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Abstract— This article focuses on inverse kinematic 
formulation and dynamic modeling of the Nao biped robot's 
lower body, accompanied by verification with the joints' 
angles as experimental data. Dynamic modeling in two 
different planes is discussed and joint angles for the given 
positions, nominal conditions, and trajectory computations 
are simulated and graphically illustrated. A new approach 
for development of the inverse dynamics on the 
aforementioned robot's lower body is proposed in this paper, 
analytically studied, and compared with MSC Adams for 
two various scenarios of fixed supporting leg and ground 
contact implementation. 
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I.  INTRODUCTION

Extensive studies have been conducted on various 
control methods of bipedal walking and stability. Motion 
study of bipedal robots [1] necessitates correct solutions of 
the forward and inverse kinematics with optimized and fast 
closed form computations [2-5] to follow generated 
trajectories. The kinematic model is also essential to 
propose a reliable and optimal control method to preserve 
stability and perform walking tasks as discussed in [6-8], 
in which the desired zero moment point (ZMP) positions, 
together with foot pattern generators, provides the desired 
input for walking. Moreover, biped robot gait and 
trajectory planning must satisfy several requirements and 
constraints of bipedal locomotion with diverse degrees of 
freedom (DOF) from which stability and position of the 
zero moment point are the most important ones [6, 9]. 
Biped robot’s Kinematic-Based Walking Engine uses ZMP 
criterion to generate joint angles and tries to track the 
desired ZMP position and keep it, as much as possible, 
inside the supporting foot contact area [10]. The main core 
of this type of walking engine contains a three-dimensional 
linear inverted pendulum module, 3D-LIPM, which 
employs optimal control of a discrete-time model as a real-
time pattern generator for the robot’s center of mass. Its 
inputs are the desired ZMP pulses together with foot 
pattern generator [8, 10]. On the other hand, dynamic 
model is also essential to address the dynamic gait, torque 
control approaches, and actuators’ sizing for the biped 
robot, but it is complex in general. Thus, a simplified 
dynamic modeling methodology seems promising.  

This paper has different sections to cover: general 
descriptions of the joint coordinates, closed form 
representations of forward and inverse kinematics 
(according to the specified trajectory during a straight 
walk), and the dynamic model. Finally, the simulation 
results of joint torques angles will be verified with the 
MSC Adams outcomes. Geometrical aspects of the 
selected platform, dedicated coordinates, employed foot 
trajectories, derivation of the forward and inverse 

kinematic equations, and a control strategy for the Nao 
biped robot are provided in section II. The third section 
deals with formulations of three-dimensional (3D) 
dynamic model, modeling in two separate planes, and 
modeling in the MSC Adams multi-body dynamics 
package. Section IV contains the simulation and 
experimental results of the joint torques, joint angles, and 
ground forces for two main case studies (namely: fixed 
supporting leg and ground contact utilization). Finally, 
section V describes the conclusions and authors’ future 
works. The Appendix section contains some technical data 
of the robot and the inverse dynamic equation parameters. 

II. KINEMATIC MODELING AND TRAJECTORY

DEFINITION  

This section presents kinematic formulations, suggested 
DH frame assignment to be employed in the robot walk 
engine, and a controller based on a 3D-LIPM as the ZMP 
generator. The investigated model utilizes foot and torso 
trajectories as inputs to the inverse kinematic equations. 

A. Forward and inverse kinematics

The Nao biped robot (made by Aldebaran Co., in the
RoboCup SPL, Standard Platform League), Fig. 1, has 21 
DOF, including 6 in each leg. They include: AnkleRoll, 
AnklePitch, KneePitch, HipPitch, HipRoll, and 
HipYawPitch, in which the YawPitch joints of hips are 
physically bounded and driven with one servo motor. The 
expression in Cartesian coordinates is done by 
transforming joint space to Cartesian space where the 
positions of the links’ mass centers and joints are 
calculated from the given rotation of joints. 

AnklePitch, KneePitch, and HipPitch joints are 
employed for movement of the robot in the x direction of 
sagittal plane, and thus have larger operational regions. 
Both AnkleRoll and HipRoll joints are mainly utilized for 
movement in the y direction of frontal plane. The 
HipYawPitch joint has a combinational movement both in 
the sagittal and transverse planes, since it is mounted 45 
degrees with respect to the y and z axes. The main function 
of this joint is to turn the robot for various path-planning 
requirements on the field. However, this joint also has a 
small variation during its stable, straight walk. As a result, 
this joint is neglected in the formulation development of 
the dynamic model in Section III because of its negligible 
variations. The open-loop serial chain system is based on 
Denavit-Hartenberg (DH) formulations provided in [11, 
12]. It is constructed with starting point on the intersection 
of roll and pitch joints axes of the supporting leg and end 
point on corresponding point on the non-supporting leg. 
These frames are aligned with the global reference frame 
ሼܹሽ. Furthermore, the position of the global frame is fixed 
to the initial frame such that the initial frame always 
contains the global position. 
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Fig. 1   MRL-SPL team’s Nao robots in the RoboCup SPL field 

General frame assignments and joint axes of rotations 
are provided in Fig. 2. 

Fig. 2   Nao biped robot legs DH representation 

Furthermore, Table A1 and A2 in the Appendix section 
represent all six joint numbers in each leg, coordinate 
sequences, and DH parameters. DH parameters are 
dedicated according to the geometrical specifications of 
two successive moving frames [13]. Joints' rotations are 
computable with homogeneous transformation ௜ܶ ∈ Թସൈସ: 

௜ܶ ൌ ൤
ܴ௜ ௜ܮ
0ଵൈଷ 1 ൨, 

(1) 

where ܴ௜ ∈ Թଷൈଷ  is the base rotation matrix of ݅௧௛  joint 
about its rotation axes mentioned in Table A1. In 
addition,	ܮ௜ ∈ Թଷൈଵis the corresponding position vector of 
the ݅௧௛ joint to the ݅௧௛ െ 1 joint according to joint position 
values in Table A3, Appendix A. These position data 
points are extracted from the Nao geometrical 
specifications. The homogeneous transformation 
݅ between joints	௜ܣ  and ݅ െ 1,with multiplication of four 
rotational and translational matrices can be obtained as:  

௜ܣ ൌ ܴ௭,ఏ೔ തܶ௭,ௗ೔ തܶ௫,௔೔ܴ௫,ఈ೔	 
 

					ൌ ൦

ܿఏ೔ െݏఏ೔ܿఈ೔
ఏ೔ݏ ܿఏ೔ܿఈ೔

ఈ೔ݏఏ೔ݏ ܽ௜ܿఏ೔
െܿఏ೔ݏఈ೔ ܽ௜ݏఏ೔

0				 ఈ೔ݏ			
0				 			0

ܿఈ೔				 		݀௜
0				 		1

൪. 

 

(2)

Matrix ܣ௜	is a function of only one variable and the three 
parameters are constant for a link. It should be mentioned 
that: ߠ௜ for revolute joints and ݀௜ for prismatic joints are 
joint variables according to the DH formulations 
assumptions. In (2), ܴ௭	and ܴ௫	stand for rotation matrices 

about the ݖ  and ݔ  axes, തܶ௭	 and തܶ௫	 shows translational 
matrices in both ݖ  and ݔ  directions, "ܿݏ݋"  and "݊݅ݏ" 
functions are abbreviated with ܿ  and ݏ  respectively, and 
other parameters represent DH parameters defined in Table 
A2. The rotation matrices ܴ௫, ܴ௬, ܴ௭ are also conventional 
ones about the three axes of Cartesian coordinates. 

The homogeneous transformation, ܶ଺
଴ , which describes 

position and orientation of frame {6} relative to frame {0} 
is introduced as: 

ܶ଺
଴ ൌ ଺ܣ଺଴ܣହܣସܣସ଴ܣଷܣଶܣଵܣ ൌ ൤ ܴ଺

଴
଺ܲைோீ
଴

0ଵൈଷ 1
൨. (3) 

In the above homogeneous transformation, the position 
vector,  ଺ܲைோீ

଴ , expresses the coordinate location of frame 
{6} origin relative to the frame ሼ0ሽ origin. Term ܴ଺

଴  
demonstrates the relative orientation of the two mentioned 
frames. These homogeneous transformations are utilized to 
lay out the inverse kinematic model. 

The purpose of the inverse kinematic model is to 
determine joint angles which yield a specific position of 
the limbs in the Cartesian space. The inverse kinematic 
model requires expected positions of links, which could be 
attainable by the torso and foot trajectories. Numerical and 
closed-form solutions are widely used to solve inverse 
kinematics problems. Goldenberg et al. [14] presented an 
iterative numerical solution to transform the desired 
position of a limb into joint angles by solving the pseudo 
inverse Jacobian in order to reach accurate results. The 
main drawback of this method is its computation time for 
both legs. Therefore, it does not satisfy time response 
requirements of the Nao biped robot’s control loop model 
with a 500MHz embedded processor. Closed-form 
solutions of the kinematic equations of the robot 
manipulators (DH open chain system) with limited DOF 
are introduced as an alternative method of solving inverse 
kinematics equations. This method is utilized to carry out 
the solution of the robot's kinematic equations using 
Pieper’s solution [11] for developing the transformation 
and rotation matrices in this paper. Modifications of this 
method, for the selected Nao platform, are described in this 
section. 

Joint angles ߠଵ,   ଷ could be computed by usingߠ ଶ, andߠ
଺ܲைோீ
଴ . Then the last three joint angles of each leg ߠସ,  ,ହߠ

and ߠ଺  are achievable using ܴ଺
଴ . Calculation of ଺ܲைோீ

଴  is 
vital because it yields the angles ߠଵ, ,ଶߠ  and ߠଷ in the 
Pieper’s solution. Since the origins of the frames ሼ4ሽ, ሼ5ሽ, 
and ሼ6ሽ are coincident at a point, then ଺ܲைோீ

଴ , is equal to 
ସܲைோீ
଴ , and could be mathematically described as: 

଺ܲைோீ
଴ ൌ ସܲைோீ

଴ ൌ ܶ ൈ ସܲைோீ
ଷ

ଷ
଴

ൌ ܶ ൈଵ
଴ ܶ ൈ ൦

ଵ݂ሺߠଷሻ

ଶ݂ሺߠଷሻ

ଷ݂ሺߠଷሻ
1

൪ଶ
ଵ . 

(4) 

This matrix should be equal to the desired trajectory vector 
ሾݔ	ݕ	ݖ	1ሿ்and one may write: 

଺ܲைோீ
଴ ൌ ൦

ܿଵ ଵ݃ሺߠଶ, ଷሻߠ െ ,ଶߠଵ݃ଶሺݏ ଷሻߠ
ଵݏ ଵ݃ሺߠଶ, ଷሻߠ ൅ ܿଵ݃ଶሺߠଶ, ଷሻߠ

݃ଷሺߠଶ, ଷሻߠ
1

൪ ൌ ቎

ݔ
ݕ
ݖ
1

቏, (5) 

in which ܿଵ and ݏଵ stands forܿݏ݋ ݊݅ݏ,ଵߠ   ଵ respectively andߠ
௜݂ , ௜݃ are functions of DH parameters as [15]: 

ଵ݂ሺߠଷሻ ൌ ܽଷܿߠଷ ൅ ݀ସߙݏଷߠݏଷ ൅ ܽଶ, (6) 



ଶ݂ሺߠଷሻ ൌ ܽଷܿߙଶߠݏଷ െ ݀ସሺߙݏଷܿߙଶܿߠଷ ൅  ଷሻߙଶܿߙݏ
													െ݀ଷߙݏଶ,	 
ଷ݂ሺߠଷሻ ൌ ܽଷߙݏଶߠݏଷ െ ݀ସሺߙݏଷߙݏଶܿߠଷ െ  ଷሻߙଶܿߙܿ
													൅݀ଷܿߙଶ,	 
ଵ݃ሺߠଶ, ଷሻߠ ൌ ଶߠܿ ଵ݂ሺߠଷሻ െ ଶߠݏ ଶ݂ሺߠଷሻ ൅ ܽଵ,	 
݃ଶሺߠଶ, ଷሻߠ ൌ ଶߠݏଵሾߙܿ ଵ݂ሺߠଷሻ ൅ ଶߠܿ ଶ݂ሺߠଷሻሿ 
																				െߙݏଵ ଷ݂ሺߠଷሻ െ ݀ଶߙݏଵ,	 
݃ଷሺߠଶ, ଷሻߠ ൌ ଶߠݏଵሾߙݏ ଵ݂ሺߠଷሻ ൅ ଶߠܿ ଶ݂ሺߠଷሻሿ 
																				൅ܿߙଵ ଷ݂ሺߠଷሻ ൅ ݀ଶܿߙଵ. 
Therefore, the first three joint angles are attainable with 
simultaneous solution of: 

ݖ ൌ ݃ଷሺߠଶ,  ,ଷሻߠ
ݎ ൌ ଶݔ ൅ ଶݕ ൅ ଶݖ ൌ ሾ݃ଵሺߠଶ, ଷሻሿଶߠ ൅ ሾ݃ଶሺߠଶ,  ଷሻሿଶߠ
																																			൅ሾ݃ଷሺߠଶ,  .ଷሻሿଶߠ

(7) 

Parameters, ߙݏଵ  and ܿߙଵ  in ݃ଶ and ݃ଷ  functions, are 
required for the solution of (7) and could be extracted from 
the robot’s geometrical specifications in Table A2. Joint 
angle ߠଵ is also available after the calculation of ߠଶ and ߠଷ, 
and after substituting those results into (5). The closed 
formulations of the AnkleRoll, AnklePitch, and KneePitch 
joint angles, with respect to the specified trajectories are 
provided in the Appendix. The rotation matrix ܴଷ

଴ , is 
obtained with determination of  ߠଵ,  ଷ. Using theߠ ଶ, andߠ
rotation matrices between the ሼ0ሽ, ሼ3ሽ frames and ሼ0ሽ, ሼ6ሽ 
frames, one can write the rotation matrix between frames 
{3} and {6} as: 

ܴ଺
ଷ ൌ ሺ ܴଷ

଴ ሻିଵ ൈ ܴ଺
଴ . (8) 

The rotation matrix ܴ଺
ଷ  between frames {3} and {6} 

includes the remaining three joint angles ߠସ, ଺ߠ ହ, andߠ . 
Introducing the frame ሼ41ሽ on the hip and parallel to the 
base frame, as shown in Fig. 2 and Table A2, yields: 

ܴ଺
ସଵ ൌ ሺ ܴସଵ

଴ ሻିଵ ൈ ܴ଺
଴ . (9) 

Equation (9) shows the relation between the rotation 
matrix of the frame {41} and the general rotation matrix 
which leads to the last three joint angles in each leg. 
Equation (9) can be expressed as follows: 

ሺ ܴ଺ସଵ ሻ௥௜௚௛௧ ൌ ൥
ଵଵݎ ଵଶݎ ଵଷݎ
ଶଵݎ ଶଶݎ ଶଷݎ
ଷଵݎ ଷଶݎ ଷଷݎ

൩, (10) 

where all components ݎ୧୨ are provided in (A2) for the right 
leg. The only exceptions to the assumed notation for c and 
s are ܿ଺ା஠/ସ and ݏ଺ା஠/ସ which are replaced with ܿݏ݋ሺߠ଺ ൅
଺ߠሺ݊݅ݏ 4ሻ and/ߨ ൅  4ሻ respectively. The corresponding/ߨ
rotation matrix for the left leg is mathematically 
represented by: 

ሺ ܴ଺ସଵ ሻ௟௘௙௧ ൌ ൥
݈ଵଵ ݈ଵଶ ݈ଵଷ
݈ଶଵ ݈ଶଶ ݈ଶଷ
݈ଷଵ ݈ଷଶ ݈ଷଷ

൩, (11) 

where ݈୧୨ are provided in (A3). Solving (9) using (10) and 
(11) leads to the closed formulations for the angles ߠସ,  ,ହߠ
and ߠ଺ provided in the Appendix for both legs. The Nao 
biped robot has HipYawPith joints for both legs which are 
mechanically connected together and driven by an 
actuator. This fact enforces equations to have similar 
values for the sixth joint angle considering the assumed 
positive direction for both frames of the left and right legs. 
After simplification, one may write final values for both 
leg joint angles as: 

ሺߠ଺ሻோ ൌ ሺߠ଺ሻ௅ (12) 

ൌ
1
2
ቆtanିଵ ൬

ଶଵݎ
ଶଶݎ
൰
ோ

൅ tanିଵ ൬
݈ଶଵ
݈ଶଶ
൰
௅

ቇ ൅
ߨ
4
. 

In practice, rotations of the Nao joints are limited. This is 
important for the controller design since large values, 
which are at the margins, may lead to an unstable gait.  

B. Foot and torso trajectories: 

As mentioned in the previous section, input to the walk 
engine and inverse kinematic model is foot and torso 
trajectories. These trajectories could be specified on-line or 
off-line according to the nature of the biped robot and its 
computational capabilities. On-line trajectory generation is 
performed in human gait because of our remarkable 
abilities in gait optimization (for minimum energy 
consumption) and accessibility of the environmental data 
gathered by human perception system. This method of 
trajectory generation is not proper for many conventional 
biped robots such as the Nao.  

Alternatively, off-line techniques are also studied and 
employed extensively because of their suitability for robots 
with lower processing abilities. Some of these methods are 
the human trajectories [17], Inverted Pendulum [16], and 
ZMP. The energy-optimized human trajectories approach 
[17] with captured human motion and related joint 
movements may not be suitable for all biped robot 
applications because of the difference in mass and inertia 
distribution between humans and robots. On the other 
hand, ZMP method is used in such a way that foot 
trajectory is generated off-line and hip (or torso) trajectory 
will be produced on-line in order to satisfy the stability 
criteria using the robot's feedback. The latter approach is 
utilized in this paper and foot trajectories are generated 
offline. The trajectories considered for the dynamic 
modeling are derived with the assumptions of 8 cm/s 
walking speed and a 4 cm step length. The robot's foot has 
movement in both ݔ and ݖ directions, but no movement in 
 direction for a straight walk. Another essential issue to ݕ
be considered for a path is that the foot shall contact the 
ground with zero velocity in order to avoid the impact. 
Implementing velocity and kinematic constraints in the ݔ 
and ݖ axes brings about (13) in which ܮ௦ and ݄௦ stands for 
step length and step height, respectively. The input 
parameter 0 ൏ ݑ ൏ 1  is also the input parameter and 
symbolizes time: 

௙ݔ ൌ ቆݑ െ
sinሺ2ݑߨሻ

ߨ2
ቇ  ,௦ܮ

௙ݖ ൌ
1
2
ሺ1 െ cosሺ2ݑߨሻሻ݄௦. 

(13) 

The torso oscillates in the shape of a sinusoidal wave 
around the midpoint of the position of the robot’s feet on 
the ground. This movement produces a stable walk with 
mass transfer on the supporting leg and facilitates keeping 
the ZMP within the foot contact area. Therefore, the torso 
trajectory in the x direction follows the same trajectory as 
the foot in (13); in y direction, it is considered to have a 
sinusoidal shape, and in the z direction, it is assumed to be 
a constant value of 0.195, which is the hip joint height. 

C. Walk engine controller: 

A brief introduction of the examined controller on a 
linear inverted pendulum model in the walk engine is 
presented in this section. The produced difference between 
the foot and torso trajectories is the input for the inverse 
kinematics equations to calculate the joint angles. The 
controller is schematically illustrated in Fig. 3.  



Fig. 3   Optimal preview control on the walk engine 3D-LIPM 

Foot trajectories could be produced off-line according 
to pre-defined trajectories (13), but torso trajectories are 
generated consistent with the ZMP pulses for N future 
samples (in the preview controller). The developed 
perception [18], localization [19], and path planning [20] 
modules define robot and torso trajectories. Calculated 
torso trajectories, according to the future N samples of the 
ZMP, are employed with the measured ZMP in the 3D-
LIPM block to generate the CoM path for a stable walk. 

III.  DYNAMIC MODELING 

Section II was introduced to outline the theoretical 
aspects of the kinematic modeling and trajectory 
generation. An accurate kinematic model, together with a 
preview controller on the 3D-LIPM and the ZMP 
trajectory leads to a stable walk. However, the proposed 
walk engine is not adaptable to various ground slopes and 
conditions. Developing torque controllers on necessitates 
an accurate and fast dynamic model to make a comparison 
between the predefined and feedback from the joints' 
torque and angle values. Furthermore, according to diverse 
walking maneuvers, an inverse dynamic study is required 
to size actuators coping with torque and power 
requirements. Therefore, the main objectives of the Nao 
robot's dynamic modeling in this section can be classified 
as: 1) estimation of the required torques for an actuator 
selection; and 2) facilitating the calculations for a three-
dimensional dynamic gait study and possible torque 
control approaches for future. This section includes 
developing three-dimensional dynamic modeling and 
modeling in the two separate sagittal and frontal planes. 
Discussed approach in this section results in an inverse 
dynamic problem with experimental data from joints as the 
input and required torques as the output. Five point masses 
are assumed for the dynamic model in the Cartesian 
coordinates as presented in Fig. 4. The assumed lower limb 
link pattern form an open loop serial chain, where the first 
rotation takes place in the supporting leg and the last one 
takes place in the non-supporting leg. 

 
Fig. 4   Dedicated mass for the dynamic model 

The double support phase requires a hybrid dynamic 
model as studied in [21, 22].  However, this phase is not 
studied in this article and equations are derived with the 
assumption of a single support phase. 

A. Generalized dynamic modeling: 

Global positions of the links' center of masses are 
produced by the consecutive multiplication of the 
homogeneous transformation matrix (1) and local position 
vectors of ݆௧௛  mass, ௠௝ܮ	 ∈ Թସൈଵ, as mathematically 
described in by: 

௠ܲ௝ ൌ ൭ෑ ௜ܶ

௡

௜ୀଵ

൱  ,௠௝ܮ

௠ܲ௝ ൌ ሾݔ௠௝ ௠௝ݕ ௠௝ݖ 1ሿ், 

(14) 

where n is the number of joints before ݆௧௛ mass. The center 
of mass (CoM) position vectors are provided in Table I for 
five dedicated mass points: 

TABLE I.  COM POSITION VECTORS 

Mass Center Position Vectors (mm); Five Masses 
Lm1 = [3.66, -1.52, 38.72]T 
Lm2 = [-3.68, 0.03, 66.79]T 

Lm3 = [-4.80, 50.06, 127.27]T 
Lm4 = [-3.38, -0.03, -33.21]T 
Lm5 = [3.66, 1.52, -64.03]T 

 

Mass and inertia properties are also provided in Table 
A4 from the Nao’s technical data sheet. Now, the chain 
rule is implemented in (14) to calculate the time 
derivatives of the position vectors: 

ሶܲ௠ ൌ
߲ ௠ܲ

ݐ߲
ൌ
߲ ௠ܲ

ݍ߲
∙
ݍ߲
ݐ߲

ൌ ሶ,ݍ௣ܬ  

ሷܲ௠ ൌ
௣ܬ߲
ݍ߲

ሶݍ ଶ ൅ ሷ,ݍ௣ܬ  
(15) 

where ܬ୮  symbolizes the Jacobian matrix, which 
transforms the joint’s angular velocities to the translational 
velocities of the masses. The position vector ࢗ is defined 
as: 

ݍ ൌ ሾݍଵ ଶݍ ⋯ ,௡ሿ்ݍ ݊ ൌ 12 (16) 

Acceleration and velocity vectors of point masses ሷܲ௠, ሶܲ௠ 
are derived with respect to the supporting leg. The robot's 
equations of motion are developed in this section, using 
the Lagrange's approach on a kinematic chain with 12 
degrees of freedom. Modified position vector ݍ ∈ छ 
determines the robot's orientation and position in the 
global coordinates. Configuration space छ is introduced for 
the single support phase as well. Lagrangian is expressed 
as the difference between the system's kinetic energy ܭ 
and potential energy ܸ: 

ࣦሺݍ, ሶݍ ሻ ൌ ,ݍሺܭ ሶݍ ሻ െ ܸሺݍሻ. (17) 

Equations of motion are then derived from (17) as follows: 

݀
ݐ݀

߲ࣦ
ሶ௜ݍ߲

െ
߲ࣦ
௜ݍ߲

ൌ ௜݂, (18) 

in which, ௜݂ ൌ ∑ ത௝௝ܨ ∙
డ௥̅ೕ
డ௤೔

 with non-constraint forces ܨത௝and 

positions ̅ݎ௝  is introduced based on the generalized force 
definition associated with the generalized coordinates ݍ௜ . 
The torque exerted on links could be calculated after 
mapping the torques from the equation of motion to the 



actuators with the implementation of the Jacobian matrix. 
The skew-symmetric matrix, ෝ߱, is introduced for angular 
velocity:  ߱ ൌ ሾ߱ଵ ߱ଶ ߱ଷሿ ∈ Թଷ and the unpacking 
operator is used to change the skew-symmetric matrix to 
the angular velocity vector as: 

ෝ߱ ൌ ൥
0 െ߱ଷ ߱ଶ
߱ଷ 0 െ߱ଵ
െ߱ଶ ߱ଵ 0

൩;	ሺ ෝ߱ሻ˅ ൌ ߱. (19) 

Multiplication of a rotation matrix inverse and its time 
derivative is a skew-symmetric matrix [23]. Thus, the time 
derivative of the rotation matrix could be expressed as: 

ሶܴ ൌ ܴ ܴିଵ ሶܴ ൌ ܴ ෝ߱. (20) 

Angular velocity of each link in the previous joint frame is: 

߱ ൌ ൫ܴିଵ ሶܴ ൯
˅
∈ Թଷ (21) 

Expansion of (20) can be expressed as: 

ෝ߱ሺݍ, ሶݍ ሻ ൌ෍ܴିଵሺݍሻ
߲ܴሺݍሻ

௜ݍ߲
ሶ௜ݍ

௡

௜ୀଵ

; 	߱ ൌ ሶݍ௢ܬ , (22) 

where ܬ௢  symbolizes Jacobian matrix for angular 
velocities. Then, the kinetic energy of a link may be 
written as: 

,ݍ௝ሺܭ ሶݍ ሻ ൌ
1
2
ሶݍ ሶݍሻݍഥ௝ሺܦ் , (23) 

where ܦഥ௝ሺݍሻ is a symmetric, positive semi definite matrix:  

ሻݍഥ௝ሺܦ ൌ ሻݍ௣ሺܬሻݍ௣்ሺܬ݉ ൅  ሻ, (24)ݍ௢ሺܬ௥௢௧ࡵሻݍ௢்ሺܬ

in which ࡵ௥௢௧ represents the inertia tensor. The total kinetic 
energy of the system is: 

,ݍሺܭ ሶݍ ሻ ൌ
1
2
ሶݍ ሶݍሻݍሺܦ் , (25) 

and  ܦሺݍሻ is defined as: 

ሻݍሺܦ ൌ෍ܦഥ௝ሺݍሻ.

ே

௝ୀଵ

 (26) 

The potential energy is independent from ݍሶ  and is also 
attainable for ݆௧௛ mass with ݖ௠௝ as the robot's torso height; 
the total potential energy is the sum of the potential energy 
for all dedicated mass points with ݃  as the gravity 
acceleration: 

ܸሺݍሻ ൌ෍݃ ௝݉ݖ௠௝ሺݍሻ.

ே

௝ୀଵ

 (27) 

Expanding equation (18) results in: 

݀
ݐ݀
,ݍሺܭ߲ ሶݍ ሻ
ሶ௜ݍ߲

െ
,ݍሺܭ߲ ሶݍ ሻ
௜ݍ߲

൅
߲ܸሺݍሻ
௜ݍ߲

ൌ ௜݂, (28) 

that can be written as follows considering all lumped 
masses: 

෍ܦ௜௝ሺݍሻ
௡

௝ୀଵ

ሷ௝ݍ ൅ ෍ ቆ
ሻݍ௜௝ሺܦ߲

௞ݍ߲
ሶ௞ݍሶ௝ݍ

௡

௝,௞ୀଵ

െ
1
2
ሻݍ௜௝ሺܦ߲

௜ݍ߲
ሶ௞ቇݍሶ௝ݍ ൅

߲ܸሺݍሻ

௜ݍ߲
ൌ ௜݂ 

(29) 

Therefore, the second term of (29) could be replaced by: 

෍ ቆ
ሻݍ௜௝ሺܦ߲

௞ݍ߲
ሶ௞ݍሶ௝ݍ െ

1
2
ሻݍ௜௝ሺܦ߲

௜ݍ߲
ሶ௞ቇݍሶ௝ݍ

௡

௝,௞ୀଵ

ൌ෍ܥ௜௝ݍሶ௝

௡

௝ୀଵ

, 

(30) 

using Christoffel for vector notation and Coriolis matrix 
,ݍሺܥ ሶݍ ሻ ∈ Թ௡ൈ௡.	 The equivalent external forces on the 
system could be replaced with joint torques ߬  by 
neglecting the friction effect and in the single support state 
to reach the inverse dynamics equation: 

ሷݍሻݍሺܦ ൅ ,ݍሺܥ ሶݍ ሻݍሶ ൅ ሻݍሺܩ ൌ߬, (31) 

where ܩ ∈ Թ௡  symbolizes potential energy and can be 
replaced by partial derivatives of (27) with respect to the 
position vector ݍ௜ . The double support condition will be 
considered separately as a future work of this study. 
Equation (31) contains inertia, Coriolis, centrifugal, and 
gravitational effects. Equation (31) can be rewritten as: 

ሶݔ ൌ ൤
ሶݍ

,ݍሺܥሻሾെݍଵሺିܦ ሶݍ ሻݍሶ െ ሻݍሺܩ ൅߬ሿ
൨, 

 
ሶݔ ൌ ࣠ሺݔሻ ൅ ࣡ሺݔሻݑ, 

(32) 

with states ݔ ൌ ሾݍ ሶݍ ሿ் . Moreover, ࣡ሺݔሻ  is independent 
from  ݍሶ  in the natural coordinates ሾݍ ሶݍ ሿ் . The joint 
angular velocity and acceleration values are estimated with 
the numerical differentiation of the input joint angles, a 
sampling time 40 mSec, and a proper low-pass filter. This 
study is an inverse dynamics analysis since experimental 
joins data is available and performs as input to the model. 
Fig. 5 represents the right leg joint angles and serves as the 
input to the inverse dynamics equation where the right 
single support leg is denoted by SSL Right. 

Fig. 5   Right leg's sensory data for straight walk of the Nao 

Estimated torque values from the inverse dynamic 
equation (31) are provided in the "Results and Discussion" 
section. The computational cost of the general 3D dynamic 
modeling prompts us to develop a simplified model with 
lower calculations such as dynamic study in two separate 
sagittal and frontal planes [24]. 

B. Modeling in the sagittal and frontal planes: 

This sub-section contributes to decompositions in 
independent sagittal and frontal planes. Joints 2, 3, and 4 
on the right foot and 9, 10, and 11 on the left foot are 
considered in the sagittal study, thus there are six degrees 
of freedom for modeling in this plane. The homogenous 



transformation (1) changes to the following form for the 
sagittal plane ௦ܶ,௜ ∈ Թସൈସ: 

௦ܶ,௜ ൌ ൤
ܴ௦,௜ ௦,௜ܮ
ଵܱൈଷ 1 ൨, (33) 

in which ܮ௦,௜ ∈ Թଷൈଵdescribes the position vector of the 
݅௧௛  joint with respect to the ݅௧௛ െ 1  joint. Similarly, the 
local position vector of mass ݆௧௛ ௠௦,௝ܮ , ∈ Թସൈଵ will be 
obtained by setting the second component of 
corresponding vector ܮ௠௝  to zero. As a result, the global 
position vector of point masses is accessible in the (x-z) 
plane as: 

௠ܲ௦,௝ ൌ ൭ෑ ௦ܶ,௜

௡

௜ୀଵ

൱  ,௠௦,௝ܮ

௠ܲ௦,௝ ൌ ሾݔ௠௦,௝ 0 ௠௦,௝ݖ 1ሿ், 

(34) 

where n shows the joints before the dedicated point mass 
݆௧௛ . The modified position vector ݍ௦ ∈ छ࢙  shows the 
position and the orientation of the robot in the sagittal 
plane.  

௦ݍ ൌ ሾݍ௦ଵ ௦ଶݍ ⋯ ,௦௡ሿ்ݍ ݏ݊ ൌ 6 (35) 

The equation of motion (31) changes to the following form 
in the sagittal plane: 

ሷ௦ݍ௦ሻݍ௦ሺܦ ൅ ,௦ݍ௦ሺܥ ሶ௦ݍሶ௦ሻݍ ൅ ௦ሻݍ௦ሺܩ ൌ߬௦, (36) 

 

where ௦ሻݍ௦ሺܦ ∈ Թ୬ୱൈ୬ୱ , ,௦ݍ௦ሺܥ ሶ௦ሻݍ ∈ Թ୬௦ൈ୬ୱ ௦ܩ , ∈ Թ୬ୱ  , 
and  ߬௦ ∈ Թ୬ୱିଵ. Therefore, the state-space notation of the 
equation of motion in the sagittal plane for the single 
support phase yields: 

ሶ௦ݔ ൌ ൤
ሶ௦ݍ

௦ܦ
ିଵሺݍ௦ሻሾെܥ௦ሺݍ௦, ሶ௦ݍሶ௦ሻݍ െ ௦ሻݍ௦ሺܩ ൅߬௦ሿ

൨ 

 
ሶ௦ݔ ൌ ௦࣠ሺݔ௦ሻ ൅ ࣡௦ሺݔ௦ሻݑ௦, 

(37) 

where ݔ௦ ൌ ሾݍ௦ ሶ௦ሿ்ݍ  and ࣡௦ሺݔ௦ሻ ∈ Թଶ௡௦ൈሺ௡௦ିଵሻ . 
Alternatively, joints 1 and 5 on the right foot and joints 8 
and 12 on the left foot are considered in the (y-z) plane. 
The AnkleRoll joint of the non-supporting leg could be 
eliminated from the equations, since it has no effect on the 
robot's motion when it has no ground contact.  Similar to 
the sagittal plane approach, the homogenous 
transformation for the (y-z) plane is: 

௙ܶ,௜ ൌ ൤ ௙ܴ,௜ ௙,௜ܮ
ଵܱൈଷ 1

൨. (38) 

The local position vector of the mass ݆௧௛ ௠௙,௝ܮ , ∈
Թସൈଵ is attainable by setting the first component of the 
corresponding vector ܮ௠௝  to zero. Then, the global 
position vector of the point masses in the frontal plane is 
expressed by the successive multiplication of the 
homogeneous transformations and the local position vector 
of the corresponding mass: 

௠ܲ௙,௝ ൌ ൭ෑ ௙ܶ,௜

௡

௜ୀଵ

൱  ,௠௙,௝ܮ

௠ܲ௙,௝ ൌ ሾ0 ௠௙,௝ݕ ௠௙,௝ݖ 1ሿ், 

(39) 

where ݖ௠௙,௝ ൌ ௠௦,௝ݖ . The frontal plane's equation of 
motion could be written as: 

ሷ௙ݍ௙൯ݍ௙൫ܦ ൅ ,௙ݍ௙൫ܥ ሶ௙ݍሶ௙൯ݍ ൅ ௙൯ݍ௙൫ܩ ൌ߬௙, (40) 

where ܦ௙൫ݍ௙൯ ∈ Թ୬୤ൈ୬୤ ,௙ݍ௙൫ܥ, ሶ௙൯ݍ ∈ Թ୬௙ൈ୬୤ ௙ܩ , ∈ Թ୬୤  , 
and  ߬௙ ∈ Թ୬୤ିଵ . The position vector ݍ௙ ∈ छࢌ  shows the 

general formation of the open kinematic chain in the 
frontal plane.  

௙ݍ ൌ ሾݍଵ௙ ଶ௙ݍ ⋯ ,௡௙ሿ்ݍ ݂݊ ൌ 6 (41) 

 

As a result, the corresponding state-space notation with 
௙ݔ ൌ ሾݍ௙  :ሶ௙ሿ் is described asݍ

ሶ௙ݔ ൌ ቈ
ሶ௙ݍ

௙ܦ
ିଵ൫ݍ௙൯ൣെܥ௙൫ݍ௙, ሶ௙ݍሶ௙൯ݍ െ ௙൯ݍ௙൫ܩ ൅߬௙൧

቉, 

 
ሶ௙ݔ ൌ ௙࣠൫ݔ௙൯ ൅ ࣡௙൫ݔ௙൯ݑ௙, 

(42) 

where ࣡௙൫ݔ௙൯ ∈ Թଶ௡௙ൈሺ௡௙ିଵሻ. The estimated torques from 
the inverse dynamics approach in (x-z) and (y-z) planes are 
both provided in Section IV. 

C. Modeling in a multi-body dynamics package: 

The 3D lower body of the selected Nao platform is 
modeled in MSC Adams. This was done in order to verify 
the analytic inverse dynamic approach in the previous 
subsection. All the physical characteristics are plugged into 
the new model in MSC Adams with five lumped masses. 
Firstly, the single support phase with a step length of 4 cm 
and a speed of 8 cm/s is modeled. The developed model 
for the fixed condition of the supporting leg is 
schematically depicted in Fig. 6. 

 

Fig. 6   MSC Adams model of the Nao biped robot in walking 

All joints are modeled according to the Nao data sheet 
to accomplish Roll and Pitch duties as it is shown in Fig. 7. 
This figure shows four slides within a straight step action. 

Fig. 7   Walking stages of the Nao with right leg as supporting leg 

The degree of freedom for this model is ten since the 
HipYawPitch joint is ignored similar to the general 3D 
dynamic modeling in the previous sub-section. All these 
ten degrees of freedom were changed to inputs and 
replaced with real joint angles for a straight walk. The 
ground condition is also considered as the second 
simulation part with a contact model.  This will be 
described in the next section. 



IV. RESULTS AND DISCUSSION 

Several simulations were carried out in this section on 
the proposed kinematic and dynamic modeling of the Nao 
robot to verify the approach. The first set of analysis in this 
section examined the performance of the inverse kinematic 
approach, which results in tangible joint angle data (as 
graphically illustrated in Fig. 8). This walk is performed 
with a step length of 4 cm, a speed of 8 cm/s, and foot 
trajectories (13). The curves show that the KneePitch joint 
angle for the left leg has a minute value and could be 
neglected from dynamic study to reduce the on-line load of 
computation. 

Fig. 8   Joint angle data for the first three joints of both legs produced by 
the inverse kinematics 

 

The estimated joint angles from the developed inverse 
kinematics code for the remaining three joints of the right 
leg are provided in Fig. 9. 

Fig. 9   HipPitch, HipRoll, and HipPitch joint angle data by inverse 
kinematics for both legs in the open-loop walk engine 

 

These values are within the allowable margins of the 
robot's joint angles. Estimated torque results in Fig. 10 are 
obtained with the inverse dynamics (32) and real sensory 
data provided in Fig. 5. 

Fig. 10   Torques of the AnkleRoll, AnklePitch, KneePitch, and HipPitch 
joints on the right leg  

 

The same approach is applied for torque estimation of 
joints 5, 6, 7, and 8 in  Fig. 11. Estimated torques for each 
joint using the measured joint angles stands within the 
allowable torque margins of the Nao biped robot. 

Fig. 11   Required torques of the right HipRoll, right HipYawPitch, left 
HipYawPitch, and left HipRoll joints 

 

Fig. 12 provide a comparison between the MSC Adams 
inverse dynamic simulation and the proposed modeling 
approach.  

Fig. 12   Simulation data vs. ADAMS output of the supporting leg 
 

Selected Right AnkleRoll and Right AnklePitch joints bear 
the largest torque values during lift off of the left leg. 
These curves presented only for a 0.5 sec period (which is 
the duration of one step for the left leg). 

The observed errors are for the right AnkleRoll joint 
߬ଵ, especially at the beginning of the left leg's motion. For 



the purpose of analysis, the other joints results (which have 
lower torque values) are compared in Fig. 13 and Fig. 14. 

Fig. 13   Comparison between MATLAB code and ADAMS simulation 
data for the fixed supporting leg condition 

 

Estimated torques from the proposed methodology and 
MSC Adams are compared in Fig. 14 for the AnklePitch of 
the non-supporting leg.   

Fig. 14   Verification of results with ADAMS for left leg joints 
 

This is promising for using the inverse dynamic model for 
the fixed-to-ground condition of the supporting leg, which 
makes the control more straightforward and flexible to 
various trajectory requirements. In addition, the robot’s 
center of mass position from the MSC Adams model is 
provided for a half step length (4cm) in Fig. 15. 

Fig. 15   Verification of CoM position generated by ADAMS 
 

Another implication of the findings from Fig. 13 and Fig. 
15 is that the proposed inverse kinematic formulations 
perform well in the presence of various generated 
trajectories.  

The second part of this section is dedicated to the 
consideration of ground contact to investigate the effect of 
ground characteristics. To perform ground contact 
modeling of the robot’s foot contact, the “Impact” and 
“Restitution” models of the MSC Adams package are 
examined. This analysis includes several contact condition 
including changing Stiffness, Damping, Penetration Depth, 
and Force Exponent in the “Impact” model, as well as 
changing Penalty parameter and Restitution Coefficient in 
the “Restitution” model. After several testing and tuning 
parameters, the impact model with the consideration of 
Coulomb friction model (static coefficient 0.41, dynamic 
coefficient 0.27) is employed and torque results are plotted 
in Fig. 16. These tests include verification of the model 
with the real Nao robot platform to identify parameters. 
Various tests are performed in the simulation package with 

different impact parameters to have a stable walk with the 
same speed and with the same joint angles (as the input to 
the inverse dynamic model). Afterward, the parameters 
that lead to the same output are identified for the 
simulation with the recursive least square method. Fig. 16 
represents the first joint’s (right AnkleRoll) torque in three 
directions from the MSC Adams simulations. 

Fig. 16   Imposed torques on the first joint with ground contact  
 

These curves substantiate the effects of ground contact and 
lateral friction, which lead to the presence of torques in 
two other axes of the joint. Larger values of torques are 
contributed to the AnkleRoll, especially before the final 
stages of the non-support leg contacting the ground. Other 
supporting leg’s joint torques with ground contact 
considerations are shown in Fig. 17 and Fig. 18. 

Fig. 17   AnklePitch & KneePitch estimated torques; ADAMS model 
with contact  

 

 

Fig. 18   HipPitch & HipRoll estimated torques; ADAMS model with 
contact 

 



The type of solver plays an important role in the 
“Dynamic” solution of such problems in MSC Adams. 
This issue is also tested with various dynamic solvers and 
accurate results were extracted from the “SI2” (Stabilized-
Index-2) solver instead of conventional dynamic solvers. 
This solver reduces the original index 3 DEA (Differential 
Algebraic Equation) multibody dynamic problem in 
mechanical systems to an analytically equivalent index 
problem. This is done with solving the velocity kinematic 
constraints together with the kinematic differential 
equations. The SI2 method is characteristically slower than 
the index 3 method, but provides more accurate outcomes. 
It is also observed that the conventional dynamic solvers 
are sensitive to ground condition changes, which results in 
large calculated torque values. The integrator effect is also 
studied; it is noted that the “GSTIFF” produce more stable 
and smooth results, with lower oscillations in the presence 
of the changing time step, in comparison with the 
“WSTIFF”. Various ground contact condition has been 
investigated in the multibody dynamics package and will 
be incorporated in the proposed analytical inverse dynamic 
methodology. 

V. CONCLUSIONS 

The presented approach and modeling is tested on the 
Nao biped robot and shows a reasonable performance 
during a straight walk. This paper focuses on the dynamic 
modeling of the Nao with assumptions of the predefined 
foot trajectories and the generated on-line torso trajectories 
by the walk engine stability controller. The procedure of 
comprehensive kinematic modeling of the robot, which 
facilitates joint angles determination, velocity, and 
acceleration for different dedicated trajectories, are 
introduced. The inverse dynamics results were verified 
with the estimated torques of the MSC Adams packages 
for the same trajectory planning and input joint angles. 
Therefore, the proposed dynamic modeling approach can 
be used for dependable torque control techniques to cope 
with various ground conditions.  

Improper ground contact selection has been identified 
as major contributing factor for torque estimation errors up 
to 54%. More studies need to be done to establish a “User 
Defined” ground contact to model nonlinear behavior and 
characteristics of the biped robot’s foot contact. 
Supplementary studies need to be performed to establish a 
volume-based ground contact model for the selected biped 
robot performing a stable walk.  
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NOMENCLATURE 

Symbol Description 
  ௜ Homogenous transf. between the jointsܣ

݅௧௛ and ݅௧௛ െ 1   
ܽ௜, ݀௜ DH parameters (distance) 
,ݍሺܥ ሶݍ ሻ Coriolis matrix   



ܿ, cos ݏ 	 and sin 	functions 
 Generalized inertia matrix ܦ
 ഥ Positive semi def. bodies’ inertia matrixܦ
݂, ݃ Functions of DH parameters 

௜݂ Non-conservative forces/joint torques 
associated with the gen. Coord. ௜ݍ

   ത௝ Non-constraint forcesܨ
   ሻ Potential energy vectorݍሺܩ
݄௦ Foot trajectory step height   
 ௥௢௧ Inertia tensorࡵ
 Kinetic energy ܭ
݈௠௡ Left leg rot. matrices components 
௜ position vector of the ݅௧௛ w.r.t ݅௧௛ܮ െ 1   
   ௠௞ Mass centers’ position vectorsܮ
   ௦ Foot trajectory step lengthܮ

௝݉ Mass point ݆   

௝ܲ
௜ Position vector ݆ rel. to ݅ 

௠ܲ Robot’s mass centers position matrix 
 .Robot’s pos. matrix in the global Coord ݍ
 ௝ Positions of non-conservative forcesݎ̅
ܴ௜ Base rotation matrix of the ݅௧௛ joint about 

its rotation axes 
ܴ௔,௕ Rotation matrix about the ܽ axis with 

angle ܾ 
ܴ௝
௜  Rotation matrix	݆ relative to ݅ 
 ௠௡ Right leg rot. matrices componentsݎ
ܶ௝
௜  Homogeneous transformation ݆ rel. to ݅  
തܶ Translations matric in Cartesian Coord. 
 Input parameter for the foot trajectory ݑ
ܸ Potential and kinetic energy 

,௙ݔ ,௙ݕ  ௙ Foot trajectory componentsݖ
 ௠௝ Vertical position of the mass point ௝݉ݖ
,௜ߙ  ௜ DH parameters (angle)ߠ
߱ Angular velocity vector 
ෝ߱ Skew-symmetric angular Vel. matrix 
߬ Joint’s torque 

ሺ∙ሻ௅, ሺ∙ሻோ Left/right rotation/position matrices 
ሺ∙ሻ௙, ሺ∙ሻ௦ Rotation & pos. matrices in frontal/sagittal 

ሺ∙ሻ௠௙,௝, ሺ∙ሻ௠௦,௝ Pos. vectors of mass ݆ in frontal/sagittal 
ሺ∙ሻ௙, ሺ∙ሻ௦ Rotation & pos. matrices in frontal/sagittal 

 

APPENDIX A 

Mechanical and geometrical data mentioned in this 
article have already been extracted from the Nao technical 
specifications provided by the Aldebaran Co.  

Axes of rotations of the studied Nao robots are provided 
in Tables A1. 

TABLE A1.        DEDICATED AXES OF ROTATION FOR EACH LEG 

Joint Rot. Axis Name 
1,5 x HipRoll, AnkleRoll 

2,3,4 y HipPitch, KneePitch, Ankle Pitch 
6 y-z HipYawPitch 

 

The DH parameters for the inverse kinematics and the 
dynamic are tabulated in Table A2 as follows: 

TABLE A2.       LEFT LEG  DH PARAMETERS 

Frame i  
ia  id  

i  

(Joint)

1 -π/2 0 0  

2 π/2 0 0 2  

3 0 Tibia length 0 3  
40 0 Thigh length 0 0 
4 0 0 0 4  

5 -π/2 0 0 5  

6 -π/4 0 0 6 - 3π/4

41 ( / 2) ( / 2)z xRot Rot   

42 ( / 2) ( / 2)x zRot Rot     

60 ( / 2) ( / 2)x zRot Rot   

 

Joint position vectors and the robot's inertial 
characteristics in the dynamic model are accessible from 
the Nao robots datasheet and are presented in Tables A3 
and A4 below: 

TABLE A3.       JOINTS POSITION VECTORS 

Joint vector (mm) 
L1 = [0,0,0]T 
L2 = [0,0,0]T 
L3 = [0,0,102.75]T 
L4 = [0,0,100]T 
L5 = [0,0,0]T 
L6 = [0,0,0]T 
L7 = [0,100,0]T 
L8 = [0,0,0]T 
L9 = [0,0,0]T 
L10 = [0,0,-100]T 
L11 = [0,0,-102.75]T 
L12 = [0,0,0]T 

 

TABLE A4.       MASS AND INERTIA PROPERTIES OF LINKS AND POINT 
MASSES 

Mass (grams) Inertia (kg × m2) 
m1 = 435.98 [Ixx1, Iyy1, Izz1] = [0.0012, 0.0012, 0.0006] 
m2 = 605.72 [Ixx2, Iyy2, Izz2] = [0.0018, 0.0018, 0.0010] 

m3 = 1026.28 [Ixx3, Iyy3, Izz3] = [0.0049, 0.0047, 0.0016] 
m4 = 605.72 [Ixx4, Iyy4, Izz4] = [0.0018, 0.0018, 0.0010] 
m6 = 435.98 [Ixx5, Iyy5, Izz5] = [0.0012, 0.0012, 0.0006] 

 
The AnkleRoll, AnkelPitch, and KneePitch angles are 
calculated using the trajectories as: 

ଵߠ ൌ tanିଵ ቀ
ݕ
ݖ
ቁ 

ଶߠ ൌ െtanିଵ ቆ ଶ݂ሺߠଷሻ

ଵ݂ሺߠଷሻ
ቇ െ tanିଵ ቆ

ݔ

ඥݕଶ ൅ ଶݖ
ቇ 

ଷߠ ൌ cosିଵ ቆ
ଶݔ ൅ ଶݕ ൅ ଶݖ െ ܽସଶ െ ܽଷଶ

2ܽଷܽସ
ቇ 

(A1) 

Components of rotation matrices presented in (10) for 
the right leg are: 

ଵଵݎ ൌ െܿ଺ା஠/ସܿସ ൅
√2
2
ܿହݏ଺ା஠/ସݏସ െ

√2
2
 ସݏ଺ା஠/ସݏହݏ

ଵଶݎ ൌ ଺ା஠/ସܿସݏ ൅
√2
2
ܿହܿ଺ା஠/ସݏସ െ

√2
2
 ସݏହܿ଺ା஠/ସݏ

ଵଷݎ ൌ
√2
2
ହݏସሺݏ ൅ ܿହሻ; ଶଵݎ ൌ െ

√2
2
ሺݏହ ൅ ܿହሻݏ଺ା஠/ସ 

(A2) 

1



ଶଶݎ ൌ െ
√2
2
ሺݏହ ൅ ܿହሻܿ଺ା஠/ସ;	ݎଶଷ ൌ

√2
2
ሺെݏହ ൅ ܿହሻ 

ଷଵݎ ൌ ܿ଺ା஠/ସݏସ ൅
√2
2
଺ା஠/ସܿହܿସݏ െ

√2
2
 ହܿସݏ଺ା஠/ସݏ

ଷଶݎ ൌ െݏ଺ା஠/ସݏସ ൅
√2
2
ܿ଺ା஠/ସܿହܿସ െ

√2
2
ܿ଺ା஠/ସݏହܿସ 

ଷଷݎ ൌ
√2
2
ܿସሺݏହ ൅ ܿହሻ 

These values for the left leg equation (11) are: 

݈ଵଵ ൌ െܿ଺ା஠/ସܿସ ൅
√2
2
ܿହݏ଺ା஠/ସݏସ ൅

√2
2
 ସݏ଺ା஠/ସݏହݏ

݈ଵଶ ൌ ଺ା஠/ସܿସݏ ൅
√2
2
ܿହܿ଺ା஠/ସݏସ ൅

√2
2
 ସݏହܿ଺ା஠/ସݏ

݈ଵଷ ൌ െ
√2
2
ହݏସሺെݏ ൅ ܿହሻ 

݈ଶଵ ൌ
√2
2
ሺെݏହ ൅ ܿହሻݏ଺ା஠/ସ 

݈ଶଶ ൌ
√2
2
ሺെݏହ ൅ ܿହሻܿ଺;	݈ଶଷ ൌ

√2
2
ሺݏହ ൅ ܿହሻ 

݈ଷଵ ൌ ܿ଺ା஠/ସݏସ ൅
√2
2
଺ା஠/ସܿହܿସݏ ൅

√2
2
 ହܿସݏ଺ା஠/ସݏ

݈ଷଶ ൌ െݏ଺ା஠/ସݏସ ൅
√2
2
ܿ଺ା஠/ସܿହܿସ ൅

√2
2
ܿ଺ା஠/ସݏହܿସ 

(A3) 

݈ଷଷ ൌ െ
√2
2
ܿସሺെݏହ ൅ ܿହሻ 

Solution of (10) and (11) results in the closed formulations: 

ሺߠସሻோ ൌ tanିଵ ൬
ଵଷݎ
ଷଷݎ
൰ ; ሺߠସሻ௅ ൌ tanିଵ ൬

݈ଵଷ
݈ଷଷ
൰ 

ሺߠହሻோ ൌ
ߨ
4
െ tanିଵ ቆ

ଶଷݎ2√
ඥ2 െ ଶଷݎ2

ଶ
ቇ 

ሺߠହሻ௅ ൌ െ
ߨ
4
൅ tanିଵ ቆ

√2݈ଶଷ
ඥ2 െ 2݈ଶଷ

ଶ
ቇ 

ሺߠ଺ሻோ ൌ tanିଵ ൬
ଶଵݎ
ଶଶݎ
൰ ൅

ߨ3
4

 

ሺߠ଺ሻ௅ ൌ tanିଵ ൬
݈ଶଵ
݈ଶଶ
൰ െ

ߨ
4

 

(A4) 

 
 


