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Abstract

The notions of entanglement and nonlocality are among the most striking ingredients
found in quantum information theory. One tool to better understand these notions is the
model of nonlocal games ; a mathematical framework that abstractly models a physical
system. The simplest instance of a nonlocal game involves two players, Alice and Bob,
who are not allowed to communicate with each other once the game has started and who
play cooperatively against an adversary referred to as the referee.

The focus of this thesis is a class of games called extended nonlocal games, of which
nonlocal games are a subset. In an extended nonlocal game, the players initially share a
tripartite state with the referee. In such games, the winning conditions for Alice and Bob
may depend on outcomes of measurements made by the referee, on its part of the shared
quantum state, in addition to Alice and Bob’s answers to the questions sent by the referee.

We build up the framework for extended nonlocal games and study their properties and
how they relate to nonlocal games. In doing so, we study the types of strategies that Alice
and Bob may adopt in such a game. For instance, we refer to strategies where Alice and
Bob use quantum resources as standard quantum strategies and strategies where there is an
absence of entanglement as an unentangled strategy. These formulations of strategies are
purposefully reminiscent of the respective quantum and classical strategies that Alice and
Bob use in a nonlocal game, and we also consider other types of strategies with a similar
correspondence for the class of extended nonlocal games.

We consider the value of an extended nonlocal game when Alice and Bob apply a
particular strategy, again in a similar manner to the class of nonlocal games. Unlike
computing the unentangled value where tractable algorithms exist, directly computing the
standard quantum value of an extended nonlocal game is an intractable problem. We
introduce a technique that allows one to place upper bounds on the standard quantum
value of an extended nonlocal game. Our technique is a generalization of what we refer to
as the QC hierarchy which was studied independently in works by Doherty, Liang, Toner,
and Wehner as well as by Navascués, Pironio, and Aćın. This technique yields an upper
bound approximation for the quantum value of a nonlocal game.

We also consider the question of whether or not the dimensionality of the state that
Alice and Bob share as part of their standard quantum strategy makes any difference in
how well they can play the game. That is, does there exist an extended nonlocal game
where Alice and Bob can win with a higher probability if they share a state where the
dimension is infinite? We answer this question in the affirmative and provide a specific
example of an extended nonlocal game that exhibits this behavior.
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We study a type of extended nonlocal game referred to as a monogamy-of-entanglement
game, introduced by Tomamichel, Fehr, Kaniewski, and Wehner, and present a number
of new results for this class of game. Specifically, we consider how the standard quantum
value and unentangled value of these games relate to each other. We find that for certain
classes of monogamy-of-entanglement games, Alice and Bob stand to gain no benefit in
using a standard quantum strategy over an unentangled strategy, that is, they perform
just as well without making use of entanglement in their strategy. However, we show that
there does exist a monogamy-of-entanglement game in which Alice and Bob do perform
strictly better if they make use of a standard quantum strategy. We also analyze the
parallel repetition of monogamy-of-entanglement games; the study of how a game performs
when there are multiple instances of the game played independently. We find that certain
classes of monogamy-of-entanglement games obey strong parallel repetition. In contrast,
when Alice and Bob use a non-signaling strategy in a monogamy-of-entanglement game,
we find that strong parallel repetition is not obeyed.
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Chapter 1

Introduction

The model of two player games has served an important role in developing our under-
standing of theoretical computer science and quantum information. In such a game, we
consider the players, referred to as Alice and Bob, who are not allowed to communicate
to each other once the game begins, and who play cooperatively against a party referred
to as the referee. The game begins when the referee asks questions to Alice and Bob to
which they must respond. When Alice and Bob send back the responses to the referee, the
referee evaluates the questions and answers against a criterion that is publicly known to
the referee, Alice, and Bob that determines what constitutes a winning or losing outcome.

A primary challenge that arises when studying these games is to determine the maxi-
mum probability with which Alice and Bob are able to achieve a winning outcome. This
probability is highly dependent on the type of strategy that Alice and Bob use in the game.
Before the game begins, Alice and Bob are free to communicate with each other and decide
on the type of strategy they will use.

A classical strategy is one in which Alice and Bob decide on a deterministic mapping of
outputs for every possible combination of inputs they will receive in the game. The corre-
sponding maximum probability achieved when Alice and Bob employ a classical strategy
is referred to as the classical value of the game.

Another type of strategy called a quantum strategy is one in which Alice and Bob are
allowed to use nonlocal resources. This type of strategy may involve Alice and Bob sharing
an arbitrary entangled state prior to the start of the game along with sets of measurements
that they may apply to their portions of the state after they each receive questions from
the referee. The corresponding maximum probability achieved when Alice and Bob use a
quantum strategy is referred to as the quantum value of the game.
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For certain games, the probability that Alice and Bob obtain a winning outcome is
higher if they use a quantum strategy as opposed to a classical one. This striking separation
is one primary motivation to study nonlocal games, as it provides examples of tasks that
benefit from the manipulation of quantum information. Indeed, the model of nonlocal
games have been widely studied, especially in recent years [CHTW04, BBT05, CSUU08,
DLTW08, KR10, KRT10, KKM+11, JP11, BFS13, RV15, DSV13, Vid13, CM14].

The ability to calculate the quantum value for an arbitrary nonlocal game is a highly
non-trivial task. Indeed, the quantum value is only known in special cases for certain
nonlocal games. For an arbitrary nonlocal game, there exist approaches that place upper
and lower bounds on the quantum value. One such approach (that we refer to as the QC
hierarchy as done in [CV15] and was introduced in [DLTW08, NPA07]), is implemented
as a hierarchy of optimization problems, referred to as semidefinite programs, which are
optimization problems where the constraints are semidefinite. Convergence is guaranteed
from the QC hierarchy, yet it may be intractable to compute. The lower bound approach
is also calculated using the technique of semidefinite programming [LD07]. While this
method is more efficient to carry out, it does not guarantee convergence to the quantum
value (although in certain cases, it is attained).

In a nonlocal game, the referee is only responsible for sending questions, receiving
answers, and evaluating whether the selection of questions and respective answers yields
a winning or losing outcome. In this thesis, we consider a generalization of the nonlocal
game model where the referee is provided with part of a quantum system prepared by
Alice and Bob, and in addition, also has sets of measurements that he may apply to his
portion of the quantum system to determine the outcome of the game. This type of game
is referred to as an extended nonlocal game. Extended nonlocal games constitute a wider
class of games of which nonlocal games are a subset. For instance, an extended nonlocal
game where the dimension of the quantum system held by the referee is one-dimensional
is precisely a nonlocal game. Monogamy-of-entanglement games are a special type of
extended nonlocal game introduced in [TFKW13] that has been studied with respect to
the problem of position-based cryptography.

1.1 Summary of the results

In addition to introducing the model of extended nonlocal games, we prove the following
results:

• We prove that there exists a class of extended nonlocal game for which no finite-
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dimensional quantum strategy can be optimal. This result further implies the ex-
istence of a tripartite steering inequality for which an infinite-dimensional quantum
state is required in order to achieve maximal violation.

• We generalize the QC hierarchy, a technique for providing upper bounds on nonlocal
games, to the case of extended nonlocal games. We also present a method based on
the see-saw algorithm of Liang and Doherty [LD07] that provides lower bounds on
the class of extended nonlocal games.

• We present a number of results about the class of monogamy-of-entanglement games,
which are a specific type of extended nonlocal game. Specifically, we show that:

– Monogamy-of-entanglement games obey strong parallel repetition when the size
of the question set has 2 elements and the size of the answer set is arbitrary,
and the sets of measurements used by the referee are projective.

– Monogamy-of-entanglement games do not obey strong parallel repetition when
the players use non-signaling strategies.

– We present a class of monogamy-of-entanglement games where the size of the
question set has 2 elements and the size of the answer set is arbitrary where
Alice and Bob can always achieve the quantum value of such a game by using
a strategy that does not require them to store quantum information.

– There exists a monogamy-of-entanglement game in which the size of the question
set has 4 elements and the answer set has 3 elements, for which Alice and Bob
must store quantum information to play optimally.

1.2 Overview

We assume familiarity with the basic notions of quantum computation and quantum in-
formation as can be found in [NC00]. It may also be helpful to have a familiarity with
the terminology and mathematics in the first two chapters of [Wat15], although we shall
also attempt a self-contained presentation of the necessary tools needed to understand the
content herein. Throughout this thesis, we also make frequent use of the mathematical
tool of semidefinite programming. Supplementary resources for the interested reader can
be found in lecture 7 of [Wat04] as well as [BV04].

In Chapter 2, we review the basics of quantum information, nonlocal games, and rele-
vant notation that will be used in the remainder of this thesis.
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In Chapter 3, we introduce the model of extended nonlocal games that is built upon
the model of nonlocal games.

In Chapter 4, we present an analysis of certain properties of the extended nonlocal game
model and give an example of an extended nonlocal game for which no finite-dimensional
quantum strategy can be optimal.

In Chapter 5, we present a method that provides upper and lower bounds on the value
of an extended nonlocal game.

In Chapter 6, we study the class of extended nonlocal games referred to as monogamy-
of-entanglement games and prove a number of properties that these games exhibit.

Finally, in Chapter 7, we present conclusions and pose open questions that may be of
interest for future research. Supplementary software used in this thesis is also provided in
Appendix A, as well as on the software repositories hosted here [Rus15] and here [Rus16].

The following is a list of existing work directly related to the content in this document:

• V. Russo and J. Watrous. Extended nonlocal games from quantum-classical
games. 2016, [RW16].

• N. Johnston, R. Mittal, V. Russo, and J. Watrous. Extended nonlocal games
and monogamy-of-entanglement games. Proc. R. Soc. A 472:20160003, 2016,
[JMRW16].

The following is a list of existing work completed during my Ph.D., but not directly related
to my thesis work:

• S. Bandyopadhyay, A. Cosentino, N. Johnston, V. Russo, J. Watrous, and N. Yu.
Limitations on separable measurements by convex optimization. IEEE
Transactions on Information Theory, 2015, [BCJ+15].

• S. Arunachalam, N. Johnston, and V. Russo. Is absolute separability deter-
mined by the partial transpose?. Quantum Information & Computation, 2015,
[AJR15].

• D. Gosset, V. Kliuchinikov, M. Mosca, and V. Russo. An algorithm for the T-
count. Quantum Information & Computation, 2014, [GKMR14].

• A. Cosentino and V. Russo. Small sets of locally indistinguishable orthogo-
nal maximally entangled states. Quantum Information & Computation, 2014,
[CR14].
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• S. Arunachalam, A. Molina, and V. Russo. Quantum hedging in two-round
prover-verifier interactions. arXiv:1310.7954, 2013, [AMR13].
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Chapter 2

Preliminaries

In this chapter, we present an overview of the relevant subject matter of quantum infor-
mation theory that will be used for the remainder of this thesis. We further establish basic
terminology and notation. We shall make gratuitous use of the notation conventions for
quantum information theory from [Wat15]. The reader is assumed to be familiar with the
basic underpinnings of quantum information theory, as may be found, for instance, in the
following references [NC00, KLM07, Wil13].

We also introduce the subject of convex optimization, which as we shall see, acts as a
Swiss army knife for many problems of interest in quantum information, and indeed many
that we will encounter in this thesis. For further information on convex optimization, the
reader is referred to [BV04].

We shall then introduce the nonlocal game formalism. This model provides an excel-
lent venue to abstractly study one of the most crucial features of quantum information:
entanglement. We shall formally define the nonlocal game model and present relevant
background work, making our treatment of the subject as self-contained as possible.

Contents
2.1 Basic notation, terminology, and background . . . . . . . . . . 7

2.1.1 Alphabets, symbols, and strings . . . . . . . . . . . . . . . . . . 7

2.1.2 Vectors, operators, and mappings . . . . . . . . . . . . . . . . . . 7

2.1.3 Operator decompositions and vector decompositions . . . . . . . 14

2.1.4 Convexity and semidefinite programming . . . . . . . . . . . . . 15

2.2 Quantum information theory . . . . . . . . . . . . . . . . . . . 18
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2.2.1 Quantum states, operations, and measurements . . . . . . . . . . 18

2.2.2 Entanglement and separability . . . . . . . . . . . . . . . . . . . 20

2.2.3 Teleportation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 The nonlocal game model . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 Strategies for nonlocal games . . . . . . . . . . . . . . . . . . . . 26

2.3.2 Relationships between different strategies and values . . . . . . . 31

2.1 Basic notation, terminology, and background

2.1.1 Alphabets, symbols, and strings

We use capital Greek letters Σ,Γ,∆, etc. to denote finite and nonempty sets that we refer
to as alphabets . We shall often use lower case characters such as x, y, a, b, etc. to denote
elements of alphabets called symbols . For an alphabet Σ, a string over Σ is a finite sequence
of symbols from Σ. The length of a string is the number of symbols in the sequence. We
will typically use lower case characters s and t to refer to strings. For every string s, we
denote the length of s as |s|. We define the empty string , denoted by ε, to represent the
string where |ε| = 0, or in other words, the string that has length 0. For some nonnegative
integer n ≥ 0, we say that Σ≤n denotes all strings of length at most n and we say that Σn

denotes all strings of length n over the alphabet Σ. Note that for any alphabet Σ, one has
that Σ0 = {ε}. We denote the set of all strings over an alphabet Σ as Σ∗, that is

Σ∗ = Σ0 ∪ Σ1 ∪ · · · . (2.1)

For strings s and t, we represent the concatenation of s and t as st, which is the string
composed of s followed by t. The reversal of a string s is denoted as sR.

2.1.2 Vectors, operators, and mappings

Vectors

We shall use R,C,N, and Z to denote the sets of real numbers, complex numbers, natural
numbers (including 0), and integers respectively. We use Zn to denote the integers modulo
n as denoted by

Zn = {0, 1, . . . , n− 1}. (2.2)

7



For some alphabet Σ, we define a complex Euclidean space as the set CΣ, which refers
to the space of all complex vectors indexed by Σ. These complex Euclidean spaces will
be denoted as scripted capital letters, A,B,X ,Y , Z, etc. We use lower case characters
u, v, w, z to represent elements in a complex Euclidean space.

For some alphabet Σ and any vectors u, v ∈ CΣ, the inner product is defined as

〈u, v〉 =
∑
a∈Σ

u(a)v(a), (2.3)

where u(a) and v(a) refer to the entry of vectors u and v indexed by a for every u, v ∈ CΣ.
We say that two vectors u, v ∈ CΣ are orthogonal if and only if 〈u, v〉 = 0. We say that a
set of vectors {ua : a ∈ Γ} ⊂ CΣ form an orthogonal set if 〈ua, ub〉 = 0 for all a, b ∈ Γ such
that a 6= b.

The Euclidean norm of a vector u ∈ CΣ is given by

‖u‖ =
√
〈u, u〉. (2.4)

A vector u is called a unit vector if ‖u‖ = 1. The unit sphere, S(X ), for a complex
Euclidean space, X , is the collection of all unit vectors:

S(X ) = {u ∈ X : ‖u‖ = 1}. (2.5)

We say that two vectors u, v ∈ CΣ are orthonormal if in addition to u and v being orthog-
onal, they are also unit vectors. We say that a set of vectors {ua : a ∈ Γ} ⊂ CΣ form an
orthonormal set if ua and ub are orthonormal for all a, b ∈ Γ with a 6= b. We refer to an
orthonormal basis as an orthonormal set {ua : a ∈ Γ} ⊂ CΣ, such that |Γ| = |Σ|. The
standard basis of CΣ is the orthonormal basis given by {ea : a ∈ Σ}, where

ea(b) =

{
1 if a = b,

0 if a 6= b,

for all a, b ∈ Σ. We say that two orthonormal bases

B0 = {ua : a ∈ Σ} ⊂ CΣ and B1 = {va : a ∈ Σ} ⊂ CΣ (2.6)

are mutually unbiased if and only if |〈ua, vb〉| = 1/
√

Σ for all a, b ∈ Σ. For n ∈ N, a set of
orthonormal bases {B0, . . . ,Bn−1} are mutually unbiased bases if and only if every basis is
mutually unbiased with every other basis in the set, i.e. Bx is mutually unbiased with Bx′
for all x 6= x′ with x, x′ ∈ Σ.
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Operators

We use L(X ,Y) to denote the set of all linear operators from the space X to Y . When con-
venient, we use the shorthand L(X ) to denote L(X ,X ). We shall denote linear operators as
capital letters A,B,C, etc. Linear operators and matrices have a natural correspondence,
that is, for every operator A ∈ L(X ,Y) where X = CΣ and Y = CΓ, one may associate
the matrix M : Γ× Σ→ C defined as

M(a, b) = 〈ea, Aeb〉 (2.7)

for all a ∈ Γ and b ∈ Σ. For an operator, A, when referring to the corresponding matrix,
we will overload the symbol A instead of using M as above. For complex Euclidean spaces
X = CΣ and Y = CY , we define the standard basis of a space of operators by the collection
{Ea,b : a ∈ Γ, b ∈ Σ} that forms a basis of L(X ,Y). The operator Ea,b is defined as

Ea,b(c, d) =

{
1 if (c, d) = (a, b),

0 otherwise,

for all c ∈ Γ and d ∈ Σ. The identity operator , 1 ∈ L(X ), is the operator that obeys
1u = u for all u ∈ X . In terms of its matrix representation, the identity operator has ones
along the diagonal, and zeros everywhere else. The identity operator acting on space X
may be written as 1X or as 1 if it is clear what space the operator is acting on from the
context.

For any operator A ∈ L(X ,Y) with X = CΣ and Y = CΓ, the conjugate of A is
denoted as A ∈ L(X ,Y) where the matrix representation of A has entries that are complex
conjugates of the entries in the matrix representation of A, that is

A(a, b) = A(a, b), (2.8)

for all a ∈ Γ and b ∈ Σ. The transpose of A ∈ L(X ,Y), denoted AT ∈ L(Y ,X ), is the
operator whose matrix representation is defined by

AT(b, a) = A(a, b), (2.9)

for all a ∈ Γ and b ∈ Σ. For any operator A ∈ L(X ,Y), there exists a unique operator
A∗ ∈ L(Y ,X ) that is referred to as the adjoint , where A∗ satisfies the equation

〈v, Au〉 = 〈A∗v, u〉, (2.10)
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for all u ∈ X and v ∈ Y . In the matrix representation, A∗ is the conjugate transpose of A,
that is

A∗ =
(
A
)T

= (AT). (2.11)

The trace of an operator A ∈ L(X ) is the sum of its diagonal elements, that is

Tr(A) =
∑
a∈Σ

A(a, a). (2.12)

For operators A,B ∈ L(X ,Y) we denote the Hilbert-Schmidt inner product as

〈A,B〉 = Tr(A∗B). (2.13)

For any operators A,B ∈ L(X ) we define the Lie bracket [A,B] as

[A,B] = AB −BA. (2.14)

We say that operators A and B commute if and only if [A,B] = 0.

For any space X , we define the following types of operators acting on the space X :

• Hermitian operators. An operator H ∈ L(X ) is Hermitian if H = H∗. We use
Herm(X ) to denote the set of all Hermitian operators.

• Positive semidefinite operators. An operator P ∈ L(X ) is positive semidefinite if and
only if it holds that P = X∗X for some operator X ∈ L(X ). We use Pos(X ) to
denote the set of all positive semidefinite operators.

• Density operators. An operator ρ ∈ L(X ) is a density operator if ρ ∈ Pos(X ) and
Tr(ρ) = 1. We use D(X ) to denote the set of all density operators.

• Projection operators. An operator Π ∈ Pos(X ) is a projection operator if Π2 = Π.
We use Proj(X ) to denote the set of all projection operators.

• Unitary operators. An operator U ∈ L(X ) is a unitary operator if U is a linear
isometry from X to Y , where a linear isometry is an operator U ∈ L(X ,Y) such that
U∗U = 1X .

For any space X , the aforementioned operators obey the following relationships

D(X ) ⊂ Pos(X ) ⊂ Herm(X ) ⊂ L(X ) and Proj(X ) ⊂ Pos(X ), (2.15)

as well as

U(X ) ⊂ L(X ). (2.16)
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Norms

For any complex Euclidean spaces X and Y and any operator A ∈ L(X ,Y), we define a
norm of A, denoted as ‖A‖, as a function which satisfies the following conditions:

1. ‖A‖ ≥ 0 for all A ∈ L(X ,Y),

2. ‖A‖ = 0 if and only if A = 0 for all A ∈ L(X ,Y),

3. ‖αA‖ = |α| ‖A‖ for all α ∈ C and for all A ∈ L(X ,Y),

4. ‖A+B‖ ≤ ‖A‖+ ‖B‖ for all A,B ∈ L(X ,Y).

For any operator A ∈ L(X ,Y) and any real number p ≥ 1, one may define the Schatten
p-norms as

‖A‖p =
(

Tr
(

(A∗A)
p
2

)) 1
p
. (2.17)

In particular, we focus on the Schatten p-norms for p = 1 and p =∞ which are given the
special names of the trace norm and the spectral norm, respectively.

• Trace norm. The trace norm of an operator A ∈ L(X ,Y) is defined by

‖A‖1 =
(

Tr
(

(A∗A)
1
2

)) 1
1

= Tr(
√
A∗A), (2.18)

where
√
A is the unique positive semidefinite operator called the square root of A

that has the property
(√

A
)2

= A.

• Spectral norm. The spectral norm of an operator A ∈ L(X ,Y) is defined by

‖A‖∞ = max {‖Au‖ : u ∈ X , ‖u‖ = 1} . (2.19)

When referring to the spectral norm, we often will drop the ∞ subscript from ‖·‖∞
to just ‖·‖.
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The tensor product

For a set of n complex Euclidean spaces, X1 = CΣ1 , . . . ,Xn = CΣn , the tensor product of
these spaces is given by

X1 ⊗ · · · ⊗ Xn = CΣ1×···×Σn . (2.20)

One may consider the tensor product acting on vectors u1 ∈ X1, . . . , un ∈ Xn denoted as

u1 ⊗ · · · ⊗ un ∈ X1 ⊗ · · · ⊗ Xn, (2.21)

which refers to the vector

(u1 ⊗ · · · ⊗ un) (a1, . . . , an) = u1(a1) · · ·un(an). (2.22)

One may also consider the tensor product acting on operators. For complex Euclidean
spaces X1 = CΣ1 , . . . ,Xn = CΣn and Y1 = CΓ1 , . . . ,Yn = CΓn , for alphabets Σ1, . . . ,Σn

and Γ1, . . . ,Γn, define a set of operators

A1 ∈ L(X1,Y1), . . . , An ∈ L(Xn,Yn). (2.23)

We then define the tensor product acting on operators A1, . . . , An as

A1 ⊗ · · · ⊗ An ∈ L(X1 ⊗ · · · ⊗ Xn,Y1 ⊗ · · · ⊗ Yn), (2.24)

where the tensor product of A1, . . . , An is the unique operator that satisfies

(A1 ⊗ · · · ⊗ An) (u1 ⊗ · · · ⊗ un) = (A1u1)⊗ · · · ⊗ (Anun) , (2.25)

for all u1 ∈ X1, . . . , un ∈ Xn.

For any complex Euclidean space X , we may also use the shorthand X⊗n to denote the
n-fold tensor product of X with itself, that is

X⊗n = X ⊗ · · · ⊗ X︸ ︷︷ ︸
n-times

. (2.26)

Mappings

We denote linear mappings acting on operators as Φ : L(X ) → L(Y). We use T(X ,Y)
to denote the set of all such mappings. Each Φ ∈ T(X ,Y) has a unique adjoint mapping
Φ∗ ∈ T(Y ,X ) defined as

〈Y,Φ(X)〉 = 〈Φ∗(Y ), X〉, (2.27)
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for all X ∈ L(X ) and Y ∈ L(Y). For instance, for an operator X ∈ L(X ) where X = CΣ,
the trace function from equation (2.12) may be described as a mapping of the following
form

Tr : L(X )→ C. (2.28)

For operators X ∈ L(X ) and Y ∈ L(Y), the partial trace is a map defined as TrY ∈
T(X ⊗ Y ,X )

TrY = 1X ⊗ Tr . (2.29)

For a space X , the identity map, 1L(X ) ∈ T(X ), is given as

1L(X )(X) = X (2.30)

for all X ∈ L(X ).

We shall make use of a correspondence between L(Y ,X ) and X ⊗Y for spaces X = CΣ

and Y = CΓ. This serves as a correspondence between operators and vectors, and is
denoted by the “vec” linear mapping

vec : L(Y ,X )→ X ⊗ Y (2.31)

defined by

vec(Ea,b) = ea ⊗ eb (2.32)

for all a ∈ Σ and b ∈ Γ. Using the matrix representation of A ∈ L(Y ,X ), the vec mapping
can be thought of as stacking the rows of A to form a single vector. For example, for the
matrix

A =

a1,1 · · · a1,n
...

. . .
...

an,1 · · · an,n

 ∈ L(Y ,X ), (2.33)

the vec mapping has the following effect

vec (A) = (a1,1, . . . , a1,n, . . . , an,1, . . . , an,n)T ∈ X ⊗ Y . (2.34)

For arbitrary spaces X and Y , we consider the following useful sets of linear mappings:
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• Completely positive. A mapping Φ ∈ T(X ,Y) is completely positive if

Φ⊗ 1Z(X) ∈ Pos(Y ⊗ Z), (2.35)

for each complex Euclidean space Z and for any X ∈ Pos(X ⊗ Z).

• Trace preserving . A mapping Φ ∈ T(X ,Y) is trace preserving if

Tr(Φ(X)) = Tr(X) (2.36)

for all X ∈ L(X ).

• Hermiticity preserving . A mapping Φ ∈ T(X ,Y) is Hermiticity preserving if

Φ(H) ∈ Herm(Y) (2.37)

for every Hermitian operator H ∈ Herm(X ).

2.1.3 Operator decompositions and vector decompositions

The following operator and vector decompositions are fundamental to many proofs that
appear in quantum information, and indeed also appear as essential steps in the proofs in
this thesis.

The singular value theorem states that for any nonzero operator A ∈ L(X ,Y) with
r = rank(A), that there exists positive real numbers s1, . . . , sr ∈ R and orthonormal sets
{x1, . . . , xr} ⊂ X and {y1, . . . , yr} ⊂ Y such that

A =
r∑
i=1

siyix
∗
i . (2.38)

Such a decomposition is referred to as a singular value decomposition. We refer to the real
numbers s1, . . . , sr as the singular values of A and the sets y1, . . . , yr and x1, . . . , xr are
usually called the left singular vectors and right singular vectors of A, respectively.

The spectral theorem states that an operator A ∈ L(X ) with r = rank(A) is Hermitian if
and only if there exists real numbers λ1, . . . , λr ∈ R, and an orthonormal set {x1, . . . , xr} ⊂
X such that

A =
r∑
i=1

λixix
∗
i . (2.39)
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Such a decomposition is called a spectral decomposition. We refer to the numbers λ1, . . . , λr
as the eigenvalues of A and the vectors x1, . . . , xr as the eigenvectors of A.

The Schmidt decomposition of an arbitrary nonzero vector u ∈ X ⊗ Y consists of a
positive integer r ≥ 1 and orthonormal sets {x1, . . . , xr} ⊂ X and {y1, . . . , yr} ⊂ Y such
that u may be expressed as

u =
r∑
i=1

sixi ⊗ yi. (2.40)

2.1.4 Convexity and semidefinite programming

Convexity

We shall denote finite-dimensional real or complex vector spaces as either V or W . In this
section, the space V will typically denote either Rn or Cn, for some finite n > 1, and W
shall be a subset of V . We say that a set W ⊆ V is convex if for all u, v ∈ W and all
λ ∈ [0, 1] it is true that

λu+ (1− λ)v ∈ W . (2.41)

Otherwise, we say that W is non-convex or not convex. We say that a set W ⊆ V is open
if and only if for all elements w ∈ W there exists a real number ε > 0 such that

{v ∈ V : ‖w − v‖ < ε} ⊆ W . (2.42)

We say that a set W ⊆ V is closed if and only if it is the complement of an open set. For
W ⊆ V we refer to a sequence of vectors in W as a function

s : N→W (2.43)

where a sequence is denoted as s(n) = un with un ∈ W for all n ∈ N. A subsequence is
a sequence that is obtainable from some sequence by removing elements without altering
the order of the elements that remain. For W ⊆ V , we say that a sequence s(n) ∈ W is a
convergent sequence or converges to v ∈ V if for any real number ε > 0 there exists N ∈ N
such that

‖s(n)− v‖ < ε (2.44)
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for all n > N . We say that a set is compact if and only if every sequence in W has a
convergent subsequence.

We define a probability vector p ∈ RΣ for some alphabet Σ if it satisfies the property

p(a) ≥ 0 (2.45)

for all a ∈ Σ as well as ∑
a∈Σ

p(a) = 1. (2.46)

We use p ∈ P(Σ) to denote the set of all such probability vectors. We define a convex
combination of vectors in W as ∑

a∈Σ

p(a)ua, (2.47)

where Σ is some alphabet, p ∈ P(Σ) is a probability vector, and

{ua : a ∈ Σ} ⊆ W , (2.48)

is a collection of vectors in W .

Hilbert spaces

In this thesis, we will be primarily concerned with finite-dimensional complex Euclidean
spaces, however, we will encounter a few results that will require the use of a possibly
infinite-dimensional space. We, therefore, introduce the notion of a Hilbert space, which
generalizes finite-dimensional complex Euclidean spaces to spaces with any finite or infinite
number of dimensions. Specifically, we will restrict our attention to separable Hilbert spaces ,
that is a Hilbert space that has a countable orthonormal basis. In this thesis, whenever we
refer to a Hilbert space, it is assumed that we are referring to a separable Hilbert space. We
will always refer to such Hilbert spaces as H to distinguish them from finite-dimensional
complex Euclidean spaces. Much of the discussion thus far on finite-dimensional complex
Euclidean spaces may be ported over to infinite-dimensional Hilbert spaces, but we make
note of a few key differences between them.

Let {en : n ∈ N} be a countable orthonormal basis of a Hilbert space H. Then we can
write each element v ∈ H as

v =
∞∑
n=1

〈v, en〉en. (2.49)
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We may also consider operators acting on a (possibly) infinite-dimensional Hilbert space.
Given Hilbert spaces H1 and H2, one writes B(H1,H2) to refer to the collection of all
bounded operators of the form

A : H1 → H2, (2.50)

such that

‖Av‖ ≤ c‖v‖ (2.51)

for all v ∈ H1 and for some constant c > 0. We use the shorthand B(H) to refer to the
collection of B(H,H) bounded operators. Every bounded operator A ∈ B(H) has a unique
adjoint operator A∗ ∈ B(H) satisfying

〈u,Av〉 = 〈A∗u, v〉, (2.52)

for all u, v ∈ H, behaving in a similar fashion to adjoints on finite-dimensional complex
Euclidean spaces. A positive semidefinite operator P ∈ B(H) is defined in an analogous
way to positive semidefinite operators over finite-dimensional spaces, namely that

P = X∗X (2.53)

for some operator X ∈ B(H). Given an orthonormal basis {en : n ∈ N} ⊂ H, we say that
A ∈ B(H) is a trace class operator if and only if∑

n∈N

〈
|A| en, en

〉
<∞, (2.54)

where |A| =
√
A∗A ∈ B(H). For A ∈ B(H), define

‖A‖1 =
∑
n∈N

〈
|A| en, en

〉
. (2.55)

We may therefore say that a bounded operator A ∈ B(H) is also trace class if ‖A‖1 <∞.
A density operator ρ ∈ B(H) is both a bounded operator and a trace class operator.

Let Y be a Banach space and let X = Y∗. Then we say that a sequence converges
weak-* to a vector f ∈ X if

lim
n→∞

fn(v) = f(v), (2.56)

for all v ∈ Y . A consequence of the so-called Banach-Alaoglu theorem [Rud91] that we
will use in Chapter 5 is that every bounded sequence has a weak-* convergent subsequence
provided Y is separable.
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Semidefinite programming

Let X and Y be complex Euclidean spaces, A ∈ Herm(X ) and B ∈ Herm(Y) be Hermi-
tian operators, and Φ ∈ T(X ,Y) be a Hermiticity preserving mapping. A semidefinite
program (SDP) is defined by the triple (A,B,Φ) and is identified with the following pair
of optimization problems.

Primal problem

maximize: 〈A,X〉
subject to: Φ(X) = B,

X ∈ Pos(X ).

Dual problem

minimize: 〈B, Y 〉
subject to: Φ∗(Y ) ≥ A,

Y ∈ Herm(Y).

An equivalent formulation of the above primal and dual problems is the so called “standard
form” which is written as

Primal problem

maximize: 〈A,X〉
subject to: 〈B1, X〉 = γ1,

...

〈Bm, X〉 = γm,

X ∈ Pos(X ).

Dual problem

minimize:
m∑
j=1

γjyj

subject to:
m∑
j=1

yjBj ≥ A,

y1, . . . , ym ∈ R.

(2.57)

In this case, B1, . . . , Bm ∈ Herm(X ) replace the Φ operators and γ1, . . . , γm ∈ R replace
the B operators. A proof of the equivalence between the two SDP formulations may be
found in [Wat04]. One may prefer to use either form depending on the specifics of the
problem and convenience of representation.

2.2 Quantum information theory

2.2.1 Quantum states, operations, and measurements

We shall refer to the class of density operators interchangeably as quantum states. For some
state ρ ∈ D(X ), we refer to ρ as a pure state if ρ additionally satisfies the constraint that
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rank(ρ) = 1. Equivalently, the state ρ is pure if there exists some vector u ∈ X such that
ρ = uu∗. Otherwise, if ρ is not pure, then we refer to ρ as a mixed state. From the spectral
theorem, it follows that every quantum state may be written as a convex combination of
pure states.

For some state ρ ∈ D(X ), one may consider a register , denoted as X, as a computational
abstraction in which the actions on the state ρ are carried out. For spaces X ,Y , and Z,
we shall denote the corresponding registers as X, Y, and Z, respectively. For a register X,
we use |X| to denote the size of the register X, where the size is indicative of the dimension
of X . We refer to registers of the binary values, {0, 1}, as qubits .

For some register X, we may consider measurements on this register as being described
by a set of positive semidefinite operators {Pa : a ∈ Γ} ⊂ Pos(X ) indexed by the alphabet
Γ of measurement outcomes satisfying the constraint that∑

a∈Γ

Pa = 1X . (2.58)

Performing a measurement on X in state ρ, the outcome a ∈ Γ results with probability
〈Pa, ρ〉. We call a measurement {Πa : a ∈ Γ} a projective measurement if and only if all of
the measurement operators are projection operators, i.e. Πa ∈ Proj(X ) for all a ∈ Γ. For
a projective measurement {Πa : a ∈ Γ} ⊂ Proj(X ) and associated real number outcomes
{λa : a ∈ Γ} the observable corresponding to this measurement is

A =
∑
a∈Γ

λaΠa. (2.59)

We define a quantum channel as a linear mapping Φ ∈ T(X ,Y) that is completely
positive and trace preserving. The set of all channels is denoted by C(X ,Y).

For some complex Euclidean space X , any state ρ ∈ D(X ) may be purified , that is, we
are guaranteed that there exists a complex Euclidean space, Y , with dim(Y) = rank(ρ),
and a unit vector u ∈ X ⊗ Y such that

ρ = TrY(uu∗). (2.60)

We refer to the state uu∗ as a purification of ρ. A proof that a purification can be performed
for any state can be seen by writing ρ in terms of its spectral decomposition for some basis
{x1, . . . , xr} ⊂ X and set of nonnegative real numbers s1, . . . , sr ∈ R such that

ρ =
r∑
i=1

sixix
∗
i . (2.61)
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Define a state u ∈ X ⊗ Y , which can be written in terms of its Schmidt decomposition as

u =
r∑
i=1

√
sixi ⊗ yi, (2.62)

where {y1, . . . , yr} is orthonormal. Equation (2.60) then follows from a routine calculation

TrY(uu∗) = TrY

((
r∑
i=1

√
sixi ⊗ yi

)(
r∑
j=1

√
sjxj ⊗ yj

)∗)

= TrY

(
r∑
i,j

√
sisjxix

∗
j ⊗ yiy∗j

)

=
r∑
i,j

δi,j
√
sisjxix

∗
j = ρ,

(2.63)

where we use δi,j to denote the Kronecker delta function defined as

δi,j =

{
0 if i 6= j,

1 if i = j.

2.2.2 Entanglement and separability

For complex Euclidean spaces X = CΣ and Y = CΓ, we say that a pure state u ∈ X ⊗ Y
is separable, or equivalently that u is a product state, if it can be written as

u = v ⊗ w, (2.64)

for some v ∈ X and w ∈ Y . Otherwise, we say that u is entangled . Equation (2.64) is
over two systems, X and Y . We refer to such a system as a bipartite system. However the
notion of separability extends to multipartite systems. For an integer n > 1 and complex
Euclidean spaces X1 = CΣ1 , . . . ,Xn = CΣn , we say that a pure state u ∈ X1 ⊗ · · · ⊗ Xn is
separable if it can be written as

u = v1 ⊗ · · · ⊗ vn (2.65)

for some v1 ∈ X1, . . . , vn ∈ Xn. Otherwise, u is entangled. A pure state u ∈ X ⊗ Y with
X = CΣ and Y = CΓ such that |Σ| ≥ |Γ| is maximally entangled if

TrX (uu∗) =
1Y

|Γ| . (2.66)
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For some positive integer m, the canonical bipartite maximally entangled state is written
as

u =
1√
m

∑
c∈Zm

ec ⊗ ec. (2.67)

The notions of entanglement and separability also apply to operators. For n > 1 and
complex Euclidean spaces X1 = CΣ1 , . . . ,Xn = CΣn , the operator R ∈ Pos(X1 ⊗ · · · ⊗ Xn)
is separable if there exists n collections of positive semidefinite operators

{Pa,1 : a ∈ Σ1} ⊂ Pos(X1), . . . , {Pa,n : a ∈ Σn} ⊂ Pos(Xn), (2.68)

such that

R =
∑
a∈Σ

Pa,1 ⊗ · · · ⊗ Pa,n. (2.69)

For complex Euclidean spaces X and Y , we refer to the bipartite system described by
operators P ∈ Pos(X ⊗ Y) satisfying the condition in equation (2.69) as being contained
in the set Sep(X1 : . . . : Xn). We refer to such elements in this set as separable operators .
If the P operators are also density matrices, that is if

P ∈ Sep(X : Y) ∩D(X ⊗ Y), (2.70)

then we say that P ∈ SepD(X : Y). We refer to such elements in this set as separable
density operators . In contrast to being separable, if instead we have that P 6∈ Sep(X : Y),
then we refer to P as an entangled operator .

The following state

τ =
1

2
(E0,0 ⊗ E0,0 + E0,1 ⊗ E0,1 + E1,0 ⊗ E1,0 + E1,1 ⊗ E1,1) , (2.71)

is an example of an entangled operator, τ 6∈ Sep(X : Y), since τ cannot be written as a
convex combination of tensor products. The entangled operator from equation (2.71) is
also maximally entangled, and is one state that is composed from an important class of
states referred to as the Bell states ,

u0 =
1√
2

(e0 ⊗ e0 + e1 ⊗ e1) , u1 =
1√
2

(e0 ⊗ e1 + e1 ⊗ e0) ,

u2 =
1√
2

(e0 ⊗ e1 − e1 ⊗ e0) , u3 =
1√
2

(e0 ⊗ e0 − e1 ⊗ e1) ,
(2.72)
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where the state from equation (2.71) is given by τ = u0u
∗
0.

An important class of unitary operators are the so called Pauli operators defined by
the matrices

1 =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
, (2.73)

where 1, X, Y, Z ∈ U(C2). For any positive integer m, the generalizations for the Pauli-X
and Pauli-Z operators are defined as

Xm =
∑
c∈Zm

ec+1e
∗
c and Zm =

∑
c∈Zm

γm(c)ece
∗
c , (2.74)

where

γm(c) = exp(2πic/m). (2.75)

From this, we define the generalized Pauli operators in U(Cm) as the set{
W

(m)
k1,k2

: k1, k2 ∈ Zm
}
. (2.76)

where W
(m)
k1,k2

= Xk1
m Z

k2
m . For instance, for m = 2, writing the generalized Pauli operators

as

1 = W
(2)
0,0 , X = W

(2)
1,0 , Y = iW

(2)
1,1 , Z = W

(2)
0,1 , (2.77)

recovers the standard Pauli operators from equation (2.73). One may also consider a
generalization of the Bell states to higher dimensions. We define the generalized Bell basis

density operators as a set,
{
φ

(m)
k1,k2

: k1, k2 ∈ Zm
}

, where

φ
(m)
k1,k2

=
1

m
vec
(
W

(m)
k1,k2

)
vec
(
W

(m)
k1,k2

)∗
. (2.78)

A quick calculation reveals that for m = 2, equation (2.78) gives

φ
(2)
0,0 = u0u

∗
0, φ

(2)
0,1 = u3u

∗
3,

φ
(2)
1,0 = u1u

∗
1, φ

(2)
1,1 = u2u

∗
2,

(2.79)

which are the density operators that correspond to the Bell states from equation (2.72).
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2.2.3 Teleportation

One of the most intriguing protocols in quantum information is that of teleportation: a
process in which one party transmits a qubit to another party using resources consisting
of a pair of maximally entangled qubits and two bits of communication [BBC+93]. The
traditional teleportation process may be generalized.

Alice

Bob

φ
(m)
0,0

T

Xk1
m Zk2

m
ρ

ρ

X

Y

k1, k2

Figure 2.1: The teleportation protocol. Alice’s goal is to teleport the state ρ to Bob. The
dashed line in the center separates the actions of Alice and Bob. Alice and Bob prepare
a maximally entangled state where part of the state is contained in Alice’s register X and
the other part is contained in Bob’s register Y. Alice performs a Bell measurement and
sends k1, k2 ∈ Zm, from this measurement to Bob. Bob receives k1 and k2 and applies of
the generalized Pauli operators to his register Y. The end result is that Bob now possesses
the state ρ.

Suppose that Alice and Bob prepare registers (X,Y) where Alice holds X and Bob holds
Y such that

|X| = m = |Y| , (2.80)

where the contents of (X,Y) corresponds to the maximally entangled state φ
(m)
0,0 . Alice

obtains a new state, ρ, contained in register Z that she desires to send to Bob. In order
to do so, both parties abide by the generalized teleportation protocol, that is depicted in
Figure 2.1.

1. Alice measures (Z,X) with respect to the generalized Bell basis as defined from equa-
tion (2.78) {

φ
(m)
k1,k2

: k1, k2 ∈ Zm
}
, (2.81)

where the outcomes of performing this measurement are given by (k1, k2) ∈ Zm×Zm.

23



2. Alice then sends measurement outcomes (k1, k2) to Bob.

3. Bob receives (k1, k2) from Alice and applies the generalized Pauli operator

W
(m)
k1,k2

, (2.82)

as defined in equation (2.76) to his register, Y, which completes the protocol, and
teleports Z to Bob.

To see why the state ρ from Alice is teleported to Bob, one may consider a generalization
of the case for m = 2. The scenario where m = 2 is the most standard teleportation
setup, and has been covered, for instance, in [NC00], whereas the generalization is covered
in [Wil13].

2.3 The nonlocal game model

The nonlocal game model is built upon the notion of interactive proof systems , initially
introduced in [GMR85] and independently in [Bab85], and further studied in classical com-
plexity theory [BOGKW88, For89, BFL91, Fei91, FK94, Raz98]. Informally, an interactive
proof system is an abstract model of computation where two parties, referred to as the
prover and the verifier , exchange messages to determine the validity of a mathematical
statement. The interactive proof system model was made more powerful in [BOGKW88],
where the authors introduced a multi-prover interactive proof system that consisted of at
least two independent provers, and one verifier. When considering two provers, we refer
to them by the names of Alice and Bob, and we call the verifier the referee. We refer
to a one-round multi-prover interactive proof system with at least two provers (Alice and
Bob) that play cooperatively against a referee as a nonlocal game. In [CHTW04], the
authors formally introduced the notion of a nonlocal game where the provers may share
entanglement. The nonlocal game model served to embody the notion of a Bell inequality ,
an inequality that illustrated the inability of a local hidden variable theory to account for
certain consequences of entanglement [Bel64]. In [CHSH69], the authors Clauser, Horne,
Shimony, and Holt presented a special type of Bell inequality that has since been named
after the authors as the CHSH inequality . In [CHTW04], the CHSH inequality was first
formulated in the language of nonlocal games. Nonlocal games have since been studied
in the context of quantum information, and the result has been an active topic of re-
search [CHTW04, BBT05, CSUU08, DLTW08, KR10, KRT10, KKM+11, JP11, BFS13,
RV15, DSV13, Vid13, CM14].
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More formally, a nonlocal game begins by the referee selecting a pair of questions (x, y)
according to a fixed probability distribution that is known to all parties. The referee
then sends question x to Alice and question y to Bob. While we assume that Alice and
Bob may confer prior to the start of the game, when the game begins, the players are
forbidden from communicating with each other. So Alice is unaware of the question that
Bob received, and vice versa. Alice and Bob then respond to the referee with answers a
and b, respectively. Upon receiving these answers, the referee evaluates some predicate
based on the questions and answers to determine whether Alice and Bob win or lose. In
addition to having complete knowledge of the probability distribution used to select x and
y, we also assume that Alice and Bob have complete knowledge of the predicate.

The goal of Alice and Bob is to maximize their probability of obtaining a winning
outcome. Prior to the start of the game, Alice and Bob may corroborate on a joint strategy
to achieve this goal. One may consider a number of strategies for nonlocal games. For
example, if Alice and Bob make use of classical resources, we call this a classical strategy.
In such a strategy, the players answer deterministically with answers a and b determined
by functions of x and y respectively. The players may also make use of randomness, but
doing so provides no advantage over simply playing deterministically.

Another type of strategy that the players may adopt are quantum strategies. In a
quantum strategy, Alice and Bob prepare and share a joint quantum system prior to
the start of the game. We also assume that the players have local sets of measurement
operators that they perform on their share of the state after the game has begun and they
have received their questions from the referee to determine their answers a and b.

One may consider a number of sub-classifications of quantum strategies as well. For
instance, the size of the shared quantum system may make a difference in how well Alice
and Bob can perform, and indeed one can ask whether or not the size of the state yields any
advantage. Another sub-classification of a quantum strategy is referred to as a commuting
measurement strategy. In this type of strategy, the bipartite tensor product structure of
a shared quantum system between Alice and Bob is relaxed to one in which the local
measurements of Alice and Bob pairwise commute.

An even more general type of strategy that Alice and Bob may adopt is referred to as
a non-signaling strategy. In this type of strategy, the only constraint on Alice and Bob is
that they cannot communicate during the game, but may make use of any type of resource,
even possibly those outside of the scope of resources described by quantum mechanics.

We refer to the value of a nonlocal game as the supremum value of the probability for
the players to win over all strategies of a specified type.
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2.3.1 Strategies for nonlocal games

Nonlocal games and correlation functions

We specify a nonlocal game, G, as a pair (π, V ) where π is a probability distribution of
the form

π : ΣA × ΣB → [0, 1] (2.83)

on the Cartesian product of two alphabets ΣA and ΣB, and V is a function of the form

V : ΓA × ΓB × ΣA × ΣB → [0, 1] , (2.84)

for ΣA and ΣB as above and ΓA and ΓB being alphabets. We use

Σ = ΣA × ΣB and Γ = ΓA × ΓB (2.85)

to denote the respective sets of questions asked to Alice and Bob and the sets of answers
sent from Alice and Bob to the referee.

For any type of strategy, the output probability distributions produced by Alice and
Bob may be described by a function

C : ΓA × ΓB × ΣA × ΣB → [0, 1], (2.86)

where the function C is referred to as a correlation function. The entry C(a, b|x, y) corre-
sponds to the probability that Alice and Bob output a ∈ ΓA and b ∈ ΓB given the input
x ∈ ΣA and y ∈ ΣB. Since a correlation function represents a collection of probability
distributions, the operator C must satisfy∑

(a,b)∈Γ

C(a, b|x, y) = 1 (2.87)

for all x ∈ ΣA and y ∈ ΣB. In particular, Alice and Bob’s winning probability is represented
as ∑

(x,y)∈Σ

π(x, y)
∑

(a,b)∈Γ

V (a, b|x, y)C(a, b|x, y), (2.88)

where the correlation function is defined with respect to the corresponding strategy imple-
mented by Alice and Bob.

In the coming sections, we shall make the notions of the value of a nonlocal game and
their corresponding strategies more concrete.
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Quantum strategies for nonlocal games

A quantum strategy for a nonlocal game consists of complex Euclidean spaces U for Alice
and V for Bob, a quantum state σ ∈ D(U ⊗ V) contained in registers (U,V), and two
collections of measurements,

{Axa : a ∈ ΓA} ⊂ Pos(U) and {By
b : b ∈ ΓB} ⊂ Pos(V), (2.89)

for each x ∈ ΣA and y ∈ ΣB respectively. The measurement operators satisfy the constraint
that ∑

a∈ΓA

Axa = 1U and
∑
b∈ΓB

By
b = 1V (2.90)

for each x ∈ ΣA and y ∈ ΣB.

At the beginning of the game, Alice and Bob prepare a quantum system represented by
the bipartite state σ ∈ D(U⊗V). The referee then selects questions (x, y) ∈ Σ according to
the probability distribution π that is known to Alice, Bob, and the referee. The referee then
sends x to Alice and y to Bob. Alice and Bob then generate answers a ∈ ΓA and b ∈ ΓB,
by making measurements on their portion of the state σ. That is to say, Alice makes a
measurement on her part of σ with respect to the measurement operators {Axa : a ∈ ΓA}.
Similarly, Bob also performs a measurement on his part of σ using the set of measurement
operators {By

b : b ∈ ΓB}. The answers (a, b) are then sent to the referee. The referee now
possesses the questions (x, y) in addition to the responses sent by Alice and Bob, (a, b).
The referee uses this information to evaluate the predicate V (a, b|x, y), resulting in either
a winning or losing outcome, represented by a 1 or a 0, respectively. A depiction of a
nonlocal game is given in Figure 2.2.

The winning probability for such a strategy in this game G = (π, V ) is given by equa-
tion (2.88) where C is a quantum correlation function defined as

C(a, b|x, y) =
〈
Axa ⊗By

b , σ
〉
, (2.91)

for all x ∈ ΣA, y ∈ ΣB, a ∈ ΓA, and b ∈ ΓB.

The quantum value of a nonlocal game G, denoted as ω∗(G), is the supremum value of
the winning probability of G taken over all quantum strategies for Alice and Bob. We may
also write ω∗N(G) to denote the quantum value of G when the dimension of Alice’s space
and the dimension of Bob’s space is equal to N . Note that we can make the assumption
on Alice and Bob’s spaces that

dim(A) = dim(B), (2.92)
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Figure 2.2: A two-player nonlocal game. In a nonlocal game, the players, Alice and Bob,
first select a strategy. In the case of a quantum strategy, Alice and Bob may share a state
σ ∈ D(U⊗V) in registers (U,V). We assume that after this point, Alice and Bob are space-
like separated and unable to communicate with each other for the remainder of the game.
The referee then selects and sends questions x ∈ ΣA for Alice and y ∈ ΣB for Bob according
to the publicly known probability distribution, π. The referee also keeps a copy of x and
y after sending. Alice and Bob generate their answers a ∈ ΓA and b ∈ ΓB respectively, and
send their answers to the referee, where the predicate V (a, b|x, y) is computed to determine
the probability that Alice and Bob win or lose.
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since whichever strategy Alice and Bob use, the probability of winning is always going to
be maximized when σ is a pure state. That is, Alice and Bob will not perform any better
for any possible convex combination of σ, so we may as well assume σ to be pure, that is
σ = uu∗ for some nonzero vector u ∈ U ⊗V . It holds that one can always take the Schmidt
decomposition of u, where it can be observed that the state is supported on spaces of equal
dimension.

We use QN(ΓA,ΓB|ΣA,ΣB) to denote the set of all quantum correlation functions when
the dimension of Alice and Bob’s system is equal to N .

Classical strategies for nonlocal games

A classical strategy for a nonlocal game consists of functions f : ΣA → ΓA and g : ΣB → ΓB

that deterministically produce an output for every input. This type of classical strategy
is referred to as a deterministic strategy , as the outputs are produced deterministically.
Provided that we are interested in maximizing the winning probability, there is no loss in
generality in restricting our attention to deterministic strategies for any classical strategy,
as the classical value of any nonlocal game will always be obtained by such a deterministic
strategy. This can be observed by the fact that any probabilistic strategy may be expressed
as a convex combination of deterministic strategies, so Alice and Bob gain no benefit from
using randomness. In other words, the average is never bigger than the maximum. The
winning probability for such a strategy in this game G = (π, V ) is given by∑

(x,y)∈Σ

π(x, y)
∑

(a,b)∈Γ

V (a, b|x, y)C(a, b|x, y), (2.93)

where C is the deterministic correlation function defined as

C(a, b|x, y) =

{
1 if a = f(x) and b = g(y),

0 otherwise,

for all x ∈ ΣA, y ∈ ΣB, a ∈ ΓA, and b ∈ ΓB. We use L(ΓA,ΓB|ΣA,ΣB) to denote the set of
all deterministic correlation functions, including all convex combinations of deterministic
correlation functions as well.

The classical value of a nonlocal game G, denoted as ω(G) is the supremum value
of the winning probability of G taken over all classical strategies for Alice and Bob. As
argued above the supremum value is necessarily achieved by some deterministic strategy,
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and therefore we may write ω(G) as

ω(G) = max
f,g

∑
(x,y)∈Σ

π(x, y)V (f(x), g(y)|x, y), (2.94)

where the maximum is over all functions f : ΣA → ΓA and g : ΣB → ΓB.

Commuting measurement strategies for nonlocal games

A commuting measurement strategy consists of a single (possibly infinite-dimensional)
Hilbert space, H, a quantum state σ ∈ D(H), and two collections of measurements,

{Axa : a ∈ ΓA} ⊂ Pos(H) and {By
b : b ∈ ΓB} ⊂ Pos(H), (2.95)

such that ∑
a∈ΓA

Axa =
∑
b∈ΓB

By
b = 1H (2.96)

for all x ∈ ΣA and y ∈ ΣB, and that satisfy

[Axa, B
y
b ] = 0 (2.97)

for all x ∈ ΣA, y ∈ ΣB, a ∈ ΓA, and b ∈ ΓB. For a nonlocal game, G = (π, V ), the winning
probability for a commuting measurement strategy is given by equation (2.88) where C is
a commuting measurement correlation function defined as

C(a, b|x, y) =
〈
AxaB

y
b , σ
〉

(2.98)

for all x ∈ ΣA, y ∈ ΣB, a ∈ ΓA, and b ∈ ΓB. We use C(ΓA,ΓB|ΣA,ΣB) to denote the set of
all commuting measurement correlation function.

The commuting measurement value of a nonlocal game G, denoted as ωc(G), is the
supremum value of the winning probability of G taken over all commuting measurement
strategies for Alice and Bob. Elsewhere in the literature, the commuting measurement
value is also referred to as the field-theoretic value [DLTW08].
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Non-signaling strategies for nonlocal games

For a nonlocal game G = (π, V ), the winning probability for a non-signaling strategy is
given by equation (2.88) where C is a non-signaling correlation function that satisfies the
following non-signaling properties∑

b∈ΓB

C(a, b|x, y) =
∑
b∈ΓB

C(a, b|x, y′), (2.99)

for all a ∈ ΓA, x ∈ ΣA, y ∈ ΣB, and y′ ∈ ΣB and∑
a∈ΓA

C(a, b|x, y) =
∑
a∈ΓA

C(a, b|x′, y), (2.100)

for all b ∈ ΓB, x ∈ ΣA, x′ ∈ ΣA, and y ∈ ΣB and where C is normalized and nonnegative.
We use NS(ΓA,ΓB|ΣA,ΣB) to denote the set of all non-signaling correlation functions.

The non-signaling value of a nonlocal game, G, denoted as ωns(G), is the supremum
value of the winning probability of G taken over all non-signaling strategies for Alice and
Bob.

If one wishes, one may even consider a more general type of strategy, indeed the most
general strategy one may consider in the realm of nonlocal games. This most general type
of strategy, referred to as a global strategy is one in which the correlation functions need
only satisfy ∑

(a,b)∈Γ

C(a, b|x, y) = 1, (2.101)

for all x ∈ ΣA and y ∈ ΣB and that the entries of C be nonnegative. Indeed, these two
constraints are in all of the strategies we have considered thus far, as they are implicit
from the definition of a correlation function from Section 2.3.1. Another way to think
about non-signaling strategies therefore is to consider them as strategies that satisfy these
two implicit restrictions of a global strategy, as well as the non-signaling constraints from
equations (2.99) and (2.100).

2.3.2 Relationships between different strategies and values

In order to determine how well the players can expect to do for a particular choice of
strategy, we consider the corresponding values for each strategy. There exist algorithms
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that allow one to calculate the classical and non-signaling values of an arbitrary nonlo-
cal game by optimizing over the respective classical and non-signaling correlation func-
tions [BCP+14]. These algorithms are not particularly efficient however, as there are
exponentially many possible functions for Alice and Bob to consider. In general, with
the exception of a specific class of nonlocal games [CSUU08], there is no known efficient
algorithm to exactly compute the quantum value of an arbitrary nonlocal game. There is,
however, an approach that allows one to approximate the quantum values of arbitrary non-
local games [DLTW08, NPA07, NPA08], a technique we will investigate in greater detail
in Chapter 5.

The sets of correlation functions for the strategies we have covered thus far have the
following relationship

L(ΓA,ΓB|ΣA,ΣB) ⊆ Q(ΓA,ΓB|ΣA,ΣB) ⊆ C(ΓA,ΓB|ΣA,ΣB) ⊆ NS(ΓA,ΓB|ΣA,ΣB),
(2.102)

for alphabets ΓA,ΓB,ΣA and ΣB. The relationship of L(ΓA,ΓB|ΣA,ΣB) ⊆ Q(ΓA,ΓB|ΣA,ΣB)
follows since Alice and Bob could use their shared entangled state only as a source of
shared randomness. Recall, that Alice and Bob gain no benefit from using randomness in
a classical strategy, so one may restrict attention to classical strategies defined in terms of
deterministic ones. Should Alice and Bob use their quantum state in a quantum strategy
as a source of shared randomness, this is no better than having them use a classical
strategy, and gives the relationship between correlation functions. The relationship that
Q(ΓA,ΓB|ΣA,ΣB) ⊆ C(ΓA,ΓB|ΣA,ΣB) holds due to the fact that bipartite operators where
the identity operator is on either side of the operator obey the commutation relationship,
that is

[Axa ⊗ 1B,1A ⊗By
b ] = 0 (2.103)

for sets of operators {Axa : a ∈ ΓA} and {By
b : b ∈ ΓB} over all x ∈ ΣA, y ∈ ΣB, a ∈ ΓA,

and b ∈ ΓB. The relationship that Q(ΓA,ΓB|ΣA,ΣB) ⊆ NS(ΓA,ΓB|ΣA,ΣB) comes from
observing that for a commuting measurement correlation function

C(a, b|x, y) =
〈
AxaB

y
b , σ
〉

(2.104)

we have that ∑
b∈ΓB

C(a, b|x, y) =
∑
b∈ΓB

〈
AxaB

y
b , σ
〉

=
〈
Axa, σ

〉
, (2.105)
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or in other words, that there is no dependence on y. Similarly, we have that∑
a∈ΓA

C(a, b|x, y) =
∑
a∈ΓA

〈
AxaB

y
b , σ
〉

=
〈
By
b , σ
〉
. (2.106)

Given that the correlation functions obey these relationships, it then follows that the
corresponding values of these operators must also satisfy a similar inequality relationship

0 ≤ ω(G) ≤ ω∗(G) ≤ ωc(G) ≤ ωns(G) ≤ 1. (2.107)
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Chapter 3

Extended Nonlocal Games

In this chapter, we introduce the extended nonlocal game model. This model is a general-
ization of the nonlocal game model in which the referee now also holds a quantum system
provided to it by Alice and Bob at the start of the game. In Section 3.1 we shall present the
extended nonlocal game protocol, and in Section 3.2, we define the corresponding strategies
that Alice and Bob may adopt during the course of the game.

The general notion of extended nonlocal games was previously considered by Fritz [Fri12].
In particular, Fritz considered a class of games, called bipartite steering games, which are
essentially extended nonlocal games in which the referee randomly chooses to ask either
Alice or Bob a question. Extended nonlocal games may also be viewed as being equivalent
to multipartite steering inequalities, in a similar way to the equivalence between nonlocal
games and Bell inequalities. Multipartite steering inequalities and related notions were
studied in the papers [CSA+15] and [SBC+15]. The term “extended nonlocal game” along
with a treatment more focused in the nonlocal game setting was carried out in [JMRW16].

This chapter is based on joint work with Nathaniel Johnston, Rajat Mittal, and John
Watrous [JMRW16]
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3.1 The extended nonlocal game model

Extended nonlocal games are a generalization of nonlocal games in which the referee also
holds a quantum system, provided to it by Alice and Bob at the start of the game. Similar
to an ordinary nonlocal game, one may consider a variety of possible strategies for Alice
and Bob in an extended nonlocal game. In particular, there are classes of strategies that
are analogous to classical, quantum, commuting measurement, and non-signaling strategies
from the nonlocal game model. Further details on how these are adapted for the case of
extended nonlocal games will be elaborated on in this chapter.

An extended nonlocal game is similar to a nonlocal game in the sense that it is a
cooperative game played between two players, Alice and Bob, against a referee. The game
begins much like a nonlocal game, with the referee selecting and sending a pair of questions
(x, y) according to a fixed probability distribution. Once Alice and Bob receive x and y,
they respond with respective answers a and b. Unlike a nonlocal game, the outcome of an
extended nonlocal game is determined by measurements performed by the referee on its
share of the state initially provided to it by Alice and Bob. Specifically, Alice and Bob’s
winning probability is determined by a collection of measurements, V (a, b|x, y) ∈ Pos(R),
whereR = Cm is a complex Euclidean space with m denoting the dimension of the referee’s
quantum system—so if Alice and Bob’s response (a, b) to the question pair (x, y) leaves
the referee’s system in the quantum state

σx,ya,b ∈ D(R), (3.1)

then their winning and losing probabilities are given by〈
V (a, b|x, y), σx,ya,b

〉
and

〈
1− V (a, b|x, y), σx,ya,b

〉
. (3.2)
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3.2 Strategies for extended nonlocal games

3.2.1 Extended nonlocal games and assemblage operators

An extended nonlocal game H is defined by a pair (π, V ), where π is a probability distri-
bution of the form

π : ΣA × ΣB → [0, 1] (3.3)

on the Cartesian product of two alphabets ΣA and ΣB, and V is a function of the form

V : ΓA × ΓB × ΣA × ΣB → Pos(R), (3.4)

for ΣA and ΣB as above, ΓA and ΓB being alphabets, and R refers to the referee’s space.
Just as in the case for nonlocal games, we shall use the convention that

Σ = ΣA × ΣB and Γ = ΓA × ΓB (3.5)

to denote the respective sets of questions asked to Alice and Bob and the sets of answers
sent from Alice and Bob to the referee.

When analyzing a strategy for Alice and Bob, it may be convenient to define a function

K : ΓA × ΓB × ΣA × ΣB → Pos(R). (3.6)

We will refer to the function K as an assemblage. The operators output by this function
represent the unnormalized states of the referee’s quantum system when Alice and Bob
respond to the question pair (x, y) with the answer pair (a, b).

We can however, if we wish, normalize these states by noting that the quantity Tr (K(a, b|x, y))
refers to the probability with which Alice and Bob answer (a, b) for the question pair (x, y).
Assuming that Tr (K(a, b|x, y)) > 0, we define a set of normalized states

σx,ya,b =
K(a, b|x, y)

Tr (K(a, b|x, y))
(3.7)

of the referee’s system conditioned on this question and answer pair. Note that the function
K completely determines the performance of Alice and Bob’s strategy for H as it encodes
the probability that Alice and Bob obtain answers a ∈ ΓA and b ∈ ΓB given questions
x ∈ ΣA and y ∈ ΣB as

Tr (K(a, b|x, y)) , (3.8)

36



along with the conditional states from equation (3.7). In particular, Alice and Bob’s
winning probability is represented as∑

(x,y)∈Σ

π(x, y)
∑

(a,b)∈Γ

〈
V (a, b|x, y), K(a, b|x, y)

〉
. (3.9)

3.2.2 Standard quantum strategies for extended nonlocal games

A standard quantum strategy for an extended nonlocal game consists of finite-dimensional
complex Euclidean spaces U for Alice and V for Bob, a quantum state σ ∈ D(U ⊗R⊗V),
and two collections of measurements,

{Axa : a ∈ ΓA} ⊂ Pos(U) and {By
b : b ∈ ΓB} ⊂ Pos(V), (3.10)

for each x ∈ ΣA and y ∈ ΣB respectively. As usual, the measurement operators satisfy the
constraint that ∑

a∈ΓA

Axa = 1U and
∑
b∈ΓB

By
b = 1V , (3.11)

for each x ∈ ΣA and y ∈ ΣB.

When the game is played, Alice and Bob present the referee with a quantum system
so that the three parties share the state σ ∈ D(U ⊗R⊗ V). The referee selects questions
(x, y) ∈ Σ according to the distribution π that is known to all participants in the game. The
referee then sends x to Alice and y to Bob. At this point, Alice and Bob make measurements
on their respective portions of the state σ using their measurement operators to yield an
outcome to send back to the referee. Specifically, Alice measures her portion of the state
σ with respect to her set of measurement operators {Axa : a ∈ ΓA}, and sends the result
a ∈ ΓA of this measurement to the referee. Likewise, Bob measures his portion of the state
σ with respect to his measurement operators {By

b : b ∈ ΓB} to yield the outcome b ∈ ΓB,
that is then sent back to the referee. At the end of the protocol, the referee measures its
quantum system with respect to the measurement {V (a, b|x, y),1− V (a, b|x, y)}.

The winning probability for such a strategy in this game H = (π, V ) is given by∑
(x,y)∈Σ

π(x, y)
∑

(a,b)∈Γ

〈
Axa ⊗ V (a, b|x, y)⊗By

b , σ

〉
, (3.12)
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Figure 3.1: A two-player extended nonlocal game. Alice, Bob, and the referee all share a
tripartite state, σ ∈ D(U ⊗ R ⊗ V), contained in registers (U,R,V). The referee selects
questions (x, y) ∈ Σ according to the probability distribution π, and sends x to Alice
and y to Bob. Upon receiving x and y, Alice and Bob respond with answers a ∈ ΓA

and b ∈ ΓB. After receiving a and b, the referee performs a measurement on its system
{V (a, b|x, y),1− V (a, b|x, y)} to determine the probability with which Alice and Bob win
the game.
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or equivalently the winning probability for such a strategy is given by∑
(x,y)∈Σ

π(x, y)
∑

(a,b)∈Γ

〈
V (a, b|x, y), K(a, b|x, y)

〉
, (3.13)

where the operator K : ΓA × ΓB × ΣA × ΣB → Pos(R) is a standard quantum assemblage
operator defined as

K(a, b|x, y) = TrU⊗V ((Axa ⊗ 1R ⊗By
b )σ) . (3.14)

This may be observed by noting that∑
(x,y)∈Σ

π(x, y)
∑

(a,b)∈Γ

〈
V (a, b|x, y), K(a, b|x, y)

〉
(3.15)

=
∑

(x,y)∈Σ

π(x, y)
∑

(a,b)∈Γ

〈
V (a, b|x, y),TrU⊗V ((Axa ⊗ 1R ⊗By

b )σ)

〉
(3.16)

=
∑

(x,y)∈Σ

π(x, y)
∑

(a,b)∈Γ

Tr (V (a, b|x, y) TrU⊗V ((Axa ⊗ 1R ⊗By
b )σ)) (3.17)

=
∑

(x,y)∈Σ

π(x, y)
∑

(a,b)∈Γ

Tr ((Axa ⊗ V (a, b|x, y)⊗By
b )σ) (3.18)

=
∑

(x,y)∈Σ

π(x, y)
∑

(a,b)∈Γ

〈
Axa ⊗ V (a, b|x, y)⊗By

b , σ

〉
, (3.19)

where in equations (3.17) and (3.19), we used the relationship between the inner product
and trace operations, and in equation (3.18), we factor out the partial trace operator from
the overall trace.

For any strategy, there is an equivalent strategy where σ is a pure state and the sets
of measurements that Alice and Bob possess are projective operators. This can be shown
through a two step process. First, either party may purify the state. It makes no difference
whether Alice or Bob hold the purification, but for the sake of argument, we assume that
Alice purifies the state. Second, the non-projective measurements can be simulated by
projective measurements in a standard way that is described by Naimark’s theorem [Pau03].

For a given extended nonlocal game H = (π, V ), we write ω∗(H) to denote the standard
quantum value of H, which is the supremum value of Alice and Bob’s winning probability
over all standard quantum strategies forH. We may wish to consider the standard quantum
value of H when the dimension on Alice’s space and Bob’s space are equal to N , which we
denote as ω∗N(H).
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3.2.3 Unentangled strategies for extended nonlocal games

An unentangled strategy for an extended nonlocal game is simply a standard quantum
strategy for which the state σ ∈ D(U ⊗R⊗V) initially prepared by Alice and Bob is fully
separable. Equivalently, there exists an alphabet ∆ and collections of states

{σU
j : j ∈ ∆} ⊆ D(U), {σR

j : j ∈ ∆} ⊆ D(R), and {σV
j : j ∈ ∆} ⊆ D(V), (3.20)

and a probability vector p ∈ P(∆) such that

σ =
∑
j∈∆

p(j)σU
j ⊗ σR

j ⊗ σV
j . (3.21)

Note that any unentangled strategy is equivalent to a strategy where Alice and Bob
store only classical information after the referee’s quantum system has been provided to
it. This is because the state that Alice and Bob share between themselves and the referee
is fully separable, that is, there are no quantum correlations that may arise between the
constituent subsystems held by the parties. Alice and Bob are therefore justified in follow-
ing a deterministic strategy on their local systems in a similar way that was considered in
classical strategies for nonlocal games.

Furthermore, any such strategy is equivalent to one given by a convex combination
of deterministic strategies, in which Alice and Bob initially provide the referee with a
fixed pure state σ = uu∗ ∈ D(R), and respond to questions deterministically, with Alice
responding to x ∈ ΣA with a = f(x) and Bob responding to y ∈ ΣB with b = g(y) for
functions f : ΣA → ΓA and g : ΣB → ΓB.

For a given extended nonlocal game H = (π, V ), we write ω(H) to denote the unen-
tangled value of H, which is the supremum value for Alice and Bob’s winning probability
in H over all unentangled strategies. It follows by convexity and compactness that this
supremum value is necessarily achieved by some deterministic strategy. The unentangled
value for such a game is therefore given by

ω(G) = max
f,g

∥∥∥∥ ∑
(x,y)∈Σ

π(x, y)V (f(x), g(y)|x, y)

∥∥∥∥, (3.22)

where the maximum is over all functions f : ΣA → ΓA and g : ΣB → ΓB.
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3.2.4 Commuting measurement strategies for extended nonlocal
games

A commuting measurement strategy for an extended nonlocal game consists of a single
(possibly infinite-dimensional) Hilbert space, H, a quantum state σ ∈ D(R⊗H), and two
collections of measurements,

{Axa : a ∈ ΓA} ⊂ Pos(H) and {By
b : b ∈ ΓB} ⊂ Pos(H), (3.23)

such that ∑
a∈ΓA

Axa =
∑
b∈ΓB

By
b = 1H (3.24)

for all x ∈ ΣA and y ∈ ΣB and that

[Axa, B
y
b ] = 0 (3.25)

for all x ∈ ΣA, y ∈ ΣB, a ∈ ΓA, and b ∈ ΓB.

For an extended nonlocal game, H = (π, V ), the winning probability for a commuting
measurement strategy is given by∑

(x,y)∈Σ

π(x, y)
∑

(a,b)∈Γ

〈
V (a, b|x, y)⊗ AxaBy

b , σ

〉
, (3.26)

or equivalently the winning probability for such a strategy is given by∑
(x,y)∈Σ

π(x, y)
∑

(a,b)∈Γ

〈
V (a, b|x, y), K(a, b|x, y)

〉
, (3.27)

where the operator K : ΓA×ΓB×ΣA×ΣB is a commuting measurement assemblage operator
defined as

K(a, b|x, y) = TrH ((1R ⊗ AxaBy
b )σ) . (3.28)
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This may be observed by noting that∑
(x,y)∈Σ

π(x, y)
∑

(a,b)∈Γ

〈
V (a, b|x, y), K(a, b|x, y)

〉
(3.29)

=
∑

(x,y)∈Σ

π(x, y)
∑

(a,b)∈Γ

〈
V (a, b|x, y),TrH ((1R ⊗ AxaBy

b )σ)

〉
(3.30)

=
∑

(x,y)∈Σ

π(x, y)
∑

(a,b)∈Γ

Tr (V (a, b|x, y) TrH ((1R ⊗ AxaBy
b )σ)) (3.31)

=
∑

(x,y)∈Σ

π(x, y)
∑

(a,b)∈Γ

Tr ((V (a, b|x, y)⊗ AxaBy
b )σ) (3.32)

=
∑

(x,y)∈Σ

π(x, y)
∑

(a,b)∈Γ

〈
V (a, b|x, y)⊗ AxaBy

b , σ

〉
, (3.33)

where the analysis follows in a similar manner to the case of standard quantum strategies
for extended nonlocal games as described in Section 3.2.2.

The commuting measurement value of H, which is denoted ωc(H), is the supremum
value of the winning probability of H taken over all commuting measurement strategies
for Alice and Bob.

3.2.5 Non-signaling strategies for extended nonlocal games

A non-signaling strategy for an extended nonlocal game consists of a function

K : ΓA × ΓB × ΣA × ΣB → Pos(R) (3.34)

such that ∑
a∈ΓA

K(a, b|x, y) = ξyb and
∑
b∈ΓB

K(a, b|x, y) = ρxa, (3.35)

for all x ∈ ΣA and y ∈ ΣB where {ξyb : y ∈ ΣB, b ∈ ΓB} and {ρxa : x ∈ ΣA, a ∈ ΓA} are
collections of operators satisfying ∑

a∈ΓA

ρxa = τ =
∑
b∈ΓB

ξyb , (3.36)
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for every choice of x ∈ ΣA and y ∈ ΣB and where τ ∈ D(R) is a density operator. We
refer to the function K satisfying equation (3.35) as a non-signaling assemblage. For any
extended nonlocal game, H = (π, V ), the winning probability for a non-signaling strategy
is given by ∑

(x,y)∈Σ

π(x, y)
∑

(a,b)∈Γ

〈
V (a, b|x, y), K(a, b|x, y)

〉
, (3.37)

where K(a, b|x, y) is a non-signaling assemblage. The non-signaling value of H, which
is denoted as ωns(H), is the supremum value of the winning probability of H taken over
all non-signaling strategies for Alice and Bob. Note that the supremum is achieved since
the set of non-signaling assemblages is compact which implies the that the supremum is
achieved.

Relationships between different strategies and values

It is worth noting that the same inequality chain that holds for nonlocal games also holds
for extended nonlocal games,

0 ≤ ω(H) ≤ ω∗(H) ≤ ωc(H) ≤ ωns(H) ≤ 1. (3.38)

Due to the similarity in definitions of strategies, this line of reasoning is nearly identical
to that of Section 2.3.2.
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Chapter 4

On the properties of the extended
nonlocal game model

This chapter is focused on studying the relationship between quantum-classical games
and extended nonlocal games. In Section 4.1, we formally define the model of quantum-
classical games, which is a variant of an ordinary nonlocal game, where now, in this model,
the referee sends quantum registers to Alice and Bob in place of sending classical mes-
sages. This variant was considered by Buscemi [Bus12] under the name of semi-quantum
games, and was also considered by Regev and Vidick [RV15], where they studied a class of
quantum-classical games, referred to as quantum XOR games, where the winning condition
is predicated upon an XOR function.

One of the main results of Regev and Vidick’s paper was to show that there exists a
class of quantum XOR games for which no finite-dimensional quantum strategy can be
optimal. In Section 4.2, we analyze this result in the context of extended nonlocal games,
and building on their framework, show that there also exists a class of extended nonlocal
games where no finite-dimensional quantum strategy can be optimal. We then use the
relationship between extended nonlocal games and tripartite steering to arrive at the result
that there exists a tripartite steering inequality for which an infinite-dimensional quantum
state is required in order to achieve a maximal violation. From this, we conclude that there
exists extended nonlocal games for which no finite-dimensional standard quantum strategy
can be optimal.

Finally, in Section 4.3, we consider variants on the extended nonlocal game model. As
we have covered, an extended nonlocal game is composed of three rounds of communication;
where the type of communication in the first round from Alice and Bob to the referee is
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quantum, and the remaining two question and answer rounds are composed of classical
communication. We ask here what happens if we exchange the type of communication for
certain rounds and investigate these variations on the extended nonlocal game model.

This chapter is based on joint work with John Watrous in [RW16].

Contents
4.1 Quantum-classical games . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Constructing extended nonlocal games from quantum-classical
games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.1 Teleportation games and quantum-classical games . . . . . . . . 49

4.2.2 Extended nonlocal games and teleportation games . . . . . . . . 55

4.3 Variations on the extended nonlocal game model . . . . . . . 62

4.3.1 Quantum-classical-quantum extended nonlocal games . . . . . . 63

4.1 Quantum-classical games

Quantum-classical games or QC games for short, differ from nonlocal games in that the
referee begins the game by preparing a tripartite quantum state and sends one part of it
to each player, keeping a part of the state for itself. (This step replaces the generation of a
classical question pair (x, y) in an ordinary nonlocal game.) Once the players receive their
portion of the tripartite state in a QC game, the players respond with classical answers
a and b (as they would in a nonlocal game as well), and finally the referee determines
whether the players win or lose by measuring its part of the original quantum state it
initially prepared. (This step replaces the evaluation of a predicate V (a, b|x, y) in an
ordinary nonlocal game.) Games of this form, with slight variations from the general class
just described, were considered by Buscemi [Bus12] and Regev and Vidick [RV15].

Formally, a quantum-classical game (QC game) is specified by the following objects:

• A state ρ ∈ D(X ⊗ S ⊗ Y) of a triple of registers (X, S,Y).

• A collection of measurement operators {Qa,b : a ∈ ΓA, b ∈ ΓB} ⊂ Pos(S), for
alphabets ΓA and ΓB.

Viewing a QC game from the referee’s perspective, it is played in the following manner:
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1. The referee prepares (X, S,Y) in the state ρ, then sends X to Alice and Y to Bob.

2. Alice responds with a ∈ ΓA and Bob responds with b ∈ ΓB.

3. The referee measures S with respect to the binary-valued measurement

{Qa,b,1−Qa,b}. (4.1)

The outcome corresponding to the measurement operator Qa,b indicates that Alice
and Bob win, while the other measurement result indicates that they lose.

R0 R1
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B
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U

V

X

Y

S

a

b

Figure 4.1: A quantum strategy for a quantum-classical game. Just as in a nonlocal game,
if Alice and Bob are using a quantum strategy, they may prepare a state σ ∈ D(U ⊗ V)
prior to the start of the game. Unlike a nonlocal game where the referee sends classical
information, the referee in a quantum-classical game prepares a state ρ ∈ D(X ⊗S ⊗Y) in
registers (X, S,Y) and sends registers X and Y to Alice and Bob. Alice and Bob perform
measurements to generate their answers a ∈ ΓA and b ∈ ΓB, which are then sent back to
the referee. The referee then evaluates whether or not Alice and Bob win or lose by making
a measurement on its register S.

Just as there are various strategies that one may consider for the class of extended
nonlocal games, one may also consider various classes of strategies for QC games. We will,
however, restrict our attention to quantum strategies for a QC game. That is, a strategy
that consists of a shared quantum state between Alice and Bob, as well as respective
sets of measurement operators for Alice and Bob. This type of strategy is similar to a
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quantum strategy for a nonlocal game, but where now we take into account the fact that
the questions that Alice and Bob receive in a QC game are provided via quantum registers.

More precisely, a quantum strategy for a QC game specified by

ρ ∈ D(X ⊗ S ⊗ Y) and {Qa,b : a ∈ ΓA b ∈ ΓB} ⊂ Pos(S) (4.2)

as above, consists of the following objects:

1. A state σ ∈ D(U ⊗ V), for U being the space corresponding to a register U held by
Alice and V being the space corresponding to a register V held by Bob.

2. A measurement {Aa : a ∈ ΓA} ⊂ Pos(U ⊗X ) for Alice, performed on the pair (U,X)
after she receives X from the referee, and a measurement {Bb : b ∈ ΓB} ⊂ Pos(Y⊗V)
for Bob, performed on the pair (Y,V) after he receives Y from the referee.

A quantum-classical game where Alice and Bob use a quantum strategy is depicted in
Figure 4.1.

One may express the winning probability for a QC game when Alice and Bob adopt a
quantum strategy as ∑

(a,b)∈ΓA×ΓB

〈
Aa ⊗Qa,b ⊗Bb,W (σ ⊗ ρ)W ∗

〉
, (4.3)

where W is the unitary operator that corresponds to the natural re-ordering of registers
consistent with each of the tensor product operators Aa ⊗ Qa,b ⊗ Bb (i.e. the permuta-
tion (U,V,X, S,Y) 7→ (U,X, S,Y,V)). The quantum value of a QC game represents the
supremum of the winning probabilities, taken over all quantum strategies. If Gqc is the
name assigned to a QC game having a specification as above, then we write ω∗N(Gqc)
to denote the maximum winning probability taken over all quantum strategies for which
dim(U) = N = dim(V), so that the quantum value of Gqc is

ω∗(Gqc) = lim
N→∞

ω∗N(Gqc). (4.4)

Regev and Vidick [RV15] proved that certain QC games have the following peculiar
property: if Alice and Bob make use of an entangled state of two finite-dimensional quan-
tum systems, initially shared between them, they can never achieve perfect optimality—it
is always possible for them to do better (meaning that they win with a strictly larger
probability) using some different shared entangled state on two larger quantum systems.

47



Thus, it is only in the limit, as the local dimensions of their shared entangled states goes
to infinity, that they can approach an optimal performance in these specific examples of
games. This was previously established for analogues of nonlocal games for which both
the questions and answers are quantum [LTW13], and it is an open question to determine
if the same property holds for any ordinary nonlocal game, where both the questions and
answers must be classical.

In particular, Regev and Vidick considered a specific class of QC games called quantum
XOR games , where the winning condition in such a game is predicated on an XOR function.
Regev and Vidick showed that there exists a family of quantum XOR games such that if
the dimension of Alice and Bob’s quantum system, N , is finite, then the quantum value
will be strictly less than 1. However, taking the limit as N goes to infinity, the quantum
value approaches 1. A restatement of their result follows.

Theorem 4.1 (Theorem 1.2 of [RV15]). There exists a quantum-classical game Gqc such
that

ω∗(Gqc) = 1, (4.5)

and for every positive integer N it holds that

ω∗N(Gqc) < 1. (4.6)

4.2 Constructing extended nonlocal games

from quantum-classical games

In this section, we will state and prove an analogous theorem to Theorem 4.1 for an
extended nonlocal game. That is, we will show that there exists an extended nonlocal
game where the standard quantum value approaches 1 when the dimension of the quantum
systems shared by Alice and Bob approach infinity.

Theorem 4.2. Given a quantum-classical game, Gqc with question registers X and Y, there
exists an extended nonlocal game, labelled as Ht, such that

ω∗N(Gqc) ≤ 1− |X| |Y|
(
1− ω∗N |X||Y|(Ht)

)
and ω∗N(Ht) ≤ 1−

1− ω∗N |X||Y|(Gqc)

|X| |Y| . (4.7)

The main idea for proving Theorem 4.2 will involve a successive reduction from a
quantum-classical game to an intermediate type of game, called a teleportation game (that
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we will define formally in the next section), and finally to an extended nonlocal game.
Sections 4.2.1 and 4.2.2 are dedicated to proving Theorem 4.2. Specifically, in Section 4.2.1,
we will show how quantum-classical games are related to teleportation games, and in
Section 4.2.2, we will show how teleportation games are related to extended nonlocal
games. Once these relationships are established, we will be able to prove Theorem 4.2.

4.2.1 Teleportation games and quantum-classical games

In this section we will introduce teleportation games . A teleportation game is similar to an
extended nonlocal game in that the referee receives a state prepared by Alice and Bob, the
referee sends questions to Alice and Bob, and the referee receives answers from them as
well. The one key difference now is that after the referee receives the state from Alice and
Bob, it will produce registers and perform a Bell measurement on the parts of the state
sent by Alice and Bob along with the registers that it produced. The reason we refer to
this class of games as teleportation games is because the registers that the referee produces
are the registers that the referee desires to teleport to Alice and Bob. A teleportation game
is depicted in Figure 4.2.

Formally, a teleportation game is specified by the following objects:

• A state ρ ∈ D(X ⊗ S ⊗ Y) of a triple of registers (X, S,Y).

• A collection of measurement operators {Qa,b : a ∈ ΓA, b ∈ ΓB} ⊂ Pos(S), where ΓA

and ΓB are alphabets and S is the space corresponding to register S.

From the referee’s perspective, such a game is played as follows:

1. The referee is presented with the register R = (X1,Y1) where X1 and Y1, are copies of
the registers X and Y. (The register R might, for instance, be entangled with systems
possessed by Alice and Bob.)

2. The referee prepares (X, S,Y) in the state ρ and performs Bell measurements{
φ(|X|)
x : x ∈ ΣA

}
⊂ Pos(X ⊗ X1) and

{
φ(|Y|)
y : y ∈ ΣB

}
⊂ Pos(Y ⊗ Y1) (4.8)

and where

ΣA = Z|X| × Z|X| and ΣB = Z|Y| × Z|Y|, (4.9)

on the respective pairs (X,X1) and (Y,Y1) yielding outcomes x ∈ ΣA and y ∈ ΣB

which are sent to Alice and Bob.
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3. Alice and Bob respond with a ∈ ΓA and b ∈ ΓB.

4. The referee measures S with respect to the binary-valued measurement

{Qa,b,1−Qa,b} ⊂ Pos(S). (4.10)

The outcome corresponding to the measurement operator Qa,b indicates that Alice
and Bob win, while the other measurement result indicates that they lose.

Just as is the case for both extended nonlocal games and quantum-classical games,
one may consider various types of strategies for Alice and Bob. For the purposes of this
discussion, we will be focusing on quantum strategies in which Alice and Bob begin the
game in possession of finite-dimensional quantum systems that have been initialized as
they choose. They may then measure these systems in order to obtain answers to the
referee’s questions.

In more precise terms, a quantum strategy for a teleportation game, specified by

ρ ∈ D(X ⊗ S ⊗ Y) and {Qa,b : a ∈ ΓA, b ∈ ΓB} ⊂ Pos(S) (4.11)

as above, consists of these objects:

1. A state σ ∈ D(U ⊗ (X1 ⊗ Y1) ⊗ V) where (X1 ⊗ Y1) is the space corresponding to
registers (X1,Y1) presented to the referee at the start of the game, where U is the space
corresponding to register U held by Alice, and where V is the space corresponding to
register V held by Bob.

2. A measurement {Axa : a ∈ ΓA} ⊂ Pos(U) for each x ∈ ΣA, performed by Alice, when
she receives the question x, and a measurement {By

b : b ∈ ΓB} ⊂ Pos(V) for each
y ∈ ΣB, performed by Bob when he receives the question y.

If Gt is the name assigned to a teleportation game having the specifications as above,
then we write ω∗N(Gt) to denote the maximum winning probability taken over all quantum
strategies for which dim(U ⊗ V) = N , so that the quantum value of Gt is

ω∗(Gt) = lim
N→∞

ω∗N(Gt). (4.12)

Lemma 4.3. Given any quantum-classical game, Gqc, with question registers X and Y,
there exists a teleportation game Gt such that

ω∗N(Gqc) ≤ ω∗N |X||Y|(Gt) and ω∗N(Gt) ≤ ω∗N |X||Y|(Gqc), (4.13)

for all N ≥ 1.
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Figure 4.2: A quantum strategy for a teleportation game. Prior to the start of the game,
the state σ ∈ D(U ⊗ (X1⊗Y1)⊗V) is prepared. The referee obtains registers (X1,Y1). The
referee prepares a state ρ ∈ D(X ⊗ S ⊗ Y) contained in registers (X, S,Y) and performs
a generalized Bell measurement on registers (X,X1) and (Y,Y1). The outcomes of this
measurement, x ∈ ΣA is sent to Alice and y ∈ ΣB is sent to Bob, who in turn respond with
answers a ∈ ΓA and b ∈ ΓB to the referee. The referee then performs a measurement on
the register S to determine whether Alice and Bob win or lose.
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Prior to proceeding to the proof, we give a brief sketch to provide some intuition. In
order to prove Lemma 4.3, we must prove both that ω∗N(Gqc) ≤ ω∗N |X||Y|(Gt) and that

ω∗N(Gt) ≤ ω∗N |X||Y|(Gqc).

In the first inequality, we assume that Alice and Bob play honestly. That is to say,
we assume that Alice and Bob play along and allow the referee to teleport registers to
Alice and Bob. For this to happen, the initial state is prepared as a maximally entangled
state and Alice and Bob also apply the appropriate Pauli teleportation corrections on their
respective systems after they receive the questions from the referee. This direction of the
proof is simply illustrating how such a strategy is carried out when Alice and Bob play
honestly and is depicted in Figure 4.3.

In the second inequality, we remove the assumption that Alice and Bob play honestly.
That is to say that we are not guaranteed that Alice and Bob prepare maximally entangled
states, nor are we to assume that the registers they possess are not entangled in some
arbitrarily complex manner. In other words, we are concerned now with the possibility
that Alice and Bob may attempt to cheat, and play dishonestly. The general idea of
this direction is that Alice and Bob will perform what may be thought of a teleportation
protocol to themselves. That is, after Alice and Bob perform measurements in the Bell
basis on their registers, they will use the outcome of these measurements to apply the
appropriate generalized Pauli correction operator to their systems.

Proof. Let Gt be the teleportation game that is defined in terms of the same state and
measurement operators

ρ ∈ D(X ⊗ S ⊗ Y) and {Qa,b : a ∈ ΓA b ∈ ΓB} ⊂ Pos(S) (4.14)

that also define Gqc.

Let us first show that ω∗N(Gqc) ≤ ω∗N |X||Y|(Gt). Consider an arbitrary strategy for any
quantum-classical game Gqc. We show how one may adapt this strategy into a strategy for
the teleportation game Gt. The following strategy is depicted in Figure 4.3

The state σ is prepared in the following manner

σ ∈ D((U1 ⊗X0)⊗ (X1 ⊗ Y1)⊗ (Y0 ⊗ V1)) (4.15)

in registers (U1,X0,X1,Y1,Y0,V1) such that

|X0| = |X| = |X1| and |Y0| = |Y| = |Y1| , (4.16)
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where the contents of (X0,X1) and (Y0,Y1) are respective maximally entangled states

ψX =
1√
|X|

∑
c∈Z|X|

ec ⊗ ec and ψY =
1√
|Y|

∑
d∈Z|Y|

ed ⊗ ed. (4.17)

When the referee receives X1 and Y1, it prepares the quantum state ρ ∈ D(X ⊗ S ⊗ Y)
contained in registers (X, S,Y).

The referee then measures each pair (X,X1) and (Y,Y1) with respect to the Bell basis
as from equation (4.8) and obtains outcomes x and y, where

x = (k1, k2) ∈ ΣA and y = (l1, l2) ∈ ΣB, (4.18)

which are then sent to Alice and Bob. Alice and Bob then apply one of the generalized
Pauli operators {

W
(|X|)
k1,k2

: (k1, k2) ∈ ΣA

}
and

{
W

(|Y|)
l1,l2

: (l1, l2) ∈ ΣB

}
, (4.19)

to their registers X0 and Y0. This completes the teleportation protocol, and teleports the
register X to Alice and Y to Bob. Finally, Alice and Bob respond with a ∈ ΓA and b ∈ ΓB

by performing measurements from the sets

{Axa : a ∈ ΓA} ⊂ Pos(U1 ⊗X0) and {By
b : b ∈ ΓB} ⊂ Pos(V1 ⊗ Y0), (4.20)

for each x ∈ ΣA and y ∈ ΣB. The referee then performs a measurement from the set

{Qa,b,1−Qa,b} ⊂ Pos(S). (4.21)

Since Alice and Bob receive registers X and Y by the teleportation protocol, it is clear that
they win with at least the same probability as inGqc. It follows that ω∗N(Gqc) ≤ ω∗N |X||Y|(Gt).

Now we show that ω∗N(Gt) ≤ ω∗N |X||Y|(Gqc). Consider an arbitrary strategy for the
teleportation game Gt from above. We show how one may adapt this strategy into a
strategy for a quantum-classical game Gqc.

Let the referee prepare a quantum state ρ ∈ D(X ⊗ S ⊗ Y) contained in registers
(X, S,Y), and let

σ ∈ D((U ⊗ X1)⊗ (Y1 ⊗ V)) (4.22)

be the state shared between Alice, Bob, and the referee contained in registers (U,X1,Y1,V).
The registers X and Y are sent to Alice and Bob respectively. Once Alice and Bob receive
X and Y, they prepare a two step measurement:
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Figure 4.3: The strategy that Alice and Bob abide by for a teleportation game when they
play honestly. Alice and Bob prepare registers (U1,X0,X1) and (V1,Y0,Y1) where register
pairs (X0,X1) and (Y0,Y1) consist of pairs of maximally entangled states. The referee
receives registers (X1,Y1) and prepares registers (X, S,Y) and performs a measurement in
the Bell basis on register pairs (X,X1) and (Y,Y1) in order to teleport X to Alice and Y
to Bob. The outcome of these measurements result in (x, y) where x is sent to Alice and
y is sent to Bob. Alice and Bob then apply the appropriate Pauli corrections on their
registers X0 and Y0, which teleports the registers X and Y into their possession. Finally,
Alice and Bob respond with answers a and b to the referee, which is followed by the referee
performing a measurement {Qa,b,1−Qa,b} ⊂ Pos(S).
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1. Alice and Bob measure (X,X1) and (Y,Y1) in the Bell basis yielding measurement
outcomes

x ∈ ΣA and y ∈ ΣB. (4.23)

2. Alice and Bob perform measurements

{Axa : a ∈ ΓA} ⊂ Pos(U) and {By
b : b ∈ ΓB} ⊂ Pos(V) (4.24)

and obtain respective outcomes a ∈ ΓA and b ∈ ΓB.

The two-step measurement operators corresponding to outcomes a and b are written as∑
x∈ΣA

Axa ⊗ φ|X|x ∈ Pos(U ⊗ X1 ⊗X ) and
∑
y∈ΣB

By
b ⊗ φ|Y|y ∈ Pos(V ⊗ Y1 ⊗ Y), (4.25)

where φ
|X|
x and φ

|Y|
y are Bell measurements. Finally, the referee performs a measurement

from the set

{Qa,b,1−Qa,b} ⊂ Pos(S). (4.26)

It is evident from the above procedure that the information stored in x ∈ ΣA and y ∈ ΣB is
precisely what the referee would have sent in Gt. Furthermore, the cost of this procedure
is given by the dimension of the state σ, that is

N |X| |Y| = dim(U ⊗ (X1 ⊗ Y1)⊗ V). (4.27)

It then follows that ω∗N |X||Y|(Gt) ≤ ω∗N(Gqc).

4.2.2 Extended nonlocal games and teleportation games

In the previous section, we established a relationship between certain quantum-classical
games and teleportation games. Building on this, we now show how teleportation games
and certain extended nonlocal games are related. Once we have this chain of relationships,
we will be able to prove Theorem 4.2. The following lemma establishes a relationship
between teleportation games and extended nonlocal games.
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Lemma 4.4. Given any teleportation game, Gt, with teleported registers X and Y, there
exists an extended nonlocal game, Ht, such that

ω∗N(Ht) = 1− 1− ω∗N(Gt)

|X|2 |Y|2
, (4.28)

for all N .

In order to prove Lemma 4.4, as was done previously in the proof of Lemma 4.3, we
assume that Gt is defined by

ρ ∈ D(X ⊗ S ⊗ Y) and {Qa,b : a ∈ ΓA, b ∈ ΓB} ⊂ Pos(S). (4.29)

We shall also define a specific extended nonlocal game, Ht, that consists of a teleportation
procedure. From the referee’s perspective, such a game is played as follows:

1. Alice and Bob present the referee with the register R = (X1,Y1) such that

|X1| = |X| and |Y1| = |Y| . (4.30)

Note that the register R may be entangled with systems possessed by Alice and Bob,
as is the case for ordinary extended nonlocal games.

2. The referee randomly generates a pair (x, y) ∈ ΣA × ΣB where

ΣA = Z|X| × Z|X| and ΣB = Z|Y| × Z|Y| (4.31)

according to the uniform distribution and sends x ∈ ΣA to Alice and y ∈ ΣB to Bob.
Alice responds with a ∈ ΓA and Bob responds with b ∈ ΓB.

3. The referee prepares a state ρ ∈ D(X ⊗ S ⊗ Y) and then performs a measurement
with respect to the binary-valued measurement {Pa,b,x,y,1− Pa,b,x,y} where

Pa,b,x,y = 1− φ(|X|)
x ⊗ (1−Qa,b)⊗ φ(|Y|)

y ,

1− Pa,b,x,y = φ(|X|)
x ⊗ (1−Qa,b)⊗ φ(|Y|)

y ,
(4.32)

where {Qa,b,1 − Qa,b} ⊂ Pos(S). The outcome corresponding to the measurement
Pa,b,x,y indicates that Alice and Bob win, while the other measurement indicates that
they lose.
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As further intuition for the above protocol, we shall see that the last step may be thought
of as a form of post-selcted teleportation where the randomly selected questions x and y
are compared to x1 and y1 which are hypothetical measurement results that would be
obtained if the referee were to perform teleportation. Implicit in the winning and losing
measurements is the relationship between (x, y) and (x1, y1) that

1. If x 6= x1 or y 6= y1: The referee immediately accepts, and therefore Alice and Bob
win.

2. If x = x1 and y = y1: The referee performs a measurement with respect to the
binary-valued measurement {Qa,b,1−Qa,b} on register S.

That is, in the event where x 6= x1 or y 6= y1, this corresponds to a failure to teleport X or
Y to Alice or Bob. Likewise, the event where x = x1 and y = y1 corresponds to the event
where teleportation protocol would have succeeded, since if the referee were to teleport,
it would have sent x1 and y1 to Alice and Bob, which would influence the measurement
that they would apply to their system. Since in this case x = x1 and y = y1 it is as if the
referee were to teleport X to Alice and Y to Bob.

Proof of Lemma 4.4. Let Ht be the extended nonlocal game as introduced above, and let
it be defined in terms of the same state and measurement operators

ρ ∈ D(X ⊗ S ⊗ Y) and {Qa,b : a ∈ ΓA b ∈ ΓB} ⊂ Pos(S) (4.33)

that also define Gt such that the measurement operators {Pa,b,x,y,1 − Pa,b,x,y} in Ht are
defined in terms of {Qa,b,1−Qa,b} as in equation (4.32).

Note that in both games Gt and Ht, Alice and Bob’s strategy is defined by the state

σ ∈ D(U ⊗ (X1 ⊗ Y1)⊗ V), (4.34)

as well as their respective measurement operators

{Axa : a ∈ ΓA} ⊂ Pos(U) and {By
b : b ∈ ΓB} ⊂ Pos(V). (4.35)

Let p denote the winning probability for Alice and Bob in Gt

p =
∑

(x,y)∈ΣA×ΣB

(a,b)∈ΓA×ΓB

〈
Axa ⊗ φ|X|x ⊗Qa,b ⊗ φ|Y|y ⊗By

b ,W (ρ⊗ σ)W ∗
〉
, (4.36)
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where W is the unitary operator that corresponds to the permutation of registers

(X, S,Y,U,X1,Y1,V) 7→ (U,X,X1, S,Y,Y1,V). (4.37)

The losing probability for Gt may be derived from the above equation by considering the
losing measurement, that is

1− p =
∑

(x,y)∈ΣA×ΣB

(a,b)∈ΓA×ΓB

〈
Axa ⊗ φ|X|x ⊗ (1−Qa,b)⊗ φ|Y|y ⊗By

b ,W (ρ⊗ σ)W ∗
〉
. (4.38)

We will show how the losing probability of Ht may be written in terms of the losing
probability of Gt.

Consider an arbitrary strategy for any teleportation game Gt. We show how one may
adapt this strategy into a strategy for the extended nonlocal game Ht.

Let (X0,X1) and (Y0,Y1) be quantum registers such that

|X0| = |X| = |X1| and |Y0| = |Y| = |Y1| , (4.39)

where the contents of (X0,X1) and (Y0,Y1) are respective maximally entangled states

ψX =
1√
|X|

∑
c∈Z|X|

ec ⊗ ec and ψY =
1√
|Y|

∑
d∈Z|Y|

ed ⊗ ed. (4.40)

Registers X1 and Y1 are sent to the referee.

The referee then chooses (x, y) ∈ ΣA ×ΣB at random, according to the uniform proba-
bility distribution. The referee makes a local copy of x and y as usual, and then sends x
to Alice and y to Bob. Alice and Bob then perform measurements from the sets

{Axa : a ∈ ΓA} ⊂ Pos(U) and {By
b : b ∈ ΓB} ⊂ Pos(V), (4.41)

for each x ∈ ΣA and y ∈ ΣB yielding outcomes a ∈ ΓA and b ∈ ΓB, which are then sent to
the referee.

Once the referee receives a ∈ ΓA and b ∈ ΓB, it prepares a state ρ ∈ D(X ⊗ S ⊗ Y) in
registers (X, S,Y) such that

|X| = |X1| and |Y| = |Y1| . (4.42)
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Figure 4.4: The extended nonlocal game Ht, an extended nonlocal game where the referee
initiates a teleportation procedure. That is, once the referee sends questions (x, y) ∈ ΣA×
ΣB to Alice and Bob and receives registers (X1,Y1), it shall create a state ρ ∈ D(X ⊗S⊗Y)
in registers (X, S,Y) and perform teleportation using (X,X1) and (Y,Y1). The outcome of
these teleportation procedures will yield x1 and y1. If both x1 = x and y1 = y, the referee
will perform a measurement on his system, S, to determine the outcome of the game.
Otherwise if x1 6= x or y1 6= y, Alice and Bob automatically win. The dark gray shapes
correspond to actions performed by the referee.
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The referee now measures (X,X1) and (Y,Y1) in the Bell basis, which yields respective
outcomes of

x1 = (k1, k2) ∈ ΣA and y1 = (l1, l2) ∈ ΣB. (4.43)

We now consider the post-selected teleportation protocol to be a success if x = x1 and
y = y1. For each x1 there is a 1/ |X|2 chance that the referee obtains a matching outcome
in x. Similarly, for each y1, there is a 1/ |Y|2 chance that the referee obtains a matching
outcome for y. Therefore, the total probability with which the post-selected teleportation
protocol is performed successfully is with probability 1/ |X|2 |Y|2.

Depending on the outcome of the referee’s measurement, the game proceeds accordingly:

1. If x 6= x1 or y 6= y1, this implies that at least of of the two teleportation protocols
has failed. In this case, the referee accepts, and Alice and Bob win the game.

2. If x = x1 and y = y1, this implies that both teleportation protocols are successful.

The referee proceeds to perform the measurement {Pa,b,x,y,1−Pa,b,x,y} defined as in equa-
tion (4.32). Let q denote the winning probability of Ht

q =
1

|X|2 |Y|2
∑

(x,y)∈ΣA×ΣB

(a,b)∈ΓA×ΓB

〈
Axa ⊗ Px,y,a,b ⊗By

b ,W (ρ⊗ σ)W ∗
〉
, (4.44)

where again W is the unitary operator that corresponds to the permutation

(X, S,Y,U,X1,Y1,V) 7→ (U,X,X1, S,Y,Y1,V). (4.45)

We may write the losing probability of Ht as

1− q =
1

|X|2 |Y|2
∑

(x,y)∈ΣA×ΣB

(a,b)∈ΓA×ΓB

〈
Axa ⊗ (1− Px,y,a,b)⊗By

b ,W (ρ⊗ σ)W ∗
〉

=
1

|X|2 |Y|2
∑

(x,y)∈ΣA×ΣB

(a,b)∈ΓA×ΓB

〈
Axa ⊗ φ|X|x ⊗ (1−Qa,b)⊗ φ|Y|y ⊗By

b ,W (ρ⊗ σ)W ∗
〉

=
1

|X|2 |Y|2
(1− p).

(4.46)
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Since in both cases we have that N = dim(U ⊗ V), optimizing over strategies of cost N
gives

ω∗N(Ht) = 1− 1− ω∗N(Gt)

|X|2 |Y|2
, (4.47)

which concludes the proof.

Proof of Theorem 4.2

Proof of Theorem 4.2. Recall from Lemma 4.3 we have that

ω∗N(Gqc) ≤ ω∗N |X||Y|(Gt) and ω∗N(Gt) ≤ ω∗N |X||Y|(Gqc), (4.48)

for all N ≥ 1. From Lemma 4.4 it follows that

1− 1− ω∗N(Gt)

|X|2 |Y|2
= ω∗N(Ht). (4.49)

It then follows that the inequalities from equation (4.7) hold. Furthermore, it follows from
Theorem 4.1 that there exists a quantum-classical game Gqc where ω∗N(Gqc) = 1 is achieved
in the limit as N goes to infinity. It then follows that there also exists an extended nonlocal
game Ht, where ω∗N(Ht) = 1 as N approaches infinity.

Implications and discussion of Theorem 4.2

We briefly discuss the broader context of Theorem 4.2. As previously mentioned, Regev
and Vidick [RV15] proved that a certain class of QC games have the property that if
Alice and Bob make use of an entangled state initially shared between them, they can
never achieve perfect optimality, it is always possible for them to do better (meaning that
they win with a strictly larger probability) using some different shared entangled state on
larger quantum systems. We found in the previous section that there also exists a class of
extended nonlocal games with this property as well.

We can also ask whether or not the above property holds more generally for some class
of nonlocal games. Formally,
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Question 4.5. Does there exist a nonlocal game G such that

ω∗(G) = 1, (4.50)

and for every positive integer N it holds that

ω∗N(G) < 1. (4.51)

For the traditional nonlocal game case with classical questions and classical answers,
this question remains open. The so-called I3322 inequality , when formulated as a nonlocal
game, has been conjectured to have the property just described, in which increasing degrees
of entanglement admit strategies with strictly increasing success rates [PV09].

It is also worth noting that Theorem 4.2 implies the existence of a tripartite steering
inequality for which an infinite-dimensional quantum state is required in order to achieve a
maximal violation. This follows from the fact that extended nonlocal games may be equiv-
alently viewed as a tripartite steering scenario (as considered in [CSA+15] and [SBC+15]),
as was mentioned in Chapter 3.

4.3 Variations on the extended nonlocal game model

Recall that a nonlocal game consists of two rounds of communication: one from the referee
to the players and one from the players to the referee. The standard definition of a nonlocal
game assumes that both rounds of communication consist of classical messages. We saw
a variation on that model in Section 4.1, in which the question round was replaced with
the referee sending quantum questions to both Alice and Bob. In a similar manner, we
may also consider such variations on the extended nonlocal game model. The standard
extended nonlocal game consists of three rounds of communication, that is

1. (Quantum): Alice and Bob prepare a state σ ∈ D(U ⊗ R ⊗ V) shared between
themselves and the referee.

2. (Classical): The referee randomly generates classical questions for Alice and Bob,
(x, y) ∈ ΣA × ΣB, respectively.

3. (Classical): Alice and Bob respond with answers a ∈ ΓA and b ∈ ΓB.
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In complete generality, any variation on the type of communication used in an extended
nonlocal game may be specified in terms of a tuple (t1, t2, t3) ∈ {q, c} where each round
of communication consists of either a transmission of classical or quantum information
as denoted by either c or q in the tuple. For instance, the type of communication in
each round of a standard extended nonlocal game corresponds to the tuple (q, c, c). We
therefore equivalently may refer to the standard definition of an extended nonlocal game
as a quantum-classical-classical extended nonlocal game or just a QCC extended nonlocal
game for short.

4.3.1 Quantum-classical-quantum extended nonlocal games

Consider the class of quantum-classical-quantum extended nonlocal games or QCQ extended
nonlocal games for short. This class of game is defined precisely as a standard extended
nonlocal game, only now the last round of communication is replaced with Alice and Bob
sending quantum registers in place of the classical message a ∈ ΓA and b ∈ ΓB to the
referee.

Specifically, a QCQ extended nonlocal game is specified by the following objects:

• A probability distribution π : ΣA × ΣB → [0, 1], for alphabets ΣA and ΣB.

• A collection of measurement operators {Px,y : x ∈ ΣA, y ∈ ΣB} ⊂ Pos(A ⊗R⊗ B)
where A,B, and R are complex Euclidean spaces corresponding to registers A,B, and
R.

From the referee’s perspective, such a game is played as follows:

1. Alice and Bob present the referee with the register R, which has been initialized in a
state of Alice and Bob’s choosing. (The register R might, for instance, be entangled
with systems possessed by Alice and Bob.)

2. The referee randomly generates a pair (x, y) ∈ ΣA×ΣB according to the distribution
π, and sends x to Alice and y to Bob. Alice and Bob then send registers A and B
corresponding to spaces A and B to the referee.

3. The referee measures registers (A,R,B) with respect to the binary-valued measure-
ment {Px,y,1−Px,y} ⊂ Pos(A⊗R⊗B). The outcome corresponding to the measure-
ment operator Px,y indicates that Alice and Bob win, while the other measurement
result indicates that they lose.
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For any QCQ extended nonlocal game, there are various classes of strategies that may
be adapted from the standard extended nonlocal game case for Alice and Bob, including
unentangled strategies, standard quantum strategies, commuting measurement strategies,
and non-signaling strategies. In this section, we only consider standard quantum strategies
for QCQ extended nonlocal games.

A standard quantum strategy for a QCQ extended nonlocal game, specified by

π : ΣA × ΣB → [0, 1] and {Px,y : x ∈ ΣA, y ∈ ΣB} ⊂ Pos(A⊗R⊗ B) (4.52)

as above, consists of these objects:

1. A state σ ∈ D(U ⊗R⊗V), for U being the space corresponding to a register U held
by Alice and V being the space corresponding to a register V held by Bob. This state
represents Alice and Bob’s initialization of the tripe (U,R,V) immediately before R
is sent to the referee.

2. A collection of channels {Φx} ⊂ C(U ,A) for each x ∈ ΣA, applied by Alice when
she receives the question x, and a collection of channels {Φy} ⊂ C(V ,B) for each
y ∈ ΣB, applied by Bob when he receives the question y. Alice and Bob then send
their portions of the state after they have applied their channels to the referee.

When Alice and Bob utilize such a strategy, their winning probability may be expressed
as ∑

(x,y)∈ΣA×ΣB

〈
Px,y,

(
Φx ⊗ 1L(R) ⊗ Φy

)
(σ)

〉
. (4.53)

Using a similar teleportation trick that we have used in Section 4.2.2, one may show that an
arbitrary strategy for a QCC extended nonlocal game may be adapted for a QCQ extended
nonlocal game. There is not much to be gained from going through the explicit details of
this, as they are nearly identical to the process we have seen in the section already.

It is, however, relevant to note that in Lemma 32 of [KGN15], the authors use a similar
teleportation trick to prove a relationship between two different subclasses of complexity
classes arising from what they refer to as the “generalized-QAM” complexity class. These
two subclasses are similar in some sense to the QCC extended nonlocal game model and
the QCQ extended nonlocal game model, as the authors also analyze variants of the QAM
complexity class with similar properties.
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Figure 4.5: A quantum-classical-quantum extended nonlocal game. The referee selects
questions (x, y) ∈ ΣA × ΣB according to the probability distribution π, and sends x to
Alice and y to Bob. Upon receiving (x, y), Alice and Bob apply channels Φx and Φy to
their respective systems and respond with answers in the form of quantum registers (A,B)
over complex Euclidean spaces A and B. After receiving (A,B) from Alice and Bob, the
referee performs a measurement on {Px,y,1 − Px,y} ⊂ Pos(A ⊗ R ⊗ B) to determine the
probability with which Alice and Bob win or lose.
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Chapter 5

Bounding the standard quantum
value of extended nonlocal games

In this chapter, we shall present a number of heuristic methods that obtain bounds on the
standard quantum value of an extended nonlocal game. For placing upper bounds, we take
inspiration from the QC hierarchy [DLTW08, NPA07, NPA08]; a hierarchy of semidefinite
programs that yield progressively better upper bounds on the quantum value for nonlocal
games as one computes higher levels of the hierarchy. Indeed, we adopt these results and
provide what we refer to as the extended QC hierarchy and apply this technique to the
class of extended nonlocal games to obtain upper bounds on the standard quantum value.

In Section 5.1, we present the extended QC hierarchy in greater detail. We begin
in Section 5.1.1 by giving an informal description of how the extended QC hierarchy is
structured. In Section 5.1.2, we make this description more formal and show in Section 5.1.3
that the extended QC hierarchy has a similar convergence property as does the original
QC hierarchy. In Section 5.1.4, we shall provide some explicit examples of how one may
apply the extended QC hierarchy to extended nonlocal games.

In Section 5.2, we present our method to lower bound the value of extended nonlocal
games which is inspired by the work of Liang and Doherty [LD07], where they consider
a method that can be applied to lower bound the quantum value in the nonlocal game
setting. We adopt their technique and apply it to the case of extended nonlocal games. In
Section 5.2.1, we provide explicit examples of applying this lower bound technique to an
extended nonlocal game.

This chapter is based on joint work with Nathaniel Johnston, Rajat Mittal, and John
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Watrous [JMRW16].
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5.1 Upper bounds for extended nonlocal games: the

extended QC hierarchy

In this section we describe how the original QC hierarchy [DLTW08, NPA07, NPA08], may
be generalized to extended nonlocal games. The QC hierarchy is a method that allows one
to obtain upper bounds on the quantum value of a nonlocal game. Specifically, for a finite
level, the commuting measurement value of a nonlocal game is guaranteed to be obtained,
which serves as a natural upper bound to the quantum value of a nonlocal game. Directly
calculating the quantum value of a nonlocal game is probably intractable, but in most
cases, the first few levels of the QC hierarchy are numerically tractable to compute on
current hardware, and in many cases the first few levels are sufficient [PV09].

5.1.1 Intuitive description of the extended QC hierarchy

In this section, we shall provide some intuition on how one may interpret and use the
extended QC hierarchy. Many of these ideas are also found in the QC hierarchy for nonlocal
games. First, let us establish what the extended QC hierarchy is used for: it is a technique
to allow one to place upper bounds on the standard quantum value of a given extended
nonlocal game. More precisely, it is a method that allows us to obtain the commuting
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measurement value of a given extended nonlocal game, where it may be recalled from
Chapter 3, that the commuting measurement value is an upper bound on the standard
quantum value for every extended nonlocal game, that is ω∗(G) ≤ ωc(G) holds for any
extended nonlocal game G.

Recall that the commuting measurement value of an extended nonlocal game is given
by a maximization over the following equation∑

(x,y)∈Σ

π(x, y)
∑

(a,b)∈Γ

〈
V (a, b|x, y), K(a, b|x, y)

〉
, (5.1)

where K is a commuting measurement assemblage operator. What the extended QC
hierarchy allows us to do is to consider the following equation instead to compute the
commuting measurement value∑

(x,y)∈Σ

π(x, y)
∑

(a,b)∈Γ

〈
V (a, b|x, y),M (k)(a, b|x, y)

〉
, (5.2)

where now M (k) is some matrix parametrized by some integer k with entries indexed by
a ∈ ΓA, b ∈ ΓB, x ∈ ΣA, and y ∈ ΣB satisfying certain constraints, which we will elaborate
on shortly. The benefit of this is that we can optimize over the matrix M (k) and these
constraints for some level k by way of a semidefinite program, and thereby compute the
commuting measurement value of an extended nonlocal game. Of course, showing that
such a correspondence exists between equations (5.1) and (5.2) is the difficult part, and is
what we will be showing in Theorem 5.1 in Section 5.1.3.

Assuming that there does exist such a correspondence though, let us consider what
the M (k) matrices look like, and how to compute the constraints on these matrices as the
level k increases. These matrices can be thought to embody certain properties that one
would expect from a commuting measurement strategy. That is to say that the entries
in the matrices M (k) are indexed by strings which correspond to operators coming from a
commuting measurement strategy. It may be recalled that the measurements for such a
strategy obey pair-wise commutative properties, sum to the identity when summing over
the outputs, and may be considered to be projective without any loss of generality. The
strings within these matrices possess these qualities in ways that we will describe.

Assume that question and answer alphabets ΣA, ΣB, ΓA, and ΓB, as well as a positive
integer m representing the dimension of the referee’s quantum system, have been fixed.
The symbol ∪· denotes the disjoint union, meaning that ΣA × ΓA and ΣB × ΓB are to be
treated as disjoint sets when forming

∆ = (ΣA × ΓA) ∪· (ΣB × ΓB) . (5.3)
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We write ∆∗ to denote the set of all strings (of finite length) over ∆, and we write ε to
denote the empty string.

For simplicity, we will restrict our attention to k = 1, the first level of the extended QC
hierarchy, and consider an extended nonlocal game where the dimension of the referee’s
space is r and the game consists of n possible questions and m possible answers for each
player. The matrix M (1) consists r × r blocks

M (1) =

M
(1)
1,1 · · · M

(1)
1,r

...
. . .

...

M
(1)
m,1 · · · M

(1)
r,r

 . (5.4)

We construct each block M
(1)
i,j by lining all tuples of strings that correspond to measurement

operators and the identity operator used in the extended nonlocal game. For instance,
the tuple (x, a) can be thought of a string pair that corresponds to Alice’s measurement
operator Axa. We use ε as the empty string that relates to the identity operator. More
specifically, for k = 1, we consider all strings of length at most one from the set

∆≤1 = {ε} ∪ {(x, a)} ∪ {(y, b)} . (5.5)

The block matrices are then formed from this set as M
(1)
i,j : ∆≤1 ×∆≤1 where 1 ≤ i, j ≤ r.

This is a bit clearer if we simply write out what we have described thus far

M
(1)
i,j =



ε (x1, a1) · · · (xnm, anm) (y1, b1) · · · (ynm, bnm)

ε
(x1, a1)

...
(xnm, anm)

(y1, b1)
...

(ynm, bnm)


.

Now we have not actually placed an entry into this matrix yet. The outer row and outer
column are simply guides we will use to fill in the matrix. Specifically, we fill the matrix
by composing the outer row element with the outer column element. Again, writing this
out explicitly may enhance the explanation,

M
(1)
i,j =



ε (x1, a1) · · · (xnm, anm) (y1, b1) · · · (ynm, bnm)

ε ε (x1, a1) · · · (xnm, anm) (y1, b1) · · · (ynm, bnm)
(x1, a1) (x1, a1) (x1, a1) · · · (x1, a1)(xnm, anm) (x1, a1)(y1, b1) · · · (x1, a1)(ynm, bnm)

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.
(xnm, anm) (xnm, anm) (xnm, anm)(x1, a1) · · · (xnm, anm) (xnm, anm)(y1, b1) · · · (xnm, anm)(ynm, bnm)

(y1, b1) (y1, b1) (y1, b1)(x1, a1) · · · (y1, b1)(xnm, anm) (y1, b1) · · · (y1, b1)(ynm, bnm)

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.
(ynm, bnm) (ynm, bnm) (ynm, bnm)(x1, a1) · · · (ynm, bnm)(xnm, anm) (ynm, bnm)(y1, b1) · · · (ynm, bnm)


.
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Consider the last entry in the second row with entry (x1, a1)(ynm, bnm). To obtain this
entry, we multiplied, or more precisely, concatenated string pairs (x1, a1), coming from the
outer column, with the pair (ynm, bnm), coming from the outer row.

It is also essential to consider the first row, first column, and diagonal of M
(1)
i,j . Note

how there is just a single element in these spots instead of two concatenated tuples. The
reasoning behind this is that, as mentioned before, the properties of this matrix are meant
to embody those of commuting measurement strategy. Take for instance the first entry in
M

(1)
i,j which is equal to just ε. We would expect an entry of εε, but recall ε corresponds to

the identity operator and 11 = 1. In a similar way, the second entry in the second row
is just (x1, a1). Again, we would expect an entry of (x1, a1)(x1, a1), however since we may
assume that strings representing the measurements are projective, that is Ax1a1A

x1
a1

= Ax1a1 ,
this property is conveyed in a similar way. The same idea applies to the entire diagonal of
M

(1)
i,j .

We now consider how the commutation relationships are conveyed in this matrix. In
M

(1)
i,j , this property is represented as enforcing that

M
(1)
i,j ((x, a), (y, b)) = M

(1)
i,j ((y, b), (x, a)), (5.6)

for all (i, j) blocks. For instance, consider the entries (y1, b1)(x1, a1) and (x1, a1)(y1, b1).
These entries are equal since the strings represent operators coming from a commuting
measurement strategy, that is to say they represent the property[

Ax1a1 , B
y1
b1

]
=
[
By1
b1
, Ax1a1

]
= 0. (5.7)

We also need to convey the property that the measurements of Alice and Bob are equal to
the identity when summing over all answers. This is conveyed by observing that∑

a∈ΓA

M (1)((x, a), (y, b)) = M (1)(ε, (y, b)),∑
b∈ΓB

M (1)((x, a), (y, b)) = M (1)((x, a), ε).
(5.8)

The last constraint we place on the matrix M (1) is that it must be positive semidefinite.
If this constraint, along with all of the other constraints regarding the blocks of M (1) are
enforced, we refer to M (1) as a first-order admissible matrix, which will be formally defined
in the coming sections for any k. Optimizing over such a matrix subject to the above
conditions while attempting to maximize equation (5.2) will provide us with our desired
upper bound on the standard quantum value for some extended nonlocal game.
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It may happen that the first level of the hierarchy is not sufficient in attaining the true
commuting measurement value. Specifically, the value at the first level may be higher than
the actual commuting measurement value. In this case, computing higher levels of k will
help us in getting closer to the true commuting measurement value. When constructing
the block matrices M

(k)
i,j for some level k, each block will have the following form

M
(k)
i,j : ∆≤k ×∆≤k → C, (5.9)

where
∆≤0 = {ε},
∆≤1 = ∆≤0 ∪ {(x, a)} ∪ {(y, b)},
∆≤2 = ∆≤1 ∪ {(x, a)(x′, a′)} ∪ {(x, a)(y, b)} ∪ {(y, b)(y′, b′)},

...

(5.10)

where x 6= x′, a 6= a′, y 6= y′, and b 6= b′. It is apparent that as k increases, the alphabets
have the following property that

∆≤0 ⊆ ∆≤1 ⊆ · · · ⊆ ∆≤k. (5.11)

That is to say, the blocks in M (k) will consist of more and more entries as k increases.
One of the main ideas of the extended QC hierarchy that is also similar to the original
QC hierarchy is that as k increases, this leads to better and better approximations of the
commuting measurement value of some extended nonlocal game G, that is

ωkc (G) ≤ · · · ≤ ω2
c (G) ≤ ω1

c (G), (5.12)

for some value of k. This relationship is depicted in Figure 5.1.

As previously mentioned, one nice property of the extended QC hierarchy that is also
enjoyed by the QC hierarchy for nonlocal games is that obtaining the commuting mea-
surement value is guaranteed for any extended nonlocal game for some finite level k. The
downside to this, of course, is that k may be particularly large. From an algorithm anal-
ysis perspective, the original QC hierarchy scales exponentially with respect to the level
computed, that is (nm)k, where again n represents the total number of questions and m
represents the total number of answers. Indeed, for the extended QC hierarchy, the com-
plexity fares even worse as we also have the referee’s space to be concerned about now.
It is therefore sometimes helpful to consider intermediate levels that are between integer
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ωc(G) · · · ω2
c (G) ω1

c (G)

Figure 5.1: A visual representation of computing levels of the extended QC hierarchy.
The outermost ellipse corresponds to the value attained when one computes the first level
of the extended QC hierarchy. We represent this as ω1

c (G), where k = 1 represents the
level computed. For certain games, this may indeed by equal to the true commuting
measurement value of the game, that is ωc(G).

values of k. For instance

∆≤0 = {ε},
∆≤1 = ∆≤0 ∪ {(x, a)} ∪ {(y, b)},

∆≤1+AB = ∆≤1 ∪ {(x, a)(y, b)},
...

(5.13)

where x 6= x′, a 6= a′, b 6= b′, and y 6= y′. The k = 1 + AB level is not quite as restrictive
computationally as the complete second level of the hierarchy, and this may be enough in
certain cases to obtain the commuting measurement value for a given extended nonlocal
game. These intermediate levels have also been considered for the original QC hierarchy
as well and serve a similar purpose.

In practice, for many nonlocal games and extended nonlocal games, the values emerg-
ing from low levels of the QC hierarchy and extended QC hierarchy agree with the true
commuting measurement value of the game. While there do exist some exceptions to this
property, such as the I3322 game (based on the I3322 inequality [CG04]), the authors
here [PV09] for instance were able to show a wide variety of Bell inequalities (or nonlocal
games) that the QC hierarchy was able to obtain the commuting measurement value at
low levels of the hierarchy.
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In the next section, we will make our intuition developed in this section more formal,
and we will further prove that the extended QC hierarchy allows one to obtain the com-
muting measurement value of any extended nonlocal game. Our proof technique for this
follows very closely the technique used in [NPA07, NPA08] to prove convergence for the
QC hierarchy for nonlocal games.

5.1.2 Construction of the extended QC hierarchy

Define ∼ to be the equivalence relation on ∆∗ generated by the following rules:

1. sσt ∼ sσσt (for every s, t ∈ ∆∗ and σ ∈ ∆).

2. sστt ∼ sτσt (for every s, t ∈ ∆∗, σ ∈ ΣA × ΓA, and τ ∈ ΣB × ΓB).

That is, two strings are equivalent with respect to the relation ∼ if and only if one can be
obtained from the other by a finite number of applications of the above rules.

Now, a function of the form
φ : ∆∗ → C (5.14)

will be said to be admissible if and only if the following conditions are satisfied:

1. For every choice of strings s, t ∈ ∆∗ it holds that∑
a∈ΓA

φ(s(x, a)t) = φ(st) and
∑
b∈ΓB

φ(s(y, b)t) = φ(st) (5.15)

for every x ∈ ΣA and y ∈ ΣB.

2. For every choice of strings s, t ∈ ∆∗, it holds that

φ(s(x, a)(x, a′)t) = 0 and φ(s(y, b)(y, b′)t) = 0 (5.16)

for every choice of x ∈ ΣA and a, a′ ∈ ΓA satisfying a 6= a′, and every choice of y ∈ ΣB

and b, b′ ∈ ΓB satisfying b 6= b′, respectively.

3. For all strings s, t ∈ ∆∗ satisfying s ∼ t it holds that φ(s) = φ(t).

Along similar lines, a function of the form

φ : ∆≤k → C (5.17)
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is said to be admissible if and only if the same conditions listed above hold, provided that
s and t are sufficiently short so that φ is defined on the arguments indicated within each
condition.

Finally, for each positive integer k (representing a level of approximation in the hierar-
chy to be constructed), we consider the set of all block matrices of the form

M (k) =

M
(k)
1,1 · · · M

(k)
1,m

...
. . .

...

M
(k)
m,1 · · · M

(k)
m,m

 , (5.18)

where each of the blocks takes the form

M
(k)
i,j : ∆≤k ×∆≤k → C, (5.19)

and for which the following conditions are satisfied:

1. For every choice of i, j ∈ {1, . . . ,m}, there exists an admissible function

φi,j : ∆≤2k → C (5.20)

such that
M

(k)
i,j (s, t) = φi,j(s

Rt) (5.21)

for every choice of strings s, t ∈ ∆≤k. (Here, the notation sR means the reverse of the
string s.)

2. It holds that
M

(k)
1,1 (ε, ε) + · · ·+M (k)

m,m(ε, ε) = 1. (5.22)

3. The matrix M (k) is positive semidefinite.

Matrices of the form (5.18) obeying the listed constraints will be called k-th order admissible
matrices . For such a matrix, we write M (k)(s, t) to denote the m×m complex matrix

M (k)(s, t) =

M
(k)
1,1 (s, t) · · · M

(k)
1,m(s, t)

...
. . .

...

M
(k)
m,1(s, t) · · · M

(k)
m,m(s, t)

 , (5.23)

for each choice of strings s, t ∈ ∆≤k. With respect to this notation, the second and third
conditions on M (k) imply that M (k)(ε, ε) is an m×m density matrix.
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We observe that an optimization over all k-th order admissible matrices can be rep-
resented by a semidefinite program: a matrix of the form (5.18) is a k-th order admissi-
ble matrix if and only if it is positive semidefinite and satisfies a finite number of linear
constraints imposed by the first two conditions on M (k). In particular, for an extended
nonlocal game G = (π, V ), where π is a distribution over ΣA × ΣB and V is a function
V : ΓA × ΓB × ΣA × ΣB → Pos(Cm), one may consider the maximization of the quantity∑

(x,y)∈ΣA×ΣB

π(x, y)
∑

(a,b)∈ΓA×ΓB

〈
V (a, b|x, y),M (k)((x, a), (y, b))

〉
(5.24)

subject to M (k) being a k-th order admissible matrix.

We also note that the original QC hierarchy corresponds precisely to the m = 1 case of
the hierarchy just described.

5.1.3 Convergence of the extended QC hierarchy

In this section, we show that the extended QC hierarchy converges to the set of commuting
measurement assemblages. Our convergence proof follows a very similar trajectory to the
convergence proof of the original QC hierarchy outlined in [NPA08]. The primary idea here,
and in the original proof, is that for some finite k, there exists a k-th order admissible matrix
that represents a commuting measurement assemblage. The beneficial property of this, as
we have previously stated, is that the properties of this matrix are amenable to optimization
via a semidefinite program. This is appealing from a computational standpoint, as we can
leverage this property along with convex optimization software (such as CVX [GBY08]) to
compute upper bounds on the standard quantum value of extended nonlocal games.

We now give some intuition for how the proof of convergence proceeds. The easier di-
rection of the proof is to show that if you are given a commuting measurement assemblage,
then this assemblage satisfies the properties specified by a k-th order pseudo commuting
measurement assemblage for every level k. The harder and more interesting direction is
the converse. The main idea of proving this direction is very similar to the idea presented
in [NPA08], where one needs to show that there must exist collections of measurement
operators {Axa} ⊂ Pos(H) and {By

b } ⊂ Pos(H) for some Hilbert space H belonging to
Alice and Bob, as well as a state ρ ∈ D(R⊗H) that satisfy the conditions of a commuting
measurement strategy arising from a k-th order pseudo commuting measurement assem-
blage. The basic idea here is to consider the k-th order pseudo commuting measurement
assemblage as a matrix and show how the shared state and collections of measurements
arise from the definition of this matrix.
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Now, for a fixed choice of alphabets ΣA, ΣB, ΓA, and ΓB, as well as positive integers m
and k, let us consider the set of all functions of the form

K : ΓA × ΓB × ΣA × ΣB → L(Cm) (5.25)

for which there exists a k-th order admissible matrix M (k) that satisfies

K(a, b|x, y) = M (k)((x, a), (y, b)) (5.26)

for every x ∈ ΣA, y ∈ ΣB, a ∈ ΓA, and b ∈ ΓB.

The set of all such functions will be called k-th order pseudo commuting measurement
assemblages .

Theorem 5.1. Let ΣA, ΣB, ΓA, and ΓB be alphabets, let m be a positive integer, let R = Cm

be a complex Euclidean space, and let

K : ΓA × ΓB × ΣA × ΣB → L(R) (5.27)

be a function. The following statements are equivalent:

1. The function K is a commuting measurement assemblage.

2. The function K is a k-th order pseudo commuting measurement assemblage for every
positive integer k.

We require the following lemma to prove Theorem 5.1. This lemma will allow us to
claim that the entries of a k-th order admissible matrix, M (k), are bounded above by one.

Lemma 5.2. Let m, k ≥ 1 be positive integers. Then a k-th order admissible matrix, M (k),
satisfies ∣∣∣M (k)

i,j (s, t)
∣∣∣ ≤ 1, (5.28)

for every i, j ∈ {1, . . . ,m} and all s, t ∈ ∆≤k.

Proof. It follows that since M (k) is positive semidefinite, then the 2×2 principal submatrix
of M (k), written as (

M
(k)
i,i (s, s) M

(k)
i,j (s, t)

M
(k)
j,i (t, s) M

(k)
j,j (t, t)

)
(5.29)
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must also be positive semidefinite for each i, j ∈ {1, . . . ,m} and s, t ∈ ∆∗. It follows then
that ∣∣∣M (k)

i,j (s, t)
∣∣∣ ≤√M

(k)
i,i (s, s)

√
M

(k)
j,j (t, t) (5.30)

for each i, j ∈ {1, . . . ,m} and s, t ∈ ∆∗. It now remains to show that

M
(k)
i,i (s, s) ≤ 1 (5.31)

for every i ∈ {1, . . . ,m} and s ∈ ∆≤k. We prove equation (5.31) by induction on the length

of s. For the base case, it holds that M
(k)
i,i (ε, ε) ≤ 1 by the property of equation (5.22) that

m∑
i=1

M
(k)
i,i (ε, ε) = 1, (5.32)

and that the diagonal entries of M (k) are nonnegative. For the general case, for any string
t ∈ ∆∗ and any choice of (z, c) ∈ ∆, it holds that

M
(k)
i,i ((z, c)t, (z, c)t) ≤

∑
d

M
(k)
i,i ((z, d)t, (z, d)t) (5.33)

=
∑
d

φ
(k)
i,i (tR(z, d)(z, d)t) (5.34)

=
∑
d

φ
(k)
i,i (tR(z, d)t) (5.35)

= φ
(k)
i,i (tRt) (5.36)

= M
(k)
i,i (t, t), (5.37)

where d ∈ ΓA if z ∈ ΣA or d ∈ ΓB if z ∈ ΣB and where equation (5.34) follows from
equation (5.21), equation (5.35) follows from the equivalence relation on strings that sσt ∼
sσσt for every s, t ∈ ∆∗ and σ ∈ ∆, equation (5.36) follows from equation (5.15), and
equation (5.37) follows again from equation (5.21). The proof follows by the hypothesis of
induction.

With Lemma 5.2 in hand, we proceed to the proof of Theorem 5.1.

Proof of Theorem 5.1. The simpler implication is that statement 1 implies statement 2.
Under the assumption that statement 1 holds, it must be that K is defined by a strategy
in which Alice and Bob use projective measurements,

{Axa : a ∈ ΓA} ⊂ Pos(H) and {By
b : b ∈ ΓB} ⊂ Pos(H) (5.38)
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for Alice and Bob, on a shared (possibly infinite-dimensional) complex Euclidean space H,
along with a pure state u ∈ R⊗H. Let u1, . . . , um ∈ H be vectors for which

u =
m∑
j=1

ej ⊗ uj. (5.39)

Also let Πz
c denote Azc if z ∈ ΣA and c ∈ ΓA, or Bz

c if z ∈ ΣB and c ∈ ΓB. With respect to
this notation, one may consider the k-th order admissible matrix M (k) defined by

M
(k)
i,j (s, t) = φi,j(s

Rt), (5.40)

where the functions {φi,j} are defined as

φi,j
(
(z1, c1) · · · (z`, c`)

)
= u∗iΠ

z1
c1
· · ·Πz`

c`
uj (5.41)

for every string (z1, c1) · · · (z`, c`) ∈ ∆≤2k. A verification reveals that this matrix is consis-
tent with K, and therefore K is a k-th order pseudo commuting measurement assemblage.

The more difficult implication is that statement 2 implies statement 1. The basic
methodology of the proof is similar to the m = 1 case proved in [NPA08], and we will
refer to arguments made in that paper when they extend to the general case. For every
positive integer k, let M (k) be a k-th order admissible matrix satisfying K(a, b|x, y) =
M (k)((x, a), (y, b)) for every x ∈ ΣA, y ∈ ΣB, a ∈ ΓA, and b ∈ ΓB. First, by Lemma 5.2 it
follows that for every choice of k ≥ 1 that∣∣∣M (k)

i,j (s, t)
∣∣∣ ≤ 1 (5.42)

for every choice of i, j ∈ {1, . . . ,m} and s, t ∈ ∆≤k.

Next, reasoning in the same way as [NPA08], we may assume that there exists an

infinite matrix M̂ (k) created from M (k) by padding blocks M
(k)
i,j to make them infinite.

This sequence of infinite matrices {M̂ (k) : k = 1, 2, . . .} admits a subsequence {kl} that
weak-* converges to a limit when l approaches infinity. Recall this fact follows from the
Banach–Alaoglu theorem mentioned in Chapter 2. This implies that

lim
l→∞

M̂ (kl) →M, (5.43)

where M is an infinite matrix of the form

M =

M1,1 · · · M1,m
...

. . .
...

Mm,1 · · · Mm,m

 , (5.44)
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where
Mi,j : ∆∗ ×∆∗ → C (5.45)

for each i, j ∈ {1, . . . ,m}, satisfying similar constraints to the finite matrices M (k). In
particular, it must hold that

Mi,j(s, t) = φi,j(s
Rt) (5.46)

for a collection of admissible functions {φi,j} taking the form

φi,j : ∆∗ → C, (5.47)

it must hold that all finite submatrices of M are positive semidefinite, and it must hold
that M1,1(ε, ε)+· · ·+Mm,m(ε, ε) = 1. Consequently, there must exist a collection of vectors{

ui,s : i ∈ {1, . . . ,m}, s ∈ ∆∗} ⊂ H (5.48)

chosen from a separable Hilbert space H for which it holds that

Mi,j(s, t) =
〈
ui,s, uj,t

〉
(5.49)

for every choice of i, j ∈ {1, . . . ,m} and s, t ∈ ∆∗. Furthermore, it must hold that

K(a, b|x, y) = M((x, a), (y, b)) (5.50)

where, as for the matrices M (k), we write

M(s, t) =

M1,1(s, t) · · · M1,m(s, t)
...

. . .
...

Mm,1(s, t) · · · Mm,m(s, t)

 (5.51)

for each s, t ∈ ∆∗. There is no loss of generality in assuming H is spanned by the vectors
(5.48), for otherwiseH can simply be replaced by the (possibly finite-dimensional) subspace
spanned by these vectors.

Now we will define a commuting measurement strategy for Alice and Bob certifying
that K is a commuting measurement assemblage. The state initially prepared by Alice
and Bob, and shared with the referee, will be the pure state corresponding to the vector

u =
m∑
j=1

ej ⊗ uj,ε ∈ R⊗H. (5.52)
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This is a unit vector, as a calculation reveals:

‖u‖2 =
m∑
j=1

〈uj,ε, uj,ε〉 = M1,1(ε, ε) + · · ·+Mm,m(ε, ε) = 1. (5.53)

Next, we define projective measurements on H for Alice and Bob. For each (z, c) ∈ ∆,
define Πz

c to be the projection operator onto the span of the set{
uj,(z,c)s : j ∈ {1, . . . ,m}, s ∈ ∆∗

}
. (5.54)

It must, of course, be proved that these projections do indeed form projective measure-
ments, and that Alice’s measurements commute with Bob’s. Toward these goals, consider
any choice of i, j ∈ {1, . . . ,m}, s, t ∈ ∆∗, and (z, c) ∈ ∆, and observe that

〈ui,(z,c)t, uj,s〉 = Mi,j((z, c)t, s)

= φi,j(t
R(z, c)s)

= φi,j(t
R(z, c)(z, c)s)

= Mi,j((z, c)t, (z, c)s)

= 〈ui,(z,c)t, uj,(z,c)s〉

(5.55)

It follows that uj,s and uj,(z,c)s have the same inner product with every vector in the image
of Πz

c . As every vector in the orthogonal complement of the image of Πz
c is orthogonal to

uj,(z,c)s, as this vector is contained in the image of Πz
c , if follows that

Πz
cuj,s = uj,(z,c)s. (5.56)

This formula greatly simplifies the required verifications. For instance, one has〈
ui,(z,c)t, uj,(z,d)s

〉
= Mi,j((z, c)t, (z, d)s)

= φi,j(t
R(z, c)(z, d)s)

= 0

(5.57)

for all i, j ∈ {1, . . . ,m}, s, t ∈ ∆∗, and (z, c), (z, d) ∈ ∆ for which c 6= d, and therefore
Πz
cΠ

z
d = 0 whenever (z, c), (z, d) ∈ ∆ satisfy c 6= d. For each x ∈ ΣA, and each i, j ∈

{1, . . . ,m} and s, t ∈ ∆∗, it holds that∑
a∈ΓA

〈
ui,s,Π

x
auj,t

〉
=
∑
a∈ΓA

〈
ui,s, uj,(x,a)t

〉
=
∑
a∈ΓA

φi,j(s
R(x, a)t) = φi,j(s

Rt) =
〈
ui,s, uj,t

〉
(5.58)
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and therefore ∑
a∈ΓA

Πx
a = 1, (5.59)

for each x ∈ ΣA, and along similar lines one finds that∑
b∈ΓB

Πy
b = 1 (5.60)

for each y ∈ ΣA. Finally, for every i, j ∈ {1, . . . ,m}, s, t ∈ ∆∗, (x, a) ∈ ΣA × ΓA, and
(y, b) ∈ ΣB × ΓB we have 〈

ui,s,Π
x
aΠ

y
buj,t

〉
=
〈
ui,(x,a)s, uj,(y,b)t

〉
= φi,j

(
sR(x, a)(y, b)t

)
= φi,j

(
sR(y, b)(x, a)t

)
=
〈
ui,(y,b)s, uj,(x,a)t

〉
=
〈
ui,s,Π

y
bΠ

x
auj,t

〉
,

(5.61)

and therefore
[
Πx
a,Π

y
b

]
= 0.

It remains to observe that the strategy represented by the pure state u and the projective
measurements {Πx

a} and {Πy
b} yields the commuting measurement assemblage K. This is

also evident from the equation (5.56), as one has

Mi,j((x, a), (y, b)) =
〈
ui,(x,a), uj,(y,b)

〉
=
〈

Πx
aΠ

y
b , uj,εu

∗
i,ε

〉
, (5.62)

and therefore
K(a, b|x, y) = TrH

((
1⊗ Πx

aΠ
y
b

)
uu∗
)

(5.63)

for every choice of x ∈ ΣA, y ∈ ΣB, a ∈ ΓA, and b ∈ ΓB.

5.1.4 Examples: Upper-bounding the standard quantum values
of extended nonlocal games

The BB84 extended nonlocal game

Consider the following extended nonlocal game, GBB84.
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Example 5.3. Let ΣA = ΣB = ΓA = ΓB = {0, 1}, define

V (0, 0|0, 0) = E0,0 =

(
1 0
0 0

)
,

V (1, 1|0, 0) = E1,1 =

(
0 0
0 1

)
,

V (0, 0|1, 1) =
1

2
(E0,0 + E0,1 + E1,0 + E1,1) =

(
1
2

1
2

1
2

1
2

)
,

V (1, 1|1, 1) =
1

2
(E0,0 − E0,1 − E1,0 + E1,1) =

(
1
2
−1

2

−1
2

1
2

)
,

(5.64)

define

V (a, b|x, y) =

(
0 0
0 0

)
, (5.65)

for all a 6= b or x 6= y, define π(0, 0) = π(1, 1) = 1/2, and define π(x, y) = 0 if x 6= y.

Alice and Bob win GBB84 = (π, V ) if and only if the responses from Alice and Bob, a
and b, are equal to the outcome of the measurement that the referee makes on its system.
In the event where the referee sends x = y = 0 and Alice and Bob respond with either
a = b = 0 or a = b = 1, the referee measures his state against either the measurement
V (0, 0|0, 0) or V (1, 1|0, 0). These measurements correspond to the well known 0/1 basis,
which is sometimes written in Dirac notation elsewhere in the literature as |0〉〈0| and
|1〉〈1|. Likewise, if the referee sends x = y = 1 to Alice and Bob and they respond with
either a = b = 0 or a = b = 1, the referee measures his state against either V (0, 0|1, 1) or
V (1, 1|1, 1). These measurements correspond to the +/− basis, which is typically denoted
as |+〉〈+| and |−〉〈−| in Dirac notation elsewhere in the literature. This particular game
is one that we will see again in Chapter 6 under the name of the BB84 monogamy-of-
entanglement game, and it was initially introduced in [TFKW13].

Recall that the extended QC hierarchy states that an upper bound on the standard
quantum value of any extended nonlocal game may be obtained by maximizing the follow-
ing quantity ∑

(x,y)∈ΣA×ΣB

π(x, y)
∑

(a,b)∈ΓA×ΓB

〈
V (a, b|x, y),M (k)((x, a), (y, b))

〉
, (5.66)

where M (k) is a k-th order admissible matrix. For the game GBB84, this quantity may be
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explicitly written as

1

2

(〈
V (0, 0|0, 0),M (k)((0, 0), (0, 0))

〉
+

〈
V (1, 1|0, 0),M (k)((0, 1), (0, 1))

〉)
+

1

2

(〈
V (0, 0|1, 1),M (k)((1, 0), (1, 0))

〉
+

〈
V (1, 1|1, 1),M (k)((1, 1), (1, 1))

〉)
,

(5.67)

for some level k. For simplicity, we shall just consider the first level at k = 1 of the extended
QC hierarchy for GBB84. As it turns out, and as we shall see in the coming sections, the
first level converges to the standard quantum value, and therefore going any higher in the
hierarchy will not yield any better approximations.

The software listing A.1.1 in Appendix A maximizes the objective function from equa-
tion (5.66) subject to the constraints that the matrix M (1) is a first-order admissible matrix.
Running the listing, one obtains the following matrix for M (1):

M (1) =

(
M

(1)
1,1 M

(1)
1,2

M
(1)
2,1 M

(1)
2,2

)
, (5.68)

where

M
(1)
1,1 = M

(1)
2,2 =



α β+ β− α α β+ β− α α
β+ β+ 0 αβ+ αβ+ β+ 0 αβ+ αβ+

β− 0 β− αβ− αβ− 0 β− αβ− αβ−
α αβ+ αβ− α 0 αβ+ αβ− α 0
α αβ+ αβ− 0 α αβ+ αβ− 0 α
β+ β+ 0 αβ+ αβ+ β+ 0 αβ+ αβ+

β− 0 β− αβ− αβ− 0 β− αβ− αβ−
α αβ+ αβ− α 0 αβ+ αβ− α 0
α αβ+ αβ− 0 α αβ+ αβ− 0 α


,

M
(1)
1,2 = M

(1)
2,1 =



0 0 0 γ −γ 0 0 γ −γ
0 0 0 αγ −αγ 0 0 αγ −αγ
0 0 0 αγ −αγ 0 0 αγ −αγ
0 0 0 αγ −αγ 0 0 αγ −αγ
γ αγ αγ γ 0 αγ αγ γ 0
−γ −αγ −αγ 0 −γ −αγ −αγ 0 −γ
0 0 0 αγ −αγ 0 0 αγ −αγ
0 0 0 αγ −αγ 0 0 αγ −αγ
γ αγ αγ γ 0 αγ αγ γ 0
−γ −αγ −αγ 0 −γ −αγ −αγ 0 −γ


,

(5.69)
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where we define the constants

α = 1/2, β± =
1

8

(
2±
√

2
)
, and γ =

√
2

8
. (5.70)

One may verify that the matrix M (1) is a first-order admissible matrix and that the equa-
tion (5.67) for k = 1 yields the value of cos2(π/8) ≈ 0.8536 where

M (1)((0, 0), (0, 0)) =

(
β+ 0
0 β−

)
, M (1)((0, 1), (0, 1)) =

(
β− 0
0 β+

)
,

M (1)((1, 0), (1, 0)) =

(
α γ
γ α

)
, M (1)((1, 1), (1, 1)) =

(
α −γ
−γ α

)
.

(5.71)

In Section 5.2, we will verify that cos2(π/8) is indeed the standard quantum value as this
value will also arise when calculating the lower bound of GBB84.

The CHSH extended nonlocal game

Let us now consider another game, GCHSH.

Example 5.4 (CHSH extended nonlocal game). Let ΣA = ΣB = ΓA = ΓB = {0, 1}, define
a collection of measurements {V (a, b|x, y) : a ∈ ΓA, b ∈ ΓB, x ∈ ΣA, y ∈ ΣB} ⊂ Pos(R)
such that

V (0, 0|0, 0) = V (0, 0|0, 1) = V (0, 0|1, 0) = E0,0,

V (1, 1|0, 0) = V (1, 1|0, 1) = V (1, 1|1, 0) = E1,1,

V (0, 1|1, 1) =
1

2
(E0,0 + E0,1 + E1,0 + E1,1) ,

V (1, 0|1, 1) =
1

2
(E0,0 − E0,1 − E1,0 + E1,1) ,

(5.72)

define

V (a, b|x, y) =

(
0 0
0 0

)
(5.73)

for all a⊕ b 6= x ∧ y, and define π(0, 0) = π(0, 1) = π(1, 0) = π(1, 1) = 1/4.

In the event that a⊕b 6= x∧y, the referee’s measurement corresponds to the zero matrix
from equation (5.73). If instead it happens that a ⊕ b = x ∧ y, the referee then proceeds
to measure with respect to one of the measurement operators from equation (5.72). This
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winning condition is reminiscent of the standard CHSH nonlocal game. For GCHSH, we
may again consider the equation (5.66) where the quantity may be explicitly written as

1

4

(〈
V (0, 0|0, 0),M (k)((0, 0), (0, 0))

〉
+

〈
V (1, 1|0, 0),M (k)((0, 1), (0, 1))

〉)
+

1

4

(〈
V (0, 0|0, 1),M (k)((0, 0), (1, 0))

〉
+

〈
V (1, 1|0, 1),M (k)((0, 1), (1, 1))

〉)
+

1

4

(〈
V (0, 0|1, 0),M (k)((1, 0), (0, 0))

〉
+

〈
V (1, 1|1, 0),M (k)((1, 1), (0, 1))

〉)
+

1

4

(〈
V (0, 1|1, 1),M (k)((1, 0), (1, 1))

〉
+

〈
V (1, 0|1, 1),M (k)((1, 1), (1, 0))

〉)
,

(5.74)

for some level k. Unlike GBB84, the first level of the extended QC hierarchy is not suffi-
cient for obtaining the standard quantum value of GCHSH. Indeed, running the software
listing A.1.2 that implements the first level of the extended QC hierarchy yields a value of
≈ 0.7578, while the non-signaling value of this game yields a value of 3/4 (refer to software
listing A.1.3) as does the lower bound on the standard quantum value of GCHSH. The lower
bound technique will be elaborated on further in Section 5.2.

5.2 Lower bounds for extended nonlocal games: the

see-saw method

Our lower bound heuristic for the class of extended nonlocal games is based on the work of
Liang and Doherty [LD07], where they provide a lower bound technique for Bell inequali-
ties, or equivalently, nonlocal games. The primary idea of their algorithm is to note that
fixing measurements on one system yields the optimal measurements of the other system
via an SDP. The algorithm proceeds in an iterative manner between two SDPs. In the
first SDP, we assume that Bob’s measurements are fixed, and Alice’s measurements are to
be optimized over. In the second SDP, we take Alice’s optimized measurements from the
first SDP and now optimize over Bob’s measurements. This method is repeated until the
quantum value reaches a desired numerical precision. This “see-saw” type iteration was
done in [WW01] by Werner and Wolf and served as a basis of inspiration for Liang and
Doherty’s method. It is also worthwhile to mention that in [IIA06] the authors showed
concurrently with [LD07] that there exists an SDP that achieves a lower bound on the
quantum value for a nonlocal game.
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We must slightly adapt the Liang and Doherty lower bound algorithm to take into
account the actions of the referee for our extended nonlocal game. In our scenario, we
shall represent Alice’s actions in terms of the residual states acting on the referee and Bob
as the set {ρxa : x ∈ ΣA, a ∈ ΓA} ⊂ Pos(R⊗ B) where

ρxa = TrA ((1R ⊗ Axa ⊗ 1B) ρ) ∈ Pos(R⊗ B). (5.75)

It is then necessary and sufficient that
∑

a∈ΓA
ρxa = τ ∈ D(R⊗ B) for all x ∈ ΣA. It then

holds that we can express the probability that Alice and Bob’s standard quantum strategy
wins in as ∑

(x,y)∈Σ

π(x, y)
∑

(a,b)∈Γ

〈
V (a, b|x, y)⊗By

b , ρ
x
a

〉
. (5.76)

Writing the above conditions in terms of an SDP, we have that

Lower bound SDP-1

maximize:
∑

(x,y)∈Σ

π(x, y)
∑

(a,b)∈Γ

〈
V (a, b|x, y)⊗By

b , ρ
x
a

〉
subject to:

∑
a∈ΓA

ρxa = τ, ∀x ∈ ΣA,

ρxa ∈ Pos(R⊗ B), ∀x ∈ ΣA, ∀a ∈ ΓA,

τ ∈ D(R⊗ B),

(5.77)

where the measurements of the referee represented as the collection {V (a, b|x, y)} as well
as the sets of measurements for Bob, represented as the collection {By

b } are fixed where the
collection of operators {ρxa} are the variables that we wish to optimize. Now we consider
the second SDP. First, observe that we can write equation (5.76) as∑

(x,y)∈Σ

π(x, y)
∑

(a,b)∈Γ

〈
Φ(By

b ), ρxa
〉
, (5.78)

where the mapping Φ ∈ T(B,R⊗ B) is defined as

Φ(By
b ) = π(x, y)V (a, b|x, y)⊗By

b . (5.79)

We calculate the unique adjoint mapping Φ∗ ∈ T(R⊗ B,B), as

Φ∗(ρxa) = TrR ((V (a, b|x, y)∗ ⊗ 1B) ρxa) , (5.80)
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which may be verified from〈
Φ(By

b ), ρxa
〉

=
〈
V (a, b|x, y)⊗By

b , ρ
x
a

〉
= Tr ((V (a, b|x, y)∗ ⊗ (By

b )∗) ρxa)

= Tr ((1B ⊗ (By
b )∗) (V (a, b|x, y)∗ ⊗ 1B) ρxa)

= Tr ((By
b )∗TrR (V (a, b|x, y)∗ ⊗ 1B) ρxa)

=
〈
By
b ,TrR ((V (a, b|x, y)∗ ⊗ 1B) ρxa)

〉
.

(5.81)

From this, we can define the second SDP.

Lower bound SDP-2

maximize:
∑

(x,y)∈Σ

π(x, y)
∑

(a,b)∈Γ

〈
By
b ,Φ

∗(ρxa)
〉

subject to:
∑
b∈ΓB

By
b = 1B, ∀y ∈ ΣB,

By
b ∈ Pos(B), ∀y ∈ ΣB, b ∈ ΓB.

(5.82)

While the optimization procedure is not guaranteed to converge to the actual quantum
value, we can perform our extended QC hierarchy to check if the lower and upper bounds
are in agreement to determine optimality. If this is indeed the case, we can extract the
explicit strategy that Alice and Bob perform via this lower bound method.

Bob’s measurements are given directly from the formulation of the SDP, while Alice’s
measurements may be obtained by the following equation

Axa = τ−1/2 TrB(ρxa)τ
−1/2 (5.83)

for all a ∈ ΓA and x ∈ ΣA.

5.2.1 Examples: Lower-bounding the standard quantum values
of extended nonlocal games

The BB84 extended nonlocal game

We revisit GBB84, the BB84 extended nonlocal game considered in Section 5.1.4. We
observed that for k = 1, the extended QC hierarchy gave us a value of cos2(π/8). We
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also claimed that this value does indeed correspond to the standard quantum value of the
game, and going any higher in the hierarchy would not yield any better approximations
to this value. In this example, we shall compute the lower bound of GBB84 and verify that
the lower and upper bounds agree, which confirms that computing for any higher levels of
k in the extended QC hierarchy would not be useful.

The software listing A.1.4 in Appendix A computes the lower bound of GBB84 using
the two semidefinite programs from equations (5.77) and (5.82). In the first semidefinite
program, we are given the measurements that the referee uses (as defined in example 6.1) as
well as some collection of measurements for Bob. When we start the see-saw algorithm, we
simply generate random unitaries of appropriate dimension to represent the measurements
that Bob may use. These measurement operators will change as we go back and forth
between the semidefinite programs. The variable that we are optimizing with respect to is
ρxa, which represents Alice’s actions.

We then plug in the variables that we obtain from the first semidefinite program into
the second semidefinite program. We repeat this process until the desired threshold is
reached. In this example, the value of cos2(π/8) is obtained almost immediately, and
therefore allows one to conclude that since the upper and lower bounds are in agreement,
that ω∗(GBB84) = cos2(π/8). Furthermore using equation (5.83), we can also obtain the
strategy that Alice uses to obtain this value, where the measurement operators of Alice
are given explicitly as

A0
0 = A1

1 =

(
cos2(π/8) − sin(π/8) cos(π/8)

− sin(π/8) cos(π/8) sin2(π/8)

)
,

A0
1 = A1

0 =

(
sin2(π/8) sin(π/8) cos(π/8)

sin(π/8) cos(π/8) cos2(π/8)

)
.

(5.84)

In this particular example, Bob’s measurement operators can take the form of any valid
measurement operators.
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Chapter 6

Monogamy-of-Entanglement Games

In this chapter, we shall consider a particular type of extended nonlocal game referred to
as a monogamy-of-entanglement game, which was initially introduced in [TFKW13].

In Section 6.1, we formally present this model and prove a number of properties about
this class of game. In particular, we will study the relationship between the standard
quantum and unentangled strategies of certain monogamy-of-entanglement games. In Sec-
tion 6.2 we will study the parallel repetition of monogamy-of-entanglement games, and
in Section 6.3 we will present an example of a monogamy-of-entanglement game that Al-
ice and Bob win with higher probability in the event that they use a standard quantum
strategy in place of an unentangled strategy.

This chapter is based on joint work with Nathaniel Johnston, Rajat Mittal, and John
Watrous [JMRW16].
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6.2.2 No strong parallel repetition for monogamy-of-entanglement games
with non-signaling provers . . . . . . . . . . . . . . . . . . . . . . 102

6.3 Upper and lower bounds on monogamy-of-entanglement games103

6.3.1 A monogamy-of-entanglement game with quantum advantage . . 103

6.3.2 Synopsis of monogamy-of-entanglement games . . . . . . . . . . 104

6.1 Monogamy-of-entanglement games

Monogamy-of-entanglement games are a special type of extended nonlocal game, and were
originally introduced and studied by Tomamichel, Fehr, Kaniewski, and Wehner [TFKW13].
Monogamy-of-entanglement games received their namesake as they serve as a framework to
conceptualize the fundamental monogamy property exhibited by entangled qubits [CKW00].
In short, this property states that for three possibly entangled qubits contained in the reg-
isters X0, X1, and X2, that if Xi and Xj are maximally entangled, then Xk is completely
unentangled with qubits Xi and Xj for i 6= j 6= k where i, j, k ∈ {0, 1, 2}. This phenomena
has been studied in a number of other works [Ter01, Ter04, KW04, OV06].

The manner in which a monogamy-of-entanglement game proceeds is similar to an
extended nonlocal game. After Alice and Bob supply the referee with a quantum system,
we now assume that the referee selects a single question at random, and sends this same
question to both Alice and Bob. The winning condition of a monogamy-of-entanglement
game is predicated on the ability for Alice and Bob to respond with the same answer, and
that this answer must agree with the measurement outcome of the referee.

More formally, we specify a monogamy-of-entanglement game as G = (π,R) where
π : Σ → [0, 1] is a probability distribution defined over an alphabet Σ and where R is a
function of the form R : Γ × Σ → Pos(R) where R = Cm is a complex Euclidean space
of dimension m belonging to the referee and where Γ is an alphabet. The function R
corresponds to a collection of measurement operators for the referee where R(a|x) is the
measurement that corresponds to question x ∈ Σ and answer a ∈ Γ. The function R must
satisfy ∑

a∈Γ

R(a|x) = 1R (6.1)

for every x ∈ Σ.
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A monogamy-of-entanglement game closely follows the way in which an extended non-
local game is played. First, Alice and Bob prepare a state σ ∈ D(U ⊗R⊗V) and share it
with the referee. The referee then selects a single question x ∈ Σ according to the prob-
ability distribution π, and sends x to both Alice and Bob. Alice and Bob then produce
and send respective responses a and b to the referee. When the referee receives a and b,
it performs a measurement {R(c|x) : c ∈ Γ} on its portion of the shared state, yielding
some measurement outcome. The game is won if and only if the measurement outcomes a
and b produced by Alice and Bob agree with the outcome of the referee’s measurement. A
monogamy-of-entanglement game is depicted in Figure 6.1.

R0 R1

A

B

σ
x

U

V

R

x

x

a

b

Figure 6.1: A monogamy-of-entanglement game. The state σ ∈ D(U ⊗ R ⊗ V) contained
in registers (U,R,V) is prepared by Alice and Bob, where R is sent to the referee and U
belongs to Alice and V belongs to Bob. The referee selects question x according to the π
distribution, and sends x to both Alice and Bob. Alice and Bob then generate and send
answers a and b to the referee. Alice and Bob win if and only if all measurement outcomes
agree.

6.1.1 Strategies and values of monogamy-of-entanglement games

Since monogamy-of-entanglement games are a type of extended nonlocal game, one may
also define unentangled strategies, standard quantum strategies, commuting measurement
strategies, and non-signaling strategies as considered in Chapter 3 in a similar manner.
We shall define some of these strategies and their corresponding values for the case of
monogamy-of-entanglement games explicitly.
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For instance, a standard quantum strategy for a monogamy-of-entanglement game con-
sists of finite-dimensional complex Euclidean spaces U for Alice and V for Bob, a quantum
state σ ∈ D(U ⊗R⊗ V), and two collections of measurements

{Axa : a ∈ Γ} ⊂ Pos(U) and {Bx
a : a ∈ Γ} ⊂ Pos(V), (6.2)

for each x ∈ Σ. The measurement operators satisfy the constraint that∑
a∈Γ

Axa = 1U and
∑
a∈Γ

Bx
a = 1V , (6.3)

for each x ∈ Σ. For a monogamy-of-entanglement game, the winning probability for Alice
and Bob when they use a standard quantum strategy is given by∑

x∈Σ

π(x)
∑
a∈Γ

〈
Axa ⊗R(a|x)⊗Bx

a , σ

〉
. (6.4)

In fact, we may simplify the above expression slightly. Recall from Section 3.2.2 that
we may assume that σ ∈ D(U ⊗ R ⊗ V) is pure for any extended nonlocal game, and
the measurements of the referee are positive semidefinite, it follows by convexity that we
may write the winning probability for Alice and Bob when they use a standard quantum
strategy as ∥∥∥∥∑

x∈Σ

π(x)
∑
a∈Γ

Axa ⊗R(a|x)⊗Bx
a

∥∥∥∥. (6.5)

For a given monogamy-of-entanglement game G = (π,R), we write ω∗(G) to denote the
standard quantum value of G, which is the supremum winning value of Alice and Bob’s
winning probability over all standard quantum strategies for G.

An unentangled strategy for a monogamy-of-entanglement game is simply a standard
quantum strategy for which the state σ ∈ D(U ⊗ R ⊗ V) initially prepared by Alice and
Bob is fully separable. The unentangled value of a monogamy-of-entanglement game, G,
can be directly derived from the unentangled value of an extended nonlocal game from
equation (3.22) as

ω(G) = max
f :Σ→Γ

∥∥∥∥∑
x∈Σ

π(x)R(f(x)|x)

∥∥∥∥, (6.6)

noting again that Alice and Bob only win in a monogamy-of-entanglement game when
their measurement outcomes agree with the measurement outcome of the referee.
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A non-signaling strategy for a monogamy-of-entanglement game consists of a non-
signaling assemblage K : Γ× Σ→ Pos(R) such that∑

a∈Γ

K(a, b|x, y) = ξyb and
∑
b∈Γ

K(a, b|x, y) = ρxa, (6.7)

for all x ∈ Σ and y ∈ Σ where {ξyb : y ∈ Σ, b ∈ Γ} and {ρxa : x ∈ Σ, a ∈ Γ} are collections
of operators satisfying ∑

a∈Γ

ρxa = τ =
∑
b∈Γ

ξyb , (6.8)

for all x ∈ Σ and y ∈ Σ and where τ ∈ D(R) is a density operator. For any monogamy-
of-entanglement game the winning probability when Alice and Bob use a non-signaling
strategy is given by ∑

x∈Σ

π(x)
∑
a∈Γ

〈
R(a|x), K(a, a|x, x)

〉
. (6.9)

For a monogamy-of-entanglement game, G, the non-signaling value, ωns(G) is the supre-
mum value of the winning probability of G taken over all non-signaling strategies for Alice
and Bob.

6.1.2 The BB84 monogamy-of-entanglement game

In the following example, we shall consider one type of monogamy-of-entanglement game
referred to as the BB84 monogamy-of-entanglement game, denoted as GBB84 for short.
As we shall see, the name of the game comes from the sets of measurements that the
referee uses, which are defined from the BB84 measurement operators [BB84]. This game
was initially introduced and studied in [TFKW13]. Note that we also already previously
considered this game in Chapter 5 when we looked at the examples found in Sections 5.1.4
and 5.2.1.

Example 6.1 (BB84 monogamy-of-entanglement game [TFKW13]). Let Σ = Γ = {0, 1},
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define

R(0|0) = E0,0 =

(
1 0
0 0

)
,

R(1|0) = E1,1 =

(
0 0
0 1

)
,

R(0|1) =
1

2
(E0,0 + E0,1 + E1,0 + E1,1) =

(
1
2

1
2

1
2

1
2

)
,

R(1|1) =
1

2
(E0,0 − E0,1 − E1,0 + E1,1) =

(
1
2
−1

2

−1
2

1
2

)
,

(6.10)

and define π(0) = π(1) = 1/2. Then the BB84 monogamy-of-entanglement game, denoted
as GBB84, is specified by GBB84 = (π,R).

In [TFKW13], the authors also showed that even if Alice and Bob adopt a standard
quantum strategy for GBB84, they will perform no better than had they simply used an
unentangled strategy,

ω(GBB84) = ω∗(GBB84) = cos2(π/8) ≈ 0.8536. (6.11)

That is to say, Alice and Bob gain no advantage in sharing entanglement with the referee.
Recall that in Sections 5.1.4 and 5.2.1, we computed the lower and upper bound on the
standard quantum value of GBB84 and found that both values agree and are equal to
cos2(π/8).

6.1.3 Comparing standard quantum and unentangled strategies
for monogamy-of-entanglement games

Recall from Section 6.1.2 that ω(GBB84) = ω∗(GBB84), meaning that it makes no difference
whether Alice and Bob adopt a standard quantum or unentangled strategy for GBB84, as
they will win with the same probability either way. A natural question then is whether this
behavior persists in general for the class of monogamy-of-entanglement games. Specifically,
is it the case that for any monogamy-of-entanglement game, G, that

ω(G) = ω∗(G)? (6.12)

In this section, we shall show that for any monogamy-of-entanglement game where
the size of the question set is two and the size of the answer set is arbitrary, the standard
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quantum and unentangled values are indeed equal. However, in Section 6.3.1, we shall show
that this behavior is not true for the entire class of monogamy-of-entanglement games and
present an explicit example of a monogamy-of-entanglement game that yields a strictly
higher standard quantum value than unentangled value.

Theorem 6.2. Let G be any monogamy-of-entanglement game for which the question set
Σ satisfies |Σ| = 2. It holds that

ω(G) = ω∗(G). (6.13)

Proof. It is evident that ω(G) ≤ ω∗(G), as this is the case for every extended nonlocal
game (and therefore every monogamy-of-entanglement game), so it remains to prove the
reverse inequality. Assume without loss of generality that Σ = {0, 1}, and that G = (π,R)
for π(0) = λ and π(1) = 1− λ. Consider any choice of projective measurements{

A0
a : a ∈ Γ

}
and

{
A1
a : a ∈ Γ

}
(6.14)

on U for Alice and {
B0
a : a ∈ Γ

}
and

{
B1
a : a ∈ Γ

}
(6.15)

on V for Bob. First, note that for an optimal choice of the initial state, we can write the
standard quantum value of G in terms of the following equation

ω∗(G) =

∥∥∥∥λ∑
a∈Γ

A0
a ⊗R(a|0)⊗B0

a + (1− λ)
∑
b∈Γ

A1
b ⊗R(b|1)⊗B1

b

∥∥∥∥. (6.16)

Note that the operator inside the norm of equation (6.16) is positive semidefinite since all
of the measurement operators are also positive semidefinite.

Recall that for positive semidefinite operators P ∈ Pos(U) and Q ∈ Pos(V) that if
P ≤ Q then it implies that ‖P ‖ ≤ ‖Q‖. To observe this fact, note that for a positive
semidefinite operator, X, the spectral norm yields the largest eigenvalue of that operator.
An equivalent way to state that X is positive semidefinite is to say that X is Hermitian
with nonnegative eigenvalues.

We can, therefore, upper bound ω∗(G) in the following way

ω∗(G) ≤
∥∥∥∥λ∑

a∈Γ

A0
a ⊗R(a|0)⊗ 1V + (1− λ)

∑
b∈Γ

1U ⊗R(b|1)⊗B1
b

∥∥∥∥. (6.17)
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Since we enforce that the operators Axa and By
b are valid measurement operators, it holds

that ∑
a∈Γ

Axa = 1U and
∑
b∈Γ

By
b = 1V (6.18)

for all x ∈ Σ and y ∈ Σ. Let us now replace the identity operators from equation (6.17)
with these sums to obtain

ω∗(G) ≤
∥∥∥∥λ∑

a,b∈Γ

A0
a ⊗R(a|0)⊗B1

b + (1− λ)
∑
a,b∈Γ

A0
a ⊗R(b|1)⊗B1

b

∥∥∥∥. (6.19)

Since {A0
a ⊗ B1

b : a, b ∈ Γ} are pairwise orthogonal projections, i.e. that 〈A0
a ⊗ B1

b , A
0
a′ ⊗

B1
b′〉 = 0 for a 6= a′ and b 6= b′ and also that it holds that∥∥∥∥∑

k

Ak ⊗ Πk

∥∥∥∥ = max
k
‖Ak‖ (6.20)

for a projective measurement {Πk}, we have that∥∥∥∥ ∑
(a,b)∈Γ

A0
a ⊗ (λR(a|0) + (1− λ)R(b|1))⊗B1

b

∥∥∥∥ ≤ max
a,b∈Γ

∥∥∥∥λR(a|0) + (1− λ)R(b|1)

∥∥∥∥. (6.21)

It follows from equation (6.6) that

ω(G) = max
a,b∈Γ

∥∥∥∥λR(a|0) + (1− λ)R(b|1)

∥∥∥∥. (6.22)

Therefore ω∗(G) ≤ ω(G).

6.2 Parallel repetition of monogamy-of-entanglement

games

For an integer r ≥ 1 and some monogamy-of-entanglement game, G, the r-fold parallel
repetition of a monogamy-of-entanglement game is when Alice and Bob play r copies of
G, denoted as Gr, wherein the referee gives the players r independent and identically
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distributed pairs of questions simultaneously and expects a response from Alice and Bob
for each instance. The referee accepts if and only if all of the r responses satisfy the
criteria for the initial game, and rejects otherwise. The parallel repetition of a monogamy-
of-entanglement game is depicted in Figure 6.2.

Define the complex Euclidean spaces R1, . . . ,Rr and define alphabets

Σ = Σ1 × · · · × Σr and Γ = Γ1 × · · · × Γr (6.23)

such that x1 ∈ Σ1, . . . , xr ∈ Σr are selected from Σ according to

πk : Σ1 × · · · × Σk → [0, 1] (6.24)

where πk(x1, . . . , xr) = π(x1) · · · π(xr). Then the r-fold parallel repetition of G starts off
with the referee accepting r registers R1, . . . ,Rr from Alice and Bob where the contents of
the registers correspond to the state

σ ∈ D(U ⊗R1 ⊗ · · · ⊗ Rr ⊗ V), (6.25)

and selecting r questions x1 ∈ Σ, . . . , xr ∈ Σ according to π. The referee then sends
x1, . . . , xr to Alice and Bob. The players return r answers a1 ∈ Γ1, . . . , ar ∈ Γr for each
question. The referee then performs a measurement from the set

{R(a1, . . . , ar|x1, . . . , xr) = R(a1|x1)⊗ · · · ⊗R(ar|xr) : ai ∈ Γ, xi ∈ Σ} . (6.26)

Alice and Bob win the parallel repetition of G if and only if their answers win each of the
r instances of Gr. That is, for a monogamy-of-entanglement game, Alice and Bob win if
and only if the outcomes of their measurements in every r instance of the game matches
with the referee’s measurement outcome for every r games.

One may ask how ω(Gr) depends on ω(G) and r. It is evident that ω(Gr) ≥ ω(G)r since
Alice and Bob can simply perform the same strategy in each instance. For any game that
has the property ω(G) = 1, it holds that ω(Gr) = 1 for any r. One may also wish to ask the
question of how ω(Gr) scales in the event that ω(G) < 1. First note that ω(Gr) ≤ ω(G).
This can be seen since, in order for the players to win all instances of the game, they must
win the original game, G. Note also that ω(G)r ≤ ω(Gr) and ω(G)r ≤ ω(G). This holds
since the players can simply play each game independently with the optimal strategy for
the original game. We, therefore, have the following inequality relationship for the parallel
repetition of G

ω(G)r ≤ ω(Gr) ≤ ω(G). (6.27)
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Figure 6.2: Parallel repetition of a monogamy-of-entanglement game. Alice and Bob
prepare registers (R1, . . . ,Rr) and send to the referee. The referee then asks questions
x1, . . . , xr to Alice and y1, . . . , yr to Bob. Alice and Bob respond to each question with
answers a1, . . . , ar and b1, . . . , br. Once the referee receives all the answers, it performs a
measurement. Alice and Bob win the parallel repetition of the monogamy-of-entanglement
game if and only if all their answers match the referee’s measurement outcome for every r
instance.

98



It may be tempting to conclude that ω(Gr) = ω(G)r for all games, however this was surpris-
ingly disproven [FRS90, Fei91, Ver96, FV02]. Specifically in [FRS90], Fortnow introduced
a game G for which ω(G2) > ω(G)2. This result was later improved by Feige [Fei91], by
exhibiting an example of a game where ω(G2) = ω(G) with ω(G) < 1.

We say that a game G exhibits the property of strong parallel repetition if the value
of the game raised to the r power is equal to the value of running the game r times.
For instance, a monogamy-of-entanglement game, G, where the players use a standard
quantum strategy satisfies strong parallel repetition if and only if

ω∗(Gr) = ω∗(G)r. (6.28)

Strong parallel repetition has been also referred to as perfect parallel repetition elsewhere
in the literature as in [CSUU08].

It is a fact proved in [TFKW13] that the BB84 game, GBB84, exhibits the property of
strong parallel repetition,

ω∗(Gr
BB84) = ω∗(GBB84)

r =
(
cos2(π/8)

)r
, (6.29)

where r is the number of rounds of repetition performed. A natural question for the general
class of monogamy-of-entanglement games might be whether this behavior holds for any
monogamy-of-entanglement game. In Section 6.2.1, we prove that for any monogamy-of-
entanglement game G = (π,R) where the set of measurements belonging to the referee,
R, are projective, the distribution π is uniform, the size of the question set is |Σ| = 2, and
the size of the answer set is |Γ| = k for some integer k ≥ 1, then strong parallel repetition
holds.

This result of strong parallel repetition holds for the case when Alice and Bob use either
an unentangled or a standard quantum strategy since we know from Section 6.1.3 that

ω(G) = ω∗(G) (6.30)

for any monogamy-of-entanglement game G, with |Σ| = 2 and |Γ| = k for some integer
k ≥ 1. Specifically, the result that is shown in Section 6.2.1 is that

ω(Gr) = ω(G)r and ω∗(Gr) = ω∗(G)r, (6.31)

where r is the number of repetitions and G = (π,R) is a monogamy-of-entanglement where
|Σ| = 2, |Γ| = k, π is uniform, and R is a collection of projective measurement operators.

While strong parallel repetition holds for a specific class of monogamy-of-entanglement
games when Alice and Bob use either an unentangled or standard quantum strategy, we
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can ask a similar question when Alice and Bob use a non-signaling strategy instead. As
we shall see in Section 6.2.2, it turns out that strong parallel repetition does not hold in
the non-signaling scenario. We shall illustrate this by showing a counter-example to strong
parallel repetition by using a non-signaling version of the BB84 monogamy-of-entanglement
game and showing that

ωns(G
r
BB84) 6= ωns(GBB84)

r. (6.32)

for r = 2.

6.2.1 Strong parallel repetition for certain monogamy-of-entanglement
games with two questions

We begin this section by recalling a theorem from [TFKW13].

Theorem 6.3 (Tomamichel, Fehr, Kaniewski, and Wehner (Theorem 4 of [TFKW13])).
Let G = (π,R) be a monogamy-of-entanglement game for which π is uniform over Σ, define

c(G) = max
x,y∈Σ
x 6=y

max
a,b∈Γ

∥∥∥∥√R(a|x)
√
R(b|y)

∥∥∥∥2

, (6.33)

and let Gr denote the game played r times in parallel. It holds that

ω∗(Gr) ≤
(

1

|Σ| +
|Σ| − 1

|Σ|
√
c(G)

)r
. (6.34)

Equation (6.33) may be referred to as the maximal overlap of the referee’s measure-
ments. As was observed in [TFKW13], this quantity satisfies

1

|Γ| ≤ c(G) ≤ 1 and c(Gr) = c(G)r. (6.35)

For any monogamy-of-entanglement game, G, Theorem 6.3 provides an upper bound on
the standard quantum value achieved when running G for r times in parallel as given
by equation (6.34). In this section, we shall show that for |Σ| = 2 that the bound from
equation (6.34) is indeed tight.

Theorem 6.4. Let G = (π,R) be a monogamy-of-entanglement game for which π is uni-
form over Σ with |Σ| = 2. It holds that

ω∗(Gr) =

(
1

2
+

1

2

√
c(G)

)r
. (6.36)

100



In order to prove theorem 6.4, we first require the following proposition.

Proposition 6.5. Let G = (π,R) be a monogamy-of-entanglement game for which Σ =
{0, 1}, π is uniform over Σ, and R(a|x) is a projection operator for each x ∈ Σ and a ∈ Γ.
It holds that

ω(G) =
1

2
+

1

2
max
a,b∈Γ

∥∥∥∥R(a|0)R(b|1)

∥∥∥∥. (6.37)

Proving this proposition requires the use of the following lemma.

Lemma 6.6. Let Π0 and Π1 be nonzero projection operators on Cr. It holds that∥∥Π0 + Π1

∥∥ = 1 +
∥∥Π0Π1

∥∥. (6.38)

Proof. For every choice of unit vectors u0, u1 ∈ Cr, one has the formula∥∥u0u
∗
0 + u1u

∗
1

∥∥ = 1 + |〈u0, u1〉| , (6.39)

which follows from the observation that the Hermitian operator u0u
∗
0 + u1u

∗
1 has (at most)

two nonzero eigenvalues 1±|〈u0, u1〉|. Letting S, S0, and S1 denote the unit spheres in the
spaces Cr, im(Π0), and im(Π1), respectively, one has∥∥Π0 + Π1

∥∥ = max {v∗ (Π0 + Π1) v : v ∈ S}
= max

{∥∥Π0v
∥∥2

+
∥∥Π1v

∥∥2
: v ∈ S

}
= max

{
|〈u0, v〉|2 + |〈u1, v〉|2 : v ∈ S, u0 ∈ S0, u1 ∈ S1

}
= max {v∗ (u0u

∗
0 + u1u

∗
1) v : v ∈ S, u0 ∈ S0, u1 ∈ S1}

= max
{∥∥u0u

∗
0 + u1u

∗
1

∥∥ : u0 ∈ S0, u1 ∈ S1

}
= max {1 + |〈u0, u1〉| : u0 ∈ S0, u1 ∈ S1}
= 1 +

∥∥Π0Π1

∥∥,

(6.40)

which proves the lemma.

Proof of Proposition 6.5. From equation (3.22), we have that the unentangled value of the
game G is given by

ω(G) = max
a,b∈Γ

∥∥∥∥ 1

2
R(a|0) +

1

2
R(b|1)

∥∥∥∥ =
1

2
max
a,b∈Γ

∥∥∥∥R(a|0) +R(b|1)

∥∥∥∥. (6.41)
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It follows from Lemma 6.6 that ‖R(a|0) + R(b|1)‖ = 1 + ‖R(a|0)R(b|1)‖ which allows us
to write equation (6.41) as

ω(G) =
1

2
+

1

2
max
a,b∈Γ

∥∥∥∥R(a|0)R(b|1)

∥∥∥∥, (6.42)

proving the proposition.

Proof of Theorem 6.4. The upper bound

ω∗(Gr) ≤
(

1

2
+

1

2

√
c(G)

)r
, (6.43)

follows from Theorem 6.3, initially shown in [TFKW13]. Showing the other direction

ω∗(Gr) ≥
(

1

2
+

1

2

√
c(G)

)r
, (6.44)

follows from Proposition 6.5 and Lemma 6.6. The reason that this direction holds for any
number of repetitions r is that Alice and Bob can simply play an optimal strategy for each
r games, r times in parallel. This implies that

ω∗(Gr) ≥ ω(Gr) ≥
(

1

2
+

1

2
max
a,b∈Γ

∥∥∥∥R(a|0)R(b|1)

∥∥∥∥)r =

(
1

2
+

1

2

√
c(G)

)r
, (6.45)

which matches the upper bound from Theorem 6.3.

6.2.2 No strong parallel repetition for monogamy-of-entanglement
games with non-signaling provers

Claim 6.7 (No strong parallel repetition for non-signaling provers). There exists a monogamy-
of-entanglement game, G, such that

ωns(G
2) 6= ωns(G)2. (6.46)

Proof of Claim 6.7. We shall verify equation (6.46) numerically using the convex optimiza-
tion software CVX [GBY08] in addition to the software listing A.1.7 in Appendix A. The
explicit monogamy-of-entanglement game that we shall use to verify this claim is GBB84,
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the BB84 game as mentioned in Section 6.1.2. It may be checked by running the software
listing A.1.7 that

ωns(G
2
BB84) ≈ 0.73826. (6.47)

However, we may also verify that a single repetition of GBB84 is cos2(π/8), that is

ωns(GBB84) = cos2(π/8). (6.48)

From this, it is clear that

ωns(G
2
BB84) 6= ωns(GBB84)

2 = cos4(π/8), (6.49)

which concludes the proof.

6.3 Upper and lower bounds on

monogamy-of-entanglement games

In this section, we apply the upper and lower bound techniques for extended nonlocal
games from Chapter 5, and apply them to monogamy-of-entanglement games. In doing so,
we are able to verify the existence of a monogamy-of-entanglement game where Alice and
Bob perform better if they use a standard quantum strategy as opposed to an unentangled
one.

6.3.1 A monogamy-of-entanglement game with
quantum advantage

Example 6.8 (A monogamy-of-entanglement game with quantum advantage). Let ζ =
exp(2πi

3
) and consider the following four mutually unbiased bases:

B0 = {e0, e1, e2} ,

B1 =

{
e0 + e1 + e2√

3
,
e0 + ζ2e1 + ζe2√

3
,
e0 + ζe1 + ζ2e2√

3

}
,

B2 =

{
e0 + e1 + ζe2√

3
,
e0 + ζ2e1 + ζ2e2√

3
,
e0 + ζe1 + e2√

3

}
,

B3 =

{
e0 + e1 + ζ2e2√

3
,
e0 + ζ2e1 + e2√

3
,
e0 + ζe1 + ζe2√

3

}
.

(6.50)
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Define a monogamy-of-entanglement game G = (π,R) so that

π(0) = π(1) = π(2) = π(3) =
1

4
(6.51)

and R is such that

{R(0|x), R(1|x), R(2|x)} (6.52)

represents a measurement with respect to the basis Bx, for each x ∈ {0, 1, 2, 3}. In order
to observe that ω(G) < ω∗(G), first consider the following unentangled strategy. Alice and
Bob prepare the state

u =

(
1− i

√
3

4

)
e0 +

(
1 + i

√
3

5

)
e1 +

(
1 +

3√
5

)
e2, (6.53)

and sends it to the referee. In the event that x = 0 or x = 1, Alice and Bob respond with
a = b = 2. If instead x = 2 or x = 3, Alice and Bob respond with a = b = 0. The value of
the game in this case is given by

ω(G) =
1

4

〈
R(2|0) +R(2|1) +R(0|2) +R(0|3), ρ

〉
=

3 +
√

5

8
≈ 0.6545, (6.54)

where ρ = uu∗ ∈ D(R ⊗ A ⊗ B). An exhaustive search over all unentangled strategies
reveals that equation (6.54) is optimal. In contrast, a computer search over quantum
strategies using the lower bound techniques from Sectionf 5.2 has revealed that

ω∗(G) ≥ 0.660986, (6.55)

which is strictly larger than the unentangled value of this game. This strategy is available
for download from the software repository [JR15] and is also provided as a software example
in Appendix A. It is uncertain what the optimal standard quantum strategy is for this game,
but the value of such a strategy is bounded as follows

2/3 ≥ ω∗(G) ≥ 0.660986. (6.56)

6.3.2 Synopsis of monogamy-of-entanglement games

The following table gives an overview of what is currently known about the class of
monogamy-of-entanglement games and summarizes some of the main contributions of this
chapter.

1So long as the measurements used by the referee are projective and the probability distribution, π,
from which the questions are asked is uniform.
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Inputs (|Σ|) Outputs (|Γ|) ω∗(G) = ω(G) ω∗(Gr) = ω∗(G)r ωns(G
r) = ωns(G)r

2 ≥ 1 yes yes1 no

3 ≥ 1 ? ? no

4 3 no ? no

Table 6.1: A table of known results for monogamy-of-entanglement games. The first and
second column refer to the number of inputs and outputs for such a game. The third
column states whether or not the unentangled and standard quantum values are equal,
and the last two columns state whether or not strong parallel repetition holds with either
quantum players or non-signaling players respectively.
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Chapter 7

Conclusions and open problems

In this thesis, we have laid the foundation for the extended nonlocal game model, a superset
of the nonlocal game model where the referee also holds a quantum system.

In Chapter 3 we defined and analyzed the analogous types of strategies and corre-
sponding game values (standard quantum, unentangled, commuting measurement, and
non-signaling) that the players, Alice and Bob, can make use of in such a game.

In Chapter 4, we took a deeper look at the extended nonlocal game model and showed
that there exists an example of an extended nonlocal game where if the dimension of
Alice and Bob’s shared quantum system is finite, then the standard quantum value will
be strictly less than 1. However, taking the limit as the dimension tends to infinity,
the standard quantum value approaches 1. We saw how this result implies something
non-trivial about tripartite steering inequalities, specifically that there exists a tripartite
steering inequality for which an infinite-dimensional state is required in order to maximally
violate the inequality.

In Chapter 5, we provided a technique to place upper bounds on the standard quantum
value of an extended nonlocal game that generalizes the QC hierarchy, which we referred
to as the extended QC hierarchy. We have shown that the hierarchy enjoys many of the
same useful properties that the original QC hierarchy does, specifically, convergence to
the set of commuting measurement assemblages. We also adapted the techniques of Liang
and Doherty [LD07] to place lower bounds on the standard quantum value of extended
nonlocal games. Furthermore, we have also presented software that calculates lower and
upper bounds using these techniques of certain special classes of extended nonlocal games.

In Chapter 6, we took these tools and analyzed the class of monogamy-of-entanglement
games, a class of games that were initially studied in the context of position-based cryp-
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tography [TFKW13]. We proved a number of properties that these games have including
how they behave under parallel repetition, how entanglement may help in Alice and Bob’s
strategies, etc.

A number of questions regarding the class of monogamy-of-entanglement games remain
open. Specifically,

Question 7.1. Other examples of monogamy-of-entanglement games where ω(G) <
ω∗(G).

The complete landscape of how the quantum and classical values compare for differ-
ent instances of monogamy-of-entanglement games is something to be explored. We only
know of a small number of isolated examples where ω(G) < ω∗(G) for a monogamy-of-
entanglement game, G.

In Section 6.3.1 a set of |Σ| = 4 mutually unbiased bases in |Γ| = 3 dimensions allow
Alice and Bob to perform better if they adopt a standard quantum strategy instead of an
unentangled strategy. This is the smallest example of a monogamy-of-entanglement game
that was found having this property. Is there an example having fewer questions or fewer
answers? This example would have to have at least three questions, since we know that
for |Σ| = 2, that the unentangled and standard quantum values agree for any number
of outputs as shown in Section 6.1.3. Numerical results indicate that the monogamy-of-
entanglement game consisting of |Σ| = 3 where the referee’s measurements are defined in
terms of mutually unbiased bases gives no such separation. Is it possible that another
monogamy-of-entanglement game with |Σ| = 3 questions exists where such a separation
between unentangled and standard quantum values exists?

One brute force method that can be used to check if there exists a monogamy-of-
entanglement game for |Σ| = 3 where a standard quantum strategy will outperform an
unentangled strategy is to run a computer search over randomly generated instances of
such monogamy-of-entanglement games. The software provided in the Appendix of this
thesis A as well as hosted on the software repository [Rus15] provides a suite of tools that
give upper and lower bounds on the quantum value (as described in Chapter 5) as well as
tools for calculating the unentangled value of any monogamy-of-entanglement game. One
approach would be to randomly generate monogamy-of-entanglement games where |Σ| = 3
and |Γ| ≥ 2, and see if any example of such games yield ω(G) < ω∗(G). This approach
does not seem particularly promising, as if such a game were to exist with this property,
it most likely has a very specific structure that would be difficult to capture by random
generation.
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On a related note, under what conditions does a monogamy-of-entanglement game
based on mutually unbiased bases admit a standard quantum over unentangled strategy
advantage? Numerically, it may be checked that a monogamy-of-entanglement game con-
sisting |Σ| = 5 and |Γ| = 4 also yields a standard quantum advantage over any unentangled
strategy. Does this behavior persist for any monogamy-of-entanglement game defined by
mutually unbiased bases as long as the number of inputs is at least |Σ| = 4, and the
number of outputs is at least |Γ| = 3? Furthermore, do there exist other monogamy-of-
entanglement games where |Σ| ≥ 4 and |Γ| ≥ 3 such that ω(G) < ω∗(G)? Just as a
computer search can be constructed where |Σ| = 3 and |Γ| ≥ 2, one may also formulate a
search that checks for larger instances as well.

Question 7.2. Parallel repetition for monogamy-of-entanglement games?

It was shown in Section 6.2.1 (Theorem 6.3) that for any monogamy-of-entanglement
game defined in terms of projective measurements for the referee where |Σ| = 2 and |Γ| ≥ k
for some integer k ≥ 1 that strong parallel repetition holds. Would it be possible to extend
from projective measurements to non-projective measurements, such as POVMs? After
simulating approximately 108 random instances of monogamy-of-entanglement games with
|Σ| = 2 defined in terms of POVMs, all games were found to obey strong parallel repetition
for r = 2 rounds of repetition.

Furthermore, the claim that strong parallel repetition holds for monogamy-of-entanglement
games where the measurements of the referee are projective and |Σ| = 2 assumes that
the questions that the referee asks are selected uniformly at random. Is it possible that
the strong parallel repetition property will continue to hold despite the distribution of
questions? If indeed it does hold under nonuniform distributions, the bound from equa-
tion (6.34) from Theorem 6.3 will most likely be in a more complicated form. Ultimately,
the overall goal for parallel repetition of monogamy-of-entanglement games would be to
either prove or disprove strong parallel repetition for the entire class of such games.

There also exists other questions and directions for further research.

Question 7.3. Other examples of using extended nonlocal games to study tripartite steer-
ing.

As mentioned in Chapter 4, we were able to prove a non-trivial statement about a
certain type of tripartite steering using the extended nonlocal game model. Given the con-
nection between extended nonlocal games and tripartite steering, are there other possible
questions we can answer that become more apparent using the extended nonlocal game
model?
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Question 7.4. Does there exist a nonlocal game G such that ω∗(G) = 1 and that ω∗N(G) <
1 for every positive integer N?

As mentioned in Chapter 4, it is known that nonlocal games with quantum questions
and quantum answers do satisfy the above property [LTW13]. However, it is unknown for
nonlocal games with classical questions and classical answers. This question is most likely
difficult to solve.
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[PV09] Károly Pál and Tamás Vértesi. Quantum bounds on Bell inequalities. Phys-
ical Review A, 79(2):022120, 2009. 62, 67, 72

[Raz98] Ran Raz. A parallel repetition theorem. SIAM Journal on Computing,
27(3):763–803, 1998. 24

[Rud91] Walter Rudin. Functional analysis. McGraw-Hill, Inc., 1991. 17

[Rus] Vincent Russo. Supplementary software for thesis.
https://github.com/vprusso/phd thesis. 119

[Rus15] Vincent Russo. Supplementary software for extended nonlocal games.
https://github.org/vprusso/extended-nonlocal-games, 2015. 4, 107

[Rus16] Vincent Russo. Supplementary software for monogamy-of-entanglement
games. https://github.com/vprusso/nonlocal games seminar talk, 2016. 4

[RV15] Oded Regev and Thomas Vidick. Quantum XOR games. In ACM Transac-
tions on Computation Theory, volume 4, page 15. IEEE, 2015. 2, 24, 44, 45,
47, 48, 61

[RW16] Vincent Russo and John Watrous. Extended nonlocal games from quantum-
classical games. 2016. 4, 45

[SBC+15] Ana Belén Sainz, Nicolas Brunner, Daniel Cavalcanti, Paul Skrzypczyk,
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Appendix A

Software

Setup

Requirements

• MATLAB,

• CVX ≥ 2.1 [GBY08],

• QETLAB ≥ 0.8 [Joh15].

List of functions

• MonogamyGameValueUB (by N. Johnston) — Given a monogamy-of-entanglement game,
G, the function calculates an upper bound on the quantum value of G;

• MonogamyGameValueLB — Given a monogamy-of-entanglement game, G, the function
calculates an lower bound on the quantum value of G;

• MUB (by N. Johnston) — generates a set of mutually unbiased bases for a given
dimension;
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A.1 Software Listings

All of the following software listings in this Appendix are hosted on the Github repository
found here [Rus].

A.1.1 The first level of the extended QC hierarchy for the BB84
extended nonlocal game

e0 = [1;0]; e1 = [0;1]; ep = [1;1]/sqrt(2); em = [1;-1]/sqrt(2);

psi0_dm = e0*e0’; psi0_dmc = e1*e1’;

psi1_dm = ep*ep’; psi1_dmc = em*em’;

R00 = psi0_dm/2;

R01 = psi0_dmc/2;

R10 = psi1_dm/2;

R11 = psi1_dmc/2;

dim = 9;

A00_B00 = zeros(dim); A01_B01 = zeros(dim);

A10_B10 = zeros(dim); A11_B11 = zeros(dim);

% These are the relative positions of these

% entries as indexed by strings in the matrix.

A00_B00(2,6) = 1; A00_B00(6,2) = 1;

A01_B01(3,7) = 1; A01_B01(7,3) = 1;

A10_B10(4,8) = 1; A10_B10(8,4) = 1;

A11_B11(5,9) = 1; A11_B11(9,5) = 1;

A = 1/2*( kron(R00, A00_B00) + kron(R01, A01_B01) ) + ...

1/2*( kron(R10, A10_B10) + kron(R11,A11_B11) );

cvx_begin sdp

cvx_precision best

%#ok<*VUNUS> % suppress MATLAB warnings for equality checks in CVX

%#ok<*EQEFF> % suppress MATLAB warnings for inequality checks in CVX

% Admissible matrix
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variable M(2*dim,2*dim) hermitian

% Sub-block matrices found in the admissible matrix

variable M11(dim,dim)

variable M12(dim,dim)

variable M21(dim,dim)

variable M22(dim,dim)

M == [ M11 M12;

M21 M22 ];

maximize trace( A*M )

subject to

% Normalization condition:

M11(1,1) + M22(1,1) == 1;

for i = 1:dim

for j = 1:dim

% Ensure commutation relation holds

%(i.e. [A,B] = 0)

M11(i,j) == M11(j,i);

M12(i,j) == M12(j,i);

M21(i,j) == M21(j,i);

M22(i,j) == M22(j,i);

% Enforce operators as projective measurements

% (i.e. the square of the same operator is found in the top

% column / row of the diagonal entry).

M11(i,i) == M11(1,i);

M11(i,i) == M11(i,1);

M12(i,i) == M12(1,i);

M12(i,i) == M12(i,1);

M21(i,i) == M21(1,i);
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M21(i,i) == M21(i,1);

M22(i,i) == M22(1,i);

M22(i,i) == M22(i,1);

end

end

% Enforce that projective measurements sum to 1:

for i = 1:dim

for j = 1:dim

if mod(i,2) == 0

M11(i,j) + M11(i+1,j) == M11(1,j);

M12(i,j) + M12(i+1,j) == M12(1,j);

M21(i,j) + M21(i+1,j) == M21(1,j);

M22(i,j) + M22(i+1,j) == M22(1,j);

end

if mod(j,2) == 0

M11(i,j) + M11(i,j+1) == M11(i,1);

M12(i,j) + M12(i,j+1) == M12(i,1);

M21(i,j) + M21(i,j+1) == M21(i,1);

M22(i,j) + M22(i,j+1) == M22(i,1);

end

end

end

% Ensure that the matrix is PSD.

M >= 0;

cvx_end

cvx_optval =

0.8536

A.1.2 The first level of the extended QC hierarchy for the CHSH
extended nonlocal game

e0 = [1;0]; e1 = [0;1]; ep = [1;1]/sqrt(2); em = [1;-1]/sqrt(2);
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psi0_dm = e0*e0’; psi0_dmc = e1*e1’;

psi1_dm = ep*ep’; psi1_dmc = em*em’;

R00 = psi0_dm/2;

R01 = psi0_dmc/2;

R10 = psi1_dm/2;

R11 = psi1_dmc/2;

dim = 9;

A00_B00 = zeros(dim); A01_B01 = zeros(dim);

A10_B10 = zeros(dim); A11_B11 = zeros(dim);

% These are the relative positions of these entries as

% indexed by strings in the matrix.

A00_B00(2,6) = 1; A00_B00(6,2) = 1;

A01_B01(3,7) = 1; A01_B01(7,3) = 1;

A10_B10(4,8) = 1; A10_B10(8,4) = 1;

A11_B11(5,9) = 1; A11_B11(9,5) = 1;

A00_B00 = zeros(dim); A01_B01 = zeros(dim);

A00_B10 = zeros(dim); A01_B11 = zeros(dim);

A10_B00 = zeros(dim); A11_B01 = zeros(dim);

A10_B11 = zeros(dim); A11_B10 = zeros(dim);

A00_B00(2,6) = 1; A00_B00(6,2) = 1;

A00_B10(2,8) = 1; A00_B10(8,2) = 1;

A01_B01(3,7) = 1; A01_B01(7,3) = 1;

A01_B11(3,9) = 1; A01_B11(9,3) = 1;

A10_B00(4,6) = 1; A10_B00(6,4) = 1;

A10_B11(4,9) = 1; A10_B11(9,4) = 1;

A11_B01(5,7) = 1; A11_B01(7,5) = 1;

A11_B10(5,8) = 1; A11_B10(8,5) = 1;
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% CHSH ENLG

A = 1/4*(kron(R00, A00_B00) + kron(R01, A01_B01)) + ...

1/4*(kron(R00, A00_B10) + kron(R01, A01_B11)) + ...

1/4*(kron(R00, A10_B00) + kron(R01, A11_B01)) + ...

1/4*(kron(R10, A10_B11) + kron(R11, A11_B10));

cvx_begin sdp

cvx_precision best

%#ok<*VUNUS> % suppress MATLAB warnings for equality checks in CVX

%#ok<*EQEFF> % suppress MATLAB warnings for inequality checks in CVX

% Admissible matrix

variable M(2*dim,2*dim) hermitian

% Sub-block matrices found in the admissible matrix

variable M11(dim,dim)

variable M12(dim,dim)

variable M21(dim,dim)

variable M22(dim,dim)

M == [ M11 M12;

M21 M22 ];

maximize trace( A*M )

subject to

% Normalization condition:

M11(1,1) + M22(1,1) == 1;

for i = 1:dim

for j = 1:dim

% Ensure commutation relation holds

%(i.e. [A,B] = 0)

M11(i,j) == M11(j,i);

M12(i,j) == M12(j,i);
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M21(i,j) == M21(j,i);

M22(i,j) == M22(j,i);

% Enforce operators as projective measurements

% (i.e. the square of the same operator is found in the top

% column / row of the diagonal entry).

M11(i,i) == M11(1,i);

M11(i,i) == M11(i,1);

M12(i,i) == M12(1,i);

M12(i,i) == M12(i,1);

M21(i,i) == M21(1,i);

M21(i,i) == M21(i,1);

M22(i,i) == M22(1,i);

M22(i,i) == M22(i,1);

end

end

% Enforce that projective measurements sum to 1:

for i = 1:dim

for j = 1:dim

if mod(i,2) == 0

M11(i,j) + M11(i+1,j) == M11(1,j);

M12(i,j) + M12(i+1,j) == M12(1,j);

M21(i,j) + M21(i+1,j) == M21(1,j);

M22(i,j) + M22(i+1,j) == M22(1,j);

end

if mod(j,2) == 0

M11(i,j) + M11(i,j+1) == M11(i,1);

M12(i,j) + M12(i,j+1) == M12(i,1);

M21(i,j) + M21(i,j+1) == M21(i,1);

M22(i,j) + M22(i,j+1) == M22(i,1);

end

end

end
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% Ensure that the matrix is PSD.

M >= 0;

cvx_end

cvx_optval =

0.75783

A.1.3 The non-signaling value for the CHSH extended nonlocal
game

n = 1;

dim = 2^n;

e0 = [1;0]; e1 = [0;1];

ep = [1;1]/sqrt(2); em = [1;-1]/sqrt(2);

eip = (e0 + 1j*e1)/sqrt(2); eim = (e0 - 1j*e1)/sqrt(2);

psi0_dm = e0*e0’; psi0_dmc = e1*e1’;

psi1_dm = ep*ep’; psi1_dmc = em*em’;

psi2_dm = eip*eip’; psi2_dmc = eim*eim’;

P = zeros(2,2,2,2);

%P(:,:,1,1) = (psi0_dm)/2; P(:,:,1,2) = (psi0_dmc)/2;

%P(:,:,2,1) = (psi1_dm)/2; P(:,:,2,2) = (psi1_dmc)/2;

P = zeros(2,2,2,2,2,2);

P(:,:,1,1,1,1) = psi0_dm/2;

P(:,:,1,1,2,2) = psi0_dmc/2;

P(:,:,1,2,1,1) = psi0_dm/2;

P(:,:,1,2,2,2) = psi0_dmc/2;

P(:,:,2,1,1,1) = psi0_dm/2;

P(:,:,2,1,2,2) = psi0_dmc/2;
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P(:,:,2,2,1,2) = psi1_dm/2;

P(:,:,2,2,2,1) = psi1_dmc/2;

cvx_begin sdp

%#ok<*VUNUS> % suppress MATLAB warnings for equality checks in CVX

%#ok<*EQEFF> % suppress MATLAB warnings for inequality checks in CVX

variable rho(dim,dim,dim,dim,dim,dim) semidefinite

variable sig(dim,dim,dim,dim) hermitian

variable xi(dim,dim,dim,dim) hermitian

variable tau(dim,dim) hermitian

% construct objective function

obj_fun = 0;

for x = 1:dim

for y = 1:dim

for a = 1:dim

for b = 1:dim

obj_fun = obj_fun + ip( P(:,:,x,y,a,b), rho(:,:,x,y,a,b) );

end

end

end

end

maximize obj_fun

subject to

rho_b_sum = sum(rho,6);

for x = 1:dim

for y = 1:dim

for a = 1:dim

rho_b_sum(:,:,x,y,a) == sig(:,:,x,a);

end

end

end
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rho_a_sum = sum(rho,5);

for x = 1:dim

for y = 1:dim

for b = 1:dim

rho_a_sum(:,:,x,y,b) == xi(:,:,y,b);

end

end

end

sig_a_sum = sum(sig,4);

xi_b_sum = sum(xi,4);

for x = 1:dim

sig_a_sum(:,:,x) == tau;

end

for y = 1:dim

xi_b_sum(:,:,y) == tau;

end

trace(tau) == 1;

tau >= 0;

cvx_end

cvx_optval

cvx_optval =

0.75

A.1.4 Implementation of the see-saw method for computing
lower bounds on the BB84 extended nonlocal game

e0 = [1;0]; e1 = [0;1];

ep = [1;1]/sqrt(2); em = [1;-1]/sqrt(2);

psi0_dm = e0*e0’; psi0_dmc = e1*e1’;
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psi1_dm = ep*ep’; psi1_dmc = em*em’;

lvl = 1;

reps = 1;

j_max = 4;

xdim = 2;

ydim = 2;

num_inputs = 2;

num_outputs = 2;

I = eye(xdim,ydim);

R = zeros(2,2,2,2,2,2);

R(:,:,1,1,1,1) = psi0_dm/2;

R(:,:,1,1,2,2) = psi0_dmc/2;

R(:,:,2,2,1,1) = psi1_dm/2;

R(:,:,2,2,2,2) = psi1_dmc/2;

best = 0;

for k = 1:j_max

k

% Generate random bases from the orthogonal colums of randomly

% generated unitary matrices.

B = zeros(xdim,ydim,num_inputs,num_outputs);

for y = 1:num_inputs

U = RandomUnitary(num_outputs);

for b = 1:num_outputs

B(:,:,y,b) = U(:,b)*U(:,b)’;

end

end

% Run the actual alternating projection algorithm between

% the two SDPs.
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it_diff = 1;

prev_win = -1;

while it_diff > 10^-6

% Optimize over Alice’s measurement operators while

% fixing Bob’s. If this is the first iteration, then the

% previously randomly generated operators in the outer loop are

% Bob’s. Otherwise, Bob’s operators come from running the next

% SDP.

cvx_begin sdp quiet

variable rho(xdim^(2*reps),ydim^(2*reps),...

num_inputs,num_outputs) hermitian

variable tau(xdim^(2*reps),ydim^(2*reps)) hermitian

win = 0;

for x = 1:num_inputs

for y = 1:num_inputs

for a = 1:num_outputs

for b = 1:num_outputs

win = win + ...

trace( (kron(R(:,:,x,y,a,b), ...

B(:,:,y,b)))’ * rho(:,:,x,a) );

end

end

end

end

maximize real(win)

subject to

% Sum over "a" for all "x".

rho_a_sum = sum(rho,4);

for x = 1:num_inputs

rho_a_sum(:,:,x) == tau;

end

% Enforce that tau is a density operator.

trace(tau) == 1;
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tau >= 0;

rho >= 0;

cvx_end

win = real(win);

% Now, optimize over Bob’s measurement operators and fix

% Alice’s operators as those coming from the previous SDP.

cvx_begin sdp quiet

variable B(xdim,ydim,num_inputs,num_outputs) hermitian

win = 0;

for x = 1:num_inputs

for y = 1:num_inputs

for a = 1:num_outputs

for b = 1:num_outputs

win = win + ...

trace( (kron(R(:,:,x,y,a,b), ...

B(:,:,y,b)))’ * rho(:,:,x,a) );

end

end

end

end

maximize real(win)

subject to

% Bob’s measurements operators must be PSD and sum to I

B_b_sum = sum(B,4);

for y = 1:num_inputs

B_b_sum(:,:,y) == I;

end

B >= 0;

cvx_end
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win = real(win);

it_diff = win - prev_win;

prev_win = win;

end

% As the SDPs keep alternating, check if the winning probability

% becomes any higher. If so, replace with new best.

if best < win

best = win;

% take purification of tau

pur = PartialTrace(tau,2);

A = zeros(xdim,ydim,num_inputs,num_outputs);

for x = 1:num_inputs

for a = 1:num_outputs

A(:,:,x,a) = pur^(-1/2) * PartialTrace(rho(:,:,x,a),2) * pur^(-1/2);

end

end

opt_strat_A = A;

opt_strat_B = B;

end

end;

best

best =

0.8536

A.1.5 The BB84 monogamy game (Example 6.1)

% Create the BB84 basis.
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e0 = [1;0]; e1 = [0;1];

ep = [1;1]/sqrt(2); em = [1;-1]/sqrt(2);

psi0 = e0*e0’; psi1 = e1*e1’;

psip = ep*ep’; psim = em*em’;

% Referee’s first basis: {|0><0|, |1><1|}

R{1} = {psi0,psi1};

% Referee’s second basis: {|+><+|, |-><-|}

R{2} = {psip,psim};

% BB84 game for a single repetition.

reps = 1;

% Level of the extended QC hierarchy

lvl = 1;

% Calculate the lower and upper bounds on the BB84 game:

% cos^2(pi/8) \approx 0.8536

lb = MonogamyGameValueLB(R,reps,lvl)

ub = MonogamyGameValueUB(R,reps,lvl)

lb =

0.8535

ub =

0.8535

A.1.6 A monogamy-of-entanglement game defined by mutually
unbiased bases (Example 6.8)

% Number of inputs and outputs

nin = 4;
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nout = 3;

% Create the mutually unbiased bases consisting of 4-inputs and 3-outputs.

m = MUB(nout);

R = {};

for i = 1:nin

for j = 1:nout

R{i}{j} = m{i}(:,j) * m{i}(:,j)’;

end

end

% Number of repetitions of the game.

reps = 1;

% Level of the extended QC hierarchy.

lvl = 1;

% Calculate the lower and upper bounds on the quantum value of

% the mutually unbiased basis game:

lb = MonogamyGameValueLB(R,reps,lvl)

ub = MonogamyGameValueUB(R,reps,lvl)

lb =

0.6610

ub =

0.6667

A.1.7 A counter-example to strong parallel repetition for
monogamy-of-entanglement games with non-signaling
provers (Proof of Theorem 6.7)

% Create the BB84 basis.

e0 = [1;0]; e1 = [0;1];
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ep = [1;1]/sqrt(2); em = [1;-1]/sqrt(2);

psi0 = e0*e0’; psi1 = e1*e1’;

psip = ep*ep’; psim = em*em’;

% Referee’s first basis: {|0><0|, |1><1|}

R{1} = {psi0,psi1};

% Referee’s second basis: {|+><+|, |-><-|}

R{2} = {psip,psim};

% BB84 game for a single repetition.

reps = 1;

% Level of the extended QC hierarchy corresponds to non-signaling

lvl = 0;

% Calculate the lower and upper bounds on the BB84 game:

rep_1_val = MonogamyGameValue(R,reps,lvl)

% BB84 game for a single repetition.

reps = 2;

% Calculate the lower and upper bounds on the BB84 game:

rep_2_val = MonogamyGameValue(R,reps,lvl)

rep_1_val =

0.8536

rep_2_val =

0.7383
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k-th order admissible matrix, 74
k-th order pseudo commuting measure-

ment assemblage, 76

adjoint, 9
admissible, 73
alphabets, 7
assemblage, 36

Banach-Alaoglu theorem, 17
BB84 monogamy-of-entanglement game,

93
Bell inequality, 24
Bell state, 21
bipartite system, 20
bounded operators, 17

CHSH inequality, 24
classical strategy (nonlocal game), 29
classical value (nonlocal game), 29
closed (set), 15
commute, 10
commuting measurement assemblage, 41
commuting measurement correlation

function (nonlocal game), 30
commuting measurement strategy (ex-

tended nonlocal game), 41
commuting measurement strategy (nonlo-

cal game), 30

commuting measurement value (extended
nonlocal game), 42

commuting measurement value (nonlocal
game), 30

compact, 16
completely positive (map), 14
complex Euclidean space, 8
concatenation (string), 7
conjugate, 9
conjugate transpose, 10
convergent sequence, 15
convex, 15
convex combination, 16
correlation function (nonlocal game), 26

density operator, 10
deterministic correlation function (nonlo-

cal game), 29
deterministic strategy, 29

eigenvalues, 15
eigenvectors, 15
empty string, 7
entangled operator, 21
entangled state, 20
Euclidean norm, 8
extended nonlocal game, 35
extended QC hierarchy, 66
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generalized Bell basis, 22
generalized Pauli operators, 22
global strategy, 31

Hermitian, 10
Hermiticity-preserving (map), 14
Hilbert space, 16
Hilbert-Schmidt inner product, 10

I3322 inequality, 62
identity map, 13
identity operator, 9
interactive proof system, 24

Kronecker delta function, 20

left singular vectors, 14
length (string), 7
Lie bracket, 10

maximally entangled, 20
measurement, 19
mixed state, 19
monogamy-of-entanglement game, 90
mutually unbiased, 8
mutually unbiased bases, 8

non-convex, 15
non-signaling assemblage, 43
non-signaling correlation function (nonlo-

cal game), 31
non-signaling strategy, 31
non-signaling strategy (extended nonlocal

game), 42
non-signaling strategy (monogamy-of-

entanglement game), 93
non-signaling value (extended nonlocal

game), 43
non-signaling value (nonlocal game), 31
nonlocal game, 24

norm, 11

observable, 19
open (set), 15
orthogonal, 8
orthogonal set, 8
orthonormal, 8
orthonormal basis, 8
orthonormal set, 8

parallel repetition, 96
partial trace, 13
Pauli operators, 22
positive semidefinite, 10
post-selected teleportation, 57
probability vector, 16
product state, 20
projection operator, 10
projective measurement, 19
prover (interactive proof system), 24
pure state, 18
purification, 19
purified, 19

QC hierarchy, 67
quantum channel, 19
quantum correlation function (nonlocal

game), 27
quantum strategies (QC games), 46
quantum strategy (nonlocal game), 27
quantum strategy (teleportation game),

50
quantum value (nonlocal game), 27
quantum value (quantum-classical game),

47
quantum XOR games, 48
quantum-classical games (QC games), 45
quantum-classical-quantum extended

nonlocal games, 63
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qubits, 19

register, 19
reversal (string), 7
right singular vectors, 14

Schatten p-norms, 11
Schmidt decomposition, 15
semidefinite program, 18
separable, 20
separable density operator, 21
separable Hilbert space, 16
separable operators, 21
sequence, 15
singular value decomposition, 14
singular value theorem, 14
singular values, 14
spectral decomposition, 15
spectral norm, 11
spectral theorem, 14
square root (of operator), 11
standard basis, 8
standard basis (operators), 9
standard quantum assemblage, 39
standard quantum strategy (extended

nonlocal game), 37
standard quantum strategy (monogamy-

of-entanglement game), 92

standard quantum value, 39
strategy, 25
string, 7
strong parallel repetition, 99
subsequence, 15
symbols, 7

teleportation, 23
teleportation game, 49
tensor product, 12
trace, 10
trace class, 17
trace norm, 11
trace preserving (map), 14
transpose, 9

unentangled strategy (extended nonlocal
game), 40

unentangled strategy (monogamy-of-
entanglement game), 92

unentangled value, 40
unit sphere, 8
unit vector, 8
unitary operator, 10

value (nonlocal game), 25
verifier (interactive proof system), 24

weak-* convergence, 17
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