
*Corresponding author. Tel: +1 226 988 5349 
Email addresses: y269huan@uwaterloo.ca (Y.Huang), a.khajepour@uwaterloo.ca (A.Khajepour), fbagheri@sfu.ca (F, Bagheri), mbahrami@sfu.ca (M. Bahrami) 

1 
Abstract— This paper presents several robust model predictive controllers that improve the temperature performance and minimize 2 

energy consumption in an automotive air-conditioning/refrigeration (A/C-R) system with a three-speed and continuously-varying 3 

compressor. First, a simplified control-oriented model of the A/C-R system is briefly introduced. Accordingly, a discrete Model 4 

Predictive Controller (MPC) is designed based on the proposed model for an A/C-R system with a three-speed compressor. A proper 5 

terminal weight is chosen to guarantee its robustness under both regular and frost conditions. A case study is conducted under various 6 

heating load conditions. Two hybrid controllers are made, which combine the advantages of both the on/off controller and discrete MPC 7 

such that they will be more efficient under any ambient heating condition. In addition, a continuous MPC is developed for systems with 8 

continuous variable components. Finally, the experimental and simulation results of the new controllers and the conventional on/off 9 

controller are provided and compared to show that the proposed controllers can save up to 23% more energy.  10 

Index Terms: Air-conditioning/Refrigeration systems; Frosting; Discrete MPC; Robust MPC; Hybrid controller 11 

Nomenclature 12 

vA opening area of expansion valve condN condenser fan control input 

 c eA A cross-sectional area of condenser (evaporator) tube evapN evaporator fan control input 

 oc oeA A exterior area of the condenser (evaporator)  c eP P pressure of two heat exchangers 

 ( )ic ie  equivalent refrigerant-side heat transfer coefficient  in 

two-phase region 
v density of refrigerant through the valve 

 oc oe  air-side heat transfer coefficient ref density of refrigerant 

 icsh iesh  refrigerant-side heat transfer coefficient in superheat region  lc le  density of liquid refrigerant 

pC specific heat of the heat exchangers  gc ge  density of vapor refrigerant 

vC discharge coefficient of expansion valve  shc she  density of refrigerant in superheat section 

airC specific heat of the ambient air ambT ambient temperature  

 ic ieD D heat exchanger tube internal diameter  wfc wfeT T equivalent temperature of tube wall & fin 

 ge gch h enthalpy of vapor refrigerant  rc reT T saturation temperature of refrigerant 

 iic eh h enthalpy of refrigerant at the inlet of heat exchanger  aac eT T air temperature around the heat exchanger 

ish isentropic of  refrigerant in compressor shT superheat 

 lc leh h enthalpy of liquid refrigerant icT refrigerant temperature at the inlet of condenser 

 lgc lgeh h latent enthalpy of refrigerant argc oT temperature of cargo 
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och  enthalpy at the outlet of condenser arg _c o initT  initial temperature of cargo  

 c el l  length of two-phase section in two heat exchangers dV  volumetric displacement of compressor 

vm  refrigerant mass flow rate through the expansion valve vol  volumetric efficiency of compressor 

compm  refrigerant mass flow rate through the compressor a  adiabatic efficiency of compressor 

pipem  total refrigerant mass in the pipes  c e   mean void fraction of two-phase section 

m  heat exchanger total mass N  prediction and control horizontal length 

compN  compressor speed ,? ?P Q S  weight factor 

I. INTRODUCTION 13 

The continuously increasing demands on energy conservation and environmental protection have driven researchers to develop 14 

more efficient and “green” vehicles [1] [2]. Recently, A/C-R systems have been widely used as the main auxiliary devices in 15 

vehicles. For example, A/C-R systems in food delivery trucks consume up to 25% of the vehicle’s total fuel consumption. 16 

Efficiently operating A/C-R systems can significantly improve operating costs and the vehicle’s effects on the environment [3] [4]. 17 

Thus, making more efficient auxiliary devices such as A/C-R systems can bring many benefits to vehicle owners as well as the 18 

environment [5]. For any A/C-R system, a foremost step in achieving better performance and higher energy efficiency is a proper 19 

control strategy. However, in most conventional vehicles, the compressor speed is proportional to the engine speed instead of 20 

actively varying with the requirements of passengers or working conditions. This impedes the development of advanced controllers 21 

for A/C-R systems given that the controllers are usually applied to manipulate the speeds of the compressor and fans of heat 22 

exchangers. Recently, the onboard energy storage system (ESS) of anti-idling systems [6], hybrid electric vehicles (HEVs) [7] and 23 

electric vehicles (EV) [8] [9] is capable of powering the A/C-R system independently such that the A/C-R system can be 24 

disconnected from the engines [10]. This indicates the feasibility of the electrification of the A/C-R system and the subsequent 25 

application of advanced controllers in vehicles. For the sake of accurate prediction, an accurate yet simple dynamic model of the 26 

whole A/C-R system is a prerequisite for the design of any advanced controller. A simplified control-based model for all-purpose 27 

A/C-R systems that is validated by experimental data is provided [11]. Further based on the model, the controllers’ development 28 

process is presented and followed by experimental validation and comparison work. 29 

A literature review on the existing controllers including the MPC of A/C-R systems and the novelties of this paper is presented in 30 

the second section; next, the simplified model is briefly introduced. A brief introduction of the experimental system is provided in 31 

the following section. In addition, the development and implementation process of controllers are elaborated upon. Furthermore, 32 

the experimental results of both the discrete MPC and the conventional on/off controller are provided to demonstrate the 33 

energy-saving ability and the robustness of the proposed MPC. Moreover, a case study under varying heating load conditions is 34 

conducted by proposing the hybrid MPCs and the continuous MPC. In the last section, comments and future work are discussed. 35 
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II. LITERATURE REVIEW 36 

The A/C-R system generally consists of four main components: the compressor, evaporator, expansion valve, and the condenser, as 37 

shown in Fig. 1. One cycle is taken as an example for the demonstration of the whole working process of the A/C-R system. Let us 38 

begin with the high-pressure and low-temperature liquid refrigerant after it exits the condenser. It stays in the liquid phase before 39 

entering the expansion valve. Since the valve is usually assumed to be adiabatic, the enthalpy of the refrigerant at the inlet and 40 

outlet of the valve should be equal. In the evaporator, the low temperature and low-pressure two-phase refrigerant absorbs heat 41 

from the cargo space and exits from the superheat (SH) section in gas form to avoid damaging the compressor. The gas refrigerant 42 

is pressed when going through the compressor and exits the compressor with high temperature and high pressure. Finally, when it 43 

reaches the condenser, the superheated and over pressured gas refrigerant will go through the SH, two-phase and subcooling (SC) 44 

section when flowing through the condenser. Due to the extensive applications of A/C-R systems in different areas, many 45 

controllers have been developed in the literature. 46 

 

Fig. 1 Schematic diagram of an automotive A/C-R system with cargo 

Thanks to its simplicity, the on/off controller was initially applied. It could maintain the required temperature in a certain range by 47 

turning the whole system on or off. Instead, the on/off controller has many limitations. First, it is unable to regulate the temperature 48 

oscillation amplitudes in changing conditions including changing ambient temperatures or varying food temperatures. Secondly, 49 

frequent compressor activations (turning it on/off) can lead to excessive power consumption and cause the mechanical components 50 

to wear down over time. Above all, energy efficiency is not considered at all, and that is why [12] and [13] improved the original 51 

on/off controller’s efficiency by introducing adaptive or optimization algorithms. However, due to the nature of the on/off 52 

controller, it is impossible to greatly enhance its performance. Recently, the application of variable-speed components into the 53 

A/C-R system makes the development of more efficient controllers possible. Particularly, as anti-idling technologies and electric 54 

vehicles become more popular, the electrification technology of the A/C-R system in the vehicle will separate the compressor from 55 

the engine, which could make compressor actively change its speed instead of passively following the engine’s speed. The current 56 

controllers (other than the on/off one of the A/C-R system) can be classified into three types [14]: classic feedback controller, 57 

intelligent controller, and advanced controller. As the most popular type of conventional feedback controllers, the PID controller 58 
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has been used for a long time. A relevant example is the superheat-expansion valve and temperature-compressor control [15]. That 59 

means the superheat will be controlled by the expansion valve, and the temperature will be controlled by the compressor via two 60 

separate PID controllers. Nevertheless, due to the nonlinear and MIMO nature of an A/C-R system, it is difficult to find and tune 61 

the controller parameters [16]. A strategy used to decouple the controllers was developed in [17]. Still, this conventional PID 62 

controller does not directly consider saving energy.  63 

Artificial intelligent control approaches, such as artificial neural network (ANN) control, fuzzy logic control, and the expert 64 

system, etc., are utilized to deal with nonlinearities or uncertainties in A/C-R processes. ANN has a strong modeling capability for 65 

nonlinearities; whereas, fuzzy logic can deal with uncertainties in a straightforward manner. Besides being used directly as 66 

controllers based on their own formulation characteristics, ANN, fuzzy logic, etc., also perform the roles of A/C-R models [18], 67 

computing methods, and approximations of other control algorithms. In some cases, these artificial intelligent control approaches 68 

are combined with the A/C-R system control [14]. However, their limitations were discussed in [19], which comprise over training, 69 

extrapolation, network optimization, and the lack of optimal controls. These drawbacks impede its development and application. 70 

Advanced control generally includes robust control (e.g. Sliding Model Control), adaptive control, optimal control (such as the 71 

MPC), and so on. A second-order Sliding Mode Controller (SMC) for the SISO refrigeration system was presented in [20], which 72 

regulates the refrigerant’s relative length in the evaporator by manipulating the compressor speed. This controller can also 73 

effectively alleviate chattering phenomenon, but it does not deal with power consumption directly. A multivariable adaptive 74 

controller was proposed in [21], which is able to identify different linear models for a nonlinear system over the domain of 75 

operating conditions. There are also other classes of nonlinearity compensation controls like robust control [22], gain scheduling 76 

LQR [23] [24] and optimizing control [25]. 77 

In all of these advanced control methods, the MPC is a more successful and promising control algorithm based on studies of 78 

model identification, optimized algorithm, control structure analysis, parameter tuning, and relevant stability and robustness. In 79 

A/C-R system control, the MPC is gradually becoming a major control method. The main value of the MPC is its ability to control 80 

multivariable systems under various constraints, especially slow dynamic plants, in an optimal way. It can simultaneously control 81 

more than one objective to achieve multi-objective and multivariable control; these variables include air temperature, relative 82 

humidity, the decrease of operation cost (e.g. energy saving), the improvement of air quality, and enhancement of steady-state 83 

performance and robustness. A comprehensive literature review was conducted in [16] on the theory and applications of controllers. 84 

In particular, they focused on the MPC in the HVAC systems of buildings, and they elaborated upon the factors that influence the 85 

performance of the MPC such as controller structure, process type, optimization algorithms, plant model, prediction horizon, 86 

control horizon, constraints, and an objective function. A Takagi-Sugeno fuzzy model was used to represent the highly nonlinear 87 

HVAC system in temperature predictive control. In order to reduce the computational effort of the non-convex optimization 88 
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problem, a combination of a branch-and-bound search technique was used [26]. A hierarchical multiple MPC was proposed for the 89 

temperature control of the HVAC system based on a Takagi–Sugeno fuzzy model [27]. Authors in [28] have applied a 90 

neuro-predictive controller for the temperature control of automotive air conditioning systems. However, the conclusions are 91 

tenuous without any supporting experimental work. Literature [29] designed a MPC for a multi-evaporator vapor compression 92 

cooling cycle. A decentralized control structure was employed where the global MPC was to find the set points of the required 93 

cooling as well as evaporator pressures and local PI controllers were used for set-point tracking. By properly controlling evaporator 94 

pressures and superheat, energy efficiency can be improved. Authors in [30] used a neuro-fuzzy network based offline optimization 95 

to approximate the input-output relationship of a robust MPC, and validated it on an air-handling unit for the temperature control to 96 

increase the computational efficiency of a nonlinear robust MPC. An exergy-based objective function was incorporated into a 97 

nonlinear MPC to improve the coefficient of performance (COP) of a vapor-compressor cycle operation [31]. Due to the nonlinear 98 

objective function, the “fmincon” command in MATLAB that was used for the simulation and real-time implementation is not 99 

feasible in practice due to its high computational time. J. Ma et al. proposed an economic MPC to reduce costs for building HVAC 100 

systems. In each time interval, a min-max optimization technique is used and transferred to a linear programming problem instead 101 

of solving the optimization problem directly; this technique minimizes electricity costs and finds the optimal input for the next step 102 

[32]. In [33], the author adopted a complex nonlinear model of a vapor compressor system derived by [23], linearized it and 103 

subsequently designed a MPC to control the evaporator pressure and superheat by manipulating the compressor speed and 104 

electronic expansion valve. The purpose of this MPC was to improve the energy efficiency of the overall plant. In order to show its 105 

performance in real situations, several scenarios were simulated by using the linearized mode, but this was done without any 106 

experimental validation. In addition, the effects of model inaccuracy on the controller were not studied. An MPC was designed for 107 

a commercial multi-zone refrigeration system to minimize the total energy consumption, which employed a fast convex quadratic 108 

programming solver to solve a sequential convex optimization problem so as to handle the non-convexity of the objective function. 109 

In order to limit the size of the optimization problem in each step, a sample time of 15 mins was chosen for predictions of the next 110 

24 hours [34]. A low-complexity MPC was developed for building cooling systems with thermal energy storage. In order to 111 

improve the computational efficiency, a periodic moving window blocking strategy is utilized [35]. A time-varying periodic robust 112 

invariant set discussed in [36] was used as the terminal constraint to guarantee the robustness under the time-varying uncertain 113 

cooling demand. The running time for each step was about 20mins, which satisfies the sample time of 1h chosen for the MPC for 114 

prediction of the next 24 hours. A learning-based MPC was proposed in [37] to minimize the energy consumption of an air 115 

conditioner while it maintains a comfortable temperature at the same time. A statistical method and a mathematical model for the 116 

temperature dynamics of a room were used to learn about the time-varying heating load caused by occupants and equipment. Based 117 

on the information learned from the heating load, this MPC will determine the state (on/off) of the air conditioner. Ultimately, it is 118 
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still a two position controller for the air conditioner, but it is more intelligent. The authors improved their study discussed in [29]. A 119 

multi-evaporator vapor compression system was still the research target and the global MPC was used to find the required cooling 120 

and pressure set points for each zone. The local MPCs and PIDs for each evaporator were used to track these set points by 121 

manipulating the valve position and evaporator fan speed. Energy efficiency was guaranteed by choosing the proper pressures and 122 

superheats instead of directly integrating the system’s inputs into the objective functions of the MPC [38]. An adaptive MPC for a 123 

reefer container was proposed in [39]. Model parameters, states as well as the ambient temperature information for the next 124 

24 hours were identified online. This long prediction period required a relatively long time interval of 1 hour to reduce the 125 

optimization problem size at each time step so as to guarantee the real-time application. Since the MPC is recalculated once 126 

every hour, the cooling provided by the refrigeration system could be incorrect for up to one hour. This MPC is not suitable 127 

for reefer containers in delivery trucks with small thermal inertia since such trucks unload their goods regularly resulting in 128 

some extra heating load in the container, which can ruin the quality of the goods. Due to the small thermal inertia and 129 

subsequent fast thermal dynamics, the 1 hour time interval is too large to be used.   130 

Compared to the aforementioned literature, the differences of this paper are as follows: 1) from the application point of 131 

view, this paper proposes a robust real-time MPC controller for automotive A/C-R systems. Most of the MPC applications of 132 

A/C-R systems in the existing literature are designed for buildings rather than for vehicles because the compressor, the most 133 

energy-consuming component in the A/C-R system, is directly connected to engine in conventional vehicles. The fact that its 134 

speed cannot be freely changed impedes the applications of advanced controllers. As HEVs, EVs, and anti-idling techniques 135 

become more popular, the electrification of the A/C-R systems and application of the MPC is possible. In addition, buildings 136 

with large thermal inertia present extremely slow temperature dynamics in which time intervals in minutes or even hours [16] 137 

[35][37][38][39] are used in the controller loops. Vehicles with small passenger compartment, relatively poor insulation 138 

conditions reflect a relatively fast thermal dynamics, which calls for a smaller time interval, so controllers with real-time 139 

implementation potential are required. Our work in this paper introduces an MPC for A/C-R systems that satisfies the 140 

requirements for vehicle applications. 2) Regarding the model used for MPC development, neither the intelligent artificial 141 

[26][27][28][30] nor the data-driven modeling method is utilized. In this paper, the boundary-moving and lumped parameter 142 

method [22] [23] is adopted according to the physical structure and characteristics of the plant. This method does not need 143 

any training work. Using an online parameter identification algorithm, the proposed model is sufficient to guarantee a better 144 

prediction accuracy required by the MPC over the models used in the literature. In addition, as opposed to complex models 145 

with more than fifteen states developed in the literature [13][22][23], this paper uses a simplified six-state control-oriented 146 

model with comparable accuracy. This has been done by introducing the effects of fins and superheat sections in the model 147 
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[11]. 3) In terms of the controller itself, due to the discrete nature of the constraints in many A/C-R systems [25] [40] [41] [42] 148 

a discrete MPC is proposed, which is rarely mentioned in the current literature about A/C-R systems. Thanks to the simple 149 

model, this controller is fast enough to be applied in real time. The design process of this discrete MPC can serve as a 150 

framework for other similar applications with several discrete points. Furthermore, the hybrid controllers combine the 151 

advantages of both the MPC and the on/off controller to make more efficient controllers under any heating load condition. 152 

Above all, concerning the robustness of the proposed MPC, as is suggested by [43] [44] a relatively large terminal weight is 153 

experimentally tested and chosen for the sake of robustness. The control performance is studied under both large external 154 

disturbances and situations of model parameter uncertainties. A 200-second heating load—up to 23% of the original heating 155 

load as the external disturbance is applied to the system to evaluate the robustness of the controller. Frosting, a common 156 

phenomenon in A/C-R systems, can lead to model inaccuracy, or even violate the assumptions of the modelling. However, 157 

even under such harsh situations, the control system shows an excellent performance because of the robustness of the 158 

proposed controller; whereas, the existing literature seldom shows the performance of controllers during the frosting period 159 

of the A/C-R system.  160 

III. MODELING OF A/C-R SYSTEMS 161 

The development of advanced controllers is usually based on a dynamic model, which should be simple enough for real-time 162 

applications and reflect the main dynamics of the plant. In this section, the dominant equations of the four main components of the 163 

A/C-R system are provided and explained, for more detailed information please the previous work [11]. 164 

A.  Expansion Valve 165 

The expansion valve is assumed to be isenthalpic i.e. the enthalpy at the inlet of the valve is identical to that at the outlet. No matter 166 

which kind of expansion valve, the refrigerant mass flow rate 𝑚̇𝑣 through the expansion valve is modeled by: 167 

 v v v v c em C A P P   (1) 

For different types of expansion valves, the discharge coefficient vC and valve opening area  vA have different correlations obtained 168 

by experimental data [45][46] cP and eP are the pressure of condenser and evaporator, respectively.  169 

B.  Compressor model 170 

The dynamics of the compressor can be demonstrated by:  171 

 comp comp vol refd em N V P   (2) 

      ,oc a is c ic ce eieh h P P h P h P     (3) 
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Equation (2) depicts the refrigerant mass flow rate throughout the compressor with respect to the compressor speed, and Equation 172 

(3) shows the enthalpy change of the refrigerant after going through the compressor. 173 

C.  Evaporator 174 

Two common types of heat exchangers are used in the A/C-R system: the microchannel type and the fin-tube type [47]. The 175 

modeling method proposed is suitable for any type. More importantly, the modeling method takes the fins’ effect into consideration 176 

and lumps it into two equivalent parameters so that the model is simple but accurate. The simplified nonlinear dynamic model of 177 

the evaporator can be written as:  178 

     1 e
lge e v ge ie ie ie e wfe rele e

dl
h A m h h D l T T

dt
         (4) 

 ie ie e wfe rege e ie le
e e v comp

e lge lge

D l T Td dP h h
A L m m

dP dt h h

  
    (5) 

       ( )
wfe

p oe oe ae wfe ie ie e wfe re iesh ie e e wfe rewfe

dT
C m A T T D l T T D L l T T

dt
            (6) 

where the three states are the length el  of the two-phase section, the pressure eP  of the evaporator, and equivalent temperature wfeT  179 

of tube wall & fins. Equation (4) simulates the energy transfer from the refrigerant to the heat exchanger tube wall & fins of the 180 

two-phase section [24]. Equation (5) denotes the vapor refrigerant change rate throughout the evaporator tube. Equation (6) reflects 181 

the heat conduction of the entire heat transfer process. The last term on the right-hand side represents the heat conduction 182 

throughout the superheat section, which is added to improve model accuracy and distinguish it from the model proposed in 183 

[23][24]. oe is regulated by the evaporator fan speed evapN [22].  184 

D.  Condenser 185 

As is known, the total mass totalm of the refrigerant inside the cycle is constant without considering any leakage. The mass of the 186 

refrigerant outside of the two heat exchangers is defined as pipem . Thus, the difference between these two masses is the mass inside 187 

evaporator and condenser, which can be shown by: 188 

       1 1total pipe e le e e ge e e she e e c lc c c gc c c shc c cm m A l l L l A l l L l                           (7) 

With the same modeling method, the condenser dynamics can be represented by the following two-state model by considering 189 

Equation (7), 190 

 ic ic c rc wfcgc c
c c comp

c lgc

D l T Td dP
A L m

dP dt h

  
   (8) 

         ( ) ( ) / 2
wfc

p oc cond oc ac wfc ic ic c wfc rc icsh ic c c wfc rc icwfc

dT
C m N A T T D l T T D L l T T T

dt
             (9) 
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E.  Cargo 191 

The inside temperature of the cargo is one of the control objectives, whose dynamics can be shown by the following equation: 192 

 
argc o inconv inf door vcc

air

dT Q Q Q Q

dt MC

  
  (10) 

where, inconvQ represents the convective heat transfer from the interior surface; infQ and doorQ are the load due to infiltration and 193 

opening the door respectively, and vccQ is the cooling capacity produced by the A/C-R system to balance the heating load from 194 

outside [49]. The first two loads will be treated together ( outQ ), and they can be identified by test data obtained from the previous 195 

step. doorQ is used as an external disturbance and added to the chamber. 196 

By considering the boundary conditions of each component and integrating the cargo into the whole cycle, the entire model will 197 

become a six-state dynamic model. In this model, the air temperature ambT at the inlet of the condenser is considered to be the 198 

ambient air temperature, and it is a measured value. The system inputs are compressor speed compN  as well as the frequencies ( evapN199 

and condN ) of two variable frequency drives (VFDs) used to manipulate the speed of the evaporator and condenser fans. The 200 

frequencies are proportional to the two fan speeds. The six states arg, , , , ,e c e wfe wfc c oP P l T T T   are: pressures of the evaporator and the 201 

condenser, the two-phase section lengths, equivalent tube wall & fins temperatures of two heat exchangers, and the temperature of 202 

the evaporator-side temperature, respectively. The output is the air temperature argc oT of the cargo.  203 

IV. EXPERIMENTAL SYSTEM  204 

In order to validate the model and verify the performance of these new controllers, an automotive A/C-R system is built. From the 205 

schematic of the experimental system in Fig. 2, it can be seen that two independent environmental chambers are connected to the 206 

evaporator and condenser units by pipes. The evaporator-side chamber acts as the cargo and its temperature will be a controlled 207 

parameter while the temperature at the inlet of the condenser can be controlled and used as operating conditions when the 208 

experiments are conducted.  209 
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Fig. 2 Schematic of the experimental system  Fig. 3 Experimental system 

The experimental setup is shown in Fig. 3, where the four main components of the whole system and the two chambers are 210 

labeled. Fig. 4 shows one of the environmental chambers. The Micro Motion 2400S transmitter with 0.5% accuracy from Emerson 211 

Electric Co. is utilized to log the refrigerant mass flow rate, and it is located between the condenser and the thermostatic expansion 212 

valve given in Fig. 5. The T-type thermocouples and pressure transducers model PX309 manufactured by OMEGA with 0.25% 213 

accuracy shown in Fig. 6 are installed at four locations of the whole system to measure both the high and low 214 

temperatures/pressures of the refrigerant. Fig. 7 describes T-type thermocouples and the wind sensor model MD0550 from Modern 215 

Device, which are installed at eight locations on the evaporator and condenser airstreams. Also, The Data Acquisition (DAQ) 216 

system is used to collect data from the thermocouples, pressure transducers, DC power supply, and flow meters, and this data is 217 

sent to a computer. LABVIEW is employed to obtain all the measured data from the equipment and to save it in an EXCEL file.  218 

The two fans of the evaporator and condenser are controlled by two VFDs such that the speed could be represented by frequency. 219 

While the compressor only has three different speeds, an NI relay module (NI9485) is used to switch between the three discrete 220 

speeds.  221 

    

Fig. 4 Chamber Fig. 5 Refrigerant mass flow meter Fig. 6 Thermocouple &pressure transducer Fig. 7 Air temperature&velocity sensors 

Evaporator

Condenser

Evaporator-side

Chamber

Condenser-side

Chamber

Compressor Blower fan Valve
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V. CONTROLLER DEVELOPMENT AND IMPLEMENTATION 222 

A. On/off controller  223 

The on/off controller is most commonly used in vapor compression units because of its simplicity. However, it has many 224 

drawbacks as mentioned in the previous sections. Therefore, the on/off controller developed in this section serves simply as a basis 225 

of comparison for new controllers. The on/off control strategy is actually a simple hysteresis where the hysteresis band is used to 226 

reduce the compressor’s frequent switching. When the system is on, the compressor is running at maximum speed. The controller 227 

is driven by the error signal between the measured temperature and the temperature set point in the cargo space [49].  228 

The controller was built in MATLAB/SIMULINK and LABVIEW for simulation and experiment, respectively. Due to the slow 229 

dynamics of the A/C-R system, the control & simulation loop is employed in the control design & simulation module instead of the 230 

real-time module; whereas, the simulation time, step size, and timing source are set up to guarantee that the controllers run in real 231 

time.  232 

B. MPC 233 

As an optimal control method, the MPC originated in the chemistry industry’s control techniques. It is characterized by its slow 234 

dynamics, which provides enough time for optimization calculations [50]. As is known, the A/C-R system is a highly nonlinear 235 

MIMO system with slow dynamics making it suitable for MPC application. In general, three parts are included in an MPC: a 236 

predictive model that aims to predict future behavior of the process, a receding horizon optimization algorithm that will solve an 237 

explicit optimization problem formulated into several future sampling periods, and feedback correction to keep the controlled 238 

variables at the set points and enhance the robustness of the A/C-R control system [51]. 239 

Using a highly complex nonlinear model for the development of a model predictive controller, the computational efficiency will 240 

be extremely low, so its real-time implementation will become expensive or even unrealistic for industrial applications. To solve 241 

this problem, a linear MPC will be developed in this paper. After linearizing and discretizing the nonlinear model [52], a finite 242 

horizon optimization problem [53] is formulated at each time interval. The objective function is shown below,  243 

 0 0,J x u                  
1

0

N
T T T T

k

k ke N Pe N e Qe u k Ru k u k S u k




    
   

(11) 

. .s t  

  ,min maxx x k x    0, 1k N    

  ,min maxu u k u    0, 1k N   

  ,min maxu u k u       0, 1k N   

where, e  is the tracking error of the temperature; the first term on the right-hand side is the terminal cost; the second term is stage 244 

cost; the third term represents control effort cost and the last term is control input rate costs. ,? ?P Q R  and S are weights to balance 245 
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each term. The objective function is transferred into a quadratic form with respect to the increment of control inputs. As the 246 

prediction horizon length is N , the deviation trajectory of future states will be obtained by the discrete model: 247 
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(12) 

Then, the deviation of the future outputs can be rewritten into a compact form by: 248 
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(13) 

The convex quadratic objective function only with respect to the increment of inputs will be obtained by inserting Equation (13) 249 

into the original objective function shown in Equation (11) and neglecting the constant term: 250 

 0 0

1
,

2
T TJ x u U H U U g     

(14) 

   2
TU X UXH C S Q C S R S     ,     2

Tx u x u
refg C S Q C S Y      

. .s t  

      ,?min min minU max U U U U U X       

      ,?max max maxU min U U U U U X       

where the Hessian matrix  H is symmetric and positive or semi-positive definite and g is the gradient vector. , ? ?Q R S and refY  251 

should be reformulated according to the prediction horizon length N based on ,? ?Q R S and refY . The updated constraints of the 252 

increment of the control can be found by the reformulation of Equation (12) and the constraints shown in Equation (11). For 253 

example, the constraints of the states can be applied to U as  maxU X  by Equation (12). Since the optimal result is the small 254 

variation U , the real optimal  U  can be obtained by adding the initial input 0 U .The first element of the optimal solution will be 255 

applied to the real system.  256 

This linear MPC is implemented into MATLAB/SIMULINK and LabVIEW for simulation and experiment, respectively. The 257 

detailed structure of the MPC in the Control & Simulation Loop in LABVIEW is depicted in Fig. 8. First, the thermodynamic 258 

properties, such as density, enthalpy, and entropy, of the refrigerant under the current working conditions are obtained online by 259 

feeding the fresh measurements into lookup tables followed by parameter and state identification, where some unknown 260 

parameters and states are identified online. Then, all the known information is sent to the MPC algorithm, whose output is a 261 

quadratic problem (QP), shown in Equation (14). A QP open source solver [54], which is originally written in C, is also integrated 262 

into the Control & Simulation Loop in LABVIEW and solves the QP at each time interval. The outputs will be delivered to the 263 

evaporator and condenser fans as well as the compressor pump via some other NI DAQs control modules to regulate their speeds. 264 
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If the three control inputs are continuously varying in their ranges, the MPC is the continuous one. Due to the discrete constraint of 265 

the compressor speed (i.e. low, medium and high speed), the discrete MPC is designed, where three continuous MPC are employed 266 

and solved simultaneously at each time interval. Each of these works at one compressor speed to find the optimum solutions for the 267 

other two inputs and the cost values. Then, the three cost values are compared to determine the minimum value, and their three 268 

corresponding inputs are used as the optimal solutions.  269 

 

Fig. 8 Discrete MPC structure in LabVIEW 

VI. CONTROLLER TUNING AND PERFORMANCE COMPARISON 270 

In this section, the controller’s performance is compared in terms of both controlled temperature performance and energy 271 

consumption. To study the A/C-R energy consumption at different ambient temperatures, the condenser is connected to an 272 

environmental chamber whose temperature is controlled. Three different ambient temperatures 20 ;25 ;30C C C   are chosen for the 273 

experiments. The cargo used in the experiments is a 
32m  wooden chamber shown in Fig. 4. There are 15 thermocouples to 274 

measure the temperature at different locations. For the experiments, an average temperature of 7 thermocouples closer to the air 275 

inlet of the condenser was used as the controlled temperature. The hysteresis band is an important parameter in the on/off 276 

controller, which should be determined before running the simulation. It decides the temperature oscillation and switching 277 

frequency of the whole cycle and subsequently, the wear condition of the compressor. Therefore, for the sake of a trade-off 278 

between the two aspects, 1 C is chosen as the band by the preliminary experiment study. Under different ambient temperature 279 

conditions, the A/C-R system runs at maximum capacity until the chamber temperature stabilizes. Three different temperatures 280 

16 ;17 ;18C C C   are chosen as the temperature set points of the air inside the cargo.  Furthermore, the on/off threshold should be 281 
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determined before testing the on/off controller. If the threshold is too large, the temperature variation amplitude is too large. 282 

Otherwise, the system will be switched on and off too frequently. After these two aspects are taken into account and some 283 

preliminary tests are performed, a 1 C  threshold is chosen. Table 1 shows the operating conditions and system constraints for 284 

both experiment and simulation.  285 

Table 1 Operating conditions and constraints of inputs and states 286 

 ambT C   arg _c o initT C   intsetpoT C   doorQ kW   evapN Hz   condN Hz   compN rpm
 

 cP bar   eP bar  

25  22.5  16  0.15   0 ~ 40   0 ~ 40  

2500

3500

4500

 
 
 
  

 
 0 ~17   0.7 ~ 7  

A. On/off Controller 287 

For the controller performance analysis, several experiments in different scenarios are performed. In order to demonstrate the 288 

performance of the controller, the test results under the operating condition mentioned in Table 1 are provided.  289 

  
Fig. 9 Temperature performance of on/off controller Fig. 10 System inputs of on/off controller 

During the tests, an external disturbance of approximately 23% of the original heating load (the 200-second disturbed region shown 290 

in Fig. 9) was applied to the chamber to simulate the disturbance caused by an opening door.  291 

B. Discrete MPC  292 

In this section, the controller parameters are briefly discussed and chosen. As the sample time sT decreases, the ability to reject 293 

disturbance improves, but the computational effort increases dramatically to guarantee the real-time application. Thus, the best 294 

choice is a trade-off between robustness and computational effort based on the dynamics of the system [33] [55]. The prediction 295 

horizon is related to the size of the quadratic optimization problem (the computational effort) and the accuracy of the prediction. A 296 

larger value leads to a better suboptimal solution with much more computational effort and increases the prediction’s uncertainties. 297 

During the tuning process, N  starts with a small value until further increase cannot bring obvious impact on the controller’s 298 

performance. From Table 1, the scale factors of the three inputs and the output can be set as 2000, 40, 40 and 10, respectively. In 299 

order to ensure the value of each term in the objective function in the same scale, a larger Q  is chosen. For the weight matrix R of 300 
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the control effort, a larger weight is selected for the compressor speed—the most energy-consuming component; whereas, the 301 

remaining values are zeros. Usually, the larger input rate weights of S lead to more conservative control moves and produce a more 302 

robust performance [55]. By properly choosing a terminal weight from the Riccati equation, a finite-horizon MPC equivalent to an 303 

infinite-horizon linear quadratic regulator can be designed to achieve the close-loop stability of the plant [56][57]. If the 304 

applications involve constraints, it is difficult to find such a time-varying terminal weight, and it usually needs a terminal constraint 305 

to force the plant states into a defined region at the end of horizon [55]. However, as per the tuning guideline suggested in [43], a 306 

sufficiently large value of the terminal weight can lead to a better closed-loop performance in most cases. The controller’s 307 

parameters are presented in Table 2. 308 

Table 2 MPC parameter  309 

 sT s  N  Q  R  S  P  

5  10  100000  

5 0 0

0 0 0

0 0 0

 
 
 
  

 

0 0 0

0 1000 0

0 0 1000

 
 
 
  

 1000Q  

Fig. 11 to Fig. 12 shows that the discrete MPC performs better than the on/off controller. For instance, the MPC controller can 310 

keep the temperature of the cargo in a smaller range, compared to ±1℃ of the on/off controller. With the external disturbances up 311 

to 23% of the original heating load, the controller will optimally increase the cold air flow rate to balance the extra heating using the 312 

evaporator fan to maintain the closed-loop dynamics.  313 

  
Fig. 11 Temperature performance of discrete MPC Fig. 12 System inputs of discrete MPC 

As seen thus far, the MPC has better control performance than the conventional on/off controller because it is able to keep the 314 

temperature around its set point with smaller oscillations. In addition, energy consumption serves as the most crucial criterion to 315 

show the advantages of the MPC controller. In Table 3, the energy consumption in the 1200s under the same conditions for each 316 

controller is given. As expected, the discrete MPC consumes less energy than the on/off controller under the examined scenario. 317 

Table 3 Energy consumption of two controllers 318 

 Energy consumption for 1200s (Kwh) Improvement 

On/off 0.2063 basis 

Discrete MPC 0.1902 7.8% 
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As mentioned above, a large disturbance is added to the plant and the results show good performance of the proposed controller. As 319 

a common phenomenon of the A/C-R system, the frosting problem always exists [58]. When frost appears, it can cause model 320 

inaccuracies. For example, the refrigerant mass flow rate through the valve will decrease when the system is frosting, and 321 

accordingly, so do many other parameters such as pressures, temperature and superheat. In order to further demonstrate the 322 

robustness of the developed controller, the experimental results during the thermostatic expansion valve (TXV) frosting under two 323 

cases are presented.  Fig. 13and Fig. 14 show the TXV with and without frost.  324 

  
Fig. 13 TXV without frost Fig. 14 TXV with frost 

In the first scenario, the ambient temperature is 25 C  and the temperature set point is18 C ; whereas, the ambient temperature is 325 

set at 30 C with 16 C set point in the second scenario. The temperature responses and system inputs are demonstrated in Fig. 15 to 326 

Fig. 18, respectively. It can be seen from the figures that the closed-loop performance of this proposed MPC is still satisfactory 327 

under both large external disturbances and frosting conditions.  328 

  

Fig. 15 Temperature performance of discrete MPC under first scenario Fig. 16 System inputs of discrete MPC under first scenario 
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Fig. 17 Temperature performance of discrete MPC under second scenario Fig. 18 System inputs of discrete MPC under second scenario 

VII. CASE STUDY 329 

In this last section, the controller’s performance and energy-saving benefits are studied under one fixed heating load condition, so 330 

in this section, the performance of both controllers are simulated under a time-varying heating load condition. Table 4 shows the 331 

energy consumptions of the on/off controller and the discrete MPC under different heating loads. It can be seen that under higher 332 

heating load (above 0.5 kW) conditions, the discrete MPC consumes less energy than the on/off controller while for lower heating 333 

loads, the on/off controller is more efficient. Thus, it cannot be concluded that the discrete MPC is better than the on/off controller, 334 

rather than the discrete MPC could alleviate temperature fluctuations. That is why the other controllers appear in the following 335 

sections. 336 

Table 4 Energy consumptions under different heating load conditions 337 

Heating load (kW) 
Energy consumption for 1200s (Kwh) 

On/off Discrete MPC 

0.8 0.2311 0.2119 

0.7 0.2162 0.1955 

0.6 0.1895 0.1789 

0.5 0.1671 0.1657 

0.4 0.1451 0.1624 

0.3 0.1179 0.1523 

0.2 0.0925 0.1343 

A. Hybrid controllers 338 

By studying the energy consumptions under different heating load scenarios in Table 4, a direct hybrid controller could be 339 

intuitively designed by combining the discrete MPC and the on/off controller along with an identifier that could estimate the 340 

current heating load. The criterion for activating the discrete MPC is when the heating load is higher than 0.5 kW, and the on/off 341 

controller is activated in all other scenarios. Based on the experimental and simulated data, it is known that the cooling capacity 342 

produced by the system using the minimum compressor speed can balance the heating load under 0.5kW. In addition, the 343 

compressor is the most energy-consuming component in A/C-R system. As a result, the minimum compressor speed and maximum 344 

evaporator and condenser fan speeds are used in this on/off controller. 345 

Even with these parameters, during a low heating load period, the on/off controller will switch the system frequently. In order to 346 
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alleviate the effects of this phenomenon, an adaptive hybrid controller is given. The main idea is that the system starts working by 347 

using the discrete MPC until the controlled temperature settles down at its set point. Then, the MPC is still used as long as the 348 

current heating load is over 0.5 kW.  Otherwise, the on/off controller will be used. In addition, the speed of the evaporator fan will 349 

be updated by: 350 

 intevap evap mpc evap evap cham setpoN N k T T      15  

where, evap mpcN  , is the speed found by the discrete MPC at the switching point; evapk , is a proportional coefficient and related to 351 

the switching frequency of the system when using on/off controller. When evapk  is zero, this hybrid controller will be the discrete 352 

MPC. Otherwise, when it is high enough, it will become the direct hybrid controller. 353 

B. Continuous MPC  354 

In some recent applications of the A/C-R system, the continuous variable components instead of components with several different 355 

speeds are employed. In order to study the potential of the MPC in these cases, a continuous MPC is designed based on the same 356 

model and procedures shown above. In this controller, the input of the compressor speed can continuously change from zero to its 357 

maximum speed [59].  358 

C. Controllers Comparison 359 

In order to compare the controllers discussed above, a heating load cycle shown in Fig. 19 is applied to the system for the 360 

simulations. This cycle is used to represent the heating load during a day in 1200 seconds. As is well-known, the temperature at 361 

noon is higher than that in the morning and evening; as such, the heating load applied to the chamber reflects daily temperature 362 

variances. Although the heating load changes in a much lower frequency in the real situation, this cycle could also examine the 363 

robustness of the controllers.  364 

 

Fig. 19 A heating load pattern 

Fig. 20 shows the system inputs of the on/off controller. The system stays on for a longer period of time under the large heating load 365 

condition and vice versa. The controlled temperature behavior and total energy consumption are provided in Fig. 21. The energy 366 

consumption will be also used as a basis of comparison for the following controllers.  367 

javascript:void(0);
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Fig. 20 System inputs of on/off controller Fig. 21 Temperature performance and energy consumption 

The system inputs, temperature behavior and energy consumption for the discrete MPC are provided by Fig. 22 and Fig. 23.  368 

  

Fig. 22 System inputs of discrete MPC Fig. 23 Temperature performance and energy consumption 

The results of the direct hybrid controller are shown in Fig. 24 and Fig. 25. It can be seen that the on/off controller and the discrete 369 

MPC are alternated when the heating load is 0.5 kW. 370 

  

Fig. 24 System inputs of direct hybrid controller Fig. 25 Temperature performance and energy consumption 

By choosing 1 as the value of evapk  , the results of the adaptive hybrid controller are given in Fig. 26 and Fig. 27. These figures 371 

show that in comparison to the direct hybrid controller, the lower activation frequency of the system is obtained at the expense of 372 

energy consumption. As a result, a trade-off performance between energy consumption and switching frequency of the system can 373 

be obtained by using the desired value of evapk . 374 
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Fig. 26 System inputs of adaptive hybrid controller Fig. 27 Temperature performance and energy consumption 

The controlled temperature performance and energy consumption of the continuous MPC are demonstrated as follows. In Fig. 28, 375 

the compressor speed can be manipulated freely according to the changing heating load instead of alternating between several 376 

discrete values.  377 

  

Fig. 28 System inputs of continuous MPC Fig. 29 Temperature performance and energy consumption 

All the above simulations are done under the same working conditions as given in Table 1 but with the new heating load cycle 378 

shown in Fig. 19. The total energy consumption and improvements of the proposed controllers with respect to the conventional 379 

on/off controller are listed in Table 5. 380 

Table 5 Energy consumptions of different controllers 381 

Controllers Energy consumption 1200s (Kwh) Improvement (%) 

On/off 0.1675 Basis 

Discrete MPC 0.1670 0.24 

Direct hybrid  0.1420 15.17 

Adaptive hybrid 0.1602 4.30 

Continuous MPC 0.1286 23.18 

VIII. DISCUSSION AND CONCLUSIONS 382 

The goal of this study was to develop an advanced controller for automotive A/C-R systems, which can not only save energy but 383 

also enhance performance.  384 

In this study, a control-based model was proposed and validated by an experimental A/C-R system used in trucks. Then, an 385 

on/off controller was designed as a benchmark to demonstrate the improvement of other controllers. Due to the existence of the 386 

discrete input of the experimental system, a discrete MPC was designed. The experimental results showed that the model used for 387 
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controller development is accurate and the discrete MPC not only consumes less energy but also has better temperature behavior 388 

than the on/off controller under the examined condition. The robustness of the proposed MPC was also evaluated with the 389 

appearance of large external disturbances and the conditions of the plant frosting period. All the test results showed that the MPC is 390 

robust. Then, the controller was tested under the time-varying heating load condition. The results also indicated that the discrete 391 

MPC uses less energy only under higher heating load conditions. That is why the two hybrid controllers were studied and 392 

developed. The direct hybrid combines the energy-saving advantage of the discrete MPC and the on/off controller under all 393 

conditions; whereas, the adaptive hybrid controller can reach a balance between energy consumption and component wear. These 394 

hybrid controllers are two promising options for the A/C-R systems with discrete inputs according to the requirements. The 395 

continuous MPC was also examined, which is the optimal controller for the A/C-R systems with continuously varying components 396 

because it can save up to 23% energy with a satisfactory performance.   397 

In addition, the simulation and experimental analysis demonstrated that the proposed MPCs can be used in real time, and it can 398 

also achieve the goals of saving energy and improving performance. Therefore, the developing process and modeling method of the 399 

MPC can be applied to other complex plants. Future studies will focus on integrating the power consumption model of the whole 400 

system into the objective function instead of only control efforts, designing a fully controllable experimental system to test the 401 

proposed continuous MPC controller, and implementing the controller into a real vehicle to test its performance in practice. 402 

ACKNOWLEDGEMENTS 403 

The authors would like to acknowledge the financial support of Automotive Partnership Canada (APC) and the financial and 404 

technical support of Cool-it Group. 405 

REFERENCES 406 

[1] M. Sorrentino, G. Rizzo, and L. Sorrentino, "A study aimed at assessing the potential impact of vehicle electrification on grid infrastructure and road-traffic 407 

greenhouse emissions," Applied Energy, vol. 120, pp. 31–40, May 2014.  408 

[2] H. Wang, Y. Huang, A. Khajepour, and Q. Song, "Model predictive control-based energy management strategy for a series hybrid electric tracked vehicle," 409 

Applied Energy, vol. 182, pp. 105–114, Nov. 2016. 410 

[3] K. J. Chua, S. K. Chou, W. M. Yang, and J. Yan, "Achieving better energy-efficient air conditioning–A review of technologies and strategies," Applied 411 

Energy, vol. 104, pp. 87–104, Apr. 2013.  412 

[4] H. Khayyam, J. Abawajy, and R. N. Jazar, "Intelligent energy management control of vehicle air conditioning system coupled with engine," Applied Thermal 413 

Engineering, vol. 48, pp. 211–224, Dec. 2012.  414 

[5] M. S. Oh, J. H. Ahn, D. W. Kim, D. S. Jang, and Y. Kim, "Thermal comfort and energy saving in a vehicle compartment using a localized air-conditioning 415 

system," Applied Energy, vol. 133, pp. 14–21, Nov. 2014. 416 

[6] Y. Huang, A. Khajepour, and H. Wang, "A predictive power management controller for service vehicle anti-idling systems without a priori information," 417 

Applied Energy, vol. 182, pp. 548–557, Nov. 2016. 418 



 22 

[7] X. Hu, L. Johannesson, N. Murgovski, and B. Egardt, "Longevity-conscious dimensioning and power management of the hybrid energy storage system in a 419 

fuel cell hybrid electric bus," Applied Energy, vol. 137, pp. 913–924, Jan. 2015. 420 

[8] F. Sun, X. Hu, Y. Zou, and S. Li, "Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles," Energy, 421 

vol. 36, no. 5, pp. 3531–3540, May 2011. 422 

[9] X. Hu, S. E. Li, Z. Jia, and B. Egardt, "Enhanced sample entropy-based health management of Li-ion battery for electrified vehicles," Energy, vol. 64, pp. 423 

953–960, Jan. 2014. 424 

[10] H. Budde-Meiwes et al., "A review of current automotive battery technology and future prospects," Proceedings of the Institution of Mechanical Engineers, 425 

Part D: Journal of Automobile Engineering, vol. 227, no. 5, pp. 761–776, Apr. 2013. 426 

[11] Y. Huang, A. Khajepour, F. Bagheri, and M. Bahrami, "Modelling and optimal energy-saving control of automotive air-conditioning and refrigeration 427 

systems," Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, Mar. 2016.  428 

[12] A. Leva, L. Piroddi, M. Di Felice, A. Boer, and R. Paganini, "Adaptive relay-based control of household freezers with on–off actuators," Control Engineering 429 

Practice, vol. 18, no. 1, pp. 94–102, Jan. 2010.  430 

[13] B. Li, R. Otten, V. Chandan, W. F. Mohs, J. Berge, and A. G. Alleyne, "Optimal on–off control of refrigerated transport systems," Control Engineering 431 

Practice, vol. 18, no. 12, pp. 1406–1417, Dec. 2010.  432 

[14] J. Liu, H. Zhou and X. Zhou, "Automotive air conditioning control- A survey," International Conference on Electronic & Mechanical Engineering and 433 

Information Technology, EMEIT 2011, Harbin, Heilongjiang, China, 2011. 434 

[15] G. Høgh and R. Nielsen, "Model Based Nonlinear Control of Refrigeration Systems," M.S. Thesis, Section for Automation and Control, Aalborg University, 435 

DK - 9100 Aalborg, Denmark, 2008. 436 

[16] A. Afram and F. Janabi-Sharifi, "Theory and applications of HVAC control systems – A review of model predictive control (MPC)," Building and 437 

Environment, vol. 72, pp. 343–355, Feb. 2014.  438 

[17] Petersen, A. and Lund, P., "Modeling and Control of Refrigeration Systems," M.S. Thesis, Institute of Electronic systems, Aalborg University, DK - 9100 439 

Aalborg, Denmark, 2004. 440 

[18] N. Li, L. Xia, D. Shiming, X. Xu, and M.-Y. Chan, "Dynamic modeling and control of a direct expansion air conditioning system using artificial neural 441 

network," Applied Energy, vol. 91, no. 1, pp. 290–300, Mar. 2012.  442 

[19] M. Mohanraj, S. Jayaraj, and C. Muraleedharan, "Applications of artificial neural networks for refrigeration, air-conditioning and heat pump systems—A 443 

review," Renewable and Sustainable Energy Reviews, vol. 16, no. 2, pp. 1340–1358, Feb. 2012.  444 

[20] Koo, B., Yoo, Y. and Won, S., (2012), October. Super-twisting algorithm-based sliding mode controller for a refrigeration system. In Control, Automation 445 

and Systems (ICCAS), 2012 12th International Conference on (pp. 34-38). IEEE. 446 

[21] Shah, R., Alleyne, A.G., Bullard, C.W., Rasmussen, B.P. and Hrnjak, P.S., (2003). Dynamic modeling and control of single and multi-evaporator subcritical 447 

vapor compression systems. Air Conditioning and Refrigeration Center. College of Engineering. University of Illinois at Urbana-Champaign. 448 

[22] Rasmussen, B.P. and Alleyne, A.G., (2006). Dynamic modeling and advanced control of air conditioning and refrigeration systems. Air Conditioning and 449 

Refrigeration Center. College of Engineering. University of Illinois at Urbana-Champaign. 450 

[23] He XD. Dynamic Modeling and Multivariable control of Vapor Compression Cycles in Air Conditioning Systems. PhD thesis, Massachusetts Institute of 451 

Technology, USA, 1996. 452 

[24] X.-D. He, S. Liu, H. Asada, and H. Itoh, "Multivariable control of vapor compression systems," HVAC&R Research, vol. 4, no. 3, pp. 205–230, Jul. 1998. 453 

[25] Larsen, L.F.S., (2006). Model based control of refrigeration systems. PhD thesis Department of Control Engineering, Aalborg University, DK - 9100 Aalborg, 454 

Denmark. 455 



 23 

[26] J. M. Sousa, R. Babuška, and H. B. Verbruggen, "Fuzzy predictive control applied to an air-conditioning system," Control Engineering Practice, vol. 5, no. 456 

10, pp. 1395–1406, Oct. 1997.  457 

[27] M. HE, W. CAI, and S. LI, "Multiple fuzzy model-based temperature predictive control for HVAC systems," Information Sciences, vol. 169, no. 1-2, pp. 155–458 

174, Jan. 2005.  459 

[28] Razi, M., Farrokhi, M. and Saeidi, M.H., (2006). April. Neuro-predictive control for automotive air conditioning system. In Engineering of Intelligent 460 

Systems, IEEE International Conference on (pp. 1-6). IEEE. 461 

[29] Elliott, M.S. and Rasmussen, B.P., (2008). Model-based predictive control of a multi-evaporator vapor compression cooling cycle. In American Control 462 

Conference, (pp. 1463-1468). IEEE. 463 

[30] G. Huang and A. L. Dexter, "Realization of robust nonlinear model predictive control by offline optimisation," Journal of Process Control, vol. 18, no. 5, pp. 464 

431–438, Jun. 2008.  465 

[31] Jain, N. and Alleyne, A.G., (2011). June. Thermodynamics-based optimization and control of vapor-compression cycle operation: optimization criteria. In 466 

American Control Conference (ACC), 2011 (pp. 1352-1357). IEEE. 467 

[32] Ma, J., Qin, J., Salsbury, T. and Xu, P., (2012). Demand reduction in building energy systems based on economic model predictive control. Chemical 468 

Engineering Science, 67(1), pp.92-100. 469 

[33] Gustavsson, A., (2012). Dynamic modeling and Model Predictive Control of a vapor compression system. PhD thesis, Department of Electrical Engineering, 470 

Automatic Control. Linköping University, The Institute of Technology, Linköping University, 471 

[34] Hovgard, T.G., Larsen, L.F., Bagterp, J. and Boyd, J.S., (2012). Fast nonconvex model predictive control for commercial refrigeration. 472 

https://stanford.edu/~boyd/papers/pdf/noncvx_mpc_refr_nmpc.pdf.  473 

[35] Yudong, F. Borrelli, B. Hencey, B. Coffey, S. Bengea, and P. Haves, "Model predictive control for the operation of building cooling systems," IEEE 474 

Transactions on Control Systems Technology, vol. 20, no. 3, pp. 796–803, May 2012.  475 

[36] F. Blanchin and W. Ukovich, "Linear programming approach to the control of discrete-time periodic systems with uncertain inputs," Journal of Optimization 476 

Theory and Applications, vol. 78, no. 3, pp. 523–539, Sep. 1993.  477 

[37] A. Aswani, N. Master, J. Taneja, D. Culler, and C. Tomlin, "Reducing transient and steady state electricity consumption in HVAC using learning-based 478 

model-predictive control," Proceedings of the IEEE, vol. 100, no. 1, pp. 240–253, Jan. 2012.  479 

[38] M. S. Elliott and B. P. Rasmussen, "Decentralized model predictive control of a multi-evaporator air conditioning system," Control Engineering Practice, vol. 480 

21, no. 12, pp. 1665–1677, Dec. 2013.  481 

[39] K. K. Sørensen, J. Stoustrup, and T. Bak, "Adaptive MPC for a reefer container," Control Engineering Practice, vol. 44, pp. 55–64, Nov. 2015. 482 

[40] D. Sarabia, F. Capraro, L. F. S. Larsen, and C. de Prada, "Hybrid NMPC of supermarket display cases," Control Engineering Practice, vol. 17, no. 4, pp. 428–483 

441, Apr. 2009.  484 

[41] C. Sonntag, (2009). Control of a supermarket refrigeration system, HYCON WP4b/WP2, Department of Biochemical and Chemical Engineering Process 485 

Dynamics and Operations Group (DYN) , HYCON Workshop Brussels.  486 

[42] Patel, T., Shah, J. and Satria, M., (2013). Dynamic Modeling, Optimal Control Design and Comparison between various control schemes of Home 487 

Refrigerator. 488 

[43] L. Fagiano and A. R. Teel, "Generalized terminal state constraint for model predictive control," Automatica, vol. 49, no. 9, pp. 2622–2631, Sep. 2013.  489 

[44] Fagiano, L. and Teel, A.R., (2013). On generalized terminal state constraints for model predictive control, http://arxiv.org/abs/1207.0788v2. 490 

[45] B. P. Rasmussen and A. G. Alleyne, "Control-oriented modeling of Transcritical vapor compression systems," Journal of Dynamic Systems, Measurement, 491 

and Control, vol. 126, no. 1, p. 54, 2004.  492 

https://stanford.edu/~boyd/papers/pdf/noncvx_mpc_refr_nmpc.pdf
http://arxiv.org/abs/1207.0788v2


 24 

[46] Eldredge, B.D. and Alleyne, A.G., (2006). Improving the Accuracy and Scope of Control-Oriented Vapor Compression Cycle System Models. Air 493 

Conditioning and Refrigeration Center. College of Engineering. University of Illinois at Urbana-Champaign. 494 

[47] D. Zhao and G. Tan, "Numerical analysis of a shell-and-tube latent heat storage unit with fins for air-conditioning application," Applied Energy, vol. 138, pp. 495 

381–392, Jan. 2015.  496 

[48] T. L. McKinley and A. G. Alleyne, "An advanced nonlinear switched heat exchanger model for vapor compression cycles using the moving-boundary 497 

method," International Journal of Refrigeration, vol. 31, no. 7, pp. 1253–1264, Nov. 2008.  498 

[49] Li, B. (2009). Dynamic modeling and control of vapor compression cycle systems with shut-down and start-up operations. MASc thesis, Air Conditioning and 499 

Refrigeration Center, College of Engineering, University of Illinois at Urbana-Champaign. 500 

[50] L. Serrao, S. Onori, and G. Rizzoni, "A comparative analysis of energy management strategies for hybrid electric vehicles," Journal of Dynamic Systems, 501 

Measurement, and Control, vol. 133, no. 3, p. 031012, 2011.  502 

[51] L. Grüne and J. Pannek, Nonlinear Model Predictive Control-Theory and algorithms. © Springer-Verlag London Limited, 2011. 503 

[52] Y. Huang, “Anti-Idling Systems for Service Vehicles with A/C-R Units: Modeling, Holistic Control, and Experiments”, Ph.D. Thesis, Mechanical and 504 

Mechatronics Department, University of Waterloo, ON. Canada, 2016. 505 

[53] Borrelli F., Bemporad A. and Morari M. (2014). Predictive Control for linear and hybrid systems. 506 

control.ee.ethz.ch/~stdavid/BBMbook_Cambridge_newstyle.pdf.  507 

[54] H. J. Ferreau, C. Kirches, A. Potschka, H. G. Bock, and M. Diehl, "QpOASES: A parametric active-set algorithm for quadratic programming," Mathematical 508 

Programming Computation, vol. 6, no. 4, pp. 327–363, Apr. 2014.  509 

[55] Bemporad, A., Morari, M. and Ricker, N.L., (2010). Model Predictive Control Toolbox 3 User's Guide. The mathworks. 510 

[56] P. O. M. Scokaert and J. B. Rawlings, "Constrained linear quadratic regulation," IEEE Transactions on Automatic Control, vol. 43, no. 8, pp. 1163–1169, 511 

1998.  512 

[57] Jain, N., Burns, D.J., Di Cairano, S., Laughman, C.R. and Bortoff, S.A., (2014). Model Predictive Control of Variable Refrigerant Flow Systems. The 513 

International Refrigeration and Air Conditioning Conference. 514 

[58] C. Tian, X. Li, and X. Yang, "Numerical analysis of evaporator frosting in automotive air-conditioning system with a variable-displacement compressor," 515 

Applied Energy, vol. 82, no. 1, pp. 1–22, Sep. 2005. 516 

[59] Y. Huang, A. Khajepour, M. Khazraee, M. Bahrami, "A Comparative Study of the Energy-saving Controllers for Automotive Air-conditioning/Refrigeration 517 

Systems," Journal of Dynamic Systems, Measurement, and Control. 2016. 518 


