last
two), such that integral caching always happens. This is the case for functions f_4,

f7, fis—14, fir—19, and foo.

These guidelines just mentioned should be considered for adding a smart way
of deciding when to use approximation caching to DART.

Now let us mention some observations from integral caching. First of all, in
most cases this type of caching is very worthwhile. The increase in the space and
running time can be extremely high when no integral caching occurs for integrands
that are symmetric and have series expansions with a larger than average number
of terms. Although we can observe some functions, such as fi3, fi4, fo0, and foq,
that do not use caching at all, they are tensor products of rank one that only need
to compute one integral per level. Other cases where integral caching will not help
include integrands that are very far from product-based or sum-based symmetry.

At any level, the partition of the operands into a product or a sum can generate
either k or 2 k integration subproblems, depending on whether the partition is fully
symmetric or not. Here k is the number of terms generated in the approximation.
This saving in integral computation is not interpreted as integral caching.

It should be noticed that the number of dimensions affects the caching usage of
both series expansions and integrals because it may introduce asymmetries in the
partitions.

We have seen how symmetry in the partition allows a much better performance
by the use of caching techniques. As a conclusion, caching is very much worthwhile,
especially with an implementation of DART in Maple. If space is a concern, some
heuristics can be developed to automatically determine when not doing each type
of caching could be better.
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7.2.3 Symbolic One-Dimensional Integration

When the numerical one-dimensional integration was substituted by symbolic inte-
gration, the performance was unexpectedly slower. The average increase in running
times for the 212 test integrands was 27%. On top of this, the memory used in-
creased by an average of 7%. The worst cases occurred with fio and fi3 which
respectively reported an increase of 23% and 21% in space, and 89% and 68% in
time.

The cause of such a slowdown is mostly the complexity of the new functions
resulting from the symbolic integration. The integral result can be significantly
larger than the original integrand, and its evaluation may require the use of limits
which makes it much more expensive. Therefore, we can conclude that—at least
for now—mnumerical one-dimensional integration should be the preferred method to

be used in DART.

7.3 Estimating the Performance of DART

At this point we have a good understanding of the performance of DART. Some
of the families of integrands clearly run in linear, or even sub-linear time with
respect to the dimension. For other families the running time seems to be rather
polynomial. This mostly depends on the amount of caching usage for each case.
The question now is whether we can, in general, conclude that DART runs in
polynomial time, thus breaking of the curse of dimensionality for the families of
integrands that DART supports. We will see that under a safe assumption DART
does break the curse.

From Chapter 5 we know that there is a well established relationship between
the accuracy and the number of terms needed to achieve that accuracy. This is not
possible to affirm for DART because the number of terms in each series expansion
varies with the current dimension unless the integrand is a tensor product.

Let us assume that for a given class of integrands that DART can solve, the
number of terms of the Geddes series generated in the expansions has an upper
bound n. We will see that in this case the running time of DART is polynomial
with respect to the dimension or with respect to the number of digits of accuracy
of the result, but not both.

Every problem throughout the recursion consists in the approximation of an
integral in d dimensions. When d = 1 the integration is done numerically and its
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cost is independent of d. When d > 1 the solution requires an approximation by
Geddes series expansion and subsequent calls to subproblems of dimension |d/2]
or [d/2]. Let us assume that the number of terms of the series is bounded by n.
From Chapter 5, we know the cost of the series expansion as given by (5.2). This
allows us to define the cost of the integration in DART with the recursive formula:

C(d) <2nC(d/2) + cyn® + cyn® + c5d log(d).

Using the Master Method! to solve for C(d) requires us to compare
d°222™ and ¢y n® + cyn® + ez d log(d).
Notice that for any value of n > 4 and € = 1, then
e n® + cyn® + csd log(d) = O(d&2™ ).
With this relation, we can finally conclude that:

C(d)

< @(dlog2 (2n) ) or
C(d) < ©

((2n)e=),

which indicates that the running time of DART is polynomial with respect to the
dimension (for fixed accuracy) and with respect to the number of digits of accuracy
(for fixed dimension). (Recall that we assumed n = ki + D k).

Adding the cost of the one-dimensional integration to the inequality gives:
C(d) < O(dwEETPEN ¢y (D, ),

where ¢p,(D, ¢) is the same one-dimensional integration cost defined for TPA in
Chapter 5. This shows that under the assumptions used in our analysis DART does
break the curse of dimensionality.

In the tests here presented, we saw that the largest value of n among all inte-
grands was 14 for a requested accuracy of 5 x 1071°. This would lead us to say that
since for all the integrands n < 16, their computational cost would be O(d®).

I'The Master Method can be found in any textbook on algorithm analysis.
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7.4 General Observations

In general, DART works very fast when the series approximations have very few
terms, or when the symmetry allows significant reuse of approximations and integral
calculations.

Comparing the results from DART with the two numerical algorithms available
in Maple, DCUHRE and Monte Carlo (from NAG), shows a big difference both
at low and high dimensions. In low dimensions, usually up to d = 6, DART is
easily beaten by both numerical methods (but recall that we have not implemented
a compiled version of DART'). However, in high dimensions neither DCUHRE nor
Monte Carlo can achieve the results of DART.

On the one hand, DCUHRE does not accept problems with more than 15 vari-
ables. With only a few dimensions, about d < 4, DCUHRE gives great speed at
hardware floating-point precision. As the dimension increases, about d > 8, the
running time raises to a point that most integrals fail to be computed (even for
polynomials such as those from F» and F3).

On the other hand, the Monte Carlo algorithm allows only up to about 5 digits
of accuracy, and often it achieves only two or three digits. DART also outperforms
Monte Carlo in several cases, e.g. Monte Carlo only attempts the integration of
sin (Hzlil xl) with two digits of accuracy, and yet the result is wrong.

In some cases such as ridge functions, we found that the running time increases
faster than with other types of problems, but this growth is not as bad as with other
methods, including DCUHRE and Monte Carlo, or even symbolic methods. The
resources required to perform the calculation are still manageable, and an accurate
result is still possible. We have seen that even for several integrands that are not
tensor products the time spent in DART is considerably less, allowing a higher limit
for the dimension of the integrals that can be evaluated in reasonable time.

Now let us consider the negative factors of DART’s current implementation.
Most of these issues are actually related to the accuracy rather than the speed of
the algorithm. Having a better method to estimate the expected accuracy is the
only way to know what to do in order to guarantee a result with the requested
accuracy from DART. We have seen that there are various factors that affect such
an estimation. Let us summarize them here:

e The first factor is not using a criterion based on the size of I,, as the stopping
criterion for the series expansions. The reasons for this, as explained before,
were code modularity and saving in space. The analysis of caching in this
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chapter has, however, proved the latter reason to be not very relevant in a
Maple implementation.

e Secondly, the optimal partition of the y; variables is available when it is a
sum-based partition, but not for a product-based partition, in which case the
domain inflation can be significantly large. Some domain inflation cannot be
eliminated, even when an optimal partition of variables is available.

e Additionally, the insufficiency of guard digits when the ratio |1,,|/|| ||~ is too
small also affects DART more significantly than TPA.

e Finally, the accuracy can be negatively affected by the number of levels of
recursion, O(log(d)), and the number of series terms, even in cases where the
ratio |I,|/|| ||« is not very small.

7.5 Future Enhancements to the Algorithm

As we have seen, DART is an algorithm whose performance depends mostly on the
generation of the Geddes series. Therefore, any improvement in the performance
of the series generation will not only help TPA but it will most likely have a
multiplicative effect in the performance of DART.

The last section of Chapter 6 had already listed some possible extensions to
DART:

e Explore new patterns where some DART-like partition techniques can be
used. Multivariate template functions are one possibility.

e Implement a criterion to intelligently determine when caching should take
place or not based on observations such those from above where caching was
discussed.

e Add support for more template functions.
However, the improvements that perhaps have the highest priority at the current

stage of DART are accuracy-related. Several things can be done in order to give
DART a better control of error estimates:
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e Stopping criterion for the convergence phase. First of all, the criterion to stop
the series generation must change and be based on |I,,| instead of || f||oc. This
modification implies the computation of |I,,| after a new term is generated
in the convergence phase. In DART this also implies carrying out series
expansions simultaneously in all levels of recursion. The price to pay is extra
space, but based on the tests presented in this chapter we can believe that it
will not really affect very much.

e Approximation in a subregion. It was explained in Section 7.2.1 that one

cause for giving an error estimate that is too large is the approximation taking
place over a larger region than required. The minimum thing that can be done
about it is to make sure that the stopping criterion of the approximation is
based on the norm of the function in the subregion instead of the whole unit
square. This way the expansion goes as far as it is really needed to obtain
the requested accuracy in the subregion.
Nonetheless, we can go further and design a new alternate criterion to choose
splitting points such that they always intersect the target subregion. For
example, if the subregion to approximate is [0.8,1] x [0,0.2] € [0,1]?, the
initial estimation of ||f||« is restricted to that region only, and the splitting
points would be chosen from [0, 0.2]U[0.8, 1]. Choosing (0.5,0.5) as a splitting
point will not help with the approximation in [0.8, 1] x [0,0.2].

e Optimal partition of variables. As discussed in Chapter 6 and related to the
approximation in a subregion, this optimal partition is very important. We
should avoid going outside of the actual approximation region for as much as
possible, and this optimization is still to be done for product-based partitions.

e Adjust the requested accuracy of the integration subproblems. This can be
done in two directions. The first way is to increment the requested accuracy to
compensate for possible cancellation problems propagated to higher levels of
the recursion. The second option is to reduce the requested accuracy of those
subproblems where it is known that they will not significantly contribute to
the final result. Let us use an example to illustrate this.

Consider the approximation by Geddes series expansion of an integral to a
relative accuracy of 1 x 1075 such that after iteration n, I,, = 3.141592, and
the absolute error estimate of ||r,||s is 107%. Since the target accuracy has
not yet been reached, we need to generate a new term and use it to do one or
two additional recursive integrations. The new integral(s) do not really need
to achieve a relative accuracy of 107°, because we know that the result will
be less than 10~* and therefore a relative error of 1072 would be sufficient
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to add to 3.141592. In this example we are saving just a couple of digits of
accuracy, but in other cases this saving can be significant.

On top of these accuracy-related enhancements, DART could also benefit from
adding a mechanism to detect at which level another method, say DCUHRE, is less
expensive than the recursive Geddes series based approximations and use it then
for added efficiency at hardware floating-point precision.

Applying symbolic one-dimensional integration has proved to be not helpful
with most of the test integrands used here. However, we should not rule out this
option because it could be possible to find families of integrands for which this
option is advantageous.

Singularities are another topic to be investigated in the future. One issue is
to find a feasible way to have the Geddes series generation handle functions with
singularities in the integration region. For example, consider

[ [ 2T

where ¢ is the cumulative normal distribution function with mean 0 and variance
1:

1 u
qb(u):\/T_ﬂ/ooe ds, u € [—00, 0.

The inverse function ¢! has singularities at both 0 and 1, which prevents DART
from deconstructing the sum in a way that can be handled by the Geddes series
generation routine. Integrals like this, using the cumulative normal distribution
function, are common in various fields in physics [4].

Finally, we have developed a theoretical running time for DART under a few
assumptions. We can, however, try to make this analysis more generic and deter-
mine the real effect of the dimension on the number of terms. This would give us
a true asymptotic bound for the performance of DART. Additionally, it should be
possible to state the conditions on the integrand for which DART runs in linear or
sub-linear time.



Chapter 8

Conclusions

It is now the end of this dissertation. However, it is by no means the end of the work
on approximation of integrals via Geddes series. The last sections of Chapters 5
and 7 have listed some conclusions derived from the analysis of the results obtained.
Let us discuss the highlights.

From the work in two dimensions, we have seen how the intrinsic characteristics
of the Geddes series on symmetric bivariate functions allow an efficient implemen-
tation of the series expansions after exploiting one assumption: the maximum error
can be estimated from the values of the error on the diagonal. Extensive exper-
imentation using TPA, the current implementation of the method, supports the
acceptability of such an assumption. The result is an adaptive algorithm that
proves to be able to handle very well various families of continuous integrands, in-
cluding those with steep slopes and oscillations. Empirical results tell us that the
convergence of the series for analytic functions is essentially monotonic at a linear
rate. Furthermore, they also let us conceive formulae to describe the behaviour of
the integration algorithm.

The extension of the method to higher dimensions via DART reveals the great
potential of the Geddes series. The reduction of the dimension of an integration
problem by a factor of two gives important and clear benefits for the families of
functions that DART currently supports. We have seen that under a simple as-
sumption the running time of DART is polynomial with respect to the dimension
(for fixed accuracy) and with respect to the number of digits of accuracy (for fixed
dimension)

The future work that can be done on TPA and DART points towards improve-
ments coming from applying theory and more heuristics to the algorithms. On the

82
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one hand, experimentation lets us choose heuristics and other techniques that are
adequate for an optimal implementation. On the other hand, deeper study of the
theory around tensor product approximation may shed some light on what other
possible improvements can be added.

Alternative implementation environments can clearly improve the performance
of the algorithms. First of all, implementation in a compiled language will lead
to better running times, where a fair timing comparison with other methods is
possible. Additionally, the type of reduction on the integration problems in TPA
and DART makes them well-suited for a parallel implementation of the algorithm,
as the sub-problems generated require almost no interprocess communication.

The fact that the conclusions derived from this work are mostly empirical does
not imply that the theory to support or contradict these conclusions cannot be
developed. This is indeed one of the main open problems for future work on the
theoretical side. Proof of the assumptions made for estimating the performance
of DART is needed to fully confirm the breaking of the curse of dimensionality in
numerical multiple integration.

The families of functions supported by DART are based on problems dependant
on the dimension. The development of alternate patterns to be used in DART or a
DART-like approach can widen the capabilities of methods based on Geddes series
in multidimensional integration.

Another source for future studies and development is singularity handling. It is
quite possible that the reduction in the dimension can lead to better methods for
handling isolated singularities in multiple integrals. Pursuing this path may also
prove to be productive.

As pointed out by Chapman [7], what we present here is only one of several
paths that can be taken to exploit Geddes series. For example, Geddes series
can be used to make substantial improvements to Bateman’s method for solving
Fredholm linear integral equations.

Finally, the author thanks the reader’s interest in this work, and appreciates
comments and insights. The author and his supervisors hope that these results will
encourage the study of more applications of Geddes series in the near future.



Appendix A

Coefficients for Testing DART

The following are the lists of coefficients used with the families of functions when

testing DART in Chapter 7:
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