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Abstract

We explore the possibility of automating NP-hardness reductions. We motivate the
problem from an artificial intelligence perspective, then propose the use of second-order
existential (SO3) logic as representation language for decision problems. Building upon
the theoretical framework of J. Antonio Medina, we explore the possibility of imple-
menting seven syntactic operators. Each operator transforms SO3 sentences in a way
that preserves NP-completeness. We subsequently propose a program which imple-
ments these operators.

We discuss a number of theoretical and practical barriers to this task. We prove that
determining whether two SOd3 sentences are equivalent is as hard as GRAPH ISOMOR-
PHISM, and prove that determining whether an arbitrary SO3 sentence represents an
NP-complete problem is undecidable.

Keywords: descriptive complexity, mathematical discovery, second-order existen-
tial logic, theorem proving.
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Chapter 1

Introduction and Motivation

The goal of this research is to investigate the possibility of automating NP-hardness re-
ductions. The Holy Grail of this research area would be the development of a computer
program that would take a suitably-encoded decision problem as input, and produce as
output either a reduction that proved the problem NP-hard, or proof that the problem
was not NP-hard. Unfortunately, this Grail is unattainable: it is undecidable to distin-
guish problems in NP from those that are NP-complete, and thus it is undecidable to
determine whether an arbitrary problem is NP-hard.

Even though we have no hope of developing a program that recognises NP-hard
decision problems in the general case, we can hope for useful programs that help us
automate some NP-hardness reductions. For example, we could hope for a program
that could distinguish NP-hard decision problems from problems that are not for some
restricted classes of inputs. Alternatively, we could hope for a program that would be
able to prove reductions for some inputs, but which would never be able to disprove a
problem’s NP-hardness. Even such limited programs might be useful in the real world.

In the next two sections we will further motivate our research goals, both as a prob-
lem of practical significance and as an interesting testbed for artificial intelligence re-
search.

1.1 NP-hardness reductions as a practical goal

The theory of NP-completeness saturates every area of computer science. As anecdotal
evidence supporting this claim, consider the Citeseer database of computer science pub-
lications online, available at http://citeseer.nj.nec.com This well-known database
contains many computer science publication posted to the World Wide Web. As of De-
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cember 2, 2003, the most frequently cited reference in the Citeseer database was Garey
and Johnson's classic textbook, Computers and Intractability: A Guide to the Theory of NP-
completeness [23], with 3327 citations — a good 395 more than the second-most cited pub-
lication, the two editions of Introduction to Algorithms [14] [8]. The idea that a computer
science book is so widely cited almost twenty-five years after its publication is a tes-
tament to both the quality of the textbook and the continued relevance of its subject
matter.

Time and time again algorithm designers run into real-world problems for which
they can think of no polynomial time solution. True to the spirit of Garey and Johnson,
an algorithm designer’s next step is to don a computational complexitist’s hat and prove
the problem NP-complete, by showing the following two things:

1. the algorithm designer must show that the problem is in NP, which is usually
trivial (but not always — see for example problems [LO13], [LO15] in the appendix
of Garey and Johnson).

2. The algorithm designer must show that the problem is NP-hard, usually by reduc-
ing it to some other NP-complete problem. This takes time, skill and imagination.

Since computer scientists run into so many NP-complete problems, and since prov-
ing NP-hardness manually is nontrivial, the existence of a computer program that could
effectively automate NP-hardness reductions might save algorithm designers time and
employers money. Such a program could also take the challenge out of reductions and
throw NP-completeness experts out of work, but those would just be side benefits.

1.2 NP-hardness reductions as an artificial intelligence testbed

As mentioned earlier, NP-hardness reductions take skill, time and imagination to prove.
These are the very properties that make NP-hardness reductions interesting from an ar-
tificial intelligence standpoint. In Al research, we are interested in programming com-
puters to perform “intelligent” tasks, where “intelligent” seems to be defined as “things
people can do but which we suspect computers cannot.” Given this definition, the prob-
lem of automating NP-hardness reductions might interest Al researchers for the follow-
ing reasons:

People carry out NP-hardness reductions: We would like to choose Al tasks that can
be carried out by people. That way we can hope that the tasks are not so intractable
that we have no chance of making progress on them.
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NP-hardness reductions are not trivial for people: This is a somewhat subtle point, but
it is vitally important. It is hard to believe now, but once upon a time Al re-
searchers thought that natural language processing and computer vision were
problems that could easily be solved using computers. We now understand that
such problems are very difficult for computers to solve, and that humans some-
how have language and vision capabilities “hardwired” into their structures.

Given this, we want to be careful about selecting Al research problems that are
too easy for humans to solve. As third-year computer science students worldwide
will testify, NP-hardness reductions are not easy for humans to learn. At the same
time, hundreds of computer scientists around the world are comfortable enough
proving NP-hardness reductions to do so regularly. This suggests that people are
able to learn how to carry out NP-hardness reductions, which offers some hope
(although no guarantees) that we might program computers to carry out these
reductions as well.

A fair amount of training data exists: It is no longer the case that one can write out a
trivial NP-hardness reduction and be guaranteed a publication. However, some
standalone NP-hardness results continue to be published (for example, that games
such as Clickomania are NP-hard [4]) and researchers include hardness reduc-
tions in conjunction with other results. As a result, hardness reductions appear
routinely in the research literature. Hundreds, if not thousands, of published re-
ductions exist.

In machine learning terms, hundreds of examples is not a lot of training data.
However, it is a good start. A more worrying problem is that the data is not in
a form usable to computers without extensive natural language capabilities; pre-
sumably Al researchers (or grad students) would have to convert published re-
sults into a form that a computer could use. Nevertheless, a nontrivial number of
training examples exist in the public domain.

NP-hardness reductions require both logic and creativity: One of the most attractive
characteristics of NP-hardness reductions is that we do not know of cookbook al-
gorithms to solve them. In some sense, the lack of easily-expressed algorithms is
the reason NP-hardness reductions fall under the jurisdiction of artificial intelli-
gence research. At the same time, we know of heuristics that help people carry
out reductions — see, for example, Garey and Johnson [23] and Skeina [51]. The
interesting thing about these heuristics is that people still need to use ingenuity
and insight to apply them. This makes NP-hardness reductions interesting, be-
cause it is not obvious how to translate this creativity into algorithms computers
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can understand, and it is not obvious whether this creativity is necessary in order
to prove reductions.

1.3 One approach to automating NP-hardness reductions

If we accept that automating NP-hardness reductions might be an interesting and prac-
tical problem, then how would we go about writing a program to carry out these reduc-
tions?

There are several ways to approach the problem of proof automation. One sensi-
ble way is to set aside the dream of full proof automation, instead automating some
nontrivial step of the reduction process. One example of such an approach would be a
“widget-generator” [16]. Such a program would assist in translating logical structures
(such as a 3-SAT clause) to some other structure (for example, the “clause widget” graph
used in the reduction to GRAPH 3-COLORABILITY).

Another approach would be to fully automate reductions, but to restrict our theo-
rem prover to classes of problems it would be able to handle easily. For example, our
program might restrict itself to proving reductions from problems easily represented by
graphs to other problems easily represented as graphs.

Our approach was grander and more foolish. Instead of looking for some aspect of
NP-hardness reductions we could realistically hope to automate, we decided to tackle
the generalized problem, looking for a program that might reduce arbitrary problems
to other problems. Implicitly any such approach will inevitably restrict itself both by in-
stance class and by proof technique; some classes of problems will be easier to solve than
others, and any implementation will have to start by encoding some proof strategies be-
fore others. The difference is that we did not think about these issues before designing
our program, and thus did not make explicit decisions to concentrate on tackling easier
problems first.

With the goal of generality in mind, we broke down the task of designing the reduc-
tion prover into three steps: finding a representation language for candidate problems,
implementing reductions in that language, and finding ways to control search in the
“reduction space”.

1.3.1 Represent the problems in some language

In order to carry out reductions, we decided that our program should explicitly rep-
resent problem instances. We then had to choose a representation language for these
instances.
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One naive choice would have been to describe problem instances in English. Garey
and Johnson do this in their textbook. First, they describe the problem instance: the
context of the problem, and constraints that apply to the situation. Next, they state the
question: the condition that will be true or false for any given instance of the problem.
Where appropriate, the authors use mathematical notation to define the problem in-
stance and question precisely. This representation proves to be concise and effective for
humans; people can often understand the problem without needing to be an expert in
the field in which the problem originated. However, it would be foolish to use such a
representation scheme in our program. Simply parsing the problem descriptions would
require sophisticated natural language processing techniques.

Clearly, we do not want to use English to describe problems. However, we want our
representation language to be flexible enough to represent a wide variety of problems,
and we want it to be able to express problem constraints effectively.

We decided that expressing problems as sentences in second-order existential logic [31]
would be appropriate. Second-order existential (or SO3) logic is a generalization of
first order predicate logic that allows us to existentially quantify relations. Although it
is not the only choice we could have made, encoding problem descriptions in SO3 logic
seemed promising for a number of reasons:

Descriptive power: Fagin’s theorem [21] tells us that all problems in NP can be de-
scribed using SOd sentences. Thus, if we know that our input problem is in NP, in
theory we could encode it in our representation language. In practice, of course,
this might not be easy or even feasible, but we can hope to represent a large num-
ber of problems easily.

Familiarity: SO3 logic is an extension of predicate logic, which many people learn in
computer science undergraduate courses. Thus, we can hope that people will be
able to encode their problem descriptions relatively easily.

Theoretical strength: The field of descriptive complexity concerns itself with the com-
putational power of problems encoded as formulas in logic. People have been
working in this field for many years, and have discovered theoretical results that
might make our task easier.

In our case, J. Antonio Medina [42] discovered several reduction systems for SO3
logic. We studied a subset of one of his reduction systems in the hope that it would
solve the problem of automating reduction steps.

As our research progressed, we discovered that SO3 logic had some drawbacks. In
Section[5.2lwe go through these drawbacks in detail. Our two major complaints are that
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SO3 logic is too expressive (in the sense that arbitrary SO3 encodings of problems are
not canonical) and that it is not a convenient language for describing certain problems
(such as those involving arithmetic).

In the end, we chose to use second order predicate logic as our representation scheme
because it was the most developed representation language we could find. This does
not imply that it is the best representation language for our task.

A carefully-constructed alternative representation might have the advantage that it
could facilitate search, much as Epstein’s R-languages facilitated the discovery of graph
theory properties in her mathematical discovery program [19] [20]. The disadvantage is
that it takes a lot of work to develop effective representation schemes.

1.3.2 Find a way to automate steps of the reduction

After choosing a representation language, we need to find ways to automate hardness
reductions for problems encoded in this language. Again descriptive complexity proves
useful: the first third of Medina’s thesis deals with building an infrastructure to carry
out NP-hardness reductions syntactically — given SO representations of two problems,
one can reduce one problem to the other by examining the syntactic structure of the
two problems. These syntactic reductions are presented as rules: say decision problem
Hknown is encoded in SO3 logic as sentence @ppoun- If Prpown has a certain form and
is NP-complete, then you can modify the sentence syntactically to get sentence ®,,.,,
which represents a decision problem I, that is guaranteed to be NP-complete.

We found the possibility of automating NP-hardness reductions via syntactic reduc-
tions exciting, so in this thesis we study seven of Medina’s operators. To our chagrin,
we discovered that these operators do not appear to be that useful; as we explain in
Section[5.2.1] each operator represents a single NP-hardness reduction, and these reduc-
tions do not seem to apply to many problems.

This limitation means that Medina’s syntactic operators are not the magic bullet we
were hoping for. Nonetheless, the framework outlined in Medina’s thesis may still
prove useful in developing operators that have better coverage.

1.3.3 Find a way of controlling search

If we had managed to find a useful representation language and a way to automate
reduction steps using that language, we would already have had a useful program.
People would be able to use such a system as a proof verifier — a tool they could use
to verify that some set of reductions are logically correct. As the theorem proving com-
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munity has shown, even such partial automation is useful: theorem provers such as
Isabelle [46] and HOL [24] depend upon human interaction to guide search. These the-
orem provers can fully automate many proof steps, but still require humans to break
down big proofs into small, managable lemmas.

As young and foolish artificial intelligence researchers, we wanted to go beyond the
state of the art. Given two problems and a reduction scheme, we wanted to design a
program that would apply reductions to the source problem until it reduced to the tar-
get problem. Accomplishing this would require controlling search in “reduction space”
—each reduction the program could perform in a given situation would be a choice, and
the program would have to navigate these choices to find the target problem efficiently.
Clearly, the branching factor in this problem is at least as high as the number of opera-
tors we support, so we are facing the usual combinatorial explosion that cripples search
programs.

As we failed to find a promising reduction scheme in this thesis, we did not attempt
to address this last question at all. However, it is worth mentioning as a component
of the overall research goal — to perform NP-hardness reductions as automatically as
possible.

1.4 The rest of this document

We begin our exploration of this problem by reviewing some concepts from compu-
tational complexity and descriptive complexity in Chapter |2l This review is intended
to be introductory and tailored towards our research problem. In this section we also
describe the operators we attempted to implement in our program.

Chapter 3|describes the proposed design of our program in some detail. We describe
our design decisions, as well as practical and theoretical limitations we discovered in
attempting to implement our design.

We prove that distinguishing SO3 sentences that represent NP-complete problems
from arbitrary SO3 sentences is undecidable in Chapter d This result is not surprising
to those in the descriptive complexity community. However, until recently we had not
been able to find a written proof of this result in the literature, so we wrote out our own.

In Chapter 5 we summarize our limited contributions and offering directions for
future work in this area.



Chapter 2

Background: Descriptive Complexity

Our initial step towards automating NP-hardness reductions is to choose a represen-
tation language for problems in NP. We choose to represent problems as sentences in
second-order existential (SO3) logic. This representation has some promise: it is a com-
plete representation language for problems in NP and descriptive complexitists have
studied it for many years, and based upon the existence of higher-order logic theorem
provers, we presume it is amenable to computer manipulation.

It is important to note that second-order existential logic is not the only possible rep-
resentation language for problems in NP, and we make no claims that it is the most
appropriate representation language for our task. Our motivation for choosing this rep-
resentation language was convenience: SO3 logic was the first representation language
we found, and it offered enough theoretical strength — including a reduction system —
that we hoped we would not need to develop the representation system before putting
it to practical use.

In the next sections, we describe the theoretical background behind SO3 logic, and
its relation to NP-completeness. The first section briefly describes the complexity class
NP, and the relation between NP and SO3 logic. In the second section, we discuss first
order projections —a mechanism for carrying out reductions on SO3 sentences. Finally,
we describe some first-order projections Medina [42] developed in his PhD work. These
projections encode operators in “SOd sentence space”. These are the operators we had
hoped to implement.
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2.1 The class NP and SOd logic

In this section we describe the class NP and its relation to Turing machines. This de-
scription is brief; we assume that the reader has some familiarity with the theory of NP-
completeness and Turing machines. For those wishing to learn more about these topics,
the textbook Computers and Intractibility: A Guide to the Theory of NP-Completeness[23] de-
serves its reputation as the canonical reference in this area. Chapter 7 of Hopcroft and
Ullman [29] describes Turing machines in great detail.

211 Turing machines and NP

A Turing machine is a mathematical model of a computer, independently developed by
Turing [55] and Post [48]. They were first used to prove computability and undecidabil-
ity results; in our context they are used to formally define complexity classes.

Turing machines are formally definable as a 7-tuple of states, alphabet symbols, and
transition functions. In our work, however, we mostly do not worry about these low-
level details. We can treat Turing machines as abstractions of computers that possess
the following properties:

1. A deterministic Turing machine takes strings as input. For a given input string
z, the Turing machine processes = according to its transition functions (i.e. its
“program”, which is hardcoded into the Turing machine). Upon processing x, one
of three things can happen:

(@) The Turing machine halts in a “final state”. In this case the Turing machine
has accepted its input. We think of such a Turing machine as returning T (true)
on input z.

(b) The Turing machine halts, but not in a final state. In this case the Turing
machine has rejected its input. We think of such a Turing machine as returning
1 (false) on input z.

(c) The Turing machine enters an infinite loop and never halts. In this case the
Turing machine has rejected its input. Somewhat incorrectly, we also think
of the Turing machine as returning | on input z, even though the Turing
machine is in no condition to return anything. We can think of such a machine
as computing a partial function over inputs z.

2. Turing machines can be encoded as strings. In this sense, they are data which can
be fed as input to other Turing machines.
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3. A nondeterministic Turing machine is a deterministic Turing machine that takes two
inputs — an input string = and a certificate string y.

The nondeterministic Turing machine can use information from both = and y to
process the input.

The nondeterminism in nondeterministic Turing machines is a result of the certifi-
cate: the “user” of the Turing machine inputs only z.

We say that the nondeterministic Turing machine accepts x if there exists a certifi-
cate y such that the Turing machine halts in a final state when fed = and y. The fact
that we only require the existence of a sufficient certificate gives us some choice;
we don’t need to know how to find y. So long as we can guess an appropriate y
nondeterministically, we can accept z. Conversely, if there is no certificate y such
that the nondeterministic Turing machine halts in a final state when input x and
y, then the Turing machine rejects input .

An equivalent way of looking at this issue is to say that a nondeterministic Turing
machine can make choices during its computation that are not determined by the
contents of z alone. The purpose of the certificate y is simply to record the choices
the Turing machine must make in order to accept x.

4. Turing machines perform their calculations by carrying out sequences of discrete
operations. When measuring the computational power of Turing machines, we
care about the amount of time (measured in Turing machine steps) and auxiliary
space (measured in Turing machine tape squares) the machine needs to carry out
its computations.

We can abstract away the low-level details of resource consumption by assuming
that we can measure the time and space Turing machines use to calculate their
output. In some cases, we only care about the time and space Turing machines
use when fed strings they accept.

The classes NP, P, and NPC

Turing machines accept sets of strings. Conventionally, each Turing machine is associ-
ated with a set of symbols ¥ called an alphabet; all strings the Turing machine processes
are strings of that alphabet. For the most part we will assume that our Turing machines
have alphabets of ¥ = 0, 1, so the strings our Turing machines process are bit strings.

The set of strings accepted by a Turing machine M is called the language accepted by
M (written L(M)). More generally, a language can consist of any set of strings.
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A language class is a set of languages — that is, a set of set of strings. Computational
complexity researchers use language classes to characterise computational power by
considering the language classes accepted by Turing machines given resource restric-
tions. These language classes are called complexity classes.

A decision problem is a function that maps strings to {T, L} . In other words, a de-
cision problem is a language. Note that the idea of a decision problem is more general
than that of a Turing machine; a Turing machine implements some decision problem,
but not all decision problems are implementable using Turing machines.

We are primarily concerned with the classes NP, P, and the class of NP-complete lan-
guages (sometimes referred to as NPC).

These classes all concern themselves with time complexity of Turing machines. Con-
sider a Turing machine M, and the set of strings for which the Turing machine halts.
Then Garey and Johnson [23] pp.26-27] define the time complexity Th(n) of M as follows:

Definition 1 Consider an arbitrary Turing machine M. For each input length n, consider all
inputs x of length n. Each computation takes some number of steps to perform. Consider the
maximum number of computation steps m that M takes to halt on any input x of length n. This
is the time complexity of Turing machine M on inputs of length n. The time complexity
Tr(n) of M is the time complexity of M as a function of n.

Note that this definition is only useful for Turing machines that halt on all inputs.
If there exists an input x of length n, such that a Turing machine M does not halt on
input z, then T (ng) = oo. Other approaches to dealing with the time complexity of
partial functions exist in the literature; for example, see Section 1.3 of Allender, Loui
and Regan’s introduction to computational complexity [2].

This relates the number of steps a Turing machine takes to compute its output to the
length of its input strings. For a Turing machine M, if there is a polynomial p(n) such
that Th(n) < p(n) then we say that M takes polynomial time to compute its outputs, or
less formally that M is a polynomial time Turing machine.

Now we can define NP and P:

Definition 2 Consider the set of polynomial-time nondeterministic Turing machines with
polynomial-length certificates; that is, for each machine in the set, each string accepted by the
machine has a certificate polynomial in the size of the string.

The set of languages these Turing machines accept defines the complexity class NP.

Definition 3 Consider the set of all polynomial-time deterministic Turing machines. The set
of languages these Turing machines accept defines the complexity class P.
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In order to define the class of NP-complete problems, we must first define the con-
cept of NP-hardness. In order to do so, we will first define a decision problem called
SAT (also called SATISFIABILITY), and then compare the difficulty of recognising ar-
bitrary decision problems to the difficulty of recognising SAT. This definition is taken
directly from Garey and Johnson [23, p. 38-9].

Definition 4 Let U = {uy, ..., u,, } be a set of boolean variables. We can define a total function
t: U — {T,L}. This is called a truth assignment.

A literal over U is either a variable or the negation of a variable in U.

A clause over U is a set of literals over U. (Equivalently, a clause is a disjunction of literals
over U.) A clause c is satisfied if any literal in c evaluates to T.

Now we can define the problem instance and question as follows:

INSTANCE: A set U of variables and a collection C' of clauses over U. (Equivalently, C'is a
conjunction of clauses over U.)

QUESTION: Is there a truth assignment to U such that every clause is satisfied?

We can compare the difficulty of recognising decision problems by considering sets
of strings: if we can form a 1-1 correspondence between the strings of the unknown
decision problem and the strings of SAT, then the unknown decision problem is at least
as hard as SAT. We formalize this idea when we discuss reductions, in Section

Definition 5 A decision problem 11 is called NP-hard if it is as hard as SAT in the following
sense: every instance of SAT can be transformed to an instance of problem 11 in time polynomial
in the length of the input such that the decisions made on the two decisions are identical.

Cook [13] proved that SAT is a hard problem, in the sense that any polynomial-
time nondeterministic Turing machine could be transformed in polynomial time to an
instance of SAT. This means that SAT is “as hard as” any problem in NP. Equivalently,
this means that if computer scientists could discover an algorithm to solve arbitrary
instances of SAT in polynomial time, we could use that algorithm to solve any problem
in NP in polynomial time, which would imply that P=NP. The question of whether
P=NP is probably the most famous open problem in computer science. A subsequent
survey paper by Cook [12] describes the P versus NP problem in more detail.

The definition of NP-hardness tells us that any decision problem II that is NP-hard
is at least as hard as SAT. If we could find a polynomial time algorithm to solve problem
II, then we could solve SAT in polynomial time as well, by converting every problem
instance of SAT into a problem instance of II and then solving the instance of II in poly-
nomial time. This would also imply that P=NP.
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Note that problems that are NP-hard need not be in the class NP. Problems that do
not have polynomial-time “guess and check” algorithms can also be used to solve SAT,
which makes them NP-hard. This leads us to our definition of NP-completeness:

Definition 6 Consider the set of all decision problems that are both NP-hard and in NP. This
is the class of NP-complete problems.

Problem instances as strings

Decision problem instances are usually expressed in terms of mathematical structures.
For example, an instance of SAT consists of a set of variables and a set of clauses. Turing
machines do not deal with mathematical structures directly; their job is to recognise
languages of strings.

Fortunately, there is a straightforward correspondence between strings and mathe-
matical structures: any instance of a mathematical structure that can be represented on
a computer can be represented as a bit string, since computers (like Turing machines)
store all of their data as bits. Any set of bit strings makes up a language, and we can
define these languages as valid inputs to our Turing machines. Any input that is not
valid is immediately rejected by the Turing machine in question.

Note that general Turing machines deal with strings that are not necessarily bit
strings (that is, the alphabet size may be greater than two). In our context this is not
a problem because we can re-encode any alphabet in terms of bits.

2.1.2 Descriptive complexity

Having briefly described classical computational complexity theory, we are now in a
position to explore some ideas from descriptive complexity. The theory of descrip-
tive complexity attempts to describe classical computational complexity concepts using
symbolic logic. We describe problem instances as collections of relations called struc-
tures. We then describe decision problems as logical sentences. Just as classical com-
plexity theory describes the difficulty of decision problems in terms of the resources
(time, space, nondeterminism, randomness...) needed to compute the answer to the de-
cision problem on an arbitrary problem instance, descriptive complexity describes the
difficulty of decision problems in terms of the resources (number of variables, degree of
quantification...) needed to write down the logical sentence corresponding to the deci-
sion problem. As it turns out, the relationships between computational resources and
expressive power in logic are close, and descriptive complexitists have mapped many
important computational complexity classes to counterparts in descriptive logic.
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In addition to being possible, mapping classical computational complexity classes to
classes of logic has proven useful. For example, Immerman [30] used descriptive com-
plexity to show that NL, which is the class of languages computable in nondeterministic
logspace, is closed under complementation. According to Immerman’s book [31} p.149]
this closed a problem that had been open for about 25 years.

In our work we are mostly concerned with the tools descriptive complexity offers
as a representation language, and less concerned with using descriptive complexity to
prove complexity results. Nonetheless, describing the theoretical results that relate log-
ical sentences to NP-complete problems is important; it demonstrates that our represen-
tation scheme is sound, so that we can be assured that automated reductions using this
representation scheme are correct.

Most of the material in this section comes from Immerman’s textbook [31] and Med-
ina’s PhD thesis [42]. Another good introduction to descriptive complexity theory is the
section on spectral problems and descriptive complexity from Schoning and Prium’s
textbook [49].

Vocabularies

Decision problems are expressed in terms of problem instances, and then a question
we ask about a problem instance. In descriptive complexity theory, decision problem
descriptions have “templates” known as vocabularies, which name relations used in the
problem. In the next section we will describe structures, which instantiate these tem-
plates.

A vocabulary 7 is defined as a tuple of relation symbols and constant symbols:

T=(R{", ..., R¥ ¢y ) (2.1)

In this notation, a vocabulary contains s relation symbols. Each relation symbol R;
has a fixed arity a;, indicated using superscripts. The arity of a relation symbol is the
tuple size over which the relation is defined; for example, a relation R of arity 3 would
be defined over 3-tuples.

The relation symbols defined in a vocabulary are called input relation symbols . This
distinguishes them from the predefined relations and quantified relations that we will
specify below.

Each constant symbol c; represents one fixed element. Each relation symbol R;" is
mapped to a possibly-empty set of a;-tuples.

Formally, we consider all relation symbols in the vocabulary to be predicate symbols,
not function symbols. Informally, we often write existentially quantified relations as
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if they were function symbols. Fortunately, this is consistent: we can easily replace
an a-ary function symbol R with an (a + 1)-ary predicate symbol R’. Then we can
make appropriate substitutions in our logical sentences. For example, we can make the
following substitutions:

R(x1,...,0) = Tay1 becomes R'(xy,...,Tq,Tays1) (2.2)
R(xq,...;24) <b becomes Fx,y1 (R (1, ..., T, Tar1) A (Tayr1 < D)) (2.3)

Although this is not a complete characterization of necessary substitutions, it should
be clear that such substitutions are possible, and that making such substitutions makes
the lengths of logical formulas grow at most linearly with the number of function sym-
bol occurences.

Predefined symbols

People researching descriptive complexity (and symbolic logic in general) worry a lot
about the expressive power of their logical systems. By allowing or disallowing certain
kinds of relations, we can change the set of decision problems we can express in a logic.

In this work we will fix our symbolic logical system to a form of second-order ex-
istential logic well-known in the descriptive logic community. In particular, this logic
gives us equality, an ordering relation and the ability to construct relations representing
arithmetic [31), Section 1.2].

In practical terms this means that the following constants and relation symbols are
implicitly defined in every vocabulary we consider. In some sense, we get these con-
stants and relations “for free”:

e The numeric relation symbol <. This induces a total ordering on the universe.

The constant symbol 1 which is set to the smallest element of the universe.

The constant symbol n which is set to the greatest element of the universe.

The numeric relation symbol = . This is the equality predicate.

The successor relation succ . It is defined as follows:

suce(z,y) = (x <y) AN(V2)(-(x < z Az <y)) (2.4)

Often we use succ as a function symbol, so succ(i) =i+ 1.
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e The bit predicate BIT . BIT (i, j) is true if and only if bit j in the binary represen-
tation of 7 is 1. The choice of binary representation scheme for universe elements
is not so important, so long as it is “reasonable” and consistent.

The BIT relation allows us to perform arithmetic.

Note that our notation is slightly inconsistent with that given in Immerman’s book.
Immerman’s defines three constants 0,1, maz in place of 1 and n . The book also starts
numbering domain elements at 0, instead of 1. We follow the notation in Medina’s
thesis, not because it is standard (it is almost certainly not, given the existence of Im-
merman’s textbook), but because our work builds directly on Medina’s.

Structures

Structures instantiate the templates provided by vocabularies, mapping sets of tuples to
each relation in the vocabulary, and defining a domain for the problem instance. In this
work, every structure we consider will be associated with some vocabulary.

Given a vocabulary 7, a structure A with vocabulary 7 is a tuple:

A= (A|,RA, ... RA L, e (2.5)
The universe of the structure is given by |A| = {1,...,n} for some value of n > 1.
The number of elements in the universe is indicated by double bars: || A|| = n . This

notation comes in handy when comparing the universe sizes of different structures.

Each constant ¢; is assigned a universe element.

Each relation R{" is associated with a set of tuples R* C |A
is true.

The set of all finite structures over a vocabulary 7 is called ST RUC|r] . In our context,
this corresponds to the set of all possible instances for a problem.

As it turns out, structures of size 1 often cause problems, so people adopt the follow-
ing convention, which we will respect:

% for which the relation

Convention 7 All structures have universe sizes n > 1

An example of the kinds of problems structures of size 1 cause can be seen in Sec-
tion[4.6] When constructing our undecidability proof we jumped through hoops to deal
with structures of size 1, because we were unaware of the above convention.

Together, vocabularies and structures define problem instances. The decision ques-
tion is expressed as a logical sentence. If the sentence is satisfied by a particular struc-
ture, we say that the structure models the sentence. As we shall see, this is equivalent to
saying that a Turing machine (the sentence) accepts its input string (the structure).
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Figure 2.1: A structure A = (| A|, B4, k*) with vocabulary 7crrgue = (E% k) . In this
example, |A| = {1,...,6}, B4 = ((1,3), (1,5), (2,3),(2,4), (3,5),(3,6), (5,6)), kA =3

Structures as problem instances

In our context, a vocabulary corresponds to a problem class and structures define spe-
cific problem instances. That is, the relations and constants in the vocabulary define the
set of mathematical objects over which the problem is defined, and structures define the
particular mathematical objects about which the decision query is being asked.

For example, the decision problem CLIQUE is defined over graphs as follows:

Definition 8 INSTANCE: An undirected graph G = (V, E), a non-negative integer k < |V|
QUESTION: Does G contain a clique of size k; that is, a set V' <V, |V'| = k such that for
eachu,v € V', (u,v) € E?

The vocabulary for this problem is 7crour = (E, k), where E corresponds to an
edge relation and k corresponds to the clique size. A structure of this vocabulary would
define a universe (corresponding to the vertices in a CLIQUE instance), the edge relation
F and the clique size £; that is, it would define a graph and a clique size. We can now
ask whether the graph described by this structure contains a clique of size k. A simple
example of such a structure is given in Figure[2.1.2]

It should be straightforward to see that structures can be mapped to strings: we just
encode the universe and relation instances in some “reasonable” way, and output that
encoding as a bit string.
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Thus, the set of structures of vocabulary 7¢1;gur form a language, and in particular
the set of structures corresponding to satisfied CLIQUE instances forms a language. We
can now try to recognise this language. Of course, since structures correspond to strings
we could use Turing machines as recognisers, but in the descriptive complexity formal-
ism we can recognise structures directly, by disguising Turing machines as sentences in
predicate logic.

How does this work? Given a vocabulary 7, we can write a logical sentence ® us-
ing the relations defined by that vocabulary. For each structure A of vocabulary 7, ®
will either be true or false. Those structures for which @ is true defines a language. If
we constructed ® properly, we could hope to recognise interesting languages, such as
CLIQUE.

In fact, we can write logical sentences that pick out interesting languages, and in
particular we can write sentences that correspond to languages in NP using second-
order existential (SO3) logic.

Preliminary notation

Before introducing SO3 logic, it will be helpful to introduce some conventions and no-
tations to represent first-order formulas, subformulas, and tuples.

Convention 9 The symbols ®, T denote SO sentences.
Convention 10 The symbols ¢, 1 denote first-order formulas or sentences.

Notation 11 Free variables of formulas are indicated using parameter notation. For example,
¢o(x1, T2, x3) indicates that formula ¢ has free variables xy, xo, x5 .

Similarly (but somewhat confusingly) we use parameter notation to refer to “free subformu-
las” in a formula. For example, 3(P(x,y)) means formula (3 contains one or more instances of
P(x,y), and B(¢(k, <)) means that formula 3 contains a subformula v, which in turn contains
one or more instances of the symbols k and < .

Notation 12 When free variables of formulas are indexed by pairs of numbers, the first num-
ber indicates the “tuple” to which the variable belongs, and the second indicates the variable’s
position within that tuple.

For example, ¢(x11, %12, %13, T21, Ta2, T2 3) indicates that the formula ¢ implicitly
takes two 3-tuples as input. The variable z; 5 represents the third member of the first
tuple.

This notation is useful because the free parameters to formulas in a k-ary first-order
interpretation are implicitly grouped into k-tuples. This notation is intended to make
those tuple relationships clear.
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SO3 logic

Second-order logic is an extension of first-order predicate logic where we can quantify
over relations as well as variables. In second-order existential logic (SO3 logic), we are
restricted to quantifying relations only existentially. Specifically, a formula written in
SOd logic is well-formed iff it can be written in the form

IR,.. 3R (2.6)

Where R;...R;, are relations, and ¢ is a well-formed formula written in first-order
logic. In particular, all relations occurring in ¢ must be defined in the vocabulary, be a
predefined relation from Section or be one of the quantified relations.

A well-formed SO3 sentence is a well-formed SO formula that has no free variables.

Given a structure, we can now define what it means for a SO sentence to be satis-
fied.

Definition 13 Consider a structure A of vocabulary 7, and a well-formed SO3 sentence ®. We
say that A models ® (written A = ®) if and only if all of the following hold:

o Every relation that occurs in the first-order part of ® is either predefined as described above
or is existentially quantified in ® or occurs in the vocabulary of A . In other words, every
relation is bound.

In Immerman’s notation, & € L(7): the sentence ® is an element of the language of
vocabulary 7.

o Every variable in the first-order part of ® is bound.

e For a given structure A, there exist k relations Ry, ..., R{ such that when relation R is
substituted for R; in the first-order part of ®, the sentence ® evaluates to true.

As usual in existential quantification, the values for the k relations need not be unique.

Immerman defines a query as a polynomially-sized mapping from structures of one
vocabulary to structures of another (possibly identical) vocabulary. He defines a boolean
query as a mapping from structures to {0, 1} (equivalently, { T, L}). In this sense an SO3
sentence is a boolean query: given a vocabulary 7 and an SO3 sentence ¢ € L(7) , ®
maps all structures that model it to 1, and all other structures in STRUC|7] to 0. [31,
Definition 1.24]
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(1) (203
O OmC

Figure 2.2: The above graph contains a clique of size 3. The structure A corresponding to
this instance models the sentence ®¢ ;v - There are many possible ordering functions

f; ome is given by £(5) = 1, £(3) = 2, f(6) = 3, f(1) = 4, f(2) = 5, (4) = 6

For example, we can write an SO sentence for CLIQUE as follows:

Povique = BNV £ y) = (f@) £ ) A (@) S kA @) Sk = Bly)))
(2.7)
We will later abbreviate this to

3f (Y zy)(f(z) kA fly) k) = E(z,y) (2.8)
fEORD 7Y

This sentence quantifies a bijective function f. Given a structure of vocabulary
Terique, f indexes the vertices (that is, universe elements) of that structure so all ver-
tices in the clique are mapped to numbers less than or equal to %, and all other vertices
are mapped to higher numbers. Then the sentence asserts that all vertices with indices
less than or equal to % are connected with an edge, which defines the CLIQUE question.
If a given structure A does not contain a clique, there will be no function f such that
A= ®orique -

An example of a structure modelling this sentence is given in Figure[2.1.2]:

The above definition applies to SO3 sentences. We can extend this definition to deal
with arbitrary SO3 formulas, in which some variables are not bound. Consider a SO3
formula T which has free first-order variables z1, ..., z;, . As specified in Notation|11, we
will emphasize the free variables in this formula by writing T as Y (z, ..., x) . In order to
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define whether some structure A models Y (z1, ..., ;), we define an interpretation under
A. An interpretation is a mapping i : z; — |A|,1 < j < k. That is, i simply assigns
values to each of the free variables.

Now we can say define the satisfiability of an SO3 formula given an interpretation
by modifying the previous definition. We say (A, i) = T(xy, ..., z) iff T is well formed,
every relation is either predefined or in the vocabulary of A or quantified, every variable
is either bound or defined by the interpretation, and there exist consistent relations for
the quantified relations that make T evaluate to true.

Given a vocabulary 7 and some formula ¢, M OD|¢] is the set of structures that mod-
els ¢:

MOD[g] = {A | A ¢} (2.9)

2.1.3 Languages in NP and SOd sentences

We are now in a position to relate SO sentences to languages in NP. Consider a vocab-
ulary 7 and the set of finite structures with that vocabulary, STRUC|7] .

Now consider an SO3 sentence ® . The set S C STRUC|7| defined as MOD[®] =
S = {A]JA = @} is a set of structures (and thus a set of strings) “recognised” by ®. If
7 corresponds to a decision problem II and & is modelled by exactly those structures
corresponding to strings for which the decision question was “YES”, then ¢ performs
the same role as a nondeterministic Turing machine that recognises the language for the
decision problem II.

Does such a correspondence between SO3 sentences and nondeterministic Turing
machines exist? Can we always map decision problems in NP to vocabularies, and the
nondeterministic Turing machines that recognise the corresponding languages to SO3
sentences? In fact, we can. Fagin [21] proved the following theorem:

Theorem 14 NP is equal to the set of existential, second-order boolean queries, NP = SO3 . In
other words, every decision problem in NP (and thus every nondeterministic polynomial-time
Turing machine) can be mapped to an SO3 sentence, and every SO3 sentence corresponds to
some decision problem in NP.

We will not prove Fagin’s theorem here; both Immerman’s book and the Schéning
and Pruim chapter offer clear and rigorous proofs of it. The details of the proof are
somewhat tedious, but the proof ideas are not hard: to show that SO3 = NP, we
construct a Turing machine that guesses the existentially-quantified relations of the SO3
sentence, and then evaluates the rest of the sentence as it would a regular first-order
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sentence (which can be done in polynomial time). The proof that NP — SO3is similar
to that of Cook’s theorem [13]: we write the computation of an arbitrary polynomial-
time nondeterministic Turing machine as a table, and then we use SO3 logic to encode
the computation and its constraints.

Fagin’s theorem is important to us, because it gives us a complete representation
language for NP. Specifically, we can write any problem in NP as a SO3 sentence, and
every SOd sentence corresponds to some problem in NP.

Note, however, that this representation language has its costs. Instead of describing
decision problems using natural-language paragraphs, we now demand that some hu-
man translate decision problems into SO3 logic before our computer program can start
performing reductions. Assorted theorists claim that carrying out these encodings is
“not hard” but based on personal experience I do not believe these claims. If nothing
else, encoding decision problems in SO3 logic is a learned skill requiring competency
in predicate logic, which adds to the cost of performing reductions. Nonetheless, we
choose SO3 logic as our representation language because it is complete and because
other theorists have already built theory around it.

It is also worth noting that this representation language restricts us to proving prob-
lems that are in NP(as opposed to problems that are harder). This is because we expect
users to input decision problems encoded as SO3 sentences, and by Fagin’s theorem the
process of writing an SO3 sentence for a decision problem proves that the problem is in
NP.

Now that we have a representation language, our next task is to find some way of
proving whether a given SO3 sentence represents a problem that is NP-complete.

2.2 Reductions on SOd sentences via FOPS

Some SO3 sentences correspond to problems that are NP-complete. Given a mystery
problem written as a SO sentence, we would like to determine whether the problem
is NP-complete or not. As it turns out the question of determining whether an arbitrary
SO3 sentence represents an NP-complete problem is undecidable. However, we can
hope to determine whether particular unknown SO3 sentences represent NP-complete
problems.

In traditional computational complexity theory, we prove that unknown problems
in NP are NP-complete by proving reductions from some problem that is known to be
NP-complete to the mystery problem. In descriptive complexity theory we can carry out
analogous reductions on SO3 sentences, via first-order interpretations and first-order pro-
jections. In the following sections, we will briefly describe polynomial-time reductions.
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We will then define first-order interpretations and first-order projections.

Reductions

Reductions are transformations of instances of one problem to another. Formally, a re-
duction from problem Iy, to problem II,,,ery is a function Iy,un — Inysier, that
takes every instance « € Il and and transforms it into an instance f(x) € I, stery,
such that = will satisfy the decision question for problem Il if and only if f(z) sat-
isfies the decision question for problem I, scry -

Reductions are important because they provide a way for us to prove problems be-
long to a given complexity class even when we do not know the actual complexity of
problems in the class. In our context, they allow us to determine whether problems are
hard for NP even though we do not know whether NP=P. By reducing some hard prob-
lem (for example, SAT) to an unknown problem II,,.,,, We can prove that I, is
as hard as SAT, and is thus NP-hard.

How does this work? Consider a reduction from problem II; to problem II, . If
we know that problem II; is NP-hard, then it must be the case that problem II;, is NP-
hard as well. Why is this the case? Say that Il was not NP-hard, so we could decide
arbitrary instances of II, in polynomial time. Then we could solve arbitrary instances
of IT; in polynomial time as well: we simply use the reduction to transform an instance
of II; to an instance of II,, and then use the algorithm for solving II, in polynomial time
to solve the transformed instance. Since the transformation takes polynomial time, and
the algorithm for II, takes polynomial time, the entire algorithm takes polynomial time.
This means that II, is in P, which is a contradiction (assuming NP# P).

In practice, we use this technique to show that decision problems are NP-complete.
Consider a decision problem MYSTERY. We first show that problem MYSTERY is in
NP, and then we reduce some known NP-complete problem II to MYSTERY. Since every
instance of II can be mapped to an instance of MYSTERY, problem MYSTERY is “as hard
as” problem II. Since II is NP-hard and MYSTERY is in NP, MYSTERY is NP-complete.

This form of reduction where we transform an instance of one problem to an instance
of another is known as many-one reducibility. There are other forms of reducibility, such
as Turing reducibility, but all of our reductions will be many-one reductions. See Allen-
der, Loui and Regan [3] for a good discussion of these issues.

2.2.1 Polynomial-time reductions

In the context of computational complexity, a reduction is a function that maps languages
to languages. In computational complexity theory, we often care about polynomial-time
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reductions, which are defined as follows:

Definition 15 Let 3, and 3, be two alphabets.

A polynomial-time reduction from L; C X3 to Ly C ¥ is a function f : X7 — X3 that
can be computed in polynomial-time (with respect to the length of the inputs) by a deterministic
Turing machine, and satisfies the condition that any string x € L, <= f(z) € Lo.

Intuitively, we use polynomial-time reductions to map instances of one decision
problem II; to instances of some other decision problem II, . In practice, when describ-
ing reductions we rarely refer to encodings of bit strings directly; rather, we describe
how to transform the mathematical structures of II; to the mathematical structures of
Hg.

For example, one textbook reduction [14, p.962] reduces GRAPH-3-COLORING to
3-SAT by turning instances of 3-SAT (clauses of three literals each) into instances of
GRAPH-3-COLORING by turning each clause into an undirected graph “widget” such
that the GRAPH-3-COLORING instance can 3-colored iff the 3-SAT instance can be sat-
istied.

In terms of resource consumption, polynomial-time reductions are the most pow-
erful reductions we can use to prove problems are NP-complete, assuming P # NP.
Problems in NP can be recognised deterministically in exponential time, so if we al-
lowed reductions to be exponential time, we could reduce problems that were in P to
problems that were NP-complete by performing the exponential time work needed to
recognise instances of the NP-complete problem in the reduction itself. This defeats the
purpose of a reduction, because we will not be able to argue that the problem in P is as
hard as the NP-complete problem.

In particular, we need to make sure that first-order interpretations and first-order
projections are no more powerful than polynomial-time reductions.

2.2.2 First order interpretations

In standard computational complexity theory, we use polynomial-time reductions to
prove mysterious decision problems NP-hard. To do this, we transform instances of
some problem that is known to be hard (the “source” problem) to our mysterious prob-
lem (the “target” problem). Traditionally, we describe the instances and constraints of
our decision problems in natural language. Humans then interpret those descriptions
and turn them into some form of mathematical representation. They then manipulate
these representations to turn instances of the source problem into instances of the target
problem.
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Since interpreting natural language is hard, we use SO3logic as a representation lan-
guage to encode our source and target problems. We could conceivably use polynomial-
time reductions to perform these reductions between SO3 sentences. However, descrip-
tive complexitists have developed other forms of reductions which work well in this
domain.

One such reduction system is first-order interpretations. First-order interpretations
translate structures of one vocabulary 7., to structures of a second, 74y4; . This trans-
lation is specified using formulas written in first-order logic. We first define the general
notion of first-order interpretations from ST RUC [Tsource] to STRUC [Tiarget] . We then
use this definition to define reductions from decision problems S C ST RUC[Tsource] tO
T C STRUCT [Ttarget] -

Definition 16 Consider two vocabularies Tsyyrce ANA Tyarger. SAY Tearger = (RY, ..o R, c1, .o Cs) .
Let k be a positive integer.
A k-ary first-order interpretation from ST RUC [Tsource] to STRUC [Tygrger] 15 a map-
ping I : STRUC[Tsource] — STRUC [Tiarget] defined by an (r + s + 1)-tuple of formulas
(G0, D1, s Op, U1, ..., Ys) such that all of the following hold:

e Each formula ¢; and ¢;, 0 < i <rand1 < j < s, isa first-order formula in L(Tsource) -

o The free variables of ¢o and each v;, 1 < j < s are a subset of {x11,...,x1%} . (We
will think of each set of variable values satisfying one of these formulas as a universe
element in a structure from ST RUC [Ty get] cOrresponding to a k-tuple from a structure
in STRUC[TSOurce]-)

o The free variables of each ¢; for 1 < i < r are a subset of {x11, ..., X1k, s Loy 15 s Tag ki | -
(Similarly, we will think of the variable values satisfying one of these formulas as a a;-tuple
of universe elements in a structure from ST RUC [Ty4yget), where each universe element is
made of a k-tuple from a structure in ST RUC[Tsource)-)

o For1 < j < s, and forall A € STRUC Tsource), there is a unique k-tuple of elements
from | Al satisfying ¢o A ;. (That is, each 1); defines a constant.)

o ||I(A)|| < pl|lAll for some polynomial p. This ensures that the reduction is polynomially-
bounded.

e For each structure A € STRUC|Tsource), the mapping I to some structure I(A) €
ST RUC [Tiarget) is defined as follows:
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— The universe of 1(.A) is defined as
[I(A)] = {{z11, o m1n) | AE do(T11, 0 710) } (2.10)

— For 1 < j < s, each constant c; is defined as the universe element that satisfies
formula «p; given structure A :

¢ = <ZI}1’1, e Il,k) such that A ): 1/1]‘(.%171, ...,I‘l’k) and <I1’1, e 1’17k> (- |I(A)|
(2.11)

Note that by the prior constraints, each constant will be unique in the mapping.

— For 1 < i < r, each relation R}" is defined as the set of universe element tuples that
satisfy formula ¢; given structure A :

R?i = {<I‘1,1, ~--;x1,k7 --~7Iai,17 ...,$ai’k> | A |: ¢i(x1,1; ...,JZLk, ...,l’ai’l, '-'7$ai,k)
and <I171, ...,$1’k> - ‘](A)‘
and ...
and (xq, 1, ..., Ta; k) € |1(A)]

)}
.1

2)

This definition gives the general form for a first-order interpretation from structures
of some vocabularly 7,y to structures of 7;4,4;. Ultimately, one must use first order
interpretations to represent reductions from a source problem S to a target problem 7.
We achieve this by specializing the above definition as follows.

Definition 17 Let S C STRUC|Tspurce) and T° C ST RUC[Tyarget) be two problems.

Let k be a positive integer.

A k-ary first-order interpretation I from S to T" is a k-ary first-order interpretation from
STRUC [Tsource| to ST RUC [Tiarget] such that the mapping induced by I is a many-one reduc-
tion from S to T’ that is, a mapping such that forany A € STRUC|[S], A€ S <= I(A)eT.

First-order interpretations give us a reduction system that translates decision prob-
lems (expressed as sets of structures) to other decision problems. We will use first-order
interpretations as a basis for defining first-order projections, and then use first-order
projections to prove the correctness of syntactic operators on SO3 sentences.

We must now argue that first-order interpretations are executable in polynomial
time. Evaluating a first-order interpretation for a given structure .A means evaluat-
ing every formula in the interpretation for every eligible member of |A|. First-order
evaluation is in P [31, Theorem 4.10]. The number of free variables in each formula is
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polynomially-bounded as well: in a k-ary reduction £ is fixed, and so the number of free
variables in any one formula is bounded by a,,,, - kK, where a,,,, is the largest arity of
any relation in 7;,,4¢;. Thus, evaluating a first-order interpretation is in P, and first-order
interpretations are no more powerful than polynomial-time reductions.

2.2.3 Restrictions on first order intepretations

Although we could use first-order interpretations directly to relate operators on SO3
sentences to reductions, Medina chooses to work with a restricted form of first-order
interpretation called first-order projections (fops), which are defined as follows:

Definition 18 Consider two vocabularies Tsyyrce ANA Tyarget, decision problems S C ST RUC|Tsource)
and T C STRUC|Tiarger|, and a k-ary first order interpretation I : STRUC[Tsource] —
STRUC [Tyarget) from S to T'. I is called a first-order projection if it satisfies the following
additional restrictions:

o The formula ¢, contains no input relation symbols. Such a formula is called numeric.

o For1 <i<randl <j <s,each ¢; and 1; can be written in the form

ap V(g AXg) V.oV (e A X) (2.13)

where for 1 < g < e the formula o, is numeric and the o, formulas are mutually exclusive
(that is, for any input to the ¢; or 1; formula, no more than one of the o, formulas will be
true).

Also, for 2 < g < e the formula )\, is an atomic formula (that is, an input relation)
P(xg, ..., x4, ) or its negation.

Consider a structure A € STRUC|Tsource) and its mapping I(A) € STRUC [Tiarget]
under some k-ary first-order projection /.

Under these restrictions, a first-order interpretation has the properties of a projection
[56]. The idea is that the truth value for a particular input z, ..., z,, to some input re-
lation R}" € Ty4rger Will be determined by at most the truth value from one input to a
relation in .4 . Under some suitable encoding, this implies that each bit of the structure
I(A) is determined by at most one bit from the structure A .

Consider the problem INDEPENDENT SET:
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Definition 19 INSTANCE: An undirected graph G = (V, E), a non-negative integer k < |V/|
QUESTION: Does G contain an independent set of size k; that is,aset V! <V, |V'| =k
such that for each u,v € V', (u,v) ¢ E ?

INDEPENDENT SET has a vocabulary 7,5 = (E?, k). The decision question is de-
fined by the SO3 sentence

D15 = BfVavy(e £y) = (f(2) # Fu) A (f2) SEAS(y) <k = ~E(z,9)))
(2.14)

Assuming INDEPENDENT SET is NP-complete, we can reduce INDEPENDENT
SET to CLIQUE using a first-order projection. The projection mirrors the classic text-
book reduction: structures of vocabulary 7;5 map to structures of vocabulary 7crioue
by taking the complement of the edge set. A 1-ary first order projection of this reduction
must map [ : STRUC|[r;s] — STRUC|1¢LiguEe]. We do this by defining three formulas:
¢o to define the universe, ¢, to define the edge relation, and v, to define k.

The first-order formula ¢, defining the universe is the identity, accepting all universe
elements:

Go(z1) =T (2.15)

The clique and independent set sizes remain the same, so the constant & from a
structure of vocabulary 7;5 gets mapped to the same value in the image structure:

Yi(z1) = (k= 1y) (2.16)

The edge relation from a structure of 7,5 gets mapped to its complement in the image
structure of vocabulary 7¢rquE:

qbl(.iﬂl,l'g) = ﬁE(IL‘l,sz) (217)

We can then use the textbook argument to show that for any structure A of vocabu-

lary 7;g,
AE®rs <= I(A) E Pcriqur (2.18)

Medina generalizes this reduction to come up with his predicate substitution opera-
tors, described in Section[2.3.3

First-order projections have nice technical properties. Medina identifies two proper-
ties he sees as relevant. First, problems complete for NP via first-order projections are
complete via 1:1 first-order projections. Secondly, any pair of problems reducible via
first-order projections are isomorphic, and this isomorphism is first-order definable [1].
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We concern ourselves with first-order projections primarily because Medina does.
However, the properties of first-order projections imply that they are invertible ; al-
though we do not do so, one might be able to improve the effectiveness of a reduction
prover. See Section for an example of how this invertibility could be useful.

2.3 Medina’s operators

We are now in a position to describe some of the syntactic operators on SO3 sentences
that Medina develops in his PhD thesis [42]. Each operator represents a reduction that
preserves NP-completeness; given an operator and an SO3 sentence @, that both
satisfies the preconditions of the operator and represents an NP-complete problem, we
can apply the operator to ®,,,.. and syntactically transform it to a second SO3 sentence
D4, 4e that also represents an NP-complete problem.

Why should we believe that ®;,,,.: represents an NP-complete problem? Associated
with each operator is a first-order projection that maps structures from the vocabulary of
@ ource to structures from the vocabulary of @444, . This first-order projection is general
in the sense that it is not specific to one pair of sentences ®,,,ycc and ®;4,4c:. Rather, the
first-order projection can be applied to a class of sentence pairs, transforming the first
member of each pair to the second in an identical way. Note that we are not promising
that the set of sentence pairs upon which an operator operates is large; all we promise is
that if an SO sentence satisfies the precondition of the operator, then the transforma-
tion will preserve NP-completeness.

There is another caveat about these operators we should mention. We choose SO3
sentences (and their associated vocabularies) as a representation language for decision
problems in NP partially because the language is self-contained. Given an operator and
a sentence ®, we would like to determine whether we can apply the operator to ® by
considering only the structure of ® and its vocabulary, with no additional information
about the decision problems in question.

In fact, in this work we strengthen this condition: we want our operators to be syntac-
tic: we would like to determine whether we can apply the operator to a given sentence
solely by looking at the syntactic structure of the sentence, without considering the se-
mantics of what the sentence represents. This is a lousy, horrible restriction; it means
we throw away a huge amount of information. Our hope is that this strong restriction
makes our task simpler because we do not need to worry about how to understand se-
mantics. Furthermore, it turns out that there exist operators that meet this restriction,
and furthermore that there exist a small number of useful reductions we can perform
using these operators.
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In the following sections we will discuss each of the operators Medina develops
in Section 4.1 of his thesis. In subsequent sections Medina introduces additional tech-
niques for recognising families of SOJ sentences that are NP-complete. For no good
reason, we ignore these recognition techniques in our thesis work, focussing instead on
the operators Medina develops to transform sentences.

2.3.1 Preliminary notation

Medina uses some nonstandard notation in describing his operators. Since we mostly
follow his conventions, in this section we describe that notation.

Definition 20 For any structure A with universeU , let f : U — {1,2,...,1} be a numbering
of the elements.

If f is injective, f is called an ordering of the elements (written 3f )
fEORD

If f is not injective (i.e. | = k < n, where n is the predefined constant specifying the universe

size) then f is called a k-partition of the universe (written 3f)
fey

Note that this is just shorthand. We can rewrite orderings and k-partitions in terms
of standard logic. For example, a sentence

f ¢ (2.19)
fEORD
can be rewritten as
Af (Vavy((z #y) = (f(x) # f(y) Ao (2.20)

Definition 21 Consider unary relations Uy, Us, ..., Uy, . We say that these relations define the
universe of a structure A if they partition it. Formally, we can write this as

Ve (Up(x) A =Us(x) A .o A =Ug—1 () A =Ug(2))
Vo (2U () ANUy(x) Ao A =Ug_q(2) A =UR(2)) (2.21)
Vo (AUL@) A ~Us(@) A A ~Up_1(2) A Us(2)

Notation 22 The notation a(EIx xf(z) (where o(x) and B(x) are formulas containing x) is a

shortform defined as follows:

3 z6(z) = Jz(a(x) A B(x)) (2.22)
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Similarly, the notation (V)xﬁ (x) is defined as:

YV 20(z) = Vr(a(z) = [(x)) (2.23)

a(z)

This notation is handy for indicating restrictions on quantification. For example, we
might write

Yay((f(@) SK)A () <) = Eay) 224)

instead of using two implications:

Vovy(a £y) = (f(@) k) A (Fly) < K) = Bl,y) (2.25)

Notation 23 Let P be a binary predicate. The outdegree of P is d if for all elements u in the
universe, there exist at most d elements v such that P(u,v) is true. We denote a formula P with
outdegree d as P, .

Similarly we can define outdegree for formulas. Given formula 1)(x,y), V<4 (where d is a
constant) expresses that for every u, there exists at most d values of v such that {(u, v) holds.

Definition 24 A predicate P with arity r is called symmetric (written Py, when, for any
structure A,

A ’: P(xl,xg, . xr) — A ’: P(.Tg(l), Ty (2), ...,JIU(T)) (2.26)
for any permutation o of {1, ...,7}.

2.3.2 Logical containment

The vocabulary (P?, N?) is the vocabulary of SAT - formulas in conjunctive normal
form. P(c,xz) means “variable x appears positively in clause ¢” and N(c,z) means
“variable x appears negatively (i.e. is negated) in clause ¢”. We use this vocabulary
in defining superfluity and logical containment:

Definition 25 Let W A ¢ define an NP-complete property. If there exists a fop p from SAT
to W A ¢ such that for every structure A € STRUC[(P?,N?)], p(A) & ¢, then ¢ is called
superfluous and W A phi is said to be logically contained in W

Proposition 26 If U A ¢ defines an NP-complete property and ¢ is superfluous, then W also
defines an NP-complete property.
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Proof: Say that ¢ is superfluous. Then there exists a fop from SAT to ¥ A ¢ such that
for every structure A in the vocabulary of SAT, ¢ is true. Thus ¢ is always true. Thus
the truth value of ¥ A ¢ depends only on the truth value of ¥, so A = ¥ A ¢ if and only
if A=V,

Logical containment is not a syntactic operator. Given a sentence ®, we can deter-
mine whether it is of the form U A ¢, but determining that there exists the necessary fop
from SAT to U A ¢ that proves ¢ superfluous is not obvious, and we do not know how
to do this by examining the syntactic structure of ¥ A ¢ . Thus, we ignore this operator
in our work.

It is worth noting that this operator appears to be more useful than any of the ones
we consider. Itis used in proving five of the 35 NP-hardness reductions Medina presents
in his thesis. It may be the case that logical containment is related to the heuristic of
“restriction” in traditional NP-hardness reductions, where one proves a problem NP-
complete by showing it contains some other NP-complete problem as a special case.

2.3.3 Predicate substitution operators

Medina defines three predicate substitution operators as follows. Note that in the fol-
lowing definition x and y are not free variables of P; we are simply asserting that P is a
relation of arity 2.

Proposition 27 Let ®(P(z,y)) be an SO3 formula that defines an NP-complete property. Let
B(x,y) be one of the following:

1. —Q(x,y)

2. Qy, x)
3. Q(x,y,c) with c a constant

where Q) is a new predicate symbol. Then the formula ®(3(x,y)) obtained by replacing every
occurrence of P(x,y) in ®(P(x,y)) by B(x,y) defines an NP-complete property.

Proof: The first-order projections proving the correctness of these operators are easy.
Let 7p be the vocabulary for sentence ®(P(z,y)) . Let r be the number of relation sym-
bols and s be the number of constant symbols in 7p .

Let 7 be the vocabulary for sentence ®(3(z,y)) defined as follows: we remove the
relation symbol P and replace it with the relation symbol (), with arity as defined by the
operator. For simplicity of explanation, say that we make this replacement in place, so
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the indices of the other relations do not change from 7p to 7¢. All other elements of the
vocabulary remain the same.

Now we must define the first-order projection mapping structures of 7p to 7 . The
projection will be 1-ary.

The formula defining the universe will be ¢y = T.

Each formula ¢; for 1 < j < s defining the constants of 7 will be 1; = ¢; .

Let us assume that each formula R; has arity R;". By definition P has arity 2 (but
these proofs generalize to greater arities easily).

Say that the formula defining () is ¢,, . Then each formula except for that one, ¢; for
1 <i<ri#uwillbe ¢;(z1,...,24,) = Ri(21, ..., Ta;) -

Finally, we must define the formula ¢, to define () in the projection. This formula
will depend on the operator we are considering;:

1. For B(z,y) = -Q(x,vy)

¢u($17 l’z) = _|P(I1, Ig) (227)
2. For fB(x,y) = Q(y, x)
¢u(l’1,$2) = P($2,.I'1) (228)
3. For G(z,y) = Q(z,y,c)
Gu(T1, T2, 23) = P(x1,22) A (23 = C) (2.29)

The proofs that for any structure A, A = ®(P(z,y)) < I(A) = ®(6(x,y)) are so
trivial that they are hard to explain. Say some structure .4 models ®(P(z,y)) . Consider
any instance of P(x,y) in ®(P(z,y)) . By construction, it will have exactly the same truth
value as the corresponding ((z,y) in ®(3(x,y)). The values of all other constants and
truth values of all other input relations remain the same, so the two sentences are forced
to evaluate to the same truth value and the double implication is proven.

2.3.4 Ordering Complement

Proposition 28 If the formula ( 3f )y (<, k) defines an NP-complete property and all oc-
currences of < are in expressions }:J;Otll%z? form (f(z) < k) then ( 3f )W(X, k) defines an NP-
complete property. e
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Proof: Let D = MODI[( 3f )Y(<,k)]. By definition, a structure A € D iff A |=

fEORD
(3f Jo(< k).
fEORD
This is true iff A = ( 3f" )¢Y(L, k') by having f'(z) =n— f(z)and ¥’ =n—k + 1.
f'€ORD

Expressed as a first-order interpretation, we have to find a formula 1, which defines k.
We do not need to redefine f since f is a quantified relation.

Let 7yource be the vocabulary for the sentence ( 3f )¥(<, k). We can define a new
fEORD
vocabulary 7,4 Which is exactly the same as 7;,,,c.. We can now come up with a 1-ary
first-order interpretation from ST RUC[Tsource] — ST RUC [Tiarget)-

To make the interpretation work, I believe it is not sufficient to simply remap the
constant k, because we must map structures to structures fully. In particular, we want
to map each universe element z; to a complement element n —z; +1 . We have no mech-
anism for doing this at the universe-specification level (that is, via formula ¢,), so we
must explicitly remap the truth value of each tuple for a formula to its “complementary
tuple” in the projected structure.

The universe formula is trivial:

Go(x1) =T (2.30)
We map each constant ¢; to ¢; = n — ¢; + 1. This includes the constant £:
V;(z1) = Jysuce(y, v1) N PLUS(y, ¢j,n) (2.31)

PLUS(z,y,z) means x + y = z . This predicate is first-order definable in terms of
BIT [31, Theorem 1.17] .
We map each tuple of each relation R;" to its complementary tuple as follows:

Gi(T1, 0y T,) = Y1 Ya, 2120, (succ(yl, 1) AN PLUS(y1, 21,1n) A ...
Asucc(Ya,, Ta,) N PLUS (Ya,, 2a;)) (2.32)
/\Ri(zl, ceey Zai)

We now need to show that

AR (3 Jo(< k) it I(A) = ( 3f JO(4,F)) (2.33)

fEORD fEORD

Note that this is not a first-order projection, because each invocation of PLUS in the
y; formulas depend on two “atomic formulas” — namely, the constants n and c;.
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Say some structure A = ( 3f )Y(< k).
fEORD

Note that the scope of this operator is very limited. In particular, it allows exactly

one quantified relation, 3f . The reason for this restriction is simple: Medina wants
fEORD

to disallow any subformulas that would not be mapped properly by the ordering com-
plement. In particular, he wants every instance of < to be restricted to (f(z) < k).

It is not clear that this restriction is either sufficient or necessary. It does not appear to
be sufficient because it may be possible to redefine < using succ or BIT. Eiter, Gottlob
and Schwentick [18] claim that using second-order logic it is possible to define < in
terms of succ, which may be a good justification for prohibiting any quantified relations

otherthan df .Itiseasy tosee that one canredefine < in terms of succ using inductive
fEORD

definitions, but this is prohibited.

A larger danger is that we might use BIT to redefine <. The idea behind the formula
would be to assume an encoding for the binary numbers (say, ones complement) and
then compare the bits of two numbers from most significant bit to least significant. The
tirst position where the two numbers differ in this scan tells us which number is larger
— it will be the number with a 1 in the differing position. Such a formula is easy to
imagine; the only question is whether it can be encoded in first-order logic.

Regardless of the possibility of redefining < in some sneaky way, the restriction may
not be necessary. This is because in our interpretation we redefine the input structures
in such a way that any redefinition of < matches the definition of the original <, so the
mappings will be consistent.

With that in mind, we conjecture that some less constrained version of Ordering
Complement is correct if this version is correct.

2.3.5 Edge Creation 0

Proposition 29 Let &; = ( 3f )( Z xy)o(P(x,y)) be an SO3 sentence that defines an NP-
fEORD" =#y

complete property. Let
Bla,y) = ( 3 )(Q,u) AQ(u,y)) (2.34)

where Q) is a new binary relation symbol, and U, and U, are new unary relation symbols that
define the universe. Then the following formula defines an NP-complete property:

Q=( )V JoB(z,y)) (2.35)

feORD" (z,y€U1)A(z#Y)
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The intuition behind this operator comes from graph theory. We can interpret a
structure of vocabulary 7 as a graph, where P(z,y) is the edge relation. The universe
of the structure will be the vertex set. Now Medina wants to modify this “graph” as
follows: for each pair of vertices (x,y) joined by a (directed) edge, introduce a new
vertex u and use u to split the edge into two edges (z, ) and (u,y) .

We can formalize this idea with a first-order projection as follows:

Proof: Let 7y = (R{', ..., R, ...,c1, ..., ¢,) be the vocabulary of sentence ®; and 7, be
the vocabulary of sentence ®,. Let .A be some structure of vocabulary 7;. Then we can
construct a 3-ary fop p from @, to ®, as as follows.

e We want the universe of p(.A) to be

lp(A)] ={(1,1,1),....,(1,1,n),(2,1,1),....,(2,n,n) } (2.36)

The tuples beginning with 1 represent the original universe of A . The tuples
beginning with 2 represent the new “vertices” we introduce in the transformation.

Formally, the formula ¢, defining the universe is:

¢0(l‘1,1’2,l‘3) = ($1 =1A To = 1) V (CL’l = 2) (237)

e The new predicate U, picks out elements from the source universe. Let ¢y, be the
formula defining U;. Then the formula will be:

du, (21,22, 23) = (7 = 1) (2.38)

Similarly, U, picks out the newly created vertices:
vy (1, 22, 23) = (21 = 2) (2.39)

e Each predicate and constant from 7; will carry over to the new vocabulary directly.
The only considerations is that we need to restrict the inputs of each predicate to
elements from U;, and we need to somehow map the 3-tuples to universe elements
from A.

Consider a relation R} from 7;. A formula ¢; which maps this relation from 7 to
a corresponding relation in 7 is:



Background: Descriptive Complexity 37

¢i($1,1> L1,2,L1,3; L2,15 -+ L(ai-1),35 Lai,15 Lat 2, $ai,3)
= (17171 =1A To1 = IA LA Tgigl = 1) A Ri($173,$273, ...71’ai’3) (240)

The first conjunction restricts the input to come from U;; the relation takes the
third elements of each tuple as arguments. Note that we cannot use U, directly in
this formula, because Uj is a relation only defined for 7, .

¢ Finally, we must define (), which breaks each “edge” in the old “graph” and inserts
a vertex. We will break each edge (7, j) by inserting “vertex” u = (2,1, j). Q) will be
the new edge relation.

The formula ¢ that defines this is:

¢Q(l‘1,1, T1,2,21,3,22,1, 12,2, 1’2,3)
= (xl,l =1A T12 = 1A To1 = 2N X13 = T22 N P(Z'ZQ, .13273) V
(.1'2’1 =1A To2 = 1A T1,1 = 2N T1,3 = T23 N P(l’LQ, 1'1’3) (24:1)

The first part of this formula defines the edge (i, ) and the second defines (u, j) .

The definitions of Us,, U;, () and the universe imply that for any structure A and all
v,w € |A|

A Plou) if p(A) £ (3, 1)Q(v.u) A Qlu.w) 242)
and thus

2.3.6 Edge Creation 1

Proposition 30 Let ®, be defined as in Edge Creation 0 (Proposition [29). Again, say that &,
defines an NP-complete property.

Let p = ( eEIU W Q(u, ) A Q(u,y)) and Oy be

®r= ()Y I6(6() 244

If A \= P, for every structure in the class of structures being considered, then
By A Qs (2.45)
defines an NP-complete property, and ()< is superfluous.



38 An Attempt to Automate NP-Hardness Reductions via SO3 Logic

Recall from Notation 23|that ()<» means predicate () has outdegree 2.

Again, it is easiest to understand this operator by pretending that the structures in
question are graphs. In this case the edge relation P is symmetric, so we can think of
the graph as being undirected.

The operator acts in the following way: New vertices are created for every possible
edge in the graph. Then each undirected edge (i,j) is broken and replaced by two
directed edges, (u, i) and (u, j), where u is the vertex corresponding to edge (i, j).

We can specify the first-order projection p as follows:

Proof: The first-order formulas ¢y, ¢v,, ¢v, are identical to those defined in the Edge
Creation 0 proof.

The predicate () is defined by the following formula ¢¢:

bQ(T11,T12, 13, T21,T22,T23) = (T1g =2A221 =1 AT12 =203\ P(x12,213))
vV
(10 =2A291 =1 AN213=2a03 N\ P(x12,713))
(2.46)

The definitions of U,, U;, Q and the universe again imply that for any structure A
and all v, w € |A|

A F Pv,w) iff p(A) = ( 3 w)Q(u,v) A Qu, w) (2.47)

The conjunct @<, is superfluous because (by construction) for any element v € Uy,
exactly two values v € U; will make Q(u,v) true.

2.3.7 Edge Creation 2

Proposition 31 Let
(I)l = EIfEIngl...xT(qﬁl(ajl, P ZET)) (248)

be an SO3 formula that defines an NP-complete property. Let
b= P(xy,x9y..yx,) = Y(x1) V... V() (2.49)
be a subformula of ¢, . Let

Ba(e) = (e € Uz) = I(e,g1(e)) A(gi(e)) (2.50)

where I is a new binary symbol. Let

Oy = EIfEIgEIgl(Ve)(xlglel)...( ¥ x.)(pale, 1,y .y ) (2.51)

x-eUq
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where ¢ is the result of substituting 3, by B2 in ¢y, and let Uy and Uy be new unary relations
that partition the universe.
Then, if P is symmetric,
Oy N I, (2.52)

defines an NP-complete property, and I, is superfluous.

This operator is also based on graph theory, but it is not as straightforward as the
other edge-creation operators. Again, we think of P as an “edge” relation (although
it would be more correct to think of it as a hyperedge relation, since it connects more
than two vertices together with a single edge). In this case, we create a new “vertex”
u corresponding to each tuple (zy, ..., z,) that makes P(z1,...,z,) true. We then create
directed (regular) edges from « to x4, ..., z,, and “break” the edge P(z1, ..., z,) .

The newly-quantified relation g; (which is meant to be a function symbol in this
operator) maps each element e € U, to an element = € U; such that ¢)(z) is true. In this
way, we can ensure that ¢(g;(e)) is true, which makes the second part of the conjunct of
(3, in equation 2.50] true.

A formal proof of the correctness of this operator follows:

Proof: As usual, let 7; be the vocabulary of ®; and 7, be the vocabulary of ®, . Let A
represent an arbitrary structure with vocabulary 7, .

To make this work we define an (r + 1)-ary first-order projection as follows:

1. The universe formula ¢, accepts both universe elements from the preimage struc-
ture A and tuples that satisfy P. A formula that defines this is

Go(T1, 2y ey Ty, Tpy1) = (1 =1 Ao =1AN A2, =1)V (1 =2 A P29, ..., Tpi1))

(2.53)

2. U; and U, are defined in the usual way:
¢U1 (131, ...,IH_l) = (.%1 = 1) (254)
¢U2(£L’1,...,£L'T+1> = (I,El = 2) /\P(l’g,...,xTJrl)) (255)

3. The predicate I defines the new edges. It takes two tuples as arguments: one tuple
representing r variables that make P true, and the other representing one of those
r arguments:

( L1y ooy DL (rd1)s L2,15 +o0s $2(r+1))
= ( —2)AP(I’12,$13,...,$17(T+1)> A (2.56)

(21 =1) A (($2,(r+1) =T12) V (o, 41y = T13) V - V (Ta,(rp1) = xl,(r+1)))



40 An Attempt to Automate NP-Hardness Reductions via SO3 Logic

It is not obvious that

so we show this explicitly.

Say A }: (1)1 .

Consider a tuple (z1, ..., z,). By (2.53), there will be a corresponding edge object e
in p(A) such that e = p(z1, ...,2,), and e and (1, ..., z,) will be in a 1:1 relationship. For
each such tuple we show that 3, (1, ..., z,) and fa2(p(x1, ..., ,)) must have the same truth
value in A and p(A) respectively.

The claim is that for all x4, ..., x,, P(x1,...,x.) = ¥(z1) V ... V(z,) .

There are two ways in which this implication can be true:

P(xy,...,x,) is true: In this case (; is true if and only if there is some z;,1 < i < r such
that ¢(x;) is true.

Now we are done. There must be an ¢ = p(z1, ...,x,) € Us,, and there must be a g;
such that I(e, g1(e)) holds. In particular, g; will map e to x; such that ¢(z;) is true.
Thus, both ; and (3, are satisfied.

P(xy,...,x,) is false: In this case the implication 3, is by definition true. It may be the
case that none of ¥(z1), ..., ¥ (z,) evaluate to true.

However, then there is no element e € U, corresponding to (1, ..., z,), so the im-
plication of 3, will hold.

In either case, I, holds because each element e € U, is associated with at most
r values from U;. Each element e is associated with a set of variables {1, ..., z,} that
appear in P(zy, ..., x,). Since I is true only for z; such that ¢(z;) is true, the predicate
can be satisfied for at most these r values associated with e.

Conversely, say that p(A) = @, , and that there exists a ¢g; such that for all e and
z;, 1 <i <ritis the case that I(e, g1(e)) A 1(g1(e)) is true.

By the definition of [ in the fop, I will be true if, given P(zy, ..., z,), there exists an
z;,1 <i < rsuch that ¢(z;) holds, and the predicate P(z, ..., z,) is true.

For the element e € U, associated with {1, ..., 2.}, let gi(¢) = x; . Then it will be
the case that both P(z4,...,z,) is true and that some ¢ (x;) is true for 1 < i < 7, so
P(zy,...,x,) = ¥(x1) V...V ¢(x,) will also be true, and 3, will be satisfied.

We freely admit that we do not understand this operator very well. The quantified
relations f and g appear to play no role in the operator. Medina does not provide an
example where he uses this operator to prove a reduction, and we do not know of a
context where this operator can be applied.
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Also note that we prove a slightly different form of the operator than Medina pro-
poses. Medina changes the definitions of 3, and ¢, as follows:

Ba(e) = (e, gi1(€)) A b(gi(e)) (2.58)
Oy = EIfEIgEIg1(eevUze)(xlelxl)...(szle)(qﬁg(e, X1y ey Ty)) (2.59)

The difference between his version and ours is that we move the condition that e €
U, from the definition of ®, to 3, . By the definition of ( 3 e) we are simply distributing

ecUs

the implication. This makes the proof of this operator work out.



Chapter 3

Program Design

3.1 Introduction

After finding appropriate theory to use in automating NP-hardness reductions, our
next task was to design and implement a program that automated some interesting
NP-hardness reductions. We thoroughly failed at this task; the program requires a lot
of manual intervention to do anything, and since I did not complete the implementa-
tion of a single operator, it cannot prove any reductions at all! On the positive side,
our program design is modular enough that a competent researcher might conceivably
build upon our program to create a useful reduction prover. As well, we ran into some
interesting (although probably not unexpected) challenges in the implementation; by
documenting these barriers we hope that others working on this problem will be able
to avoid some grief.

We begin this chapter with an overview of the program’s design, and some design
decisions pertaining to the overall design. We then describe implementation details and
design decisions relating to components of the program: the theorem prover, equiva-
lence tester and parser. We end with a proof that one aspect of equivalence testing is
polynomially equivalent to the GRAPH ISOMORPHISM decision problem.

3.2 Design overview
A high-level diagram of the program’s structure is given in Figure A human user
starts with some decision problem I1,,,, s, to prove NP-complete. The user encodes this

problem into SO3 logic to get a sentence ®,,,s.,,. Next, the user chooses a second prob-
lem Ilj,00y, that is known to be NP-complete, and encodes it as sentence ®j,,5u, - The

42
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 Mystery Decision 'Known Decision :

. Problem ' \Problem !

'sod so3
Encoding | Encoding
Apply Operator
|Isabelle

Check Equivalence —+—» Theorem

- Prover

Qu it Not N J
Equivalent .
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A

Failure (Success!_
(No information) Mystery Is
 NP-complete;

Figure 3.1: Our program’s design. Note that users must carry out most of the work:
selecting the known NP-complete program, encoding SO3 sentences and controlling
search.
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user must encode both of these decision problems as SO3 sentences by hand; a better
implementation would allow the user to select Il and then look up the (known)
encoding in some database.

Note that we have already glossed over work for the user. Before encoding anything
in terms of SO3 logic, the user must have Il,,;s;cry, and Ilj,0un expressed as decision
problems. Expressing some computer science situation as a decision problem is itself
nontrivial. However, we assume our users have sufficient skill to write out decision
problem descriptions in natural language.

Once the source and target problems has been encoded, the user inputs the encod-
ings into the computer. A parser then reads the source and target sentences. At this
point the user iterates through the following options:

1. The user can give up and quit.
2. The user can check to see whether the two sentences are logically equivalent.

3. The user can apply an operator to ®4,,0un, transforming it into a sentence ¢’ . By
the correctness of the operators, ' will also be NP-complete.

The user keeps choosing options until either he or she gets bored and gives up, or
some transformed sentence is found to be logically equivalent to ®,,,sery- In the latter
case, the user has successfully proven that ®,,,, s, is NP-complete.

3.2.1 Design decisions

In a failed attempt to get some kind of program implemented, we made questionable
assumptions and design decisions when coming up with a prototype for our program.
Some of these design decisions (such as the lack of an undo function) are not hard to
change; others may be more stubborn.

One-sidedness

Our approach is one-sided: we make no attempt to prove that ®,,; s, is not NP-complete.
There is no compelling reason to avoid a two-sided program; we skirted the issue be-
cause we had few ideas about how to show that an SO3 sentence can be reduced to
a problem in P . One possibility is to show that ®,,,s.r, can be written in a restricted
form. For example, Grddel’s Theorem [26] gives one characterization of P:
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Theorem 32 (Griidel’s Theorem)
The class of decision problems solvable in polynomial time can be characterized by the set of
SO3 sentences writeable as Horn formulas, namely:

® = IRY'..IAR VY, .. Vo1 (3.1)

where all first-order variables x1, ..., x; are universally quantified, and o is a first-order formula
in conjunctive normal form, where each clause has at most one occurrence of a quantified relation
per clause.

In other words, we can say that P = SO3 N Horn

If we could show that ®,,,,;.,, was of this form, then we could prove that the decision
problem corresponding to ®,,stery is in P.

Note that such an approach would not contradict the undecidability result of Chap-
ter 4 It is indeed undecidable to determine whether arbitrary SO3 sentences are NP-
complete. We could, however, hope to write a program that would recognise some in-
teresting class of SOd sentences that were all in P, just as we hoped (and failed) to write
a program that could determine some interesting class of sentences which represented
NP-complete problems.

Some exciting work is being done in this area. For example, Bordeaux and Mon-
froy [6] describe an algorithm to determine whether SO formulas represent problems
in P by finding constraint programming algorithms based on the structure of the SO3
formulas. They decompose the formulas into propositional logic clauses, and then ap-
ply constraint satisfaction techniques to the clauses to come up with viable algorithms.
Combining such an approach with NP-hardness recognition techniques would address
the one-sideness issue. However, we do not know offhand whether Bordeaux and Mon-
froy’s program could be incorporated into our program design easily.

One target or many?

Our program takes in two inputs from the user: an SOd3 sentence ®,,, ., Which encodes
some decision problem we would like to prove NP-complete, and a sentence ®y,oun
which represents a problem we know is NP-complete.

As a design decision, this is a big limitation. The user has to choose a problem @y,
such that some sequence of operators encoded in the program will eventually reduce
it to ®,,,ystery. Choosing an inappropriate ®y,,0,,, Will mean that the user gets no direct
insight into whether ®,,,.,, is NP-complete. Finding appropriate ®,,.., sentences to
pair with an input ®,,,.., is a task that would seem to require a considerable amount
of intelligence, and it is a task we sidestep entirely.
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Note that as presented, we cannot simply keep a database of potential @0, Sen-
tences, and then apply operators to the input @5, in the hope we reach a sentence
logically equivalent to one of the sentences in our database. The problem is the way
Medina presents his operators: they are all of the form “If ¢, is NP-complete, and we
apply operator p to it to get sentence ®,, then ®, is also NP-complete.” This means we
must apply operators to sentences in our database of known NP-complete problems in
the hope that we can find a transformation sequence that ends in ®,,,st¢,y -

This barrier is probably not serious. As we mention in Section any two sen-
tences definable via first-order projections are isomorphic and definable via 1:1 fops,
so Medina’s operators are probably invertible. Constructing the necessary invertibility
proofs may be may be easy or even trivial, but we have not done that work in this thesis.

Search control

This thesis was originally intended to be an exploration of machine learning. The learn-
ing problem was to be search control: given an unknown problem encoded as ®,,stcry
and possibly another problem ®y,,,.,, claimed to be NP-complete, how can we control
search in “operator space” so that we can find a reduction path from ®j,oun, to Ppystery
in a reasonable amount of time?

Since distinguishing SO3 sentences that represent NP-complete problems is unde-
cidable, our set of operators would necessarily be incomplete, and we could never guar-
antee that such a path exists. However, we might modify the research problem to ask
whether we could efficiently search for such a path if one existed.

Addressing this problem ended up being outside the scope of this thesis (although it
should not have been). However, our program design supports the addition of a search
control component: instead of forcing the user to choose operators, we could easily
insert code to carry out some of the search control automatically.

Backtracking

Because we are asking the user to carry out a search in SO3 sentence space, it would
have been nice if we had implemented some kind of backtracking ability. We did not.
We have no way to undo operator application, and we do not keep any stacks of sen-
tences.

This is not a critical flaw. As we discuss below, we implement our program in the
functional programming language ML. This language includes val statements, which
can be used to bind intermediate sentences to names. Users could then backtrack by
referring to the names of sentences constructed previously in the search tree. Another
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option is to keep bindings to modified sentences in a stack, then backtrack by popping
entries off the stack.

Inclusion of other techniques

As mentioned in the background section, Medina developed a number of techniques to
recognise SO3 sentences as NP-complete. We opted to consider only a small number
of these techniques (namely, the ones that could easily be expressed as operators) but
Medina’s other techniques could be incorporated into this program design fairly easily.

Medina’s other techniques are recognition techniques. They are theorems that clas-
sify SO sentences based on their structure. Medina hints that these operators define
families of NP-complete problems that have “similar parse trees.” [42, Section 4.2]. A
program might be able to implement the results of these theorems by parsing sentences
into trees, and then analysing the trees.

Our program design could incorporate these recognition techniques as a user option;
in addition to checking whether two sentences are logically equivalent, a user would be
able to select a sentence to be parsed and analysed.

3.3 The theorem prover

In addition to implementing reductions, we have to consider logical equivalence. Say
sentence ®, is logically equivalent to sentence ®, (and thus represents the same decision
problem). It might be the case that we can apply an operator p to sentence ®; which
reduces it to our unknown problem ®,,,4.,, but that we cannot apply (or have not
programmed) a corresponding operator for @ .

Our solution to this was to pay a small amount of attention to first-order logical
equivalence. After applying an operator to a sentence ¢ to get a sentence ®’, a user can
check whether the sentence is logically equivalent to the target sentence ®,,,szcry -

Note that this is a very weak form of equivalence-testing. It would be more useful
to search for logically-equivalent forms of ® before applying an operator. In this way we
might be able to increase the choice of operators that we can apply to ® .

Also note that we only care about first-order equivalence, even though we are work-
ing with SO3 sentences. In particular, given two SO3 sentences &, = IR*IRS"...3RY ¢,
and @, = 35354 ...35Y ¢, our program defines ®, as logically equivalent to ®, if all of
the following conditions hold:

e &, and ¥, share the same vocabulary.
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e There is a bijective mapping from the quantified relations of ®; and the quantified
relations of ®, . Matched relations must have the same arities.

One caveat is that we only consider relations that occur in the first-order part of
their sentences. If a quantified relation is not used anywhere in the quantified
portion of its sentence, we don’t consider it in the matching.

e Given the above mapping, the first-order parts of the sentences ¢; and ¢, are log-
ically equivalent.

We carry out this equivalence testing by using an established theorem prover as a
“black box”. We describe this procedure in the next subsection.

3.3.1 The mechanics of equivalence testing

Determining even first-order logical equivalence is nontrivial. Rather than implement-
ing our own theorem prover, we decided to use a third-party theorem prover called
Isabelle [46] to carry out equivalence testing for us. Isabelle is a semi-automated theo-
rem prover written in ML that supports a number of logics. Although a first-order logic
comes with the software, we inexplicably use Isabelle in its HOL (higher-order logic)
mode and then do our best to ignore the higher-order capabilities of this logic.

The choice of theorem-prover is a significant design decision. We chose ML as the
implementation language of our program because we wanted to interface with Isabelle
easily.

More importantly, we treat the theorem-prover as a black box; instead of tinkering
with proof strategies to determine whether two sentences are logically equivalent, we
depend on the Isabelle command auto_tac to determine sentence equivalence. auto_tac
is a proof strategy (known as a “tactic” in Isabelle jargon) which attempts to prove theo-
rems without any human interaction. In general this is a dumb idea; Isabelle is designed
to prove theorems interactively, using human intervention to guide the search control.
Our hope is that first-order equivalence is well-enough understood that most pairs of
logically-equivalent sentences we encounter in practice will be proved equivalent auto-
matically. We have no evidence to believe that this is the case, however.

Before calling Isabelle’s auto_tac tactic, we have to ensure that the other conditions
for logical equivalence are met. Given two SO3 sentences ¢, and ®,, we carry out the
following algorithm:

1. We first check that the vocabularies for the sentences match.
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2. We sort the relations by arity in the two sentences, and discard any relations that
occur zero times in the first-order parts of the sentences.

3. We then attempt to match relations. As a heuristic, we first try to match relations
with the same name and arity. If this fails, we permute through all legal matchings
of relations. This is is exponential in the number of relations. However, it is correct
in the sense that we will consider every legal matching.

The problem of selecting quantified relations turns out to be a persistent theoret-
ical barrier in our work. In Section 3.5 we argue that this problem is as hard as
GRAPH ISOMORPHISM.

4. We apply the matching to the first-order parts of ®; and ®, by giving matched
relations a common name in both sentences.

5. Finally, we call the auto_tac tactic in Isabelle to determine whether the (renamed)
first-order sentences are logically equivalent. If they are equivalent then we are
done. Otherwise we permute the relations and try again. We stop when we run
out of permutations.

The above algorithm is limited by both our ability to match relations properly and
the power of the auto_tac tactic. In practice these would be frustrating limitations.
However, they set up a prototype for improved equivalence testing.

Our definition of logical equivalence is naive, but well-defined. Based on our inter-
actions with Isabelle, I have reasons to believe other forms of logical equivalence exist
in higher-order logic, but I do not know what they are or how they work. Versions of
logical equivalence suitable to higher-order logic could easily be incorporated into our
program provided that our “black-box” theorem prover supported them.

As an implementation detail, note that the Isabelle theorem prover comes with sev-
eral user interfaces. Unadorned Isabelle interfaces with ML directly. Proofs written
using standard Isabelle are known as “tactic” proofs. Isar [58] is an abstraction layer
built upon Isabelle. It is designed to make proofs more easily read by humans. The
Proof General interface is an Emacs front end that formats proofs in an attractive way.
It works with either Isar or standard Isabelle.

Our program uses the unadorned Isabelle interface. We do this primarily because it
makes calling auto_tac with our ML code easier, and because we are only using Isabelle
in a trivial way.
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3.3.2 Design decisions

After a half-hearted attempt to represent sentences and find logical equivalences by im-
plementing a theorem prover in Java, we quickly realized that using an established the-
orem prover would be far more effective at proving logical equivalences than anything
we could write.

We chose Isabelle as our theorem prover because it supported higher-order logic,
because we could figure out how to interface it with the rest of our program, and be-
cause it was well-established and well-supported. In every other respect our choice of
theorem-prover was arbitrary.

3.4 The parser

We required a parser separate from that of Isabelle because we were carrying out sen-
tence transformations not directly supported by the theorem prover. Our parser reads
in sentences expressed as strings and turns them into “sentence structures” expressed
as a first-order formula, a list of quantified relations and a list of vocabulary elements.

The parser itself is essentially identical to the one developed for first-order logic in
Chapters 9 and 10 of Paulson’s ML for the Working Programmer [47]. As input, the parser
takes a string of the form:

<vocab_1, ..., vocab_k> [rel_1, ..., rel_1] first-order-part
where each vocab_i, 1 <i < k,and rel_j, 1 < j <[, entry is of the form
name ~ arity : type

where type is bool if the relation is a considered to be a predicate of arity 1 or greater,
and int if the relation is a function. Contants are considered to be functions of arity 0.
We also expand shorthand notation when composing sentence strings, as described
in Section
Here is an example. In descriptive complexity notation, the decision problem CLIQUE
with vocabulary 7crour = (E?, k) can be written as

feﬂoJ; DVxVy(x #y) = ((f(x) <K)A(fly) <k)) = E(z,9)) (3.2)

The corresponding sentence we enter as an ML string is:
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val clique = "<E = 2 : bool, k ~ 0 : int> [f ~ 1 : int] "
~ WALL x. ALL y. "
""" eq (x, Y)) ——> "
S "(Ceq(f (x), £ (y)) -—>eq (x, y)) & "
- "(( leq (f (x), k) & leq (f (y), kK)) -—> E(x,y))";

Note how we rewrite the Jf shorthand.
fEORD

3.5 Equivalence testing is GRAPH ISOMORPHISM hard

Our algorithm for equivalence testing is naive and no doubt can be improved. However,
in the worst case we can only expect an equivalence testing algorithm to be as efficient as
an algorithm to solve the GRAPH ISOMORPHISM problem, and it may be less efficient.

One hard aspect of equivalence testing is matching quantified relations and vari-
ables in two SOd sentences such that the matchings are consistent. Even if we abstract
away every other aspect of equivalence testing (including the structure of the sentences
themselves) we are left with a hard problem.

For simplicity, we further restrict the problem so that we are matching equal num-
bers of relations and variables in each sentence, and we ignore existential and universal
bindings on our variables. This leaves us with the following decision problem:

RELATION-VARIABLE ISOMORPHISM:

Instance: Two collections R = {R}", ..., Ri*} and S = {S¥', ..., S}*}, two collections of
variables X = {z1,...,2;} and Y = {y1, ..., y;}, two collections of relation occurences:

01 = {Ri(xj,la "'7‘rj7ai)

R € Rand z;, € X for 1 <¢q <a;} (3.3)

and
Oy = {Si(Yj1s - Yjn)|ST € S and y;, €Y for 1 < q < b;} (3.4)

Question: Are there two consistent bijective mappings f : R — Sand g : X — Y
such that for any R; € R, R;(zj1, ..., %jq;) € O1iff f(Ri(9(xj1), ., 9(2j4,))) € O ?

Note that our problem of equivalence testing might be harder than this decision
problem, but it can be no easier. Consider an instance of the above decision problem.
We can construct two SO3 sentences ®; and ®, that we must test equivalent.

&, will have the form

®; = IR . ARM V.. Yy (3.5)
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where ¢, is a conjunction of all terms in O,. Similarly, ®, will have the form
®, = 350 ISy, .. Vaydy (3.6)

where again ¢, is a conjunction of all terms in O, . Then finding a consistent mapping for
the quantified relations and variables from ®; and ®, can be used to solve the decision
problem.

We will demonstrate that RELATION-VARIABLE ISOMORPHISM is polynomially
equivalent to GRAPH ISOMORPHISM by reducing the problems to each other. For
reference, here is the GRAPH ISOMORPHISM problem:

Instance: Two graphs G; = (Vi, E}) and Gy = (14, Es).

Question: Are GG; and G5 isomorphic? That is, does there exist a bijective mapping
h:Vi— V1, such that for any up, ug € Vi, E1<U1, UQ> S EQ(h(T,Ll), h(UQ)) ?

3.5.1 RELATION-VARIABLE ISOMORPHISM is as hard as GRAPH
ISOMORPHISM

The reduction from GRAPH ISOMORPHISM to RELATION-VARIABLE ISOMORPHISM
is easy. Let G; = (V4, E1) and Gy = (V3, E») be an arbitrary instance of GRAPH ISO-
MORPHISM. We transform the instance as follows. First, we make the relation sets
trivial. R = {E1} and S = {E,}. Similarly, we make X =V and Y = V5.

O, will be made up of all edges that exist in GG}, and O, will be made up of all edges
that exist in Gs.

Now we are done. Finding the mapping f : R — S is easy: f(FE;) = E, . Finding
the mapping g : X — Y is exactly as hard as GRAPH ISOMORPHISM. Specifically, say
that we find such a mapping. Then we have a map h = ¢ : V; — V5 such that for any
uy,up € Vi, Ey(ug,u9) <= Es(h(u1), h(uz)), which is exactly what we want.

Conversely, suppose that G; and G, are isomorphic. Then we have a mapping h,
which will be used as the mapping g : R — S. Thus, RELATION-VARIABLE ISOMOR-
PHISM is as hard as GRAPH ISOMORPHISM.

3.5.2 GRAPH ISOMORPHISM is as hard as RELATION-VARIABLE
ISOMORPHISM

The reduction from RELATION-VARIABLE ISOMORPHISM to GRAPH ISOMORPHISM
is also fairly easy. Assume we have an arbitrary instance of RELATION-VARIABLE ISO-
MORPHISM. We describe how to transform the sets R, X, and O, into a graph G;. The
sets S, Y and O, will be transformed in a corresponding way to form graph Go.
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The vertices of the graph are partitioned into five sets: Vi,, Vi, Vie, Vig and Vie. Vi,
consists of a single vertex called v, cjqiion. Vip consists of one vertex for each relation in
R. Vi, corresponds to elements in O;: associated with each element R;(z;1, ..., z;,,) are
a; distinct vertices. V), consists of one vertex for each variable in X. V), consists of a
single vertex called wyerteq-

The vertices of the graph are connected as follows: we create an directed edge from
Urelation tO €ach element of V7.

For each element R;(z;1, ..., z;,) in O, we connect a; vertices in directed chain. To
the head (i.e. source vertex) of each chain we create a directed edge to the chain from
the element of V3, that corresponds to relation R;.

For an occurrence R;(z;1, ..., %jq,), €ach of the ;,1 < k < a; corresponds to a vari-
able in X. Thus, for 1 < k£ < a;, we create an edge from z;, to the vertex in V3,4 corre-
sponding to that variable.

Finally, we create edges from each vertex in Vi4 to wyerier, and create edges from
Uperter t0 €ach vertex in V4. In effect, we are creating undirected edges from wyeieq to
each element of V.

An example of this construction can be seen in Figure|3.2.

Now we can show that the constructed graphs are isomorphic if and only if there
are bijective functions f : R — Sand g : X — Y . Say graphs G; = (V; = V;, U Vj, U
VieUVigU Vi, E) and Go = (Vo = Vo, U Vo U Vo U Vg U Vs, E) are isomorphic, so there is
a mapping h : Vi — Va. The isomorphism must match up V3, and V3, in the G4 and G,
constructions because the ,¢jqti0n, Vertices have no incoming edges. Similarly, V;. maps
to V4., the isomorphism must match wyq.ia0e Vertices in the graphs because those are the
only two vertices where all edges are undirected.

The isomorphism is then forced to map elements from V7, to elements of V4, because
only vertices from these sets are connected to the isomorphic ,ciqi0n Vertices in the
constructions. This mapping is f : R — S . Similarly, elements from V;; must be
mapped to elements from V5, because only vertices from these sets are connected to
Uyertes IN the respective constructions. This mappingis g : X — Y . Because all the other
sets are mapped to each other, the set 1}, must be mapped to V5. as well.

Consider a length-£ chain ¢; made of vertices in V;.. The elements of this chain must
map to a corresponding length-£ chain c; in Va.. The element of v; € Vj;, pointing to the
head of ¢; must map to the unique element v, € V3, pointing to the head of ¢;. Thus,
the corresponding relations in R and S must map to each other. Similarly, the vertices
in V34 to which each element of the chain direct an edge must correspond to vertices in
Va4, and so those variables must be isomorphic. In this way, we enforce the constraints
of each element of O; and O,. Since each occurrence in O; must be satisfied and must
map to a corresponding occurrence in O, the mappings f and g must be correct.
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Figure 3.2: Half an instance of RELATION-VARIABLE ISOMORPHISM expressed as a
graph. Here, R = {Rzl)’, R%}, X = {Il, T2, T3, T4, 1’5}, 01 = {Rl(l’l, T2, 213'3), Rl(,f5, T3, 133)
Ry(x3,25), Ro(xs5, x3), Ra(xa, T5) } Urelation 1S the topmost vertex and wyerte, is the bottom-
most. “Undirected” edges are indicated by double-headed arrows.
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Conversely, say that mappings g and f exist. Then there must exist a mapping h
such that G; and G5 are isomorphic. Again, the w40, Vertices from the constructions
will be isomorphic, as will the w4, iape Vertices. f gives a mapping from V3, — Va, and
g gives a mapping from Vi4 — V5, . Finally, the construction ensures there will be a
mapping from V;. — V5. because each element of O; corresponds to some element of O,
as dictated by its relation and variable occurrences. Thus, we can come up with a full
and correct isomorphic mapping h : V; — V5, and the proof is complete.

Note that this transformation is polynomial in the input size. Each relation and
variable gets mapped to one vertex. Each element of O; and O, gets mapped to a chain,
but the chain lengths are limited by the arities of the relations.

3.5.3 Significance of the hardness result

From a research standpoint, it is not surprising that equivalence testing is difficult.
Chandra and Merlin [7] proved that a similar isomorphism problem called CONJUNC-
TIVE QUERY FOLDABILITY (which only matched variables and not relations) is also as
hard as GRAPH ISOMORPHISM. In fact, our constructions of the ®; and ®, sentences
above is taken from the CONJUNCTIVE QUERY FOLDABILITY formulation.

The computational complexity of the general GRAPH ISOMORPHISM problem still
appears to be open ([53]], [32]), but some restricted versions of the problem have been
shown to be in P. In particular, the problem is in P for graphs of fixed degree [39]. In
our context this is important: if we can bound the number of variable occurrences and
the number of occurrences of quantified relations in our sentences, we have some hope
of being able to carry out the mapping component of SO3 equivalence testing quickly.

Even without bounded degree, we can use various tricks and heuristics to speed up
our search for isomorphisms. For example, we could reject any mapping that would
claim two relations of different arities are isomorphic. These tricks may not address the
worst case complexity, but they might make equivalence testing feasible in practice -
even for very large sets of variables and relations with many occurrences.

3.6 Operator implementation

If I had completed the implementation of any operators in the four years and four
months of my Master’s program, we would have something to say in this section.
Ironically enough, after developing a parser and equivalence matcher, implement-
ing operators is not that difficult. The predicate substitution operators are trivial to
implement. The other operators are harder because they have nontrivial preconditions;



56 An Attempt to Automate NP-Hardness Reductions via SO3 Logic

a working program would check those preconditions before blindly applying the oper-
ator.



Chapter 4

Distinguishing NP-complete SO3
Sentences is Undecidable

4,1 Motivation

Recall Fagin’s theorem (Theorem [I4), which states that every SO3 sentence (“second-
order existential query”) corresponds to some decision problem in NP, and that every
problem in NP corresponds to some SO3 sentence. Some proper subset of the deci-
sion problems in NP are NP-complete, which implies that some proper subset of SO3
sentences represent problems that are NP-complete. That raises the following question:
given an arbitrary SO3 sentence, can we correctly classify it as representing a problem
that is NP-complete?

The answer to this question is negative. The problem of identifying SO3 sentences
that represent NP-complete problems is undecidable.

Our motivation for constructing this undecidability proof came after reading page 2
of Medina’s thesis, which claimed that “on input of an SO3 formula, it is not decidable
to determine whether or not the property expressed is NP-complete.” [42, p.2] without
any reference to a proof of this result. We skimmed a few textbooks and papers in
search of a formal proof, but were not able to find one. Thus, we proved the result
ourselves. Later we discovered that the result is indeed known: Gottlob, Kolaitis and
Schwentick [25] claim the undecidability of recognising NP-complete SO3 sentence is a
direct consequence of Trahtenbrot’s theorem [54], a result first published in Russian in
1950 and subsequently translated to English in 1963.

In some sense it is a relief that this result has been known to the English-speaking
world for 40 years. The theorem itself is important because it demonstrates that we

57
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cannot hope for an automated NP-hardness reduction prover that works in all cases.

We have no convincing justification for padding this thesis by including this result,
so we appeal to academic dogma. We found the construction of this proof nontrivial;
the idea is straightforward but much tedious technical fiddling is necessary to make the
result work. Our hope is that our presentation of these details might make somebody
else’s life easier in some way.

4.2 Statement of the theorem

We remind the reader of the following definition:

Definition 33 “Undecidable” means “not recursive”. If a decision problem is undecidable, no
Turing machine can correctly recognise all “yes” instances and all “no” instances.

The following statement should be true, but we have not proven it.
Assertion 34 The language ) is not NP-complete.
Finally, we state the theorem:

Theorem 35 Recognising the set of SO3 sentences that represent NP-complete problems is
undecidable.

Proof: The proof is by contradiction. The idea is simple: we assume that a machine
Magic €xists that distinguishes SO3 sentences that are NP-complete from those not
NP-complete. Given M, 4. and an arbitrary NP-complete problem encoded as an SO3
formula ®, we can create a SOd sentence Y that will allow us to determine whether an
arbitrary first order sentence 1 is satisfiable. As first-order satisfiability is an undecidable
problem [38| Theorem 9.6.1], distinguishing NP-complete SO sentences is undecidable
as well.

The structure of this proof parallels the one of Rice’s Theorem presented in Hopcroft
and Ullman [29, Theorem 8.6]. Indeed, initially we hoped that our theorem was a direct
corollary of Rice’s Theorem. As we explain in Section this was not the case, so we
had to prove our theorem directly.
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4.3 Proof overview

As the proof is littered with technical details and special cases, we start by outlining the
proof:

1.

Assume that M, exists. This Turing machine takes SO3 sentences as input. It
outputs T if the input represented an NP-complete problem, and L otherwise.

. Choose an arbitrary NP-complete problem, encoded as an SO3 sentence ®.
. Choose an arbitrary FO sentence 1.

. As a technical detail, either apply Convention[7/]and assume that all structure sizes

are greater than one, or explicitly modify ¢ by restricting its domain to size 2 or
greater. We need this restriction in order to carry the proof of Lemma 37| through.

Lemma (36| provides a polynomial-time Turing reduction to prove that modifying
® by restricting the allowable domain sizes preserves NP-completeness.

. As a technical detail, modify 1) to remove variable-name clashes with ®. We need

to break dependencies between ¢ and @ in this way to foil adversaries.

As yet another technical detail, add a vacuous term to ) that specifies the size of
the universe for a structure. We need this in order to carry the proof of Lemma
through.

. Now create a new sentence Y, which consists of the modified ¢) and ¢ conjoined

together. The claim is that SO3 sentence represents an NP-complete problem if
and only if ¢ was satisfiable. To prove this, Lemma 37| describes a first order
projection reduction from the modified ® to T when v is satisfiable.

. Since T is an SO3 sentence that is NP-complete exactly when ® is, M,,,4;. Will

return T on input T if and only if ¢ was satisfiable. Thus, M,,44i. can be used to
determine whether 1) is satisfiable, which is an undecidable problem. QED.

In the following subsections we go through these steps in detail.
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4.4 Preliminaries

Assume M,,,,4. exists. We now need an NP-complete problem. It is possible to enu-
merate SO3 sentences, using M,,,,4;. to tell us when we have stumbled across an NP-
complete problem, but in fact this is unnecessary. All we have to do is encode an arbi-
trary NP-complete problem as an SO3 sentence and call it ®. Note that M,,,,,;. returns
T when given @ as input.

We now have an NP-complete problem ® with vocabulary 75. Now take an arbitrary
first-order sentence v of vocabulary 7,,. We will first transform ¢ and ¢ to avoid some
technical traps, and then conjoin the transformed versions of 1) to ® to give us a new
NP-complete sentence.

4.5 Transformations on v

We want to break dependencies between ® and 1. Otherwise, an adversary could give
us a first-order sentence v that affects the computational complexity of the conjoined
sentence ® A 1. For example, the adversary could give us a 1 consisting of the first-
order part of ¢ negated, which would immediately render the conjunction of ® and ¢
false.

To break the dependencies, transform ¢ into an equivalent first order sentence ' as
follows: rename every constant, relation symbol and function symbol in 7, so they are
different from every constant, relation symbol and function symbol in 74, and make the
corresponding changes in . This gives us a new first order sentence ¢! with vocabulary
74t Note that 1 is satisfiable if and only if ' is.

In order to make the reduction in Lemma [37jwork, we need to make one more trans-
formation: we explicitly state the domain for every variable that occurs in ¢". We recur-
sively break down 91, looking for quantified variables. In creating 1" we create a copy
of the predefined constant n which tells us the size of a structure with vocabulary 7.
Say we rename this variable to n’ and we create an explicit constant in 7, for it. Then
we change quantified variables as follows:

We change every formula of the form

Vra (4.1)
where « is a first-order formula, into the following form:

Vo((z <n') = «) (4.2)
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Similarly, we change every formula of the form
Jra (4.3)

into:
Jz((x <n') Aa) (4.4)

For any structure, the conjunct (x < n’) will be vacuously true, since by definition
all variables must be in the range 1...n’. Also, note that YT was a first-order sentence, so
every variable is quantified, so every variable has this conjunct applied to it.

This gives us another first-order sentence ¢/ which has vocabulary 7,» = 7,,:. Because
each of the conjuncts we added will evaluate to T for any legal variable value, ¢’ will
be true if and only if 7 is.

Note that the transforms we have carried out to ¢ are legal; each of these transforms
is easily carried out, and we are allowed to modify our Turing machines in any way
that help us decide whether v is satisfied, so long as we do not change the power of the
machine.

4.6 Transformations on ¢

The issue of trivial structures (that is, structures of size 1) raises its ugly head in this
proof. By Convention 7}, we can assume that we do not need to worry about such struc-
tures. However, it is possible to prove that this does not affect the undecidability of
our problem, and we provide such a proof in this section. Readers who are comfortable
with the convention may skip this section, and assume that ¢’ = .

We now want to transform our NP-complete problem ¢ into an “almost equivalent”
problem @’. The transformation consists of restricting ® so that it rejects any structure
that has a domain of size 1. Syntactically, we can specify this in the following way:

P=PA(n>1) (4.5)

Recall that n is a special constant that specifies the size of the input domain (or uni-
verse). The end effect is that @' will reject any structure with domain size 1, and behave
exactly as ® does for all other inputs. As we shall show, this does not affect the compu-
tational complexity of the problem specified by ®, as ¢’ will represent an NP-complete
problem if and only if ¢ does.

Note that the vocabularies for ® and ¢’ are the same.
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Why do we need to make this restriction? Simply because Lemma (37| breaks oth-
erwise — we cannot construct our first-order projection if our SO3 sentence does not
behave identically on every structure of domain size 1.

Unfortunately, we have to worry about this case, because structures of size 1 are
legitimate. Furthermore, multiple structures with a singleton universe may exist, and
our SO3 sentence may distinguish between them. For example, say ® encodes the SAT
problem, and that it used the vocabulary (N? P?) , where N(z,y) means “variable y
occurs negatively (i.e. occurs and is negated) in clause z” and P(z,y) means “variable
y occurs positively in clause z”. Then given a single variable we can encode four dis-
tinct clauses: -z, z1, 1 V —21, and the empty clause. We could thus come up with
four distinct instances of SAT containing one variable and one clause. Some of these
instances are satisfiable, and one is not; any Turing machine recognising SAT must be
able to distinguish between these inputs.

Notice, however, that given a vocabulary containing s relation symbols, we can have
at most 2° distinct structures of size 1. Say relation R; has arity k. Then there are two
possible mappings for that relation: the relation can be satisfied by zero k-tuples, or it
can be satisfied by the k-tuple consisting of a 1 at every position. For s relations we can
assign truth values in 2° ways — each relation can be empty or satisfied by exactly one
tuple. Assuming that every constant must be mapped to some universe element, we can
have 2° structures of size 1. We will exploit this observation in the following lemma.

Lemma 36 Say that ® and @' are two SO3 sentences, related such that &' = ® A (n > 1).
Then ® is NP-complete if and only if ¢’ is.

Proof: Since ® and @’ are both SO3 sentences, they both represent problems in NP.
Thus there exist two nondeterministic Turing machines Mg and Mg that recognise
MOD(®) and MOD(®') — the languages of structure encodings that satisfy ® and &’
respectively. We will reduce these machines to each other, using one machine to recog-
nise the other’s language with only a polynomial slowdown. This will show that the
languages the machines accept belong in the same complexity class, which will give us
our result.

In the proof, we will assume that Mg and Mg understand each other’s certificates
for inputs corresponding to structures of size two or greater. This will not be the case
for every pair of Turing machines Mg and Mg corresponding to SO3 sentences ® and
@, but certainly there exists a pair of such machines.

Using Mg to recognise the language accepted by Mg is easy. Simply construct a
machine M, that behaves in the following way: when given input z and certificate y,



Distinguishing NP-complete SO3 Sentences is Undecidable 63

MU checks if z corresponds to a structure of domain size 1. If so, M}, rejects the string.
Otherwise, MID runs Mg on inputs z and y and returns its result.

The other direction is only a little trickier. We construct a machine M}, that recog-
nises L(My) as follows: given input = and certificate y, M}, checks to see whether the
input = corresponds to a structure of domain size 2 or greater. If so, M, simply calls
Mg and returns its result.

To deal with inputs = corresponding to structures of domain size 1, we hard code a
lookup table into M. Say the vocabulary of the input structure has s relations. Then
our lookup table will be of size 2° , because there are 2° structures A such that |A| =
1 if the vocabulary of A has s relations. Each entry of the table requires one bit of
information: 1 if A = ® and 0 otherwise.

Is this lookup table too large? It is true that the size of the table is exponential in s,
and that the size of the input z is related to s. However, the size of z varies with the size
of n, the number of domain elements in the structure. Thus, with respect to the input
size, 2° is just a large constant, and we are allowed to encode it without violating the
space constraints of the reduction.

In this way, M}, can be used to recognise L(Ms), which completes the proof.

4.7 Creating T

Now that we have an NP-complete problem and an arbitrary first-order sentence, we
can create a new SOd sentence: let T = &’ A ¢/'. Note that T is an SOd formula.
The vocabulary of T will be the “union” of 74 and 7. Specifically, if

Ty = <R1w,,...,st,,clw,,...,ctw,> (46)

and
Tor = <R1<1>7"'7R8<1>7clq>7"'7th>> (47)

then the new vocabulary 7 will be

™ — <R1w,, ceey R

Sw’qu)? A RS<1>7 Clwm AR thlclq>7 A th>> (4‘8)
We now need to show that T will be NP-complete if and only if ¢ is satisfiable.
Say that ¢’ is not satisfiable. Then T is not satisfiable. Unsatisfiable sentences accept
the empty language (). By Assertion (34 the empty language is not NP-complete, so T
does not represent an NP-complete language.
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Conversely, say that ¢ is satisfiable. Then there is some structure

I

A= <{1,...,mA},RfL ...,R;‘L,,cﬁ/,...,cg‘i) (4.9)

such that A = ¢'. We will show that since A exists, there exists a first-order projection
that reduces ® to Y. This will prove that T is NP-hard. Since T is a SO3 sentence, we
already know it is in NP. Thus, T is NP-complete.

Note that we do not know exactly what this structure A is or how to find it. We just
know it exists.

The details of this first-order projection are ugly; we spell them out in Lemma
However, the idea is straightforward: the vocabulary 7y of T is simply made up of the
vocabularies of ¢’ and ¢’ put together. Since at least one structure A = ¢/, we simply
map the elements of A to the corresponding vocabulary elements of 7. This “fixes” the
truth value of ¥/ in T = &' A ¢/, leaving only ¢’ variable. Now, every structure B that
models ¢ can be directly transferred to a structure that models T, which gives us the
reduction we want.

4.8 Proving T is NP-complete

Lemma 37 Say that ¢, ®" and Y are defined as outlined above, and that there exists a structure
A such that A |= «'. Then there exists a first order projection I such for any structure B with
domain size greater than 1, B |= @' iff I(B) = Y.

Proof: As above, say that A takes the form

A= {1, ...,mA},RfL/, R“‘chp ...,cgi) (4.10)
Given a structure
B={1,..mph R} . .RE L. .. ) (4.11)

such that B = @', we will construct a mapping to a structure /(B) that models Y. The
idea is to “copy” B to I(B) by mapping elements of 74/ to the vocabulary elements they
correspond to in 7y. Then we hard-code A into I(B), mapping the elements of 7,/ to the
corresponding vocabulary members of 7y . This mapping will be large, but fixed, since
A is a fixed structure.

Here are the gory details:

We need to come up with a tuple of formulas

<60a ﬁlwm EEET) Bsw/ﬁlqya EEEE) 6s¢/771w/7 EaS) /thl,qu,/7 ) ’thﬂ (412)
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that will map a structure B modelling ¢’ to a structure /() modelling Y. The formulas
in this tuple have the following meanings:

o will define allowable elements in the universe of the new structure.

Brysees Bs, will define the relations R, ,,..., Rs ,, which are the relations that come
from 7.

By s Bsy, Will define the relations R, ,, ..., Rs,,, which are the relations that come
from 7¢.

Y15 - W, Will define the constants ¢, ..., ¢t ,, which are the constants that come
from 7.

V1grs -5 Vie Will define the constants c;,, ..., ¢;,,, which are the constants that come
from 7¢:.

We also need a constant a that will tell us the size of the universe for /(B) in terms of
the size of the universe for B. There are two cases here, depending on whether m 4 > mp
or not. Because of this, we are actually constructing two reductions.

For now, let us assume that mz > m4 , so that the universe of 5 is at least as big as
the universe of A . This is a really bad assumption; in fact mz and m 4 are completely
independent. However, this assumption clarifies the explanation of the reduction. Later
we will “patch up” the proof by eliminating this assumption.

If mp > my, then we can make a 1-1 mapping from every universe element of A to
an element of B in the obvious way. This means a will be 1.

Note that this mapping will not be onto unless m 4 = mp . This should worry us, be-
cause having “extra” universe elements for A can affect the truth value of ¢/'. However,
in constructing ¢’ we ensured that every quantified variable specified its domain with
the conjunct (x < n’) . This will ensure that none of these extra elements will affect the
truth value of the ¢ .

Now we will translate the relations from 7, to the new structure. The idea is to map
the relations directly. Unfortunately, the size of the universe for I(B) could be bigger
than m4. This is bad because each relation R; , of arity [ needs to be well-defined for
every [-tuple in the new universe, and the old structure A specifies the truth values for
R;, for tuples made up of elements in the range 1, ...,m 4 . If any tuple co-ordinate is
larger than m 4, the value of the relation for this tuple is not defined. Our solution will
be to implicitly set the relation’s truth values for such tuples to L. This is okay because
we are guaranteed that these “out of range” tuples will never affect the evaluation of ¢”,
because any “out of range” tuples contain at least one quantified variable = such that
—(z <n).

We can specify the mapping for R; , with the following formula:

Biy (21, oy 1) = ((21 < n)A . A(x <n')A R, (z1, ...y 1)) (4.13)
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Note that the above formula is actually numeric — it contains no input relations, since
the relation R; , comes from A, which is fixed. Another way to express this formula
would be to encode R; , as its truth table: the disjunction of all the tuples that make the
relation true.

Next we want to map the relations from 74/ to the new structure. This mapping is
simple: the relations from 74 map directly to the corresponding relations in 7y.

The formula specifying the mapping is easy. If the relation R;,, has arity [, then

ﬁiq)/(xl,...,xl) = Riq)/(xl,...,xl) (414)

Finally, we have to define constants by specifying appropriate formulas. We can
think of constants as relations of arity 0, that are true for exactly one element of the
universe. For example, the formula defining constant ¢; , will be

’yi,ll,/(x) = (I = Ciw/) (415)

and similarly for the v; , formulas.

Having described the mappings between relations in B and A to the new structure,
we can address the assumption that mg > m4 . If this assumption is false, then we do
not have enough universe elements from 1...mz to represent every universe element for
A.

As mentioned before, we do not know the relationship between mpz and m 4. We do
know, however, that mg > 2 and that m4 = n’ is a fixed constant.

Since mg > 2 we can get enough universe elements to represent all the universe
elements in A. In this case, we canseta = (m4+1) = (n’+1) . This gives us a reduction
of (potentially) huge arity, but since m 4 is fixed, a remains constant with respect to the
input B .

Given a domain of (n’ + 1)-tuples, we can represent any universe element i such that
1 < i < n' as follows: set the ith position of the n’-tuple to 2 = succ(1) . Set all other
positions of the tuple to 1 . In essence, this represents the elements of |A| in unary. The
last position will always be set to 1; it will indicate that this element corresponds to a
universe element of A.

Since we are guaranteed to have m; universe elements available, to represent a do-
main element from 5 using an n’-tuple we simply look at the first position of the tuple,
and allow the values of that first position range from 1...mp . The last position will be
set to succ(1) = 2 to indicate that this element corresponds to a universe element of 5.
All other positions should be set to 1.

How do these representations change our reduction? First of all, single elements of
the universe elements |/(5)| no longer correspond to single elements of B. Rather, each
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element of |/(B)| corresponds to an (n’ + 1) tuple of elements from 5 . Notationally,
we will indicate tuples using a horizontal overbar, so x; refers to a single element of the
universe of 53, and 7; refers to an (n’ + 1) tuple of elements from |B| corresponding to a
single element of /() .

As a consequence of this more complicated mapping, we now have to restrict our
universe elements nontrivially, so formula 3, changes to

Bo(x1y ooy T, 1) = (xe=1Ax3=1A .. Ay = 1A Zyy1 = suce(l))
V(zy = succ() ANxg=1Ax3=1AN .. Axy =1 Azpy =1)
V(zg =1Azg =succ() ANxg=1AN ... ANxy =1 ANxgy =1)
V...
V(cy=1Azo=1ANx3=1A ... Azy = succ(l) Az = 1)
(4.16)

It may be possible to represent this long formula more succinctly using an auxiliary
predicate such as SUM, but this formula will suffice. The first disjunct represents uni-
verse elements from B . It asserts that position 1 of the tuple may be anything, that the
last position must be 2, and all other positions must be 1.

The following disjuncts explicitly express the other allowable elements of .A. They
allow exactly one position of the tuple to be 2, and force all other elements to be 1. Since
the last position must also be 1, we can disambiguate elements of .4 from elements of B.

It will also be convenient to define two other formulas, § 4 and 5 :

0AT) = 0alz1, ooy Ty T i1) = (T = 1) (4.17)

05(T) = dp(x1, ooy Ty, Ty 1) = (g1 = suce(1)) (4.18)

These two formulas explicitly disambiguate elements of A from elements of B. We
use these formulas by conjoining them to the $ and ~ formulas as follows:

Bi,, (@1, ..., 7)) becomes [ ,(T1,....,7T1) A oa(Tr) A ... Noa(Ti)
Biy (T1, ..., T7) becomes G ,(T1,...,T;) A g(T1) A ... A dp(T0)
%, (T) becomes 7; ,(T) A d(T)
Yig (T) becomes v, ,(T) A 0p(T)

Unfortunately, our trick of representing A elements in unary does not work if mz =
1, because in this case we can form only one domain element regardless of how high we
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set a — the only universe element that exists is the a-tuple with every position set to 1.
However, we assumed that mp > 1, so we do not have to worry about this case in our
reduction.

Finally we show that B = ¢’ <= I(B) = Y. Say that B = ®’. We know that
T = ® A/, and that the ¥ conjunct is satisfied. The 3;,, and +;,, formulas map el-
ements of 74 to corresponding elements of 7 directly, expressing the relations in the
new universe. Thus the ®’ conjunct of T will be satisfied if the original @' is.

Similarly, say that I(B) = Y. The elements of the structure that satisfy the ®' conjunct
of ' A ¢’ forms a substructure that maps to elements of B directly. These elements will
satisfy the original ¢’. Thus the original ¢’ will be modelled by 5 if () models T.

4.9 Deriving the contradiction

Having shown that T has the properties we want, we input T into M,,4gi. If ¢ is
satisfiable, then T is NP-complete, so M,,,44ic Will return T. If ¢ is not satisfiable, M,,,44ic
will return L. Thus we can use M,,q4i. to determine whether an arbitrary first-order
sentence is satisfiable, which gives us our contradiction.

4.10 Addendum: Why Rice’s Theorem does not apply

Given that the structure of our undecidability proof parallels the proof of Rice’s Theo-
rem presented in Hopcroft and Ullman [29, Theorem 8.6], gentle readers might wonder
why Rice’s Theorem does not apply to our situation.

The problem is that our undecidability proof deals with a restricted set of inputs.
Rice’s Theorem talks about the undecidability of proving properties of Turing machines
encoded as strings. Our theorem talks about proving the undecidability of Turing ma-
chines (actually, Turing machine computations) encoded as SO3 sentences. It is true
that every SO sentence describes the computations of some Turing machine —but SO3
sentences can only characterize computation that takes polynomial time. Some Turing
machines are not completely characterized by any SO3 sentence, because these ma-
chines carry out computations in time not bound by any polynomial. It is not even
necessarily true that every string encoding of a Turing machine computation deciding
a problem in NP maps to a unique SO3 sentence.

Effectively, this means that we are restricting the set of strings we consider. Con-
ceivably, this could make the problem of distinguishing NP-complete sentences easier.
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Thankfully, our proof shows that distinguishing NP-complete sentences is still undecid-
able.



Chapter 5

Conclusions, Lessons Learned and
Future Work

5.1 Contributions of this thesis

What - if anything — has this thesis accomplished? To address this question, here is a
list of the contributions to human knowledge we have made via this thesis:

1.

We formulated the automation of NP-hardness reductions as a possibly-interesting
research area.

. We explored the use of SO3logic as a representation language for problems in NP,

and explored the possibility of using this language as a basis for the automation
of proofs.

. We examined a handful of sentence operators developed by Medina, and unsuc-

cessfully attempted to implement these operators in a computer program.

. We designed and partially implemented a useless prototype program to semi-

automate hardness reductions. As of this writing, we can reproduce zero of the
reductions Medina proves in his thesis.

. We formally proved that it is undecidable to recognise the set of SO3 sentences

that represent NP-complete problems, a result that has been known for 53 years.

. We showed that matching quantified relations and variables in two SO3 sentences

is polynomially equivalent to GRAPH-ISOMORPHISM.

70
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5.2 Lessons Learned

During the course of this thesis we learned a few lessons about the nature of this prob-
lem, and some of the challenges future researchers tackling this problem should con-
sider. Many of these lessons are conjectures based on anecdotal evidence, so they should
not be taken for granted. However, they may form the basis of useful hypotheses that
others can test in the future.

5.2.1 Operator applicability

In retrospect, attempting to carry out a large number of reductions via Medina’s sentence-
transformation operators was a dumb idea. Each operator has a 1-1 correspondence
with an underlying reduction. In applying operators to transform sentences, we are
hoping that the same underlying reductions apply when reducing different (and pre-
sumably unrelated) sets of problem instances to each other.

This hope appears to be unfounded. One of the reasons computer scientists can still
publish papers containing NP-hardness reductions is that they do tend to be dissimilar.

Medina presents 35 NP-hardness reductions in his thesis, using all of the operators
and families he develops. Of these 35 reductions, six involve the seven operators we
study in this thesis (an additional five make use of logical containment, which we do
not consider). Only one operator is used multiple times: Edge Creation 1, which is
invoked three times. Three operators (the third form of predicate substitution, Edge
Creation 0 and Edge Creation 2) do not appear in any reductions.

The important lesson we draw from this observation is that it would be helpful to
critically evaluate the usefulness of presented work before basing one’s thesis work on it.
Some of Medina’s other reduction families appear to be far more generally applicable
than the operators we studied; if we had concentrated on implementing techniques
that have been demonstrated to work well, we might have made more progress on this
problem.

5.2.2 SOdsentences are ambiguous

The operators we consider are syntactic; they look for syntactic structure in SO3 sen-
tences and then modify that structure to produce a new sentence. This approach is
highly dependent on the way the underlying decision problem is expressed as an SO3
sentence. In some cases, it appears that two SO3 sentences that appear completely un-
related can represent the same decision problem.
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For example, consider the SATISFIABILITY problem, defined in Chapter Let
Tsar1 = (P? N? ¢, k) where P(r,y) means variable z occurs positively in clause y,
N(z,y) means that variable x is occurs negatively (i.e. is negated) in clause y, c is the

number of clauses in the instance, £ is the number of variables. Then one SO sentence
defining SAT is:

WYy < ¢) = Gale < k) A (Pa,y) A) V (N(z,y) A=t@)  G1)

Here, the quantified relation ¢ guesses a truth assignment. For a variable z, t(x) is
true iff x is true in the assignment. Thus, for any clause there must exist a variable that
is either true and occurs positively in some clause, or is false and is negated in some
clause.

This sentence is a natural representation for SAT, but it is not the only one. Medina
comes up with different representation for SAT. The vocabulary is 75ar9 = (P? N?)
where P(z,y) and N(x,y) are defined as above. Medina’s sentence is:

3 1P, g() A Fo(@) <DV (N o) A f(ga) > 1) (52)

In this formulation, universe elements represent clauses, so the Vz quantifies all
clauses. Variables are indexed using universe elements as well. This is done by the
quantified function ¢ . For each clause z, g(x) is a function that nondeterministically re-
turns the index of a variable that will satisfy clause z. In this sense, g is the assignment.

The quantified function f orders all variables so that all variables assigned T get a
number less than any variable assigned L. The splitting point between true and false
variables is given by the first-order quantified variable [. Thus, f(g(z)) < [ means that
the variable is assigned T, and f(g(x)) > [ means the variable is assigned L.

In this formulation the number of variables is not given explicitly. This is because
the sentence only deals with variables “that matter” — that is, the variable in each clause
designated to satisfy that clause. If there should be more variables than clauses in a SAT
instance, we can simply create trivial clauses of the form (z; V —;) so that we end up
with an equal number of clauses and variables.

After a little thought, it is not difficult to see that both Equation 5.1|and Equation
encode the SATISFIABILITY decision problem. However, the syntactic and logical rela-
tionships between the sentences are not obvious. Equation 5.1 quantifies a single rela-
tion, and Equation 5.2 quantifies two relations (expressed as functions). The vocabular-
ies of the two formulations are different as well.

Which formulation is correct? To a theoretician seeking NP-hardness reductions via
first-order projections, the answer is “whichever representation is convenient.” People
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carrying out reductions by hand have the luxury of formulating their SO3 sentences
in any way they want, so long as those formulations are correct. In automating NP-
hardness reductions, we do not have that luxury unless we make the encoding explicit.
Without any restrictions, the user can input arbitrary formulations of their decision
problems, and a useful proof automation program should be expected to deal with these
ambiguities.

Our hope for getting around this problem would be to find some canonical form for
SOd sentences, and find some way to encode a decision problem’s English description
such that it respects this canonical form. We could then force users to use this canonical
form when entering sentences to the theorem-prover, which might make the program’s
task easier.

5.3 Future Work

Although I have no plans to pursue this line of research further, other researchers might
find this problem interesting. To those researchers, I offer my condolences and some
possible research directions.

5.3.1 Encode reductions in a theorem prover

From a theorem-proving perspective, our implementation of Medina’s operators is at
best impolite and at worst grievously misguided. In the theorem-proving world, one
implements new theories and proofs by building upon pre-existing theory. We do not
do this. Instead, we implement our operators as string-manipulation operations, trust-
ing their correctness to the proof descriptions we write out in high-level English. This
is impolite because the point of a theorem prover is to ensure that all operations are
logically sound, and grieviously misguided in the event that our high-level proofs are
incorrect.

The solution to this problem is a lot of work, and thus might make a good graduate-
level dissertation. The poor student would simply have to use the mechanisms avail-
able in Isabelle (or some other theorem prover) to develop the theories of descriptive
complexity (including first-order projections) from scratch, and then build upon those
theories to implement Medina’s operators. Such work would be interesting even if Med-
ina’s operators did not further progress in automating NP-hardness reductions, because
it would demonstrate that some aspects of descriptive complexity are logically sound
and can be developed from axioms.
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5.3.2 Implement Medina’s recognition techniques

As mentioned in Chapter 2.3} Medina develops two sets of reduction techniques to clas-
sify SOd sentences. We examined a subset of the first set: operators which syntactically
transform SO sentences in a way that preserves NP-completeness.

Medina’s second set of techniques focus around recognition. They define families
of NP-complete problems that share similar syntactic forms. It is not clear that these
recognition techniques will be more successful at automating NP-hardness reductions
than the operators we implemented. In particular, members of Medina’s RF family [42,
Section 4.2.1] are defined inductively, and the length of each sentence is about twice as
long as the sentence from which it was inductively defined. This means that sentence
lengths grow exponentially in the family.

A more promising technique may be to recognise members of the permutation matrix
family, P M [42) Section 4.3]. This family of NP-complete problems all have the form

f (Vry)(x £y) = (O(f(2), fly) = E(z,y)) (5.3)

fEORD

where E(z,y) is a predicate corresponding to an edge relation and ¢ is a is a first-order
formula that satisfies certain properties. It is not obvious whether one can automate the
process of finding or recognising formulas that satisfy these properties. If automation
was feasible, recognising members of the PM family might be more generally applica-
ble than the operators we examined in this thesis.

In general, determining the utility of Medina’s other techniques could be an inter-
esting research problem.

5.3.3 Automate first-order interpretations directly

Instead of following Medina’s ideas of implementing operators that preserve NP-completeness,
one could develop alternative techniques to recognise SO3 sentences as NP-complete.
Such techniques might be more successful at recognising sentences NP-complete than
anything we know of now.

Working on the level of first-order projections (or first-order reductions) directly may
be even more promising: given two SO3 sentences ®youn and @,y sery, find a first-
order projection from @y, t0 Ppyysiery directly. This would involve finding mapping
formulas for each element of the vocabulary of @, stery-

Understanding how to carry out first-order projection reductions effectively would
allow us to carry out all steps of a reduction on computer: we would be able to encode
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arbitrary problems as SO sentences, and then have a well-defined reduction mecha-
nism for transforming problem instances to each other. With this infrastructure in place,
one could attempt some kind of search control.

5.3.4 Find invertible operators

As mentioned in Section 3.2.1]it would be useful if we could prove that Medina’s opera-
tors were all invertible. That way, we could improve search by allowing users to input a
single sentence to the program — a sentence representing the decision problem to prove
NP-complete.

5.3.5 Find core problems

Although Cook showed that every NP-complete problem could be reduced to SAT us-
ing a generic reduction [13], one might argue that it was Karp’s collection of specific
reductions [33] that made NP-hardness reductions standard practice among computer
scientists. One of Karp’s primary achievements was to prove a core set of problems NP-
complete, then to reduce almost every other problem to members of that core set. This
made reductions easier to carry out in practice; when trying to find a problem I, to
which an unknown problem I1,,,, 5., would reduce, one could search through a space of
six problems (seven including 3-PARTITION and eight including generic SAT) instead
of considering hundreds and hundreds of candidates.

As far as we know, no corresponding set of core problems exists in the SO3 do-
main and we have no strong evidence that the core problems identified in Section 3.1
of Garey and Johnson serve well as core problems when encoded as SO3 sentences.
We see three possible solutions to this problem: one could demonstrate that these core
problems translate well to the SO3 domain, one could demonstrate that they do not and
find another set of core problems, or one could offer evidence which demonstrates that
looking for a core set of SO3 sentences is not a wise idea.

Develop proof strategies

In addition to choosing a core of basic NP-complete problems, Garey and Johnson offer
three strategies for proving reductions [23] Section 3.2]: restriction, local replacement
and component design. These strategies are useful in two ways: they group different
types of reductions into classes, and they guide the thought processes of those trying
to prove new problems NP-complete. Note that these techniques are heuristics: some
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problems are difficult to prove NP-complete using any of these techniques. However,
they appear to be effective in guiding and limiting search by humans.

In the 24 years since Garey and Johnson published their text, others have refined
and extended these strategies. For example, Skeina suggests reducing the set of core
problems to four: 3-SAT, HAMILTONIAN PATH, INTEGER PARTITION and VERTEX
COVER [51]. He also suggests restrictions to these problems that can make reductions
easier — for example, restricting HAMILTONIAN CYCLE to planar graphs. Although
we have no proof that knowledge of these techniques helps humans learn how to prove
arbitrary NP-hardness reductions more effectively (which itself would be an interesting
research question), we suspect that such approaches are useful.

As mentioned in Section a natural question to ask is whether we can find
analagous techniques in the SO sentence domain.

5.3.6 Develop a better representation scheme

There is no law that says SO3 logic is the most appropriate representation scheme for
decision problems. Below we describe some research that seems promising, but it could
be the case that other representations are more suitable to proof automation. We do
not know what these representation schemes would look like, but we do have some
precedent for believing that they could be useful. In her doctoral work, Epstein [20]
[19] developed languages (called R-languages) that expressed graph classes in terms of
generator functions. Each graph class consisted of a few examples and rules for tak-
ing a graph in the class and modifying it to produce another graph that is also in the
class. This representation language facilitated the discovery of new graph classes and
properties, and relationships between the different graph classes.

Such an approach does not relate directly to our work, but it could serve as inspi-
ration that other approaches to the problem of representing decision problems might
exist.

5.3.7 Investigate the hardness of normal forms

As mentioned above, one problem with using SO3 logic as a description language is
that it is ambiguous. Looking for ways to eliminate this ambiguity could be a fruitful
research endeavor.

In describing possible avenues for this research, we will (perhaps incorrectly) distin-
guish between normal forms and canonical forms.

Consider some way of restricting the syntactic structure of SO3 sentences. Consider
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some subset of decision problems X C NP. We will say that the syntactic restriction is
a normal form for X problems if every problem in the subset can be written in a way
that respects the syntactic restrictions. We will call the syntactic restriction canonical
if every problem in the subset can be written using the syntactic restrictions uniquely
— that is, given a problem description II € X, we can specify how to write II in this
canonical form with an algorithm such that encodings of identical decision problems
will be identical.

Finding canonical forms is surely undecidable for arbitrary problems in NP. How-
ever, even forms that are “partially canonical” — heuristics that help us encode decision
problems in a standard way — would be useful.

Medina has taken a step in this direction. conventions such as 3f influence the
fEORD

way we encode SO3 sentences. Future work might build upon these conventions to
find a theoretically sound (or just practically useful) canonical form.

Normal forms for SO3 sentences exist. In fact, one way of defining SO3 is by the
ability to write sentences in prenex normal form where all quantified relations appear
first in the sentence, followed by all quantifiers, followed by all first-order quantifiers,
followed by a quantifier-free first order formula.

In Chapter 3 of his thesis Medina develops a normal form for all NP-complete prob-
lems. He can write any decision problem II that is NP-complete via first-order projec-
tions into the form:

7/\T[S\/_|’)//\A (54)

where T is an SO3 formula constrained to be of a particular form (called “generalized
Independent Set form”), v is a constrained first-order formula related to a first-order
projection, and A is some arbitrary SO3 formula.

This result is promising because it demonstrates that one can find a normal form
for NP-complete problems. It is unhelpful for a number of reasons: to write a decision
problem II in this form, one must already know some fop that proves II is NP-complete,
and finding A and Y ;¢ can be difficult (and is undecidable for arbitrary problems).

The descriptive complexity research literature is filled with exciting results about
normal forms based on restrictions of SOd sentences. Leivant [35] found a normal form
for all successor structures. (A successor structure is a structure A that has succ, <, 1,
and n defined.) Eiter, Gottlob and Gurevich [17] build upon this result to relate prefix
forms of SO logic to monadic second order logic, where all quantified relations are forced
to have arity 1. They find that some classes of SO3 sentences can express decision
problems corresponding to regular languages (that is, languages recognisable by finite
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state automata). Eiter, Gottlob and Schwentick [18] continue this research, investigating
more complicated quantifier patterns over strings.

Eiter, Kolaitis and Schwentick completely classified certain prefix forms for SO3 sen-
tences involving certain graph classes [17], finding certain forms of SO3 sentences that
could only express problems in P, and others that could express problems that are NP-
complete.

This research is exciting in the sense that it allows researchers to determine whether
problems are in P by encoding their decision problems to match syntactic restrictions. It
also allows for the possibility that a computer program can take SO3 sentences as input
and fiddle with their syntactic structure to see whether the structure fits a known form.

In the end, knowing that a normal (or canonical) form for (some subset of) problems
in NP is interesting but unhelpful unless it is accompanied by heuristics or algorithms
that guide us in writing our decision problems in this canonical form.

5.3.8 Find better ways to manipulate SOJ sentences

In addition to investigating first-order interpretations and first-order projections as means
of showing SO3 sentences are NP-complete, one could look for other ways to manip-
ulate these sentences. We described one exciting approach in Section Bordeaux
and Monfroy [6] approach the problem of proving decision problems in P by apply-
ing constraint-satisfaction techniques to SO3 sentences. Other approaches exist in the
research literature; one entry point is a paper by Gabbay and Ohlbach [22] which de-
scribes a (possibly nonterminating) algorithm for eliminating second-order quantifiers
from logical formulas. Such approaches can help demonstrate that problems are in P,
or could be used in our quest to find canonical forms for SO3 sentences.

5.4 Conclusions

Although our attempt to automate NP-hardness reductions was fruitless, there remains
some hope both for solving the problem and our approach. As we have documented
in previous sections, smart people have been investigating different aspects of the SO3
domain, and progress has been achieved. Researchers now understand the expressive
power of some restricted forms of SO3 logic, and as this understanding grows so will
the possibility of automating NP-hardness reductions based on recognising the syntac-
tic form of SO3 sentences. Other approaches which manipulate or simplify problems
expressed in SO3 logic are also promising, especially as some algorithms already exist
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to determine whether a given SO3 sentence represents a problem in P. Thus, our suspi-
cion that SO3logic is a good representation language for hardness automations may be
correct.

It is less clear whether the approaches described in Medina’s thesis will prove suc-
cessful. Given the limited applicability of the syntactic operators we studied, it does
not appear that these operator-based approaches will be very useful in automating a
large number of proofs. One large barrier is that as the number of operators increases,
we have to worry more and more about combinatorial explosions. On the other hand,
Medina’s recognition techniques may be useful in addition to or combined with the
theoretical results discovered about prefix forms of SO3 logic.

Examining reductions on the first-order projection level might have more merit, be-
cause first-order projections and interpretations offer a natural way to decompose the
problem of automating reductions: to automate reductions, we have to find good tech-
niques for expressing input relations from one vocabulary in terms of the input relations
of another. Such an approach would require a considerable amount of research, how-
ever, and finding better ways of decomposing SO3 sentences to known problems (such
as constraint satisfaction problems expressed in propositional logic) might be a better
approach.



Appendix A

Notational Conventions

For consistency, we use the following notational conventions in this thesis:

e I : a decision problem (not necessarily encoded)

7 : a vocabulary

L(7) : alanguage of vocabulary 7

®, T : SOd sentences/formulas

®(xy, ..., x1) : formula ¢ has free variables z, ..., zj

¢, 1 : first-order sentences/formulas

e A, B: structures

e | A| : The universe of structure A, {1,...,n}

e || A|| : The number of elements in the universe of structure A, n .
e A= ®: structure A models sentence ¢

e MOD]¢]: the set of structures (of a fixed vocabulary) that model formula ¢

STRUC!|r] : all structures of vocabulary 7

I : an interpretation

p : a first-order projection
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¥ : an alphabet

M : a Turing machine

e L(M) : The language accepted by Turing machine M
e P, : predicate P has outdegree i

e 12,5 : Relations

e f.g,h: functions

e dJf :function fis an ordering
fEORD

e R': Relation R has arity i
e 1,y,x;: first-order variables
e 1, ; : the variable at position j of tuple i

e 7 : a tuple of variables (not distinguishing members)

o ((z11,%12, %13, T21, %22, Ta3) : formula [ takes two 3-tuples as input.

e 3(Z1,73) : formula (3 takes two tuples as input (size unspecified)
e (z,y,2): atuple containing =, y, =
e 0 : a permutation

e T, L :true and false respectively

o0 : a syntactic operator
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